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Abstract

Simple single parameter models describing the evolution of globular cluster mass func-

tions (GCMFs) are applied to early type Virgo galaxies. These models assume the dom-

inant form of mass-loss in globular clusters (GCs) is two-body relaxation driven evap-

oration, and that the cluster initial mass function (CIMF) is described by a Schechter

(1976) function. It is concluded that evaporation is primarily responsible for turning

a Schechter (1976) CIMF into an evolved GCMF as observed in the Milky Way and

other extant galaxies, and an estimate for the corresponding mass-loss rate is made.

However, these models do not address the problem of why the GCMF is observed to

be the same at all radii, and do not fully recover the shape of the GCMF in the most

massive galaxies.

Following this, a method for modelling initial globular cluster systems (GCSs)

using quasi-separable distribution functions is described. Quasi-separable distribution

functions can be represented as the product of a function of orbital energy, E, and

a function of orbital angular momentum, L, i.e. f(E,L) = g(E)j(h) where h =

L/[Lc(E)+L0] with Lc(E) the orbital angular momentum of a circular orbit with orbital

energy E and L0 representing an anisotropy radius times a characteristic velocity. The

initial kinematic distribution of the GCS may be specified via the function j(h), known

as the circularity function, and the initial spatial distribution, ν(r), may be specified

directly. By definition, the spatial distribution of a system is equal to the integral

over all velocities of the distribution function, ν =
∫
all v

g(E)j(h) d3v. A technique

is described for numerically solving this integral equation for g(E). Once the full

distribution function is known, the initial GCS is populated by Monte Carlo sampling

of the functions ν(r), g(E) and j(h) for GC position, orbital energy, and orbital angular

momentum for as many globular clusters are desired in the initial GCS. Additionally,

initial GC masses are obtained by sampling whichever CIMF is desired.

Examples of the application of this method are given for a wide range of GCS

spatial distributions, velocity distributions and mass functions, in a variety of host



iv

galaxies. These presented GCSs serve to demonstrate that the method for setting up

an initial GCS works robustly and as intended. Furthermore, the velocity anisotropy

profiles corresponding to different circularity functions and L0 are explored in detail,

and a general picture of how velocity anisotropy profiles are related to the circularity

functions and L0 is built.

Subsequently, prescriptions for each of the main GC evolution mechanisms; evap-

oration, tidal shocking, stellar evolution, dynamical friction, and internal evolution, are

either presented or derived. These mechanisms depend on GC properties such as mass

and half-mass density, in addition to orbital parameters such as orbital pericentre and

radial period. In turn, the orbit (and therefore any related orbital parameters) depends

on GC properties through dynamical friction. Thus the evolution of each GC is de-

scribed by a system of 5 differential equations. A technique is described for taking the

initial simulated GCSs, and solving this system of equations for every GC to produce

an evolved GCS. The application of the evolution can be conducted in such a way

that each mechanism offers the choice of different prescriptions, or can be switched off

as desired. Several prescriptions taken from the literature are presented for evapora-

tion, including an additional one from the fits of the single parameter models to Virgo

GCMFs.

Demonstrations of the application of this technique for evolving simulated initial

GCSs are then presented, with the results compared to what is expected based on the

discussion of the relevant evolutionary mechanism. At least one demonstration is given

for every mechanism, and the evolution procedure is found to produce results which

are generally well understood.

These methods for setting up an initial GCS and subsequently evolving it provide

the means for much more sophisticated models than those initially applied to early type

Virgo galaxies, and allow the comparison of simulated evolved GCS mass functions,

spatial distributions, kinematic distributions, and the fundamental plane with those of

extant GCSs as observed in galaxies today. Thus these combined methods constitute

models which are far more general than has previously been attempted, and will make

possible much more detailed investigations into long standing questions.
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1 Evolution of Globular Clusters and the
Globular Cluster Mass Function

1.1 Introduction

One of the most central topics to astrophysics is stellar evolution. Stars are the host

to planetary systems, the building blocks of entire galaxies, and the primary source of

chemical enrichment in the Universe. Hence understanding stars has profound conse-

quences for our understanding of the Universe. Humanity has only been studying the

heavens in earnest for a few thousand years, while even the most short lived stars have

lifetimes of millions of years. Thus fitting together the properties of stars of different

metallicities and masses into a consistent pattern is much like trying to extrapolate

the entire life of a complete stranger from a single photo. Despite this however, while

by no means comprehensive, our understanding of stellar evolution is not without ac-

complishments. For example, it is known that the rate a star evolves at is strongly

dependent upon its mass. Furthermore, it is known that age is quite degenerate with

metallicity in stars, meaning that unless it is known a priori what the metallicity of

the gas a star formed from was, it is impossible to say how much of the present day

elemental abundance of a star is due to evolution and how much was primordial. This

degeneracy may be broken if one could view a group of stars with the same initial

metallicity and age but with different masses, thus providing an ideal ‘laboratory’ to

test theories of stellar evolution. Globular clusters (GCs) are potentially one such ideal

environment, though there is now mounting evidence for ‘multiple stellar populations’

in GCs, meaning that there was not just a single star-forming event, but at least one

additional burst of star formation at a later time (e.g., Bedin et al. 2004, Piotto et al.

2007).

In any event, the ages of Galactic GCs as inferred from their member stars are

invariably at least several billions of years, frequently as much as a Hubble time, and

consequently the constituents of GCs must have formed when the Universe was much
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younger and thus very different from how it is today. Therefore, GCs must contain

information about the early conditions of the universe, and consequences to star forma-

tion. Furthermore, most if not all stars are thought to form in associations or groups

(Lada & Lada 2003; Larsen 2002a; Larsen 2002b), with the majority of disk and halo

stars in the Galaxy today primarily being the aftermath of the destruction of these

associations. It is not inconceivable that GCs began as an extension of these associa-

tions, still surviving to the present day, and as such understanding the evolution of GCs

will itself have consequences for our understanding of star formation and the evolution

of much more massive structures. Furthermore, the cores of many Galactic GCs are

rich sources of X-rays, possibly originating from mass-transfer between main-sequence

stars and compact remnant binary pairs, or alternatively may be one indication for the

existence of intermediate-mass black holes, the ‘missing link’ between stellar mass and

supermassive black holes. The debate over which of these is the correct interpretation

continues to this day (e.g., Bahcall & Ostriker 1975; Bahcall & Wolf 1976; Kong et al.

2010; Pepe & Pellizza 2013). Whichever of these may be correct, GCs certainly contain

much interesting physics worthy of study.

Historically, GCs in the Milky Way have been considered separate from open

clusters, which typically contain 102 to 104 M⊙ of stellar material, have core densities

and central velocity dispersions in the range of roughly 1 to 100 M⊙pc
−3 and roughly

0.3 to 1 km s−1 (Sparke & Gallagher 2007), and limiting radii of roughly 5 to 20 pc.

Open clusters are a disk population and are relatively young (< 1 Gyr) in the main,

most likely because they are disrupted by gravitational encounters with giant molecular

clouds before they can get much older (e.g., Spitzer & Chevalier 1973). They are often

difficult to observe, being surrounded by gas, dust and field stars, and so only some

1200 are currently known. However, some estimates put the total number of Galactic

open clusters as high as ∼ 105 (e.g., Piskunov et al. 2006).

Globular clusters however are quite different, always very old (typically > 10

Gyr, comparable to a Hubble time), and are associated spatially and kinematically

with the Galactic halo or bulge. Typically they contain 104 to 106 M⊙ of stellar

material in a roughly spherical distribution, with core densities and central velocity
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dispersions of ∼ 103 to 107 M⊙pc
−3 and ∼ 0.5 to 10 km s−1, and limiting radii of

20 to 70 pc (e.g., McLaughlin & van der Marel 2005). There are around 150 GCs

in the Milky Way (Harris 1996), and similarly old and massive cluster populations

are found in the haloes of essentially all galaxies in the local universe, generally in

numbers that scale with the total baryonic mass of the galaxy (McLaughlin 1999).

For example, M87, the giant elliptical at the centre of the Virgo cluster has a mass

of 2.4± 0.6× 1012 M⊙ (Wu & Tremaine 2006) and contains ∼ 15000 GCs (e.g., Peng

et al. 2008). However, not all galaxies strictly obey this scaling — dwarf ellipticals for

example, actually scale inversely (Miller et al. 1998). This is likely because clusters

form with the dwarf elliptical in accordance with the scaling, but large amounts of

gas for future populations will be driven out of the shallow galactic potential due to

supernovae explosions, resulting in fewer stars (and hence lower luminosity), yet the

same number of original GCs for observations today (Durrell et al. 1996).

The apparent dichotomy between the typical ages and masses of open and glob-

ular clusters was for decades reinforced by the lack of any observed analogues of young

globular clusters in nearby galaxies; or more specifically, the apparent absence of any

young star clusters with masses & 105 M⊙. This inevitably led to the conclusion that

GC formation was in some way a special process, requiring conditions unique to (or

at least more common in) the protogalactic era soon after the Big Bang. Fall & Rees

(1988) reviewed theoretical ideas about GC formation with this in mind, putting them

into three basic categories:

• Primary formation — Globular clusters formed before galaxies. For example,

Peebles & Dicke (1968) noted that the Jeans mass (the mass at which a cloud

of gas at a certain temperature will collapse under its own gravity) at recom-

bination was ∼ 106 M⊙ and thus suggested that GCs are essentially the result

of standard structure formation.

• Secondary formation — Globular clusters formed with galaxies. For example,

Fall & Rees (1985) showed that thermal instability in the hot, protogalactic
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medium would lead to the development of cold pockets of gas with masses

∼ 106 M⊙, which could then collapse and fragment to form GCs.

• Tertiary formation — Globular clusters formed after galaxies. For example,

Schweizer (1986) suggested that the strong shocking of molecular gas clouds

during mergers of disk galaxies should lead to the copious formation of star

clusters with masses ranging up into the GC regime.

Of these possibilities, secondary formation was generally favoured, because there is no

evidence for dark matter in GCs (as would be expected for primary formation) and

because there were no observations of young GC mass clusters (as expected in tertiary

formation). This swiftly changed with the launch of the Hubble Space Telescope (HST),

where observations of NGC 1275 by Holtzman et al. (1992) revealed the presence of

young, blue clusters with masses M ∼ 105 to 108 M⊙ forming out of a cooling flow

onto this galaxy. However, it was the seminal imaging of the Antennae galaxies (NGC

4038/4039) by Whitmore & Schweizer (1995) that finally saw GC sized gravitationally

bound clusters forming in an ongoing merger. Subsequently, “young globulars” have

been found in many other local mergers and starbursts (e.g., Larsen & Richtler 1999;

Meurer 2000; de Grijs et al. 2003; Anders et al. 2004; Barmby et al. 2009; Bastian et al.

2013).

The reason that such young massive clusters (YMCs) form in mergers and star-

bursts rather than in quiescent galaxies such as the Milky Way, presumably has to do

with the vastly greater abundance of gas in the former systems (e.g., Larson 1993).

Considering the Cluster Initial Mass Function (CIMF) to be a probability distribution,

a greater gas abundance allows a greater number of random samples from this proba-

bility distribution, and hence will lead to a greater number of massive stellar systems.

Additionally, Larsen & Richtler (2000) observed that the star formation rate depends

on available gas content, so that for a sufficiently high star formation rate, populations

of stellar objects may form significantly more quickly than they are destroyed by the

death of massive stars or tidal shocks by progenitor gas clouds. Thus given the greater

abundance of young clusters and the fact that being young, they contain bright mas-
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sive stars, very massive young clusters are more likely to be observed in starbursts.

Furthermore, upheaval in the galactic potential during a merger or a close encounter

can allow structures much more massive than usual to form (e.g., Renaud et al. 2009).

At this point it is obvious to ask, given a Hubble time, might YMCs evolve into

GCs? One way to address this question is to look at individual GC properties, and

Globular Cluster System (GCS) properties. A discussion of observable GC properties

such as sizes and masses will be given at the beginning of section 1.3, before moving

on to a description of observable GCS properties, namely the fundamental plane, GCS

kinematics, and the Globular Cluster Mass Function (GCMF). Of these three GCS

observables, the GCMF is by far the most widely accessible in other galaxies. Therefore,

the main thrust of this thesis will be focusing on the GCMF (introduced in section

1.3.3), and the cluster destruction mechanisms that may turn an assumed CIMF into a

GCMF as observed today through mass-loss in constituent GCs (section 1.4). Central

to the theory of mass-loss and evolution of GCs are the virial theorem, relaxation, and

tidal limitation. Therefore, these are described and derived next.

1.2 Theorems and Definitions

In order to give a coherent and clear description of the properties of, and ongoing

processes in, GCs it is necessary to first derive some theorems and quantities, as follows.

1.2.1 Virial Theorem

Many results and other theorems throughout this thesis rely upon the virial theorem,

which relates the time averaged total kinetic energy of member stars to the time aver-

aged total binding energy for a stable system (see appendix A):

⟨
d2 Itot
d t2

⟩
= 4 ⟨Ktot⟩ − 2n ⟨Wtot⟩ = 0 (1.1)
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where ⟨x⟩ denotes the time average of x, Itot is the total system moment of intertia,

Ktot is the total internal kinetic energy,Wtot is the total binding energy, and for binding

energy provided by gravitating point masses, n = −1. When a system satisfies equation

(1.1) it is said to be in virial equilibrium. Otherwise, it must be an unstable system,⟨
d2 Itot
d t2

⟩
̸= 0. Additionally, the gravitational radius is defined as rg ≡ −GM2/Wtot,

where M is the total mass. However, the much more easily obtained radius containing

half of the total system mass, rh, is closely related to rg for many common models

used for stellar systems, with rh/rg ≃ [0.4, 0.5] (e.g., King 1966; Hernquist 1990; Jaffe

1983). Thus the total binding energy is often approximated as Wtot ≃ −0.45GM2/rh.

1.2.2 Relaxation Time

Given a bound system of gravitationally interacting particles isolated from any external

influence, these particles will share and redistribute their energies with each encounter,

such that the distribution of speeds is constantly tending towards a distribution such

as a Maxwell-Boltzmann distribution, N(v) ∝ v2 exp(−v2/2σ2
0) where σ0 is some char-

acteristic speed of the system. This means that given enough time, a few particles

will have their speeds scattered up to very high values, allowing them to escape the

gravitational potential of the system, thus reducing its mass and total energy. Once

escaped, the energy distribution will lack the ‘high energy tail’, and will thus begin to

relax towards a Maxwell-Boltzmann distribution once again. Hence relaxation is an

ongoing process, and is the time for a system to reorganise itself, or alternatively, the

time for an average particle to have its velocity altered by order itself.

A particle can have its velocity altered by an amount of order itself by three

possible mechanisms: direct collisions, strong encounters, and weak encounters. The

time-scale for direct collisions in a system is the mean free time of stars, which is itself

just the ratio of the mean free path to the average speed of particles. The reciprocal

of the mean free path is estimated as the number density of particles times the cross

section of interaction, 1/d = nπ(2R)2, where n is the number density, and π(2R)2 is

the collisional cross section for two stars each of radius R. The average relative speed
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of particles in a system is the velocity dispersion, σ, and thus:

tcoll =
d

σ
=

1

4nπR2σ
≃ 15× 106Gyr

( σ

10 km s−1

)−1
(

n

103pc −3

)−1(
R

R⊙

)−2

(1.2)

Thus the relaxation time due to direct collisions for a typical GC with n ≃ 103pc −3,

σ ≃ 10 km s−1 and R ≃ 1R⊙ is of order a million Hubble times.

A strong encounter is where two stars each of mass m with relative speed σ

approach within a distance r of one another small enough that the potential energy

between them is greater than the kinetic energy of their relative motion:

Gm2

r
& 1

2
mσ2 ⇒ r . 2Gm

σ2
≡ rs

Then for relative speed σ through a region of space with number density n of stars, for

a single strong encounter during a time tstr, there must be one other star in the cylinder

of space swept out by the subject star’s motion. This cylinder has a cross section of πr2s

and a length of σtstr, and thus nπr2sσ = 1 to have a single strong encounter. Therefore,

tstr =
1

nπr2sσ
=

σ3

4πG2nm2
≃ 166Gyr

( σ

10 km s−1

)3( n

103pc −3

)−1(
m

0.5M⊙

)−2

(1.3)

Thus the relaxation time due to strong encounters for a typical GC with m ≃ 0.5M⊙,

σ ≃ 10 km s−1 and n ≃ 103pc −3 is of order 10 Hubble times.

Alternatively, a particle may have its square-speed altered by order itself via many

distant nudges from other stars. Thus, the relaxation time due to weak encounters

depends on the average nudge to a star’s kinetic energy by an encounter with another,

i.e. δσ ∝ m/b2 × b/σ. This is essentially the acceleration at closest approach of

the perturbed star to the perturber times the duration of the encounter, with m the

mass of a cluster star, σ the speed of a cluster star, and b the impact parameter (the

perpendicular distance between the unperturbed particle trajectory and the perturber).

Each star will undergo many such encounters, and so an estimate for the number of

these will be given by the surface density of the cluster times the cross sectional area
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of a star’s interaction sphere: δn = N/πr2 × 2πbδ b, where N is the number of stars in

the cluster and r is its radius. After one cluster crossing time (within a factor of order

unity this is the same as the free-fall time for a cluster star, tc ∝ (Gρ)−1/2), the sum

of these nudges amounts to:

∑
δσ2 ≃ δσ2δn ∝ (m2N/bσ2r2) d b

This integrated over the range of impact parameters, bmin to bmax, then gives the mean

deflection in a star’s square speed over a single cluster crossing, and also introduces

the Coulomb logarithm, lnΛ = ln(bmax/bmin). The minimum impact parameter is

simply the value at the transition from weak encounter to strong encounter, bmin =

rs = 2Gm/σ2. However, there is much uncertainty in the correct choice for bmax, and

is generally taken to be of order the size of the system. Assuming that the cluster is

virialised, then σ2 ≃ GNm/r, and consequently bmax/bmin ≃ rσ2/2Gm ≃ 0.5N = λN ,

with λ soaking up all the uncertain factors used to arrive at this result. Studies have

been conducted treating λ as a fitting parameter to ascertain exactly what functional

dependence it should have or what value it should take. These studies concluded that

the value of λ depends on whether a cluster is populated only by stars with the same

mass or not, with λ ≃ 0.4 for single-mass clusters, and λ ≃ 0.02 for multi-mass clusters

(Giersz & Heggie 1994; Giersz & Heggie 1996). The mean deflection of a typical star

square-speed per crossing time then, is given by:

∆σ2 ∝ m2N

σ2r2
ln(λN)

Since σ2/∆σ2 is the number of nudges per cluster crossing required to change a typical

cluster star square-speed by order of itself, the relaxation time is given by tr ∝ tc ×
σ4r2/Nm2 ln(λN) where tc ∝ r/σ is the cluster crossing time. Then (e.g., Spitzer

1987):

tr ∝ σ3r3

m2N ln(λN)
∝ σ3

mρ ln(λN)
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Apart from the presence of the Coulomb logarithm, the functional dependence of this

equation is the same as that of equation (1.3), and thus for a typical GC with N ≃ 105,

is about an order of magnitude smaller — i.e. many weak interactions are much more

important to the dynamical evolution of a populous system of stars than few strong

interactions.

At the radius containing half of the cluster mass, rh, the density is ρh =

3mN/8πr3h = 3M/8πr3h and a typical star will have σ3 ∝ (M/rh)
3/2 ∝ (Nm/rh)

3/2 ∝
Nmρ

1/2
h by the virial theorem. Since the relaxation time depends on local density, it

will clearly not be constant across an entire cluster, and consequently is often evaluated

at the half-mass radius rh. Then finally, the scalings for the half-mass relaxation time

are obtained. With a more careful derivation, the numerical coefficient may also be

brought forward (e.g., Spitzer 1987; Heggie & Hut 2003; Binney & Tremaine 2008):

trh ≃
2.69Gyr

ln(λN)

(
M

105M⊙

)(
103M⊙pc

−3

ρh

)1/2

(1.4)

Thus the relaxation time due to weak encounters for a typical GC with M ≃ 105M⊙,

m ≃ 0.5M⊙ and ρh ≃ 103M⊙pc
−3, is of order 300Myr. As the time-scale for dynamical

evolution of any cluster is just its relaxation time, equation (1.4) is very useful for

further investigating cluster evolution. However dynamical evolution of mass functions

is brought about primarily by a combination of relaxation and tides. Therefore the

next tool required is an expression for the tidal density of clusters.

1.2.3 Tidal Density

The evolution of GCSs is determined by mass-loss in individual GCs, and the rate

of mass-loss in individual GCs is determined by their tidal density (see section 1.4).

This is the mass content within a specific volume (known as the Roche sphere or lobe)

required for a cluster to gravitationally dominate that volume. Outside of the Roche

sphere, particles would orbit the host galaxy rather than the cluster. The edge of this

Roche sphere is known as the tidal radius, and is the point at which gravitational,
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centripetal, and Coriolis forces between the cluster and host galaxy balance. For a

cluster specifically on a circular orbit, the tidal radius is also called the Jacobi radius.

Thus, once particles associated with a cluster pass beyond the tidal radius, they are

lost from the cluster and instead become associated with the host galaxy. Figure 1.1

displays a schematic diagram of the problem set-up.

Figure 1.1: A schematic of the system under consideration. Both the cluster (triangle)
and particle (star) orbit in the same plane with angular velocity Ω and Ωs. The
problem is considered from a frame centred on the host galaxy (diamond) rotating
with angular velocity Ω(t), such that the cluster centre-of-mass is stationary.

Following Read et al. (2006b), the tidal density can be calculated as follows. In

a frame of reference rotating with angular velocity Ω centred on the host galaxy such

that the centre-of-mass of the subject cluster is stationary, the equation of motion for

the centre-of-mass of the cluster is given by:

r̈M + Ω̇× rM + 2Ω× ṙM +Ω× (Ω× rM) +∇Φg(rM) = 0 (1.5)

where rM is the galactocentric position of the cluster, and Φg is the host galaxy po-

tential. The first term is the acceleration, the second and fourth terms are centrifugal
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effects due to a rotating frame and non-circular orbits, the third term is the Coriolis

term due to the rotating frame, and the fifth term is due to the gravity of the host

galaxy. The equation of motion of a particle orbiting the cluster in this frame is given

by:

r̈s + Ω̇× rs + 2Ω× ṙs +Ω× (Ω× rs) +∇Φg(rs) +∇ΦM(xt) = 0 (1.6)

where rs is the galactocentric position of the particle, ΦM is the cluster potential, and

xt = rs − rM is the vector position of the particle relative to the cluster. Considering

only the case where the particle is at the instantaneous tidal radius, co-planar (both

orbiting on the same plane) radial or circular particle orbits satisfy

ṙs = ṙM +Ωs × xt (1.7)

where Ωs is the angular velocity of the particle around the cluster. In the case of

circular orbits, this holds because the velocity of the particle is due only to its own

rotation about the cluster, Ωs, and the motion of the cluster about the host galaxy,

ṙM . For radial orbits, this holds because Ωs = 0, and as the particle is at apocentre,

the radial component of its velocity must also be zero.

Substituting (1.7) into (1.6) and subtracting (1.5) from the resulting equation,

the following is obtained:

ẍt = Ff + F

Ff = Ω̇× xt + 2Ω× (Ωs × xt) +Ω× (Ω× xt)

F = ∇Φg(rs) +∇ΦM(xt)−∇Φg(rM)

and ẍt = 0 at the tidal radius by definition. Then, considering only the components

of force acting parallel to rM (Ff · r̂M + F · r̂M = 0):
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F · r̂M =
dΦg

d r

∣∣∣∣
r=rM−rt

− dΦg

d r

∣∣∣∣
r=rM

− dΦM

dx

∣∣∣∣
x=rt

Ff · r̂M = 2αΩsΩrt + Ω2rt

where αΩs is the z component (perpendicular to the orbital plane) of Ωs, with α = 1

for a prograde circular particle orbit, α = 0 for a radial particle orbit, and α = −1

for a retrograde circular particle orbit. Ω is the z component of Ω, and −rt is the

component of xt parallel to rM (the negative sign is due to the vector orientation,

see Figure 1.1). Since different α corresponds to tidal radii for particles on different

orbits, the most and second most tightly bound particles will have their tidal radii

inside the tidal radius for the least tightly bound particles, and therefore there will

be matter outside their tidal radii. Thus it is necessary to assume that clusters are

sufficiently centrally concentrated as to be well approximated by a point mass potential

at the distance of rt for these most tightly bound particles. Also employing the distant

tide approximation (assuming rt ≪ rM , where rM is the magnitude of rM), it is then

possible to show that:

F · r̂M = −rt
d2 Φg

d r2

∣∣∣∣
r=rM

− GMc

r2t

Ff · r̂M = Ω2rt + 2αΩ

√
GMc

rt

0 = Ff · r̂M + F · r̂M

which is a quadratic in
√
GMc/r3t , and thus the solution can be written as:

ρt =
3

4πG

αΩ±

(
Ω2(α2 + 1)− d2Φg

d r2

∣∣∣∣
r=rM

)1/2
2

(1.8)
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i.e. the tidal density (and therefore rate of mass-loss, see section 1.4) depends on the

orbit of the particle in question. Co-planar particle orbits mark the extrema of this

effect — prograde particle orbits (α = 1) are most easily stripped, while retrograde

particle orbits (α = −1) are least easily stripped (e.g., Giersz & Heggie 1997; Fukushige

& Heggie 2000; Baumgardt & Makino 2003; Read et al. 2006b). Consequently, sys-

tems undergoing tidal stripping show tangential velocity anisotropy near their tidal

radii (e.g., Kazantzidis, Magorrian & Moore 2004; Kravtsov, Gnedin & Klypin 2004).

Setting α = 0 returns equation (1.8) to the familiar form e.g. as derived by von

Hoerner (1957) and King (1962). Thus for a specific particle orbit and at a specific

galactocentric orbit, the tidal density is constant. The tidal radius is derived simply

by combining the present cluster mass with the tidal density. As particles pass beyond

the tidal radius, they are stripped from the cluster, and consequently the cluster mass

decreases causing the tidal radius to shrink.

Read et al. (2006b) studied the evolution of tidal radii with α = [−1, 0, 1] in a

dissolving cluster, and found that for circular cluster orbits all particle orbits begin to

be stripped according to the prograde particle tidal limit (α = 1) at times t & 2 Gyr.

The reason for this is that, even for a spherical cluster potential, the presence of a

host galaxy potential permeating the cluster causes the total potential experienced by

particles to be non-spherical, and thus the orbital plane of particles precess. Precession

can then put a particle onto a more easily stripped orbit, at which point it is carried

away by tides. This effect would presumably still occur for clusters on non-circular

orbits, but the precession is drowned out by particle orbit migration brought about by

the non-uniform tidal field (Read et al. 2006b).

Furthermore, for the tidal density to be real, it is required that the argument

of the square root in equation (1.8) satisfies Ω2(α2 + 1) − d2 Φg

d r2

∣∣∣
r=rM

≥ 0. In general,

at any radius the angular velocity will be bounded between the angular velocity of a

radial orbit and that of a circular orbit; 0 ≤ Ω2 ≤ (4πG/3)ρ̄(rM) where ρ̄(rM) is the

average galaxy density inside of rM , and thus:
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2ρ̄(rM)

3ρ(rM)
− 1 ≤ 1

4πGρ(rM )

[
Ω2(α2 + 1)− d2 Φg

d r2

∣∣∣
r=rM

]
≤ (α2 + 3)ρ̄(rM)

3ρ(rM)
− 1 (1.9)

The isothermal sphere has a distribution function and asymptotic density limits

Figure 1.2: Extremes of argument of the square root of equation (1.8) in an isothermal
sphere. Long dashed lines are circular cluster orbits, black long dashed is for a circular
particle orbit (α2 = 1, A=4/3), red long dashed is for a radial particle orbit (α2 = 0,
A=1). The dotted line is for a radial cluster orbit, in which case the particle orbit no
longer matters (A=2/3). Also note r0 is the galactic core radius.

given by:

f(E) ∝ exp
(
−E/σ2

0

)
(1.10)

ρ(r) ∝


const for r ≪ r0

r−2 for r ≫ r0

(1.11)
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where r0 is the core radius. Taking this as a model for the host galaxy, Figure 1.2

displays the upper and lower limits of equation (1.9) in the isothermal sphere. As

there is also dependence on α to consider, there are two curves for the upper limit, one

with α = 0, giving a coefficient on ρ̄(rM)/ρ(rM) of A = 1, and the other curve with

α = 1 or α = −1, giving A = 4/3. The lower limit of equation (1.9) has no dependence

on α, and thus there is only one curve, with A = 2/3. Thus all clusters on any orbit in

such a system must fall somewhere between one of the two uppermost curves and the

lowermost curve, depending on the particle orbit under consideration. The quantity in

equation (1.9) for circular cluster orbits with radial particle orbits (red curve, A = 1)

tends to zero at small radii, and so since this is a minimum, all clusters on circular

orbits will have well defined tidal densities at all radii (excepting of course when rM ∼ rt

i.e. when the distant tide approximation breaks down), irrespective of particle orbits.

However, all clusters on non-circular orbits have the quantity in equation (1.9) turn

negative roughly inside of the galactic core (r . r0), also irrespective of particle orbits.

The tidal density turning imaginary in this region is in agreement with Dekel, Devor &

Hetzroni (2003), who found that tides grow progressively weaker with shallower local

density gradients, and in fact turn compressive along the line of centres joining the

host galaxy and cluster in constant density environments.

While the derivation of equation (1.8) allows for use on non-circular cluster orbits,

care must be taken when doing so. This is because while the structure of a cluster will

always attempt to adapt to its imposed tidal density, if the tidal density is changing

due to being on a non-circular orbit, the cluster will attempt to adapt to a different

structure from one moment to the next. Thus the evolution of a cluster will depend

on whether the time-scale for a cluster to reach some sort of equilibrium with its

surroundings is greater or less than the time-scale of an orbit. The time-scale for

reaching this equilibrium is the relaxation time, typically several Gyr, while a radial

period is typically a few hundred Myr. For this reason, von Hoerner (1957) argued that

the effective tides (the tidal density matching the actual rate of mass-loss of a cluster,

see section 1.4) will be at orbital pericentre — i.e. once a cluster passes pericentre where

the tides are strongest, its structure will be trimmed to that limit, and will not have
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time to adjust to anything else before the next pericentric passage. While this picture

is basically correct, it overlooks an additional complication, namely that as a cluster

recedes after a pericentric passage, its tidal radius will grow and may re-encompass

some of the particles previously shed. These particles may then become rebound,

and thus the rate of cluster mass-loss will be less severe than would be predicted by

pericentric effective tides, meaning that the galactocentric distance corresponding to

effective tides, rev, lies further out (e.g., Odenkirchen et al. 1997; Brosche, Odenkirchen

& Geffert 1999; Küpper et al. 2010; Küpper, Lane & Heggie 2012; Webb et al. 2013).

1.3 Properties of Globular Clusters and Globular

Cluster Systems

The ensemble of an entire population of GCs in a host galaxy is called a globular cluster

system. There are a few main observable properties of GCSs that will be focused on

here. There is the frequency of GC luminosities in a system, the GC luminosity function

(GCLF). Provided a working understanding of what causes mass-loss in clusters, it is

possible to take the typical observed luminosity function of YMCs and evolve it for 13

billion years for comparison to GCLFs as observed today, to test the hypothesis that

the luminosity function of YMCs today are the analogues of GCs 13 Gyr ago.

Additionally, there is the kinematics of GCs, the velocity distribution of a GCS.

Typically this is represented with the standard deviations of the components of velocity

in the radial direction (towards or away from the galactic centre) and the tangential

direction (motion on the plane perpendicular to the radial velocity) of all GCs at

a given radius from the galactic centre, known as the radial and tangential velocity

dispersions. Comparison of the radial and tangential velocity dispersions at all radii

defines the GCS anisotropy profile. Although there is little in the way of kinematic

information on systems of YMCs, the orbit of a cluster will determine the strength of

the galaxy tides acting upon it, leading to the preferential destruction of clusters on

certain orbits. Thus assuming a reasonable initial anisotropy profile and requiring that
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it matches the kinematics of a GCS as observed today (e.g., Pota et al. 2013; Woodley

et al. 2010; Lee et al. 2008; Côté 1999; Grillmair et al. 1994; Frenk & White 1980)

places another constraint on the evolution of a mass function. A common problem in

extragalactic astrophysics is that distances to objects are always far greater than the

sizes of the objects themselves. The effect of this is that it is essentially impossible to

determine any depth to an observed object — they simply appear as two dimensional

objects on the plane of the sky. For example, the only estimate of distance from

cluster centre that could be obtained for a star in a cluster would be the perpendicular

to line-of-sight, or projected distance, which is always less than or equal to the true

distance. The same problem applies when attempting to measure the galactocentric

distance of GCs in other galaxies, and to the distribution of light in an observed

GC (throughout this thesis, projected distances will always be denoted in upper case,

while unprojected distances will be denoted in lower case). The effect of projection

with regards to kinematics is that it becomes virtually impossible to resolve individual

radial and tangential motions of GCs, such that only projected line-of-sight velocity

dispersions may be measured.

Finally there is the GC fundamental plane (GCFP). This is the collective mass-

radius (or equivalent) relation for all clusters in a GCS. Theoretical predictions and

some data on YMC fundamental plane correlations exist, so a working understanding

of how cluster radii change in response to tides and mass-loss allows evolving the

GCFP for comparison to what is observed today. However, this requires detailed

observations and profile fitting for every GC in a GCS. Of these three GCS observables,

the GCLF is by far the easiest to obtain, as all that is required to compile a GCLF is the

brightness of GCs in a GCS. Consequently, the GCLF has received the most attention

for modelling dynamical evolution of GCSs. Focusing first on properties of individual

GCs however, the structural correlations of GCs from McLaughlin & van der Marel

(2005) and McLaughlin et al. (2008) are presented in Figure 1.3.
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Figure 1.3: Globular Cluster projected core radius (Rc), projected half-light radius
(Rh), concentration (c), metallicity ([Fe/H]), core surface brightness (µV,0), half-
light surface brightness (< µV >h), mass-to-light ratio (Υpop

V ), core line-of-sight ve-
locity dispersion (σp,0), half-light line-of-sight velocity dispersion (σap(Rh)), κ3 ≡
3−1/2(log[σ2

p,0] − log[ΥV < µV >h Rh]), and binding energy (Eb) as functions of lu-
minosity. Data from the Milky Way (asterisks), large and small Magellanic clouds and
Fornax (filled circles; McLaughlin & van der Marel 2005) and from NGC 5128 (open
circles and stars; McLaughlin et al. 2008).
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As can clearly be seen, there are many interrelations of cluster properties. Note

that these panels contain data from several galaxies and yet follow many of the same

correlations, indicating that for many GC properties, the host galaxy is unimportant.

Where there is mainly scatter, the lack of correlation is visible over data sets from any

one galaxy, and over the combined data sets, indicating that the lack of correlation

is again not due to different environments for the GCSs, but is somehow intrinsic

to GCs. By first making some reasonable assumptions about cluster age and initial

conditions, such as initial stellar mass function, initial metallicity, and instantaneous

rather than ongoing star formation, given the total luminosity in a certain bandpass

(such as e.g., V -band), population synthesis models can predict the mass-to-light ratio,

Υpop
V , which may be used to calculate the mass of a cluster (e.g., Bruzual & Charlot

2003; Maraston 2005). This mass-to-light ratio across entire GCSs is largely consistent

around Υpop
V ≃ 2M⊙L⊙

−1 (McLaughlin & van der Marel 2005), centre bottom panel of

Figure 1.3. Once the mass-to-light ratio has been obtained for all GCs in a GCS (either

through population synthesis, or assuming Υpop
V ≃ 2M⊙L⊙

−1), the GCLF may easily

be turned into the GCMF. The other properties in Figure 1.3 may then be derived

by fitting models to the observed light distribution converted to a mass distribution

— a very popular choice is the King (1966) family of models (see section 3.3.2 for a

detailed description). The phase space distribution function (the function describing

the probability of a particle having a given position and velocity) of King (1966) models

is that of a modified or “lowered” isothermal sphere, with finite total mass and finite

escape radius, given by:

f(E) ∝
{

exp [(W0 − E)/σ2
0]− 1 for 0 ≤ E ≤ W0

0 forE > W0
(1.12)

where W0 is the maximum energy a particle can have and still be bound to the system,

and is equal to the potential energy at the edge of the system.

Additionally, King (1966) models are ergodic (meaning that the distribution func-

tion is assumed to be a function of energy only), and consequently all King (1966)

models are isotropic (meaning a spherically symmetric velocity distribution, similar
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to a spherically symmetric matter distribution). However, modified models exist that

allow velocity anisotropy (Michie & Bodenheimer 1963; Gunn & Griffin 1979; Meylan

1987), with distribution function of the form:

f(E,L) ∝
{

exp [−L2/(r2aσ
2
0)] {exp [(W0 − E)/σ2

0]− 1} for 0 ≤ E ≤ W0

0 forE > W0
(1.13)

where ra is the anisotropy radius, where the transition from isotropy in the core to

radial anisotropy in the outer parts occurs. The difference in the fit produced by

equation (1.13) as opposed to (1.12) is found to be small, and anisotropy considerations

are second order. Thus, there is only a single parameter to determine between the

continuum of King (1966) family models, the ‘central potential’, W0, or equivalently

the concentration, defined as c = log[rt/r0], where rt is the limiting radius and r0 is the

core radius. Hence, the continuum of models allow for a range of internal structures;

c ≤ 0 implies that rt ≤ r0, i.e. the cluster is essentially all constant density core, and

therefore is similar to a homogeneous sphere, and c → ∞ ≡ W0 → ∞ returns to the

infinite extent and infinite mass isothermal sphere (cf. equations 1.10 and 1.12). The

fact that these models have a finite size imitating tidal truncation without the need

for extra parameters concerning the host galaxy keeps them simple, and they generally

give good fits besides and thus they are a popular choice.

Bearing the effects of projection in mind, in order to fit the light profile with

a King (1966) model, it is necessary to assume something about the shape of the

cluster (for a King (1966) model, clusters must be assumed to be spherical), and then

to project the model before fitting to the observational data. Once the light profile

has been fitted, quantities such as both projected and deprojected half-light and core

radius, half-light and core velocity dispersions, etc., can be read off. Doing this, it

then becomes clear that all the correlations in Figure 1.3 boil down to a few basic

correlations.

1. Υ ∼ logM0 with scatter (centre bottom panel of Figure 1.3) — This is just a

stellar population effect — a population with the same metallicity and age has

a constant mass-to-light ratio.
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2. logRh ∼ logM0 with large scatter (first row down, first column of Figure

1.3) — Some claim that the data form a ‘V’ in the parameter space due to

a break at ∼ 106M⊙ — clusters below this mass are more dynamically old

(relaxation times less than a Hubble time); i.e. they have evolved away from

the initial mass-radius relation that all stellar systems, including galaxies, start

with, while clusters (and stellar systems such as galaxies) above this mass are

comparatively dynamically young, with relaxation times greater than a Hubble

time, and are thus less evolved and still maintain their initial mass-radius

relation (Gieles, Baumgardt & Heggie 2010).

3. log σ2 ∼ logM with some scatter (first row down, third column of Figure

1.3) — This is a consequence of the virial theorem — 1
2
Mσ2 ≃ M2/rg, where

rg ∼ rh is the gravitational radius. The scatter probably comes from scatter in

M with Rh. This correlation strongly indicates that most clusters are indeed

virialised systems.

4. c ∼ logM0.8 with large scatter (second row down, first column of Figure 1.3) —

Along with the adjacent panel, this is indicating a correlation between cluster

structure and mass. How much of this is due to a primordial correlation vs

a correlation brought about by evolution is unclear. For example, this could

be a signature of the aforementioned initial mass-radius relation in the process

of being ‘washed out’ as clusters evolve away from their initial conditions.

Alternatively, this could be reflecting the tendency for clusters to become more

centrally concentrated (higher c) as they evolve (see section 1.4.5).

With the mass-to-light ratio remaining roughly constant at Υ ≃ 2M⊙L⊙
−1, this means

that most scatter in GC properties lies inM vs Rh. Thus GC data may be represented

on a plane, commonly referred to as the globular cluster fundamental plane.
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1.3.1 Fundamental Plane

Being able to represent GC data in terms of just two independent properties led to the

invention of the GC fundamental plane (Djorgovski & Meylan 1994; Djorgovski 1995;

Dubath & Grillmair 1997), similar to the fundamental plane for elliptical galaxies

(Djorgovski & Davis 1987; Dressler et al. 1987). Consequently, a logical question to

follow would be, are GCs essentially only miniature versions of elliptical galaxies? It

turns out however, that the scalings between properties are very different, as displayed

in Figure 1.4.

Figure 1.4: Logarithmic projected half-light radii (effective radii for galaxies) and loga-
rithmic velocity dispersions against luminosity for GCs and elliptical galaxies. Elliptical
Galaxy data taken from Faber & Gallagher (1979), GC data taken for Milky Way, M31,
NGC5128, M33, LMC, SMC, Fornax, taken from McLaughlin & van der Marel (2005).

The top panel clearly shows the lack of a systematic dependence of Rh on L for
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GCs, whereas elliptical galaxies have roughly Rh ∝ L1/2. In the bottom panel, GCs

display a σ ∝ L1/2 dependence, whereas elliptical galaxies show a σ ∝ L1/4 depen-

dence. One possible explanation for the differences is that dynamical evolution has

re-shaped the GC correlations, but not affected the elliptical galaxy correlations much.

Although relaxation time is expected to change with time, the current relaxation time

as a fraction of the Hubble time can still be used to indicate how dynamically old a

system is; elliptical galaxies tend to have relaxation times greater than a Hubble time,

whereas GCs tend to have relaxation times of order a Gyr (e.g., Harris 1996). Addi-

tionally, mass-loss due to tidal limitation will tend to accelerate dynamical evolution,

and galaxies do not tend to be tidally limited unless they are the minor component of

a merger, whereas most GCs are tidally limited. Alternatively, another possibility is

that the differences in GC correlations to galaxy correlations may be due to different

formation processes. In order to decide between these possibilities, comparable data

on the internal properties of YMCs are required. These data are just starting to come

into focus, and be used to construct a young-cluster fundamental plane (e.g., Barmby

et al. 2009; Bastian et al. 2013). Frequently, YMCs are found to have very distended

power-law envelopes, reaching out to several hundred pc (e.g., Elson, Fall & Free-

man 1987; Bastian et al. 2013), and to broadly have similar properties from galaxy to

galaxy (e.g., Barmby et al. 2009). This could be suggesting that clusters form with a

global initial mass-radius relation, but that this gets ‘washed out’ by different rates of

dynamical evolution due to different initial masses.

1.3.2 Velocity Distribution

Observing the globular cluster velocity distribution (GCVD) has several difficulties

associated with it. Firstly, in order to estimate velocity dispersions for a velocity profile,

GCs must be binned radially, and the radial and tangential velocities of GCs in each

bin used to calculate the velocity dispersion, e.g. Figure 1.5. However, the Milky Way

GCS has only around 150 members, and these span galactocentric distances between

about 1 to 100 kpc. Thus either each bin spans a wide range of galactocentric distances,
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or there is only a small number of GCs in each bin, causing statistical noise. Despite

this, kinematic studies of the Milky Way GCS have been conducted (e.g., Frenk &

White 1980; Côté 1999). Frenk & White (1980) fitted models relating rotation of the

GCS, spatial distribution of the GCS, and radial and tangential velocity distributions

of the GCS to the circular speed of the galaxy. Their best-fitting model required GC

Figure 1.5: Projected line-of-sight velocity dispersions for the GCS of M87 in different
colour bands as a function of projected galactocentric distance. The solid curves delimit
the 68% and 90% confidence bands, filled circles denote the velocity dispersion in each
radial bin, and open circles denote the velocity dispersions corrected for rotation. Taken
from Côté et al. (2001).
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radial velocity dispersions increasing moderately with galactocentric radius (σp ∝ r0.2gc ).

Côté (1999) compared kinematics of inner GCs (. 4kpc) with kinematics of atomic

hydrogen in the inner Galaxy to support claims that innermost GCs are associated

with the central Galactic bulge/bar rather than the thick disk.

Alternatively, the GCVD of a more populous GCS could be studied to overcome

statistical difficulties, however this is complicated by projection — only the projected

galactocentric distances, which are lower bounds on the true galactocentric distance,

can be obtained. Moreover, only the line-of-sight velocities of a cluster can be esti-

mated, which cannot generally be turned into radial and tangential velocities, also due

to projection (e.g., Côté et al. (2001) as displayed in Figure 1.5). Thus, the best way to

fit a model to a GCS velocity distribution is again to first project the model before fit-

ting to data. The most important detail of Figure 1.5 is that the projected line-of-sight

velocity dispersions are roughly constant (i.e. consistent with constant isotropy), or in-

creasing slightly with galactocentric radius (e.g., Frenk & White 1980; G. & Ryzhov

1997; Minniti et al. 1998; Côté et al. 2001; Côté et al. 2003; Bekki et al. 2005; Kafle

et al. 2013).

The velocity distribution of a GCS is expected to change over the course of

dynamical GCS evolution, as clusters on more elliptical orbits are expected to be

destroyed more quickly than clusters on less elliptical orbits (see section 1.4). Thus,

the velocity distribution can be used as an additional constraint for GCS evolution

models (e.g., Vesperini et al. 2003).

1.3.3 Mass Functions

It has long been established that the GCMF, (number of clusters per logarithmic mass,

dN/d logM) in the Milky Way has a distinct peak at about MTO ∼ 1.6× 105M⊙, and

that the peak of the GCMF of other nearby galaixes do not differ from this value

significantly. In fact, when a GCS is binned in terms of galactocentric radius, the mass

function of clusters in each bin is always the same basic shape with the same peak, i.e.

the GCMF is invariant with galactocentric position (e.g., Fall & Zhang 2001; Vesperini
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et al. 2003; McLaughlin & Fall 2008). In this light, based purely on empirical evidence

the GCMF began to receive attention as a standard candle, with the first attempt to

use it to gauge an intergalactic distance by Hanes (1977). Once highly sensitive CCD

cameras became available, observations of GCMF peaks of galaxies outside of the Local

Group became possible, and the standard candle hypothesis became standard practice

(Harris 1991).

With the launch of the HST, the focus quickly shifted to the presence of YMCs

in starburst systems. In such systems, the numbers of clusters at low masses continues

to rise, as displayed in the top panel of Figure 1.6. The mass function for these young

systems are fitted well by a simple power-law, dN/dM ∝ M−βMF , or equivalently

dN/d log M ∝ M1−βMF with βMF ≃ 2. Alternatively, the cluster mass functions

in starburst systems are also well fitted by a Schechter (1976) function, dN/dM ∝
M−βMF exp(−M/Msch), which describes a power-law with an exponential cut-off at

M = Msch, with Msch ∼ 106M⊙. Essentially, the mass function of these systems are

unpeaked (Schweizer et al. 1996; Zhang & Fall 1999; Fall, Chandar & Whitmore 2005;

Bastian et al. 2006). On the other hand, the GCMF is better described by a Gaussian

in logMc (a log-normal distribution), as displayed in the bottom panel of Figure 1.6.

Before long, it was noticed that at masses above the GCMF peak mass, globular cluster

and YMC mass functions may both be fitted well with a power-law or Schechter (1976)

function. Thus if there was some process that could preferentially destroy low-mass

clusters, a YMC mass function might be made to resemble a GCMF as observed today,

i.e. GCMFs may have originally been well described by a power-law or Schechter (1976)

function. Furthermore, this destructive process would have to act in such a way that

the GCMF of radially binned GCs is always the same; i.e. it would have to reproduce

the GCMF invariance with galactocentric radius.

The question now, as suggested above, is can the unpeaked mass function of

YMCs evolve into a mass function peaked at a “characteristic” MTO ∼ 105M⊙, as

observed for old GC systems, given a Hubble time of evolution? And if so, which

destruction process is responsible? Several evolutionary processes are well known that

might explain such a transition, by eroding clusters such that after a Hubble time, the
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Figure 1.6: The Antennae (top) and Milky Way (bottom) cluster mass functions (Fall
& Zhang 2001), where Ψ is the number of clusters with masses betweenM andM+dM
at time t.

mass function resembles GCMFs as observed today (see section 1.4). These evolution-

ary processes would have to preferentially erode the low-mass end of the GCMF, whilst

leaving the more massive end relatively untouched, such that dN/dM ∝ M−βMF still

for M & MTO (cf. top and bottom panels of Figure 1.6), resulting in a distinct peak

emerging.

That these evolutionary processes occur is well established, but specifically which

process is most important is an ongoing question. Some arguments suggest that these

processes will be effectively instantaneous and happen early on in the clusters lifetime,

imprinting the mass function with the shape as seen today at an early age, with the
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other evolutionary processes having little effect to the present day (e.g., Vesperini

& Zepf 2003; Parmentier & Gilmore 2007; Baumgardt, Kroupa & Parmentier 2008).

Other arguments contend that these instantaneous processes will certainly occur, but

will deplete the same fraction of mass in all clusters such that the shape of the GCMF

remains unchanged, unless special conditions are invoked. The actual change of shape

will occur slowly over Gyr time-scales due to other processes (e.g., Fall & Rees 1977;

Caputo & Castellani 1984; Fall & Zhang 2001; Jordán et al. 2007; McLaughlin & Fall

2008). The possible destruction mechanisms and their effect on the GCMF will be

discussed in section 1.4, followed by a discussion of which is the most likely candidate

for turning an initial power-law CIMF into a GCMF with a distinct peak.

1.4 Cluster Destruction Mechanisms

1.4.1 Stellar Evolution

The effects of stellar evolution on clusters can be broken down into two basic regimes:

mass-loss caused by massive stars early on in the host cluster life, and the mass-

loss associated with stars expiring and becoming degenerate remnants (which may

subsequently be ejected from the cluster by a ‘kick’ velocity).

Given a system of total massM0 and radius rg that reaches virial equilibrium be-

fore any significant mass-loss, then the velocity dispersion is given by the virial theorem

to be σ2 = GM0/rg. Then for mass-loss that occurs on a time-scale shorter than the

dynamical time-scale of the cluster, the velocity dispersion will remain unaffected. If

the spatial distribution of the system is also unaffected, then the energy of the remain-

ing system is given by E = 0.5Mσ2−GM2/rg, which once virial equilibrium is reached

again will also be given by E = −GM2/2R, where R is the new radius of the system,

and the mass-loss is given by ∆M = M0 −M . In this case, the final radius is related

to the initial radius by R/rg = (M0 −∆M)/2(M0/2−∆M) (Hills 1980). Then if the

mass loss ∆M ≥ 0.5M in less than a dynamical time, the system will dissociate. This
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scenario adequately describes clusters that are still embedded in their pre-natal clouds

— a significant portion of mass is in gas, with the rest in stars. The most massive stars

have strong winds and short lifetimes that end with supernovae explosions, making

them adept at rapidly expelling gas out of the cluster, whilst not having much of an

effect on other stars in the cluster. If a young cluster has not reached virial equilibrium

before massive stars start causing significant mass-loss, even less mass-loss is required

to dissociate the cluster (Hills 1980).

With an initial stellar mass function providing few massive stars to begin with,

if a cluster survives this early phase (the first 100 Myr or so), then there will be very

few massive stars remaining such that mass-loss from the cluster due to stellar winds

may be neglected, and remaining mass-loss by stellar evolution is primarily in the form

of stars evolving off of the main-sequence and turning into stellar remnants. Then

ignoring changing stellar mass due to winds, and assuming that a star instantly turns

into a remnant upon evolving off of the main-sequence, the mass of a main-sequence

progenitor expiring at time t is denoted as mto(t). Remnant mass as a function of

progenitor mass is given by mrm(m), and the probability of an asymmetric explosion

upon expiry imparting a sufficient ‘kick’ or recoil velocity to the remnant to eject it

from the cluster is Pej(m). Then upon the expiry of all stars of mass m, the cluster

will lose mass

dMloss(m) =
dN

dm
[m− {1− Pej(m)}mrm(m)] dm

where dN
dm

is the initial stellar mass function defined between the most and least massive

stars present, mu and ml. Then the total mass remaining by time t is given by:

M(t) =Minit −
∫ mu

mto(t)

dN

dm
[m− {1− Pej(m)}mrm(m)] dm (1.14)

with

Minit =

∫ mu

ml

dN

dm
m dm (1.15)
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The functions Pej(m) and mrm(m) are provided by stellar evolution theory (with ad-

ditional constraints placed by observations), (e.g., Iben & Renzini 1983; Hurley, Pols

& Tout 2000; Heyl 2007; Woosley & Heger 2007), though these are broken down into

different classes of remnant, namely white dwarfs, neutron stars, and black holes, de-

pending on the progenitor mass. Pej(m) is likely to be quite low for white dwarfs, as

the end phase of a star turning into a white dwarf is not particularly violent, whereas

Pej(m) for neutron stars and black holes is likely to be much higher due to the violent

supernova explosion. Additionally, the initial stellar mass function can be obtained by

observations (e.g., Kroupa 2001; Chabrier 2003). As the initial stellar mass function,

dN/dm, the ejection probability, Pej(m), and the remnant mass as a function of pro-

genitor mass, mrm(m), will be the same for all clusters, and dN/dm is normalised to

the mass of each cluster (cf. equation 1.15), mass-loss due to stellar evolution at time t

will be the same fraction of initial cluster mass for all clusters. Consequently, mass-loss

due to stellar evolution only rescales a GCMF, and does not change its shape, ruling

it out as a candidate for turning an initial power-law CIMF into a GCMF as observed

today over 13 Gyr.

1.4.2 Dynamical Friction

Dynamical friction is an effect caused by a continuum of background particles that leech

orbital energy and orbital angular momentum from a subject body via gravitational

interactions. As the subject body passes through a region of space, it perturbs field

particles such that a ‘gravitational wake’ is formed. The gravitational effect of this

wake then serves to decelerate the subject body, decreasing both its orbital energy

and orbital angular momentum, putting it on a new orbit from one moment to the

next. Since orbital energy and orbital angular momentum are sapped at different rates

that vary around an orbit depending on the subject body speed and orbital angular

momentum, ellipticity is not necessarily conserved. The average of these changes over a

radial period will determine whether a subject body is being placed on either a more or

less elliptical orbit overall (see section 5.1). Thus dynamical friction may play a role in
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evolving the velocity anisotropy profile of GCSs. Furthermore, dynamical friction will

serve to bring clusters in closer to the galactic centre where galactic tides are stronger,

and hence may hasten the destruction of some clusters. As a result, dynamical friction

will also play a role in evolving the GCMF (e.g., Vesperini 2000).

Under the assumptions that the subject body is much more massive than field

stars but much less massive than the host system, that the host system is sufficiently

larger than the subject body as to be considered infinite and homogeneous, and that

the distribution function describing the field stars is Maxwellian, Chandrasekhar (1943)

calculated the deceleration of a subject body due to dynamical friction, obtaining (e.g.,

Binney & Tremaine 2008):

dV

d t
= −4πG2Mcρf ln Λ

V 3

[
erf(X)− 2X√

π
exp(−X2)

]
V (1.16)

X = V/
√
2σ2

where σ is the velocity dispersion of the field stars, rM is the galactocentric distance of

the subject body, V is the velocity of the subject body with V its speed, erf is the Error

function, lnΛ is the Coulomb logarithm as in section 1.2.2, with Λ = bmax/bmin, where

bmax and bmin are the maximum and minimum impact parameters of the predominant

long range encounters. Typically, bmax ∼ rM and bmin ∼ max(rh, GMc/σ
2) where rh is

the radius containing half the mass of the subject body (see section 5.2.4 for a more

refined evaluation of Λ).

For circular orbits, the vector notation may be discarded. Also assuming a singu-

lar isothermal sphere such that X = 1 and ρf (r) =
V 2

4πGr2
, this deceleration multiplied

by the radius of the cluster orbit is equal to the torque acting on the subject body,

such that:

dL

d t
≃ 1.71πG2M2

c ρfrM ln Λ

V 2
(1.17)

As the rotation curve of an isothermal sphere is flat, the orbital speed, V , will remain

constant as the cluster spirals inwards, such that L = McrMV with V a constant.
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This can be substituted into (1.17), and the differential equation solved to achieve

an expression for the time required for a cluster to spiral to the centre of the galaxy

(Binney & Tremaine 2008):

tdf ≃
19Gyr

lnΛ

(
rM,i

5kpc

)2
σ

200 km s−1

108M⊙

Mc

(1.18)

where rM,i is the initial galactocentric distance. Clearly, the time-scale for this process

is very long for all but the most massive or the innermost clusters. Thus, the destruction

rate due to dynamical friction is given by:

µdf =
GM ln Λ

1.65r2M,iσ
(1.19)

In terms of mass, dynamical friction will only have a noticeable effect on the high-mass

end of the GCMF, and thus is not a contender for turning initial power-law CIMFs

into GCMFs as observed today. For a more detailed treatment of dynamical friction

affecting cluster orbits, see section 5.1.

1.4.3 Tidal Shocks

A tidal shock is where the local potential experienced by the cluster varies on a time-

scale shorter than the relaxation time of the cluster. This can happen when a cluster

passes close to or through an area of high-density, such as the central regions for

spherical galaxies, or the bulge or disk for disk galaxies. Following Spitzer (1987),

supposing a galaxy disk that is infinite and thin, the acceleration on opposite sides of

the disk is 2πGΣ, where Σ is the surface density of the disk. As a cluster crosses the

disk, there will be a point when one of the cluster’s stars and the cluster centre-of-mass

will be on opposite sides of the disk. The star is then accelerated relative to the cluster

centre-of-mass by 4πGΣ, and this acceleration will last for a time rz/vM,z where rz is

the perpendicular component of the displacement of the star to the cluster centre-of-

mass, and vM,z is the perpendicular component of the cluster velocity relative to the

disk.
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Assuming that the duration of the shock is much shorter than a cluster crossing

time (the impulse approximation), so that for the duration of the encounter, the cluster

stars do not change position, the star has its speed altered by ∆vs = 4πGΣrz/vM,z. The

cluster then gains energy ∆E ∼ 0.5Mc(∆vs)
2 ∼ 8π2G2McΣ

2r2z/v
2
M,z. Once the cluster

has experienced enough shocks such that the injected energy becomes comparable to the

cluster binding energy, ∆E ∼ E, the cluster will become unbound. Writing the cluster

internal energy as E ∼ GM2
c /rg, then since a cluster will suffer two disk crossings per

azimuthal orbit, the time to disruption by shocking is given by tsh ∼ 0.5TψE/∆E ∼
TψMcv

2
M,z/4π

2GΣ2r3z , where Tψ is the cluster azimuthal period and rz ∼ rg has been

assumed. Thus the time to disruption due to disk shocking is given by (e.g., Heggie &

Hut 2003; Binney & Tremaine 2008):

tsh ≃ 417Gyr
Tψ

200Myr

( vM,z

130 km s−1

)2(50M⊙pc
−2

Σ

)2
ρh

50M⊙pc
−3 (1.20)

where ρh is the cluster density. Disk galaxy bulge and spherical galaxy core shocking

are very similar processes to one another, but differ from disk shocking in several ways.

For example, the duration of a bulge shock is not necessarily shorter than a typical

cluster crossing time, and thus the impulse approximation breaks down. By treating

the cluster as a harmonic potential (assuming constant density), Gnedin & Ostriker

(1997) derive for the time to disruption due to bulge shocking:

tsh ≃ 367Gyr
Tr

500Myr

( vp
500 km s−1

)2( rp
0.5kpc

)4(
109M⊙

Mb

)2
ρh

50M⊙pc
−3 (1.21)

where vp and rp are the cluster speed and galactocentric distance at orbital pericentre,

Tr is the cluster radial period, and Mb is the host galaxy bulge mass.

Shocking is therefore most effective at destroying clusters with low densities, and

with small orbits such that clusters suffer more frequent disk crossings/bulge passages

at higher speeds, in addition to higher disk surface density or smaller pericentres. The

mass-loss rate is given by µsh =Mc/tsh. Using equation (1.21), this is:
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µsh =
7G

9π

(
Mb

vpr2p

)2
Mc

Trρh
(1.22)

Thus, the destruction rate for clusters scales as µsh ∝Mc/ρ ∝ r3char, where rchar is some

characteristic radius. Gnedin, Lee & Ostriker (1999) found that as clusters lose mass,

this characteristic radius shrinks, such that mass-loss due to shocks is self limiting.

As a result, tidal shocking is expected to dominate during the intermediate stages of

a cluster’s lifetime, after stellar evolution has run its course. However, tidal shocking

will eventually become weak, and other mass-loss mechanisms will dominate instead,

(e.g., Fall & Zhang 2001). Moreover, the destruction rate due to tidal shocks is very

dependent on galactocentric radius, through either the azimuthal or radial period, and

either disk surface density or pericentric distance for disk and bulge shocks respec-

tively. Thus tidal shocks would be unlikely to reproduce the GCMF invariance with

galactocentric position while whittling a power-law CIMF into a GCMF as observed

today.

1.4.4 Evaporation

Evaporation is the loss of stars that have achieved escape velocity via two-body in-

teractions, and thus is closely linked to relaxation (section 1.2.2). In fact, the rate

that stars achieve escape energy occurs on the relaxation time-scale, which is the same

whether a cluster is isolated or tidally limited (though escapers from isolated systems

result mainly from single energetic encounters, rather than the culmination of many

weak interactions as is the case for tidally limited systems e.g., Spitzer 1987). As

stars escape, they carry away energy in the form of kinetic energy and each escaper’s

contribution to the cluster gravitational potential. This process of relaxation driven

evaporation will continue until mass and energy loss of the system are sufficiently se-

vere as to cause it to become unbound. Submerging this system in the gravitational

potential of a host galaxy imposes a tidal limit such that particles only need sufficient

energy to reach the tidal radius rather than infinity to escape, and thus evaporation is
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much swifter. Dimensionally then, evaporation rate scales as the total mass over the

relaxation time, and will have a different numerical coefficient depending on whether a

cluster is isolated or tidally limited (Spitzer 1987). For an isolated cluster, the squared

escape speed is given by v2esc(r) = −2Φ(r), and so the mean-square escape speed is

given by ⟨v2esc⟩ =
∫∞
0
ρ(r)v2esc(r) d

3r/
∫∞
0
ρ(r) d3r = −4W/M . According to the virial

theorem, −W = 2K =M ⟨v2⟩, and hence:

⟨
v2esc
⟩
= 4

⟨
v2
⟩

(1.23)

writing the velocity distribution function as f(v), then:

⟨
v2
⟩
=

∫∞
0
v2f(v) d3v∫∞

0
f(v) d3v

Hence, the fraction of the velocity distribution expected to escape is given by:

ξ =

∫∞
⟨v2esc⟩

1/2 f(v) d3v∫∞
0
f(v) d3v

Once these particles with sufficient energy to escape have done so, the velocity distribu-

tion will lack a high-velocity tail. Thus the cluster stars will begin to redistribute their

energies so as to return to the original velocity distribution on a relaxation time-scale

(see section 1.2.2). Hence, ξ is the fraction of stars (and therefore cluster mass) lost

per relaxation time (Ambartsumian 1938).

For a Maxwellian speed distribution, f(v) ∝ v2 exp(−v2/σ2), this is ξ = 0.00738

(e.g., Spitzer & Härm 1958). However, in a tidally limited cluster, escaping stars need

only reach the tidal boundary rather than infinity, and thus the mean-square escape

speed is reduced by 2GM/rt (e.g., Spitzer 1987), giving ⟨v2esc⟩ = 4 ⟨v2⟩
(
1− GM

2⟨v2⟩rt

)
.

Combining this with rh ≃ 0.45GM⟨v2⟩ (see section 1.2.1), the following is obtained:

⟨
v2esc
⟩
≃ 4

⟨
v2
⟩(

1− 10

9

rh
rt

)
(1.24)

This additional dependence on rh/rt signifies mass-loss rate dependence on cluster

structure. Figure 1.7 displays rh/rt as a function of concentration c for King (1966)
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models, showing that for these models rh/rt ∈ (0.1, 0.35) for a range of c including

most Milky Way GCs. One subtlety of this line of thought however is that the implicit

assumption that rt means the tidal radius has been made, i.e. that the cluster in

question is in fact filling its Roche lobe. Alternatively, rt could mean the zero density

radius which is in fact inside of the tidal radius. For a very compact cluster, rh ≪ rt

and the escape speed in equation (1.24) returns to that of an isolated cluster in equation

(1.23). Thus tidal limitation lowers the mean-square escape speed, resulting in a greater

fraction of the speed distribution escaping per relaxation time.

Figure 1.7: The ratio of half-mass radius, rh, to tidal radius, rt, as a function of cluster
concentration, c = log[rt/r0], for King (1966) models.

Dimensionally then, the rate of mass-loss due to evaporation scales as µev ∝
ξMc/trh ∝ ξρ

1/2
h (ignoring the weak dependence on Mc in the Coulomb logarithm).

However, given the dependence of ξ on rh/rt, the rate of destruction by evapo-
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ration is more accurately written as µev ∝ Mcf(ρt/ρh)/trh, where f should tend

to ξ as calculated for isolated clusters when Roche lobe under-filling, and to ξ as

calculated for tidally limited clusters when Roche lobe filling. Unfortunately, even

µev ∝ Mcf(ρt/ρh)/trh is still an oversimplification, as this is implicitly assuming that

stars leave the cluster as soon as they reach escape velocity (the energy criterion). In

reality, a star becomes a potential escaper and must first reach and cross the tidal

radius before actually escaping (the apocentre criterion, Fukushige & Heggie 2000).

Whilst travelling to the tidal radius, this potential escaper may have a close encounter

with another star, causing it to lose energy such that escape is no longer possible (King

1959). Since the time-scale for motion of stars inside a cluster is the crossing time,

tc, it seems logical to expect the time-scale for escape when considering this effect to

be a combination of the relaxation time and the crossing time. Baumgardt (2001)

investigated moss-loss under the apocentre criterion, and found that the time-scale for

escape was well represented by the combination tev = txrht
1−x
c ∝Mx

c ρ
−1/2
h . Also bearing

in mind that as a cluster on an eccentric orbit moves away from pericentre, the growing

tidal radius may envelop some of the recently lost stars, and they may become bound

to the cluster again (see section 1.2.3). Thus the time averaged mass-loss of a cluster

around an orbit will not correspond to the tides at pericentre, but will lie further away

at some radius rev. Thus the mass-loss due to evaporation is generally given by:

µev ∝ ξM1−x
c ρ

1/2
h f

(
ρt(rev)

ρh

)
(1.25)

The main uncertainties in evaporation rate then, are the value of 0 ≤ x ≤ 1 determin-

ing how much evaporation is slowed by escape rate dependence on crossing time, the

galactocentric radius corresponding to the tidal density that matches time averaged

mass-loss, rev, and the functional form of f(ρt/ρh) representing the escape speed de-

pendence on rh/rt, i.e. depending on cluster internal structure/degree of Roche lobe

filling.

Baumgardt (2001) first explained the evaporation time-scale scaling with a com-

bination of relaxation time and crossing time, and obtained an estimate of x ≃ 0.75.
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Additionally, Baumgardt (2001) found that despite the additional dependence on Mc,

the mass-loss rate is still approximately constant over a cluster lifetime. This was

largely corroborated by the findings of Tanikawa & Fukushige (2005) and Tanikawa

& Fukushige (2010). They also found that x depends on the density distribution of

the host galaxy and on internal cluster structure. However, since they did not account

for mass-loss rate dependence on rev or f(ρt/ρh), this could actually just be due to

degeneracy between x, rev and f(ρt/ρh).

Several studies have been conducted on exactly what rev should be, with some

saying it should be the orbital pericentric radius (von Hoerner 1957), others claiming it

should be the orbital radius of the time averaged tides (Küpper et al. 2010), and others

claiming it should be some function of eccentricity multiplying the orbital pericentric

radius (Webb et al. 2013). There is no clear resolution to these different assertions as

yet.

The dependence of mass-loss rate on (ρt/ρh) has been treated in several ways,

such as assuming a homologous cluster structure (Hénon 1961) meaning that at any

time, cluster structure is just a rescaled version of cluster structure at any other time,

i.e. ρt/ρh = const, such that rh/rt = 0.145 and thus f = const at all times as the cluster

loses mass. Baumgardt (1998) assumed a functional form of f =
√

1 + (αrh/rt) with α

determined from the results of N-body simulations. Alternatively, Gieles & Baumgardt

(2008) arrived at a functional form of f = ξ0 exp (10rh/rt) where ξ0 is the fraction of

mass lost per relaxation time for a cluster in isolation (e.g., Spitzer 1987). A more

thorough review of research into evaporation rates will be given in section 5.2.1.

Rather than identifying and explaining each of these uncertainties individually,

other studies have focussed instead on utilising only more easily observed GC data, i.e.

their half-light densities and luminosities, and employing assumptions about the initial

GCMF. Equation (1.25) is then employed with all of the uncertain terms bunched

into a constant, and the GCMF is evolved through time. The constant of combined

uncertainties that gives the closest match to observed GCMFs today then gives a

numerical estimate of the product and spread of these uncertainties in a GCMF, and

may be compared to theoretical results and simulations. Generally, the agreement
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is quite good (e.g., Jordán et al. 2007, McLaughlin & Fall 2008, Chandar, Fall &

McLaughlin 2007, Chapter 2). Treating the uncertainties in equation (1.25) in this

way returns the mass-loss rate to the much simpler relation of µev ∝ ρ
1/2
h . See Chapter

2 for a more detailed description of this process.

In terms of evolving a power-law CIMF into a log-normal GCMF, evaporation

is a strong candidate. This is because for x ≃ 1 (e.g., Baumgardt 2001; Tanikawa

& Fukushige 2005; Tanikawa & Fukushige 2010; Lamers, Baumgardt & Gieles 2010)

evaporation depends only weakly on cluster mass. Assuming that King (1966) models

are an accurate description of real GCs, then given that rh/rt does not vary much (a

factor of about 3 over realistic cluster concentrations, cf. Figure 1.7), then the function

f(ρt/ρh) is also likely to not vary very much. Therefore, the mass-loss rate is likely

to be roughly proportional to half-mass density. While the expectation may be that

tidal limitation will impose a correlation between half-mass density and galactocentric

position, plots of ρh vs rM do have some visible trend, but is largely scatter as displayed

in Figure 1.8. Therefore, µev is only very weakly dependent on galactocentric position,

which is consistent with GCMF radial invariance. Moreover, when a GCS is binned

in terms of GC internal density as in Figure 1.9, the GCMF of higher density bins

is found to shift to higher masses, in a way that µev ∝ ρ
1/2
h naturally explains. If

tidal shocking were the dominant destruction mechanism (µev ∝Mc/ρh), the opposite

would be expected, i.e. higher density bins would be expected to have undergone less

mass-loss, and therefore be at lower masses than lower density bins. If dynamical

friction were the dominant destruction mechanism (µev ∝ Mc), the GCMF would be

expected to be independent of internal cluster density. Thus evaporation seems to be

the dominant destruction mechanism driving GCMF evolution.
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Figure 1.8: Internal GC half-mass density vs galactocentric position for the Milky Way
GCS.

Figure 1.9: Mass functions of Milky Way GCs of different internal density ranges. The
density range in each bin is indicated in the top left of each panel (in units of M⊙pc

−3).
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1.4.5 Core Collapse

Relaxation serves to redistribute energy throughout a cluster, with faster stars generally

donating kinetic energy to slower stars of the same mass during an encounter. Stars

that gain energy will move onto larger orbits and consequently pass closer to the tidal

boundary, resulting in their preferential evaporation. Those that lose kinetic energy

will sink lower into the cluster potential, accelerating as they do so and consequently

will tend to have more kinetic energy than other stars they encounter, and thus will

tend to transfer more kinetic energy away. As relaxation time depends inversely on

density, transfer of kinetic energy is more rapid in the central regions. Consequently,

sinking stars will rapidly exchange kinetic energy with local stars, which will then

carry that energy into the outer envelope. As density is much lower in the outer

envelope, relaxation is inefficient at bringing that energy back into the core. Thus

sinking stars continue to have more kinetic energy than other stars around them,

and consequently continue to transfer away more kinetic energy and sink further into

the cluster potential. This process is called gravothermal instability, and serves to

dramatically increase cluster concentrations (Lynden-Bell & Wood 1968), meaning the

core becomes relatively much more dense while the halo becomes relatively much more

diffuse. Were this process to continue unhindered, the cluster would form a singular

(infinite density) core in finite time (e.g., Spitzer & Thuan 1972), hence the name core

collapse.

When a distribution of stellar masses is present, the onset of core collapse is even

more rapid. This is because encounters tend to equalise kinetic energies, so massive

stars tend to donate energy to less massive stars even if they have a lower speed. The

result of this is that the average kinetic energies of different local mass classes will tend

to equalise, m1 ⟨v21⟩ = m2 ⟨v22⟩, known as energy equipartition, where m1 ≫ m2 are

masses of two stellar populations. The more massive population will tend to sink while

the less massive population will migrate outwards due to the energy changes, where

they will then begin to move towards energy equipartition in their new local regions.

Ultimately this leads to mass segregation, where the positions and masses of cluster
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stars are correlated. This has the further effect of placing the most easily accelerated

(least massive) stars nearest to the tidal boundary, and more low-mass stars achieve

escape velocity (equation 1.24) such that a mass segregated cluster preferentially loses

its least massive stars.

As massive stars sink into the cluster potential, they also accelerate, such that

their mean kinetic energy is likely to exceed that of stars at the new more central

position. If the total mass in the more massive stars,M1, is greater than the total mass

in the local less massive stars, M2, then they will form an independent self gravitating

subsystem at the core of the less massive stars. Kinetic energy will continue to be

transferred to any less massive stars that stray close enough, and the subsystem of

massive stars will continue to contract, accelerating in the cluster potential as they

do so, such that they evolve away from, rather than towards, equipartition. This

process, known as the equipartition instability (Spitzer 1969), will continue indefinitely

if M1 & M2(m2/m1)
3/2 (e.g., Heggie & Hut 2003; Binney & Tremaine 2008), leading

ultimately to core collapse.

If core collapse were to continue unabated, the core densities of clusters would

reach infinite values within a finite time, possibly leading to a massive black hole

(Marchant & Shapiro 1980) or some other exotic physics such as stellar coalescence

(Lee 1987). However, core collapse is probably not actually this catastrophic, and

will eventually be halted by binary systems in the core before stellar collisions become

likely (Hut 1986). Binaries with less binding energy than the mean kinetic energy of

cluster stars are called soft binaries, and tend to dissociate with close encounters with

other stars. Binaries with more binding energy than the mean kinetic energy of cluster

stars are called hard binaries, and close encounters will cause the binary to become

more tightly bound whilst boosting the kinetic energy of the third star (Heggie 1975;

Hills 1975). Since when considering long-range interactions, close binary pairs can be

treated as a single massive particle, relaxation will tend to cause primordial binaries to

sink into the core (e.g., Koch et al. 2004). Due to the greater likelihood of hard binaries

surviving encounters, most of these core binaries will be hard binaries. In the absence of

primordial hard binaries in the core, as the core undergoes collapses core density will
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increase by many orders of magnitude to the point that typical encounters between

stars become close enough to lead to captures, resulting in the formation of binary

pairs (cf. section 1.2.2). Thus either with primordial binaries or not, hard binaries are

expected to be present in the cores of GCs providing a source of energy by boosting

the kinetic energies of the population of sinking stars, halting the collapse (Heggie

1979). The rate at which binaries re-energise the core is strongly dependent on core

density, which leads to oscillations between core collapse and binary re-heating, known

as gravothermal oscillations (Sugimoto & Bettwieser 1983; Goodman 1987; Makino

1996).

Evolution of clusters after the first 100Myr or so, once all the supernovae have run

their course, is expected to depend upon initial conditions (e.g. some kind of initial

mass-radius relation). This evolution is governed by relaxation, and will eventually

lead to core collapse after some time depending on the aforementioned cluster initial

conditions. These initial conditions will be erased when core collapse reconfigures

cluster internal structure, leaving all post core collapse clusters on similar evolutionary

tracts. Consequently, subsequent evolution is just a function of remaining mass and

tides (Küpper, Kroupa & Baumgardt 2008; Hurley & Mackey 2010). Around 20% of

Galactic GCs are thought to have undergone core collapse already (Harris 1996).

The impact of core collapse on mass-loss is that post core collapse clusters are

destroyed more efficiently (Chernoff & Djorgovski 1989; Lee & Goodman 1995). This

is because highly concentrated clusters have much bigger halos than cores (core oscil-

lations involve only the inner 1-2% of cluster mass; Goodman 1987) and consequently

most mass is in the halo where it is more vulnerable to tidal shocking.

1.4.6 Destruction Mechanism Overview

As stellar evolution is responsible for less mass-loss as time elapses, and is expected

to remove the same fraction of mass from all clusters (assuming they all start with

a similar stellar mass function), the focus in this overview is placed on the slow de-

struction mechanisms whose ongoing effects can be studied today. As dependencies on
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galactocentric position manifest through factors such as host galaxy volume density,

host galaxy surface density, cluster radial periods, etc., which cannot easily be broken

down into a general galactocentric position scaling, only the internal dependences of

these mechanisms are given:

• Dynamical friction, µdf ∝Mc (e.g. section 1.4.2)

• Tidal shocking, µsh ∝Mρ−1
h ∝ r3h (e.g. section 1.4.3)

• Two-body relaxation driven evaporation, µev ∝ ρ
1/2
h ∝M1/2r

−3/2
h (e.g. section

1.4.4)

One way to settle the contention of which one of these destruction mechanisms is

responsible for carving out a GCMF from an initially power-law CIMF would be to

observe intermediate age cluster systems. If the mass function is imprinted at an

early age, it would be expected to resemble old, evolved functions; whereas if the mass

function gradually changes as a result of slow decay, it would be expected to have a mass

function somewhere between rising steadily towards low masses, and being distinctly

peaked. This is currently an ongoing topic however, as identifying and making accurate

observations of appropriately aged cluster populations is not trivial; knowledge of where

to look is required, and a statistically significant number of objects to observe must be

present (Chandar et al. 2006; Goudfrooij et al. 2004; Glatt et al. 2011; Goudfrooij 2012).

Presently, data indicate that GCMF evolution is a gradual ongoing process rather than

instantaneous, as displayed in Figure 1.10, showing the mass function of the GCS of

NGC1316 in different ranges of half-mass density, ρh, and projected galactocentric

radius, Rgal, as indicated in the top right of each panel (Goudfrooij 2012). The solid

red line indicates the best fit power-law to the GCMF with M > 105M⊙ in that ρh

or Rgal band. The dotted black curve displays the best fit power-law to the GCMF of

the entire GCS for which βMF = 1.88 ± 0.04, and the dashed magenta line displays

a model assuming evaporation dominated mass-loss for 3Gyr acting on an initially

Schechter (1976) CIMF (these kinds of models will be described in much more detail

in Chapter 2). Clearly the GCMFs made of higher ρh and lower Rgal clusters in the
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bottom panels have been most strongly affected by mass-loss, as expected with the

evaporation scaling, with a turn-off from a power-law regime becoming apparent at

around M ≃ 105M⊙. Although it is expected that smaller Rgc would mean smaller

rM , which would lead to stronger tides (cf. equation 1.8) and thus higher ρh, the

radially binned GCMFs in the right hand panels have more intermediary values for

their power-law fits compared to the density binned GCMFs in the left hand panels.

This is likely because of a lack of correlation in ρh vs Rgc, as was found in the Milky

Way (McLaughlin & Fall 2008), M104 (Chandar, Fall & McLaughlin 2007), and in 22

Virgo galaxies in Chapter 2.

Figure 1.10: GCMF of the GCS of NGC 1316 divided up into bins of high and low
half-mass density, ρh (in units of M⊙pc

−3), and small and big projected galactocentric
distance, Rgc (in units of kpc), taken from Goudfrooij (2012). See text for details.

The dependences of the three slow evolutionary processes can be used to define

an area in M - Rh parameter space known as a survival triangle. Outside of this

triangle, clusters are expected to have either undergone or be undergoing destruction.

By requiring that the sum of the reciprocals of these destruction rates (equations 1.19,
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1.22, 1.25) at a given galacocentric radius with a given mass correspond to a destruction

time-scale equal to a Hubble time, it is possible to define an area on the fundamental

plane that should contain the majority of surviving GCs, as displayed in Figure 1.11.

R<3 kpc

R<5 kpc

R<8 kpc

R<12 kpc

Figure 1.11: The survival triangle for Milky Way GCs (Gnedin & Ostriker 1997).

The fact that most of the data are crowded against the relaxation line, and are

mainly distant from the dynamical friction or the tidal shocking sides suggests that it

is evaporation that is most responsible for having driven the evolution of the observed

extant GCs in the Milky Way, as otherwise, cluster populations in the process of being

‘culled’ by these mechanisms would also crowd against those boundaries (e.g., Fall &

Rees 1977; Okazaki & Tosa 1995; Ostriker & Gnedin 1997; Gnedin & Ostriker 1997).

As can be seen by the contours of triangles with different galactocentric distances, both

dynamical friction and tidal shocking destruction time-scales show significant depen-

dence on cluster galactocentric position. This is because dynamical friction depends
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on the density of background stars surrounding the cluster, which lessens further away

from the Galactic centre (cf. equation 1.19). Both disk and bulge shocking depend on

galactocentric radius through either radial or azimuthal period, and either disk surface

density or pericentric distance (cf. equation 1.22). Evaporation is mainly an internal

effect however, depending primarily on cluster rate of relaxation; hence the contours

on the relaxation side of the triangle are more compacted (cf. equation 1.25).

Assuming that evaporation is indeed the dominant mass-loss mechanism, since

the rate of mass-loss due to evaporation is roughly constant (as borne out in many sim-

ulations, e.g., Lee & Ostriker 1987; Chernoff & Weinberg 1990; Lee, Fahlman & Richer

1991; Vesperini & Heggie 1997; Gnedin, Lee & Ostriker 1999; Baumgardt 2001; Giersz

2001; Baumgardt & Makino 2003; Trenti, Heggie & Hut 2007; Lamers, Baumgardt &

Gieles 2010), the evaporation mass-loss rate may be written as:

dMc

dt
= −ξMc

trh
≃ const (1.26)

which can be integrated to give:

1

ξ
=

tev − t

trh
(1.27)

where tev−t is the expected remaining lifetime of a cluster, and trh its present relaxation

time. Estimates of ξ then indicate how many more present relaxation times clusters

are expected to last for. For tidally limited clusters, this is roughly 20-60, whereas for

isolated clusters, this is 100-300 (e.g., Hénon 1961; Spitzer & Chevalier 1973; Spitzer &

Shull 1975; Fall & Rees 1977; Caputo & Castellani 1984; Spitzer 1987; Aguilar, Hut &

Ostriker 1988; Chernoff & Weinberg 1990; Gnedin & Ostriker 1997; Murali & Weinberg

1997; Gnedin, Lee & Ostriker 1999; Jordán et al. 2007; Chandar, Fall & McLaughlin

2007; McLaughlin & Fall 2008; Goudfrooij 2012).

1.5 Dynamical Evolution of the GCMF

Over the last few decades, much work has been done to calculate the combined ef-

fect of the destruction mechanisms discussed in section 1.4 on the evolution of the
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GCMF. For example, Aguilar, Hut & Ostriker (1988) looked at cluster destruction

rates due to evaporation, tidal shocking, and dynamical friction by fitting an assumed

kinematic model for the GC system, and thereby generate initial orbital parameters for

the clusters. They then integrated these orbits and calculated the destruction rates,

and concluded that tidal shocking by the bulge is very efficient at destroying clusters

on highly eccentric orbits, but that after these clusters are destroyed, tidal shocking is

the least important mechanism with evaporation the dominant effect.

Okazaki & Tosa (1995) assumed an initial power-law cluster mass function, with

dN/dM ∝ M−2, and evolved it for 13 Gyr including evaporation, disk shocking, and

dynamical friction. They concluded that evaporation is the dominant mass-loss mech-

anism, and that dynamical friction only has an effect on the few innermost GCs and

can be ignored. They also concluded that evaporation was capable of turning an initial

power-law CIMF into a log-normal distribution as observed today. Furthermore, they

looked at the evolution of the GCFP by assuming an initial mass-radius relation, but

found that their resulting evolved GCFP largely depended their initial mass-radius

relation.

Murali & Weinberg (1997) used Fokker-Planck models (a model described by

a time-dependent distribution function) to study the disruption of star clusters by

evaporation and gravitational shocks. They assumed a power-law CIMF, and modelled

the evolution of clusters in a galaxy with a halo component alone, and with both a halo

and disk component. They found that the GCVP tends to become more tangentially

baised due to clusters on highly eccentric orbits being more easily destroyed, and that

initially the spatial distribution of GCs traced the spatial distribution of the halo, but

became more flattened at smaller radii due to stronger tidal forces there. However,

they only simulated clusters in the mass range M ∈ [105, 5 × 106]M⊙, and therefore

not much can be said about their results with regards to the evolved mass function

resembling a log-normal GCMF after 13Gyr of evolution.

Vesperini (1998) looked at GCMF evolution as being driven by evaporation, tidal

shocking, dynamical friction, and stellar evolution using N-body simulations assuming a

power-law initial cluster mass function or a log-normal initial mass function. He found
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that a log-normal initial mass function can retain its shape during a Hubble time

of evolution, whereas a power-law initial mass function will turn into a log-normal

mass function after a Hubble time of evolution. However, his models predicted a

much stronger GCMF dependence on galactocentric radius than is corroborated in

observations. Additionally, he assumed that all clusters moved on circular orbits in a

Keplerian potential, which is far from a realistic treatment.

Baumgardt (1998) assumed a βMF = −2 power-law initial mass function, and

that cluster mass-loss rate corresponds to the tides at orbital pericentre. With these

assumptions, they investigated the effects of dynamical friction and evaporation on

GCSs with different initial mass-radius relations, different tracer power-law slopes,

and different values of constant velocity anisotropy. They found that the GCMF de-

veloped a peak and broadly resembled the present day GCMF of the Milky Way after

a Hubble time for an initial tracer power-law profile with slope of α ≃ −4.5 and with

an initial velocity profile with anisotropy parameter β ≃ 0.5, though with some dif-

ferences around the inner parts of the Galaxy. They also found little dependence of

the evolution of the GCMF on the initial mass-radius relation of clusters. However,

when Baumgardt (1998) applied the same model to M87, they found that it could not

match the observed spatial distribution of the M87 GCS at all radii, either underesti-

mating the number of clusters at outer radii (& 15kpc) or overestimating the number

of clusters at inner radii (. 15kpc), depending on how it was normalised.

Fall & Zhang (2001) developed models to investigate the effects of evaporation,

tidal shocks and stellar mass-loss individually in a singular isothermal sphere with ei-

ther constant or radially increasing initial GCS velocity anisotropy. They found that

stellar evolution dominates mass-loss at early times, but does not change the overall

shape of the GCMF because the same fraction of mass is removed in all clusters, regard-

less of initial cluster masses. They also found that tidal shocking made a significant

impact on the high-mass end of the GCMF at late times, but that overall evaporation

is the dominant driver of GCMF evolution. They concluded that evaporation domi-

nated evolution may turn a power-law CIMF into a log-normal GCMF. Furthermore,

they concluded that a radially increasing velocity anisotropy is required to match the
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observed invariance of the GCMF with galactocentric radius. While more sophisti-

cated than previous attempts to model the evolution of the GCMF, they still assumed

that all clusters are tidally limited at pericentre, and only investigated the evolution

in a singular isothermal sphere with a few different anisotropy profiles. Additionally,

Vesperini et al. (2003) used a very similar method to model the GCMF evolution of

M87, and found that the degree of anisotropy required to make the GCMF radially

invariant was inconsistent with observations.

