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Abstract

Electron capture supernovae (EC-SNe) are the deaths of approximately 8-10 M, stars.
In this thesis, the evolution of 8-12 Mg stars is calculated using the MESA stellar
evolution code. The aims of this thesis are to produce the most advanced and up-
to-date progenitor models for electron capture supernovae (EC-SNe) and to study the
behaviour of stars across the transition mass range between AGB stars and massive
stars.These new stellar models will be the first of their kind since the 1980s and highlight
new computational successes and persisting challenges in the field of stellar physics.

The thermal pulse phase of an 8.75 M, super-AGB star is computed in its entirety
from the end of the second dredge-up (2DUP) until the activation of electron captures
by 2*Ne, which triggers its collapse. The most massive progenitors of electron capture
supernovae are found to ignite neon and oxygen burning off-centre—a characteristic
shared with the lowest mass iron core-collapse supernova (FeCCSN) progenitors. The
behaviour of this shell burning is shown to be very sensitive to mixing across the formal
convective boundary, where several types of instability are known to operate.

The evolution of the degenerate cores that are produced within 8-10 M stars
following carbon burning is sensitive to changes in the electron fraction. Electron
capture and [—decay reactions of nuclear species produced in the stellar core both
modify the electron fraction and provide periods of strong cooling (the URCA process).
Tabulated rates for these reactions available at the time of this work are too poorly
resolved to accurately represent the physics. New calculations of the weak reaction
rates are hence performed by nuclear physicists in a separate work motivated by the
new results in this thesis. These rates are incorporated into the stellar models, where

their impact is studied.



Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Raphael Hirschi for his
overwhelming enthusiasm, encouragement and patience. Thank you for the many inter-
esting discussions about stars, supernovae and nucleosynthesis (amongst other things),
for tolerating my eccentricities with a smile and for giving me so many opportunities
to travel around the world to present my results and learn from others in the field. It
has been an incredible three years.

I would also like to thank Ken’ichi Nomoto, Falk Herwig and Gabriel Martinez-
Pinedo for hosting me on a number of occasions and for their kind hospitality during
collaborative visits. I certainly learned a great deal during my visits to Tokyo, Victoria
and Darmstadt and have many fond memories from Kyoto and Nikko, Waldemar-
Peterson Haus, NuGrid collaboration meetings and discussing hydrodynamics late into
the night.

I owe an enormous amount to Bill Paxton for creating and maintaining the stellar
evolution code MESA, Michael Bertolli for his contribution to our weak reaction rate
code, Calvin Johnson for providing nuclear physics data from his nuclear shell model
code. Thanks to Marco Pignatari for his huge contribution to the NuGrid collaboration,
and to Michael Bennett, Urs Frischknecht, Gyril Georgy, Nobuya Nishimura, Andréa
Cristini, and everyone at TU Darmstadt for many interesting, useful discussions about
stellar evolution, supernovae and nucleosynthesis.

In this Thesis the core of Chapter 3 has been published in Jones et al. (2013), The
Astrophysical Journal, 772, 150, on which there are a total of twelve authors. Although
I have calculated all of the stellar models (using the MESA code), created the figures
and written the manuscript—for the aforementioned publication and of course, for this
Thesis—I would like to thank each and every one of my co-authors. The eleven co-
authors provided advice, suggestions for the structure of the paper and critique of the
manuscript. I would also like to thank Dr. Christopher Tout—the referee of Jones

et al. (2013)—for his input, without which the manuscript would not have reached



vi

such a high standard. I am grateful in particular to Tobias Fischer, who performed a
mapping between my progenitor model and the AGILE-BOLTZTRAN supernova code
and followed the resulting collapse and explosion (this is an active work in progress,
the results of which are not presented here and have not yet been published elsewhere;
they are referred to as (Fischer 2014) in this Thesis). Chapter 4 of this Thesis describes
the method for calculating weak interaction rates. It also presents the results of stellar
models that have been computed using new weak reaction rates calculated using such a
method. The rates that were used for the URCA process have been calculated for this
work by Hiroshi Toki and Toshio Suzuki and published in Toki et al. (2013), Physical
Reviews C, 88(1), 015806; the rates for the A = 20 and 24 nuclei were calculated for
this work by Gabriel Martinez-Pinedo and Yi-Hua Lam using some transition strengths
that were experimentally determined by Remco Zegers and Chris Sullivan, and have
been submitted to Physical Reviews (Martinez-Pinedo et al. 2014) and made available
on ArXiv, 1402.0793. During my PhD, I have also written a code to calculate weak
interaction rates from nuclear transition strengths together with Michael Bertolli, with
whom the work was shared roughly half and half; the transition strengths used by
that code were calculated by Calvin Johnson. Although no results from the work with
Michael Bertolli and Calvin Johnson are presented in this Thesis, it is a justification
of the level of detail in section 4.2.

Thank you to my girlfriend, Katerina, and to my parents, sister and grandparents
for their endless support stretching well beyond the three years of my Ph. D. Thanks
to Tom Duncan and Simon Clarke for their hard work and perseverance both in and

outside of the studio and for keeping me sane.

Samuel Jones, Keele Astrophysics Group
9 June 2014



Contents

Abstract . . . . .,

Acknowledgements . . . . .. . ...

1

Introduction . . . . . . . .

1.1

1.2

1.3

1.4
1.5

Stellar evolution: an overview . . . . . . .. .. ... ...
Low and intermediate mass stars. . . . . .. .. ... ..
Massive stars. . . . . . ... Lo
8-12Mgstars . . . . . . L
1.2.1  What are super-AGB stars? . . . . . ... ... ... .. .. ..
1.2.2  The importance of understanding 812 Mg stars . . . . . . . ..
1.2.3 Challenges and status of the field . . . .. ... ... ... ...
The role of weak interactions in astrophysics . . . . . . . . . .. .. ..
(i) The URCA process. . . . . . . ... ... ... ...
(ii) The neutron excess in advanced burning stages.
(iii) Collapse of the Fe-core and the supernova explosion.
(iv) Neutron—capture nucleosynthesis. . . . . . . . .. ..
Mixing in the stellar interior . . . . . . . . . .. .. ...
Thesis Outline . . . . . . . . .. . .

Numerical Modelling of stars and the MESA code . . . . . . .. ..

2.1
2.2

2.3
24

2.5

Key equations . . . . . . . . ..
Convection . . . . . . . . . . .
2.2.1 Mixing length theory . . . . . . . ... ... ... ... .....
2.2.2  Overshooting and convective boundary mixing . . . . . . . . ..
The nuclear reaction network and composition evolution . . . . .. ..
Essential physical and empirical data . . . . . . .. ... ... ... ..
2.4.1 EOS and opacities . . . . . . . .. ... o
2.4.2 Nuclear reaction rates . . . . . . .. ...
243 Massloss . . . . .
2.4.4 Neutrino energy losses . . . . . . . . ... Lo
Modelling assumptions in this work . . . . . . . . ... ... ... ...

Models of 812 M, stars . . . . . . . . . .. ...

3.1

3.2

Evolution and fates . . . . . .. .. ... o
3.1.1 Evolution to the end of carbon burning . . . . . . .. .. .. ..
3.1.2  Late evolution of the 8.2, 8.7 and 8.75 M, (super-AGB) models

3.1.3 Late evolution of the 8.8, 9.5 and 12.0 M, (massive star) models
Neon-oxygen flashes and flame . . . . . . . . ... ... ... ... ...
3.2.1 Advance of the burning shell towards the stellar centre . . . . .
3.2.2  Uncertainties due to mixing . . . . . . . .. .. ... ... ..

Vil

v

[
— 00 00 O N = <



Viii

SUMMATY . . . . oo 115
3.3 Progenitor structure and importance for supernova explosions . . . . . 118
3.4 Discussion and concluding remarks . . . . . ... ... 123

4 Calculation, implementation and impact of new weak interaction
rates . . ... 127
4.1 Case for the calculation of new weak reaction rates . . . . ... .. .. 128
4.1.1 What isinvolved? . . . . . . . .. ... 128
4.1.2 The problem with currently available rates . . . . . . . . . . .. 130
4.1.3 Proposed solutions . . . . . ... ... oL 133
4.2 Rate Calculations . . . . . . .. . ... 136
4.2.1 General form . . .. ..o 136
4.2.2 Phase space integrals . . . . . .. ... 138
4.2.3 Nuclear Physics input: USDB shell model . . . . . ... .. .. 138
4.2.4 Neutrino fluxes and v-ray heating rates . . . . . . . . . .. ... 139
4.2.5 Screening of weak reactions . . . . . .. ... ... 140
4.3 Implementation in a stellar evolution code (MESA) . . . ... ... .. 141
4.3.1 A quick reality check . . . . .. ... ..o 142
4.3.2 Implementing weak reactions into the stellar evolution code . . 143
4.4 Impact of new weak reaction rates on the stellar models . . . . . . . .. 148
4.4.1 URCATates . . . . . . . . . . . 148
442 A=20and 24 rates . .. ... ... 157
4.4.2.1 Different behaviour from Nuclear physics . . . . . . . . 157
4.4.2.2 Results of the new calculations . . . .. .. ... ... 163
5 Conclusions and future work . . . . . . . .. ..o 168
Publications . . . . . . . . .. 175
5.1 Refereed publications . . . . . . . . ... ... 175
5.2 Other Publications . . . . . . .. ... .. ... 0L 175
5.3 Publications in preparation for submission to refereed journals . . . . . 176
5.4 Talks . . . . . . 176
5.5 Conference Posters . . . . . . . . . ... ... 177

Bibliography . . . . . . .. 178



List

1.1
1.2
1.3
1.4
1.5

1.6
1.7

1.8
1.9
1.10
1.11

1.12

1.13
1.14
2.1
2.2
2.3
2.4
3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

3.9

of Figures

Classification of stars by initial mass . . . . . . .. ... ... .....
Thermal pulses of AGB and super-AGB stars . . . . . . ... ... ..
Kippenhahn diagram showing the evolution of a 15 Mgstar . . . . . . .
The carbon burning flame of super-AGB stars . . . . . . .. .. .. ..
[lustrative Kippenhahn diagram showing the evolution of a super-AGB
star towards an electron capture supernova . . . . . . .. ... ... ..
Cumulative mass distribution of core collapse supernova progenitors ob-
served in M31 . . . . . . . .
Distribution of neutron star spin periods in high-mass X-ray binary sys-
Tems . . . . e
The mass distribution of neutron stars . . . . . ... . ... ... ...
Abundance anti-correlations in metal-poor stars . . . . . . . ... ...
Theoretical explosive yields for electron capture supernovae . . . . . . .
Initial mass limits for the type II-P supernovae progenitors with direct
detections . . . . . . ..
Association of various supernova types with emission typical of star
forming regions . . . ... Lo
The transition masses as a function of initial metallicity . . . . . . . . .
Hydrodynamical instabilities encountered in the stellar interior . . . . .
Regions in the log p - log T plane covered by the MESA EOS module .
Regions in the log p - log T plane covered by the MESA opacity module
Dominant mechanisms of neutrino production across the p — 7T plane
The nuclear reaction network used in these calculations . . . . . . . ..
Evolution of all the models in the Hertzsprung-Russell diagram
Effective temperature as a function of central helium abundance . . . .
Divergence of the models following C-burning in the log;,(p.) —logyo(1)
plane . . . . ..
The dredge-out phenomenon in the 8.75 Mg model . . . . . .. .. ..
Kippenhahn diagrams for the 8-12 M models . . . . . . .. .. .. ..
Impact of convective boundary mixing on the efficiency of the third
dredge-up . . . . . . .
Critical relationship between mass loss and core growth rate for the
87Mgmodel . . . . . . L
Radial profiles of the electron fraction, Y,, in the progenitor structure of
the 8.8 and 8.7 Mgymodels . . . . . . ... ..o
Impact of the URCA process on the evolution of the 8.8 M, model in
the central density-temperature (p. — Tc) plane . . . ... ... .. ..

ix

© ~J O =~

10

12

13
15
17
18

20

22
27
39
62
63
68
73
76
78

79
82
84
87
89

96



3.10

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Rates of key neon- and oxygen-burning reactions as functions of tem-
perature from the REACLIB compilation . . . . . . . ... ... ... ..
Radial profiles with respect to mass co-ordinate of the radiative, conduc-
tive and total opacities following the extinction of the final neon-oxygen
convective flash episode . . . . . . . .. ..o
The thermal adjustment timescale profile below the neon-burning shell
inthe 8.8 Momodel . . . . . . . .. ..
Central density-temperature evolution of the 8.8 My model assuming
different parameterisations of the convective boundary mixing . . . . .
Diffusion coefficient profiles against mass coordinate during the second
neon flash event in the 8.8 Mymodel . . . . . . .. ... ... ... ..
Energy production from key neon- and oxygen-burning reactions during
the peak of the first neon shell flash in the 8.8 M model with different
CBM parameterisations . . . . . . . .. ...
Density profiles as a function of mass coordinate and radius . . . . . .
A**Mg+e™) at T = 4x 10° K from the compilations of Oda et al. (1994)
and Takahara et al. (1989) . . . . . .. . ... ... ... ... ...
Reaction rates for **Mg(e™, v)*'Na from the Oda et al. (1994) compila-
tion as a function of electron density for various temperatures (7y/GK)
log,o{ft) values for the electron capture rates of Mg and ?°Ne using
the formalism of Fuller, Fowler & Newman (1985) at Ty = 0.7 . . . . .
Schematic diagram illustrating the energetics of electron capture from
Miyaji et al. (1980) . . . . . . . . .
Evolution of the 8.8 My model in the p. — T plane along with the central
abundances (right axis) of the key URCA process isotopes . . . . . . .
%Mg electron capture rate (top left panel) and ?*Na beta decay rate
(top right panel) at T = 4 x 10®K from the compilation of Oda et al.
(1994) and the new calculation by Toki et al. (2013) . . . . . . ... ..
Product of electron-capture and -decay rates for A=23, 25 and 27 (solid
lines) using the newly calculated rates of Toki et al. (2013) including
Coulomb corrections . . . . . . ...
Product of electron-capture and -decay rates for A=23, 25 and 27 (solid
lines) using the rates of Oda et al. (1994) . . . . . .. .. .. ... ...
Central evolution of the failed massive stars at 3 metallicities (Z = 0.014,
0.001 and 107°) governed by the URCA process . . . . ... ......
Product of electron-capture and [-decay rates for A = 20 and A = 24
using the newly calculated rates of Martinez-Pinedo et al. (in prep.)
including experimentally determined GT transition strengths . . . . . .
Binding energy per nucleon (MeV) as a function of proton number Z for
A = 23 nuclei (odd-even or even-odd) calculated using the expression
from the semi-empirical mass formula . . . . . . ... .. .. ... ...



4.12 Binding energy per nucleon (MeV) as a function of proton number Z for
A = 24 nuclei (odd-odd or even-even) calculated using the expression
from the semi-empirical mass formula . . . . . . . ... ... ... ...

4.13 Late evolution of the failed massive star (FMS) models at three metal-
licities (Z = 0.014, 1073 and 107°) using the rates of Oda et al. (1994)
and Martinez-Pinedo et al. (in prep) . . . . ... ... ... ... ...

XI



List of Tables

3.1 Key properties of all six models

x11



1 Introduction

Stars and supernovae are responsible for the creation of the chemical elements (Bur-
bidge et al. 1957). The majority of our own solar system is comprised of material
produced or released in stellar explosions. In order to trace the evolution of the solar
system back to its formation requires a detailed knowledge of the feedback of stars into
the interstellar medium via supernovae.

The study of stars and supernovae involves several physical disciplines: thermo-
dynamics, nuclear physics, fluid dynamics and magnetism. This makes them excellent
benchmarks by which to test the current understanding of many physical fields and
their interaction.

Exotic compact objects such as neutron stars and black holes are the remains
of stars following a supernova explosion (see, e.g., Heger et al. 2003). These objects,
the key components of X-ray binary systems being observed with such space-based
missions as Chandra and XMM-Newton, still pose several challenging questions about
the physics of extreme matter. Furthering our understanding of their formation will
provide constraints on the properties of fundamental physics. There are also cosmo-
logical implications of supernovae. Supernova observations have, for example, recently
provided evidence for the accelerating expansion of the universe (Riess et al. 1998).

In our present age of ever advancing technology, it is hoped that the first gravita-
tional wave detections will be made when the next generation of ground (e.g. Advanced
LIGO, Advanced Virgo) and space (LISA, DECIGO) interferometers and other facil-
ities (e.g. MiniGRAIL and AURIGA) become fully operational. Until now, only the
electromagnetic signals and a handful of neutrinos (Hirata et al. 1987; Bionta et al.
1987) from objects outside of our solar system had been detectable. These instruments
will, however, be in their infancy and will only be able to detect ‘large’ perturbations
in the gravitational field. Such signals are expected to be produced by supernovae and
compact objects, providing an excellent opportunity to study further their complex

behaviour. Neutrinos are also produced in abundance during the collapse of massive



stars and, as alluded to above, using instruments currently in development (IceCube,
Super-Kamiokande), one hopes to be able to learn more about supernovae and their
progenitors from neutrinos thanks to the enhancement of the neutrino detection rate

from these advanced instruments.

1.1 Stellar evolution: an overview

Stars are important to all areas of astrophysics: hosting planets; chemically enriching
the ISM and galaxies via winds and supernovae; contained in clusters, galaxies and
galaxy clusters and responsible for the creation of almost all of the chemical elements.
To fully understand the link between these phenomena and stars requires knowledge
of stellar evolution.

The goal of stellar modelling is to accurately predict the structural and chemical
evolution of stars. Beginning from some first principles in physics—mass conserva-
tion, energy conservation, hydrostatic equilibrium and energy transport—models can
be calculated and the results compared to observations. Comparison with observations
provides constraints for those models and informs their refinement. At present, most
of the observational data (to which models could be compared) describe the condi-
tions only at the surfaces of stars, e.g. luminosities, temperatures, gravitational field
strengths, rotational velocities and chemical compositions. Thus, the predictions made
by stellar models about the interiors of stars can, in general, only be validated if the
predictions made about the surface are directly affected. In some exceptional cases—
for example, in various stellar explosions or neutrino emission from the Sun—the stars
expose a glimpse their interiors and the models are able to be validated in other ways!.

During the 20" century, sophisticated theories of stellar structure (e.g. Eddington
1926; Chandrasekhar 1939) were fast emerging and were already able to account for

many features of the observational data. From the principles of thermodynamics and

'Modern developments in asteroseismology are also providing the opportunity to observe more
directly the behaviour of the interior, e.g. convective core sizes.



Newtonian gravity, it was already understood that there must be some energy source
deep within the star that could provide enough energy to the stellar material for it to
balance its self-gravity with an outward pressure force, but a good theory describing
this energy source was lacking. Hans Bethe proposed the first complete description
of the proton-proton chain. This is the method by which hydrogen is converted into
helium in the Sun’s deep interior. The work built on George Gamow’s description of
quantum tunnelling, explaining how protons could be fused into deuterium under the
temperatures and densities inside the Sun. In stars more massive than the Sun where
the temperatures are higher, hydrogen is burnt predominantly by the CNO cycle.

When all of the hydrogen in the core of the star has been converted into (mostly)
4He, there can be no more release of nuclear binding energy from hydrogen fusion
reactions and the star instead contracts, providing the necessary pressure gradient for
hydrostatic balance by releasing gravitational potential energy. This increases the core
temperature (and, of course, density). If the core reaches high enough temperatures,
nuclear binding energy can once again be released - this time from fusing helium into
carbon.

Stars evolve through this interplay between gravity and nuclear burning, and
different burning stages have different threshold temperatures. Contraction ensues
until either the central temperature exceeds the threshold required to ignite a new
fuel that is abundant in the core region, or until the pressure from degenerate electrons
provide a large majority of the pressure support. In the latter scenario, the temperature
will gradually decrease, preventing the ignition of further nuclear burning in the core.
If this is the case, the star will eventually shed its hydrogen-rich envelope to expose
the strongly degenerate, inert core—a white dwarf.

Stars are most broadly classified by initial mass according to their fate. In this
way, if one assumes a statistical initial mass function (IMF) for some star forming re-
gion, or indeed an entire galaxy, then it is possible to calculate the chemical (Chiappini,
Matteucci & Gratton 1997; Cescutti et al. 2007) and population (e.g. Belczynski et al.
2008; Toonen, Nelemans & Portegies Zwart 2012) evolution of that region to a large
extent from tables (Schaller et al. 1992) or analytical fits (Hurley, Pols & Tout 2000) of



stellar evolution calculations. The lower section of Figure 1.1 shows the classification

scheme for the three main categories: low mass, intermediate mass and high mass stars.

?  ONeMg CO white dwarfs
. WD
REVelelid  hpt-bottom burning S-process
giant 1

branch C-burning C-star formation

l sup&r AGB | massive AGB low-mass AGB

fate: neutron star | ¢ nofecomsflash & = = = & He-coreflash
or black hole e: white dwarf ~ © fate: white dwarf

< 'Mass/M, 10 80 4 1.8 1.0

Figure 1.1: Classification of stars by (lower) main sequence mass and (upper) AGB
mass from Herwig (2005). The limiting masses given at the bottom are approximate
and depend upon the physical assumptions and metallicity. Also shown are the evo-
lutionary fates and characterizing properties - note that the evolutionary fate of the
super-AGB stars is still uncertain, marked in this figure with a question mark.

Low and intermediate mass stars. Although low and intermediate mass stars pos-
sess very similar evolutionary characteristics, their boundary is defined by the manner
in which helium is ignited. Intermediate mass stars, having lower central density by
virtue of their greater mass, will ignite helium centrally under non-degenerate condi-
tions whereas low mass stars will contract further before the helium ignition temper-
ature is reached, allowing for the onset of degeneracy. The pressure of the degenerate
electrons is insensitive to the temperature and thus helium ignition in low mass stars
is a violent event. The temperature increase caused by nuclear energy production ac-

celerates the nuclear reaction rate—which has a temperature exponent of 40—until



the degeneracy is lifted and the core can expand (helium core flash, Sweigart & Gross
1978; see Mocdk et al. 2009 for modern two and three dimensional simulations). When
helium in the core of these stars is exhausted, envelope expansion associated with core
contraction causes the star to move to the asymptotic giant branch (AGB). Further
contraction is once again prevented by pressure from degenerate electrons in the CO
core although nuclear burning continues in the helium and hydrogen shells above the
core and a complex interplay between the two becomes the main evolutionary fea-
ture. Energy production from burning in the helium shell triggers an expansion of
the outer layers causing them to cool and hydrogen burning is extinguished. When
this helium burning episode is quenched an overall contraction re-ignites hydrogen in
the shell above, the helium produced there is deposited onto the region where helium
was burnt previously and at a critical point, helium shell burning is re-ignited and the
cycle repeats (see Iben & Renzini 1983; Gallino et al. 1998 and Figure 1.2). There
exists a thermal instability in the helium shell due to its thin profile causing a runaway
process until the layer expands enough to alter the pressure or the energy is removed
via convection; hence, this is called the thermal pulse (TP) cycle. During the thermal
pulse cycle the envelope is losing mass to the interstellar medium and eventually the
entire envelope may be lost. What remains at the end is a white dwarf (WD), the
degenerate core of its parent star, its final chemical composition being predominantly
a mixture of carbon and oxygen (CO-WD).

During the thermal pulse phase illustrated in figure 1.2, the envelope extends
slightly down into the helium-rich layer as it expands (third dredge-up, 3DUP). This
mixes protons into the region previously processed by helium burning and thus rich in
carbon. If the conditions are right (i.e. an appropriate flux of protons), neutrons are
released by the reaction chain ?C(p, v)"*N(5+v)3C(a, n)'®0O. The successive capturing
of these neutrons builds the heavy elements (with A > 60), contributing to the main s

process component.
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Figure 1.2: The structural profile during the 14" thermal pulse, the subsequent inter-
pulse and the 15" thermal pulse for the 2M model from Herwig & Austin (2004).
Green regions are convective, white are radiative. As the pulse-driven convective zone
(PDCZ) develops, the envelope retracts periodically before deepening once more. After
each thermal pulse, the envelope reaches down into the hydrogen-free layer in an event
known as the third ‘dredge-up’ (3DUP). Figure taken from Herwig (2005).

