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 ABSTRACT  

The work presented in this thesis uses Selected Ion Flow Tube Mass 

Spectrometry to investigate if hydrogen cyanide (HCN) is a marker of 

Pseudomonas aeruginosa (PA).  The initial in-vitro studies measure the HCN 

released into the gas phase by cultures of PA after various durations of incubation.   

Study 1 uses clinical PA isolates with a known genotype and phenotype (mucoid / 

non-mucoid) and Study 2 uses a selection of the same PA isolates cultured under 

biofilm and planktonic conditions. Study 4 investigates if HCN is an in-vivo marker 

of PA infection in children with cystic fibrosis (CF).  It is a 2 year observational 

study of 233 children with CF who are free from PA infection.  A breath sample for 

HCN analysis is collected each time they attend the out-patient clinic.  Exhaled 

breath HCN concentrations are then compared to routine microbiology sample 

results.  The breath samples for this study are collected in sampling bags.  In 

preparation for this, Study 3 identifies the most appropriate bag type as well as the 

maximum duration of storage and the need for sample warming prior to analysis. 

Some healthy adults produce HCN in their oral cavity and therefore mouth-exhaled 

HCN alone cannot be used as marker of PA infection.  Study 5 investigates nose-

exhaled HCN as a marker of chronic PA infection in adults with CF.  A recent 

study has shown that Burkholderia Cepacia Complex (BCC) produces cyanide 

when cultured under biofilm but not planktonic conditions.  Study 6 measures the 

HCN released into the gas phase by in-vitro cultures of BCC as well as HCN 

concentration in the breath of patients with chronic BCC infection.   
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CHAPTER ONE – LITERATURE REVIEW 

1.1 CYSTIC FIBROSIS 

1.1.1 Background 

1.1.1.1 Introduction 

Cystic fibrosis (CF) is the commonest life shortening, inherited disease in the 

Caucasian population.  It was first described in 19381 and is caused by mutations 

in the cystic fibrosis transmembrane conductance regulator (CFTR) gene.  These 

mutations result in defective intracellular processing of the CFTR protein.  This is a 

c-AMP regulated anion channel normally expressed on the apical surfaces of 

epithelial cells, including those of the sweat glands, pancreas, gastrointestinal tract 

and reproductive organs.2  The critical function of CFTR is the transport of chloride 

ions across membranes but it has a number of other regulatory roles related to 

bicarbonate and sodium transport, ATP channels, intracellular vesicle transport 

and acidification of intracellular organelles.3–7   

The inheritance of CFTR mutations results in a qualitative or quantitative reduction 

in CFTR activity at the cell surface.  The degree of reduction in CFTR activity 

influences the severity and diversity of the CF disease phenotype.6  Individuals 

with a single CFTR mutation (carriers) may have as little as 50% of wild-type 

CFTR activity but are unaffected.  Individuals with CF (two CFTR mutations) will 

have less severe disease phenotypes if one of their mutations retains residual (but 

reduced) CFTR function. 

Some of the pathophysiological manifestations of CF begin in-utero.  These 

include the effect on the pancreas in which the blockage of ducts leads to auto-
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digestion and leakage of enzymes into the systemic circulation.2  This is the basis 

of newborn screening programmes which measure the levels of a pancreatic 

enzyme called immunoreactive trypsinogen (IRT).  Reduced CFTR function in the 

sweat glands results in elevated sweat chloride that is detectable from birth using 

pilocarpine-induced iontophoresis.  Reduced water and bicarbonate secretion in 

the gut also predisposes neonates to meconium ileus and the majority of males 

with CF are born without a palpable vas deferens. Other pathologies evolve after 

birth.  Pancreatic insufficiency and the associated gastrointestinal complications 

are usually present from birth but may not be clinically apparent in the first few 

years of life.  The risk of CF-related diabetes increases with age.  Interestingly the 

respiratory system appears essentially normal at birth but the complications from 

reduced CFTR function become apparent very quickly.8,9 

1.1.1.2  The pathophysiology of CF lung disease - lessons from the CF pig 

There are a number of hypotheses related to the pathophysiology of CF lung 

disease but the most widely quoted is the low-volume hypothesis.  This suggests 

that the effect of CFTR dysfunction on sodium channels leads to excess sodium 

and water resorption which dehydrates the airway surface.  The epithelium cannot 

correct this due to loss of chloride efflux.  Decreased periciliary water volume 

reduces the lubricating layer between epithelium and mucus, which leads to 

compression of the cilia and impaired mucus clearance.10  However, studies on CF 

pigs have challenged this hypothesis by demonstrating a lack of CFTR-dependent 

changes in sodium absorptive flux, fluid absorption, and depth of periciliary fluid in 

cystic fibrosis pig airway epithelia.11
  This has led to the suggestion that defects in 
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chloride and bicarbonate transport, but not sodium transport, are largely 

responsible for lung disease in cystic fibrosis. 

The pathophysiology of CF lung disease was further informed by studies involving 

CF pigs which showed a reduced ability to kill bacteria that come into contact with 

the airway surface when compared to wild-type pigs.12  This was shown to be 

related to the pH of the airway surface liquid (ASL) which is more acidic in CF 

pigs.  When the ASL pH was reduced in wild-type pigs bacterial killing was 

reduced and conversely, increasing ASL pH in CF pigs improved bacterial killing.13   

This led to the hypothesis that reduced CFTR function directly effects bicarbonate 

excretion resulting in a fall in the ASL pH and inhibition of antimicrobial function 

which impairs the killing of bacteria.  

CF pigs have also helped to answer the long-standing question: which comes first, 

infection or inflammation?  Studies have shown that despite the fact that CF pigs 

develop spontaneous lung infections, neutrophil counts and interleukin (IL)-8 

levels in neonatal bronchial alveolar lavage (BAL) fluid do not show signs of 

inflammation at birth.14  This suggests that infection precedes inflammation in 

cystic fibrosis.  

1.1.1.3 Genetics 

The genetic defect was identified and localised to the long arm of chromosome 7 

in 198915 and since then, more than 1800 CFTR mutations have been identified.16  

The vast majority of these are confined to one family (private) or a small number of 

individuals.17  Worldwide the most common mutation is Phe508del (formally known 

as ΔF508) which causes a deletion of phenylalanine at the 508th amino acid.  

Phe508del accounts for nearly 70% of the mutations in the white UK population 
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meaning that 50% of this population are homozygous for Phe508del.  The CF 

genotype correlates strongly with pancreatic sufficiency and sweat chloride 

concentrations but poorly for lung function.18  This means that two patients with the 

same genotype (including siblings) may have very different manifestations of CF.  

Factors that influence this phenotypic variability include environmental factors, 

social factors, chance effects and polymorphisms in non-CFTR genes such as 

high-producer ACE, transforming growth factor ß1 and mannose-binding lectin-

2.19,20  

1.1.1.4 Mutation classes 

CF mutations have been divided into 6 sequential classes according to their 

functional effects on the CFTR protein.21,22  See Figure 1.  Class I includes mostly 

nonsense, frameshift or missense mutations resulting in defective protein 

biosynthesis and non-functional products that are degraded within the cell. Class II 

mutations, such as Phe508del, produce a misfolded functional CFTR protein, 

which is prevented from trafficking to the apical surface of the cell. Class III 

mutations affect channel activation by preventing binding and hydrolysis of ATP. 

Class IV mutations produce a protein with impaired function because of abnormal 

anion conduction. Class V mutations result in a reduced number of normally 

functioning CFTR molecules on the apical surface.22 Class VI mutations result 

from truncation of the C-terminus of CFTR and produce a functional protein, which 

is unstable at the apical membrane surface.  As individuals with classes I–III and 

VI mutations have little or no functional CFTR they are predicted to have severe 

disease. In contrast, individuals with class IV and V mutations retain some residual 

CFTR-mediated channel function and would be expected to have milder disease.  
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Figure 1: Molecular consequences of cystic fibrosis transmembrane conductance 

regulator mutations.  

 

Used with permission from Wilschanski.22 

1.1.1.5 Incidence of cystic fibrosis 

In the UK, CF has a carrier rate of 1 in 25 and an incidence of 1 in 2500 live 

births.23  There is a similar incidence amongst white North Americans (1 in 3300) 

but it is much less frequent in African-Americans (1 in 15,000), Asian Americans (1 

in 31,000) and Japanese (1 in 350,000).24  In the UK the estimated number of 

patients with CF is approaching 10,000; it is expected that this number will 

continue to increase as the number of new cases (300/year) outnumbers the 

number of deaths (160/year).25  The outlook for patients with CF continues to 

improve with the median predicted age of survival increasing from 32 years in 

2000 to 37.4 years in 2008 (US CF Foundation Patient Registry data).26  A 

recently published UK model predicted a child born today with CF will typically live 

to be 50 years of age or more.25     
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1.1.2 Diagnosis 

1.1.2.1 Newborn screening 

Newborn screening for CF was implemented across the UK in 2007, although it 

had been running in some areas since 1980.  It involves the measurement of 

immunoreactive trypsinogen (IRT) on the Newborn Bloodspot Screening which is 

taken on day 5-8 of life.  Very high IRT suggests pancreatic injury consistent with 

but not specific to CF.  Various protocols have been used but the current UK 

protocol is an IRT-DNA protocol.27  See Figure 2.  If the first IRT >99.5th centile, a 

4 mutation DNA analysis is undertaken on the same blood spot.  If two mutations 

are identified then the patient is referred to a Paediatric Respiratory Consultant as 

“CF suspected”.  If one mutation is identified then a 29-31 mutation DNA analysis 

is undertaken.  If this still only identifies one mutation then a second IRT is 

measured on a second bloodspot taken on day 21-28 of life.  If the IRT >99.5th the 

patient is referred as “CF suspected”, if the IRT is below this level, the patient is a 

presumed carrier and no further action is taken.  If no mutation is detected on the 

initial 4 mutation DNA analysis, CF is not suspected if the first IRT is <99.9th 

centile.  If the IRT is above this level then a second blood spot is taken and same 

cut-offs are applied as for the second IRT in the one mutation group.   

Although there was a significant financial cost to implementing the newborn 

screening programme, there is evidence that the treatment costs are lower for 

patients diagnosed with CF through newborn screening when compared to 

clinically diagnosed patients.28  The majority of evidence regarding the clinical 

benefits of newborn screening for CF is based on the randomised controlled trial in 

the Wisconsin CF Neonatal Screening Project.29  This remains controversial as the 



 

8 
 

patients in the control group did not have their blood spots examined for 4 years, 

effectively withholding their diagnosis.  Despite this, the study has clearly 

demonstrated improved nutrition in the screened population that is maintained up 

to the age of 16 years.  There was also an increased incidence of vitamin E 

deficiency amongst the non-screen group and those that were deficient had a 

significantly lower Cognitive Skills Index.  The study has failed to show any 

significant difference between the groups in terms of lung function but this is 

confounded by an imbalance of genotype, pancreatic status and severity of lung 

disease between the two groups and the early acquisition of PA amongst 

screened patients at one of the centres.30   

Figure 2: UK standard protocol for neonatal screening for cystic fibrosis 
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A retrospective, observational study undertaken in Australia has also provided 

interesting data on the benefits of newborn screening.31  It compared a cohort of 

CF patients born in the 3 years prior to the introduction of newborn screening 

(n=57) with those diagnosed in the first 3 years of screening (n=60).  When 

interpreting the results, it must be noted that the study was not randomised and 

there was a time gap between the cohorts,  At the age of 18 years non-screened 

patients had a higher rate and lower age of PA acquisition (p<0.01).  Screened 

patients had better height, weight, BMI and FEV1 (difference: 16.7 ± 6.4%; 

p=0.01).  At age 25 years there was a significant survival difference in favour of 

the screened group (25 vs 13 deaths or lung transplants; p=0.01).    

In the UK, the majority of newly diagnosed patients with CF are now identified by 

the newborn screening programme and the number of late diagnoses has been 

reduced.   Despite this, there can be false negative results with any screening 

programme and children can therefore still present with CF.  This may be because 

they were born prior to the introduction of the newborn screening programme or 

they may not be picked-up by the newborn screening programme.32  The risk of 

false negative results is higher in non-Europeans, especially Asians as the 

mutations they carry may not be on the panels used in the UK screening 

programme.  If such patients are from sub-populations with a high incidence of 

consanguinity then they may be homozygous for rare “private” mutations.33  There 

is a higher rate of false negative results in those neonates that present with 

meconium ileus.34  The reason for this is not fully understood but it has limited 

clinical significance as the possibility of CF is highlighted by the presence of 

meconium ileus.  
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1.1.2.2 Sweat test 

Despite the introduction of newborn screening, the sweat test remains the gold 

standard diagnostic test for CF.  There are strict guidelines regarding the 

methodology which is based on pilocarpine iontophoresis and a quantitative 

determination of chloride concentration.35  A sweat chloride concentration of 

>60mmol/L is diagnostic of CF.  In infants with an intermediate result (sweat 

chloride: 30-60mmol/L) the diagnosis may be confirmed or refuted based on 

additional data from further mutation analysis, a repeat sweat test or clinical 

assessment.  In some infants the diagnosis remains equivocal.  European 

consensus on the follow-up and management of these children is currently being 

agreed36.  False negative sweat test results are reported in the literature but are 

more frequently related to poor technique.  Textbooks provide a long list of 

potential causes of false positive sweat tests, but in reality the only causes that are 

likely to be encountered are severe skin disorders (eczema), malnutrition and 

certain immunodeficiency states. 

1.1.3 Clinical Manifestations 

1.1.3.1 Respiratory 

Cystic fibrosis is characterised by recurrent lower respiratory infections and 

chronic inflammation leading to progressive lung damage and respiratory failure.  

Studies analysing BAL samples in infants diagnosed by newborn screening have 

demonstrated that this process starts in the first few months of life.8,37  These 

studies found evidence of infection (positive cultures for Staphylococcus aureus 

and PA) and inflammation (elevated neutrophil count and proinflammatory 
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cytokines) in infants as young as 2 months.   This is despite the majority of these 

infants being asymptomatic.   

In infants the commonest organisms to infect and colonise the lower respiratory 

tract are Staphylococcus aureus and Haemophilus influenzae.  As the patients get 

older other organisms become established; of significant importance are PA (this 

will be discussed in more detail later in this chapter) and Burkholderia Cepacia 

Complex (BCC), which have well documented effects on morbidity and mortality.  

Chronic infection with a range of other organisms whose pathogenicity is less well 

understood (including methicillin resistant Staphylococcus aureus (MRSA) and 

atypical mycobacterium) is also common.  It is often difficult to establish if isolation 

of these organisms is related to colonisation or invasive infection.  The incidence 

of MRSA is much higher in the United States (21%) than in the UK (8%).26,38  

Interestingly, prophylactic antibiotics against Staphylococcus aureus are not used 

routinely in paediatric patients in the United States.  Persistent infection with 

organisms such as PA leads to the production of chemotactic cytokines which 

recruit polymorphonuclear cells.  The recruited neutrophils are damaged by toxins 

and elastases released by the infecting bacteria, which leads to the attraction of 

further inflammatory cells and lung cell damage.4  The release of DNA from the 

damaged neutrophils adds to sputum viscosity.   

Fungi and yeasts are frequently isolated from the sputum of patients with CF, the 

significance of which is not always understood.  Aspergillus fumigatus rarely 

causes invasive disease or aspergillomas in CF but does commonly case allergic 

bronchopulmonary aspergillosis (ABPA).  ABPA is a hypersensitivity reaction to 

Aspergillus fumigatus leading to a Th2 CD4 response mediated by the release of 
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specific IgE.39  It can cause severe impairment to lung function and permanent 

lung damage; early diagnosis and treatment is therefore vital.  Symptoms include 

wheeze and respiratory deterioration not responsive to antibiotics.  Diagnosis is 

based on total IgE, specific IgE to Aspergillus fumigatus or skin prick tests, 

Aspergillus precipitins and radiology.  Treatment is oral corticosteroids and 

antifungals.    

1.1.3.2 Gastroenterology 

Prior to CF newborn screening the commonest reason for early diagnosis was 

meconium ileus, which causes intestinal obstruction secondary to inspissated 

meconium, affecting about 15% of infants with CF.  The vast majority (85-90%) of 

patients with CF have exocrine pancreatic insufficiency which causes 

steatorrhoea, malabsorption, malnutrition and deficiency of fat soluble vitamins (A, 

D, E & K).  Clinically evident cirrhosis develops in about 5% of CF patients 

secondary to focal biliary cirrhosis caused by obstruction of intrahepatic bile 

ducts.4 

1.1.3.3 Endocrinology 

Cystic fibrosis related diabetes (CFRD) develops when enough of the pancreatic 

islet cells are not functioning to cause insulin insufficiency and carbohydrate 

intolerance, with insulin resistance also potentially contributing.  The pancreatic 

dysfunction is caused by thick secretions obstructing the intra-pancreatic ducts 

and eventually autolysis.4,40  CFRD is associated with respiratory deterioration, 

more severe exacerbations and poor nutritional status.  Clinically apparent CFRD 

is present in 30% of CF patients aged over 25 years26 but abnormal glucose 

metabolism has been identified in 38% of asymptomatic adolescents.41  Given this 
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information it is necessary to screen cystic fibrosis patients for CFRD on a regular 

basis; although most centres use the oral glucose tolerance test there is debate 

regarding what is the best screening tool and the age at which screening should 

start.42 

1.1.3.4 Bones 

Bone disease and its associated complications are increasingly being recognised 

in CF.  The prevalence of osteopenia and osteoporosis bone disease in adults with 

CF is 38% and 24% respectively.43  Regarding complications, the prevalence of 

vertebral fractures and non-vertebral fractures is 14% in those with osteopenia and 

20% for those with osteoporosis.43   Bone disease in CF is caused by a 

combination of factors including: vitamin D deficiency, corticosteroid use and 

chronic systemic inflammation.  Oral and intravenous bisphosphonates have been 

shown to increase bone mineral density in patients with CF and are increasingly 

being used.44 

1.1.3.5 Reproduction 

The vas deferens is very sensitive to CFTR dysfunction.  Virtually all men with CF 

and a percentage of male CF carriers have congenital, bilateral absence of the vas 

deferens.45  This results in azoospemia and infertility.  Women with CF often have 

reduced fertility secondary to poor nutritional status and increased viscosity of 

cervical mucus.46  Despite this they can conceive naturally and if nutrition, 

glycaemic control and lung function is maximised a successful pregnancy can be 

completed.47 
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1.1.4 Treatment 

1.1.4.1 Nutrition 

It has long been established that optimising nutrition in patients with CF improves 

lung function and survival.48  In those who have exocrine pancreatic insufficiency 

this is done by the replacement of pancreatic enzymes and fat soluble vitamins.  

Regular input is required from a dietician to closely monitor growth and ensure a 

high calorie diet.  If the growth or nutritional status is suboptimal then additional 

nutritional support, including overnight enteral feeds may be required. 

1.1.4.2 Chronic pulmonary management 

In the UK prophylactic oral antibiotics against Staphylococcus aureus are given for 

at least the first 2 years.  Oral macrolide antibiotics, especially azithromycin are 

widely used as a prophylaxis in older children and adults.  Azithromycin has been 

shown to reduce pulmonary exacerbations and improve FEV1 in patients with 

chronic PA,49 in patients who are PA negative it reduces exacerbations but does 

not improve lung function.50  The exact mechanism is unclear but azithromycin is 

known to have bactericidal effects and decrease production of biofilms and 

virulence factors by PA.  It also has an anti-inflammatory role by affecting cytokine 

production and polymorphonuclear cell function.51  Long term, low dose 

azithromycin has been associated with hearing loss.52,53  There are concerns that 

chronic macrolide use may predispose to infection with atypical mycobacterium or 

increase the likelihood of such an infection developing antibiotic resistance.54,55   

In patients with chronic PA there is evidence that nebulised anti-Pseudomonas 

antibiotics (colistin or tobramycin) improve lung function, decrease PA density in 
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sputum and reduced hospital admissions.56,57  As yet, there is little long-term data 

to determine if these benefits are maintained long term.58  Nebulised mucolytics 

have been shown to improve lung function and decrease pulmonary 

exacerbations.59,60  Dornase alpha is an enzyme that cleaves DNA, by hydrolysing 

the neutrophil DNA present in CF sputum it reduces the viscosity allowing easier 

mucociliary clearance.60  Hypertonic saline draws water into the airways 

rehydrating the periciliary layer, which can also improve mucociliary clearance.59 

1.1.4.3 Pulmonary exacerbations     

Early and aggressive treatment of infective pulmonary exacerbations using oral or 

intravenous (IV) antibiotics has been shown to improve lung function and 

survival.61,62  The choice of antibiotic will depend on the organisms cultured by 

individual patients, their previous response to treatment and the presence of 

hypersensitivity reactions to certain antibiotics.  When using intravenous antibiotics 

against PA, a combination of agents with different modes of action is preferred to 

single agent treatment to avoid the emergence of resistant strains.63  Although 

there is a paucity of data regarding the optimal duration of treatment, most patients 

receive around 14 days.64  When specific organisms are isolated for the first time, 

such as PA, BCC or methicillin resistant Staphylococcus aureus, eradication 

regimens using a combination of intravenous, oral or inhaled antibiotics should be 

used.  If successful this will avoid the morbidity and mortality associated with 

chronic infection.38,65–67  

1.1.4.4 Airway clearance 

Airway clearance techniques are chest physiotherapy treatments which help to 

loosen sputum to enable it to be cleared by coughing or huffing.  In young children 
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the main technique is percussion and drainage that is performed by the parent.  

For older children and adults devices and techniques are used to allow 

independent treatment.  There is evidence of the benefit from airway clearance 

techniques in CF but no single method has been shown to be more advantageous 

than the others.68  Exercise has been shown to be beneficial for fitness and 

general well-being but there is no evidence it should be used as an alternative to 

airway clearance.69 

1.1.4.5 Lung transplantation    

Lung transplantation is the final therapeutic option for patients with end stage 

disease.  There has recently been much controversy about this topic after a paper 

from the United States suggested only 5 of the 514 children with CF listed for 

transplantation would have received survival benefit from the procedure.70  

Subsequent articles have strongly refuted this analysis and suggested that if 

patients are appropriately selected for transplantation it has the potential to 

increase survival benefit.71,72  In Europe it is unusual for children to be listed for 

transplant unless their projected life expectancy is less than two years despite 

maximal medical therapy.71  Adults tend to be considered for transplant when their 

FEV1 plateau below 30% predicted.  Irrespective of the criteria for listing patients 

for transplantation, the procedure does not offer a cure and the 5 year survival 

post-transplant for children is less than 50% with only slightly better outcomes in 

adults.70–72 

1.1.4.6 Gene therapy 

Since the CFTR gene was cloned in 1989 there has been huge interest in the 

possibility of gene therapy providing a cure for CF.15  Gene therapy is the process 
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by which a normal copy of the gene is introduced into the target organ by a gene 

transfer agent, which can be a viral or a non-viral vector.  Theoretically CF is an 

ideal target for gene therapy as it is the result of a single gene defect and the 

airway epithelium can be targeted with aerosols.73  The first report of patients 

receiving CFTR gene therapy appeared in 1993 and there have been more than 

20 subsequent clinical trials using various viral and non-viral vectors.  These were 

predominantly single doses administered into the nose or lungs.74  Some of these 

studies demonstrated an improvement of chloride channel function but this was 

generally short-lived.  The UK CF Gene Therapy Consortium was founded in 2001 

to coordinate gene therapy in the UK.  They have developed a translation 

programme with two products (Wave 1 based around liposomal gene transfer and 

Wave 2 focused on a modified lentivirus). The Wave 1 product has been used in 

the UK CF Gene Therapy Multidose trial and more than half of the recruited 

patients have now received their 12 treatment / placebo doses.  Development of 

the Wave 2 product is continuing and the first clinical trials are planned for 2017.    

1.1.4.7 Mutation specific therapies  

There has been significant research of therapies specific to certain mutations.  