Fall & Zhang (2001) suggested that the difficulties in reproducing a radially

invariant GCMF is because models used to simulate evolution all assume a spherical

and static galactic potential, whereas in reality the galaxy will have undergone mergers

and close encounters. Prieto & Gnedin (2008) used N-body simulations to model the

evolution of the GCMF through evaporation, stellar evolution, and tidal shocking,

including hierarchical merging. They found that mergers can scramble the orbits of

GCs, such that GC mass ranges that may have been depleted within some range of

galactocentric distance are repopulated. Thus they were able to produce an evolved

GCS with a velocity distribution compatible with observations, and with a GCMF peak

mass that matches observations and is the same at all galactocentric radii. However,

they assumed in their model that all clusters had constant density, making inferring

any conclusions about how a time-dependent potential might affect cluster destruction

impossible.

However, Jordán et al. (2007) argued that rather than calculate mass-loss in GCs

using calculated tidal density based on the strength of tides at some point along an

orbit, it may be more natural to measure the density of GCs (either through fits of

King (1966) models, or measurements of half-light radii) directly, and use these to

calculate mass-loss. Thus if clusters did indeed have their densities set by tides at

orbital pericentre, but later had their orbits scrambled such that their new orbital

pericentres no longer correspond to their densities, it would not matter as the mass-

loss history can still be calculated directly from the density. Furthermore, orbiting

bodies move most slowly at apocentre, and hence this is where they are most likely to

be observed. Therefore, if rather than calculate the orbit, the present galactocentric
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radius is used to calculate the tidal density, yet more error is stacked up. In galaxies

other than the Milky Way, projection effects make the problem even worse. By using

internal cluster densities, all of these problems are avoided. By assuming constant

mass-loss rate due to evaporation and a Schechter (1976) CIMF, Jordán et al. (2007)

built very simple models for evaporation dominated mass-loss, where the average mass

lost for a group of clusters, ∆, is a fitting parameter, C, times the duration of the

evolution, t, times the square root of the mean cluster densities in that group, ρ̄h, i.e.

∆ = Cρ̄
1/2
h t. They were then able to combine this average mass-loss with the CIMF to

make an evolved GCMF as a function of ∆. By fitting these models to data, they were

then able to obtain a best fit value for the parameter C, and found it to be in good

agreement with theoretical results and simulations (see section 1.2.2). McLaughlin &

Fall (2008) improved on this procedure by using individual cluster densities, rather

than the mean densities of a group of GCs.

Given the mounting evidence indicating that GCMF evolution is indeed domi-

nated by evaporation, in the next Chapter the types of simple single parameter models

as derived by McLaughlin & Fall (2008) are used to obtain an estimate for C using data

from 22 early-type Virgo galaxies. Chapter 3 then describes the physics, numerics, and

procedures for setting up a simulated GCS with specifiable initial spatial, kinematic,

and mass distributions in a specifiable host galaxy model, and ends by describing a

code utilising these physics, numerics and procedures. Chapter 4 displays the output

of this code for a wide variety of GCS properties in a range of host galaxy potentials.

Chapter 5 then proceeds to describe the physics, numerics, and procedure for then tak-

ing these simulated initial GCSs and evolving them through time with a choice of any

combination of evaporation, tidal shocking, dynamical friction, and stellar evolution,

each represented by a choice of several prescriptions taken from the literature, and

using results from Chapter 2. Chapter 6 begins with the description of a second code

capable of taking the initial simulated GCSs output by the first code, and applying the

evolutionary methods and prescriptions described in the previous Chapter to produce

evolved simulated GCSs. Demonstrations of the application of this second code with

a selection of evolutionary methods and prescriptions to a variety of initial GCSs are
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then presented. This is then followed by the discussion and conclusions in Chapter 7.
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2 GCMFs in Early-Type Virgo Galaxies

2.1 Introduction

With current technology it is possible to measure internal GC properties such as veloc-

ity dispersions, metallicities, etc., throughout the Local Group (e.g., Barmby, Holland

& Huchra 2002; McLaughlin & van der Marel 2005; Barmby et al. 2007). These prop-

erties may be used to piece together an understanding of GC evolution, thus giving

clues to cluster formation, and by extension, star formation in the early universe. In

order to build as comprehensive a picture of GC evolution as possible, as many data as

possible are required. However, acquiring these sorts of GC data outside of the Local

Group is extremely difficult if not impossible. Until technology advances sufficiently

to directly measure internal GC properties in galaxies further afield, it is still possible

to measure some basic properties, such as GC sizes (e.g., Jordán et al. 2005) and lumi-

nosities (e.g., Jordán et al. 2006; Jordán et al. 2007) across an entire GCS. By looking

at the number of globular clusters per unit luminosity, (the globular cluster luminosity

function, GCLF) or analogously, the number of globular clusters per unit mass (the

globular cluster mass function, GCMF — see section 2.2.2) can be delineated.

Previous attempts to model the evolution of GCMFs have revolved around infer-

ring the internal density of clusters via their orbital pericentres. These attempts have

then resulted in predicting a radial dependence of the GCMF that is contrary to ob-

servations (see section 1.5). Rather than attempt to build models predicting a radially

invariant GCMF, Jordán et al. (2007) instead developed models depending on internal

cluster densities. These models assumed an initial cluster mass function (CIMF) in

the form of power-laws, resembling the mass functions of young massive clusters as

observed in mergers (e.g., Whitmore & Schweizer 1995; Schweizer et al. 1996; Zhang &

Fall 1999; Fall & Zhang 2001; Fall, Chandar & Whitmore 2005; Bastian et al. 2006),

and roughly constant evaporation dominated rate of mass-loss. By deriving an expres-

sion relating current and initial GC mass depending on evaporation rate, Jordán et al.



54

(2007) were able to evolve these CIMFs over 13 Gyr to create mass functions resembling

GCMFs as observed in the Virgo cluster. In this Chapter, the same data published

in Jordán et al. (2009) are used in similar but more advanced models to obtain an

estimate for a parameter directly related to ξ, the fraction of mass lost per relaxation

time (cf. equation 1.27), giving ξ ≃ 0.078 ± 0.016, indicating that GCs in the Virgo

system are expected to survive for on average about another 13 relaxation times before

being destroyed by the tidal fields of their host galaxies, in good agreement with other

studies (e.g., Hénon 1961; Spitzer & Chevalier 1973; Spitzer & Shull 1975; Fall & Rees

1977; Caputo & Castellani 1984; Spitzer 1987; Aguilar, Hut & Ostriker 1988; Chernoff

& Weinberg 1990; Gnedin & Ostriker 1997; Murali & Weinberg 1997; Gnedin, Lee &

Ostriker 1999; Jordán et al. 2007; Chandar, Fall & McLaughlin 2007; McLaughlin &

Fall 2008). Furthermore, the GCMF dependence on average internal cluster density,

whilst simultaneously lacking any strong dependence on galactocentric position is reaf-

firmed, in agreement with studies conducted in the Milky Way (McLaughlin & Fall

2008), M104 (Chandar, Fall & McLaughlin 2007), and NGC1316 (Goudfrooij 2012).

The overall aim of this Chapter is to test the hypothesis that evaporation may turn

a power-law CIMF into a GCMF with a distinct peak that is constant with radial

position as observed in the Milky Way and in other extant GCSs.

Theory predicts the relation µev ∝ ρ
1/2
h , where µev is mass-loss rate due to evap-

oration, and ρh = 3M/(8πr3h) is half-mass density. However this simple relation is

complicated by additional considerations such as the ‘apocentre criterion’, where es-

caping stars must pass beyond the tidal radius before being lost from the cluster, the

oscillating tidal radius of a GC on an elliptical orbit, and even the internal GC struc-

ture (see section 1.4.4). Accounting for any one of these additional considerations is a

difficult and complicated problem, let alone attempting to derive a general expression

for µev. However, N-body simulations have shown that mass-loss due to evaporation

is roughly linear with time for the majority of a cluster’s lifetime for a wide variety of

cluster structures (Baumgardt & Makino 2003). Thus it is possible to take the simple

relation µev ∝ ρ
1/2
h , assume that evaporation is the dominant cause of mass-loss, and fit

for the proportionality constant. In doing so, the additional uncertainties in evapora-
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tion rate due to the apocentre criterion, oscillating tidal radii, and cluster structure are

absorbed into this proportionality constant. If these effects significantly modified the

mass-loss rate from a simple dependence on half-mass density, we would expect that

assuming µev ∝ ρ
1/2
h and fitting for the proportionality constant would provide a poor

fit to observed data. However, McLaughlin & Fall (2008) showed that equally good

fits are obtained in the Milky Way when mass-loss rates are taken to scale with tidal

densities as implied by King (1966) model fits rather than half-mass densities, and in

fact found that their constant of proportionality changed by a constant factor of 210,

the median of GC ρh/ρt in the Harris (1996) catalogue. Furthermore, McLaughlin &

Fall (2008) also showed that GCMF models of very similar shape can be fitted, with

equally good results, if evaporation rates are taken to scale with tidal surface densi-

ties, Σt ∝ M/πρ
1/2
t (a scaling closer to what is expected for evaporation modified by

the apocentre criterion). Therefore, since fitting King (1966) models to GCs in Virgo

provide tidal radii so uncertain as to be essentially meaningless, it is assumed that the

findings of McLaughlin & Fall (2008) in the Milky Way also apply in each of the 22

Virgo galaxies.

Before proceeding to fit half-mass density-dependent models to observed GCMFs,

a further point to consider is that mass segregated clusters have constituent star masses

correlated with distance from the cluster centre (see section 1.4.5). Since the depen-

dence of star luminosity on stellar mass is highly non-linear, the luminosity and mass

profile of mass segregated clusters are consequently different. As many GCs are thought

to be mass segregated (e.g., King, Sosin & Cool 1995; Ferraro et al. 1997; Andreuzzi

et al. 2000; Howell, Guhathakurta & Tan 2000; Koch et al. 2004), this means that

generally half-mass and half-light radii will be different, ρh,light ̸= ρh,mass. However,

this is not a big problem for old clusters, as low-mass stars are preferentially shed dur-

ing evaporation (e.g., Lamers, Baumgardt & Gieles 2013) and high-mass stars expire

through stellar evolution, resulting in older clusters having a narrower range of stellar

masses (and thus luminosities) present. Hence, old clusters tend towards single mass

clusters, and the half-mass and half-light radii converge. Thus using half-light densities

in place of half-mass densities in the GCMF models should only have a minor affect
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on the models.

A further important consideration for this investigation is whether Virgo GCs

are actually tidally limited at all. Due to the difficulties in calculating tidal radii of

GCs outside of the MW (i.e. either contending with projection when trying to infer a

tidal density from observed galactocentric positions, or in fitting King (1966) models

to clusters whose light profiles are barely visible outside of the effective radius), it

is simply assumed that all GCs in the 22 galaxies are tidally limited and have been

for the majority of their lifetimes. Thus, these Virgo GCs will have been undergoing

an approximately constant rate of mass-loss for the majority of their lives due to

evaporation. However, other studies bring into question whether GCs can accurately

be assumed to be tidally limited at all. For example, Baumgardt et al. (2010) identified

two populations outside of 8 kpc in the Milky Way GCS based on a plot of rh/rJ

against rgc (their Figure 2), revealing two distinct populations; a ‘compact’ population

(rh/rJ . 0.05) and a ‘tidally limited’ population (0.1 . rh/rJ . 0.3). Since rh/rt .
0.1 is undefined for King (1966) models (cf. Figure 1.7), they concluded that these

‘compact’ clusters must be under-filling their Roche lobes. However, Baumgardt et al.

(2010) used present GC galactocentric radii to calculate rJ when computing rh/rJ .

Given that orbiting bodies move most slowly near apocentre, this is where they are

statistically most likely to be observed. Since the tidal density of a GC is actually

expected to be set somewhere near pericentre, Baumgardt et al. (2010) used very

inflated rJ values. The ratio of pericentre, rp, to apocentre, ra, is related to orbital

ellipticity via e = (1− rp
ra
)/(1+ rp

ra
). In a singular isothermal sphere the average ellipticity

is around e ≃ 0.55, largely independent of velocity anisotropy (van den Bosch et al.

1999), giving the ratio of apocentre to pericentre to be about rp/ra ≃ 0.29. Using the

same equation for rJ as Baumgardt et al. (2010),

rJ =

(
GMc

2V 2
G

)1/3

r2/3gc (2.1)

this amounts to a difference of a factor of ∼ 0.44 in rJ . This would go a long way

towards, and in many cases resolve the problem of rh/rJ not falling within the allowed
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range of rh/rt for King (1966) models for these ‘compact’ clusters.

Additionally, Gieles et al. (2011) analytically derived models describing the evolu-

tion of cluster density, half-light radius, relaxation time, and crossing time as functions

of cluster evolution (the ratio of current age to total lifetime, t/τev0 in their notation).

By taking the time derivative of their expression for relaxation time and finding the

value of t/τev0 corresponding to the stationary point, Gieles et al. (2011) then defined

clusters with ratios of age to total lifetime below this value as expansion dominated, and

those above as evaporation dominated (i.e. separating those that are tidally limited,

and those that are still in the process of expanding to fill their Roche lobes), and con-

cluded that 93 of the 141 Milky Way clusters in their sample are not tidally limited.

However, this is an ad-hoc result as their models have the built-in assumption that

clusters are born severely under-filling their tidal radii (i.e. essentially in isolation). In

the derivation of their models this assumption is manifested where they assume that

the initial crossing time of newborn clusters is zero, equivalent to an infinite initial

density. Realistically, some clusters could form already filling a significant fraction of

their Roche lobe (e.g., Elson, Fall & Freeman 1987), thus decreasing the fraction of

their total lifetimes taken to reach evaporation dominated evolution (i.e. the position

of the stationary point in relaxation time would be at lower t/τevo), and thus fewer

clusters would fall under the isolated regime. Indeed, in some cases clusters may even

be born tidally limited. In any event, Gieles et al. (2011) assumed a constant rate of

mass-loss throughout cluster evolution, which is the only reason the assumption that

the 22 Virgo galaxy clusters are tidally limited is made in the first place. Consequently

there is little actual evidence that Milky Way GCs are anything but tidally limited,

and we proceed to assume the same of GCs in Virgo.

Having addressed the technical issues in the assumptions and methodology, the

next section details the data, followed then by the derivation of the density-dependent

GCMF models. Following the models are the results and conclusions about the inves-

tigation.
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2.2 Data

This investigation utilises data collected as part of the HST ACS Virgo Cluster Survey

(Côté et al. 2004). The survey imaged 100 early-type Virgo galaxies in deep F475W

(denoted W throughout) and F850LP (denoted LP throughout) for a total of 750 and

1210 seconds respectively. Jordán et al. (2009) presented these data, giving projected

galactocentric positions (Rgc), foreground E(B − V ) (AW = 3.634E(B − V ), ALP =

1.485E(B−V ); Jordán et al. 2004), King (1966) projected half-light radii (Rh,W , Rh,LP ),

magnitudes (mW , mLP , M⊙,W = 5.13 and M⊙,LP = 4.56; Gonzaga 2011), and back-

ground flux (Ib,W , Ib,LP ) for the GCs of each galaxy imaged (Jordán et al. 2004). Note

that by numerically projecting spherical GC models (e.g., King 1966 models), it is

possible to calculate the unique projected half-light radius, Rh, corresponding to the

unprojected half-light radii, rh. Thus by assuming a spherically symmetric GC, it is

possible to also calculate rh given Rh. For King (1966) models, the relation rh = 4Rh/3

holds for a large range of the concentration parameter c, and so this is how projected

half-light radii are deprojected throughout this Chapter.

Jordán et al. (2009) then developed a ‘clustering method’, which was utilised to

assign a probability that each source is a bona fide GC: those with a probability less

than 0.5 were removed in an attempt to remove contaminants such as foreground stars

or background galaxies. Furthermore, Jordán et al. (2009) culled the data in terms of

an upper limit on apparent magnitude in a further attempt to remove contaminants.

An additional cut to the data was implemented in this investigation by requiring that

all data satisfy |Rh,W − Rh,LP | < (Rh,W + Rh,LP )/2, as the W and LG radii of some

data differed by as much as a factor of 3, much more than could be accounted for

with typical random uncertainties (±0.0003 arcseconds ≈ 0.25 pc; Jordán et al. 2005).

Throughout this investigation, LP -band observations were preferentially used, as LP -

band mass-to-light ratios (ΥLP ) are much less sensitive to metallicity than W -band,

reducing the scope for additional error in cluster masses (e.g., Jordán et al. 2007, see

Figure 2.1). The reason that LP mass-to-light ratios are insensitive to metallicity is

that the LP bandpass is at longer wavelengths thanW (850nm vs 475nm peak response
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throughput), and the spectra of different metallicity simple stellar populations tend to

differ little at longer wavelengths (e.g., Schulz et al. 2002).

In order to ensure good number statistics in the observed GCMFs, GC data

were only used from galaxies with observed cluster populations of at least 130 in the

Jordán et al. (2009) catalogue. This resulted in a selection of 26 galaxies, 4 of which

are compact ellipticals associated with either M49 (VCC 1226) or M87 (VCC 1316)

(Jordán et al. 2007; Jordán et al. 2005), namely VCC 1327, VCC 1297, VCC 1192,

and VCC 1199. These 4 were excluded, as the majority of GCs in their vicinity likely

actually belong to M49 or M87. Images were then available for each of the remaining 22

galaxies’ GCs in bothW and LP bandpasses. Absolute magnitudes were calculated for

the GCs with distance moduli measured by Mei et al. (2007) using surface brightness

fluctuations, although some could not be calculated due to dust excess. Where dust

excess was a problem, a distance modulus of (m−M) = 31.1 was assumed (Mei et al.

2005) (equivalent to 16.6 Mpc).

2.2.1 Incompleteness

At the distance of Virgo, photometric data incompleteness can become an issue. This is

caused by such factors as clusters being missed due to being too dim/distended, or due

to being obscured by their host galaxies. Jordán et al. (2009) produced completeness

tables, giving the probability that a cluster with a given magnitude,m, half-light radius,

Rh, and against a given background intensity, Ib, is observed. These completeness

tables were produced by inserting artificial clusters with known m and Rh into an

image with known Ib, and recording the fraction of artificial clusters recovered by their

data pipeline. This fraction is then equivalent to the probability that such a cluster

against such a background is observed.

Without correcting for incompleteness, any model of GCMF evolution may pre-

dict the presence of clusters in areas where there is data missing due to incompleteness,

resulting in a bad fit. Thus in both W and LP , the completeness tables produced by

Jordán et al. (2009) were interpolated over and convolved with the GCMF evolution
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models (to be described in section 2.3), such that the GCMF model predicted accord-

ingly fewer GCs where they are less likely to be observed.

Additionally, in the interests of limiting the model GCMF predictions in the same

way that the data was limited, it was necessary to account for the data cuts imposed

by Jordán et al. (2009). Their criteria are as follows:

• 0.5 mag < W − LP < 1.9 mag

• 0.75 pc < rh < 10 pc

• LP < 25.15 mag

• W < 26.35 mag

This was accomplished by simply setting the aforementioned completeness probability

to be convolved with the GCMF models for any clusters that did not satisfy these

criteria to zero, regardless of what the completeness probability was actually tabulated

as.

2.2.2 Mass-to-Light Ratios

Mass-to-Light ratios for W and LP (ΥW and ΥLP ) were calculated using population

synthesis models for every cluster and used to convert from luminosity to mass, thus

also allowing conversion from a GCLF to a GCMF. The population synthesis models

used were Bruzual & Charlot (2003) with appropriate HST F475W and F850LP filter

response curves (ACS Handbook, Gonzaga 2011) added to the filter database. The

assumed IMF was the Chabrier (2003) disk IMF, with an assumed age of 13 Gyr for

all GCs, leading to curves of ΥW and ΥLP against W - LP colour (e.g. see Figure 2.1).

ΥW and ΥLP were then interpolated for every individual cluster using observed W and

LP magnitudes.

Curves of ΥW and ΥLP were also computed with the Maraston (2005) population

synthesis models to facilitate comparisons, and were found to be in good agreement
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Figure 2.1: Top panel: mass-to-light ratios in solar units in the F475W (denoted
g in this plot) and F850LP (denoted z in this plot) bandpasses against metallicity.
Bottom panel: F475W - F850LP colour against metallicity, all as predicted by the
PEGASE population synthesis model for a 13 Gyr old simple stellar population (Fioc
& Rocca-Volmerange 1997). The arrows indicate the maximum and minimum average
GC [Fe/H] in the ACSVCS galaxies. Plot taken from Jordán et al. 2007.
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with the Bruzual & Charlot (2003) models. ΥW and ΥLP were then multiplied by a

corrective factor of 0.8 to correct for the preferential loss of low-mass stars during the

process of relaxation driven evaporation raising the average stellar mass, and conse-

quently the average stellar luminosity even more (e.g., McLaughlin & van der Marel

2005; Baumgardt & Makino 2003; McLaughlin & van der Marel 2005; Barmby et al.

2007; Lamers, Baumgardt & Gieles 2013). The masses calculated using W and LP

magnitudes combined with these mass-to-light ratios were in good agreement, with an

average deviation of 10%. Kruijssen & Lamers (2008) developed models in V -band to

describe the evolution of average stellar mass in a cluster as a function of age (and

hence, mass-to-light ratio) by considering the opposing effects of stellar evolution de-

pleting the high-mass end of the stellar mass function, and the preferential depletion

of low-mass stars by evaporation. By also treating for mass-dependent escape rates

during evaporation, they theorised that this corrective factor to the mass-to-light ratio

should itself be a function of cluster mass, which would cause the shapes of the GCMF

and GCLF to differ, rather than simply being rescaled versions of one-another. In

order for the preferential loss of low-mass stars to be significant, a cluster must first

be mass segregated. Since the time-scale for mass segregation is the relaxation time,

it is therefore expected that at a given density, lower mass clusters with shorter re-

laxation times will be more adversely affected by mass-dependent mass-to-light ratios.

Kruijssen & Lamers (2008) predicted that this effect could amount to as much as 0.6

dex for clusters with luminosities LV ≃ 104L⊙, but is negligible for clusters with lumi-

nosities LV & 105.5L⊙ (e.g. their Figure 7). Incorporating these models would require

the detailed mass-loss history of each individual cluster, which would erase the benefit

of the simple density-dependent GCMF models derived next. Additionally, since this

consideration will most strongly affect the low-mass end of the GCMF which already

has problems with incompleteness anyway, it is therefore neglected.
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2.3 Density-Dependent GCMF Models

These models begin by assuming a Schechter (1976) CIMF, giving the probability of a

cluster having an initial mass between M0 and M0 + dM0:

dN

d logM0

∝M1−βMF
0 exp

[
− M0

Msch

]
(2.2)

where an exponent of βMF ≈ 2 gives good fits to young cluster mass functions (e.g.,

Zhang & Fall 1999; Chandar et al. 2010; Whitmore et al. 2002; Gieles et al. 2006;

Bastian et al. 2007; Jordán et al. 2007), and Msch ≈ 106 M⊙ describes at what mass

the exponential cut-off in the GCMF occurs, also constrained by observations of real

cluster mass functions (e.g., Jordán et al. 2007; Harris et al. 2009).

Assuming that evaporation is the dominant mass-loss mechanism over a cluster

lifetime (see section 1.4 for an overview of GCMF evolution mechanisms), and that

evaporation rate is roughly constant over that time, then since mass-loss due to evap-

oration is a constant fraction per relaxation time, µev = −ξMc/trh ∝ −ρ1/2h = −Cρ1/2h

where C is the proportionality constant (see section 1.4.4). Note that this implies C

has units of M⊙
1/2pc3/2Gyr−1. This expression for µev may be integrated from t = 0

to the present time to give the following relation between initial and present mass:

M0 =Mc + Cρ
1/2
h t (2.3)

Alternatively, the integration may be taken from the present time to the time when

the cluster has completely dissolved, tev, leading to the same expression as in equation

(1.27), relating the fraction of mass lost per relaxation time, ξ, to the number of present

relaxation times a cluster has left before destruction, (tev − t)/trh. Thus, physically

the parameter C contains information about the expected lifetimes of clusters, and is

related to ξ through:

ξ =
0.138C

m̄ ln (λN)

(
3

8πG

)1/2

(2.4)

where m̄ is the mean stellar mass in a cluster, and ln (λN) is the Coulomb logarithm.
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Simple application of the chain rule and conservation of probability allows the

CIMF to be related to the evolved cluster mass function (Fall & Zhang 2001):

dN

d logMc

=
dN

d logM0

∂ logM0

∂ logMc

=
Mc

M0

dN

d logM0

∂M0

∂Mc

=
Mc

M0

dN

d logM0

(2.5)

Then substituting equations (2.2) and (2.3), the resulting equation gives the probability

that a cluster with density ρh has a mass between M and M + dM at time t (Jordán

et al. 2007):

dN

d logMc

=
AMc

(Mc + Cρ
1/2
h t)βMF

exp

[
−Mc + Cρ

1/2
h t

Msch

]
(2.6)

Where A is a normalisation constant. As this is a probability distribution, the integral

of this function from the lowest possible cluster mass (Ml = 102M⊙) to the highest

(Mu = 108M⊙) is unity, and thus the normalisation constant is given by:

A = ln(10)

(∫ Mu

Ml

(Mc + Cρ
1/2
h t)−βMF exp

[
−Mc + Cρ

1/2
h t

Msch

]
dMc

)−1

(2.7)

The peak of the cluster probability distribution is analytically calculable and is given

by:

MTO = Msch

2

−(Cρ
1/2
h t

Msch
+ βMF − 1

)
+

√(
Cρ

1/2
h t

Msch
+ βMF − 1

)2

+
4Cρ

1/2
h t

Msch

 (2.8)

In order to account for data incompleteness, the probability distribution must also

incorporate the chance that a cluster of magnitude m, half-light radius Rh and against

a background of intensity Ib is not observed. This is done simply by multiplying the

probability distribution and the completeness fraction (see section 2.2.1), such that the

product gives the probability that a cluster with mass Mc, density ρh, magnitude m,

half-light radius Rh, and against a background of intensity Ib exists at time t, and is

observed. Using distance moduli (Mei et al. 2005; Mei et al. 2007) and mass-to-light
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ratios (see section 2.2.2), the magnitude may be turned to a mass, and with the mass

already specified, the effective radius may be turned to a density. Thus the observable

probability distribution actually only depends on Mc, ρh, and Ib, and is given by:

dN

d logMc

=
AMc

(Mc + Cρ
1/2
h t)βMF

exp

[
−Mc + Cρ

1/2
h t

Msch

]
× f(Mc, ρh, Ib) (2.9)

with A now given by:

A = ln(10)

(∫Mu

Ml
(Mc + Cρ

1/2
h t)−βMF exp

[
−Mc+Cρ

1/2
h t

Msch

]
f(Mc, ρh, Ib) dMc

)−1

(2.10)

The total mass function of an entire GCS is then just the sum of each constituent

cluster’s probability distribution (McLaughlin & Fall 2008), i.e.

dN

d logMc

=
N∑
i=1

AiMc,i

(Mc,i + Cρ
1/2
h,i ti)

βMF

exp

[
−
Mc,i + Cρ

1/2
h,i ti

Msch

]
× f(Mc,i, ρh,i, Ib,i) (2.11)

where N is the total number of GCs in the GCS, and Mc,i, ρh,i, Ib,i and ti are the

mass, density, background intensity, and age of the i’th cluster. Both βMF and Msch

are assumed to be parameters of the host galaxy and consequently the same for all

clusters, and all clusters are assumed to be 13 Gyr old.

Assuming that Cρ
1/2
h t≪Msch (i.e. that the mass lost from a cluster with density

ρh at time t is much less than the Schechter (1976) exponential drop-off mass), it can be

shown thatMTO ≃ Cρ
1/2
h t/(βMF −1) if βMF > 1. Hence there is a degeneracy between

C and βMF , making fitting for both as free parameters redundant. Furthermore, Jordán

et al. (2006) and Jordán et al. (2007) analysed the GCLFs of the ACSVCS galaxies,

fitting them with both Gaussian curves and “Evolved Schechter models” similar to

those described above. They found that the dispersion of Gaussian models, and Msch

in the Schechter models, falls off with decreasing host galaxy luminosity, resulting in

a range of Msch values of (2 − 3) × 106M⊙ for the brightest galaxies to (3 − 4) ×
105M⊙ for the faintest. Despite this systematic dependence, the origins of Msch are
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somewhat mysterious; so far there has been little physical explanation or reasoning for

its existence. Indeed Msch ∼ 106M⊙ is entirely consistent with power-law CIMFs, but

is rarely necessary for a good fit. The sole purpose for the existence of Msch in these

models is to allow the evolved GCMF curves to match the high-mass end of observed

GCMFs. Consequently rather than for each galaxy fit for an additional parameter

that is poorly understood, Msch is fixed at the same value for all 22 ACSVCS galaxies.

However, different values of Msch are trialled, with the results reported in section 2.4.

Thus these are models of only a single variable parameter, C. The procedure

for obtaining C is first to select a galaxy, and divide its GCS into bins of density. In

order to keep a significant number of GCs in each division of density, only 3 bins were

created. A wide range of values for C is then looped over, and equation (2.11) is then

simultaneously applied to each density bin at each iteration of C, using the half-mass

densities of the constituent GCs. At every iteration of C, values of χ2 are calculated to

compare the model GCMFs to the observed data in each bin, and the sum of χ2 from

each bin is recorded, where χ2 is given by:

χ2 =
n∑
i=1

(Pi −Oi)
2

σ2
i

(2.12)

χ2
ν =

χ2

n− 1

where n is the number of degrees of freedom (in this case the number of mass bins the

GCMF was divided into), Pi is the predicted number of GCs at the mass of the i’th

bin, Oi is the observed number of GCs in the i’th bin, σi is the error in the observed

number in the i’th bin, and χ2
ν is the reduced chi-squared.

The next value of C is then iterated, and the process is repeated until the loop

completes. The optimal value for C is then selected through χ2 minimisation, i.e., the

value of C corresponding to the iteration giving the smallest sum of χ2 values. Thus

each galaxy has a value of C common to each density bin, and any differences between

the bins is due to the different half-light densities of the constituent GCs in each bin.

The fits giving the smallest sum of χ2 are displayed in Figure 2.2.
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Once C is obtained, the GCS is then subdivided into bins of galactocentric radius

instead of half-light density, and equation (2.11) is applied using the recently acquired

C and the densities of the clusters in each bin, as displayed in Figure 2.3.

Table 2.1 contains the details of each panel of Figures 2.2 and 2.3. The table

is sorted by descending galaxy B-band luminosity (column 2), and lists the effective

radius of each galaxy (column 3) and the number of GCs in each galaxy (column 4).

Next is the median half-light density of each division of the density-sorted GC data

(column 5). By fitting models according to the procedure outlined in section 2.3, the

best-fit model turnover-masses (column 6), χ2 (column 7), and fitting parameter C

(column 8) are gained. The same value of C is then used with data sorted by Rgc (the

median values of which are given in column 9), to produce models with turnover-masses

listed in column 10, and χ2 values listed in column 11.

2.4 Results

Figure 2.2 shows the models produced using equation (2.11) fitted to the GCS in each

of the 22 galaxies, in order of descending galaxy luminosity. The only parameter varied

in the fitting was the constant of proportionality, C, from equation (2.3). The three

panels for each galaxy show the different cluster density bins, with the least dense

clusters in the top panel, increasing downwards. The red dashed curve represents

the model prediction for the intrinsic GCMF (i.e., if all GCs were visible), given by

equation (2.11) with f(Mc,i, ρh,i, Ib,i) = 1 for allMc,i, ρh,i, and Ib,i. The solid blue curve

is generated by equation (2.11), displaying the predicted intrinsic GCMF convolved

with incompleteness data, and is thus the prediction for the observable GCMF of that

galaxy. Black points are GC data with Poisson error bars.

The reason that the red and blue curves deviate at the high-mass end of the

top panel for every galaxy is due to the upper limit in rh of 10pc imposed on the

GCMF evolution models to match the cuts to the data made by Jordán et al. (2009).

As the top panel contains the least dense clusters, any massive clusters must have



68

Figure 2.2: Observed mass function of the 22 ACSVCS galaxies selected in this sam-
ple, with evolved Schechter (1976) function (red dashed) and completeness degraded
Schechter (1976) function (solid blue) applied to density sorted data. Galaxies are
ordered by descending B-band luminosity. Details of each plot are given in Table 2.1.
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Figure 2.2: Continued.
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Figure 2.3: Observed mass function of the 22 ACSVCS galaxies selected in this sam-
ple, with evolved Schechter (1976) function (red dashed) and completeness degraded
Schechter (1976) mass function (solid blue) applied to galactocentric position sorted
data. Galaxies are ordered by descending B-band luminosity. Details of each plot are
given in Table 2.1.
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Figure 2.3: Continued.
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Table 2.1: Details of the models displayed in Figures 2.2 and 2.3.

GCSs sorted by ρh GCSs sorted by Rgc

Name log[Lgal] Reff N log[ρ̂h] log[MTO] χ2
ν logC log[R̂gc] log[MTO] χ2

ν

[L⊙] [kpc] [M⊙pc−3] [M⊙] [M⊙1/2pc 3/2Gyr−1] [kpc] [M⊙]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VCC 1226 10.984 210.80 749 2.079 5.104 12.4 2.98 0.514 5.480 2.6
2.874 5.432 9.1 0.788 5.416 1.7
3.472 5.688 6.2 0.943 5.376 1.7

VCC 1316 10.878 155.40 1717 2.176 5.104 22.5 2.96 0.471 5.464 2.9
2.847 5.408 14.2 0.752 5.384 2.8
3.382 5.640 12.7 0.928 5.352 2.1

VCC 1978 10.791 98.14 787 2.207 5.072 9.0 2.90 0.447 5.488 1.2
2.974 5.416 5.4 0.741 5.400 1.7
3.561 5.656 7.4 0.912 5.360 1.7

VCC 731 10.742 110.60 881 2.195 5.056 14.8 2.88 0.549 5.480 2.3
2.859 5.352 6.3 0.857 5.376 2.4
3.451 5.600 4.3 1.043 5.288 2.6

VCC 881 10.736 226.80 360 1.908 5.032 3.8 2.98 0.525 5.400 1.8
2.666 5.352 5.2 0.794 5.328 0.9
3.358 5.640 2.9 0.946 5.328 1.3

VCC 798 10.725 65.32 497 1.668 4.896 4.5 2.83 0.482 5.240 1.3
2.405 5.128 5.4 0.754 5.072 0.9
3.164 5.440 4.8 0.931 5.048 1.5

VCC 763 10.675 154.80 498 1.991 5.024 10.8 2.90 0.457 5.448 1.5
2.812 5.344 3.8 0.762 5.320 2.2
3.361 5.616 4.9 0.943 5.248 2.7

VCC 1535 10.424 47.10 240 1.913 5.080 1.8 3.03 0.364 5.488 4.1
2.708 5.416 1.3 0.644 5.424 2.6
3.290 5.664 1.4 0.884 5.304 1.0

VCC 1632 10.387 44.97 447 2.245 5.056 4.8 2.88 0.328 5.504 1.2
3.010 5.408 5.0 0.672 5.392 0.9
3.592 5.648 4.5 0.882 5.320 1.9

VCC 1903 10.300 107.10 305 2.229 5.096 3.5 2.91 0.231 5.496 1.1
2.956 5.424 2.0 0.606 5.400 1.7
3.545 5.664 3.1 0.840 5.352 1.9

VCC 2095 10.196 19.38 131 1.816 4.904 4.7 2.79 0.281 5.216 2.6
2.594 5.152 3.6 0.638 5.136 0.9
3.358 5.488 1.0 0.816 5.120 0.7

VCC 1231 10.158 26.99 252 2.132 4.896 2.6 2.72 0.197 5.272 1.2
2.837 5.200 2.6 0.593 5.144 1.9
3.345 5.464 2.7 0.819 5.120 1.4

VCC 1154 10.118 28.90 190 1.941 4.928 1.5 2.80 0.229 5.280 1.6
2.799 5.248 3.0 0.545 5.216 1.3
3.300 5.496 1.0 0.799 5.208 1.8

VCC 1062 10.028 17.81 176 2.027 5.016 1.1 2.94 0.268 5.440 1.8
2.634 5.304 3.3 0.522 5.288 1.2
3.299 5.592 2.3 0.794 5.224 1.9

VCC 759 10.011 34.13 165 1.957 5.008 1.9 2.87 0.120 5.368 0.4
2.664 5.256 2.1 0.483 5.256 1.1
3.241 5.512 0.8 0.804 5.160 2.0

VCC 1692 9.980 13.28 128 1.984 5.104 2.0 3.04 0.195 5.464 1.5
2.681 5.392 1.1 0.552 5.384 1.0
3.197 5.640 2.7 0.873 5.304 2.2

VCC 369 9.949 31.00 177 1.846 4.960 3.3 2.91 0.307 5.360 1.8
2.661 5.280 2.2 0.599 5.288 1.0
3.217 5.544 2.1 0.802 5.184 2.1

VCC 1030 9.944 17.23 170 2.027 5.008 1.9 2.90 0.200 5.472 2.1
2.797 5.344 2.6 0.550 5.336 0.7
3.513 5.632 2.8 0.853 5.280 1.5

VCC 685 9.882 12.37 165 1.986 5.136 2.0 3.07 0.226 5.520 0.7
2.730 5.440 2.1 0.589 5.400 0.9
3.262 5.672 0.9 0.851 5.368 2.0

VCC 1279 9.851 11.70 136 1.946 5.080 0.8 3.05 0.170 5.504 1.5
2.698 5.424 1.7 0.604 5.424 1.4
3.259 5.656 1.8 0.907 5.296 1.4

VCC 1664 9.838 16.13 142 2.073 5.016 2.8 2.92 0.055 5.472 1.1
2.823 5.376 2.5 0.438 5.344 2.6
3.401 5.632 0.7 0.773 5.248 1.0

VCC 2000 9.832 10.61 192 2.062 4.920 2.2 2.79 0.128 5.344 2.2
2.822 5.248 3.1 0.515 5.192 1.2
3.355 5.488 2.5 0.765 5.176 2.1

Key to columns: (1): VCC catalogue number (Jordán et al. 2009), (2): Log of galaxy B-band
luminosity (Mei et al. 2007), (3): Galaxy effective radius (Mei et al. 2007), (4): Number of clusters
in sub-population, (5): Log of median half-light density of each division of density sortings, (6):
Log turnover of GCMF model applied to this density division, (7): Reduced chi-squared of GCMF
model fit in this density division, (8): Best-fit value Log C, (9): Log of median galactocentric
distance of radially-sorted divisions, (10): Log turnover of GCMF model applied to this radial
division, (11): Reduced chi-squared of GCMF model fit in this radial division.
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Table 2.2: Statistics of 22 galaxy fits for dif-
ferent values of Msch.

Msch (M⊙) βMF Ĉ IQR(C) C̄ σ(C)
(1) (2) (3) (4) (5) (6)

0.5× 106 2 3.35 0.25 3.35 0.144
0.8× 106 2 3.15 0.15 3.16 0.111
1.0× 106 2 3.10 0.20 3.09 0.114
1.5× 106 2 3.00 0.10 3.00 0.091
2.0× 106 2 3.00 0.15 2.96 0.091
2.5× 106 2 2.91 0.11 2.91 0.092
3.0× 106 2 2.90 0.10 2.90 0.084
3.5× 106 2 2.90 0.05 2.88 0.082

(1): Exponential cut-off mass, (2): Expo-
nent of young cluster mass function power-
law, (3): Median value of log C, (4): Inter
quartile range of log C, (5): Mean value of
log C, (6): Standard deviation of log C.

very large rh, with some in excess of 10 pc. Similarly, the lower limit of 0.75 pc

imposed by Jordán et al. (2009) in their catalogues will lower the blue curve at the

lower mass end of each bottom panel — however this effect is much less obvious due

to other incompleteness effects, such as the intrinsic faintness of low-mass clusters.

The vertical dot-dashed line denotes the position of the canonical Milky Way GCMF

turnover at M ≃ 1.6×105M⊙. Using this as a visual aid, it is plain to see the turnover

of the GCMF decrease towards lower cluster densities, yet remain roughly constant in

different Rgc ranges; reasserting the well known weak dependence of the GCMF peak

on the galactocentric positions of its GCs (e.g., Harris, Harris & McLaughlin 1998;

Barmby, Huchra & Brodie 2001; Vesperini et al. 2003; Jordán et al. 2007; Chandar,

Fall & McLaughlin 2007; McLaughlin & Fall 2008).

Figure 2.3 displays the same equations (2.9, solid curve) and (2.9 with

f(Mc,i, ρh,i, Ib,i) = 1 for all Mc,i, ρh,i, and Ib,i, dashed curve), but applied to the GC

data sorted by Rgc (i.e. the top panel is computed with the densities of one third of
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total clusters at the smallest projected galactocentric distances, etc.). Additionally, the

models were applied with the value of C minimised by the fits in Figure 2.2. Generally,

the data are better fitted by the models when sorted by Rgc as in Figure 2.3 than by ρh,

as in Figure 2.2 below. This is a result of ρh being a weak function of Rgc, namely the

large scatter in ρh vs Rgc as displayed for some example galaxies in Figure 2.6 (and also

as noted by McLaughlin & Fall 2008; Chandar, Fall & McLaughlin 2007; Goudfrooij

2012 for the Milky Way, M104, and NGC1316). As a consequence of this scatter,

selecting GCs based on their Rgc is essentially equivalent to selecting GCs randomly in

terms of ρh, and thus typically the average ρh of any sub-population of GCs sorted by

Rgc will be the same. Thus, any dependence the GCMF may have on cluster density

is obscured in each of the three panels. When the sub-populations are sorted by ρh,

the models need to accurately account for any GCMF density-dependence in order to

achieve a good fit. The actual physical situation is likely to be much more complicated

than that which is encapsulated with these simple single parameter models, and hence

achieving a good fit to ρh sorted data is much more difficult. Consequently, the models

tend to fit Rgc-sorted data better than ρh-sorted data.

Figure 2.4 was then constructed from the data in Table 2.1, displaying the depen-

dence of MTO on both median half-light density (ρ̂h, top panel) and median galacto-

centric position (R̂gc, bottom panel). Data points from each division of the fits (black

points) and from observational data (red points), in addition to results for the Milky

Way from the analogous study by McLaughlin & Fall (2008) (open stars) are plotted

in both panels. In the top panel, equation (2.8) is plotted using the median value of C

minimised for models fits to all 22 ACSVCS galaxies, and Mc = 2.5 × 106M⊙. Least-

squares fitting in the top panel gives a logarithmic gradient of 0.491 ± 0.019, and the

Spearman rank coefficient for these data is 0.909 with a p-value of < 0.00001. As men-

tioned in section (2.3), if Cρ
1/2
h t≪Msch, then MTO ≃ Cρ

1/2
h t/(βMF − 1); and so using

C ≃ 800M⊙
1/2pc3/2Gyr−1, ρh ≃ 200M⊙pc

−3, t = 13Gyr, and Msch = 2.5 × 106M⊙,

then Cρ
1/2
h t/Msch ≃ 0.06. Thus, these statistics are consistent with the expectation

that MTO ∝ ρ
1/2
h . Note that the use of the median of ρh from each division of each

galaxy in equation (2.8) is only giving an estimate of MTO, the appropriate average
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of ρh to get back the actual turnover-mass is likely much more complicated. In the

bottom panel, the maxima of the model fits and median half-light density are plotted

against median Rgc for each division of Rgc-sorted data in all 22 galaxies. Since roughly

again MTO ∝ ρ
1/2
h , and for a singular isothermal sphere ρJ ∝ r−2

gc (cf. equation 2.1),

then roughly one would expect MTO ∝ R−1
gc . A line displaying this expected gradient

between MTO and Rgc is displayed (note that the intercept is arbitrary, this line is for

display purposes only). Least-squares fitting in the bottom panel gives a logarithmic

gradient of −0.210± 0.053, and the Spearman rank coefficient for these data is −0.335

with a p-value of 0.0272. These statistics are much less compatible with a MTO ∝ R−1
gc

relation. However, Rgc is in projection, tides may not actually be set at pericentre,

and although most clusters may be expected to be near apocentre, there will be a large

spread in orbital phase across the entire GC population. Thus the observed MTO vs

Rgc correlation will likely be different from what is expected, but probably not to the

extent as in Figure 2.4. This is because although tides are probably not set at peri-

centre, studies indicate that the effective galactocentric radius corresponding to tidal

limitation is not very far from pericentre, either (Webb et al. 2013). Furthermore,

the data from the Milky Way, which are not projected, fit amongst the rest of the

data without standing apart in any significant way. Therefore, it seems unlikely that

the expected MTO ∝ R−1
gc is present but has been concealed by these effects. This is

discussed further in section 2.5.

The simultaneous dependence of MTO on ρ̂h plus weak dependence on R̂gc in

Figure 2.4 is made possible by scatter in ρh vs Rgc, as displayed in Figure 2.6 for 4

sample galaxies. Previous attempts to explain this absence of expected dependence

of MTO on Rgc have relied on velocity anisotropy, namely increasingly eccentric orbits

with larger galactocentric radii such that the average pericentre of cluster orbits at all

galactocentric radii is roughly constant. Thus, the tidal density of all clusters would be

similar, and consequently so would the mass-loss rate, and therefore the same GCMF

would be produced at all galactocentric radii. However, analyses of GCS velocity

distributions find much less anisotropy than is required (e.g., Vesperini et al. 2003, Fall

& Zhang 2001). Thus, the same as in the Milky Way (McLaughlin & Fall 2008) and
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Figure 2.4: Top panel: MTO vs ρ̂h for density fitted models, with equation (2.8) plotted.
Bottom panel: MTO vs R̂gc for galactocentric distance fitted models with the expected
slope of MTO ∝ R−1

gc plotted (see text for details). Modes of each sub-population’s
observational data are in red, maxima of models are in black.
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in M104 (Chandar, Fall & McLaughlin 2007) it appears that it is scatter in ρh vs Rgc

that allows evaporation dominated mass-loss to carve a radially invariant GCMF that

depends on internal cluster density out of a power-law CIMF.

The models given by equation (2.9) were computed using a range of values for the

parameter Msch, and subsequently compared. These results can be found in Table 2.2

(note that models presented in Figures 2.2 and 2.3 were fixed withMsch = 2.5×106M⊙,

as discussed in section 2.3. On the whole, the optimum value of Msch for each galaxy

seems to reflect the individual characteristics of its GCMF. For example, the relative

dip in the number of massive clusters in the top panel of Figure 2.2 for VCC 1316 causes

the model to generate a lower χ2 if it is shifted towards lower masses — thus the value

of Msch corresponding to the lowest χ2 for this galaxy was actually 1.5× 106M⊙; even

though based on increasing Msch with galaxy luminosity as found by Jordán et al.

(2007), one might expect better fits with higher Msch for massive galaxies. This is

because a larger value for Msch extends the models further into the high cluster mass

regime, and as larger galaxies generally have broader cluster mass functions, this would

be expected to produce a better fit. For the same reasons, a smaller Msch would be

expected to fit smaller galaxies better. However, whilst this expectation might be

accurate for a few of the smoother GCMFs (e.g., VCC 1903, 1231, 1030, 2000 and 1279

each have optimum Msch values of 1.5× 106M⊙), overall, Msch = 2.5× 106M⊙ gave the

smallest total χ2
ν summed over all galaxies, and so this value was adopted throughout.

The overall effect of increasing Mc was to decrease C (Table 2.2, columns 3 and 5)

and reduce the spread in the values of C (columns 4 and 6). This is because for most

of the galaxies in this sample of 22, a higher Msch causes the models to overpredict

the number of high-mass clusters. Hence, during the process of χ2 minimisation, the

model is pulled towards lower masses to better fit the data, resulting in a smaller

MTO. Since for Cρ
1/2
h t/Msch ≪ 1, MTO ∝ Cρ

1/2
h , this means that C must decrease

for fixed ρh. Furthermore, the results show that as Msch tends towards infinity (i.e.

with possible cluster masses extending up to arbitrarily high values, or equivalently

equation (2.6) with the exponential removed), the dependence of log[MTO] on log[ρh]

tends towards 0.5 exactly, in perfect agreement with the theory (as can easily be
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obtained by differentiating equation (2.6) with the exponential term removed, and

solving for the maximum in M). Thus, changing Msch only changes the numerical

value of C slightly (a change inMsch of a factor of 7 results in a change in C of a factor

less than 3). Assuming an average half-mass density of ρ̄h = 200 M⊙pc
−3, the ratio

Cρ
1/2
h t/Msch for the top row of Table 2.2 evaluates to 0.82, descending down to 0.04

for the bottom row. When Cρ
1/2
h t/Msch ≪ 1, MTO ≃ Cρ

1/2
h t/(βMF − 1), and thus over

the majority of the parameter space investigated, C and βMF are degenerate. Thus

the CIMF power-law index was kept fixed at βMF = 2 as this provides good fits to the

mass functions of young cluster systems, as observed in mergers such as the Antennae

(e.g., Whitmore & Schweizer 1995).

As mentioned in section 2.2, the results presented here are all derived from LP -

band data. Fits were also made to theW -band data, to check for consistency. As such,

W -band GCMF peaks were found to be typically ∼ 0.05 dex lower than those inferred

from LP -band. This is because Rh,W measurements were typically ∼ 0.074% smaller

than Rh,LP on average (Jordán et al. 2005), and roughly, ∆MTO ∝ ∆ρ
1/2
h ∝ ∆r

−3/2
h

(cluster masses were not included in this estimate because when averaged over a large

number of clusters, the W and LP masses actually agree very well and thus had a

negligible contribution to this effect), thus −1.5 log[1 − 0.074] ≈ 0.05 dex. Figure 2.5

displays the difference between W - and LP -band turnover-masses (derived using den-

sity sorted sub-populations) as a fraction of their average for each division for all 22

ACSVCS galaxies. Generally, the data are in good agreement, with no obvious sys-

tematic trends. Additionally, the tendency of data points from the same data division

to cluster together (i.e. lower density division turnovers are all below 1.4 × 105M⊙,

intermediate density division turnovers are around 2.4 × 105M⊙, and higher density

division turnovers are around 4.2 × 105M⊙) is a convenient demonstration that the

turnover-mass of 22 galaxies spanning a wide range of properties is approximately the

same, even though each galaxy has a unique GCS.
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Figure 2.5: Difference between MTO,W and MTO,LP as a fraction of their average value
against the average. Circles denote GCMF turnovers of low-density divisions, triangles
denote GCMF turnovers of mid-density divisions, and squares denote GCMF turnovers
of high-density divisions. The solid line denotes the median of all turnovers, and the
dashed lines correspond to 1 standard deviation above and below this median.
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2.5 Discussion

Inspection of the GCMF model fits in Figures 2.2 and 2.3 clearly shows that in general

better fits are obtained when fitting to Rgc-sorted data rather than ρh-sorted data

(cf. columns 7 and 11 in Table 2.1), as discussed in section 2.4. This indicates some

additional GCMF dependence on internal GC density other than what is encapsulated

in the GCMF models given by equation (2.9). When these densities are shuffled up

(as when GCMF models are plotted with radially binned data, due to the lack of any

correlation in cluster density vs galactocentric position, cf. Figure 2.6), the distribution

of GC densities in each radial division are very similar, and consequently any GCMF

dependence on GC internal density is no longer apparent, allowing better fits. In other

words, these models capture GCMF dependence on ρh primarily, rather than Rgc. Even

so, on the whole the fits provided by equation (2.9) do an impressive job describing

evolved GCMFs, given the simplicity of the models.

Figure 2.2 clearly indicates that the GCMF evolution models fit less well for

VCC 1226 and VCC 1316 (i.e. in the most massive galaxies); tending to predict

GCMF widths in excess of observations, even after correcting for data incompleteness.

There are several possible candidates/contributors to this effect: perhaps the most

obvious is that the CIMF is not well described by a Schechter (1976) model with

βMF ≃ 2. Although young cluster systems observed today in active mergers (such as

NGC 4038/4039, and the Antennae galaxies; Whitmore & Schweizer 1995) are well

described by a Schechter (1976) CIMF, and these young clusters may well resemble

GCs of today after 13 Gyr of dynamical evolution, this is not to say that the GCs of

today had identical origins. Additionally, as these two galaxies are amongst the most

massive in Virgo (in fact, VCC 1316/M87 is the most massive, and VCC 1226/M49

is the most luminous), in keeping with the view of hierarchical formation, they will

both have very complicated merger histories, and thus it should not come as much of a

surprise that a very simple single parameter model struggles to fit their GCSs properly.

Alternatively the problems with fitting VCC 1226 and VCC 1316 GCMFs could

be the effect of one or more other destruction mechanisms not considered here, such as
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Figure 2.6: Internal cluster half-light density against galactocentric position. The red
dashed line denotes the host galaxy’s effective radius. These four plots are from galaxies
at roughly even spacing from brightest to dimmest in B-band galaxy luminosity over
the sample of 22 ACSVCS galaxies.

tidal shocking. This seems the most plausible explanation, given better fits with the

same value of C when GCs are binned radially rather than by GC density as described

earlier, since tidal shocking is in some cases expected to be as important as evapo-
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ration (e.g., Gnedin, Lee & Ostriker 1999), and depends on GC density (see section

1.4.6). Treating for shocks in addition to evaporation is difficult, as shock destruction

rates depend on fine details of individual cluster orbits and galaxy potentials, not just

on mean tidal fields (e.g., Fall & Zhang 2001), and so is not attempted in this inves-

tigation. Chapters 3 and 5 seek to develop more advanced models than those used

here, capable of including much more physics, including tidal shocks. Alternatively,

this effect could simply be reflecting the approximations and assumptions made in this

treatment, such as approximating cluster evaporation rates as constant (which has the

implicit assumption that the galactic potential is static and time-independent). Alter-

natively, it could be the assumption that all of these clusters are tidally limited (e.g.,

see Gieles, Baumgardt & Heggie 2010; Baumgardt et al. 2010), or that they are not all

13Gyr old. However, the main point of the fits is that they clearly demonstrate that

GCMF peak mass (MTO) depends on the densities of clusters being used in the fitting,

with the peak shifting to higher masses for more dense clusters. When these densities

are shuffled up, as when the binning thirds are based on Rgc, these details are averaged

out, as can be seen in Figure 2.3.

Figure 2.4 shows the turnover-mass (MTO) vs median internal cluster half-light

density (ρ̂h) given in Table 2.1 for each division of all 22 ACSVCS galaxies’ GCS

in the top panel, with equation (2.8) plotted. The lower panel shows the tabulated

values ofMTO vs median galactocentric position R̂gc from Table 2.1, with the expected

dependence plotted (MTO ∝ R̂−1
gc ) as discussed in section 2.4); unsurprisingly, the

results generated by the models calculated from the same equation fit this line very

closely — more relevant is that the mode of the observed GCMFs clearly follow the

trend of this line also, albeit with more scatter. This demonstrates that the simple

treatment of 13 Gyr of evaporation dominated GCMF evolution provides a good match

with observations. The tendency of observed data points to sit above the curve at high

ρ̂h is due to model MTO being lower than the mode of the data in the high-density

divisions. This in turn is because of a common feature in the low-density divisions

of the most massive galaxies in the sample, namely the unexpected low number of

massive, low-density clusters, which causes a smaller χ2 for fits favouring lower masses.
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This effect is most pronounced for VCC 1316, VCC 1226, VCC 1978 and VCC 731.

The bottom panel of Figure 2.4 has the expected dependence of MTO on R̂gc plotted.

As discussed in section 2.4, MTO scales roughly as ρ
1/2
h , thus, as the density of a tidally

limited cluster in a singular isothermal sphere is expected to scale as ρh ∝ V 2
c /r

2
gc,

where Vc is the galaxy circular speed, we would expect that roughly MTO ∝ Vc/Rgc.

Clearly the intercept of this line will depend on Vc, which will be different for each

galaxy. Even so, neither the observational data nor the model generated data points

fit the general trend of this line. The reason for this is displayed in Figure 2.6. These

four panels show ρh as a function of Rgc for four galaxies in roughly even steps from

brightest to dimmest in the sample of 22, each with their effective radius denoted with

a dashed line. The sudden break in the data at around Rgc ≈ 1.2 × 104 pc is at 150

arcseconds at the distance of Virgo, the size of the ACSVCS field of view. Each panel

(plus the other 18 galaxies not displayed) show only scatter in ρh as a function of Rgc,

rather than the roughly expected ρh ∝ R−2
gc . With this scatter, it is possible for MTO

to vary with ρh and yet be independent of Rgc. This same scatter in ρh vs Rgc and

weak dependence of MTO on Rgc and yet strong dependence of MTO on ρh was also

found by McLaughlin & Fall (2008) in the Milky Way, by Chandar, Fall & McLaughlin

(2007) in M104, and by Goudfrooij (2012) in NGC1316.

Aside from being a useful diagnostic for biases, Figure 2.5 also demonstrates that

the MTO values from each density division in both W and LP tend to bunch together

and form distinct groups — indicating that the densities of GCs of each division in all

22 galaxies that went into producing these values are all roughly the same on average

also. Figure 2.7 also demonstrates this effect. The top panel shows each galaxy’s GCS

median density, and the bottom panel shows turnover-mass vs the galaxy’s luminosity

in this sample of 22. Over a factor of 15 in galaxy luminosity, the medians of cluster

densities in each galaxy vary by only a factor of about 4. This is because large galaxies

all tend to have roughly the same ambient densities on average. Hence, galactic tidal

fields all tend to be similar, and as these tides set the densities of each galaxy’s globular

clusters (provided they are all tidally limited), there is a relatively limited range in the

densities of GCs. Since roughly MTO ∝ ρ
1/2
h , this relatively limited range in GC
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Figure 2.7: Top panel: median density of globular clusters against host galaxy lumi-
nosity. Bottom panel: GCMF turnover-mass against host galaxy luminosity.

density translates to an even more limited range in MTO (only a factor of about 3 in

the bottom panel of Figure 2.7). As a result, most galaxies have very similar values

for MTO, creating the impression that GCMF peaks are ‘universal’.

The main result of this Chapter is the average value of Cvirgo = 810± 170 calcu-

lated for Msch = 2.5× 106 M⊙ given in Table 2.2. This value is in excellent agreement

with those calculated by Jordán et al. (2007) in Virgo, McLaughlin & Fall (2008) in
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the Milky Way, Chandar, Fall & McLaughlin (2007) in M104, and Goudfrooij (2012)

in NGC1316 (CJ = 840, CMF = 1100, CCFM = 560, CG = 875), which is a good

result considering the simplicity of these models and that the parameter C was uncon-

strained during the fitting in each of these studies. Additionally, this value is in good

agreement with theoretical predictions about the lifetimes of tidally limited clusters

undergoing two-body relaxation driven evaporation. Using C = 810,m = 0.7, λ = 0.4,

and assuming N = 105, equation (2.4) gives ξ ≃ 0.078, meaning that this fraction of

mass lost per relaxation time predicts that clusters are expected on average to sur-

vive for about another 13 relaxation times before being destroyed, in good agreement

with other studies (e.g., Hénon 1961; Spitzer & Chevalier 1973; Spitzer & Shull 1975;

Fall & Rees 1977; Caputo & Castellani 1984; Spitzer 1987; Aguilar, Hut & Ostriker

1988; Chernoff & Weinberg 1990; Gnedin & Ostriker 1997; Murali & Weinberg 1997;

Gnedin, Lee & Ostriker 1999; Jordán et al. 2007; Chandar, Fall & McLaughlin 2007;

McLaughlin & Fall 2008; Goudfrooij 2012).

The lack of any correlation in ρh vs Rgc for all Virgo GCSs (cf. Figure 2.6)

means that any sub-population of GCs selected by Rgc sorting is essentially equivalent

to building sub-populations with GCs selected randomly in terms of ρh. Consequently,

the median GC densities of each sub-population, ρ̂h, tend to be very similar. Thus,

given the systematic dependence of MTO on ρ̂h, similar median GC densities lead to

similar turnover-masses. Thus, MTO is largely independent of R̂gc, i.e., the GCMF is

radially invariant. When combined with the result that MTO depends on ρ̂h in a way

that closely matches that expected for evaporation, this Chapter demonstrates that

evaporation dominated mass-loss can turn an initial power-law CIMF with βMF ≃ 2

into a GCMF as observed today in the Milky Way and many extant galaxies, adding

more weight to the growing evidence that GCMF evolution is indeed dominated by

evaporation.

The next step is to develop more sophisticated models including more physics,

and with some of the assumptions made here relaxed in an attempt to reconcile the

evolution of GCMF shape and radial invariance in all galaxies, including very massive

ones. To this end, Chapter 3 next describes the general procedure for setting up



86

an initial GCS with specifiable initial mass function, initial spatial distribution, and

initial kinematic distribution in a wide variety of galaxy models. Chapter 4 then

demonstrates some of these simulated initial GCS models. Chapter 5 then describes

the procedure for evolving simulated initial GCS through time, to facilitate comparisons

with observations. The code applying this procedure for evolving simulated GCSs is

then described, and demonstrations of its application are given in Chapter 6.
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3 Initial Set-up of Simulated GCSs

3.1 Introduction

In this Chapter, the intention is to derive the properties of a tracer population orbiting

in the gravitational potential of a host galaxy in a general way. This initial tracer

population must have specifiable tracer number density, tracer velocity, and tracer

mass distributions. To this end, quasi-separable distribution functions are employed

(Gerhard 1991). Once the initial GCS properties have been obtained, Monte Carlo

sampling is used to assign initial galactocentric positions, masses, orbital energies,

and orbital angular momenta to each object of a desired population. With these

initial data, all other orbital properties can be calculated, such as instantaneous radial,

azimuthal, and polar velocities, orbital pericentres and apocentres, etc. With this

information on every object, it is then possible to evolve these objects in time by

applying dynamical effects such as evaporation, tidal shocks, stellar evolution, internal

evolution, and dynamical friction, as described in Chapter 5.

3.2 Quasi-Separable Distribution Functions

For the most part, only a limited number of anisotropy profiles such as Osipkov-Merritt

(Osipkov 1979; Merritt 1985) have been utilised when investigating GCS evolution.

Furthermore, only a small variety of host galaxy potentials (almost exclusively the

singular isothermal sphere) and GCS density profiles (usually a power-law GCS density

profile) have been used. The reasoning behind evolving GCSs with velocity anisotropy

is that the correct velocity anisotropy profile may provide a natural explanation to

the observed radial invariance of the GCMF. For example, Vesperini et al. (2003)

used Osipkov-Merritt models to introduce radial anisotropy into their initial GCS.

The initial GCS was then evolved for a Hubble time, and the final mass function and

velocity profile were compared to the GCS of M87. Although they recovered the radial
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invariance of the GCMF, they concluded that the amount of radial velocity anisotropy

required was incompatible with observations. By also varying the host galaxy potential

and GCS density profile, this tantalisingly close result may be able to explain the radial

invariance of the GCMF, and thus deserves closer attention.

In order to more fully understand the impact of velocity anisotropy on GCS evo-

lution, a greater variety of initial velocity anisotropy profiles should be employed in

an otherwise identical distribution. In general, this is quite a complicated problem, as

the anisotropy profile is controlled by the angular momentum dependence of the dis-

tribution function, which also determines the GCS spatial distribution. Thus changing

one without affecting the other is a difficult problem. In order to solve this problem,

quasi-separable distribution functions (Gerhard 1991) are utilised (e.g. Gerhard 1993;

Gerhard et al. 1998).

Quasi-separable distribution functions can be written as a product of two func-

tions, one incorporating orbital energy dependence, the other incorporating orbital

angular momentum dependence:

f(E,L) = g(E)j(h) (3.1)

h =
L

L0 + Lc(E)
(3.2)

where Lc(E) is the angular momentum of a circular orbit with energy E, and h is a

parametrisation of angular momentum, L, known as the orbital circularity. Since all

the angular momentum dependence is now contained within j(h), for a fixed density

profile, it is solely responsible for the velocity anisotropy profile, and hence is called the

circularity function. This circularity function can be specified to have any functional

dependence on h (subject to j(h) ≥ 0 ∀h), in combination with the constant L0

(subject to L0 ≥ 0) to allow a great variety of velocity anisotropy profiles. A function

j(h) decreasing with h gives radially biased velocity profiles, j(h) increasing with h

gives tangentially biased velocity profiles, and j = const gives an isotropic velocity

profile. The constant L0 can be thought of as an anisotropy radius (the radius at which

the velocity profile becomes anisotropic) times a characteristic speed, and represents a

centripetal barrier around the core. More details on j and L0 will be discussed further
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after some definitions and derivation of required parameters.

3.3 Model Families

With a fixed tracer density profile selected, specifying the desired functional form of

j(h) then determines the velocity anisotropy profile. In general, the number density

profile is related to the distribution function through ν =
∫
all E,L

g(E)j(h)dEdL. Spe-

cific to quasi-separable distribution functions, f(E,L) = g(E)j(h), and thus with the

circularity function, j(h), and the density profile, ν, also specified, the only unknown

is g(E) which must be solved for. All host galaxies are assumed to be isotropic, with

their distribution functions and density profiles discussed below after some notation

definitions and necessary equations.

Φ̃ =
Φ− Φ0

σ2
0

(3.3)

Ẽ =
E − Φ0

σ2
0

(3.4)

ρ̃ =
ρ

ρ0
(3.5)

r̃ =
r

r0
(3.6)

ν̃ = νr30 (3.7)

f̃ =
f

f0
= fr30σ

3
0 (3.8)

t0 =
r0
σ0

= 1Myr (3.9)

M0 =
r0σ

2
0

G
(3.10)

where σ0 is some characteristic speed, such as for example the core velocity dispersion.

With the characteristic time set as t0 = 1Myr, only one of the pair of the character-

istic radius, r0, and the characteristic speed, σ0, are free. Specifying either one will

automatically assign a value to the other.
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Before g(E) can be solved for, the host galaxy potential is needed, as the tracers

are essentially a massless population orbiting in the gravitational potential of a host

galaxy. The host galaxy gravitational potential, Φ, and density profile, ρ, are related

though Poisson’s equation:
1

r2
d

dr

(
r2
dΦ

dr

)
= 4πGρ (3.11)

which may be solved to give the potential as a function of galactocentric radius, Φ(r),

and therefore the density is known as a function of both galactocentric radius and

gravitational potential. However, the models used for the host galaxy are expressed

in dimensionless notation as given in equations (3.3 — 3.10), and so Poisson’s equa-

tion must be solved in the same notation. This is achieved through substituting the

definition

P0 ≡
4πGρ0r

2
0

σ2
0

(3.12)

into Poisson’s equation, to give the dimensionless version:

1

r̃2
d

dr̃

(
r̃2
dΦ̃

dr̃

)
= P0ρ̃ (3.13)

The constant P0 simply controls the ratio between ρ0, r0, and σ0, and is fixed at 9

throughout (e.g. King 1966). This is because P0 = 9 is often chosen by many other

authors is the literature (as this choice makes r0 close to the observed core radius of

many systems, e.g. King 1966). Consequently setting P0 = 9 here facilitates easier

comparison of results.

When Poisson’s equation is solved using the host galaxy densities given below,

the first derivative of the gravitational potential, dΦ̃/dr̃, is also obtained. There are

two possible starting points for deriving the properties of the host galaxies. Either start

with the host galaxy density profile which can be immediately plugged into Poisson’s

equation, then the resulting output used to solve an Abel integral equation for the

isotropic distribution function of the host galaxy. Alternatively, it is possible to start

with the isotropic distribution function of the host galaxy, and integrate it to get the
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host galaxy density, which may then be used with Poisson’s equation to obtain the host

galaxy gravitational potential and its derivatives. These may then be used to calculate

a range of other useful quantities that will be useful in solving for g̃(Ẽ).

The convention used throughout the rest of this thesis is that for non-singular

models, ρ0 and Φ0 in equations (3.3) and (3.5) are the values of ρ and Φ at r̃ = 0. For

singular models, ρ0 and Φ0 are the values of ρ and Φ at r̃ = r̃ref , where r̃ref ≡ r̃init/10.

Since the range of radii Poisson’s equation is numerically solved over is r̃init ≤ r̃ ≤ r̃f ,

this means that ρ̃ ≤ 1 and Φ̃ ≥ 0 over the entire range of r̃init ≤ r̃ ≤ r̃f for both

singular and non-singular models.

3.3.1 Polytropes

Polytropes are a family of models characterised by density profiles that are constant in

the core, and turn over roughly to power-laws asymptotically. The polytropic equation

of state relates pressure, P , and density, ρ, through the polytropic index, n, as P ∝
ρ(n+1)/n. The isotropic distribution function and density as a function of gravitational

potential for polytropes are given by (e.g. Binney & Tremaine 2008):

f̃ =


n(n− 1) [−2π(n+ 1)] Γ(3/2−n)

Γ(2−n)

(
1− Ẽ

n+1

)n−3/2

for n < −1

n(n− 1) [2π(n+ 1)] Γ(n−1)
Γ(n−1/2)

(
1− Ẽ

n+1

)n−3/2

for n > −1

ρ̃ =

(
1− Φ̃

n+ 1

)n

Under the substitution (the reasons for which will become clear later on)

n =
k

k − 2
(3.14)

k =
2n

n− 1
(3.15)

the pressure and density are related by P ∝ ρ2(k−1)/k, and for a physical model both

the pressure and density must decrease outwards, meaning 2(k − 1)/k > 0 and thus
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k > 1 or k < 0. Writing the density and distribution function in terms of k gives

ρ̃ =

[
1− k − 2

2(k − 1)
Φ̃

] k
k−2

(3.16)

f̃ =


2k

(2−k)2

[
2−k

4π(k−1)

]3/2 Γ( k
2−k

+3/2)
Γ( k

2−k
+2)

(
1 + 2−k

2(k−1)
Ẽ
) k−6

2(2−k)
for 1 < k < 2

2k
(k−2)2

[
k−2

4π(k−1)

]3/2 Γ( k
k−2

−1)
Γ( k

k−2
−1/2)

(
1− k−2

2(k−1)
Ẽ
) k−6

2(2−k)
for k > 2

(3.17)

As k → 2, both forms of equation (3.17) converge to the same limiting form, and

equation (3.16) also converges to a limiting form, given by:

f̃ = (2π)−3/2 exp(−Ẽ) (3.18)

ρ̃ = exp(−Φ̃) (3.19)

namely, the isotropic distribution function and density of an isothermal sphere.

Making the substitution ψ = 1 − k−2
2(k−1)

Φ̃ and assuming a solution of the form

ψ = ar̃b where a and b are constants to be determined, it is possible to combine

ρ̃ = ψk/(k−2) with Poisson’s equation to obtain

Φ̃ =
2(k − 1)

k − 2

[
1−

(
P0

2(k − 1)(3− k)

) 2−k
2

r̃2−k

]
(3.20)

as the asymptotic solution for Φ̃(r̃) as r̃ → ∞ for k ̸= 2. Then taking the limit of

equation (3.20) as k → 2 gives

Φ̃ = ln

(
P0r̃

2

2

)
(3.21)

as the asymptotic solution of Φ̃(r̃) for k = 2. Equations (3.20) and (3.21) can be used

to obtain Φ̃ whenever it is required at galactocentric radii outside of the maximum

radius Poisson’s equation is numerically solved over, r̃f .

By inserting these asymptotic approximations back into (3.16) for k ̸= 2 or (3.19)

for k = 2, it is plain that k is the asymptotic power dependence of ρ̃(r̃), i.e. ρ̃(r̃) ∝ r̃−k
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as r̃ → ∞, and thus we must have that k > 0. From the polytropic equation of state,

k > 1 or k < 0 are required, and thus including this result means that only k > 1

polytropes are allowed.

By performing a Taylor expansion of ρ̃(Φ̃) about Φ̃ = 0 using either equation

(3.16) for k ̸= 2 or equation (3.19) for k = 2, combining the result with Poisson’s

equation and replacing all Φ̃ with an assumed power series, Φ̃ = αr̃ + βr̃2 + γr̃3 + . . .,

then comparing coefficients and powers, it is possible to derive an analytic asymptote

for Φ̃(r̃) as r̃ → 0:

Φ̃ ≃ P0

3!
r̃2 − kP 2

0

5!2(k − 1)
r̃4 +

k(3k + 10)P 3
0

7!12(k − 1)2
r̃6 − k(9k2 + 86k + 280)P 4

0

9!72(k − 1)3
r̃8 + . . . (3.22)

Equation (3.22) can be used to obtain Φ̃ whenever it is required at galactocentric radii

inside of the minimum radius Poisson’s equation is solved over, r̃init.

The case of k = 2.5 corresponds to n = 5, giving the well known Plummer (1911)

sphere which has a fully analytical solution:

Φ̃ = 6

[
1−

(
1 +

P0

18
r̃2
)−1/2

]
(3.23)

ρ̃ =

(
1 +

P0

18
r̃2
)−5/2

(3.24)

Asymptotically, the Plummer sphere has ρ̃ ∝ r̃−5 as r̃ → ∞, in contradiction to what

k is understood to represent for polytropes. The reason for this is that at large r̃,

the true solution actually oscillates around the asymptotic approximation, with both

the amplitude and wave-number of the oscillations increasing sharply as k → 2.5 (cf.

Figure 3.1). At k = 2.5, a critical value is reached and the wave-number becomes

infinite such that one complete oscillation would occur at r̃ = ∞, and the trough

occurs at one quarter of this value, which is obviously still infinite. So essentially, all

that can be seen of the Plummer solution is the dive down to a trough at r̃ = ∞, which

is quite separate from the asymptotic approximation (e.g. Chandrasekhar 1942). This

can be seen in Figure 3.1, where the numerical data and asymptote match very well

for the black k = 2.3 lines, as opposed to the great disparity in the red k = 2.5 lines.
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Polytropes with k > 2.5 have density gradients sufficiently steep so as to reach zero at

a finite radius, but are not of much use as King (1966) models are used for constant

density and finite zero density radii galaxies, such that 1 < k ≤ 2.5 for polytropes.

Figure 3.1: Density vs galactocentric radius for polytropes with k ∈ [2.3, 2.5]. Black:
k = 2.3, cyan: k = 2.4, blue: k = 2.49, green: k = 2.499, magenta: k = 2.4999, red:
k = 2.5. Solid lines are numerical data, dotted lines are asymptotes given by equation
(3.20).
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3.3.2 King Models

King (1966) models are often referred to as ‘lowered isothermal spheres’. This is because

their velocity distribution is similar to that of an isothermal sphere, but with a finite

escape velocity at all radii. Consequently their total mass is finite, and in fact King

models are finite in extent as well as in mass. This outermost radius is often referred

to as the tidal radius. However, in this context the host galaxy is being described by a

King model, and a tidally limited host galaxy is not being considered. Therefore, the

outermost radius of a King model will be referred to as a zero density radius. Due to

the finite extent of these models, they provide good fits to structures with clear edges,

such as globular clusters. Since King models were originally conceived to describe the

spatial and velocity distributions of clusters, there is no physical reason to use King

models to describe a host galaxy, however they are useful functional forms to apply.

Density as a function of gravitational potential and the isotropic distribution function

for King models are given by:

ρ̃ =

exp
(
W0 − Φ̃

)
erf
(√

W0 − Φ̃
)
−

√
4

(
W0−Φ̃

)
π

(
1 +

2

(
W0−Φ̃

)
3

)
exp (W0) erf

(√
W0

)
−
√

4W0

π

(
1 + 2W0

3

) (3.25)

f̃ =
(2π)−3/2

exp (W0) erf
(√

W0

)
−
√

4W0

π

(
1 + 2W0

3

) [exp(W0 − Ẽ
)
− 1
]

(3.26)

whereW0 is the value of the potential at the edge of the system, commonly referred to as

the ‘central potential’, so named for the conventional definition of potential used in King

models, where the potential is maximum in the centre and decreases outwards (W =

W0 − Φ̃). Factoring out exp(W0) and ignoring constants, the functional dependence

of equation (3.26) is
[
exp(−Ẽ)− exp(−W0)

]
, and so the limit as W0 → ∞ is simply

exp(−Ẽ). This is exactly the same as the functional dependence of equation (3.18),

the isotropic distribution function of the isothermal sphere. Thus, a King model with

W0 → ∞ is a k = 2 polytrope.

Analogously with polytropes, by performing a Taylor expansion of ρ̃(Φ̃) about



96

Φ̃ = 0 using equation (3.25), combining the result with Poisson’s equation and replacing

all Φ̃ with an assumed power series, Φ̃ = αr̃+βr̃2+γr̃3+. . ., then comparing coefficients

and powers, it is possible to derive an analytic asymptote for Φ̃(r̃) as r̃ → 0:

Φ̃ =
P0

3!
r̃2 +

P0A

5!
r̃4 +

[
A2 +

10B

3

]
P 3
0

7!
r̃6 +

[
A3 +

52AB

3
+

70C

3

]
P 4
0

9!
r̃8 + . . . (3.27)

A =
exp(W0) erf(

√
W0)− 2

√
W0

π

exp(W0) erf(
√
W0)−

√
4W0

π

(
1 + 2W0

3

)
B =

exp(W0) erf(
√
W0)

2
[
exp(W0) erf(

√
W0)−

√
4W0

π

(
1 + 2W0

3

)]
C = −

exp(W0) erf(
√
W0) +

1√
W0π

− 1√
4πW 3

0

24
[
exp(W0) erf(

√
W0)−

√
4W0

π

(
1 + 2W0

3

)]
These small r̃ expansions for Φ̃ are useful for when Φ̃ is required very precisely at

small galactocentric radii, where variations in numerical data may become blurred in

numerical noise.

3.3.3 Dehnen Models

The Dehnen (1993) family of models are essentially two power-law models, with a

density gradient determined by the parameter γ at inner radii, that turns over to a

ρ̃ ∝ r̃−4 as r̃ → ∞, for all γ. Due to the steep density gradient at large radii, all

Dehnen family models have finite total masses. Most properties of Dehnen models

are analytic, except for the distribution function for certain values of γ. The density,

gravitational potential, and isotropic distribution function for Dehnen models are given

in the notation of equations (3.3 to 3.10) below:

ρ̃ = 24−γ r̃−γ(1 + r̃)γ−4 (3.28)

Φ̃ =


4P0 ln

(
r̃

1+r̃
1+r̃ref
r̃ref

)
for γ = 2

24−γP0

(3−γ)(2−γ)

[(
r̃

1+r̃

)2−γ
−
(
r̃ref

1+r̃ref

)2−γ]
for γ ̸= 2

(3.29)
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f̃ =



(
3−γ
P0

)3/2
2(γ−5)/2

π2

∫ 1

uE

(4−γ)u4+2u3(γ−3)+2u(1−γ)+γ

u3

√
u2−γ−u

2−γ
E

2−γ

du for γ ̸= 2

1
(2P 3

0 )
1/2π2

∫ 1

uE

u4−u3−u+1
u3
√

ln( u
uE

)
du for γ = 2

(3.30)

uE =


[
(3−γ)(2−γ)Ẽ

24−γP0
+
(
r̃ref

1+r̃ref

)2−γ] 1
2−γ

for γ ̸= 2

r̃ref
1+r̃ref

exp
(

Ẽ
4P0

)
for γ = 2

where r̃ref is the radius at which Φ̃ = 0, defined by r̃ref ≡ r̃init/10, so that Φ̃ > 0 for

all radii Φ̃ is calculated over. By inspection of equation (3.28), it is clear that γ is the

logarithmic slope of the inner cusp, and thus we must have γ ≥ 0. Furthermore, to

have a finite central mass, we must have γ < 3, and consequently 0 ≤ γ < 3 for these

models. The Dehnen family of models also includes the Hernquist (1990) and Jaffe

(1983) models as special cases, given by γ = 1 and γ = 2 respectively.

3.3.4 Power-law Models

Power-laws are very simple and completely analytic models, and thus are very popular.

They are characterised by a constant logarithmic density slope at all galactocentric

radii. A k = 2 power-law gives the singular isothermal sphere, or logarithmic potential

as it is also known, with constant rotation speed at all radii. Furthermore, k = 2

denotes the transition from finite to infinite total mass. The density, gravitational

potential, and isotropic distribution function for power-law models are given by:

ρ̃ = r̃−k (3.31)

Φ̃ =


P0 ln

(
r̃
r̃ref

)
for k = 2

P0

(3−k)(2−k)

(
r̃2−k − r̃2−kref

)
for k ̸= 2

(3.32)
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f̃ =



√
k2

2(2−k)

(
3−k
πP0

)3/2 Γ( k
2−k

+3/2)
Γ( k

2−k
+2)

[
(3−k)(2−k)Ẽ

P0
+ r̃2−kref

] k−6
2(2−k)

for k < 2

r̃−2
ref (P0π)

−3/2 exp
(

−2Ẽ
P0

)
for k = 2

√
k2

2(k−2)

(
3−k
πP0

)3/2 Γ( k
k−2

−1)
Γ( k

k−2
−1/2)

[
r̃2−kref − (3−k)(k−2)Ẽ

P0

] k−6
2(2−k)

for k > 2

(3.33)

where similarly to Dehnen models, the notation r̃ref has been defined as the radius at

which Φ̃ = 0, selected such that Φ̃ > 0 for all r̃ > r̃init, and k is the logarithmic slope

of density throughout. Therefore, k must be bounded by 0 < k < 3 to have a negative

density gradient and a finite central mass. However, the functional form of the k < 2,

k = 2, and k > 2 distribution functions are the same as those of polytropes (hence the

existence of singular power-law solutions for polytropes), and thus k > 1 is required

for power-laws the same as for polytropes, giving 1 < k < 3 for power-laws.

3.4 Galaxy Parameters

Equation (3.13) is solved numerically over a range of radii (from r̃init to r̃f ) to give

dimensionless values for the potential and first derivative of potential with respect to

galactocentric radius. When these are combined with the already known density, this

also gives the second derivative of potential with respect to galactocentric radius.

Dimensionless values for angular momentum of a circular orbit with radius r̃,

L̃c, mass interior to radius r̃, M̃ , circular speed at radius r̃, ṽc, radial component of

acceleration at radius r̃, ãr, circular angular frequency at radius r̃, Ω̃c, and finally
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energy of a circular orbit with radius r̃, Ẽc, are then given by:

L̃
2

c = r̃3
dΦ̃

dr̃
(3.34)

M̃ = r̃2
dΦ̃

dr̃
(3.35)

ṽ2c = r̃
dΦ̃

dr̃
(3.36)

ãr =
dΦ̃

dr̃
(3.37)

Ω̃
2

=
1

r̃

dΦ̃

dr̃
(3.38)

Ẽc = Φ̃ +
r̃

2

dΦ̃

dr̃
(3.39)

When each of these parameters is calculated at the same radii, any of these parameters

can be thought of as a function of any of the others, e.g. L̃c(Ẽc).

The velocity dispersion of the host galaxy can be calculated by solving the spher-

ical Jeans equation:

dρ̃σ̃2
r

dr̃
+ 2

βρ̃σ̃2
r

r̃
= −ρ̃dΦ̃

dr̃
(3.40)

where β is the anisotropy parameter defined in terms of the radial and tangential

velocity dispersions, given by:

β(r̃) = 1− σ̃2
t

2σ̃2
r

(3.41)

In the case that the velocity distribution is isotropic, σ̃2
r = σ̃2

θ = σ̃2
ϕ = 1

2
σ2
t ≡ σ̃2, and

thus β = 0. Then only the spherical isotropic Jeans equation need be solved:

d(ρ̃σ̃2)

dr̃
= −ρ̃dΦ̃

dr̃
(3.42)

Then given that only models satisfying limr̃→∞(ρ̃σ̃2) = 0 are allowed, the isotropic

velocity dispersion is given by:

σ̃2 =
1

ρ̃

∫ ∞

r̃
ρ̃
dΦ̃

dr̃
dr̃ (3.43)
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For models where ρ̃ and dΦ̃
dr̃ as functions of r̃ must be obtained numerically, the inte-

gration of equation (3.43) would normally be impossible beyond the outermost radius,

r̃f . However, out of the model types used this only potentially poses any difficulty

for polytropes, as a King model with zero density radius → ∞ is just an isothermal

sphere. Fortunately, polytropes have power-law solutions for Φ̃ and ρ̃ as functions of

r̃ as r̃ → ∞ (see section 3.3.1), allowing calculation of ρ̃ and dΦ̃
dr̃ up to arbitrarily high

radii for the integration in equation (3.43). The host galaxy velocity dispersion will be

useful for the calculation of dynamical friction and the Coulomb logarithm in Chapter

5.