Massive stars. Massive stars are those which possess enough gravitational potential
energy to proceed through all possible burning stages (H, He, C, Ne, O, Si) and even-
tually reach core temperatures that enable the creation of iron-group elements from
lighter elements (see, e.g., Chieffi, Limongi & Straniero 1998; Limongi, Straniero &
Chieffi 2000; see Woosley, Heger & Weaver 2002a for a review; and for the effects of
rotation, see Heger, Langer & Woosley 2000; Hirschi, Meynet & Maeder 2004; Chieffi &
Limongi 2013). Silicon burning is unique to massive stars and proceeds quite differently
to the other major burning stages?, building heavier nuclei through a series of compet-
ing a—captures («, ) and photodisintegrations (v, «). Even the simplest treatment of
silicon burning must consider the abundances of *He, '2C, 160, Mg, 28Si, 32S, 36Ar,

40Ca, #Ti, ¥Cr, %2Fe and %°Ni, through which the a-chains operate. Complicating

2 Another exception here is neon burning, which will be discussed in Chapter 3.
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Figure 1.3: Convective structure evolution (‘Kippenhahn’) diagram of a 15 M, massive
star; illustrated is the interior 7 Mg of the star. t* is the time until the iron core
collapses (infall velocity exceeds 1000 km s™1), grey regions are convective and white
regions are radiative. Convective regions associated with the major burning stages are
labelled by the fuel being burned at that time. The solid line marks the boundary of
the helium core, the dashed line that of the CO core and the dot-dashed line that of
the ONe core.

the picture of silicon burning further, the temperatures during silicon burning are in
excess of 3 GK and many of the key reaction rates are extremely high. The iron cores
produced during silicon burning are inert and as such can no longer produce energy
to balance gravitational contraction. Furthermore, the pressure from degenerate elec-
trons in the core is insufficient to balance the star’s weight and so collapse ensues. A
Kippenhahn diagram illustrating the evolution of a 15 M star is shown in Figure 1.3.
During the helium and carbon burning phases in massive stars, neutrons are
released via the reaction chain "N(a,v)¥F(87v)"®0(a, v)**Ne(a, n)*Mg (Pignatari
et al. 2010) and produce elements with 60 < A < 90 (Raiteri et al. 1993). The
solar abundance distribution in this atomic mass range is not produced exclusively
by this process, the weak s-process component, but also from the main component

in AGB stars (described earlier). Since the weak component relies on the presence of



1N, the contribution from low metallicity stars should be small, however instabilities
in differentially rotating massive stars have been shown to produce *N in a primary
manner (Frischknecht, Hirschi & Thielemann 2012). This allows the weak s-process
to operate at lower metallicities than previously thought and matches well with the
observed abundances in galactic bulge stars (Chiappini et al. 2011).

The nucleosynthetic yields of massive stars are modified by the passing of the
shock during the supernova explosion, and how the abundances are distributed through-
out the core of the star by convection. Convection also modifies the entropy and
electron fraction gradients, which have important consequences on the details of the

supernova explosion and the properties of the forming neutron star.

1.2 8-12 M, stars

The stellar mass range 8 < M, /Mo < 12 corresponds to super-AGB stars and the
most numerous massive stars. It is host to a variety of supernova progenitors and is

therefore very important for galactic chemical evolution and stellar population studies.

1.2.1 What are super-AGB stars?

Super-AGB stars are the massive counterparts of AGB stars. Their evolution is charac-
terized by the ignition of carbon fusion without progression to further nuclear burning
stages (Ne, O, Si). The limiting masses (also called transition masses) for super-AGB

stars are: M,,, the lowest initial mass for which carbon is ignited and M., above

ups
which the star will burn through subsequent burning stages to produce an iron core
and is therefore classified as a massive star. Classically, M, and My,s are about 9
and 11 M, respectively (Siess 2007), but depend upon the extent to which convective
mixing operates beyond the formal boundary of the core (see section 1.4). Because

super-AGB stars develop a degenerate core, carbon is ignited at an off-centre mass

co-ordinate because of a temperature inversion (see section 3.1.2 for a detailed descrip-



tion). Ignition of a fuel in this way produces a flame front which propagates to the
centre (Nomoto 1984; Garcia-Berro, Ritossa & Iben 1997; Siess 2007; see Figure 1.4),
and the speed at which this flame travels will depend on the local degeneracy. More

details of the propagation of nuclear flames are discussed in Chapter 3.
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Figure 1.4: Propagation of a carbon-burning flame and its associated convective shell
to the centre of a 9M model from Garcia-Berro, Ritossa & Iben (1997). ]V[CSB/MQS_1
is the speed at which the flame (approximately the base of the convective shell) moves
inwards during the second carbon burning episode.

Like their lower mass counterparts, super-AGB stars develop a thermal instability
in their helium shell which leads to a helium shell flash, the recurrence of which indicates
the beginning of a series of thermal pulses (TP). During this thermally pulsing phase
(TP-SAGB) the envelope is losing mass and the products of nuclear burning in the
helium shell are accumulating on the helium-free core. These two processes are in
competition, the outcome of which will determine the fate of the star. Upon the loss of

the envelope, nuclear production will cease and a white dwarf is left, however because its
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Figure 1.5: Convective structure evolution (‘Kippenhahn’) diagram of an 8 M, super-
AGB model; illustrated is the interior 4 M, of the star. ¢* is the time until the end of the
calculation, grey regions are convective and white regions are radiative. The blue line
marks the boundary of the H-depleted core, and the green line that of the He-depleted
core. Following core helium burning, the star experiences a deep second dredge-up
(at log,(t*) ~ 4.9). Carbon ignites as flashes and later as a flame that propagates to
the centre of the star (see section 1.2.3). The star evolves onto the TP-SAGB phase
(inset panel). After several thousand of these thermal pulses, if the core reaches the
critical mass (about 1.37 M, Nomoto 1984) it will rapidly contract, reaching central
densities exceeding the threshold for the *?Ne+e~ —2Y F+1,. While both panels show
the result of an actual simulation, they come from two different simulations, and are
arranged in this manner for illustrative purposes.

progenitor was sufficiently massive it has been processed by carbon burning and now
has a chemical composition of primarily oxygen and neon (ONeWD). On the other
hand, if the rate of nuclear burning in the helium shell allows the core to grow beyond
the critical limit, Mgc ~ 1.37M (Nomoto 1984), electrons begin to be captured by
isotopes in the core, removing electrons from the plasma. The removal of electrons
alleviates the electron degeneracy pressure supporting the star and causes dynamical
instability by which the star cannot readjust to balance the gravitational infall until the
matter in the core has been compressed to nuclear density. When this density is reached

in the core, the infalling material will have experienced nuclear transmutations due to
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the rapid change in the thermodynamic environment (e.g. the ignition of an oxygen
deflagration) and proceeds to explode and disrupt the structure of the progenitor star,
leaving a neutron star remnant. This is an electron capture supernova (EC-SN, Miyaji
et al. 1980). The pre-supernova evolution of a super-AGB star that will become an

EC-SN is illustrated in Figure 1.5.

1.2.2 The importance of understanding 8-12 M, stars

Electron capture supernovae (EC-SNe) are the deaths of approximately 8-10 M, stars,
and iron core-collapse supernovae (FeCCSNe) the deaths of most stars more massive
than about 10 M, (see Figure 1.1). Type II supernovae, such as the Crab and Vela
supernovae and Cassiopeia A, are either electron-capture or core-collapse supernovae.

The classical initial mass function of Salpeter (1955),

dN —2.35
W x M s

is strongly weighted towards stars with lower masses and suggests that 8-12 solar
mass stars should account for about half of all type II supernovae. A recent survey
of supernova remnants in M31, the Andromeda galaxy, shows an even steeper (more
bottom heavy) IMF than that of Salpeter (Jennings et al. 2012, see Figure 1.6).

Despite their significance, electron-capture supernovae and their progenitors are
much less studied than iron core-collapse supernovae. One of the key reasons for
this bias lies with the physical and computational complexities involved in modelling
the evolution of the progenitor stars of electron-capture supernovae (see section 1.2.3).
There are already a large number of observations that could potentially be explained by
the occurrence of electron-capture supernovae, however the current status of electron-
capture supernova theory is still catching up with observations due to these difficulties.
These observations are summarised in this section along with some of the open ques-
tions that they present.

Knigge, Coe & Podsiadlowski (2011), observing X-ray binary systems (BeXs),
found that they displayed a distinct bimodality in their orbital eccentricities and spin
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Figure 1.7: Distribution of neutron star spin periods in high-mass X-ray binary systems
(Knigge, Coe & Podsiadlowski 2011).

periods (see Figure 1.7). The authors postulated that those neutron stars with lower
orbital eccentricity are the remnants of electron-capture supernovae, and those with
high orbital eccentricity are the remnants of core-collapse supernovae. The steeper den-
sity gradient in the EC-SN progenitors promotes a weaker, faster explosion in which
asymmetries have less time to develop, giving the neutron star a weaker natal kick
(Scheck et al. 2006, 2D; Wongwathanarat, Janka & Miiller 2010, 3D) as suggested by
Podsiadlowski et al. (2004). The two-dimensional EC-SN simulations of Wanajo, Janka
& Miiller (2011), however, do show strong asymmetries and the details of the behaviour
during the supernova explosion are still poorly understood. Mueller, Janka & Heger
(2012) show that for low mass progenitors (8.1 M in their study), the standing accre-
tion shock instability (SASI) is not felt and hence large asymmetries may not persist
in the explosion unless the progenitor star is sufficiently massive enough. A strong
(unavoidable) caveat of all of the work on supernova theory is that the progenitor
models with which their simulations begin are spherically symmetric. Thus, asymme-

tries are implicitly assumed to develop only during the bounce and explosion phase of
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the supernova itself. Very recent work by Couch & Ott (2013) attempts to connect
the explosion properties to progenitor asymmetries by introducing non-spherical 3D
perturbations into 1D progenitor models. Indeed, some of the perturbed models yield
successful explosions where the spherical models do not. This highlights the impor-
tance of asphericity in the progenitor models, for which it is desirable to have realistic
predictions. Producing realistic 3D progenitor models for supernovae is a work actively
in progress (see, e.g., Arnett & Meakin 2011).

Schwab, Podsiadlowski & Rappaport (2010) find a bimodality in the gravitational
mass distribution of 14 well-measured (with accuracies better than about 0.025 M, )
neutron stars (see Figure 1.8). The authors converted the measured masses into pre-
collapse masses using a number of equations of state for neutron-star matter (since this
EOS is still highly uncertain and remains a hot topic in astrophysics). The resulting
peaks of the pre-collapse mass distribution were shown to be at about 1.37 and 1.48 M, .
The mass of the neutron star that is formed in the supernova depends on the pre-
supernova entropy structure, the explosion physics and whether or not material falls
back onto the neutron star. There are still many uncertainties surrounding the pre-
supernova — and in particular, the silicon-burning — evolution of massive stars that can
affect the resulting neutron star mass. For example, if a silicon burning shell is active at
the time where the iron core mass exceeds the Chandrasekhar limit, the core contracts
and boosts energy production in the shell, causing an expansion (Timmes, Woosley
& Weaver 1996). How the shell burning, and in particular convection during the late
burning stages, behaves can make a significant difference to the iron core mass, and
hence the mass of the neutron star formed in the subsequent explosion. To study the
progenitor evolution of the 8-12 M stars is thus a much needed pursuit if one wants
to constrain supernova theory, the nuclear equation of state and the understanding of
the variety of compact objects.

The distribution of elemental abundances that is observed in the Sun (see, e.g.,
Asplund et al. 2009) is the result of many physical processes that have occurred in many
different astrophysical sites. At present, the components of the distribution that are

produced by the slow neutron-capture process (s process) in both low-mass and massive
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Figure 1.8: The neutron star mass distribution as observed by Schwab, Podsiadlowski
& Rappaport (2010). There is a distinct bimodality in the distribution which is hy-
pothesised to be the result of two neutron star formation mechanisms - electron capture
and iron-core collapse supernovae. It is not clear whether the bimodality would persist
once a larger sample size has been obtained.

stars are able to be reasonably well determined (see Képpeler et al. 2011 for a review),
however there still remain large sections of the distribution that are inexplicable from
the current picture. Anti-correlations in the observed abundances of metal-poor stars
suggest that there are more than one site for heavy element production (Hansen et al.

2012; Figure 1.9), of which electron-capture supernovae likely play an important role. It
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is known that the extreme physical conditions reached during the supernova explosion
can drive the production of exotic nuclei, however there are still no robust quantitative
results concerning the nucleosynthesis in electron-capture and core-collapse supernovae
because of the uncertainties in the progenitor models and explosion physics. Recently,
the r process signature in the solar abundance distribution has been shown to be
reproduced by both the neutron star merger scenario (Rosswog et al. 2014) and some
rare jet-driven supernovae of massive stars (Winteler et al. 2012).

The conditions that are experienced in the neutrino-driven wind during an EC-SN
create a potential site for r-process nucleosynthesis, which is thought to be responsi-
ble for the production of half of the elements heavier than iron. Many recent studies
of electron-capture supernovae (e.g. Ishimaru & Wanajo 1999; Wanajo et al. 2003;
Ning, Qian & Meyer 2007; Wanajo et al. 2009; Wanajo, Janka & Miiller 2011) model
the collapse and associated explosive nucleosynthesis of stars that develop degenerate
ONeMg cores. Ishimaru & Wanajo (1999) investigate the r-process via europium en-
richment in galactic halo stars having a large [Eu/Fe], highlighting the SNe from stars
either in the mass range 8-10 M or M 2 30M,, as potential production sites. Wanajo
et al. (2003) were able to produce r-process nucleosynthesis by artificially enhancing the
shock-heating energy during the explosion; highly neutronised matter with an electron
fraction (electrons per baryon) of Y, ~ 0.14 was ejected, allowing for strong r-process
nucleosynthesis. Ning, Qian & Meyer (2007) find that the steep density gradient in
the surface layers of the core is responsible for a rapid expansion during the collapse
of the core. This speed of the expansion causes the free nucleons, alpha particles and
heavier nuclei to fall out of equilibrium and free nucleons in this state will facilitate the
formation of seed nuclei with A ~ 140 (Meyer 2002). Other signatures in the yields
of electron-capture supernovae are found by the 1-D collapse model of Wanajo et al.
(2009), including a small amount of ®Ni in comparison with core-collapse supernovae.
Following this study, a 2-D hydrodynamic calculation was performed (Wanajo, Janka
& Miiller 2011), finding EC-SNe to be likely sources of Zn, Ge, As, Se, Br, Kr, Rb,
Sr, Y and Zr, but r—process elements were not produced without an artificial reduc-

tion of the minimum Y, in the simulation (see Figure 1.10). Assuming that EC-SNe
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Figure 1.9: Observations of metal-poor stars show anti-correlations of Ag and Pd
(silver and palladium) with Sr and Ba (strontium and barium). Ratios in parenthe-
ses are logarithmic abundance ratios with respect to the solar value, i.e. [A/B] =
log,0(Xa/XB) — log1o(Xa/XpB)e, where X4 and Xp are the abundances of A and B.
Strontium and barium are formed almost entirely in the weak and main s-process, re-
spectively. If Ag were also formed primarily in the weak s-process, then the trend in
the top panel would be flat. So too would the trend in the bottom panel, were Pd to be
formed primarily in the main s-process along with Ba. These elements (Ag and Pd) also
show anti-correlations with Eu (europium), which is an r-process element. The origins
of elements in the region of Ag and Pd are thus not clear, and it has been postulated
that electron-capture supernova explosions are a potential site for their production.
Figure taken from Hansen et al. (2012)
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are the sole contributors of ®Kr in the galaxy, Wanajo et al. estimate that EC-SNe
account for ~ 4% of all core collapse supernovae, which suggests that the progenitor
channel for EC-SNe is relatively narrow given the statistical significance of stars in the

8-12 M mass range.
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Figure 1.10: Abundance as a function of atomic mass number for the yields of electron-
capture supernovae resulting from the 2D (axially symmetric) supernova simulation
of Wanajo, Janka & Miiller (2011). The minimum electron fraction found in the
simulation was Y, = 0.4 (red line), while the other lines show the results when the
minimum Y, is artificially reduced.

Although it is looking less likely that electron capture supernovae can contribute
to the main r process, their nucleosynthesis yields are still important. For example,
the production of *Ca in recent simulations of electron capture supernovae is high
enough to explain the solar abundance — a long standing problem that was thought to
be attributed to some rare type la events (Wanajo, Janka & Miiller 2013a). From the
same simulation, Wanajo, Janka & Miiller (2013b) found ®Fe to be produced during
the EC-SN explosion. Quantitative comparisons to other calculations suggest that

EC-SNe could contribute between 4 and 30% of the Fe in the Milky Way.
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Smartt 2009 (and references therein) have raised difficult questions for the stellar
evolution community by providing direct detection data for supernova progenitors. For
each transient detected that is thought to be a supernova, it is possible to search the
Hubble Space Telescope’s archival data for the past few years, looking for a source
at the precise coordinates where the transient was detected. If the source has now
disappeared following the transient, then the supernova is confirmed and moreover, one
now has photometric data for the star during the final years (or less) before it exploded.
From the photometry, Smartt and collaborators determine the ZAMS mass of the
progenitor star by comparing the derived luminosity and effective temperatures to those
computed using stellar evolution codes. Figure 1.11 shows the derived ZAMS masses of
type II-P supernova progenitors using the direct detection method and comparing the
photometry to stellar models calculated using the Cambridge STARS code (Eggleton
1971). In this study, the lower limit for the initial mass of a type II-P progenitor is
found to be 8.5ﬂ.5M@. The problem is complicated for type II-P supernovae because
the contribution could be from either CCSNe or EC-SNe. The progenitors of EC-SNe
are super-AGB stars that undergo deep second dredge-up (see section 1.2.3 and Figure
1.5). During the second dredge-up of super-AGB stars, hydrogen is mixed down to
temperatures that are not reached by the envelope in massive stars, and provides a
large boost in the star’s luminosity. The relationship between the initial stellar mass
and the luminosity at the pre-supernova stage is thus non-monotonic and a degeneracy
arises. For example, models calculated using the stellar evolution code MESA show
that for a given pre-supernova luminosity, the progenitor could be a massive star with
Myzanms =~ 15Mg or a super-AGB star with Mzaus =~ 8M.

It has already been suggested that the transients SN2008S, NGC300-OT2008 and
M85-OT2006 are examples of EC-SNe (Smartt 2009; Botticella et al. 2009), but their
nature has yet to be confirmed. Type IIP supernovae with low explosion energies and
relatively small %°Ni yield are generally thought to be either the EC-SNe of roughly
8 — 10M, stars or weak FeCCSNe of roughly 20 — 25M, stars whereby a black hole
is formed and a large fraction of the ejecta falls back onto the remnant. Supernovae

with the classification of type IIn-P are also electron capture supernova candidates.
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They exhibit narrow (n) spectral features, indicating an interaction with slow-moving
circumstellar material and a plateau (P) in the light-curve (Smith 2013). Indeed, if
one assumes association of supernova locations with regions of H, and UV emission (as
indicators of star formation) to be a good indicator of the progenitor mass, the majority
of type IIn supernovae would have progenitors in the mass range 8-12 M, (Anderson
et al. 2012; Figure 1.12). In addition, Anderson et al. find that a significant fraction
of type II supernovae appear to arise from progenitor stars with M;,; < 10M by the
same method.

The white dwarfs that are produced during the deaths of super-AGB stars that
do not develop cores of the critical mass for EC-SNe may be in binary configurations.
Their accretion induced collapse (AIC; Nomoto & Kondo 1991) is triggered by growth of
the accreting core up to the critical mass for electron captures by 2*Ne to be activated.
Realistic white dwarf models can only be produced by simulating the evolution of super-
AGB stars, adding to the growing list of reasons to accurately simulate 8-12 M stars.
The AIC channel is potentially a contributor to the population of millisecond pulsars
(MSPs), offering the unique scenario in which a neutron star is formed after being
spun up due to angular momentum transfer from its donor companion (Hurley et al.
2010). Tt has been shown, however, that the strong vorticities encountered as a result
of the deposition of angular momentum in SASI-driven explosions can produce rapidly
rotating neutron star remnants (Blondin & Mezzacappa 2007). As mentioned earlier,
Mueller, Janka & Heger (2012) show the SASI to be dominant in the core collapse
supernovae of massive stars (a 23 Mg star in their study).

There are at present too many uncertainties involved in the simulated explosions,
many of which are related to uncertainties in the progenitor models calculated by stellar
physicists, and challenges in the progenitor modelling itself to be able to know the
contribution of EC-SNe to GCE, stellar populations and supernovae with the currently
available progenitors. In fact, all simulations of EC-SNe to date, with the exception
of Ishimaru & Wanajo (1999), begin from the same classical pre-supernova model of
Nomoto (1987). New progenitor models of electron-capture and low mass core-collapse

supernovae are thus highly desirable.
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forming regions is an indicator of the progenitor mass, with more massive stars being
more associated due to their shorter lifetimes.
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1.2.3 Challenges and status of the field

Early numerical studies of stellar evolution in the (super-) AGB regime (e.g. Hofmeis-
ter, Kippenhahn & Weigert 1964; Kippenhahn, Thomas & Weigert 1965; Kippenhahn,
Thomas & Weigert 1966) showed evolution towards central carbon ignition under rel-
atively non-degenerate conditions, due to the lack of a more modern treatment of
neutrino emission (see section 2.4.4). The effects of composition on the evolution of
stars in the (super-) AGB mass range are investigated in detail by Becker & Iben
(1979) and Becker & Iben (1980), formerly in the pre-AGB regime and latterly during
the thermal pulses with emphasis on the surface abundance evolution and formation
of planetary nebulae.

During the 1980s, several studies attempted to investigate the evolution of stars
at the transition between massive stars that produce neutron stars and AGB stars that
produce white dwarfs. These studies largely involved the computation of helium stars.
The electron capture supernova phenomenon first peaked interest with the publication
of a helium star model that evolved through to core collapse induced by electron cap-
tures (Miyaji et al. 1980). These calculations did not follow the thermal pulse phase
in detail; instead the core was assumed to grow by steady shell burning. Further cal-
culations were completed by Nomoto (1984) in which the hydrogen envelope was then
fitted to the core, and the first progenitor models for EC-SNe were produced. Soon af-
ter, Hillebrandt, Nomoto & Wolff (1984) simulated the resulting collapse and explosion
from the point at which the oxygen deflagration had processed the inner 0.32 M, into
NSE composition. Nomoto (1987), in his follow-up publication, presented details of
the oxygen deflagration during the very late phases of the pre-supernova evolution of
the helium star. Since this result has not been replicated to date, these models are
still actively used as input for supernova simulations® (e.g. Ning, Qian & Meyer 2007;

Janka et al. 2008a; Wanajo, Janka & Miiller 2011).

3Ritossa, Garcfa-Berro & Iben (1999) presented in great detail the evolution of a super-AGB star
through this phase as part of a series of papers by the same group. However, models have never been
used by the supernova community.



24

Habets (1986) also computed the evolution of helium stars for a range of initial
masses, finding that those with M = 3.2, 3.5 and 4.0 M, eventually ignited neon burn-
ing in the centre, while those with M = 2.2, 2.5 and 2.9 M., experienced the ignition
of neon off-centre. The off-centre ignition proceeded as a flash, as in the most massive
model of Nomoto (1984), case 2.6, but both studies agreed that the flash did not in-
duce dynamical effects. Woosley, Weaver & Taam (1980), on the other hand, evolving
a full 10 M stellar model (2.7 M helium core) from the main sequence (as opposed
to pure helium stars) found that the neon flashes were sufficient to cause the ejection
of the hydrogen envelope. Woosley and collaborators were also able to simulate the
propagation of the neon-burning shell to the stellar centre, concluding that the model
would become an FeCCSN. The model from Nomoto (1984), case 2.6, was not followed
any further than the ignition of off-centre neon-burning shells, however subsequently,
Nomoto & Hashimoto (1988) followed the propagation of the neon-burning shell in
a helium star of 3.0 M, (case 3.0) to the stellar centre, also concluding that the star
would produce an Fe core before collapsing. The fact that the models of Woosley,
Weaver & Taam (1980) eject the envelope about ten years before the explosion could
lead to the production of a peculiar supernova exhibiting strong interaction with the
circumstellar medium (CSM; Smith 2013), however Woosley et al. themselves strongly
state that poor zoning in their calculations may have led to such a result. Timmes &
Woosley (1992) and Timmes, Woosley & Taam (1994) studied in detail the properties
of nuclear flames in degenerate compositions of C+0O and O+Ne+Mg. In these studies
it was proposed that, should neon and oxygen burning ignite off-centre in the core of a
star significantly far from the centre, then it may compete with the contraction of the
centre to determine its fate — EC-SN or FeCCSN.

A few years later, detailed simulations of a super-AGB star were published de-
scribing the characteristics of super-AGB evolution such as off-centre carbon ignition,
deep second dredge-up and the convective flash and flame during carbon burning
(Garcia-Berro & Iben 1994). Garcia-Berro & Iben (1994) also found X (**Na) to be
an order of magnitude higher in the core following carbon burning than in previous

studies, and suggested that electron captures by this ?Na could trigger the collapse
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of the star. Ritossa, Garcia-Berro & Iben (1996), extending this body of work, found
that the balanced-power condition assumed by Timmes, Woosley & Taam (1994) for
conductively propagating flames (carbon-burning luminosity = neutrino luminosity) is
not fulfilled, although the flame speed agreed well with those computed by Timmes
and collaborators. The study also found that the ??Ne(a, n)*Mg neutron source is
activated in the thermal pulse (TP) cycle of super-AGB stars. Iben, Ritossa & Garcia-
Berro (1997), simulating the evolution of a super-AGB star with slightly higher M,
than in their previous studies, find the dredge-out phenomenon to occur. Luminosity
produced via carbon burning, gravitational contraction and helium burning cause the
development of a convection zone in the helium layer that grows in mass and merges
with the descending base of the convective envelope. The final publication in this series
of works studying super-AGB evolution simulated a star with still larger M;,; (Ritossa,
Garcia-Berro & Iben 1999). A description of the URCA process (see section 1.3) op-
erating in the ONe core of their model was presented. The authors also find transient
neon shell burning in the outer layers of the core. In this 11 M, model, the core reaches
0.014 My, shy of the critical mass for electron captures by ?°Ne to be activated (based
on the calculations of Miyaji et al. 1980) and the model would evolve to an electron
capture supernova as long as the envelope is not lost entirely.