These include ‘correctors’, which are agents that correct the localisation of CFTR 

by increasing its density at the cell membrane and ‘potentiators’ which are agents 

that increase the function of CFTR correctly located at the cell membrane.4   

Ivacaftor is a potentiator used in patients with at least one G551D CFTR mutation. 

An initial study to assess the safety and side-effect profile of ivacaftor showed that 

after 28 days treatment there were significant improvements in lung function 

(FEV1) and CFTR function (nasal potential difference and sweat chloride).75  
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There were no concerns regarding its safety or side-effect profile.   Subsequently a 

48 week, randomised, double blind, placebo controlled trial of ivacaftor was 

undertaken in patients >12 years.  This showed highly significant improvements in 

CFTR function (sweat chloride decreased by 45 mmol/L at 3 weeks and 

maintained at 48 weeks), FEV1 (increased by 10.6% at 24 weeks and maintained 

at 48 weeks), weight (increased by 3.1kg at 48 weeks), pulmonary exacerbation 

(26% fewer exacerbations by 48 weeks) and quality of life.76   

In another randomised, double-blind, placebo controlled trial in children aged 6-12 

years, similar improvements were seen despite them being healthier with near 

normal baseline lung function and nutrition.77  Ivacaftor was approved by the 

European Medicines Agency in July 2012 and in February 2013 it was announced 

that the NHS would fund the treatment for all patients in England aged 6 years or 

over with at least one G551D gene mutation.  It is estimated that there are 270 

eligible patients in England.   

In patients homozygous for the Phe508del mutation, ivacaftor produce no 

significant improvement in FEV1 and the mean sweat chloride at week 16 only 

reduced by 2.9 mmol/L.78  The potentiator VX-809 also produced a dose-

dependent reduction in sweat chloride but no significant improvements in FEV1.
79  

The results of a phase 3 trial using a combination of ivacaftor and VX-809 in 

patients homozygous for Phe508del are awaited.  There is much hope that a 

mutation-specific therapy for patients with the Phe508del mutation can be 

developed to produce similar outcomes as seen in those with a G551D mutation 

who receive ivacaftor.  A large volume of research is being undertaken in this area 

but so far the results have been frustrating.  
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1.2 PSEUDOMONAS AERUGINOSA IN CYSTIC FIBROSIS 

1.2.1 Bacteriology 

Pseudomonas aeruginosa (PA) is a gram-negative rod shaped bacterium which 

belongs to the γ proteobacteria class of bacteria.80  Its ability to thrive in normal or 

hypoxic conditions means it can occupy a wide range of niches; from an almost 

ubiquitous presence in the environment to causing infection in a variety of animals 

and plants.  In the environment it is present in soil and water and can colonise 

surfaces, including those of medical equipment.81  Its ability to cause infection 

across species and across kingdoms is unusual and demonstrates its versatility.  

PA is the epitome of an opportunistic pathogen of humans.  It almost never infects 

uncompromised tissues, but if there is a break in the host’s defences PA will 

exploit it and can cause infection in almost any tissue.  These include infections in 

patients with AIDS, neutropenia and those mechanically ventilated.82,83  PA is a 

leading cause of hospital acquired infection, accounting for approximately 10%.84   

1.2.2 Acquisition of Pseudomonas aeruginosa in Patients with Cystic 

Fibrosis  

Although most patients with CF are infected by their own individual PA strain, 

siblings often carry the same strain indicating infection from a common 

environmental strain or from cross infection.85  Recent microbiological surveillance 

using molecular typing (genotyping), has provided compelling evidence for PA 

cross-infection at many European, Australian and Canadian CF centres.86–89  

These strains are often resistant to multiple antibiotics and therefore difficult to 

eradicate.90  The emergence of transmissible PA strains has had a major impact 
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on the infection control precautions necessary for patients with CF and further 

highlights the need for prompt, accurate PA diagnosis.   

1.2.3 Survival Mechanisms 

PA uses a number of innovative survival mechanisms to enhance survival in the 

CF airway and establish chronicity. 

1.2.3.1 Evading the host immune system 

PA secretes a number of products to aid survival.  These included pyocyanin 

which slows ciliary beat frequency thereby impairing mucociliary clearance and 

exotoxin A which inhibits phagocytosis.  Elastase and alkaline protease are also 

secreted which cleave immunoglobulin’s, cytokines and complement.91,92  The 

release of pro-inflammatory markers such as IL-8 and stimulates the host immune 

response via Toll-like receptor 5.93   

1.2.3.2 Development of a mucoid phenotype       

Initial PA infection usually occurs with a non-mucoid strain that is sensitive to anti-

PA antibiotics.94  As PA is exposed to various antimicrobials over time, it 

accumulates mutations that help establish chronic infection and antibiotic 

resistance.91  These include the mutation in mucA which negatively regulates the 

production of alginate.  The increased production of this exopolysaccharide results 

in a mucoid phenotype when grown in-vitro.   

Alginate has a number of pathogenic roles:  

(i) It acts as a direct barrier against phagocytic cells such as neutrophils 

and macrophages. 
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(ii) It has an immunomodulation role and affects the oxidative burst of 

leukocytes. 

(iii) It has a role in the development of biofilms affecting bacterial adhesion 

and antibiotic resistance.80,95,96   

The clinical effects of the change to a mucoid phenotype include increased 

inflammation, a decline in lung function and increased morbidity and mortality.97  

Once the PA phenotype has changed to mucoid, attempts to eradicate the PA 

infection are much less likely to be successful.79 

1.2.3.3 Biofilm formation 

During early infection, PA attaches to the respiratory epithelium and multiplies 

whilst in a planktonic (free-floating) form.  Once a certain bacterial density is 

reached, growth slows and biofilm production is signalled.  This signalling occurs 

by quorum sensing in which extra-cellular molecules are used to regulate 

phenotype in response to population density.  Biofilms are communities of non-

motile organisms embedded in an exopolysaccharide matrix attached to a solid 

surface.98  When growing in this form, PA is more difficult to remove by mucociliary 

clearance and has increased antibiotic resistance.99  A mucoid phenotype is a 

marker of biofilm formation.100   

The antibiotic resistance is created by restricted antimicrobial penetration 

mediated by the polysaccharide matrix formation, a reduction in growth and 

metabolic activity caused by nutrient and oxygen gradients, increased expression 

of multidrug efflux pumps and an induction of the bacteria general stress 

response, which increases resistance to environmental stressors.98  Bacteria in 

biofilms can be up to 1000 times more resistant to antimicrobials than planktonic 
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bacteria.81  Biofilm PA also undergoes physiological, metabolic and phenotypic 

changes leading to a biofilm-specific phenotype.   

1.2.4 Detecting Pseudomonas aeruginosa in Patients with Cystic Fibrosis 

The culture of PA from expectorated sputum is the gold standard for the detection 

of PA in patients with CF.  Unfortunately, most young children and a significant 

proportion of older children and adults are unable or unwilling to expectorate 

sputum.  In such patients, clinicians have to rely on other detection methods which 

are less effective.   The most widely used method is the oropharyngeal (cough 

swab) culture.  Although this has a good negative predictive value (95-97%), the 

sensitivity (44-82%), specificity (83-95%) and positive predictive value (41-44%) 

are lower.101,102   

The expectoration of sputum can also be induced in patients who do not usually 

produce sputum by inhalation of hypertonic saline.   Traditionally, paediatricians 

have thought that this was too unpleasant to be widely used in children but recent 

studies revealed it to be well tolerated and to produce a good microbiological 

yield.103,104  These studies found the factors limiting its routine use were the time 

required (30-85 minutes) and the expense ($150 per induction).  Culture of BAL 

samples taken during flexible bronchoscopy is increasingly being used to gain a 

microbiological diagnosis in non-expectorating children.105  Although this gives an 

excellent yield its frequency of use is limited because of its invasive nature and the 

requirement for deep sedation or a general anaesthetic.  Despite its increasing 

use, a study comparing outcomes from standard therapy versus BAL directed 

therapy in children with CF did not show any difference in the prevalence of PA 

infection or computerised tomography (CT) scores up to the age of 5 years.106  



 

23 
 

There is also evidence that the bacterial distribution within the lungs of patients 

with CF is inhomogeneous and the microbiological yield is therefore dependent on 

which lobes are sampled.107     

There is interest in the role of serological markers of the immune response to PA 

antigens including crossed immunoelectrophoresis, radioimmunoassay and 

enzyme-linked immunosorbent assay.  As yet these techniques are not widely 

used.63  Anti-PA antibody titres may be helpful in distinguishing early from chronic 

infection108 and may be positive before PA is cultured.109  Although some centres 

include anti-PA antibody titres as part of a patient’s annual review the test is not 

suitably sensitive or specific to be widely used.  There is increasing research using 

molecular techniques such as polymerase chain reaction (PCR) for PA detection.  

Initial studies suggest this technique is sensitive (97%) but not specific (46%).110  

There is therefore an urgent need for a non-invasive, child friendly method of 

detecting early PA infection in children who cannot expectorate sputum. 

1.2.5 Classification of Pseudomonas aeruginosa Infection 

When reading the literature the terminology regarding the various categories of PA 

can be confusing as different terms are used interchangeably by different authors.  

The most comprehensive and widely used is the Leeds criteria.111  This divides 

patients into 4 categories based on their airway culture results from the previous 

12 months: 

i. Never:  PA never cultured 

ii. Free of infection: No growth of PA in previous 12 months having had 

previous PA positive culture 
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iii. Intermittent infection: <50% of cultures positive for PA in the previous 12 

months 

iv. Chronic infection: >50% of cultures positive for PA in the previous 12 

months 

The time course of PA infection in patients with CF is illustrated in Figure 3. 

 

Figure 3: Illustration of the time course of Pseudomonas aeruginosa infection in 

patients with cystic fibrosis using the Leeds criteria.  

 

Used with permission from Lee.112 

An American longitudinal cohort study showed that over 97% of patients had 

serological or microbiological evidence of PA infection by age 3.113  More recently 

the AREST-CF group published data on 116 children diagnosed with CF by 

newborn screening between 1999 and 2008.  They had flexible bronchoscopy and 

BAL at diagnosis and annually thereafter.114  PA was detected in 33/116 (28%) of 

children and the median (range) age at detection was 30.5 (3.3-71.4) months.  At 

detection, the PA was mucoid in 6 (18%) children and less than 50% of the 

children were symptomatic at the time of detection.   
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1.2.6 Clinical Implications of Pseudomonas aeruginosa Infection 

In patients with CF, chronic PA infection is associated with significant morbidity 

and mortality.  Patient with chronic PA infection have more severe lung disease 

assessed using chest x-rays when compared to those who are free of PA 

infection.115  This results in more symptoms and a more rapid decline in lung 

function.116,117  Patients with chronic PA also have more in-patient hospital days 

and a higher treatment burden due to the additional use of nebulised 

treatments.118  A large registry-based study showed it to be the main predictor of 

morbidity and mortality in young children with CF, the 8-year risk of death was 2.6 

times higher in those infected with PA compared to those that were not.119  In 2007 

the life expectancy in the US was 30 years for a patient with CF and chronic PA 

infection compared to 40 years for a patient with CF free from PA infection.26  This 

results in a lower life expectancy It is therefore vital that PA is diagnosed early and 

if possible eradicated, thereby avoiding chronic infection and its associated 

morbidity and mortality.   

1.2.7 Eradication of Pseudomonas aeruginosa Infection 

Initial PA infection usually occurs with a non-mucoid strain which is sensitive to 

anti-pseudomonal antibiotics thereby making eradication possible.94  Three small 

randomised controlled trials and a subsequent Cochrane Review65,120–122 have 

demonstrated that early eradication regimens against PA do significantly improve 

the clearance of PA and reduce the prevalence of chronic PA infection 2 years 

later.  The AREST-CF publication discussed earlier had a PA clearance rate of 

77% after one course of eradication treatment and 89% when a second course 

was given to those who had failed the first.114  The PA eradication regimens have 
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differed between studies, using various combinations of oral, nebulised and 

intravenous antibiotics.123–127  The optimum regimen is unclear and there is 

currently a large multicentre randomised controlled trial assessing PA eradication 

with IV and nebulised versus oral and nebulised antibiotics (TORPEDO-CF).    

1.3 CYANIDE PRODUCTION BY PSEUDOMONAS AERUGINOSA 

1.3.1 Background 

One of the intriguing aspects of the biology of PA is its ability to produce cyanide.  

This was first described as long ago as 1913 under its former name Bacillus 

pyocyaneus.128  PA is one of a limited number of organisms that can synthesise 

cyanide, the other organisms traditionally known to be cyanogenic are: 

Pseudomonas fluorescens, Pseudomonas aureofaciens, Pseudomonas 

chlororaphis, Chromobacterium violaceum, and Rhizobium leguminosarum.80,129  

These organisms are not usually isolated from patients with CF.  More recently, 

BCC has also been shown to produce cyanide under biofilm but not planktonic 

conditions.130  BCC is found in the lungs of patients with CF but it is usually 

acquired late in the course of the disease and is therefore uncommon in children.   

1.3.2 Conditions for Pseudomonas aeruginosa Cyanogenesis 

Cyanide synthesis occurs by the oxidative decarboxylation of glycine by a 

hydrogen cyanide synthase enzyme, this process also produces four electrons 

and four hydrogens per glycine molecule.80  Cyanide synthesis is maximised under 

microaerobic (O2 <5%) conditions and is almost completely abolished under 

anaerobic conditions.131  Cyanide production by PA is maximised at temperatures 

between 34oC and 37oC.132   
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1.3.3 Methods of Cyanide Detection 

Using a cyanide ion-selective electrode to measure the non-volatile cyanide (CN-) 

ions in aqueous solution, cyanide levels of 300-500μM have been found in PA 

cultures129,132 and up to 130μM in the sputum of CF and non-CF bronchiectasis 

patients with PA infection.133,134  Conversely, cyanide is essentially absent from the 

sputum of CF and non-CF bronchiectasis patients without PA infection and from 

the sputum of healthy controls.133,134  The volatile compound hydrogen cyanide 

(HCN) is mainly undissociated when in aqueous solution at a neutral pH and is 

therefore readily released into the headspace over PA cultures.   Selected Ion 

Flow Tube Mass Spectrometry (SIFT-MS) has therefore been used to measure 

gas phase HCN.  Using this methodology the HCN concentration has exceeded 

17,000 parts-per-billion by volume (ppbv) in the headspace (volume 200ml) over 

PA cultures135 and 60ppbv in the breath of CF patients infected with PA.136  HCN 

is also very low or absent in the breath of healthy children.136,137   

1.3.4 Explanation for Pseudomonas aeruginosa Cyanogenesis 

Cyanide is highly toxic, rapidly diffusing through tissues to irreversibly bind to the 

terminal oxidases of aerobic respiratory chains inhibiting aerobic respiration.  PA 

seems to avoid the toxic effects of cyanide by active detoxification mechanisms 

and synthesis of a respiratory chain terminated by a terminal oxidase that is 

insensitive to cyanide.138–141  The exact reason why PA produces cyanide is 

unclear but it is likely that it provides an advantage in the ecological niches it 

inhabits.80  One such advantage is its role in the exclusion of other lung 

pathogens, leading to PA becoming the dominant bacterium.  This is supported by 

studies showing cyanide to be the mediating factor in the paralytic killing model of 
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Caenorhabditis elegans by PA.142  Cyanide production may also have a role in the 

pathogenicity of PA as the concentrations of cyanide identified in the sputum and 

breath are high enough to affect lung cellular function and contribute to the lung 

damage caused by PA infection.133,134,136 

1.3.5 Pseudomonas aeruginosa, Cyanide and Quorum Sensing 

PA is one of many organisms that employ quorum sensing; a process by which 

extracellular molecules are used to regulate phenotypes in response to population 

density.  In PA, cyanide production is regulated in part by quorum sensing, with 

high population densities inducing cyanide synthesis.143–145  The high PA 

population density of CF mucus maximises quorum sensing cyanide production 

and together with its low O2 concentration and ideal temperature, provides the 

perfect environmental parameters for PA cyanogenesis.  Although high PA 

population densities up-regulate cyanide production by quorum sensing, a study 

measuring the cyanide levels in the sputum of CF and non-CF patients with 

bronchiectasis showed cyanide levels to be independent of the PA bacterial 

load.133  This, and the absence of cyanide from a small number of sputum / breath 

samples from PA infected patients, suggest that cyanide production is dependent 

on the presence of specific PA strains as well as the total PA load.133,134,136  The 

theory that cyanide production varies between PA genotypes is supported by the 

finding that the Liverpool epidemic PA strain overproduces certain quorum sensing 

regulated exoproducts.146  No study to date has assessed the variation in cyanide 

production by different PA genotypes. 



 

29 
 

1.3.6 Possible Other Sources of Cyanide 

It must be considered that cyanide detected in patients breath or sputum is due to 

cyanogenesis from non-microbial sources.  Human leukocytes challenged with 

Staphylococcus epidermidis have been reported to produce hydrogen cyanide in-

vitro and it is possible that the airway inflammation caused by PA infection results 

in cyanide production by leukocytes.147–149  This is supported by a recent study 

from the AREST CF team who found neutrophil number in BAL samples to be a 

predictor of cyanide concentration.150  However, it should be remembered that the 

BAL neutrophil count is significantly higher in patients infected with PA compared 

to those with no infection or infection with other organisms.37  Also, if cyanide was 

produced by leukocytes, it would be expected to be identified in the sputum or 

breath of patients infected with organisms other than PA and previous studies 

have failed to show this.133,134,136  The high percentage of PA negative patients in 

whom cyanide was identified in the AREST-CF study is likely to be the reason the 

authors were unable to use cyanide to differentiate between the patients who had 

PA infection and those they believed to be free from PA.  Future research could 

help to clarify the role of leukocytes in cyanide production related to PA infection.   

1.4 THE ROLE OF SELECTED ION FLOW TUBE MASS SPECTROMETRY 

(SIFT-MS) 

1.4.1 Hydrogen Cyanide as an In-vitro Marker of Pseudomonas aeruginosa 

The hypothesis that an exhaled breath marker, specific to PA may be identifiable 

was generated by Professors Lenney and Smith due to a number of parents 

commenting that when their child had a PA chest infection they had associated 
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halitosis.  Due to the difficulty in diagnosing PA in non-expectorating children, this 

possibility was very appealing.   

Using selected ion flow tube mass spectrometry (SIFT-MS) which was developed 

at Keele University,151,152 In-vitro analysis of the headspace of PA cultures was 

undertaken to identify volatile compounds released into the gas phase.  Using the 

H3O
+ precursor ions, the SIFT-MS spectrum consistently showed product ions with 

mass-to-charge ratios (m/z) of 28 and 46 in the headspace of the PA cultures and 

not the control cultures (see Figure 4).  The product ion with an m/z value of 28 

was identified as protonated HCN (H2CN-).   C2H4
+, N2

+ and CO+ were excluded as 

possibilities as they cannot be formed in an exothermic reaction of H2O
+ with a 

stable chemical compound and hydrogen isocyanide (HNC) was excluded as it 

was thought highly improbable that PA would produce this less stable isomer.  

This meant that the product ion with an m/z value of 46 must be HCNH+H2O.153  

Further analysis of the ion chemistry of HCN allowed the required SIFT-MS 

kinetics database to be constructed, thereby allowing accurate quantification of 

gaseous HCN in moist air samples.  

The identification of these product ions confirmed the presence of HCN in the 

headspace of PA cultures.  Although, it had been known for a number of years that 

PA has the ability to produce cyanide, this was the first study to detect HCN 

released into the gas phase by PA cultures identifying it as a possible marker of 

PA infection identifiable in exhaled breath.   
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Figure 4: SIFT-MS spectra of Pseudomonas aeruginosa culture headspace using 

H3O
+ precursor ions. 

 

Expected compounds in culture headspace included ammonia, methanethiol, 
methanol and acetone.  Compounds have multiple peaks due to the addition of 
water molecules.  The peaks at m/z 28 and 46 were unexpected and identified as 
HCN.  Used with permission from Spănĕl.154 

 

In total, 22 PA cultures and 13 control cultures (6 sterile plates and 7 cultures of 

mixed upper respiratory tract flora [URTF]) were analysed after 48 hours 

incubation.135  HCN was detected in the headspace of 15/22 PA and 1/7 URTF 

cultures.  The mean concentration of the 15 positive PA cultures was significantly 

higher than the concentration of the single positive URTF culture (2170ppbv v 

60ppbv; p<0.01).  (Figure 5).  Using a cut-off of 100ppbv this gave a sensitivity of 

68% and a specificity of 100%.  Other compounds were identified but were not 

specific to PA.   
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Figure 5: Volatile compounds detected in headspace of Pseudomonas aeruginosa, 

upper respiratory tract flora and blank cultures. 

 

Used with permission from Carrol.135 

1.4.2 Hydrogen Cyanide as an in-vivo marker for Pseudomonas aeruginosa 

Once SIFT-MS demonstrated that HCN is released into the gas phase by PA 

cultures in-vitro it was hypothesised that HCN would be detectable in the breath of 

patients with CF and PA infection.  To test this hypothesis multiple breath samples 

were taken from 16 patients with CF and PA infection and 21 patients with 

asthma.136  Children with CF had higher median HCN concentrations than those 

with asthma: 13.5 parts per billion by volume (ppbv) (IQR 8.1–16.5) versus 2.0 

ppbv (IQR 0.0–4.8), p<0.001.  See Figure 6.  Intra-subject variability was high and 

significant changes in HCN concentrations were not observed related to changes 

in lung function or clinical status. 
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Figure 6: Exhaled breath hydrogen cyanide concentration at first visit.  

 

Used with permission from Enderby.136 

 

1.4.3 Breath Hydrogen Cyanide in the Healthy Population 

Using SIFT-MS the HCN concentration in the mouth-exhaled breath of 200 healthy 

children aged 7-18 years was measured.137  The vast majority (90%) of healthy 

children had undetectable (<2ppbv) HCN concentrations and the mean HCN 

concentration in the 20 children with detectable concentrations was only 8ppbv.  In 

contrast, healthy adults have been shown to have mouth-exhaled HCN 

concentrations of up to 60 ppbv.155,156  When mouth and nose-exhaled HCN 

concentrations are measured simultaneously in healthy adults, the nose-exhaled 

HCN concentration remains very low or undetectable even when the mouth-

exhaled HCN concentration is high.  This suggests that in contrast to healthy 

children, healthy adults may generate some HCN in the oral cavity and if breath 

HCN is to be used as a biomarker in adults this should be measured in nose-

exhaled breath.156 
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1.4.4 Other Applications of SIFT-MS 

In addition to its role investigating PA cyanogenesis, the versatility of SIFT-MS and 

its ability to give real time data means it has been used for many varied 

applications.  These include: 

i. On-line real time quantification of multiple volatile breath metabolites for 

cohorts of healthy adults and children.137,157–159   

ii. The comparative analyses of breath exhaled via the mouth and nose that 

identify systemic and orally-generated compounds.151 

iii. The identification of volatile compounds released by malignant lung cells 

in-vitro and in-vivo.160–162  

iv. The identification of volatile compounds in exhaled breath and urine 

headspace in patients with upper GI malignancy.163,164 

v. The enhancement of breath metabolites by drug ingestion.165 

vi. The emission of volatile compounds from urine (especially ketone bodies) 

and from skin.166  

vii. Quantification of carbon dioxide in breath.167 

 

1.4.5 Other analytical techniques for exhaled breath analysis 

In addition to SIFT-MS there are a number of other analytical techniques for the 

analysis of exhaled breath.  The characteristics of the most frequently used 

techniques are summarised in Table 1. 
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Table 1:  Characteristics of different analytical techniques used for exhaled breath analysis (adapted from Amann et al)168  

Technique What it detects Pros Cons 

GC-MS Molecular fragments 
Different substance in gas sample can be 

identified 

Sample have to be collected in bags / traps 

Quantification can be difficult 

PTR-MS Protonated molecular species Highly sensitive on-line measurement 

Water content of samples can cause 

problems 

Identification of compounds from m/z alone 

is sometimes difficult 

SIFT-MS 
Variety of ionic species characteristic of 

precursor ions and reactant molecules 

On-line, real-time and absolute 

quantification of several compounds 

simultaneously to good accuracy.  Water 

vapour as internal calibration 

Identification of isomers sometimes difficult 

IMS Protonated molecular species Small, portable device with highly sensitivity Quantification is difficult 

Laser 

spectrometry 
Characteristic spectral lines 

Potentially small device, on-line 

measurement possible 

Specific laser necessary for each molecular 

species.  Water content of sample may 

cause problems  

GC-MS: gas chromatography mass spectrometry, PTR-MS: proton transfer reaction mass spectrometry, SIFT-MS: Selection ion flow tube mass spectrometry, 
IMS: ion mobility spectrometry, m/z: mass-to-charge ratio. 
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1.5 OTHER POTENTIAL BIOMARKERS OF PSEUDOMONAS AERUGINOSA 

INFECTION 

1.5.1 Introduction 

Using a variety of methods, 60 volatile organic compounds have been identified as 

possible markers of PA (see Table 2).  The vast majority of these do not have the 

appropriate specificity as they are also identified in the headspace of other 

bacterial cultures.  In addition to HCN, the other compounds that appear to be 

specific to PA and therefore also have the potential to be used as diagnostic 

markers are 2-aminoacetophenone, 2-nonanone and methyl thiocyanate. 