In order to proceed to the calculation of the functions that will ultimately be used

in the Monte Carlo sampling, some more definitions must be made. The dimensionless

tangential velocity ṽt is defined such that:

ṽt =
√
ṽ2ϕ + ṽ2θ =

L̃

r̃
(3.44)

ṽϕ = ṽt sin γinc (3.45)

ṽθ = ṽt cos γinc (3.46)

Ẽ = Φ̃(r̃) +
1

2

(
ṽ2r +

L̃
2

r̃2

)
(3.47)

where ṽr is the component of velocity in the radial direction, γinc and ṽt are the direction

and magnitude of the resultant vector of ṽϕ and ṽθ on a plane perpendicular to ṽr, and

Ẽ is the orbital energy of a particle with orbital angular momentum L̃ and radial speed

ṽr at radius r̃. Note that with this definition, ṽt is strictly positive. When the orbital

energy, angular momentum, and instantaneous galactocentric radius of a particle are

known, its radial speed can be calculated via

ṽr = ±

√
2
[
Ẽ − Φ̃(r̃)

]
− L̃

2

r̃2
(3.48)

where a positive radial speed denotes movement away from the galactic centre, and a

negative radial speed denotes movement towards the galactic centre.
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3.4.1 Integral Equations

By definition, the tracer population number density, ν, is related to the tracer popula-

tion distribution function, f(E,L), via

ν =

∫
all v

f(E,L) d3v

ν̃ =

∫
all ṽ

f̃(Ẽ, L̃) dṽrdṽθdṽϕ

where on the second line the equation has been made dimensionless analogously as

in section 3.3, i.e. ν̃ = r30ν. Changing coordinates from dṽθ, dṽϕ to dṽt, dγinc, the

Jacobian determinant is given by:

dṽθdṽϕ =

∣∣∣∣∣∣∣
∂ṽθ

∂ṽt

∂ṽθ

∂γinc

∂ṽϕ

∂ṽt

∂ṽϕ

∂γinc

∣∣∣∣∣∣∣ dṽtdγinc
Using equations (3.45) and (3.46), this gives dṽθdṽϕ = ṽtdṽtdγinc. Thus

ν̃ =

∫ ṽmax

−ṽmax

dṽr

∫ √
ṽ2

max−ṽ
2
r

0

ṽt dṽt

∫ 2π

0

f̃(Ẽ, L̃) dγinc

where ṽmax is the maximum speed a particle can have and remain bound to the system,

i.e. such that the total orbital energy is sufficient to reach the edge of the system,

Ẽ = Φ̃(r̃) + 1
2
ṽ2max = Φ̃(r̃f ), and thus this defines the maximum energy attainable for

any bound particle, Ẽmax = Φ̃(r̃f ). With the assumption of spherical symmetry (i.e.

f̃(Ẽ, L̃) is independent of γinc and is an even function of ṽr), the integral reduces to

ν̃ = 4π

∫ ṽmax

0

dṽr

∫ √
ṽ2

max−ṽ
2
r

0

f̃(Ẽ, L̃)ṽt dṽt

The lowest speed a particle can have is to be stationary (i.e. a radial orbit at peri-

centre or apocentre), thus the lowest attainable energy is Ẽmin = Φ̃, and as discussed

above the highest energy attainable is Ẽmax. For a particle with only orbital energy

and instantaneous galactocentric position known, the maximum angular momentum

possible is Lmax = r̃ṽ = r̃

√
2
(
Ẽ − Φ̃

)
, i.e. if the particle were on a circular orbit.
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The lowest angular momentum possible is that of a radial orbit, L̃min = 0. Again

changing coordinates, this time from dṽrdṽt to dẼdL̃, with equations (3.44) and (3.48)

the Jacobian determinant gives dṽrdṽt =
1

r̃ṽr
dẼdL̃. Then

ν̃ = 4π

∫ Ẽmax

Φ̃
dẼ

∫ r̃
[
2

(
Ẽ−Φ̃

)]1/2
0

f̃(Ẽ, L̃)
ṽt
r̃ṽr

dL̃

Then with the definition in equation (3.2) (i.e., h = L̃/[L̃0+ L̃c(Ẽ)]), we may introduce

the equivalent maximum dimensionless angular momentum:

hmax =

[
2(Ẽ − Φ̃)

]1/2
r̃(Φ̃)

L̃0 + L̃c(Ẽ)
(3.49)

Using equations (3.2), (3.44), (3.48), and (3.49), the integral may be written as

ν̃(Φ̃) =
4π

r̃(Φ̃)

∫ Ẽmax

Φ̃
dẼ

∫ hmax

0

f̃(Ẽ, h)h
[
L̃0 + L̃c

(
Ẽ
)]2

dh

r̃2

[
L̃0+L̃c

(
Ẽ

)]2
h2max

r̃2
−

[
L̃0+L̃c

(
Ẽ

)]2
h2

r̃2

1/2

Finally, with the definition of quasi-separable distribution functions in equation (3.1),

this may be tidied up and written as (e.g. Gerhard 1991):

ν̃(Φ̃) =
4π

r̃(Φ̃)

∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h)√
h2max − h2

dh (3.50)

In this notation, the radial and tangential velocities are given by:

ṽ2r =

(
L̃0 + L̃c(Ẽ)

r̃(Φ̃)

)2 [
h2max(Ẽ, Φ̃)− h2

]
(3.51)

ṽ2t =

(
L̃0 + L̃c(Ẽ)

r̃(Φ̃)

)2

h2 (3.52)

Equation (3.50) now makes it clear how L̃0 represents a centripetal barrier; for small

orbital energies, L̃c(Ẽ) is also small, and therefore L̃ < L̃c(Ẽ) ≪ L̃0, so that hmax ∼ 0,

such that low-energy orbits contribute very little to the density. Additionally, equation
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(3.50) also makes it clear how j(h) increasing with h makes tangentially biased velocity

profiles: with j(h) larger for values of h near to hmax, more density is contributed by

orbits with angular momenta near to that required for circular orbits, whereas for a

function j(h) that initially has a larger value for low h and decreases, more density is

contributed by orbits with small angular momenta. A more thorough analysis of the

effects of the circularity function and L̃0 on the velocity profile is given in section 4.2.

Note that ν̃ in equation (3.50) is distinct from ρ̃ used with Poisson’s equation

(equation 3.13) to derive the potential, as g̃(Ẽ)j(h) can be thought of as describing the

phase distribution of an effectively massless tracer population orbiting in the potential

generated by some host galaxy. As such, ν̃ is actually a number density rather than

a mass density (even in the case of direct tracing — i.e. where the tracer spatial

distribution exactly follows that of the host galaxy). The procedure is to choose the

tracer density profile, ν̃, and the circularity function j(h), and solve for whatever g̃(Ẽ)

these distributions imply (so long as the solution is physical, i.e. g̃(Ẽ) ≥ 0).

At this point, equation (3.50) is a Volterra integral equation of the first kind

with solution g̃(Ẽ) and kernel [L̃0 + L̃c(Ẽ)]
∫ hmax

0
hj(h)√
h2max−h2

dh. The solution g̃(Ẽ) is

obtained by using numerical quadrature, which breaks the integral over [Φ̃, Ẽmax] into

N tiny integrals over [Φ̃i, Φ̃i+1], with Φ̃1 = Φ̃ and Φ̃N = Ẽmax, and uses quadrature

to sequentially solve each tiny integral for g̃(Ẽ = Φ̃i) (see Appendix B). However,

when the upper limit on equation (3.50) is formally infinite (i.e. for k ≤ 2 power-laws,

k ≤ 2 polytropes, and W0 → ∞ King models), the density has to be assumed to go

to zero at a finite potential, since the range over which g̃(Ẽ) is solved numerically

has to be finite; Φ̃ ∈ [Φ̃(r̃init), Φ̃(r̃f )]. This means that g̃(Ẽ) is forced to be zero

over the range [Φ̃(r̃f ),∞]. The result of this is that tracers orbiting in galaxy models

with potentials that would normally increase to infinity cannot trace the galaxy out to

infinite galactocentric radii, and are instead truncated at some finite potential (Ẽmax),

with the density going smoothly to zero there. This finite upper limit on the potential

is taken to be the value of the potential at a radius r̃f from the original unaltered

model, so that rf can be made large enough such that the properties of the truncated
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models are identical to those of the original models over any sensible range of radii

a tracer population could be modelled, and only differ at radii so large that it would

be questionable to consider tracer objects at these radii to still be associated with the

host galaxy anyway.

3.5 Tracer System Properties

As the tracer population is simply orbiting in the potential generated by the host

galaxy, the potential and any derivatives as a function of radius are just the same as

those of the host galaxy. The number of tracers interior to radius r̃ for the tracer

system (as opposed to mass for the galaxy) is given by:

N(r̃) = 4π

∫ r̃

0

r̃2ν̃(r̃) dr̃ (3.53)

Radial and tangential velocity dispersions are obtained by taking the first moments

of ṽ2r and ṽ2t , calculated by including the radial and tangential speeds as functions of

Ẽ, Φ̃, h (equations 3.51 and 3.52) in the integrand of the distribution function (3.50):

σ̃2
r(Φ̃) =

4π

ν̃(Φ̃)r̃3(Φ̃)

∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0

hj(h)
√
h2max − h2 dh

(3.54)

σ̃2
t (Φ̃) =

4π

ν̃(Φ̃)r̃3(Φ̃)

∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0

h3j(h) dh√
h2max − h2

(3.55)

3.5.1 The Circularity Function

Taking the definition of the anisotropy parameter (equation 3.41) and substituting for

the tangential and radial velocity dispersions (equations 3.54 and 3.55), we can express
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β as a function of g̃(Ẽ) and j(h):

β(Φ̃) = 1−

∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0
h3j(h) dh√
h2max−h2

2
∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0

√
h2max − h2hj(h) dh

(3.56)

Each model type has a different sequence of distribution functions (i.e. along k for

power-laws and polytropes, along γ for Dehnen models, and alongW0 for King models),

and thus even if the same j(h) were used between model types, the different forms of

g̃(Ẽ) would result in different anisotropy profiles (cf. equation 3.56). Thus the converse

is also true — selecting a function β(r̃) and inverting to solve for j(h) would result in

different j(h) for each model type, and need not even result in a physical solution (i.e.

j(h) ≥ 0 ∀h). Moreover, if j(h) were an unknown to be solved for, then g̃(Ẽ) would

also be an unknown as the above method for solving for g̃(Ẽ) will not work without a

specified j(h). Thus both g̃(Ẽ) and j(h) would need to be solved for simultaneously.

Obviously this would prove extremely difficult, and given the lack of guarantee for a

physical solution, was consequently not attempted.

However, there is one anisotropy profile where an inversion is both possible and

analytic; the case of constant anisotropy. For this to work, all that is required is for

the numerator and denominator in equation (3.56) to have the same functional form,

and thus no explicit dependence on the form of g̃(Ẽ). For all model types, constant

anisotropy β = β0 < 1 is achieved with a circularity function of the form:

j(h) = Ch−2β0 (3.57)

where C is an arbitrary constant (see Appendix C). Clearly β0 > 0 gives a j(h)

decreasing with h, while β0 < 0 gives a j(h) increasing with h, in agreement with the

expectation that a j(h) decreasing with h gives radially biased velocity profiles, and

a j(h) increasing with h gives tangentially biased velocity profiles. Equation (3.57) is

displayed with β0 = −1 as the black curve in Figure 3.2.

Another natural choice of j(h) to consider is:

j(h) = exp(−ah) (3.58)
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since radially biased velocity profiles seem to be the way to achieve a GCMF invariant

with galactocentric distance, and j(h) ≤ 1 ∀h is required later on for the sampling (see

section 3.6), only a > 0 is considered for this circularity function. Equation (3.58) is

displayed with a = 2 as the red curve in Figure 3.2.

A further natural choice for j(h) is:

j(h) = exp

[
−(h− a)2

2b2

]
(3.59)

for a = 0 this would give a circularity function that decreases with h, while 0 < a < 1

would give a circularity function that initially increases with h before peaking and

decreasing again, and a = 1 would give a circularity function that increases with h.

Thus, a Gaussian circularity function could be used to make either tangentially or

radially biased velocity profiles, or presumably an anisotropy profile with some sort of

peak. Moreover, b may be varied to change how quickly j(h) increases/decreases with

h, which presumably would affect how quickly the anisotropy profile becomes biased.

Equation (3.59) is displayed with a = 0.5, b = 0.2 as the green curve in Figure 3.2.

In order to have a greater variety of circularity functions giving radially biased

velocity profiles, the following equation for j(h) is used:

j(h) = 1− ha [1− ln(ha)] (3.60)

for all a > 0, this function decreases from j(0) = 1 to j(1) = 0. Smaller values of

a cause j(h) to decrease more quickly initially, while larger a give a more gradual

decrease. Equation (3.60) is displayed with a = 2 as the blue curve in Figure 3.2.

One more circularity function is defined, this time using a trigonometric function,

to facilitate investigating the effects of an oscillating circularity function on the velocity

profile.

j(h) = 0.5 [1 + h sin(ah)] (3.61)

for a < 0, this circularity function initially decreases with h, and an exact mirror image

is obtained if |a| is used instead. The amplitude of the oscillations of this circularity

function increase with h, and for larger |a|, more oscillations are obtained over 0 ≤
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h ≤ 1. Alternatively, this function could be used with smaller |a| as a circularity

function that either gently increases or decreases without oscillating. Equation (3.61)

is displayed with a = 4π as the magenta curve in Figure 3.2.

Figure 3.2: Various choices of circularity function against h. Black curve: equation
(3.57) with β0 = −1. Red curve: equation (3.58) with a = 2. Green curve: equation
(3.59) with a = 0.5, b = 0.2. Blue curve: equation (3.60) with a = 2. Magenta curve:
equation (3.61) with a = 4π.
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3.6 Tracer Object Generation

Having obtained the tracer distribution function energy dependence, g̃(Ẽ), it is then

possible to create a population of randomly generated objects with assigned properties

in such a way that the ensemble properties match the function governing their distri-

bution. This process is described for the generation of tracer masses, galactocentric

positions, orbital energies, and angular momenta. Note that the random numbers used

for these samplings are uniform between 0 and 1 exclusive (meaning that any number

between 0 and 1 are equally likely to be drawn, but 0 and 1 themselves are excluded).

Gaining masses for randomly generated tracer objects is by far the simplest prop-

erty to obtain, as it is completely independent of the other properties. Defining the

dimensionless tracer particle mass to be M̃ c =Mc/m̄0, where m̄0 is the initial average

stellar mass inside a tracer GC, then given an initial tracer mass function, dN/dM ,

to describe the number of tracer objects per unit mass between the lower and upper

limits, M̃ c,min and M̃ c,max, the cumulative distribution is given by:

n
(
< M̃ c

)
=

∫ M̃ c

M̃ c,min

dN

dM̃
dM̃ (3.62)

Equation (3.62) is solved numerically for M̃ c ∈ [M̃ c,min and M̃ c,max] to build a table

of n(< M̃ c) vs M̃ c values. For as many objects as are desired, a random number, R1,

is drawn, and n(< M̃ c) = R1n(< M̃ c,max) is solved for the corresponding M̃ c using

interpolation on the tabulated values. Every object has a different R1, and so the

solution M̃ c assigned as the mass of each object is also different. Only three types of

initial mass function are used, a Schechter (1976) function (equation 2.2, given again

here)

dN

dM̃
∝ M̃

−βMF

exp

(
− M̃

M̃ sch

)
(3.63)

where βMF controls the power-law component of the distribution, and M̃ sch controls

where the exponential drop-off in the distribution becomes significant. Additionally a

power-law IMF may be used, but this is just a Schechter (1976) function with
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M̃ sch → ∞. The other initial tracer mass function available is a log-normal:

dN

d log M̃
∝ exp

−

[
log M̃ c − M̃ c

]2
2σ2

M̃c

 (3.64)

where µM controls the mean of the distribution, and σM controls the dispersion.

To obtain the instantaneous radius of a tracer object, exactly the same idea is

applied; the number of tracer objects interior to radius r̃ is built as a tabulated function

of r̃ between r̃trace,min and r̃trace,max:

N(< r̃) = 4π

∫ r̃

r̃trace,min

r̃′
2
ν̃(r̃′) dr̃′ (3.65)

For each object, a random number, R2, is drawn, N(< r̃) = R2N(< r̃max) is solved

for r̃ using interpolation, and the solution r̃, now denoted as r̃M , is assigned as the

initial instantaneous radius. Once r̃M is known, Φ̃ = Φ̃(r̃M) immediately follows from

the output of Poisson’s equation (equation 3.13).

From equation (3.50), the joint probability distribution of Ẽ and h at a fixed r̃M

is:

P(Ẽ, h) =
4π

r̃M ν̃(Φ̃)
g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] hj(h)√
h2max − h2

(3.66)

Because of the quasi-separable nature of the distribution function, the orbital energy

and orbital angular momentum can be sampled quasi-separately, i.e. sampling for Ẽ

does not depend on h, whereas sampling for h does depend on Ẽ (through hmax(Ẽ, Φ̃),

cf. equation 3.49). Therefore the energy sampling is performed first, and the angular

momentum sampling second. The appropriate functions for the respective samplings

are:

P(Ẽ) =
4π

r̃M ν̃(Φ̃)
g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h)√
h2max − h2

dh

P(h) =
hj(h)√
h2max − h2

the cumulative energy probability distribution is then:

P(< Ẽ) =
4π

r̃M ν̃(Φ̃)

∫ Ẽ

Φ̃
dẼg̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h)√
h2max − h2

dh (3.67)
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such that integrating up to Ẽ = Ẽmax gives P(< Ẽmax) = 1 as of course it must.

Equation (3.67) is then calculated numerically over Ẽ ∈ [Φ̃, Ẽmax] to build an inter-

polable table. For each object, another random number, R3, is drawn and P(< Ẽ) =

R3P(< Ẽmax) is solved for Ẽ, which is assigned as the orbital energy. With r̃, Φ̃ and

Ẽ known, hmax can be calculated using equation (3.49). The orbital circularity of each

object, h, is then assigned using the rejection method (e.g. Press et al. 1992) requiring

a comparison function, Pcomp(h) (van den Bosch et al. 1999):

Pcomp(h) =
hmax√
h2max − h2

(3.68)

chosen such that Pcomp(h) ≥ P(h) for all h (subject to the constraint that j(h) ≤ 1) and

for which the normalised cumulative probability distribution is analytically calculable

and invertible, given by:

Pcomp(< h) =
2

π
arcsin

(
h

hmax

)
(3.69)

As this cumulative function is analytically invertible, an interpolation table is not nec-

essary, but the general idea is the same — a random number, R4, is drawn, and a

random value of h is assigned: htry = hmax sin
(R4π

2

)
. However, this is based on the

comparison function rather than the desired probability distribution. As the compar-

ison function is everywhere greater than the desired probability distribution, another

random number, R5, is drawn and htry is rejected if the comparison function evaluated

at htry multiplied by R5 is greater than the desired probability distribution evaluated

at htry, i.e. rejected if R5 > P(htry)/Pcomp(htry) = hj(h)/hmax, and therefore j(h) ≤ 1

∀h is required for this to work. When htry is rejected, a new R4 is drawn, and the

procedure repeats until a value for htry is accepted.

For constant anisotropy, j(h) = h−2β0 (cf. equation 3.57), and therefore β0 > 0

means that j(h) → ∞ as h → 0, and therefore the rejection method cannot be used

to populate a system with this circularity function. Fortunately, the integral over h in

this case is:

P(< h) =

∫ h

0

h1−2β0√
h2max − h2

dh =
h1−2β0
max

2

∫ h2/h2max

0

u−β0(1− u)−1/2du (3.70)
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which is just an incomplete β function, Bh2/h2max
(1 − β0, 1/2). Once normalised, this

may be numerically integrated over h2/h2max ∈ [0, 1], a point along the cumulative

distribution assigned by a random number, and the integral inverted for h2/h2max in

exactly the same way as the mass, energy and initial galactocentric position samplings.

With the addition of h and hmax, it is possible to calculate initial instantaneous

values for ṽ2r and ṽ
2
t using equations (3.51) and (3.52). Another random number, R6, is

then drawn and used to determine the sign of ṽr (i.e. positive if R6 > 0.5 and negative

otherwise) in order to prevent any net flux. One more additional random number, R7,

is used to calculate γinc = 2πR7 to determine ṽϕ and ṽθ using equations (3.45) and

(3.46). As γinc is equally likely to be sampled in any π/2 quadrant, the signs of ṽϕ and

ṽθ are already randomised, and a further two random numbers to decide the signs of ṽϕ

and ṽθ are not necessary to prevent net rotation. Thus ṽr, ṽϕ and ṽθ are also known.

With Ẽ and h known, it is straightforward to calculate L using the definition of

h (equation 3.2). With the addition of Φ̃ known, it is possible to calculate the orbital

pericentre and apocentre of this randomly generated object, by solving ṽr = 0 (cf.

equation 3.48) for r̃. This is simply:

2
[
Ẽ − Φ̃(r̃ap)

]
r̃2ap − L̃

2
= 0 (3.71)

where r̃ap is either the orbital pericentre, r̃p, or the orbital apocentre, r̃a. When

L̃ = 0, the two solutions are clearly r̃p = 0 and r̃a = r̃(Φ̃ = Ẽ), whereas L̃ = L̃c(Ẽ)

corresponds to a circular orbit, and so the solutions are r̃p = r̃a = r̃c(Ẽ). Both solutions

are therefore always bracketed by:

0 ≤ r̃p ≤ r̃c(Ẽ)

r̃c(Ẽ) ≤ r̃a ≤ r̃(Φ̃ = Ẽ)

Therefore r̃p and r̃a are easily found by bisection. The ellipticity of the orbit in question

is then simply:

e =
r̃a − r̃p
r̃a + r̃p

(3.72)
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The radial period is defined as:

T̃ r = 2

∫ t̃(r̃a)

t̃(r̃p)
dt̃ = 2

∫ ψ(r̃a)

ψ(r̃p)

dt̃

dψ
dψ

where t̃(r̃ap) is the time at pericentre/apocentre, and ψ̃(r̃ap) is the azimuthal angle at

pericentre/apocentre (measured from any arbitrary orbital phase, ψ0). Furthermore,

dψ/dt̃ = ṽt/r̃ = L̃/r̃2, and thus the radial period may be written as:

T̃ r = 2

∫ ψ(r̃a)

ψ(r̃p)

r̃2(ψ)

L̃
dψ (3.73)

While the azimuthal period is given by:

T̃ψ =

∫ ψ0+2π

ψ0

r̃2(ψ)

L̃
dψ (3.74)

where ψ0 is an arbitrary constant.

In order to acquire r̃(ψ), the equation for radial motion of a particle is obtained

by differentiating the equation for radial speed (equation 3.48) with respect to time,

and substituting dψ

dt̃
= L̃/r̃2 to obtain the following differential equation:

d2r̃

dψ2
= r̃ − r̃4

L̃
2

dΦ̃

dr̃
+

2

r̃

(
dr̃

dψ

)2

(3.75)

This differential equation is solved numerically over a range of ψ ∈ [ψ0, ψ0 + 2π] to

give r̃(ψ). Maxima and minima of r̃ as a function of ψ correspond to pericentric and

apocentric passages, and thus ψ(r̃p) and ψ(r̃a) are also obtained. This information may

then be used to calculate the radial and azimuthal periods (equations 3.73 and 3.74),

in addition to the average orbital precession via the ratio of the radial and azimuthal

periods. With the orbital periods of each tracer known, mass-loss rates due to tidal

shocking may be calculated when evolving the GCS.

3.7 Simulated GCS set-up Code Description

All of this information has been compiled into a code (see Appendix E), which uses the

equations and methods given above, along with user provided information, to create
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a simulated GCS. The initial GCS code first prompts a selection of model family, i.e.

polytropes, King models, Dehnen models, or power-laws, to describe the host galaxy.

The next input is the parameter specifying which model of the selected family to use; k

for polytropes or power-laws, γ for Dehnen models, or W0 for King models (see section

3.3). Following this, a seed is required for the random number generation. With the

host galaxy specified, the remaining input concerns the tracer GCS population. Firstly

the tracer population number density profile must be specified, with the options of

directly tracing the host galaxy (i.e. the tracer number density profile matches the

density profile of the host galaxy) or double power-law profile (an αplβplγpl model;

Zhao 1997), given by:

ν̃ = r̃−γpl
(
1 + r̃1/αpl

)(γpl−βpl)αpl
(3.76)

If the double power-law profile is selected, the logarithmic inner slope (γpl), the

power-law outer slope (βpl), and width of the transition region (αpl) must subsequently

be entered. Next the user is prompted to select the tracer CIMF, with the options of

Schechter (1976), a Gaussian, or a power-law. If a Schechter (1976) CIMF is selected,

the next information to be entered is the exponential cut-off mass, Msch, then the

logarithmic slope of the power-law component, βMF (cf. equation 2.2). If a power-

law CIMF is selected, only the logarithmic slope of the power-law component need

be entered. Otherwise if a Gaussian CIMF is selected, the mean of the distribution,

µM , and the CIMF dispersion, σM , must be selected (cf. equation 3.64). Finally, the

maximum and minimum initial galactocentric radii allowed to be assigned to a tracer

are specified, such that every tracer in the system will initially lie between the selected

radii. Note that this does not forbid tracers from moving to radii outside of these limits

during the time-evolution phase however, as this will depend on the assigned orbital

energy and angular momentum. The point of specifying the maximum and minimum

initial galactocentric radii is to prevent the majority of sampled tracers being placed at

unrealistically small radii in models with central singularities, or out at unrealistically

large radii in models with formally infinite total mass, i.e. to mimic real systems as
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closely as possible.

Once all of the host system parameters and tracer initial properties have been

calculated, the GCS is evolved through time with a second code. The evolution code

reads in all of the data about the host galaxy, such as density, gravitational potential,

derivatives of gravitational potential, velocity dispersions, etc. Furthermore, the tracer

distribution function data is read in, and moreover the initial parameters of each tracer,

such as orbital energies and angular momenta, radial and tangential speeds, galacto-

centric radii, and masses are read in. One by one each tracer is then evolved using a

user specified combination of prescriptions taken from the literature and Chapter 2 (see

section 5.2). All of these prescriptions are divided into one of four types; evaporation,

shocks, stellar evolution, and dynamical friction. The code allows any one (or none)

prescription from each type for a custom evolutionary recipe.

Thus the orbital parameters required for calculating subsequent evolution are

obtained for as many tracers as are desired in the tracer system, for a general tracer

density profile, ν̃, with a general circularity function, j(h), and with a general tracer

mass function, dN/d log M̃ , in a wide range of possible host galaxy systems. Demon-

strations of the application of this method, followed by a detailed discussion of the

dependence of velocity anisotropy on the circularity function, will be given in Chapter

4. A description of the procedure for taking an initial tracer system as produced using

the method outlined in this Chapter, and evolving it through time will then be given

in Chapter 5. This will then be followed by demonstrations of the application of this

time-evolution procedure in Chapter 6.
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4 Examples of Simulated Initial GCSs

4.1 Method Verification

Since the method for randomly sampling objects is designed to reproduce a continuous

distribution with a discrete number of points, it is simple to verify whether this has

worked as intended or not by overlaying the appropriately normalised continuous func-

tion and discrete data points. This is done first for the simplest aspect of the sampling,

the CIMFs. The sampling for instantaneous orbital radius, orbital energy, and orbital

radial and tangential speeds however are much more complicated, as they are interre-

lated via Ẽ = Φ̃(r̃M) + 1
2

(
ṽ2r + ṽ2t

)
. Therefore the sampled data must simultaneously

satisfy the expected energy, spatial, and kinematic distributions.

The instantaneous orbital radii samplings are tested by binning the sampled

points in terms of radius, and calculating the number density in each bin. Both the

binned sampled tracers and the numerically recovered number density (i.e. integrated

from the distribution function solved for in equation 3.50) are normalised against the

total number of tracers, i.e. such that:

Nb∑
i=1

Ni = 4π

∫ r̃trace,max

r̃trace,min

r̃2ν(r̃) dr̃ = 1 (4.1)

where Nb is the number of radial bins, and Ni is the number of tracers in the volume

spanned by the i’th bin. This then allows the curve and the data to be overlayed.

In a similar fashion, the orbital energy samplings are tested by binning the sam-

pled points in terms of orbital energy to give the number per unit energy. The expected

number of objects per unit energy in a system is called the differential energy distri-

bution, and is given by (see Appendix D):

dN

d log Ẽ
= (4π)2 ln(10)Ẽ

[
L̃c(Ẽ) + L̃0

]
g̃(Ẽ)

∫ r̃2

r̃1
dr̃ r̃

∫ hmax

0

hj(h) dh√
h2max − h2

(4.2)
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where r̃1 = r̃min,trace and r̃2 = min[r̃max,trace, r̃(Φ̃ = Ẽ)]. Both the binned sampled

points and the curve are then normalised against the total number of tracers, such

that

Nb∑
i=1

Ni =

∫ log Ẽmax

log Φ̃(r̃1)

dN

d log Ẽ
d log Ẽ = 1 (4.3)

with dN/d log Ẽ given by equation (4.2), and Ẽmax = Φ̃(r̃f ) being the maximum energy

attainable (i.e. just enough for a tracer to reach the outermost radius allowed, r̃f ). In

this case Ni is the number of tracers with energies inside of those spanned by the i’th

bin.

The kinematic sampling is slightly different, in that rather than comparing num-

ber densities as with the instantaneous orbital radius and orbital energy samplings,

the statistics of the distribution are compared instead, namely the velocity dispersions.

Each sampled tracer is assigned two components of velocity; radial (ṽr), and tangen-

tial (ṽt). The tangential component is then broken down further into polar (ṽθ) and

azimuthal (ṽψ) components, with ṽθ = ṽt cos γinc and ṽψ = ṽt sin γinc where γinc is the

orbital inclination, such that ṽ2t = ṽ2θ+ ṽ
2
ψ. Since the system is assumed to be spherical

(i.e. γinc is equally likely to take any value within [0, 2π]), this implies for the velocity

dispersions that σ̃2
t = σ̃2

θ + σ̃2
ψ. Using this, it is then possible to bin tracers radially

and calculate the standard deviations of each component of velocity, for comparison to

the curves predicting radial and tangential velocity dispersions as a function of radius

given by equations (3.54 and 3.55). This then facilitates comparison of the velocity

anisotropy profile, using equation (3.41). Moreover, while the standard deviations of

each component of velocity in each bin must match the predicted curves, the averages

of the velocity components in each bin must equate to zero to satisfy the requirement

that net flux and net rotation are zero.

Beginning with the simplest case, sampled tracer masses are binned and plotted

against the function governing their distribution. As with both the initial orbital radius

and the orbital energy samplings, both the sampled data and the CIMF are normalised

against the total number of tracers, i.e.:
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Nb∑
i=1

Ni =

∫ logM̃ c,max

logM̃ c,min

dN

d log M̃
d log M̃ = 1 (4.4)

where Nb is the number of mass bins, and Ni is the number of tracers with masses

spanned by the i’th bin. This is displayed for a Schechter (1976) CIMF (equation 2.2)

in Figure 4.1, and for a Gaussian CIMF (equation 3.64) in Figure 4.2.

Figure 4.1: Comparison of continuous Schechter (1976) function with βMF = 2 and

M̃ sch = 105 (cf. equation 2.2) and appropriately binned sampled tracer masses. In
both panels the solid curve is the continuous function and the points are the binned
sampled tracers. Top panel: the logarithmic mass range is divided into equal width
bins, and each of the 106 sampled tracers are placed into their respective appropriate
mass bin. Bottom panel: for each bin, the total number of sampled tracers with masses
equal to or less than the current bin mass are totalled. In both panels, the curve and
the bins are normalised according to equation (4.4).
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Figure 4.2: Comparison of continuous Gaussian function with µM = 5 and σ̃M = 1 (cf.
equation 3.64) and appropriately binned sampled tracer masses. In both panels the
solid curve is the continuous function and the points are the binned sampled tracers.
Top panel: the logarithmic mass range is divided into equal width bins, and each of
the 104 sampled tracers are placed into their respective appropriate mass bin. Bottom
panel: for each bin, the total number of sampled tracers with masses equal to or less
than the current bin mass are totalled. In both panels, the curve and the bins are
normalised according to equation (4.4).

Next are displayed sets of plots depicting the properties of a range of sampled

GCSs in different host galaxies, with different spatial and velocity distributions via

j(h) and L̃0. The top left plot in each set depicts the number density, ν̃ = dN
dṼ

, as

calculated with equation (3.50) with bins of appropriately normalised sampled tracers,

and displays the reduced chi-squared to indicate how well the binned sampled tracers

match the curve. Additionally, the original analytical input tracer number density is

overlayed (i.e. one of equations 3.16, 3.25, 3.28, 3.31 for spatial profiles directly tracing

the host galaxy, or 3.76 for double power-law tracer spatial profiles). The bottom
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left panel displays the difference between the number density, ν̃, and the analytical

input tracer number density, ν̃0, as a function of galactocentric distance. The top right

panel displays the differential energy distribution as calculated using equation (4.2),

with appropriately normalised bins of sampled tracer orbital energies. Furthermore,

each differential energy distribution plot displays the reduced chi-squared to indicate

how well the binned sampled tracers match the calculated curve. The bottom right

plot depicts three panels: the bottom panel displays curves of the radial and tangential

velocity dispersions as calculated with equations (3.54) and (3.55), and is overlayed with

the radial (red points), and tangential (σ̃2
t = σ̃2

θ+ σ̃
2
ψ, black points) velocity dispersions

of tracers in each bin. Furthermore, the radial and tangential velocity dispersions

each have reduced chi-squared values indicating how well the binned points match

the curves. The middle panel displays the velocity anisotropy profile as calculated

with equation (3.56) and is overlayed with the velocity anisotropy in each tracer bin

as calculated with equation (3.41). The top panel displays the average tracer radial,

polar, and azimuthal velocities in each bin, and for no significant net flux or rotation

of the GCS must be near zero. Since in general the differential energy distribution and

velocity dispersions are calculated from the distribution function (cf. equations 3.54,

3.55, and 4.2) which is solved for with the use of numerical quadrature (see section

3.4.1), unless the GCS is isotropic there are no analytic curves to compare them to

as can be done with the number density (in fact, even with isotropy sometimes the

differential energy distribution and velocity dispersion are non-analytic, e.g. Dehnen

1993).

First are displayed the initial orbital radii, orbital energies, and kinematic dis-

tributions of an isotropic simulated GCS with L̃0 = 0 that directly traces the density

distribution of the host galaxy. These initial GCS models are displayed for a range

of Dehnen γ = 0, 1, 2 host galaxies in Figures 4.3, 4.4, 4.5, King W0 = 10, 15, 20 host

galaxies in Figures 4.6, 4.7, 4.8, polytrope k = 1.5, 2, 2.5 host galaxies in Figures 4.9,

4.10, 4.11, and power-law k = 1.5, 2, 2.5 host galaxies in Figures 4.12, 4.13, 4.14.
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Figure 4.3: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution directly
tracing a γ = 0 Dehnen model host galaxy. In the top left, the black curve is the GCS
number density corresponding to the distribution function and the red dashed curve
is the input number density. The reduced chi-squared indicates how well the binned
sampled tracers (black points) match the black curve. The bottom left plot depicts
the ratio of numerical number density to input number density (black and red dashed
curves above). The top right plot displays the differential energy distribution and
bins of sampled tracer orbital energies, along with the reduced chi-squared indicating
how well they match. The bottom right plot is split into three panels. In descending
order these are: the averages of each component of velocity; the velocity anisotropies;
the velocity dispersions. Red points correspond to radial velocities, green to polar,
and black to azimuthal. In the bottom panel, the curves and points denote numerical
and sampled σ2

r (red) and σ2
t (black). Additionally the reduced chi-squared values

indicating how well the sampled points match the numerical curve for both radial and
tangential velocity dispersions are given.
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Figure 4.4: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution directly
tracing a γ = 1 Dehnen model host galaxy. In the top left, the black curve is the GCS
number density corresponding to the distribution function and the red dashed curve
is the input number density. The reduced chi-squared indicates how well the binned
sampled tracers (black points) match the black curve. The bottom left plot depicts
the ratio of numerical number density to input number density (black and red dashed
curves above). The top right plot displays the differential energy distribution and
bins of sampled tracer orbital energies, along with the reduced chi-squared indicating
how well they match. The bottom right plot is split into three panels. In descending
order these are: the averages of each component of velocity; the velocity anisotropies;
the velocity dispersions. Red points correspond to radial velocities, green to polar,
and black to azimuthal. In the bottom panel, the curves and points denote numerical
and sampled σ2

r (red) and σ2
t (black). Additionally the reduced chi-squared values

indicating how well the sampled points match the numerical curve for both radial and
tangential velocity dispersions are given.
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Figure 4.5: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution directly
tracing a γ = 2 Dehnen model host galaxy. In the top left, the black curve is the GCS
number density corresponding to the distribution function and the red dashed curve
is the input number density. The reduced chi-squared indicates how well the binned
sampled tracers (black points) match the black curve. The bottom left plot depicts
the ratio of numerical number density to input number density (black and red dashed
curves above). The top right plot displays the differential energy distribution and
bins of sampled tracer orbital energies, along with the reduced chi-squared indicating
how well they match. The bottom right plot is split into three panels. In descending
order these are: the averages of each component of velocity; the velocity anisotropies;
the velocity dispersions. Red points correspond to radial velocities, green to polar,
and black to azimuthal. In the bottom panel, the curves and points denote numerical
and sampled σ2

r (red) and σ2
t (black). Additionally the reduced chi-squared values

indicating how well the sampled points match the numerical curve for both radial and
tangential velocity dispersions are given.
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Figure 4.6: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution directly
tracing a W0 = 10 King model host galaxy. In the top left, the black curve is the GCS
number density corresponding to the distribution function and the red dashed curve
is the input number density. The reduced chi-squared indicates how well the binned
sampled tracers (black points) match the black curve. The bottom left plot depicts
the ratio of numerical number density to input number density (black and red dashed
curves above). The top right plot displays the differential energy distribution and
bins of sampled tracer orbital energies, along with the reduced chi-squared indicating
how well they match. The bottom right plot is split into three panels. In descending
order these are: the averages of each component of velocity; the velocity anisotropies;
the velocity dispersions. Red points correspond to radial velocities, green to polar,
and black to azimuthal. In the bottom panel, the curves and points denote numerical
and sampled σ2

r (red) and σ2
t (black). Additionally the reduced chi-squared values

indicating how well the sampled points match the numerical curve for both radial and
tangential velocity dispersions are given.
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Figure 4.7: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution directly
tracing a W0 = 15 King model host galaxy. In the top left, the black curve is the GCS
number density corresponding to the distribution function and the red dashed curve
is the input number density. The reduced chi-squared indicates how well the binned
sampled tracers (black points) match the black curve. The bottom left plot depicts
the ratio of numerical number density to input number density (black and red dashed
curves above). The top right plot displays the differential energy distribution and
bins of sampled tracer orbital energies, along with the reduced chi-squared indicating
how well they match. The bottom right plot is split into three panels. In descending
order these are: the averages of each component of velocity; the velocity anisotropies;
the velocity dispersions. Red points correspond to radial velocities, green to polar,
and black to azimuthal. In the bottom panel, the curves and points denote numerical
and sampled σ2

r (red) and σ2
t (black). Additionally the reduced chi-squared values

indicating how well the sampled points match the numerical curve for both radial and
tangential velocity dispersions are given.
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Figure 4.8: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution directly
tracing a W0 = 20 King model host galaxy. In the top left, the black curve is the GCS
number density corresponding to the distribution function and the red dashed curve
is the input number density. The reduced chi-squared indicates how well the binned
sampled tracers (black points) match the black curve. The bottom left plot depicts
the ratio of numerical number density to input number density (black and red dashed
curves above). The top right plot displays the differential energy distribution and
bins of sampled tracer orbital energies, along with the reduced chi-squared indicating
how well they match. The bottom right plot is split into three panels. In descending
order these are: the averages of each component of velocity; the velocity anisotropies;
the velocity dispersions. Red points correspond to radial velocities, green to polar,
and black to azimuthal. In the bottom panel, the curves and points denote numerical
and sampled σ2

r (red) and σ2
t (black). Additionally the reduced chi-squared values

indicating how well the sampled points match the numerical curve for both radial and
tangential velocity dispersions are given.
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Figure 4.9: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution
directly tracing a k = 1.5 polytrope model host galaxy. In the top left, the black
curve is the GCS number density corresponding to the distribution function and the
red dashed curve is the input number density. The reduced chi-squared indicates how
well the binned sampled tracers (black points) match the black curve. The bottom
left plot depicts the ratio of numerical number density to input number density (black
and red dashed curves above). The top right plot displays the differential energy
distribution and bins of sampled tracer orbital energies, along with the reduced chi-
squared indicating how well they match. The bottom right plot is split into three
panels. In descending order these are: the averages of each component of velocity;
the velocity anisotropies; the velocity dispersions. Red points correspond to radial
velocities, green to polar, and black to azimuthal. In the bottom panel, the curves and
points denote numerical and sampled σ2

r (red) and σ
2
t (black). Additionally the reduced

chi-squared values indicating how well the sampled points match the numerical curve
for both radial and tangential velocity dispersions are given.
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Figure 4.10: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution
directly tracing a k = 2 polytrope model host galaxy. In the top left, the black curve
is the GCS number density corresponding to the distribution function and the red
dashed curve is the input number density. The reduced chi-squared indicates how well
the binned sampled tracers (black points) match the black curve. The bottom left
plot depicts the ratio of numerical number density to input number density (black
and red dashed curves above). The top right plot displays the differential energy
distribution and bins of sampled tracer orbital energies, along with the reduced chi-
squared indicating how well they match. The bottom right plot is split into three
panels. In descending order these are: the averages of each component of velocity;
the velocity anisotropies; the velocity dispersions. Red points correspond to radial
velocities, green to polar, and black to azimuthal. In the bottom panel, the curves and
points denote numerical and sampled σ2

r (red) and σ
2
t (black). Additionally the reduced

chi-squared values indicating how well the sampled points match the numerical curve
for both radial and tangential velocity dispersions are given.
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Figure 4.11: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution
directly tracing a k = 2.5 polytrope model host galaxy. In the top left, the black
curve is the GCS number density corresponding to the distribution function and the
red dashed curve is the input number density. The reduced chi-squared indicates how
well the binned sampled tracers (black points) match the black curve. The bottom
left plot depicts the ratio of numerical number density to input number density (black
and red dashed curves above). The top right plot displays the differential energy
distribution and bins of sampled tracer orbital energies, along with the reduced chi-
squared indicating how well they match. The bottom right plot is split into three
panels. In descending order these are: the averages of each component of velocity;
the velocity anisotropies; the velocity dispersions. Red points correspond to radial
velocities, green to polar, and black to azimuthal. In the bottom panel, the curves and
points denote numerical and sampled σ2

r (red) and σ
2
t (black). Additionally the reduced

chi-squared values indicating how well the sampled points match the numerical curve
for both radial and tangential velocity dispersions are given.
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Figure 4.12: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution
directly tracing a k = 1.5 power-law model host galaxy. In the top left, the black
curve is the GCS number density corresponding to the distribution function and the
red dashed curve is the input number density. The reduced chi-squared indicates how
well the binned sampled tracers (black points) match the black curve. The bottom
left plot depicts the ratio of numerical number density to input number density (black
and red dashed curves above). The top right plot displays the differential energy
distribution and bins of sampled tracer orbital energies, along with the reduced chi-
squared indicating how well they match. The bottom right plot is split into three
panels. In descending order these are: the averages of each component of velocity;
the velocity anisotropies; the velocity dispersions. Red points correspond to radial
velocities, green to polar, and black to azimuthal. In the bottom panel, the curves and
points denote numerical and sampled σ2

r (red) and σ
2
t (black). Additionally the reduced

chi-squared values indicating how well the sampled points match the numerical curve
for both radial and tangential velocity dispersions are given.
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Figure 4.13: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution
directly tracing a k = 2.0 power-law model host galaxy. In the top left, the black
curve is the GCS number density corresponding to the distribution function and the
red dashed curve is the input number density. The reduced chi-squared indicates how
well the binned sampled tracers (black points) match the black curve. The bottom
left plot depicts the ratio of numerical number density to input number density (black
and red dashed curves above). The top right plot displays the differential energy
distribution and bins of sampled tracer orbital energies, along with the reduced chi-
squared indicating how well they match. The bottom right plot is split into three
panels. In descending order these are: the averages of each component of velocity;
the velocity anisotropies; the velocity dispersions. Red points correspond to radial
velocities, green to polar, and black to azimuthal. In the bottom panel, the curves and
points denote numerical and sampled σ2

r (red) and σ
2
t (black). Additionally the reduced

chi-squared values indicating how well the sampled points match the numerical curve
for both radial and tangential velocity dispersions are given.
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Figure 4.14: Properties of an isotropic GCS with L̃0 = 0, and spatial distribution
directly tracing a k = 2.5 power-law model host galaxy. In the top left, the black
curve is the GCS number density corresponding to the distribution function and the
red dashed curve is the input number density. The reduced chi-squared indicates how
well the binned sampled tracers (black points) match the black curve. The bottom
left plot depicts the ratio of numerical number density to input number density (black
and red dashed curves above). The top right plot displays the differential energy
distribution and bins of sampled tracer orbital energies, along with the reduced chi-
squared indicating how well they match. The bottom right plot is split into three
panels. In descending order these are: the averages of each component of velocity;
the velocity anisotropies; the velocity dispersions. Red points correspond to radial
velocities, green to polar, and black to azimuthal. In the bottom panel, the curves and
points denote numerical and sampled σ2

r (red) and σ
2
t (black). Additionally the reduced

chi-squared values indicating how well the sampled points match the numerical curve
for both radial and tangential velocity dispersions are given.
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Clearly in the very simple case of spatial distributions that directly trace the host

galaxy and isotropic velocity distributions, the sampling has generally worked very

well. The residuals of the number density curves (bottom left plot) indicate that all

the King models over-predict the number density near the zero-density radius, however

this is simply a manifestation of the difficulty of matching together two functions that

are plummeting to negative infinity. Furthermore, the differential energy distribution

of the k = 2.5 power-law (Figure 4.14) has a relatively high reduced chi-squared of

χ2
ν = 16.01. However, essentially all of the ‘badness’ in the reduced chi-squared comes

from the rightmost bin, and is simply a result of fitting rectangular bins to a very steeply

increasing curve — increasing the number of bins would address this issue, but doing

so makes the bins at lower energies underpopulated, dramatically increasing the noise.

Inspection of the plot clearly shows that the curve and binned tracers are actually in

very close agreement for the most part. Note that by limiting the energy that tracers

can be sampled at to Ẽmax, the radius corresponding to this energy (r̃f [Φ̃ = Ẽmax])

may only be reached by purely radial orbits. This is because a non-zero angular

momentum corresponds to a non-zero tangential speed at apocentre (ṽt = L̃/r̃a), and

so the particle must also have non-zero kinetic energy at apocentre. Therefore not all

orbital energy can be in the form of gravitational potential, and so r̃a ̸= r̃f (Φ̃ = Ẽmax)

despite having the maximum orbital energy attainable. Therefore, orbits of all angular

momenta are allowed up to the radius of a circular orbit with r̃c(Ẽmax). However, radii

beyond this are only accessible to increasingly eccentric orbits, to the extreme of only

zero angular momentum orbits at r̃f . Thus, between r̃c(Ẽmax) and r̃f the differential

energy distribution must decrease, which is why the curve dives down almost vertically

at the end. All of the remaining sets of plots have reduced chi-squared values near to

1, indicating that the sampling is working very well, and the residuals indicate an error

of less than 1% (apart from near the zero-density radius in King host galaxy models),

showing that the numerical solution of the distribution function is also working very

well. Furthermore, apart from the k = 1.5 polytrope and power-law host galaxy

models in Figures 4.9 and 4.12, the radial and tangential velocity dispersion reduced

chi-squared values are satisfactorily near to unity. The reason the reduced chi-squared
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is somewhat higher in these two models is simply because the relatively shallow density

gradient means that the vast majority of tracers are sampled out at large radii (cf. the

spatial sampling plots — virtually no tracers were sampled inside of r̃ < 102 in either

case), and consequently the inner regions are very noisy, which drives up the reduced

chi-squared.

Next, an additional layer of complication is added by moving away from isotropy,

to constant tangential anisotropy (equation 3.57, j(h) = h−2β0 with β0 = −1). The

other properties of the simulated GCSs remain the same however (i.e. spatial profiles

directly tracing the host galaxy, and L̃0 = 0). Rather than display these GCSs for

several models in each of the four possible host galaxies, they are displayed for only one

model in each family, namely: Dehnen γ = 1 (Hernquist 1990 model); King W0 = 20;

polytrope k = 2.5 (Plummer 1911 Sphere); and power-law k = 2 (Singular Isothermal

Sphere) host galaxies. These are displayed in Figures 4.15, 4.16, 4.17, 4.18 respectively.
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Figure 4.15: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and spatial distribution directly tracing a γ = 1 Dehnen model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.16: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and spatial distribution directly tracing a W0 = 20 King model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.17: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and spatial distribution directly tracing a k = 2.5 polytrope model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.18: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and spatial distribution directly tracing a k = 2 power-law model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Once again the sampling clearly works well, with reduced chi-squared values from

the spatial, orbital energy, and velocity samplings near to unity for all the models, and

typical differences of the analytic input number density from the numerically recovered

one of around 0.1%. Furthermore, the average polar, azimuthal and radial velocities

in tracer bins almost always sit within their error bars of zero. Additionally, the

velocity anisotropy samplings clearly work as intended, displaying constant tangential

anisotropy as specified with the input circularity function, closely matched by the

velocity anisotropies in each tracer bin. The slight flick at the zero-density surface

of the King host galaxy model in Figure 4.16 is just due to the distribution function

plummeting to zero there, drowning out the relatively small difference in σ̃2
r and σ̃

2
t .

The next set of simulated GCSs again have constant tangential anisotropy (equa-

tion 3.57, j(h) = h−2β0 with β0 = −1) with L̃0 = 0, in the same host galaxy models as

the previous set. However, rather than directly tracing their host galaxies, these GCSs

follow double power-law number densities (equation 3.76, with γpl = 0, βpl = 3.5, αpl =

0.5), and are displayed in Figures 4.19, 4.20 4.21 4.22.
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Figure 4.19: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and double power-law spatial distribution in a γ = 1 Dehnen model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.20: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and double power-law spatial distribution in a W0 = 20 King model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.21: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and double power-law spatial distribution in a k = 2.5 polytrope model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.22: Properties of a GCS with circularity function j(h) = Ch−2β0 with β0 = −1
and L̃0 = 0, and double power-law spatial distribution in a k = 2 power-law model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.



143

Clearly there are no difficulties sampling double power-law tracer spatial distri-

butions in any of the host galaxies, with reduced chi-squared values all near to unity.

Note that the GCS number density in the King host galaxy in Figure 4.20 displays a

significant deviation from the double power-law profile at large radii. Physically, this

is of course due to the fact that King models have finite radii, i.e. the number density

must go to zero at the zero-density radius. Mathematically, this is because the upper

limit on the integral over the distribution function in equation (3.50) is the value of the

potential at the zero-density radius, and therefore the distribution function obtained

using numerical quadrature must be zero for all energies corresponding to radii beyond

the zero-density radius. In fact, the spatial distribution of all GCSs will diverge from

the input tracer number density eventually (whether double power-law or tracing the

host galaxy), because when numerically solving for the distribution function, the upper

limit on the integral equation is taken to be the potential at some large radius, r̃f (see

section 3.4.1). For formally infinite models, this large radius is set to be r̃f = 1010,

and is therefore well beyond the edge of the plots displayed here. Aside from this

divergence in the King host galaxy, the differences between input number density and

numerically recovered number density are all less than 0.2%. The differential energy

distribution of the GCS in the γ = 1 Dehnen host galaxy in Figure 4.19 displays a

reduced chi-squared of 9.27. Similarly to the k = 2.5 power-law in Figure 4.14, this

is completely due to the rightmost tracer bin and the steeply increasing differential

energy distribution. Again, this could be accounted for with more finely spaced tracer

bins, but again doing so dramatically increases the noise at lower energies. Aside from

this one bin, the sampled tracer orbital energies generally match the differential energy

distribution very well, and the differential energy distributions of the rest of the GCSs

in this set are all near unity. Moreover, the velocity dispersions of both the sampled

radial and tangential velocities match the curves very well, with reduced chi-squared

values comfortably near to unity, and unsurprisingly combine to produce bins with

velocity anisotropies that match the curve well. Additionally, the average radial, az-

imuthal and polar velocities all cluster around zero, indicating no problems with net

rotation or flux.
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The next set of plots are designed to test the sampling in simulated GCSs with

circularity function j(h) = exp(−ah), with a = 4 and L̃0 = 0. This is so that the result-

ing anisotropy profile is something more complicated than constant anisotropy, while

keeping the other properties the same as the previous set (i.e. in the same host galaxies

and still with double power-law number density profiles). Since dj
dh
< 0 is expected to

give a radially biased velocity profile, the circularity function j(h) = exp(−ah) would
be expected to result in an anisotropy profile that increases with galactocentric dis-

tance. The properties of these simulated GCSs are displayed in Figures 4.23, 4.24, 4.25

and 4.26.
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Figure 4.23: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 0, and double power-law spatial distribution in a γ = 1 Dehnen model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.24: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 0, and double power-law spatial distribution in a W0 = 20 King model host
galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.25: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 0, and double power-law spatial distribution in a k = 2.5 polytrope model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.26: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 0, and double power-law spatial distribution in a k = 2 power-law model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Once again the number density sampling is very satisfactory, with all reduced

chi-squared values around unity. However, clearly the more complicated circularity

function has made solving the integral equation more difficult (cf. equation 3.50), as

the number density obtained by integrating over the numerically solved distribution

function typically differs from the input number density by about 4%, as opposed to

a typical difference of less than 1% for the simpler models. In any event, this is not a

serious concern, as there will be other bigger sources of error when applying simulated

GCSs to projected observed GCSs, and moreover the ratio of numerically recovered to

input number density appears to be constant at large radii in each of the host galaxies

(except of course the King model host galaxy). Once again, the high values of reduced

chi-squared in Figures 4.23 and 4.25 is a binning issue rather than reflecting a problem

with the sampling, caused by the steeply increasing differential energy distributions

at high energies. The average polar, azimuthal and radial velocities clustering around

zero at all radii indicates that the more complicated circularity function has not caused

any obvious bias in the velocity samplings. Furthermore, the velocity anisotropies are

behaving as expected based on having a circularity function that decreases with h,

i.e. all the simulated GCSs display increasing radial velocity anisotropy, tending to a

constant of β ≃ 0.7 outside of the core (i.e. r̃ & 1) in each host galaxy. The tangential

velocity dispersions display slightly elevated reduced chi-squared values, which might

be expected given that the circularity function is depleting tangential motions quite

strongly. In any event, inspection of the plots reveals that the velocity dispersions of

the sampled tangential velocities are in fact following the curve quite closely, though

with slightly more noise than their radial counterparts, and so these slightly elevated

reduced chi-squared values could just be due to the binning.

The next set of plots display simulated GCSs with double power-law number

densities in the same host galaxies, and with circularity function j(h) = exp(−ah)
with a = 4, but this time with L̃0 = 100. Having custom number density profiles and

anisotropic velocity distributions and with a non-zero L̃0 means that these GCSs have

all features enabled and thus represent maximum complexity for the sampling. The

results are displayed in Figures 4.27, 4.28, 4.29, 4.30.
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Figure 4.27: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 100, and double power-law spatial distribution in a γ = 1 Dehnen model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.28: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 100, and double power-law spatial distribution in a W0 = 20 King model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.29: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 100, and double power-law spatial distribution in a k = 2.5 polytrope model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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Figure 4.30: Properties of a GCS with circularity function j(h) = exp(−ah) with a = 4
and L̃0 = 100, and double power-law spatial distribution in a k = 2 power-law model
host galaxy. In the top left, the black curve is the GCS number density corresponding
to the distribution function and the red dashed curve is the input number density.
The reduced chi-squared indicates how well the binned sampled tracers (black points)
match the black curve. The bottom left plot depicts the ratio of numerical number
density to input number density (black and red dashed curves above). The top right
plot displays the differential energy distribution and bins of sampled tracer orbital
energies, along with the reduced chi-squared indicating how well they match. The
bottom right plot is split into three panels. In descending order these are: the averages
of each component of velocity; the velocity anisotropies; the velocity dispersions. Red
points correspond to radial velocities, green to polar, and black to azimuthal. In the
bottom panel, the curves and points denote numerical and sampled σ2

r (red) and σ2
t

(black). Additionally the reduced chi-squared values indicating how well the sampled
points match the numerical curve for both radial and tangential velocity dispersions
are given.
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And again for the final set of test plots, the number density sampling works very

satisfactorily with all reduced chi-squared values near unity. The difference between

input and numerically recovered number densities is again at most about 4%, however

this time it is less clear whether it will tend to a constant at large radii. The bottom

left plot in Figures 4.27 and 4.29 both show the ratio of numerically recovered to input

number density steadily increasing with galactocentric radius. On the other hand,

given that the behaviour of this ratio in each of the host galaxies has hitherto been

broadly similar (barring the rapid divergence at high radii in King model host galaxies),

it seems plausible that the curves in Figures 4.27 and 4.29 will flatten out and resemble

the curve in Figure 4.30. Nevertheless, even if this is not the case and the numerically

recovered number density continues to diverge from the input number density, it is

unlikely that any adversely affected data would actually be needed, as the difference is

only about 4% at r̃ = 105, and given the roughly constant increase with log r̃ is likely

only to become significant at radii larger than a GCS can realistically be expected to

extend out to.

As might be expected given that these simulated GCSs are very similar to the

previous set, the differential energy distributions are very similar, including the prob-

lematic sharp peaks at high energies for the Dehnen and polytrope host galaxies in

Figures 4.27 and 4.29. Additionally, the average radial, polar and azimuthal velocities

again cluster around zero with no obvious systematics, indicating that the sampling

works without introducing any bias in even the most complicated simulated GCSs.

Furthermore, the velocity dispersions of the sampled radial and tangential velocities

match the numerical curves very well, with reduced chi-squared values comfortably

near unity. This could indicate that the slightly elevated reduced chi-squared values in

the previous set of plots was indeed due to the radial anisotropy, since in this case the

increase towards radial anisotropy is much more gradual. Given that L̃0 can be thought

of as an anisotropy radius multiplied by a characteristic system speed, increasing L̃0

might be expected to force isotropy in the core. This appears to be the case, with the

velocity anisotropies in each host galaxy remaining isotropic out to different radii (as

might be expected since different gravitational potentials will lead to different charac-
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teristic speeds), before becoming radially anisotropic and tending to roughly β ≃ 0.7

at large radii.

In summary, these demonstrations clearly show that the initial GCS set-up code

outlined in section 3.7 works very well, accurately sampling tracer GCs from a variety

of GCS number density profiles and circularity functions, and with non-zero L̃0, in a

variety of host galaxies, with no obvious systematics or biases.

4.2 Velocity Anisotropy and the Circularity

Function

The following plots no longer contain any sampled tracers, instead only depicting nu-

merically solved anisotropy curves. This is to explore the anisotropy profiles generated

with the different circularity functions listed in section 3.5.1 (except the circularity

function for constant anisotropy, since it was analytically derived and thus well under-

stood). Based on the sets of plots displayed previously, the behaviour of anisotropy

profiles of GCSs with the same properties in different host galaxies appear to be broadly

similar. Therefore, only anisotropy profiles of simulated GCSs in a γ = 1 Dehnen model

host galaxy are shown. Furthermore, in order to clearly ascertain the impact of changes

to the circularity function on the anisotropy profile, each of the simulated GCSs follow

the same spatial profile; namely directly tracing the host galaxy.

Each panel of Figure 4.31 displays the anisotropy profiles of GCSs with different

circularity functions and L̃0 = 0, that directly trace a γ = 1 Dehnen host galaxy.

The multiple curves in each panel correspond to different values of a in the circularity

function; these are: a = 2 (solid), a = 3 (dotted), and a = 4 (dashed). The circularity

function used for the anisotropy profiles in the top panel was that given by equation

(3.58), j(h) = exp(−ah). Since we have dj
dh

= −a exp(−ah), and a circularity function

that decreases with h is expected to correspond to an anisotropy profile that is radially

biased, the expectation is that this circularity function will lead to radially anisotropic

GCSs. Furthermore, increasing a at fixed h makes dj
dh

more negative; i.e. the circularity
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Figure 4.31: Anisotropy profiles of GCSs directly tracing a γ = 1 Dehnen model host
galaxy and L0 = 0, with circularity functions j(h) = exp(−ah), j(h) = 1−ha[1−ln(ha)],
and j(h) = 0.5[1 + h sin(ah)] in descending order. Each panel displays the anisotropy
profiles generated with a = 2, 3, 4 (solid, dotted, dashed respectively).

function decreases more strongly with h. Consequently, we might expect that increasing

a will make the corresponding anisotropy profile more radially biased, and indeed this

is what is seen. The anisotropy profiles in the middle panel were generated with a

circularity function given by equation (3.60), j(h) = 1 − ha[1 − ln(ha)]. In this case,
dj
dh

= a2ha−1 ln(h), which is always negative since 0 ≤ h ≤ 1. Therefore, the expectation

is that this circularity function will also produce radially biased anisotropy profiles.

Increasing a at fixed h has the effect of making dj
dh

less negative; i.e. the circularity
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function decreases with h more weakly. Thus, we might expect that increasing a will

lead to anisotropy profiles that display less radial bias, and indeed this is reflected in the

curves. The bottom panel displays anisotropy profiles corresponding to a circularity

function given by equation 3.61, j(h) = 0.5[1 + h sin(ah)]. In this case, we have
dj
dh

= 0.5[sin(ah) + ah cos(ah)], which has roots at h = −2.02876/a, 0, and 2.02876/a,

and therefore dj
dh
> 0 for h < −2.02876/a and 0 < h < 2.02876/a. Therefore, for a = 2

(solid curve), we have that dj
dh

> 0 for 0 ≤ h ≤ 1, and consequently would expect

tangential anisotropy, which is exactly what is seen. However, for a > 2.02876, such

as the dotted and dashed curves (a = 3 and a = 4 respectively), dj
dh

starts positive

but turns negative within the interval 0 ≤ h ≤ 1, and therefore the behaviour of

the velocity anisotropy is much less obvious. In general, the average gradient of the

circularity function in the interval 0 ≤ h ≤ 1 is given by ∆j
∆h

= [j(1)−j(0)]/[1−0], which

in this case is ∆j
∆h

= 0.5 sin(a). For a = 2, 3, 4, this corresponds to an average gradient

of 0.45, 0.07,−0.38. This seems to reflect the asymptotic behaviour of the velocity

anisotropy rather well; the a = 2 curve (solid) displays clear tangential anisotropy, the

a = 3 curve (dotted) displays very slight tangential anisotropy, and the a = 4 curve

(dashed) displays clear radial anisotropy.

As the circularity function given by equation (3.59), j(h) = exp[−(h−a)2/2b2], is
a function of two parameters (a and b), the corresponding anisotropy profiles are given

in Figure 4.32, with the same 3 values of a (0, 0.5, 1, corresponding to solid, dotted,

and dashed respectively) with a different b (0.5, 1, 2, in descending order) in each panel.

Since a represents the mean value of the Gaussian, for a = 0 (solid curves), the circular-

ity function will monotonically decrease with h, and thus we might intuitively expect

radial anisotropy as a result. Conversely, for a = 1 (dashed curves), the circularity

function will monotonically increase with h, and thus tangential anisotropy is expected

as a result. However, for a = 0.5 (dotted curves), the circularity function in the inter-

val 0 ≤ h ≤ 1 is symmetrical, and consequently we might näıvely expect isotropy in

the resulting anisotropy profiles. Clearly this is not the case, with the dotted curves

in every panel displaying radial anisotropy (albeit fairly weak). This is not surprising

since obviously in reality the dependence of the anisotropy profile on the circularity



158

Figure 4.32: Anisotropy profiles of GCSs directly tracing a γ = 1 Dehnen model host
galaxy, with circularity function j(h) = exp[−(a− h)2/2b2]. In descending order each
panel has b = 0.5, 1, 2, and in every panel are displayed the anisotropy profiles generated
with a = 0, 0.5, 1 (solid, dotted, dashed respectively).

function will be more complicated than just the average gradient. For example, since

j(h) is integrated over the range 1 ≤ h ≤ hmax with hmax =

√
2(Ẽ − Φ̃)r̃/[L̃c(Ẽ)+ L̃0],

the asymptotic behaviour will likely depend on properties of the host galaxy such as

Φ̃ and L̃c(Ẽ). However, the average gradient of the circularity function does seem to

broadly reflect the behaviour of the asymptotic anisotropy, and is therefore a useful

tool that will continue to be used.

In the case of a circularity function given by j(h) = exp[−(a − h)2/2b2], the
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average gradient is given by ∆j
∆h

= exp[−(1−a)2/2b2]−exp[−a2/2b2], which as expected

is negative for a < 0.5 and positive for a > 0.5. Note that replacing a with 1−a′ makes

this ∆j
∆ha=1−a′ = exp[−a′2/2b2]− exp[−(1− a′)2/2b2] = −∆j

∆h
, i.e. the dependence of the

average gradient on b is equal in magnitude but opposite in sign, with the point of

symmetry at a = 0.5. The precise dependence of ∆j
∆h

on b depends on the exact value

of a, with a stationary point in ∆j
∆h

as a function of b at:

b0(a) = b0(1− a) =

√
1− 2a

4 ln
(
1−a
a

) (4.5)

Consequently, the absolute value of ∆j
∆h

increases with b up to b0, and then decreases

asymptotically towards zero for larger values of b. Note that for both a = 0 and

a = 1, b0 = 0 and so ∆j
∆h

monotonically increases/decreases with b, as expected. In

terms of anisotropy profiles, this means that increasing b up to b0 should result in

stronger radial/tangential anisotropy, and increasing b past b0 should result in weaker

radial/tangential anisotropy, depending on whether a < 0.5 or a > 0.5, respectively. In

Figure 4.32, a = 0, 0.5, 1, and so there is no complication due to b0 (since both a = 0

and a = 1 result in b0 = 0, and a = 0.5 corresponds to ∆j
∆h

= 0 for all b). Therefore,

moving a through the sequence 0 → 0.5 → 1 (solid, dotted, dashed curves respectively)

will result in anisotropy profiles that are strongly radial→ roughly isotropic→ strongly

tangential, and as b increases down the panels, the velocity anisotropy (be it radial or

tangential) will be weaker, which is exactly what the curves reflect.

As with the previous anisotropy profile plots, Figure 4.33 displays the anisotropy

profiles of a simulated GCS that directly traces a γ = 1 Dehnen model host galaxy, but

this time the anisotropy profiles in all three panels were produced with the circularity

function j(h) = 0.5[1 + h sin(ah)], but with a = −2,−3,−4 (solid, dotted and dashed

respectively) in every panel, and L̃0 = 0, 10, 50 in descending order. The reasons for this

are twofold; firstly, to demonstrate the effects of increasing L̃0 with circularity functions

producing relatively complicated anisotropy profiles, and secondly to demonstrate the

effect that mirroring the circularity function has on the resulting anisotropy profile.

The bottom panel of Figure 4.31 and the top panel of Figure 4.33 both have identical
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Figure 4.33: Anisotropy profiles of GCSs directly tracing a γ = 1 Dehnen model
host galaxy, with circularity function j(h) = 0.5[1 + h sin(ah)]. In descending order
each panel has L0 = 0, 10, 50, and in every panel are displayed the anisotropy profiles
generated with a = −2,−3,−4 (solid, dotted, curved respectively).

properties, except that the values of a have been made negative in the latter case.

Comparison of these panels reveals that the order of the anisotropies resulting from the

different values of a have been reversed, i.e. a = −2 (solid) gives radial anisotropy, a =

−3 (dotted) gives very slight radial anisotropy, and a = −4 (dashed) gives tangential

anisotropy. This is unsurprising given that the average gradient of the circularity

function is given by ∆j
∆h

= 0.5 sin(a), and thus changing the sign on a will just change

the sign of ∆j
∆h

. The reason for the resulting asymptotic anisotropies being about twice
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as strong for a = −2,−3,−4 is much less obvious, though it is likely to do with the

fact that j(h) is typically smaller when a is negative. This is because for positive a

the circularity function initially increases from 0.5 towards a peak, and provided a >

2.02876 thereafter begins descending, whereas with a negative the circularity function

initially decreases from 0.5 towards a trough, and provided a < −2.02876 thereafter

begins ascending. Consequently the integration over j(h) in equations (3.54) and (3.55)

will weight the velocity distributions as functions of energy differently, resulting in a

different anisotropy profile. Since the integration over g̃(Ẽ)j(h) must equate to the

tracer number density, the normalisation of j(h) is arbitrary since g̃(Ẽ) must always

compensate. Therefore, what is important here is the relative change in j(h). The

non-zero stationary points in j(h) occur at h = −2.02876/a and 2.02876/a, which

both correspond to j(hstat) = 0.5[1 + 1.81971/a]. Therefore, the relative change in the

circularity function at this point is j(hstat)/j(0) = 1 + 1.81971/a, which for example

with a = 3 gives j(hstat)/j(0) = 1.60657, whereas a = −3 gives j(hstat)/j(0) = 0.39343

(note that since we are assuming that h = hstat, we must have a > 2.02876 or a <

−2.02876 for the stationary point to lie in the interval 0 ≤ h ≤ 1, and therefore

j(hstat)/j(0) < 0 is not possible). Hence, when a = −3 is used instead of a = 3, the

relative change in j(h) goes from a factor of ≃ 1.6 to a factor of 1/0.39343 ≃ 2.5.

The only way for these relative changes with positive and negative a to converge is for

|a| → ∞, and therefore we would expect that for very large |a|, only the sign of the

asymptotic value of the anisotropy should change when −|a| is used instead. On the

other hand, |a| → ∞ will result in a tiny relative change, and therefore will correspond

to very weak anisotropy. This was confirmed by producing anisotropy profiles with

a = −1000, 1000 in the circularity function, resulting in asymptotic anisotropy values

of β = −0.002389, 0.002387.

The middle and bottom panels of Figure 4.33 have identical properties to the

top panel (directly tracing a γ = 1 Dehnen model host galaxy with j(h) = 0.5[1 +

h sin(ah)], a = −2,−3,−4), except that the middle panel has L̃0 = 10, and the bottom

panel has L̃0 = 50. The most obvious feature of the anisotropy profiles produced

with non-zero L̃0 is that more of the inner region becomes isotropic with bigger values
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of L̃0. The reason for this is that in the central regions, Ẽ is relatively small, and

therefore L̃ ≤ L̃c(Ẽ) ≪ L̃0, and therefore h ≃ 0. Consequently, the distribution

function becomes f̃(Ẽ, L̃) = g̃(Ẽ)j(0), i.e. the distribution function only depends

on energy, and is therefore isotropic. Furthermore, the larger the value of L̃0, the

more horizontally stretched the resulting anisotropy profile (the same can be seen by

comparing Figures 4.27, 4.28, 4.29, 4.30 to 4.23, 4.24, 4.25 and 4.26). The reason for

this is due to the fact that L̃0 always appears near to L̃c(Ẽ). In order for the behaviour

of the anisotropy profile to be similar to that in the L̃0 = 0 case, we must have that

L̃c(Ẽ) ≫ L̃0. For larger L̃0, clearly this can only happen at large Ẽ. In general we

have that L̃
2

c = r̃3 dΦ̃
dr̃ , and so in this particular case L̃

2

c = 24−γP0r̃
4−γ/(3−γ)(1+ r̃)3−γ,

asymptotically this becomes L̃
2

c = 24−γP0r̃/(3 − γ), and so L̃c ∝
√
r̃. Consequently

a large factor in r̃ is required before L̃c(Ẽ) ≫ L̃0 (e.g. Gerhard 1991). Therefore,

asymptotically the behaviour of anisotropy profiles generated with the same a are very

similar if not identical, regardless of what value L̃0 takes.

In conclusion, the behaviour of anisotropy profiles resulting from different circu-

larity functions is basically well understood in terms of dj
dh

and the relative change in

j(h), and the dependence on L0 in terms of the behaviour of L̃c(Ẽ). The procedure

for taking simulated initial GCSs such as those presented in this Chapter and evolving

them through time is described next in Chapter 5. Following this, demonstrations are

given of the application of the time evolution procedure in Chapter 6.
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5 Dynamical Evolution of Simulated GCSs

Once the initial tracer system has been set up according to the procedure in Chapter 3,

it remains to evolve the system through time with dynamical effects such as evapora-

tion, shocking, stellar evolution, and dynamical friction acting on the simulated GCs.

The equations of motion for a particle orbiting in a general host gravitational potential

are derived, including the effects of orbital decay due to dynamical friction in section

5.1. Following this, a thorough literature review is conducted, drawing together pre-

scriptions for evaporation mass-loss rate, tidal shocking mass-loss rate, mass-loss due to

stellar evolution, and the magnitude of dynamical friction in section 5.2, to be applied

during the integration of the equations of motion. This Chapter is then concluded with

a description of the sequential application of the physics of sections 5.1 and 5.2 when

applying this method to evolve a tracer system and find its final mass function, and

spatial and kinematic distributions.

5.1 Equations of Motion

As the system is spherically symmetric, the inclinations of tracer orbits are unimportant

and the equations of motion do not have any dependence on γinc. Instead, the equations

of motion describe the motion of each tracer on its orbital plane, depending only on

galactocentric distance and radial and tangential speeds.

Defining r̃M to be the position vector, and ṽM to be the velocity of a tracer,

then r̃M is the magnitude of r̃M , and ṽM =
√
ṽ2t + ṽ2r is the magnitude of the velocity.

Using the position and velocity vectors to define a plane, L̃ = r̃M × ṽM is the orbital

angular momentum vector perpendicular to this plane (the ẑ direction), and L̃ is its

magnitude. The tangential and radial speeds are given by equations (3.44) and (3.48),
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repeated here for ease of reference:

ṽ2r = 2
[
Ẽ − Φ̃(r̃M)

]
− L̃

2

r̃2M
(5.1)

ṽ2t =
L̃
2

r̃2M
(5.2)

The equations of motion are obtained by taking the time derivatives of these equations,

leading to:

˙̃vr =
1

ṽr

[
dẼ

dt̃
− ṽt
r̃M

dL̃

dt̃

]
+
ṽ2t
r̃M

− dΦ̃

dr̃

∣∣∣∣∣
r̃M

(5.3)

˙̃vt =
1

r̃M

dL̃

dt̃
− ṽtṽr

r̃M
(5.4)

For an object undergoing dynamical friction, dẼ/dt̃ ≤ 0 and dL̃/dt̃ ≤ 0. Otherwise,

dẼ/dt̃ = dL̃/dt̃ = 0, and equations (5.3) and (5.4) reduce to the better known standard

equations of motion (e.g. Binney & Tremaine 2008). Defining ẑ to be the unit vector

normal to the orbital plane, the effects of dynamical friction may be quantified by

considering the power and torque acting on an orbiting body (e.g. van den Bosch et al.

1999):

dẼ

dt̃
= ãdf · ṽM = ãdf ṽM cosκ (5.5)

dL̃

dt̃
= (r̃M × ãdf ) · ẑ = −r̃M ãdf sinα (5.6)

where ãdf is the dynamical friction vector, and ãdf is its magnitude, the deceleration

due to dynamical friction. κ is the angle between the velocity and dynamical friction

vectors, and α is the angle between the position and dynamical friction vectors. As

dynamical friction is always antiparallel to velocity, κ = π radians, and sinα = ṽt/ṽM .

Thus:
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dẼ

dt̃
= −ãdf ṽM (5.7)

dL̃

dt̃
= −ãdf

r̃M ṽt
ṽM

(5.8)

¨̃rM =
ṽ2t
r̃M

− d Φ̃

d r̃
− ãdf

˙̃rM
ṽM

(5.9)

˙̃vt = − ṽt
˙̃rM
r̃M

− ãdf
ṽt
ṽM

(5.10)

A choice of ãdf is then selected from the prescriptions (see section 5.2.4), and the

equations of motion are integrated to give ṽr(t̃), ṽt(t̃) and r̃M(t̃). These time-dependent

quantities can then be used when calculating the rate of mass-loss due to the selected

prescriptions (see section 5.2), allowing simultaneously solving for M̃ c(t̃) also. Thus

the orbit of every object in the system is integrated to the desired age, and the evolved

GCMF, evolved tracer spatial density, and evolved kinematic distribution can be built

from the surviving tracer GCs.

5.2 Prescriptions

5.2.1 Evaporation

Evaporation is broken down into two regimes, the energy criterion and the apocentre

criterion. The difference between these regimes is the criterion a star must meet before

being considered to have escaped. The energy criterion only requires that a star has

sufficient energy to escape before it is assumed to leave its host cluster, whereas the

apocentre criterion requires a star to have both sufficient energy to escape, and reach

the tidal boundary before it is assumed to leave its host cluster. During transit to

the tidal boundary, a star with sufficient energy to escape may interact with another

star, and have its energy reduced such that escape is no longer possible. This effect

manifests in the mass-loss rate through an additional dependence on mass. Whichever

of these categories a mass-loss rate may belong to, it may always be written with the
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same basic scalings (equation 1.25), repeated here:

dM̃ c

dt̃
= µev ∝ −M1−x

c ρ
1/2
h f

(
ρt(rev)

ρh

)
(5.11)

where x = 1 for the energy criterion, and 0 ≤ x < 1 for the apocentre criterion,

rev is the galactocentric distance at which the rate of mass-loss matches the time

averaged mass-loss rate, incorporating mass-loss rate dependence on orbital shape, and

f(ρt/ρh) incorporates mass-loss rate dependence on cluster internal structure/degree

of Roche lobe filling (see Chapter 1 for a more detailed discussion). Each evaporation

prescription is given in Table 5.3 in terms of the uncertainties represented in equation

(1.25) for easy comparison.

5.2.1.1 Energy Criterion

King (1966) investigated the escape rate of the single mass family of cluster models

derived in the study in a point mass galaxy, taking the effective tides determining the

rate of mass-loss to be set at pericentre. King (1966) found that to ∼ 20%, every part

of a King model cluster loses the same fraction of stars per unit time (this becomes

more precise for higher W0). Additionally, King (1966) found that when omitting

mass-loss due to stellar evolution and tidal shocks, as a King model cluster loses mass

due to evaporation, it becomes more concentrated and evolves along the sequence of

King models. In the dimensionless notation introduced in Chapter 3, the King (1966)

mass-loss rate can be expressed as:

dM̃ c

dt̃
= −27

8

(
P0ρ̃t
6π

)1/2

ln(0.5M̃ c)F (W0) (5.12)

where F (W0) is a weak function ofW0, with a maximum of F (W0) ≃ 8 and a minimum

of F (W0) ≃ 3 over the range W0 ∈ [2.5, 10]. This function F (W0) is essentially f ,

describing mass-loss rate dependence on cluster structure. Note also that the expression

derived by King (1966) had a Coulomb logarithm depending on the number of stars in

the core, but that this has been approximated to M̃ c in equation (5.12). As this is only
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a logarithmic dependence, this approximation is not likely to amount to a difference

larger than a factor of a few.

Vesperini & Heggie (1997) performed a series of N-body simulations of clusters

to estimate mass-loss due to stellar evolution, evaporation (both based on Chernoff &

Weinberg 1990), and disk shocking (based on Chernoff, Kochanek & Shapiro 1986).

They assumed a point mass host galaxy with a disk, and modelled all clusters to be

on circular orbits with rotation speeds of 220 km s−1 that always crossed the disk

perpendicularly. As they assumed that all cluster orbits were circular, they avoided

having to address any mass-loss rate dependence on orbital shape (i.e. they did not

consider any dependence on r̃ev). Consequently, their only time dependent variable

was cluster mass, expressed as:

Mc(t)

Mc,i

= 1− 0.828

FCW

t

Gyr
(5.13)

where Mi is initial cluster mass, and FCW is a parameter adopted from Chernoff &

Weinberg (1990). Thus, by substituting in FCW and differentiating, their mass-loss

rate can be expressed in dimensionless notation as:

dM̃ c

dt̃
= −92

75

(
M⊙

m̄0

)
ln(M̃ c,i)(P0ρ̃t)

1/2 (5.14)

where M⊙/m̄0 ≃ 1 and hence is ignored. Furthermore, since they assumed that all

clusters were tidally limited and did not consider any mass-loss rate dependence on

cluster structure, they implicitly set f = const.

Fall & Zhang (2001) modelled the evolution of a GCMF including evaporation,

tidal shocking, and stellar evolution in an isothermal disk galaxy. For clusters on

elliptical orbits, they assumed that the tidal radii of their clusters were imposed at

pericentre (i.e. r̃ev = r̃p), following Innanen, Harris & Webbink (1983). Furthermore,

they assumed Hénon (1961) self-similar evolution for all of their clusters, such that

the fractional mass-loss per relaxation time is given by ξ = 0.045, and r̃h = 0.145r̃t.

Furthermore they ignored any variation in the mean stellar mass or in the Coulomb

logarithm by setting Λ = 12. In dimensionless notation, their mass-loss rate due to
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evaporation is:

dM̃ c

dt̃
= −269ξ

(
P0ρ̃t
4π

)1/2

¯̃m ln(Λ) (5.15)

since they did not model evolving average stellar mass, ¯̃m = 1. Furthermore, by as-

suming self-similar models with r̃h = 0.145r̃t, cluster structure is always just a rescaled

version of itself. Consequently, as the cluster evolves it will always occupy the same

fraction of its Roche lobe, and therefore this treatment does not explicitly account for

any dependence on cluster structure.

Jordán et al. (2007) developed simple models describing GCMF evolution assum-

ing evaporation dominated mass-loss from a Schechter (1976) CIMF. By fitting these

models to the observed GCMFs of Virgo galaxies, they estimated a fitting parame-

ter CJ ≃ 840 ± 560 directly related to the average rate of mass-loss in GCs (where

dMc/dt = −Cρ1/2h defines C, see Chapter 2). In dimensionless notation the mass-loss

rate due to evaporation for each cluster is given by:

dM̃ c

dt̃
= −C̃

(
P0ρ̃h
3

)1/2

(5.16)

C̃ =
C

m̄

(
3

8πG

)1/2

such that for each study done to obtain C, an accompanying estimate of m̄ is required

to define C̃. By averaging over entire GCSs in this way, C̃ absorbs the uncertainties in

evaporation mass-loss rate in equation (1.25), such as dependence on cluster structure,

orbital shape, and apocentre/energy escape criterion, such that accounting for these

uncertainties explicitly is not required. However, due to a lack of explicit dependence on

these additional considerations, this formula would predict the same rate of mass-loss

for any clusters with the same ρ̃h, regardless of orbit/structure, etc. Thus, attempting

to predict the evaporation mass-loss rate for a single cluster using C will probably not

be closer than a factor of a few to the true value. However, when applied instead to

a large sample of clusters with a range of structures and orbits, mass-loss rates will

be underestimated for some clusters and overestimated for others, with the overall
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average mass-loss rate relatively well reproduced (if Virgo GCSs are representative,

which seems likely).

McLaughlin & Fall (2008) refined the approach of Jordán et al. (2007) in the

Milky Way by treating the mass of each cluster as a time- and density-dependent

probability distribution, and the GCMF as the sum of each of these mass probability

distributions. Then, the half-mass density of each individual cluster is used in esti-

mating C directly, rather than fitting an average mass lost per cluster to all clusters

in the sample simultaneously and inferring C using the average cluster ρh. With this

method, McLaughlin & Fall (2008) obtained CMF = 1100. Similarly, Chandar, Fall &

McLaughlin (2007) used individual cluster densities in M104 to estimate C directly,

obtaining a value of CCFM = 560. The same method was used in Chapter 2 in 22 dif-

ferent Virgo galaxies to obtain an average Cvirgo = 810±170. Furthermore, Goudfrooij

(2012) used the same technique applied to intermediate age clusters in NGC1316 to

estimate CG = 875.

By adapting the mass-loss formula of Wielen (1988) and utilising the results of

other authors, Baumgardt (1998) derived a mass-loss rate for clusters in a point mass

gravitational potential incorporating dependence on the degree of Roche lobe under-

filling/cluster structure, obtaining (in dimensionless notation):

dM̃ c

dt̃
= −ξ0

√
1 +

(
α
r̃h
r̃t

)3(
2P0ρ̃h
3

)1/2
ln(0.4M̃ c)

0.138
(5.17)

where ξ0 is the fraction of mass lost per relaxation time for a cluster in isolation

estimated by Aarseth & Heggie (1993) to be ξ0 ≃ 0.016. For a cluster in isolation,

r̃h/r̃t ≪ 1, and dM̃ c/dt̃ ∝ −ξ0ρ̃1/2h , as expected (e.g. Spitzer 1987). On the other

hand, for a tidally limited cluster, α(r̃h/r̃t)
3 ≫ 1 (assuming α > 1), making dM̃ c/dt̃ ∝

−0.5ξ0α
1/2ρ̃

1/2
t . Thus, α is a fitting parameter, and was estimated from the results of

Lee, Fahlman & Richer (1991), Lee & Goodman (1995) and de La Fuente Marcos (1995)

to be α ≃ 14.9. Therefore, in this treatment f =
√
1 + α(r̃h/r̃t)3 =

√
1 + αρ̃t/2ρ̃h.

Gieles & Baumgardt (2008) also derived mass-loss rates in a point mass grav-

itational potential depending on the degree of Roche lobe under-filling and cluster
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structure, denoted R = r̃h/r̃t in a similar way to Baumgardt (1998). They accom-

plished this by assuming a Gaussian velocity distribution for a range of clusters with

different R, and calculated the fraction of stars with velocities greater than the escape

velocity of an isolated cluster, finding that ξ = ξ0 exp(10R) is a good representation.

Severely under-filling (i.e. isolated) clusters are then represented by R ≃ 0, and thus

ξ0 is the escape fraction per relaxation time for isolated clusters, with an adopted value

of ξ0 = 0.0074 (Spitzer 1987). Furthermore, they set λ = 0.11. Consequently, in this

treatment f = exp(10r̃h/r̃t) = exp(7.94 3
√
ρ̃t/ρ̃h). In dimensionless notation, Gieles &

Baumgardt (2008) found the mass-loss rate to be:

dM̃ c

dt̃
= −ξ0 exp(10r̃h/r̃t) ln(λM̃ c)

0.138

(
2P0ρ̃h
3

)1/2

(5.18)

Gieles & Baumgardt (2008) claimed that for rh/rt > 0.05, which they called the ‘tidal

regime’, exp(10rh/rt) ∝ (rh/0.05rt)
3/2, and that therefore their mass-loss rate will

scale with ρ̃
1/2
h in the isolated regime (rh/rt < 0.05), after which the ρ̃h dependence

will cancel and the mass-loss rate will instead scale as ρ̃
1/2
t .

Gieles et al. (2011) analytically derived a model for evolving clusters from steadily

expanding clusters in isolation (based on Hénon 1965) to homologously contracting

under evaporation (based on Hénon 1961) in the tidal field of an isothermal sphere.

Additionally, they set ln(0.02N) withN = 105 in place of a varying Coulomb logarithm.

In dimensionless notation, their energy criterion mass-loss rate is:

dM̃ c

dt̃
= −100ζ ¯̃m

(
P0

8πα3

)1/2

ρ̃
1/2
t (5.19)

where ζ is the constant fraction of energy expended by a cluster on its evolution per

relaxation time (estimated to be ζ ≃ 0.2; Gieles, Baumgardt & Heggie 2010, see also

section 1.4.4), ¯̃m is the dimensionless average stellar mass, and α is the final ratio

of r̃h/r̃t. Since these models assumed homologous evolution in later stages of cluster

evolution, r̃h/r̃t = α = 0.145 (Hénon 1961), this is again equivalenet to setting f =

const, as homologous clusters will always occupy the same fraction of their Roche lobe.

As Gieles et al. (2011) treat m̄ as a constant in their models, the value of ¯̃m is just

unity.
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5.2.1.2 Apocentre Criterion

Heggie et al. (1998) compared results of star cluster evolution simulations obtained

using different methods but with the same initial conditions to check for consistency.

Once the experiment had been run and the results analysed, a number of problems

became apparent (Fukushige & Heggie 2000). As running N-body simulations with a

realistic number of stars (N ∼ 105) take a considerable amount of time, simulations

were run using a smaller number and the results scaled appropriately. However, when

this was done, it was found that the cluster lifetimes displayed a significant dependence

on N , rather than being independent of N as had been assumed would be the case.

The cause of this was attributed to the way that escaping stars had been dealt with

in the simulations, namely the energy criterion versus the apocentre criterion. Under

the energy criterion, as soon as a star achieve escape velocity it is removed from the

simulation. However, realistically once a star has achieved escape velocity, it must then

reach the edge of the cluster before actually escaping, known as the apocentre criterion.

This difference had been pointed out previously by Chandrasekhar (1942) and King

(1959). This more strict condition makes a difference because while travelling to the

cluster edge, the potential escaper may encounter another star and have its velocity

down-scattered below escape velocity, such that it will remain bound to the cluster

(see Chapter 1). Fukushige & Heggie (2000) predicted that the time-scale for escape

of a star with sufficient energy to escape scales as tesc ∝ Ê−2, where Ê is the excess

energy beyond the minimum required for escape. Using this result, Baumgardt (2001)

derived models of potential escaper populations in equilibrium (i.e. as many new

stars obtaining sufficient energy to escape as are actually leaving the cluster per unit

time), and predicted that rather then the mass-loss being a fraction ξ of the mass

per relaxation time, it is a constant fraction per txrht
1−x
cr . Ignoring the weakly varying

Coulomb logarithm, the scalings of relaxation time and crossing time (trh ∝ Mcρ
−1/2
h ,

tcr ∝ ρ
−1/2
h ) can be used to show that:
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dMc

dt
∝ −M1−x

c ρ
1/2
h

which for x ̸= 1 introduces dependence on cluster mass.