Siess (2006) confirmed the characteristics of super-AGB evolution found in the
body of work produced by the Spanish group discussed in the previous paragraph. The
chemical signature of the second dredge-up was found to be indistinguishable from that
of lower mass AGB stars that do not experience carbon burning. In the calculations
with the STAREVOL code used by Siess, the carbon flame is treated by forcing adaptive
fine zoning informed by the calculation of flame speeds in degenerate materials by
Timmes & Woosley (1992) and Timmes, Woosley & Taam (1994). As mentioned
earlier, Ritossa, Garcia-Berro & Iben (1996) found the steady state assumption of
Timmes et al. to be invalid, however it is not clear that this is a strong caveat of the
STAREVOL code since the flame speeds calculated by Ritossa et al. agree well with
those found in Timmes et al.’s simulations. Siess (2007) extended his study to several

lower metallicities. He shows that while the transition masses decrease when initial
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metallicity is decreased, there exists a minimum point at Z =~ 10~ below which the
transition masses begin to increase again with further reduction of the initial metallicity
(Figure 1.13). This phenomenon was briefly explained by Tornambe & Chieffi (1986),
and is caused by the final size of the helium core, which is determined by the size of the
core during the main sequence and the strength of the H-burning shell thereafter. The
reduction in the abundances of CNO elements with decreasing Z means that a star with
a given initial mass must burn hydrogen with higher temperatures in order to provide
supporting luminosities. The size of the convective hydrogen core is thus larger. Below
the critical metallicity of Z ~ 107*, the CNO abundances are so low that energy
generation from proton-proton chain reactions are the dominant source of luminosity.
The convective core size thus has little dependence on the CNO abundances—and
hence on the metallicity—while the proton-proton chain is providing the bulk of the
energy. However, the energy generation in the hydrogen-burning shell is dominated by
the CNO cycle for metallicities well below Z = 10~%. This is because the temperature
in the hydrogen-burning shell is consistently higher than in the convective hydrogen-
burning core owing to the shell being thinner and radiative and to the star being
more luminous during the shell-burning phase than on the main sequence. It is for
this reason—that the temperature is high enough in the hydrogen-burning shell for the
CNO cycle to dominate while in the convective hydrogen-burning core it was not—that
the shell hydrogen-burning rate is a monotonic increasing function of the metallicity.
Thus, for lower metallicity the helium (hydrogen-free) core grows more slowly and a
larger initial mass is required to give the same final helium core mass.

Pumo & Siess (2007) briefly analysed a grid of models calculated with the
STAREVOL code (Siess & Pumo 2006), predicting the electron capture supernova
channel to be at most 1 M wide at any metallicity. In Pumo, Siess & Zappala (2007),
the authors revised the maximum width of the channel to 1.5 M . The results of these
studies are largely inconclusive and only highlight issues that are already well known:
(i) with a fixed ratio of core growth to mass loss, the minimum initial mass to have
an EC-SN shows non-linear behaviour with Z, the metallicity, (ii) the minimum initial

mass for an EC-SN depends on the ratio of core growth rate to mass loss rate and
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Figure 1.13: Transition masses M,,s (minimum initial mass for which neon is ignited;
filled squares connected by a dashed line) and M,, (minimum initial mass for which
carbon is ignited; dots connected by a solid line) as a function of Z taken from Siess
(2007). The values of Myas and M,, for models with overshooting are represented
by big open squares and circles, respectively. Results from several other studies are
included for comparison: Do (Dominguez et al. 1999), Um (Umeda et al. 1999), Bo
(Bono et al. 2000), Ca (Cassisi & Castellani 1993), Ch (Tornambe & Chieffi 1986), Be
(Becker & Iben 1979), Gi (Girardi et al. 2000), and Po (Pols et al. 1998).
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(iii) the inclusion of overshooting shifts the transition masses. Poelarends et al. (2008),
building on this work, computed super-AGB models with three stellar evolution codes
(KEPLER, EVOL and STERN), having different physical treatments of mixing, up to
the start of the thermal pulse regime. From this point, the models are evolved through
the TP-SAGB phase for a few pulses with EVOL and STERN. The TP-SAGB phase
for all the models was then computed synthetically, considering various mass loss rates
from the literature and dredge-up efficiencies informed by the numerical TP-SAGB cal-
culations. The final fates of a multitude of models were examined and the contribution
of electron capture supernovae from super-AGB stars to all supernovae at solar metal-
licity was found to have an upper limit of 20%. If the mass loss rate is an increasing
function of metallicity, then the EC-SN channel from super-AGB stars is expected to
be wider at lower metallicities. Further discussion of this prediction is presented in
section 3.1.2.

Efforts to better understand the evolution of super-AGB stars through numerical
modelling are ongoing (see, e.g., Siess 2010; Doherty et al. 2010; Doherty et al. 2014)
and it is now computationally possible to follow several thousands of thermal pulses
in order to explore the complex evolution that can be compared with observations.
The shortcomings of hydrostatic one dimensional modelling of the TP-AGB and TP-
SAGB phase were historically (Wagenhuber & Weiss 1994) and recently (Lau et al.
2012) brought to the attention of stellar physicists. Wagenhuber & Weiss (1994) found
that the conditions in the heavily extended hydrogen envelope may become such that
the ionised hydrogen recombines. This introduces complications for stellar modelling
because the opacity will be dominated by the recombined hydrogen and absorb radia-
tion from the star. The stellar envelope becomes dynamically unstable, and although
one dimensional hydrostatic modelling of this phase cannot properly treat the physics
involved, the simulations published at the time suggested that this instability could
lead to the complete ejection of the stellar envelope to form a planetary nebula with a
white dwarf remnant at its centre. Wood & Faulkner (1986) found in their simulations
(again, assuming hydrostatic equilibrium) that low-mass stars developing cores with

masses greater than 0.86 M would eventually reach a helium shell flash producing lu-
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minosities in excess of the Eddington luminosity. The pressure would be completely
dominated by the radiation component and the envelope would become dynamically
unstable and be ejected. Similarly, Lau et al. (2012) found high opacities due to the Fe
content of the envelope to be a major contributor to the instability at solar metallicity.
The treatment of convection is well known to be incomplete in stellar models (see 1.4)
and by increasing the mixing length parameter, « (see section 2.2.1), the authors were
able to reach convergence at this stage by enhancing the transport of energy by con-
vection. However, this only deferred the instability for a few thermal pulses. Although
a better theory of mixing in stars is required, it is a reasonable assumption to make
that the mixing length parameter characterising the convection would be different for
different evolutionary phases (Meakin & Arnett 2007).

A commonly-made assumption in super-AGB stellar modelling is to use a global
rate for carbon fusion (!2C + '2C) and calculate the abundances of its various products
via branching ratios. For example, Doherty et al. (2010) in their study of super-AGB
evolution model carbon burning by implicitly including many reactions to express the
overall abundance evolution associated with this phase. Their final composite reaction
(equation 1.1) allows the tracking of 2°Ne and ?*Mg abundances as a function of the

2C and %0 abundances alone.
2C + 2C + 0.850 — 1.7%Ne + 0.15*Mg (1.1)

This calculation is performed in instantaneously mixed regions using a one-zone ap-
proximation. As such, the effects of mixing at the edges of the convective zones are
ignored, affecting the burning of unstable isotopes especially in the advanced stages.
The final composition of the He-free core will also be compromised as a result of this
assumption, burning more helium by 3a —!? C and less by ?C(a,)®O.

In the first and only study to model the ‘entire’ TP-SAGB phase, Siess (2010)
also assumes instantaneous mixing in convective zones, employing a one-zone treatment
of nucleosynthesis in those regions using mass-averaged reaction rates. Although the
calculation proceeded through 4000 thermal pulses requiring about 107 timesteps, the

models still fail to converge during a sufficiently strong thermal pulse. Siess cites a
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physical (rather than purely numerical) reason for the termination of the TP-SAGB
phase, as discussed earlier in this section.

On the progress of linking supernovae and stellar models, for the transients
SN2008ha and SN2008S Pumo et al. (2009) have proposed evidence for super-AGB pro-
genitors exploding as electron capture supernovae. The authors show that for 2008ha,
the progenitor could have spent a long time on the TP-SAGB phase, stripping almost
its entire envelope before the SN stage, concluding that the ejecta would be ‘non-H-rich’
and show no CSM interaction. Although the latter is consistent with observations, the
former is not yet confirmed. The dense shell of material surrounding SN2008S (Bot-
ticella et al. 2009) could be reproduced by Pumo et al. (2009) in a scenario where
mass loss was temporarily boosted during a thermal pulse. This mechanism has been
investigated by Mattsson, Hofner & Herwig (2007), who find that changes in the mass
loss rate and wind velocity are adequate for sweeping up material into detached shells
around the star.

Podsiadlowski et al. (2004) suggested that the modified evolution of super-AGB
stars in interacting binary systems could lead to an enhanced galactic EC-SN rate
if the envelope was stripped before the occurrence of second dredge-up. It is not
immediately clear what the result of the envelope stripping is, however, since without
the hydrogen envelope the helium layer should expand, and the core—envelope interface
should change. The conclusions of Podsiadlowski et al. generally suggest that binary
interaction (i.e. the stripping of the envelope before dredge-up) would produce larger
cores for a given initial mass and hence the transition masses would be effectively
shifted to lower initial masses. Thus, the contribution of EC-SNe would be greater,
given a non-linear, bottom-heavy statistical IMF. Moreover, with 70 percent of massive
stars in interacting binary systems (Sana et al. 2012), the motivation for exploring the
binary channels of EC-SNe and FeCCSNe is strong. The main effect of mass transfer
on the internal evolution of stars (unless there is a common envelope phase, e.g. Iben
& Livio 1993) is the transport and distribution of angular momentum. The work in
this thesis does not concern itself with the calculation of rotating stellar models, since

the non-rotating cases are already riddled with uncertainties. Thus, the effects of
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binary interaction on the evolution of 8-12 M, stars can be considered negligible in the
present work, other than to make quantitative predictions about the rate of EC-SNe
in the universe. Of course, in reality, explaining all of the observed details of stars

and supernovae would include the effects of binary interaction, rotation and magnetic
fields.

1.3 The role of weak interactions in astrophysics

Weak interactions are of crucial importance to several astrophysical processes. Some

of the key phenomena relevant to stellar evolution and supernovae are:
(i) The URCA process
(ii) The neutron excess in advanced burning stages

(iii) Collapse of the Fe-core and the supernova explosion

(iv) Neutron—capture nucleosynthesis

In this short section the impacts of weak reactions are described in accordance with
this list. (i) and (ii) are directly relevant to this work and are described in more details
throughout chapters 3 and 4. (iii) and (iv) are briefly described for completeness and to
illustrate the breadth of impacts that weak reactions have on closely related disciplines

in astrophysics.

(i) The URCA process. The URCA process is the name famously given by George
Gamow to the strong cooling caused by energy losses as neutrinos produced in nuclear
reactions escape from the stellar interior. The URCA process pair of reactions are

simply (i) electron capture and (ii) S-decay:

(i) A7 + e - MNZ-1) + v

(i4) AZ—1) — A7 + e + B 42
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Of course, all weak nuclear processes (electron and positron capture, 3% decay) pro-
duce neutrinos. In general, the reactions are exothermic when the reaction rate is
significantly high. This is due to the relationship between the chemical potential of
the electrons in the local material and the Q-value of the reaction (see section 4.3). If
the reaction rate is high and the reaction is exothermic then by definition it cannot
directly cause cooling. However, electron captures can still proceed endothermically
when the rate is lower and only those from the tail end of the Fermi-Dirac distribu-
tion can contribute. In this regime, the reverse beta-decay channel may not yet be
completely blocked, and the reaction will be exothermic. When both forward (elec-
tron capture) and reverse ([3-decay) rates for a relatively abundant pair of isotopes are
similar and significantly high, there is little change in the composition and little net
energy generation (since Qe = —@3). The process is important, however, because for
every electron-capture and decay, a neutrino removes some energy from the region in
which the URCA process is taking place. The main URCA process pairs and their
respective activation densities (p/10° ¢ ecm™3) at T' = 0 are as follows: "Al «<+*" Mg
(0.13), Mg <+ Na, (1.18), »Na «++23 Ne (1.68); Ritossa, Garcia-Berro & Iben 1999).
The ground state to ground state transition for the A = 27 pair is forbidden, and so
the electron capture proceeds from the first two excited states of 2"Al. At relevant
temperatures in super-AGB stars, kT ~ 0.04 MeV (log(7'/K) ~ 8.67), and so the elec-
tron capture by 2”Al does not proceed until the density is significantly higher than the
threshold density. By the time the density is high enough for the reaction to produce
2"Mg, the Fermi surface is far higher than the energies of the first two excited states
of 2"Al and the [-decay channel is blocked. For the A = 23 and A = 25 pairs, it
is also the electron-capture parents (**Na and °Mg) that are abundant in the stellar
core. As the density increases to, crosses and surpasses the thresholds, each URCA
pair generally produces a period of cooling followed by a period of heating. While the
amount of cooling depends on the contraction timescale (the longer spent at a density
where the product of the electron capture and 3-decay rates, A*\%, is high, the more
neutrino cooling the material is subjected to), the amount of heating is limited by the

abundance of the electron capture parent when the (§-decay channel of the daughter
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nucleus becomes blocked.

The importance of the URCA process in the evolution of 8-12 M stars is dis-
cussed and explored in depth in chapters 3 and 4. The URCA process is also important
in dense CO white dwarfs and, by proxy, type Ia supernovae (Paczynski 1973; Barkat
& Wheeler 1990). The convection induced by carbon-burning in the pre-explosive evo-
lution becomes a numerical burden when coupled with the URCA process. Recent
attempts have been made to properly account for this behaviour (Lesaffre, Podsiad-

lowski & Tout 2005).

(ii) The neutron excess in advanced burning stages. Thielemann & Arnett
(1985) demonstrated that during the advanced burning stages of massive stars (partic-
ularly oxygen and silicon burning), the inclusion of isotopes with seemingly negligible
abundances in the nuclear reaction network (see section 2.3) significantly lowered the

neutron excess of the composition. The neutron excess,

n=> (Ni—Z)Y; (1.3)

i
and the electron fraction,

Yo=Y ZYi, (1.4)

are indicative of how neutron-rich the composition is. N; and Z; are the neutron and
proton numbers of species ¢ and Y; = n;/pN4 is its number abundance. The neutron

excess and the electron fraction are thus related by

A neutron excess of 0 implies that the composition consists completely of nuclei with
N = Z, giving an electron fraction of Y, = 0.5. A composition with a neutron excess
of n > 0 (or Y, < 0.5) implies via charge neutrality that there are fewer free electrons
in the system. As will be described in detail in Chapter 3, this lowers the electron

density pY. and hence lowers the contribution of degenerate electrons to the pressure.
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(iii) Collapse of the Fe-core and the supernova explosion. In massive stars, the
collapse of the iron core is accelerated as electrons are driven into iron—-group nuclei
and free protons. Martinez-Pinedo, Langanke & Dean (2000), in their shell model
calculations, found that previously determined S—decay rates were underestimated and
electron-capture rates overestimated. The authors predicted that the electron fraction
would drop more slowly due to the lower electron-capture rates, and that when the
electron fraction reached Y, & 0.46, the f—decay and electron capture rates of several
iron—group nuclei would be comparable, enhancing neutrino cooling as in the URCA
process. Langanke & Martinez-Pinedo (2000) determined new electron-capture and -
decay rates for 100 nuclei in the mass range A = 45 — 65, motivated by their previous
work. The differences between these rates and the classical rates of Fuller, Fowler &
Newman (1980, 1982a, 1982b, 1985) indeed resulted in higher electron fractions in the
iron core at the time of collapse (Heger et al. 2001, to which the interested reader
is referred for more information of which ions produce increases and decreases in the
electron fraction for various evolutionary stages of massive stars). Juodagalvis et al.
(2010) produced a multitude of new weak rates for the iron—group including the effects
of Coulomb corrections (see chapter 4) that should now be the standard set.

The explosion mechanism of core-collapse supernovae is related to the revival
of the stalled shock by neutrino heating (Janka 2001). The source of these neutrinos
is largely the neutronisation of the composition by weak processes and the cooling of
the proto-neutron star. The temperature of the material during the supernova is so
hot (> 6 GK) that the composition is in nuclear statistical equilibrium (NSE). Weak
reactions during this phase will produce a large burst of neutrinos that will become
trapped in the high density in falling material and deposit their energy. For this reason,
accurate treatment of weak interactions in the supernova simulation itself is important
for precise evaluation of the neutrino luminosity, which is the driving mechanism of the

standard explosion.



35

(iv) Neutron—capture nucleosynthesis. Neutron—capture processes build heavy
nuclei from seeds typically in the iron-group (A &~ 60) for which fusion is not energet-
ically favourable. The slow neutron—capture process (s process; Képpeler et al. 2011
and references therein) operates during the thermal pulse phase of AGB stars (main
component) and the helium- and carbon-burning phases of massive stars (weak com-
ponent). The site of the rapid neutron—capture process (r process) is currently an open
question, however rare/exotic magneto-rotationally driven supernovae (Winteler et al.
2012) and neutron star mergers (Rosswog et al. 2014) are the most likely candidates.
Accurate f—decay rates are thus crucial to simulating the nucleosynthesis of the heavy
elements. Moreover, eliminating uncertainties in nucleosynthesis calculations by us-
ing the most accurate, up-to-date weak rates helps to break degeneracies between the

nuclear reaction rates and the physics of the supernova or merger simulation.

1.4 Mixing in the stellar interior

From a far enough distance, it is easy to think of stars as quiescent and peaceful. In
reality, the stellar interior is a dynamic, often turbulent and chaotic place where huge
convective plumes rise and fall, rush past one another and slam into more stable parts
of the star. The stellar material is fluid, and as such experiences all of the instabilities
of fluid dynamics with varying degrees of severity. These instabilities affect the physical
properties of the star and how they evolve in time. Mixing of a fluid transports and
distributes entropy, which will modify the thermal structure of the star, leading to its
re-adjustment. Mixing of chemical elements can replenish fuel in a region of nuclear
burning and transport the ashes of previous burning to other regions in the star, where
they may experience other, different, nuclear processes. Deep convection in the stellar
envelope can bring the products of nuclear burning up to the surface of the star, where
they may be observed using spectroscopy.

Astrophysics aside, the nature of convection requires simply the solution of the

Navier-Stokes equations of fluid dynamics. Since there is no known analytical solution
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to these equations in 3-D, numerical solutions must be found, and problems arise thick
and fast. In comparison to the lengthy timescales of stellar evolution, the important
nuances of dynamical, turbulent and advective processes occur extremely quickly. Con-
vection on a stellar scale can be, and has been, simulated in two and three dimensions
(Herwig et al. 2006; Meakin & Arnett 2007; Mocdk et al. 2009; Arnett & Meakin 2011;
Herwig et al. 2011; Mocék et al. 2011; Stancliffe et al. 2011), however the explicit nature
of the numerical methods involved mean that the simulated time rarely exceeds the
order of hours. Compared to even the oxygen-burning timescale in massive stars (the
second shortest burning stage, on the order of weeks to months), this is a short time,
which makes it difficult to conclude whether or not what is seen in the simulations is
transient behaviour, i.e. not representative of the average conditions.

Furthermore, the hydrodynamical processes of key interest to stellar physicists
are often occuring deep within the stellar interior, making them difficult processes to
observe. Convection in these situations is almost always coupled to several nuclear
reactions and requires a detailed equation of state (EOS). One must then include a
nuclear reaction network in the simulation and incorporate new EOS tables, which
causes further numerical complications. Progress continues to be made, however, in
simulating the surface convection of the Sun (Freytag et al. 2012; Trampedach et al.
2013), whose granulation and activity can be more easily measured and where nuclear
reactions are barely present. The added complication with surface convection is the
coupling of rotation and magnetic fields with the convection®.

Using basic considerations of physics to average or approximate the effects of
recurrent short-timescale events within the star is regrettably still the only viable op-
tion when simulating several million years of evolutionary time. The most commonly
used prescription at present to approximate the effects of convection in stellar models
is called the mixing length theory (MLT) of convection (Béhm-Vitense 1958). The
fundamental principles of MLT and how it accounts for convection are described in

section 2.2.1. The most well-known formulation is extensively detailed in Cox & Giuli

40f course, rotation and magnetic fields are also important in the deep interior.
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(1968). Although MLT is a reasonable approximation for the behaviour of convection
in the deep interior, it is still a parameterised treatment which one would like to be
able to automate based on physical considerations, informed by fluid dynamics.

The Full Spectrum of Turbulence (FST) model (Canuto & Mazzitelli 1991;
Canuto, Goldman & Mazzitelli 1996) (CM, hereafter) is an attempt to improve upon
the basic MLT treatment of convection by considering the behaviour of eddies with
all possible sizes (and kinetic energies given by some turbulent energy spectrum func-
tion), while MLT effectively only considers one large eddy. The authors show that
the standard MLT of, e.g., Bochm-Vitense (1958) is a reasonable approximation only
for high viscosity flows that are not found in the stellar interior, and that for efficient
(inefficient) convection the actual convective flux is ten times higher (lower) than is
given by MLT. Both the MLT and CM models assume convection to be incompressible
(V- v = 0), but the CM model is not parameterised like MLT (where, for one, the
mixing length itself contains a free parameter, «, see section 2.2.1) since it is shown
that the mixing length should not be a function of the local scale height of pressure in
the incompressible, inviscid flow of the stellar interior. Instead, the mixing length is
simply set to the distance of the local shell from the upper boundary of the convective
region in the CM model.

The use of the CM model and subsequent mutations thereof in the place of MLT
has only been studied for only low-, intermediate-mass and solar-like stars, especially
concerning the behaviour of the surface convection, with the exception of Stothers
& Chin (1995) and Ventura et al. (1998). Stothers & Chin (1995) found the CM
model to succeed in fitting models in the HRD for a range of initial masses and no
parameterisation of the mixing length, but found there to be negligible effects on the
evolution of the deep interior, although the models were not computed beyond helium
burning. Ventura et al. (1998) have shown some results for the early evolutionary
stages of a 15 M, model (up to the ignition of carbon burning) with and without a
parameterised overshoot, but do not provide any useful conclusions concerning the
CM model of convection. While the CM model of convection is compelling, and surely

more physical than the standard MLT model, it is a potentially large undertaking in
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itself to fully test the model for massive stars (particularly in the advanced stages).
Partially because that has not yet been completed, and partially because the work of
Stothers & Chin (1995) suggests that there will be little impact, in this work (as for
all other modern 1D studies of massive stars) the standard MLT model for convection
is used.

While MLT treats the effects of convection itself, it is a local treatment that
is used to inform a diffusive scheme of where to calculate mixing. This means that
it requires external knowledge of where the boundaries of the convection zones lie.
How one determines where the boundaries of convection are situated within stellar
models is described in section 2.2. Once the notion of a convective boundary has been
established, material from the stable layer may still be entrained into the convective
zone depending upon the stiffness of that boundary relative to the turbulence strength.
This is a well established phenomena in fluid dynamics applied to geo, atmospheric and
ocean physics (see Turner 1986 for a concise review). If material can be entrained, then
the location of the boundary is dynamic in time and advances at an entrainment rate;
the problem becomes complicated further.

A schematic diagram depicting a few mixing processes that can operate in the
stellar interior is shown in Figure 1.14. Shear flows (like the one depicted in the top-left
corner of Figure 1.14) induce mixing at the boundary with the stable layer, as is seen
in multidimensional simulations of helium shell flash convection (Herwig et al. 2006;
Herwig et al. 2011). The shear is induced by horizontal turbulence and, if the turbulent
kinetic energy is high enough, causes a deformation of the convective boundary. Stresses
in the fluid arising from the shear produces turbulence, and if the velocities are high
enough the fluid becomes unstable by the Kelvin-Helmholtz instability, causing mixing
directly (Strang & Fernando 2001). In fluid dynamics, the Richardson number, Ri,
is the ratio of the potential energy of material in the stable layer to the turbulent
kinetic energy of the unstable later at the interface. High Richardson numbers therefore
indicate a stiff boundary; low Richardson numbers indicate that the interface is eroded
on an advective timescale. Indeed, Thorpe (1968) found through experiment that for

Ri < 0.25 the Kelvin-Helmholtz instability appears. Mixing by the Kelvin-Helmholtz
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Figure 1.14: Schematic diagram depicting several hydrodynamical instabilities encoun-
tered at the boundary between the region exhibiting turbulent convection and the stable
layer (Meakin & Arnett 2007).
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instability operates in the locality of the boundary layer. Large-scale convective cells
are also required to transport the mixed material over large distances in the star where
they may have an impact on the observables or on the structure. The density profile of
the stellar material across the interface (right hand side of Figure 1.14) characterises
the stiffness of the convective boundary. The drop in density at the interface Ab is
called the buoyancy jump. The steeper the buoyancy jump, the higher the entropy of
the convective material must be in order to cross the boundary. Deformation of the
convective boundary occurs due to the rapid deceleration of convective plumes at the
interface. This induces internal wave motions that cause mixing in the stable layer
(upper middle of Figure 1.14).