Table 2: Volatile organic compounds associated with Pseudomonas aeruginosa 

and their method of detection 

 VOC 

Detection methods 

Reference 

G
C

-M
S

 

G
C

-F
ID

 

S
IF

T
-M

S
 

P
T

R
-M

S
 

C
I-

M
S

 

S
E

S
I-

M
S

 

1 1-butanol 
*  * * * * 

Mayr
169

, Shestivska
170

, Thorn
171

, 
Zechman

172
, Zhu

173
 

2 1-pentanol      * Thorn
171

 

3 1-undecene * *     Scholler
174

, Zechman
172

 

4 2-aminoacetophenone 
* * *   * 

Cox
175

, Labows
176

, Scott-Thomas
177

, 
Smith

178
, Thorn

171
, Zhu

173
 

5 2-aminopyridine *      Shestivska
170

 

6 2-butanol *      Zechman
172

 

7 2-buanone *      Shestivska
170

 

8 2-heptanone *      Zechman
172

 

9 2-nonanone 
*  *   * 

Savalev
179

, Smith
178

, Zechman
172

, 
Zhu

173
,  

10 2-pentanone      * Zhu
173

 

11 2-propanol *      Shestivska
170

 

12 2-undecanone *  *    Smith
178

, Zechman
172

,  

13 3-methyl-1-butanol *  *    Labows
176

 

14 3-penten-2-one *      Shestivska
170

 

15 3-penten-2-one-4-
methyl 

*      
Shestivska

170
 

16 4-methylphenol      * Zhu
173

 

17 Acetaldehyde *  *    Shestivska
170

 

18 Acetic Acid *  *   * Carroll
135

, Shestivska
170

, Zhu
173
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VOC 

Detection methods 

Reference 

G
C

-M
S

 

G
C

-F
ID

 

S
IF

T
-M

S
 

P
T

R
-M

S
 

C
I-

M
S

 

S
E

S
I-

M
S

 

19 Acetone *  *   * Carroll
135

, Shestivska
170

, Zhu
173

 

20 Acetonitrile   *   * Carroll 
135

, Zhu
173

 

21 Acetophenone *      Shestivska
170

 

22 Ammonia *  *    Shestivska
170

, Thorn
171

,  

23 Butanal *      Shestivska
170

 

24 Butanal,2-methyl *      Shestivska
170

 

25 Butanal,3-methyl *      Shestivska
170

 

26 Butanol   *    Shestivska
170

 

27 Butanone *  *    Carroll
135

, Zechman
172

  

28 Butyric acid   *    Shestivska
170

 

29 Carbon disulphide *      Shestivska
170

 

30 Diethyl ether   *    Shestivska
170

 

31 Dimethyl disulphide 
* * * *   

Carroll
135

, Mayr
169

, Scholler
174

, 
Shestivska

170
 

32 Dimethyl sulphide *  *    Carroll
135

, Shestivska
170

 

33 Dimethyl trisulphide * * * *   Mayr
169

, Scholler
174

, Shestivska
170

 

34 Ethanol *  *   * Carroll
135

, Thorn
171

, Zhu
173

 

35 Ethyl butanoate       Thorn
171

 

36 Ethylene glycol      * Zhu
173

 

37 Formaldehyde *  *    Shestivska
170

, Thorn
171

 

38 Hexanoic acid   *    Shestivska
170

 

39 Hydrogen cyanide   *    Carroll
135

, Shestivska
170

 

40 Hydrogen sulphide   *    Thorn
171

 

41 Indole   *   * Thorn
171

, Zhu
173

 

42 Isopentanol *     * Zechman
172

, Zhu
173

 

43 Isopentyl acetate *      Zechman
172

 

44 Isoprene * * *    Carroll
135

, Scholler
174

, Thorn
171

 

45 Metanethiol (methyl 
mercaptan) 

  *    
Carroll

135
, Shestivska

170
, Thorn

171
 

46 Methanol   *    Carroll
135

, Shestivska
170

 

47 Methyl phenol   *    Shestivska
170

 

48 Methyl butanal *      Zechman
172

 

49 Methyl butenol *      Zechman
172

 

50 Methyl thiocyanate *  *    Shestivska
170

 

51 Methyl thiolacetate *      Shestivska
170

 

52 Nitric oxide   *    Enderby
136

, Jaffe
180

 

53 Pentanoic acid   *    Shestivska
170

 

54 Pentanone *      Zechman
172

 

55 Phenol   *    Shestivska
170

 

56 Propanol (1.2)   *    Shestivska
170

 

57 Pyrimidine      * Zhu
173

 

58 Toluene *  * *   Labows
176

, Mayr
169

, Zechman
172

 

59 Trimethylamine       Thorn
171

 

60 Undecene *      Zechman
172

 

GC-MS: Gas chromatography mass spectrometry, GC-FID: Gas chromatography flame ionisation 
detector, SIFT-MS: Selected ion flow tube mass spectrometry, PTR-MS: Proton transfer reaction 
mass spectrometry, CI-MS: Chemical ionisation mass spectrometry, SESI-MS: secondary 
electrospray ionisation mass spectrometry. 
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1.5.2 2-aminoacetaphenone 

The sweet “grape-like” odour sometimes associated with the growth of PA has 

been identified as 2-aminoacetaphenone (2-AA).175  A recent study from New 

Zealand used GC-MS to identified 2-AA in the headspace of PA cultures177.  2-AA 

was also detected in the breath of 15/16 (94%) patients with chronic PA infection 

compared to 5/17 (29%) healthy controls and 4/13 (31%) CF patients free-from PA 

infection.  This suggests that 2-AA may be a biomarker of PA infection but the high 

rate of false positives means that its specificity is poor.    

1.5.3 Methyl thiocyanate 

One of the ways in which PA detoxifies HCN is through its metabolism to methyl 

thiocyanate.  Using SIFT-MS, Methyl thiocyanate at a concentration >6 ppbv has 

been identified in the headspace of 28/36 PA cultures.170  All these cultures also 

produced HCN.  Methyl thiocyanate was identified in the exhaled breath of 28 

children with CF at a concentration of 2-21 ppbv but there was no significant 

difference between patients with and without PA infection.    

1.5.4 2-nonanone 

Using solid-phase microextraction (SPME) 2-nonanone has been measured in the 

headspace of sputum samples.179  This was then compared to routine 

microbiology culture as a marker for the presence of PA in sputum.  2-nonanone is 

a marker for the presence of PA in sputum with a sensitivity of 72% and a 

specificity of 88%.  The 2-nonanone results were available significantly quicker 

than the culture results.  Further research needs to be undertaken to investigate if 

2-nonanone is a breath marker of PA infection, this is difficult as it is non-volatile. 
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1.5.5 Summary of potential biomarker for Pseudomonas aeruginosa 

A number of potential biomarkers have been associated with PA.  The four that 

seem to be specific to PA are HCN, methyl thiocyanate, 2-AA and 2-nonanone.  Of 

these; 2-nonanone is non-volatile and therefore is difficult to detect in exhaled 

breath, methyl thiocyanate did not does not differentiate between PA infected and 

non-PA infected CF patients and 2-AA has a high rate of false positives.  This 

leads HCN as the most likely useful marker of PA infection. 

1.6 SUMMARY 

In summary cystic fibrosis is an inherited, life shortening disease that affects 

multiple organs.  The respiratory component is characterised by recurrent 

infections and chronic inflammation.  PA is one such infection and its detrimental 

effect on morbidity and mortality is well established.  Early diagnosis is important 

but this is difficult in patients who cannot expectorate sputum.  A breath test to 

diagnose PA is very appealing as it could be used in young children who often 

have the most difficulty in expectorating sputum.  Initial research has suggested 

that HCN is a potential biomarker that could be used in a diagnostic breath test for 

PA.  This thesis will attempt to analyse the factors that influence the in-vitro 

production of HCN by PA and then assess if exhaled breath HCN is a useful early 

marker of PA infection.     
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CHAPTER TWO – AIMS & HYPOTHESES 

2.1 HYDROGEN CYANIDE AS AN IN-VITRO MARKER OF PSEUDOMONAS 

AERUGINOSA 

The studies in this thesis will aim to assess and quantify the effect of genotype 

(strain), phenotype (mucoid / non-mucoid), culture conditions (biofilm / planktonic) 

and duration of incubation on the production of hydrogen cyanide (HCN) by 

Pseudomonas aeruginosa (PA).   

 HYPOTHESIS 1: The quantity of HCN produced by PA cultures varies 

according to genotype (strain).  [Investigated in Study 1] 

 HYPOTHESIS 2:  PA cultures with a mucoid phenotype produce more HCN 

than PA cultures with a non-mucoid phenotype.  [Investigated in Study 1] 

 HYPOTHESIS 3:  PA samples cultured under biofilm conditions produce 

more HCN than PA samples cultured under planktonic conditions.  

[Investigated in Study 2] 

 HYPOTHESIS 4:  The quantity of HCN produced by PA cultures varies 

according to the duration of incubation.  [Investigated in Studies 1 & 2] 

2.2 HYDROGEN CYANIDE AS AN IN-VIVO MARKER OF PSEUDOMONAS 

AERUGINOSA INFECTION IN CHILDREN 

The ultimate aim of this chapter is to assess if HCN is an early marker of PA 

infection in children with CF.  The multi-centre cohort study (The SPACE Study) 

which will investigate this will collect breath samples from children with CF who are 

free from PA infection.  Due to the numbers and geography involved in this study 

the samples will be collected in breath sampling bags and then transferred to the 

SIFT-MS instrument for off-line analysis. Prior to planning the final methodology 
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for the SPACE Study the type of breath sampling bag that provides the optimal 

conditions for breath samples containing HCN needs to be investigated, as does 

the maximum duration of sample storage prior to analysis and the optimal 

temperature for analysis.   

 HYPOTHESIS 5: The duration a breath sample containing HCN can be 

stored prior to analysis is dependent on the types of breath sampling bag 

used.  [Investigated in Study 3] 

 HYPOTHESIS 6:  Warming breath samples to body temperature prior to 

analysis improves the accuracy of the results.  [Investigated in Study 3] 

 HYPOTHESIS 7:  HCN is a specific and sensitive marker of early PA 

infection in children with CF.  [Investigated in Study 4]]   

2.3 HYDROGEN CYANIDE AS AN IN-VIVO MARKER OF PSEUDOMONAS 

AERUGINOSA INFECTION IN ADULTS 

To date, the vast majority of in-vivo studies involving HCN as a marker of PA have 

involved children with CF.  This is because a percentage of healthy adults 

generate HCN in their oral cavity therefore any investigation of HCN as a marker 

of PA infection in CF adults would have to use nose-exhaled breath.  

 HYPOTHESIS 8: Nose-exhaled HCN concentration is an in-vivo marker of 

chronic PA infection in adults.  [Investigated in Study 5] 
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2.4 HYDROGEN CYANIDE AS A MARKER OF BURKHOLDERIA CEPACIA 

COMPLEX INFECTION 

It was previously thought that PA was the only organism frequently found in the CF 

lung to produce HCN.  A recent in-vitro study used a cyanide ion-selective 

electrode to demonstrate the production of cyanide by BCC when cultured under 

biofilm but not planktonic conditions.  This in-vitro experiment is replicated using 

SIFT-MS to investigate is HCN is a marker of BCC infection.  The exhaled breath 

HCN concentration of patients with chronic BCC infection is also analysed.   

 HYPOTHESIS 9: HCN is an in-vitro marker of BCC when cultured under 

biofilm but not planktonic conditions [Investigated in Study 6] 

 HYPOTHESIS 10: HCN is an in-vivo maker of BCC infection in those 

patients with biofilm BCC [Investigated in Study 6] 
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CHAPTER THREE – METHODOLOGIES 

3.1 INTRODUCTION 

In this chapter contains the various methodologies used in the subsequent studies.  

The methods sections of the subsequent studies will then refer back to this 

chapter.   

3.2 MICROBIOLOGY 

3.2.1 Pseudomonas aeruginosa Cultures 

The PA isolates used in the in-vitro studies were collected and stored as part of a 

previous study looking at cross infection between CF patients at the University 

Hospital of North Staffordshire181.  The 98 isolates were obtained from CF patients 

between January and May 2007, genotyped and then stored on cryogenic beads 

(Pro-Lab Diagnostics. MicrobankTM Product code PL.172) at -70 degrees Celsius 

in the microbiology laboratory.   

3.2.1.1 Preparation of Pseudomonas aeruginosa agar plate cultures 

New cultures were created by placing a single cryogenic bead directly onto a 

blood agar plate (Oxoid Ltd, Product code: CM0331) and plating it out.  From this 

new plate out, as many new cultures were created as required from a single 

isolate.  Each of the new plates were covered with a lid, sealed in an individual 

low-density polyethylene bags (127mm x 203mm) and incubated at 37oC.   
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3.2.1.2 Preparation of Pseudomonas aeruginosa biofilm cultures 

PA biofilm cultures were created by using one of the cryogenic beads to inoculate 

a 20ml Brain Heart Infusion (BHI) enrichment broth (Oxoid Ltd, Product Code 

CM1135), which was incubated in air at 37°C for 48 hours.  10ml of the inoculated 

BHI broth was then pipetted into a sterile 90mm Petri dish (volume 62ml) 

containing 35g of 4mm diameter sterile glass beads (sufficient to evenly cover the 

bottom of the Petri dish).  A lid was then placed on the Petri dishes and the dish 

sealed in an individual low-density polyethylene bags (127mm x 203mm) and 

incubated at 37°C.  The BHI broth media was changed daily by pipetting off 

approximately 10mls of spent media and replacing with 10mls of fresh BHI broth. 

3.2.1.3 Preparation of Pseudomonas aeruginosa planktonic cultures   

The methodology for preparing planktonic PA cultures was identical to that for 

biofilm cultures explained in section 3.2.1.2 except that the inoculated BHI broth 

was pipetted into a sterile 90mm Petri dish that does not contain any glass beads. 

3.2.2 Burkholderia Cepacia Complex Cultures 

Burkholderia cepacia complex (BCC) isolates were obtained from sputum samples 

collected from CF patients known to be chronically infected with BCC.   

3.2.2.1 Preparation of Burkholderia cepacia complex agar plate cultures  

Sputum samples were homogenised and cultured on a B. cepacia medium (Oxoid 

Ltd - Product code: PO0938) at 35-37oC for 48 hours.  If BCC was not isolated 

then the plates were cultured for a further 5 days at 28-30oC.  BCC colonies were 

confirmed visually.  If there was any uncertainty about identification, further tests 
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were undertaken which included: biochemical analysis (enzymatic and 

carbohydrate assimilation tests), gram staining and PCR.   

3.2.2.2 Preparation of Burkholderia Cepacia Complex biofilm cultures 

One or 2 colonies of the BCC from the agar plate cultures were used to inoculate 

20ml of BHI enrichment broth, which was incubated at 37oC for 18 hours.  Broths 

were sub-cultured to check purity.  The BCC containing broths were serial diluted 

with sterile saline to achieve a turbidity of 0.5 optical density units measured by 

spectrophotometry (set at 600 nanometers [nm]).  This approximately correlates to 

108 CFU/ml.  BCC biofilm cultures were developed by pipetting 10ml of BCC 

inoculated BHI broth into a 90mm Petri dish containing 35g of 4.0mm diameter 

sterile glass beads.  The Petri dish was then covered with a lid, placed in a sealed 

low-density polyethylene bags (127mm x 203mm) and incubated at 37°C.  The 

BHI broth media was changed daily by pipetting off approximately 10mls of spent 

media and replacing with 10mls of fresh BHI broth.   

3.2.2.3 Preparation of Burkholderia Cepacia Complex planktonic cultures 

The methodology for preparing planktonic BCC cultures was identical to that for 

biofilm cultures explained in section 3.2.2.1 except that the inoculated BHI broth 

was pipetted into a sterile 90mm Petri dish that did not contain any glass beads. 

3.2.3 Biofilm and Planktonic Control Cultures 

PA and BCC biofilm and planktonic control cultures were created using exactly the 

same methodology except a sterile BHI broth was used   
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3.2.4 Confirmation of Biofilm Formation 

Biofilm formation was assessed visually on a daily basis and quantitatively after 96 

hours of incubation.  For the quantitative assessment, 12 glass beads were 

removed from the centre of each biofilm culture and placed in the wells on a 

microtitre plate.  The wells were washed three times with 200µl sterile water and 

then stained with 200µl of Crystal violet (1% weight/ volume (w/v)) for 15 minutes 

at 20oC, allowing time for the crystal violet to penetrate the bacteria cell wall and 

membrane.  Each well was washed a further 3 times with sterile water and allowed 

to air dry for 45 minutes.  200µl of industrial methylated spirits (IMS) (70% v/w) 

was then added to each well and incubated at 30°C for 15 minutes to solubilise the 

biofilm.  200µl of IMS (containing the solubilised biofilm) was then extracted from 

around the glass beads and pipetted into a well on a new microtitre plate.  This 

was then analysed using a spectrophotometer set at 600 nm. As the number of 

bacteria in the biofilm increase, the aqueous concentration of crystal violet 

increases which causes increased absorbance.  This method of assessing biofilm 

formation has previously been described130 but a possible criticism of this method 

is that it is actually assessing bead adherence and not biofilm formation.  True 

biofilm formation can be assessed by the detection of quorum sensing signalling 

molecules but we do not have this facility in our laboratory.182      

3.2.5 Control Cultures 

Control cultures of Staphylococcus aureus, Streptococcus pneumonia and 

Moraxella catarrhalis were created by inoculating a blood agar plate (Oxoid Ltd, 

Product code: CM0331) with stored clinical samples of each of these organisms.   

Haemophilus influenzae control cultures were created in the same way using 
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chocolate agar plates (Oxoid Ltd, Product code: CM0271) and Aspergillus 

fumigatus using Sabouraud agar (Oxoid Ltd, Product code: CM0041).  The 

inoculated plate were then incubated at 37oC for 48 hours. 

3.2.6 Acknowledgments 

I would like to acknowledge the help and support I received from Dr Alice Alcock 

and Hayley Sims in the preparation of the various cultures and the assessment of 

biofilm formation. 

3.3 SELECTED ION FLOW TUBE MASS SPECTROMETRY (SIFT-MS) 

3.3.1 Overview  

SIFT-MS combines fast flow tube reactors and quantitative mass spectrometry to 

allow accurate real-time quantification of volatile compounds.151,152  See Figure 7.  

It is this ability to give absolute quantification of a number of compounds 

simultaneously in real-time that makes SIFT-MS ideally suited to breath analysis.  

A mixture of precursor (reagent) ions is generated in a discharge ion source.  The 

appropriate ion species (H3O
+, NO+ or O2

+) is mass selected by a quadrupole 

mass filter, according to the compounds to be quantified, and then injected as 

selected ionic species into fast-flowing helium carrier gas in a flow tube.  The ion 

species chosen for these experiments is H3O
+ as it reacts rapidly with HCN, 

acetone, ammonia and ethanol153.  The gas to be analysed (breath or culture 

headspace) is sampled directly into the carrier gas / precursor ion swarm at a 

known rate via a calibrated capillary.  The reagent ions react with the trace gases 

in the sample producing ions that are characteristic of the trace gas molecules.  

These characteristic product ions, and the precursor ions and their hydrates are 

detected and counted by a downstream quadrupole mass spectrometer/ion 



 

50 
 

detection system. An on-line computer calculates the partial pressures of the trace 

gases in the air sample from the precursor ion and characteristic product ion count 

rates and the sample gas flow rate as established by the calibrated capillary.183  A 

Profile 3 SIFT-MS instrument (Trans Spectra Limited, UK) was used for these 

studies. 

 
3.3.2 Modes of Operation 

 

SIFT-MS instruments can be operated in ether the full scan (FS) or multiple ion 

monitoring (MIM) mode. Using the full-scan (FS) mode a complete mass spectrum 

is obtained by sweeping the detection quadrupole over a chosen mass-charge 

ratio (m/z) range.  This is done for a selected time whilst a sample of air or breath 

is introduced into the carrier gas at a steady flow rate. An example is shown in 

Figure 3.  The count rates of the ions are then calculated from the numbers of 

counts and the total sampling time for each ion. The mass spectra are interpreted 

by relating the product ion peaks to the trace gases present in the sample from a 

detailed knowledge of the ion chemistry and the in-built database.  Using the MIM 

mode only the count rates of the precursor ions and those of selected product ions 

are monitored.  This is achieved by rapidly switching the downstream mass 

spectrometer between the masses of all the primary ions and the selected product 

ions and dwelling on each of these masses for a predetermined short time interval. 

This real-time monitoring is possible because of the fast time response of SIFT-

MS.  This is about 20 milliseconds and is largely determined by the fast flow rates 

of the carrier gas along the flow tube and the sample gas along the inlet tube. 

There is no fundamental limit to the number of different ion masses that can be 

recorded simultaneously using this technique. However, with the values of the 
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precursor ion count rates currently available in SIFT-MS instruments, the practical 

limit is about 14 ions at trace gas concentrations in the ppb regime. If larger 

numbers of ions need to be monitored it is much more convenient to sequentially 

record several full scan spectra in the time allowed by the sample volume and 

construct a table of count rates of all ions within the m/z range.154 
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Figure 7: The SIFT-MS Instrument 

Used with permission from Smith.184
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3.3.3 Analysis of Mouth and Nose-Exhaled Breath Samples 

To enable simultaneous mouth and nose sampling, a small vacuum pump is 

included in the sampling line to draw breath across the entrance to the sampling 

capillary.  See Figure 8.  The flow rate of the breath sample is adjusted using the 

in-line needle valve to be much less than the breath exhalation rate, but greater 

that the flow rate through the capillary (also shown in Figure 8). This ensures that 

the normal breath exhalations from the mouth (a) and from the nose (b) are not 

compromised.   

Mouth exhalations are provided through a mouthpiece attached to a bacterial filter 

and then to the sample inlet line on the SIFT-MS instrument.  The subject is asked 

to provide three slow mouth exhalations in succession.  Nose exhalations are 

made through a soft silicone tube attached to a bacterial filter and then to the 

sample inlet line of the SIFT-MS instrument.  Whilst the silicone tube is held in one 

nostril, the subject is asked to provide three slow nose exhalations with the other 

nostril and mouth closed.  The concentration of the relevant compounds is then 

measured in the end-tidal portion of each of the 3 breath exhalations and the 

average concentration calculated.  The end-tidal portion is determined by the 

water vapour concentration that is simultaneously measured.185  This is the 

standard method used for the measurement of volatile organic compounds in 

exhaled breath.  When measuring biomarkers in relation to pulmonary infection 

there is logic to using the initial portion of the exhaled breath as infections largely 

reside in the connecting airways.  In practice in makes very little difference to the 

mean concentrations which portion of the exhaled breath is used.  
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Figure 8: Mouth and nose-exhaled breath sampling 

A representation of the sampling of a) breath exhaled via the mouth and b) breath 

exhaled via the nose.  The breath samples are drawn along the individual plastic 

sampling tube and across the sampling calibrated capillary (shown in 

enlargement) by the action of a small pump.  The in-line needle valve is used to 

regulate the breath flow rate across the sampling capillary. 
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3.3.4 Collection of Breath Samples in Sampling Bags 

Breath samples are collected through a mouthpiece attached to the bag.  All the 

bags used had a volume of 1000ml and are filled fully prior to analysis.  When 

possible, this is done using a single slow exhalation, but younger children may 

require more than one breath.  When the bag is inflated the mouthpiece should be 

removed and the bag sealed.   