Gieles & Baumgardt (2008) derived models including this effect in the same way

as their energy criterion models, obtaining:

dM̃ c

dt̃
= −ξ0 exp(10r̃h/r̃t)

[
ln(λM̃ c)

0.138

]3/4(
M̃ c

k

)1/4(
2P0ρ̃h
3

)1/2

(5.20)

where k is a constant depending on cluster structure, with k = 3.85 for a W0 = 5 King

(1966) cluster. In terms of the scalings in equation (1.25), they have x = 0.75 and

f = exp(10r̃h/r̃t) = exp(7.94 3
√
ρ̃t/ρ̃h).

Gieles et al. (2011) derive models in an appendix accounting for mass-loss under

the apocentre criterion. Their other assumptions about cluster evolution remained the

same as in their derivation of mass-loss rates under the energy criterion. These were

that clusters steadily expand from isolation (based on Hénon 1965) to homologously

contracting clusters undergoing evaporation in a tidal field (based on Hénon 1961).

Additionally, they set ln(Λ) = ln(0.02N) with N = 105 in place of a varying Coulomb

logarithm. In dimensionless notation, their apocentre criterion mass-loss rate is:

dM̃ c

dt̃
= −100ζ

(
P0

8πα3

)1/2

ρ̃
1/2
t

(
M̃ c

M̃ c,1

)1/4

(5.21)

where M̃ c,1 ≃ 105 is a fitting parameter. Again since late-stage cluster evolution

is assumed to be homologous, cluster structure is always just a rescaled version of

itself, and will always occupy the same fraction of its Roche lobe. Consequently,

this treatment does not explicitly account for any dependence on cluster structure.

Furthermore, they found that x = 0.75 gives the best fits to their N-body data.

Baumgardt & Makino (2003) analysed mass-loss due to stars escaping under the

apocentre criterion for a range of King models using N-body simulations. They found

that x ≃ 0.75 forW0 = 5, and that x ≃ 0.82 forW0 = 7, and concluded that xmay vary
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weakly with cluster structure. However, this study focused on mass-loss depending on

cluster mass, without any explicit dependence on cluster structure/degree of Roche

lobe filling. Therefore, these different values of x for different W0 may actually be

reflecting degeneracy between x and f .

Further studies have claimed that in fact x depends on the strength of the tidal

field (Tanikawa & Fukushige 2005), and on the mass profile of the host galaxy more

than on cluster structure (Tanikawa & Fukushige 2010). Combining results from both

studies, Tanikawa & Fukushige (2010) derive for the mass-loss time-scale:

t̃mloss (r̂t, α) ≃ 254t1000 [1 + f (α) g(r̂t)] (P0ρ̃h,i)
−1/2

[
1.5× 10−5M̃ c,i

]x(r̂t)
(5.22)

r̂t =
r̃t,i
r̃h,i

(5.23)

α = 1 + P0
ρ̃

Ω̃
2 (5.24)

where α is a parameter encapsulating the mass profile of the host galaxy, and r̂t depends

on both the cluster structure and the strength of the tidal field, with a subscript i

indicating the initial value. t1000 is a normalisation parameter based on clusters with

initial relaxation times equal to 1000 N-body time units in their simulations. In their

N-body results, Tanikawa & Fukushige (2010) also fit for the functions t1000(r̂t), x(r̂t),

f(α), and g(r̂t) to obtain:

t1000(r̂t) ≃ 2× 104
r̂4t

r̂4t + 2× 103
(5.25)

x(r̂t) ≃ r̂4t
r̂4t + 1× 102

(5.26)

f(α) ≃ 15

16− α2
(5.27)

g(r̂t) =

{
1 for r̂t . 8
0 for r̂t & 8

(5.28)

where t1000 behaves such that in the limit of very strong tides, cluster mass-loss is

virtually instantaneous, i.e. t1000 → 0 as r̂ → 0. On the other hand, in the absence

of a tidal field, mass-loss occurs on a time-scale expected for an isolated cluster, i.e.

t1000 → 2 × 104 as r̂ → ∞. Their function x is designed such that there is no mass
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dependence in the mass-loss time-scale in the limit of strong tides, i.e. x→ 0 as r̂ → 0,

but approaches unity for a cluster in isolation, x → 1 as r̂ → ∞. If the local density

is written as ρ̃ = r̃−k, then α = 4− k. Then given that all systems must have density

gradients bounded between that of a point mass (k = 3), and a homogeneous sphere

(k = 0), this means that α ∈ [1, 4]. Then as is expected for a homogeneous sphere,

f(α → 4) → ∞, i.e. tides are ineffective in a homogeneous sphere. Bringing all of

these equations together, in dimensionless notation their mass-loss rate is given by:

dM̃ c

dt̃
= − M̃ c,i

t̃mloss
(5.29)

Although this appears rather complicated, in terms of equation (1.25) this treatment

of mass-loss rate depends on (initial) cluster structure through r̂ = r̃t,i/r̃h,i, and on

(initial) cluster mass through M̃
1−x
c with x = r̂4t /(r̂

4
t + 100). The remaining terms

depend on the host galaxy, and are therefore constant during cluster dynamical evo-

lution. Consequently this mass-loss rate depends only on initial cluster parameters,

unlike the mass-loss rates of other authors, and is therefore constant during cluster

evolution. Although this will be less realistic, it does have the advantage of making

the integrations much simpler.

Lamers, Baumgardt & Gieles (2010) attempted to go further still, investigating

how mass-loss rate depends on the degree of Roche lobe filling, on the orbital elliptic-

ity, on a varying stellar mass spectrum (including different metallicities), in addition

to internal cluster structure. Additionally, rather than ignore any weak dependence on

the Coulomb logarithm, they approximate N/ ln(0.02N) ≃ N0.8 for 104 < N < 106 in

their derivations. Their investigation used the N-body results of Baumgardt & Makino

(2003) for Roche lobe filling simulations (note that the host galaxy potential in these

simulations was only modelled as a singular isothermal sphere), supplemented by their

own simulations, which were presumably also for a singular isothermal sphere host

galaxy. They broke the mass-loss up into four sections: direct stellar evolution mass-

loss, stellar evolution induced mass-loss, and pre- and post-core-collapse evaporation

(pre-cc and post-cc). Only the pre-cc and post-cc evaporation mass-loss is discussed

here, as mass-loss related to stellar evolution is discussed in section 5.2.3. Their equa-
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tion for mass-loss is:

dMc

dt
= −M

1−δ
c

AtL
(5.30)

where δ ≃ [0.65, 0.85], depending on the degree of Roche lobe filling, internal cluster

structure, and whether the mass-loss is pre-cc or post-cc, and A is a constant depending

on whether mass-loss is pre-cc or post-cc. Their tL is given by:

tL
Myr

=
tNref
Myr

(
m̄

M⊙

)−δ (
(1− e)

Rgal

8.5 kpc

220 km s−1

vgal

)
(5.31)

m̄ = a
(
t0M

δ
c,i

)bF c
7 (5.32)

where tNref , a, b and c are fitting parameters deduced through N-body results, m̄ is

the average stellar mass, e is the orbital ellipticity, Rgal and vgal are the galactocentric

distance and galaxy circular speed, and Mc,i is the cluster initial mass. The degree

of Roche lobe under-filling is specified by FW0 = r̃t,W0/r̃J , the ratio of zero density

radius to Jacobi radius (i.e. FW0 ≤ 1), where the subscript W0 denotes the value of

the King model central potential, and thus FW0 is a function of r̃J only. For example

W0 = 5, 7 King models have r̃t,5 = 10.7, r̃t,7 = 33.71, and it is therefore possible to

write F5 = r̃t,5/r̃J = F7r̃t,5/r̃t,7 = F7/3.15, which can be used to simplify some of

the Lamers, Baumgardt & Gieles (2010) equations. Combining all of this, the Lamers,

Baumgardt & Gieles (2010) mass-loss rate for all but post-cc Roche lobe under-filling

clusters can be expressed in dimensionless notation as:

dM̃ c

dt̃
= −

(
m̄0

M⊙

)η(bqδ−1) aqηM̃
bqηδ

c,i[
9

340
t̃
N
ref (1− e)

]q M̃1−η
c

(
P0ρ̃t
6

)q/2
(5.33)

q =
1

1 + bη
(5.34)

mass-loss for post-cc Roche lobe under-filling clusters is instead given by:

dM̃ c

dt̃
= −

(
m̄0

M⊙

)γ−η aηcca
qδM̃

γ

c,i

6.48AF0.127+ccc+qcδ
7

[
9

340
t̃
N
ref (1− e)

]q M̃1−η
c

(
P0ρ̃t
6

)q/2
(5.35)

q =
1

1 + bδ
(5.36)

γ = bccηδ + bqδ2 (5.37)
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with acc = 1.507, bcc = −0.0984, ccc = 0.207. The parameter m̄0/M⊙ depends upon

the stellar IMF used, but will never be far from unity, and so is ignored. The switch

over from pre- to post-cc mass-loss occurs at time t̃cc = 16.9t̃
0.872
rh for Roche lobe filling

clusters, and t̃cc = 32.0t̃
0.872
rh F−0.513

5 for Roche lobe under-filling clusters. The numerical

values of the various constants in the Roche lobe filling phase are given in Table 5.1,

and their values in the Roche lobe under-filling phase are given in Table 5.2.
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Although this looks very sophisticated, setting b = 0 returns us to the familiar

dMc

dt
∝ −M1−x

c ρ
1/2
t , and since b ≃ −0.1 in all cases, these mass-loss rates are in fact

only slightly different from those of other authors. Consequently, all these different

parameters constitute a very small change from the standard µev ∝ ρ
1/2
h , despite all the

added complication. For a cluster initially under-filling its Roche lobe, the expectation

is that it will expand as it evolves until it is tidally limited. After this point, it will

evolve towards core-collapse. The fraction of mass lost per relaxation time would

be expected to change over these processes, and become roughly constant after core-

collapse (see section 1.4.4). The Lamers, Baumgardt & Gieles (2010) mass-loss rate

attempts to encapsulate all of this physics, hence the multitude of different constants

which together combine to make f in the notation of the technical evaporation scalings

equation (equation 1.25). Additionally, their mass-loss rate has a built-in expectation

about how the mass-loss rate will change with orbital shape, and includes an additional

dependence on mass due to the apocentre criterion. Again in the notation of equation

(1.25), these are ρ̃t(r̃ev) = ρ̃t(r̃p)/(1 − e) and x = η. Therefore these models attempt

to account for all of the uncertainties in mass-loss due to evaporation.

As mentioned earlier, Fukushige & Heggie (2000) predicted that the escape time-

scale for stars scales with excess energy beyond that required for escape, Ê, as tesc ∝
Ê−2. By utilising this result, Baumgardt (2001) predicted that under the apocentre

criterion the mass-loss rate scales as µev ∝ −M1−x
c ρ

1/2
h . In order to test how sensitive

this prediction is to the escape rate energy scaling, Takahashi & Baumgardt (2012)

performed a series of Fokker-Plank models with different escape time scalings according

to:

tesc ∝ (Ê)−κ

Takahashi & Baumgardt (2012) modelled W0 = 3 King model cluster evolutions with

κ = [1, 2, 3], finding that the lifetimes of clusters do not strongly depend on κ, with

all lifetimes resembling the κ = 2 scaling for N & 5 × 104, and that therefore the

µev ∝ −M1−x
c ρ

1/2
h scaling is robust. They also investigated the effects of internal cluster
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structure, corroborating the results of Tanikawa & Fukushige (2005) and Tanikawa &

Fukushige (2010) that x depends much more on the strength of the tidal field than on

internal cluster structure. As these results were obtained from simulations of clusters on

circular orbits, complications from changing tidal radii (i.e. dependence on r̃ev) were

not investigated. Their approximate mass-loss rate can be written in dimensionless

notation as:

dM̃ c

dt̃
= −

(
νeM̃ c

2π

)1/(κ+2)(
P0ρ̃t
3

)1/2
[(

2
ρ̃h
ρ̃t

)1/2
ln(λM̃ c)

0.138

]κ+1
κ+2

(5.38)

where κ ≃ 2, and νe and λ were determined by comparison with N-body results, and

represent the efficiency of mass-loss and the strength of the Coulomb logarithm. They

found that (λ, νe) = (0.11, 7) works well for both single and multi-mass clusters, and

that (λ, νe) = (0.02, 40) works well for multi-mass clusters only. Although unclear

in their notation, the presence of ρ̃h/ρ̃t means that their mass-loss rate additionally

depends (weakly) on cluster structure. Thus, x = 1 − 1/(κ + 2) = 0.75 and f =

(ρ̃h/ρ̃t)
(κ+1)/2(κ+2) = (ρ̃h/ρ̃t)

3/8.

A large variety of prescriptions by different authors using different methods, mak-

ing different assumptions, and looking at different aspects of evaporation mass-loss have

been brought together. These prescriptions have been summarised in terms of the main

uncertainties in evaporation mass-loss rate (cf. equation 1.25) in Table 5.3. The first

column displays the equation number in each row, and the second column displays

the algebraic and numerical coefficient of each mass-loss rate. The third and fourth

columns display the mass and density dependence of each mass-loss rate. The fifth

column displays the type of host galaxy generating the tidal field acting on the clus-

ters for which the mass-loss rate was derived, and the final column displays how the

mass-loss rate was assumed to depend on orbital shape. The energy criterion mass-loss

rates are given in the upper half of the table, with apocentre criterion mass-loss rates

in the lower half.
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The numerical coefficients in the second column were calculated assuming a value of

P0 = 9, with algebraic constants given in the discussion of the relevant mass-loss rate.

For the coefficients of the mass-loss rate obtained via reduced χ2 minimisation (equation

5.16), an average stellar mass of m̄ = 0.7M⊙ was assumed. For the evaluation of the

numerical coefficient of the Tanikawa & Fukushige (2010) mass-loss rate (equation

5.29), the host galaxy was assumed to be an isothermal sphere (α = 2), and a value

of x(r̂t) = 0.75 → r̂t = 4.16 was assumed. The numerical coefficients of the Lamers,

Baumgardt & Gieles (2010) mass-loss rates were calculated with the constants for a

M̃ c > 103, W0 = 7 cluster in both pre-cc and post-cc phases for Roche lobe filling

clusters (equation 5.33, cf. Table 5.1). For the Roche lobe under-filling mass-loss rates

(equation 5.35), the constants for a M̃ c > 103, F7 = 0.4 cluster were assumed for the

calculation of both the pre-cc and post-cc mass-loss rate coefficients (cf. Table 5.2). In

both cases, the first coefficient is for pre-cc, and the second is for post-cc. Finally, two

numerical coefficients for the Takahashi & Baumgardt (2012) mass-loss rate (equation

5.38) were calculated using the two values of νe = 7, 40 presented by the authors, and

assuming κ = 2.

The numerical evaluation of coefficients in the second column of Table 5.3 have

rather a large spread in values, from 0.06 to 216.76. Of course, the rest of the evapo-

ration mass-loss equation must also be considered before declaring that the mass-loss

caused by one prescription will be more severe than another. For example, assuming

a cluster mass of M̃ c = 105 and half-mass density ρ̃h = 150ρ̃t ⇒ r̃h ≃ 0.15r̃t would

make the mass-loss rate of equation (5.20) scale as dM̃ c/dt̃ ≃ 310ρ̃
1/2
t , while the mass-

loss rates of equation (5.16) would scale as dM̃ c/dt̃ ≃ 130ρ̃
1/2
t . On the other hand,

the numerical coefficient on equation (5.15) is exactly what is displayed for the same

conditions, and therefore predicts mass-loss rates a factor of several smaller. Likewise,

the coefficient on equation (5.29) would predict a mass-loss rate of dM̃ c/dt̃ ≃ 3.27ρ̃
1/2
t .

However this mass-loss rate is based on the initial conditions of the cluster, and there-

fore where the mass-loss of other prescription will decelerate as cluster mass becomes

very small, this prescription will continue unabated. Consequently it would be natural

to expect a smaller coefficient in order to achieve a similar overall mass-loss. However,
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the mass-loss rate of equation (5.29) with the example mass and half-mass density given

above has a coefficient of around 5000. Obviously this is extremely high and would

require a CIMF extending up to very high masses to have any clusters left after 13Gyr

of evolution. The reason this mass-loss rate is so high is likely because this evaporation

prescription was presented by Takahashi & Baumgardt (2012) qualitatively rather than

quantitatively, and so could well be missing some numerical factors (e.g. a factor of

M̃
−1/(κ+2)

c,i would likely remedy the anomalously large coefficient). Therefore under the

same conditions, these different evaporation prescriptions can be extected to produce

a range of mass-loss rates, those with typically high mass-loss rates will destroy many

clusters, while those with low mass-loss rates will destroy fewer. While investigating the

number of clusters destroyed during the course of GCMF evolution has consequences

for what fraction of stars present in the Galaxy today may have originated in clusters,

the focus remains on the shape of the resulting GCMF rather than its scale.

The specific details of how these evaporation prescriptions will affect GCMF

shape evolution depends on how they scale with cluster properties. For example,

energy criterion prescriptions with variable Coulomb logarithms will become slightly

weaker as clusters lose a significant fraction of their mass, while prescriptions under

the apocentre criterion will become much weaker as clusters lose a significant fraction

of their mass. Similarly, prescriptions depending on cluster structure are weaker when

acting on clusters with smaller ρ̃t/ρ̃h at fixed ρ̃h, i.e. clusters that are more concentrated

and/or significantly under-filling their Roche lobes, as expected based on the discussion

in section 1.4.4. Therefore, when employing these evaporation prescriptions, those that

are weaker for more concentrated clusters would be expected to produce GCSs with a

higher prevalence of more concentrated clusters than prescriptions that do not depend

on cluster structure. Likewise, prescriptions that are weaker when acting on lower

mass clusters would be expected to produce GCSs with a higher prevalence of low-

mass clusters than prescriptions that do not depend on cluster mass. Furthermore,

prescriptions with effective tides acting from orbital pericentre will affect otherwise

similar clusters on elliptical orbits much more strongly, and consequently an evolved

GCS favouring less elliptical orbits would be expected, and similarly for prescriptions
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with an inverse dependence on orbital ellipticity. Prescriptions assuming r̃ev = r̃M , (i.e.

effective tides acting from the current galactocentric radius) is essentially equivalent

to effective tides acting from the radius where ρ̃
1/2
t (r̃ev) = ¯̃ρ

1/2
t , where a bar denotes a

time average. Exactly where this radius will lie will depend on the host galaxy, but

is likely to be near the orbital apocentre since this is where clusters move slowest and

consequently spend most of their time. On the other hand, prescriptions with the same

dependences but different coefficients will end up with the same proportion of low/high

mass/density/orbital ellipticity clusters, with the only difference being in the number

of survivors after a Hubble time of evolution, i.e. a stronger evaporation prescription

will result in a less populous evolved GCS.

In terms of radial dependence of the resulting GCMF evolved with each of these

prescriptions, there are four possible scenarios to consider — a cluster population will

have initial properties that either depend on initial galactocentric distance or do not,

and subsequent evaporation that either depends on galactocentric distance or does

not. For example, Elson, Fall & Freeman (1987) conducted a study of Young Massive

Clusters (YMCs) in the LMC, finding that most if not all have unbound halos of

stars. Given the young age of these clusters (. 1Gyr), Elson, Fall & Freeman (1987)

argue that the origin of these halos of unbound stars is tidal stripping, and that the

LMC YMCs were born filling their Roche lobes. On the other hand, authors such as

Baumgardt et al. (2010) and Gieles et al. (2011) contend that a significant fraction

of even Milky Way GCs are not yet tidally limited on the basis of the ratio of half-

mass radii to tidal radii corresponding to their current galactocentric radii, and models

assuming an infinite initial density and subsequent expansion to fill their Roche lobes.

Thus, there are arguments both ways as to whether initial half-mass densities and tidal

densities, or equivalently half-mass densities and galactocentric radii are correlated in

some way. Subsequently, an evolving GCS may have further radial dependence built

in by evaporation prescriptions with a strong radial dependence (e.g. r̃ev = r̃p, or

µev ∝ ρ̃
1/2
t , cf. equation 1.8). Alternatively, a GCS evolved with prescriptions that

have no radial dependence (e.g. µev ∝ ρ̃
1/2
h ) will only continue to have whatever radial

dependence they were initialised with. For scenarios with a radial dependence (either
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primordial, through the prescription, or both), the distribution of cluster orbits will

play a role in determining the final radial dependence of the GCS, and of particular

interest is the GCMF.

5.2.2 Tidal Shocks

Gnedin & Ostriker (1997) modelled the dynamical evolution of the Milky Way globular

cluster system including effects of evaporation and tidal shocks. For evaporation, they

adopted a very simple form, dMc/dt = ξMc/trh, with ξ = 0.045 (Hénon 1961) and

trh the standard relaxation time (Spitzer 1987, equation 1.4). They used a far more

detailed description of tidal shocks, including a shock induced relaxation term (the

second order term in the average energy change for stars in a tidally shocked cluster;

Kundic & Ostriker (1995), see also section 1.4.3). These first and second order average

energy change terms for stars at cluster-centric radius r̃ with orbital frequencies Ω̃ are:

⟨
∆Ẽ

⟩
bulge

=
4

3

(
M̃ b

ṽpr̃
2
p

)2

r̃2Ab(xb)χ(r̃p)λ(r̃p, r̃a) (5.39)

⟨
∆Ẽ

2
⟩
bulge

=
8

9

(
M̃ b

ṽpr̃
2
p

)2

Ω̃
2
r̃4Ab(xb)χ(r̃p)λ(r̃p, r̃a) (5.40)

where M̃ b is the mass causing the tidal shock, r̃p is the orbital pericentre, ṽp is peri-

centric cluster speed, and Ab(xb), χ(r̃p) and λ(r̃p, r̃a) are correction functions described

below.

The periods of stars in the outer regions of a cluster will typically be greater

than the duration of a gravitational encounter during a cluster pericentric passage.

Thus constituent stars are frequently assumed to be stationary, known as the impulse

approximation. However, stars in the central regions of a cluster move much faster and

may react to shocks adiabatically, and consequently the impulse approximation breaks

down.
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To correct for this, an adiabatic correction factor was introduced (Weinberg 1994a,b,c):

Ab(xb) = (1 + xb)
−3/2 (5.41)

xb =
P0ρ̃r̃

2
p

3ṽ2p
(5.42)

where ρ̃(r̃) is the average density of the cluster inside of radius r̃. Since the average

density is related to circular angular frequency and circular orbital period by ρ̃ ∝ Ω̃
2
∝

T̃
−2
, xb is essentially the ratio of the period of a circular orbit at radius r̃ in the cluster

to the duration of the shock. Thus when the duration of the encounter is much less than

a typical orbital period, xb ≃ 0 and Ab ≃ 1, whereas when the ratio of shock duration

to typical orbital period is greater, xb ≫ 0 and Ab ≪ 1. Consequently, equations (5.39)

and (5.40) are greatly reduced, reflecting the adiabatic conditions for the star. The

best typical representation of the orbital periods of stars will be that of a star at the

half-mass radius, and thus the affect of the shock is calculated assuming that the local

density in the cluster is the half-mass density, ρ̃ = ρ̃h.

Furthermore, a correction accounting for the distended nature of the mass dis-

tribution producing the shock (rather than simply assume it is a point mass; Gnedin,

Hernquist & Ostriker 1999) was introduced:

χ(r̃p) = 0.5
[
(3J0 − J1 − I0)

2 + (2I0 − I1 − 3J0 + J1)
2 + I20

]
(5.43)

I0(r̃p) =

∫ ∞

1

M̃(ζr̃p)

M̃ b

dζ

ζ2(ζ2 − 1)1/2
(5.44)

I1(r̃p) =

∫ ∞

1

r̃p

M̃ b

dM̃

dr̃
(ζr̃p)

dζ

ζ2(ζ2 − 1)1/2
(5.45)

J0(r̃p) =

∫ ∞

1

M̃(ζr̃p)

M̃ b

dζ

ζ4(ζ2 − 1)1/2
(5.46)

J1(r̃p) =

∫ ∞

1

r̃p

M̃ b

dM̃

dr̃
(ζr̃p)

dζ

ζ4(ζ2 − 1)1/2
(5.47)

For a point mass system, I0 = 1, J0 = 2/3, and I1 = J1 = 0, and thus χ = 1 everywhere,

whereas for distended mass distributions, χ(r̃p) ≥ 1 everywhere. These integrals are

displayed for the Hernquist (1990) model in Figure 5.1.
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Figure 5.1: Point mass correction integrals for the Hernquist (1990) model. Figure
taken from Gnedin, Hernquist & Ostriker (1999).

Finally, a correction accounting for time variation in the tidal field strength be-

tween pericentre and apocentre (Aguilar, Hut & Ostriker 1988) was also included:

λ(r̃p, r̃a) =

[
M̃ b(r̃a)

M̃ b(r̃p)

(
r̃p
r̃a

)3

− 1

]2
(5.48)

For circular orbits, r̃p = r̃a, and λ(r̃p, r̃a) = 0, making
⟨
∆Ẽ

⟩
bulge

=
⟨
∆Ẽ

2
⟩
bulge

= 0

(i.e. no tidal shock), as required. With all the necessary ingredients included, the

shocking time-scale is then given by:

t̃shock = T̃ r

∣∣∣Ẽbind

∣∣∣⟨
∆Ẽ

⟩
bulge

+ T̃ r

∣∣∣Ẽbind

∣∣∣2⟨
∆Ẽ

2
⟩
bulge

(5.49)

where Gnedin & Ostriker (1997) assumed
∣∣∣Ẽbind

∣∣∣ ≃ 0.2M̃ c/r̃h is the total cluster bind-

ing energy, and T̃ r is the cluster radial period. Then the mass-loss rate is given by
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dM̃ c/dt̃ = −M̃ c/t̃shock:

dM̃ c

dt̃
= − 80

3P0

(
M̃ b

ṽpr̃
2
p

)2
M̃ cAb(xb)χ(r̃p)λ(r̃p, r̃a)

T̃ rρ̃h
(5.50)

where the “bulge” is taken to be the portion of the host galaxy interior to the cluster

pericentre. Inspection of equation (5.50) reveals the kinds of scalings expected based

on the arguments in section 1.4.3 — i.e. in terms of cluster parameters, the rate of

mass-loss due to tidal shocking scales as µsh ∝ M̃ c/ρ̃h, while in terms of orbital and

host galaxy dependence, the mass-loss rate scales as µev ∝ M̃
2

b/ṽ
2
pr̃

4
pT̃ r. The effect of

a very adiabatic shock (the limit of P0ρ̃hr̃
2
p/3ṽ

2
p ≫ 1) is to change these scalings to

µev ∝ M̃ c/ρ̃
5/2
h in terms of cluster properties, and µev ∝ M̃

2

b ṽp/r̃
7
pT̃ r in terms of orbital

and host galaxy dependence. The point mass and time-varying tidal field corrections do

not affect how the shocking mass-loss rate scales with cluster properties, but make the

shocking mass-loss rate more rapid for more elliptical orbits and more distended host

galaxies. Therefore, tidal shocking would be expected to deplete a GCS of high-mass,

low-density GCs on short-period elliptical orbits.

5.2.3 Stellar Evolution

The mass-loss rate due to stellar evolution can be calculated by taking the time deriva-

tive of equation (1.14), the initial mass minus the mass lost due to stellar evolution at

time t (see section 1.4.1). This gives:

dM̃ c

dt̃
=

dN

d logm

∣∣∣∣
mto

d logmto

d log t̃

[
mto − {1− Pej(mto)}mrm(mto)

t̃ ln(10)

]
(5.51)

where mto is the mass of a star evolving off of the main-sequence at time t̃, Pej(m)

is the probability that the remnant of a star of progenitor mass m will be ejected by

its kick velocity as it expires, mrm(m) is the mass of the remnant left after a star of

progenitor mass m expires, and dN/d logm is the logarithmic initial mass function

defined between the most and least massive stars allowed, mu and ml. This treatment
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assumes that a star will instantly turn into a remnant once it evolves off of the main-

sequence, and ignores mass-loss due to stellar winds while on the main-sequence. By

allowing stars to evolve, expire, and possibly escape, the average stellar mass in a

cluster must change with time to be self-consistent. Ignoring all other forms of mass-

loss, the number of particles (stars and remnants) in a cluster can only be changed

by remnants escaping due to an imparted kick velocity. Therefore, upon the expiry of

stars of mass m, the cluster will lose dNloss particles:

dNloss(m) =
dN

d logm
Pej(m) d logm (5.52)

Then the remaining fraction of particles at time t̃ is given by:

Nstev(t̃)

Ninit

= 1− 1

Ninit

∫ logmu

logmto

dN

d logm
Pej(m) d logm (5.53)

with

Ninit =

∫ logmu

logml

dN

d logm
d logm (5.54)

Then the average stellar mass, ¯̃m at time t̃ can be calculated by taking the ratio of

Mstev(t̃)/Minit (equations 1.14 and 1.15) divided by equation (5.53):

¯̃m(t̃) =
1− 1

Minit

∫ logmu

logmto

dN
d logm

[m− {1− Pej(m)}mrm(m)] d logm

1− 1
Ninit

∫ logmu

logmto

dN
d logm

Pej(m) d logm
(5.55)

Furthermore, taking the time derivative of ¯̃m yields:

d ¯̃m

dt̃
=

¯̃m
t̃ ln(10)

dN
d logm

∣∣∣
mto

d logmto

d log t̃

[
mto−{1−Pej(mto)}mrm(mto)

M̃c
− Pej(mto)

Nstev

]
(5.56)

In order to calculate these, mto as a function of t̃ is required. This is provided by

Chernoff & Weinberg (1990) (hereafter referred to as CW) in a table reporting on the

results of Miller & Scalo (1979) for Population I stars with main-sequence lifetimes in

[100.5, 104.18] Myr, or a more modern version is provided by Hurley, Pols & Tout (2000)

(hereafter referred to as HPT). At times before mto(t̃) = mu, no stars present will have

expired yet, and thus there is no mass-loss due to stellar evolution.
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The different stellar evolution prescriptions pertain to the choice of mto(t̃) as

described by CW or HPT, along with their different choices for remnant type as a

function of progenitor mass. The remnant mass as a function of progenitor mass as

used by CW is:

mrm(m) =


0.58 + 0.22(m− 1) m < 4.7

0 4.7 ≤ m ≤ 8
1.4 m > 8

(5.57)

where the descending progenitor mass inequalities correspond to white dwarfs, an ex-

plosion sufficiently violent such that no remnant is left, and neutron stars (Iben &

Renzini 1983) (with m in units of M⊙). The remnant mass as a function of progenitor

mass given by HPT is defined in terms of the core mass at the base of the asymptotic

giant branch, MAG = (0.000436(m)5.22 + 0.0684)
0.25

. The mass ranges for different

classes of remnant in this case are:

mrm(m) =


MAG m ≤ 3.58

0.44MAG + 0.448 3.58 < m ≤ 8.19
1.17 + 0.09max(1.44, 0.77MAG − 0.35) m > 8.19

(5.58)

wherem, mrm, andMAG are in units of M⊙, and the descending inequalities correspond

to white dwarfs that have a second dredge-up prior to expiry, white dwarfs that do not

have a second dredge-up prior to expiry, and progenitors massive enough to become

either neutron stars or black holes. Thus, any progenitor withMAG ≤ 2.25M⊙ ⇒ m ≤
8.19M⊙ will end up as a white dwarf. Additionally, HPT assume a black hole remnant

for any star with MAG > 9.52M⊙ ⇒ m > 24.76M⊙.

In order to obtain the time derivative of mto(t̃), a function is fit to the data

points, and its derivative taken. Figure 5.2 displays mto as a function of t̃ as calculated

by Miller & Scalo (1979), the functional fit to these data, and the functional fit to the

HPT mto as a function of t̃ data as derived by Lamers, Baumgardt & Gieles (2010) for

lowest metallicity stars. It is apparent that the functional fit for the Miller & Scalo

(1979) model is of questionable accuracy for the first few Myr. However the evolution

of the GCS is begun with the assumption that the extreme mass-loss caused by the

expiry of very massive stars at these early times has already transpired, and these fits

are only used for times after this period (t̃start = 30).



190

Figure 5.2: Progenitor mass of stars evolving off of the main-sequence as a function
of time, mto(t̃). Black points are Miller & Scalo (1979) model data as presented in
Chernoff & Weinberg (1990). The red curve is the functional fit to these data, and
the green curve is the Lamers, Baumgardt & Gieles (2010) functional fit to the lowest
metallicity Hurley, Pols & Tout (2000) model, the data points of which are absent.

The derivatives dmto/dt̃ of these models are then taken to be the derivatives of

the functional fits in Figure 5.2:

d logmto

d log t̃
= −0.7735(log t̃)0.3 exp

[
0.7
(
11.1695− (log t̃+ 6)1.3

)]
− 0.28 (5.59)

for the Miller & Scalo (1979) models, and

d logmto

d log t̃
= −0.3864 + 0.11256[log t̃] + 0.04572[log t̃]2 − 0.02951[log t̃]4 (5.60)

for the Hurley, Pols & Tout (2000) models.

During GCS evolution runs involving stellar evolution, the stellar IMF is always

taken to be that of a Chabrier (2003) disk IMF, and the probability of escape upon
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becoming a remnant, Pej, can be obtained from theoretical estimates, (e.g. Heyl 2007;

Woosley & Heger 2007). Ultimately Pej is determined by a user input value for each

remnant class (i.e. white dwarfs, neutron stars, or black holes). Assuming that other

mass-loss mechanisms that may be acting on the cluster do not preferentially target

stars of a particular mass, then the number of particles present at time t̃ is simply

N(t̃) = M̃ c(t̃)/ ¯̃m. However, this is not accurate for example for mass segregated

clusters undergoing evaporation, as these clusters preferentially lose low-mass stars —

however clusters may take a significant amount of time to achieve mass segregation, so

this assumption should be reasonable for the first few relaxation times.

Therefore, these two stellar evolution prescriptions only differ in two ways; the

remnant mass function, mrm(m), and mto(t̃), the function describing the mass of a star

evolving off of the main-sequence at time t̃. The more massive remnant a particular

mass of progenitor evolves into (with the same non-zero probability of being retained),

the less mass a host cluster will lose. The remnant mass predicted by HPW and CW

for a progenitor mass of m = 2M⊙ is the same, at mrm = 0.8M⊙, with the CW

prediction smaller at lower mass progenitors, and larger at higher mass progenitors.

Between the progenitor masses of [4.7, 8]M⊙, HPT predict remnants of masses between

[0.93, 1.41]M⊙, whereas CW predict no remnants at all. At progenitor masses just

over m = 8M⊙, both remnant mass predictions are basically the same, however the

CW remnant mass remains constant at mrm = 1.4M⊙, whereas the HPT remnant

continues to slowly increase (e.g. a progenitor mass of 24.76M⊙ is predicted to become

a remnant black hole of mass 1.8M⊙). Thus, given that in a Chabrier (2003) disk IMF,

most of the total mass is in low-mass stars, and given the absence of any remnant for

intermediate masses in the CW prescription, it seems likely that a cluster with stellar

evolution according to the HPT prescription would retain more mass in remnants.

Additionally, examination of equation (5.51) reveals that there is no dependence on

cluster properties or environmental parameters. Therefore, since the remnant mass as

a function of progenitor mass, probability of ejection as a function of progenitor mass,

main-sequence turn-off mass as a function of time, and the shape of the stellar IMF

are assumed to be universal, the only detail which varies from one cluster to another is
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the normalisation of the stellar IMF (equation 1.15). Consequently every member of a

GCS will lose the same fraction of its initial mass by time t̃, and therefore the evolved

GCMF will only be shifted to lower masses, with the overall shape remaining constant

(modulo clusters that end up at masses low enough to be considered destroyed).

In terms of the mass of stars evolving off of the main-sequence at time t̃, HPT

predict a function mto(t̃) that is at higher mass for the first Gyr or so, before matching

the function used by CW at later times (cf. Figure 5.2). Therefore at the same t̃, HPT

predict greater d log mto/d log t̃ and mto, and consequently a greater rate of mass-loss

(cf. equation 5.51). Therefore in conclusion, compared to the Chernoff & Weinberg

(1990) stellar mass-loss prescription, the Hurley, Pols & Tout (2000) prescription will

likely result in clusters with lower mass overall, but with a greater percentage of cluster

mass in remnants.

Stellar evolution is not expected to be of first order importance with regards to

shaping the GCMF over a Hubble time of evolution, due to the fact that stellar evolu-

tion removes the same fraction of mass from every GC, leaving the shape of the GCMF

unchanged (e.g. see section 1.4.1). However, stellar evolution can remove a signifi-

cant fraction of mass from all GCs, and this may in turn affect how other destruction

mechanisms (i.e. tidal shocking and dynamical friction) act on them. Therefore in the

interests of allowing investigation into the interplay between destruction mechanisms,

this simple treatment is employed when stellar evolution is selected as a destruction

mechanism.

5.2.4 Dynamical Friction

Under the assumption that the velocity distribution of the host galaxy is everywhere

identical, that the host galaxy is infinite and homogeneous, and that the body expe-

riencing dynamical friction is much more massive than the particles the host galaxy

consists of, Chandrasekhar (1943) calculated the deceleration of the subject body due
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to dynamical friction as (e.g. Binney & Tremaine 2008):

ãdf = −P0

(
m̄0

M0

)
ρ̃M̃ c ln Λ

ṽ2M

[
erf(X)− 2X√

π
e−X

2

]
(5.61)

X =
ṽM√
2σ̃

(5.62)

where m̄0/M0 is the ratio of a typical tracer’s initial average stellar mass to the mass-

scale of the galaxy, ρ̃ is the local galaxy density, ln Λ is the Coulomb logarithm, and

σ̃ is the local one dimensional velocity dispersion of the background galaxy, given

by equation (3.43). Despite the limiting assumptions about the host galaxy velocity

distribution and structure, under extensive study Chandrasekhar’s dynamical friction

formula has been found to give remarkably good results when compared with self-

consistent N-body simulations (e.g. White 1983; Bontekoe & van Albada 1987; Zaritsky

& White 1988; Cora, Vergne & Muzzio 1997; Cora, Vergne & Muzzio 2001; Fabio

& Merritt 2012). However, there are some areas where Chandrasekhar’s dynamical

friction formula does not fare so well, for example in constant density cores where the

dynamical friction force is suppressed and can actually disappear entirely (Read et al.

2006a; Inoue 2009). This can easily be accounted for by simply switching dynamical

friction off when a tracer enters a constant density core.

By fitting for free parameters in the Coulomb logarithm using N-body results,

Just & Peñarrubia (2005) derive the following expression for the Coulomb logarithm:

lnΛ = ln
b̃max√

b̃
2

min + ã290

(5.63)

b̃max = min

(
r̃M ,

ρ̃

dρ̃/dr̃

)
(5.64)

b̃min = r̃h (5.65)

ã90 =
M̃ c

2σ̃2 + ṽ2M

m̄0

M0

(5.66)

where b̃max and b̃min are the maximum and minimum impact parameters (see section

1.4.2), σ̃ is the local host system velocity dispersion (obtained through solving equation

(3.42), the spherical isotropic Jeans equation), and ã90 is the typical impact parameter
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for a 90 degree deflection. Using this result plus self consistent velocity distributions

(made possible through the use of scale free models), Just et al. (2011) achieve orbital

decay times an order of magnitude in better agreement with N-body simulations than

when using a constant Coulomb logarithm.

5.2.4.1 Ellipticity of Decaying Orbits

The quantity d L̃c(Ẽ)/d L̃ can be used to indicate whether dynamical friction is placing

the tracer in question on a more or less elliptical orbit, as follows. Recalling that

h = L̃/[L̃c(Ẽ) + L̃0],

dh

dt̃
=

1

L̃c(Ẽ) + L̃0

dL̃

dt̃

[
1− L̃

L̃c(Ẽ) + L̃0

dL̃c(Ẽ)

dL̃

]
(5.67)

Since L̃c(Ẽ) ≥ 0, L̃ ≥ 0, L̃0 ≥ 0 and dL̃/dt̃ ≤ 0, this means that:

h
dL̃c(Ẽ)

dL̃
< 1 ⇒ dh

dt̃
< 0 ≡ increasing ellipticity

h
dL̃c(Ẽ)

dL̃
= 1 ⇒ dh

dt̃
= 0 ≡ constant ellipticity

h
dL̃c(Ẽ)

dL̃
> 1 ⇒ dh

dt̃
> 0 ≡ decreasing ellipticity

The quantity hdL̃c(Ẽ)/dL̃ may be obtained through repeated application of the chain

rule, to give:

h
dL̃c(Ẽ)

dL̃
= h

dL̃c
dr̃E

dr̃E

dẼ

dẼ

dt̃

dt̃

dL̃
(5.68)

where r̃E is the radius of a circular orbit with energy Ẽ; i.e. such that:

Ẽ = Φ̃(r̃E) +
r̃E
2

dΦ̃

dr̃

∣∣∣∣∣
r̃E

(5.69)

L̃c =

√√√√r̃3E
dΦ̃

dr̃

∣∣∣∣∣
r̃E

(5.70)
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Then with equations (5.7) and (5.8) it can finally be shown that:

h
dL̃c(Ẽ)

dL̃
=

hṽ2M

L̃Ω̃(Ẽ)
(5.71)

where Ω̃(Ẽ) is the angular frequency of a circular orbit with energy Ẽ. For an initially

circular orbit, L̃ = ṽ2M/Ω̃(Ẽ), and thus dL̃c(Ẽ)/dL̃ = 1. If L̃0 = 0, then h = 1 for a

circular orbit, and this is another expression of the well known result that a subject

body initially on a circular orbit will migrate through a sequence of circular orbits as its

orbital energy and angular momentum decay, (e.g. van den Bosch et al. 1999; Binney

& Tremaine 2008). However, if L̃0 > 0, then h = L̃/[L̃c(Ẽ)+ L̃0] < 1 and consequently

h dL̃c(Ẽ)/dL̃ < 1 for an initially circular orbit. Thus the subject body must migrate to

a higher ellipticity orbit as its orbital energy and angular momentum decay. Moreover,

equation (5.71) indicates that this is true regardless of the form of ãdf . Note that the

quantity in equation (5.71) only indicates whether a subject body is migrating to a

more or less elliptical orbit at a single instant in time. In order to deduce whether a

subject body will end up on a more or less elliptical orbit after a period of time would

require a time average of the quantity in equation (5.71). With orbital energy and

angular momentum no longer constant, this would be quite a complicated problem,

and is not attempted.

Therefore, while predicting how dynamical friction will affect the velocity distri-

bution of a GCS is a very complicated problem, inspection of equation (5.61) indicates

that the effect will be more pronounced for more massive clusters in higher density

environments, i.e. dynamical friction will most strongly affect massive clusters on

low-energy orbits.

5.2.5 Evolution on the Globular Cluster Fundamental Plane

Recalling that GC properties are interrelated, and in fact can be uniquely represented

with only two parameters, the GCFP can be represented in many ways (e.g., Rh vs L

or σ vs L as in Figure 1.4, orM vs Rh as in Figure 1.11; cf. section 1.3). Consequently,
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predicting how GCs evolve on the GCFP requires a theory built on the combined evolu-

tion of two such parameters. The destruction mechanisms listed above for evaporation,

stellar evolution, tidal shocking and dynamical friction serve to predict how GC mass

evolves with time. Therefore all that is required for a theory of GCFP evolution is a

prescription detailing how another (non-equivalent) GC property changes with time in

response to this mass-loss. Such a prescription may be derived based on considerations

of internal energy change and the virial theorem as follows. In general the total internal

energy per unit mass of a system is:

Ẽtot = K̃tot + W̃ tot (5.72)

where K̃tot is the total kinetic energy per unit mass of all constituent particles, and

W̃ tot is the total mutual gravitational binding energy per unit mass. If the system is

virialised then the following must also be true (e.g. equation 1.1):

2K̃tot + W̃ tot = 0 (5.73)

Therefore, for the system to remain virialised when the total energy of the system is

changed by some amount δẼ in time δt̃, the total kinetic and potential energies must

satisfy:

δẼtot = δK̃tot + δW̃ tot (5.74)

0 = 2δK̃tot + δW̃ tot (5.75)

Combining these, the following standard result is obtained:

δK̃tot = −δẼtot (5.76)

δW̃ tot = 2δẼtot (5.77)

and therefore in the limit of infinitesimal changes (δ → 0), for the system to remain

virialised these quantities must change at a rate:
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dK̃tot

dt̃
= −dẼtot

dt̃
(5.78)

dW̃ tot

dt̃
= 2

dẼtot

dt̃
(5.79)

For a cluster undergoing mass-loss due to escapes, changes to the total energy will be

brought about due to kinetic energy being carried away by escapers, changes to the

gravitational potential due to mass-loss and spatial redistribution of stars, and binary

reheating (see section 1.4.5). Ignoring binary reheating for simplicity, this implies that:

dẼtot

dt̃
=

dK̃esc

dt̃
+

dW̃ tot

dt̃
(5.80)

where K̃esc is the kinetic energy per unit mass carried away by escapers. Combining

this with equations (5.78) and (5.79) implies that:

dK̃tot

dt̃
=

dK̃esc

dt̃
(5.81)

dW̃ tot

dt̃
= −2

dK̃esc

dt̃
(5.82)

such that 2dK̃tot/dt̃ + dW̃ tot/dt̃ = 0 is satisfied at all times for any dK̃esc/dt̃, in

accordance with the virial condition. In general, the gravitational binding energy may

be expressed in terms of the gravitational radius, r̃g. However, for many systems the

half-mass radius and gravitational radius are related via r̃h = CW r̃g with Cw ≃ 0.45

(see section 1.2.1), which can also be combined with the definition of half-mass density

to arrive at:

W̃ tot = −CW
(
2P0

3

)1/3(
m̄0

M0

)2/3

ρ̃
1/3
h M̃

5/3

c
¯̃m

−1
(5.83)

and therefore:

dW̃ tot

dt̃
= W̃ tot

(
5

3M̃ c

dM̃ c

dt̃
+

1

3ρ̃h

dρ̃h
dt̃

− 1
¯̃m

d ¯̃m

dt̃

)
(5.84)
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Substituting in equation (5.82), the rate of change of half-mass density may be ex-

pressed as a function of mass-loss rate, rate of kinetic energy carried away by escapers,

and rate of change of average stellar mass:

1

ρ̃h

dρ̃h
dt̃

=
3
¯̃m

d ¯̃m

dt̃
− 6

W̃ tot

dK̃esc

dt̃
− 5

M̃ c

dM̃ c

dt̃
(5.85)

In order to proceed further, it is necessary to consider the kinematics of escapers in

a cluster. The energy per unit mass of a particle in a rotating frame (known as the

Jacobi integral) is given by:

ẼJ =
1

2

∣∣ ˙̃x∣∣2 + Φ̃(x̃)− 1

2

∣∣∣Ω̃× x̃
∣∣∣2 (5.86)

where x̃ is the position vector, and Ω̃ is the angular frequency vector of the particle.

Defining a coordinate system where the x-axis is aligned along the line joining the

centre of mass of the cluster and host galaxy, the z-axis is perpendicular to the orbital

plane, and the y-axis is perpendicular to both of these, then Ω̃ = (0, 0, Ω̃). Assuming

that the mass interior to the tidal radius is sufficiently concentrated as to be well

approximated by a point mass potential, the minimum energy per unit mass required

to reach the tidal radius at r̃t and escape from the cluster is:

Ẽcrit = −3M̃ c

2r̃t

m̄0

M0

= −3

2

(
P0

3

)1/3(
m̄0

M0

)2/3

ρ̃
1/3
t M̃

2/3

c (5.87)

and the kinetic energy carried away by an escaper is:

Ẽpe = Ẽ − Ẽcrit (5.88)

As discussed in section 5.2.1, escape is considered under two regimes; the energy cri-

terion, where stars that achieve energies of Ẽcrit are assumed to leave the cluster

instantaneously, or the apocentre criterion, where once having achieved an energy of

Ẽcrit stars may have other encounters while in transit to r̃t, and be scattered back

below Ẽ = Ẽcrit. Therefore, such stars may continue to have their energies up or down

scattered before actually escaping, and consequently are called potential escapers. As
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a result, a population of potential escapers is established over a range of energies, with

a minimum of Ẽcrit.

This process of up and down scattering in energies is diffusion through energy-

space, with the number of potential escapers at energy Ẽpe determined by the difference

in the rate that potential escapers are scattered to and from this energy, minus the rate

that potential escapers at this energy actually escape. Therefore, the rate of change of

the number of potential escapers per unit energy, ηpe = dNpe/dẼpe, may be expressed

according to Fick’s second law including an additional term to take into account the

rate that stars actually escape from the cluster:

dηpe

dt̃
= α

d2ηpe

dẼ
2 − ηpe

t̃esc
(5.89)

The constant α is the diffusion coefficient, with dimensions of Ẽ
2
t̃
−1
. Since this process

involves the number of particles scattered over Ẽcrit per relaxation time, a natural

choice for this constant is (e.g. Baumgardt 2001):

α =
ξẼ

2

crit

t̃rh
=

9ξ

23/2

(
P0

3

)7/6(
m̄0

M0

)4/3

ρ̃
2/3
t ρ̃

1/2
h M̃

1/3

c
¯̃m ln

(
γ
M̃ c

¯̃m

)
(5.90)

where ξ is the fraction of the velocity distribution that is scattered above the escape

speed every relaxation time.

The more energy a potential escaper has, the more quickly it will be moving,

and therefore the time taken for a potential escaper to leave the cluster will depend on

how much excess energy above the escape energy it has. Fukushige & Heggie (2000)

calculated this escape time to vary as:

tesc =
2Cβ

√
6

π

(GMc)
4/3ω1/3

(E − Ecrit)2
(5.91)

where Cβ ≃ 0.38 and ω =
√

GMc

3r3t
. This may be rewritten as:

t̃esc = βẼ
−2

pe (5.92)

β =
23/2Cβ
π

(
m̄

M0

)4/3

(3P0ρ̃t)
1/6M̃

4/3

c (5.93)
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Note that β as calculated by Fukushige & Heggie (2000) provides an upper limit on

the escape times, but that the energy scaling is robust (e.g. Takahashi & Baumgardt

2012). With the definition of Ẽpe given in equation (5.88), the differential equation

may be written as:
dηpe

dt̃
= α

d2ηpe

dẼ
2

pe

− Ẽ
2

pe

ηpe
β

(5.94)

For a steady rate of mass-loss, it must be the case that dηpe/dt̃ ≃ 0, as dηpe/dt̃ ≪ 0

implies that the rate at which potential escapers at energy Ẽpe actually escape far

exceeds the rate at which potential escapers at this energy are populated by scatterings.

Consequently, the population of potential escapers would be rapidly depleted, i.e. this

would correspond to the energy criterion. Alternatively if dηpe/dt̃ ≫ 0, then the rate

at which potential escapers at energy Ẽpe are populated by scatterings far exceeds the

rate at which potential escapers at this energy escape. As a result, the population

of potential escapers would grow indefinitely while the number of bound stars would

be depleted until the cluster became completely unbound and lost all member stars

virtually instantaneously. Therefore although ηpe will likely change over the course of a

cluster lifetime, these changes must occur on a time-scale that is very long compared to

the time-scale for changes to individual potential escapers. Thus, dηpe/dt̃ = 0 should

be a reasonable approximation (e.g. Baumgardt 2001):

d2ηpe

dẼ
2

pe

− AẼ
2

peηpe = 0 (5.95)

with A = (αβ)−1, given by (equations 5.90 and 5.93):

A =
0.138π

(
M0

m̄0

)8/3
3CβξP

4/3
0 M̃

5/3

c ρ̃
5/6
t ρ̃

1/2
h

¯̃m ln

[
γ M̃ c

¯̃m

] (5.96)

The solution to equation (5.95) is given by (e.g. Baumgardt 2001):

ηpe =
dNpe

dẼpe

= Cpe

(
A

4

)1/8
(
Ẽpe

π

)1/2

K1/4

(
A1/2Ẽ

2

pe

2

)
(5.97)
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where Kn is the modified Bessel function of the second kind of order n, and Cpe is

a normalisation constant. This constant can be calculated by requiring that equation

(5.97) integrated over all Ẽpe gives the total number of potential escapers, Npe, resulting

in:

Cpe =
Npe

Γ(5/4)

(
A

2

)1/4

(5.98)

ηpe =
dNpe

dẼpe

=
A3/8Npe

Γ(5/4)

(
Ẽpe

2π

)1/2

K1/4

(
A1/2Ẽ

2

pe

2

)
(5.99)

where Γ(n) is the Gamma function. The rate at which potential escapers at energy

Ẽpe escape is given by −ηpe/t̃esc:

d2Nesc

dt̃ dẼpe

= −A3/8Npe

Γ(5/4)β

Ẽ
5/2

pe

(2π)1/2
K1/4

(
A1/2Ẽ

2

pe

2

)
(5.100)

The rate at which escapers at this energy carry away energy is then simply the energy

of each escaper, Ẽpe, multiplied by this rate of escape:

d2K̃esc

dt̃ dẼpe

= −A3/8Npe

Γ(5/4)β

Ẽ
7/2

pe

(2π)1/2
K1/4

(
A1/2Ẽ

2

pe

2

)
(5.101)

And consequently, the total rate of energy lost due to escapers is obtained by integrating

equation (5.101) over all Ẽpe, leading to:

dK̃esc

dt̃
= − Npe

2π1/2βA3/4

Γ(1/4)

Γ(5/4)
(5.102)

At this point all that is required is Npe. This may be obtained by requiring that the

rate of escapes at energy Ẽpe (equation 5.100) integrated over all Ẽpe gives the total

rate of escapes, leading to:

Npe = −Γ(5/4)

Γ(3/4)
(Aπ)1/2β

dNesc

dt̃

= −Γ(5/4)

Γ(3/4)
(Aπ)1/2β

M̃ c

¯̃m

(
1

M̃ c

dM̃ c

dt̃
− 1

¯̃m

d ¯̃m

dt̃

)
(5.103)
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and therefore the rate of loss of kinetic energy per unit mass due to escapers is given

by:

dK̃esc

dt̃
=

Γ(1/4)

2A1/4Γ(3/4)

M̃ c

¯̃m

(
1

M̃ c

dM̃ c

dt̃
− 1

¯̃m

d ¯̃m

dt̃

)
(5.104)

Thus, substituting in the definitions of W̃ tot (equation 5.83) and A (equation 5.96), the

rate of change of half-mass density may finally be written as:

dρ̃h
dt̃

=
ρ̃h
¯̃m

d ¯̃m

dt̃
[3− κ] +

ρ̃h

M̃ c

dM̃ c

dt̃
[κ− 5] (5.105)

κ =

(
81

2

)1/3
Γ(1/4)

CWΓ(3/4)

3Cβξ ln

[
γ M̃ c

¯̃m

]
0.138πM̃ c

¯̃m


1/4(

ρ̃t
ρ̃h

)5/24

(5.106)

where d ¯̃m/dt̃ is given by equation (5.56) when stellar evolution is desired, dM̃ c/dt̃

is given by the choice of destruction mechanisms, CW ≃ 0.45, Cβ ≃ 0.38, γ = 0.02,

and since the dependence on ξ is very weak, it is fixed at ξ = 0.078 (see Chapter 2).

The method with which ξ = 0.078 was obtained did not explicitly treat evaporation

mass-loss under the apocentre criterion, whereas the derivation of equation (5.106)

does. However, ξ was obtained as a fitting parameter through χ2 minimisation, and

therefore the value of ξ is that which most closely matches the assumed evaporation

mass-loss rate to the mass-loss rate (by any mechanism) that Virgo GCs actually

underwent in turning power-law CIMFs into the GCMFs observed today. Given the

fact that the models produced with the assumed evaporation mass-loss fit the observed

GCMFs closely, ξ is likely to be a reasonable estimation of the actual mass-loss rate

(see Chapter 2 for a more thorough discussion).

Ignoring any dependence on stellar evolution for simplicity, since dM̃ c/dt̃ < 0,

equation (5.105) predicts that the half-mass density of a cluster increases when κ < 5,

and decreases when κ > 5. If the half-mass density decreases, then κ will increase (cf.

equation 5.106), which will result in further decrease of the half-mass density. On the
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Figure 5.3: Ratio of half-mass to tidal density vs number of constituent particles,
N = M̃ c/ ¯̃m, for constant κ (cf. equation 5.106). The solid line corresponds to κ = 5,
while the dashed line corresponds to κ = 3. The constants have values CW = 0.45,
Cβ = 0.38, ξ = 0.078, and γ = 0.02.

other hand, the effect of decreasing mass is to increase κ, and therefore any increase in

half-mass density must overcome this effect to decrease κ. This will likely be easier for

clusters that already have high half-mass densities, as equation (5.105) predicts larger

dρ̃h/dt̃ for larger ρ̃h at fixed dM̃ c/dt̃, i.e. the same loss of mass will result in a larger

gain in density during an interval of time dt̃. Therefore, qualitatively dρ̃h/dt̃ = 0 is

unstable, and high ρ̃h clusters will continue to evolve towards higher densities, while

clusters with low ρ̃h will continue to evolve towards ever lower densities. Figure 5.3
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displays lines of constant κ = 3, 5 (dashed, solid) in ρ̃h/ρ̃t vs N = M̃ c/ ¯̃m (note that

the steep descent at small N is due to the Coulomb logarithm, which tends to zero

as N approaches 1/γ = 50). Clusters lying above the dashed line would have κ < 3,

and consequently stellar evolution would act to reduce cluster density, while mass-

loss would act in opposition to increase cluster density. Clusters lying between the

dashed and solid lines would have 3 < κ < 5, and thus both stellar evolution and

mass-loss would act in concert to increase cluster density. Alternatively, clusters that

lie below the solid line would have κ > 5, and therefore stellar evolution would act

to increase cluster density, with mass-loss acting in opposition. Continuing to ignore

stellar evolution for simplicity, any clusters that lie above the solid line will be evolving

towards higher densities, whilst those that lie below the solid line will evolve towards

lower densities. Since the peak in this curve occurs at ρ̃h/ρ̃h ≃ 0.8 ⇒ r̃h/r̃t ≃ 0.85, the

vast majority of clusters will lie above the solid line. For example, King model clusters

are roughly bound between r̃h/r̃t = [0.1, 0.35] (cf. Figure 1.7), which approximately

corresponds to ρ̃h/ρ̃t = [12, 500]. In fact, the meaning of ρ̃h/ρ̃t < 1 is ambiguous, since

in terms of only bound stars this would imply a cluster density profile that increases

outwards. Alternatively this could be interpreted to mean that a cluster is overfilling

its Roche lobe, and consequently must be undergoing severe mass-loss. Consequently

the expectation is that a GCS evolved according to this prescription will produce a

GCS with a large spread in densities, as some GCs continuously evolve towards lower

densities, and others continuously evolve towards higher densities. The fact that some

clusters will tend towards ever higher densities is very reminiscent of core collapse,

which is actually eventually halted by binary reheating in the core (see section 1.4.5).

A more detailed derivation of equation (5.105) including a term for binary reheating

in step (5.80) would very likely result in a prescription for density evolution predicting

a similar eventual halt to the increase in density, and possibly even gravothermal

oscillations.

In this Chapter, a large number of evaporation mass-loss prescriptions have been

collected, and additionally prescriptions for tidal shocking mass-loss and dynamical



205

friction have also been taken from the literature and discussed. Furthermore, prescrip-

tions for stellar evolution mass-loss and cluster half-mass density evolution have been

derived. Each of these categories of prescription were discussed in terms of what affect

they are likely to have on an evolved GCS. Furthermore, the multiple prescriptions

in the evaporation mass-loss and stellar evolution mass-loss were compared, and the

likely differences in the GCS arising from evolution with these different prescriptions

discussed. Examples of simulated GCSs evolved from the initial GCSs of Chapters 3

and 4 using the prescriptions presented in this Chapter are displayed next in Chapter 6.
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6 Examples of Simulated Evolved GCSs

In this Chapter, the techniques, methods, and prescriptions presented and discussed

in Chapter 5 are applied to simulated initial GCSs created according to the method

presented in Chapter 3 and displayed in Chapter 4, to create simulated evolved GCSs.

These evolved GCSs are presented (where relevant) in terms of the properties discussed

in section 1.3, namely the mass function, velocity distribution, and fundamental plane.

Note that all of these models are merely demonstrations that the evolution routine

and prescriptions work as expected, and are not intended to be representative of real

GCSs. Before these plots are displayed and discussed however, the run-time commands

of the GCS evolution code are described, in order to demonstrate the versatility of the

methods discussed in Chapter 5.

6.1 Simulated GCS Evolution Code Description

In order to allow easy comparisons between GCSs evolved from the same initial set-up

with different evolutionary prescriptions, the set-up of the initial GCS and the GCS

evolution are performed separately by different codes. The operation of the first code

is described in section 3.7. The second code applies the equations and methods given

in this Chapter to evolve the simulated initial GCS from the first code to provide

an evolved simulated GCS (see Appendix F). The run-time commands are described

below.

First, the desired final GCS age is required, followed by the ratio of the initial

stellar mass, m0, to the host galaxy mass-scale, M0. This roughly controls how much

more massive the host galaxy is than a typical tracer. Next to be selected are the

prescriptions; evaporation (see section 5.2.1), tidal shocking (see section 5.2.2), stel-

lar evolution (see section 5.2.3), dynamical friction (see section 5.2.4), and half-mass

density evolution (see section 5.2.5), with the possibility of any being switched off. Of

these five mechanisms, only stellar evolution requires any additional input. This is



207

because the maximum and minimum stellar IMF mass, along with the probability of

retention of a newly formed remnant for each remnant class (i.e. white dwarfs, neutron

stars, and black holes) are free parameters to be input. Since mass-loss due to stellar

evolution is expected to dominate early on in cluster evolution, and stellar evolution

affects all clusters equally, modelling this stage of evolution would basically only serve

to reduce the initial mass of all clusters before more interesting effects such as evap-

oration and tidal shocking become important (see section 1.4.1). For this reason it

is assumed that this phase of extreme mass-loss due to stellar evolution has already

passed for the initial GCS produced as described in Chapter 3, i.e. the initial GCS

begins with an age of t̃ = t̃start = 30. Thus, when selecting the limits of the stellar

IMF, ml and mu, the upper mass limit must satisfy mu ≤ mto(t̃start).

Next, the user is prompted for a definition of the effective tidal radius, r̃ev, i.e., at

which galactocentric radius the corresponding tracer tidal radius matches the average

tracer tidal radius determining dynamical evolution (see section 1.4.4). The options

are:

1. Orbital pericentre

2. Time averaged galactocentric radius

3. Galactocentric radius at which the square root of instantaneous tidal density

equals the time average of the square root of tidal density

4. Galactocentric radius where the tidal density equals a specific function of el-

lipticity multiplying the tidal density at orbital pericentre

The standard approach is to define the effective tidal radius at orbital pericentre,

however as discussed in section 1.4.4, this may be an oversimplification. The reasoning

behind setting effective tides at orbital pericentre is because a typical orbital time-scale

is much shorter than a typical cluster relaxation time, and therefore as the outer layers

of a cluster are stripped by tides at perigalacton, there is not enough time for substantial

expansion before the next perigalactic passage (von Hoerner 1957). However, given that
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technically unbound stars may continue to share similar orbits to their former host for

a very long time (Fukushige & Heggie 2000), it is possible that as a cluster moves away

from the galactic centre and the instantaneous tides weaken, the growing tidal radius

could envelop some of the recently ‘shed’ stars, and they may become bound once again

(e.g. Webb et al. 2013). Consequently, the mass-loss of the cluster is not as severe as

would be expected at pericentre, and the orbital radius corresponding to the effective

tides must lie farther out than pericentre (see also section 1.4.4). Webb et al. (2013)

sought to account for this, and by fitting to N-body simulations derived a correction to

the pericentric tides giving the tidal density corresponding to the mass-loss rate at the

current orbital radius. This is the function of ellipticity mentioned in the final option

for definition of effective tides:

ρ̃t(r̃M) = ρ̃t(r̃p) [1 + aF exp(be)]−3 (6.1)

where r̃p is the orbital pericentre, a ≃ 0.17, b ≃ 4.1, F = r̃M−r̃p
r̃a−r̃p

is the orbital phase,

and e is the orbital ellipticity.

Following the definition of effective tidal radius, the user is prompted to choose

whether the half-mass densities of clusters will be allowed to evolve or not. If not, then

the integration variable for half-mass density is fixed, and the evolution integrations

are a system of four equations, three for orbital motion (two of which are given by

the radial motion due to it being a second derivative, cf. equation (5.9), while the

third is given by equation (5.10), describing tangential motion). The fourth evolution

equation is the time derivative of cluster mass, dM̃ c/dt̃, which is the sum of mass-loss

rates due to any enabled prescriptions listed in section 5.2. When the option for the

half-mass density of clusters to evolve in response to mass-loss according to maintained

virial equilibrium is selected (see section 5.2.5), the fifth evolution equation is given

by equation (5.105). Subsequently, a choice of how to assign initial half-mass densities

to the tracer population is presented. Although most evaporation prescriptions do

not depend on half-mass densities, they are essential for tidal shocks and evolution of

the half-mass density, and also make a difference to dynamical friction through the

Coulomb logarithm (see section 5.2.4). The options are:
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1. To treat tracers as if they were point masses, however this is not allowed if a

prescription requiring a non-zero half-mass density has been selected (e.g. tidal

shocking, half-mass density evolution, or certain evaporation prescriptions).

2. To randomly draw a King model concentration from either a Gaussian or

Schechter (1976) distribution. If a Gaussian is selected to describe the con-

centration distribution, the mean and variance must also be specified, whereas

if a Schechter (1976) function is selected to describe the concentration distri-

bution, the exponential cut-off and logarithmic power-law slope must also be

specified. Whichever concentration distribution is selected, a minimum and

maximum allowed concentration is also required, to prevent extreme outliers,

in addition to a seed for the random number generator. Once a concentration

has been assigned, it is used to obtain a value of ρ̃h/ρ̃t. Then assuming that r̃t

is the tidal radius at the time averaged galactocentric radius, ρ̃h is solved for.

3. To specify a relation between the ratio of half-mass radius to tidal radius and

cluster mass, i.e. r̃h/r̃t = AM̃
B

c , where A and B are input by the user, and r̃t

is calculated using the previously selected definition of effective tides to obtain

ρ̃h.

4. To specify a relation between the half-mass radius and cluster mass directly;

r̃h = AM̃
B

c , with A and B input by the user.

When an evaporation prescription assuming a King (1966) cluster structure is selected

(i.e. with an explicit dependence on W0, namely the King (1966) and Lamers, Baum-

gardt & Gieles (2010) evaporation prescriptions), only the second option assigning a

random concentration to all clusters is allowed. This is because r̃h/r̃t is multivalued in

c and thus one value of r̃h/r̃t may correspond to several values of c and W0 (since W0

and c have a one-to-one relation; King 1966). Therefore, a random value of c is assigned

first, and interpolation is used to find W0 and r̃h/r̃t. Otherwise, if any other selected

prescriptions depend on half-mass density (such as tidal shocking, various evaporation
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prescriptions, half-mass density evolution, etc.), then any choice other than treating

tracers as point masses is allowed.

The options for dynamical friction are either Chandrasekhar (1942) or none at all.

If Chandrasekhar (1942) was selected, then the orbital energy and angular momentum

of each tracer is no longer conserved, meaning that all tracers will migrate to different

orbits at each instant in time as their orbital energies and angular momenta decay.

Consequently, all associated orbital parameters (i.e. orbital pericentre, apocentre, etc.)

are no longer constant with time. Thus the orbital parameters of a tracer at a single

instant in time are the orbital parameters corresponding to the tracer’s energy and

angular momentum at that instant in time. Therefore, for every energy between Ẽ =

Φ̃(r̃init) and Ẽ = Φ̃(r̃f ), all required orbital parameters are calculated as functions of

the parameter l = [L̃−L̃min(Ẽ)]/[L̃c(Ẽ)−L̃min(Ẽ)] between l = 0 ⇒ L̃ = L̃min(Ẽ) and

l = 1 ⇒ L̃ = L̃c(Ẽ). This is slightly different from the definition of h in equation (3.2)

in that l depends on L̃min(Ẽ) in place of L̃0, where L̃min(Ẽ) is the angular momentum

required to have a pericentre at r̃min = 10−4, i.e.

L̃min =

√
2
(
Ẽ − Φ̃(r̃min)

)
r̃min (6.2)

The purpose of this definition of l is twofold; firstly, the calculation of parameters

such as pericentre, apocentre, radial period, and orbital averages of certain quantities

become intractable for very radial orbits, and in reality a GC with a pericentre of

rp = 10−4r0 would be deep inside the core of the host galaxy, and would be very

unlikely to ever re-emerge. Consequently, disallowing such orbits does not detract in

any significant way from the potential utility of the evolution code. The second reason

for the definition of l is a numerical one. The orbital circularity is always bounded

by 0 ≤ h ≤ L̃/[L̃(Ẽ) + L̃0], and so the upper limit varies with orbital energy when

L̃0 > 0. This would make interpolating on tables of orbital parameters as functions of

Ẽ and h unnecessarily difficult. On the other hand, l is always bounded by 0 ≤ l ≤ 1

for any Ẽ, and therefore all required orbital parameters can be easily interpolated for,

given instantaneous values of Ẽ and L̃. In practice, it is also very difficult to solve
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for the orbital parameters of nearly circular orbits. For example, as L̃ → L̃c(Ẽ), the

difference between pericentre and apocentre becomes smaller than numerical noise,

and it is possible for the situation to arise where bisection will claim to have obtained

an orbital pericentre greater than the orbital apocentre. Consequently any further

calculations that depend on these values (such as equation 3.75) will go awry. Thus,

the range over l for which orbital parameters are solved is slightly more conservative,

and ϵ ≤ l ≤ 1 − ϵ is adopted, with ϵ = 10−4. Therefore before the main orbital

integrations, orbital pericentres, apocentres, time averaged radii, and radial periods are

solved for all Ẽ and l on a grid of 60×240 to enable interpolation for these parameters,

rather than calculating them on-the-fly during the main orbit integrations. On the

very rare occasions when a tracer is on an orbit corresponding to l outside of the range

ϵ ≤ l ≤ 1 − ϵ, logarithmic extrapolation is utilised. For an orbit with l = 1 − ϵ,

this corresponds to L̃/L̃c(Ẽ) = 1− ϵ[1− L̃min(Ẽ)/L̃c(Ẽ)], and therefore no orbit with

l > 1− ϵ will ever be greater than 0.1% more than the largest L̃ orbital parameters are

tabulated for. Consequently logarithmic extrapolation deals with these rare situations

reliably.

Once all the required information has been entered, the equations of motion of

every tracer are integrated from their initial values at t̃ = t̃start = 30 up to the spec-

ified evolved tracer system age by use of a fourth order Runge-Kutta variable step

size integration scheme (e.g. Press et al. 1992). Typically, (when dynamical friction is

not active), orbital angular momenta are conserved extremely well over the course of

the integration (any loss of precision is indistinguishable from numerical noise), while

orbital energies are typically conserved to within a few percent (though this can be

improved to a few tenths of a percent by requiring a higher accuracy from the integra-

tions, with the trade-off of longer run-times). When dynamical friction is enabled, the

equations of motion become much more difficult to solve, taking significantly longer.

Despite the fact that dynamical friction is supposed to reduce orbital energy and an-

gular momentum, the complicated nature of the integrations occasionally cause the

integrator to step the integration variables in an unphysical way, which may cause un-

wanted behaviour such as an orbital angular momentum greater than L̃c(Ẽ), or orbital
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energy greater than the escape energy, Ẽmax, etc. When this happens, the integration

is aborted and the tracer in question is destroyed. Orbits which are already near to

these limits are most vulnerable to this happening, and consequently having dynamical

friction enabled will bias a GCS towards smaller orbits more strongly than the physical

process is directly responsible for.

During the integration of the equations of motion, the selected prescriptions are

applied to the tracer mass, density, orbital energy, and orbital angular momentum.

Thus, the final values for tracer mass, galactocentric distance, orbital energy and an-

gular momentum, and radial azimuthal and polar components of velocity are obtained

for each tracer. The evolved GCS may then be compared directly to the initial GCS

in terms of mass function, velocity distribution, and fundamental plane to reveal the

exact details how the selected prescriptions have affected the GCS. Examples are given

below for the performance of the evolution code with at least one of every prescription,

and with various different options for CIMF, initial half-mass densities, etc. All GCSs

are evolved to an age of 13Gyr.

6.2 Evolved Evaporation Models

The first set of models displays GCSs evolved with only evaporation prescriptions,

namely equations (5.16) and (5.20). Figure 6.1 displays the initial and final mass

functions (black and red points) of a GCS in a k = 2.5 polytrope host galaxy. The

CIMF of this GCS was a Schechter function (equation 3.63) with M̃ sch = 106 and

βMF = 2, and the initial half-mass densities of the GCs were assigned according to

the relation r̃h = AM̃B
c ⇒ ρ̃h = m̄0

M0

3M̃1−3B
c

2P0A3 , with A = 2.75 × 10−4 and B = 0.615.

These values for A and B were proposed by Gieles, Baumgardt & Heggie (2010), who

argued for the existence of a global mass-radius relation common to both galaxies and

clusters (an alternate form of the Faber-Jackson relation). This is essentially just the

fit to galaxy data in Figure 1.4 extrapolated down to GC masses. Gieles, Baumgardt

& Heggie (2010) argued that the vastly smaller masses of clusters means that they are
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much more dynamically evolved, and consequently clusters have evolved away from

this initial mass-radius relation through contraction/expansion and mass-loss. Since

this initial mass-radius relation imposes a higher density on low-mass clusters, and the

evaporation mass-loss rate of equation (5.16) is stronger for more dense clusters, the

low-mass end of the GCMF has been strongly depleted. Meanwhile, the high-mass end

of the GCMF remains relatively untouched, causing a distinct peak to emerge at around

M̃ c ≃ 104 after 13Gyr of evaporation. The dimensionless tracer mass is related to real

mass through M̃c =Mc/m̄0, where m̄0 is the initial average stellar mass in the cluster

(a quantity that purely depends on the stellar IMF, and the maximum and minimum

masses, mu and ml). For any realistic stellar IMF, m̄0 will not be far from 1M⊙ for

sensible choices of ml and mu (a Chabrier (2003) disk IMF with ml = 0.501M⊙ and

mu = 6.519M⊙ has an initial average stellar mass of m̄0 = 1.267M⊙). Thus, the

evolved GCS in units of M⊙ is about a factor of 1.25, or 0.01 dex higher than what is

displayed.

While the peak of Figure 6.1 is slightly low compared to the peak masses of

GCMFs such as the Milky Way and Virgo galaxies (see Chapter 2), again these models

are intended solely as demonstrations, not to reflect real GCSs. However, decreasing A

would result in higher initial densities by a constant factor for all masses, which would

cause greater subsequent mass-loss due to evaporation at all masses. Alternatively,

decreasing B would also increase initial densities, but by a greater amount for higher

masses. Thus, it is not difficult to imagine that some slight adjustments to A and B

would bring the peak mass more in line with the expected MTO ≃ 105 M⊙. However,

this would also imply clusters with densities far higher than what is observed in the

Milky Way and other galaxies (e.g. McLaughlin & van der Marel 2005). Therefore an

alternative would be to use a higher value for the value of C̃ in equation (5.16), such

as that of McLaughlin & Fall (2008) for example. This is discussed further in Chapter

7.

By allocating initial half-mass densities based only on cluster initial masses and

utilising an evaporation prescription that depends only on half-mass density, there

was no primordial radial dependence built into the GCS, and no radial dependence
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Figure 6.1: The initial (black points) and final (red points) mass functions of an intially
isotropic GCS in a k = 2.5 polytrope host galaxy. The mass function was initially a
Schechter CIMF, and the initial half-mass radius and initial mass were related according
to r̃h = AM̃B

c . The only active evolution prescription was evaporation, given by
equation (5.16).

was introduced through subsequent evolution and GC destruction. This lack of any

radial dependence also means that the GCMF is completely radially invariant, and

furthermore, this evolved GCS would be identical regardless of the host galaxy it was

evolved in. However, one weakness of this model is that the evolved GCFP still reflects

the initial mass-radius relation. This is because the half-mass densities were assigned

according to initial mass, and assumed to be constant thereafter. Therefore since the
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mass-loss rate utilised depends only on half-mass density, the mass-loss experienced by

a cluster depends on its initial mass. Consequently, there is a very clear one-to-one

relation between half-mass density and final mass, a feature which is completely absent

in real GCSs (see section 1.3.1).

Figure 6.2 displays the GCMF of a GCS in a k = 2.5 polytrope host galaxy that

began with a Gaussian CIMF (equation 3.64) with mean at M̃ c = 105 and variance

σM̃c
= 1, and was subsequently evolved for 13Gyr with evaporation prescription given

by equation (5.20). The initial half-mass densities of GCs were assigned by drawing a

random King model concentration from a Gaussian distribution with mean c̄ = 2.15

and variance σc = 1. The randomly assigned c then corresponds to a ratio ρ̃h/ρ̃t, which

is then combined with the tidal density at the time-averaged orbital radius of the GC

in question to give ρ̃h. Consequently, primordial radial dependence was built into the

GCS, as a larger orbit would have a larger time averaged radius, which would lead to

a smaller tidal density, and thus a smaller half-mass density for the same c. Obviously

this radial dependence is not apparent in the initial GCMF in Figure 6.2, as the initial

radial dependence is in terms of half-mass density, not GC mass. The evaporation

prescription selected was that of Gieles & Baumgardt (2008) under the apocentre

criterion, such that the evaporation mass-loss rate depends on M̃ c (both directly and

through the Coulomb logarithm), ρ̃t, and ρ̃h through dependence on cluster structure.

The effective tides were set to operate from orbital pericentre, i.e. r̃ev = r̃p, and thus

mass-loss due to evaporation also imparted radial dependence on the GCMF.

The different panels of Figure 6.2 display the evolved GCMF in different ranges

of the orbital pericentres of the constituent GCs. The radial dependence of the GCMF

is weak but discernible, with the peak of the GCMF at higher masses for smaller

r̃p. This is as expected since in this case, smaller r̃p correspond to higher ρ̃h (and

ρ̃t, although in this evaporation prescription, ρ̃t only appears as a ratio with ρ̃h, and

since the sampling of c was radially independent, ρ̃t/ρ̃h is also independent of radius).

Consequently, clusters at smaller radii have lost more mass, and the peak has shifted

to higher masses. Note that the rising number of evolved GCs at very low masses

in all three panels is just where initially higher mass clusters have migrated to lower
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Figure 6.2: The initial (black points)and final (red points) mass functions of a GCS in
a k = 2.5 polytrope host galaxy. The mass function was initially a Gaussian CIMF,
and the initial half-mass densities of GCs were assigned by randomly drawing from a
Gaussian of King model concentrations. The only active evolution prescription was
evaporation, given by equation (5.20).

mass bins due to evaporation mass-loss, and have ended up in bins below the minimum

mass of the CIMF. The criterion by which clusters are judged to be destroyed is when

γN ≤ 1, where γ = 0.02 is the coefficient in the Coulomb logarithm (Giersz & Heggie

1994; Giersz & Heggie 1996), and N is the number of cluster stars. This was because

for smaller N , the Coulomb logarithm will turn negative and cause evaporation mass-

loss to add mass! Aside from being unphysical, this would be incorrect as the standard
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form for the Coulomb logarithm of ln(γN) is an approximation made for large N (e.g.

Binney & Tremaine 2008). Therefore rather than revert to the full form of the Coulomb

logarithm, N = 50 was assumed to be a reasonable cut-off. Since in this case stellar

evolution was not active, M̃ c = N , and thus the minimum mass was log M̃ c ≃ 1.7,

whereas the minimum mass of the CIMF was log M̃ c = 2. Realistically, it would be

natural to expect a newly formed GCS to be populated down to the minimum mass

possible, rather than with an arbitrary cut-off imposed, and thus ideally the CIMF

should also decrease down to M̃ c = 50. Therefore, as clusters lose mass, they migrate

to lower mass bins which were originally empty according to the CIMF. When coupled

with the fact that the evaporation prescription employed in this case was derived

under the apocentre criterion, the evaporation mass-loss rate is weaker for low-mass

GCs, and furthermore the Coulomb logarithm cannot be neglected in this case, since as

M̃ c → γ−1, ln(γM̃ c) → 0. As a result, there is a build-up of very low-mass clusters with

very low rates of mass-loss due to evaporation. Although less noticeable, the evolved

GCMF in Figure 6.1 also has bins containing low-mass clusters that have migrated

below the lowest mass bin of the CIMF. In this case however, the evaporation mass-

loss rate depends only on cluster half-mass density and is therefore constant. Thus the

evaporation mass-loss rate does not decrease as cluster mass decreases, and low-mass

clusters continue to be destroyed efficiently, rather than accumulating as in Figure 6.2.

Accumulations of low-mass GCs like this are not observed in extant GCSs, however

such low masses would be very faint and thus hard to detect. In any event, once again

these models are intended solely as demonstrations, rather than to resemble reality.

6.3 Evolved Tidal Shock Models

Figure 6.3 displays properties of an initially isotropic GCS with a Schechter CIMF

that directly traced a γ = 1 Dehnen model host galaxy. Initial half-mass densities were

assigned by drawing a random King model concentration from a Gaussian with mean

c̄ = 2.15 and variance σc = 1. Each randomly assigned c was then combined with



218

the tidal density at each tracer’s time averaged orbital radius to obtain a half-mass

density. The only evolutionary mechanism enabled was the tidal shocking prescription

given by equation (5.50). In the top panel are displayed the initial (black) and final

(red) mass functions, in the middle panel are the initial and final velocity anisotropy

curves, while in the bottom panel is the mean half-mass density of tracers binned by

orbital pericentre plotted against orbital pericentre.

Tidal shocks are only expected to significantly affect clusters with short radial

periods, high masses, low densities, or small orbital pericentres (see section 5.2.2).

By comparing the initial (black) and final (red) mass functions displayed in the top

panel of Figure 6.3 some minor mass-loss is noticeable. The reason that tidal shocking

has been so ineffective in this model is as follows; clusters on small orbits will have

high tidal densities, which when combined with the randomly sampled King model

concentration will correspond to high half-mass densities, as displayed in the bottom

panel. Thus, since this GCS is quite centrally concentrated, statistically a randomly

sampled cluster is likely to have a high half-mass density, and therefore tidal shocking

will be inefficient. When combined with the increasing statistical noise towards higher

masses, determining whether tidal shocking has more significantly affected high-mass

clusters is practically impossible. Furthermore, the mass-loss is not sufficiently severe

for any obvious trends to emerge when the GCMF is divided into groups based on

orbital pericentres or half-mass densities, and therefore only the total mass function

is presented. Similarly to Figures 6.1 and 6.2, mass-loss has caused some clusters to

populate bins below the minimum CIMF mass. Since the tidal shocking mass-loss rate

depends linearly on cluster mass (cf. equation 5.50), destruction of these very low-mass

clusters is inefficient and consequently a large population is established.

The middle panel of Figure 6.3 shows that tidal shocking has had a much more

significant affect on the Globular Cluster Velocity Distribution (GCVD). At fixed or-

bital energy, clusters with smaller orbital pericentres have higher radial speeds. Thus,

since tidal shocking destroys clusters on orbits with small pericentres very efficiently

(cf. equation 5.50), an additional affect is to reduce the local radial velocity disper-

sion, which is visible in the middle panel as the reduced velocity anisotropy parameter,
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Figure 6.3: Properties of an initially isotropic GCS with a Schechter CIMF that directly
traced a γ = 1 Dehnen model host galaxy. Initial half-mass densities were assigned
by drawing a random King model concentration from a Gaussian with mean c̄ = 2.15
and variance σc = 1. Top panel: initial (black) and final (red) mass functions; middle
panel: initial (black) and final (red) velocity anisotropy curves; bottom panel: half-
mass density vs orbital pericentre. The only active evolutionary mechanism was tidal
shocking, given by equation (5.50).

β = 1− σ̃2
t/2σ̃

2
r. Intuitively the expectation would be that β would continue to become

more tangentially biased at smaller radii, however this is clearly not the case. The
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reason for this is displayed in the bottom panel, showing the mean half-mass density

of clusters binned by orbital pericentre. The initial half-mass density of clusters in this

GCS were assigned by drawing a random King model concentration, and combining it

with the tidal density at the time averaged orbital radius. Thus, since the tidal density

is much higher at smaller radii, and the randomly drawn King model concentrations

were independent of radius, radial dependence was imparted to the half-mass densi-

ties. The half-mass densities of clusters on orbits with small pericentres are so high

that they overwhelm the tidal shocking mass-loss rate dependence on orbital pericen-

tre, making tidal shocking very inefficient at destroying such clusters. Consequently,

the velocity anisotropy at very small radii is largely unaffected. At larger radii, the

depletion of radial orbits due to tidal shocking becomes weaker again (although statis-

tical noise does disguise this to some extent), despite the lower half-mass densities of

clusters with larger orbital pericentres. This is due to the very large radial periods of

orbits with large orbital pericentres (the mean radial periods of clusters binned against

orbital pericentre in the same way as in the bottom panel of Figure 6.3 increase from

T̃ r ≃ 10−1 at r̃p = 10−3 to T̃ r ≃ 108 at r̃p = 104). Thus, much larger radial periods

more than compensate for the smaller half-mass densities, and tidal shocking becomes

very inefficient at destroying clusters on large orbits. This model clearly demonstrates

that tidal shocking works as expected, efficiently destroying clusters on very elliptical

orbits while leaving those with more circular orbits, high densities, or high radial peri-

ods largely unaffected. Consequently, the GCVD becomes tangentially biased in areas

where tidal shocking operates efficiently. Again, this model is not intended to resemble

real GCSs in any way, serving purely as a demonstration instead.

6.4 Evolved Stellar Evolution Models

Figure 6.4 display a GCS with a Schechter CIMF that initially directly traced a γ = 1

Dehnen model host galaxy with an isotropic velocity distribution, evolved with stellar

evolution prescriptions as given in equations (5.57) and (5.58) and depicted in Figure
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5.2. As discussed in section 5.2.3, stellar evolution only depends on cluster mass, and

therefore options such as host galaxy, definition of effective tides, allocation of initial

half-mass density, etc., are irrelevant. Consequently, as predicted all GCs have lost the

same fraction of initial mass, and thus the evolved GCMF has merely been shifted to

lower masses. GCs evolved with the Chernoff &Weinberg (1990) (hereafter CW) stellar

evolution prescription all lost about 30.0% of their initial mass, while those evolved

with the Hurley, Pols & Tout (2000) (hereafter HPT) stellar evolution prescription all

lost about 34.5% of their inital mass after 13Gyr of evolution.

As predicted in section 5.2.3 the CW prescription for mrm and mto (red points)

causes less severe mass-loss than the HPT prescription for mrm and mto (green points).

Note that in both cases, the probability of ejection for white dwarfs was set to 0.1. Since

the integrations start at a system age of t̃start = 30 corresponding to mto = 6.52M⊙ in

the CW case, and to mto = 9.70M⊙ in the HPT case, the upper mass of the stellar IMF

was set to mu = 6.52M⊙ in both cases. Comparatively, the CW prediction for neutron

stars requires a remnant mass of m > 8M⊙, and does not account for the possibility of

black holes at all, while the HPT prediction for neutron stars requires a progenitor mass

of m > 8.19M⊙, while black holes require a progenitor mass greater than 24.76M⊙.

Therefore, for mu = 6.52M⊙ there are no progenitors massive enough to become black

holes or neutron stars, and consequently do not require ejection probabilities.