A fluid element is dynamically unstable if its density is different to that of its new
surroundings following a small radial perturbation. This consideration of convective

stability is described in more detail in Chapter 2. The equation of motion for a first

, or)’

where the subscript s indicates the adiabatic change (at constant entropy) and g is the

order radial perturbation of a fluid element is

Pr ([ 0Op
Pz = 79\ oy

local acceleration due to gravity. The equation of motion can be written as

82
LN =0, (1.5)

o2
) . (1.6)

(1.7)

where N is the buoyancy (Brunt-Vaisila) frequency,

Olnp Jlnp
N? = — —
g( or or

The solution to the equation of motion (1.5) is thus

| reelt N? <0
"I ree™ N2Z>0
The displacement of the perturbed fluid element grows exponentially when N? < 0,
i.e. when the adiabatic density gradient is steeper than the density gradient of the

surrounding stratified medium. In a stable configuration N2 > 0, the adiabatic density
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gradient is shallower than the surrounding stratified medium and the solution is the
oscillating one. The buoyancy frequency is the maximum frequency of internal gravity
waves, whose propagation and dispersion are an important facet of asteroseismology
(Aerts, Christensen-Dalsgaard & Kurtz 2010, section 3.1.4.2), but this will not be
discussed here. Rather, I will discuss the implications of the magnitude of the buoyancy
frequency (when N? > 0) for characterising the degree of stability of the fluid. This
is nicely illustrated by examining its relation with the entropy gradient in the star

(Maeder 2009 p 85-86, 5.9-5.17). The relationship is (Maeder 2009, equation 5.16)

_gods

N?2= L~
de?”

(1.8)

where C'p is the specific heat at constant pressure and ¢ is a thermodynamic property of
the material (see chapter 2). The convection criteria for instability becomes ds/dr < 0
— a negative entropy gradient. Since adiabatic changes are at constant entropy, this
condition is quite intuitive. In material that is stable, the buoyancy frequency is a
measure of the steepness of the positive entropy gradient.

Another factor to consider is the composition of the material. The gradient of
the mean molecular weight V,, = 01ln ;/01In P can provide either a stabilising or a de-
stabilising effect within the star. For example, for V,, > 0 the mean molecular weight
decreases as a function of radius, providing a stabilising effect acting against the rise
of a perturbed fluid element. If a region would be convective in the absence of this
stabilising V,, but is dynamically stable in its presence, the material is considered to
be semiconvective (see section 2.2). This is because the material can achieve thermal
stability while only being partially mixed (i.e. its composition has not been completely
homogenised). If V,, < 0, heavier particles sit atop lighter ones. In this situation,
mixing can arise when the heavier particles sink. This situation does not necessarily
lead immediately to mixing, since the weak gravitational settling can easily be balanced
by, for example, a supporting temperature gradient. The classic example is that of
warm, salty water sitting atop a beaker full of pure, cold water. The salty water has
a higher mean molecular weight than the pure water, however its temperature excess

makes it still the lower density fluid. If a fluid parcel of the warm, salty water was
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spatially perturbed in such a way that its new position was deeper in the beaker, the
parcel would be buoyantly restored to its original height. Left alone, the warm, salty
water will exchange heat energy with the colder water below (and lose heat energy to
the surrounding air), and as the system thermalises, the salty water would become the
denser of the two fluids and begin to sink. This process is called thermohaline mixing,
and is a slow process exhibiting fingering.

It is quite evident that the treatment of mixing in the stellar interior is not a
closed problem and requires detailed studies of many hydrodynamical and thermal
instabilities in order to constrain its behaviour. While it remains the task of 3D hydro-
dynamics simulations to provide the insights needed, by performing stellar evolution
simulations in 1D with a range of different parameterisations it is possible to highlight
situations where a targeted study is required. As has been described in this section,
such works have already begun (e.g. Meakin & Arnett 2007; Mocak et al. 2009; Herwig
et al. 2011). While different mixing considerations in stellar models do produce pho-
tometric variations that can be compared directly with observations, coupling mixing,
nucleosynthesis and spectroscopy is a vital test of their accuracy. If the boundary is
deformed, interfacial gravity waves appear in the stable layer (see illustration in Figure
1.14). Modern asteroseismological instruments are now able to measure properties of
these gravity waves as they propagate through the star and cause the excitement of
oscillatory modes. This gives the opportunity to compare hydrodynamical simulations
of convection in stars with real data in order to constrain the stellar behaviour. As-
teroseismology is the best tool presently available to directly observe processes within
the deep stellar interior. In the coming years, characteristics of the internal stellar
structure will be able to be tested by direct comparison to asteroseismological obser-
vations. These observations will be crucial to constrain the behaviour of mixing at the

convective boundary.
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1.5 Thesis Outline

In this thesis, new models of electron capture supernova progenitors calculated using
the MESA code will be presented. In chapter 2, the methodology behind calculating
stellar models is outlined and the physical assumptions involved are described in de-
tail. The results of the calculations are presented and described in chapter 3, along
with a discussion of the uncertainties of the results, linked to the methods and as-
sumptions made in chapter 2. Two such uncertainties are the hydrodynamic mixing
properties and the accuracy of the physics—and indeed of the numerical representa-
tion of the physics—with which weak reaction rates are calculated. The nuclear physics
uncertainties are addressed in chapter 4, which describes new calculations of weak re-
action rates including Coulomb corrections that were performed by collaborators for
this study. The differences between these newly calculated rates and those available in
the literature are discussed in chapter 4 along with a demonstration of their impact in
the stellar evolution models presented in chapter 3. Finally, in chapter 5 the key re-
sults of this work are summarised and some of the outstanding problems are presented

together with a discussion about how they may be addressed in the future.
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2 Numerical Modelling of stars and the
MESA code

In the Introduction, a background to stellar evolution including recent observational
and theoretical results concerning 8-12 M, stars was presented. This chapter will focus
on the methodology used when performing detailed numerical simulations of stars and
describes the the methods and tools that were used to produce the results that are
presented later in this thesis.

Modules for experiments in stellar astrophysics (Paxton et al. 2011) is an open-
source distribution of physics modules developed and maintained largely by the scien-
tific community. MESA/star is a stellar evolution code in which the equations outlined
in this section are solved in a fully coupled manner (structure + burning + mixing).
This is advantageous for the accuracy of the converged solution at each time step

because there is feedback between these three main sets of equations.

2.1 Key equations

Mathematically, the structure and evolution of stars is described by a system of well-
known differential equations that require approximate physical treatments and data
for their solution. The derivation of these differential equations can be found in any
good stellar astrophysics text book, but for completeness their final Lagrangian (mass
coordinate as independent variable) forms are described below.

One begins with the equation of mass conservation,

d
d—T = dmr?p(r), (2.1)

which is used to translate the structure equations from a Fulerian coordinate system
(radius as independent variable) to Lagrangian. It gives the relationship between m,

r and p(r): the mass coordinate, radius and density of a given point in the star,
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respectively. Firstly we consider the conservation of momentum,
dp 1 [dr GM,
dm — 4mr? | dt? r2 |’

(2.2)

where P and M, are the pressure and the mass enclosed in a sphere of radius r,
respectively. G is the gravitational constant. The forces provided by gravity and the
internal pressure gradient on a mass element oppose one another, and in the case of
their imbalance, the mass element will receive an acceleration of d?r/dt?. For stellar
interiors where the evolutionary timescales of interest are much longer than the sound
crossing time, it can be assumed that the star is always in pressure (hydrostatic)
equilibrium. As such, the acceleration term is excluded and Eq. 2.2 reduces to the
equation of hydrostatic equilibrium,

ar GM,

dm 4rd”

(2.3)

The next consideration is the conservation of energy. L, is the luminosity (erg s™!)
of the stellar material enclosed within radius r. Unless a shell is generating or losing
additional energy, dL,/dr = dL,/dm = 0. However, in certain regions within the
star energy will be produced by nuclear processes and work will be done on or by
the material in the shell. If neutrinos are created in the stellar material (by various
processes including the nuclear reactions that are generating energy), energy will be
removed from the system very efficiently since neutrino scattering is greatly improbable
at such densities. These three considerations yield the equation of energy conservation,

dL
% = €quc — € T €grav, (24)
where €., and €, are the specific nuclear energy generation and thermal neutrino losses,
respectively, with units of erg g™ s7'. €4y is the specific amount of work done on or

by the shell during expansion or contraction,

dq dT  §dP

€grav — _% = _CP% + ; dt (25)

where cp is the specific heat at constant pressure and § = —01ln p/dInT is a thermody-

namic property of the material (see below for more details about the thermodynamic
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derivatives). Lastly, a description of the temperature stratification as a function of

mass coordinate is required, given by

dr GmT
= 2.6
dm ArrdP (26)
where V is the temperature gradient
olnT
~olP’ (2.7)

V is evaluated depending upon whether the region is convective or radiative. If the

region is radiative, the temperature gradient is given as

3 kL, P
16macG mT4 "

In the radiative case, V.,q is derived by considering the radial diffusion of thermalised

V= Vrad = (28)

photons. a is the radiation density constant, ¢ is the speed of light and x is the
combined radiative and conductive opacity of the stellar material, & = (k5" 4+ £;") 7"
If the region is convectively unstable, then V is unknown and must be determined
using the mixing length theory of convection. This is described in section 2.2.1.

The equation of state (EOS) describes how the thermodynamic properties of the

stellar material are related, and is usually of the form
P=Pp,T,X), (2.9)

where X contains information about the elemental /isotopic composition of the material
from which one is interested in the mean molecular weight, . A general EOS is given
by

po= Ly (2.10)
Iuﬂf’
where the exponents are

8lnp) (8111/)) (8111/))
" o . 2.11
<8lnP T\l oy omT),, (211)

and for an ideal, non-interacting gas, a = ¢ = 6 = 1. In reality, the EOS used in

stellar evolution codes must account not only for gas pressure but also for radiation,

1
Prag = gaT4 (2.12)
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and electron degeneracy pressure (Phillips 1999, p. 58, eq. 2.31 and 2.34),

h: [ 3717 5/3
e [8_] ne/ non — relativistic
P, = m [ o (2.13)
1/3
% {83} na®  relativistic,
T

where n, is the electron number density. In the cooler outer layers of the star, the
material may only be in a state of partial ionisation, which must also be accounted for
in the EOS.

A simple approximation to the EOS is to consider the stellar material as a poly-

trope,

P = Kpmt/m, (2.14)

a solution to the Lane-Emden equation for the gravitational potential. From 2.13, one
can see that the equation of state of a completely electron-degenerate gas (P. > Pyas)
is well represented by polytropes of n = 3/2 (non-relativistic) and n = 3 (relativistic).
With some light manipulation of the polytropic relation and the equations of hydro-

static equilibrium and mass conservation, one arrives at the mass-density relation
M o p@E=m/2n (2.15)

with which it becomes clear that there is no dependence of the mass on the density
for an n = 3 polytrope. Instead, the mass is defined by the values of the polytropic
constant K and index n (see Kippenhahn & Weigert 1990 eq. 19.27). The only solution

for the mass of a relativistically degenerate polytrope is the Chandrasekhar mass,
Mcy, = 5.836 Y2 M. (2.16)

Chandrasekhar’s more rigorous derivation, considering the effects of partial degeneracy,
reduces to this same limiting mass, since the fully-relativistic case represents an n = 3

polytrope.
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2.2 Convection

The treatment of convection and mixing in stellar models arises from considerations of
dynamical and secular stability. Since we are modelling in hydrostatic equilibrium, we
are assuming that the evolutionary timescale is much longer than the sound crossing
time and therefore any fluid element will always be in pressure equilibrium with its
surroundings. Any fluid element being heated will experience a density change Ap,
and will be buoyantly accelerated upwards by its surroundings. Considering the upward
movement of this fluid element by Ar as a small perturbation, convective stability of
the fluid is then defined by whether the perturbation is suppressed, or whether it grows.
A perturbation of Ar from the original position involves a change in pressure of the

fluid element, (AP)., which is equal to the change in pressure of the surroundings,

(AP)s,

(AP), = (AP), = %Ar, (2.17)

because of the hydrostatic equilibrium assumption. We must also consider the change

in density of the element (e) and of the surroundings (s) over the perturbation,

(Ap)e = (%)em (2.18)

(Ap)s = (%) Ar (2.19)

If the density of the perturbed fluid element decreases more than the density of the

surroundings across an upwards radial displacement Ar, i.e. if

(3.

then the perturbation grows as the fluid element receives a larger and larger buoyancy
acceleration, and the fluid is convectively unstable. The general EOS from Eq. 2.10 in

differential form is
1 P T
10p _adP  pop 00T (2.91)
pOr POor puor TOr



49

and by assuming that the composition of the convective element does not change as a
function of radius (mixing timescale < burning timescale), (Ou/0r)e = 0. The pressure

term also cancels since we are assuming hydrostatic equilibrium and thus 2.20 becomes

olnT olnT © ((Olnp
<8lnP)e_ (81nP>s<_E (61nP>s (2.22)

where radial derivatives have been converted to derivatives with respect to pressure

by multiplying by the pressure scale height, —0r/dIn P. This relation is commonly
written more simply as

V.-V, < —?V,ﬁ (2.23)

_(O0InT [ Olnp
V_<(9lnP)’ V“—(E)IHP)S' (224)

Since in the absence of convection the stellar temperature gradient is given by consider-

where

ing only radiative (and conductive) transport, Vi = V,,q is referred to as the radiative
temperature gradient. V.4 is the adiabatic temperature gradient and describes the
temperature of the convective element should it rise adiabatically. V. describes the
actual temperature of the fluid element as it rises. To a very good approximation,
Ve = V.4 in the deep stellar interior, however in the convective envelope convection
can become very inefficient and this assumption becomes poor. There are then two
definitions of convective instability: one where the surroundings are of uniform com-

position, the Schwarzschild criterion,
vl“ad > vada (225)

and one where the composition gradient is non-zero, the Ledoux criterion,

hd

vrad > vaLd + 5

v, (2.26)

One can see that when the mean molecular weight of the surrounding material is
decreasing radially, the radiative (and conductive) temperature gradient will become
steeper before inducing convection than for a uniform composition of the material. This

is typically the case in the cores of stars whereby nuclear burning has been ignited at
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the centre, raising the mean molecular weight in that region. The material in this
situation is then unstable by the Schwarzschild criterion but stable by the Ledoux
criterion. The stabilising effect of the composition gradient leads to a slow mixing,
known as semi-convection. On the other hand, if the mean molecular weight of the
surrounding material is increasing radially, mixing will be induced where there is a
shallower radiative (and conductive) temperature gradient than if the material was of
uniform composition. In this case, the material is stable by the Schwarzschild criterion
and unstable by the Ledoux criterion. In this situation, mixing can be induced by the
composition gradient alone, and is known as thermohaline mixing (see, e.g., Charbonnel
& Zahn 2007).

Semi-convection in stars has in the past been defined to be a result of an over-
stable oscillation of a perturbed fluid element in the presence of a stabilising mean
molecular weight gradient when there is heat exchange between the element and the
surroundings (Kato 1966). The growth of the instability depends upon the rate of heat
diffusion over a convective element, having a typical timescale 75 p while the timescale
for some evolutionary phase producing the convection within the star would be 7gg:
when 75p < Tsg, the over-stable region can be assumed to be efficiently mixed, the
composition gradient is destroyed and the convection criterion becomes identical to
that of Schwarzschild. Conversely, if Typ > Tgp, then one might assume that mixing
in the over-stable region is so inefficient that it will never mix in the present situation
and the convection criteria is strictly that of Ledoux (Langer, Fricke & Sugimoto 1983).
For everything in-between, one would like to characterise the rate of mixing using a
diffusive approximation, for which the diffusion coefficient of semi-convective mixing
is needed. Semi-convection has been shown to have an impact on the evolution of
the convective helium core (Castellani, Giannone & Renzini 1971) and the surface
abundance of carbon in low-mass AGB stars (Iben & Renzini 1982). Langer, Fricke &
Sugimoto (1983) and Spruit (1992) have provided prescriptions to calculate the semi-
convective diffusion coefficient for use in stellar models. The numerical values obtained
using these prescriptions are similar in magnitude to diffusion coefficients representing

the effects of dynamical shear due to differential rotation (i.e. where dw/dr # 0).



51

Semi-convection and rotation both have a strong impact on the stellar models during,
for example, the crossing of the Hertzsprung-Russell diagram from the hot side to the
cool side. Hence, it is difficult to calibrate the efficiency of semi-convection—which is
a free parameter—by comparing stellar models with observations due to a degeneracy
with parameterisations of other mixing processes. One specific example of such an
observation is the blue-to-red supergiant ratio; at present no single treatment and
parameterisation of mixing is able to predict the observed ratio of blue supergiants to
red supergiants (see, e.g., Woosley, Heger & Weaver 2002a and references therein).
As will be explained later, in the MESA code I assume the Schwarzschild criterion
for convection except for in the very late stages, where a strong u gradient develops in
the core due to the rapid electron captures, in keeping with previous studies of similar
stars (Miyaji et al. 1980; Nomoto 1984; Nomoto 1987; Gutierrez et al. 1996). For sure,
the seemingly more physical Ledoux criterion with semiconvection would be ideal in
the future, by which time hopefully a sound treatment for convection is available that

also incorporates the effects of overshooting and convective boundary mixing.

2.2.1 Mixing length theory

Stellar convection is quite undeniably a 3-D phenomenon. However, it is impossible to
properly model convection in 3-D for an entire stellar lifetime. The difference in the
orders of magnitude of convective (on the order of minutes) and evolutionary timescales
in stars (millions of years) is simply too large to ever achieve such a feat. Instead, if
one is to include the effects of convection in 1-D stellar models at present, a treatment
known as ‘mixing length theory’ (MLT) must be employed. Mixing length theory con-
siders the macroscopic bulk motions of convective mass elements to have a mean free
path ¢, the mixing length. MLT is used to provide the local gradient of temperature
across a convectively unstable zone of the stellar model, which is required for the solu-
tion of the equation of energy transport (equation 2.6). For mixing of the composition,
the principle is to approximate convection as a diffusive process using the convective

velocity calculated from MLT to predict an appropriate diffusion coefficient for each
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zone in the discretised stellar model. Once this has been achieved, the diffusion equa-
tion can be solved in order to give the new distribution of nuclear species as a result
of the mixing.

MLT is a local treatment for a non-local phenomenon, making it necessary to
average several quantities. The method by which this averaging is included in the
treatment is quite poor, however the treatment does well to reproduce many observables
given the appropriate parameterisation for the mixing length, ¢ = aHp.

By substituting the radiative temperature gradient from Eq. 2.8 into the Schwarzschild

stability criterion (Eq. 2.25), we can define a critical luminosity,

4
Ly = GG (2.27)
above which convective flux is required in addition to radiation and conduction in order
to maintain energy balance. For L, < L, ., the actual temperature gradient is given
by the radiative one, V = V,.q, but for L, > L, . convective flux is required to carry
the excess luminosity and the actual temperature gradient V is unknown. In order to
address this we need to determine what the convective flux will be.
The local luminosity of the star, L,, must be provided by a combination of

radiative, conductive and convective energy transport. The total energy flux is then

given by

4rr?

where F', the total flux, can be given by assuming that all of the energy flux is in

- Frad + FCOHV7 (228)

fact transported radiatively and is related to a (‘fictitious’) local radiative temperature

gradient V,,q (as defined in 2.8) that would be required to carry that flux radiatively,

4acG mT*
F = s v 2.29
3 kprz ™ ( )
giving .
dacG mT
~ 7 o Vrad — Fra FconV7 2.
T Per a a-+ (2.30)
where F,,q is the actual radiative flux given by the actual temperature gradient,
4acG mT*
Fra= =212 (2.31)

3 kPr?
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We now require an expression for the convective flux as a function of the local ther-
modynamic conditions. Starting from the initial assumption that a convective fluid
element will rise a radial distance ¢, the mixing length, before its thermalisation with
the surroundings, one assumes that the average fluid parcel will have travelled a dis-
tance £/2 before reaching the local shell. The temperature excess of such an average

fluid parcel over the surrounding material in this shell is given by

7 =), (7))s o
14

=TV - Ve)ﬁ

where Hp is the local scale height of pressure. The pressure excess of the element
over the surroundings DP = 0 from hydrostatic equilibrium, and the (average) density

difference D_p is given by L L
Dp_ _PT

p T

where 0 is defined in 2.11. During its thermalisation, the amount of heat per unit mass

(2.33)

transferred from the convective element to its surroundings is
AQ = cpDT, (2.34)

and assuming the average velocity of a convective element to be v = v(¢/2), the heat

flux from convection is

Fconv = @PAQ
(2.35)
T
= vaCP(V — Vo).

The buoyancy force on the fluid element is equal to the weight of the displaced sur-

roundings, giving a net force per unit volume on the convective element of

K :—gD_p
o (2.36)
DT
= gop—.
gop T
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It is then assumed that the average force acting on the convective element as it rises

from its original position is simply K = 1K (¢/2), and that half of the work done on
the fluid element by this force is converted to the kinetic energy of the element while
the other half displaces the surrounding fluid and dissipates. This gives an expression
for the convective velocity from the work done in moving the fluid parcel (on average)

a distance of ¢/2 to our local shell,

7= 2 §(V — Vo) r (2.37)
v=g — Ve)Tr .
g’ Hp
giving an expression for the convective flux,
VvV go _3
Fconv - €2PTCP_9(V - ve)%]——,p 2. (238)

42

An expression for V, is now required. As the fluid element rises, it will cool both
adiabatically and, more realistically, also due to radiative losses into the surroundings.

The cooling rate (erg s~!) of a convective element with surface area S is
A=195j (2.39)

where j is the radiative flux of energy into the surroundings from the element. j
is expressed using the diffusive formulation where the temperature gradient in the
normal direction from the convective element is approximated to be 2DT /d, where d

is the diameter of the element, giving

DT
A= = Saer LS (2.40)
3 pk d
This flux becomes a correction to the temperature gradient thusly,

(8T> B (8T) A

or ), or ).y pVept’ (2.41)
AHp
Ve SV T

After substituting in for A and DT and using the dimensional approximation £S/Vd ~
9/(2¢), we obtain a final equation,

Ve—Vad 6acT?
V-V. p2repil’

(2.42)



55

It is now possible to find analytical solutions to the 5 unknown quantities, V., V, v,
Feony and Fr.q using the 5 equations 2.30, 2.31, 2.37, 2.38 and 2.42 given the local
thermodynamic quantities. Also needed is an appropriate mixing length, which is
parameterised by setting it to be some fraction « of the pressure scale height of order
unity,

Once the equations above have been solved, the diffusion coefficient is given by
1_

and can be used to solve for the mixing of the composition due to convection.

2.2.2 Overshooting and convective boundary mixing

In section 1.4, the complexity of hydrodynamic mixing in stellar interiors was discussed,
and so far in this section the principles of mixing length theory (MLT)—the simplifica-
tion by which convective mixing is generally included in 1-D stellar models—have been
described. It was explained that the general principle of MLT is to calculate the actual
temperature gradient in convective regions along with the average convective velocity,
from which a diffusion coefficient can then be used to solve the diffusion equation for
the mixing of composition, X, along with the reaction network.

MLT is limited to act in regions where the local radiative temperature gradient

needed to provide the supporting luminosity by radiative transport alone, V.4, satisfies

either
OlnT
= 2.4
Vrad (a In P) rad g vad ( 5)
(Schwarzschild criterion) or
Vmd > VaLd + fvu (246)

)
(Ledoux criterion), where V,, is the gradient of mean molecular weight in the sur-

rounding stellar material, dlnpx/0In P and ¢ and 0 are thermodynamic derivatives
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from 2.11. An important physical inaccuracy of MLT is its failure to provide a treat-
ment for what happens at the convective boundary with the radiative layer. In section
1.4, physical considerations relevant to the behaviour at convective boundaries were
discussed in detail. The general conclusion is that at the convective boundaries, even
though the criteria for convection are no longer satisfied, mixing processes can still
operate. These more complex considerations of hydrodynamical instability I refer to
as convective boundary mixing.

In order to reproduce the radius and luminosity of a star with a given mass, a
certain amount of extra mixing into the radiative layer is needed in the stellar models.
In some stellar evolution codes, such as GENEC (Eggenberger et al. 2008), this is
implemented as a radial extension of the Schwarzschild boundary by a fraction of
the pressure scale height (typically about one fifth). This extension of the convective
core is referred to as penetrative overshooting, since the convection penetrates into
the stable radiative layer. One might describe a related physical picture as ballistic
overshooting. Earlier, it was described how MLT predicts a diffusion coefficient with
which the diffusion equation is solved for the mixing of the nuclear composition. In
GENEC, during the hydrogen, helium, carbon and neon burning phases the convective
turnover timescale is assumed to be so short in comparison to the nuclear burning
timescale that the mixing of composition in convective regions is not solved using
the diffusion equation, but instead the composition is assumed to be uniformly mixed
throughout the region. Although a seemingly simplistic model for overshooting, models
calculated using GENEC are robust in reproducing many evolutionary characteristics
of massive stars. GENEC also has a sophisticated 1D implementation of rotation,
allowing for the effects of shear mixing to be included in simulations of rotating stars,
which are indeed treated diffusively. The assumption of instantaneous mixing in the
convective regions propagates to the region where overshooting takes place, meaning
that the composition in this region is instantly homogenised with the convective core.