3.3.5 Analysis of Exhaled Breath Samples Collected in Sampling Bags 

Off-line analysis refers to the analysis of breath samples that have previously been 

collected in sampling bags.  The commercially manufactured Tedlar bags are 

connected to the sample inlet arm of the SIFT-MS instrument via the valve on the 

bag.  The disposable Nalophan bags made in our laboratory from sheet material, 

are punctured with a hypodermic needle attached to the sample inlet arm.  The 

mean concentration of water vapour and any other selected volatile compounds is 

determined over 100 seconds whilst operating the instrument in the multiple ion 

monitoring mode. 

3.3.6 Analysis of Culture Headspace 

As previously detailed all cultures are prepared in Petri dishes, covered with a lid 

and sealed inside individual low-density polyethylene bags (127mm x 203mm).  At 

the time of analysis, the lid on the Petri is lifted whilst keeping the bag sealed.  The 

bag is then punctured with a hypodermic needle connected directly to the sample 

inlet line of the SIFT-MS instrument and the needle placed under the lid in the 

culture headspace.  See Figure 9 A, B, C. 
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The gas / vapour developed above the cultures is introduced at a flow rate of 24 

mL/min (via a heated calibrated capillary) into the carrier gas of the SIFT-MS 

instrument.  The “Multi Ion Monitoring” (MIM) mode of operation of SIFT-MS152 is 

used to focus on and to analyse the compounds of interest in the samples.  The 

sample is analysed for 100 seconds and the mean concentrations of the relevant 

compounds are recorded over this time.  Following analysis, the hypodermic 

needle is removed whilst keeping the bag sealed, the lid replaced and the 

puncture hole left by the needle covered with tape.  See Figure 9 D.  This 

technique allows the culture headspace to be analysed at multiple durations of 

incubation.   

Figure 9: Analysis of culture headspace 

A: Petri dish culture with lid in sealed bag. B: Lid lifted whilst keeping bag sealed. 
C: Bag pierced with hypodermic needle attached to sample inlet line of SIFT-MS 
instrument and needle held in headspace for analysis. D: Needle removed, lid 
replaced and puncture hole covered with tape. 
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CHAPTER FOUR – HYDROGEN CYANIDE AS AN IN-VITRO MARKER OF 

PSEUDOMONAS AERUGINOSA 

4.1 STUDY ONE: DOES THE PSEUDOMONAS AERUGINOSA GENOTYPE OR 

PHENOTYPE AFFECT HYDROGEN CYANIDE PRODUCTION?  

4.1.1 Introduction 

This study will investigate if the quantity of HCN produced by cultures of PA is 

repeatable and if production by PA is affected by the PA genotype or phenotype 

(mucoid or non-mucoid).   

4.1.1.1 Genotype 

Quorum sensing is the process by which organisms use extracellular molecules to 

regulate phenotypes in response to population density.  The ability of PA to 

employ quorum sensing and the subsequent relationship between cyanide 

concentration and bacterial load, supports the hypothesis that the observed 

variation in HCN production is dependent on PA strain.  Cyanide production by PA 

is regulated in part by quorum sensing, with high population densities inducing 

synthesis.143–145  Despite this, cyanide concentrations (measured using a cyanide 

ion-selective electrode) are independent of PA bacterial load when measured in 

the sputum of CF and non-CF bronchiectasis patients, suggesting cyanide and 

HCN production is dependent on the presence of specific PA strains 

(genotypes).133  This is also supported by the finding that certain epidemic strains 

of PA overproduce specific quorum sensing regulated exoproducts.146  This is the 

first reported study to assess the variation in cyanide production by different PA 

strains.   
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4.1.1.2 Phenotype 

The acquisition of the mucA mutation leads to the non-regulation of alginate 

production and the development of a mucoid phenotype when grown in vitro.  This 

is associated with increased antibiotic resistance, the formation of biofilms and the 

development of chronic infection.80  Previous studies have shown that a gene 

involved in the regulation of alginate synthesis (AlgR) acts as an activator of the 

genes that regulated HCN production (hcnABC) in mucoid PA strains and a 

suppressor in non-mucoid PA strains.186 The hypothesis that is therefore proposed 

is that mucoid PA strains will produce more HCN than non-mucoid strains: 

4.1.2 Methods: 

4.1.2.1 Experimental design 

As part of a previous study looking at cross infection between CF patients, all PA 

isolates obtained from CF patients between January and May 2007 were 

genotyped181.  The 98 PA isolates were stored on cryogenic beads at -70 degrees 

Celsius in our microbiology laboratory.  For this study, 8 new agar plate cultures 

were prepared from each of the 98 original isolates.  This was done using the 

methodology described in 3.2.1.1.  The HCN concentration of the culture 

headspace of 2 of these samples (referred to hereafter as paired PA cultures) 

were analysed after 24 hours incubation, a further 2 after 48 hours incubation, a 

further 2 after 72 hours incubation and the final 2 after 96 hours incubation.  

Previous studies had analysed HCN production up to 48 hours but concentrations 

were still rising at this point,135 we therefore decided to extend the period of 

analysis to 96 hours.  This analysis was done using the methodology described in 
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3.3.6.  The repeatability of the HCN generation by PA was assessed by comparing 

the HCN produced by the paired PA cultures. 

Control cultures of Streptococcus pneumoniae, Staphylococcus aureus, Moraxella 

catarrhalis, Haemophilus influenzae and Aspergillus fumigatus were created using 

the methodology in 3.2.5.  From each control culture, eight agar plates were plated 

out and incubated in sealed low-density polyethylene bags.  These organisms 

were chosen as they are the commonest organisms (in addition to PA) that are 

found in the CF lung.  The culture headspace was analysed after 24, 48, 72 and 

96 hours using the methodology described in 3.3.6.  Chocolate agar plates (Oxoid 

Ltd, Product code: CM0271) were used for the Haemophilus influenzae samples, 

Sabouraud agar (Oxoid Ltd, Product code: CM0041) for the Aspergillus fumigatus 

samples and blood agar (Oxoid Ltd, Product code: CM0331) for the others.  The 

headspace of five sterile blood agar plates and five sterile chocolate agar plates 

incubated in sealed low-density polyethylene bags were analysed after the same 

durations. 

4.1.2.2 Statistical methods 

SPSS Statistics Version 21 (IBM Corp. Released 2012) was used for the analysis.  

In order to assess the reliability of the process the intraclass correlation (ICC) was 

calculated using a two way ANOVA with random effects.  This assesses how 

strongly units in the same group resemble each other.  As the raw data was 

heavily skewed and remained non-normal even after a log transformation, the 95% 

confidence interval (CI) for the ICC was generated using 1000 bootstrapped 

samples.  This is a way of assigning measures of accuracy.  The Shapiro Wilks 

test confirmed that the differences remained non-normal even after transformation 
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of the original values.  Consequently median differences between the paired 

samples at each of the four time points were generated with corresponding 95% 

CI.  In this way the magnitude of differences between the paired samples at each 

of the time points could be assessed. 

The HCN concentration for the 96 pairs of PA cultures was then averaged at each 

time point.  A repeated measures MANOVA (Wilks’ Lamda) was used to compare 

the overall distribution of HCN production between phenotypes.  A two way 

MANOVA was also adopted to assess the effect of the three commonest strains 

and phenotype across all time points.  In both cases a log transformation was 

used to ensure homogeneity of covariance matrices across the groups.  Scheffé’s 

post hoc test was then performed to identify differences between the mucoid and 

non-mucoid groups at each time point and similarly between the three strains.  

These analyses were repeated on the ranked data as a form of sensitivity 

analysis.   

4.1.3 Results 

4.1.3.1 Background data 

Of the 98 genotyped PA samples that had been stored as part of the previous 

study, 96 were available for analysis.  Forty eight samples were mucoid and 48 

were non-mucoid.  There were 26 different strains (genotypes), 10 of which were 

epidemic strains.  Four of these had been previously described: Liverpool (n=8), 

Midlands_1 (n=19), Midlands_2 (n=4) and Stoke (n=15) and six had not: 

Epidemic_1 (n=4), Epidemic_2 (n=5), Epidemic_3 (n=2), Epidemic_4 (n=3), 

Epidemic_5 (n=3) and Epidemic_6 (n=2).  The remaining 16 genotypes were 

unique to individual patients; 10 were isolated on more than one occasion: 
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Sporadic_1 (n=5), Sporadic_2 (n=3), Sporadic_3 (n=3), Sporadic_4 (n=2), 

Sporadic_5 (n=2), Sporadic_6 (n=2), Sporadic_7 (n=2), Sporadic_8 (n=2),  

Sporadic_9 (n=2) and Sporadic_10 (n=2) and six on a single occasion: 

Sporadic_11-16.    

4.1.3.2 Reproducibility of hydrogen cyanide generation by paired Pseudomonas 

aeruginosa cultures 

The reproducibility of HCN generation by the paired PA cultures was analysed by 

calculating the intraclass correlation and the median difference in HCN 

concentration.  As can be seen in Table 3 the intraclass correlation was high and 

the median difference low at all time points.  This suggests that HCN production by 

cultures of PA is repeatable.  

Table 3: The reproducibility of hydrogen cyanide generation by paired 

Pseudomonas aeruginosa cultures 

Incubation Period Intraclass correlation 
Median difference in HCN 
concentration (95% C.I) 

24 hours 0.97 (0.96, 0.98) 3 (-1 to 6) 

48 hours 0.97 (0.96, 0.98) 3 (1 to 8) 

72 hours 0.97 (0.96, 0.98) 9 (-1 to 27) 

96 hours 0.96 (0.95, 0.98) 5.5 (-7 to 29) 

HCN: hydrogen cyanide, C.I: confidence interval. 

4.1.3.3 Headspace hydrogen cyanide concentrations for Pseudomonas 

aeruginosa and control cultures 

The incubated blank plates and the cultures of Streptococcus pneumoniae, 

Staphylococcus aureus, Moraxella catarrhalis, Haemophilus influenzae and 

Aspergillus fumigatus produced <10ppbv of HCN at all time points.  As expected 

the HCN was significantly higher in the headspace above the PA cultures (Table 

4). 
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Table 4: Headspace hydrogen cyanide concentrations for Pseudomonas 

aeruginosa cultures, control cultures and incubated blank plates.   

Agar Organism 
No of 

samples 
HCN at 24 

hours 
HCN at 48 

hours 
HCN at 72 

hours 
HCN at 96 

hours 

Bl PA 96 62 (17-188) 155 (30-1327) 743 (74-2670) 831 (89-2948) 

Bl SP 5 2 (2-2) 2 (1-2) 1 (1-2) 2 (1-3) 

Bl SA 5 1 (1-4) 4 (3-6) 3 (2-4) 2 (2-3) 

Bl MC 5 3 (2-6) 3 (2-5) 1 (1-3) 1 (0-2) 

Ch HI 5 2 (1-3) 2 (2-2) 6 (5-6) 2 (2-3) 

Sab AF 5 1(1-2) 3(2-3) 2(1-2) 1(1-1) 

Bl Blank 5 2 (1-2) 2 (1-4.5) 2 (2-2) 2 (2-3) 

Ch Blank 5 3 (3-4) 2 (2-2) 3 (2-3) 2 (1-2) 

Sab Blank 5 1(1-2) 2(2-3) 1(0-2) 3(2-4) 

HCN: hydrogen cyanide, Bl: blood, Ch: chocolate, Sab: Sabouraud, PA: Pseudomonas aeruginosa, 
SP: Streptococcus pneumoniae, SA: Staphylococcus aureus, MC: Moraxella catarrhalis, HI: 
Haemophilus influenzae, AF: Aspergillus fumigatus. HCN presented as median (IQR) ppbv 
 

4.1.3.5 Headspace hydrogen cyanide concentrations for different Pseudomonas 

aeruginosa strains 

There are clear differences in the headspace HCN concentrations between 

different PA strains, although there is also variability within strains (Table 5).  As 

genotype does affect HCN production, Hypothesis 1 is accepted.   
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Table 5: Headspace hydrogen cyanide concentrations for different Pseudomonas 

aeruginosa strains 

Strain 
No.of 

samples 
HCN at 24 

hours 
HCN at 48 

hours 
HCN at 72 

hours 
HCN at 96 

hours 

Liverpool 8 
92 

(24-150) 
525 

(157-1397) 
2238 

(483-3682) 
3093 (2495-

4501) 

Midlands_1 19 
85 

(55-158) 
164 

(90-815) 
1451 

(380-2634) 
748 

(550-2338) 

Midlands_2 4 
24 

(14-266) 
62 

(22-1261) 
199 

(71-1371) 
2186 

(222-4471) 

Stoke 15 
16 

(10-24) 
24 

(14-32) 
37 

(25-181) 
75 

(28-109) 

Epidemic_1 4 
499 

(153-849) 
6570 

(4281-8033) 
5852 

(4858-7699) 
8727 

(7505-8978) 

Epidemic_2 5 
190 

(78-306) 
1833 

(1020-3175) 
3241 

(1500-7122) 
4336 

(803-7239) 

Epidemic_3 2 
48 

(33-63) 
24 

(15-32) 
173 

(100-245) 
54 

(35-73) 

Epidemic_4 3 
169 

(145-174) 
776 

(626-1029) 
7475 

(7126-9128) 
7483 

(7382-8256) 

Epidemic_5 3 
13 

(12-15) 
22 

(21-29) 
39 

(26-44) 
89 

(61-97) 

Epidemic_6 2 
194 

(105-283) 
1084 

(564-1605) 
1979 

(1025-2933) 
3527 

(1826-5227) 

Sporadic_1 5 
21 

(18-70) 
37 

(35-124) 
46 

(34-1274) 
154 

(62-2301) 

Sporadic_2 3 
16 

(12-35) 
27 

(15-27) 
167 

(87-252) 
588 

(297-741) 

Sporadic_3 3 
272 

(141-307) 
1065 

(620-1372) 
3754 

(2087-3965) 
1989 

(1558-2063) 

Sporadic_4 2 
16 

(15-17) 
74 

(57-91) 
126 

(123-129) 
62 

(47-76) 

Sporadic_5 2 
22 

(17-26) 
15 

(9-21) 
6 

(5-7) 
10 

(9-10) 

Sporadic_6 2 
1797 

(967-2627) 
4874 

(2725-7024) 
5871 

(5311-6431) 
6432 

(5926-6939) 

Sporadic_7 2 
6406 

(4231-8581) 
8299 

(7460-9139) 
9174 

(9012-9336) 
7453 

(7124-7781) 

Sporadic_8 2 
979 

(853-1105) 
5361 

(3680-7052) 
6965 

(4928-9001) 
4432 

(2499-6364) 

Sporadic_9 2 
45 

(34-56) 
117 

(90-143) 
424 

(255-593) 
789 

(684-895) 

Sporadic_10 2 
2716 

(1389-4043) 
1037 

(830-1244) 
8342 

(7819-8864) 
15714 

(14630-16799) 

Sporadic_11 1 946 1285 3505 3585 

Sporadic_12 1 186 499 7559 12325 

Sporadic_13 1 1002 5715 7621 5771 

Sporadic_14 1 113 1127 16612 11923 

Sporadic_15 1 738 2774 6861 12231 

Sporadic_16 1 7 31 75 34 

HCN: hydrogen cyanide, No: number. All values in ppbv, presented as median (IQR) 
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4.1.3.4 Headspace hydrogen cyanide concentration for mucoid and non-mucoid 

phenotypes 

The comparison of the headspace HCN concentrations between the mucoid and 

non-mucoid phenotypes suggested increased production by the non-mucoid 

samples (Table 6).  This difference was significant when analysed across all time 

points (Wilks’ Lambda: F4,91=4.35, p=0.003) and after 24 hours only (p=0.008) 

when the time points were analysed individually.  The same conclusions were 

reached using the ranked data although the corresponding p-values were 0.018 

and 0.007 respectively.  As PA phenotype does affect HCN production Hypothesis 

2 is accepted.   

Table 6: Headspace hydrogen cyanide concentrations for mucoid and non-mucoid 

Pseudomonas aeruginosa samples  

Phenotype 
No. 

samples 

HCN at  

24 hours 

HCN at 

48 hours 

HCN at 

72 hours 

HCN at 

96 hours 

Mucoid 48 43 (12-136) 127  (35-418) 525 (84-2234) 747 (91-3107) 

Non-mucoid 48 99 (22-350) 626 (27-2279) 2196 (36-5528) 1441 (78-6429) 

HCN (hydrogen cyanide) values in ppbv, presented as median (IQR) 

 
 

4.1.3.5 Headspace hydrogen cyanide concentrations analysed for genotype and 

phenotype 

Interestingly when headspace HCN concentrations were split according to 

genotype and phenotype (see Table 7), some strains had higher HCN for non-

mucoid samples (Liverpool and Stoke) and some for mucoid samples 

(Midlands_1). Multivariate analysis of the effect of strain, phenotype and the 

interaction of both on the headspace HCN concentration above the three 

commonest strains (Liverpool, Midlands_2 and Stoke) was undertaken.  This 



 

66 
 

showed a significant effect of strain (Wilks’ Lambda: F8,66=5.76, p<0.001), no effect 

from phenotype (Wilks’ Lambda: F4,33 =0.78, p=0.55) and a borderline interaction 

of strain and phenotype (Wilks’ Lambda: F8,66 = 2.01, p=0.051).  The lack of effect 

of phenotype is unsurprising as the Liverpool and Stoke strains had higher HCN 

concentrations above non-mucoid samples, whereas the Midlands_1 strain had 

higher concentrations above mucoid samples.  Further analysis revealed the 

headspace HCN concentration above the Stoke strain to be significantly lower 

than the other two strains at all four time points. 

 
Table 7: Headspace hydrogen cyanide concentrations for mucoid and non-mucoid 

samples of the Liverpool, Midland_1 and Stoke strains 

Strain Phenotype 
No. of 

samples 
HCN at 

24 hours 
HCN at 

48 hours 
HCN at 

72 hours 
HCN at 

96 hours 

Liverpool Mucoid 3 
12 

(11-70) 
161 

(156-526) 
532 

(435-988) 
2860 

(2131-2971) 

Liverpool 
Non-

mucoid 
5 

123 
(62-216) 

949 
(159-2740) 

3341 
(3034-4505) 

4028 
(3104-5921) 

Midlands_1 Mucoid 14 
127 

(71-184) 
182 

(138-368) 
1598 

(816-2753) 
804 

(725-2393) 

Midlands_1 
Non-

mucoid 
5 

58 
(17-85) 

87 
(16-1240) 

167 
(29-1079) 

544 
(68-2183) 

Stoke Mucoid 7 
11 

(8-17) 
10 

(9-28) 
56 

(16-186) 
39 

(28-97) 

Stoke 
Non-

mucoid 
8 

22 
(15-29) 

27 
(23-33) 

36 
(33-104) 

77 
(48-119) 

HCN (hydrogen cyanide) values in ppbv, presented as median (IQR) 
 

4.1.4 Discussion 

Study 1 is the first study to investigate the variation in HCN production between 

different strains of PA.  This is important as previous studies have been unable to 

detect HCN or cyanide in a proportion of PA samples, raising the possibility that 

cyanogenesis does vary according to PA strain.135,187  We have identified HCN in 

the headspace of all the PA samples analysed, reflecting the sensitivity of the 

SIFT-MS instrument.  Despite all the samples producing HCN, there are clear 
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differences in the quantity produced by different PA strains.  The low levels of 

HCN produced by the control cultures supports previous studies showing PA is 

one of a limited number of organisms to produce HCN.  Previously the proposed 

cut-off for the HCN detected in the headspace over a culture to confirm PA was 

100ppbv (sensitivity 68% and specificity 100%).135  These data suggest that for the 

cultures included in this study, using the highest HCN concentration at any of the 

time points, the cut-off could be reduced to 10ppbv (sensitivity 100%, specificity 

100%). 

The very high correlation between the HCN produced by the pairs of PA cultures 

confirms the reproducibility of cyanide production by PA isolates and of the SIFT-

MS real time analyses.  Although there is some variation in the HCN production by 

samples of the same strain, overall there are clear differences between PA strains.  

This is the first study to show this difference.  This study has also shown that all 

the PA samples produced detectable levels of HCN which reflects the high 

sensitivity and reliability of the SIFT-MS analyses.  It is unclear how in-vitro HCN 

production by PA cultures correlates with in-vivo HCN detection in patient’s breath 

or sputum.  Specifically, in-vivo HCN levels tend to be lower,133,134,136 although it is 

not known if current methods are sensitive enough to detect HCN in sputum or 

exhaled breath produced by a PA strain with lower cyanide production.  It is also 

possible that the same strain of PA could produce different amounts of HCN 

depending on its position in the respiratory tract and the specific environmental 

conditions present.   

Regarding phenotype, previous studies have reported higher cyanide production 

by mucoid PA cultures.150,187  Our data suggest the opposite with non-mucoid 
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cultures having higher HCN concentrations.  This may be related to the timing of 

analysis as the trend for HCN was still rising at 96 hours for the mucoid samples, 

whereas the non-mucoid samples peaked at 72 hours and started to fall at 96 

hours.  This study may therefore have observed a different effect of phenotype if 

HCN analysis was undertaken after a longer period of incubation.  Interestingly 

when the HCN concentrations were analysed for strain and phenotype (Table 6) 

the effect of phenotype seemed to differ between strains.  The observed difference 

in the effect of phenotype on cyanogenesis between this and other studies may 

therefore be explained by which PA strain were included in the previous studies. 

Also relevant is the methodology used; detecting the non-volatile ion cyanide is 

very different to using SIFT-MS to detect the volatile ion HCN.  A cyanide ion-

selective micro-electrode is used to detect the cyanide trapped in a layer of 

sodium hydroxide. This process is far more disruptive to the culture than the 

analysis of the culture headspace.  This raises the possibility that the mucoid PA 

cultures are producing more cyanide but the layer of alginate is preventing the 

release of HCN.  As any in-vivo breath test would have to be based on the 

detection of a volatile ion, the factors that affect HCN and not cyanide production 

are most relevant.  As early PA infection usually has a non-mucoid phenotype, 

higher HCN production by non-mucoid PA is an advantage for a breath test trying 

to detect early PA infection.               

In conclusion, Study 1 has demonstrated that all of the PA samples in this study 

produced HCN but the quantity varied according to genotype and phenotype.  This 

will supports the possible clinical applications of the cyanogenic properties of PA. 
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4.2 STUDY TWO – DOES THE FORMATION OF BIOFILMS OR CULTURE 

DURATION AFFECT HYDROGEN CYANIDE PRODUCTION BY 

PSEUDOMOMONAS AERUGINOSA? 

4.2.1 Introduction 

This study will investigate if the formation of biofilms or the duration of culture 

affects HCN production by PA.  