The reason that the CW stellar evolution prescription causes less severe mass-

loss is due to predicting a smaller mto at a given t̃ than the HPT stellar evolution

prescription. As a result, when all stars of mass mto(t̃) expire, the host cluster will lose

mass equal to mto times the number of stars at this mass (minus whatever mass may

be retained in remnants). Although between the progenitor masses of [4.7, 8]M⊙, CW

predict no remnant, below this range both predictions for remnant mass are broadly

similar. Since the vast majority of total cluster mass will be in low-mass stars (i.e.

m < 4.7M⊙) where both remnant mass predictions are similar, as stars at a given t̃

expire, more mass will be lost for the prescription with greater mto and similar mrm.

Since in most cases mass-loss per star is more severe according to the HPT

stellar evolution prescription, the expectation would be that the average stellar mass
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Figure 6.4: The initial (black points) and final mass functions of a Schechter CIMF that
has been evolved according to the Chernoff & Weinberg (1990) (red points) and Hurley,
Pols & Tout (2000) (green points) stellar evolution prescriptions for remnant mass as a
function of progenitor mass, and mass of progenitor evolving off of the main-sequence
as a function of time.

(including remnants) would drop more rapidly than in the CW case. Figure 6.5 displays

the average stellar mass as a function of time, ¯̃m(t̃), for both the CW and HPT stellar

evolution prescriptions, each retaining 90% of white dwarf stellar remnants.

The average stellar mass according to the HPT prescription (green curve) is ini-

tially constant because the upper mass of the stellar IMF was set to mu = 6.52M⊙,

which with this prescription does not expire until t̃ = 61.5 (cf. Figure 5.2). As pre-
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Figure 6.5: The average stellar mass including remnants as a function of time given
by equation (5.55), according to the remnant mass as a function of progenitor mass
(equations 5.57 and 5.58) and progenitor mass evolving off of the main-sequence as a
function of time (Figure 5.2) prescriptions of Chernoff & Weinberg (1990) (red) and
Hurley, Pols & Tout (2000) (green). In both cases, 90% of white dwarf stellar remnants
were retained.

dicted, the average stellar mass does decrease more rapidly (once stars begin expiring)

in the HPT case, dropping below the value as predicted according to the CW prescrip-

tion at around t̃ = 600. As desribed in section 5.2.3, the assumption is made that other

mass-loss mechanisms do not preferentially target stars of any particular mass when

destroying clusters, and thus do not affect the average stellar mass. Consequently, ¯̃m(t̃)

may be combined with current cluster mass, M̃ c, to obtain the current number of stars
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in the cluster, N(t̃), regardless of which destruction mechanisms are active. If this

treatment were applied to a cluster that had very low (or even zero) rate of mass-loss,

then N(t̃) would increase with time. In order to prevent this unphysical behaviour, ¯̃m

is only allowed to vary with time when stellar evolution is enabled, in which case all

clusters will always be losing at least sufficient mass to guarantee that N(t̃) monoton-

ically decreases. Some evaporation prescriptions, in addition to the half-mass density

evolution prescription depend on ¯̃m (either directly or through N), and thus being able

to simulate a changing average stellar mass adds an extra degree of realism to the simu-

lations. Realistically, mass-loss mechanisms such as evaporation cause the preferential

loss of low-mass stars in mass segregated clusters, which causes the average stellar mass

to decrease more gradually, and at late times when the rate of decrease due to stellar

evolution becomes shallow can even cause the average stellar mass to begin to increase

again (e.g. Lamers, Baumgardt & Gieles 2010). However accounting for this affect

requires treating the stellar population in each cluster individually, which obviously

greatly adds to the computational expense. Consequently, this was not attempted (see

also section 5.2.3). These models clearly demonstrate that stellar evolution operates

as expected, with the evolved mass function retaining its original shape while shifting

to a lower mass. Moreover, the different remnant mass and main-sequence turn-off

mass functions cause expected and well understood behaviour in terms of the fraction

of initial mass lost, and the rate of change of average stellar mass.

6.5 Evolved Dynamical Friction Models

Although it has long been established that dynamical friction plays a very minor role

in shaping the GCMF (only very massive clusters on small orbits are significantly af-

fected, see section 1.4.2), less attention has been paid to the role of dynamical friction

in shaping the GCVD. Figure 6.6 displays the change in radial (red) and tangential

(black) velocity dispersions after 13Gyr of dynamical friction as a function of galacto-

centric radius. The initial GCS was isotropic, directly traced a γ = 1 Dehnen model
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host galaxy, and was described by a Schechter CIMF. The final velocity dispersions

were obtained by integrating the equations of motion (equations 5.9 and 5.10) for each

GC including the effects of dynamical friction given by equation (5.61), as described

in section 5.1, such that the orbital energies and angular momenta of orbits decrease

with time. As a result, tracers end up on different orbits (with potentially very dif-

ferent orbital eccentricities and radii, and thus very different radial and tangential

speeds). The velocity dispersions were then calculated in the normal way by binning

clusters radially, and taking the standard deviations of the radial, azimuthal, and po-

lar velocities (σ̃r, σ̃ψ, σ̃θ), and calculating the tangential velocity dispersion according

to σ̃2
t = σ̃2

ψ + σ̃2
θ. Due to the long run-time of integrating decaying orbits, only the

innermost 104 tracers out of the possible 105 were utilised, so as to obtain the most

pronounced effect for the smallest computational effort.

Figure 6.6 demonstrates that dynamical friction has had several effects on the

GCS. For example, clusters on very small orbits have been decayed to the point where

they passed within r̃min = 10−4 and were destroyed, hence the smallest radius bin in

this snapshot is at r̃ ≃ 0.7. At larger radii, the only significant effect dynamical friction

has had is to alter the shape of GC orbits rather than destroy them, as expected. At

all radii, where radial velocity dispersions are decreased tangential velocity dispersions

are increased, and vice-versa. An increasing velocity dispersion means that the spread

in velocities at that radius is increasing, while a decreasing velocity dispersion means

that the spread in velocities is decreasing. Thus, if the majority of particles at a given

radius were on elliptical orbits that pass through that radius at high speed, then the

majority of tangential speeds would be low, and consequently a small tangential velocity

dispersion would be expected. Alternatively, if many particles had their pericentres at

that radius, then their tangential speeds would be at a maximum while their radial

speeds would be at a minimum. In this case, a higher tangential velocity dispersion

with a lower radial velocity dispersion would be expected. Another option is that the

majority of particles at a given radius have orbital apocentres there, in which case

both their radial and tangential speeds will be at minimum. Thus the radial velocity

dispersion would be small (since most radial speeds will be zero), while the tangential
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Figure 6.6: Change in tangential (black points) and radial (red points) velocity disper-
sions due to dynamical friction as functions of galactocentric radius. Initially the GCS
was isotropic, directly traced a γ = 1 Dehnen model host galaxy, and was described
by a Schechter CIMF. The final velocity dispersions were obtained by integrating the
orbits of each GC including the effects of dynamical friction, given by equation (5.61).

velocity dispersion would be slightly higher (as the tangential speed will be small but

non-zero, depending on the angular momentum ṽt = L̃/r̃a). The final option is that the

majority of particles at a given radius are on circular orbits, in which case the majority

of radial speeds will be zero, while the majority of tangential speeds will be the circular

speed at that radius. Thus, both the radial and tangential velocity dispersions would

be small.
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At smaller radii, the velocity anisotropy appears to have become tangentially bi-

ased, with tangential velocity dispersions having been systematically increased strongly,

while the radial velocity dispersions were decreased slightly. This would intuitively

make sense, since orbits with pericentres at smaller radii would be strongly affected

and eventually destroyed by dynamical friction. Therefore, the innermost pericentres

of surviving clusters are around r̃ ≃ 0.7, and since at pericentre radial speeds are low-

est while tangential speeds are highest, a small radial velocity dispersion and a large

tangential velocity dispersion would be expected. Further out at around r̃ ≃ 2, the

tangential velocity dispersions have been decreased slightly while the radial velocity

dispersions have been increased, indicating either that the orbits that already passed

through these radii have been made more elliptical, or higher energy orbits have been

decayed such that they now pass through these radii also. Either way the velocity

anisotropy has become more radially biased. At radii r̃ & 10, the difference between

the initial and final velocity dispersions tend to zero, indicating that dynamical friction

is too weak to have much impact on the GCVD beyond r̃ & 30.

In conclusion, even though dynamical friction is usually neglected due to having

an insignificant effect on the GCMF, it is capable of having a significant impact on

the innermost regions of the GCVD. The impacts are likely to be greatest in radially

anisotropic GCSs, since dynamical friction has the greatest effect on small pericentre

orbits (e.g. van den Bosch et al. 1999). Therefore, as radial anisotropy is expected

to be necessary to produce a radially invariant GCMF, dynamical friction may be

important for reproducing a GCVD consistent with observations. On the other hand,

it is possible that effects such as tidal shocking could have a much stronger effect on

the GCVD, in which case dynamical friction would be second order. In any event, this

model demonstrates that dynamical friction is operating in a way that is intuitively

expected.
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6.6 Evolved GCFP Models

Figure 6.7 displays the initial (black) and evolved (red) GCFP of an initially isotropic

GCS that directly traced a k = 2.5 polytrope host galaxy. The mass function of the

GCS was initially described by a Gaussian CIMF, with M̃ c = 105 and σM̃c
= 1 (cf.

equation 3.64). The half-mass densities of tracers were assigned according to the mass-

radius relation r̃h = AM̃B
c ⇒ ρ̃h = m̄0

M0

3M̃1−3B
c

2P0A3 , with A = 2.75 × 10−4 and B = 0.615,

depicted as the solid black line. Subsequent evolution was caused by stellar evolution

under the Hurley, Pols & Tout (2000) prescription for mrm and mto, and half-mass

density evolution as described by maintained virial equilibrium described in equation

(5.105). The upper and lower mass limits on the stellar IMF were mu = 6.52M⊙ and

ml = 0.501M⊙, and 90% of white dwarf remnants forming upon progenitor expiry

were retained. Tidal densities were assumed to operate from the orbital pericentre, i.e.

r̃ev = r̃p, and the galaxy mass-scale was assumed to be m̄0

M0
= 10−9.

The combination of these two prescriptions has produced some dramatic results,

with the initial relation between half-mass radius and mass completely erased. The

reason that the initial one-to-one relation between half-mass radius and cluster mass

was able to become such a disperse cloud in r̃h vs M̃ c is due to the half-mass density

evolution dependence on tidal density. With the mass-radius relation r̃h = AM̃
B

c ,

the initial value of κ (the parameter determining how strongly the half-mass density

evolution responds to mass-loss and average stellar mass evolution) depends on mass

very weakly, with κi ∝ M̃
(15B−11)/24
c (ignoring the Coulomb logarithm, cf. equation

5.106). For B = 0.615, this is κi ∝ M̃−0.074
c , and the only other parameter that κ

depends on is ρ̃t. Since the only mass-loss mechanism enabled in this simulation was

stellar evolution, clusters that began with the same mass would also continue to have

the same mass at all later times (all clusters lost 34.5% of their initial mass after

13Gyr). Therefore for fixed tidal density, clusters of any mass will end up increasing

their half-mass densities by roughly the same factor, and thus the bounding lower limit

is essentially just where clusters with the smallest allowed orbital pericentre (r̃min =

10−4) and thus the highest tidal density have increased in density by the maximum
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Figure 6.7: Initial and final GCFP in terms of half-mass radius and mass. Initially the
GCS was isotropic, directly traced a k = 2.5 polytrope host galaxy, and had a Gaussian
CIMF. Initial cluster half-mass densities were assigned according to the mass-radius
relation r̃h = AM̃B

c , depicted as the solid black line. Evolution of the GCS was caused
by stellar evolution according to the Hurley, Pols & Tout (2000) prescription, and
half-mass density evolution described by equation (5.105).

amount possible, which is basically the same for all initial masses. Consequently,

the lower bounding limit is the initial mass-radius relation renormalised to lower radii

(modulo the tiny mass dependence in κi). Of course, not all clusters have the minimum

allowed orbital pericentre, in which case they will have smaller tidal densities, and

consequently smaller κi. Thus, over 13Gyr they increase their density by a smaller

amount, depending on their orbital pericentres. Therefore, the vertical spread in half-
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mass radii in Figure 6.7 is a consequence of the orbital distribution in the GCS.

The fact that this prescription for half-mass density evolution effectively erases

the initial mass-radius relation is encouraging, since observed GCFPs display a lack

of any correlation between mass and radius (e.g. Harris 1996). When combined with

a mass-loss prescription that efficiently destroys high half-mass density clusters (such

as for example the evaporation prescription given by equation 5.16), this half-mass

density evolution prescription combined with the initial mass-radius relation r̃h = AM̃B
c

could potentially recover the GCFP as observed in extant galaxies. Furthermore, by

increasing cluster densities in response to mass-loss during evolution, the mass-loss

rate due to half-mass density dependent evaporation would be accelerated. This would

assist with moving the evolved GCMF peak to higher masses in Figure 6.1. However,

since higher tidal densities cause more rapid increase of half-mass densities, this could

impart radial dependence into the evolved GCMF. This could in turn be combated with

radially anisotropic initial GCSs as made possible with the quasi-separable distribution

functions.

The methods and prescriptions presented in Chapter 5 for evolving simulated

GCSs as produced by the methods presented in Chapter 3 and demonstrated in Chapter

4 have been applied to several of these simulated initial GCSs to produce and present

evolved simulated GCSs using each of the available evolutionary mechanisms. By

comparing the initial and final properties of the constituent tracers, the effects of

these mechanisms have been quantitatively and qualitatively analysed, explained, and

compared to what was intuitively expected. In conclusion, the evolution procedure

and associated mechanisms appears to be working as expected, and are ready to begin

thoroughly exploring the vast parameter space available to these models. Potential

applications for these combined initial conditions and evolutionary code are discussed

in the final Chapter.
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7 Summary and Discussion

7.1 Summary

In Chapter 1 the broad picture of GC formation and evolution was introduced. The

properties and physics of individual GCs such as tidal densities and relaxation times

were described and derived, in addition to the virial theorem (see Appendix A). Next

the ensemble properties of GCSs, such as the Globular Cluster Fundamental Plane

(GCFP), Globular Cluster Velocity Distribution (GCVD), and the Globular Cluster

Mass Function (GCMF) were introduced. The observed properties of these aspects of

the GCS were discussed, such as the lack of any detectable correlation between GC mass

and half-mass radius in the GCFP, and how observations of GCVDs are consistent with

isotropy, though projection effects make this somewhat uncertain. Particular emphasis

was placed on the GCMF as it is the most easily observed aspect of GCSs, with

the discussion moving on to how it is observed to have the same log-normal shape and

peak mass that are observed to be invariant with galactocentric distance in all galaxies.

The focus then moved on to how new observations of starburst systems made available

with the launch of the HST lead to the exploration of the idea of GCMFs having begun

with a very different shape, namely a power-law Cluster Initial Mass Function (CIMF)

that continues to rise towards low masses. Subsequent evolution due to dynamical

effects over a Hubble time then modified this CIMF through destruction of GCs to

produce GCMFs as seen today. In order to accomplish this, these dynamical effects

would have to preferentially destroy low-mass clusters, while leaving the high-mass end

of the GCMF largely untouched. The mechanisms responsible for the destruction of

GCs were derived and any sources of significant uncertainty discussed in detail. Each

mechanism was then analysed in terms of how they affect GCs, and how they are likely

to affect the GCMF as a result. These mechanisms are evaporation, tidal shocking,

stellar evolution, dynamical friction, and core collapse. Arguments from the literature

asserting which of these mechanisms are preferred were presented, with some arguing
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for a virtually instantaneous change from a power-law CIMF to a log-normal GCMF,

while others contend that a gradual change over a Hubble time is more likely. Various

data such as the mass function of an intermediate age GCS (Goudfrooij 2012), the

Milky Way GCMF binned by cluster half-mass densities, and the GCFP overlayed

with a survival triangle (Gnedin & Ostriker 1997) are presented, each indicating that

evaporation is primarily responsible for shaping the GCMF. The attempts of several

authors to simulate the evolution of a GCMF from a power-law CIMF are discussed, and

the recurring problem of radially dependent evolved GCMFs contrary to observations

highlighted. Several authors attempted to erase the radial dependence of their evolved

GCMFs by introducing radial velocity anisotropy into their models, but none could

get models fully consistent with observations. The review then ends on the work of

Jordán et al. (2007) and McLaughlin & Fall (2008), who devised a method of simulating

GCMF evolution from half-mass densities rather than tidal densities, and consequently

avoided building radial dependence into their evolved GCMFs, obtaining models which

match observations very well.

Chapter 2 detailed the application of the same half-mass density-dependent mod-

els as McLaughlin & Fall (2008) to 22 early type Virgo galaxies. The Chapter begins

by addressing the more disputed model assumptions, namely that the mass-loss rate

is assumed to scale with half-mass density rather than tidal density, that half-light

density is a good representation of half-mass density, and that Virgo GCs are in fact

tidally limited. This is then followed by a detailed discussion of the data, including ob-

servational details such as observational limits, and how cuts were applied to the data.

Furthermore, data incompleteness is discussed and accounted for using completeness

tables created by Jordán et al. (2009), and mass-to-light ratios are described and used

to convert between cluster luminosities and masses. A derivation of the half-mass

density dependent models is then presented, with definitions such as the proportional-

ity constant between mass-loss rate and half-mass density (C) given, in addition to a

detailed discussion of the assumptions such as choice of CIMF, constant rate of evapo-

ration mass-loss, etc. This is then followed by the results of application of these models

to the least, intermediate, and most dense, in addition to the smallest, intermediate,
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and largest galactocentric distance GCs of 22 early type Virgo galaxies. The effects on

C of changing model parameters such as the Schechter exponential cut-off mass Msch,

or the power-law component gradient βMF , were described, and it was concluded that

C does no vary strongly. The results are then analysed in terms of how the evolved

GCMF model turnovers vary with the median half-mass densities and projected galac-

tocentric positions of the constituent GCs, with the expected dependence on half-mass

density, yet invariance with galactocentric distance very apparent. This was explained

in terms of a lack of correlation of half-mass densities with galactocentric distances,

the same as is observed in the Milky Way (McLaughlin & Fall 2008), M104 (Chandar,

Fall & McLaughlin 2007), and NGC1316 (Goudfrooij 2012). In conclusion, the very

simple half-mass density-dependent models fit the GCMFs of the Virgo galaxies very

well, with the exception of the two most massive galaxies. This is attributed to the

complex merger histories that these galaxies must have, and other dynamical effects

such as tidal shocking, dynamical friction, etc. Additionally, the value of C obtained

was also in good agreement with general theory, predicting that on average GCs in

Virgo should undergo about another 13 relaxation times before being completely de-

stroyed (e.g., Hénon 1961; Spitzer & Chevalier 1973; Spitzer & Shull 1975; Fall & Rees

1977; Caputo & Castellani 1984; Spitzer 1987; Aguilar, Hut & Ostriker 1988; Chernoff

& Weinberg 1990; Gnedin & Ostriker 1997; Murali & Weinberg 1997; Gnedin, Lee &

Ostriker 1999; Jordán et al. 2007; Chandar, Fall & McLaughlin 2007; McLaughlin &

Fall 2008; Goudfrooij 2012). However, the fact that these models had difficulty fitting

the two most massive Virgo galaxies indicates that there are dynamical effects other

than evaporation that are important for shaping the GCMF. Moreover, by utilising

the lack of correlation between half-mass densities and galactocentric position, these

models successfully reproduce GCMFs that are radially invariant. However, they do

not explain why this lack of correlation exists.

This then led to the development of considerably more sophisticated models in

Chapter 3, allowing the creation of initial GCSs with controllable spatial distributions,

velocity distributions, CIMFs, and host galaxies. These models utilise quasi-separable

distribution functions, requiring the host galaxy density profile, GCS spatial profile,
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and the circularity function (a function controlling the velocity anisotropy profile of

the GCS) to be pre-defined. Firstly, dimensionless notation is introduced to allow any

models to be easily rescaled for fitting to observations. The isotropic distribution func-

tions and density profiles of polytropes, King models, Dehnen models, and power-laws

are given, followed by an in-depth discussion of their properties, including the range of

model parameter they are defined over (i.e. 1 < k ≤ 2.5, W0 > 0, and 0 ≤ γ < 3). A

description of the procedure for solving for host galaxy properties such as gravitational

potential, circular speeds, isotropic velocity dispersion, etc., is then given, involving

the Poisson and Jeans equations. The pre-defined spatial profile by definition is equal

to the integral over the distribution function, which by the definition of quasi-separable

distribution functions is equal to the product of a function of orbital energy and the

pre-defined function of orbital circularity. Consequently the only unknown is the func-

tion of orbital energy, and to solve for this, the integral must be inverted. This integral

equation is known as the Volterra equation of the first kind, and a general method for

its solution is given in Appendix B. Several examples for possible circularity functions

are given, and their likely affect on the initial GCVD discussed, and additionally the

circularity function for constant anisotropy is analytically solved for (see Appendix C).

Once the full distribution function corresponding to the required spatial profile, veloc-

ity distribution, and host galaxy is known, it may be used to solve for properties of

the GCS such as radial and tangential velocity dispersions, and differential energy dis-

tribution (see Appendix D). Moreover, the procedure for using Monto Carlo sampling

to generate a population of tracers adhering to the pre-defined spatial profile, velocity

distribution, and CIMF is described. This procedure is used to obtain intial masses,

initial galactocentric radii, orbital energies, and orbital angular momenta. Once these

are known, other properties such as orbital pericentre and apocentre, radial, azimuthal

and polar velocities, etc., immediately follow. Furthermore, the process by which radial

and azimuthal periods can be obtained is also described, requiring the solution of a

second order differential equation for orbital radius as a function of orbital azimuth. All

of this physics and numerics has been compiled into a code (see Appendix E), allowing

the simulation of initial GCSs in a much more general way than has been previously
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attempted.

Chapter 4 then demonstrates the application of the code given in Appendix E to

create a number of GCSs with a variety of host galaxies, spatial distributions, veloc-

ity distributions, and CIMFs. These GCSs are presented in terms of spatial profiles,

differential energy distributions, and average radial, azimuthal and polar velocities,

anisotropy profiles, and radial and tangential velocity dispersions. Furthermore, a test

is presented along with every GCS to show that the spatial distribution recovered by in-

tegrating the distribution function matches the original pre-defined spatial distribution,

and that therefore the solution of the distribution function via the method in Appendix

B is operating as desired. Moreover, the spatial distributions, differential energy dis-

tributions, velocity dispersions, and velocity anisotropy profiles are overlayed with the

numerically solved curves (the spatial distribution is additionally overlayed with the

original pre-defined spatial distribution). Additionally, the χ2
ν values measuring how

well the binned sampled data match the overlayed numerical curves are presented in

each case. All of these statistics and tests indicate that the initial conditions code is

performing well, reliably producing the desired GCSs. Moreover, the code continues

to produce the desired GCSs to a high standard even as more complicated GCSs are

required, such as spatial distributions no longer directly tracing the host galaxy, in-

creasingly complex circularity functions, and with non-zero L̃0. This Chapter is then

concluded by exploring the effects of different circularity functions and non-zero L̃0 on

the velocity anisotropy profile. The circularity functions used were the examples given

in Chapter 3, and each was explored with several values of a (and b where appropriate).

The changes to the velocity anisotropy profile in response to changes in the circularity

function are generally well understood, and it was noted that a reasonably accurate

prediction can be made based on the average gradient of the circularity function, with

increasingly negative average gradients producing radial anisotropy, near-zero average

gradients producing very slight anisotropy, and increasingly positive average gradients

producing tangential anisotropy. Furthermore, larger values of L̃0 were found to force

isotropy in the core, pushing the effects of the circularity function to higher radii such

that L̃0 has very little impact on the velocity anisotropy asymptotically.
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Chapter 5 details the physics of the time evolution of GCs, beginning with the

equations of motion. These equations are derived without making the standard as-

sumption that the rate of change of orbital energy and angular momentum are zero,

allowing the insertion of a prescription predicting orbital decay. Following this, a thor-

ough literature review was conducted, and a large number of evaporation prescriptions

collected, each with a short discussion about what their basic assumptions are and

how they were derived. Each of these evaporation prescriptions is then compiled into

a table and divided into components based on mass dependence, density dependence,

orbital dependence, and what host galaxy they were derived for. A detailed discussion

is then given comparing the prescriptions, and predicting how they would affect the

GCMF differently. The next mass-loss mechanism described is tidal shocking, with the

only prescription that of Gnedin & Ostriker (1997). A detailed derivation is presented,

including corrections for adiabatic shocks, point mass perturbers, and the time vari-

ation of the tidal field. Furthermore, predictions as to how tidal shocks would affect

the GCMF are given, based on the mass-loss rate dependence on cluster properties.

Following this, a full derivation of the mass-loss rate due to stellar evolution is given,

in addition to the average stellar mass as a function of time. Two prescriptions are

presented for the stellar remnant mass as a function of progenitor mass, and mass of

progenitor star evolving off of the main-sequence as a function of time. These two

prescriptions are compared, and predictions are made as to how the mass-loss rate and

average stellar mass would behave in each case. The penultimate mechanism described

is dynamical friction, with the only prescription being that of Chandrasekhar (1943),

presented along with a discussion of potential weaknesses and how to address them, in

addition to an improved representation of the Coulomb logarithm by Just & Peñarrubia

(2005). Furthermore, an equation predicting whether a particle on a decaying orbit is

instantaneously being placed on a more or less elliptical orbit is derived, which makes

the prediction that a particle on a decaying circular orbit will only decay through a

series of circular orbits if L̃0 = 0; otherwise the ellipticity of the orbit must increase.

Finally, the last mechanism to be discussed is the internal evolution of GCs. The

only prescription for this mechanism is that of maintained virial equilibrium, which
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is presented along with the full derivation, followed by a physical interpretation and

predictions as to how a GC evolving according to this prescription would behave.

Finally, in Chapter 6, the code applying the evolutionary routines and prescrip-

tions of Chapter 5 to the initial simulated GCSs of Chapters 3 and 4 is described (see

Appendix F), including potential numerical pit-falls and how they were dealt with.

Following this, examples are given of the application of the evolution code to produce

evolved GCS models. The first set of evolved GCSs presented were evolved with evap-

oration prescriptions. The first of these began as a Schechter CIMF, and all initial

half-mass densities were set according to the relation r̃h = 2.75 × 10−4M̃0.615
c . The

evaporation prescription acting on this initial GCS over 13Gyr was that of equation

(5.16), and consequently the mass-loss rate depended only on cluster half-mass den-

sity, and therefore equivalently to initial mass. The evolved GCMF produced in this

case has the characteristic log-normal shape, but the turnover mass is about an order

of magnitude too low. The second GCS evolved by evaporation began as a Gaussian

CIMF, and had initial half-mass densities set by randomly sampling a Gaussian of King

model concentrations and combining the corresponding ratio of half-mass density to

tidal density with the tidal density at the time-averaged orbital radius. Consequently,

since tidal densities are higher for clusters on smaller orbits, the half-mass densities had

a built in radial dependence. Furthermore, the evaporation prescription used in this

case was that of equation (5.20), which depends on half-mass density, the ratio of tidal

density to half-mass density, and mass. Consequently this mass-loss rate is higher for

smaller orbits, where clusters have higher half-mass densities. As a result, the GCMF

peak mass can be seen to be slightly higher when constituent GCs are binned by orbital

pericentre. In this case the evolved GCMF peak mass was at around M̃TO ≃ 105.5. The

next mechanism demonstrated was tidal shocks, which had been acting on a GCS ini-

tially described by an isotropic velocity distribution and a Schechter CIMF, with initial

half-mass densities allocated again by randomly sampling a Gaussian of King concen-

trations, the same as previously. In this case the total mass-loss was very slight, with

no discernible change of shape to the mass function. However the velocity anisotropy

clearly displayed that the central regions had become tangentially biased. Clusters on
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smaller orbits had been protected by their very large half-mass densities, while those far

out had been protected by their very large radial periods. The subsequent mechanism

demonstrated was stellar evolution, which as expected had reduced the initial mass

of every cluster by the same fraction, and consequently the evolved GCMF was just

shifted to a lower mass. Additionally, the average stellar mass as a function of time

was displayed for both available prescriptions, behaving as predicted in both cases.

Dynamical friction was demonstrated next, with a plot displaying how the radial and

tangential velocity dispersions had changed over 13Gyr. The changes were consistent

with the idea that clusters on orbits with very small pericentres had been destroyed

or circularised, such that the smallest pericentres were now typically further out, and

consequently the tangential velocity dispersion had increased while the radial velocity

dispersion had decreased at this radius. The final demonstration was that of the half-

mass density evolution and stellar evolution mechanisms, in a GCS initially described

by a Gaussian CIMF, and with initial mass-radius relation of r̃h = 2.75× 10−4M̃0.615
c .

A Hubble time of evolution had caused the initial mass-radius relation to be completely

erased, with the only trace of its existence being the lower bound to the final r̃h vs

M̃ c of GCs. The large vertical spread in points was explained as being a direct conse-

quence of the orbital distribution of the GCS, as higher tidal densities correspond to

more rapid changes in half-mass densities, and the initial mass-radius relation caused

the rate of change of half-mass density to be very insensitive to initial mass/half-mass

density.

In summary, the physics of GC evolution and destruction have been either pre-

sented or derived and discussed, with a focus on how the evolution of individual GCs

affects the properties of the ensemble GCS as a whole, and in particular the mass

function. These evolutionary mechanisms were analysed in terms of how they would

affect the GCMF under the assumption that it began as a power-law CIMF. It was

concluded that evaporation is most likely primarily responsible for shaping the GCMF,

and models built with these assumptions are applied to 22 Virgo galaxies. An estimate

is obtained for the coefficient on evaporation mass-loss rate that is in good agreement

with other similar studies and with evaporation theory in general, however these mod-
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els are found to struggle to fit the GCMFs of very massive galaxies with very populous

GCSs. Consequently, much more sophisticated models are derived, able to create ini-

tial GCSs with specifiable spatial distribution, velocity distribution, CIMF, and host

galaxy. Furthermore, these initial models can then be evolved while applying any

combination of evaporation, tidal shocking, stellar evolution, dynamical friction, and

internal evolution mechanisms. All of the primary mechanisms affecting the evolution

of GCs have been either derived or taken from the literature and woven together to

make the treatment of GC evolution as general and realistic as possible. Consequently,

this powerful evolution routine should be well poised to make significant contributions

to the field of Globular Cluster studies, for example answering long standing questions

surrounding GCS evolution, such as:

• Why the GCMF is radially invariant, and what role velocity anisotropy plays.

• Whether the GCMF evolved from a CIMF analogous to power-law CIMFs as

observed in sites of heightened star formation such as galactic mergers.

• Whether GCs are the survivors of an initially much larger population, and how

large that population may have been.

• Whether GCs began with an initial mass-radius relation, and what it may have

been.

• Why GC half-mass radii and masses are uncorrelated.

7.2 Future Work

The next step with these initial condition and evolution routines is to begin to thor-

oughly explore the vast parameter space in a systematic way. For example, these

models were initially developed for application to the most massive Virgo galaxies,

since the simple single parameter models produced unsatisfactory fits. However given



240

that the single parameter models were able to fit the remaining 20 Virgo galaxies,

a large amount of additional physics may not be necessary to reconcile the fits with

these massive galaxies. Due to the formulation of the single parameter models, the

slope of the Schechter CIMF, βMF , is degenerate with C, and thus varying βMF in an

attempt to achieve better fits would have been pointless. However, these more sophis-

ticated routines allow other parameters and properties to vary, which could break this

degeneracy. For example, the evolved GCMF in Figure 6.1 is remarkably close to the

appearance of actual GCMFs considering it was intended purely as a demonstration

that the evolution routine works. The input physics and parameters need to be adjust

such that the turnover of the resulting GCMF is about an order of magnitude greater.

It is entirely possible that decreasing βMF slightly or increasing C by a factor of two

would address this. Alternatively, this could be achieved by altering the initial mass-

radius relation in favour of slightly higher densities, as this would correspond to higher

rates of mass-loss. Decreasing A would increase the initial density of all clusters by

the same factor, and consequently the mass lost from every cluster would be multiplied

by the square root of this factor. Thus, the more severe mass-loss would erode more

of the GCMF, and the resulting turnover mass would be higher. On the other hand,

decreasing B would preferentially increase the initial densities of more massive clusters,

and thus mass-loss rates would be higher for all clusters, but especially for more mas-

sive clusters. Consequently the shape of the resulting GCMF would be modified, with

a larger fraction of massive clusters migrating to lower masses, which could actually

lower the turnover mass if B was decreased enough.

Other aspects of the GCS also need to be considered, such as the GCFP. Since

half-mass densities are assumed to be constant, changing either A or B significantly

would have a large effect on the GCFP of the evolved GCS, such that surviving clusters

have half-mass densities orders of magnitude away from what is actually observed.

Furthermore, an even more fundamental problem is that by assuming any mass-radius

relation combined with constant half-mass densities and a mass-loss rate that scales

with half-mass density, a clear one-to-one relation will always be visible in any surviving

GC populations. Such a feature is not seen in real GCFPs. Scatter in ρ̃h vs M̃ c
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could be achieved by using an evaporation prescription that also depends on tidal

density for example, since the orbital distribution of clusters would then guarantee a

spread in the rates of mass-loss. Alternatively, internal evolution could be utilised,

since Figure 6.7 demonstrates that internal evolution is very efficient at erasing the

initial mass-radius relation, again due to the orbital distribution. However in both

of these alternatives, dependence on orbital distribution automatically implies radial

dependence in the mass-loss rates, and therefore also in the resulting GCMF. How

strong this radial dependence would be is currently unclear, but could potentially

be combated with radially anisotropic models. Furthermore, since internal evolution

increases the half-mass densities of many clusters, the evaporation mass-loss rate will

accelerate. Consequently the turnover mass of the resulting GCMF would be at higher

masses without needing to alter either A or B. Internal evolution will also cause the

half-mass density of many clusters to decrease, which would therefore be very resistant

to evaporation mass-loss and as a result would accumulate. Again this is not observed

in GCSs (though if they were very distended they would be hard to detect). However

tidal shocking would be very efficient at destroying such low half-mass density clusters

and thus could resolve this potential issue anyway.

Overall, there are several possible paths that could be taken to produce simulated

evolved GCMFs resembling observed GCSs. It is not difficult to imagine a scenario

where introducing additional mechanisms would produce unwanted side-effects, which

could be countered by another mechanism that brings more unwanted side-effects of its

own, etc., and thus a minimalistic approach should be taken. Careful exploration of the

parameter space one mechanism at a time to find the minimum complexity required to

produce a well fitting model will be the main goal. Once a combination of mechanisms

and parameters providing evolved GCSs that match well to observations have been

found, these models should be projected and applied to the GCSs of other galaxies,

and in particular the Virgo galaxies so as to use these sophisticated models for their

originally intended purpose. Given that many of the galaxies these models would be

applied to are much more massive, in addition to having very different structures (i.e.

ellipticals as opposed to spirals), it would not come as much of a surprise if the set of
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mechanisms and parameters providing models that fit well in the Milky Way require

some modification in order to provide good fits to Virgo galaxies as well. Thus, some

exploration of the effects of changing mechanisms and parameters on the projected

models may be necessary.

Furthermore, there is the potential to add further improvements to the code,

such as relaxing the assumption of spherical symmetry to allow the use of axisymmet-

ric host galaxy potentials and/or GCS spatial distributions. This would allow more

direct comparisons to GCSs in disk galaxies, in addition to investigation of how much

difference the presence of a galactic disk would have on GC evolution. An obvious

place to start would be with tidal shocks, since in this case disk crossings would need

to be considered. Additionally, there is the possibility of relaxing the assumption of

time-independent potentials to more accurately reflect the hierarchical nature of galaxy

evolution. This would likely be rather a complicated undertaking without N-body sim-

ulations, but could potentially be simulated in a statistical sense, with random numbers

used to reflect GC orbit migration during violent relaxation, in addition to the num-

ber of accreted GCs and the scale and inclination of the merger. This would allow

investigation into how significant a role orbital mixing has on GC evolution, and could

be the reason for so much discrepancy in tidal densities of clusters obtained by King

model fits compared to theoretical predictions of tidal density based on the orbit of the

cluster in question. For example, a cluster from a recently cannibalised host galaxy

could have spent the majority of its lifetime in a very different environment, and could

still be adjusting to its new environment. Thus the observed properties of such GCs

would reflect the previous rather than the current environment.

Additionally, the prescriptions for stellar evolution and internal evolution could

be improved. For example, mass-loss could be treated in a way that conveys the

probability that the lost stars were of a certain mass, thus making the average stellar

mass reflect effects such as the preferential loss of low-mass stars. For example, the

calculations for evolving stellar populations could be improved by treating for radial

dependence of the stellar mass function, reflecting ongoing mass segregation through

a statistical treatment of local density-dependent stellar encounters. There is also the
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possibility of accounting for primordial binaries, density-dependent binary formation,

and binary reheating in the internal evolution prescription, which would slow down

the rate at which clusters increase in density. This could potentially have a significant

impact on how any other mechanisms depending on half-mass density behave. An

even more detailed alternative would be to combine the stellar population evolution

and internal density evolution prescriptions. Such a model would treat for the local

density-dependent probability of stellar encounters, and the local stellar mass function

dependent probability of what class and mass the components of the encounter would

be (i.e., main-sequence, white dwarf, neutron star, or black hole). This would enable

calculation of the probability of whether the components of the encounter migrated

inwards, outwards, formed binaries, or coalesced. Consequently it would be possible to

keep track of the evolving stellar mass function at different radii throughout a cluster,

including the relative number and position of binaries with different class and mass

components, or even the growth of an intermediate mass black hole. Such predictions

could be compared to observed X-ray emissions as an additional constraint on the

models. Thus, as ever, there are many possible directions that this research could be

taken in next.

In conclusion, an opportunity for great progress in Globular Cluster studies has

been provided by the creation of these advanced GCS set-up and evolution routines,

which could potentially resolve some long-standing questions. Once these results have

been obtained, determining in which way to build upon this research will become a

much clearer choice.
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A Virial Theorem

The total moment of inertia for a system is just the sum of the moments of inertia of

the individual N stars,

Itot =
N∑
k=1

mk |rk|2

where mk is the mass of the k’th star, and rk is the position of the k’th star relative

to the system centre of mass. Then assuming that mk is constant, the second time

derivative of Itot is given by:

d2 Itot
d t2

= 2
N∑
k=1

mk

∣∣∣∣d rkd t

∣∣∣∣2 + 2
N∑
k=1

Fk · rk

The first term on the right hand side is four times the total kinetic energy, Ktot. The

second term is the scalar product of the total vector force acting on the k’th star due

to the sum of gravitational attractions to all other particles in the system, Fk, and the

vector position of the star. Fk can therefore be expanded into a double sum, as follows:

2
N∑
k=1

Fk · rk = 2
N∑
k=1

k−1∑
j=1

Fkj · rk + 2
N∑
k=1

N∑
j=k+1

Fkj · rk

where Fkj is the gravitational force experienced by star k due to star j, and j = k has

been excluded since a star is not bound to a system by its own gravity. The inner sum

of the first term on the right hand side is just counting j < k, and the inner sum of

the second term is counting j > k. Equivalently, the second term may be written as

k < j, and the summation variables exchanged to give:

2
N∑
k=1

Fk · rk = 2
N∑
k=1

k−1∑
j=1

Fkj · rk + 2
k−1∑
j=1

N∑
k=1

Fjk · rj

Then noting that Fkj = −Fjk, this may be written as:

2
N∑
k=1

Fk · rk = 2
N∑
k=1

k−1∑
j=1

Fkj · rkj
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where rkj = (rk − rj). By definition, Fkj = −∇Φkj = −dΦkj

d r
rkj/ |rkj|, where Φkj is the

gravitational potential of star j as experienced by star k. Then assuming a power-law

potential for the member stars, Φkj = A |rkj|n:

2
N∑
k=1

Fk · rk = −2n
N∑
k=1

k−1∑
j=1

Φkj = −2nWtot

where Wtot is the total potential energy in the system, and:

d2 Itot
d t2

= 4Ktot − 2nWtot

by taking the time average of this expression, it is reasonable to expect that for many

systems
⟨

d2 Itot
d t2

⟩
∼ 0, and thus finally:

2 ⟨Ktot⟩ − n ⟨Wtot⟩ = 0
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B Trapezoid Quadrature

By definition of the distribution function:

ρ̃(Φ̃) =
4π

r̃(Φ̃)

∫ ∞

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h) dh√
h2max − h2

where hmax is a function of Ẽ and Φ̃ (equation 3.49). This can easily be written as:

ρ̃(Φ̃)r̃(Φ̃)

4π ln(10)
−
∫ ∞

log Φ̃(r̃f )
d log Ẽ Ẽg̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h) dh√
h2max − h2

=

∫ log Φ̃(r̃f )

log Φ̃
d log Ẽ Ẽg̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h)dh√
h2max − h2

then denoting:

f(Φ̃) =
ρ̃(Φ̃)r̃(Φ̃)

4π ln(10)
−
∫ ∞

log Φ̃(r̃f )
d log Ẽ Ẽg̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h)dh√
h2max − h2

K(Ẽ, Φ̃) = Ẽ
[
L̃0 + L̃c(Ẽ)

] ∫ hmax

0

hj(h) dh√
h2max − h2

and dividing the range
[
Φ̃, Φ̃(r̃f )

]
into N − 1 strips:

f(Φ̃n) =
N−1∑
i=n

∫ log Φ̃i+1

log Φ̃i

g̃(Ẽ)K(Ẽ, Φ̃n) d log Ẽ

The value of the integral of each of these strips is just the area under the curve of the

integrand, which for a narrow enough strip can be well approximated by a trapezium:∫ log Φ̃i+1

log Φ̃i

g̃(Ẽ)K(Ẽ, Φ̃n) d log Ẽ ≃ hig̃(Φ̃i+1)K(Φ̃i+1, Φ̃n)

+0.5hi

[
g̃(Φ̃i)K(Φ̃i, Φ̃n)− g̃(Φ̃i+1)K(Φ̃i+1, Φ̃n)

]
where hi is just the width of the strip; i.e. hi = Φ̃i+1 − Φ̃i. Then:

f(Φ̃n) ≃
N−1∑
i=n

0.5hi

[
g̃(Φ̃i)K(Φ̃i, Φ̃n) + g̃(Φ̃i+1)K(Φ̃i+1, Φ̃n)

]
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Writing this as two individual sums and changing the summation index of the second

sum such that iold + 1 = inew, the following is obtained:

f(Φ̃n) ≃
N−1∑
i=n

0.5hig̃(Φ̃i)K(Φ̃i, Φ̃n) +
N∑

i=n+1

0.5hi−1g̃(Φ̃i)K(Φ̃i, Φ̃n)

The n’th term of the first sum and the N ’th term of the second sum can be taken

outside their respective summations to get:

f(Φ̃n) ≃ 0.5hng̃(Φ̃n)K(Φ̃n, Φ̃n) +
N−1∑
i=n+1

0.5hig̃(Φ̃i)K(Φ̃i, Φ̃n)

+0.5hN−1g̃(Φ̃N )K(Φ̃N , Φ̃n) +
N−1∑
i=n+1

0.5hi−1g̃(Φ̃i)K(Φ̃i, Φ̃n)

but K(Φ̃n, Φ̃n) = 0, so that finally:

f(Φ̃n) ≃ 0.5hN−1g̃(Φ̃N )K(Φ̃N , Φ̃n) +
N−1∑
i=n+1

hi−1 + hi
2

g̃(Φ̃i)K(Φ̃i, Φ̃n)

where it is understood that the sum only gets done when n ≤ N − 2, such that n = N
gives f(Φ̃N ) ≃ 0.5hN−1g̃(Φ̃N )K(Φ̃N , Φ̃N ) = 0 (due to both arguments of the kernel

being equal) as required. Preceeding terms can then be evaluated one by one to solve

for all g̃(Φ̃i) from i = N down to i = 2 (the i = 1 term is lost again due to the kernel

collapsing to zero for Ẽ = Φ̃) by taking out the n+ 1’th term of the sum and making

g̃(Φ̃n+1) the subject:

g̃(Φ̃N ) ≃ 2f(Φ̃N−1)

hN−1K(Φ̃N , Φ̃N−1)

g̃(Φ̃n) ≃ 2f(Φ̃n−1)

(hn + hn−1)K(Φ̃n, Φ̃n−1)
− hN−1

hn + hn−1

g̃(ΦN )
K(Φ̃N , Φ̃n−1)

K(Φ̃n, Φ̃n−1)

−
∑N−1

i=n+1(hi + hi−1)g̃(Φ̃i)K(Φ̃i, Φ̃n−1)

(hn + hn−1)K(Φ̃n, Φ̃n−1)

where the index over n has been changed according to nold + 1 = nnew.
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C Constant β Circularity Function

Using the definitions of the anisotropy parameter, β, and the tangential and radial

velocity dispersions, σ̃2
t , σ̃

2
r (equations 3.41, 3.55 and 3.54), β as a function of the

circularity function j(h) may be written as:

β = 1−

∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0
h3j(h) dh√
h2max−h2

2
∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0

√
h2max − h2hj(h) dh

then using integration by parts on the inner integral in the numerator:∫ hmax

0

h3j(h)√
h2max − h2

dh = 2

∫ hmax

0

√
h2max − h2hj(h) dh+

∫ hmax

0

√
h2max − h2h2

dj

dh
dh

−
[
h2j(h)

√
h2max − h2

]hmax

0

under the condition that h2j(h) → 0 as h → 0, the last term dissapears. Putting this

back into the expression for β and expanding:

β = −

∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0

√
h2max − h2h2 dj

dh
dh

2
∫ Ẽmax

Φ̃
dẼ g̃(Ẽ)

[
L̃0 + L̃c(Ẽ)

]3 ∫ hmax

0

√
h2max − h2hj(h) dh

then for β = β0 = const, the following must hold:

dj

dh
= −2j(h)β0

h

and thus

j(h) = Ch−2β0

where C is an arbitrary constant of integration. Then recalling the condition that

h2j(h) → 0 as h→ 0, this result holds only for β0 < 1.
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D Differential Energy Distribution

By definition, the total number of tracers is given by:

Ntot =

∫
all r,v

d3r d3v f(H,L)

where H is the orbital energy. Then the number of objects with energies H = E is

given by:
dN

dE
=

∫
all r,v

d3r d3v δ(E −H)f(H,L)

where δ(E −H) is the Dirac delta function, i.e. δ(E ̸= H) = 0, and δ(E = H) = ∞.

Putting this into dimensionless notation and writing d3ṽ = dṽr dṽθ dṽϕ, this is:

dN

dẼ
=

∫
all r̃

d3r̃

∫
all ṽ

dṽr dṽθ dṽϕ δ̃(Ẽ − H̃)f̃(H̃, L̃)

As in the derivation of equation (3.50) (number density from the distribution function),

using the definitions in equations (3.45) and (3.46), i.e. ṽθ = ṽt cos γ and ṽϕ = ṽt sin γ,

the Jacobian gives dṽθdṽϕ = ṽtdṽtdγ, and thus:

dN

dẼ
=

∫
all r̃

d3r̃

∫ ∞

−∞
dṽr

∫ ∞

0

dṽt ṽt

∫
dγ δ̃(H̃ − Ẽ)f̃(H̃, L̃)

Assuming spherical symmetry, this then becomes:

dN

dẼ
= (4π)2

∫ r̃2

r̃1
dr̃ r̃2

∫ ∞

0

dṽr

∫ ∞

0

dṽt ṽtδ̃(Ẽ − H̃)f̃(H̃, L̃)

where r̃1 = r̃min,trace, and r̃2 = min[r̃max,trace, r̃(Φ̃ = Ẽ)], i.e. integrating over the full

range of possible/allowed tracer radii. Then similarly to the derivation of equation

(3.50) again, using the definitions in equations (3.44) and (3.48), i.e. ṽt = L̃/r̃ and

ṽr =

√
2(H̃ − Φ̃)− L̃

2

r̃2
, the Jacobian gives dṽrdṽt =

1

r̃ṽr
dH̃dL̃, resulting in:

dN

dẼ
= (4π)2

∫ r̃2

r̃1
dr̃ r̃

∫
allH̃

dH̃ δ̃(Ẽ − H̃)

∫ [
2

(
H̃−Φ̃

)]1/2
r̃

0

dL̃

L̃
r̃ f̃(H̃, L̃)√

2
(
H̃ − Φ̃

)
− L̃

2

r̃2
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The integral over H̃ may be evaluated to then give:

dN

dẼ
= (4π)2

∫ r̃2

r̃1
dr̃

∫ [
2

(
Ẽ−Φ̃

)]1/2
r̃

0

dL̃
L̃f̃(Ẽ, L̃)√

2
(
Ẽ − Φ̃

)
− L̃

2

r̃2

Then finally substituting the definitions of orbital circularity, quasi-separable distri-

bution functions, and maximum dimensionless angular momentum (equations 3.1, 3.2

and 3.49), i.e.

h =
L̃

L̃c(Ẽ) + L̃0

f̃(Ẽ, h) = g̃(Ẽ)j(h)

hmax =

√
2(Ẽ − Φ̃)r̃

L̃c(Ẽ) + L̃0

the differential energy distribution may be written as:

dN

d log Ẽ
= (4π)2 ln(10)Ẽ

[
L̃c(Ẽ) + L̃0

]
g̃(Ẽ)

∫ r̃2

r̃1
dr̃ r̃

∫ hmax

0

hj(h) dh√
h2max − h2
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E Simulated GCS set-up Code

Following is a code which when given a host galaxy density solves Poisson’s equation

for the gravitational potential and its derivatives. These are then used in combination

with a selected tracer density profile and circularity function to solve a Volterra inte-

gral equation of the first kind for the energy dependence of the distribution function.

Following this, Monte Carlo sampling is used to generate a population of tracers satis-

fying the selected tracer density profile and kinematic distribution as specified by the

circularity function (see Chapter 3).

PROGRAM model int
IMPLICIT NONE
INTEGER IMFnum, tracedatnum , gintnum ,DEDN
INTEGER KMAXX,NMAX, intnum , dcmlpnts , itnum , voltN , objnum
REAL∗8 l og z e r o
PARAMETER (KMAXX=10000 ,NMAX=50, intnum=1000 , dcmlpnts=1,DEDN=1000)
PARAMETER ( itnum=1000 , voltN=1000 ,objnum=200000)
PARAMETER ( tracedatnum=1000 ,IMFnum=2000 , l o g z e r o=−1.d2 )
PARAMETER ( gintnum=1000)
INTEGER nvar , kmax , kmax2 , kount , kount2 , i , nok , nbad , n , z
INTEGER s t r ind1 , s t r ind2 , s t r ind3 , s t r l en , hount , hount2 , r a n i n i t
INTEGER chopnum , sp l i n t e r r n , i o s
INTEGER t racepro f , IMFprof , modelprof , i l im , nrep , j type
REAL∗8 k , PI , yp1 , ypn , eps , h1 , hadv , dxsav , dxsav2 , p0 , i s od f , t r a c e i n p l
REAL∗8 xp (KMAXX) , xp2 (KMAXX) , yp (NMAX,KMAXX) , yp2 (NMAX,KMAXX) , v o l t f
REAL∗8 l gph i ( intnum ) , l g rho ( intnum ) , l g r ( intnum ) , lgdph idr ( intnum )
REAL∗8 rmin , rmax , y s t a r t (NMAX) , beta ( tracedatnum ) , r r e f , a , b , r s
REAL∗8 spd2rdphi2 ( intnum ) , lgvdr2 ( tracedatnum ) , lgvdt2 ( tracedatnum )
REAL∗8 t r a c e l g r ( tracedatnum ) , newy( voltN ) , vdr2pt , vdt2pt
REAL∗8 L0 , phistop , xi , xf , newx( voltN ) , lgvd2 ( intnum ) , t raceoup l
REAL∗8 intph ipt , h log ( voltN ) , Evec ( voltN ) , l g t rapg ( voltN ) , t r a c e t r an
REAL∗8 dummy(5∗ voltN ) , rEfind , rLf ind , grmin , grmax , Evec2 ( voltN+1)
REAL∗8 lgLc ( intnum ) , lgEc ( intnum ) , spd2LcdEc2 ( intnum ) , hfunc , lgrE
REAL∗8 l g r c ( intnum ) , lgcv2 ( intnum ) ,Emax, Emin ,DED(DEDN) , gofE
REAL∗8 LcplusL0 , spdld2gdE2 ( voltN ) , r f , Npt , r o fph i fn , ph io f r fn , in tgpt
REAL∗8 lgM( intnum ) , ran2 ,Mpt , x , lg rho fn , r tb i s , l g t rapg2 ( voltN+1)
REAL∗8 objrad ( objnum ) , objphi ( objnum ) , objE ( objnum ) , objh ( objnum)
REAL∗8 MChmax, intEpt ,MCh, hmax , objhmax ( objnum ) , spd2rcdEc2 ( intnum )
REAL∗8 objrp ( objnum ) , obj ra ( objnum ) , obj rco fE ( objnum ) , j , b i s a c c
REAL∗8 ob j r co fL ( objnum ) ,Mmax, spd2phidr2 ( intnum ) , o b j e l l i p ( objnum)
REAL∗8 Mmin, IMFparam1 , IMFparam2 , IMFmass(IMFnum) ,sumIMF(IMFnum)
REAL∗8 spd2MdsumM2(IMFnum) , objM , objmass ( objnum ) ,IMF, IMFvec (IMFnum)
REAL∗8 Nltr ( tracedatnum ) , spd2rdnutr2 ( tracedatnum ) , r i n i t , rmaxpt
REAL∗8 d2phidr2 ( intnum ) , i s od f v e c ( voltN ) , newy2 ( voltN )
REAL∗8 xpt , ypt , DEDLcplusL0 (DEDN) , Emintrace , objvphi ( objnum)
REAL∗8 ja , jb , spd2sumDEDdE2(DEDN)
REAL∗8 objvtheta ( objnum ) , objvr ( objnum ) , spd2DEDdE2(DEDN) , hpt
REAL∗8 time1 , time2 , dphidro fr , lgd2phidr2 ( intnum ) , l gg rve c ( voltN )
REAL∗8 rmaxtrace , rmintrace , Einfimum , Esupremum
REAL∗8 plusminus , gamma, Ept ,MCL, t r a c e l g rho ( tracedatnum )
REAL∗8 dphidr ( intnum ) , newxf , rpt , rhopt , newEsup ,DEDEvec(DEDN)
REAL∗8 spd2rcdLc2 ( intnum ) , spd2vc2dr2 ( intnum ) , sp lgd3phidr3 ( intnum )
REAL∗8 t r a c e l g ph i ( tracedatnum ) , spd2rhodr2 ( tracedatnum ) , upplim
REAL∗8 spd2vdr2dr2 ( tracedatnum ) , spd2vdt2dr2 ( tracedatnum )
REAL∗8 new1( tracedatnum ) , new2 ( tracedatnum ) , new3( tracedatnum )
REAL∗8 new4( tracedatnum ) , spd2nutrdr2 ( tracedatnum )
REAL∗8 sumDED(DEDN)
REAL∗8 spd2hdsumh2 (KMAXX) , sumh(KMAXX)
REAL∗8 hohmax(KMAXX) , inthpt
REAL∗8 sumg(KMAXX) , gintE (KMAXX) , spd2Edsumg2 (KMAXX)
CHARACTER∗30 savf i l ename , obj f i l ename , tracername , s p l i n t c a l l
CHARACTER∗30 voltname ,DEDname
CHARACTER∗15 strnum
CHARACTER∗650 l i n e
LOGICAL edgereach , val idmodel , switch , l i n i n , nonint , va l id , now

COMMON / tracepath / t race l g rho , t r a c e l g r , spd2rhodr2
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COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON / errpath / s p l i n t e r r n
COMMON / t race rpath / t r a c e i np l , t raceoupl , t racet ran , t r a c ep r o f
COMMON / re fpath / r r e f , r f
COMMON /maxpath/ phistop
COMMON /vdpath/ lgtrapg , spdld2gdE2 , Evec
COMMON / gintpath / in tph ip t
COMMON /phiandrpath / lgr , lgphi , spd2rdphi2 , spd2phidr2 , lgdphidr ,
∗ sp lgd3phidr3
COMMON /minmaxpath/ rmintrace , rmaxtrace , hpt
COMMON /DEDpath/ Ept , spd2DEDdE2 ,DED,DEDEvec
COMMON /Lcpath/ spd2LcdEc2 , lgLc , lgEc
COMMON /L0path/ L0
COMMON /Ecpath/ lg rc , spd2rcdEc2 , spd2rcdLc2
COMMON / rhopath/ k , p0 , edgereach
COMMON /path/ kmax , kount , dxsav , xp , yp , hount
COMMON /path2/ kmax2 , kount2 , dxsav2 , xp2 , yp2 , hount2
COMMON /modelpath/ modelprof , IMFprof
COMMON /ELpath/ intEpt ,MCL
COMMON /vc2path/ lgcv2 , spd2vc2dr2
COMMON /IMFpath/ IMFparam1 , IMFparam2
COMMON / l inpa th / l i n i n
COMMON /nonintpath / nrep , nonint , upplim
COMMON /hfuncpath/ lgrE , rmaxpt
COMMON / jpath / ja , jb , j type
COMMON / ba l l spa th / now
EXTERNAL poisson , dfvdr2 , dfvdt2 , rkqs , rkqs2 , vo l t f ,H, hfunc , IMFint
EXTERNAL t r a c e i n t , DEDint , sumDEDint , dfrho , jeans , hint , Eint
val idmodel=. fa l se .
switch = . fa l se .
l i n i n = . true .
s p l i n t e r r n = 0

1 WRITE(6 ,1001) ’ input model type : ( polytrope , king , dehnen , or ’
∗ , ’ powerlaw ) ’
WRITE(6 ,1000) ’ 1 : po lyt rope ’
WRITE(6 ,1000) ’ 2 : king ’
WRITE(6 ,1000) ’ 3 : dehnen ’
WRITE(6 ,1000) ’ 4 : powerlaw ’
read (5 ,∗ ) modelprof

! b i s e c t i o n v a r i a b l e s
b i s a c c = 1 . d−10 ! b r a c k e t s must be w i t h i n t h i s a b s o l u t e t o l e r a n c e

! o f ea cho t h e r b e f o r e f u n c t i o n va l u e a t e i t h e r b r a c k e t
! i s a c c ep t ed as roo t

! common v a r i a b l e s
PI = 3.141592654d0
r i n i t = 1 . d−4 ! minimum rad i u s model p r o p e r t i e s are t a b u l a t e d f o r
r f = 1 . d10 ! maximum rad i u s model p r o p e r t i e s are t a b u l a t e d f o r
p0 = 9 . d0 ! v a l u e o f p roduc t o f c on s t an t s from d imen i on l e s s Po i s sons

! e qua t i on
phistop = −1.d10 ! v a l u e o f p o t e n t i a l a t ou t e r edge o f system ,

! i n i t i a l i s e d to be n e g a t i v e

! s p l i n e v a r i a b l e s
yp1 = 1 . d30
ypn = 1 . d30

! model v a r i a b l e s
i f ( modelprof . eq . 1 ) then ! p o l y t r o p e i n i t i a l i s a t i o n ( k=2 g i v e s i s o t h e rma l

! sphere , k=2.5 g i v e s plummer sphe re )
val idmodel=.true .

2 WRITE(6 ,1000) ’ input k , 1<k<=2.5 ’
read (5 ,∗ ) k
i f ( k . le . 1 . d0 . or . k . gt . 2 . 5 d0 ) then

print ∗ , ’ i n v a l i d k s e l e c t i o n ’
goto 2

end i f
r r e f = 0 . d0
i f ( k . gt . 2 . d0 ) phis top = ( 2 . d0∗(k−1.d0 )/( k−2.d0 ) ) ! ph i on l y has a maximum f o r k>2.
sav f i l ename = ’ po ly t rope mode l k ’
ob j f i l ename = ’ po l y t r op e ob j c t k ’
tracername = ’ po l y t r op e t r a c e k ’
voltname = ’ p o l y t r o p e d i s t g k ’
DEDname = ’ po ly t rope d i fED k ’
do i = 1 , intnum

l g r ( i ) = log10 ( r i n i t )+( i −1)∗ log10 ( r f / r i n i t ) / ( 1 . d0∗( intnum−1))
end do

end i f

i f ( modelprof . eq . 2 ) then ! k i n g 66 s t u f f (W0 −> i n f i n i t y g i v e s i s o t h e rma l sphe re )
val idmodel=.true .
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3 WRITE(6 ,1000) ’ input W0, W0 > 0 ’
read (5 ,∗ ) k
i f ( k . le . 0 . d0 ) then

print ∗ , ’ i n v a l i d W0 s e l e c t i o n ’
goto 3

end i f
r r e f = 0 . d0
phistop = k
sav f i l ename = ’ king model W0 ’
ob j f i l ename = ’ king objct W0 ’
tracername = ’ king trace W0 ’
voltname = ’ k ing di s tg W0 ’
DEDname = ’ king difED W0 ’
do i = 1 , intnum

l g r ( i ) = log10 ( r i n i t )+( i −1)∗ log10 ( r f / r i n i t ) / ( 1 . d0∗( intnum−1))
end do

end i f

i f ( modelprof . eq . 3 ) then ! dehnen i n i t i a l i s a t i o n (gamma=1 g i v e s h e rnqu i s t ,
! gamma=2 g i v e s j a f f e )

val idmodel=.true .
4 WRITE(6 ,1000) ’ input gamma, 0 <= gamma < 3 ’

read (5 ,∗ ) k
i f ( k . l t . 0 . d0 . or . k . ge . 3 . d0 ) then

print ∗ , ’ i n v a l i d gamma s e l e c t i o n ’
goto 4

end i f
r r e f = r i n i t /1 . d1 ! v a l u e o f r a d i u s a t which ph i = 0 (must be l e s s than r i n i t )
i f ( k . eq . 2 . d0 ) then

phistop = 4 . d0∗p0∗ log ( ( r r e f +1.d0 )/ r r e f )
else i f ( k .ne . 2 . d0 ) then

phistop = ( ( 2 . d0 ∗∗ (4 . d0−k ))∗ p0 ∗ ( 1 . d0−( r r e f /
∗ ( r r e f +1.d0 ) )∗∗ ( 2 . d0−k ) ) / ( ( 3 . d0−k )∗ ( 2 . d0−k ) ) )

end i f
sav f i l ename = ’ dehnen model G ’
ob j f i l ename = ’ dehnen objct G ’
tracername = ’ dehnen trace G ’
voltname = ’ dehnen distg G ’
DEDname = ’ dehnen difED G ’
do i = 1 , intnum

l g r ( i ) = log10 ( r i n i t )+( i −1)∗ log10 ( r f / r i n i t ) / ( 1 . d0∗( intnum−1))
end do

end i f

i f ( modelprof . eq . 4 ) then ! power law s t u f f ( k=2 g i v e s s i n g u l a r i s o t h e rma l sphe re )
val idmodel=.true .

5 WRITE(6 ,1000) ’ input k , 1 < k < 3 ’
read (5 ,∗ ) k
i f ( k . le . 1 . d0 . or . k . ge . 3 . d0 ) then

print ∗ , ’ i n v a l i d k s e l e c t i o n ’
goto 5

end i f
r r e f = r i n i t /1 . d1 ! v a l u e o f r a d i u s a t which ph i = 0 (must be l e s s than r i n i t )
i f ( k . gt . 2 . d0 ) then

phistop = (p0∗( r r e f ∗∗ (2 . d0−k ) ) / ( ( 3 . d0−k )∗ ( k−2.d0 ) ) )
end i f
sav f i l ename = ’ powerlaw model k ’
ob j f i l ename = ’ power law objc t k ’
tracername = ’ power law trace k ’
voltname = ’ power law d i s tg k ’
DEDname = ’ powerlaw difED k ’
do i = 1 , intnum

l g r ( i ) = log10 ( r i n i t )+( i −1)∗ log10 ( r f / r i n i t ) / ( 1 . d0∗( intnum−1))
end do

end i f

i f ( val idmodel . eqv . . fa l se . ) then
WRITE(6 ,1000) ’ i n v a l i d model type ’
goto 1

end i f

18 WRITE(6 ,1001) ’ ente r negat ive i n t e g e r f o r random number ’ ,
∗ ’ g enerator seed ’
read (5 ,∗ ) r a n i n i t
i f ( r a n i n i t . ge . 0 ) goto 18

6 WRITE(6 ,1000) ’ s e l e c t t r a c e r number dens i ty p r o f i l e : ’
WRITE(6 ,1000) ’ 1 : s e l f −c on s i s t e n t ’
WRITE(6 ,1000) ’ 2 : 3 parameter double power−law ’
read (5 ,∗ ) t r a c ep r o f
WRITE(6 ,1000) ’ input maximum t r a c e r ins tantaneous rad ius ’
read (5 ,∗ ) rmaxtrace
WRITE(6 ,1000) ’ input minimum t r a c e r ins tantaneous rad ius ’
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read (5 ,∗ ) rmintrace
i f ( t r a c ep r o f . eq . 2 ) then

WRITE(6 ,1000) ’ ente r inner power−law s l ope (gamma) ’
read (5 ,∗ ) t r a c e i n p l
WRITE(6 ,1000) ’ ente r outer power−law s l ope ( beta ) ’
read (5 ,∗ ) t raceoup l
WRITE(6 ,1000) ’ ente r t r a n s i t i o n reg ion width parameter ( alpha ) ’
read (5 ,∗ ) t r a c e t r an

end i f
i f ( t r a c ep r o f .ne . 1 . and . t r a c ep r o f .ne . 2 ) then

print ∗ , ’ i n v a l i d t r a c e r number dens i ty p r o f i l e s e l e c t i o n ’
goto 6

end i f

7 WRITE(6 ,1000) ’ s e l e c t t r a c e r IMF: ’
WRITE(6 ,1000) ’ 1 : Schechter ’
WRITE(6 ,1000) ’ 2 : Gaussian ’
WRITE(6 ,1000) ’ 3 : Powerlaw ’
read (5 ,∗ ) IMFprof
i f ( IMFprof . eq . 1 ) then

WRITE(6 ,1000) ’ input Schechter exponent ia l c u t o f f mass ’
read (5 ,∗ ) IMFparam1
WRITE(6 ,1000) ’ input Schechter powerlaw component s l ope ’
read (5 ,∗ ) IMFparam2

else i f ( IMFprof . eq . 2 ) then
WRITE(6 ,1000) ’ input Gaussian cent r e l oga r i thmic mass ’
read (5 ,∗ ) IMFparam1
WRITE(6 ,1000) ’ input Gaussian d i s p e r s i o n ’
read (5 ,∗ ) IMFparam2

else i f ( IMFprof . eq . 3 ) then
IMFprof = 1
IMFparam1 = 1 . d300
WRITE(6 ,1000) ’ input powerlaw s l ope ’
read (5 ,∗ ) IMFparam2

else
print ∗ , ’ i n v a l i d IMF s e l e c t i o n ’
goto 7

end i f
8 WRITE(6 ,1000) ’ input l oga r i thmic maximum i n i t i a l t r a c e r mass ’

read (5 ,∗ ) Mmax
WRITE(6 ,1000) ’ input l oga r i thmic minimum i n i t i a l t r a c e r mass ’
read (5 ,∗ ) Mmin
i f (Mmax. le .Mmin) then

print ∗ , ’maximum mass must be g r ea t e r than minimum mass ’
goto 8

end i f

11 WRITE(6 ,1000) ’ s e l e c t c i r c u l a r i t y func t i on ’
WRITE(6 ,1000) ’ 1 : j (h) = hˆ{−2a} ( beta=a ) ’
WRITE(6 ,1000) ’ 2 : j (h) = exp(−ah ) ’
WRITE(6 ,1000) ’ 3 : j (h) = exp ( −0.5((h−a )/b )ˆ2) ’
WRITE(6 ,1000) ’ 4 : j (h) = 1−(hˆa)[1− ln (hˆa ) ] ’
WRITE(6 ,1000) ’ 5 : j (h) = 0.5[1+h∗ s i n ( ah ) ] ’
read (5 ,∗ ) j type
va l i d = . fa l se .
do i = 1 ,5

i f ( j type . eq . i ) v a l i d = . true .
end do
i f ( va l i d . eqv . . fa l se . ) then

WRITE(6 ,1000) ’ i n v a l i d cho i c e . ’
goto 11

end i f
i f ( j type . eq . 1 ) then

20 WRITE(6 ,1000) ’ ente r a (− i n f ty<a<1) ’
read (5 ,∗ ) j a

i f ( j a . ge . 1 ) goto 20
end i f
i f ( j type . eq . 2 ) then

21 WRITE(6 ,1000) ’ ente r a (a>0) ’
read (5 ,∗ ) j a
i f ( j a . le . 0 ) goto 21

end i f
i f ( j type . eq . 3 ) then

22 WRITE(6 ,1000) ’ ente r a and b (0<=a<=1,b>0) ’
read (5 ,∗ ) ja , jb
i f ( j a . l t . 0 . d0 . or . j a . gt . 1 . d0 . or . jb . le . 0 . d0 ) goto 22

end i f
i f ( j type . eq . 4 ) then

23 WRITE(6 ,1000) ’ ente r a (a>0) ’
read (5 ,∗ ) j a
i f ( j a . le . 0 . d0 ) goto 23

end i f
i f ( j type . eq . 5 ) then
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WRITE(6 ,1000) ’ ente r a (− i n f ty<a<i n f t y ) ’
read (5 ,∗ ) j a

end i f

24 WRITE(6 ,1000) ’ ente r L0 (L0>=0) ’
read (5 ,∗ ) L0
i f (L0 . l t . 0 . d0 ) goto 24

WRITE ( strnum ,∗ ) ( k+5.d0 ∗ ( 1 . d1∗∗(−1.d0−1.d0∗( dcmlpnts ) ) ) )

s t r i nd1 = index ( strnum , ’ . ’ )
strnum = strnum (1 : s t r i nd1+dcmlpnts )

s t r l e n = len ( strnum ) ! f i l e naming s t u f f
s t r i nd1 = index ( savf i l ename , ’ ’ ) ! f i n d p o s i t i o n o f f i r s t b l ank

! space in s a v f i l e name
s t r i nd2 = index ( strnum , ’ . ’ ) ! f i n d p o s i t i o n o f dec ima l p l a c e in

! W0 s t r i n g
9 s t r i nd3 = index ( strnum , ’ ’ ) ! f i n d p o s i t i o n o f f i r s t b l ank space

! in W0 s t r i n g
i f ( s t r i nd3 . eq . 1 ) then ! remove a l l l e a d i n g b l ank space s

strnum=strnum ( s t r i nd3 +1: s t r l e n )
goto 9

end i f ! l o o p s u n t i l f i r s t c h a r a c t e r o f strnum i s not a b l ank space
s t r i nd2 = index ( strnum , ’ . ’ ) ! f i n d new p o s i t i o n o f dec ima l p a l c e
s t r i nd3 = index ( strnum , ’ ’ ) ! f i n d new p o s i t i o n o f f i r s t b l ank space , now

! somewhere a t end o f s t r i n g
i f ( s t r i nd3 . eq . s t r i nd2+1) then ! i f t h e r e i s no z e r o s a f t e r t h e dec ima l

! p lace , add as many as are r e q u i r e d
do i = 1 , dcmlpnts

strnum = strnum ( 1 : ( s t r i nd2+i −1)) // ’ 0 ’
end do
s t r i nd3 = index ( strnum , ’ ’ ) ! f i n d p o s i t i o n o f f i r s t b l ank

! space aga in
end i f
! o b j f i l emae , tracername , and vo l tname d e l i b e r a t e l y have same
! i n i t i a l c h a r a c t e r l e n g t h as s a v f i l e name
sav f i l ename=sav f i l ename ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
ob j f i l ename=obj f i l ename ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
tracername=tracername ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
voltname = voltname ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
DEDname = DEDname( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’

CALL cpu time ( time1 )
print ∗ , ’ Generating model . . . ’

OPEN(4 ,FILE=savf i l ename ,STATUS=”OLD” ,IOSTAT=ios ,ERR=746)
i = 0
do n=1 ,2147483646

read (4 ,1000 ,end=747) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) l gph i ( i ) , l g r ( i ) , l gdph idr ( i ) ,

∗ l g rho ( i ) , lgd2phidr2 ( i ) , l gcv2 ( i ) ,
∗ lgM( i ) , lgvd2 ( i ) , lgEc ( i ) , lgLc ( i )

end i f
end do

747 CLOSE(4 )
r f = 1 . d1∗∗ l g r ( intnum )
do i = 1 , intnum

! l i n e a r f i r s t d e r i v a t i v e
dphidr ( i ) = ( l gph i ( i )− l g r ( i ))+ log10 ( lgdph idr ( i ) )

! l i n e a r second d e r i v a t i v e
d2phidr2 ( i ) = p0 ∗ ( 1 . d1∗∗ l g rho ( i ))−2.d0 ∗ ( 1 . d1∗∗

∗ ( l gph i ( i )−2.d0∗ l g r ( i ) ) )∗ l gdph idr ( i )
! d imen s i on l e s s sys tem mass

lgM( i ) = lgph i ( i )+ l g r ( i )+log10 ( lgdph idr ( i ) )
! c on s i d e r c i r c u l a r o r b i t s a t t h e same r a d i i as i t e r a t e d r a d i i t h roughou t sys tem

l g r c ( i ) = l g r ( i )
! s quared c i r c u l a r speed

l gcv2 ( i ) = lgph i ( i )+log10 ( lgdph idr ( i ) )
! energy o f c i r c u l a r o r b i t

lgEc ( i ) = lgph i ( i )+log10 ( 1 . d0+5.d−1∗ l gdph idr ( i ) )
! angu l a r momentum o f c i r c u l a r o r b i t

lgLc ( i ) = l g r c ( i )+5.d−1∗ l gph i ( i )+5.d−1∗log10 ( lgdph idr ( i ) )
end do
CALL s p l i n e ( lgEc , l g r c , intnum , yp1 , ypn , spd2rcdEc2 )
CALL s p l i n e ( lgLc , l g r c , intnum , yp1 , ypn , spd2rcdLc2 )
CALL s p l i n e ( lgEc , lgLc , intnum , yp1 , ypn , spd2LcdEc2 )
CALL s p l i n e ( lgphi , l g r , intnum , yp1 , ypn , spd2rdphi2 )
CALL s p l i n e ( lg r , lgphi , intnum , yp1 , ypn , spd2phidr2 )
CALL s p l i n e ( lg r , lgdphidr , intnum , yp1 , ypn , sp lgd3phidr3 )
CALL s p l i n e ( lg r , lgcv2 , intnum , yp1 , ypn , spd2vc2dr2 )
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746 i f ( i o s .ne . 0 ) then
10 i f ( modelprof . eq . 1 . or . modelprof . eq . 2 ) then

nvar = 2
kmax = 0
eps = 1 . d−8
h1 = 1 . d−10
hadv = 1 . d−10 ! t h i s i s how much the i n t e g r a t i o n v a r i a b l e i s

! pushed a long by i f t h e i n t e g r a t i o n g e t s s t u c k
x i = −5.d1
do i = 1 , intnum

ys ta r t (1 ) = 2 . d0∗ x i+log10 ( p0 /6 . d0 ) ! i n i t i a l v a l u e o f p o t e n t i a l
y s t a r t (2 ) = 2 . d0 ! i n i t a l v a l u e o f f i r s t d e i v a t i v e o f p o t e n t i a l
xf = l g r ( i )
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , po i s son

∗ , rkqs )
i f ( modelprof . eq . 2 . and . y s t a r t ( 1 ) . gt . log10 ( ph i s top ) ) then

rmin = l g r ( i −1)
rmax = l g r ( i )
nvar = 2
kmax = 0 ! = KMAXX
eps=1.d−7
h1=1.d−10
hadv=1.d−10
do z = 1 , itnum ! i t e r a t e over l a s t 2 s t ep s , t o f i n d r ad i u s o f boundary

x i = −5.d1
xf = ( rmin + (rmax−rmin )∗ ( z −1)/(1. d0∗( itnum−1)))
y s t a r t (1 ) = 2 . d0∗ x i+log10 ( p0 /6 . d0 )
y s t a r t (2 ) = 2 . d0
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad ,

∗ poisson , rkqs )
i f ( y s t a r t ( 1 ) . gt . log10 ( ph i s top ) ) then

! i f edge i s reached , r e p l a c e r f w i th p r e v i o u s r ad i u s as t i d a l boundary
r f = 1 . d1∗∗( rmin + (rmax−rmin )∗ ( z −2)/(1. d0∗( itnum−1)))
do n = 1 , intnum ! d e f i n e new r a d i i v e c t o r u s ing new r f

l g r (n)=log10 ( r i n i t )+(n−1)∗ log10 ( r f / r i n i t )/
∗ ( 1 . d0∗( intnum−1))

end do
goto 10 ! then go back and c a l c u l a t e ph i f o r

! intnum r a d i i be tween r i n i t and new r f
end i f

end do
end i f
l gdph idr ( i ) = ys t a r t (2 )
l gph i ( i ) = ys t a r t (1 )
lg rho ( i ) = lg rho fn ( y s t a r t ( 1 ) , x f )

end do
else i f ( modelprof . eq . 3 . or . modelprof . eq . 4 ) then

do i = 1 , intnum
lgph i ( i ) = ph i o f r f n ( l g r ( i ) )
lgdph idr ( i ) = dph idro f r ( l g r ( i ) )
l g rho ( i ) = lg rho fn ( l gph i ( i ) , l g r ( i ) )

end do
end i f

do i = 1 , intnum
dphidr ( i ) = lgph i ( i )− l g r ( i )+log10 ( lgdph idr ( i ) ) ! l i n e a r f i r s t d e r i v a t i v e
d2phidr2 ( i ) = p0 ∗ ( 1 . d1∗∗ l g rho ( i ))−2.d0 ∗ ( 1 . d1∗∗

∗ ( l gph i ( i )−2.d0∗ l g r ( i ) ) )∗ l gdph idr ( i ) ! l i n e a r second d e r i v a t i v e
l gd2phidr2 ( i ) = p0 ∗1 . d1 ∗∗ (2 . d0∗ l g r ( i )+ lgrho ( i )− l gph i ( i ) )
lgd2phidr2 ( i ) =( lgd2phidr2 ( i )− l gdph idr ( i )∗ ( lgdph idr ( i )+1.d0 ) )

∗ ∗ log ( 1 . d1 ) ! l o g a r i t hm i c second d e r i v a t i v e
end do

do i = 1 , intnum
! sys tem mass

lgM( i ) = lgph i ( i )+ l g r ( i )+log10 ( lgdph idr ( i ) )
! r a d i i o f sys tem c i r c u l a r o r b i t s

l g r c ( i ) = l g r ( i )
! c i r c u l a r speed

l gcv2 ( i ) = lgph i ( i )+log10 ( lgdph idr ( i ) )
! energy o f c i r c u l a r o r b i t

lgEc ( i ) = lgph i ( i )+log10 ( 1 . d0+5.d−1∗ l gdph idr ( i ) )
! angu l a r momentum o f c i r c u l a r o r b i t

lgLc ( i ) = l g r c ( i )+5.d−1∗ l gph i ( i )+5.d−1∗log10 ( lgdph idr ( i ) )
end do

CALL s p l i n e ( lgEc , l g r c , intnum , yp1 , ypn , spd2rcdEc2 )
CALL s p l i n e ( lgLc , l g r c , intnum , yp1 , ypn , spd2rcdLc2 )
CALL s p l i n e ( lgEc , lgLc , intnum , yp1 , ypn , spd2LcdEc2 )
CALL s p l i n e ( lgphi , l g r , intnum , yp1 , ypn , spd2rdphi2 )
CALL s p l i n e ( lg r , lgphi , intnum , yp1 , ypn , spd2phidr2 )
CALL s p l i n e ( lg r , lgdphidr , intnum , yp1 , ypn , sp lgd3phidr3 )
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CALL s p l i n e ( lg r , lgcv2 , intnum , yp1 , ypn , spd2vc2dr2 )

nvar = 1
kmax = 0
eps = 1 . d−7
h1 = 1 . d−10
hadv = 1 . d−10 ! t h i s i s how much the i n t e g r a t i o n v a r i a b l e i s pushed

! a l ong by i f t h e i n t e g r a t i o n g e t s s t u c k
do i = 1 , intnum ! i n t e g r a l s f o r ho s t g a l a x y i s o t r o p i c v e l o c i t y d i s p e r s i o n

x i = l g r ( i )
x f = 4 . d1 ! in l o g space , t h i s s hou l d be l a r g e enough as a s tand in f o r i n f i n i t y
i f ( modelprof . eq . 2 ) x f = log10 ( r f )
i f ( modelprof . eq . 2 . and . i . eq . intnum ) then

lgvd2 ( i ) = −1.d40
else

y s t a r t (1 ) = 0 . d0
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , jeans ,

∗ rkqs )
lgvd2 ( i ) = log10 ( log ( 1 . d1 )∗ y s t a r t (1))− l g rho ( i )

end i f
end do

OPEN(7 , f i l e=savf i l ename )
i f ( modelprof . eq . 1 . or . modelprof . eq . 2 ) then

WRITE(7 ,1006) ’#phi (0 ) =’ , 0 . d0 , ’ , r r e f =’ , r r e f
else i f ( modelprof . eq . 3 . or . modelprof . eq . 4 ) then

WRITE(7 ,1006) ’#phi ( r r e f ) =’ , 0 . d0 , ’ , r r e f =’ , r r e f
end i f
WRITE(7 ,1007) ’#column 1 : d imens i on l e s s p o t en t i a l = log [ ( Phi− ’ ,

∗ ’ Phi ( r i n i t ) )/ sigma 0 ˆ2 ] ’
WRITE(7 ,1000) ’#column 2 : d imens i on l e s s rad ius = log [ r / r 0 ] ’
WRITE(7 ,1001) ’#column 3 : d imens i on l e s s f i r s t d e r i v a t i v e o f ’ ,

∗ ’ p o t en t i a l w. r . t . r ad iu s = dlog [ dphi / simga 0 ˆ2 ]/ dlog [ r / r0 ] ’
WRITE(7 ,1001) ’#column 4 : d imens i on l e s s dens i ty =’ ,

∗ ’ l og [ rho/ rho ( 0 ) ] ’
WRITE(7 ,1001) ’#column 5 : d imens i on l e s s second de r i v a t i v e o f ’ ,

∗ ’ p o t en t i a l w. r . t . r ad iu s = d2log [ phi / simga 0 ˆ2 ]/ dlog [ r / r0 ] 2 ’
WRITE(7 ,1001) ’#column 6 : d imens i on l e s s l o c a l c i r c u l a r speed ’ ,

∗ ’ squared = log [ ( r / sigma 0 ˆ2)∗ dphi /dr ] ’
WRITE(7 ,1001) ’#column 7 : d imens i on l e s s mass i n t e r i o r to r ’ ,

∗ ’= log [GM(<r )/ ( s igma 0 ˆ2∗ r 0 ) ] ’
WRITE(7 ,1001) ’#column 8 : d imens i on l e s s squared i s o t r o p i c ’ ,

∗ ’ v e l o c i t y d i s p e r s i o n = log [ sigmaˆ2/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 9 : d imens i on l e s s energy o f c i r c u l a r ’ ,

∗ ’ o r b i t with rad ius r = log [ E c/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 10 : d imens i on l e s s angular momentum of ’ ,

∗ ’ c i r c u l a r o rb i t with rad ius r = log [ L c /( r 0 ∗ s igma 0 ) ] ’
do i =1, intnum

WRITE(7 ,1002) l gph i ( i ) , l g r ( i ) , l gdph idr ( i ) ,
∗ l g rho ( i ) , lgd2phidr2 ( i ) , l gcv2 ( i ) ,
∗ lgM( i ) , lgvd2 ( i ) , lgEc ( i ) , lgLc ( i )

end do
CLOSE(7 )

end i f

CALL cpu time ( time2 )
print ∗ , ’Model genera t i on done , data saved to ’ , sav f i l ename
print ∗ , ’Time taken =’ , time2−time1
print ∗ , ’ So lv ing i n t e g r a l equat ion . . . ’

OPEN(4 ,FILE=voltname ,STATUS=”OLD” ,IOSTAT=ios ,ERR=745)
i = 0
do n=1 ,2147483646

read (4 ,1000 ,end=748) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) Evec ( i ) , l g g rve c ( i ) , i s o d f v e c ( i ) , l g t rapg ( i )

end i f
end do

748 CLOSE(4 )
! make d e f i n i t i o n s not o t h e rw i s e made when read ing in r a t h e r than rep roduc ing r e s u l t s
Emax = ph i o f r f n ( log10 ( r f ) )
Emin = lgEc (2)
Einfimum = Evec (1)
Esupremum = Evec ( voltN )
grmin=ro f ph i f n (Einfimum)
grmax=ro f ph i f n (Esupremum)
i f ( rmintrace . l t . 1 . d1∗∗grmin ) rmintrace = 1 . d1∗∗grmin
i f ( rmaxtrace . gt . 1 . d1∗∗grmax ) rmaxtrace = 1 . d1∗∗grmax

do i = 1 , tracedatnum
t r a c e l g r ( i )=log10 ( rmintrace )+( i −1)∗ log10 ( rmaxtrace / rmintrace )/
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∗ ( 1 . d0∗( tracedatnum −1))
t r a c e l g ph i ( i ) = ph i o f r f n ( t r a c e l g r ( i ) )

end do
! i f t r a c e l g p h i ( tracedatnum ) i s g r e a t e r than Esupremum ,
! t r a c e l g p h i ( tracedatnum ) = Esupremum
t r a c e l g ph i ( tracedatnum ) = min( t r a c e l g ph i ( tracedatnum ) ,Esupremum)
! i f t r a c e l g p h i (1 ) i s sma l l e r than Einfimum , t r a c e l g p h i (1 ) = Einfimum
t r a c e l g ph i (1 ) = max( t r a c e l g ph i ( 1 ) , Einfimum)

745 i f ( i o s .ne . 0 ) then
CALL cpu time ( time1 )
Emax = ph i o f r f n ( log10 ( r f ) )
Emin = lgEc (2) ! need to have e n e r g i e s used in v o l t e r r a e qua t i on bounded

! by l gEc (1) and Emax so t h a t Lc (E) can be i n t e r p o l a t e d .
! Se t to l gEc (2) so t h a t Evec i s s t i l l bounded a f t e r
! monotonic c a l l

r s = 1 . d1∗∗ r o f ph i f n (Emin)
do i = 1 , voltN+1 ! p o t e n t i a l s are d e f i n e d as ph i o f l i n e a r l y spaced r ’ s

Evec2 ( i ) = ph i o f r f n ( log10 ( r s )+( i −1)∗ log10 ( r f / r s )/
∗ ( 1 . d0∗( voltN ) ) )

end do
! ensure t h e v e c t o r i s monotonic to w i t h i n machine accuracy
CALL monotonic ( Evec2 , voltN+1,dummy, 1 . d−13)
do i = 1 , voltN+1

Evec2 ( i ) = dummy( i )
end do
do i = 1 , voltN

hlog ( i ) = Evec2 ( i+1)−Evec2 ( i )
end do
CALL vo l t rap ( voltN+1,Evec2 , hlog , lgtrapg2 , vo l t f ,H)
do i = 1 , voltN
! b ecause o f s i n g u l a r Kernel , t r a p e z o i d a l r u l e i s unab l e to c a l c u l a t e g a t Evec (1 ) ,
! so d i s c a r d i t and s h i f t a l l a s s o c i a t e d v e c t o r s down by 1

Evec ( i ) = Evec2 ( i +1)
l g t rapg ( i ) = lg t rapg2 ( i +1)

end do
CALL chop (Evec , lgtrapg , voltN , a , b , newx , newy , chopnum)