Convective velocities in 2-D (Herwig et al. 2006) and 3-D (Herwig et al. 2011)
hydrodynamical simulations of convective boundaries have shown relatively good agree-

ment with those calculated with 1-D mixing length theory, but also yield velocity pro-
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files that exponentially decay as a function of radial distance into the radiative layer.
Because mixing is treated as a diffusive process, where the diffusion coefficient and
the convective velocity are related by 2.44, convective boundary mixing in MESA is
treated using an exponentially decaying diffusion coefficient. The diffusion coefficient
of mixing is assumed to decrease exponentially from the strict Schwarzschild boundary
radially into the radiative zone. The diffusion coefficient is then

D = Dyexp (——22 ) (2.47)

feBMAPo

where Dy is the diffusion coefficient, taken equal to the mixing length diffusion co-
efficient value (Dypr) at a distance fopumAps inside the convection zone from the
Schwarzschild boundary. At this location, the pressure scale height is Ap o, while Ap g
is the pressure scale height at the Schwarzschild boundary. This is because the value
of Dy drops sharply towards zero at the Schwarzschild boundary. D is the diffusion
coefficient as a function of distance z from this location and fcogy is a free parameter.

The values of fopum used in this work are given and discussed in section 2.5.

2.3 The nuclear reaction network and composition
evolution

The principal role of the nuclear reaction network is to evolve the composition of the
stellar material according to the nuclear reactions that are activated in certain regions
of the star at a given temperature, density and existing composition. The rate of
change of the number of species ¢ in a zone within the stellar model due to nuclear
reactions is given by

Yibum = > c()NY; + > il k)NiwpYsYe + Y cild b DArap®ViiYs,  (2.48)

J J.k 7.kl
where the three terms on the right hand side correspond to sums over all one-body, two-
body and three-body reactions that create or destroy species i, respectively (see, e.g.,

Arnett & Thielemann 1985). The subscripts j, k and [ denote quantities pertaining
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to the first, second, or potentially third reactants in the reaction, respectively. ¢;(j),

¢i(7,k) and ¢;(j, k,1) are statistical and prevent double counting of reactants:

¢i(j) = £N;,
. Nl
GUR) = E RN
. NZ
Ukl = SR Imy

where N;, N;, Nj, and N; are numbers indicating how many particles of type 7, j, k or [
are involved in the reaction and the expression is positive or negative depending upon
whether the reaction creates or destroys species i, respectively. \ is the rate of the
reaction and p is the density of the stellar material. The first term on the right hand
side of equation 2.48 (the one-body term) accounts for photodisintegration reactions
and weak reactions—e.g. 2Ne(y, @)®O and **Na(e™,v)*Ne, respectively—for which

A; has units of s71.

The value of A for weak reactions is one of the key quantities
that are calculated for this work using the methodology outlined in Chapter 4. The
second term on the right hand side of equation 2.48 (the two-body term) accounts for
the reactions in which two nuclei are considered to fuse together; the majority of the

reactions considered are part of this category. For this kind of reaction,

)\ng =Ny <ov >k

and has units of cm? s~!

mol ™! Ny is Avagadro’s number and < ov > is the velocity-
integrated cross-section of the reaction. While the third term on the right hand side of
equation 2.48 accounts for all reactions in which there are three reactants, it is usually
only relevant for the rate of change in the abundances of “He and 2C due to the triple-
alpha reaction (3a — '?C). In this case, \;;; has the units of cm® s™' mol™? (see
Cyburt et al. 2010).

While evolving the composition, the nuclear reaction network must also calculate

€nue—the net specific energy gained or lost by the zone due to these nuclear processes—

for the equation of energy conservation (2.5). This is given by

€nuc = _NA E ,qu; — €y nuc
[
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where yi; is the chemical potential of species 7 and €, . is the specific neutrino luminos-
ity produced by reactions involving the weak nuclear force. In Chapter 4 the method
with which €, . is calculated is described in great detail hence such a description is
not included here.

The equations presented thus far in this section describe the time-evolution of the
composition for a single zone. In stellar evolution codes the numerical models of stars
are discretised into several hundreds or thousands of zones. In some codes the different
‘operators’ (structure, burning and mixing) are split, or decoupled, meaning that they
are solved separately. For example in GENEC (The Geneva stellar evolution code),
firstly the structure equations, followed by the nuclear burning and finally the mixing
are calculated in turn in an iterative scheme until the desired precision is reached. In
the nuclear burning step, the composition is evaluated for each zone by solving equation
2.48. There are significant differences for codes in which the burning and mixing are
coupled (such as the MESA code), where the rate of change of the abundance of species
7 in a zone is given by

Yi - Yi,burn + Y;,mixa

where Y};bum is the rate of change due to nuclear reactions (equation 2.48) and Y;mix is
the rate of change due to mixing, which—since all mixing is approximated as a single

diffusive process—is given by Fick’s second law of diffusion:

. 0 aY;
Y; mix — §__ ) 2.49
R e 2.49
where op is the 1-D (radial) Lagrangian diffusion coefficient with units of g s™' and

m is the mass coordinate.

2.4 Essential physical and empirical data

Previously in this section, I have highlighted how extra information about the prop-
erties and behaviour of the stellar material under a range of conditions is required in

order to solve the equations quantitatively. Unlike other stellar evolution codes, such
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as GENEC, STERN, KEPLER and FRANEC (for massive stars), MESA does not
have one relatively fixed set of physical treatments and assumptions (e.g. the choice of
Schwarzschild or Ledoux criterion to determine convective stability). Instead, several
prescriptions are typically available and the user is given the choice of which to use.
Stellar evolution codes other than MESA often do have the option to choose between
different sets of input physics however the breadth of choice in the MESA code is par-
ticularly extraordinary. Indeed, the fact that the MESA code provides so many choices
is one of its defining characteristics, making it somewhat of a stellar evolution ‘sand-
box’. In one sense, this makes the MESA code difficult to place in the field of stellar
evolution where for years the long-standing codes have been defined by the choices of
these physics that they make. In a more positive light, the existence of something like
the MESA code enables the scientific community to push currently accepted physical
treatments to their breaking point and provide new treatments in their place. Some
of the key sources and origins of the data, tables and physical treatments to support
the structure equations in their solution in MESA are explained below. Afterwards, I
will summarise the choices, where applicable, that were made for the simulations that

produced the results presented in this thesis.

2.4.1 EOS and opacities

In Eq. 2.6, the equation of energy transport or temperature stratification for example,
it is clear that two main physics inputs are needed - the opacity of the stellar material
k(T,p, X), and the equation of state of the stellar material P(T,p, X), giving the
pressure. The opacity and pressure of the stellar material are both quantities whose
evaluations in turn require detailed calculations. However, since both (T, p, X) and
P(T,p, X) are fixed properties of the material, their calculation can be pre-processed
and provided to the stellar evolution code in tabular format. In MESA, the eos module
gives the pressure as a function of density and temperature, which are the independent
variables. The kap module gives the opacity as a function of density, temperature and

composition. The coverage of the MESA EOS and x modules in the log p - log T plane
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is shown in Figs. 2.1 and 2.2, respectively. The MESA EOS tables are constructed from
OPAL (Rogers & Nayfonov 2002) tables and for lower temperatures, SCVH (Saumon,
Chabrier & van Horn 1995) tables are used and account for the partial dissociation
and ionisation of the composition. For intermediate conditions, these two tables are
blended in a pre-processing manner, the blended region being illustrated in Figure 2.1
by the blue dotted line. Outside of the regions covered by these tables in the density—
temperature plane, the HELM (Timmes & Swesty 2000) and PC (Potekhin & Chabrier
2010) EOSs are employed, again being blended at the boundaries of the MESA table.
This blending region is shown in Figure 2.1 by the black dashed line. The blending is
performed using a sinusoidal function for each of the physical quantities provided by
the EOS (see Paxton et al. 2011 for further details).

MESA offers the choice either to use the OPAL Type 1 (Iglesias & Rogers 1993)
or Type 2 (Iglesias & Rogers 1996) radiative opacity tables. The type 2 opacity tables
account for varying abundances of C and O, rather than assuming the C and O abun-
dances to scale directly with the metallicity. This is especially important for the AGB
and super-AGB stars, whose deep second dredge-up mixes primary C and O to the
surface. The MESA opacity tables are constructed in a pre-processing manner from
several sources, including the equations of (Buchler & Yueh 1976) for logio(7/K) > 8.7
where Compton scattering becomes the dominant source of radiative opacity. Electron
conduction opacities for —6 < log;,(p/gem™) < 9.75 and 3 < log,o(T/K) < 9 are
those of Cassisi et al. (2007). Outside of the regions covered by Cassisi et al. (2007)
two different fits to the electron conduction tables of Hubbard & Lampe (1969) are
used. In the non-degenerate case, the fits of Iben (1975) are used, while in the degen-
erate case the fits of Yakovlev & Urpin (1980) are used. In the region where there is
an absence of radiative opacity calculations (between the lines labelled log R = 1 and
log R = 8 in Figure 2.2), the radiative opacities are fixed at their value of logR = 1
and combined with the electron conduction opacities. For further details of the MESA
opacity tables outside of the regions discussed here and of the table boundary blending

schemes, the reader is referred to Paxton et al. (2011).
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Figure 2.1: Regions in the log p - log T" plane covered by the MESA EOS module
(Paxton et al. 2011). The dotted blue lines show the region where the OPAL and
SCVH tables are blended to produce the MESA EOS tables. The dashed black lines
show the region where the MESA EOS is blended with either the HELM or PC EOS,
and the red dot-dashed lines where the HELM and PC EOSs are blended.
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Figure 2.2: Regions in the log p - log T plane covered by the MESA opacity module
(Paxton et al. 2011). The orange lines bound regions for which tabulated radiative
opacities are available. The blue dotted line marks the region for which electron con-
duction becomes the dominant source of opacity and the solid black line extends to
regions where total opacities are a combination of the radiative opacity at the line
log R = 1 and electron conduction opacities (see text for details).
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2.4.2 Nuclear reaction rates

In the MESA code, most reaction rates were taken from the REACLIB compilation
(Cyburt et al. 2010). These rates are supplied as functions of the temperature in GK

(Ty),
5 .
A =exp |ag + ZaiTg? +agInTy| , (2.50)
i=1
where ag_g are the fitting parameters from the compilation. For each reaction, A is
computed from the fits and can be used in equation 2.48 for the nuclear reaction
network. In equation 2.50, A\ has units of s™! for single-body reactions. For two-
body reactions, the quantity provided by the formula in 2.50 is actually Na(ov) with
units of cm3mol s, where (ov) is the velocity-integrated reaction cross section and
N4 is Avagadro’s number. With each of the sets of fitting parameters, a Q-value
for the reaction is also supplied for the purposes of calculating the release of nuclear
energy production from each reaction in the network. REACLIB provides sets of
recommended reaction rates including those with both theoretical and experimentally
measured contributions. Indeed, preference is given to the experimentally determined
rates where applicable and often the experimental rates are provided by the NACRE
compilation! (Angulo 1999; Angulo et al. 1999).
There are some exceptional reactions for which the recommended rates provided
by the REACLIB compilation are not used. These include the rate for *N(p ,v)*0
measured at the LUNA facility in Dresden (Imbriani et al. 2004), which is important
in the hydrogen-burning CNO cycle. The rate of Fynbo et al. (2005) was used for
the triple-a (3cr) reaction during helium burning. This rate was calculated using
measurements of the 12C — 3a decay, which showed a dominant resonance in the 2C
nucleus with an energy of about 11 MeV. This is also directly relevant to supernova
explosions, in which the photodisintegration of carbon into a—particles is of paramount

importance for explosive nucleosynthesis. The rate of Kunz et al. (2002) was used for

Thttp://pntpm3.ulb.ac.be/Nacre/nacre.htm
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2C(a, )10, in which several interfering resonances are shown to contribute to the
rate.

Weak reaction rates and associated neutrino—loss rates are those of Fuller, Fowler
& Newman (1985), Oda et al. (1994) for sd—shell nuclei, Langanke & Martinez-Pinedo
(2000) for pf—shell nuclei and, as will be discussed in sections 3.1.3 and 4.4, Toki et al.
(2013) for sd—shell nuclei.

2.4.3 Mass loss

The stellar wind is still a very uncertain phenomenon. Mass is lost from the outer layers
of the star into the interstellar medium by several mechanisms. The microphysics
behind some of these processes involve line-dominated opacities (i.e. from specific
isotopes, atoms, molecules and dust) and the generation and regeneration of magnetic
field lines. Rotation also contributes to mass loss: the addition of centrifugal forge
modifies the amount of momentum needed to drive a unit of mass from the surface
(Maeder 2009). In addition, rotation implies asymmetrical mass loss in some cases.
Mass loss rates are generally prescribed separately for the hot and cool side of the
Hertzsprung-Russell diagram (HRD), where the surface conditions are quite different.
Hot stars on the main sequence with radiative envelopes experience line-driven mass
loss. This type of mass loss is caused when the components of the stellar plasma
exhibit high opacities at the relevant temperatures and thus momentum is imparted to
the material by photons (Vink, de Koter & Lamers 2001). Hence, the mass loss rate
is sensitive to the surface temperature and composition of the star. Cool stars on the
RGB or AGB have very extended envelopes with deep convection zones. The material
at the surface is more loosely bound and the mass loss loss is much harder to constrain
physically. Pulsations and the formation of dust are known to become important in
this situation (van Loon et al. 2005).

About 70% of massive stars will have some degree of interaction with a binary
companion over the course of their lives (Sana et al. 2012). Mass transfer further

complicates the problem of mass loss and greatly enriches the spectrum of types of
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stars, evolutionary paths and supernova types. I highlight this here out of necessity
- binary interaction is the elephant in the room of stellar evolution calculations, and
although it is fair to say that binary interaction could be simulated by enhanced mass
loss in 1D stellar models, one third of the massive stars in interacting binaries will
experience merger events.

In MESA, the mass loss scheme for massive stars is taken from Glebbeek et al.
(2009). For effective temperatures of log(Ter/K) < 4, it uses de Jager, Nieuwenhuijzen
& van der Hucht (1988). For log(Tex/K) > 4 there are two prescriptions used, depend-
ing on the abundance of hydrogen at the surface: for Xg('H) > 0.4, Vink, de Koter &
Lamers (2001) is used and for Xg('H) < 0.4, the Nugis & Lamers (2000) prescription
is used. The Nugis & Lamers (2000) rate is used for quite massive stars (M 2 30M)
that will become the Wolf-Rayet star progenitors of type Ibc supernovae. The rate of
de Jager, Nieuwenhuijzen & van der Hucht (1988) is used for the red supergiant phase,
while the rate of Vink, de Koter & Lamers (2001) is used mostly during the main
sequence. Although there is not a free parameter in the mass loss rate of de Jager,
Nieuwenhuijzen & van der Hucht (1988), it is worth reiterating that the mass loss
rates for stars on the cool side of the Hertzsprung-Russell diagram are very uncertain.
Typically, a factor of 0.8 is applied to empirically-determined rates in non-rotating
models. This is to compensate for the fact that the observations from which the rates
are determined are of rotating stars (see Maeder & Meynet 2001).

For lower mass stars (AGB, super-AGB), the prescription of Reimers (1975) is
used for the red giant branch. Although quite an old mass loss rate, the mass lost in
this phase is only about 1 — 3% of the total stellar mass for stars with M, = 3M
and the rate agrees with more recent calculations (Blocker 1995). For the AGB, the
rate of Blocker (1995) is preferred, since it is derived from dynamical calculations of

Mira-type variables and fits the observed initial-final mass relation for AGB stars.
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2.4.4 Neutrino energy losses

At the densities encountered in stellar interiors, to an excellent approximation, the
neutrino mean free path will be much longer than the stellar radius. As a result, any
neutrino production in a region of the star will result in a direct energy loss from
that region. The energy loss from non-nuclear neutrino processes are prescribed in the
code by using the fits of Itoh et al. (1996). For each zone, these fits give the energy
loss €, (MeV g! s7!) that is to be used in the energy conservation equation (2.5).
These fits do not include energy losses due to neutrinos produced by weak nuclear
reactions. Weak reaction rates could be considered more complex than thermonuclear
fusion rates in the sense that they are strongly dependent upon the electron number
density of the stellar material and must also be provided together with neutrino loss
rates. These neutrino loss rates are included in the term €, (MeV g7' s71) in the
energy conservation equation (2.5). The method of calculation of these neutrino losses
will be described in detail in Chapter 4, while in this short section I will outline the
non-nuclear neutrino production mechanisms.

The neutrino production processes are categorised as follows (Fowler & Hoyle

1964; Itoh et al. 1996):

Neutrino bremsstrahlung : et +47Z = et +4Z + v+ v

Pair annihilation : et +e v+
(2.51)
Plasmon decay : Vol =V + U
Photoneutrino process : e +y—e +rv+v

The dominant mechanisms of neutrino production across the p —T" plane are shown in
Figure 2.3.

The pair creation process dominates at high temperatures where electron—positron
pairs are produced in dynamic equilibrium with the black-body radiation and are con-
verted directly to a neutrino—anti-neutrino pair (Chiu & Morrison 1960). A plasmon
is a quanta of plasma oscillation, which is an oscillation in the electron density. Plas-

mons are quasi-particles that are unstable to decay, which can produce a neutrino—anti-
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Figure 2.3: Dominant mechanisms of neutrino production across the p — T plane, from
Itoh et al. (1996). Tp is the Fermi temperature and I' = 180 (dashed line) is the
melting curve of the ionic Coulomb solid.



69

neutrino pair (see Adams, Ruderman & Woo 1963 and Beaudet, Petrosian & Salpeter
1967 for further details about plasmons, and in particular their transverse and longitu-
dinal components). The neutrino production rate due to plasmon decay is a strongly
peaked function of the electron density pY;; it is a maximum in the domain where
hwo > kT, where wy is the plasma frequency. The plasma neutrino energy loss rate
is therefore peaked at higher electron densities for higher temperatures (see Figure 2.3
and Beaudet, Petrosian & Salpeter 1967). A small region of the p — T plane is domi-
nated by the recombination process, where an electron in a continuum state undergoes

a transition to a bound state (Kohyama et al. 1993).

2.5 Modelling assumptions in this work

The stellar models presented in this thesis were calculated with the Modules for Ezx-
periments in Stellar Astrophysics (MESA) stellar evolution code (Paxton et al. 2011),
revision 3709. The models were calculated from the pre-main sequence assuming a
uniform initial composition with a metal fraction of Z = 0.014 (solar metallicity) and
elemental abundances taken from Asplund et al. (2004). The effects of rotation are not
considered in the present work.

In MESA, convective mixing is treated as a time-dependent, diffusive process
with a diffusion coefficient, Dy, as described in detail in section 2.2.1 and 2.3. The
mixing length parameter used for these models is ayr = 1.73, calibrated from fitting
the parameters of the Sun (see, e.g., Herwig et al. 2012). While it is considered standard
procedure to calibrate the mixing length parameter in order to reproduce the solar
parameters, it is important to keep in mind that there is no particularly good reason
that one should expect the parameter to be insensitive to the initial mass of the model,
the location in the star or the evolutionary phase. During the entire evolution sequence
convective stability is defined by the Schwarzschild criterion (2.25) with the exception
of the late stages of the 8.75 My and 8.8 M models (when electron captures begin

to dominate the evolution of the core) where instead the Ledoux criterion (2.26) is
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used (Miyaji & Nomoto 1987, see section 2.2). Mixing at convective boundaries is
treated with an exponentially decaying diffusion coefficient (Freytag, Ludwig & Steffen
1996; Herwig 2000) of the form shown in 2.47. For all convective boundaries the free
parameter of this treatment is taken as fecgy = 0.014 with the exception of the base
of convective shells burning nuclear fuel, for which a stricter value of fogy = 0.005
is used. This includes the lower boundary of the convective envelope in the super-
AGB models because the hydrogen-burning shell extends into the convective layer
(hot-bottom burning; see, e.g., Boothroyd, Sackmann & Ahern 1993). Such a reduced
efficiency of convective boundary mixing across the base of convective shells in which
nuclear fuel is burning is indicated from both He-shell flash convection in AGB stars
(Herwig 2005) as well as nova shell flashes (Denissenkov et al. 2013a). Exactly how
much the fcpy parameter should be reduced for these kinds of boundaries (for example,
at the base of the carbon-burning or neon-burning shells) is at present not clear. What
the 3D simulations do show, however, is that the velocity profile at the boundary is
never discontinuous and some extra mixing should occur. During the silicon-burning
stage of the 12 My model, no convective boundary mixing is assumed (fcpy = 0).
This choice is not informed by considerations of physics or astrophysical observations,
but can be instead thought of as a conservative approach with two motivating factors.
Firstly, since the 12 M, model is the canonical massive star in this set of models, an
attempt was made to use similar assumptions to the ones made in well-established
codes during silicon-burning (e.g., the Geneva stellar evolution code GENEC and the
KEPLER code). Secondly, as will be described below, a simplified nuclear reaction
network is used for the silicon-burning phase in the 12 M model because it is a practical
impossibility to include all of the (important) details of silicon burning in the MESA
code at the present time. Taking stock of the many short-comings in stellar models of
silicon-burning stars, I decided that it was better not to introduce new uncertainties
into a model that will ultimately serve as a comparator for the others. That being
said, I have begun to compare models of massive stars computed with some of the
leading stellar evolution codes (GENEC and KEPELR) with those I have calculated
with MESA in order to quantify some of the key differences and their impact on the
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nucleosynthesis. Quantitative predictions of the impact of different physics assumptions
on the nucleosynthesis in stars can be compared with observations, either directly or
indirectly (e.g. via simulations of galactic chemical evolution). Future 3D simulations
are also required to constrain the behaviour of convective boundary mixing under the
wide range of physical conditions that are encountered in stars and hence in stellar
models, in particular for the advanced burning stages.

MESA solves the coupled stellar structure, nuclear burning, and abundance mix-
ing equations simultaneously. In cases where the burning timescale is much longer than
the mixing timescale, as for example during core H-burning on the main sequence, then
MESA'’s coupled calculation and an operator-split calculation will agree. In cases where
the nuclear burning time scale is similar or shorter compared to the mixing time scale,
the coupled method provides consistent abundance profiles in convection zones, whereas
operator-split calculations require a special treatment for chemical species with short
nuclear timescales and smaller time steps. Note that in exceptional cases where the
energy release by simultaneous burning and mixing is so large that the approximations
of MLT are violated, then all 1D methods become inaccurate and 3D hydrodynamic
simulations are necessary (see, e.g., Herwig et al. 2011).

The nuclear energy production and composition evolution is followed with a nu-
clear reaction network of 114 isotopes from 'H to ' Co including the NeNa cycle, URCA
processes, alpha chains and electron-captures by **Mg, 2*Na, **Ne and ?°F along with
their inverses. Figure2.4 shows the detail of the network. Such a large network is
required to follow both nucleosynthesis and energy production in these models. For
example 3°Si and 'S are the main products of O-burning in the lowest-mass massive
stars as opposed to 2®Si and 32S in more massive stars owing to higher degeneracies
and thus higher electron capture rates (see, e.g., Thielemann & Arnett 1985). In stars
with degenerate cores close to the Chandrasekhar limit (2.16), accurately calculating
the electron fraction, Y, is very important because only a slight reduction in Y, can
cause significant contraction. Further isotopes are included implicitly to account for
non-negligible reaction channels, for example *Ti(c, p)*"V(p,v)*¥Cr is included but

the abundance of 47V is not explicitly calculated. These implicit isotopes can be seen
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in Figure 2.4 where there is an arrow junction on an unshaded isotope.

For the 8.2, 8.7 and 8.75 M models that become SAGB stars, a network op-
timised for the AGB phase, including 37 isotopes and the relevant nuclear processes
listed above, is employed from the time of completion of second dredge-up. Dur-
ing the silicon-burning stage of the 12 My model the simplified 21-isotope network
approx21.net, that is available in the MESA code, is used. It is common for simpli-
fications to the nuclear reaction network to be made in order to efficiently deal with
the many high rates of forward and reverse reactions. The mass-loss rates used in this
work are those of Reimers (1975; n = 0.5) for the red giant branch (RGB) phase and
Blocker (1995; n = 0.05) during the asymptotic giant branch (AGB) phase.
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Figure 2.4: The nuclear reaction network used in these calculations. The abundances
of the shaded isotopes are followed explicitly. Reactions are shown with arrows, and
implicitly included isotopes (ones whose abundances are not calculated explicitly but
through which reactions are considered to proceed) can be seen where there is an arrow
junction on an unshaded isotope. This network was used for all of the models with
the exception of the TP-SAGB phase in the 8.2, 8.7 and 8.75 M, models and the post
oxygen-burning phase in the 12 M model. In these phases, appropriate smaller, more
efficient networks are used (see text for details).



74

3 Models of 8-12 M, stars

In this chapter, newly computed models of solar metallicity (Z = 0.014) stars at the
transition between super-AGB stars and massive stars are described in detail. The
models were computed with the stellar evolution code MESA, which is a community-
developed tool. The MESA code was described in chapter 2 along with the modelling
assumptions that have been tuned for the simulation of stars across the transition mass
range between AGB stars and massive stars. The general evolution of the six models is
discussed and later the properties of neon and oxygen shell burning that occur in the
8.8 and 9.5 M, models are analysed. The effects of hydrodynamical processes that are
poorly constrained in 1D models on the behaviour of shell burning and hence the fate
of the stars are examined and tested. This chapter contains results that were published

in the Astrophysical Journal this year (Jones et al. 2013).

3.1 Evolution and fates

In this section, the evolution and fate of the models is described in the following order.
In section 3.1.1 the early evolution of the models from the main sequence to the end
of carbon burning is briefly outlined. Sections 3.1.2 and 3.1.3 then describe in detail

the late evolution of the super-AGB and massive star models, respectively.