4.2.1.1 Biofilm formation  

During early infection, PA multiplies whilst in a planktonic (free-floating) form; it 

later forms biofilms which are non-motile communities embedded in an 

exopolysaccharide matrix attached to a solid surface.98  The change from 

planktonic to biofilm growth is signalled by quorum sensing in which extra-cellular 

molecules regulate phenotype in response to population density.143  As cyanide is 

known to be a quorum sensing molecule, the hypothesis proposed is that HCN 

production by PA will increase when it is cultured under biofilm conditions.144  This 

hypothesis is supported by a previous study that found BCC produced cyanide 

when cultured under biofilm but not planktonic conditions.130 

4.2.1.2 Culture duration 

The concentration of any bacterial biomarker is dependent to some degree on the 

bacterial load.  As the duration of culture incubation affects bacterial load, the 

hypothesis proposed is that this also affects HCN production: 
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4.2.2 Methods 

4.2.2.1 Experimental design 

For this study, 12 of the PA isolates from Study One were used.  The 12 samples 

included 4 Liverpool Epidemic Strain, 4 Midlands_1 Strain and 4 Stoke Strain 

samples.  The 4 samples of each genotype included 2 mucoid and 2 non-mucoid 

samples.  The variation in headspace HCN concentrations seen in Study 1 

informed the choice of sample size for this study.  For each of the PA isolates, one 

biofilm PA culture was created using the methodology described in 3.2.1.2 and 

one planktonic PA culture was created using the methodology described in 

3.2.1.3.  The headspace HCN concentration of both culture types was analysed 

after 24, 48, 72 and 96 hours of incubation using the methodology described in 

3.3.6.  Two biofilm control cultures and two planktonic control cultures were 

created using the methodology described in 3.2.3 and their headspace HCN 

concentrations analysed as for the PA cultures. 

4.2.2.2 Statistical methods 

SPSS Statistics Version 21 (IBM Corp. Released 2012) was used for the analysis.  

The HCN concentrations were non-normally distributed and the results are 

therefore expressed as median (IQR).  Mann-Whitney tests188 were used in two 

group comparisons and robust confidence intervals generated for the Hodges-

Lehmann median difference.189  General Linear Modelling was applied to assess 

the effect of genotype, phenotype, culture duration and culture conditions.  Log 

transformed data were used for this procedure in order to ensure homogeneity of 

variances.  A p value <0.05 was deemed significant. 
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4.2.3 Results 

All PA samples produced readily detectable concentrations of HCN; median 

concentration 144 (61-512) ppbv of headspace sample gas (see Table 8).  The 

headspace HCN concentration of the 4 control cultures was <3 ppbv at all time 

points.  When the HCN results were analysed according to phenotype, non-

mucoid samples tended to produce higher concentrations of HCN than the mucoid 

samples (see Table 9).  This was statistically significant at 24 hours (p=0.01) as 

highlighted by the 95% confidence interval for the difference in medians.   

Table 8: Headspace hydrogen cyanide concentrations analysed according to 

genotype. 

Culture Duration 
Liverpool Strain 

(n=8) 
Midlands_1 Strain 

(n=8) 
Stoke Strain 

(n=8) 

24 Hours 
78 

(47-522) 
614 

(396-942) 
54 

(37-91) 

48 Hours 
468 

(129-733) 
242 

(201-411) 
150 

(98-296) 

72 Hours 
307 

(97-1064) 
115 

(86-271) 
210 

(111-292) 

96 Hours 
728 

(32-1429) 
46 

(22-239) 
65 

(41-108) 

All data presented in ppbv as median (IQR).  

Table 9: Headspace hydrogen cyanide concentrations analysed according to 

phenotype. 

Culture Duration 
Mucoid samples 

(n=12) 
Non mucoid samples 

(n=12) 
95% CI for Median 

Difference 

24 Hours 
51 

(30-171) 
531 

(93-942)* 
-370 

(-814,-19) 

48 Hours 
241 

(123-410) 
241 

(182-428) 
-44 

(-250, 153) 

72 Hours 
123 

(94-293) 
201 

(88-586) 
-36 

(-391, 75) 

96 Hours 
40 

(29-89) 
117 

(40-1373) 
-59 

(-1306, 10) 

CI: confidence interval. All data presented in ppbv as median (IQR),  
*p=0.01 as determined by Mann-Whitney test 
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Although there was a trend for biofilm samples to have higher headspace HCN 

concentrations than planktonic samples, this did not reach statistical significance 

at any time point (see Table 10). 

Table 10: Headspace hydrogen cyanide concentrations analysed according to 

culture conditions. 

Culture 
Duration 

Biofilm samples 
(n=12) 

Planktonic samples 
(n=12) 

95% CI for Median 
Difference 

24 Hours 
198 

(39-739) 
87 

(48-476) 
24 

(-64, 500) 

48 Hours 
292 

(175-428) 
216 

(123-489) 
34 

(-215, 221) 

72 Hours 
205 

(68-348) 
127 

(106-350) 
-26 

(-114, 197) 

96 Hours 
74 

(32-379) 
48 

(34-269) 
9.6 

(-61, 168) 

CI: confidence interval. All data presented in ppbv as median (IQR).  

Multivariate analysis (General Linear Modelling) was used to assess the effect of 

culture duration, genotype, phenotype, culture conditions and their interactions.  

This showed a significant effect of culture duration (p=0.005), genotype 

(p=0.0014), phenotype (p<0.001) and the interactions between 

genotype/phenotype (p<0.001) and genotype/culture duration (p=0.009).  A three 

way interaction between phenotype/genotype/culture duration was also observed 

(p=0.009).  As culture conditions do not affect HCN production Hypothesis 3 is 

rejected.  As culture duration does affect HCN production, Hypothesis 4 is 

accepted.  The effect of culture conditions and the other interactions were not 

significant.  This effect of culture duration, genotype and phenotype is in keeping 

with data from Study 1.   
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4.2.4 Discussion 

This study confirms the effects of genotype and phenotype on HCN production by 

PA that were demonstrated in Study 1. In addition, this study investigates the 

effect of culture conditions (planktonic / biofilm) and duration of incubation on HCN 

production by PA.  This study confirms that HCN production is affected by culture 

duration although the peak headspace HCN concentration is achieved at different 

durations of incubation for the different PA isolates.  This HCN peak is likely to 

correlate with the peak in numbers of live PA bacteria.  This in turn will be 

dependent on the exact bacterial mass at time 0, the rate of PA replication, the 

amount of substrate present and the rate of substrate use.  

Although there was a trend for biofilm PA cultures to produce more HCN than 

planktonic PA cultures, this did not reach statistical significance.  The insignificant 

difference in the amount of HCN produced by biofilm and planktonic PA samples 

therefore differs from BCC which has previously been shown to only produce 

cyanide when cultured under biofilm conditions.130  One possible explanation for 

this is that cyanide is produced as a quorum sensing molecule but it remains 

trapped in the biofilm and is not released as HCN into the culture headspace.  Any 

increased cyanide production would therefore go undetected using the 

methodology in this study.  
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CHAPTER FIVE – HYDROGEN CYANIDE AS AN IN-VIVO MARKER OF 

PSEUDOMONAS AERUGINOSA IN CHILDREN 

5.1 STUDY THREE: AN INVESTIGATION OF SUITABLE BAG MATERIALS 

FOR THE COLLECTION AND STORAGE OF BREATH SAMPLES 

CONTAINING HYDROGEN CYANIDE 

5.1.1 Introduction 

The research question that this chapter aims to answer in the chapter is: Can 

exhaled breath HCN be used as an early marker of PA infection in children with 

CF?  This question will ultimately be addressed by Study Four - The Sensitivity 

and specificity of PA detection using the hydrogen Cyanide concentration of 

Exhaled breath (SPACE) Study.  This is a 2 year observational study in which 

serial breath HCN concentrations are measured in 233 children with CF, free from 

PA.  In this study, breath samples are collected in breath sampling bags and 

transferred to the SIFT-MS instrument for analysis.  Previous research has been 

undertaken on the suitability of bags for breath sampling but not for samples 

containing HCN.190–193  To effectively plan the methodology of Study Four, there 

needs to be an investigation of the type of breath sampling bag provides the 

optimal conditions for breath samples containing HCN, the maximum duration of 

storage and the optimal temperature for analysis. 

5.1.2 Methods 

5.1.2.1 Experimental design 

15 children with CF were recruited (8 male, 7 female).  Their median (IQR) age 

was 10 (9-13.5) years.  Eight had chronic PA infection and 3 had CF related 
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diabetes did not.  On a single visit, subjects provided an on-line mouth-exhaled 

breath sample using the methodology described in 3.3.3 and also gave breath 

samples into two 1000ml Tedlar sampling bags, two 1000ml 25 micron thick 

Nalophan (Nalophan 25) sampling bags and two 1000ml 70micron thick Nalophan 

(Nalophan 70) sampling bags in the methodology described in 3.3.4.  The Tedlar 

bags were commercially manufactured (Cole-Parmer UK, Product number: 

GD0707-7000) and the Nalophan bags were made in our laboratory from sheet 

material.   

One of each of the gas sampling bags was stored at room temperature (20oC) and 

one in an incubator at body temperature (37oC).  Off-line analysis of the bag 

samples was undertaken after 1, 6, 24 and 48 hours of storage using the 

methodology described in 3.3.5.  The timings of the analysis were informed by 

previous studies of stored breath samples which suggested that storing samples 

for longer than 1-2 days significantly affected the concentration of breath 

volatiles.193  The on-line concentrations were used as a baseline and then 

compared to the various off-line concentrations.  For both the on-line and off-line 

analysis HCN was measured in addition to acetone and water vapour. Water 

vapour acts as an internal control and its concentration in exhaled breath is well 

understood.  Acetone is a systemic compound that is present in the exhaled 

breath of all individuals and, unlike HCN, is not generated to a significant extent in 

the mouth or airways.  The concentration of acetone in exhaled breath is well 

known as are the factor which can cause this to rise or fall.  It is therefore useful to 

monitor this metabolite in all breath analysis studies and especially in studies that 

compare on-line and off-line measurements.194   



 

77 
 

5.1.2.2 Statistics 

SPSS Statistics Version 21 (IBM Corp. Released 2012) was used for the analysis.  

The concentrations of the acetone, HCN and water vapour were non-normally 

distributed, even after logarithmic transformation. Therefore, the results are 

displayed as median (IQR) values.  The coefficient of determination was used to 

assess the correlation between on-line and off-line concentrations. The Mann-

Whitney U test was used to assess the significance of the differences of 

concentrations between groups.  A p-value of <0.05 was deemed significant.  

Uncertainty in the measurement of concentration was characterised by the 

standard error which was determined from the total number of ion counts recorded 

for each individual measurement.183  It was thus found that for off-line 

measurements of HCN this uncertainty was within +/- 10% or +/- 1ppbv (whichever 

was greater) and for on-line HCN measurements it was within +/- 4ppbv.  For the 

off-line measurements of acetone the uncertainty was always better than +/- 3.5% 

and for the on-line acetone measurements it was within +/- 12%.  

5.1.2.3 Ethical approval 

Ethical approval was granted by the Staffordshire Research and Ethics committee 

(05/Q2604/8).  See Annex 2: 11.2.1. 

5.1.3 Results 

5.1.3.1 On-line concentrations 

The median (IQR) concentrations of acetone was 311 (270.5-433) ppbv and HCN 

was 8.9 (4.4-13.7) ppbv.  The median (IQR) on-line acetone concentration was 

significantly higher in those with CF-related diabetes compared to those without: 



 

78 
 

798 (652-1155) ppbv versus 303 (240-344) ppbv, p=0.02.  The median (IQR) on-

line HCN concentrations were significantly higher in those with chronic PA 

infection compared to those without chronic PA infection: 13.7 (11.3-15.5) ppbv 

versus 4.2 (2.5-4.6) ppbv, p=0.001.  The median (IQR) on-line water vapour 

concentration was 5 (4.9-5.2)%, which is within the expected range for exhaled 

breath and the median (IQR) water vapour concentration of the laboratory air was 

1.0 (0.9-1.1)%.   

5.1.3.2 Off-line concentrations at 20oC 

Table 11 presents the results for breath samples contained in the bags formed 

from Tedlar and the two thicknesses of Nalophan that were analysed from 1 to 48 

hours storage at room temperature (20oC).  Compared with the on-line HCN 

concentrations, the off-line HCN concentration were lower in all 3 types of bag at 1 

hour, although correlation between off-line and on-line HCN was good.  By 6 

hours, although the correlation remained good, HCN concentrations in Nalophan 

25 bags had fallen to approximately 30% of the on-line concentration and to 50% 

and 60% in Nalophan 70 and Tedlar bags, respectively. By 24 hours, the 

correlation between on-line and off-line HCN concentrations was poor.   
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Table 11: Off-line analysis of 3 compounds in breath samples stored at room temperature in bags made from different materials. 

Storage 
time 

 Nalophan 25 Nalophan 70 Tedlar 

 
HCN 

(ppbv) 
Acetone 
(ppbv) 

Water 
(%) 

HCN Acetone Water HCN Acetone Water 

1 hr 

Conc 
 

6.5  
(2.9-9.8) 

247 
(224-345) 

2.2 
(2.2-2.3) 

5.9 
(3.3-10.0) 

259 
(230-429) 

2.3 
(2.3-2.4) 

6.7 
(2.4-8.7) 

262 
(206-416) 

3.3 
(3.2-3.3) 

R
2
 0.88 0.93 0.003 0.92 0.95 0.005 0.9 0.98 0.008 

6 hrs 
Conc 

3.0 
(1.4-4.0) 

197 
(167-317) 

1.4 
(1.3-1.4) 

4.5 
(2.0-8.0) 

221 
(178-388) 

1.5 
(1.4-1.5) 

5.3 
(1.9-7.3) 

227 
(186-369) 

1.8 
(1.7-1.9) 

R
2
 0.68 0.88 0.003 0.8 0.89 0.02 0.84 0.92 0.03 

24 hrs 
Conc 

1.2 
(0.6-1.9) 

111 
(83-139) 

1.1 
(1.1-1.2) 

2.2 
(0.7-2.8) 

130 
(121-189) 

1.1 
(1-1.1) 

2.6 
(2.0-3.2) 

132 
(122-147) 

1.2 
(1.2-1.3) 

R
2
 0.27 0.68 0.13 0.44 0.62 0.19 0.58 0.77 0.004 

48 hrs 
Conc 

0.5 
(0.4-0.6) 

32 
(27-35) 

1.1 
(1.0-1.1) 

0.5 
(0.3-1.0) 

34 
(29-37) 

1.0 
(1.0-1.0) 

1.0 
(0.9-1.2) 

67 
(63-75) 

1.0 
(1.0-1.1) 

R
2
 0.15 0.08 0.11 0.26 0.27 0.53 0.12 0.54 0.001 

HCN: hydrogen cyanide, conc: concentration, ppbv: parts per billion by volume, R
2
: coefficient of determination. All concentrations presented as median(IQR).  

Note: Median(IQR) on-line concentrations: HCN: 8.9(4.4-13.7) ppbv; acetone: 311(270.5-433) ppbv and water vapour: 5.0(4.9-5.2)%.   
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As expected, acetone was present in the exhaled breath at much higher 

concentrations than HCN.  Correlation with on-line concentrations was good at 6 

hours, but then declined.  The water vapour concentration fell quickly with storage 

and by 24 hours it was similar to the atmospheric concentration.  The correlation 

between on-line and off-line water vapour concentrations was poor, for all the bags 

at all the time points.  

5.1.3.3 Off-line concentrations at 37oC 

Table 12 presents the results for samples from gas sampling bags analysed from 

1 to 48 hours storage at body temperature (37oC).  The off-line HCN concentration 

fell with increasing durations of storage.  For breath samples stored in Nalophan 

25 bags the correlation between on-line and off-line HCN concentrations remained 

good up to 6 hours.  At this point the HCN concentration had fallen to 

approximately 55% of the on-line concentration.  For samples stored in Nalophan 

70 and Tedlar bags the correlation between on-line and off-line HCN 

concentrations remained good up to 24 hours (see Figures 10 and 11).  At this 

point the HCN concentration had fallen to approximately 60% and 65% of the on-

line concentration, respectively.  Again, acetone was present at a much higher 

concentration.  Correlation with on-line concentrations was good up to 24 hours, 

but then declined.  As in the samples stored at 20oC, the water vapour 

concentration fell quickly with storage and by 24 hours it was similar to the 

atmospheric concentration.  The correlation between on-line and off-line water 

vapour concentrations was also poor, for all the bags at all the time points.  As 

warming the breath sample improved the correlation with the on-line sample, 

Hypothesis 6 is accepted.  
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Table 12: Off-line analysis of 3 compounds in breath samples stored at body temperature in bags made from different materials. 

Storage 
time 

 Nalophan 25 Nalophan 70 Tedlar 

 
HCN 

(ppbv) 
Acetone 
(ppbv) 

Water 
(%) 

HCN 
(ppbv) 

Acetone 
(ppbv) 

Water 
(%) 

HCN 
(ppbv) 

Acetone 
(ppbv) 

Water 
(%) 

1 hr 

Conc 
7.0 

(3.3-8.9) 
267 

(178-335) 
2.4 

(2.4-2.5) 
7.1 

(3.1-11.9)  
271 

(200-328)  
2.6 

(2.6-2.7)  
7.8 

(4.7-11.2)  
273 

(218-413)  
3.6 

(3.6-3.6)  

R
2
 0.94 0.97 0.1 0.92 0.96 0.1 0.79 0.93 0.02 

6 hrs 

Conc 
4.8 

(1.8-7.3)  
240 

(162-295)  
2.3 

(2.3-2.4) 
7.1 

(2.5-9.7)  
239 

(150-322)  
2.3 

(2.3-2.4)  
7.5 

(3.3-7.9)  
235 

(173-362)  
2.5 

(2.4-2.5)  

R
2
 0.79 0.93 0.02 0.92 0.94 0.06 0.92 0.97 0.06 

24 hrs 

Conc 
2.1 

(1.2-2.5)  
199 

(128-207)  
1.7 

(1.7-1.7)  
5.4 

(1.6-7.1)  
209 

(136-280)  
1.8 

(1.8-1.8)  
5.8 

(2.0-6.7)  
201 

(174-363)  
2.0 

(2.0-2.1)  

R
2
 0.65 0.89 0.02 0.82 0.93 0.2 0.86 0.97 0.1 

48 hrs 

Conc 
0.5 

(0.4-0.5)  
87 

(67-94)  
1.0 

(1.0-1.0)  
0.4 

(0.4-0.5)  
75 

(59-83)  
1.0 

(1.0-1.0)  
0.4 

(0.3-0.4)  
56 

(49-68)  
1.2 

(1.2-1.2)  

R
2
 0.03 0.64 0.04 0.18 0.47 0.01 0.04 0.69 0.4 

HCN: hydrogen cyanide, conc: concentration, ppbv: parts per billion by volume, R
2
: coefficient of determination. All concentrations presented as median(IQR).  

Note: Median (IQR) on-line concentrations: HCN: 8.9 (4.4-13.7) ppbv; acetone: 311 (270.5-433) ppbv and water vapour: 5.0(4.9-5.2)%.   
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Figure 10: Correlation of online and offline hydrogen cyanide concentrations for 

samples stored in Nalophan 70 bags at 37oC for 24 hours 

 

 

 

 

 

 

 

 

Figure 11: Correlation of online and offline hydrogen cyanide concentrations for 

samples stored in Tedlar bags at 37oC for 24 hours 

 

 

5.1.3.4 Off-line hydrogen cyanide concentrations in patients with and without 

Pseudomonas aeruginosa infection  

Table 13 compares the HCN concentration of breath samples of 8 children with 

and 7 without chronic PA infection, stored up to 24h.  As with the on-line HCN 
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concentrations the off-line HCN concentrations (up to 24 hours) are significantly 

higher in those with chronic PA infection compared to those without.  Figures 10 

and 11 demonstrate the good separation of HCN concentrations for children with 

chronic PA infection and those without, for breath samples stored in Nalophan 70 

and Tedlar bags for 24 hours.  A threshold HCN concentration of approximately 

5ppbv in breath samples stored in Nalophan 70 or Tedlar bags for up to 24 hours 

seems to provide good separation between the PA infected and non-PA infected 

children.  The varying performance of the different types of breath sampling bags 

means Hypothesis 5 is accepted.  

5.1.3.5  Analysis of samples stored at room temperature and then warmed prior to 

analysis 

To make the logistics of the SPACE study easier, we wanted to investigate if 

storing the sample at room temperature and then warming prior to analysis gave 

similar results as keeping the sample at room temperature.  On a different day, 

five of the same volunteers provided an online breath sample and a sample into a 

Nalophan 70 bag.  The bag sample was stored at room temperature for 24 hours 

and then warmed to 37oC prior to analysis.  The median (IQR) online 

concentrations were: acetone 320 (275-431); HCN 8.4 (5.0-12.8) and water 4.9 

(4.8-5.1) ppbv.  At 24 hours the median (IQR) off-line concentrations were: 

acetone 2.1 (154-292), R2=0.94; HCN 5.1 (1.8-7.8), R2=0.80 and water 1.6 (1.6-

1.6), R2=0.10.  These results suggest that storing the sample at room temperature 

and warming the sample prior to analysis gives similar results to those when the 

sample is keep warm throughout. 
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Table 13: Off-line hydrogen cyanide concentrations in breath samples stored at 37oC for patients with and without chronic 

Pseudomonas aeruginosa infection 

  1 Hour 6 Hours 24 Hours 

  
Nalophan 

25 
Nalophan 

70 
Tedlar 

Nalophan 
25 

Nalophan 
70 

Tedlar 
Nalophan 

25 
Nalophan 

70 
Tedlar 

PA 

Median 10.5 11.9 11.4 7.3 9.7 8.3 2.5 7.1 6.7 

IQR 8.2-12.4 10.0-13.2 10.0-12.4 6.6-9.0 8.0-11.3 7.7-8.9 2.3-3.0 6.0-7.7 6.1-7.6 

Range 7.0-13.5 7.1-14.0 7.8-14.1 4.8-12.1 6.9-12.5 7.5-10.1 2.1-3.3 5.4-8.4 5.8-8.8 

No PA 

Median 3.2 3.0 4.1 1.5 2.4 3.5 1.1 1.5 1.9 

IQR 3.0-3.6 2.7-3.3 3.7-5.4 1.2-3.0 1.8-2.5 3.1-3.6 1.0-1.5 0.7-1.7 1.4-2.1 

Range 2.6-4.5 2.0-4.1 3.5-5.6 0.8-4.3 1.7-3.6 2.4-4.8 0.3-1.9 0.6-2.9 1.0-2.4 

PA v No 
PA 

p value 0.001 0.001 0.001 0.008 0.001 0.001 0.001 0.001 0.001 

PA: Pseudomonas aeruginosa.  All results are in parts per billion by volume, ppbv 
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5.1.4 Discussion 

To our knowledge this is the first study to investigate the correlation between on-

line and off-line HCN and acetone concentrations measured by SIFT-MS.  As 

expected, the off-line concentrations were lower than on-line concentrations and 

the off-line concentrations fell further with increasing storage time.  Warming the 

breath samples to body temperature decreased the rate at which the off-line 

concentrations fell and improved the correlation between off-line and on-line 

concentrations.  The Nalophan 70 bag consistently performed better than the 

Nalophan 25 and almost to the level of the Tedlar bag.  In breath samples stored 

in a Nalophan 70 or Tedlar bag at 37oC, the off-line acetone and HCN 

concentrations correlated well with on-line concentrations for up to 24 hours of 

storage.  The off-line HCN concentrations insamples stored at 37oC were 

significantly higher in those patients with chronic PA infection compared to those 

without PA infection.  A threshold HCN concentration of around 5ppbv would give 

good separation between patients with and without PA infection for samples stored 

up to 24 hours in Nalophan 70 or Tedlar bags. 

The immediate difference in on-line and off-line concentrations can be explained 

by the different breath sampling techniques used for the measurements.  During 

on-line analysis, the SIFT-MS instrument gives the concentration of the selected 

volatile compounds throughout the whole breath, in real time.  The operator can 

then use the water vapour concentration that is simultaneously measured, to 

select the alveolar portion of the breath and report the volatile compound 

concentration during this section of the breath.  In contrast, when breath samples 

are given into sampling bags the sample contains a mixed expiratory sample, 
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including both the alveolar portion of the breath and air from the rest of the 

bronchial tree.  This results in a dilution of the alveolar portion of the breath and a 

lowering of the concentration of measured volatile compounds.    