Einfimum = a
Esupremum = b
grmin=ro f ph i f n (Einfimum)
grmax=ro f ph i f n (Esupremum)
i f ( grmax . gt . log10 ( r f ) ) grmax = log10 ( r f )

do i = 1 , voltN
write (88 ,∗ ) Evec ( i ) , r o f ph i f n ( Evec ( i ) ) , l g t rapg ( i )

end do
do i = 1 , chopnum

write (89 ,∗ ) newx( i ) , r o f ph i f n (newx( i ) ) , newy( i )
end do

CALL s p l i n e (newx , newy , chopnum , yp1 , ypn , newy2 )
do i =1, voltN

xpt=ph i o f r f n ( grmin+(i −1)∗(grmax−grmin )/( voltN −1))
s p l i n t c a l l = ’ chop ’
CALL sp l i n t ch e ck (newx , newy , newy2 , chopnum , xpt , ypt , . true . )
Evec ( i ) = xpt
l g t rapg ( i ) = ypt

end do

! ensure t h e v e c t o r i s monotonic to w i t h i n machine accuracy
CALL monotonic (Evec , voltN ,dummy, 1 . d−13)
do i = 1 , voltN

Evec ( i ) = dummy( i )
end do

print ∗ , ’ l og [ Emin]= ’ ,Emin , ’ l og [Emax]= ’ ,Emax
print ∗ , ’ Einfimum=’ ,Einfimum , ’ Esupremum=’ ,Esupremum
print ∗ , ’ l og [ grmin ]= ’ , grmin , ’ l og [ grmax]= ’ , grmax

do i = 1 , voltN
lg t rapg ( i ) = log10 ( l g t rapg ( i ) ) ! l o g [ g (E ) ]
l g g rve c ( i ) = r o f ph i f n ( Evec ( i ) ) ! r ( Phi=E)

end do
CALL s p l i n e (Evec , lgtrapg , voltN , yp1 , ypn , spdld2gdE2 )

i f ( rmintrace . l t . 1 . d1∗∗grmin ) rmintrace = 1 . d1∗∗grmin
i f ( rmaxtrace . gt . 1 . d1∗∗grmax ) rmaxtrace = 1 . d1∗∗grmax

do i = 1 , tracedatnum
t r a c e l g r ( i )=log10 ( rmintrace )+( i −1)∗ log10 ( rmaxtrace / rmintrace )/

∗ ( 1 . d0∗( tracedatnum −1))
t r a c e l g ph i ( i ) = ph i o f r f n ( t r a c e l g r ( i ) )
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end do
! account f o r p o s s i b i l i t y o f r oundo f f caus ing prob lems when t r a c e r
! p o pu l a t i o n i s spread over a l l numer i c a l l y r e s o l v e d r a d i i
t r a c e l g ph i ( tracedatnum ) = min( t r a c e l g ph i ( tracedatnum ) ,Esupremum)
t r a c e l gph i (1 ) = max( t r a c e l g ph i ( 1 ) , Einfimum)

OPEN(7 , f i l e=voltname )
WRITE(7 ,1001) ’#column 1 : d imens i on l e s s energy = ’ ,

∗ ’ l og [E/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 2 : d imens i on l e s s rad ius corresponding ’ ,

∗ ’ to p o t en t i a l o f energy E = log [ r ( phi=E)/ r 0 ] ’
WRITE(7 ,1001) ’#column 3 : d imens i on l e s s i s o t r o p i c f (E) =’ ,

∗ ’ l og [ f (E)/( r 0 ∗ s igma 0 )ˆ3 ] ’
WRITE(7 ,1001) ’#column 4 : d imens i on l e s s g (E) = ’ ,

∗ ’ l og [ g (E)/( r 0 ∗ s igma 0 )ˆ3 ] ’
do i = 1 , voltN

WRITE (7 ,1010) Evec ( i ) , l g g rve c ( i ) , l g t rapg ( i ) , l g t rapg ( i )
end do
CLOSE(7 )

end i f

CALL cpu time ( time2 )
print ∗ , ’ d i s t r i b u t i o n func t i on done , output saved ’ ,

∗ ’ to ’ , voltname
print ∗ , ’Time taken = ’ , time2−time1

print ∗ , ’ Ca l cu la t ing t r a c e r p r op e r t i e s . . . ’
CALL cpu time ( time1 )

OPEN(4 ,FILE=tracername ,STATUS=”OLD” ,IOSTAT=ios ,ERR=744)
i = 0
do n=1 ,2147483646

read (4 ,1000 ,end=749) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) t r a c e l g ph i ( i ) , t r a c e l g rho ( i ) , t r a c e l g r ( i ) ,

∗ l gvdr2 ( i ) , lgvdt2 ( i ) , beta ( i ) , Nltr ( i )
end i f

end do
749 CLOSE(4 )

744 i f ( i o s .ne . 0 ) then
! a c t u a l t r a c e r d e n s i t y p r o f i l e as c a l c u l a t e d from the d i s t r i b u t i o n f un c t i o n
eps = 1 . d−5
nvar = 1
kmax = 0 ! = KMAXX
switch = . fa l se .
nonint = . fa l se .
i l im = tracedatnum

do i = 1 , tracedatnum

nrep = 0
x i = t r a c e l g ph i ( i )
x f = Esupremum ! g r e a t e s t energy a v a i l a b l e to t r a c e r s
h1 = ( xf−x i ) / 1 . d8 ! s e t s t e p s i z e to be some f r a c t i o n

! o f t h e cu r r en t i n t e g r a t i o n range
hadv = h1
in tph ip t = t r a c e l g ph i ( i )
upplim = xf
y s t a r t (1 ) = 0 . d0
i f ( switch . eqv . . fa l se . ) then

CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , dfrho ,
∗ rkqs )

155 i f ( y s t a r t ( 1 ) . eq . 0 . d0 . or . nonint . eqv . . true . ) then ! as number d e n s i t y
! mono ton i ca l l y dec rease s , i t s hou l d on l y
! h i t 0 a t t h e l a s t rad ius , where t h e t r a c e r
! sys tem cea s e s to be d e f i n e d

t r a c e l g rho ( i ) = l og z e r o ! dont want to save NANs
l gvdt2 ( i ) = l og z e r o ! as v e l o c i t y d i s p e r s i o n s depend on the

! r e c i p o r o c a l o f d en s i t y , NANs a l s o a prob lem here
l gvdr2 ( i ) = l og z e r o
i f ( switch . eqv . . fa l se . ) then ! f i r s t t ime the numer d e n s i t y drops to z e ro

newxf = t r a c e l g r ( i −1) ! save t h e p r e v i o u s r ad i u s
newEsup = t r a c e l g ph i ( i −1) ! save t h e p r e v i o u s v a l u e o f t h e p o t e n t i a l
i l im = i−1 ! save t h e p r e v i o u s i t e r a t i o n number
print ∗ , ’ numerical roundof f r ender ing i n t e g r a l s ’ ,

∗ ’ unso lvab le . Reducing outermost rad ius to : ’ ,
∗ 1 . d1∗∗newxf

end i f
switch = . true . ! f l i p t h e sw i t ch , so t h a t no more i n t e g r a l s are a t t empted

else ! o t h e rw i s e c a l c u l a t e d e n s i t y and v e l o c i t y d i s p e r s i o n s norma l l y
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t r a c e l g rho ( i )=log10 ( 4 . d0∗PI∗ log ( 1 . d1 )∗ y s t a r t (1))−
∗ t r a c e l g r ( i )

! r a d i a l v e l o c i t y d i s p e r s i o n i n t e g r a l from d i s t r i b u t i o n f un c t i o n
y s t a r t (1)=0. d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , dfvdr2

∗ , rkqs )
i f ( y s t a r t ( 1 ) . eq . 0 . d0 ) then

nonint = . true .
goto 155

else
l gvdr2 ( i ) = log10 ( 4 . d0∗PI∗ log ( 1 . d1))+ log10 ( y s t a r t (1))−

∗ t r a c e l g rho ( i )−3.d0∗ t r a c e l g r ( i )
end i f
! t a n g e n t i a l v e l o c i t y d i s p e r s i o n i n t e g r a l from d i s t r i b u t i o n f un c t i o n
y s t a r t (1)=0. d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , dfvdt2

∗ , rkqs )
i f ( y s t a r t ( 1 ) . eq . 0 . d0 ) then

nonint = . true .
goto 155

else
l gvdt2 ( i ) = log10 ( 4 . d0∗PI∗ log ( 1 . d1))+ log10 ( y s t a r t (1))−

∗ t r a c e l g rho ( i )−3.d0∗ t r a c e l g r ( i )
end i f
beta ( i ) = 1 . d0−5.d−1∗1.d1∗∗( lgvdt2 ( i )− l gvdr2 ( i ) )

end i f
e lse

t r a c e l g rho ( i ) = l og z e r o
lgvdt2 ( i ) = l og z e r o
lgvdr2 ( i ) = l og z e r o
beta ( i ) = 1 . d3 ! s e t b e t a to someth ing unphy s i c a l

end i f
end do

i f ( switch .and . i l im .ne . tracedatnum−1) then ! i f d e n s i t y has f a l l e n to zero ,
! d e f i n e new x f

i f ( rmaxtrace . gt . 1 . d1∗∗newxf ) then ! s t i l l need rmaxtrace < ou t e r l i m i t
rmaxtrace = 1 . d1∗∗newxf
! b u i l d i n t e r p o l a t i o n t a b l e s so t h a t tracedatnum po i n t s can be saved
! i n t o t h e array between rmin t race and new rmaxtrace
CALL s p l i n e ( t r a c e l g r , t race l g rho , i l im , yp1 , ypn , spd2rhodr2 )
CALL s p l i n e ( t r a c e l g r , lgvdr2 , i l im , yp1 , ypn , spd2vdr2dr2 )
CALL s p l i n e ( t r a c e l g r , lgvdt2 , i l im , yp1 , ypn , spd2vdt2dr2 )
do i = 1 , tracedatnum ! f i n a l e l ement o f v e c t o r i s 0 or l o g z e r o

rpt = log10 ( rmintrace )+( i −1)∗ log10 ( rmaxtrace / rmintrace )
∗ / ( 1 . d0∗( tracedatnum −1)) ! d e f i n e tracedatnum new t r a c e r

! r a d i i be tween rmin t race and
! rmaxtrace

new1( i ) = rpt ! save new r a d i i t o a temporary array s i n c e o l d ones
! s t i l l in use f o r i n t e r p o l a t i o n s

s p l i n t c a l l = ’ t r a c e l g r t r a c e l g rho ’
CALL sp l i n t ch e ck ( t r a c e l g r , t race l g rho , spd2rhodr2 , i l im , rpt ,

∗ rhopt , . true . )
new2 ( i ) = rhopt ! save new d e n s i t i e s to a temporary array s i n c e o l d

! ones s t i l l in use f o r i n t e r p o l a t i o n s
t r a c e l g ph i ( i ) = ph i o f r f n ( rpt ) ! d e f i n e new p o t e n t i a l s a t new r a d i i
s p l i n t c a l l = ’ t r a c e l g r lgvdr2 ’
! i n t e r p o l a t e on r a d i a l v e l o c i t y d i s p e r s i o n as a f un c t i o n o f r ad i u s
! so t h a t t h e r e are tracedatnum po i n t s
CALL sp l i n t ch e ck ( t r a c e l g r , lgvdr2 , spd2vdr2dr2 , i l im , rpt ,

∗ vdr2pt , . true . )
new3 ( i ) = vdr2pt ! save new r a d i a l v e l o c i t y d i s p e r s i o n s to a

! temporary array s i n c e o l d ones s t i l l in use f o r
! i n t e r p o l a t i o n s

s p l i n t c a l l = ’ t r a c e l g r lgvdt2 ’
! i n t e r p o l a t e on t a n g e n t i a l v e l o c i t y d i s p e r s i o n as a f un c t i o n o f
! r a d i u s os t h a t t h e r e are tracedatnum po i n t s
CALL sp l i n t ch e ck ( t r a c e l g r , lgvdt2 , spd2vdt2dr2 , i l im , rpt ,

∗ vdt2pt , . true . )
new4 ( i ) = vdt2pt ! save new t a n g e n t i a l v e l o c i t y d i s p e r s i o n s to a

! temporary array s i n c e o l d ones s t i l l in use f o r
! i n t e r p o l a t i o n s

end do
t r a c e l g ph i ( tracedatnum ) = min( t r a c e l g ph i ( tracedatnum ) ,

∗ newEsup )
do i = 1 , tracedatnum

t r a c e l g r ( i ) = new1( i ) ! o v e rw r i t e o l d r a d i i w i t h new ones d e f i n e d
! be tween rmin t race and new rmaxtrace

t r a c e l g rho ( i ) = new2( i ) ! o v e rw r i t e o l d d e n s i t i e s w i th new ones
! on l y up to new rmaxtrace

l gvdr2 ( i ) = new3( i ) ! o v e rw r i t e o l d v e l o c i t y d i s p e r s i o n s w i th new
! ones on l y up to new rmaxtrace

l gvdt2 ( i ) = new4( i )
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! d e f i n e new an i s o t r o p y parameter b e t a u s ing new v e l o c i t y
! d i s p e r s i o n s
beta ( i ) = 1 . d0−5.d−1∗1.d1∗∗( lgvdt2 ( i )− l gvdr2 ( i ) )

end do
end i f

end i f

! b u i l d i n t e r p o l a t i o n t a b l e s f o r use in t r a c e r h o f n
CALL s p l i n e ( t r a c e l g r , t race l g rho , tracedatnum , yp1 , ypn , spd2rhodr2 )

! t r a c e r number i n t e r i o r to r ad i u s r i n t e g r a t i o n s
eps=1.d−8
nvar = 1
kmax = 0 ! = KMAXX
do i = 1 , tracedatnum

xi = rmintrace ! by d e f i n i t i o n , t h e r e are no t r a c e r o b j e c t s i n s i d e o f rmin t race
xf = 1 . d1∗∗ t r a c e l g r ( i )
h1 = ( xf−x i ) / 1 . d4
hadv = h1
y s t a r t (1)=0. d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , t r a c e i n t

∗ , rkqs )
Nltr ( i ) = y s t a r t (1 )

end do

CALL s p l i n e ( Nltr , t r a c e l g r , tracedatnum , yp1 , ypn , spd2rdnutr2 )
CALL s p l i n e ( t r a c e l g r , Nltr , tracedatnum , yp1 , ypn , spd2nutrdr2 )

OPEN(7 ,name=tracername )
WRITE(7 ,1001) ’#column 1 : d imens i on l e s s p o t en t i a l =’ ,

∗ ’ l og [ ( Phi−Phi (0 ) )/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 2 : d imens i on l e s s number dens i ty =’ ,

∗ ’ l og [ nu/nu ( 0 ) ] ’
WRITE(7 ,1000) ’#column 3 : d imens i on l e s s rad ius = log [ r / r 0 ] ’
WRITE(7 ,1001) ’#column 4 : d imens i on l e s s r a d i a l v e l o c i t y ’ ,

∗ ’ d i s p e r s i o n squared = log [ s igma r ˆ2/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 5 : d imens i on l e s s t ang en t i a l ’ ,

∗ ’ v e l o c i t y d i s p e r s i o n squared = log [ s igma t ˆ2/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 6 : t r a c e r an i so t ropy parameter = ’ ,

∗ ’ 1−0.5∗ s igma t ˆ/ s igma r ˆ2 ’
WRITE(7 ,1000) ’#column 7 : number i n t e r i o r to r = [N(<r / r 0 ) ] ’
do i =1, tracedatnum

WRITE(7 ,1003) t r a c e l g ph i ( i ) , t r a c e l g rho ( i ) , t r a c e l g r ( i ) ,
∗ l gvdr2 ( i ) , lgvdt2 ( i ) , beta ( i ) , Nltr ( i )

end do
CLOSE(7 )

end i f

CALL cpu time ( time2 )
print ∗ , ’ t r a c e r p r op e r t i e s done , data saved to ’ , tracername
print ∗ , ’Time taken =’ , time2−time1
print ∗ , ’ Ca l cu la t ing d i f f e r e n t i a l energy d i s t r i b u t i o n . . . ’
CALL cpu time ( time1 )

OPEN(4 ,FILE=DEDname,STATUS=”OLD” ,IOSTAT=ios ,ERR=743)
i = 0
do n=1 ,2147483646

read (4 ,1000 ,end=750) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) DEDEvec( i ) ,DED( i ) ,sumDED( i ) , DEDLcplusL0 ( i )

end i f
end do

750 CLOSE(4 )

Emintrace = DEDEvec(1)

743 i f ( i o s .ne . 0 ) then
! d i f f e r e n t i a l energy d i s t r i b u t i o n i n t e g r a t i o n s

eps=1.d−7
nvar = 1
kmax = 0 ! = KMAXX
Emintrace = t r a c e l g ph i (1 )
x i = rmintrace ! a l l t r a c e r o b j e c t s are g ene ra t ed between rmin t race and rmaxtrace

! w i th a minimum energy o f Emintrace , and be low t h i s DED = 0

do i = 1 ,DEDN
Ept=Emintrace+(( i −1)/(1. d0∗(DEDN−1)))∗(Esupremum−Emintrace )
DEDEvec( i ) = Ept
xf = min ( 1 . d1∗∗ r o f ph i f n (Ept ) , rmaxtrace )
h1 = ( xf−x i ) / 1 . d4
hadv = h1
y s t a r t (1 ) = 0 . d0
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CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , DEDint ,
∗ rkqs )

DED( i ) = ( ( 4 . d0∗PI )∗∗2 . d0 )∗ gofE (DEDEvec( i ) )∗
∗ LcplusL0 (DEDEvec( i ) )∗ log ( 1 . d1 )∗ ( 1 . d1∗∗DEDEvec( i ) )

DED( i ) = DED( i )∗ y s t a r t (1 )
end do

! i n t e g r a t i n g f o r t h e cumu la t i v e d i f f e r e n t i a l energy d i s t r i b u t i o n ( t o t a l
! area under curve )
CALL s p l i n e (DEDEvec ,DED,DEDN, yp1 , ypn , spd2DEDdE2)
x i = Emintrace ! on l y norma l i s e curve to area where t r a c e r s are g ene ra t ed
do i = 1 ,DEDN

DEDLcplusL0 ( i ) = LcplusL0 (DEDEvec( i ) )
x f = DEDEvec( i )
h1 = ( xf−x i ) / 1 . d4
hadv = h1
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , sumDEDint ,

∗ rkqs )
sumDED( i ) = ys t a r t (1 )

end do
CALL monotonic (sumDED,DEDN,dummy, 1 . d−15)
do i = 1 ,DEDN

sumDED( i ) = dummy( i )
end do
CALL s p l i n e (DEDEvec ,sumDED,DEDN, yp1 , ypn , spd2sumDEDdE2)

OPEN(7 , f i l e=DEDname)
WRITE(7 ,1001) ’#column 1 : d imens i on l e s s energy = ’ ,

∗ ’ l og [E/ sigma 0 ˆ2 ] ’
WRITE(7 ,1001) ’#column 2 : d imens i on l e s s d i f f e r e n t i a l energy ’ ,

∗ ’ d i s t r i b u t i o n ’
WRITE(7 ,1001) ’#column 3 : d imens i on l e s s cumulative ’ ,

∗ ’ d i f f e r e n t i a l energy d i s t r i b u t i o n ’
WRITE(7 ,1001) ’#column 4 : d imens i on l e s s c i r c u l a r angular ’ ,

∗ ’momentum, Lc (E)+L0 ’
do i = 1 ,DEDN

WRITE (7 ,1010) DEDEvec( i ) ,DED( i ) ,sumDED( i ) ,
∗ DEDLcplusL0 ( i )

end do
CLOSE(7 )

end i f

CALL cpu time ( time2 )
print ∗ , ’ d i f f . en . d i s t . done , data saved to ’ ,DEDname
print ∗ , ’Time taken =’ , time2−time1

! b u i l d i n g i n i t i a l mass f un c t i o n t a b l e s and i n t e r p o l a t i o n ar ray s
hadv = 1 . d−10
h1 = 1 . d−10
nvar = 1
eps = 1 . d−5
do i = 1 ,IMFnum

ys ta r t (1 ) = 0 . d0
x i = Mmin
xf = Mmin+(Mmax−Mmin)∗ ( i −1)/(1. d0∗(IMFnum−1))
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , IMFint ,

∗ rkqs )
sumIMF( i ) = ys t a r t (1 ) ! cumu la t i v e mass d i s t r i b u t i o n
IMFmass( i ) = xf ! mass a r ray s
IMFvec ( i ) = IMF( xf ) ! number per un i t mass a t mass c oo r d i na t e

end do
do i = 1 ,IMFnum

! norma l i s e f u n c t i o n to have un i t area
IMFvec ( i ) = IMFvec ( i )/sumIMF(IMFnum)
! norma l i s e cumu la t i v e d i s t r i b u t i o n to be between 0 and 1
sumIMF( i ) = sumIMF( i )/sumIMF(IMFnum)

end do
CALL monotonic (sumIMF, IMFnum,dummy, 1 . d−15)
do i = 1 ,IMFnum

sumIMF( i ) = dummy( i )
end do
CALL s p l i n e (sumIMF, IMFmass , IMFnum, yp1 , ypn , spd2MdsumM2)

OPEN (8 , f i l e=’IMF. out ’ )
do i = 1 ,IMFnum

WRITE (8 ,1004) IMFmass( i ) , IMFvec ( i ) , sumIMF( i )
end do
CLOSE(8 )

print ∗ , ’ Beginning ob j e c t genera t i on . . . ’
OPEN(4 ,FILE=obj f i l ename ,STATUS=”OLD” ,IOSTAT=ios ,ERR=742)
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CLOSE(4 )
! Monte Car lo sampl ing
742 i f ( i o s .ne . 0 ) then

CALL cpu time ( time1 )
do n = 1 ,KMAXX

xp(n) = 0 . d0
yp (1 , n) = 0 . d0

end do
do i = 1 , objnum

16 Npt = ran2 ( r a n i n i t )∗ Nltr ( tracedatnum ) ! sample a r ad i u s
s p l i n t c a l l = ’ Nltr t r a c e l g r ’
CALL sp l i n t ch e ck ( Nltr , t r a c e l g r , spd2rdnutr2 , tracedatnum ,Npt , x ,

∗ . fa l se . )
25 x i = ph i o f r f n (x ) ! c a l c u l a t e p o t e n t i a l a t t h a t r ad i u s

xf = Esupremum
kmax = KMAXX
nvar = 1
hadv = 1 . d−10
h1 = 1 . d−10
eps = 1 . d−7
in tph ip t = x i
dxsav = 0 . d0
y s t a r t (1 ) = 0 . d0
! i n t e g r a t e energy p r o b a b i l i t y d i s t r i b u t i o n g i v en a p o t e n t i a l
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , Eint , rkqs )
do n = 1 , kount

sumg(n) = yp (1 , n)/yp (1 , kount )
gintE (n) = xp (n)
yp (1 , n) = 0 . d0
xp (n) = 0 . d0

end do

CALL s p l i n e ( sumg , gintE , kount , yp1 , ypn , spd2Edsumg2 )

in tgpt = ran2 ( r a n i n i t )∗ sumg( kount ) ! sample an energy
s p l i n t c a l l = ’ sumg gintE sampling ’
CALL sp l i n t ch e ck (sumg , gintE , spd2Edsumg2 , kount , intgpt , intEpt

∗ , . true . )
x = 1 . d1∗∗x ! x i s now l i n e a r r ad i u s

MChmax = hmax( intEpt , i n tph ip t )
objphi ( i ) = 1 . d1∗∗ i n tph ip t
objrad ( i ) = x
objhmax ( i ) = MChmax
objE ( i ) = 1 . d1∗∗ intEpt

15 i f ( j type . eq . 1 ) then
x i = 0 . d0
xf = 1 . d0−1.d−10
kmax = KMAXX
nvar = 1
hadv = 1 . d−10
h1 = 1 . d−10
eps = 1 . d−7
dxsav = 0 . d0
y s t a r t (1 ) = 0 . d0
! i n t e g r a t e h p r o b a b i l i t y d i s t r i b u t i o n
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , hint ,

∗ rkqs )
do n = 1 , kount

hohmax(n) = xp (n)
sumh(n) = yp (1 , n)/yp (1 , kount )
xp (n) = 0 . d0
yp (1 , n) = 0 . d0

end do
CALL s p l i n e (sumh , hohmax , kount , yp1 , ypn , spd2hdsumh2 )
inthpt = ran2 ( r a n i n i t )∗sumh( kount ) ! sample an h
s p l i n t c a l l = ’sumh hohmax hint ’
CALL sp l i n t ch e ck (sumh , hohmax , spd2hdsumh2 , kount , inthpt ,MCh

∗ , . true . )
MCh = MChmax∗sqrt (MCh)

else ! o t h e rw i s e use r e j e c t i o n method
xf = ran2 ( r a n i n i t )
MCh = MChmax∗ sin ( x f ∗PI /2 . d0 )
x i = ran2 ( r a n i n i t )
i f ( x i ∗MChmax. gt .MCh∗ j (MCh) ) goto 15

end i f
objh ( i ) = MCh
i f (MCh. gt . 1 . d0 ) then

! sampled r and E may combine to g i v e c i r c u l a r o r b i t . Numerical r oundo f f
! in hmaxca l c u l a t i on may cause i t t o be s l i g h t l y g r e a t e r than 1 . when
! t h i s c on s p i r e s w i th a random number very c l o s e to 1 , h may a l s o be
! g r e a t e r than 1 . In t h i s ve ry u n l i k e l y event , resample f o r h
print ∗ , ’h>1 in sampling ’ , ’ h=’ ,MCh, ’ hmax=’ ,MChmax
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print ∗ , ’ resampl ing . . . ’
goto 15

end i f
MCL = MCh∗LcplusL0 ( intEpt )
obj rco fE ( i ) = rEf ind ( 1 . d1∗∗ intEpt )
ob j r co fL ( i ) = rLf ind (MCL)
rmaxpt = ro f ph i f n ( intEpt )
lgrE = log10 ( ob j rco fE ( i ) )

i f ( ran2 ( r a n i n i t ) . l t . 5 . d−1) then
plusminus = −1.d0

else
plusminus = 1 . d0

end i f
objvr ( i ) = plusminus ∗( LcplusL0 ( intEpt )/x)∗

∗ ( (MChmax∗∗2. d0)−(MCh∗∗2. d0 ) )∗∗5 . d−1
gamma = ran2 ( r a n i n i t )∗2 . d0∗PI
objvphi ( i ) = ( LcplusL0 ( intEpt )∗MCh/x)∗ sin (gamma)
objvtheta ( i ) = ( LcplusL0 ( intEpt )∗MCh/x)∗ cos (gamma)

! i f t h e p e r i c e n t r e l i e s i n s i d e o f r i n i t , r t i b i s r e t u rn s w i th −1.d40 .
! When t h i s happens , resample
objrp ( i ) = r t b i s ( hfunc , lgrE , log10 ( r i n i t ) , b i s a c c )
i f ( objrp ( i ) . eq .−1. d40 ) goto 16
obj ra ( i ) = r t b i s ( hfunc , lgrE , rmaxpt , b i s a c c )
i f ( ob j ra ( i ) . eq .−1. d40 ) goto 16

o b j e l l i p ( i ) = ( 1 . d0−1.d1∗∗( objrp ( i )−obj ra ( i ) ) ) /
∗ ( 1 . d0+1.d1∗∗( objrp ( i )−obj ra ( i ) ) )

Mpt = ran2 ( r a n i n i t )∗sumIMF(IMFnum)
s p l i n t c a l l = ’sumIMF trace mass ’

CALL sp l i n t ch e ck (sumIMF, IMFmass , spd2MdsumM2 , IMFnum,Mpt , objM
∗ , . fa l se . )

objmass ( i ) = objM

end do

CALL cpu time ( time2 )
print ∗ , ’ Object genera t i on done , output saved to ’ , ob j f i l ename
print ∗ , ’Time taken = ’ , time2−time1
OPEN(7 , f i l e=obj f i l ename )
WRITE(7 ,1000) ’#column1 : d imens i on l e s s g a l a c t o c e n t r i c d i s t ance ’
WRITE(7 ,1001) ’#column2 : d imens i on l e s s g a l a c t o c e n t r i c ’ ,

∗ ’ p o t en t i a l ’
WRITE(7 ,1000) ’#column3 : d imens i on l e s s ob j e c t mass ’
WRITE(7 ,1000) ’#column4 : d imens i on l e s s o r b i t a l energy ’
WRITE(7 ,1000) ’#column5 : d imens i on l e s s o r b i t a l c i r c u l a r i t y ’
WRITE(7 ,1000) ’#column6 : d imens i on l e s s r a d i a l v e l o c i t y ’
WRITE(7 ,1000) ’#column7 : d imens i on l e s s azimuthal v e l o c i t y ’
WRITE(7 ,1000) ’#column8 : d imens i on l e s s po la r v e l o c i t y ’
WRITE(7 ,1000) ’#column9 : d imens i on l e s s o r b i t a l p e r i c e n t r e ’
WRITE(7 ,1001) ’#column10 : d imens i on l e s s rad ius o f c i r c u l a r ’ ,

∗ ’ o r b i t with equal angular momentum ’
WRITE(7 ,1001) ’#column11 : d imens i on l e s s rad ius o f c i r c u l a r ’ ,

∗ ’ o r b i t with equal energy ’
WRITE(7 ,1000) ’#column12 : d imens i on l e s s o r b i t a l apocentre ’
WRITE(7 ,1000) ’#column13 : o r b i t a l e l l i p t i c i t y ’
do i = 1 , objnum

WRITE(7 ,1005) objrad ( i ) , objphi ( i ) , objmass ( i ) , objE ( i ) , objh ( i ) ,
∗ objvr ( i ) , objvphi ( i ) , ob jvtheta ( i ) , objrp ( i ) ,
∗ ob j r co fL ( i ) , ob j rco fE ( i ) , ob j ra ( i ) , o b j e l l i p ( i )

end do
CLOSE(7 )

end i f
STOP

105 FORMAT(2 (E50 . 2 5 ) )
100 FORMAT(5 (E30 . 2 0 ) )
101 FORMAT(3 (E30 . 2 0 ) )
102 FORMAT(E30 . 2 0 )
112 FORMAT(4 (E30 . 1 5 ) )
999 FORMAT(5 (E30 .20 ,2X) ,2X, I10 )
1000 FORMAT(A)
1001 FORMAT(2A)
1002 FORMAT(10(E30 .21 ,2X) )
1003 FORMAT(7 (E30 .21 ,2X) )
1004 FORMAT(3 (E30 .20 ,2X) )
1005 FORMAT(13(E30 .21 ,2X) )
1006 FORMAT(2 (A, E8 . 3 ) )
1007 FORMAT(2A, E10 . 3 ,A, E10 . 3 )
1008 FORMAT(3A)
1010 FORMAT(4 (E30 .21 ,2X) )
1011 FORMAT(9 (E20 .10 ,2X) )
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1020 FORMAT(2 (E15 . 6 , 2X) )
1099 FORMAT(2A,1X,1p , E20 . 10 ,A)

END

! chops away numeric no i s e in g (E)
SUBROUTINE chop (x , y ,N, xmin , xmax , newx , newy , numtemp)
INTEGER N,Nmin , i , imax , imin , ngood , numtemp
REAL∗8 x (N) , y (N) , xtemp(N) , ytemp(N) , newx(N) , newy(N)
REAL∗8 xmin , xmax , ychop
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
ychop=0.d0
Nmin=N/10
ngood=0
imin=1
imax=N

do i =1,N
i f ( y ( i ) . ge . ychop ) then

ngood=ngood+1
i f ( ngood . gt . Nmin) then

imin=i−ngood+1
goto 10

end i f
else

ngood=0
end i f

end do
10 xmin=x( imin )

do i=imin ,N
i f ( y ( i ) . ge . ychop ) then

imax=i
else

goto 20
end i f

end do
20 xmax=x( imax )

numtemp=0
do i=imin , imax

numtemp=numtemp+1
xtemp(numtemp)=x( i )
ytemp(numtemp)=y( i )

end do

do i =1,numtemp
newx( i ) = xtemp( i )
newy( i ) = ytemp( i )

end do

RETURN
end

! l o g [ Phi ] as a f un c t i o n o f l o g [ r ]
FUNCTION ph i o f r f n ( l g r p t )
IMPLICIT NONE
INTEGER intnum , IMFprof , modelprof
PARAMETER ( intnum=1000)
REAL∗8 l g r ( intnum ) , l gph i ( intnum ) , lg rpt , ph io f r fn , l gdph idr ( intnum )
REAL∗8 spd2rdphi2 ( intnum ) , spd2phidr2 ( intnum ) , k , p0 , u , us , r r e f
REAL∗8 sp lgd3phidr3 ( intnum ) , phistop , r f
LOGICAL edgereach
CHARACTER∗30 s p l i n t c a l l
COMMON /maxpath/ phistop
COMMON / re fpath / r r e f , r f
COMMON / rhopath/ k , p0 , edgereach
COMMON /phiandrpath / lgr , lgphi , spd2rdphi2 , spd2phidr2 , lgdphidr ,
∗ sp lgd3phidr3
COMMON /modelpath/ modelprof , IMFprof
COMMON / sp l i n tpa th / s p l i n t c a l l
i f ( modelprof . eq . 4 ) then ! a n a l y t i c e qua t i on f o r powerlaw

i f ( k . eq . 2 . d0 ) then
ph i o f r f n = log10 ( p0∗( l g r p t ∗ log ( 1 . d1)−log ( r r e f ) ) )

else
ph i o f r f n = log10 ( p0 ∗ ( 1 . d1 ∗∗ ( ( 2 . d0−k)∗ l g r p t )− r r e f ∗∗ (2 . d0−k ) )

∗ / ( ( 3 . d0−k )∗ ( 2 . d0−k ) ) )
end i f

else i f ( modelprof . eq . 3 ) then ! a n a l y t i c e qua t i on f o r dehnen
u = ( 1 . d1∗∗ l g r p t ) / ( ( 1 . d1∗∗ l g r p t )+1.d0 )
us = r r e f / ( 1 . d0+r r e f )
i f ( k . eq . 2 . d0 ) then

ph i o f r f n = log10 ( 4 . d0∗p0∗ log (u/us ) )
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else
ph i o f r f n = log10 ( ( p0 ∗2 . d0 ∗∗ (4 . d0−k ) / ( 3 . d0−k ) )∗ ( us ∗∗ (2 . d0−k ))∗

∗ ( ( ( ( u/us )∗∗ ( 2 . d0−k))−1.d0 ) / ( 2 . d0−k ) ) )
end i f

else i f ( modelprof . eq . 2 ) then ! on l y i n t e r p o l a t i o n f o r k ing models
s p l i n t c a l l = ’ l g r ph i o f r f n ’
CALL sp l i n t ch e ck ( lgr , lgphi , spd2phidr2 , intnum , lgrpt , ph io f r fn ,

∗ . fa l se . )
else i f ( modelprof . eq . 1 ) then

! powerlaw asymp to t i c s o l u t i o n s or i n t e r p o l a t i o n f o r p o l y t r o p e s ,
! or a n a l y t i c plummer sphere e qua t i on s
i f ( k . eq . 2 . 5 d0 ) then

ph i o f r f n = log10 ( 6 . d0 ∗ ( 1 . d0−((1. d0+(1.d1 ∗∗ (2 . d0∗ l g r p t ) )
∗ ∗( p0 /1 .8 d1 )))∗∗( −5.d−1)))

else
i f ( l g r p t . gt . l g r ( intnum )) then

i f ( k .ne . 2 . d0 ) then
ph i o f r f n = log10 ( 2 . d0∗(k−1.d0))+ log10 ( ( 1 . d0−((p0 / ( 2 . d0∗

∗ (k−1.d0 )∗ ( 3 . d0−k ) ) )∗∗ ( 5 . d−1∗(2.d0−k ) ) )∗
∗ ( 1 . d1 ∗∗ ( ( 2 . d0−k)∗ l g r p t ) ) ) / ( k−2.d0 ) )

else
ph i o f r f n = log10 ( log ( p0 /2 . d0 )+2.d0∗ log ( 1 . d1 )∗ l g r p t )

end i f
e lse

s p l i n t c a l l = ’ l g r ph i o f r f n ’
CALL sp l i n t ch e ck ( lgr , lgphi , spd2phidr2 , intnum , lgrpt , ph io f r fn ,

∗ . fa l se . )
end i f

end i f
end i f
return
END

! l o g [ r ] as a f un c t i o n o f l o g [ Phi ]
FUNCTION r o f ph i f n ( l gph ip t )
IMPLICIT NONE
INTEGER intnum , IMFprof , modelprof
PARAMETER ( intnum=1000)
REAL∗8 l g r ( intnum ) , l gph i ( intnum ) , lgphipt , sp lgd3phidr3 ( intnum )
REAL∗8 spd2rdphi2 ( intnum ) , spd2phidr2 ( intnum ) , lgdph idr ( intnum )
REAL∗8 k , p0 , us , u , r r e f , r o fph i fn , r f
LOGICAL edgereach
CHARACTER∗30 s p l i n t c a l l
COMMON / re fpath / r r e f , r f
COMMON /phiandrpath / lgr , lgphi , spd2rdphi2 , spd2phidr2 , lgdphidr ,
∗ sp lgd3phidr3
COMMON /modelpath/ modelprof , IMFprof
COMMON / rhopath/ k , p0 , edgereach
COMMON / sp l i n tpa th / s p l i n t c a l l
i f ( modelprof . eq . 4 ) then ! a n a l y t i c e q ua t i on s f o r powerlaw model

i f ( k . eq . 2 . d0 ) then
r o f ph i f n=log10 ( r r e f )+(1. d1∗∗ l gph ip t )/( p0∗ log ( 1 . d1 ) )

else
r o f ph i f n=log10 ( ( ( 1 . d1∗∗ l gph ip t )∗ ( 3 . d0−k )∗ ( 2 . d0−k )/p0 )

∗ +r r e f ∗∗ (2 . d0−k ) ) / ( 2 . d0−k )
end i f

else i f ( modelprof . eq . 3 ) then ! a n a l y t i c e q ua t i on s f o r dehnen model
us = r r e f /( r r e f +1.d0 )
i f ( k . eq . 2 . d0 ) then

u=us∗exp ( ( 1 . d1∗∗ l gph ip t ) / ( 4 . d0∗p0 ) )
else

u=(((3 . d0−k )∗ ( 2 . d0−k )∗ ( 1 . d1∗∗ l gph ip t ) / ( ( 2 . d0 ∗∗ (4 . d0
∗ −k ))∗ p0))+us ∗∗ (2 . d0−k ) )∗∗ ( 1 . d0 / ( 2 . d0−k ) )

end i f
i f (u . gt . 1 . d0 ) then

i f (u−1.d0 . gt . 1 . d−4) pause ’ dehnen r o f ph i f n sha f t ed ’
r o f ph i f n = log10 ( r f )

else
r o f ph i f n = log10 (u)−log10 ( 1 . d0−u)

end i f
else

s p l i n t c a l l = ’ l gph i r o f ph i f n ’
CALL sp l i n t ch e ck ( lgphi , l g r , spd2rdphi2 , intnum , lgphipt ,

∗ ro fph i fn , . fa l se . )
end i f
return

10 FORMAT ( ( E50 . 2 5 ) )
END

! r e t u rn s d l o gPh i / d l o g r
FUNCTION dph idro f r ( l g r p t )
IMPLICIT NONE
INTEGER intnum , modelprof , IMFprof
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REAL∗8 PI
PARAMETER ( intnum=1000 ,PI=3.141592654)
REAL∗8 dphidro fr , l g r ( intnum ) , l gph i ( intnum ) , lgdphidr ( intnum )
REAL∗8 spd2phidr2 ( intnum ) , sp lgd3phidr3 ( intnum ) ,A,B,C
REAL∗8 spd2rdphi2 ( intnum ) , k , r , p0 , lg rpt , ph io f r fn , e r r o r
LOGICAL edgereach
CHARACTER∗30 s p l i n t c a l l

COMMON /phiandrpath / lgr , lgphi , spd2rdphi2 , spd2phidr2 , lgdphidr ,
∗ sp lgd3phidr3
COMMON /modelpath/ modelprof , IMFprof
COMMON / rhopath/ k , p0 , edgereach
COMMON / sp l i n tpa th / s p l i n t c a l l

r = 1 . d1∗∗ l g r p t
i f ( modelprof . eq . 1 ) then ! p o l y t r o p e s

i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r a sympto te s
dph idro f r = (p0∗( r ∗∗2. d0 ) /3 . d0 −

∗ k∗( p0 ∗∗2. d0 )∗ ( r ∗∗4. d0 ) / ( 6 . d1∗(k−1.d0 ) ) +
∗ k ∗ ( 3 . d0∗k+1.d1 )∗ ( p0 ∗∗3. d0 )∗ ( r ∗∗6. d0 ) / ( ( 1008 . d1 )
∗ ∗ ( ( k−1.d0 )∗∗2 . d0 ) ) −
∗ k ∗ ( 9 . d0∗(k∗∗2. d0 )+8.6d1∗k+2.8d2 )∗ ( p0 ∗∗4. d0 )∗
∗ ( r ∗∗8. d0 )/(326592 . d1 ∗ ( ( k−1.d0 )∗∗3 . d0 ) ) ) /
∗ ( 1 . d1∗∗ ph i o f r f n ( l g r p t ) )

else i f ( l g r p t . gt . l g r ( intnum )) then ! l a r g e r asympto te s
dph idro f r = ( ( p0 / ( 3 . d0−k ) )∗∗ ( 5 . d−1∗(2.d0−k ) ) )∗

∗ ( ( 2 . d0∗(k−1.d0 ) )∗∗ ( 5 . d−1∗k ) )∗ ( r ∗∗ (2 . d0−k ) )/
∗ ( 1 . d1∗∗ ph i o f r f n ( l g r ) )

else ! numer ica l r e s u l t s f o r inbe tween b i t s
s p l i n t c a l l = ’ dph idro f r l g r lgdph idr ’
CALL sp l i n t ch e ck ( lgr , lgdphidr , splgd3phidr3 , intnum , lgrpt ,

∗ dphidro fr , . fa l se . )
end i f

else i f ( modelprof . eq . 2 ) then ! k i n g models
i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r e xpans i ons

A = −(exp( k )∗ e r r o r (k∗∗5.d−1)−2.d0 ∗ ( ( k/PI )∗∗5 . d−1))/
∗ (exp( k )∗ e r r o r (k∗∗5.d−1)−2.d0 ∗ ( ( k/PI )∗∗5 . d−1)∗
∗ ( 1 . d0+2.d0∗k /3 . d0 ) )

B = (exp( k )∗ e r r o r (k∗∗5.d−1))/((exp( k )∗ e r r o r (k∗∗5.d−1)
∗ −2.d0 ∗ ( ( k/PI )∗∗5 . d−1)∗(1. d0+2.d0∗k /3 . d0 ) )∗ 2 . d0 )

C = −(exp( k )∗ e r r o r (k∗∗5.d−1)+((k∗PI )∗∗(−5.d−1))−
∗ ( ( 4 . d0∗(k∗∗3. d0 )∗PI )∗∗(−5.d−1)))/((exp( k )∗ e r r o r (k∗∗5.d−1)
∗ −2.d0 ∗ ( ( k/PI )∗∗5 . d−1)∗(1. d0+2.d0∗k /3 . d0 ) )∗2 . 4 d1 )

! d p h i d r o f r = p0 ∗( r ∗∗2. d0 ) / ( 3 . d0 ∗ ( 1 . d1∗∗ p h i o f r f n ( l g r p t ) ) )
dph idro f r = (p0∗( r ∗∗2. d0 ) /3 . d0 + ( r ∗∗4. d0 )∗ ( p0 ∗∗2. d0 )∗A/3 . d1+

∗ ( (A∗∗2. d0 )+1.d1∗B/3 . d0 )∗ ( p0 ∗∗3. d0 )∗ ( r ∗∗6. d0 )/8 . 4 d2
∗ +((A∗∗3. d0 )+5.2d1∗A∗B/3 . d0+7.d1∗C/3 . d0 )∗ ( p0 ∗∗4. d0 )
∗ ∗( r ∗∗8. d0 )/4536 . d1 ) / ( 1 . d1∗∗ ph i o f r f n ( l g r p t ) )

else ! numer ica l r e s u l t s f o r e v e r y t h i n g between sma l l r and r t
s p l i n t c a l l = ’ dph idro f r l g r lgdph idr ’
CALL sp l i n t ch e ck ( lgr , lgdphidr , splgd3phidr3 , intnum , lgrpt ,

∗ dphidro fr , . fa l se . )
end i f

else i f ( modelprof . eq . 3 ) then ! dehnen models
dph idro f r = ( 2 . d0 ∗∗ (4 . d0−k ))∗ p0∗( r ∗∗ (2 . d0−k ) )∗ ( ( r+1.d0 )∗∗

∗ (k−3.d0 ) ) / ( ( 3 . d0−k )∗ ( 1 . d1∗∗ ph i o f r f n ( l g r p t ) ) )
else i f ( modelprof . eq . 4 ) then ! powerlaw models

dph idro f r = p0∗( r ∗∗ (2 . d0−k ) ) / ( ( 3 . d0−k )∗ ( 1 . d1∗∗ ph i o f r f n ( l g r p t ) ) )
end i f
return
END

! r e t u rn s r ad i u s o f a c i r c u l a r o r b i t w i t h e qua l energy
FUNCTION rEf ind (E)
IMPLICIT NONE
INTEGER intnum
PARAMETER ( intnum=1000)
REAL∗8 spd2LcdEc2 ( intnum ) , lgLc ( intnum ) , lgEc ( intnum )
REAL∗8 l g r c ( intnum ) , spd2rcdEc2 ( intnum ) , spd2rcdLc2 ( intnum )
REAL∗8 E, rEfind , Ept
CHARACTER∗30 s p l i n t c a l l
COMMON /Ecpath/ lg rc , spd2rcdEc2 , spd2rcdLc2
COMMON /Lcpath/ spd2LcdEc2 , lgLc , lgEc
COMMON / sp l i n tpa th / s p l i n t c a l l
Ept = log10 (E)
s p l i n t c a l l = ’ lgEc rEf ind ’
CALL sp l i n t ch e ck ( lgEc , l g r c , spd2rcdEc2 , intnum , Ept , rEfind , . fa l se . )
rEf ind = 1 . d1∗∗ rEf ind
return
END
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! r e t u rn s r ad i u s o f a c i r c u l a r o r b i t w i t h e qua l angu l a r mometnum
FUNCTION rL f ind (L)
IMPLICIT NONE
INTEGER intnum
PARAMETER ( intnum=1000)
REAL∗8 spd2LcdEc2 ( intnum ) , lgLc ( intnum ) , lgEc ( intnum )
REAL∗8 l g r c ( intnum ) , spd2rcdEc2 ( intnum ) , spd2rcdLc2 ( intnum )
REAL∗8 L , rLf ind , Lpt
CHARACTER∗30 s p l i n t c a l l
COMMON /Ecpath/ lg rc , spd2rcdEc2 , spd2rcdLc2
COMMON /Lcpath/ spd2LcdEc2 , lgLc , lgEc
COMMON / sp l i n tpa th / s p l i n t c a l l
Lpt = log10 (L)
s p l i n t c a l l = ’ lgLc rLf ind ’
CALL sp l i n t ch e ck ( lgLc , l g r c , spd2rcdLc2 , intnum , Lpt , rLf ind , . fa l se . )
rL f ind = 1 . d1∗∗ rL f ind
return
END

! r e t u rn s g (E)
FUNCTION gofE ( lgEpt )
IMPLICIT NONE
INTEGER voltN , i
PARAMETER ( voltN=1000)
REAL∗8 l g t rapg ( voltN ) , Evec ( voltN ) , spdld2gdE2 ( voltN ) , lgEpt , gofE
CHARACTER∗30 s p l i n t c a l l
COMMON /vdpath/ lgtrapg , spdld2gdE2 , Evec
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ Evec gofE ’
CALL sp l i n t ch e ck (Evec , lgtrapg , spdld2gdE2 , voltN , lgEpt , gofE , . true . )
gofE = 1 . d1∗∗gofE
return
END

! r e t u rn s i s o t r o p i c d i s t r i b u t i o n f un c t i o n
FUNCTION i s o d f ( lgEpt )
IMPLICIT NONE
INTEGER KMAXX,NMAX
PARAMETER (KMAXX=10000 ,NMAX=50)
INTEGER modelprof , IMFprof , kmax , kount , hount , nvar , nok , nbad
REAL∗8 i s od f ,E, k , p0 , dxsav , r r e f , PI , e r ror , gammaln , xi , xf , eps , h1
REAL∗8 hadv , y s t a r t (NMAX) , xp (KMAXX) , yp (NMAX,KMAXX) , lgEpt , r f
LOGICAL edgereach
PARAMETER (PI=3.141592654d0 )
COMMON /path/ kmax , kount , dxsav , xp , yp , hount
COMMON /modelpath/ modelprof , IMFprof
COMMON / rhopath/ k , p0 , edgereach
COMMON / re fpath / r r e f , r f
COMMON / i s od fpa th / x i
EXTERNAL rkqs , Gne2der , Geq2der
E = 1 . d1∗∗ lgEpt
i f ( modelprof . eq . 1 ) then

i f ( k . eq . 2 . d0 ) then
i s o d f = −1.5d0∗ log10 ( 2 . d0∗PI)−E/ log ( 1 . d1 )

else
i s o d f = (k−6.d0 ) / ( 4 . d0−2.d0∗k )
i s o d f = i s o d f ∗ log10 ( 1 . d0+E∗ ( 2 . d0−k ) / ( 2 . d0∗k−2.d0 ) )
i f ( k . l t . 2 . d0 ) then

i s o d f = i s o d f+log10 ( 2 . d0∗k)−2.d0∗ log10 ( 2 . d0−k )
i s o d f = i s o d f +1.5d0∗( log10 ( ( 2 . d0−k ) / ( 4 . d0∗PI∗(k−1.d0 ) ) ) )
i s o d f = i s o d f+(gammaln(k / ( 2 . d0−k)+1.5d0)−gammaln(k / ( 2 . d0−k)+2.d0 ) )

∗ / log ( 1 . d1 )
else i f ( k . gt . 2 . d0 ) then

i s o d f = i s o d f+log10 ( 2 . d0∗k)−2.d0∗ log10 (k−2.d0 )
i s o d f = i s o d f +1.5d0∗( log10 ( ( k−2.d0 ) / ( 4 . d0∗PI∗(k−1.d0 ) ) ) )
i s o d f = i s o d f+(gammaln(k/(k−2.d0)−1.d0)−gammaln(k/(k−2.d0)−5.d−1))

∗ / log ( 1 . d1 )
end i f

end i f
else i f ( modelprof . eq . 2 ) then

i s o d f = log10 (exp(k−E)−1.d0)−1.5d0∗ log10 ( 2 . d0∗PI )
i s o d f = i sod f−log10 (exp( k )∗ e r r o r (k∗∗5.d−1)−

∗ ( ( 4 . d0∗k/PI )∗∗5 . d−1)∗(1. d0+2.d0∗k /3 . d0 ) )
else i f ( modelprof . eq . 3 ) then

nvar = 1
kmax = 0
eps=1.d−7
h1=1.d−10
hadv=1.d−10
i f ( k .ne . 2 . d0 ) then

x i = (E)∗ ( 3 . d0−k )∗ ( 2 . d0−k )/( p0 ∗ ( 2 . d0 ∗∗ (4 . d0−k ) ) )
x i = ( x i +(( r r e f /( r r e f +1.d0 ) )∗∗ ( 2 . d0−k ) ) )∗∗ ( 1 . d0 / ( 2 . d0−k ) )
xf = 1 . d0
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y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , x i +5.d−16, xf , eps , h1 , hadv , nok , nbad ,

∗ Gne2der , rkqs )
i s o d f = 1 .5 d0∗ log10 ( ( 3 . d0−k )/p0 )+(5.d−1∗k−2.5d0 )∗ log10 ( 2 . d0 )
i s o d f = i sod f −2.d0∗ log10 (PI)+log10 ( y s t a r t ( 1 ) )

else i f ( k . eq . 2 . d0 ) then
x i = ( r r e f /( r r e f +1.d0 ))∗exp ( (E) / ( 4 . d0∗p0 ) )
xf = 1 . d0
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , x i +1.d−15, xf , eps , h1 , hadv , nok , nbad ,

∗ Geq2der , rkqs )
i s o d f = log10 ( y s t a r t (1)) −5.d−1∗log10 ( 2 . d0 )
i s o d f = i sod f −2.d0∗ log10 (PI )−1.5d0∗ log10 ( p0 )

end i f
else i f ( modelprof . eq . 4 ) then

i f ( k . l t . 2 . d0 ) then
i s o d f = log10 ( k)−5.d−1∗log10 ( 2 . d0 ∗ ( 2 . d0−k ) )
i s o d f = i s o d f +1.5d0∗ log10 ( ( 3 . d0−k )/( p0∗PI ) )
i s o d f = i s o d f+(gammaln(k / ( 2 . d0−k)+1.5d0)−gammaln(k / ( 2 . d0−k)+2.d0 ) )

∗ / log ( 1 . d1 )
i s o d f=i s o d f +((k−6.d0 ) / ( 4 . d0−2.d0∗k ))∗

∗ log10 ( ( 3 . d0−k )∗ ( 2 . d0−k )∗ (E)/p0+r r e f ∗∗ (2 . d0−k ) )
else i f ( k . gt . 2 . d0 ) then

i s o d f = log10 ( k)−5.d−1∗log10 ( 2 . d0∗(k−2.d0 ) )
i s o d f = i s o d f +1.5d0∗ log10 ( ( 3 . d0−k )/( p0∗PI ) )
i s o d f = i s o d f+(gammaln(k/(k−2.d0)−1.d0)−gammaln(k/(k−2.d0)−5.d−1))

∗ / log ( 1 . d1 )
i s o d f=i s o d f +((k−6.d0 ) / ( 4 . d0−2.d0∗k ))∗

∗ log10 ( r r e f ∗∗ (2 . d0−k)−(3.d0−k )∗ ( k−2.d0 )∗ (E)/p0 )
else i f ( k . eq . 2 . d0 ) then

i s o d f = −2.d0∗ log10 ( r r e f )−1.5d0∗ log10 ( p0∗PI )
i s o d f = i sod f −2.d0∗(E)/( p0∗ log ( 1 . d1 ) )

end i f
end i f
return
END

! sys tem o f ODEs f o r Dehnen models
SUBROUTINE Gne2der (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , k , p0 , x i
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
COMMON / i s od fpa th / x i
dydx (1) = ( 4 . d0−k )∗ ( x∗∗4. d0 )+2.d0∗(k−3.d0 )∗ ( x∗∗3. d0 )
dydx (1) = (dydx (1)+2. d0 ∗ ( 1 . d0−k)∗x+k )/( x∗∗3. d0 )
dydx (1) = dydx ( 1 ) / ( ( ( ( x ∗∗ (2 . d0−k))−( x i ∗∗ (2 . d0−k ) ) ) / ( 2 . d0−k ) )

∗ ∗∗5.d−1)
return
END

! sys tem o f ODEs f o r J a f f e model
SUBROUTINE Geq2der (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , k , p0 , x i
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
COMMON / i s od fpa th / x i
dydx (1) = ( ( x∗∗4. d0)−(x∗∗3. d0)−x+1.d0 )
dydx (1) = dydx ( 1 ) / ( ( x∗∗3. d0 )∗ ( ( log ( x/ x i ) )∗∗5 . d−1))
return
END

! sys tem o f ODEs f o r number i n t e r i o r to r ad i u s
SUBROUTINE t r a c e i n t (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , PI , t r a c e rho fn
PARAMETER (PI=3.141592654d0 )
i f ( x . eq . 0 . d0 ) then

dydx (1) = 0 . d0
else

dydx (1) = 4 . d0∗PI∗(x∗∗2. d0 )∗ t r a c e rho fn (x )
end i f
return
END

! sys tem o f ODEs f o r t r a c e r number d e n s i t y
SUBROUTINE dfrho (x , y , dydx )
IMPLICIT NONE
INTEGER nrep
REAL∗8 x , y (∗ ) , dydx (∗ ) , intph ipt , gofE ,H, upplim
LOGICAL nonint
COMMON / gintpath / in tph ip t
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COMMON /nonintpath / nrep , nonint , upplim
dydx (1) = gofE (x)∗H(x , i n tph ip t )
i f ( dydx ( 1 ) . eq . 0 . d0 ) then ! f o r some models , ph i t u rn s very f l a t

! in t h e ou t e r r e g i on s . w i th numer ica l
! roundo f f , t h i s can make x and
! i n t p h i p t appear t h e same , making H=0.
! o d e i n t w i l l then h a p p i l y chug a long
! w i t hou t e ve r g e t t i n g anywhere , so
! check f o r t h i s happening and abo r t
! i n t e g r a t i o n when i t i s d e t e c t e d .

nrep = nrep + 1
i f ( nrep . ge . 1000) then

nonint = . true . ! s e t d e t e c t i o n f l a g
x = upplim ! make od e i n t t h i n k upper l i m i t has been reached

end i f
end i f
return
END

! t r a c e r number d e n s i t y a f t e r accoun t ing f o r Emax c u t o f f
FUNCTION t r a c e rho fn ( r )
IMPLICIT NONE
INTEGER tracedatnum
PARAMETER ( tracedatnum=1000)
REAL∗8 rhopt , t r a c e l g rho ( tracedatnum ) , r , rpt
REAL∗8 t r a c e l g r ( tracedatnum ) , spd2rhodr2 ( tracedatnum ) , t r a c e rho fn
CHARACTER∗30 s p l i n t c a l l
COMMON / tracepath / t race l g rho , t r a c e l g r , spd2rhodr2
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ t r a c e l g r t r a c e rho fn ’
rpt = log10 ( r )
CALL sp l i n t ch e ck ( t r a c e l g r , t r ace l g rho , spd2rhodr2 , tracedatnum ,

∗ rpt , rhopt , . fa l se . )
t r a c e rho fn = 1 . d1∗∗ rhopt
return
END

! r e t u rn s t r a c e r number d e n s i t y b e f o r e accoun t ing f o r Emax c u t o f f
FUNCTION numdenstrace ( r )
IMPLICIT NONE
COMMON / t race rpath / t r a c e i np l , t raceoupl , t racet ran , t r a c ep r o f
INTEGER t r a c ep r o f
REAL∗8 numdenstrace , lg rho fn , r , ph io f r fn , t r a c e i np l , t r aceoup l
REAL∗8 tracet ran , tracenu
i f ( t r a c ep r o f . eq . 1 ) then ! s e l f c o n s i s t e n t

numdenstrace = 1 . d1∗∗ l g rho fn ( ph i o f r f n ( log10 ( r ) ) , log10 ( r ) )
end i f
i f ( t r a c ep r o f . eq . 2 ) then ! d oub l e power law

numdenstrace = tracenu ( t r a c e i np l , t raceoupl , t racet ran , r )
end i f
return
END

! d oub l e power law
FUNCTION tracenu (gamma, beta , alpha , r )
IMPLICIT NONE
REAL∗8 tracenu , gamma, beta , alpha , r
tracenu = ( r∗∗(−gamma))∗

∗ ( ( 1 . d0+r ∗∗ (1 . d0/ alpha ) )∗∗ ( (gamma−beta )∗ alpha ) )
return
END

! sys tem o f ODEs f o r Jeans e qua t i on in l o g a r i t hm i c form
SUBROUTINE j eans (x , y , dydx )
IMPLICIT NONE
INTEGER intnum
PARAMETER ( intnum=1000)
REAL∗8 x , y (∗ ) , dydx (∗ ) , lg rho fn , ph io f r fn , dph idro f r
dydx (1)=(1 . d1∗∗( ph i o f r f n (x)+ lg rho fn ( ph i o f r f n (x ) , x ) ) )∗ dph idro f r ( x )
return
END

! sys tem o f ODEs f o r Po i s sons e qua t i on in l o g a r i t hm i c form
SUBROUTINE po i s son (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , lg rho fn , p0 , k
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
dydx (1) = y (2)
dydx (2) = p0 ∗ ( 1 . d1 ∗∗ (2 . d0∗x−y(1)+ lg rho fn (y (1 ) , x ) ) )
dydx (2) = (dydx(2)−y ( 2 )∗ ( 1 . d0+y (2 ) ) )∗ log ( 1 . d1 )
return
END
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! c a l c u l a t e s d imen s i on l e s s d e n s i t y as a f un c t i o n o f d imen s i on l e s s p o t e n t i a l
Function l g rho fn ( lgphi , l g r )
IMPLICIT NONE
INTEGER IMFprof , modelprof
REAL∗8 lgrho fn , polyrho , kingrho , dehnenrho , powerrho , lgphi , l g r
COMMON /modelpath/ modelprof , IMFprof
i f ( modelprof . eq . 1 ) l g rho fn = polyrho ( lgphi , l g r )
i f ( modelprof . eq . 2 ) l g rho fn = kingrho ( lgphi , l g r )
i f ( modelprof . eq . 3 ) l g rho fn = dehnenrho ( lgphi , l g r )
i f ( modelprof . eq . 4 ) l g rho fn = powerrho ( lgphi , l g r )
return
END

! a n a l y t i c e qua t i on f o r dehnen model d e n s i t y as a f un c t i o n o f r ad i u s
Function dehnenrho ( lgphi , l g r )
IMPLICIT NONE
REAL∗8 dehnenrho , lgphi , k , p0 , l g r
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
dehnenrho = ( 4 . d0−k )∗ ( log10 ( 2 . d0)−log10 ( ( 1 . d1∗∗ l g r )+1.d0))−k∗ l g r
return
END

! a n a l y t i c e qua t i on f o r power law d e n s i t y as a f un c t i o n o f r a d i u s
Function powerrho ( lgphi , l g r )
IMPLICIT NONE
REAL∗8 powerrho , lgphi , k , p0 , l g r
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
powerrho = −k∗ l g r
return
END

! a n a l y t i c e qua t i on f o r p o l y t r o p e d e n s i t y as a f un c t i o n o f p o t e n t i a l
Function polyrho ( lgphi , l g r )
Implicit None
REAL∗8 polyrho , lgphi , k , p0 , l g r
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
i f ( k . eq . 2 . d0 ) then

polyrho = −(1.d1∗∗ l gph i )/ log ( 1 . d1 )
else

i f ( k . eq . 2 . 5 d0 ) then
polyrho = −2.5d0∗ log10 ( ( p0 /1 .8 d1 )∗ ( 1 . d1 ∗∗ (2 . d0∗ l g r ))+1. d0 )

else
polyrho = (k/(k−2.d0 ))∗ log10 ( 1 . d0−(1.d1∗∗ l gph i )∗ ( k−2.d0 )/

∗ ( 2 . d0∗(k−1.d0 ) ) )
end i f

end i f
return
END

! a n a l y t i c ( i s h ) e qua t i on f o r k ing model d e n s i t y as a f un c t i o n o f p o t e n t i a l
FUNCTION kingrho ( lgphi , l g r )
IMPLICIT NONE
REAL∗8 kingrho , lgphi , k , PI ,W, er ror , a , b , p0 , l g r
PARAMETER (PI=3.141592654d0 )
LOGICAL edgereach
COMMON / rhopath/ k , p0 , edgereach
W = k−(1.d1∗∗ l gph i )
i f (W. gt . 0 . d0 ) then

a = log10 (exp(W)∗ e r r o r ( sqrt (W))−sqrt ( 4 . d0∗W/PI )∗ ( 1 . d0+2.d0∗W/
∗ 3 . d0 ) )

b = log10 (exp( k )∗ e r r o r ( sqrt ( k))−sqrt ( 4 . d0∗k/PI )∗ ( 1 . d0+2.d0∗k/
∗ 3 . d0 ) )

kingrho = a−b
else

kingrho = log10 ( 0 . d0 )
end i f
return
END

! sys tem o f ODEs f o r i n t e g r a t i n g mass f u n c t i o n
SUBROUTINE IMFint (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , IMF,M
M = 1. d1∗∗x
dydx (1) = IMF(x )
return
END

! r e t u rn s dN/dlogM at l o g [M] f o r s e l e c t e d mass f u n c t i o n
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FUNCTION IMF( lgM)
IMPLICIT NONE
INTEGER IMFprof , modelprof
REAL∗8 IMF, lgM , Schechter , Gaussian
COMMON /modelpath/ modelprof , IMFprof
i f ( IMFprof . eq . 1 ) IMF = Schechter ( lgM)
i f ( IMFprof . eq . 2 ) IMF = Gaussian ( lgM)
i f ( IMFprof . eq . 3 ) IMF = Schechter ( lgM)
return
END

! S che ch t e r mass f u n c t i o n
FUNCTION Schechter ( lgM)
IMPLICIT NONE
REAL∗8 Schechter ,M, IMFparam1 , IMFparam2 , lgM
COMMON /IMFpath/ IMFparam1 , IMFparam2
M = 1 . d1∗∗lgM
Schechter = ( 1 . d1 ∗∗ ( ( 1 . d0−IMFparam2)∗ lgM))∗exp(−M/IMFparam1)
return
END

! l ognorma l mass f u n c t i o n
FUNCTION Gaussian ( lgM)
IMPLICIT NONE
REAL∗8 Gaussian , lgM , IMFparam1 , IMFparam2
COMMON /IMFpath/ IMFparam1 , IMFparam2
Gaussian = exp(−5.d−1∗((( lgM−IMFparam1)/IMFparam2 )∗∗2 . d0 ) )
return
END

! p r o v i d e s t h e f u n c t i o n to be b i s e c t e d when s o l v i n g f o r rp and ra
FUNCTION hfunc ( rturn )
IMPLICIT NONE
REAL∗8 hfunc , rturn , ph io f r fn ,E,L , lgrE , rmaxpt , LcplusL0
COMMON /hfuncpath/ lgrE , rmaxpt
COMMON /ELpath/ E,L
i f ( r turn . eq . lgrE ) then ! by d e f i n i t i o n , (E−ph i ( rE ) ) rE2 = vc2 ( rE ) rE2 = Lc (E)2

hfunc = ( LcplusL0 (E)∗∗2 . d0)−(L∗∗2. d0 )
else i f ( r turn . eq . rmaxpt ) then ! by d e f i n i t i o n , (E−ph i ( rmaxpt ) ) = 0

hfunc = −L∗∗2. d0
else

hfunc = 2 . d0 ∗ ( 1 . d1∗∗E−1.d1∗∗ ph i o f r f n ( rturn ))∗
∗ ( 1 . d1 ∗∗ (2 . d0∗ rturn ))−(L∗∗2. d0 )
end i f
return
END

! s o l v e s t h e Vo l t e r r a e qua t i on and r e t u rn s g (E)
SUBROUTINE vo l t rap (vecN , abscvec , h , g , f ,K)
IMPLICIT NONE
INTEGER vecN , i , n
REAL∗8 h(vecN−1) ,g ( vecN ) , f ,K, absc ( vecN ) ,sumA, sumB, abscvec ( vecN )
do n = 1 , vecN

absc (n) = 1 . d1∗∗( abscvec (n ) ) ! d e f i n e l o g a r i t hm i c a l l y spaced x p o i n t s
end do
g ( vecN ) = 2 . d0∗ f ( absc ( vecN−1))/

∗ (h(vecN−1)∗K( abscvec ( vecN ) , abscvec ( vecN−1)))
do n = vecN−1,2,−1

sumA =2.d0∗ f ( absc (n−1))
sumA =sumA−g ( vecN)∗K( abscvec ( vecN ) , abscvec (n−1))∗h(vecN−1)
sumB =0.d0
do i =n+1,vecN−1

sumB = sumB + g ( i )∗K( abscvec ( i ) , abscvec (n−1))∗(h( i )+h( i −1))
end do
g (n) = sumA − sumB
g (n) = g (n ) / ( ( h(n)+h(n−1))∗K( abscvec (n ) , abscvec (n−1)))

end do
return
END

! r e t u rn s rho∗ r /4 p i
FUNCTION v o l t f ( phipt )
IMPLICIT NONE
REAL∗8 numdenstrace , phipt , vo l t f , r o fph i fn , PI , rpt , phi
PARAMETER (PI=3.141592654d0 )
phi = phipt
rpt = 1 . d1∗∗ r o f ph i f n ( log10 ( phi ) )
v o l t f = numdenstrace ( rpt )∗ rpt / ( 4 . d0∗PI∗ log ( 1 . d1 ) )
return
END

! r e t u rn s Kerne l o f d i s t r i b u t i o n f un c t i o n in t e g r and
FUNCTION H( lgEpt , l gph ip t )
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IMPLICIT NONE
INTEGER KMAXX,NMAX
PARAMETER (KMAXX=10000 ,NMAX=50)
INTEGER nvar , kmax2 , nok , nbad , kount2 , hount2 , j type
REAL∗8 H, hmax , lgEpt , lgphipt , eps , h1 , hadv , y s t a r t (NMAX) , xi , x f
REAL∗8 xp2 (KMAXX) , yp2 (NMAX,KMAXX) , dxsav2 , ja , jb , LcplusL0
REAL∗8 beta
COMMON /Hpath/ xf
COMMON /path2/ kmax2 , kount2 , dxsav2 , xp2 , yp2 , hount2
COMMON / jpath / ja , jb , j type
EXTERNAL j i n t , rkqs2
i f ( lgEpt . eq . l gph ip t ) then

H = 0 . d0
else

eps=1.d−5
h1=1.d−10
hadv=1.d−10
nvar = 1
kmax2 = 0 ! = 100
y s t a r t (1)=0. d0
x i = 0 . d0
xf = hmax( lgEpt , l gph ip t )
i f ( j type . eq . 1 ) then

y s t a r t (1 ) = 5 . d−1∗( x f ∗∗ (1 . d0−2.d0∗ j a ) )∗ beta ( 5 . d−1 ,1.d0−j a )
else

CALL ode int2 ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , j i n t ,
∗ rkqs2 )

end i f
H = (1 . d1∗∗ lgEpt )∗ y s t a r t (1)∗ LcplusL0 ( lgEpt )

end i f
return
END

! r e t u rn s hmax
FUNCTION hmax( lgEpt , l gph ip t )
IMPLICIT NONE
REAL∗8 lgEpt , lgphipt , hmax , LcplusL0 , r o f ph i f n
hmax =5.d−1∗log10 ( 1 . d0−1.d1∗∗( lgphipt−lgEpt ))+ ro f ph i f n ( l gph ip t )

∗ +5.d−1∗log10 ( 2 . d0 )+5.d−1∗lgEpt−log10 ( LcplusL0 ( lgEpt ) )
hmax = 1 . d1∗∗hmax
end i f
return
END

! r e t u rn s angu la r momentum o f a c i r c u l a r o r b i t w i t h energy E
FUNCTION LcofE ( lgEpt )
IMPLICIT NONE
INTEGER intnum
PARAMETER ( intnum=1000)
REAL∗8 LcofE , lgEc ( intnum ) , spd2LcdEc2 ( intnum ) , lgLc ( intnum )
REAL∗8 lgEpt , l g r ( intnum ) , l gph i ( intnum ) , spd2rdphi2 ( intnum )
REAL∗8 spd2phidr2 ( intnum ) , lgdph idr ( intnum ) , sp lgd3phidr3 ( intnum )
CHARACTER∗30 s p l i n t c a l l
COMMON /Lcpath/ spd2LcdEc2 , lgLc , lgEc
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /phiandrpath / lgr , lgphi , spd2rdphi2 , spd2phidr2 , lgdphidr ,
∗ sp lgd3phidr3

s p l i n t c a l l = ’ lgEc LcofE ’

CALL sp l i n t ch e ck ( lgEc , lgLc , spd2LcdEc2 , intnum , lgEpt , LcofE ,
∗ . fa l se . )
LcofE = 1 . d1∗∗LcofE
return
END

! r e t u rn s angu la r momentum o f a c i r c u l a r o r b i t w i t h energy E
! p l u s an i s o t r o p y parameter L0
FUNCTION LcplusL0 ( lgEpt )
IMPLICIT NONE
REAL∗8 LcplusL0 , L0 , lgEpt , LcofE
COMMON /L0path/ L0
LcplusL0 = LcofE ( lgEpt)+L0
return
END

! sys tem o f ODEs f o r i n t e g r a t i n g over j
SUBROUTINE j i n t (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , j , h , x f
COMMON /Hpath/ xf
h = sqrt ( x f ∗∗2. d0−x∗∗2. d0 )
dydx(1)= j (h)
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return
END

FUNCTION j f i r s t (h , j a )
IMPLICIT NONE
REAL∗8 j f i r s t , h , j a
j f i r s t = h∗∗(−2.d0∗ j a )
return
END

FUNCTION j s econd (h , j a )
IMPLICIT NONE
REAL∗8 jsecond , h , j a
j second = exp(− j a ∗h)
return
END

FUNCTION j t h i r d (h , ja , jb )
IMPLICIT NONE
REAL∗8 j th i rd , h , ja , jb
j t h i r d = exp(−5.d−1∗(((h−j a )/ jb )∗∗2 . d0 ) )
return
END

FUNCTION j f o u r t h (h , j a )
IMPLICIT NONE
REAL∗8 j f our th , h , j a
j f o u r t h = 1 . d0−(h∗∗ j a )∗ ( 1 . d0−j a ∗ log (h+1.d−10))
return
END

FUNCTION j f i f t h (h , j a )
IMPLICIT NONE
REAL∗8 j f i f t h , h , j a
j f i f t h = 5 . d−1∗(1.d0+h∗ sin ( j a ∗h ) )
return
END

! c i r c u l a r i t y f u n c t i o n s
FUNCTION j (h)
IMPLICIT NONE
INTEGER j type
REAL∗8 j , h , ja , jb , j f i r s t , j second , j th i rd , j f our th , j f i f t h
COMMON / jpath / ja , jb , j type
i f ( j type . eq . 1 ) j=j f i r s t (h , j a )
i f ( j type . eq . 2 ) j=jsecond (h , j a )
i f ( j type . eq . 3 ) j=j t h i r d (h , ja , jb )
i f ( j type . eq . 4 ) j=j f ou r t h (h , j a )
i f ( j type . eq . 5 ) j=j f i f t h (h , j a )
i f ( j .ne . j . or . 1 . d0/ j . eq . 0 . d0 ) then

print ∗ , ’ h=’ ,h , ’ j= ’ , j
pause ’ j NAN or INF ’

end i f
i f ( j . gt . 1 . d0 . or . j . l t . 0 . d0 ) then

print ∗ , ’ h=’ ,h , ’ j= ’ , j
pause ’ j must be bounded by 0<=j<=1 ’

end i f
return
END

! sys tem o f ODEs f o r t h e d i f f e r e n t i a l energy d i s t r i b u t i o n
SUBROUTINE DEDint (x , y , dydx )
IMPLICIT NONE
INTEGER KMAXX,NMAX,DEDN
PARAMETER (KMAXX=10000 ,NMAX=50,DEDN=1000)
INTEGER kmax2 , nvar , nok , nbad , kount2 , hount2 , j type
REAL∗8 dydx (∗ ) , y (∗ ) , x , eps , h1 , hadv , y s t a r t (NMAX) , ph i o f r f n
REAL∗8 xi , xf , hmax , dxsav2 , xp2 (KMAXX) , yp2 (NMAX,KMAXX) , Ept
REAL∗8 spd2DEDdE2(DEDN) ,DED(DEDN) ,DEDEvec(DEDN)
REAL∗8 ja , jb
COMMON /Hpath/ xf
COMMON /DEDpath/ Ept , spd2DEDdE2 ,DED,DEDEvec
COMMON /path2/ kmax2 , kount2 , dxsav2 , xp2 , yp2 , hount2
COMMON / jpath / ja , jb , j type
EXTERNAL j i n t , rkqs2
kmax2 = 0 ! = 100
eps=1.d−7
h1=1.d−10
hadv=1.d−10
nvar = 1
y s t a r t (1)=0. d0
x i = 0 . d0
xf = hmax(Ept , ph i o f r f n ( log10 ( x ) ) )
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i f ( j type . eq . 1 ) then
y s t a r t (1 ) = 5 . d−1∗( x f ∗∗ (1 . d0−2.d0∗ j a ) )∗ beta ( 5 . d−1 ,1.d0−j a )

else
CALL ode int2 ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , j i n t , rkqs2 )

end i f
dydx(1)=x∗ y s t a r t (1 )
return
END

! sys tem o f ODEs f o r i n t e g r a t i n g over t h e d i f f e r e n t i a l energy d i s t r i b u t i o n
SUBROUTINE sumDEDint(x , y , dydx )
IMPLICIT NONE
INTEGER DEDN
PARAMETER (DEDN=1000)
REAL∗8 dydx (∗ ) , y (∗ ) , x , Zpt
REAL∗8 spd2DEDdE2(DEDN) ,DED(DEDN) , Ept ,DEDEvec(DEDN)
CHARACTER∗30 s p l i n t c a l l
COMMON /DEDpath/ Ept , spd2DEDdE2 ,DED,DEDEvec
s p l i n t c a l l = ’DEDEvec sumDEDint ’
CALL sp l i n t ch e ck (DEDEvec ,DED, spd2DEDdE2 ,DEDN, x , Zpt , . fa l se . )
dydx (1) = Zpt
return
END

! sys tem o f ODEs f o r r a d i a l v e l o c i t y d i s p e r s i o n s
SUBROUTINE dfvdr2 (x , y , dydx )
IMPLICIT NONE
INTEGER KMAXX,NMAX
PARAMETER (KMAXX=10000 ,NMAX=50)
INTEGER kmax2 , nvar , nok , nbad , kount2 , hount2 , j type
REAL∗8 dydx (∗ ) , y (∗ ) , x , lgphipt , hmaxval , eps , h1 , hadv , y s t a r t (NMAX)
REAL∗8 xi , xf , LcplusL0 , hmax , gofE , dxsav2 , xp2 (KMAXX) , yp2 (NMAX,KMAXX)
REAL∗8 ja , jb ,E, beta
COMMON /vdHpath/ hmaxval
COMMON / gintpath / l gph ip t
COMMON /path2/ kmax2 , kount2 , dxsav2 , xp2 , yp2 , hount2
COMMON / jpath / ja , jb , j type
EXTERNAL Hr , rkqs2
E = 1 . d1∗∗x
hmaxval = hmax(x , l gph ip t )
kmax2 = 0 ! = 100
eps=1.d−5
h1=1.d−10
hadv=1.d−10
nvar = 1
y s t a r t (1)=0. d0
x i = 0 . d0
xf = hmaxval
i f ( j type . eq . 1 ) then

y s t a r t (1 ) = 5 . d−1∗( x f ∗∗ (3 . d0−2.d0∗ j a ) )∗ beta ( 1 . 5 d0 , 1 . d0−j a )
else

CALL ode int2 ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , Hr , rkqs2 )
end i f
dydx(1)=E∗gofE (x )∗ ( LcplusL0 (x )∗∗3 . d0 )∗ y s t a r t (1 )
return
END

! sys tem o f ODEs f o r inner i n t e g r a l o f r a d i a l v e l o c i t y d i s p e r s i o n s
SUBROUTINE Hr(x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , j , hmaxval
COMMON /vdHpath/ hmaxval
dydx (1) = x ∗ ( ( ( hmaxval ∗∗2. d0)−(x∗∗2. d0 ) )∗∗5 . d−1)∗ j ( x )
return
END

! sys tem o f ODEs f o r t a n g e n t i a l v e l o c i t y d i s p e r s i o n s
SUBROUTINE dfvdt2 (x , y , dydx )
IMPLICIT NONE
INTEGER KMAXX,NMAX
PARAMETER (KMAXX=10000 ,NMAX=50)
INTEGER kmax2 , nvar , nok , nbad , kount2 , hount2 , j type
REAL∗8 dydx (∗ ) , y (∗ ) , x , lgphipt , hmaxval , eps , h1 , hadv , y s t a r t (NMAX)
REAL∗8 xi , xf , LcplusL0 , hmax , gofE , dxsav2 , xp2 (KMAXX) , yp2 (NMAX,KMAXX)
REAL∗8 ja , jb ,E, beta
COMMON /vdHpath/ hmaxval
COMMON / g intpath / l gph ip t
COMMON /path2/ kmax2 , kount2 , dxsav2 , xp2 , yp2 , hount2
COMMON / jpath / ja , jb , j type
EXTERNAL Ht , rkqs2
E = 1 . d1∗∗x
hmaxval = hmax(x , l gph ip t )
kmax2 = 0 ! = 100
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eps=1.d−5
h1=1.d−10
hadv=1.d−10
nvar = 1
y s t a r t (1)=0. d0
x i = 0 . d0
xf = hmaxval
i f ( j type . eq . 1 ) then

y s t a r t (1 ) = 5 . d−1∗( x f ∗∗ (3 . d0−2.d0∗ j a ) )∗ beta ( 5 . d−1 ,2.d0−j a )
else

CALL ode int2 ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , Ht , rkqs2 )
end i f
dydx(1)=E∗gofE (x )∗ ( LcplusL0 (x )∗∗3 . d0 )∗ y s t a r t (1 )
return
END

! sys tem o f ODEs f o r inner i n t e g r a l o f t a n g e n t i a l v e l o c i t y d i s p e r s i o n s
SUBROUTINE Ht(x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , h , j , hmaxval
COMMON /vdHpath/ hmaxval
h = ( ( hmaxval ∗∗2. d0)−(x∗∗2. d0 ) )∗∗5 . d−1
dydx (1) = (h∗∗2. d0 )∗ j (h)
return
END

! sys tem o f ODEs f o r E sampl ing
SUBROUTINE Eint (x , y , dydx )
IMPLICIT NONE
INTEGER KMAXX,NMAX
PARAMETER (KMAXX=10000 ,NMAX=50)
INTEGER kmax2 , nvar , kount2 , hount2 , nok , nbad , j type
REAL∗8 x , y (∗ ) , dydx (∗ ) , gofE , LcplusL0 , dxsav2 , xp2 (KMAXX)
REAL∗8 y s t a r t (NMAX) , yp2 (NMAX,KMAXX) , hmaxval , intph ipt ,E, eps , h1
REAL∗8 hadv , xi , xf , hmax , ja , jb , u , beta
COMMON / jpath / ja , jb , j type
COMMON / gintpath / in tph ip t
COMMON /path2/ kmax2 , kount2 , dxsav2 , xp2 , yp2 , hount2
COMMON /Hpath/ hmaxval
EXTERNAL j i n t , rkqs2
E = 1 . d1∗∗x
hmaxval = hmax(x , i n tph ip t )
kmax2 = 0 ! = 100
eps=1.d−5
h1=1.d−10
hadv=1.d−10
nvar = 1
y s t a r t (1)=0. d0
x i = 0 . d0
xf = hmaxval
i f ( j type . eq . 1 ) then

y s t a r t (1 ) = 5 . d−1∗( x f ∗∗ (1 . d0−2.d0∗ j a ) )∗ beta ( 5 . d−1 ,1.d0−j a )
else

CALL ode int2 ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , j i n t , rkqs2 )
end i f
dydx (1) = gofE (x)∗ LcplusL0 (x)∗E∗ y s t a r t (1 )
return
END

! sys tem o f ODEs h sampl ing
SUBROUTINE hint (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , ja , jb
INTEGER j type
COMMON / jpath / ja , jb , j type
dydx (1) = (x∗∗(− j a ) ) ∗ ( ( 1 . d0−x)∗∗(−5.d−1))
return
END

! s l i g h t l y mod i f i e s v a l u e s to f o r c e mono ton i c i t y
SUBROUTINE monotonic ( x1 , n , x2 , h)
IMPLICIT NONE
INTEGER n , i
REAL∗8 x1 (n ) , x2 (n ) , h
x2(1)=x1 (1)
do i = 1 ,n−1

x2 ( i+1)=x1 ( i +1)
i f ( ( 1 . d0+h)∗x2 ( i ) . gt . x2 ( i +1)) then

x2 ( i +1) = ( 1 . d0+h)∗x2 ( i )
end i f

end do
return
END



277

SUBROUTINE sp l i n t ch e ck ( xa , ya , y2a , n , x , y , l i n i n t r p ) ! c heck s f o r e x t r a p o l a t i o n
! b e f o r e a s p l i n t c a l l

IMPLICIT NONE
INTEGER n , s p l i n t e r r n
REAL∗8 xa (n ) , ya (n ) , y2a (n ) , x , y , s p l i n t d e l t a
LOGICAL l i n i n t r p
PARAMETER ( s p l i n t d e l t a =1.d−8)
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON / errpath / s p l i n t e r r n
CALL s p l i n t ( xa , ya , y2a , n , x , y , l i n i n t r p )
i f ( x . l t . xa ( 1 ) ) then

write (31 ,11) ’ below ’ ,x , xa (1 ) , xa(1)−x , s p l i n t c a l l
s p l i n t e r r n = sp l i n t e r r n + 1

else i f ( x . gt . xa (n ) ) then
write (31 ,11) ’ above ’ ,x , xa (n ) , xa (n)−x , s p l i n t c a l l

! count e x t r a p o l a t i o n e r r o r s and p r i n t i n f o rma t i on to a f i l e f o r l a t e r i n s p e c t i o n
s p l i n t e r r n = sp l i n t e r r n + 1

end i f
return

11 FORMAT(A,2X, 3 ( E30 .15 , 2X) ,A)
END

! t h e f o l l o w i n g s u b r ou t i n e f o r i n t e r p o l a t i n g over an array
! i s s l i g h t l y mod i f i ed from t h a t in Press e t a l . 1992
SUBROUTINE s p l i n t ( xa , ya , y2a , n , x , y , l i n i n t r p )
IMPLICIT NONE
INTEGER n
REAL∗8 x , y , xa (n ) , y2a (n ) , ya (n)
INTEGER k , khi , k lo
REAL∗8 a , b , h
CHARACTER∗30 s p l i n t c a l l
LOGICAL l i n i n t r p , l i n i n
COMMON / l i npa th / l i n i n
COMMON / sp l i n tpa th / s p l i n t c a l l
k lo=1
khi=n

1 i f ( khi−klo . gt . 1 ) then
k=(khi+klo )/2
i f ( xa (k ) . gt . x ) then

khi=k
else

klo=k
endif

goto 1
endif
h=xa ( khi)−xa ( k lo )
i f (h . eq . 0 . d0 ) then

pause ’ bad xa input in s p l i n t ’
end i f
a=(xa ( khi)−x )/h
b=(x−xa ( k lo ) )/ h
y=a∗ya ( k lo )+b∗ya ( khi )

! i f l i n i n t r p = t ru e or l i n i n = true , i n t e r p o l a t e l i n e a r l y ,
! o t h e rw i s e do cu b i c i n t e r p o l a t i o n

i f ( ( l i n i n t r p . eqv . . fa l se . ) . and . ( l i n i n . eqv . . fa l se . ) ) then
y=y+((a∗∗3−a )∗ y2a ( k lo )+(b∗∗3−b)∗ y2a ( khi ) )∗ ( h∗∗2)/6 . d0

end i f
return
END

! a mod i f i e d v e r s i o n o f s o r t from Press e t a l . 1992
! s o r t s mu l t i p l e a r ray s s imu l t a n e ou s l y
SUBROUTINE mul t i s o r t (numvec , n , sort1 , sort2 , sort3 , sort4 , sort5 , s o r t6
∗ , sort7 , s o r t8 )
implicit none
INTEGER numvec , n , iwksp (n)
REAL∗8 so r t1 (n ) , s o r t2 (n ) , s o r t3 (n ) , s o r t4 (n ) , s o r t5 (n)
REAL∗8 so r t6 (n ) , s o r t7 (n ) , s o r t8 (n ) ,WKSP(n)
INTEGER j , numdone
numdone=0
ca l l indexx (n , sort1 , iwksp )
do 11 j =1,n

wksp ( j )= so r t1 ( j )
11 continue

do 12 j =1,n
so r t1 ( j )=wksp ( iwksp ( j ) )

12 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 13 j =1,n

wksp ( j )= so r t2 ( j )
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13 continue
do 14 j =1,n

so r t2 ( j )=wksp ( iwksp ( j ) )
14 continue

numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 15 j =1,n

wksp ( j )= so r t3 ( j )
15 continue

do 16 j =1,n
so r t3 ( j )=wksp ( iwksp ( j ) )

16 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 17 j =1,n

wksp ( j )= so r t4 ( j )
17 continue

do 18 j =1,n
so r t4 ( j )=wksp ( iwksp ( j ) )

18 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 19 j =1,n

wksp ( j )= so r t5 ( j )
19 continue

do 20 j =1,n
so r t5 ( j )=wksp ( iwksp ( j ) )

20 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 21 j =1,n

wksp ( j )= so r t6 ( j )
21 continue

do 22 j =1,n
so r t6 ( j )=wksp ( iwksp ( j ) )

22 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 23 j =1,n

wksp ( j )= so r t7 ( j )
23 continue

do 24 j =1,n
so r t7 ( j )=wksp ( iwksp ( j ) )

24 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN
do 25 j =1,n

wksp ( j )= so r t8 ( j )
25 continue

do 26 j =1,n
so r t8 ( j )=wksp ( iwksp ( j ) )

26 continue
RETURN
end

! t h e f o l l o w i n g i s a s l i g h t l y mod i f i ed v e r s i o n o f a d r i v e r f o r
! Runge−Kutta i n t e g r a t i o n from Press e t a l . 1992 , t h a t f o r c e s a
! s t e p when a s t e p cannot be taken wh i l e s a t i s f y i n g t h e r e q u i r e d eps e r r o r
SUBROUTINE ode int ( ystar t , nvar , x1 , x2 , eps , h1 , hadv , nok , nbad , der ivs ,

∗ rkqs )
implicit none
INTEGER nbad , nok , nvar ,KMAXX,MAXSTP,NMAX
REAL∗8 eps , h1 , hadv , x1 , x2 , y s t a r t ( nvar ) ,TINY
EXTERNAL der ivs , rkqs
PARAMETER (MAXSTP=100000000 ,NMAX=50,KMAXX=10000 ,TINY=1.d−30)
INTEGER i , kmax , kount , nstp , hount
REAL∗8 dxsav , h , hdid , hnext , x , xsav , dydx (NMAX) , xp (KMAXX) , y (NMAX) ,

∗yp (NMAX,KMAXX) , y s ca l (NMAX)
COMMON /path/ kmax , kount , dxsav , xp , yp , hount
x = x1
h = sign (h1 , x2−x1 )

! a l i g n s i g n o f hadv w i th d i r e c t i o n in which i n t e g r a t i o n i s p roc e ed ing
hadv = sign ( hadv , x2−x1 )
nok = 0
nbad = 0
kount = 0
hount = 0
do 11 i =1,nvar

y ( i )=ys t a r t ( i )
11 continue

i f (kmax . gt . 0 ) xsav=x−2.d0∗dxsav
do 16 nstp=1,MAXSTP

ca l l de r i v s (x , y , dydx )



279

do 12 i =1,nvar
y s ca l ( i )=abs ( y ( i ))+abs (h∗dydx ( i ))+TINY

12 continue
i f (kmax . gt . 0 ) then

i f (abs (x−xsav ) . gt . abs ( dxsav ) ) then
i f ( kount . l t . kmax−1)then

kount=kount+1
xp ( kount)=x
do 13 i =1,nvar

yp ( i , kount)=y( i )
13 continue

xsav=x
endif

endif
endif
i f ( ( x+h−x2 )∗ ( x+h−x1 ) . gt . 0 . d0 ) h=x2−x
ca l l rkqs (y , dydx , nvar , x , h , hadv , eps , ysca l , hdid , hnext , d e r i v s )
i f ( hdid . eq . hadv ) hount = hount+1 ! t r a c k number o f f o r c e d advances made
i f ( hdid . eq . h ) then

nok=nok+1
else

nbad=nbad+1
endif
i f ( ( x−x2 )∗ ( x2−x1 ) . ge . 0 . d0 ) then

do 14 i =1,nvar
y s t a r t ( i )=y( i )

14 continue
i f (kmax .ne . 0 ) then

kount=kount+1
xp ( kount)=x
do 15 i =1,nvar

yp ( i , kount)=y( i )
15 continue

endif
return

endif
h=hnext

16 continue
pause ’ too many s t eps in ode int ’

33 return
END

! t h e f o l l o w i n g i s a s l i g h t l y mod i f i ed v e r s i o n o f a Runge−Kutta s t e p p e r program
! t h a t t a k e s s t e p s w h i l s t moni tor ing t h e e s t ima t ed e r r o r . The mod i f i c a t i o n f o r c e s
! a s t e p to be taken when r k q s cannot s a t i s f y t h e e r r o r requ i rment and would
! o t h e rw i s e s t op .
SUBROUTINE rkqs (y , dydx , n , x , htry , hadv , eps , ysca l , hdid , hnext , d e r i v s )
implicit none
INTEGER n ,NMAX
REAL∗8 eps , hdid , hnext , htry , x , dydx (n ) , y (n ) , y s ca l (n ) , hadv
EXTERNAL de r i v s
PARAMETER (NMAX=50)

CU USES der ivs , rkck
INTEGER i
REAL∗8 errmax , h , htemp , xnew , yer r (NMAX) , ytemp(NMAX) ,SAFETY,PGROW,

∗PSHRNK,ERRCON
PARAMETER(SAFETY=.9d0 ,PGROW=−.2d0 ,PSHRNK=−.25d0 ,ERRCON=1.89d−4)
h=htry

1 ca l l rkck (y , dydx , n , x , h , ytemp , yerr , d e r i v s )
errmax=0.d0
do 11 i =1,n

errmax=max( errmax , abs ( ye r r ( i )/ y s ca l ( i ) ) )
11 continue

errmax=errmax/ eps
2 i f ( errmax . gt . 1 . d0 ) then

htemp=SAFETY∗h∗( errmax∗∗PSHRNK)
h=sign (max(abs (htemp ) , . 1 d0∗abs (h ) ) , h)
xnew=x+h
i f (xnew . eq . x ) then ! i f new s t e p i s t h e same as t h e p r e v i o u s f a i l e d

! s t ep , f o r c e a s t e p o f hadv
h = hadv
errmax = 1 . d0
goto 2

endif
goto 1

else
i f ( errmax . gt .ERRCON) then

hnext=SAFETY∗h∗( errmax∗∗PGROW)
else

hnext=5.d0∗h
endif
hdid=h
x=x+h
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do 12 i =1,n
y ( i )=ytemp( i )

12 continue
return

endif
END

! t h e f o l l o w i n g r o u t i n e s are from Press e t a l . 1992

FUNCTION ran2 ( idum)

FUNCTION be tac f ( a , b , x )

FUNCTION beta (a , b)

FUNCTION e r r o r (x )

FUNCTION gammaln( xx )

FUNCTION gammp(a , x )

SUBROUTINE indexx (n , arr , indx )

SUBROUTINE gc f (gammcf , a , x , g ln )

SUBROUTINE gse r ( gamser , a , x , g ln )

SUBROUTINE s p l i n e (x , y , n , yp1 , ypn , y2 )

SUBROUTINE ode int ( ys tar t , nvar , x1 , x2 , eps , h1 , hadv , nok , nbad , der ivs ,

SUBROUTINE rkck (y , dydx , n , x , h , yout , yerr , d e r i v s )

! t h e f o l l o w i n g t h r e e r o u t i n e s are e x a c t d u p l i c a t e s o f ode in t , rkqs , and rkck
! t h ey e x i s t t o avo id c a l l i n g od e i n t when a l r e a d y i n s i d e an i n t e g r a l
SUBROUTINE ode int2 ( ystar t , nvar , x1 , x2 , eps , h1 , hadv , nok , nbad , der ivs ,

∗ rkqs2 )

SUBROUTINE rkqs2 (y , dydx , n , x , htry , hadv , eps , ysca l , hdid , hnext , d e r i v s )

SUBROUTINE rkck2 (y , dydx , n , x , h , yout , yerr , d e r i v s )
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F Simulated GCS Evolution Code

Following is a code which when given a simulated initial GCS from the first code (see
Appendix E and section 3.7) integrates each GC including destruction mechanisms
that modify orbital parameters and cause mass-loss, to provide an evolved GCS.