3.1.1 Evolution to the end of carbon burning

During the main sequence, fusion of hydrogen into helium in the convective core results
in a reduced opacity and increased mean molecular weight, ;2. The increase in p leads
to an increase in luminosity (L oc pu? for an ideal gas with negligible radiation pressure,
e.g. Prialnik 2000 eq. 5.47 with 8 & 1). The pressure decreases modestly as p~*
for an ideal gas, and the core contracts. The reduction in opacity dominates over

the increase in luminosity during the main sequence and because V,.,q « kL, P, the
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radiative temperature gradient decreases. The adiabatic temperature gradient on the
other hand, increases slightly. As a result, the material at the edge of the core becomes
convectively stable and therefore the mass of the convective core decreases during the
main sequence lifetime of the star.

Another way of considering the decrease in mass of the convective core during
the main sequence involves entropy. The entropy in an ideal gas and radiation mixture

is (Clayton 1983, 2-136)

S:const+MlnT—%+4—aT—3, (3.1)
@ p 3 p

with the second and third terms from the gas and radiation, respectively, a is the
radiation density constant and the other symbols have their usual (thermodynamic)
meanings. The thermodynamic conditions remain in a steady state during the main
sequence because the Kelvin-Helmholtz time-scale (7xy = E,/L) is much shorter than
the nuclear timescale (Thue = €nueMeore/L). If this was not the case, the star would be
contracting in order to provide the luminosity required to support the star while fuel
was burning (see, e.g. Kippenhahn & Weigert 1990, section 30.5). Thus, on the main
sequence the star is in equilibrium and hydrogen-burning energy production is in a
steady-state, where the nuclear reactions are self-regulating in the following way. The
nuclear reactions produce energy and thus increase the temperature of the material.
The pressure increases and the core expands, lowering the temperature and moderating
the reaction (and thus energy production) rates. The temperature, density and pressure
remain reasonably constant due to this self-regulation. As discussed earlier, the mean
molecular weight increases from roughly % to % during hydrogen burning, and equation
3.1 thus shows that the entropy in the convective core will decrease as a result of the
mean molecular weight increase. The entropy can be thought of as a measure of how
intrinsically hot the material is. Consider that a fluid parcel is displaced into new
surroundings and expands to reach pressure equilibrium adiabatically (i.e. at constant
entropy). If the entropy of the fluid parcel is higher than that of the surroundings,
the parcel will be also have a higher temperature than the surroundings. For an ideal

gas in which P o pT, this means that the parcel will have a lower density than its
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Figure 3.1: Evolution of all the models in the Hertzsprung-Russell diagram; final lu-
minosities are indicated by crosses. The 12 M model is the only model not to exhibit
a blue loop (see text for details). By virtue of their deep second dredge up and sub-
sequent dredge-out, the 8.2, 8.7, 8.75 and 8.8 M, stars become much more luminous
than the 9.5 M, and even the 12 M, stars during the late stages.

new surroundings and will thus be dynamically unstable. With this consideration in
mind, the lowering of the entropy of the material in the convective core—caused by the
reduction in g—makes it more difficult for the core material to mix with the overlying
layer. As a result, the material at the edge of the convective core becomes convectively
stable.

The evolution of all the models in the Hertzsprung-Russell diagram (HRD) and

the central density—temperature (p. — T) plane are shown in Figures 3.1 and 3.3,
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respectively. The HRD in Figure 3.1 shows that with the exception of the 12 M, all
of the models evolve blue-wards during helium burning (after ascending the red giant
branch, RGB). This evolutionary feature is called a blue loop. The behaviour of the
effective temperature as a function of central helium abundance is shown in Figure 3.2,
with the helium-burning evolution beginning in the lower right of the Figure, and
ending in the lower left. The blue loop is clearly shown by the arc between roughly
X.(*He) = 0.5 and 0. The location in the HRD after the main sequence turn-off
is determined by a complex interplay between the helium core, the hydrogen-burning
shell and the opacity of the envelope. In general, as the core contracts the envelope will
expand—a mirroring effect. During the core helium-burning evolution the structure is
more complicated than during the main sequence. This is because there is a hydrogen-
burning shell between the core and the envelope. The hydrogen-burning shell in fact
provides a large fraction of the stellar luminosity during core helium-burning. The
occurrence of the blue loop has been shown to be sensitive to the hydrogen profile
encountered by the hydrogen-burning shell as it burns outwards in mass, strongly linked
to the proximity of the shell source to the lower extent of the convective envelope
(Lauterborn, Refsdal & Weigert 1971). More recently, studies have shown that the
behaviour of the blue loop is sensitive to the amount of convective overshooting at
the base of the envelope (Stothers & Chin 1991), the CNO abundances (Xu & Li
2004), metallicity and mass loss (Meynet et al. 2013). This phenomenon is still rather
uncertain, for example on the observational side the blue-to-red supergiant ratio as
a function of metallicity shows the opposite trend to theoretical models, and on the
theoretical side the results of the models depend very strongly on the parameters of
very uncertain physical prescriptions (in particular, mixing and mass loss). Following
hydrogen burning in all the models, the core is well-represented by an isothermal
monatomic ideal gas and its mass well exceeds the Schonberg-Chandrasekhar limit.
As the core contracts, the pressure at the core/envelope interface decreases as the
core radius decreases. As the instability becomes more severe in this way, the central
pressure, temperature and density are increasing and eventually helium burning is

ignited at the stellar centre. The convective core grows in mass during the helium-
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Figure 3.2: Effective temperature as a function of central helium abundance. The
models evolve clockwise around the figure, with left-to-right evolution during hydrogen
burning, and right-to-left evolution during helium burning. The arc during helium
burning between central helium abundances of roughly 0.5 and 0.0 shows blue-wards
evolution (seen as a blue loop in the HRD).
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Figure 3.3: The divergence of the models following C-burning in the log,,(p.) —logyo(7%)
plane; the cross shows from where the evolution of the 8.8 My model was continued
with the AGILE-BOLTZTRAN 1-D hydro-code.
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burning lifetime. This is because the mass of the helium core (or hydrogen-free core)
is also growing in mass due to (radiative) shell hydrogen burning. The core luminosity
therefore increases and more helium-rich material becomes convectively unstable.

Following the core He-burning stage, core contraction is accompanied by an ex-
pansion of the envelope seen in Figure 3.5 as a deepening of the base of the convective
envelope in mass. The penetration of the envelope convection into the helium core—
the so-called second dredge-up—is not intuitive. Returning to the considerations of
entropy that were discussed in Chapter 1, convection occurs when ds/dr < 0 and the
mixing redistributes the entropy. As the pressure at the edge of the (helium) core
decreases as the (helium) core contracts, the density also decreases while the temper-
ature changes only a little, increasing the specific entropy of the material. Assuming
adiabatic convection in the envelope, Sugimoto (1970) showed that when the entropy
at the core—envelope interface was less than that in the envelope itself, indeed the
mixing should not occur. In that case, the core mass should increase due to hydrogen
shell burning. Sugimoto (1970) also showed that the inclusion of neutrino losses in a
10 M model accelerated the evolution of the core so strongly that 0.01 Mg of mate-
rial was mixed into the envelope during the advanced burning stages, as opposed to
2.6 Mg when neutrino losses were not included.

Carbon is ignited centrally in all but the 8.2 M model, in which it is ignited at a
mass coordinate of 0.15 M away from the centre and the C-burning front propagates
to the centre (see Figure3.5a). The off-centre ignition of carbon and its propagation
to the stellar centre is a characteristic feature of super-AGB stars (Nomoto 1984; Ri-
tossa, Garcia-Berro & Iben 1999; Siess 2006; Siess 2009; Denissenkov et al. 2013b),
and comes about in the following way. After helium is exhausted in the centre of the
star, helium burning proceeds in a shell and as the core contracts, gravitational energy
is released and acts to heat up the material. During the contraction between helium
and carbon burning, the electrons in the central region of the core become partially
degenerate, providing an additional source of pressure with which to counteract the
gravitational contraction. As a result, the contraction is slowed down. More to the

point, as the density increases and degeneracy comes into play, the plasma frequency
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is significantly modified (see Clayton 1983, 3-305 and 3-306 for non-degenerate and
degenerate expressions for the plasma frequency and section 2.4.4 for a description of
neutrino loss processes). This means that the radiative transport of energy is carried
by plasmons, which are unstable to neutrino-decay, rather than free photons, which are
not (see section 2.4.4). Neutrinos are only likely to interact with matter at densities
approaching 10 gcm ™2, i.e. nuclear densities, which are astrophysically relevant only
in the conditions arising during a core-collapse supernova (Janka 2001). The neutrinos
produced from the plasmon interactions then freely stream from the core of the star
with, to an excellent approximation, no interaction with the stellar material. In gen-
eral, neutrino losses accelerate the evolution of stellar cores. The neutrino luminosity
appears in the equation of energy conservation (equation 2.5), and one can see that to
provide luminosity support in the absence of nuclear energy release (i.e. €,,c ~ 0), the
rate of gravitational energy release must increase. Neutrino processes compete with,
and dominate over, gravitational energy release in the central regions of the contracting
CO core (because contraction is inhibited by the degenerate electrons), producing a
net cooling. The maximum temperature moves outwards from the centre and carbon
burning ignites when and where the peak temperature reaches about 7 x 10® K (Siess
2006).

After the exhaustion of carbon in the centre, carbon burning proceeds in shells
and from this point onwards the behaviour of the envelope begins to diverge across
the 8 — 12 My, mass range. In the models models with M < 8.8 M, the timescale for
expansion of the H-envelope is comparable to the evolutionary timescale. The core
of the 8.2 M model is more degenerate than in the other, more massive models. As
a result, electron degeneracy pressure provides a larger fraction of the total pressure
in the 8.2 My model; the contraction of the core is thus slower. Helium burns in a
shell on top of the carbon-oxygen (CO) core with periods of more vigorous burning
coinciding with the extinguishing of carbon shells in the core below. At no point
does helium burning produce a steep enough temperature gradient for the helium
shell to become convectively unstable. Ultimately, the base of the envelope deepens

in mass and engulfs the entire helium shell. Whether or not material from the CO
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Figure 3.4: Kippenhahn (convective structure evolution) diagram of the dredge-out
episode in the 8.75 M, model. As the hydrogen envelope deepens in mass during
the second dredge-up (2DUP), helium burning ignites in the helium shell, inducing
convection. Hydrogen is not burning as the base of the envelope descends. The con-
vective helium-burning region becomes more extended after the extinction of the last
carbon-burning shell due to gravitational energy release and ultimately coalesces with
the descending envelope. The hydrogen-free boundary mass—below which there is no
hydrogen—is drawn with a solid blue line and the helium-free boundary mass is drawn
with a dashed green line.
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core is also mixed up into the envelope is still an open question. In the 8.7, 8.75 and
8.8 M models, the temperatures in the helium-burning shell are higher than in the
8.2 M model; helium burning is more energetic and induces convection before the base
of the envelope can reach the edge of the CO core. The convection zone grows in mass
due to the input of gravo-thermal energy following the extinction of the last carbon-
burning shell in the CO core below (see Figure 3.4). The convective helium shell merges
with the hydrogen envelope, which becomes enriched with the products of complete
hydrogen burning and incomplete helium burning. This phenomenon was given the
name dredge-out by Ritossa, Garcia-Berro & Iben (1999) in order to distinguish it
from the second dredge-up. The second dredge-up experienced in the 8.2 My model
mixes the helium-shell material into the envelope on a much longer time scale than the
convective turnover time scale. The dredge-out in the 8.7, 8.75 and 8.8 M models, on
the other hand, causes the enrichment to take place on the convective turnover time
scale of the envelope. In addition, the rapid transport of protons down to helium-
burning temperatures that takes place during dredge-out merits further study—such
conditions are favourable for the production of neutrons and hence neutron-capture
elements. Previous studies (Iben, Ritossa & Garcia-Berro 1997; Ritossa, Garcia-Berro
& Iben 1999) also find the formation of a semi-convective layer between the base of the
envelope and the growing helium-burning convection zone in some models, however
the outcome (dredge-out) is the same whether this layer is formed or not. In the
8.8 M, model, as much as 0.8 M, of He-rich material is mixed into the envelope. Aside
from the huge increase in the amount of helium and helium-burning products that now
resides at the surface following this deep mixing event, there are many other observable
quantities resulting from dredge-out. In particular, the dredge-out is accompanied by
a large increase in luminosity, inducing luminosities at the pre-SN stage larger than
for the 12 M model as shown in Figure 3.1 (see also Eldridge & Tout 2004; Eldridge,
Mattila & Smartt 2007).

In the 12 M model, the evolution of the core is accelerated by neutrino energy
losses whereas the envelope expands on a thermal timescale. As a result the convective

envelope remains unaltered after carbon burning. With decreasing initial mass, the
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Figure 3.5: Evolution of convective structure (solid grey shapes) for the H-, He- and
advanced burning phases of the models. t*/yr is the time left until the end of the
calculation. Solid blue and dashed green lines show the locations of the He- (H-free)
and CO- (He-free) core boundaries respectively. Only the inner 4 M are shown.

core is more degenerate and compact following carbon burning and thus contraction
is slower. This provides further energy and time for the expansion of the envelope, as

can be seen at logjo(t*/yr) ~ 4 — 3 in Figure 3.5a-e.
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3.1.2 Late evolution of the 8.2, 8.7 and 8.75 M (super-AGB)
models

The 8.2 Mg, 8.7 My and 8.75 My, models develop cores with masses that fall short of
the critical mass for neon ignition (see §3.1.3) following 2°¢ dredge-up (Mgo = 1.2670,
1.3509 and 1.3621 My, respectively), developing thin (of the order of 107° — 104 M)
helium shells that soon develop a recurrent thermal instability producing transient
He-fuelled convection zones (thermal pulses, TP). The 8.2 M, star expels its envelope
to become an ONe white dwarf (WD). It is uncertain whether the 8.7 M, star would
produce an ONe WD like the 8.2 M, star, or whether its core would reach the critical
central density for electron captures on **Mg, p ~ 10°% gcm™2, before the envelope is
lost. The 8.75 My, star has been simulated through the entire TP-SAGB phase (about
2.6 x 10° time steps) including the URCA process and electron captures by Mg and
20Ne (see Figure 3.3), which means that its fate is an electron capture supernova (EC-
SN).

The outcomes of these models are highly sensitive to the mass—loss prescription
during the thermal pulse phase and the rate at which the core grows (Poelarends
et al. 2008). The TP-SAGB phase of the 8.7 M, star has been modelled for about
240 pulses, at which point p. = 10%3*gem™3. Though still far from pei(**Mg +
e”), the central density has exceeded the thresholds for both major URCA process
reactions, accelerating the contraction of the core towards peit(**Mg + e7). Due to
this acceleration in contraction and comparison with literature (Nomoto 1984; Nomoto
1987; Ritossa, Garcia-Berro & Iben 1999; Poelarends et al. 2008), the most probable
outcome for the 8.7 M model is an EC-SN.

The efficiency of the third dredge-up during the thermal pulse phase is the key

factor in determining the growth rate of the core. The dredge-up efficiency,

AM. 3DUP

/\3DUP = Wa (32)

is the ratio of mass dredged up into the envelope during the third dredge-up (AMspup)

to mass deposited onto the helium core through hydrogen burning during the inter-
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pulse period (AM,; see, e.g., Karakas, Lattanzio & Pols 2002 and Figure 3.6). The
dredge-up efficiency ranges between Aspyp = 0 and 1, where Aspyp = 1 is an extremely
efficient dredge-up in which all the material deposited onto the core during the inter-
pulse is mixed back into the envelope. Aspup < 1 is, on the other hand, an extremely
inefficient dredge-up resulting in the maximum possible core growth rate.

In order to demonstrate the sensitivity of the fate of super-AGB stars to the
convective boundary mixing and mass loss rate uncertainties, I re-computed the 8.7 M,
model from the completion of second dredge-up. This time, the calculation assumed an
exponential overshoot beneath the convective envelope characterised by equation 2.47
and fopm = 0.02 as opposed to the original value of 0.005. Kippenhahn (convective
structure evolution) diagrams in Figure 3.6 show the drastically increased dredge-up
efficiency for the model with deeper mixing of the convective envelope (fcgm = 0.02,
bottom panel). The net core growth between two thermal pulses and the inter-pulse
period for each of the convective boundary mixing parameterisations (Meore /Mg yr—")
is plotted against different mass loss rates (M /Mg yr—") for red (super-)giants from
the literature (Reimers 1975; Blocker 1995; van Loon et al. 2005) in Figure3.7. The
dividing line separating the white dwarf and neutron star fates is the critical (average)

core growth rate,

— crit o EAGB —
T CI1 B MEC Mcore M (3 3)
core EAGB envs .
M35 — Mpe

which is a function of the mass of the core and envelope at the start of the thermal-

pulse phase (MEAGE and MEAGB respectively, where MEAGB = MEAGE 4 JfEAGE) 4

core env core env
the average mass loss rate, ]\_Lm,.

My is the critical core mass needed to be reached before an EC-SN is inevitable.
Several factors make the determination of Mgc complicated. For an electron fraction
of Y. = 0.5, Chandrasekhar’s limiting mass for a relativistically degenerate core is
Mcy = 1.46 M, (see equation 2.16). During the very late stages of the progenitor evo-
lution, electron captures severely reduce the average core electron fraction, decreasing
the limiting mass well below the mass of the core (Miyaji et al. 1980). This reduction

of the electron fraction is driven by the electron captures of 2?Ne and later, material
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Figure 3.6: Kippenhahn (convective structure evolution) diagrams of the thermal pulse
phase of the 8.7 M, model with fogy = 0.005 (top panel) and fepy = 0.02 (bottom
panel). The thermal pulse (TP) and third dredge-up (3DUP) events are labelled.
Arguably, 3DUP is the name given to the deepening in mass of the convective envelope
following the extinction of the helium shell-flash convection zone. While these events
in the top panel for f = 0.005 are shallow, they nevertheless reach into the helium core

and dredge up the products of complete hydrogen burning.



88

burnt into nuclear statistical equilibrium (NSE) composition by the oxygen deflagra-
tion. Evolution towards this point (the critical density for electron captures by 2°Ne
to be activated) is driven by contraction due to electron captures by ?*Mg, which have
a threshold at lower densities. Assuming that the criterion for producing an EC-SN is
the core mass within which the central density is high enough for electron captures by
24Mg to be activated, I assume Mgc = 1.37 in accordance with previous work (Miyaji
et al. 1980; Nomoto 1984; Ritossa, Garcia-Berro & Iben 1999; Poelarends et al. 2008).

Figure 3.7 shows that assuming the mass loss rates of van Loon et al. (2005) and
Reimers (1975), even with the high third dredge-up efficiency arising in the model with
fesm = 0.02 the 8.7 M model would still produce an EC-SN. This conclusion is void
if indeed the envelope would be ejected during the TP phase due to some dynamical
instability (see section 1.2.3). Another interesting conclusion from Figure 3.7 is that
even for the case with fopy = 0.005 (lower 3DUP efficiency and hence greater core
growth rate per pulse), the 8.7 M model would become an ONeWD assuming the mass
loss rate of Blocker (1995). This would make the EC-SN channel extremely narrow at
solar metallicity.

In order to maintain numerical stability in the 8.75 M, model, after the depletion
of Mg at the centre by electron captures, the input physics assumptions were simpli-
fied. First, the effects of mass—loss were excluded from the calculation and secondly
the surface was relocated to a region where the optical depth is an order of magnitude
greater than that at the photosphere (which is where the surface had previously been
defined). Choosing to set the boundary at a larger optical depth is one way to deal with
the inappropriate way the final stages of these massive super-AGB envelopes are being
simulated in this work. In a 1-D code (and probably in the real star) large pulsations
occur signalling an increasing instability of the envelope which may lead to enhanced
mass loss or even ejection phases, such as the super-wind. These issues have been
alluded to recently by Lau et al. (2012), as I discussed in section 1.2.3. Choosing the
photosphere to be at a larger optical depth indeed lets the star be hotter and smaller,
and the mass loss calculated from the stellar parameters, if it were still included, will

not be the same as for the default photosphere parameters. Through this treatment,
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Figure 3.7: Mass loss rate against core growth rate for the 8.7 M super-AGB model
during the TP-SAGB phase. The critical relationship between the two rates is plotted
with a solid line, above and to the left of which the envelope is lost before the core
reaches the critical mass to produce an electron capture supernova and an ONeWD
is formed (shaded grey). Below and to the right of the solid line, all combinations of
mass loss and core growth rates in the white region will result in an EC-SN from the
8.7 M model. Horizontal lines show typical mass loss rates from literature (Poelarends
et al. 2008). The red dots correspond to two average net core growth rates extracted
from the present model assuming two parameterisations of convective boundary mixing
(and hence two different 3DUP efficiencies): f = 0.02 and f = 0.005.
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the details of the envelope evolution are increasingly inaccurate from this point. When
these changes were made, the remaining envelope mass was 4.48 M, and the central

density p. = 4.67 x 10° gem 3.

For further discussion of numerical instabilities and
their physical interpretation, the reader is referred to Wagenhuber & Weiss (1994) and
Lau et al. (2012). A simple calculation involving the mass of the envelope at the first
thermal pulse of the 8.75 M model (see Table 3.1) and the time spent on the TP-SAGB
yields a critical mass—loss rate of

MEAGB _ pp

MEE — e;;P o 6.75 x 1074 Mg yr~". (3.4)

That is to say, a mass-loss rate higher than M would have reduced the star to an
ONe WD before it could produce an EC-SN. This critical mass—loss rate is within the
wide realms applied to super-AGB stars (see Figure3.7, Poelarends et al. 2008 and
references therein). Mass loss clearly has a strong impact on the width of the super-
AGB channel which, along with the efficiency of the third dredge up, was explored by
Poelarends et al. (2008) using three stellar evolution codes (KEPLER, STERN and
EVOL). Numerical models were computed for the complete pre-AGB evolution, while
only part of the AGB was computed with the STERN and EVOL codes. Synthetic
models were employed for the AGB thereafter, where the numerical models left off.
Poelarends et al. found the upper limit to the contribution of EC-SNe to all supernovae
as 20%. The contribution from accretion-induced collapse of the ONeWDs formed when
the mass loss rate is too high for a single star to produce an EC-SN (e.g. Nomoto &
Kondo 1991), or from binary systems in which the envelope is stripped before the
second dredge-up (Podsiadlowski et al. 2004), is not considered in the figure.

It has been suggested that mass loss rates should scale with metallicity because
the content of metals that strongly influence the strength of line-driven and some
pulsation-driven winds will be lower (Poelarends et al. 2008). This would make the EC-
SN channel wider for lower metallicities. However, this is not a simple consideration:
in RSG stars, C and O can be enriched in the envelope by mixing up material from
the helium-burning shell during the third dredge-up. The dredge-out in the most

massive super-AGB stars also enriches the envelope with carbon and oxygen. C and O
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enrichment taking place in such a primary manner would not show strong metallicity
dependence if the mass loss is driven by dust formation. At low metallicity in massive
AGB stars, Chieffi et al. (2001) and Herwig (2004) have shown that the vigorous
burning of protons during hot dredge-up episodes increases the efficiency of 3DUP,
which would impede the core growth rate. Furthermore, the luminosity boost from such
hot dredge-ups could in turn boost the mass loss periodically. In some simulations of
the TP-AGB phase of low metallicity stars, the third dredge-up occurs while the pulse-
driven convection zone (PDCZ) is still active (Cassisi, Castellani & Tornambe 1996;
Lau, Stancliffe & Tout 2009). In this scenario, protons are ingested into the PDCZ,
releasing a huge amount of energy in a short time scale. The huge luminosity boost from
this event is known to have dynamical effects which have uncertain consequences in
1D stellar models. Herwig et al. (2011), using simulations of the late thermal pulses of
Sakurai’s object in 3D to inform 1D mixing prescriptions, found that protons ingested
into the PDCZ resulted in neutron densities a factor of 10* higher than predicted by 1D
simulations alone. These neutron densities were required to reproduce the abundance
distribution that is observed for Sakurai’s object, demonstrating that violent mixing
events with dynamical consequences (that are certainly difficult to predict from 1D
simulations alone) are not negligible phenomena. Thus, the efficiency of the 3DUP and
the mass loss rate of stars during the thermal pulse phase is very uncertain, particularly
at low metallicities where the lower metal fraction is thought to generally reduce the
mass loss rate. It is not so easy to jump to such conclusions about the width of the
EC-SN channel when the physics of these events, particularly reactive hydrodynamics,
is still uncertain.

In contrast to the 8.8 M model, which is discussed in §3.1.3, there is no sig-
nificant Y, reduction in the outer core, since there was no Ne-O flash. Instead, the
contraction is driven by the steady growth of the core during each thermal pulse and
the contraction is slower. Heating competes with neutrino losses so that the core
resumes cooling until electron captures by 2*Mg are activated (see Figure 3.3). The dif-
ference can again be seen following the depletion of 2*Mg at the centre of both models,

where the 8.8 M model continues to heat while the 8.75 M, model again cools down.
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This difference in temperature between the centre of the 8.8 M and 8.75 M models
is important when considering the next phase of their evolution - electron captures by

20Ne
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3.1.3 Late evolution of the 8.8, 9.5 and 12.0 M, (massive star)
models

The mass of the CO core, Mo, continues to grow for the entire lifetime of the secondary
C-burning shells in all models due to helium shell burning. Previous studies (see
Nomoto 1984 and references therein) show that the core mass limit for neon ignition
is very close to 1.37 M, which the present models confirm. Indeed, in all models with
initial mass greater than 8.8 My, a CO-core develops with a mass that exceeds the
limit for neon ignition, Mco (8.8 My, 9.5 M, 12.0 M) = 1.3696, 1.4925, 1.8860 M,
(whereas in the 8.75 My model, which does not ignite neon, Mco = 1.3623M).