The fall in off-line concentrations with increasing durations of storage has been 

well described and is thought to be due to a combination of diffusion of 

compounds through the bag wall, adsorption and condensation.190,195  As the 

temperature of breath sample falls below 37oC, water vapour condenses on the 

inside of the bag and takes down water soluble compounds.  By warming the 

sample to body temperature, any gases or vapours adsorbed onto the bag surface 

or water which have condensated can return to the gaseous state.  These 

processes explain why the off-line concentrations decreased at a slower rate and 

correlated better with on-line concentrations when the samples were stored at 

body temperature.  The diffusion of compounds through the wall of gas sampling 

bags has also been well described.195  As this rate of diffusion will be slower in 

thicker wall bags this explains the difference in the fall in concentrations between 

the Nalophan 25 and Nalophan 70 bags.  

A previous study compared different sampling containers (including Tedlar bags) 

for the sampling and storage of 6 volatile sulphur compounds relevant to breath 

analysis.193  They demonstrated that samples stored in Tedlar showed losses of 

<10% when stored for 6-8 hours.  When the dilutional difference between the on-

line and off-line samples is taken into consideration, our results are similar to the 

results of this study.  For the purpose of the SPACE study (Study 4) we are able to 

tolerate some HCN losses, providing the correlation between on-line and off-line 
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concentrations is good and allows differentiation between those patients with PA 

infection and those without.   

In all 3 types of collection bag the correlation of off-line and on-line acetone 

concentrations was better than that for on-line and off-line HCN concentrations.  

This is likely to be related to acetone being less water soluble than HCN resulting 

in decreased losses through condensation and the greater diffusion rate of the 

lighter molecules through the bag material.  The rapid fall in the water 

concentration of the breath samples down to the ambient air levels by 24 hours is 

similar to previous studies195 and suggests that diffusion is the major cause of the 

falling concentrations.  Both Tedlar and Nalophan are known to be permeable to 

water; this is a benificial characteristic of Nalophan which is used in food 

packaging.   

The good correlation of on-line and off-line HCN measurements in the Nalophan 

70 and Tedlar bag and the finding that a single HCN concentration can be used as 

a threshold for PA diagnosis for up to 24 hours breath sample storage time, 

suggests that either would be appropriate to use for the SPACE study (Study 4).  

As the Nalophan 70 bags are much cheaper than the Tedlar bags it means that 

they can be discarded after a single use, removing the need for bag cleaning or 

infection control measures.  For The SPACE study, Nalophan 70 bags were 

therefore selected.  Using the Nalophan 70 bags we demonstrated that keeping 

the sample at room temperature for 24 hours and warming the sample prior to 

analysis produces similar results as when the sample is kept warm for the 

duration.  We will therefore transport samples at room temperature for the SPACE 

study and warm them prior to analysis. 



 

88 
 

5.1.5 Funding 

We gratefully acknowledge funding for Study 3 by the University Hospital of North 

Staffordshire, Guy Hilton Research Trust (R5240A988).   

  



 

89 
 

5.2 STUDY FOUR: THE SENSITIVITY AND SPECIFICITY OF PSEUDOMONAS 

AERUGINOSA DETECTION USING THE HYDROGEN CYANIDE 

CONCENTRATION OF EXHALED BREATH - THE SPACE STUDY 

5.2.1 Introduction 

The ultimate aim of the research into HCN and PA is to investigate if HCN 

detection could be used in an exhaled breath test for the diagnosis of PA.  This 

could potentially be of huge benefit to those children with CF in whom the 

diagnosis of PA is difficult, specifically those who are unable or unwilling to 

expectorate sputum.  To investigate if HCN can be used in this way, breath 

samples need to be collected around the time CF children acquire PA infection.  

As you cannot predict when children with CF will acquire PA infection, regular 

breath samples need to be collected from a large cohort of CF children free from 

PA infection.  A percentage of these children will acquire PA infection during the 

study period and the HCN concentration of the breath samples taken around the 

time of the PA isolate can then be examined to see if they indicated infection.  The 

SPACE study was therefore designed to investigate if HCN is an early marker of 

PA infection in children with CF. 

5.2.2 Methods 

A cohort of children with CF who were free from PA infection was followed for 

approximately two years.  At each routine CF appointment a breath sample was 

collected for HCN analysis and a clinical details questionnaire was completed.  At 

the end of the study period the results of the microbiology samples taken as part of 

normal CF care were revealed to the study team and compared to the exhaled 

breath HCN concentrations. 
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5.2.2.1 Sample size and recruiting centres 

The power calculation was based on the expected rise in exhaled breath HCN 

concentration in those who acquired a new PA infection136.  Aiming for a sensitivity 

and specificity of 95% it was estimated that 46 new PA cases were needed.  A 

retrospective audit at one of the recruiting centres found the rate of new PA 

infections to be 0.1 cases per patient year.  The total patient years required to 

originate 46 new PA was therefore estimated to be 460, which was achieved by 

following 230 patients for 2 years. It was initially thought that this number of 

children could be recruited from seven Paediatric centres across the Midlands and 

North West of the UK.  Due to fewer children meeting the inclusion criteria at these 

centres than was initially estimated, recruitment started at an eighth centre (Centre 

1) approximately six months later.   

5.2.2.2 Inclusion criteria 

The inclusion criteria for children were: 

 A diagnosis of CF confirmed by sweat test or genotyping 

 2-16 years of age 

 Not to have isolated PA for the previous 12 months 

 Have all their follow-up at centres included in the SPACE study 

(most shared-care patients were therefore not eligible). 

 Be able to blow in to a sampling bag (hence the minimum age) 

Informed consent and when appropriate informed assent was obtained for all 

recruited children. 
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5.2.2.3 Exhaled breath sample collection 

The methodology for the breath sample collection and analysis was defined by 

Study Three, specifically it informed the maximum storage time prior to analysis 

and the need for pre-warming prior to analysis.  Breath samples were collected by 

the child blowing into a 1000ml 70 micron nalophan bag as described in 3.3.4.  It 

was requested that the child had not eaten or drunk anything for 30 minutes prior 

to providing the sample.  Once the sample was collected the mouth piece was 

removed and the bag sealed.  The bag was then transported to the SIFT-MS 

instrument and the HCN, acetone and ammonia concentration analysed using the 

methodology described in 3.3.5.  This analysis had to be undertaken within 24 

hours of the breath sample being taken.  Prior to analysis the sample was warmed 

to 37oC.  These results were recorded on a secure database.  A nalophan bag 

filled from a cylinder of medical air (BOC order code: 191-E) was analysed as a 

control every month. 

5.2.2.4 Clinical details questionnaire 

At each visit a clinical details questionnaire was completed.  This data was 

collected to assess if children were symptomatic at the time of PA infection.  See 

Annex 1: 11.1.  This collected data on the child’s general state of health (very well, 

well, okay, not as well as normal or unwell), any change in specific symptoms 

(cough, sputum production, shortness of breath and exercise tolerance) and 

antibiotic use (oral, nebulised and IV).  These data were stored on a secure 

database. 
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5.2.2.5 Microbiology samples 

During the study period a cough swab or sputum sample was taken at each out-

patient appointment as part of the child’s normal CF care.  No microbiology 

samples were taken specifically for the SPACE Study or at the request of the 

SPACE Study team.  The SPACE Study team were only informed of the 

microbiology results at the end of the study when all PA positive results were 

passed on to the Chief Investigator.  

5.2.2.6 Ethical approval 

Ethical approval for the SPACE Study was granted by the Coventry and 

Warwickshire Research and Ethics Committee (Ref: 10/H1211/48).  Annex 2: 

11.2.2. 

5.2.2.7 Statistical analysis 

SPSS Statistics Version 21 (IBM Corp. Released 2012) was used for the analysis.  

None of the data in this study was normally distributed and is therefore displayed 

as median (IQR).  For the initial analysis, a breath HCN concentration of ≥5 ppbv 

was taken as a positive result (as suggested by Study 3).  The ideal cut-off was 

confirmed by assessing the HCN concentration that produced the highest Youden 

Index.  This is a measure of diagnostic accuracy: (sensitivity + specificity) -1.     

The Mann-Whitney U test was used to assess the significance of the differences 

between 2 groups and the Kruskal-Wallis test when there were ≥3 groups.  The 

PA incidence rates were calculated by numerator / denominator.  The numerator 

was the number of children with a new isolate of PA during the study period and 

the denominator was the ‘person-time at risk’.  The person-time at risk was the 

sum of the time from recruitment to new PA isolate for those that isolated PA and 
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the total follow-up time for those who did not isolate PA.  The Poisson 95% 

confidence interval were calculated for the incidence rates and the Chi squared 

test was used to compare the significance of 2 incidence rates.  A p-value of <0.05 

was deemed significant.   

5.2.3 Results 

5.2.3.1 Recruitment and follow-up 

A total of 233 children were recruited from the 8 centres.  Their median (IQR) age 

was 8.0 (5.0-12.2) years.  At each centre recruitment was open for 6 months but 

the start date varied between centres due to administrative reasons.  The eighth 

centre (Centre 1) was added to ensure adequate numbers.  It opened 6 months 

after the other centres had closed to recruitment.  The first child was recruited in 

June 2011 and the last child in October 2012.  The study closed at all centres in 

December 2013.  The median duration of follow-up was 2.0 (1.7-2.3) years.  Ten 

children were withdrawn from the study prior to the close date.  Six transitioned to 

adult services and four moved area.  The data on these ten children have been 

included in the analysis up to the point they were withdrawn.      

5.2.3.2 Pseudomonas aeruginosa status 

None of the children had isolated PA in the year prior to recruitment but they could 

be divided into three groups according to their PA status: 113 children had never 

grown PA (Never group), 99 children had previously isolated PA but were not 

currently receiving any nebulised anti-PA therapy (Free from [FF] group) and 21 

were free from PA for > 1 year and were receiving prophylactic nebulised anti-PA 

therapy (Free from on treatment [FF-Tx] group).  A summary of study data for the 

three groups is shown in Table 14.  All those in the FF-Tx group had been 
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commenced on anti-PA therapy due to a previous diagnosis of chronic PA 

infection.  The median age was highest for the FF-Tx group and lowest for the 

Never group.   

 

As can be seen in Table 14, the use of oral antibiotics was very similar for the 

three groups (p=0.90), as was the use of IV antibiotics in the Never and FF groups 

(p=0.52).  The median (IQR) number of IV antibiotic courses per patient year was 

higher in the FF-Tx group compared to the Never and FF groups combined: 1.1 (0-

1.7) vs 0.0 (0-0.5), p<0.001.   At recruitment the median (IQR) time since the last 

PA isolate was similar for the FF and the FF-Tx groups: 2.2 (1.6-4.7) vs 2.0 (1.7-

2.9) years, p=0.29. 
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Table 14: Summary of study data according to Pseudomonas aeruginosa status 

PA Status 
No. 

children 

Age  

[years] 

Duration of 

follow-up 

[years] 

Study activity PA incidence 

(95% C.I) 

[cases per 

patient year] 

Antibiotic courses 

Total visits 
Total breath 

samples 

Samples per 

child 

Oral 

[per patient 

year] 

IV 

[per patient 

year] 

Never 113 6.4 (4.0-10.9) 2.0 (1.7-2.3) 962 948 8 (6-11) 0.15 (0.10-0.22) 1.8 (0.7-3.1) 0 (0-0.5) 

FF 99 8.1 (5.3-12.5) 2.1 (1.6-2.3) 910 898 9 (6-12) 0.19 (0.13-0.27) 1.8 (0.9-3.0) 0 (0-0.6) 

FF Tx 21 13.1 (10.6-15.5) 2.0 (1.9-2.3) 214 209 10 (6-15) 0.41 (0.20-0.73) 1.8 (1.2-3.1) 1.1 (0-1.7) 

Total 233 8.0 (5.0-12.2) 2.0 (1.7-2.3) 2086 2055 9 (6-12) 0.19 (0.15-0.23) 1.8 (1.0-3.1) 0 (0-0.7) 

PA: Pseudomonas aeruginosa, IV: intravenous, FF: free from, FF-Tx: free from on treatment. 

All data presented as median (IQR) apart from incidence rate which is presented as cases per patient year (95% confidence interval). 
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5.2.3.3 Study visits and breath samples 

There were a total of 2086 study visits each with a completed clinical details 

questionnaire.  Seven of the centres see the majority of their patients every 2 

months although selected patients are seen less frequently.  At Centre 4, all 

patients are seen less frequently although they request microbiology samples by 

post every month.  This resulted in a lower median (IQR) number of study visits 

per patient year at Centre 4 compared to the other seven centres combined: 2.4 

(1.9-2.8) vs 5.2 (4.6-6.3), p<0.001.  A total of 2055 breath samples were analysed 

meaning there were 31 study visits without breath samples.  Eight of these 

occurred as the child refused to provide a sample.  For the remaining 23, samples 

were collected but they were not analysed within the 24 hour window due to 

problems with sample transport or the SIFT-MS instrument.   

5.2.3.4 Incidence of new Pseudomonas aeruginosa isolates 

In total, 71 children had a new isolate of PA during the study period (29 from the 

Never group, 31 from the FF group and 11 from the FF-Tx group). The median 

(IQR) age at recruitment was similar for those who subsequently grew PA and 

those who remained PA free: 7.7 (4.4-12.4) vs 8.2 (5.1-12.1) years, p=0.71.  The 

overall incidence of PA isolates was 0.19 cases per patient year (95% confidence 

interval [CI]: 0.15-0.23).  The incidence rate (95% CI) was similar in the Never and 

FF groups: 0.15 (0.10-0.22) vs 0.19 (0.13-0.27) cases per patient year, Chi 

squared 0.73, p=0.39).  The incidence rate (95% CI) was higher in the FF-Tx 

group than in the Never and FF groups combined: 0.41 (0.20-0.73) vs 0.17 (0.14-

0.22) cases per patient year, Chi squared 7.41, p=0.007).  As can be seen in the 

Kaplan Meier curve in Figure 12 these incidence rates resulted in the proportion of 
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patients remaining free of PA at the end of the study period being 74% for the 

Never Group, 69% for the FF group and 48% for the FF-Tx group.  For those that 

did isolate PA, the median time from recruitment to new PA isolate was 0.7 (0.3-

1.3) years.  This was similar for the never, FF and FF-Tx groups: 0.8 (0.3-1.3) vs 

0.7 (0.3-1.4) vs 0.6 (0.3-1.0) years, p=0.89.   

 

Table 15 shows a summary of the study data for the recruited children according 

to their CF centre.  When calculating the PA incidence for each centre, children in 

the FF-Tx group were excluded.  This is because the incidence of new PA isolates 

was higher in this group and its members (21 children) were not evenly distributed 

between the centres.  Their inclusion would therefore have skewed the PA 

incidence.  The overall PA incidence (95% C.I) for those children in the Never and 

FF groups was 0.17 (0.14-0.22) cases per patient year, this varied between 0.08 

(0.04-0.18) and 0.28 (0.14-0.49) in the different centres. As can be seen in the 

Kaplan Meier curve in Figure 13 this resulted in the proportion of patients 

remaining free of PA at the end of the study varying between 56% (Centre 3) and 

83% (Centre 7).    
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Figure 12: Kaplan Meier curve showing the proportion of children remaining free of Pseudomonas aeruginosa (PA) infection during 

the study period for each of the PA status groups 
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Table 15: Summary of study data according to recruiting centre 

Centre No. recruits 
Age 

(years) 

Duration of 

follow-up 

(years) 

Study activity PA incidence 

(95% C.I)  

[cases per 

patient year] 

Antibiotic courses 

Total 

visits 

Total 

breath 

samples 

Samples per 

child 

Oral 

(per pt year) 

IV 

(per pt year) 

1 24 7.6 (4.0-8.0) 1.4 (1.3-1.4) 188 185 8.0 (6.8-9.0) 0.22 (0.10-0.40) 3.6 (3.1-4.2) 0 (0-0) 

2 34 8.8 (6.0-12.0) 2.3 (2.2-2.3) 348 341 10.5 (10-12) 0.18 (0.10-0.29) 2.2 (1.7-2.7) 0 (0-0.4) 

3 21 6.9 (4.9-13.2) 2.2 (2.2-2.3) 193 193 9 (8-10) 0.27 (0.15-0.43) 1.5 (0.6-2.2) 0(0-0) 

4 53 9.1 (5.4-12.5) 1.8 (1.6-2.0) 229 220 5 (3-5) 0.20 (0.12-0.29) 0.6 (0.2-1.3) 0 (0-1) 

5 30 9.4 (6.7-12.9) 2.2 (1.9-2.3) 306 305 11 (9-12) 0.13 (0.07-0.25) 1.5 (0.9-1.8) 0 (0-0.4) 

6 18 8 (2.4-10.7) 1.8 (1.5-1.9) 136 133 7 (6-8) 0.28 (0.14-0.49) 2.6 (1.8-3.6) 0 (0-0.5) 

7 36 5.2 (3.3-8.5) 2.3 (2.0-2.5) 477 474 14 (11-16) 0.08 (0.04-0.18) 2.9 (2.0-3.9) 0.4 (0-1.2) 

8 17 8.4 (5.2-12.0) 2.4 (2.3-2.4) 209 204 12 (11-13) 0.22 (0.10-0.40) 2.6 (1.8-3.2) 0 (0-0) 

Total 233 8.0 (5.0-12.2) 2.0 (1.7-2.3) 2086 2055 9 (6-12) 0.17 (0.14-0.22) 1.8 (0.9-3.0) 0 (0-0.5) 

PA: Pseudomonas aeruginosa, IV: intravenous. 

All data is presented as median (IQR) apart from incidence rate which is presented as cases per patient year (95% confidence interval).. 
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Figure 13: Kaplan Meier curve showing the proportion of children remaining free of Pseudomonas aeruginosa infection during the 

study period for each of the recruiting centres
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For the same reason that children in the FF-Tx group were excluded from the PA 

incidence figures for individual centres, they were also excluded from the 

calculations of antibiotic courses per patient year for individual centres.  See Table 

15.  Although the oral antibiotic use did not vary according to PA status, there was 

a wide variation between centres.  The median (IQR) number of oral antibiotic 

courses per patient year varied between 0.6 (0.2-1.3) and 3.6 (3.1-4.2).  The 

median (IQR) number of IV antibiotic courses at each of the centres varied 

between 0.0 (0-0) and 0.4 (0-1.2) courses per patient year. 

5.2.3.5 Pseudomonas aeruginosa eradication 

To avoid confusion when discussing PA eradication, the 11 children who isolated 

PA from the FF-Tx group have been excluded as they were already receiving 

nebulised anti-PA therapy.  All of the 60 patients who isolated PA during the study 

period from the Never or FF groups received eradication therapy.  Sixteen children 

received intravenous and nebulised antibiotics (six of these also received oral 

antibiotics).  The remaining 44 received oral and nebulised antibiotics.  A number 

of these patients were part of the TORPEDO-CF study which is investigating the 

best regimen for PA eradication.  Fifty two of the 60 patients isolated PA early 

enough in the study to allow at least 6 months of follow-up and 44/52 (85%) were 

free of PA at this time point.      

5.2.3.6 Pairing of study visits and Pseudomonas aeruginosa culture results 

As mentioned above, 71 children had a new isolate of PA during the study period.  

For 57 of these children a study visit (with completed clinical details questionnaire 

and an analysed breath sample) had been undertaken on the date of the positive 

PA culture.  These 57 questionnaires and breath samples are those used for the 
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analysis of symptoms and HCN concentration at the time of the PA positive result.  

Of the 14 new PA isolates without a paired study visit, eight were microbiology 

samples that were posted from home and did not coincide with an out-patient visit, 

four were microbiology samples that were obtained at hospital visits outside of a 

routine out-patient appointment and two occurred at an out-patient visit that the 

study team were unaware of due to the appointment having been rearranged.       

5.2.3.7 Symptoms at the time of Pseudomonas aeruginosa isolation 

At the time of PA isolation 24/57 (42%) children were asymptomatic.  Of those that 

were symptomatic, cough was present in 30/33 (91%) of children, increased 

sputum in 16/33 (48%), increased shortness of breath in 9/33 (27%) and reduced 

exercise tolerance in 7/33 (21%).  At the time of the PA isolate only 12/57 (21%) of 

children were described as “unwell” or “less well than normal”.  

5.2.3.8 Breath hydrogen cyanide concentrations 

There was no difference in the median (IQR) HCN concentration of the first breath 

samples for those in the Never, FF and FF-Tx groups: 2.2 (1.3-3.2) vs 2.3 (1.5-3.0) 

vs 2.4 (1.2-3.5) ppbv, p=0.58.  For children that did not isolate PA during the study 

the median (IQR) HCN concentration of all their breath samples was 2.3 (1.4-3.1) 

ppbv.  For the same children the median (IQR) difference between an individual’s 

maximum and minimum HCN concentration (intra-subject variation) throughout the 

study was: 2.8 (1.9-3.5) ppbv.   

5.2.3.9 Elevated hydrogen cyanide concentrations in those who isolated 

Pseudomonas aeruginosa 

Of the 57 children who had a new PA isolate with a paired study visit, 28 (49%) 

had a breath HCN concentration of >5ppbv at the time of the PA isolate.  This 
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means that the sensitivity of PA detection using the HCN concentration of exhaled 

breath is 49%. Hypothesis 7 is therefore rejected.  As expected, the median HCN 

concentration for these 28 children was significantly higher at the time of PA 

isolate compared to their first breath sample: 5.6 (5.4-5.9) vs 2.0 (1.3-3.1) ppbv, 

p<0.001.  The remaining 29 children had a similar HCN concentration at the time 

of their PA isolate and on their first breath sample: 2.3 (1.8-3.0) vs 1.9 (1.0-2.7) 

ppbv, p=0.32.  In 5 of the 28 children with elevated HCN, this had been elevated 

for 1 or 2 visits prior to the date of the PA isolate: median (IQR) duration 2.1 (1.7-

2.5) months.  All 28 patients with an elevated HCN stopped growing PA within 2 

further study visits.  In 20/28 children the HCN concentration was <5ppbv at the 

next study visit: median (IQR) HCN concentration was 2.5 (1.5-3.8) ppbv.  In the 

remaining 8 children the median (IQR) duration that the HCN concentration 

remained >5ppbv: 2.3 (2.1-4.3) months.             

5.2.3.10 Elevated hydrogen cyanide concentrations in children who did not isolate 

Pseudomonas aeruginosa 

Nineteen children who did not isolate PA had at least one breath sample with a 

HCN concentration >5ppbv.  In eight of these children the elevation occurred on a 

single breath sample, in six children the HCN was elevated twice, in four it was 

elevated three times and in one it was elevated 4 times.  The median HCN 

concentration of these 36 breath samples was 5.3 (5.1-5.7) ppbv.  The number of 

false positives is 19 and the number of true negatives is 143 (number of children 

who did not isolate PA during the study and whose breath HCN concentrations 

always remained <5.0 ppbv).  This means that the specificity of PA detection using 

the HCN concentration of exhaled breath is 88%.  The positive predictive value is 

(28/47) 60% and the negative predictive value is (143/172) 83%.   
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5.2.3.11 Receiver operating characteristics (ROC) curve 

The Receiver operating characteristics (ROC) curve generated from The SPACE 

Study data can be seen in Figure 14.  The area under the curve is 0.75 which 

classifies the accuracy of exhaled breath HCN as a diagnostic test for PA infection 

as fair.  The Youden Index is a measure of diagnostic accuracy: (sensitivity + 

specificity) -1.  The maximum Youden index for these data is 0.47 when the HCN 

concentration is 5.1 ppbv.  This supports this study’s use of a cut-off for a positive 

result of 5 ppbv. 

 

Figure 14: Receiver operating characteristics curve for The SPACE Study  

 

5.2.3.12 Other Pseudomonas species 

Apart from PA the only other species that has been shown to be cyanogenic is 

Pseudomonas fluorescens (PF).80  Four patients isolated PF during the study 
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period.  All the patients were asymptomatic at the time of the isolate and the 

children’s HCN concentrations were not elevated at the time of the isolate. 

5.2.3 Discussion 

The SPACE study is the first in-vivo study to investigate if HCN in exhaled breath 

can be used as an early marker of PA infection in children with CF.  As well as 

demonstrating that HCN is a specific marker of PA infection it has provided some 

very interesting prospective data on the incidence of PA infection in children with 

CF.  The relatively low sensitivity means that at present it is not appropriate to use 

exhaled breath HCN as a screening test for PA infection.  The low sensitivity is 

likely to be related to some PA isolates not producing enough HCN to allow 

detection in an exhaled breath test and the off-line methodology used to measure 

the HCN concentration in this study. 