PROGRAM timeev
IMPLICIT NONE
INTEGER dcmlpnts , objnum ,modnum,KMAXX,NMAX, E2dtabn , l2dtabn
INTEGER mdfnum , kingdatn , csampn , shokn ,mbarn ,dummynum, r o f p s i n
REAL∗8 PI
PARAMETER ( dcmlpnts=1,objnum=100000 ,modnum=1000 ,KMAXX=100 ,NMAX=50)
PARAMETER ( E2dtabn=20, l2dtabn=80, r o f p s i n =200)
PARAMETER (mdfnum=2000 ,PI=3.141592654d0 , kingdatn=193 ,csampn=500)
PARAMETER ( shokn=500 ,mbarn=500 ,dummynum=2000)

REAL∗8 k ingSig0 ( kingdatn ) , k ingc ( kingdatn ) , kingRc ( kingdatn )
REAL∗8 kingrh ( kingdatn ) , k i ng l o s rh ( kingdatn ) , k ing1ds ig0 ( kingdatn )
REAL∗8 k i n g l o s s i g 0 ( kingdatn ) , kingM( kingdatn ) , k ing r t rh ( kingdatn )
REAL∗8 kingKE( kingdatn ) , kingBE ( kingdatn ) , spd2rtrhdc2 ( kingdatn )
REAL∗8 kingW0( kingdatn ) , spd2W0dc2 ( kingdatn )
REAL∗8 spd2MdW02( kingdatn ) , k ingrhot ( kingdatn )
REAL∗8 spd2rhotdW02 ( kingdatn )

REAL∗8 dummy1(dummynum)

REAL∗8 p s i ( r o f p s i n ) , r o f p s i ( r o f p s i n ) , spd2rdps i2 ( r o f p s i n ) , rpps i
REAL∗8 psi0 , ps i func , Ni , raps i , rhohok , rhohmean
REAL∗8 l cons t , Emin ,Emax,N1 ,Nn, hpt , newsmall , newbig

REAL∗8 lgml , lgmwd , lgmns , lgmu ,Pwd, Pns , Pbh , spd2mbardt2 (mbarn)
REAL∗8 dlgmtodlgto f t , logmto (mbarn ) , l og t ev (mbarn ) , logmbar (mbarn)
REAL∗8 Mnorm,Nnorm ,Mev , Nev , lg tpt , dlgmbardlgt (mbarn)
REAL∗8 spd3mbardt3 (mbarn)

REAL∗8 cumulat ivec ( csampn ) , cvec ( csampn ) , d2 cd f l t c 2 ( csampn )

REAL∗8 l g c h i ( shokn ) , shokrp ( shokn ) , d2chidrp2 ( shokn )
REAL∗8 rppt , I0 , I1 , J0 , J1

REAL∗8 ob j r g c i ( objnum ) , ob jph i i ( objnum ) , obj lgMi ( objnum)
REAL∗8 objEi ( objnum ) , ob jh i ( objnum ) , ob j v r i ( objnum)
REAL∗8 ob jv the ta i ( objnum ) , ob j rp i ( objnum ) , ob j rL i ( objnum)
REAL∗8 ob jvph i i ( objnum ) , ob j rE i ( objnum ) , ob j r a i ( objnum)
REAL∗8 ob j e c c i ( objnum ) , ob j v t i ( objnum ) , objTr i ( objnum)
REAL∗8 ob j r h o j i ( objnum ) , ob j rhoh i ( objnum ) , objW0i ( objnum)
REAL∗8 ob j r ba r i ( objnum ) , objL i ( objnum ) , o b j j b a r i ( objnum)

REAL∗8 objLf ( objnum ) , obj lgMf ( objnum ) , ob j v r f ( objnum)
REAL∗8 ob jvph i f ( objnum ) , ob jv the ta f ( objnum ) , ob j rhohf ( objnum)
REAL∗8 ob j r a f ( objnum ) , objEf ( objnum ) , ob j r g c f ( objnum)
REAL∗8 ob j rp f ( objnum ) , objTrf ( objnum ) , ob jh f ( objnum)
REAL∗8 ob j e c c f ( objnum ) , ob j r h o j f ( objnum)

REAL∗8 okobjLi ( objnum ) , okobjEi ( objnum ) , okob j r g c i ( objnum)
REAL∗8 okobjlgMi ( objnum ) , okobjrhohi ( objnum ) , okob j rho j i ( objnum)
REAL∗8 okobjh i ( objnum ) , okob jv r i ( objnum ) , okob jvph i i ( objnum)
REAL∗8 okob jv the ta i ( objnum ) , okob j rp i ( objnum ) , okob j r a i ( objnum)
REAL∗8 okob j e c c i ( objnum ) , okobjTri ( objnum)

REAL∗8 l gph i (modnum) , l g r (modnum) , d l gph id l g r (modnum) , l g rho (modnum)
REAL∗8 d2 lgph id l g r2 (modnum) , lgvc2 (modnum) , lgM(modnum)
REAL∗8 lgEc (modnum) , logLc (modnum) , spd2LcdEc2 (modnum)
REAL∗8 spd2phidr2 (modnum)
REAL∗8 spd3phidr3 (modnum) , spd4phidr4 (modnum) , spd2rhodr2 (modnum)
REAL∗8 spd2rdphi2 (modnum) , lgvd2 (modnum) , spd2vd2dr2 (modnum)
REAL∗8 lgomegac2 (modnum) , spd2omegac2dr2 (modnum)

REAL∗8 mdflgE (mdfnum) , mdflgEr (mdfnum) , mdf l g i s od f (mdfnum)
REAL∗8 mdflggdf (mdfnum) ,mdfDED(mdfnum) ,mdfnDED(mdfnum)
REAL∗8 mdfLc (mdfnum) , spd2fdE2 (mdfnum)

INTEGER nvar , nok , nbad , kmax , kount , hount , i o s
REAL∗8 y s t a r t (NMAX) , xi , xf , eps , h1 , hadv , dxsav , xp (KMAXX)
REAL∗8 yp (NMAX,KMAXX)

REAL∗8 dumm1,dumm2,dumm3,dumm4,dumm5,dumm6,dumm7,dumm8
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INTEGER s t r ind1 , s t r ind2 , s t r ind3 , s t r l en , modeltype , r a n i n i t
INTEGER evaptype , shoktype , f r i c t yp e , r t idtype , c l ev type
INTEGER rho0type , stevtype , i , j , n , s p l i n t e r r n , conctype , iok , reqnum
REAL∗8 rho0param1 , rho0param2 , cmin , Lvec2d (3∗E2dtabn ,3∗ l2dtabn ) , t f
REAL∗8 logE , lgrbar , lgrEpt , l g j ba r t ab (3∗E2dtabn ,3∗ l2dtabn ) , l g jbar , k
REAL∗8 E2dtab (3∗E2dtabn ) , l2dtab (3∗ l2dtabn ) , cmax , f l t c p t , cpt , r t rhpt
REAL∗8 lg rptab (3∗E2dtabn ,3∗ l2dtabn ) ,gamma, hfunc , lgrppt , lg rapt , p0
REAL∗8 l g ra tab (3∗E2dtabn ,3∗ l2dtabn ) , yp1 , ypn , b i sacc , rmaxpt
REAL∗8 spd2rcdEc2 (modnum) , spd2rcdLc2 (modnum) , rEfind , LcofE
REAL∗8 r tb i s , lgTrtab (3∗E2dtabn ,3∗ l2dtabn ) , lgEpt ,m0overM0 , lgtmin
REAL∗8 logLpt , ran2 , rhojev , l s a f e t y , Esafety
REAL∗8 lg rbar tab (3∗E2dtabn ,3∗ l2dtabn ) , lpt , rhoh0 ,W0
REAL∗8 ph io f r , time1 , time2 , sma l l l o fL
REAL∗8 e i , Lminvec (3∗E2dtabn )
REAL∗8 ELminvec (3∗E2dtabn ) , spd2LmindE2 (3∗E2dtabn ) , BigLof l , Esup
REAL∗8 rminpt , ro fph i , r r e f , rhoj0 , alpha , bisE , bisL
REAL∗8 rhojbar ,G, rmin , rhojpower ,W0pt ,mbar ,Mi , endtime , lgTr
REAL∗8 star t t ime , mtooft , opfn ,ChabIMF , Pej ,mrm, Mofr , dimlmin , dimlmax
REAL∗8 Mgaltot , logL , lgra , lgrp , lgrE , lgrL , Lmin ,mto ,Lmax , rmax , Einf
LOGICAL l i n i n , nzd , va l id , kcr , i n i t i n t , lok , Eok , abort
CHARACTER∗15 strnum , b i s
CHARACTER∗30 obj f i l ename , modfilename , mdffi lename , s p l i n t c a l l
CHARACTER∗30 d f r f i l ename , ev l f i l e name
CHARACTER∗650 l i n e
COMMON / abortpath / t f , abort
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /Lcpath/ spd2LcdEc2 , logLc , lgEc
COMMON /Lminpath/ Lminvec , ELminvec , spd2LmindE2
COMMON / lg rpath / l g r
COMMON / chipath / lgch i , shokrp , d2chidrp2
COMMON /pmfixpath/ rppt , Mgaltot
COMMON / rhopath/ lgrho , spd2rhodr2
COMMON /omegacpath/ lgomegac2 , spd2omegac2dr2
COMMON /kingpath / kingW0 , kingM , kingrhot , spd2MdW02 , spd2rhotdW02
COMMON /Ecpath/ spd2rcdEc2 , spd2rcdLc2
COMMON / i s od fpa th / mdflgE , mdf lg i sod f , spd2fdE2
COMMON /phiandr / lgphi , d lgph id lg r , d2 lgph id lgr2 , spd2phidr2 ,
∗ spd3phidr3 , spd4phidr4 , spd2rdphi2
COMMON /vd2path/ lgvd2 , spd2vd2dr2
COMMON /orbparampath/ lgrp , lgra , lgrbar , l g jba r , lgTr
COMMON / rappath/ lgrppt , l g r ap t
COMMON /paraminterp / lgrptab , lgratab , lgrbartab , l g jbar tab , lgTrtab ,
∗ E2dtab , l2dtab
COMMON /parampath/ p0 ,G,m0overM0
COMMON /alphapath/ alpha
COMMON / c lusterparams / mbar ,Mi , rhoj0 , rhoh0 ,W0,gamma, e i
COMMON /deadpath/ rmin , rmax , Lmin ,Lmax , Esup , Einf
COMMON /ELpath/ logE , hpt
COMMON /azpath/ r o f p s i , ps i , spd2rdps i2
COMMON /hfuncpath/ lgrEpt , rmaxpt
COMMON / r h o j i n t / rhojpower
COMMON / r jbarpath / rho jbar
COMMON /evappath/ evaptype
COMMON / shokpath/ shoktype
COMMON / stevpath / stevtype
COMMON / r t idpath / r t i d type
COMMON / f r i c p a t h / f r i c t y p e
COMMON / c levpath / c l ev type
COMMON / rho0path/ rho0param1 , rho0param2 , conctype
COMMON /modelpath/ k , r r e f , modeltype
COMMON / errpath / s p l i n t e r r n
COMMON / l inpath / l i n i n
COMMON /SNSMpath/ i n i t i n t
COMMON /mbarpath/ logtev , logmbar , dlgmbardlgt , spd2mbardt2 ,
∗ spd3mbardt3
COMMON / stevparam/ lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,Mnorm
COMMON /path/ kmax , kount , dxsav , xp , yp , hount
COMMON / bispath / bisE , bisL , b i s
EXTERNAL c int , rkqs , hfunc , r o f p s i i n t , az int , ps i func , rba r i n t
EXTERNAL r jbar func , I0 in t , I 1 in t , J0int , J1int , SMint , SNint , o rb in t
EXTERNAL j b a r i n t

yp1 = 1 . d30
ypn = 1 . d30
p0 = 9 . d0
alpha = 0 . d0
rhojpower = 5 . d−1
b i s a c c = 1 . d−40
i n i t i n t = . fa l se . ! s h o r t c u t f o r c a l c u l a t i n g s t e l l a r IMF no rma l i s a t i o n s
l i n i n = . fa l se . ! s e t t i n g t h i s to t r u e w i l l f o r c e a l l i n t e r p o l a t i o n to be l i n e a r ,

! s e t t i n g f a l s e a l l ow s l i n i n t r p argument in s p l i n t c h e c k to chose .
nzd = . fa l se .
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kcr = . fa l se .
! age o f sys tem in Myr a t which ou tpu t from f i r s t code i s c on s i d e r e d
! ’ i n i t i a l ’ − po s t supernovae and ‘ ‘ i n f a n t mor t a l i t y ’ ’ phase

lgtmin = log10 ( 3 0 . d0 )
! g r a v i t a t i o n a l c on s t an t in un i t s o f pc ˆ3 Gyrˆ−2 M 0ˆ−1,
! on l y used f o r C in e vapo ra t i on r ou t i n e

G = 4499.753331 d0

write (6 ,1000) ’ input de s i r ed model type : ’
write (6 ,1000) ’ 1 : Po lytropes ’
write (6 ,1000) ’ 2 : King ’
write (6 ,1000) ’ 3 : Dehnen ’
write (6 ,1000) ’ 4 : Powerlaws ’
read (5 ,∗ ) modeltype
write (6 ,1000) ’ input de s i r ed model d e f i n i n g parameter ’
i f ( modeltype . eq . 1 ) then

write (6 ,1000) ’ input k : ’
ob j f i l ename = ’ po l y t r op e ob j c t k ’
modfilename = ’ po ly t rope mode l k ’
mdff i lename = ’ p o l y t r o p e d i s t g k ’
d f r f i l e name = ’ po l y t r ope dyn f r k ’
ev l f i l e name = ’ po l y t r op e evo l v k ’

else i f ( modeltype . eq . 2 ) then
write (6 ,1000) ’ input W0: ’
ob j f i l ename = ’ king objct W0 ’
modfilename = ’ king model W0 ’
mdff i lename = ’ k ing di s tg W0 ’
d f r f i l e name = ’ king dynfr W0 ’
ev l f i l e name = ’ king evolv W0 ’

else i f ( modeltype . eq . 3 ) then
write (6 ,1000) ’ input gamma: ’
ob j f i l ename = ’ dehnen objct G ’
modfilename = ’ dehnen model G ’
mdff i lename = ’ dehnen distg G ’
d f r f i l e name = ’ dehnen dynfr G ’
ev l f i l e name = ’ dehnen evolv G ’

else i f ( modeltype . eq . 4 ) then
write (6 ,1000) ’ input k : ’
ob j f i l ename = ’ power law objc t k ’
modfilename = ’ powerlaw model k ’
mdff i lename = ’ power law d i s tg k ’
d f r f i l e name = ’ power law dynfr k ’
ev l f i l e name = ’ power law evo lv k ’

end i f
read (5 ,∗ ) k

write (6 ,1000) ’ input de s i r ed evolved c l u s t e r system age in Myr ’
read (5 ,∗ ) t f

write (6 ,1001) ’ input de s i r ed s t e l l a r mass to galaxy s c a l e mass ’ ,
∗ ’ r a t i o : ’
read (5 ,∗ ) m0overM0

WRITE ( strnum ,∗ ) ( k+5.d0 ∗ ( 1 . d1∗∗(−1.d0−1.d0∗( dcmlpnts ) ) ) )

s t r i nd1 = index ( strnum , ’ . ’ )
strnum = strnum (1 : s t r i nd1+dcmlpnts )

s t r l e n = len ( strnum ) ! f i l e naming s t u f f
s t r i nd1 = index ( obj f i l ename , ’ ’ ) ! f i n d p o s i t i o n o f f i r s t b l ank space in

! s a v f i l e name
s t r i nd2 = index ( strnum , ’ . ’ ) ! f i n d p o s i t i o n o f dec ima l p l a c e in W0 s t r i n g

1 s t r i nd3 = index ( strnum , ’ ’ ) ! f i n d p o s i t i o n o f f i r s t b l ank space in W0
! s t r i n g

i f ( s t r i nd3 . eq . 1 ) then ! remove a l l l e a d i n g b l ank space s
strnum=strnum ( s t r i nd3 +1: s t r l e n )
goto 1

end i f ! l o o p s u n t i l f i r s t c h a r a c t e r o f strnum i s not a b l ank space
s t r i nd2 = index ( strnum , ’ . ’ ) ! f i n d new p o s i t i o n o f dec ima l p a l c e
s t r i nd3 = index ( strnum , ’ ’ ) ! f i n d new p o s i t i o n o f f i r s t b l ank space , now

! somewhere a t end o f s t r i n g
i f ( s t r i nd3 . eq . s t r i nd2+1) then ! i f t h e r e are no z e r o s a f t e r t h e dec ima l

! p lace , add as many as are r e q u i r e d
do i = 1 , dcmlpnts

strnum = strnum ( 1 : ( s t r i nd2+i −1)) // ’ 0 ’
end do
s t r i nd3 = index ( strnum , ’ ’ ) ! f i n d p o s i t i o n o f f i r s t b l ank space aga in

end i f
ob j f i l ename=obj f i l ename ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
modfilename=modfilename ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
mdff i lename=mdff i lename ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
d f r f i l e name=d f r f i l e name ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
e v l f i l e name=ev l f i l e name ( 1 : s t r ind1 −1)//strnum ( 1 : s t r ind3 −1)// ’ . out ’
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open (4 , f i l e=modfilename , status=”old ” )
i = 0
do j =1 ,2147483646

read (4 ,1000 ,end=100) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) l gph i ( i ) , l g r ( i ) , d l gph id l g r ( i ) , l g rho ( i ) ,

∗ d2 lgph id l g r2 ( i ) , l gvc2 ( i ) , lgM( i ) , lgvd2 ( i ) , lgEc ( i )
∗ , logLc ( i )

end i f
end do

100 close (4 )

rmin = l g r (1)
rmax = l g r (modnum)
Einf = lgEc (1)
Esup = lgph i (modnum)
Lmin = 0.5∗ log10 ( 2 . d0 ∗ ( 1 . d1∗∗(Esup−Einf )))+ rmin
Lmax = logLc (modnum)

i f ( modeltype==1.or . modeltype==2) then
r r e f =0.d0

else
r r e f =1.d1∗∗( rmin−1.d0 )

end i f

do i = 1 ,modnum
lgomegac2 ( i ) = lgvc2 ( i ) − 2 . d0∗ l g r ( i )

end do

open (4 , f i l e=mdffi lename , status=”old ” )
i = 0
do j =1 ,2147483646

read (4 ,1000 ,end=101) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) mdflgE ( i ) , mdflgEr ( i ) , md f l g i s od f ( i ) , mdflggdf ( i ) ,

∗ mdfDED( i ) ,mdfnDED( i ) ,mdfLc ( i )
end i f

end do
101 close (4 )

open (4 , f i l e=obj f i l ename , status=”old ” )
i = 0
do j =1 ,2147483646

read (4 ,1000 ,end=102) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) o b j r g c i ( i ) , ob j ph i i ( i ) , obj lgMi ( i ) , objEi ( i ) ,

∗ ob jh i ( i ) , o b j v r i ( i ) , ob jvph i i ( i ) , ob j v the ta i ( i ) ,
∗ ob j rp i ( i ) , ob j rL i ( i ) , ob j rE i ( i ) , o b j r a i ( i ) ,
∗ ob j e c c i ( i )

end i f
end do

102 close (4 )

do i = 1 , objnum
ob j v t i ( i ) = ( ( ob jvph i i ( i )∗∗2 . d0)+( ob jv the ta i ( i )∗∗2 . d0 ) )∗∗5 . d−1
objL i ( i ) = ob j r g c i ( i )∗ ob j v t i ( i )

end do

CALL s p l i n e ( lg r , lgrho ,modnum, yp1 , ypn , spd2rhodr2 )
CALL s p l i n e ( lg r , lgomegac2 ,modnum, yp1 , ypn , spd2omegac2dr2 )
CALL s p l i n e ( lg r , lgphi ,modnum, yp1 , ypn , spd2phidr2 )
CALL s p l i n e ( lgphi , l g r ,modnum, yp1 , ypn , spd2rdphi2 )
CALL s p l i n e ( lg r , d lgph id lg r ,modnum, yp1 , ypn , spd3phidr3 )
CALL s p l i n e ( lg r , d2 lgph id lgr2 ,modnum, yp1 , ypn , spd4phidr4 )
CALL s p l i n e ( lgEc , logLc ,modnum, yp1 , ypn , spd2LcdEc2 )
CALL s p l i n e ( lgEc , lg r ,modnum, yp1 , ypn , spd2rcdEc2 )
CALL s p l i n e ( logLc , lg r ,modnum, yp1 , ypn , spd2rcdLc2 )
CALL s p l i n e ( lg r , lgvd2 ,modnum, yp1 , ypn , spd2vd2dr2 )
CALL s p l i n e (mdflgE , mdf lg i sod f ,mdfnum , yp1 , ypn , spd2fdE2 )

4 write (6 ,1000) ’ input de s i r ed evaporat ion p r e s c r i p t i o n : ’
write (6 ,1000) ’ 0 : none ’
write (6 ,1000) ’ 1 : King 1966 ’
write (6 ,1000) ’ 2 : Vesper in i & Heggie 1997 ’
write (6 ,1000) ’ 3 : Fa l l & Zhang 2001 ’
write (6 ,1000) ’ 4 : Jordan 2007 ’
write (6 ,1000) ’ 5 : Chapter 2 Virgo r e s u l t ’
write (6 ,1000) ’ 6 : McLaughlin & Fa l l 2008 ’
write (6 ,1000) ’ 7 : Chandar et a l . 2007 ’



285

write (6 ,1000) ’ 8 : Baumgardt 1998 ’
write (6 ,1000) ’ 9 : G i e l e s & Baumgardt 2008 ’
write (6 ,1000) ’ 10 : G i e l e s et a l . 2011 ’
write (6 ,1000) ’ 11 : G i e l e s & Baumgardt 2008 non−l i n e a r ’
write (6 ,1000) ’ 12 : G i e l e s et a l . 2011 non−l i n e a r ’
write (6 ,1000) ’ 13 : Tanikawa & Fukushige 2010 ’
write (6 ,1000) ’ 14 : Lamers et a l . 2010 ’
write (6 ,1000) ’ 15 : Takahashi & Baumgardt 2012 ’
read (5 ,∗ ) evaptype
va l i d = . fa l se .
do i = 0 ,15

i f ( evaptype . eq . i ) v a l i d = . true .
end do
i f ( va l i d . eqv . . fa l se . ) then

write (6 ,1000) ’ i n v a l i d s e l e c t i o n ’
goto 4

end i f
! s i n g l e out p r e s c r i p t i o n s t h a t r e q u i r e non−z e ro i n i t i a l h a l f−mass d e n s i t y
i f ( evaptype . eq . 4 ) nzd = . true .
i f ( evaptype . eq . 5 ) nzd = . true .
i f ( evaptype . eq . 6 ) nzd = . true .
i f ( evaptype . eq . 7 ) nzd = . true .
i f ( evaptype . eq . 9 ) nzd = . true .
i f ( evaptype . eq . 1 1 ) nzd = . true .
i f ( evaptype . eq . 1 3 ) nzd = . true .
i f ( evaptype . eq . 1 4 ) nzd = . true .
i f ( evaptype . eq . 1 5 ) nzd = . true .
! s i n g l e out p r e s c r i p t i o n s t h a t r e q u i r e c l u s t e r s
! w i t h a W0 ( e . g . k ing 1966 model c l u s t e r s )
i f ( evaptype . eq . 1 . or . evaptype . eq . 1 4 ) then

kcr = . true .
end i f

5 write (6 ,1000) ’ input de s i r ed shock p r e s c r i p t i o n : ’
write (6 ,1000) ’ 0 : none ’
write (6 ,1000) ’ 1 : Gnedin , Hernquist & Ost r ike r 1999 ’
read (5 ,∗ ) shoktype
va l i d = . fa l se .
do i = 0 ,1

i f ( shoktype . eq . i ) v a l i d = . true .
end do
i f ( va l i d . eqv . . fa l se . ) then

write (6 ,1000) ’ i n v a l i d s e l e c t i o n ’
goto 5

end i f
i f ( shoktype . eq . 1 ) then

nzd = . true .
end i f

6 write (6 ,1000) ’ input de s i r ed s t e l l a r evo lu t i on p r e s c r i p t i o n : ’
write (6 ,1000) ’ 0 : none ’
write (6 ,1000) ’ 1 : Chernof f & Weinberg 1990 ’
write (6 ,1000) ’ 2 : Lamers et a l . 2010 ’
read (5 ,∗ ) s tevtype
va l i d = . fa l se .
do i = 0 ,2

i f ( s tevtype . eq . i ) v a l i d = . true .
end do
i f ( va l i d . eqv . . fa l se . ) then

write (6 ,1000) ’ i n v a l i d s e l e c t i o n ’
goto 6

end i f

do i = 1 ,mbarn ! need t h i s whether s t e l l a r e v o l u t i o n i s on or o f f
l o g t ev ( i ) = lgtmin+(i −1)∗( log10 ( t f )− lgtmin ) / ( 1 . d0∗(mbarn−1))

end do
i f ( s tevtype . eq . 1 ) then ! au thor s p e c i f i c s t u f f

lgmwd = log10 ( 4 . 7 d0 )
! t h i s i s a c t u a l l y more l i k e lgmwd , bu t Cherno f f & Weinberg have no
! remnant between 4 .7 and 8 .0 so l a r , and dont i n c l u d e b l a c k h o l e s a t a l l

lgmns = log10 ( 8 . d0 )
else i f ( s tevtype . eq . 2 ) then ! Hure ly e t a l . 2000

lgmwd = log10 ( 8 . 19 d0 )
lgmns = log10 (24 .76 d0 )

end i f
i f ( s tevtype .ne . 0 ) then ! g e n e r i c i n t e g r a l s and d e f i n i t i o n s

do i = 1 ,mbarn ! d e f i n e t ime and t u r n o f f mass a r ray s
logmto ( i ) = log10 ( mtooft ( l og t ev ( i ) ) )

end do
13 i f ( s tevtype . eq . 1 ) then

print ∗ , ’WD i f l og m < ’ , lgmwd
print ∗ , ’ no remnant i f ’ , lgmwd , ’ <= log m <=’ , lgmns
print ∗ , ’NS i f l og m > ’ , lgmns
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write (6 ,1001) ’ input de s i r ed e j e c t i o n p r obab i l i t y f o r ’ ,
∗ ’ remnant WD and NS upon formation ’

! Pns i s used to remove mas s l e s s remnants , Pbh i s a c t u a l l y
! t r e a t i n g e j e c t i o n p r o b a b i l i t y o f NSs

read (5 ,∗ ) Pwd,Pbh
! ma s s l e s s remnant w i l l s t i l l be counted i f
! i t i s not t r e a t e d as b e in g e j e c t e d

Pns = 1 . d0
else i f ( s tevtype . eq . 2 ) then

print ∗ , ’WD i f l og m < ’ , lgmwd
print ∗ , ’NS i f ’ , lgmwd , ’ <= log m <=’ , lgmns
print ∗ , ’BH i f l og m > ’ , lgmns
write (6 ,1001) ’ input de s i r ed e j e c t i o n p r obab i l i t y f o r ’ ,

∗ ’ remnant WD, NS, and BH upon formation ’
read (5 ,∗ ) Pwd, Pns , Pbh

end i f
i f (Pwd. l t . 0 . d0 . or .Pwd. gt . 1 . d0 . or . Pns . l t . 0 . d0 . or . Pns . gt . 1 . d0

∗ . or . Pbh . l t . 0 . d0 . or . Pbh . gt . 1 . d0 ) then
print ∗ , ’ a l l p r o b a b i l i t i e s must s a t i s f y 0 <= P <= 1 ’
goto 13

end i f
14 write (6 ,1001) ’ input de s i r ed lower and upper log s t e l l a r ’ ,

∗ ’mass l im i t s , lgml and lgmu ’
print ∗ , ’ lgmu must be l e s s than or equal to ’ ,

∗ log10 ( mtooft ( lgtmin ) )
read (5 ,∗ ) lgml , lgmu
i f ( lgml . ge . lgmu ) then

print ∗ , ’ lower mass must be l e s s than upper mass ’
goto 14

end i f

nvar = 1
kmax = 0
eps = 1 . d−7
h1 = 1 . d−10
hadv = 1 . d−10
i n i t i n t = . true .
x i = lgml
xf = lgmu
ys t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , SNint , rkqs )
Nnorm = ys ta r t (1 )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , SMint , rkqs )
Mnorm = ys ta r t (1 )
i n i t i n t = . fa l se .
do i = 1 ,mbarn

l g tp t = log t ev ( i )
x i = logmto ( i )
x f = lgmu
ys t a r t (1 ) = 0 . d0
i f ( x i . l t . x f ) then ! i f mto i s g r e a t e r than mu, then no s t a r s are e x p i r i n g y e t

CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , SNint
∗ , rkqs )

end i f
Nev = 1 . d0 − y s t a r t (1)/Nnorm
ys t a r t (1 ) = 0 . d0
i f ( x i . l t . x f ) then ! i f mto i s g r e a t e r than mu, then no s t a r s are e x p i r i n g y e t

CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , SMint
∗ , rkqs )

end i f
Mev = 1 . d0 − y s t a r t (1)/Mnorm
logmbar ( i ) = log10 (Mev/Nev)
mto = 1 . d1∗∗ logmto ( i )
dlgmbardlgt ( i ) = ChabIMF( logmto ( i ) )∗ d lgmtod lg to f t ( l og t ev )∗

∗ ( (mto−(1.d0−Pej ( logmto ( i ) ) )∗mrm( logmto ( i ) ) ) /
∗ Mev−Pej ( logmto ( i ) )/Nev)/ log ( 1 . d1 )

end do
CALL s p l i n e ( logtev , logmbar , mbarn , yp1 , ypn , spd2mbardt2 )
write (45 ,1010) ’#’ , ’ l og t ’ , ’ l og mbar ’ , ’ l og mto ’ ,

∗ ’ d log mto/d log t ’ , ’d N/d log m’ , ’ Pej (mto) ’ , ’ l og mrm(mto) ’ ,
∗ ’ d log mbar/d log t ’

do i = 1 ,mbarn
write (45 ,1008) l og t ev ( i ) , logmbar ( i ) , logmto ( i )

∗ , d l gmtod lg to f t ( l og t ev ) ,ChabIMF( logmto ( i ) ) , Pej ( logmto ( i ) )
∗ , log10 (mrm( logmto ( i ) ) ) , dlgmbardlgt ( i )

end do
else ! i f s t e l l a r e v o l u t i o n i s turned o f f

do i = 1 ,mbarn
logmbar ( i ) = 0 . d0 ! mbar i s c on s t an t a t a l l t imes
dlgmbardlgt ( i ) = 0 . d0
spd2mbardt2 ( i ) = 0 . d0

end do
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end i f

7 write (6 ,1000) ’ input de s i r ed dynamical f r i c t i o n p r e s c r i p t i o n : ’
write (6 ,1000) ’ 0 : none ’
write (6 ,1000) ’ 1 : Chandrasekhar 1943 ’
read (5 ,∗ ) f r i c t y p e
va l i d = . fa l se .
do i = 0 ,1

i f ( f r i c t y p e . eq . i ) v a l i d = . true .
end do
i f ( va l i d . eqv . . fa l se . ) then

write (6 ,1000) ’ i n v a l i d s e l e c t i o n ’
goto 7

end i f

8 write (6 ,1000) ’ input de s i r ed t i d a l rad ius d e f i n i t i o n : ’
write (6 ,1000) ’ 1 : o r b i t a l p e r i c e n t r e ’
write (6 ,1000) ’ 2 : time averaged g a l a c t o c e n t r i c rad ius ’
write (6 ,1001) ’ 3 : rgc where ins tantaneous sq r t j a c ob i dens i ty ’ ,

∗ ’ equa l s time average o f sq r t j a c ob i dens i ty ’
write (6 ,1001) ’ 4 : rgc where j a c ob i dens i ty equa l s j a c ob i dens i ty ’

∗ , ’ at p e r i c e n t r e t imes func t i on o f e l l i p t i c i t y ’
read (5 ,∗ ) r t i d type
va l i d = . fa l se .
do i = 1 ,4

i f ( r t i d type . eq . i ) v a l i d = . true .
end do
i f ( va l i d . eqv . . fa l se . ) then

write (6 ,1000) ’ i n v a l i d s e l e c t i o n ’
goto 8

end i f

9 write (6 ,1001) ’ input de s i r ed i n i t i a l c l u s t e r ha l f−mass dens i ty ’ ,
∗ ’ method : ’
write (6 ,1001) ’ 0 : none ( a l l c l u s t e r s w i l l be cons ide red to be ’ ,

∗ ’ po int masses ) ’
write (6 ,1001) ’ 1 : randomly as s i gned king concent ra t i on plus ’ ,

∗ ’ t i d a l dens i ty at time averaged rad ius ’
write (6 ,1000) ’ 2 : ha l f−mass rad ius / j a c ob i rad ius ˜ mass r e l a t i o n ’
write (6 ,1000) ’ 3 : ha l f−mass rad ius ˜ mass r e l a t i o n ’
read (5 ,∗ ) rho0type
i f ( rho0type . eq . 0 . and . nzd ) then

write (6 ,1001) ’ s e l e c t e d p r e s c r i p t i o n s r e qu i r e ’ ,
∗ ’ non−zero i n i t i a l ha l f−mass dens i ty ’

goto 9
end i f
i f ( rho0type .ne . 1 . and . kcr ) then

write (6 ,1001) ’ s e l e c t e d p r e s c r i p t i o n s r e qu i r e king model ’ ,
∗ ’ c l u s t e r s ( opt ion 1) ’

goto 9
end i f
i f ( rho0type . eq . 1 ) then

open (4 , f i l e=’/mount nfs / use r s /kmt/kingmod . dat ’ , status=”old ” )
i = 0
do j =1 ,2147483646

read (4 ,1000 ,end=103) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then

i = i + 1
read ( l i n e ,∗ ) kingW0( i ) , k ingc ( i ) , kingRc ( i ) , k ingrh ( i ) ,

∗ k ing l o s rh ( i ) , k ing1ds ig0 ( i ) , k i n g l o s s i g 0 ( i ) ,
∗ kingM( i ) , k ingS ig0 ( i ) , kingKE( i ) , kingBE ( i )

end i f
end do

103 close (4 )
do i = 1 , kingdatn

kingW0( i ) = log10 (KingW0( i ) )
k ingc ( i ) = log10 ( k ingc ( i ) )
k ing r t rh ( i ) = kingc ( i )−log10 ( kingrh ( i ) )
kingM( i ) = log10 ( kingM( i ) )
k ingrhot ( i ) = kingM( i )−3.d0∗kingc ( i )−log10 ( 4 . d0∗PI /3 . d0 )

end do
CALL s p l i n e ( kingc , k ingrtrh , kingdatn , yp1 , ypn , spd2rtrhdc2 )
CALL s p l i n e ( kingc , kingW0 , kingdatn , yp1 , ypn , spd2W0dc2 )
CALL s p l i n e (kingW0 , kingM , kingdatn , yp1 , ypn , spd2MdW02)
CALL s p l i n e (kingW0 , kingrhot , kingdatn , yp1 , ypn , spd2rhotdW02 )

10 write (6 ,1001) ’ ente r negat ive i n t e g e r f o r random number ’ ,
∗ ’ g enerator seed ’

read (5 ,∗ ) r a n i n i t
i f ( r a n i n i t . ge . 0 ) goto 10
write (6 ,1001) ’ input de s i r ed i n i t i a l concent ra t i on ’ ,

∗ ’ d i s t r i b u t i o n : ’
write (6 ,1000) ’ 1 : Gaussian ’
write (6 ,1000) ’ 2 : Schechter ’
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read (5 ,∗ ) conctype
11 write (6 ,1004) ’ input de s i r ed minimum and maximum al lowed ’ ,

∗ ’ c oncen t ra t i on s : (minimum =’ , k ingc (1 ) , ’ maximum =’ ,
∗ kingc ( kingdatn ) , ’ ) ’

read (5 ,∗ ) cmin , cmax
i f ( cmin . l t . k ingc ( 1 ) ) then

write (6 ,1000) ’minimum concent ra t i on too smal l ’
goto 11

end i f
i f (cmax . gt . k ingc ( kingdatn ) ) then

write (6 ,1000) ’maximum concent ra t i on too big ’
goto 10

end i f
i f ( conctype . eq . 1 ) then

write (6 ,1000) ’ input Gaussian mean and var iance ’
read (5 ,∗ ) rho0param1 , rho0param2

else i f ( conctype . eq . 2 ) then
write (6 ,1001) ’ input power law s l ope and exponent ia l cut o f f ’

∗ , ’ va lue ’
read (5 ,∗ ) rho0param1 , rho0param2

end i f
else i f ( rho0type . eq . 2 ) then

write (6 ,1000) ’ input alpha and beta ’
read (5 ,∗ ) rho0param1 , rho0param2

else i f ( rho0type . eq . 3 ) then
write (6 ,1000) ’ input alpha and beta ’
read (5 ,∗ ) rho0param1 , rho0param2

end i f
write (6 ,1001) ’ input de s i r ed i n t e r n a l c l u s t e r evo lu t i on ’ ,

∗ ’ p r e s c r i p t i o n : ’
write (6 ,1000) ’ 0 : none ’
write (6 ,1000) ’ 1 : V i r i a l evo lu t i on ’
read (5 ,∗ ) c l ev type

i f ( shoktype . eq . 1 ) then
nvar = 1
kmax = 0
eps = 1 . d−7
h1 = 1 . d−10
x i = 0 . d0
xf = 1 . d40
hadv = ( xf−x i )∗1 . d−6
Mgaltot = Mofr ( 1 . d1∗∗ l g r (modnum)) ! b i t unsure about t h i s
print ∗ , ’ c a l c u l a t i n g i n t e r p o l a t i o n t ab l e s f o r d i s tended mass ’

∗ , ’ shocking c o r r e c t i o n ’
CALL cpu time ( time1 )
do i = 1 , shokn

shokrp ( i ) =l g r (1)+( i −1)∗( l g r (modnum)− l g r ( 1 ) ) / ( 1 . d0∗( shokn−1))
rppt = 1 . d1∗∗ shokrp ( i )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , I 0 i n t

∗ , rkqs )
I0 = ys t a r t (1 )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , I 1 i n t

∗ , rkqs )
I1 = ys t a r t (1 )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , J0 int

∗ , rkqs )
J0 = ys t a r t (1 )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , J1 int

∗ , rkqs )
J1 = ys t a r t (1 )
l g c h i ( i ) = log10 ( 5 . d−1∗(((3 . d0∗J0−J1−I0 )∗∗2 . d0)+

∗ ( ( 2 . d0∗ I0−I1 −3.d0∗J0+J1 )∗∗2 . d0)+( I0 ∗∗2. d0 ) ) )
print ∗ , i , shokrp ( i ) , I0 , I1 , J0 , J1 , l g c h i ( i )

end do
CALL s p l i n e ( shokrp , l g ch i , shokn , yp1 , ypn , d2chidrp2 )
CALL cpu time ( time2 )
print ∗ , ’ shock i n t e r p o l a t i o n t ab l e s done . ’
print ∗ , ’Time taken =’ , time2−time1

end i f

OPEN(4 ,FILE=dfr f i l ename ,STATUS=”OLD” ,IOSTAT=ios ,ERR=746)
i = 1
j = 1
do n=1 ,2147483646

i f (n==1) print ∗ , ’ r ead ing o r b i t a l parameter t ab l e s from ’ ,
∗ d f r f i l e name

read (4 ,1000 ,end=747) l i n e
i f ( l i n e ( 1 : 1 ) . ne . ’#’ ) then
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read ( l i n e ,∗ ) dumm1,dumm2,dumm3,dumm4,dumm5,dumm6,dumm7,dumm8
i f ( j==3∗l2dtabn+1) then

i = i + 1
j = 1

end i f
E2dtab ( i ) = dumm1
l2dtab ( j ) = dumm2
Lvec2d ( i , j ) = dumm3
lgTrtab ( i , j ) = dumm4
lgrptab ( i , j ) = dumm5
lg rbar tab ( i , j ) = dumm6
lg jba r t ab ( i , j ) = dumm7
lg ra tab ( i , j ) = dumm8
j = j + 1

end i f
end do

747 CLOSE(4 )

do i = 1 ,3∗E2dtabn
Lminvec ( i ) = rmin + 5 . d−1∗log10 ( 1 . d1∗∗E2dtab ( i )−ph i o f r ( rmin ) )

∗ + 5. d−1∗log10 ( 2 . d0 )
ELminvec ( i ) = E2dtab ( i )

end do
CALL s p l i n e (ELminvec , Lminvec ,3∗E2dtabn , yp1 , ypn , spd2LmindE2 )

746 i f ( i o s .ne . 0 ) then ! i n t e r p o l a t i o n t a b l e s f o r p e r i c en t r e , apocentre ,
! t ime averaged r ad i i , and whatever e l s e .

Emin = 1 . d1∗∗ lgEc (1)+1.d−8
Emax = 1 . d1∗∗ l gph i (modnum)
N1 = 1 . d−3 ! c o n t r o l s how dense t h e po i n t d i s t r i b u t i o n around Emax i s − sma l l e r

! number = more dense
Nn = Emax+N1−Emin

print ∗ , ’ c a l c u l a t i n g o r b i t a l parameters as f unc t i on s o f E and ’
∗ , ’ L . . . ’

CALL cpu time ( time1 )
do i = 1 , E2dtabn

! l o g o f l i n e a r spac ing w i th even po in t d i s t r i b u t i o n
E2dtab ( i ) = log10 (Emin+i ∗(Emax−Emin ) / ( 1 . d0∗(E2dtabn+1)))
! l o g o f l o g spac ing w i th l a r g e c l u s t e r o f p o i n t s a t low end
E2dtab ( i+E2dtabn ) =log10 (Emin)+( i )∗ log10 (Emax/Emin)/

( 1 . d0∗E2dtabn+1)
! a r b i t r a r y c on v o l u t i o n array
Ni = log10 (N1) + ( i −1)∗ log10 (Nn/N1) / ( 1 . d0∗(E2dtabn−1))
! l o g o f l o g spac ing arranged to have l a r g e c l u s t e r o f p o i n t s a t h i gh end
E2dtab ( i+2∗E2dtabn ) = log10 (Emax+N1−(1.d1∗∗Ni ) )

end do
CALL mul t i s o r t (1 ,3∗E2dtabn , E2dtab ,dummy1,dummy1,dummy1,dummy1,

∗ dummy1,dummy1,dummy1)

dimlmin = 1 . d−4 ! sm a l l e s t l a l l owed − depend ing on E t h i s cou l d be c l o s e
! t o e i t h e r c i r c u l a r or r a d i a l o r b i t

dimlmax = 0.9999 d0 ! maximum a l l owed d imen s i no l e s s angu l a r momentum , j u s t
! s h o r t o f a c i r c u l a r o r b i t

N1 = 1 . d−6 ! c o n t r o l s how dense t h e po i n t d i s t r i b u t i o n around dimlmax
! i s − sma l l e r number = more dense

Nn = dimlmax+N1−dimlmin

do i = 1 ,3∗E2dtabn
Lminvec ( i ) = rmin + 5 . d−1∗log10 ( 1 . d1∗∗E2dtab ( i )−ph i o f r ( rmin ) )

∗ + 5. d−1∗log10 ( 2 . d0 )
ELminvec ( i ) = E2dtab ( i )

end do
CALL s p l i n e (ELminvec , Lminvec ,3∗E2dtabn , yp1 , ypn , spd2LmindE2 )

do i = 1 , l2dtabn
! a r b i t r a r y c on v o l u t i o n array
Ni = log10 (N1) + ( i −1)∗ log10 (Nn/N1) / ( 1 . d0∗( l2dtabn −1))
! l o g o f l o g spac ing arranged to have l a r g e c l u s t e r o f p o i n t s a t h i gh end
l2dtab ( i ) = log10 ( dimlmax+N1−(1.d1∗∗Ni ) )
! l o g o f l o g spac ing to have l a r g e c l u s t e r o f p o i n t s a t low end
l2dtab ( i+l2dtabn ) = log10 ( dimlmin )+( i )∗ log10 ( dimlmax/dimlmin )

∗ / ( 1 . d0∗ l2dtabn+1)
! l o g o f l i n e a r spac ing w i th even po in t d i s t r i b u t i o n
l2dtab ( i+2∗ l2dtabn ) = log10 ( dimlmin+(i −1)∗(dimlmax−dimlmin )/

∗ ( 1 . d0∗ l2dtabn ) )
end do
CALL mul t i s o r t (1 ,3∗ l2dtabn , l2dtab ,dummy1,dummy1,dummy1,dummy1,

∗ dummy1,dummy1,dummy1)

ps i 0 = 1 . d0
l c on s t = 1 . d0
do i = 1 , r o f p s i n
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ps i ( i ) = log10 ( p s i 0+( i −1)∗2.d0∗PI / ( 1 . d0∗( ro fp s in −1)))
end do

do i = 1 ,3∗E2dtabn
logE = E2dtab ( i )
bisE = logE
lgrEpt = log10 ( rEf ind ( logE ) )
rmaxpt = l g r (modnum)
rminpt = −4.d0
do j = 3∗ l2dtabn ,1 ,−1

logL = log10 ( B igLof l ( 1 . d1∗∗ l2dtab ( j ) , logE ) )
bisL = logL
x i = log10 ( LcofE ( logE ))+ l2dtab ( j )
Lvec2d ( i , j ) = logL
i f ( 1 . d0/ logL . eq . 0 . d0 ) then

PAUSE ’L=0 in i n t e r p o l a t i o n t ab l e s ’
else
hpt = ( 1 . d1∗∗ logL )/ LcofE ( logE )

b i s = ’ l g rp ’
l g rppt = r t b i s ( hfunc , lgrEpt , rminpt , b i s a c c )
b i s = ’ l g r a ’
l g r ap t = r t b i s ( hfunc , lgrEpt , rmaxpt , b i s a c c )

end i f
l g rptab ( i , j ) = lg rppt
l g ra tab ( i , j ) = lg rap t
do n = 1 , r o f p s i n

nvar = 2
kmax = 0
eps = 1 . d−5
h1 = 1 . d−10
x i = ps i (1 )
x f = ps i (n)
hadv = 1 . d−4∗(xf−x i )
y s t a r t (1 ) = lg rppt
y s t a r t (2 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad ,

∗ r o f p s i i n t , rkqs )
r o f p s i (n) = ys t a r t (1 )
spd2rdps i2 (n)=0.d0

end do

newsmall = 1 . d40
newbig = −1.d40
do n = 1 , r o f p s i n

i f ( r o f p s i (n)>newbig ) then
newbig = r o f p s i (n)
r ap s i = ps i (n)

end i f
i f ( r o f p s i (n)<newsmall ) then

newsmall = r o f p s i (n)
rpps i = ps i (n)

end i f
end do

nvar = 1
eps = 1 . d−7
h1 = 1 . d−10
x i = rpps i
x f = rap s i
hadv = 1 . d−5∗(xf−x i )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , az int ,

∗ rkqs )
lgTrtab ( i , j ) = log10 ( 2 . d0∗ log ( 1 . d1))+ log10 (ABS( y s t a r t ( 1 ) ) )

∗ −logL
y s t a r t (1 ) = 0 . d0
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad ,

∗ rbar int , rkqs )
l g rbar tab ( i , j )=log10 ( 2 . d0∗ log ( 1 . d1))+ log10 (ABS( y s t a r t ( 1 ) ) )

∗ −lgTrtab ( i , j )− logL
y s t a r t (1 ) = 0 . d0
CALL ode int ( ystar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad ,

∗ j ba r in t , rkqs )
rho jbar = log10 ( 2 . d0∗ log ( 1 . d1))+ log10 (ABS( y s t a r t ( 1 ) ) )

∗ −lgTrtab ( i , j )− logL
b i s = ’ l g r j ’
l g j ba r t ab ( i , j ) = r t b i s ( r jbar func , rminpt , rmaxpt , b i s a c c )

end do
end do
close (14)

OPEN(7 , f i l e=df r f i l e name )
WRITE(7 ,1000) ’#column 1 : o r b i t a l energy ’
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WRITE(7 ,1001) ’#column 2 : l =[L−Lmin ] / [ Lc (E)−Lmin ] ’
WRITE(7 ,1000) ’#column 3 : o r b i t a l angular momentum ’
WRITE(7 ,1000) ’#column 4 : r a d i a l o r b i t a l per iod ’
WRITE(7 ,1000) ’#column 5 : o r b i t a l p e r i c e n t r e ’
WRITE(7 ,1000) ’#column 6 : time averaged o r b i t a l rad ius ’
WRITE(7 ,1001) ’#column 7 : rad ius where j a c ob i dens i ty equa l s ’ ,

∗ ’ time average o f some power o f j a c ob i dens i ty ’
WRITE(7 ,1000) ’#column 8 : o r b i t a l apocentre ’
do i = 1 ,3∗E2dtabn

do j = 1 ,3∗ l2dtabn
write (7 ,1003) E2dtab ( i ) , l2dtab ( j ) , Lvec2d ( i , j ) , lgTrtab ( i , j ) ,

∗ l g rptab ( i , j ) , l g rba r tab ( i , j ) , l g j ba r t ab ( i , j ) ,
∗ l g r a tab ( i , j )

end do
end do
CLOSE(7 )
CALL cpu time ( time2 )
print ∗ , ’ o r b i t a l parameters as f unc t i on s o f E and L done . ’
print ∗ , ’Time taken =’ , time2−time1

end i f

print ∗ , ’ a l l o c a t i n g rbar , jbar , Tr , and rho j ’
j = f r i c t y p e
f r i c t y p e = 1
do i = 1 , objnum ! d e f i n e i n i t i a l t ime averaged r ad i i , r a d i i where s q r t j a c o b i

! d e n s i t y e q u a l s t ime average s q r t j a c o b i d en s i t y , and r a d i a l
! p e r i od f o r a l l t r a c e r s

lgEpt = log10 ( objEi ( i ) )
logLpt = log10 ( objL i ( i ) )
l p t = logLpt−log10 ( LcofE ( lgEpt ) )
ob j r ba r i ( i ) = opfn ( lgEpt , logLpt , 2 ) ! 2d i n t e r p o l a t i o n on E and L f o r rbar
ob j j b a r i ( i ) = opfn ( lgEpt , logLpt , 3 ) ! 2d i n t e r p o l a t i o n on E and L f o r j b a r
objTr i ( i ) = opfn ( lgEpt , logLpt , 5 ) ! 2d i n t e r p o l a t i o n on E and L f o r r a d i a l p e r i o d
ob j r h o j i ( i ) = log10 ( rho jev ( ob j r g c i ( i ) , lgEpt , logLpt ) )

end do
f r i c t y p e = j

! i n i t i a l d e n s i t y a l l o c a t i o n
i f ( rho0type . eq . 0 ) then

do i = 1 , objnum
obj rhoh i ( i ) = 4 . d1

end do
else i f ( rho0type . eq . 1 ) then ! a s s i g n i n i t i a l k i n g model t o c l u s t e r s based on randomly

! sampled user s p e c i f i e d i n i t i a l c on c en t r a t i on f un c t i o n
nvar = 1
kmax = 0
eps = 1 . d−6
h1 = 1 . d−10
do i = 1 , csampn ! f i n d cumu la t i v e d i s t r i b u t i o n f o r s p e c i f i e d c on c en t r a t i on d i s t r i b u t i o n

x i = cmin
xf = cmin+(i −1)∗(cmax−cmin ) / ( 1 . d0∗( csampn−1))
hadv = 1 . d−6∗(xf−x i )
y s t a r t (1 ) = 0 . d0
CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , c int , rkqs )
cumulat ivec ( i ) = ys t a r t (1 )
cvec ( i ) = xf

end do
do i = 1 , csampn

! norma l i s e cumu la t i v e d i s t r i b u t i o n to run between 0 and 1
cumulat ivec ( i ) = cumulat ivec ( i )/ cumulat ivec ( csampn )

end do
CALL s p l i n e ( cumulativec , cvec , csampn , yp1 , ypn , d2 cd f l t c 2 )
rhohok = 0 . d0
rhohmean = 0 . d0
do i = 1 , objnum

f l t c p t = ran2 ( r a n i n i t ) ! draw a random number between 0 and 1
s p l i n t c a l l = ’ cvec c sampling ’
! f i n d va l u e o f c on c en t r a t i on co r r e spond ing to cumu la t i v e
! d i s t r i b u t i o n = random number
CALL sp l i n t ch e ck ( cumulativec , cvec , d2cd f l t c2 , csampn , f l t c p t , cpt

∗ , . fa l se . )
s p l i n t c a l l = ’ king W0 i n t e r p o l a t i o n ’
! f i n d va l u e o f c e n t r a l p o t e n t i a l c o r r e spond ing to c onc en t r a t i on
CALL sp l i n t ch e ck ( kingc , kingW0 , spd2W0dc2 , kingdatn , cpt ,W0pt

∗ , . fa l se . )
s p l i n t c a l l = ’ k ingc r t rh i n t e r p o l a t i n g ’
! f i n d va l u e o f r t / rh co r r e spond ing to c onc en t r a t i on
CALL sp l i n t ch e ck ( kingc , k ingrtrh , spd2rtrhdc2 , kingdatn , cpt ,

∗ rtrhpt , . fa l se . )
! a l l o c a t i o n o f c on c en t r a t i on does not work f o r t i d a l l y
! compressed c l u s t e r s , as r t=i n f
i f ( 1 . d0/ ob j r h o j i ( i ) . eq . 0 . d0 ) then

ob j rhoh i ( i ) = rhohmean
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else
ob j rhoh i ( i ) = log10 ( 5 . d−1) + ob j r h o j i ( i ) + 3 . d0∗ r t rhpt
rhohmean = ( rhohmean∗ rhohok + obj rhoh i ( i ) ) / ( rhohok+1.d0 )
rhohok = rhohok + 1 . d0

end i f
objW0i ( i ) = 1 . d1∗∗W0pt

end do
! a s s i g n i n i t i a l r a t i o r t / rh to c l u s t e r based on user d e f i n e d f un c t i o n
else i f ( rho0type . eq . 2 ) then

do i = 1 , objnum
rt rhpt = log10 ( rho0param1)+rho0param2∗obj lgMi ( i )
ob j rhoh i ( i ) = log10 ( 5 . d−1) + ob j r h o j i ( i ) + 3 . d0∗ r t rhpt

end do
! a s s i g n rh based on c l u s t e r M accord ing to user d e f i n e d f un c t i o n
else i f ( rho0type . eq . 3 ) then

do i = 1 , objnum
obj rhoh i ( i ) = log10 ( 3 . d0∗m0overM0)−log10 ( 2 . d0∗P0)−3.d0∗

∗ log10 ( rho0param1 )+(1. d0−3.d0∗rho0param2 )∗ obj lgMi ( i )
i f ( ob j rhoh i ( i ) . ne . ob j rhoh i ( i ) ) then

print ∗ , ob j rhoh i ( i )
pause

end i f
end do

end i f

print ∗ , ’ i n t e g r a t i n g ob j e c t o r b i t s ’
nvar = 5
kmax = 0
eps = 1 . d−5
h1 = 1 . d−10
hadv = 1 . d−6 ! t h i s i s how much the i n t e g r a t i o n v a r i a b l e

! i s pushed a long by i f t h e i n t e g r a t i o n g e t s s t u c k
x i = lgtmin
xf = log10 ( t f )
l s a f e t y = 1 . d−3 ! a b s o l u t e
Esafety = log10 ( 5 . d−2) ! r e l a t i v e
i ok = 1
reqnum = objnum
CALL CPUTIME( s t a r t t ime )
do i = 1 , objnum

lgEpt = log10 ( ob jph i i ( i )+5.d−1∗(( ob j v r i ( i )∗∗2 . d0)+( ob j v t i ( i )∗∗
∗ 2 . d0 ) ) )

logLpt = log10 ( o b j r g c i ( i ))+ log10 ( ob j v t i ( i ) )
l p t = sma l l l o fL ( logLpt , lgEpt )
i f (Esup−lgEpt . gt . Esa fety .and . lgEpt−Einf . gt . Esa fety )Eok =.true .
i f ( l p t . gt . l s a f e t y .and . l p t . l t . 1 . d0−l s a f e t y ) lok = . true .
i f (Eok .and . l ok .and . i ok . le . reqnum) then

! l o g a r i t hm i c c l u s t e r p o s i t i o n
y s t a r t (1 ) = log10 ( o b j r g c i ( i ) )
! l o g a r i t hm i c c l u s t e r p o s i t i o n t ime d e r i v a t i v e
y s t a r t (2 ) = 1 . d1∗∗( xi−log10 ( o b j r g c i ( i ) ) )∗ ob j v r i ( i )
! l o g a r i t hm i c c l u s t e r t a n g e n t i a l speed
y s t a r t (3 ) = log10 ( ob j v t i ( i ) )
! l o g a r i t hm i c c l u s t e r mass
y s t a r t (4 ) = objlgMi ( i )
! l o g a r i t hm i c c l u s t e r h a l f−mass d e n s i t y
y s t a r t (5 ) = obj rhoh i ( i )
l g rp = ob j rp i ( i )
l g r a = ob j r a i ( i )
l g rba r = ob j rba r i ( i )
l g j b a r = ob j j b a r i ( i )
lgrE = obj rE i ( i )
lgrL = ob j rL i ( i )
lgTr = objTr i ( i )
mbar = 7 . d−1 ! a ve rage s t e l l a r mass in t r a c e r f o r chap t e r 2 , Jordan , MF,

! CMF evapo ra t i on p r e s c r i p t i o n s
gamma = 2 . d−2 ! c o e f f i c i e n t in Coulomb l o ga r i t hm − t h a t o f mul t imass

! c l u s t e r acco rd ing to Hegg ie
e i = ob j e c c i ( i )
Mi = 1 . d1∗∗ obj lgMi ( i )
rho j0 = ob j r h o j i ( i )
rhoh0 = obj rhoh i ( i )
W0 = objW0i ( i )

CALL ode int ( ys tar t , nvar , xi , xf , eps , h1 , hadv , nok , nbad , orbint ,
∗ rkqs )

lgEpt = log10 ( ph i o f r ( y s t a r t (1))+5.d−1∗((1. d1 ∗∗ (2 . d0∗(
∗ y s t a r t (1)− xf ) ) )∗ ( y s t a r t (2 )∗∗2 . d0 )+(1. d1 ∗∗ (2 . d0∗
∗ y s t a r t ( 3 ) ) ) ) )

logLpt = ys t a r t (1 ) + ys t a r t (3 )

i f ( abort . eqv . . fa l se . ) then
ob j r g c f ( iok ) = ys t a r t (1 )
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ob j v r f ( iok ) = ( 1 . d1∗∗( y s t a r t (1)− xf ) )∗ y s t a r t (2 )

gamma = atan ( ob jvph i i ( i )/ ob jv the ta i ( i ) )
! due to s p h e r i c a l symmetry , o r b i t a l i n c l i n a t i o n w i l l not
! change even wi th dynamica l f r i c t i o n ( i . e . gamma = cons t )
ob jvph i f ( iok ) = sign ( ( 1 . d1∗∗ y s t a r t (3 ) )∗ cos (gamma) ,

∗ ob jvph i i ( i ) )
ob jv the ta f ( iok ) =sign ( ( 1 . d1∗∗ y s t a r t (3 ) )∗ sin (gamma) ,

∗ ob jv the ta i ( i ) )
obj lgMf ( iok ) = ys t a r t (4 )
ob j rhohf ( iok ) = ys t a r t (5 )
objEf ( iok ) = lgEpt
ob jh f ( iok ) = ( 1 . d1∗∗ logLpt )/ LcofE ( lgEpt )
objLf ( iok ) = logLpt
ob j rp f ( iok ) = opfn ( lgEpt , logLpt , 1 )
ob j r a f ( iok ) = opfn ( lgEpt , logLpt , 4 )
objTrf ( iok ) = opfn ( lgEpt , logLpt , 5 )
ob j e c c f ( iok ) = ( 1 . d0−1.d1∗∗( ob j rp f ( i )− ob j r a f ( i ) ) ) /

∗ ( 1 . d0+1.d1∗∗( ob j rp f ( i )− ob j r a f ( i ) ) )
o b j r h o j f ( iok ) = log10 ( rho jev ( ob j r g c f ( i ) , lgEpt , logLpt ) )

okobjLi ( iok ) = log10 ( objL i ( i ) )
okobjEi ( iok ) = log10 ( objEi ( i ) )
okob j r g c i ( iok ) = log10 ( o b j r g c i ( i ) )
okobjlgMi ( iok ) = objlgMi ( i )
okobjrhohi ( iok ) = obj rhoh i ( i )
okob j rho j i ( iok ) = ob j r h o j i ( i )
okobjh i ( iok ) = ob jh i ( i )
okob jv r i ( iok ) = ob j v r i ( i )
okob jvph i i ( iok ) = ob jvph i i ( i )
okob jv the ta i ( iok ) = ob jv the ta i ( i )
okob j rp i ( iok ) = ob j rp i ( i )
okob j ra i ( iok ) = ob j r a i ( i )
okob j e c c i ( iok ) = ob j e c c i ( i )
okobjTri ( iok ) = objTr i ( i )
iok = iok + 1

end i f
end i f

end do

OPEN(7 , f i l e=ev l f i l e name )
WRITE(7 ,1000) ’#column1 : l oga r i thmic i n i t i a l mass ’
WRITE(7 ,1000) ’#column2 : l oga r i thmic f i n a l mass ’
WRITE(7 ,1000) ’#column3 : l oga r i thmic i n i t i a l ha l f−mass dens i ty ’
WRITE(7 ,1000) ’#column4 : l oga r i thmic f i n a l ha l f−mass dens i ty ’
WRITE(7 ,1000) ’#column5 : l oga r i thmic i n i t i a l t i d a l dens i ty ’
WRITE(7 ,1000) ’#column6 : l oga r i thmic f i n a l t i d a l dens i ty ’
WRITE(7 ,1001) ’#column7 : l oga r i thmic i n i t i a l g a l a c t o c e n t r i c ’ ,
∗ ’ r ad iu s ’
WRITE(7 ,1000) ’#column8 : l oga r i thmic f i n a l g a l a c t o c e n t r i c rad ius ’
WRITE(7 ,1000) ’#column9 : l oga r i thmic i n i t i a l o r b i t a l energy ’
WRITE(7 ,1000) ’#column10 : l oga r i thmic f i n a l o r b i t a l energy ’
WRITE(7 ,1000) ’#column11 : l oga r i thmic i n i t i a l angular momentum ’
WRITE(7 ,1000) ’#column12 : l oga r i thmic f i n a l angular momentum ’
WRITE(7 ,1000) ’#column13 : d imens i on l e s s i n i t i a l c i r c u l a r i t y ’
WRITE(7 ,1000) ’#column14 : d imens i on l e s s f i n a l c i r c u l a r i t y ’
WRITE(7 ,1000) ’#column15 : d imens i on l e s s i n i t i a l r a d i a l v e l o c i t y ’
WRITE(7 ,1000) ’#column16 : d imens i on l e s s f i n a l r a d i a l v e l o c i t y ’
WRITE(7 ,1001) ’#column17 : d imens i on l e s s i n i t i a l azimuthal ’ ,
∗ ’ v e l o c i t y ’
WRITE(7 ,1000) ’#column18 : d imens i on l e s s f i n a l azimuthal v e l o c i t y ’
WRITE(7 ,1000) ’#column19 : d imens i on l e s s i n i t i a l po la r v e l o c i t y ’
WRITE(7 ,1000) ’#column20 : d imens i on l e s s f i n a l po la r v e l o c i t y ’
WRITE(7 ,1000) ’#column21 : l oga r i thmic i n i t i a l o r b i t a l p e r i c e n t r e ’
WRITE(7 ,1000) ’#column22 : l oga r i thmic f i n a l o r b i t a l p e r i c e n t r e ’
WRITE(7 ,1000) ’#column23 : l oga r i thmic i n i t i a l o r b i t a l p e r i c e n t r e ’
WRITE(7 ,1000) ’#column24 : l oga r i thmic f i n a l o r b i t a l p e r i c e n t r e ’
WRITE(7 ,1000) ’#column25 : i n i t i a l o r b i t a l e l l i p t i c i t y ’
WRITE(7 ,1000) ’#column26 : f i n a l o r b i t a l e l l i p t i c i t y ’
WRITE(7 ,1000) ’#column27 : l oga r i thmic i n i t i a l r a d i a l per iod ’
WRITE(7 ,1000) ’#column28 : l oga r i thmic f i n a l r a d i a l per iod ’

do i = 1 , reqnum
WRITE(7 ,1009) okobjlgMi ( i ) , obj lgMf ( i ) , okobjrhohi ( i ) , ob j rhohf ( i ) ,

∗ okob j rho j i ( i ) , o b j r h o j f ( i ) , okob j r g c i ( i ) , o b j r g c f ( i ) ,
∗ okobjEi ( i ) , objEf ( i ) , okobjLi ( i ) , objLf ( i ) ,
∗ okobjh i ( i ) , ob jh f ( i ) , okob jv r i ( i ) , ob j v r f ( i ) ,
∗ okob jvph i i ( i ) , ob jvph i f ( i ) , okob jv the ta i ( i ) ,
∗ ob jv the ta f ( i ) , okob j rp i ( i ) , ob j rp f ( i ) , okob j r a i ( i ) ,
∗ ob j r a f ( i ) , okob j e c c i ( i ) , o b j e c c f ( i ) , okobjTri ( i ) ,
∗ objTrf ( i )
end do
CLOSE(7 )
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CALL CPUTIME( endtime )
print ∗ , ’ time taken = ’ , endtime−s t a r t t ime
print ∗ , s p l i n t e r r n , ’ i n t e r p o l a t i o n e r r o r s − check f o r t . 31 ’

STOP
301 FORMAT(A,2X, 3 ( E25 .14 , 2X) )
302 FORMAT(2 (E25 .14 ,2X) )
303 FORMAT(2 ( I4 , 2X) ,12 ( F12 . 8 , 2X) )
304 FORMAT(A,2X,A,3X,A,6X,A,8X,A,8X,A,8X,A,5X,A,5X,A,3X,A,7X,A,6X,A,

∗ 2X,A,3X,A,1X,A)
1000 FORMAT(A)
1001 FORMAT(2A)
1002 FORMAT(2 ( F30 .15 , 2X) )
1003 FORMAT(8 (E30 .10 ,2X) )
6666 FORMAT(12(E30 .15 ,2X) )
1004 FORMAT(2A, 2 ( F12 . 6 ,A) )
1005 FORMAT(3 ( F30 .15 , 2X) )
1006 FORMAT(A,8X,A,27X,A,25X,A,17X,A,15X,A,26X,A,18X,A,27X,A,19X,A,25X,

∗ A,25X,A,25X,A)
1007 FORMAT(4A)
1008 FORMAT(8 ( F30 .15 , 2X) )
1009 FORMAT(28(E30 .10 ,2X) )
1010 FORMAT(A,12X,A,27X,A,24X,A,25X,A,15X,A,21X,A,24X,A,20X,A)
6004 FORMAT(F30 . 1 5 )

END

! component f u n c t i o n o f GHO 1999 po in t mass c o r r e c t i o n
SUBROUTINE I 0 i n t (x , y , dydx )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 x , y (∗ ) , dydx (∗ ) , rppt , Mgaltot , zeta , Mofr
COMMON /pmfixpath/ rppt , Mgaltot
zeta = (x∗∗2. d0+1.d0 )∗∗ ( 5 . d−1)
dydx (1) = Mofr ( rppt∗ zeta )/( Mgaltot ∗( zeta ∗∗3. d0 ) )
return
END

! component f u n c t i o n o f GHO 1999 po in t mass c o r r e c t i o n
SUBROUTINE I 1 i n t (x , y , dydx )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 x , y (∗ ) , dydx (∗ ) , rppt , Mgaltot , zeta , dMdlnrofr
COMMON /pmfixpath/ rppt , Mgaltot
zeta = (x∗∗2. d0+1.d0 )∗∗ ( 5 . d−1)
dydx (1) = dMdlnrofr ( rppt∗ zeta )/( Mgaltot ∗( zeta ∗∗3. d0 ) )
return
END

! component f u n c t i o n o f GHO 1999 po in t mass c o r r e c t i o n
SUBROUTINE J0 int (x , y , dydx )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 x , y (∗ ) , dydx (∗ ) , rppt , Mgaltot , zeta , Mofr
COMMON /pmfixpath/ rppt , Mgaltot
zeta = (x∗∗2. d0+1.d0 )∗∗ ( 5 . d−1)
dydx (1) = Mofr ( rppt∗ zeta )/( Mgaltot ∗( zeta ∗∗5. d0 ) )
return
END

! component f u n c t i o n o f GHO 1999 po in t mass c o r r e c t i o n
SUBROUTINE J1 int (x , y , dydx )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 x , y (∗ ) , dydx (∗ ) , rppt , Mgaltot , zeta , dMdlnrofr
COMMON /pmfixpath/ rppt , Mgaltot
zeta = (x∗∗2. d0+1.d0 )∗∗ ( 5 . d−1)
dydx (1) = dMdlnrofr ( rppt∗ zeta )/( Mgaltot ∗( zeta ∗∗5. d0 ) )
return
END

! mass o f ho s t g a l a x y i n t e r i o r to r ad i u s r
FUNCTION Mofr ( r )
IMPLICIT NONE
REAL∗8 Mofr , r , dph idro f r
Mofr = ( r ∗∗2. d0 )∗ dph idro f r ( log10 ( r ) )
return
END
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! l o g a r i t hm i c d e r i v a t i v e o f ho s t g a l a x y mass i n t e r i o r to r ad i u s r a t r
FUNCTION dMdlnrofr ( r )
IMPLICIT NONE
REAL∗8 dMdlnrofr , r , Mofr , d2ph idr2o f r
dMdlnrofr = 2 . d0∗Mofr ( r )+( r ∗∗3. d0 )∗ d2phidr2o f r ( log10 ( r ) )
return
END

! Gnedin , Hernqu i s t & Oos t r i k e r 1999 t i d a l shock po i n t mass c o r r e c t i o n f un c t i o n
FUNCTION ch i ( l g rp )
IMPLICIT NONE
INTEGER shokn
PARAMETER ( shokn=500)
REAL∗8 l g c h i ( shokn ) , shokrp ( shokn ) , d2chidrp2 ( shokn ) , l g ch ip t , l g rp
REAL∗8 ch i
CHARACTER∗30 s p l i n t c a l l
COMMON / chipath / lgch i , shokrp , d2chidrp2
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ ch i shokrp ’
CALL sp l i n t ch e ck ( shokrp , l g ch i , d2chidrp2 , shokn , lgrp , l g ch ip t , . true . )
ch i = 1 . d1∗∗ l g c h i p t
return
END

! Weinberg 1994 t i d a l shock a d i a b a t i c c o r r e c t i o n f un c t i o n
FUNCTION adiab ( lgrhoh , lgrp , lgvp )
IMPLICIT NONE
REAL∗8 adiab , lgrhoh , lgrp , lgvp , P0 ,G,m0overM0
COMMON /parampath/ P0 ,G,m0overM0
adiab =(1.d0+(P0/3 . d0 )∗1 . d1∗∗( lgrhoh+2.d0∗( lgrp−lgvp )))∗∗( −1.5 d0 )
return
END

! Agui lar , Hutt & Os t r i k e r 1988 t i d a l f i e l d t ime va r i ance shock c o r r e c t i o n f un c t i o n
FUNCTION lambda ( lgrp , l g r a )
IMPLICIT NONE
REAL∗8 lambda , rp , ra , Mofr , lgrp , l g r a
rp = 1 . d1∗∗ l g rp
ra = 1 . d1∗∗ l g r a
lambda = ( 1 . d0−(Mofr ( ra )/Mofr ( rp ) )∗ ( ( rp/ ra )∗∗3 . d0 ) )∗∗2 . d0
return
END

! sys tem o f ODEs f o r cumu la t i v e King c onc en t r a t i on d i s t r i b u t i o n i n t e g r a t i o n
SUBROUTINE c i n t (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , c d i s t
dydx (1) = cd i s t ( x )
return
END

! King c onc en t r a t i on d i s t r i b u t i o n f un c t i o n
FUNCTION c d i s t ( c )
IMPLICIT NONE
INTEGER conctype
REAL∗8 cd i s t , c , rho0param1 , rho0param2 , gauss ian , s chechte r
COMMON / rho0path/ rho0param1 , rho0param2 , conctype
i f ( conctype . eq . 1 ) c d i s t = gauss ian ( c , rho0param1 , rho0param2 )
i f ( conctype . eq . 2 ) c d i s t = schechte r ( c , rho0param1 , rho0param2 )
return
END

! Gaussian wi th mean (mu) and s tandard d e v i a t i o n ( s i g )
FUNCTION gauss ian (x ,mu, s i g )
IMPLICIT NONE
REAL∗8 gauss ian , x ,mu, s i g
gauss ian = exp(−((x−mu)∗∗2 . d0 ) / ( 2 . d0∗( s i g ∗∗2. d0 ) ) )
return
END

! S che ch t e r f u n c t i o n wi th power−law s l o p e (− b e t a ) and e x p on en t i a l cut−o f f ( xc )
FUNCTION s chechte r (x , beta , xc )
IMPLICIT NONE
REAL∗8 schechter , x , beta , xc
s chechte r = (x∗∗(−beta ))∗exp(−x/xc )
return
END

! sys tem o f ODEs f o r r ad i u s as a f un c t i o n o f az imuth
SUBROUTINE r o f p s i i n t (x , y , dydx )
IMPLICIT NONE
REAL∗8 logE , logL , x , y (∗ ) , dydx (∗ ) , r , ps i , dphidro f r , hpt , LcofE
COMMON /ELpath/ logE , hpt
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r = 1 . d1∗∗y (1)
p s i = 1 . d1∗∗x
logL = log10 ( LcofE ( logE )∗ hpt )
dydx (1) = y (2)
dydx (2) = log ( 1 . d1 )∗ ( 1 . d1 ∗∗ (2 . d0∗x ) ) ∗ ( 1 . d0−dph idro f r ( y (1 ) )∗

∗ ( 1 . d1 ∗∗ (3 . d0∗y(1)−2.d0∗ logL )))+y ( 2 )∗ ( 1 . d0+y (2 ) )
return
END

! sys tem o f ODEs f o r r a d i a l / a z imu tha l p e r i od
SUBROUTINE az in t (x , y , dydx )
IMPLICIT NONE
INTEGER r o f p s i n
PARAMETER ( r o f p s i n =200)
REAL∗8 x , y (∗ ) , dydx (∗ ) , r o f p s i ( r o f p s i n ) , p s i ( r o f p s i n )
REAL∗8 spd2rdps i2 ( r o f p s i n ) , rpt
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /azpath/ r o f p s i , ps i , spd2rdps i2
s p l i n t c a l l = ’ az in t p s i r o f p s i ’
CALL sp l i n t ch e ck ( ps i , r o f p s i , spd2rdpsi2 , r o fp s in , x , rpt , . true . )
dydx (1) = 1 . d1 ∗∗ (2 . d0∗ rpt+x)
return
END

! sys tem o f ODEs f o r t ime averaged o r b i t a l r a d i u s
SUBROUTINE rba r i n t (x , y , dydx )
IMPLICIT NONE
INTEGER r o f p s i n
PARAMETER ( r o f p s i n =200)
REAL∗8 x , y (∗ ) , dydx (∗ ) , r o f p s i ( r o f p s i n ) , p s i ( r o f p s i n )
REAL∗8 spd2rdps i2 ( r o f p s i n ) , rpt
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /azpath/ r o f p s i , ps i , spd2rdps i2
s p l i n t c a l l = ’ rba r i n t p s i r o f p s i ’
CALL sp l i n t ch e ck ( ps i , r o f p s i , spd2rdpsi2 , r o fp s in , x , rpt , . true . )
dydx (1) = 1 . d1 ∗∗ (3 . d0∗ rpt+x)
return
END

! sys tem o f ODEs f o r t ime averaged t i d a l d e n s i t y
SUBROUTINE j b a r i n t (x , y , dydx )
IMPLICIT NONE
INTEGER r o f p s i n
PARAMETER ( r o f p s i n =200)
REAL∗8 x , y (∗ ) , dydx (∗ ) , r o f p s i ( r o f p s i n ) , p s i ( r o f p s i n ) , logE , logL
REAL∗8 spd2rdps i2 ( r o f p s i n ) , rpt , rhot id , hpt , LcofE , rhojpower
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /azpath/ r o f p s i , ps i , spd2rdps i2
COMMON / r h o j i n t / rhojpower
COMMON /ELpath/ logE , hpt
logL = log10 ( hpt∗LcofE ( logE ) )
s p l i n t c a l l = ’ j b a r i n t p s i r o f p s i ’
CALL sp l i n t ch e ck ( ps i , r o f p s i , spd2rdpsi2 , r o fp s in , x , rpt , . true . )
dydx (1) = ( rhot id ( rpt , logL )∗∗ rhojpower )∗1 . d1 ∗∗ (2 . d0∗ rpt+x)
return
END

! sys tem o f 5 ODEs g i v i n g rad ius , r a d i a l and t a n g e n t i a l v e l o c i t i e s ,
! mass , and d e n s i t y
SUBROUTINE orb in t (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) , dynf r i c , p0 , dphidro fr , df
REAL∗8 dlgMevapdlgt , dlgMshokdlgt , dlgMstevdlgt , ph io f r , v , lgrp , l g r a
REAL∗8 v2 , rmin , t , lgTr , rhojev , d lgrhohdlgt , Nstar , NofMt
REAL∗8 lgEpt , logLpt , opfn , l g rho j ,G,m0overM0 , Esup , Lmin ,Lmax , rmax
REAL∗8 mbar ,Mi , rhoj0 , rhoh0 ,W0,gamma, e i , Einf , t f
LOGICAL dead , abort , Lbad , rbad , Ebad ,Mbad, rhobad
COMMON / abortpath / t f , abort
COMMON /parampath/ p0 ,G,m0overM0
COMMON /deadpath/ rmin , rmax , Lmin ,Lmax , Esup , Einf
COMMON / c lusterparams / mbar ,Mi , rhoj0 , rhoh0 ,W0,gamma, e i
! y (1 ) i s l o g rgc
! y (2 ) i s d l o g rgc /d l o g t
! y (3 ) i s l o g v t
! y (4 ) i s l o g Mc
! y (5 ) i s l o g rho h
dead = . fa l se .
rbad = . fa l se .
Lbad = . fa l se .
Ebad = . fa l se .
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Mbad = . fa l se .
rhobad = . fa l se .
v2=(1.d1 ∗∗ (2 . d0∗(y(1)−x ) ) )∗ ( y (2 )∗∗2 . d0 )+(1. d1 ∗∗ (2 . d0∗y ( 3 ) ) ) ! c l u s t e r speed squared
lgEpt = log10 ( ph i o f r ( y (1))+5.d−1∗v2 ) ! o r b i t a l energy
v = v2 ∗∗5.d−1
logLpt = y (1) + y (3) ! o r b i t a l angu l a r momentum
t = 1 . d1∗∗x
Nstar = NofMt(y (4 ) , x )
! i f t h e c l u s t e r i s dead , p r e v en t any f u r t h e r c a l c u l a t i o n s
i f ( Nstar∗gamma. l t . 1 . d0 . or . ( y ( 1 ) . l t . rmin .and . logLpt . l t . Lmin ) ) then

dead = . true .
y (4 ) = −4.d1

else ! i f t h e c l u s t e r i s not dead , i s an abo r t due to unphy s i c a l parameters r e q u i r e d ?
i f ( y ( 1 ) .ne . y ( 1 ) . or . y ( 2 ) .ne . y ( 2 ) . or . y ( 3 ) .ne . y ( 3 ) . or .