A temperature inversion develops in the core following the extinction of carbon-
burning in both the 8.8 M and 9.5 My models. The process by which this arises is
similar to that described for off-centre carbon ignition in section 3.1.1. The neutrino
emission processes that remove energy from the core are generally (over-) compensated
by heating from gravitational contraction in more massive stars. However in these
lower-mass stars the onset of partial degeneracy moderates the rate of contraction and
hence neutrino losses dominate, cooling the central region. As I discussed earlier, the
energy losses from neutrinos accelerates the evolution of the star during the advanced
stages (from carbon burning and onward), which is why the completion of the second
dredge-up (reaching the CO core boundary) appears to occur at later evolutionary
phases in more massive stars and not at all in the 12 M model (or indeed any model
with M > 12M). Essentially, the evolutionary timescale is short compared to the
rate at which the envelope reaches into the core (see Sugimoto & Nomoto 1974 for
more details and an expression for the rate of dredge-up and its dependency upon the
radiative heat absorption and mixing timescale).

As a result of the net cooling in the central region, the ignition of neon in the 8.8
and 9.5 M models takes place off centre, at mass coordinates of 0.93 M and 0.40 M
respectively. This result confirms the work of Nomoto (1984) (case 2.6), but diverges
from that of Eldridge & Tout (2004), which I will discuss later. In both models the

temperature in the neon-burning shell becomes high enough to also ignite 10 + 160.
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As I mention in section 2.5, owing to the high densities in the cores of these stars, the
products of neon and oxygen burning are more neutron-rich than in more massive stars.
This results in an electron fraction in the shell of as low as Y, ~ 0.48 (see section 3.3
and Figure 3.8). Such low Y, causes the adiabatic contraction in the following way. If
the temperature is high during the flash, the flashing outer layer expands and exerts
lower pressure (less weight) on the central region (as can be seen in Figure 3.3 labelled
‘Ne-flash’, p. decreases due to the almost adiabatic expansion of the central region).
However, when the flashed region has cooled down by neutrino emission following the
extinction of nuclear burning, the outer layer shrinks and exerts more weight on the
core, which is less able to provide support than before the flash because there are fewer
electrons available to contribute to the degeneracy pressure. The centre then reaches
higher densities, and hence temperatures, than before (see the p. — T¢. evolution in
Figure 3.3). As mentioned above, for this reason the reduction in Y, is important for
cores so close to Mcy, (M, o< Y2, see equation 2.16).

As illustrated in Figure 3.5¢, following the neon shell flashes the 9.5 M. model
recurrently ignites neon- and oxygen-burning in shells at successively lower mass coordi-
nates that eventually reach the centre, following which Si-burning is ignited off-centre.
Although neon burning (and oxygen burning) in the 8.8 M model begins as a flash
and later propagates toward the centre, the evolution of the 8.8 M model diverges
from that of the 9.5 M star when its centre reaches the conditions necessary for the
first URCA process pair to become significant (whereas the 9.5 M model avoids such
dense conditions). More details of the neon and oxygen shell burning episodes are
discussed in section 3.2.

The CO core (or equivalently He-free core) in the 8.8 M model at the time of
neon ignition is 1.36964 M, very close to Mcy, while that of the 9.5 My model is
1.49246 M, (see Table 3.1). Under these conditions, the 8.8 M model experiences
a much more marked contraction due to the reduction in Y,. The central density at
this time is as high as 3.43 x 10® gcm™3, which is exceedingly close to the threshold
density for 2"Al(e,v)?"Mg. Although there is no cooling effect from the A=27 pair

because the reverse decay channel is blocked, the further removal of electrons from the
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Figure 3.9: Impact of the URCA process on the evolution of the 8.8 My model in the
central density—temperature (p. — T¢.) plane. The impact of each pair, A = 27, 25 and
23 in order of increasing threshold density, can be seen coinciding with the depletion
of the abundance of its electron capture parent.

core causes contraction toward the threshold densities of the second and third URCA
pairs (A=25 and A=23 respectively). There is also a slight heating effect from the
electron captures on 27Al (see Figure3.9). The cooling effect supplied by the A=25
URCA pair (and later the A=23 pair, shown in Figs. 3.3 and 3.9) allows for a small
amount of contraction but again it is the associated change in the electron fraction that
enables the largest contraction when the core is so close to the Chandrasekhar limit

(Mcy o< Y2). As a result, the core of the 8.8 M, model continuously contracts until
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the centre reaches the critical density for electron captures by 2*Mg, quickly followed
by further contraction to the critical density for those by **Ne (see Figure 3.3).

There is a discrepancy between the URCA-process trajectories of the present
models models and those of Ritossa, Garcia-Berro & Iben (1999). This is due to the
under-sampling of weak reaction rates for the URCA process that are employed in the
MESA code (Oda et al. 1994). In chapter4 I discuss the implications of this under-
sampling and show that, by using new well sampled weak rates (Toki et al. 2013), the
URCA process central trajectory of Ritossa, Garcia-Berro & Iben (1999) is qualitatively
reproduced in the 8.8 M case.

This central evolution is significantly different from that for the 8.75 My model,
which is described in section 3.1.2 and experiences stronger plasmon-neutrino cooling
due to the slower rate of contraction. The difference in the contraction timescales
following the URCA process in the 8.75 and 8.8 M, models also has implications for
the A = 24 weak reactions (**Mg(e™, v)*Na, ?*Na(e™, v)?*Ne and their reverse decays)
when using the rates of Oda et al. (1994). In the rapidly contracting 8.8 M model
the impact of the under-sampled weak rates tends to be smoothed out, and almost
no trace can be seen in the T, — p. plane (Figure 3.3). In the slower contracting
8.75 My model, the A = 24 rates produce a peak in the T, — p. plane (Figure3.3) at
logyo(p./gecm™2) & 9.65, as in previous studies (e.g. Gutierrez et al. 1996). A second
contributing factor to the differences in response of the two models to the A = 24
reactions is the central temperature. The weak rates are strongly density-dependent,
however for higher temperatures the transition low to high rate with increasing density
is less pronounced. Combined with the under-sampling of the Oda et al. (1994) rates,
this again tends to smooth out their impact, particularly in the 8.8 M model. The
energy release from both the rapid contraction and the y-decays from electron—capture
products raise the temperature high enough to ignite neon and oxygen burning in quick
succession.

The 8.8 M model has been modelled onwards from the resulting oxygen defla-
gration with the AGILE-BOLTZTRAN hydrodynamics code and has been confirmed
to result in core collapse (Fischer 2014). Although Eldridge & Tout (2004) report the
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same fate for their 10 M model in which a limited network was used, there is no neon
shell flash following the completion of the second dredge-up. In these models, neon
burning was found to take place at the edge of the core during the last carbon-shell
flash, reducing the core mass to My, (Eldridge 2005). Subsequently, the core contracted
directly to central densities of about log;,(p./gcm ™) = 9.8 (roughly the critical den-
sity for electron captures by 2°Ne to start) with no further neon-shell flashes, though
electron captures were not included in the nuclear reaction network. Neon-burning
reaction rates were artificially limited to prevent numerical problems and a low spatial
resolution was used. I believe these two caveats to be the reason that the neon-oxygen
shell flashes that are found to occur in such stars in the present work were not found in
these earlier models. In this work the MESA code was able to follow the evolution all
the way to oxygen deflagration by using a very large network of 114 nuclei including all
the relevant fusion and weak reactions. The models thus highlight the importance of
neon-shell burning in determining the path to collapse. Indeed, by reducing the detail
of the nuclear reaction network in the MESA simulations to include only the reactions
used by Eldridge & Tout (2004), an 8.8 M model does not develop a neon shell flash.

As mentioned above, the 9.5 M model starts silicon burning off centre in a shell
that later propagates toward the centre. This is another example of the continuous
transition towards massive stars, in which all the burning stages begin centrally. Since
this model has not been evolved to its conclusion, it is uncertain whether silicon-
burning will migrate to the centre, producing an iron core. If indeed that is the
case, it will finally collapse as an iron core-collapse supernova (FeCCSN). Such a low—
mass progenitor would make for interesting explosion simulations (see section 3.3 and
Mueller, Janka & Heger 2012). The 12 M, is the canonical massive star in this set
of models, igniting C, Ne, O and Si burning centrally (see Figure 3.5f). It eventually
collapses, and would produce an FeCCSN.
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3.2 Neon-oxygen flashes and flame

As described in detail earlier, following the extinction of the final carbon burning shell,
a degeneracy /neutrino-induced temperature inversion arises in the core in a similar way
to the temperature inversion in SAGB stars. Neon is thus ignited off-centre at mass co-
ordinates of 0.93M and 0.40M, for the 8.8 M, and 9.5M models respectively. Some
of the important model properties are given in Table 3.1 at this time. At the point of
Ne-shell ignition, the density profile of the 8.8 and 9.5 M, models is very different (see
Figure 3.16). While the 8.8 M model is structured more like a super-AGB star due
to the previous dredge-out episode, the 9,5 M model resembles more a massive star,
with a distinct He-shell and C-shell still present.

In the simulations of the NeO flame in low-mass massive stars performed as part
of this work, the situation is more complicated than that of the carbon flame in super-
AGB stars. Rather than proceeding via the fusion of two similar nuclei, neon-burning

is driven by photodisintegration. The key reactions are

WNe + v —» 0 + «
160 + a — 2Ol\Ie + fy (35)
Ne + a — 24Mg + .

The neon photodisintegration reaction 2°Ne(y, @)'®0O has a Q-value of -4.73 MeV and
is thus endothermic. When this reaction first becomes significant, the inverse reaction,
160(a, v)?*°Ne, proceeds much faster, returning the energy to the stellar material and
replenishing the 2°Ne abundance. When the temperature becomes high enough however
(see Figure 3.10), the a—particle released is quickly captured by another ?°Ne nucleus,
producing **Mg. This reaction has a Q-value of 9.32 MeV and is the primary energy
source during neon-burning.

At the point where the heat accumulates, 2°Ne is more efficient at capturing the
a—particles released slowly via the photodisintegration of neon. The energy release is
dictated by the photodisintegration rate and the burning proceeding effectively as the
net reaction 2(**Ne) — 00 + 2*Mg + 4.59 MeV. Woosley, Heger & Weaver (2002a),
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Figure 3.10: Reaction rates, A (one-body reactions) and Ny < ov > (two-body reac-
tions) of key neon- and oxygen-burning reactions as functions of temperature from the

REACLIB compilation.
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using the steady-state a—particle abundance derive an analytical expression for the

energy generation from neon burning as

e ~ 2.5 x 1097/ (%) Aoy (P°Ne) exp(—54.89/Ty) ergg ™ s, (3.6)
When the rate of energy generation from neon burning is high enough, the material
above the region of nuclear burning becomes convectively unstable. When the fuel
ignites off-centre, like in the carbon flame of super-AGB stars (Siess 2006), the base of
the convective zone does not develop at the coordinate of the peak temperature, but
a small distance above it. This is because of the dependence of the luminosity on the

temperature gradient, L, o dT'/dr. Of course, dT'/dr = 0 at the coordinate of the

peak temperature and the criterion for convection,

16macG mT*
L,>——F——+Va,
3 kP d

is satisfied at a point somewhere above the peak temperature where V,,q = Vaq.

In the convective region, however, a constant supply of fresh 2°Ne is being mixed
down to the higher temperatures at the its base. The temperature there is 1.26 GK,
where the O(a, v)*Ne and °Ne(a, 7)**Mg reaction rates are incredibly similar. As
fresh 2°Ne is mixed down to this region, the success of the 2°Ne over '°O to capture the
a—particle raises the temperature enough to ignite oxygen burning, which proceeds by

the following reactions:

160 4 160 N 311:) + 1H
P+ H — %S+ a (3.7)
60 + %0 — 2Si + «

The development of a convective zone provides luminosity to support the outer
layers of the core and temporarily halts the contraction of the core. The central regions
thus expand and cool (see Figure 3.3). The lifetime of the shell burning episode is
lengthened while convection brings in fresh fuel to be burnt at the base of the shell where
the temperature is high. This contraction continues until the temperature becomes

high enough where neon and oxygen is abundant, re-igniting the nuclear burning and
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producing a new convective shell. After a few flashes, the region previously engulfed by
the shell convective shell as it extended radially outwards has become heavily depleted
in Ne and O and so the closest fuel is in the direction of the centre. At this point the

burning shell begins to propagate to the centre of the star.

3.2.1 Advance of the burning shell towards the stellar centre

After the last flash has extinguished and contraction begins, the two models begin
to diverge, as best illustrated in Figs3.3 and 3.5(d, e). The 9.5M star once again
contracts and a thin shell of neon and oxygen is ignited below the base of the previously
convective shell. Any convection developing at this time does not bring any fresh fuel
(only the ashes of the previous shells) into the burning region. The core is so dense
that the photon mean free path is too short for radiative transfer to play an important
role in the inward propagation of the flame and instead compressional heating due to
core contraction and local heating due to electron conduction are largely responsible
for intermittent periods of nuclear energy production that move towards the centre.

It is a different story for the 8.8M star. Contraction, following the final ONe-
shell flash, at first acts to heat the material locally and to burn neon and oxygen
moderately as in the 9.5M; model, except that the core is more degenerate in the
8.8 M star. Electron conduction is therefore much more efficient and initially, it seems
as though the localised effect of heat generation due to contraction and any subsequent
nuclear burning is diluted across the core. This smoothing of the temperature profile
across the core would prevent the region directly below the previously ONe-burning
shells from reaching temperatures in excess of the Ne-burning threshold. Instead of a
flame developing as in the 9.5M, star, the core contraction, driven by the neutron-
rich composition in the NeO shell, would then cause local heating much further from
the centre where the degeneracy is lower, where a new neon and oxygen burning shell
ignites (where the fuel is still abundant) above the outermost extent of the previous
ONe-shells.

To test this hypothesis, I firstly inspect the opacity profiles of the cores of the 8.8
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Figure 3.11: Radial profiles with respect to mass co-ordinate of the radiative (kraq),
conductive (ke.) and total (Ko = [1/Kraq + 1/Kec) ") opacities following the extinction
of the final neon-oxygen convective flash episode. The heat transport in both stars is
dominated by conduction (lower k), however the 9.5 M model by virtue of its higher
total opacity allows for heating to take effect on a more local scale than in the 8.8 M,
model.
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and 9.5 M models. These are shown in Figure 3.11 following the extinction of the last
neon-oxygen flash and at a later time in each model. Although electron conduction
dominates the heat transfer in both cases, it is more efficient (lower x) by a factor
of about 3 in the 8.8 M model’s early flame and by a factor of more than 10 later,
meaning that any energy production from subsequent radiative neon-oxygen burning or
contraction could be diluted across the core. In contrast, the higher conductive opaci-
ties in the 9.5M model could allow for the nuclear and compressional energy to take
effect much more locally. This examination, although physical, is largely qualitative
and lacks causality.

While it is not under dispute that the lower opacity would allow for more efficient
heat transport in the 8.8 M model, it is important to examine whether this effect is
important or not for the timescales involved in the star’s evolution. The flux of energy

due to radiation and conduction is given by

3
F:_@T_( 1 _i_i)VT

3 1Y Rrad Rec
(Kippenhahn & Weigert 1990, p. 33, eq. 5.3). For a thin shell across which T', k and

p can be considered constant, the heat diffusion equation is

dr
— = KV*T,
dt
where K is the thermal diffusivity,
K = —4acT3 cm?s !
3kp?Cp

(Maeder 2009, p. 46, eq. 3.46). In order to get an idea of whether the rate of
energy transport due to low, electron dominated opacities removes enough heat from
the burning front to prohibit its propagation, one can examine the thermal adjustment

timescale of the stellar material below the flame. The thermal adjustment timescale,

52

Ttherm ~ ? S,

is the time taken for a perturbation in temperature to be felt at a distance ¢ from the

source. In this case, the source is the neon-burning shell and /¢ is the distance from
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the burning front towards the centre of the star. The thermal adjustment timescale is
plotted as a function of mass coordinate in Figure 3.12, where the timescale for a given
distance is calculated using the value of the thermal diffusivity, K, averaged over the
distance ¢ from the burning front.

To draw a conclusion, the thermal adjustment timescale must be compared with
some evolutionary timescale. The most appropriate in this case is the nuclear burning
timescale of neon. Per gram of the stellar material, with composition roughly 60% 6O
and 40% °Ne, the amount of energy released by neon-burning is approximately
X (*"Ne)

Ma2o

4.59 x MeV,

where mqy ~ 20 amu is the mass of the ?°Ne nucleus in grams. Taking a typical neon-
shell burning energy generation rate per gram from the simulation gives an order-of-
magnitude estimate for the nuclear timescale during neon-burning of 3.6 x 107 s, about
one year. This is much shorter than the thermal adjustment timescale across the core.
So, although it is true that stronger degeneracies boost the energy transport by electron
conduction below the burning front, the timescale for the energy transport is too long
in comparison with the nuclear timescale to affect the energetics of the burning front.

Even in the 9.5 M, model, where the burning front reaches the centre of the star,
the behaviour of the shell is not that of a convective zone trailing burning front being
driven by a smoothly propagating conductive flame. The propagation is instead inter-
rupted by periods of quenching and contraction. This behaviour will be illuminated in
the following section, where I examine the properties of mixing at the lower boundary

of the convective neon—oxygen burning shell.

3.2.2 Uncertainties due to mixing

Still one of the largest uncertainties in any 1-D stellar evolution calculation is the
treatment of convection. Extra mixing at convective boundaries may explain many
observed phenomena, for example the abundances of CNO elements and the s-process

abundance distribution in AGB stars (see, e.g., Busso, Gallino & Wasserburg 1999
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Figure 3.12: The thermal adjustment timescale profile below the neon-burning shell in
the 8.8 M model. Plotted on the twin axis is the thermal diffusivity, K, as a function
of distance inwards from the burning front and its mass-averaged value with which the
thermal adjustment timescale is calculated.
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and Képpeler et al. 2011 for reviews of this topic), and hence such mixing is included
in the present models. Due to the turbulent and advective nature of convection, it is
physically plausible to infer some extra mixing across the boundary between convective
and radiative layers but without the benefit of 3-D hydrodynamical simulations of the
physical conditions it is difficult to quantify its extent. We use the term convective
boundary mixing rather than overshooting for the advanced evolution phases of the
deep stellar interior, such as convective shells. This is because the term overshooting
suggests a physical picture in which coherent convective structures or blobs cross the
Schwarzschild boundary before they notice the reversal of buoyancy acceleration. It
seems that the term overshooting is typically used as more of a numerical ‘fix’ for fitting
stellar models in the HRD. However, in the deep interior hydrodynamic instabilities,
such as Kelvin-Helmholtz or internal gravity wave induced turbulence dominate mixing
at the convective boundary. It is these real, physical considerations that motivate the
consideration of convective boundary mixing. Largely, the effect of including convective
boundary mixing is to shift the transition masses due to increased core sizes. However
it is intuitive to hypothesise that increased amounts of extra mixing below the ONe-
burning shells would have a crucial effect on their inward propagation. To test this,
extra mixing below the convective ONe-burning shells was assumed to behave as an
exponentially decaying diffusion process as outlined in Eq.2.47 with faame = 0.005
(the original assumption), 0.014, 0.028 and 0.100. In this treatment, although mixing
is assumed to take place beyond the formal Schwarzschild convective boundary, the
effects of this extra mixing upon the heat transport is not considered. Instead, in the
region where the convective boundary mixing takes place, the temperature gradient
is the radiative one, V = V,,q. The central density-temperature evolution from the
flame’s ignition for all of these assumptions is shown in Figure 3.13. It should be noted
that setting frame = 0.100 is likely an extremely unphysical assumption that is adopted
here simply to test the uncertainty of these conclusions.

Although the central evolution behaves slightly differently for each mixing as-
sumption, all the models reach central densities of p. = 10°% g cm™ at temperatures

well below the neon-ignition threshold. The model with the largest amount of mixing
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Figure 3.13: Central density—temperature evolution of the 8.8 M model showing the
differences created during the neon shell flashing phase when fp,me = 0.005 was as-
sumed (the original assumption), 0.014, 0.028 and 0.100 (extreme), where fgame is the
value of the parameter f in Eq.2.47 at the base of the ONe-burning shell.
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Figure 3.14: Diffusion coefficient profiles against mass coordinate during the second
neon flash event in the 8.8 M, model. Shaded grey areas represent the regions of
convective boundary mixing. Although the flame re-ignites in the case with fhame =
0.100, the fuel is brought in on the mixing timescale which, during this phase, is shorter
than the central contraction timescale and the critical density is already reached for
Mg + e, leaving the outcome of the model unaltered. It should also be noted that
fame = 0.100 is an extreme assumption adopted purely for the purpose of testing the
robustness of the models presented in this work.
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(fame = 0.100) is unique because although all models undergo a few flashes after the
extent of the URCA process has been exhausted, it is the only one to re-ignite an ONe
shell at a mass co-ordinate in-keeping with the original location of the flashes!. At this
point, the centre is already extremely close to the threshold density for *Mg(e™, v)?'Na
at p. ~ 10°% g cm™3. The change in extent of the convective boundary mixing between
the fhame = 0.005 and fgame = 0.100 models is shown in Figure 3.14.

So far, I have shown that a large range of extra mixing extents at the convective
boundary does not affect the qualitative evolutionary outcomes of failed massive stars
— EC-SNe. The next logical steps would be (i) to determine whether the presence or
absence of a convective boundary mixing prescription affects the evolutionary outcome
of failed massive stars in 1D simulations and (ii) to determine the nature of the strength
and extent of convective boundary mixing at the interface between the NeO-burning
shell and the stable radiative layer.

In super-AGB stars, it has been shown that the nuclear burning front propagates
inwards (towards the centre of the star) from the ignition point because the peak
energy generation from 2C + '2C fusion resides below the peak temperature (Siess
2006; Denissenkov et al. 2013b). This is due to the dependency of the fusion rate on
the density and the square of the 12C abundance. Energy generation heats the material,
dragging the peak temperature inwards and thus the peak energy generation also moves
inwards. The location of the base of the convective shell above the flame is determined
instead by the luminosity produced above the peak temperature, as discussed above.

Siess (2009) studied the effect of thermohaline mixing on the evolution and prop-
agation of the carbon flame in super-AGB stars. Across the flame front, there is a steep
mean molecular weight gradient transitioning between the unburnt composition (*2C
and '°0) and the composition after it has been processed by the flame (*°Ne and '°0O).
As T have described in Chapter 1, the stratification of a fluid where material of higher

mean molecular weight is situated atop material of lower mean molecular weight can

LAll of the other models in this test ignite further shells at the locus of maximum extent of the
original ONe-shell flashes, similar to the standard 8.8My case.
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induce mixing, depending on the steepness of the temperature gradient. Siess found
that thermohaline mixing at the carbon flame front could choke off the propagation of
nuclear burning, and the carbon flame would thus fail to reach the centre of the star.

Thermohaline mixing is treated as a diffusive process in one dimensional stellar
evolution models. The size of the diffusion coefficient depends upon the assumption
of the efficiency of the mixing. Thermohaline mixing is typically characterised by the
salt-finger aspect ratio, a = [/d where [ and d are the length and diameter of the salt
fingers (see, e.g., Denissenkov 2010 and references therein), from which the efficiency
of the mixing is determined.

Stellar evolution calculations have previously shown that thermohaline mixing
characterised by a salt-finger aspect ratio of a & 7 can reproduce the observed decrease
of the surface ?C abundance and ?C/!C ratio in RGB stars (Charbonnel & Zahn
2007). Siess (2009) assumed the same efficiency of thermohaline mixing in his simula-
tions in which the carbon flame is quenched. More recent two and three dimensional
simulations of thermohaline mixing (Denissenkov 2010; Traxler, Garaud & Stellmach
2011) have shown the mixing to be much less efficient, characterised by a value of
a < 1. Denissenkov et al. (2013b), treating thermohaline mixing with the lower effi-
ciency determined from multi-dimensional simulations, find that this kind of mixing
alone is not enough to quench the propagation of the carbon flame in super-AGB stars,
and the flame successfully reaches the centre of the star. Furthermore, Denissenkov
and collaborators test the stability of the carbon flame against the exponential con-
vective boundary mixing treatment in equation 2.47 assuming values of fopy = 0.014,
0.007 and 0.004 below the carbon-burning convective shell. In all cases, the flame was
quenched, even when accounting for the additional heat transport in the boundary
mixing region. The reason for the quenching of the flame in the presence of convective
boundary mixing is the flattening of the 12C abundance profile. The conditions for the
propagation of the flame are no longer satisfied and the burning front does not reach
the centre. Under these circumstances, the super-AGB star will produce a hybrid white
dwarf, with an inner core of CO composition and an outer core of ONe composition.

Figure 3.15 shows the energy production due to the key neon- and oxygen-burning
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reactions during the peak of the first neon shell flash episode in the 8.8 M, model. The
top panel is the case assuming fegy = 0.005 below the shell flash convection zone and
the bottom panel is for the case with fogm = 0 (no convective boundary mixing). Note
the difference in scale of the x-axis for the plots.