    

In Study 1, although all strains of PA had easily detectable concentrations of HCN 

in their culture headspace, the PA genotype did affect the quantity of detected 

HCN.  A small number of strains produced relatively low headspace HCN 

concentrations with a >700 fold difference in the peak HCN concentration between 

the highest and lowest producing strains (15,714 v 22 ppbv).  Although the exact 

correlation between the in-vitro headspace concentrations and the in-vivo exhaled 

breath HCN concentrations is unknown, it is reasonable to presume that 

pulmonary infection with one of the low HCN producing strains may not produce 

enough HCN to be detected on an exhaled breath test.  The SPACE Study did not 

involve any analysis of the PA isolates so the PA genotype is unknown and no in-

vivo analysis of HCN headspace production was made.  The exact correlation 

between the HCN headspace concentration of an in-vitro culture and the exhaled 
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breath HCN concentration in a patient infected with the same organism is a 

possible area for future research.  The inter and intra-subject variation of exhaled 

breath HCN concentrations is in keeping with previously pubished data and may 

be contributing to the low sensitivity.136,196  It is known that dietary intake can affect 

the concentration of volatile organic compounds in exhaled breath.  Although the 

children were requested not eat or drink anything for 30 minutes prior to providing 

the sample, this was not checked rigorously. 

   

The SPACE study involved the analysis of breath samples taken at eight different 

CF centres across the Midlands and North West of England.  As we only had one 

SIFT-MS instrument which is not easily transportable, the breath samples had to 

be collected in breath sampling bags and then transported to the SIFT-MS 

instrument for off-line analysis.  Study 3 demonstrated that there is good 

correlation between the on-line and off-line HCN concentrations but the off-line 

concentrations were lower which could potentially affect the sensitivity.  Analysis of 

the HCN concentrations of those children who isolated PA but did not have a 

breath HCN of >5ppbv showed it was similar at the time they isolated PA to their 

first sample: 2.3 (1.8-3.0) vs 1.9 (1.0-2.7) ppbv, p=0.32.  To increase the overall 

sensitivity for the detection of PA to >80%, the cut-off for the HCN concentration 

would have to be reduced to around 3ppbv which would hugely reduce the 

specificity.    

 

It is unsurprising that the incidence of new PA isolates was highest in the FF-Tx 

group (0.41 cases per patient year) as although they had not isolated PA for at 

least 12 months, they had previously been diagnosed with chronic PA infection.  
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The difference between the Never and FF groups is more interesting.  Having not 

grown PA for >12 month it would be assumed that the previous isolates of PA in 

the FF group had been successfully eradicated.  Despite this the FF group had a 

slightly higher PA incidence than the Never group.  This suggests that either a 

proportion of the previous PA infections had not been successfully eradicated or 

that the children were at increased risk due to re-infection possibly from the same 

source as the earlier PA isolate.  The wide variation in PA incidence between the 

centres (0.08 to 0.28 cases per patient year) has occurred despite all centres 

having strict infection control measures in place.  It is a reminder that constant 

vigilance is required by patients with CF to reduce their risk of PA infection both 

inside and outside the hospital.  The need for regular microbiology surveillance for 

children with CF is highlighted by the finding that 42% of children were 

asymptomatic at the time of the PA isolate. 

 

In summary the SPACE Study has demonstrated that an elevated HCN 

concentration in exhaled breath is a specific marker of PA infection in children with 

CF.  The sensitivity was less impressive and further work is required to investigate 

the reasons for this and see if it can be improved.    

5.2.4 Funding 

We gratefully acknowledge the funding for The SPACE Study from a Research for 

Patient Benefit Grant from the National Institute of Health Research (PB-PG-0909-

20070). 
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CHAPTER SIX – HYDROGEN CYANIDE AS AN IN-VIVO MARKER OF 

PSEUDOMONAS AERUGINOSA IN ADULTS 

6.1 STUDY FIVE: HYDROGEN CYANIDE CONCENTRATIONS IN THE BREATH 

OF ADULT CYSTIC FIBROSIS PATIENTS WITH AND WITHOUT 

PSEUDOMONAS AERUGINOSA INFECTION 

6.1.1 Introduction 

To our knowledge, no previous study has investigated the exhaled breath HCN 

concentration in adults with CF and chronic PA infection.  The interpretation of 

exhaled breath HCN concentrations in adults is more complex than in children, as 

most healthy adults have easily measurable concentrations of HCN in mouth-

exhaled breath.151,156  This is different to healthy children in whom mouth-exhaled 

breath HCN concentrations are either very low or immeasurable.137  Simultaneous 

studies of both mouth-exhaled and nose-exhaled breath HCN concentrations in 

healthy adults showed that even when mouth-exhaled HCN concentrations are 

elevated, nose-exhaled HCN concentrations remained very low or undetectable.  

These studies proved the site of HCN production in such individuals was the oral 

cavity.151,156  Therefore, the investigation of HCN as a breath biomarker for PA 

infection in adults requires both nose-exhaled and mouth-exhaled HCN 

concentrations to be measured.   
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6.1.2 Methods 

6.1.2.1 Experimental design 

Two groups of non-smoking adult patients with CF were recruited from the 

Manchester Adult CF Centre; 10 with chronic PA infection who were consecutive 

patients at the “PA out-patient clinic” and 10 who were free from PA infection that 

were consecutive patients attending the “non-PA out-patient” clinic.  Chronic PA 

infection was defined as >50% of sputum cultures positive for PA in the previous 

12 months (minimum of 4 samples).  Free from PA infection was classified as no 

PA positive sputum cultures in the previous 12 months (minimum of 4 samples).  

Patients were excluded if they were too short of breath to provide effective breath 

samples or if they had isolated BCC or a Pseudomonas species other than PA in 

the previous 12 months.  

Following written informed consent, patients provided on-line mouth and nose-

exhaled breath samples using the methodology described in 3.3.3.  Patients were 

requested not to eat or drink anything for 1 hour prior to breath samples being 

provided.  In addition to HCN, we chose to simultaneously measure acetone and 

ethanol in the same breath exhalations. Acetone is a systemic compound which 

means the measured mouth-exhaled and nose-exhaled concentrations are 

invariably the same when the sampling rate is consistent.151  This is a valuable 

indicator of nose and mouth sampling consistency.  In contrast, ethanol is partially 

generated in the mouth by bacterial and salivary enzyme activity resulting in nose-

exhaled concentrations being lower than mouth-exhaled concentrations.151  
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6.1.2.2 Statistical methods 

SPSS Statistics Version 21 (IBM Corp. Released 2012) was used for the analysis.  

The concentrations of the acetone, ethanol, HCN and water vapour were not 

normally distributed, even after logarithmic transformation. Therefore, the results 

are displayed as median (IQR) values.  The Mann-Whitney U test was used to 

assess the significance of the differences of concentrations between groups.  A p-

value of <0.05 was deemed significant.   

6.1.2.3 Ethical approval 

Ethical approval was granted by NRES Committee North West – Haydock Park 

(11/NW/0102).  See Annex 2: 11.2.3.  This ethical approval was used for studies 5 

and 6. 

6.1.3 Results 

6.1.3.1 Patient demographics 

Ten patients attending the out-patient clinic were recruited into the “chronic PA” 

group and 10 into the “free-from-PA” group.  There were no significant differences 

in the forced vital capacity (FVC) and body mass index (BMI) between the 2 

groups.  There were non-significant trends for those with chronic PA infection to be 

younger and have lower forced expiratory volume in 1 second (FEV1).  As 

expected, the time since the last PA isolate was significantly shorter in the “chronic 

PA group” compared to the “PA-free” group (0.2 (0.1-0.2) years vs 3.3 (2.5-4.9) 

years, p<0.001).  See Table 16.  

  



 

112 
 

Table 16: Demographic data on the patients in the Pseudomonas aeruginosa (PA) 

and PA free groups  

 Age (years) 
Lung Function 

BMI 
Time since last 

PA isolate 
(years) FVC (%)  FEV1 (%) 

Chronic 
PA 

(n=10) 

25.8 
(21.5-31.5) 

50 
(38-60) 

56 
(48-71) 

19.9 
(18.4-20.8) 

0.2 
(0.1-0.2) 

PA-free 
(n=10) 

31 
(24.8-38.5) 

56 
(48-71) 

53 
(48-68) 

20.5 
(19.1-21.8) 

3.3 
(2.5-4.9) 

p value 0.26 0.34 0.14 0.55 <0.001 

FVC: forced vital capacity expressed as percentage predicted. FEV1: forced expiratory volume in 1 
second expressed as percentage predicted. BMI: body mass index. PA: Pseudomonas aeruginosa. 
p values calculated using the Mann-Whitney U test.  All, values median (IQR) 

6.1.3.2 Breath analysis results 

The concentrations of acetone, ethanol and HCN from mouth-exhaled and nose-

exhaled breath are shown for the chronic PA infection group in Table 17 and for 

the free from PA infection group in Table 18.  

Table 17: Breath results from the chronic Pseudomonas aeruginosa group 

Pt No. 
Mouth-exhaled Breath Nose-exhaled Breath 

Acetone Ethanol HCN Acetone Ethanol HCN 

1 605 322 32 592 99 18 

2 333 256 33 293 129 16 

3 576 188 4.5 583 226 0 

4 394 298 17 307 95 11 

5 551 257 22 512 167 18 

6 557 335 22 626 120 0 

7 514 156 31 453 71 20 

8 353 839 2.2 363 388 3 

9 1033 268 5.7 971 160 0 

10 236 930 13 227 675 11 

Median 533 283 20 483 145 11 

The concentrations for each individual are the means of 3 consecutive breath samples. The 
median of the 10 individual values are also given for each compound. All concentrations are in 
parts-per-billion by volume, ppbv.  
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Table 18: Breath results from subjects in the control group 

No 
Mouth-exhaled Breath Nose-exhaled Breath 

Acetone Ethanol HCN Acetone Ethanol HCN 

1 467 1041 0 471 351 0 

2 571 340 23 627 115 0 

3 358 3772 2.9 348 426 4.3 

4 435 244 17 379 143 0 

5 1032 372 0 969 133 0 

6 345 388 2.2 330 157 0 

7 520 323 39 486 131 11 

8 477 998 3.7 481 367 0 

9 577 318 21 588 118 0 

10 442 321 11.2 321 93 11 

Median 472 356 7.5 476 138 0.03 

The concentrations for each individual are the means of 3 consecutive breath samples. The 
median of the 10 individual values are also given for each compound. All concentrations are in 
parts-per-billion by volume, ppbv. 

 

When the data from all 20 patients (chronic PA and free from PA) were analysed 

together, the median (IQR) acetone concentrations were similar for mouth and 

nose-exhaled samples: 496 (385-572) vs 476 (344-589) ppbv, p=0.73). This 

similarity was confirmed by the excellent correlation (R2=0.95) when mouth and 

nose-exhaled acetone concentrations were plotted against each other; see Figure 

15.   In contrast, but as expected, the median (IQR) ethanol concentrations were 

higher for mouth-exhaled samples than for nose-exhaled samples: 323 (265-501) 

vs 138 (117-257) ppbv, p=0.001).  A similar trend was seen for the median (IQR) 

HCN concentrations: 15 (3.5-22) vs 1.5 (0-11) ppbv, p=0.006). 
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Figure 15: Correlation of mouth-exhaled and nose-exhaled acetone concentations 

for all patients. 

 

The concentrations of the 3 volatile compounds for both groups are summarised in 

Table 19.  The median (IQR) nose-exhaled HCN concentration was significantly 

higher in patients with chronic PA infection compared to those free from PA 

infection: 11 (0.8-18) vs 0 (0-3.2) ppbv, p=0.03.  Hypothesis 8 is therefore 

accepted.  There was a non-significant trend for mouth-exhaled HCN to be higher 

in the chronic PA group: 20 (7.5-29) vs 7.5 (2.3-20) ppbv, p=0.17. 

Table 19: Comparison of breath results chronic Pseudomonas aeruginosa (PA) 

and free from PA groups. 

 
Mouth-exhaled Breath Nose-exhaled Breath 

Acetone Ethanol HCN Acetone Ethanol HCN 

Chronic PA 
533 

(363-571) 
283 

(256-332) 
20 

(7.5-29) 
483 

(321-590) 
145 

(104-211) 
11 

(0.8-18) 

Free from PA 
472 

(437-558) 
356 

(322-846) 
7.5 

(2.3-20) 
476 

(356-563) 
138 

(121-303) 
0 

(0-3.2) 

P value 1.0 0.06 0.17 0.82 0.88 0.03 

Concentration values are median (IQR) ppbv. PA: patients with Pseudomonas aeruginosa 
infection, No PA: patients without Pseudomonas aeruginosa and Burkholderia Cepacia Complex 
infection. 
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When the nose-exhaled and mouth-exhaled HCN concentrations were plotted 

against each other for patients with chronic PA infection, there was a moderate 

correlation (R2=0.63); see Figure 16.  Despite the difference in the nose-exhaled 

HCN concentrations between the 2 groups there were 4 patients with chronic PA 

infection whose nose-exhaled HCN concentrations were not elevated (all <5ppbv) 

and 2 patients who were free from PA infection who had elevated nose-exhaled 

HCN concentrations (>10ppbv).  Of the 2 patients with elevated nose-exhaled 

HCN despite being free from PA, one had not grown PA since attending our unit (7 

years previously) and one had grown PA 3.2 years ago that was successfully 

eradicated.  

Figure 16:  Correlation of mouth-exhaled and nose-exhaled hydrogen cyanide 

concentations for  patients with chronic Pseudomonas aeruginosa infection. 
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acetone concentrations, nose-exhaled acetone concentrations or nose-exhaled 

ethanol concentrations. 

6.1.4 Discussion 

To our knowledge, this is the first study involving the analysis of the HCN 

concentration of mouth-exhaled and nose-exhaled breath in adults with CF, with 

and without PA infection.  The nose-exhaled HCN concentrations are significantly 

higher in those patients with chronic PA infection compared to those free from PA 

infection and there is a trend for the mouth-exhaled HCN concentration to be 

higher in those with chronic PA infection.  Despite this, there were 4 patients with 

chronic PA infection whose nose-exhaled HCN concentrations were not elevated 

(all <5ppbv) and 2 patients who were free from PA infection who had elevated 

nose-exhaled HCN concentrations (>10ppbv).  Although we recognise the small 

patient cohorts involved, this suggests that for the detection of PA infection in 

adults with CF, elevated nose-exhaled HCN concentration has a sensitivity of 60% 

and a specificity of 80%.   

With regards to the sensitivity; it is known that there is variability in the HCN 

production by different strains of PA cultured in-vitro.187  Although this has not 

been directly correlated with in-vivo studies, it is likely that infection with a low 

HCN producing strain will result in lower breath HCN concentrations.  It is also 

known there is a diurnal variation in HCN production196 and when multiple breath 

samples are taken from CF patients with chronic PA infection, there is a significant 

intra-subject variability in HCN concentrations.136  As patients only provided breath 

samples at a single visit, it is possible that we limited the opportunity to detect an 

elevated HCN concentration.  The anticipated increase in sensitivity of forthcoming 
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SIFT-MS instruments will improve the sensitivity of this diagnostic test.  With 

regard to the specificity, it is known that patients can have chronic PA infection 

that is not detected by routine cough swabs or sputum culture and are only 

diagnosed by the more invasive sampling of bronchoalveolar lavage.107  It is 

therefore possible that those patients in the PA-free group who had elevated nose-

exhaled HCN concentrations were actually infected with PA.   

The median mouth-exhaled HCN concentrations of 7.5ppbv seen in adults free 

from PA infection is close to a previous report of 10 ppbv in a cohort of healthy 

volunteers.156  The median (IQR) concentrations in mouth-exhaled breath for CF 

adults with chronic PA infection was 20 (7.5-29) ppbv.  This is higher than that in 

the mouth-exhaled breath of children with CF and PA infection, which we 

previously reported as 13.5 (8.1-16.5) ppbv.136 The reason for this difference is not 

clear, but it may reflect some additional oral production of HCN in the adults with 

CF, as we have also shown in healthy adults. It is also necessary to consider the 

possible effect of sinus infection on breath analysis results.  It is now increasingly 

recognised that patients with CF can have chronic PA infection in their sinuses.197  

In this study we did not take sinus samples to check for this type of infection.  If PA 

sinus infection was present in the absence of pulmonary infection then this may be 

the cause of a presumed false positive.  It is also possible that coexisting sinus 

and pulmonary infection may result in a different pattern of volatiles such as a 

higher HCN.  Further work is required to look into this interesting area.    

The acetone concentrations were remarkably similar for mouth-exhaled and nose-

exhaled breath and when plotted against each other, the correlation is excellent 

(R2 = 0.95); see Figure 15.  The slope of the linear plot was 0.97, indicating 
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marginally lower concentrations in the nose-exhaled breath.  The median mouth-

exhaled acetone concentration across both groups was 496 ppbv which is close to 

the 477 ppbv reported in a 6-month longitudinal study involving 30 healthy 

adults.158  These results evidence the consistency of the mouth and nose 

sampling, but also the remarkable consistency of the results obtained for breath 

acetone concentrations obtained for two different adult cohorts using two different 

SIFT-MS instruments. Whilst the factors that can influence breath acetone 

concentrations are not the focus of this thesis, they are well understood.23,24   

Whilst there is wide variation between the ethanol concentrations measured in 

mouth-exhaled breath, nose-exhaled ethanol concentration are lower than the 

mouth-exhaled concentrations in all but one patient.  This difference relates to the 

oral production of ethanol.  The median mouth-exhaled ethanol concentrations in 

patients free from PA infection are skewed higher due to the excessive 

concentrations seen in 3 patients (see Table 18).  Sugary drinks can elevate 

mouth-exhaled ethanol as does the recent ingestion of alcohol.159,199  Although 

patients were requested not to eat or drink for one hour prior to providing breath 

samples, this was not monitored.  The ethanol concentrations found in this study 

are similar to those previous determined in the exhaled-breath of healthy 

cohorts.159 It is noteworthy that both ethanol and acetone concentrations in 

exhaled breath condensate (analysed using nuclear magnetic resonance 

spectroscopy) are different between patients with CF and healthy subjects.200 

In summary, this study shows that nose-exhaled HCN concentrations are 

significantly higher in adult patients with CF who have chronic PA infection than in 

adult patients with CF free from PA infection.  HCN is present in the mouth-
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exhaled breath of both groups and a proportion of this is likely to have been 

generated in the oral cavity.  When measuring HCN as a marker of PA infection in 

the lower airways of adults, nose-exhaled breath should be used since this 

bypasses the oral cavity. The use of mouth-exhaled HCN is appropriate in 

children, as they do not generate measurable HCN in the oral cavity.137  

Improvements in oral hygiene in adults can reduce the concentrations of some 

orally generated compounds.199,201 It may be possible in the future to use mouth-

exhaled HCN concentrations in adults if their oral hygiene is maximised.  Our 

results support the use of HCN as a breath biomarker of PA infection, but more 

studies involving larger patient cohorts are needed to assess its full potential as a 

non-invasive diagnostic test for early infection.   
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CHAPTER SEVEN – HYDROGEN CYANIDE AS A MARKER OF 

BURKHOLDERIA CEPACIA COMPLEX 

7.1 STUDY SIX: IS HYDROGEN CYANIDE AN IN-VITRO OR IN-VIVO MARKER 

OF BURKHOLDREIA CEPACIA COMPLEX INFECTION?  

7.1.1 Introduction 

It was thought that PA was the only organism found in the CF lung to produce 

HCN, making it a possible specific marker of PA infection.  A recent paper used a 

cyanide ion-selective micro-electrode to demonstrate the production of the non-

volatile cyanide ion by Burkholderia cepacia complex (BCC) when cultured under 

biofilm but not planktonic conditions.130  BCC refers to a group of at least 17 

closely related bacterial species (formerly called genomovars) that can cause 

pulmonary infection in patients with CF.202,203  We replicated the methodology of 

in-vitro experiment but rather than using a cyanide electrode to measure cyanide 

trapped in sodium hydroxide, we used selected ion flow tube mass spectrometry 

(SIFT-MS) to measure the headspace concentration of HCN.  In addition we 

investigated if HCN is an in-vivo marker of BCC infection by measuring its 

concentration in mouth and nose-exhaled breath in adults with CF and chronic 

BCC infection. 

7.1.2 Methods 

7.1.2.1 Experimental design 

Adult patients with CF were recruited if they had chronic BCC infection and were 

free from PA infection.  Chronic BCC infection was defined as BCC in >50% of 

sputum samples (minimum of 4 samples) over the previous 12 months, with a.  
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Free from PA infection was defined as no PA isolate in the previous 12 months 

(minimum of 4 samples).  Once recruited, patients provided on-line mouth and 

nose-exhaled breath samples for HCN analysis using the methodology described 

in 3.3.3.  They also provided a sputum sample.  The sputum sample was cultured 

using the methodology described in 3.2.2.1.  Each BCC sample was then used to 

prepare a biofilm and planktonic culture using the methodologies described in 

3.2.2.2 and 3.2.2.3 respectively.  Biofilm and planktonic control cultures were 

prepared using the methodology described 3.2.3.  Biofilm formation was confirmed 

visually and using spectrophotometry as described in 3.2.4.   

The headspace HCN concentration of the BCC biofilm, planktonic and control 

cultures were measured at 24, 48, 72 and 96 hours of incubation using the 

methodology described in 3.3.6.  At 96 hours the headspace HCN concentrations 

were re-measured after acidification of the cultures using 1ml HCl to promote the 

generation of HCN from cyanide ions.  The mouth and nose-exhaled breath of a 

group of patients free from BCC and PA infection were analysed as controls.   

7.1.2.2 Ethical approval 

Ethical approval was granted by NRES Committee North West – Haydock Park 

(11/NW/0102).  See Annex 2: 11.2.3.  This ethical approval was used for studies 5 

and 6. 

7.1.3 Results 

7.1.3.1 Patient demographics 

Twelve patients (6 male) were recruited from the Manchester Adult CF Centre that 

had chronic BCC infection and were free from PA infection (BCC Group) and 10 
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patients (6 male) were recruited that were free from both BCC and PA infection 

(control group).  There were no significant differences between the groups in age, 

body mass index (BMI) and forced vital capacity (FVC).  The median (IQR) forced 

expiratory volume in one second (FEV1) was significantly lower patients in the 

BCC group compared to those in the control group (1.7 (1.4-2.0) vs 2.2 (2.0-2.8) 

litres, p=0.04).  See Table 20.  In the BCC group 7/12 had never isolated PA since 

transferring to the Manchester Adult CF Centre, the median (IQR) time since last 

isolation of PA in the remaining 5 patients was 2.3 (1.9-2.3) years.  Seven were 

chronically infected with Burkholderia multivorans, 3 with Burkholderia 

cenocepacia and 2 with Burkholderia latens.  These BCC species were confirmed 

by the National Reference Laboratories within the last 12 months using pulsed 

field gel electrophoresis, recA sequencing or species specific PCR.  In the control 

group 4 patients had never isolated PA since attending the Manchester Adult CF 

Centre.  In the remaining 6 patients the median (IQR) time since last PA isolation 

was 3.0 (2.5-3.3) years.  None of the control group had isolated BCC since 

attending the adult unit. 
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Table 20: Demographics of patients in Burkholderia cepacia complex and control 

groups 

Group 
Age 

(years) 
Body Mass Index 

Lung function 

FEV1 (L) FVC (L) 

BCC 26.0 (22.8-36.1) 22.2 (19.8-23.0) 1.7 (1.4-2.0) 2.9 (2.1-3.1) 

Control 31.0 (24.8-38.5) 20.5 (19.1-21.8) 2.2 (2.0-2.8) 2.8 (2.4-3.5) 

p value 0.51 0.29 0.04 0.43 

BCC: Burkholderia cepacia complex. FEV1: forced expiratory volume in 1 second. FVC: forced vital 
capacity.  All values are median (IQR) 

 

7.1.3.2 In-vitro results 

Biofilms were identified visually on all biofilm cultures after 48 to 96 hours 

incubation.  The mean (SD) absorbance of crystal violet was measured after 96 

hours incubation using spectrophotometry.  This was higher in the biofilm cultures 

compared to the planktonic and control cultures (3.43 (0.31) vs 0.005 (0.003) 

Absorbance Units (AU), p<0.001), confirming biofilm formation.  The headspace 

HCN concentration measured using SIFT-MS remained <10ppbv (equivalent to 

background concentrations) for both culture conditions, at all time points, see 

Table 21.  Hypothesis 9 is therefore rejected.  After acidification there was a rise in 

the median (IQR) headspace HCN concentration compared to the pre-acidification 

96 hour results (4.5 (3.8-5.5) vs 2.85 (1.5-3.5) ppbv, p=0.002) but all 

concentrations remained <10ppbv.  Acidification did not produce a significant 

change in the median (IQR) headspace HCN concentrations for the planktonic 

cultures (2.3 (1.7-3.4) vs 1.7 (1.4-3.4) ppbv, p=0.6). 
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Table 21: Headspace hydrogen cyanide concentrations for biofilm and planktonic 

cultures after various durations of incubation 

Pt 
no. 