∗ y ( 4 ) .ne . y ( 4 ) . or . y ( 5 ) .ne . y ( 5 ) ) then
print ∗ , ’ y1=’ , y (1 ) , ’ y2=’ , y (2 ) , ’ y3=’ , y (3 ) , ’ y4=’ , y (4 ) ,

∗ ’ y5=’ , y (5)
pause ’NAN in orb in t ’

end i f
i f ( logLpt . gt . Lmax . or . logLpt . l t . Lmin) Lbad = . true .
i f ( y ( 1 ) . l t . rmin . or . y ( 1 ) . gt . rmax) rbad = . true .
i f ( lgEpt . gt . Esup . or . lgEpt . l t . E inf . or . lgEpt .ne . lgEpt )Ebad=.true .
i f ( 1 . d1∗∗(−y ( 4 ) ) . eq . 0 . d0 ) Mbad = . true .
i f ( 1 . d1∗∗(−y ( 5 ) ) . eq . 0 . d0 ) rhobad = . true .
i f (Lbad . or . rbad . or . Ebad . or .Mbad . or . rhobad ) then

abort = . true . ! i f t r i a l s t e p s have r e s u l t e d in unphy s i c a l
! parameters , send s i g n a l t o a bo r t

return
end i f

end i f

i f ( dead ) then ! do not proceed w i th o r b i t c a l c u l a t i o n s
dydx (1) = 0 . d0 ! d l o g rgc /d l o g t
dydx (2) = 0 . d0 ! d2 l o g rgc /d l o g t2
dydx (3) = 0 . d0 ! d l o g v t /d l o g t
dydx (4) = 0 . d0 ! d l o g M/d l o g t
dydx (5) = 0 . d0 ! d l o g rho h /d l o g t

else
df = dyn f r i c ( y (1 ) , y (4 ) , y (5 ) , v )
l g rp = opfn ( lgEpt , logLpt , 1 )
l g r a = opfn ( lgEpt , logLpt , 4 )
lgTr = opfn ( lgEpt , logLpt , 5 )
l g r h o j = log10 ( rho jev (y (1 ) , lgEpt , logLpt ) )
dydx (1) = y (2)
dydx (2) =(1.d1 ∗∗ (2 . d0∗x−y (1 ) ) )∗ log ( 1 . d1 ) ∗ ( ( 1 . d1 ∗∗ (2 . d0∗y(3))−

∗ y(1))− dph idro f r ( y (1)))− log ( 1 . d1 )∗y (2 )∗ ( y (2)−1.d0+df∗ t /v )
dydx (3) = ( df∗ t /v)−y (2)
dydx (4) = dlgMevapdlgt (y (1 ) , y (4 ) , y (5 ) , l g rho j , x )

∗ +dlgMshokdlgt ( lgrp , lgra , logLpt−lgrp , lgTr , y (5 ) , x )
∗ +dlgMstevdlgt (x , y (4 ) ,Mi)

dydx (5) = dlgrhohd lgt (x , dydx (4 ) , Nstar , l g rho j−y (5 ) )
return
END

! r a t e o f mass− l o s s due to e vapo ra t i on
FUNCTION dlgMevapdlgt ( lg r , logM , lgrhoh , l g rho j , l o g t )
IMPLICIT NONE
REAL PI
PARAMETER (PI=3.141592654d0 )
INTEGER evaptype
REAL∗8 dlgMevapdlgt , l g r ,M, l g rho j , p0 ,G,m0overM0 , a , b , c , coe f ,Mi , rhoh
REAL∗8 rhoh0 , rhoj0 , gamma, rtrh , x , t1000 , f , omegac2ofr , rhoofr , eta ,mu
REAL∗8 t r e f , trh , tcc , t , q , F5 , F7 , KingF ,W0,mbar , e i , lgrhoh
REAL∗8 rhotofW0 , beta , NofMt , logM , logt , Coullog , Nstar , rho j
LOGICAL R f i l
COMMON /evappath/ evaptype
COMMON /parampath/ p0 ,G,m0overM0
COMMON / c lusterparams / mbar ,Mi , rhoj0 , rhoh0 ,W0,gamma, e i
Nstar = NofMt( logM , l o g t )
Coul log = log ( Nstar∗gamma)
t = 1 . d1∗∗ l o g t
M = 1 . d1∗∗ logM
rho j = 1 . d1∗∗ l g r h o j
rhoh = 1 . d1∗∗ lgrhoh
i f ( evaptype . eq . 0 ) then

dlgMevapdlgt = 0 . d0
else i f ( evaptype . eq . 1 ) then ! King 1966

dlgMevapdlgt = −(27.d0∗ t / ( 8 . d0∗M))∗ ( ( P0∗ rho j / ( 6 . d0∗PI ))∗∗
∗ ( 5 . d−1))∗ log ( 5 . d−1∗Nstar )∗KingF(W0)
else i f ( evaptype . eq . 2 ) then ! Ve spe r in i & Heggie 1997

dlgMevapdlgt = −(92.d0∗ t / (75 . d0∗M))∗ log ( Nstar )∗ ( (P0∗ rho j )
∗ ∗∗ (5 . d−1))
else i f ( evaptype . eq . 3 ) then ! F a l l & Zhang 2001
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dlgMevapdlgt = −12.105∗ log ( 1 . 2 d1 )∗ ( t /M)∗ ( (P0∗ rho j / ( 4 . d0∗PI ) )
∗ ∗∗ (5 . d−1))
else i f ( evaptype . eq . 4 ) then ! Jordan e t a l 2007

dlgMevapdlgt = −(8.4d2∗ t /(M∗mbar ) )∗ ( ( P0∗rhoh / ( 8 . d0∗PI∗G))
∗ ∗∗5.d−1)
else i f ( evaptype . eq . 5 ) then ! Chapter 2

dlgMevapdlgt = −(8.1d2∗ t /(M∗mbar ) )∗ ( ( P0∗rhoh / ( 8 . d0∗PI∗G))
∗ ∗∗5.d−1)
else i f ( evaptype . eq . 6 ) then ! McLaughlin & Fa l l 2008

dlgMevapdlgt = −(1.1d3∗ t /(M∗mbar ) )∗ ( ( P0∗rhoh / ( 8 . d0∗PI∗G))
∗ ∗∗5.d−1)
else i f ( evaptype . eq . 7 ) then ! Chandar e t a l 2007

dlgMevapdlgt = −(5.6d2∗ t /(M∗mbar ) )∗ ( ( P0∗rhoh / ( 8 . d0∗PI∗G))
∗ ∗∗5.d−1)
else i f ( evaptype . eq . 8 ) then ! Baumgardt 1998

dlgMevapdlgt = −(8.d0∗ t /(M∗69. d0 ) ) ∗ ( ( ( P0/3 . d0 )∗ ( 2 . d0∗ rhoh+
∗ ( 14 . 9∗∗3 . d0 )∗ rho j ) )∗∗ ( 5 . d−1))∗Coullog
else i f ( evaptype . eq . 9 ) then ! G i e l e s & Baumgardt 2008

dlgMevapdlgt = −(3.7d1∗ t /(M∗6.9 d2 ))∗exp ( 1 . d1 ∗ ( ( rho j / ( 2 . d0∗ rhoh )
∗ )∗∗ ( 1 . d0 /3 . d0 ) ) )∗ Coullog ∗ ( ( 2 . d0∗P0∗rhoh /3 . d0 )∗∗ ( 5 . d−1))
else i f ( evaptype . eq . 1 0 ) then ! G i e l e s e t a l 2011

dlgMevapdlgt = −2.d1∗( t /M)∗ ( (P0∗ rho j / ( 8 . d0∗PI ∗ (0 .145∗∗3 . d0 ) ) )
∗ ∗∗ (5 . d−1))
else i f ( evaptype . eq . 1 1 ) then ! G i e l e s & Baumgardt 2008 non−l i n e a r

dlgMevapdlgt = −7.4d−3∗( t /M)∗exp ( 1 . d1 ∗ ( ( rho j / ( 2 . d0∗ rhoh ) )∗∗ (
∗ 1 . d0 /3 . d0 ) ) ) ∗ ( ( Coul log /1 .38d−1)∗∗(7.5d−1))∗((M/
∗ 3 .85 d0 )∗∗ ( 2 . 5 d−1))∗ ( (2 . d0∗P0∗rhoh /3 . d0 )∗∗ ( 5 . d−1))
else i f ( evaptype . eq . 1 2 ) then ! G i e l e s e t a l 2011 non−l i n e a r

x = 7.5d−1
dlgMevapdlgt = −2.d1∗( t /M)∗ ( (P0∗ rho j / ( 8 . d0∗PI ∗ (0 .145∗∗3 . d0 ) ) )∗∗

∗ ( 5 . d−1))∗((M∗1 .d−5)∗∗(1.d0−x ) )
else i f ( evaptype . eq . 1 3 ) then ! Tanikaway & Fukush ige 2010

r t rh = ( 2 . d0 ∗1 . d1∗∗( rhoh0−rho j0 ) )∗∗ ( 1 . d0 /3 . d0 )
t1000 = 2 . d4 ∗ ( ( r t rh ∗∗4. d0 ) / ( ( r t rh ∗∗4. d0 )+2.d3 ) )
x = ( r t rh ∗∗4. d0 ) / ( ( r t rh ∗∗4. d0 )+1.d2 )
i f ( r t rh . gt . 8 . d0 ) then ! f u n c t i o n g i s b u i l t in u s ing i f s t a t emen t

f = 0 . d0
else

f =15.d0 / (16 . d0−((1. d0+P0∗ rhoo f r ( l g r )/ omegac2ofr ( l g r ) )∗∗2 . d0 ) )
end i f
dlgMevapdlgt = −Mi∗( t /M)∗ ( (P0∗ rhoh0 )∗∗ ( 5 . d−1))/(2 .54 d2∗ t1000 ∗(

∗ 1 . d0+f )∗ ( ( 1 . 5 d−5∗Mi)∗∗( x ) ) )
else i f ( evaptype . eq . 1 4 ) then ! Lamers e t a l 2010

! i f c u r r en t t i d a l d e n s i t y i s g r e a t e r or e qua l t o i n i t i a l t i d a l
! d en s i t y , then the c l u s t e r must be f i l l i n g i t s Roche l o b e
i f ( l g r h o j . ge . rho j0 ) R f i l = . true .
t rh = 0.169 d0∗M/( ( (P0∗ rhoh )∗∗ ( 5 . d−1))∗Coullog )
i f ( R f i l ) then

t cc = 16 .9 d0∗( trh ∗∗(−0.872d0 ) )
i f ( t . l t . t c c ) then ! pre core−c o l l a p s e

i f (abs (W0−7.d0 ) . l t . abs (W0−5.d0 ) ) then ! W0 i s c l o s e r to 7
eta = 0 .8 d0
mu = 0.8 d0
t r e f = 3 .5 d0
a = 1.23 d0
b = −0.094d0
c = 0 . d0
coe f = 1 . d0

else ! W0 i s c l o s e r to 5
eta = 0.65 d0
mu = 0.65 d0
t r e f = 13 .3 d0
a = 1.528 d0
b = −0.121d0
c = 0 . d0
coe f = 1 . d0

end i f
e lse ! p o s t core−c o l l a p s e

i f (abs (W0−7.d0 ) . l t . abs (W0−5.d0 ) ) then
mu = 0.8 d0
t r e f = 6 .2 d0
a = 0.893 d0
b = −0.0691d0
c = 0 . d0

else
mu = 0.65 d0
t r e f = 7 .2 d0
a = 1.528 d0
b = −0.0984d0
c = 0 . d0

end i f
i f (M. l t . 1 . d3 ) then

! mass− l o s s depends on c l u s t e r mass in po s t core−c o l l a p s e regime
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eta = 0 .4 d0
coe f = ( ( 1 . d1 )∗∗ ( 0 . 9 d0 ) )

else
eta = 0 .7 d0
coe f = 1 . d0

end i f
end i f

else
F7 = ( rho j /rhotofW0 ( 7 . d0 ) )∗∗ ( 1 . d0 /3 . d0 )
F5 = ( rho j /rhotofW0 ( 5 . d0 ) )∗∗ ( 1 . d0 /3 . d0 )
tcc = 32 . d0∗( trh ∗∗(−0.872d0 ) )∗ ( F5∗∗(−0.513d0 ) )
i f ( t . l t . t c c ) then ! pre core−c o l l a p s e

eta = 0 .8 d0
mu = 0.8 d0
a = 1.38
b = −0.0984d0
c = 0.101 d0
coe f = 1 . d0
i f (F7 . gt . −0.5) then

t r e f = 3 .5 d0
else

t r e f = 7.395 d0∗(F7∗∗ (0 .65 d0 ) )
end i f

e lse ! p o s t core−c o l l a p s e
a = 1.38 d0
b = −0.0984d0
c = 0.101 d0
i f (F7 . gt . −0.5) then

t r e f = 3 .5 d0
else

t r e f = 7.395 d0∗(F7∗∗ (0 .65 d0 ) )
end i f
i f (M. l t . 1 . d3 ) then

eta = 0 .4 d0
coe f = ( ( 1 . d1 )∗∗ ( 0 . 9 d0 ) )

else
eta = 0 .7 d0
coe f = 1 . d0

end i f
end i f

end i f
i f ( t . gt . t c c .and . R f i l . eqv . . fa l se . ) then

q = ( 1 . d0+b∗mu)∗∗(−1.d0 )
dlgMevapdlgt = −((1.507d0∗∗ eta )∗ ( a∗∗(q∗mu))∗ (Mi∗∗(−0.0984∗ eta

∗ ∗mu+b∗q∗(mu∗∗2. d0 ) ) ) / ( 7 . 5 d0∗ co e f ∗(F5∗∗0.127 d0 )∗ (F7
∗ ∗∗ (0 .207 d0+q∗c∗mu) ) ∗ ( ( 9 . d0∗ t r e f ∗ ( 1 . d0−e i ) /3 . 4 d2 )∗∗
∗ q ) ) )∗ ( t /M)∗ (M∗∗ (1 . d0−eta ) )∗ ( ( P0∗ rho j /6 . d0 )∗∗
∗ ( 5 . d−1∗q ) )

else
q = ( 1 . d0+b∗ eta )∗∗(−1.d0 )
dlgMevapdlgt = −((a∗∗(q∗ eta ) )∗ (Mi∗∗(b∗q∗ eta∗mu) ) / ( ( 9 . d0∗ t r e f ∗

∗ ( 1 . d0−e i ) /3 . 4 d2 )∗∗q ) )∗ ( t /M)∗ (M∗∗ (1 . d0−eta ) )∗ ( ( P0∗
∗ rho j /6 . d0 )∗∗ ( 5 . d−1∗q ) )

end i f
else i f ( evaptype . eq . 1 5 ) then ! Takahashi & Baumgardt 2012

mu = 40 . d0
beta = 2 . d0
dlgMevapdlgt = −(mu∗(M∗∗ (1 . d0 /( beta+2.d0 ) ) ) / ( 2 . d0∗PI ) )∗ ( t /M)∗

∗ ( (P0∗ rho j /3 . d0 )∗∗ ( 5 . d−1 ) )∗ ( ( ( ( 2 . d0∗ rhoh/ rho j )
∗ ∗∗ (5 . d−1))∗(2 . d0∗PI∗Coullog /(0 .138 d0∗mu) ) )
∗ ∗∗(( beta+1.d0 )/( beta+2.d0 ) ) )
end i f
return
END

! King ’ s e vapo ra t i on c o e f f i c i e n t as a f un c t i o n o f W0
FUNCTION KingF(W0)
IMPLICIT NONE
REAL∗8 KingF ,W0, Ftab (9 ) ,W0tab (9 ) , spd2FdW02 (9)
SAVE Ftab ,W0tab , spd2FdW02
DATA Ftab (1 ) /7 . 3 d0 / , Ftab (2 )/6 . 25 d0 / , Ftab (3 )/4 . 71 d0 / ,
∗ Ftab (4 )/3 . 83 d0 / , Ftab (5 )/3 . 59 d0 / , Ftab (6 )/4 . 06 d0 / ,
∗ Ftab (7 )/5 . 41 d0 / , Ftab (8 )/7 . 04 d0 / , Ftab (9 )/7 . 68 d0/
DATA W0tab (1 )/2 . 5 d0 / ,W0tab ( 2 ) / 3 . d0 / ,W0tab ( 3 ) / 4 . d0 / ,
∗ W0tab ( 4 ) / 5 . d0 / ,W0tab ( 5 ) / 6 . d0 / ,W0tab ( 6 ) / 7 . d0 / ,W0tab ( 7 ) / 8 . d0 / ,
∗ W0tab ( 8 ) / 9 . d0 / ,W0tab ( 9 ) / 1 . d1/
DATA spd2FdW02 /9 ∗ 0 . d0/
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’KingF W0’
i f (W0. l t .W0tab ( 1 ) ) then

KingF = Ftab (1)
else i f (W0. gt .W0tab ( 9 ) ) then
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KingF = Ftab (9)
else

CALL sp l i n t ch e ck (W0tab , Ftab , spd2FdW02 , 9 ,W0, KingF , . true . )
end i f
return
END

! d e n s i t y i n s i d e o f King ze ro d e n s i t y s u r f a c e as a f un c t i o n o f W0
FUNCTION rhotofW0 (W0pt)
IMPLICIT NONE
INTEGER kingdatn
PARAMETER ( kingdatn=193)
REAL∗8 kingW0( kingdatn ) , spd2MdW02( kingdatn )
REAL∗8 kingM( kingdatn ) , lgrhot , lgW0 , rhotofW0
REAL∗8 k ingrhot ( kingdatn ) , spd2rhotdW02 ( kingdatn ) ,W0pt
CHARACTER∗30 s p l i n t c a l l
COMMON /kingpath / kingW0 , kingM , kingrhot , spd2MdW02 , spd2rhotdW02
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’kingW0 rhot ’
lgW0 = log10 (W0pt)
CALL sp l i n t ch e ck (kingW0 , kingrhot , spd2rhotdW02 , kingdatn , lgW0 ,

∗ l g rhot , . fa l se . )
rhotofW0 = 1 . d1∗∗ l g rho t
return
END

! mass− l o s s r a t e due to t i d a l s ho c k in g
FUNCTION dlgMshokdlgt ( lgrp , lgra , lgvp , lgTr , lgrhoh , l o g t )
IMPLICIT NONE
INTEGER shoktype
REAL∗8 dlgMshokdlgt , lgrp , lgra , lgvp , lgTr , lgrhoh , Mofr
REAL∗8 P0 ,G,m0overM0 , adiab , chi , lambda , l o g t
COMMON / shokpath/ shoktype
COMMON /parampath/ p0 ,G,m0overM0
i f ( shoktype . eq . 0 ) then

dlgMshokdlgt = 0 . d0
else i f ( shoktype . eq . 1 ) then

dlgMshokdlgt = −(8.d1 / ( 3 . d0∗P0 ) )∗ 1 . d1∗∗( logt−lgTr−lgrhoh −2.d0∗
∗ ( lgvp+2.d0∗ l g rp ) )∗ ( Mofr ( 1 . d1∗∗ l g rp )∗∗2 . d0 )∗
∗ adiab ( lgrhoh , lgrp , lgvp )∗ ch i ( l g rp )∗ lambda ( lgrp , l g r a )
end i f
return
END

! mass− l o s s r a t e due to s t e l l a r e v o l u t i o n
FUNCTION dlgMstevdlgt ( logt , logM , Minit )
IMPLICIT NONE
INTEGER s tevtype
REAL∗8 dlgMstevdlgt , logt , lgmto , mtooft ,ChabIMF , d lgmtodlgto f t , Pej
REAL∗8 lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,mto , Minit ,Mnorm, a , b , c , d
REAL∗8 logM ,mrm
COMMON / stevparam/ lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,Mnorm
COMMON / stevpath / stevtype
i f ( s tevtype . eq . 0 ) then

dlgMstevdlgt = 0 . d0
else

mto = mtooft ( l o g t )
lgmto = log10 (mto)
i f ( lgmto . gt . lgmu . or . lgmto . l t . lgml ) then

! not p o s s i b l e to be l o s i n g mass due to s t e l l a r
! e v o l u t i o n when cu r r en t mass e x p i r i n g i s g r e a t e r
! than b i g g e s t mass in IMF or sma l l e r than
! sma l l e s t mass in IMF
dlgMstevdlgt = 0 . d0

else
dlgMstevdlgt = ChabIMF( lgmto )∗ d lgmtod lg to f t ( l o g t )∗ (mto−(1.d0

∗ −Pej ( lgmto ))∗mrm( lgmto ) ) / ( ( 1 . d1∗∗ logM)∗ log ( 1 . d1 ))∗
∗ Minit /Mnorm

a = ChabIMF( lgmto )
b = dlgmtod lg to f t ( l o g t )
c = Pej ( lgmto )
d = mrm( lgmto )

end i f
end i f
return
END

! magnitude o f dynamica l f r i c t i o n acco rd ing to Chandrasekhar
FUNCTION dyn f r i c ( lg r , lgM , lgrhoh , v )
IMPLICIT NONE
REAL∗8 PI
PARAMETER (PI=3.141592654d0 )
INTEGER f r i c t y p e
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REAL∗8 dynf r i c , l g r , lgM , lgrhoh , v , u , vd2ofr , P0 ,m0overM0 , rhoo f r
REAL∗8 lncou l , e r ror , drhodr ,G, d l g rhod lg r
COMMON /parampath/ P0 ,G,m0overM0
COMMON / f r i c p a t h / f r i c t y p e
i f ( f r i c t y p e . eq . 0 ) then

dyn f r i c = 0 . d0
else i f ( f r i c t y p e . eq . 1 ) then

d lg rhod lg r = ( ( 1 . d1∗∗ l g r )/ rhoo f r ( l g r ) )∗ drhodr ( l g r )
i f (−d lg rhod lg r . le . 0 . 1 d0 ) then

! i f l o g a r i t hm i c d e n s i t y g r a d i e n t i s more s h a l l ow than 0 . 1 ,
! c on s i d e r d e n s i t y to be con s t an t
dyn f r i c = 0 . d0

else
! t h i s i s t h e u sua l X = v/ s q r t (2)∗ sigma
u = v / (2 . d0∗vd2ofr ( l g r ) )∗∗5 . d−1
! Chandrasekhar ’ s formula from BT and made d imen s i on l e s s
dyn f r i c = −(P0∗m0overM0 ∗ ( 1 . d1∗∗lgM)∗ rhoo f r ( l g r )∗

∗ l n cou l ( lg r , lgrhoh , lgM , v )/( v∗∗2. d0 ) )∗ ( e r r o r (u)−
∗ 2 . d0∗u∗exp(−(u∗∗2. d0 ) ) / ( PI ∗∗5.d−1))

end i f
end i f
return
END

! Coulomb l o ga r i t hm accord ing to Jus t & Penarrub ia 2005
FUNCTION l n cou l ( lg r , obj lgrhoh , objlgM , objv )
IMPLICIT NONE
REAL∗8 lncou l , l g r , obj lgrhoh , objlgM , objv , bmax , rhoofr , drhodr , bmin
REAL∗8 vd2ofr , PI , a90
PARAMETER (PI=3.141592654d0 )
bmax = min ( 1 . d1∗∗ l g r ,− rhoo f r ( l g r )/ drhodr ( l g r ) )
bmin = ( ( 3 . d0 /8 . d0∗PI )∗1 . d1∗∗( objlgM−obj lg rhoh ) )∗∗ ( 1 . d0 /3 . d0 )
a90 = ( 1 . d1∗∗objlgM ) / ( 2 . d0∗vd2ofr ( l g r )+( objv ∗∗2. d0 ) )
l n cou l = log (bmax)−5.d−1∗log ( ( bmin∗∗2. d0)+(a90 ∗∗2. d0 ) )
return
END

! s quared i s o t r o p i c v e l o c i t y d i s p e r s i o n o f ho s t g a l a x y
FUNCTION vd2ofr ( l g r p t )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 vd2ofr , l g rpt , l g r (modnum) , lgvd2 (modnum) , spd2vd2dr2 (modnum)
CHARACTER∗30 s p l i n t c a l l
COMMON / lg rpath / l g r
COMMON /vd2path/ lgvd2 , spd2vd2dr2
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ l g r vd2ofr ’
CALL sp l i n t ch e ck ( lgr , lgvd2 , spd2vd2dr2 ,modnum, lgrpt , vd2ofr ,

∗ . fa l se . )
vd2ofr = 1 . d1∗∗ vd2ofr
return
END

! r a t e o f change o f h a l f−mass d e n s i t y assuming mainta ined v i r i a l e q u i l i b r i um
FUNCTION dlgrhohd lg t ( logt , dlgMdlgt ,N, l g rho j rhoh )
IMPLICIT NONE
REAL∗8 gamrat ,Cw,Cb, zeta , PI
PARAMETER (PI=3.141592654d0 , gamrat=2.9586751191d0 ,Cw=0.45d0 )
PARAMETER ( zeta =7.8d−2,Cb=0.38d0 )
REAL∗8 dlgrhohdlgt , logt , dlgMdlgt ,N, lgrho j rhoh , Coullog , kappa
REAL∗8 Mi , rhoj0 , rhoh0 ,W0,gamma, e i , mbar , d lgmbard lgto f t
INTEGER c l ev type
COMMON / c lusterparams / mbar ,Mi , rhoj0 , rhoh0 ,W0,gamma, e i
COMMON / c levpath / c l ev type
i f ( c l ev type . eq . 0 ) then

d lgrhohd lgt = 0 . d0
else i f ( c l ev type . eq . 1 ) then

Coullog = log (N∗gamma)
kappa = ( ( 8 . 1 d1 /2 . d0 )∗∗ ( 1 . d0 /3 . d0 ) )∗ ( gamrat/Cw) ∗ ( ( 3 . d0∗Cb∗ zeta

∗ ∗Coullog /(0 .138 d0∗PI∗N))∗∗0 .25 d0 )∗
∗ ( 1 . d1 ∗∗ ( ( 5 . d0 /24 . d0 )∗ ( l g rho j rhoh ) ) )

d lg rhohd lgt=dlgmbard lgto f t ( l o g t )∗ ( 3 . d0−kappa)+dlgMdlgt ∗( kappa−
∗ 5 . d0 )

i f ( d lg rhohd lgt .ne . d lg rhohd lgt . or . 1 . d0/ d lgrhohd lgt . eq . 0 . d0 ) then
pause ’ d lg rhohd lgt broken ’

end i f
end i f
END

! d e f i n i t i o n e f f e c t i v e t i d a l d e n s i t y
FUNCTION rho jev ( lgr , lgEpt , lgLpt )
IMPLICIT NONE
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REAL∗8 a , b
PARAMETER ( a=0.17d0 , b=4.1d0 )
REAL∗8 rhojev , lg r , lgEpt , lgLpt , e ,F , lgrp , lgra , rhot id , opfn
INTEGER r t i d type
COMMON / r t idpath / r t i d type
i f ( r t i d type . eq . 4 ) then

l g rp = opfn ( lgEpt , lgLpt , 1 )
l g r a = opfn ( lgEpt , lgLpt , 4 )
e = ( 1 . d0−1.d1∗∗( lgrp−l g r a ) ) / ( 1 . d0+1.d1∗∗( lgrp−l g r a ) )
F = ( 1 . d1∗∗( lg r−l g rp )−1.d0 ) / ( 1 . d1∗∗( lgra−l g rp )−1.d0 )
rho jev = log10 ( rhot id ( lgrp , lgLpt ) )

∗ −3.d0∗ log10 ( 1 . d0+a∗F∗exp(b∗e ) )
else

rho jev = rhot id ( opfn ( lgEpt , lgLpt , r t i d type ) , lgLpt )
end i f
END

! r e t u rn s o r b i t a l parameter s p e c i f i e d by paramtype f o r any E and L
FUNCTION opfn ( lgEpt , logLpt , paramtype )
IMPLICIT NONE
INTEGER E2dtabn , l2dtabn
PARAMETER ( E2dtabn=20, l2dtabn=80)
INTEGER paramtype , f r i c t yp e , ipt1 , ipt2 , jpt1 , jpt2 , i
REAL∗8 lg rptab (3∗E2dtabn ,3∗ l2dtabn ) , lgTrtab (3∗E2dtabn ,3∗ l2dtabn )
REAL∗8 l g ra tab (3∗E2dtabn ,3∗ l2dtabn ) , opfn , lgEpt , logLpt , l p t
REAL∗8 lg rbar tab (3∗E2dtabn ,3∗ l2dtabn ) , sma l l l o fL , smal l
REAL∗8 zbl , z t l , zbr , ztr , zpt1 , zpt2 , l g j ba r t ab (3∗E2dtabn ,3∗ l2dtabn )
REAL∗8 E2dtab (3∗E2dtabn ) , l2dtab (3∗ l2dtabn ) , lgrp , lgra , lgrbar , lgTr
REAL∗8 l g j b a r
COMMON /paraminterp / lgrptab , lgratab , lgrbartab , l g jbar tab , lgTrtab ,
∗ E2dtab , l2dtab
COMMON /orbparampath/ lgrp , lgra , lgrbar , l g jba r , lgTr
COMMON / f r i c p a t h / f r i c t y p e
! paramtype = 1 : l o g p r e i c e n t r e
! paramtype = 2 : l o g t ime averaged r ad i u s
! paramtype = 3 : l o g r ad i u s where s q r t j a c o b i d e n s i t y e q u a l s

time average o f sqrt j a c ob i dens i ty
! paramtype = 4 : l o g apocen t r e
! paramtype = 5 : l o g r a d i a l p e r i od
i f ( f r i c t y p e . eq . 1 ) then

l p t = log10 ( sma l l l o fL ( logLpt , lgEpt ) )
smal l = 1 . d40
do i = 1 ,3∗ l2dtabn ! f i n d i t e r a t i o n o f l 2 d t a b n ea r e s t d e s i r e d po i n t

i f (ABS( lpt−l2dtab ( i ) ) . l t . smal l ) then
smal l = ABS( lpt−l2dtab ( i ) )
ip t1 = i

end i f
end do
! f i n d l 2 d t a b i t e r a t i o n on o p p o s i t e s i d e o f d e s i r e d po i n t
i f ( l2dtab ( ip t1 ) . gt . l p t ) then

i p t2 = ipt1
ip t1 = ipt1 − 1

else
i p t2 = ipt1 + 1

end i f

smal l = 1 . d40
! f i n d i t e r a t i o n o f E2dtab n ea r e s t d e s i r e d po i n t
do i = 1 ,3∗E2dtabn

i f (ABS( lgEpt−E2dtab ( i ) ) . l t . smal l ) then
smal l = ABS( lgEpt−E2dtab ( i ) )
jp t1 = i

end i f
end do
! f i n d E2dtab i t e r a t i o n on o p p o s i t e s i d e o f d e s i r e d po i n t
i f ( E2dtab ( jpt1 ) . gt . lgEpt ) then

jp t2 = jpt1
jpt1 = jpt2 − 1

else
jp t2 = jpt1 + 1

end i f
! e x t r a p o l a t e l i n e a r l y from l a s t 2 p o i n t s when l p t i s out o f range
i f ( ip t2 . gt . 3∗ l2dtabn ) then

i p t2 = 3∗ l2dtabn
ip t1 = ipt2 − 1

else i f ( ip t1 . l t . 1 ) then
i p t1 = 1
ip t2 = ipt1 + 1

end i f
! e x t r a p o l a t e l i n e a r l y from l a s t 2 p o i n t s when Ept i s out o f range
i f ( jp t2 . gt . 3∗E2dtabn ) then

jp t2 = 3∗E2dtabn
jpt1 = jpt2 − 1
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else i f ( jp t1 . l t . 1 ) then
jp t1 = 1
jpt2 = jpt1 + 1

end i f

i f ( paramtype . eq . 1 ) then
zb l = lgrptab ( jpt1 , i p t1 )
z t l = lgrptab ( jpt2 , i p t1 )
zbr = lgrptab ( jpt1 , i p t2 )
z t r = lgrptab ( jpt2 , i p t2 )

else i f ( paramtype . eq . 2 ) then
zb l = lg rbar tab ( jpt1 , i p t1 )
z t l = lg rbar tab ( jpt2 , i p t1 )
zbr = lg rbar tab ( jpt1 , i p t2 )
z t r = lg rbar tab ( jpt2 , i p t2 )

else i f ( paramtype . eq . 3 ) then
zb l = lg jba r t ab ( jpt1 , ip t1 )
z t l = l g jba r t ab ( jpt2 , i p t1 )
zbr = lg jba r t ab ( jpt1 , i p t2 )
z t r = lg jba r t ab ( jpt2 , i p t2 )

else i f ( paramtype . eq . 4 ) then
zb l = lg ra tab ( jpt1 , i p t1 )
z t l = lg ra tab ( jpt2 , i p t1 )
zbr = lg ra tab ( jpt1 , ip t2 )
z t r = lg ra tab ( jpt2 , ip t2 )

else i f ( paramtype . eq . 5 ) then
zb l = lgTrtab ( jpt1 , ip t1 )
z t l = lgTrtab ( jpt2 , ip t1 )
zbr = lgTrtab ( jpt1 , ip t2 )
z t r = lgTrtab ( jpt2 , ip t2 )

end i f

zpt2 = ( z t r ∗( lpt−l2dtab ( ip t1 ))+ z t l ∗( l2dtab ( ip t2 )− l p t ) )/
∗ ( l2dtab ( ip t2 )− l2dtab ( ip t1 ) )

zpt1 = ( zbr ∗( lpt−l2dtab ( ip t1 ))+ zb l ∗( l2dtab ( ip t2 )− l p t ) )/
∗ ( l2dtab ( ip t2 )− l2dtab ( ip t1 ) )

opfn = ( zpt2 ∗( lgEpt−E2dtab ( jpt1 ))+ zpt1 ∗(E2dtab ( jpt2 )− lgEpt ) )/
∗ ( E2dtab ( jpt2 )−E2dtab ( jpt1 ) )

else
i f ( paramtype . eq . 1 ) then

opfn = lg rp
else i f ( paramtype . eq . 2 ) then

opfn = lg rba r
else i f ( paramtype . eq . 3 ) then

opfn = l g j b a r
else i f ( paramtype . eq . 4 ) then

opfn = l g r a
else i f ( paramtype . eq . 5 ) then

opfn = lgTr
end i f

end i f
i f ( opfn .ne . opfn . or . 1 . d0/opfn . eq . 0 . d0 ) then

print ∗ , ’NAN or INF in opfn ’
print ∗ , opfn , lpt , ipt1 , ipt2 , lgEpt , jpt1 , jpt2 , paramtype ,

∗ zbl , zbr , z t l , z t r
end i f
return
END

! c onve r t from parameter l t o angu la r momentum L
FUNCTION BigLof l ( l , lgEpt )
IMPLICIT NONE
INTEGER E2dtabn
PARAMETER ( E2dtabn=20)
REAL∗8 BigLof l , l , lgEpt , Lminvec (3∗E2dtabn ) , ELminvec (3∗E2dtabn )
REAL∗8 spd2LmindE2 (3∗E2dtabn ) , Lmin , LcofE
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /Lminpath/ Lminvec , ELminvec , spd2LmindE2
s p l i n t c a l l = ’ BigLof l ELminvec Lminvec ’
CALL sp l i n t ch e ck (ELminvec , Lminvec , spd2LmindE2 ,3∗E2dtabn , lgEpt ,

∗ Lmin , . fa l se . )
B igLo f l = l ∗LcofE ( lgEpt )+(1. d0−l )∗ ( 1 . d1∗∗Lmin)
return
END

! c onve r t from angu la r momentum L to parameter l
FUNCTION sma l l l o fL ( logL , lgEpt )
IMPLICIT NONE
INTEGER E2dtabn
PARAMETER ( E2dtabn=20)
REAL∗8 smal l l o fL , logL , lgEpt , Lminvec (3∗E2dtabn ) , ELminvec (3∗E2dtabn )



304

REAL∗8 spd2LmindE2 (3∗E2dtabn ) , Lmin , LcofE
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /Lminpath/ Lminvec , ELminvec , spd2LmindE2
s p l i n t c a l l = ’ sma l l l o fL ELminvec Lminvec ’
CALL sp l i n t ch e ck (ELminvec , Lminvec , spd2LmindE2 ,3∗E2dtabn , lgEpt ,

∗ Lmin , . fa l se . )
sma l l l o fL = ( 1 . d1∗∗ logL −1.d1∗∗Lmin )/( LcofE ( lgEpt )−1.d1∗∗Lmin)
return
END

! t i d a l d e n s i t y a t r ad i u s r due to ho s t g a l a x y p o t e n t i a l and o r b i t in q u e s t i o n
FUNCTION rhot id ( lg r , logLpt )
IMPLICIT NONE
REAL∗8 rhot id , omega , p0 , d2phidr2 , logLpt , alpha , d2ph idr2o f r
REAL∗8 lgr ,G,m0overM0
COMMON /parampath/ p0 ,G,m0overM0
COMMON /alphapath/ alpha
! a l pha = 1 . d0 ! prograde co−p l anar s t a r o r b i t
! a l pha = 0 . d0 ! p a r a l l e l r a d i a l s t a r o r b i t
! a l pha = −1.d0 ! r e t r o g r a d e co−p l anar s t a r o r b i t
omega = 1 . d1∗∗( logLpt −2.d0∗ l g r )
d2phidr2 = d2phidr2o f r ( l g r )
i f ( ( ( alpha ∗∗2. d0 )+1.d0 )∗ ( omega∗∗2. d0)−d2phidr2 . l t . 0 . d0 ) then

rhot id = 0 . d0 ! t i d a l compress ion s t u f f ( Deke l e t a l )
else

rhot id = ( 3 . d0/p0 )∗ ( alpha∗omega+(((omega∗∗2. d0 )∗ ( ( alpha ∗∗2. d0 )
∗ +1.d0)−d2phidr2 )∗∗5 . d−1))∗∗2. d0
end i f
return
END

! angu l a r momentum o f a c i r c u l a r o r b i t w i t h energy E
FUNCTION LcofE ( lgEpt )
IMPLICIT NONE
INTEGER modnum, i
PARAMETER (modnum=1000)
REAL∗8 LcofE , lgEc (modnum) , spd2LcdEc2 (modnum) , logLc (modnum)
REAL∗8 lgEpt , rEf ind
CHARACTER∗30 s p l i n t c a l l
COMMON /Lcpath/ spd2LcdEc2 , logLc , lgEc
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ lgEc LcofE ’
CALL sp l i n t ch e ck ( lgEc , logLc , spd2LcdEc2 ,modnum, lgEpt , LcofE ,

∗ . true . )
LcofE = 1 . d1∗∗LcofE
return
END

! r a d i u s o f a c i r c u l a r o r b i t w i t h energy E
FUNCTION rEf ind ( lgEpt )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 spd2LcdEc2 (modnum) , logLc (modnum) , lgEc (modnum)
REAL∗8 l g r (modnum) , spd2rcdEc2 (modnum) , spd2rcdLc2 (modnum)
REAL∗8 rEfind , lgEpt
CHARACTER∗30 s p l i n t c a l l
COMMON / lg rpath / l g r
COMMON /Ecpath/ spd2rcdEc2 , spd2rcdLc2
COMMON /Lcpath/ spd2LcdEc2 , logLc , lgEc
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ lgEc rEf ind ’
CALL sp l i n t ch e ck ( lgEc , lg r , spd2rcdEc2 ,modnum, lgEpt , rEfind , . fa l se . )
rEf ind = 1 . d1∗∗ rEf ind
return
END

! r a d i u s o f a c i r c u l a r o r b i t w i t h angu l a r momentum L
FUNCTION rL f ind ( logLpt )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 spd2LcdEc2 (modnum) , logLc (modnum) , lgEc (modnum)
REAL∗8 l g r (modnum) , spd2rcdEc2 (modnum) , spd2rcdLc2 (modnum)
REAL∗8 rLf ind , logLpt
CHARACTER∗30 s p l i n t c a l l
COMMON / lg rpath / l g r
COMMON /Ecpath/ spd2rcdEc2 , spd2rcdLc2
COMMON /Lcpath/ spd2LcdEc2 , logLc , lgEc
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ logLc l g r rL f ind ’
CALL sp l i n t ch e ck ( logLc , lg r , spd2rcdLc2 ,modnum, logLpt , rLf ind ,
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∗ . fa l se . )
rL f ind = 1 . d1∗∗ rL f ind
return
END

! number o f s t a r s remaining in a c l u s t e r o f mass M at t ime t
FUNCTION NofMt( logM , l o g t )
IMPLICIT NONE
INTEGER mbarn
PARAMETER (mbarn=500)
REAL∗8 l og t ev (mbarn ) , logmbar (mbarn ) , spd2mbardt2 (mbarn ) , logt , logM
REAL∗8 NofMt , dlgmbardlgt (mbarn ) , spd3mbardt3 (mbarn)
CHARACTER∗30 s p l i n t c a l l
COMMON /mbarpath/ logtev , logmbar , dlgmbardlgt , spd2mbardt2 ,
∗ spd3mbardt3
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’NofMt log t ev logmbar ’
CALL sp l i n t ch e ck ( logtev , logmbar , spd2mbardt2 , mbarn , logt , NofMt ,

∗ . fa l se . )

NofMt = 1 . d1∗∗( logM−NofMt)
return
END

! l o g a r i t hm i c d e r i v a t i v e o f average s t e l l a r mass w . r . t . t ime
FUNCTION dlgmbard lgto f t ( l o g t )
IMPLICIT NONE
INTEGER mbarn
PARAMETER (mbarn=500)
REAL∗8 l og t ev (mbarn ) , logmbar (mbarn ) , spd2mbardt2 (mbarn ) , l o g t
REAL∗8 dlgmbardlgtoft , dlgmbardlgt (mbarn ) , spd3mbardt3 (mbarn)
CHARACTER∗30 s p l i n t c a l l
COMMON /mbarpath/ logtev , logmbar , dlgmbardlgt , spd2mbardt2 ,
∗ spd3mbardt3
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ d lgmbard lgto f t l og t ev dlgmbardlgt ’
CALL sp l i n t ch e ck ( logtev , dlgmbardlgt , spd3mbardt3 , mbarn , logt ,

∗ dlgmbardlgtoft , . fa l se . )
d lgmbard lgto f t = 1 . d1∗∗ dlgmbard lgto f t
return
END

! r e t u rn s s t e l l a r IMF, dN/dlogm as g i v en by Chabr i e r 2003
FUNCTION ChabIMF( lgm)
IMPLICIT NONE
REAL∗8 ChabIMF , lgm ,m
m = 1 . d1∗∗ lgm
i f ( lgm . le . 0 . d0 ) then

ChabIMF = 0.158 d0∗exp(−(( lgm−log10 (0 . 079 d0 ) )∗∗2 . d0 )
∗ / ( 2 . d0 ∗ ( ( 0 . 69 d0 )∗∗2 . d0 ) ) )
else

ChabIMF = 4.43d−2∗(1.d1∗∗(−1.3d0∗ lgm ) )
end i f
return
END

! mass o f main−sequence s t a r e x p i r i n g a t t ime t
FUNCTION mtooft ( l g t p t )
IMPLICIT NONE
INTEGER s tevtype
REAL∗8 mtooft , l g tpt , l o g t
COMMON / stevpath / stevtype
i f ( s tevtype . eq . 1 ) then

l o g t = l g tp t +6.d0
mtooft = 8 .5d−1∗exp ( 7 . d−1∗((6.4 d0 ∗∗1.3 d0)−( l o g t ∗∗1.3 d0 ) ) )

∗ −2.8d−1∗( logt −9.93d0)−2.d−2
mtooft = 1 . d1∗∗mtooft

! Lamers e t a l 2010 i n t e r p r e t a t i o n o f Hur ley e t a l 2000 ( l ow e s t m e t a l l i c i t y )
else i f ( s tevtype . eq . 2 ) then

l o g t = lgtpt −3.d0
mtooft = 0.2732d0−0.3864d0∗ l o g t +5.628d−2∗( l o g t ∗∗2. d0 )

∗ +1.524d−2∗( l o g t ∗∗3. d0)−5.902d−3∗( l o g t ∗∗5. d0 )
mtooft = 1 . d1∗∗mtooft

end i f
return
END

! d e r i v a t i v e o f mass o f main−sequence s t a r e x p i r i n g a t t ime t w . r . t . t ime
FUNCTION d lgmtod lg to f t ( l g t p t )
IMPLICIT NONE
INTEGER s tevtype
REAL∗8 dlgmtodlgto f t , l g tpt , l o g t
COMMON / stevpath / stevtype
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i f ( s tevtype . eq . 1 ) then
l o g t = l g tp t +6.d0
! o b t a i n ed by f i t t i n g f o r f u n c t i o n and d i f f e r e n t i a t i n g
d lgmtod lg to f t =−0.7735d0∗( l o g t ∗∗0.3 d0 )∗

∗ exp ( 7 . d−1∗((6 .4∗∗1.3 d0)−( l o g t ∗∗1.3 d0 ))) −0.28d0
else i f ( s tevtype . eq . 2 ) then

l o g t = lgtpt −3.d0
! Lamers e t a l 2010 i n t e r p r e t a t i o n o f Hur ley e t a l 2000 ( l ow e s t m e t a l l i c i t y )
d lgmtod lg to f t =−0.3864d0+2.d0 ∗5.628d−2∗ l o g t

∗ +3.d0 ∗1.524d−2∗( l o g t ∗∗2. d0)−5.d0 ∗5.902d−3∗( l o g t ∗∗4. d0 )
end i f
return
END

! mass o f remnant remaining a f t e r p r o g e n i t o r o f mass m e x p i r e s
FUNCTION mrm( lgm)
IMPLICIT NONE
REAL∗8 mrm,m, lgml , lgmwd , lgmns , lgmu , lgm ,Pwd, Pns , Pbh ,McBAGB,Mnorm
INTEGER s tevtype
COMMON / stevpath / stevtype
COMMON / stevparam/ lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,Mnorm
m = 1 . d1∗∗ lgm
McBAGB = 0 . d0
! I ben and Renz in i 1983 as used by Cherno f f & Weinberg 1990
i f ( s tevtype . eq . 1 ) then

i f ( lgm . l t . lgmwd) then
mrm = 0.58 d0+0.22d0∗(m−1.d0 )

else i f ( lgm . ge . lgmwd .and . lgm . le . lgmns ) then
mrm = 0 . d0

else i f ( lgm . gt . lgmns ) then
mrm = 1.4 d0

end i f
! Hure ly e t a l . 2000 as used by Lamers e t a l . 2010
else i f ( s tevtype . eq . 2 ) then

McBAGB = (4 .36d−4∗(1.d1 ∗∗ (5 .22 d0∗ lgm ))+6.84d−2)∗∗2.5d−1
i f (McBAGB. le . 0 . 8 d0 ) then

! t h i s co r r e sponds to s t a r s t h a t have a second
! dredge up b e f o r e becoming wh i t e dwar f s
mrm = McBAGB

else i f ( 0 . 8 d0 . l t .McBAGB.and .McBAGB. le . 2 . 2 5 d0 ) then
! t h i s co r r e sponds to s t a r s t h a t do not a have
! second dredge up b e f o r e becoming wh i t e dwar f s
mrm = 0.44 d0∗McBAGB+0.448d0

else i f (McBAGB. gt . 2 . 2 5 d0 ) then
! t h i s co r r e sponds to s t a r s t h a t are mass ive enough to
! go supernova , and r e s u l t in e i t h e r a neutron s t a r or
! b l a c k ho l e
mrm = 1.17 d0+9.d−2∗max( 1 . 44 d0 , 0 . 7 7 3 d0∗McBAGB−0.35d0 )

end i f
end i f
return
END

! p r o b a b i l i t y o f remnant b e in g e j e c t e d upon e x p i r y o f p r o g e n i t o r
FUNCTION Pej ( lgm)
IMPLICIT NONE
REAL∗8 Pej , lgml , lgmwd , lgmns , lgmu , lgm ,Pwd, Pns , Pbh ,Mnorm
INTEGER s tevtype
COMMON / stevpath / stevtype
COMMON / stevparam/ lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,Mnorm
i f ( lgm . le . lgmwd) then

Pej = Pwd
else i f ( lgm . gt . lgmwd .and . lgm . le . lgmns ) then

Pej = Pns
else i f ( lgm . gt . lgmns ) then

Pej = Pbh
else

PAUSE ’ Pej out o f bounds ’
end i f
return
END

! sys tem o f ODEs to g i v e number o f s t a r s and remnants remaining a t t ime t
SUBROUTINE SNint (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) ,ChabIMF , Pej , lgml , lgmu ,Pwd, Pns , Pbh
REAL∗8 lgmwd , lgmns ,Mnorm
LOGICAL i n i t i n t
COMMON /SNSMpath/ i n i t i n t
COMMON / stevparam/ lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,Mnorm
i f ( i n i t i n t ) then

dydx (1) = ChabIMF(x )
else
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dydx (1) = ChabIMF(x)∗Pej (x )
end i f
return
END

! sys tem o f ODEs to g i v e mass o f s t a r s and remnants remaining a t t ime t
SUBROUTINE SMint (x , y , dydx )
IMPLICIT NONE
REAL∗8 x , y (∗ ) , dydx (∗ ) ,ChabIMF , Pej ,mrm,m, lgml , lgmu ,Pwd, Pns , Pbh
REAL∗8 lgmwd , lgmns ,Mnorm
LOGICAL i n i t i n t
COMMON /SNSMpath/ i n i t i n t
COMMON / stevparam/ lgml , lgmu ,Pwd, Pns , Pbh , lgmwd , lgmns ,Mnorm
m = 1 . d1∗∗x
i f ( i n i t i n t ) then

dydx (1) = ChabIMF(x)∗m
else

dydx (1) = ChabIMF(x )∗ (m−(1.d0−Pej (x ))∗mrm(x ) )
end i f
return
END

! f u n c t i o n to f i n d r ad i u s a t which t i d a l d e n s i t y e q u a l s
! a s p e c i f i c v a l u e th rough b i s e c t i o n
FUNCTION r j ba r func ( l g r )
IMPLICIT NONE
REAL∗8 r jbar func , lg r , rhojbar , hpt , logE , rhot id , rhojpower , logL , LcofE
COMMON / r jbarpath / rho jbar
COMMON / r h o j i n t / rhojpower
COMMON /ELpath/ logE , hpt
logL = log10 ( LcofE ( logE )∗ hpt )
r j ba r func = rhojpower∗ log10 ( rhot id ( lg r , logL ))− rho jbar
return
END

! f u n c t i o n to f i n d p e r i c e n t r i c and apo c en t r i c r a d i i t h rough b i s e c t i o n
FUNCTION hfunc ( rturn )
IMPLICIT NONE
REAL∗8 hfunc , rturn , ph io f r , logE , hpt , lgrEpt , rmaxpt , LcofE
COMMON /hfuncpath/ lgrEpt , rmaxpt
COMMON /ELpath/ logE , hpt
i f ( r turn . eq . lgrEpt ) then ! by d e f i n i t i o n , (E−ph i ( rE ) ) rE2 = vc2 ( rE ) rE2 = Lc (E)2

hfunc = ( LcofE ( logE )∗∗2 . d0 )∗ ( 1 . d0−hpt ∗∗2. d0 )
else i f ( r turn . eq . rmaxpt ) then ! by d e f i n i t i o n , (E−ph i ( rmaxpt ) ) = 0

hfunc = −(hpt∗LcofE ( logE ) )∗∗2 . d0
else

hfunc = 2 . d0 ∗ ( ( 1 . d1∗∗ logE)−ph i o f r ( r turn ) ) ∗ ( 1 . d1 ∗∗ (2 . d0∗ rturn ))−
∗ ( hpt∗LcofE ( logE ) )∗∗2 . d0
end i f
return
END

! o r b i t a l r a d i u s as a f un c t i o n o f az imuth
FUNCTION ps i f unc (x )
IMPLICIT NONE
INTEGER r o f p s i n
PARAMETER ( r o f p s i n =200)
REAL∗8 ps i func , x , r o f p s i ( r o f p s i n ) , p s i ( r o f p s i n ) , rpt
REAL∗8 spd2rdps i2 ( r o f p s i n )
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /azpath/ r o f p s i , ps i , spd2rdps i2
s p l i n t c a l l = ’ p s i f unc p s i r o f p s i ’
CALL sp l i n t ch e ck ( ps i , r o f p s i , spd2rdpsi2 , r o fp s in , x , rpt , . fa l se . )
p s i f unc = rpt
return
END

! d i s t r i b u t i o n f un c t i o n as a f un c t i o n o f energy
FUNCTION i s o d f ( lgEpt )
IMPLICIT NONE
INTEGER mdfnum
PARAMETER (mdfnum=2000)
REAL∗8 i s od f , lgEpt , mdflgE (mdfnum) , mdf l g i s od f (mdfnum)
REAL∗8 spd2fdE2 (mdfnum) , l g i s o d f p t
CHARACTER∗30 s p l i n t c a l l
COMMON / i s od fpa th / mdflgE , mdf lg i sod f , spd2fdE2
COMMON / sp l i n tpa th / s p l i n t c a l l
s p l i n t c a l l = ’ i s o d f mdflgE mdf l g i s od f ’
CALL sp l i n t ch e ck (mdflgE , mdf lg i sod f , spd2fdE2 ,mdfnum , lgEpt ,

∗ l g i s od f p t , . fa l se . )
i s o d f = 1 . d1∗∗ l g i s o d f p t
return
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END

! r a d i u s as a f un c t i o n o f ho s t g a l a x y p o t e n t i a l
FUNCTION r o f ph i ( l gph ip t )
IMPLICIT NONE
INTEGER modnum
PARAMETER (modnum=1000)
REAL∗8 ro fph i , l g r (modnum) , l gph i (modnum) , d l gph id l g r (modnum)
REAL∗8 d2 lgph id l g r2 (modnum) , spd2phidr2 (modnum) , spd3phidr3 (modnum)
REAL∗8 spd4phidr4 (modnum) , lgphipt , l g rpt , spd2rdphi2 (modnum)
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON / lg rpath / l g r
COMMON /phiandr / lgphi , d lgph id lg r , d2 lgph id lgr2 , spd2phidr2 ,
∗ spd3phidr3 , spd4phidr4 , spd2rdphi2
s p l i n t c a l l = ’ r o f ph i l gph i l g r ’
CALL sp l i n t ch e ck ( lgphi , l g r , spd2rdphi2 ,modnum, lgphipt ,

∗ l g rpt , . fa l se . )
r o f ph i = 1 . d1∗∗ l g r p t
return
END

! h o s t g a l a x y p o t e n t i a l as a f un c t i o n o f r ad i u s
FUNCTION ph i o f r ( l g r p t )
IMPLICIT NONE
INTEGER modnum, modeltype
REAL∗8 PI
PARAMETER (modnum=1000 ,PI=3.141592654d0 )
REAL∗8 ph io f r , l g rpt , l g r (modnum) , l gph i (modnum) , d l gph id l g r (modnum)
REAL∗8 d2 lgph id l g r2 (modnum) , spd2phidr2 (modnum) , spd3phidr3 (modnum)
REAL∗8 spd4phidr4 (modnum) , lgphipt , spd2rdphi2 (modnum) , k , p0 , r
REAL∗8 r r e f , e r ror ,G,m0overM0
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /modelpath/ k , r r e f , modeltype
COMMON /parampath/ p0 ,G,m0overM0
COMMON / lg rpath / l g r
COMMON /phiandr / lgphi , d lgph id lg r , d2 lgph id lgr2 , spd2phidr2 ,
∗ spd3phidr3 , spd4phidr4 , spd2rdphi2
r = 1 . d1∗∗ l g r p t
i f ( modeltype . eq . 1 ) then ! p o l y t r o p e s

i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r a sympto te s
ph i o f r = p0∗( r ∗∗2. d0 ) /6 . d0 −

∗ k∗( p0 ∗∗2. d0 )∗ ( r ∗∗4. d0 ) / ( 2 . 4 d2∗(k−1.d0 ) ) +
∗ k ∗ ( 3 . d0∗k+1.d1 )∗ ( p0 ∗∗3. d0 )∗ ( r ∗∗6. d0 ) / ( ( 6048 . d1 )∗
∗ ( ( k−1.d0 )∗∗2 . d0 ) ) −
∗ k ∗ ( 9 . d0∗(k∗∗2. d0 )+8.6d1∗k+2.8d2 )∗ ( p0 ∗∗4. d0 )∗ ( r ∗∗8. d0
∗ )/ (2612736 . d1 ∗ ( ( k−1.d0 )∗∗3 . d0 ) )

else i f ( l g r p t . gt . l g r (modnum)) then ! l a r g e r asympto te s
i f ( k . l t . 2 . d0 ) then

ph i o f r = ( (P0/ ( 3 . d0−k ) )∗∗ ( 5 . d−1∗(2.d0−k ) ) ) ∗ ( ( 2 . d0∗(k−1.d0 ) )
∗ ∗∗ (5 . d−1∗k ) ) ∗ ( 1 . d1 ∗∗ (2 . d0−k)∗ l g r p t ) / ( 2 . d0−k )

else i f ( k . gt . 2 . d0 ) then
ph i o f r = ( 2 . d0∗(k−1.d0 )/( k−2.d0 ) ) ∗ ( 1 . d0−((P0 / ( 2 . d0∗(k−1.d0 )

∗ ∗ ( 3 . d0−k ) ) )∗∗ ( 5 . d−1∗(2.d0−k ) ) ) ∗ ( 1 . d1 ∗∗ ( ( 2 . d0−k)∗ l g r p t ) ) )
else

ph i o f r = log ( 5 . d−1∗P0∗ ( 1 . d1 ∗∗ (2 . d0∗ l g r p t ) ) )
end i f

else ! numer ica l r e s u l t s f o r inbe tween b i t s
s p l i n t c a l l = ’ ph i o f r l g r l gph i ’
CALL sp l i n t ch e ck ( lgr , lgphi , spd2phidr2 ,modnum, lgrpt ,

∗ l gphipt , . fa l se . )
ph i o f r = 1 . d1∗∗ l gph ip t

end i f
else i f ( modeltype . eq . 2 ) then ! k i n g models

i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r a sympto te s
ph i o f r = p0∗( r ∗∗2. d0 ) /6 . d0 + ( r ∗∗4. d0 )∗

∗ ( p0 ∗∗2. d0 )∗ ( 2 . d0 ∗ ( ( k/PI )∗∗5 . d−1)−exp( k )∗ e r r o r (k∗∗5.d−1))/1.2 d2
else ! numer ica l r e s u l t s f o r e v e r y t h i n g between sma l l r and r t

s p l i n t c a l l = ’ ph i o f r l g r l gph i ’
CALL sp l i n t ch e ck ( lgr , lgphi , spd2phidr2 ,modnum, lgrpt ,

∗ l gphipt , . fa l se . )
ph i o f r = 1 . d1∗∗ l gph ip t

end i f
else i f ( modeltype . eq . 3 ) then ! dehnen models

i f ( k . eq . 2 . d0 ) then
ph i o f r = 4 . d0∗p0∗ log ( r ∗( r r e f +1.d0 ) / ( ( r+1.d0 )∗ r r e f ) )

else
ph i o f r = ( ( 2 . d0 ∗∗ (4 . d0−k ))∗ p0 / ( 3 . d0−k ) ) ∗ ( ( ( r /( r+1.d0 ) )

∗ ∗∗ (2 . d0−k))−(( r r e f /( r r e f +1.d0 ) )∗∗ ( 2 . d0−k ) ) )
end i f

else i f ( modeltype . eq . 4 ) then ! powerlaw models
i f ( k . eq . 2 . d0 ) then
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ph i o f r = p0∗ log ( r / r r e f )
else

ph i o f r = (p0 / ( ( 3 . d0−k )∗ ( 2 . d0−k ) ) )∗
∗ ( r ∗∗ (2 . d0−k)− r r e f ∗∗ (2 . d0−k ) )

end i f
end i f
return
END

! f i r s t d e r i v a t i v e o f ho s t g a l a x y p o t e n t i a l w . r . t . r a d i u s
FUNCTION dph idro f r ( l g r p t )
IMPLICIT NONE
INTEGER modnum, modeltype
REAL∗8 PI
PARAMETER (modnum=1000 ,PI=3.141592654d0 )
REAL∗8 dphidro fr , l g r (modnum) , l gph i (modnum) , d l gph id l g r (modnum)
REAL∗8 d2 lgph id l g r2 (modnum) , spd2phidr2 (modnum) , spd3phidr3 (modnum)
REAL∗8 spd4phidr4 (modnum) , d lgph id lg rpt , spd2rdphi2 (modnum) , k , r , p0
REAL∗8 r r e f , e r ror ,G,m0overM0 , lg rpt , ph i o f r
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /modelpath/ k , r r e f , modeltype
COMMON /parampath/ p0 ,G,m0overM0
COMMON / lg rpath / l g r
COMMON /phiandr / lgphi , d lgph id lg r , d2 lgph id lgr2 , spd2phidr2 ,
∗ spd3phidr3 , spd4phidr4 , spd2rdphi2
r = 1 . d1∗∗ l g r p t
i f ( modeltype . eq . 1 ) then ! p o l y t r o p e s

i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r a sympto te s
dph idro f r = p0∗ r /3 . d0 −

∗ k∗( p0 ∗∗2. d0 )∗ ( r ∗∗3. d0 ) / ( 6 . d1∗(k−1.d0 ) ) +
∗ k ∗ ( 3 . d0∗k+1.d1 )∗ ( p0 ∗∗3. d0 )∗ ( r ∗∗5. d0 ) / ( ( 1008 . d1 )
∗ ∗ ( ( k−1.d0 )∗∗2 . d0 ) ) −
∗ k ∗ ( 9 . d0∗(k∗∗2. d0 )+8.6d1∗k+2.8d2 )∗ ( p0 ∗∗4. d0 )∗
∗ ( r ∗∗7. d0 )/(326592 . d1 ∗ ( ( k−1.d0 )∗∗3 . d0 ) )

else i f ( l g r p t . gt . l g r (modnum)) then ! l a r g e r asympto te s
i f ( k . l t . 2 . d0 ) then

dph idro f r = ( (P0/ ( 3 . d0−k ) )∗∗ ( 5 . d−1∗(2.d0−k ) ) ) ∗ ( ( 2 . d0∗
∗ (k−1.d0 ) )∗∗ ( 5 . d−1∗k ) ) ∗ ( 1 . d1 ∗∗ (1 . d0−k)∗ l g r p t )

else i f ( k . gt . 2 . d0 ) then
dph idro f r = 2 . d0∗(k−1.d0 )∗ ( (P0 / ( 2 . d0∗(k−1.d0 )∗ ( 3 . d0−k ) ) )

∗ ∗∗ (5 . d−1∗(2.d0−k ) ) ) ∗ ( 1 . d1 ∗∗ ( ( 1 . d0−k)∗ l g r p t ) )
else

dph idro f r = 2 . d0 ∗ ( 1 . d1∗∗(− l g r p t ) )
end i f

else ! numer ica l r e s u l t s f o r inbe tween b i t s
s p l i n t c a l l = ’ dph idro f r l g r d l gph id l g r ’
CALL sp l i n t ch e ck ( lgr , d lgph id lg r , spd3phidr3 ,modnum, lgrpt ,

∗ d lgph id lg rpt , . fa l se . )
dph idro f r = ( 1 . d1∗∗( log10 ( ph i o f r ( l g r p t ))− l g r p t ) )∗ d lgph id l g rp t

end i f
else i f ( modeltype . eq . 2 ) then ! k i n g models

i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r e xpans i ons
dph idro f r = p0∗ r /3 . d0 + ( r ∗∗3. d0 )∗ ( p0 ∗∗2. d0 )

∗ ∗ ( 2 . d0 ∗ ( ( k/PI )∗∗5 . d−1)−exp( k )∗ e r r o r (k∗∗5.d−1))/3. d1
else ! numer ica l r e s u l t s f o r e v e r y t h i n g between sma l l r and r t

s p l i n t c a l l = ’ dph idro f r l g r d l gph id l g r ’
CALL sp l i n t ch e ck ( lgr , d lgph id lg r , spd3phidr3 ,modnum, lgrpt ,

∗ d lgph id lg rpt , . fa l se . )
dph idro f r = ( 1 . d1∗∗( log10 ( ph i o f r ( l g r p t ))− l g r p t ) )∗ d lgph id l g rp t

end i f
else i f ( modeltype . eq . 3 ) then ! dehnen models

dph idro f r = ( 2 . d0 ∗∗ (4 . d0−k ))∗ p0∗( r ∗∗ (1 . d0−k ))∗
∗ ( ( r+1.d0 )∗∗( k−3.d0 ) ) / ( 3 . d0−k )
else i f ( modeltype . eq . 4 ) then ! powerlaw models

dph idro f r = p0∗( r ∗∗ (1 . d0−k ) ) / ( 3 . d0−k )
end i f
return
END

! second d e r i v a t i v e o f ho s t g a l a x y p o t e n t i a l w . r . t . r a d i u s
FUNCTION d2ph idr2o f r ( l g r p t )
IMPLICIT NONE
INTEGER modnum, modeltype
REAL∗8 PI
PARAMETER (modnum=1000 ,PI=3.141592654d0 )
REAL∗8 d2phidr2ofr , l g r (modnum) , l gph i (modnum) , d l gph id l g r (modnum)
REAL∗8 d2 lgph id l g r2 (modnum) , spd2phidr2 (modnum) , spd3phidr3 (modnum)
REAL∗8 spd4phidr4 (modnum) , d2 lgph id lgr2pt , spd2rdphi2 (modnum) , k , p0
REAL∗8 r r e f , e r ror , r ,G,m0overM0 , lg rpt , d lgph id lg rpt , ph i o f r
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /modelpath/ k , r r e f , modeltype
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COMMON /parampath/ p0 ,G,m0overM0
COMMON / lg rpath / l g r
COMMON /phiandr / lgphi , d lgph id lg r , d2 lgph id lgr2 , spd2phidr2 ,
∗ spd3phidr3 , spd4phidr4 , spd2rdphi2
r = 1 . d1∗∗ l g r p t
i f ( modeltype . eq . 1 ) then ! p o l y t r o p e s

i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r a sympto te s
d2phidr2o f r = p0 /3 . d0 −

∗ k∗( p0 ∗∗2. d0 )∗ ( r ∗∗2. d0 ) / ( 2 . d1∗(k−1.d0 ) ) +
∗ k ∗ ( 3 . d0∗k+1.d1 )∗ ( p0 ∗∗3. d0 )∗ ( r ∗∗4. d0 ) / ( ( 2016 . d0 )
∗ ∗ ( ( k−1.d0 )∗∗2 . d0 ) ) −
∗ k ∗ ( 9 . d0∗(k∗∗2. d0 )+8.6d1∗k+2.8d2 )∗ ( p0 ∗∗4. d0 )∗
∗ ( r ∗∗6. d0 )/ (46656 . d1 ∗ ( ( k−1.d0 )∗∗3 . d0 ) )

else i f ( l g r p t . gt . l g r (modnum)) then ! l a r g e r asympto te s
i f ( k . l t . 2 . d0 ) then

d2ph idr2o f r = −((P0 / ( 3 . d0−k ) )∗∗ ( 5 . d−1∗(2.d0−k ) ) )∗
∗ ( ( 2 . d0∗(k−1.d0 ) )∗∗ ( 5 . d−1∗k ) ) ∗ ( 1 . d1∗∗(−k∗ l g r p t ) ) / ( k−1.d0 )

else i f ( k . gt . 2 . d0 ) then
d2ph idr2o f r = −2.d0 ∗ ( (P0 / ( 2 . d0∗(k−1.d0 )∗ ( 3 . d0−k ) ) )

∗ ∗∗ (5 . d−1∗(2.d0−k ) ) ) ∗ ( 1 . d1∗∗(−k∗ l g r p t ) )
else

d2ph idr2o f r = −2.d0 ∗ ( 1 . d1∗∗(−2.d0∗ l g r p t ) )
end i f

else ! numer ica l r e s u l t s f o r inbe tween b i t s
s p l i n t c a l l = ’ d2ph idr2o f r l g r d2 l gph id l g r2 ’
CALL sp l i n t ch e ck ( lgr , d2 lgph id lgr2 , spd4phidr4 ,modnum, lgrpt ,

∗ d2 lgph id lgr2pt , . fa l se . )
s p l i n t c a l l = ’ d2ph idr2o f r l g r d l gph id l g r ’
CALL sp l i n t ch e ck ( lgr , d lgph id lg r , spd3phidr3 ,modnum, lgrpt ,

∗ d lgph id lg rpt , . fa l se . )
d2ph idr2o f r = ( 1 . d1∗∗( log10 ( ph i o f r ( l g r p t ))−2.d0∗ l g r p t ) )∗

∗ ( d l gph id l g rp t ∗( d lgph id lg rpt −1.d0)+d2 lgph id lg r2pt / log ( 1 . d1 ) )
end i f

else i f ( modeltype . eq . 2 ) then ! k i n g models
i f ( l g r p t . l t . l g r ( 1 ) ) then ! sma l l r a sympto te s

d2phidr2o f r = p0 /3 . d0 + ( r ∗∗2. d0 )∗ ( p0 ∗∗2. d0 )
∗ ∗ ( 2 . d0 ∗ ( ( k/PI )∗∗5 . d−1)−exp( k )∗ e r r o r (k∗∗5.d−1))/1. d1

else ! numer ica l r e s u l t s f o r e v e r y t h i n g between sma l l r and r t
s p l i n t c a l l = ’ d2ph idr2o f r l g r d2 l gph id l g r2 ’
CALL sp l i n t ch e ck ( lgr , d2 lgph id lgr2 , spd4phidr4 ,modnum, lgrpt ,

∗ d2 lgph id lgr2pt , . fa l se . )
s p l i n t c a l l = ’ d2ph idr2o f r l g r d l gph id l g r ’
CALL sp l i n t ch e ck ( lgr , d lgph id lg r , spd3phidr3 ,modnum, lgrpt ,

∗ d lgph id lg rpt , . fa l se . )
d2ph idr2o f r = ( 1 . d1∗∗( log10 ( ph i o f r ( l g r p t ))−2.d0∗ l g r p t ) )∗

∗ ( d l gph id l g rp t ∗( d lgph id lg rpt −1.d0)+d2 lgph id lg r2pt / log ( 1 . d1 ) )
end i f

else i f ( modeltype . eq . 3 ) then ! dehnen models
d2phidr2o f r = ( 2 . d0 ∗∗ (4 . d0−k ))∗ p0 ∗ ( ( r+1.d0 )∗∗(k−4.d0 ))∗

∗ ( r∗∗(−k ) ) ∗ ( 1 . d0−k−2.d0∗ r ) / ( 3 . d0−k )
else i f ( modeltype . eq . 4 ) then ! powerlaw models

d2phidr2o f r = p0 ∗ ( 1 . d0−k )∗ ( r∗∗(−k ) ) / ( 3 . d0−k )
end i f
return
END

! s quared angu la r v e l o c i t y o f a c i r c u l a r o r b i t w i t h r ad i u s r
FUNCTION omegac2ofr ( l g r p t )
IMPLICIT NONE
INTEGER modnum, modeltype
PARAMETER (modnum=1000)
REAL∗8 k , r r e f , omegac2ofr , l g rpt , l g r (modnum) , lgomegac2 (modnum)
REAL∗8 spd2omegac2dr2 (modnum) , lgomegac2pt
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /modelpath/ k , r r e f , modeltype
COMMON / lg rpath / l g r
COMMON /omegacpath/ lgomegac2 , spd2omegac2dr2
s p l i n t c a l l = ’ omegac2ofr l g r lgomegac2 ’
CALL sp l i n t ch e ck ( lgr , lgomegac2 , spd2omegac2dr2 ,modnum, lgrpt ,

∗ lgomegac2pt , . fa l se . )
omegac2ofr = 1 . d1∗∗ lgomegac2pt
return
END

! d e n s i t y o f ho s t g a l a x y a t r ad i u s r
FUNCTION rhoo f r ( l g r p t )
IMPLICIT NONE
INTEGER modnum, modeltype
PARAMETER (modnum=1000)
REAL∗8 k , r r e f , rhoofr , l g rpt , l g r (modnum) , lg rho (modnum) , lg rhopt
REAL∗8 spd2rhodr2 (modnum)
CHARACTER∗30 s p l i n t c a l l
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COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON /modelpath/ k , r r e f , modeltype
COMMON / lg rpath / l g r
COMMON / rhopath/ lgrho , spd2rhodr2
s p l i n t c a l l = ’ rhoo f r l g r lg rho ’
CALL sp l i n t ch e ck ( lgr , lgrho , spd2rhodr2 ,modnum, lgrpt ,

∗ lgrhopt , . fa l se . )
rhoo f r = 1 . d1∗∗ l g rhopt
return
END

! f i r s t d e r i v a t i v e o f ho s t g a l a x y d e n s i t y w . r . t . r a d i u s
FUNCTION drhodr ( l g r p t )
IMPLICIT NONE
REAL∗8 PI
PARAMETER (PI=3.141592654d0 )
INTEGER modeltype
REAL∗8 drhodr , l g rpt , k , r r e f , ph io f r , drhodphi , dphidro fr ,W, e r r o r
COMMON /modelpath/ k , r r e f , modeltype
i f ( modeltype . eq . 1 ) then

drhodphi =−(k / ( 2 . d0∗(k−1.d0 ) ) ) ∗ ( 1 . d0−((k−2.d0 ) / ( 2 . d0∗(k−1.d0 ) ) )
∗ ∗ ph i o f r ( l g r p t ) )∗∗ ( k/(k−2.d0 ) )

drhodr = drhodphi∗ dph idro f r ( l g r p t )
else i f ( modeltype . eq . 2 ) then

W = k−ph i o f r ( l g r p t )
drhodphi = −(exp(W)∗ e r r o r (W∗∗5.d−1)−2.d0 ∗ ( (W/PI )∗∗5 . d−1))/

∗ (exp( k )∗ e r r o r (k∗∗5.d−1)−((4.d0∗k/PI )∗∗5 . d−1)∗
∗ ( 1 . d0+2.d0∗k /3 . d0 ) )

drhodr = drhodphi∗ dph idro f r ( l g r p t )
else i f ( modeltype . eq . 3 ) then

drhodr = −(2.d0 ∗∗ (4 . d0−k ) ) ∗ ( 1 . d1∗∗(− l g r p t ∗(k+1.d0 ) ) )∗
∗ ( ( ( 1 . d1∗∗ l g r p t )+1.d0 )∗∗(k−5.d0 ) ) ∗ ( 4 . d0 ∗ ( 1 . d1∗∗ l g r p t )+k)
else i f ( modeltype . eq . 4 ) then

drhodr = −k ∗ ( 1 . d1∗∗(− l g r p t ∗(k+1.d0 ) ) )
end i f
return
END

! a mod i f i e d v e r s i o n o f s o r t from Press e t a l . 1992
! s o r t s mu l t i p l e a r ray s s imu l t a n e ou s l y
SUBROUTINE mul t i s o r t (numvec , n , sort1 , sort2 , sort3 , sort4 , sort5 , s o r t6
∗ , sort7 , s o r t8 )
implicit none
INTEGER numvec , n , iwksp (n)
REAL∗8 so r t1 (n , 3 ) , s o r t 2 (n , 3 ) , s o r t3 (n , 3 ) , s o r t4 (n , 3 ) , s o r t5 (n , 3 )
REAL∗8 so r t6 (n , 3 ) , s o r t 7 (n , 3 ) , s o r t8 (n , 3 ) ,WKSP(n)
INTEGER j , numdone

numdone=0

ca l l indexx (n , sort1 , iwksp )
do 11 j =1,n

wksp ( j )= so r t1 ( j , 1 )
11 continue

do 12 j =1,n
so r t1 ( j ,1)=wksp ( iwksp ( j ) )

12 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 13 j =1,n
wksp ( j )= so r t2 ( j , 1 )

13 continue
do 14 j =1,n

so r t2 ( j ,1)=wksp ( iwksp ( j ) )
14 continue

numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 15 j =1,n
wksp ( j )= so r t3 ( j , 1 )

15 continue
do 16 j =1,n

so r t3 ( j ,1)=wksp ( iwksp ( j ) )
16 continue

numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 17 j =1,n
wksp ( j )= so r t4 ( j , 1 )

17 continue
do 18 j =1,n

so r t4 ( j ,1)=wksp ( iwksp ( j ) )
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18 continue
numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 19 j =1,n
wksp ( j )= so r t5 ( j , 1 )

19 continue
do 20 j =1,n

so r t5 ( j ,1)=wksp ( iwksp ( j ) )
20 continue

numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 21 j =1,n
wksp ( j )= so r t6 ( j , 1 )

21 continue
do 22 j =1,n

so r t6 ( j ,1)=wksp ( iwksp ( j ) )
22 continue

numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 23 j =1,n
wksp ( j )= so r t7 ( j , 1 )

23 continue
do 24 j =1,n

so r t7 ( j ,1)=wksp ( iwksp ( j ) )
24 continue

numdone=numdone+1
i f (numdone . eq . numvec ) RETURN

do 25 j =1,n
wksp ( j )= so r t8 ( j , 1 )

25 continue
do 26 j =1,n

so r t8 ( j ,1)=wksp ( iwksp ( j ) )
26 continue

RETURN
end

! s l i g h t l y mod i f i e s v a l u e s to f o r c e mono ton i c i t y
SUBROUTINE monotonic ( x1 , n , x2 , h)
IMPLICIT NONE
INTEGER n , i
REAL∗8 x1 (n ) , x2 (n ) , h
x2(1)=x1 (1)
do i = 1 ,n−1

x2 ( i+1)=x1 ( i +1)
i f ( ( 1 . d0+h)∗x2 ( i ) . gt . x2 ( i +1)) then

x2 ( i +1) = ( 1 . d0+h)∗x2 ( i )
end i f

end do
return
END

! c h eck s f o r e x t r a p o l a t i o n b e f o r e a s p l i n t c a l l
SUBROUTINE sp l i n t ch e ck ( xa , ya , y2a , n , x , y , l i n i n t r p )
IMPLICIT NONE
INTEGER n , s p l i n t e r r n
REAL∗8 xa (n ) , ya (n ) , y2a (n ) , x , y
LOGICAL l i n i n t r p
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON / errpath / s p l i n t e r r n
CALL s p l i n t ( xa , ya , y2a , n , x , y , l i n i n t r p )
i f ( x . l t . xa ( 1 ) . or . x . gt . xa (n ) ) then

s p l i n t e r r n = sp l i n t e r r n + 1
i f ( x . l t . xa ( 1 ) ) then

write (31 ,11) ’ below ’ , ’ x=’ ,x , ’ xa=’ , xa (1 ) , ’ xa−x=’ , xa(1)−x ,
∗ s p l i n t c a l l

else i f ( x . gt . xa (n ) ) then
write (31 ,11) ’ above ’ , ’ x=’ ,x , ’ xa=’ , xa (n ) , ’ x−xa=’ ,x−xa (n ) ,

∗ s p l i n t c a l l
else

pause ’ s p l i n t ch e ck e r r o r ’
end i f

end i f
return

11 FORMAT(A,2X, 3 (A,2X, E30 .15 ,2X) ,A)
END

! c h eck s f o r e x t r a p o l a t i o n b e f o r e a s p l i n t c a l l
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SUBROUTINE s p l i n t ( xa , ya , y2a , n , x , y , l i n i n t r p )
IMPLICIT NONE
INTEGER n
REAL∗8 x , y , xa (n ) , y2a (n ) , ya (n)
INTEGER k , khi , k lo
REAL∗8 a , b , h
LOGICAL l i n i n t r p , l i n i n
CHARACTER∗30 s p l i n t c a l l
COMMON / sp l i n tpa th / s p l i n t c a l l
COMMON / l i npa th / l i n i n
k lo=1
khi=n

1 i f ( khi−klo . gt . 1 ) then
k=(khi+klo )/2
i f ( xa (k ) . gt . x ) then

khi=k
else

klo=k
endif

goto 1
endif
h=xa ( khi)−xa ( k lo )
i f (h . eq . 0 . d0 ) then

print ∗ , s p l i n t c a l l
do k = 1 ,n

print ∗ , xa (k ) , ya (k ) , k
end do
pause ’ bad xa input in s p l i n t ’

end i f
a=(xa ( khi)−x )/h
b=(x−xa ( k lo ) )/ h
y=a∗ya ( k lo )+b∗ya ( khi )
! i f l i n i n t r p = true , i n t e r p o l a t e l i n e a r l y , o t h e rw i s e do cu b i c i n t e r p o l a t i o n
i f ( ( l i n i n t r p . eqv . . fa l se . ) . and . ( l i n i n . eqv . . fa l se . ) ) then

y=y+((a∗∗3−a )∗ y2a ( k lo )+(b∗∗3−b)∗ y2a ( khi ) )∗ ( h∗∗2)/6 . d0
end i f
return
END

! t h e f o l l o w i n g i s a s l i g h t l y mod i f i ed v e r s i o n o f t h e d r i v e r f o r Runge−Kutta
! i n t e g r a t i o n from Press e t a l . 1992 , t h a t f o r c e s a s t e p when a s t e p cannot
! be taken wh i l e s a t i s f y i n g t h e r e q u i r e d eps e r r o r
SUBROUTINE ode int ( ystar t , nvar , x1 , x2 , eps , h1 , hadv , nok , nbad , der ivs ,

∗ rkqs )
implicit none
INTEGER nbad , nok , nvar ,KMAXX,MAXSTP,NMAX
REAL∗8 eps , h1 , hadv , x1 , x2 , y s t a r t ( nvar ) ,TINY
EXTERNAL der ivs , rkqs
PARAMETER (MAXSTP=100000000 ,NMAX=50,KMAXX=100 ,TINY=1.d−30)
INTEGER i , kmax , kount , nstp , hount
REAL∗8 dxsav , h , hdid , hnext , x , xsav , dydx (NMAX) , xp (KMAXX) , y (NMAX) ,

∗yp (NMAX,KMAXX) , y s ca l (NMAX)
COMMON /path/ kmax , kount , dxsav , xp , yp , hount
x = x1
h = sign (h1 , x2−x1 )
hadv = sign ( hadv , x2−x1 ) ! a l i g n s i g n o f hadv w i th d i r e c t i o n in which

! i n t e g r a t i o n i s p roc e ed ing
nok = 0
nbad = 0
kount = 0
hount = 0
do 11 i =1,nvar

y ( i )=ys t a r t ( i )
11 continue

i f (kmax . gt . 0 ) xsav=x−2.d0∗dxsav
do 16 nstp=1,MAXSTP

ca l l de r i v s (x , y , dydx )
do 12 i =1,nvar

y s ca l ( i )=abs ( y ( i ))+abs (h∗dydx ( i ))+TINY
12 continue

i f (kmax . gt . 0 ) then
i f (abs (x−xsav ) . gt . abs ( dxsav ) ) then

i f ( kount . l t . kmax−1)then
kount=kount+1
xp ( kount)=x
do 13 i =1,nvar

yp ( i , kount)=y( i )
13 continue

xsav=x
endif

endif
endif
i f ( ( x+h−x2 )∗ ( x+h−x1 ) . gt . 0 . d0 ) h=x2−x
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ca l l rkqs (y , dydx , nvar , x , h , hadv , eps , ysca l , hdid , hnext , d e r i v s )
i f ( hdid . eq . hadv ) hount = hount+1 ! t r a c k number o f f o r c e d advances

! made
i f ( hdid . eq . h ) then

nok=nok+1
else

nbad=nbad+1
endif
i f ( ( x−x2 )∗ ( x2−x1 ) . ge . 0 . d0 ) then

do 14 i =1,nvar
y s t a r t ( i )=y( i )

14 continue
i f (kmax .ne . 0 ) then

kount=kount+1
xp ( kount)=x
do 15 i =1,nvar

yp ( i , kount)=y( i )
15 continue

endif
return

endif
h=hnext

16 continue
pause ’ too many s t eps in ode int ’

33 return
END

! t h e f o l l o w i n g i s a s l i g h t l y mod i f i ed v e r s i o n o f t h e ‘ q u a l i t y s t ep ’
! r o u t i n e from Press e t a l . 1992 to enab l e a b o r t i n g t h e i n t e g r a t i o n
! o f o r b i t s t h a t have become unphy s i c a l
SUBROUTINE rkqs (y , dydx , n , x , htry , hadv , eps , ysca l , hdid , hnext , d e r i v s )
implicit none
INTEGER n ,NMAX
REAL∗8 eps , hdid , hnext , htry , x , dydx (n ) , y (n ) , y s ca l (n ) , hadv
EXTERNAL de r i v s
PARAMETER (NMAX=50)

CU USES der ivs , rkck
INTEGER i
REAL∗8 errmax , h , htemp , xnew , yer r (NMAX) , ytemp(NMAX) ,SAFETY,PGROW,

∗PSHRNK,ERRCON, t f
LOGICAL not force , abort
PARAMETER(SAFETY=.9d0 ,PGROW=−.2d0 ,PSHRNK=−.25d0 ,ERRCON=1.89d−4)
common / abortpath / t f , abort
abort = . fa l se .
n o t f o r c e = . true .
h=htry

1 ca l l rkck (y , dydx , n , x , h , ytemp , yerr , d e r i v s )
i f ( abort ) then

do i = 1 ,n
y ( i ) = −4.d1

end do
x = log10 ( t f )
return

end i f
errmax=0.d0
do 11 i =1,n

errmax=max( errmax , abs ( ye r r ( i )/ y s ca l ( i ) ) )
11 continue

errmax=errmax/ eps
2 i f ( errmax . gt . 1 . d0 .and . n o t f o r c e ) then

htemp=SAFETY∗h∗( errmax∗∗PSHRNK)
h=sign (max(abs (htemp ) , 1 . d−1∗abs (h ) ) , h)
xnew=x+h
i f (xnew . eq . x ) then ! i f new s t e p i s t h e same as t h e p r e v i o u s f a i l e d

! s t ep , f o r c e a s t e p o f hadv
h = hadv
no t f o r c e = . fa l se .

end i f
goto 1

else
i f ( errmax . gt .ERRCON) then

hnext=SAFETY∗h∗( errmax∗∗PGROW)
else

hnext=5.d0∗h
endif
hdid=h
x=x+h
do 12 i =1,n

y ( i )=ytemp( i )
12 continue

return
endif
END
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FUNCTION r t b i s ( func , x1 , x2 , xacc )

SUBROUTINE rkck (y , dydx , n , x , h , yout , yerr , d e r i v s )

FUNCTION e r r o r (x )

FUNCTION gam(xx )

FUNCTION gammp(a , x )

SUBROUTINE gc f (gammcf , a , x , g ln )

SUBROUTINE gse r ( gamser , a , x , g ln )

SUBROUTINE s p l i n e (x , y , n , yp1 , ypn , y2 )

SUBROUTINE indexx (n , arr , indx )

FUNCTION ran2 ( idum)
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