Species 
Culture 

conditions 

HCN (ppbv) Mean (SD) 
absorbance of 

crystal violet (AU) 
24 
hrs 

48 
hrs 

72hrs 
96 
hrs 

96 hrs 
& HCl 

1 
Burkholderia 

latens 
BF 5.2 4 2 5.0 7.0 3.55 (0.45) 

Pl 3.3 1.6 3.9 1.5 1.9 0.01 (0.01) 

2 
Burkholderia 
multivorans 

BF 0.2 0.5 2.2 3.6 6.3 3.68 (0.42) 

Pl 3.2 2.2 3.6 5.2 3.6 0.003 (0.001) 

3 
Burkholderia 
multivorans 

BF 0.2 1.7 2.0 3.4 3.9. 3.52 (0.48) 

Pl 1.4 0.2 3.3 1.6 1.3 0.01 (0.01) 

4 
Burkholderia 
cenocepacia 

BF 3.2 1.8 1.2 3.0 4.9 3.48 (0.72) 

Pl 0.2 1.7 3.0 0.2 3.3 0.004 (0.003) 

5 
Burkholderia 
cenocepacia 

BF 3.4 4.7 1.9 1.4 3.3 3.83 (0.29) 

Pl 2.5 3.8 2.8 2.7 3.3 0.003 (0.001) 

6 
Burkholderia 

latens 
BF 0.1 2.8 1.1 1.5 4.5 3.75 (0.33) 

Pl 1.2 3.9 4.9 1.4 1.8 0.003 (0.001) 

7 
Burkholderia 
multivorans 

BF 0.1 1.5 2.2 0.1 4.4 3.77 (0.25) 

Pl 1.6 0.2 3.3 1.7 2.0 0.003 (0.002) 

8 
Burkholderia 
cenocepacia 

BF 0.5 1.1 2.5 1.6 3.4 3.33 (0.66) 

Pl 2.3 3.6 5.2 1.4 1.1 0.003 (0.001) 

9 
Burkholderia 
multivorans 

BF 0.5 0.4 4.9 3.7 7.8 3.12 (0.81) 

Pl 0.9 2.5 3.1 1.4 1.3 0.003 (0.001) 

10 
Burkholderia 
multivorans 

BF 2.2 2.5 3.1 2.8 5.2 3.09 (0.70) 

Pl 0.8 2.7 3.9 4.2 5.7 0.004 (0.001) 

11 
Burkholderia 
multivorans 

BF 0.2 2.7 1.8 1.2 4.2 3.17 (0.70) 

Pl 1.5 2.1 3.1 4.5 2.6 0.003 (0.001) 

12 
Burkholderia 
multivorans 

BF 2.1 2.5 2.1 2.9 2.2 2.89 (0.60) 

Pl 5.1 2.4 3.8 4.2 4.4 0.002 (0.001) 

 
Sterile 
Control 

BF 0.1 0.5 1.2 0.1  0.06 (0.04) 

Pl 0.3 1.2 2.2 3.4  0.05 (0.04) 

 
Sterile 
Control 

BF 0.3 3.6 3.1 0.9  0.06 (0.06) 

Pl 0.2 0.8 2.2 3.1  0.06 (0.05) 

Pt no: patient number, BF: biofilm, Pl: planktonic, ppbv: parts per billion by volume, HCN: hydrogen 
cyanide, HCl: hydrochloric acid, SD: standard deviation, AU: absorbance units 
 

7.1.3.3 In-vivo results 

When data from all 22 patients (with and without BCC) was analysed together, the 

systemic compound acetone had similar median (IQR) concentrations for mouth 

and nose-exhaled samples (459 (401-557) v 445 (354-567) ppbv, p=0.60).  In 

contrast, the median (IQR) concentrations of ethanol and HCN, which are known 

to be generated in the mouth, were higher in mouth-exhaled breath samples than 

nose-exhaled breath samples (HCN: 6.8 (1.2-20) v 0 (0-0.9) ppbv, p<0.001 and 

ethanol: 410 (346-555) v 152 (129-318) ppbv, p<0.001).  See Tables 22 and 23.  
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When the acetone, ethanol and HCN concentrations were compared between the 

BCC and control groups, there were no significant differences for nose-exhaled or 

mouth-exhaled samples.  See Table 24.  The absence of a difference in the nose-

exhaled HCN concentrations between the BCC and control groups leads to 

Hypothesis 10 being rejected. 

Table 22: In-vivo results for subjects in the Burkholderia cepacia complex group 

No 
Mouth Exhaled Breath Nose Exhaled Breath 

Acetone Ethanol HCN Acetone Ethanol HCN 

1 363 2730 0 350 429 0 

2 450 278 17 410 153 0 

3 569 248 9.6 597 151 0 

4 1062 250 1.0 965 128 0 

5 441 362 4.0 330 157 0 

6 512 316 37 503 134 2.2 

7 569 341 23 615 113 0 

8 429 856 29 419 767 0 

9 481 1103 1.8 479 370 0 

10 298 289 10 321 123 3.3 

11 391 488 0 366 219 1.2 

12 375 272 0 371 187 0 

Concentration values are parts-per-billion by volume 
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Table 23: In-vivo results for subjects in the control group 

No 
Mouth Exhaled Breath Nose Exhaled Breath 

Acetone Ethanol HCN Acetone Ethanol HCN 

1 467 1041 0 471 351 0 

2 571 340 23 627 115 0 

3 358 3772 2.9 348 426 4.3 

4 435 244 17 379 143 0 

5 1032 372 0 969 133 0 

6 345 388 2.2 330 157 0 

7 520 323 36 486 131 11 

8 477 998 3.7 481 367 0 

9 577 318 21 588 118 0 

10 442 321 11.2 321 93 6 

Concentration values are parts-per-billion by volume 

Table 24: Comparison of in-vivo results between the Burkholderia cepacia 

complex and control groups 

 
Mouth-exhaled Breath Nose-exhaled Breath 

Acetone Ethanol HCN Acetone Ethanol HCN 

BCC 
446 

(387-526) 
446 

(387-526) 
6.8 

(0.8-19) 
415 

(362-527) 
155 

(133-257) 
0 

(0-0.3) 

Controls 
472 

(437-558) 
356 

(322-846) 
7.5 

(2.3-20) 
476 

(356-563) 
138 

(121-303) 
0 

(0-3.2) 

p value 0.55 0.26 0.74 0.79 0.37 0.53 

BCC: Burkholderia cepacia complex. Concentration values are median (IQR) parts-per-billion by 
volume. 

 

7.1.4 Discussion 

Using SIFT-MS, we did not identify elevated HCN concentrations in the headspace 

of biofilm or planktonic BCC cultures at any time point.  This included analysis at a 

time when biofilm formation had been confirmed visually and with 

spectrophotometry.  We are unable to explain why our results are inconsistent with 

the liquid-phase cyanide ion production in biofilm cultures demonstrated by Ryall 

et al.130 but conclude that HCN is not a reliable in-vitro marker of BCC infection.  

To our knowledge, the current study is the first to investigate gaseous HCN as an 
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in-vivo marker of BCC infection.  Since both mouth and nose-exhaled HCN 

concentrations were no higher in those with chronic BCC infection than in controls, 

this again suggests that HCN is not an in-vivo marker of BCC infection. 

In the paper by Ryall et al. 32 of 34 BCC samples were found to be cyanogenic 

with the concentrations of trapped cyanide ranging from 60µM to 19mM 

(equivalent to equilibrium headspace HCN gas concentrations of 7 ppmv to 2100 

ppmv at 20 C) 204.  If our cultures of BCC produced similar concentrations of HCN, 

they would be easily detected using SIFT-MS.  Acidification by HCl of the BCC 

cultures produced a significant increase in the gaseous HCN concentrations 

suggesting that some cyanide ions were present which, on acidification, are 

converted to HCN that is partially partitioned into the gas phase.  Despite this, the 

HCN concentrations remained <10ppbv, meaning that the scale of the HCN 

production was not close to that of the cyanide production seen by Ryall et al.  The 

reason for this difference is not clear.  Ryall et al. used 34 BCC samples (from 9 

species) which were a mixture of clinical and environmental isolates from the 

BCCM/LMG collection in Ghent.  They found a greater than 2 log variation in the 

cyanide concentrations for the different BCC species and a greater than 5 log 

variation when the concentrations were normalised to the colony forming unit 

counts.  We assessed 12 BCC samples from 3 species, all were clinical isolates.  

The different origin of the samples and the different species analysed may 

therefore be contributing factors.  Methodological issues also need to be 

considered, but both the cyanide ion-selective micro-electrode used by Ryall et al. 

and our SIFT-MS instrument have been previously been successfully used when 

investigating the cyanide / HCN production by PA.  It is also possible that the BCC 

cultures are producing a compound that chelates the HCN of that the HCN is 
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remaining trapped in the biofilm.  Both of these possibilities would prevent HCN 

from being released into the gas phase and therefore the headspace HCN 

concentration would not become elevated. 

Although further work needs to be undertaken to investigate the apparent 

discrepancy between the in-vitro production of cyanide ions and HCN by BCC 

cultures, our ultimate aim is to identify a biomarker that could be used in a breath 

test to diagnose BCC infection.  This is clinically important, as patients with CF 

who acquire BCC are known to have an accelerated loss of lung function, more 

hospital admissions and increased mortality.205  Despite this, there is a wide 

spectrum of clinical manifestations and it can be difficult to diagnose especially in 

patients who do not expectorate sputum.206,207  As cyanide ions are not volatile, 

they cannot be measured in exhaled breath, so any breath test based on the 

cyanogenic properties of BCC would therefore have to use gaseous HCN as its 

marker.  As we did not find any difference in the nose- or mouth-exhaled HCN 

concentrations between the BCC and control groups, there is no indication that 

HCN is an in-vivo marker of BCC infection.   

In summary we did not identify elevated HCN concentrations in the headspace of 

BCC samples cultured under planktonic or biofilm condition or in the breath of 

patients chronically infected with BCC.  We therefore conclude that HCN is not an 

in-vitro or in-vivo marker of BCC infection.  Further work needs to be undertaken to 

investigate the apparent discrepancy between the in-vitro production of cyanide 

ions and HCN by BCC. 
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CHAPTER EIGHT – CONCLUSIONS 

 

8.1 THE CONTEXT OF THIS THESIS 

As can be seen from the timeline in Figure 16, the work included in this thesis is 

the culmination of a decade of research using SIFT-MS to investigate HCN as a 

marker of PA infection.  This work has been devised and supervised by Professors 

Warren Lenney, David Smith and Patrik Španĕl and undertaken at the University 

Hospital of North Staffordshire / Keele University and the J. Heyrovský Institute of 

Physical Chemistry, Prague.  Significant contributions to this work have also been 

made by Dr Will Carrol, Dr Beth Enderby, Violetta Shestivska and Ksenia 

Dryahina.      

 
Figure 17: Timeline of work using SIFT-MS to investigate hydrogen cyanide as a 

marker of Pseudomonas aeruginosa infection (plus related studies) 

 

 

 

 

 

 

 

 

In-vivo studies are in green and in-vitro in blue. HCN: hydrogen cyanide, CF: cystic fibrosis, PA: 
Pseudomonas aeruginosa, BCC: Burkholderia cepacia complex. 
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8.2 HYDROGEN CYANIDE AS AN IN-VITRO MARKER OF PSEUDOMONAS 

AERUGINOSA INFECTION 

The overall aim of the in-vitro studies in this project was to identify factors which 

affected HCN production.  We hoped that this would provide more data to inform 

the possible development of an in-vivo breath test for the detection of PA.    It was 

already known that cyanide synthesis by PA occurs under microaerobic (O2 <5%) 

conditions131 and that it was maximised at temperatures between 34oC and 

37oC.132  The effect of genotype had not previously been investigated although a 

possible effect was suggested as the cyanide concentrations produced by cultures 

of PA were independent of bacterial load.133  Previous studies had reported some 

data on the effect of phenotype of cyanide production suggesting higher 

production by mucoid PA cultures.150,187   

Study 1 clearly shows that different strains of PA produce different quantities of 

HCN.  It also demonstrates that phenotype has an effect but in contrast to the 

studies that measure cyanide production, non-mucoid isolates produced more 

HCN than mucoid isolates.  There are a number of possible explanations for these 

findings.  The effect of phenotype varied according to strain and the timing of 

analysis also had an effect.  One hypothesis that has not previously been 

considered is that the mucoid PA cultures produce more cyanide (as found in the 

previous studies) but the layer of alginate prevents the release of HCN into the gas 

phase.  These factors may therefore have different effects on the production of 

cyanide and the production of HCN.  As any future in-vivo breath test for PA 

detection is likely to be based on the analysis of a volatile compound, we are 

especially interested in the factors that affect HCN (volatile) rather than cyanide 

(non-volatile). 
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The effect of biofilm formation was investigated with PA cultures in Study 2 and 

BCC cultures in Study 6.  As HCN is a quorum sensing molecule we expected the 

formation of biofilms to increase the production of HCN by PA and turn on the 

production of HCN by BCC (as seen with cyanide130). Despite this, in Study 2 we 

found no significant increase in the amount of HCN produced by biofilm PA 

cultures compared to planktonic PA cultures and in Study 6 no HCN was produced 

by either the planktonic or biofilm BCC cultures.  One possible explanation for this 

is related to the hypothesis regarding the production of HCN by non-mucoid and 

mucoid PA cultures.  This is that the PA biofilm cultures are producing cyanide but 

this remains trapped within the biofilm and is therefore not released as HCN into 

the gas phase and is therefore not detected in the culture headspace.  If this were 

the only explanation then a bigger increase in HCN concentration may have been 

expected when the BCC cultures in study 6 were acidified.  Further work needs to 

be done to investigate the effect of biofilm formation on HCN production. 

One of the major difficulties when measuring the volatiles in bacterial culture 

headspace is assessing the effect of the initial bacterial mass and possible 

different growth rates.  Our techniques have evolved to try and account for these 

factors.  In Study 1 we had no way of attempting to correct for this as we used 

plate cultures.  In Study 2 the preparation of liquid cultures will have produced a 

more standardised initial bacterial mass and in Study 6 the liquid culture was 

serially diluted to achieve a turbidity of 0.5 optical density units measured by 

spectrophotometry which correlates to 108 CFU/ml. Although this standardises the 

initial bacterial mass, varying growth rates means that the bacterial mass may vary 

at the time that the cultures are analysed.  More recent studies (not included in this 

thesis) have tried to measure bacterial mass at the time of headspace analysis.208    
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In general, the results of the in-vitro studies have supported the development of an 

in-vivo HCN breath test for the early detection of PA.  Early PA infection tends to 

occur with an organism that has a non-mucoid phenotype and grows under 

planktonic conditions.  Our studies have shown that HCN production is higher 

amongst non-mucoid compared to mucoid cultures and is no lower in planktonic 

compared to biofilm cultures.  The variation in HCN production according to PA 

genotype means that some strains produce less HCN.  It is possible that infection 

with one of these strains would be less likely to be identified by an in-vivo HCN 

breath test for PA detection.  As yet, the exact relationship between the in-vitro 

and in-vivo HCN concentration has not been determined.  The failure of BCC to 

produce HCN means that PA is the only organism frequently found in the CF lung 

that produces HCN. 

8.3 HYDROGEN CYANIDE AS AN IN-VIVO MARKER OF PSEUDOMONAS 

AERUGINOSA INFECTION 

The culmination of my PhD project was The SPACE Study (Study 4) which 

investigated if HCN was an early marker of PA infection in children with CF.  I am 

very proud of the high standards that were achieved for this large, multi-centre 

observational study and of the large quantity of useful data that it generated.  The 

specificity of breath HCN concentration as a marker of PA infection was reassuring 

although the relatively low sensitivity was ultimately disappointing.  In its current 

form the low sensitivity precludes it from being used as a screening test for PA 

infection although the high specificity suggests that it may still have a role in the 

confirmation of PA infection.  Further work needs to be undertaken to fully 

understand the factors that limited the sensitivity.  The genotype of the infecting 

PA is one important factor and specifically it would be useful to know if the children 
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with a false negative HCN result were infected with a strain of PA known to 

produce less HCN when cultured in-vitro.  Unfortunately, we did not have 

adequate funding to undertake genotyping or in-vitro analysis of HCN production 

on the new PA isolates as part of The SPACE Study.  There are methodological 

issues that may have contributed to the low sensitivity.  It would be useful to know 

if the rate of false positive would have been lower if we had used on-line breath 

analysis.  Although this is not possible with one SIFT-MS instrument in a multi-

centre study, there are a number of commercial companies that have stated an 

interest in developing a portable breath HCN monitor.   

As a percentage of healthy adults produce HCN in their oral cavity, it was 

previously thought that breath HCN could not be used as a marker of PA infection 

in adults with CF.  Study 5 and 6 are the first studies in adults with CF to measure 

the mouth-exhaled and nose-exhaled breath concentrations of a number of volatile 

compounds.  Clear differences can be seen between the systemic compound 

acetone, which has similar concentrations in mouth and nose-exhaled breath and 

compounds which to some degree are generated in the mouth (ethanol and HCN) 

and therefore have high mouth-exhaled concentrations.  Study 5 also 

demonstrated that nose-exhaled HCN was higher in patients with chronic PA 

compared to those free from PA infection although the sensitivity in this small 

sample was only 60%.       

8.4 IDEAS FOR FUTURE RESEARCH 

It would be interesting to know the exact relationship between the headspace HCN 

concentration measured above in-vitro PA cultures and the in-vivo exhaled breath 

HCN concentration of patients infected with the same PA genotype.  This could be 
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investigated relatively easily by the on-line measurement of exhaled breath HCN in 

a group of patients with chronic PA infection.  Sputum samples or cough swabs 

could be taken from the same patients and cultured.  The isolated PA would then 

be re-cultured and the headspace HCN concentration analysed as previously.  

This simultaneous in-vitro and in-vivo analysis was planned with BCC in Study 6 

but unfortunately they did not produce any HCN. 

The effect of culture phenotype and biofilm formation on cyanide and HCN 

production needs to be clarified.  The production of the non-volatile ion cyanide 

has been shown to be higher in PA isolates with a mucoid phenotype whereas 

Studies 1 and 2 demonstrate higher HCN production with non-mucoid compared 

to mucoid PA cultures.  I have hypothesised that PA phenotype may have a 

different effect on cyanide compared to HCN production.  This hypothesis could be 

tested by simultaneous measurement of cyanide (using a cyanide ion-selective 

micro-electrode) and headspace HCN (using SIFT-MS) on identical PA cultures.  

The effect of biofilm formation on cyanide and HCN production by BCC also needs 

to be clarified.  Ryall et al demonstrated cyanide production by biofilm but not 

planktonic BCC130 whereas in Study 6 no HCN was produced by either the biofilm 

or planktonic BCC cultures.  I have contacted the laboratory that undertook the 

work on cyanide and BCC and we have discussed the possibility of swapping BCC 

cultures and undertaking further analysis.     

Further work needs to be undertaken to investigate the factors that caused the 

false negative results in The SPACE Study.  The first aspect of this is assessing 

how the genotype of the infecting PA can affect the in-vivo exhaled breath HCN.  

The second aspect is how the methodology of the exhaled breath HCN can be 
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refined.  In particular it would be interesting to know if on-line SIFT-MS 

measurement of HCN or its detection using a portable monitor would increase the 

overall sensitivity. 
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CHAPTER NINE – A PERSONAL FOOTNOTE (OMITTED) 
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9.1: Delays in Obtaining NHS Permission for Paediatric Clinical Trials 

(Omitted) 
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CHAPTER ELEVEN – ANNEXES 

11.1 ANNEX 1: THE SPACE STUDY CLINICAL DETAILS QUESTIONNAIRE 

 
 

Clinical Details Proforma – SPACE study 

 
Centre Number  ………………     Date: ……………………………. 

Patient Identification Number  …………….   Visit Number:  ……………….. 

 

1) Since you were last seen in clinic has your child been: 

a. Very well   [ ]  

b. Well    [ ] 

c. OK    [ ] 

d. Not as well as normal  [ ]  

e. Unwell    [ ] 

    

2) Since you were last seen in clinic has there been any change in the following symptoms: 

a. Cough    Increase  [ ]    No change  [ ]    Decrease  [ ] 

b. Sputum production  Increase  [ ]    No change  [ ]    Decrease  [ ] 

c. Shortness of Breath  Increase  [ ]    No change  [ ]    Decrease  [ ] 

d. Exercise Tolerance  Increase  [ ]    No change  [ ]    Decrease  [ ] 

 

3) Since you were last seen in clinic have you been prescribed any oral antibiotics? 

a. No [ ] 

b. Yes [ ]  Name  …………………………………………… 

Dose  …………………………………………… 

Duration …………………………………………… 

 

4) Since you were last seen in clinic have you been prescribed any nebulised antibiotics? 

a. No [ ] 

b. Yes [ ]  Name  …………………………………………… 

Dose  …………………………………………… 

Duration …………………………………………… 

 

5) Since you were last seen in clinic have you received any intravenous antibiotics? 

a. No [ ] 

b. Yes [ ]  Name  …………………………………………… 

Dose  …………………………………………… 

Duration …………………………………………… 

  

 
The SPACE Study – Clinical Details Questionnaire 

Version 1 -  21
st
 October 2010 
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11.2 ANNEX 2 - RESEARCH AND ETHICS APPROVAL 

11.2.1 Ethical Approval - Study 3 
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11.2.2 Ethical Approval - Study 4
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11.2.3 Ethical Approval – Studies 5 and 6 
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11.3 ANNEX 3 - PRESENTATIONS RELEVENT TO PhD THESIS 

Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with 

and without Pseudomonas aeruginosa infection. Gilchrist FJ, Bright-Thomas RJ, 

Jones AM, Smith D, Španĕl P, Webb AK, Lenney W 

 European CF Conference, Lisbon, [Poster presentation] 12-15th June 
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Is hydrogen cyanide a marker of Burkholderia cepacia complex infection?  
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Webb AK, Lenney. 

 British Thoracic Society Winter Meeting [Poster Presentation] 5-7th 
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Difficulties and delays in obtaining NHS permission at the 8 centres involoved in 
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 NIHR Paediatric Specialities Group (Non-medicines). [Oral Presentation] 
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Variation in hydrogen cyanide production between different strains of 

Pseudomonas aeruginosa.  Gilchrist FJ, Alcock A, Belcher J, Brady M, Jones AM, 

Smith D, Španĕl P, Webb K, Lenney W.   

 European Cystic Fibrosis Conference, [Poster Presentation] Hamburg. 10th 

June 2011. [J Cyst Fibros 2011; 10(Suppl 1): S40] 

 Royal College of Paediatrics and Child Health Spring Meeting, [Oral 

Presentation] Warwick. 5th April 2011. [Arch Dis Child 2011;96:A14-15] 
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December 2010. 
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