In the case with fopm = 0 (pure Schwarzschild criterion, bottom panel), there
are two distinct peaks in the energy production, separated by a thin region strongly
depleted in neon. Just below this region (to the left in the plot), the temperature is
about 1.35 GK and the ?°Ne(a, v)**Mg and '®O(«, v)*Ne reaction rates are very simi-
lar. The peak in energy production of each rate at this location traces the abundance of
the fuel, and so the peak in 2°Ne(c, v)**Mg lies just below that of *O(a, v)?°Ne. The
production of energy must be proportional to Y (**Ne)?/Y (1°0) since the net reaction
for neon burning requires two neon nuclei as the reactants (equation 3.6).

In the region where neon has been depleted, the temperature reaches 2 GK
and %0 + 90 becomes significant. a—particles are released by %0(*60, «)?®Si and
160160, p)31P(p, )?®Si. As the a—particles are released in this way, 1°O(«, v)?°Ne and
DNe(a, v)**Mg quickly turn 90 into ?*Mg and because the 2°Ne(a, v)?**Mg reaction
is much quicker than *O(a, v)*Ne at this temperature, neon is completely depleted.
2Mg(a, v)?8Si proceeds at about half the rate of the 2°Ne(a, v)**Mg reaction and so
the region starts to become enriched with *Mg and 2%Si. It happens, then, that pro-
ducing silicon from oxygen in this way is quicker than oxygen-oxygen fusion, however
it must rely upon the oxygen-oxygen fusion reactions as the source of a—particles.

After the neon is processed into ?*Mg, 2¥Si and %O by the radiative pre-cursor
neon flame, the burning moves inwards towards the centre because of its strong de-
pendence on the neon abundance. Above the neon-depleted region (to the right in the
plot), neon-burning energy production had previously boosted the luminosity above
Ly and the material is convectively unstable, as I described earlier. The tempera-
ture in the convective region increases and oxygen-burning reactions (10O + '60) are
activated.

In the case with fogy = 0.005, the evolution up to the development of the con-

vective shell is the same for the case with fcgy = 0, since there is no mixing. However,
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Figure 3.15: Energy production from key neon- and oxygen-burning reactions during
the peak of the first neon shell flash in the 8.8 My model with fcgy = 0.005 (top
panel) and fecgm = 0 (bottom panel) as functions of mass coordinate (absolute values
are plotted, with negative quantities plotted with a dotted line style). The abundances
of 2°Ne 160, Mg and ?8Si are plotted on the right axis. Note the difference in the scale
of the x-axis for the two plots. Regions of convection are shaded grey and the extent

of convective boundary mixing is shaded for the fcgy = 0.005 model (top panel) in
light blue.
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the situation evolves differently once the shell becomes convectively unstable. The ex-
tra mixing at the lower boundary of the convective shell homogenises the composition
across the thin radiative neon-burning shell with that in the convective oxygen-burning
shell. This mixing feeds the convective shell with neon, which proceeds to burn there
via the net reaction 22°Ne —16 O 4+-2*Mg+4.59 MeV at much higher temperatures than
are usually found during neon burning. This can be seen in the higher rate of energy
production by ?°Ne(a,v)?*Mg in the convective shell in the top panel of Figure3.15
(fesm = 0.005) compared to the bottom panel (fegy = 0), and the higher abundances
of ?Ne and 2*Mg. As discussed above, the peak in the energy generation of the radia-
tive pre-cursor neon flame follows closely the sharp increase in the abundance of neon
towards the centre. If there is mixing at the convective boundary between the radiative
layer and the convective shell, however, the step in the X (?**Ne) profile is (i) smoothed
out and (ii) displaced towards the centre of the star. With the mixing assumed to be
characterised by an exponentially decaying diffusion coefficient with fcgy = 0.005, the
temperature at the new location of the step-up in neon abundance towards the centre
is 1.07 GK (log;((T/K) = 9.03), and thus 'O dominates *°Ne in the capturing of any
a—particles (see Figure 3.10) and neon-burning barely proceeds at all.

The shell burning episode continues to bring neon and oxygen into the convective
shell from the radiative layer below until both the convective region and the region in
which the mixing had extended are rich in silicon-group composition (?¥Si, 3°Si, 32§
and 31S) and depleted in 0 and ?*Ne. The convective shell persists until there is no
longer sufficient luminosity to sustain it. Upon the extinction of the convective shell,
the core contracts as described earlier. Neon burning re-ignites just below the extent

of the boundary mixing where fuel is abundant as the core heats up.

Summary So far, I have discussed how

e The net reaction 2(**Ne) — 160 + 2*Mg + 4.59 MeV is the source of energy

during neon burning.

e Neon-burning thus proceeds when the 2°Ne(a, v)**Mg rate dominates over the
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160 (a, v)*Ne rate.

Once neon is depleted, Mg and 28Si are present, and although lots of 50
is produced, there is a ‘freeze-out’ where neon can no longer be produced by
160(a,v)*Ne because the source of the a—particles was *°Ne(v, @)'®O, and

there is no more neon.

Because of the net reaction for neon burning, the energy production is propor-
tional to Y (**Ne)?/Y (160).

Once ?°Ne is depleted in the thin radiative shell, it burns radiatively inwards,

following the steep X (*°Ne) gradient.

The luminosity increases radially and a convective zone develops above the
flame, mixing down and burning ?°Ne, raising the temperature high enough to

ignite oxygen burning.

The presence of convective boundary mixing below the convection zone removes
the conditions for a thin radiative ‘pre-cursor’ neon flame, as is the case for

the carbon-burning flame in super-AGB stars (Denissenkov et al. 2013b).

The boundary mixing brings the neon into the convection zone to be burned
there instead, and the steep X (*°Ne) gradient is smoothed out and displaced
towards the centre at temperatures of about 1.07 GK, where a—particles are
captured much more efficiently than O than by ?°Ne, thus preventing neon

burning.

With boundary mixing, the convective shell persists until it, and the boundary
mixing region, are depleted in neon and oxygen. The shell extinguishes, support
of the outer layers of the core is removed and the core contracts, re-igniting

neon and then oxygen in a similar manner closer to the centre.

With no boundary mixing, the neon flame propagates towards the centre, trail-

ing a convection zone burning both neon and oxygen.
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Pulling the focus to the composition of the neon and oxygen shell-burning ashes,
I will briefly discuss their impact on the structure of the star and the importance of
weak interactions. Thielemann & Arnett (1985) published an in-depth study of the
key nuclear reactions that occur during neon, oxygen and silicon burning in massive
stars. They showed that amongst those key oxygen-burning reactions are the following
reactions that change the electron fraction:

BSi(y, a)**Mg(a, p)?"Al(a, p)3°Si
32S(n, v)?3S(n, a)3°Si,
#Si(n, 7)*Si(p, v)*P(87)*Si
30Si(a, v)318S.

As Thielemann and Arnett emphasise, the abundances of minor nuclei are needed in

(3.8)

order to correctly predict the neutron excess (equation 1.4). Three of the reactions in
3.8 involve neutrons as reactants. These neutrons are released by the (p,n) channels
of the following reactions:
3BS(e~, v)3P(p, n) S, 9)
B5CI(e, v)*S(p,n)**Cl,
which are initiated firstly by electron captures and secondly by protons being released
by both the (o, p) reactions and the 'O (10, p)3!P reaction. In the lowest mass massive
stars,
3LP(n, 7) 2P,
325 (e, v)*2P(p, n)*?S, (3.10)
33P(p, )Si
also contribute to raising the neutron excess (lowering the electron fraction).

Indeed, 3*S is the most abundant product of oxygen burning in the NeO shells
of the present models. The lowering of the electron fraction, Y, (i.e. increase of the
neutron excess, 1) lowers the value of the Chandrasekhar mass for the core. During
the enhanced contraction, the 8.8 M model reaches the critical density for electron
captures by 27Al to dominate the central evolution. As I have described in section

3.1.3, the star becomes an electron capture supernova.
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3.3 Progenitor structure and importance for super-
nova explosions

It is becoming clearer that the mechanism driving the explosion of core collapse super-
novae is the deposition of energy by neutrino scattering and its revival of the stalled
shock (see Janka et al. 2012 for a recent review). The structure of the progenitor star,
in terms of density and electron-fraction profiles of the stellar core, has a strong impact
on the timescale at which the later supernova explosion may develop as well as on the
explosion energetics. Core-collapse supernova explosions are related to the revival of
the stalled shock wave, which forms when the contracting core reaches normal nuclear
matter density and bounces back. In massive stars that produce iron cores in the con-
ventional manner—through core and shell silicon burning—the characteristic structure
of the core that will influence the dynamics of the supernova explosion concerns the
material inside the inner edge of the carbon shell. However, in practice the profiles
of the entropy and the electron fraction are taken into account when determining the
boundary between the material that will comprise the neutron star and the material
that will be ejected into the ISM during the supernova explosion (this boundary is com-
monly referred to as the ‘mass cut’). In general, a sharp density gradient separating
iron-core and silicon layer results in a strong acceleration of the bounce shock at the
onset of shock revival early after core bounce on a timescale of only few 100 ms. Pro-
genitors with a shallower density gradient suffer from a more extended mass accretion
period after core bounce, during which the standing bounce shock oscillates, driven
by neutrino-energy deposition behind and mass accretion from above. This results
in a delayed onset of shock revival by several 100 ms and more energetic explosions
due to the larger heat deposition behind the shock via neutrinos before shock expan-
sion. In more massive stars with shallower density gradients, the standing accretion
shock instability (SASI) has been shown to excite various modes and could potentially
drive the explosion (see Mueller, Janka & Heger 2012), however this mechanism could

have strong dimensional dependencies (i.e. the instability is triggered due to numerical
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artefacts).

In addition to the standard iron-core progenitors commonly explored in core-
collapse supernova studies, a selection of new models of lower zero-age main-sequence
mass that belong to the SAGB class have been calculated as well as failed massive
stars and low-mass massive stars. Therefore, in Figure 3.16, the structures of the SAGB
model (8.75 My, ) after central ?*Mg depletion, electron-capture SN progenitor (8.8 M,
failed massive star) at ignition of oxygen deflagration, low-mass massive star (9.5 M, )
at the point of neon-shell ignition, and standard iron-core progenitor (12 M ) at the
onset of core contraction/collapse (maximum infall velocity across the core exceeds
1000 km s™1) are compared. Note that the 9.5 M progenitor is not then as evolved
as the other models and hence its central density is still lower than those of the other
models. It is therefore only used as a reference case. The major difference between
the low-mass (8.75 and 8.8 My, ) and the more massive iron-core progenitors is the very
steep density gradient separating the core and the envelope. There the density drops
about 16 orders of magnitude, from about 10® to 1078 g cm=3.

Distinguishing the 8.75 M. and 8.8 M progenitor structures becomes clearer
when inspecting the density profiles with respect to radius, Figure 3.16(b). The bulge
from log,o(R/km) =~ 3.2 to 3.8 that features in the 8.8 M, structure but is absent in
the 8.75 M structure, is a carbon-burning shell. One would expect that, since the
8.8 M, model experienced several neon-oxygen flashes, the structure within the core
should be significantly different from that of the super-AGB model. Aside from the
abundance profiles showing a large region in which the composition is dominated by
Si-group isotopes, the most striking difference is in the electron fraction, Y., which is
shown in Figure 3.8.

In Figure 3.16 the progenitor structures of the (SAGB-like) Nomoto (1987) 8.8 M,
and the Woosley, Heger & Weaver (2002b) 12 M models have been included for com-
parison. The Nomoto (1987) structure is at a later evolutionary stage compared to the
present models. A fraction of the core has already been burnt to a nuclear statistical
equilibrium (NSE) composition, but the core structure is qualitatively similar to the

8.75 M, SAGB model presented in this work. It is also clear from Figure 3.16, bottom
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Figure 3.16: Density profiles as a function of mass coordinate (a) and radius (b) for
8.75, 8.8 and 12 M, models after central 2*Mg depletion, ignition of oxygen deflagration
and collapse, respectively. The 9.5 M, density profile at the point of neon ignition is
also plotted for reference. While the 8.8 M model possesses an SAGB-like structure
following dredge-out, the 9.5 Mg is more reminiscent of a massive star with distinct
He- and C- shells. Vertical red lines in (a) show derived pre-collapse masses for the two
peaks in the observed neutron star distribution of Schwab, Podsiadlowski & Rappaport
(2010). The blue dot-dashed line shows the structure of the Nomoto (1987) progenitor
and the black solid line shows that of the 12 Mg progenitor from Woosley, Heger &
Weaver (2002b).
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panel, that there are differences in the structure of the (Nomoto 1987, SAGB-like)
model and the new 8.8 M, (failed massive star) model, where there is a CO-rich layer
at the edge of the core. As discussed previously, there is a neutron-rich layer in the new
8.8 M model where the Ne-O shell flash consumed previously that is not a feature of
the Nomoto (1987) model. There is a clear clustering of the SAGB EC-SN progenitor
structures and the CCSN progenitor structures in the density profiles as a function of
radius (Figure 3.16, bottom panel), while the 8.8 M model lies in-between.

The iron-core progenitors have extended high-density silicon as well oxygen and
carbon layers above the core. These result in a shallower transition from iron core to
helium envelope. The density decreases steadily step-wise according to the different
composition interfaces (see Figure3.16, top panel). Moreover, different evolutionary
tracks for the 8.75, and 8.8 M progenitor cores lead to low-mass cores of only about
1.376 M, , which is significantly lower than for the 12 M model of 1.89 M, (see Ta-
ble3.1). Note that the 12 M iron-core results are in qualitative agreement with those
of the KEPLER code (Woosley, Heger & Weaver 2002b) and, as a function of radius,
match very well. The reason for the discrepancy between the two as a function of mass
is the difference in assumption for convective overshooting, which has led to the pro-
duction of larger cores in the MESA model. Currently in progress is a code comparison
study of MESA, KEPLER and the Geneva stellar evolution code (Hirschi, Meynet &
Maeder 2004) for the evolution, explosion and nucleosynthesis of massive stars in order
to quantify some of the related uncertainties. The resulting steep density gradient at
the edge of the core of the EC-SN progenitor models presented in this work are expected
to accelerate the supernova shock on a short timescale after core bounce, producing
a weak explosion with little °*Ni ejecta, as in previous studies (e.g. Wanajo et al.
2009). Such an explosion should produce qualitatively similar results as obtained for
the 8.8 M, progenitor from Nomoto (1987) (for details about electron-capture super-
nova explosions, see Kitaura, Janka & Hillebrandt 2006, Janka et al. 2008b and Fischer
et al. 2010). The split between weaker, more rapid EC-SN explosions and stronger,
slower FeCCSN explosions is a possible explanation for the observed bi-modality in the

spin period and orbital eccentricity of X-ray binaries, although it is not clear how this
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is manifested (Knigge, Coe & Podsiadlowski 2011). The consensus is that in the slower
explosions, asymmetries can develop more strongly and give a larger natal kick to the

star (Scheck et al. 2006; Wongwathanarat, Janka & Miiller 2010).
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3.4 Discussion and concluding remarks

I have begun to explore in detail stellar evolution at the transition mass range between
super-AGB stars and massive stars at solar metallicity. Using the MESA code, I was
able to model stars across the transition (AGB, super-AGB, EC-SN progenitors and
massive stars) with a consistent set of input physics, while current published stellar
evolution calculations limit themselves to either massive stars or super-AGB stars. In
addition, I have calculated full stellar models rather than computing the evolution of
helium stars.

I was able to follow the evolution of the entire star from pre-main sequence up
to the ignition of an oxygen deflagration for the 8.8 M, model and up to the activation
of electron captures by 2°Ne for the 8.75 M. model, both of which become EC-SNe.
The 8.75 M, case is the first EC-SN progenitor model published including the envelope
and the TP-SAGB phase, and the 8.8 M, case is the first EC-SN progenitor model
from a failed massive star. Using the AGILE-BOLTZTRAN hydrodynamics code to-
gether with supernova theorists, the 8.8 Mz model has been confirmed to result in core
collapse—an EC-SN (Fischer 2014). While such a confirmation has not been performed
for the 8.75 M, super-AGB model, the model has an evolution relatively consistent with
the existing literature.

The 8.8 Mz model confirms the notion that failure to establish a stable neon-
oxygen laminar flame that propagates to the centre can result in an electron-capture
supernova proposed by Timmes, Woosley & Taam (1994). The main difference in
the pre-SN evolution when compared with the generally accepted (super-AGB) EC-
SN progenitors is that following dredge-out (and neon-burning), the core contracts
directly to the threshold density for electron captures by Mg and 2°Ne as opposed to
first undergoing episodic core growth through thermal pulses in the He-shell.

Although the main conclusions of the chapter should not change, it is important
to stress that the initial mass for which the evolutionary paths described depend on the
choices made for convective boundary mixing at the edge of the convective core. This

would, however, affect the statistical contribution of these types of stars to a complete
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population because of the shape of the IMF.

Also noteworthy is the fact that the rates of weak reactions in sd-shell nuclei
of Oda et al. (1994) are available in very sparse grids with respect to temperature
and electron density. Finer grids for weak interaction rates are necessary to precisely
follow the URCA and other weak reaction processes. In chapter 4, I will show that
by using new, well sampled weak rates for the A = 23, 25 and 27 URCA pairs the
central evolution presented by Ritossa, Garcia-Berro & Iben (1999) is qualitatively
reproduced.

Schwab, Podsiadlowski & Rappaport (2010) present a sample of 14 neutron stars
for which the masses are well-measured. The authors calculate the pre-collapse masses
of the stars in their sample, the distribution of which is distinctly bimodal and is
attributed to the two birth mechanisms, EC-SNe and FeCCSNe. In Figure 3.16, the
two peaks of the pre-collapse mass distribution are plotted as red vertical lines. Because
each NS birth mechanism is coupled intrinsically to the pre-supernova evolution of
the star, it is an interesting result that the peaks should agree relatively well with
the pre-SN structure of the two models in the present set that undergo off-centre
ignition of neon. Between 8.8 and 9.5 M, (from the present set of models), an initial
mass range of only 0.7 M contains about 15% of all single stars with the potential
to give birth to a NS (assuming a Salpeter IMF and that single stars in the mass
range 8.5 < M/M M, < 20 produce neutron stars in their deaths). For this reason,
the importance of further investigation into the initial mass range between 8.8 and
9.5 My, is strengthened. From examination of these two models in the set, there may
be an interesting correlation between the propagation of the neon-oxygen flame and
the URCA process.

If both failed massive stars and super-AGB stars have the potential to pro-
duce electron capture supernovae then the EC-SN channel is wider than is thought
at present. It is my intention to produce EC-SN progenitor models from both super-
AGB stars and failed massive stars for several metallicities. Detailed supernova sim-
ulations with the models and including full nucleosynthesis will help constrain what

observational features and nucleosynthesis one can expect from EC-SNe.
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There are three main factors determining the evolution of stars in the mass range
between super-AGB stars and massive stars, which ignite neon and oxygen burning off-
centre: mixing at the convective boundary, lowering of the electron fraction by burning
oxygen into a composition with relatively high neutron excess, and the approach of the
central density to the threshold for the *"Al(e™,v)?*"Mg reaction. As I have shown,
the boundary mixing prohibits the conductive propagation of the radiative burning
front after off-centre ignition. The propagation of the shell towards the centre under
these conditions is instead driven by compressional heating between each convective
shell-burning episode. This behaviour, where the pressure support provided by the
shell is switched recurrently on and off provides the perfect opportunity for the core to
reach higher densities, facilitated by the lower average electron fraction due to oxygen
burning. If, during this evolution, the density reaches the threshold density for electron
captures on Mg to be activated in the centre of the star, then the contraction of the
core is accelerated by the removal of electrons, and the star will produce an electron
capture supernova.

In the absence of mixing at the convective boundary (pure Schwarzschild crite-
rion), it is not yet confirmed that the burning front will propagate conductively all
the way to the centre, however the simulations in the present work indicate that if
this is the case, then the star may not reach the densities for the URCA process to
operate. Instead, the burning shell could provide support of the outer layers until the
flame reached the centre. The core would then be rich in silicon-group composition
and therefore not produce an electron capture supernova. However, such simulations
having never been completed with such a detailed reaction network, it is difficult to
predict the effect of the increasing neutron excess in the core due to shell burning on
the contraction of the core.

Convective boundary mixing is at present still a very uncertain phenomenon.
While the timescales for stellar evolution restrict theoretical models to only one di-
mension, there is an emergence of effort to explore specific phases of the evolution in
two (Herwig et al. 2006; Herwig et al. 2007) and three (Meakin & Arnett 2007; Mocdk
et al. 2011; Herwig et al. 2011) dimensions in order to properly quantify the extent of
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convective mixing and its behaviour at the boundary with a radiative zone. The long
term goal is to further constrain the parameters of the diffusive treatment by analysing
the results of 3D simulations, or indeed to implement new schemes in the 1D models,

as informed by 3D simulation.
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4 Calculation, implementation and impact
of new weak interaction rates

In the previous chapter and briefly in the introduction, it was shown how weak in-
teractions play a crucial role in the advanced evolution of stars. In particular, the
URCA process in CO white dwarfs — the progenitors of thermonuclear type Ia (carbon-
deflagration) supernovae — and ONe white dwarfs — the progenitors of the AIC scenario.
In chapter 3 it was also shown that the advanced evolution of super-AGB stars and
failed massive stars as progenitors of electron capture supernovae is strongly influenced
by the URCA process. In the case of stars that ignite neon and oxygen off-centre, the
fate is dependent upon whether or not the star experiences the URCA process.

The Chandrasekhar limit is strongly dependent upon the electron fraction (Mg, o
Y.?, see equation 2.16) and thus the removal of electrons from the stellar material re-
duces the Chandrasekhar mass. The collapse of the cores of these electron capture
supernova (EC-SN) progenitors (in the AIC scenario and in both super-AGB and failed
massive star progenitors) is a direct result of the effective Chandrasekhar limit becom-
ing smaller than the actual core mass. Electrons are removed from the material by
capturing onto 2*Mg, ?*Na, 2°Ne and 2°F in the high density environment where degen-
erate electrons provide the majority of pressure support for the stellar core. A similar
process where electrons are captured by iron-group nuclei and free protons, combined
with the rapid photodisintegration of those same nuclei, trigger the collapse of the iron
core in massive stars and resulting in iron core collapse supernovae (FeCCSNe).

The electron fraction is set by the rate of weak interactions and charge exchange
reactions (e.g. (p,n) and (n,p) reactions). It is one of the key quantities determin-
ing the abundance distribution of nuclei that are synthesised during the supernova
explosion, along with the temperature. It determines the distribution of material in
nuclear statistical equilibrium (NSE). This distribution is important for linking super-
nova observations and theory because the amount of nickel that is synthesised in and

ejected by the explosion is linked to the peak luminosity of the supernova light curve.
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The NSE distribution at the time when the material begins to fall into disequilibrium
also determines the neutron—to—seed ratio, which is a crucial factor in determining the
behaviour of neutron-capture nucleosynthesis in the supernova.

In this chapter, firstly the case is made in favour of calculating new tables of weak
reaction rates for sd-shell nuclei relevant to the evolution of 8-12 M, stars (section 4.1).
The method with which the new reaction rates have been calculated by Toki et al.
(2013) including Coulomb corrections (section 4.2), and how they have implemented
into the MESA stellar evolution code (section 4.3) is described. Finally, section 4.4
provides a description of the results from these new rate calculations and their impact

on the evolution of failed massive stars.

4.1 Case for the calculation of new weak reaction
rates

This section describes the nuclear physics uncertainties associated with modelling the
progenitors of electron capture supernovae. These uncertainties provide the motivation
for improving the accuracy of the treatment of weak reaction rates for sd-shell nuclei in
stellar models. Firstly, the characteristics that differentiate weak reaction rates from
charged particle fusion rates are discussed. The uncertainties introduced into stellar
evolution models by using weak reaction rates available in the literature at the time
of this work are then described. Finally, the rationale behind the choice to calculate

updated reaction rates in tabular form with finer resolution is explained.

4.1.1 What is involved?

The rates of two— and three-body nuclear reactions vary by many orders of magnitude
with respect to temperature due to the sensitivity of the velocity-integrated reaction
cross section, < ov >. However, the rate of these types of charged particle fusion

reactions are only linearly dependent upon the mass density p (two—body) or dependent
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upon mass density to the second power (three-body; see section 2.3 and equation
2.48). This is not the case for weak interactions, whose rates depend upon the product
of the mass density and the electron fraction, pY,, in a more complex, non-linear
fashion. The strong density dependence of the weak reaction rates is manifested in
the electron chemical potential y., which appears in the Fermi-Dirac distribution. The
exact manner in which the rate relates to the chemical potential of the electron will be
described in section 4.2.

Nuclear reaction rates are required by the nuclear reaction network module of any
stellar evolution code (see chapter 2). In section 2.4.2 I described how the REACLIB
scheme (Cyburt et al. 2010) can be used to calculate the rates of various nuclear
reactions as a function of the temperature in GK using a set of seven fitting coefficients
(equation 2.50). The alternative is to interpolate tabulated rates for which the A (one—
body) or Ny < ov > (two-body) is given for a number of temperatures. Indeed,
REACLIB rates are largely the results of fitting tabulated rates in such a way. As a
consequence of the non-linear density dependence of the weak reaction rates, there will
be an extra dimension to the tabulated reaction rates for weak reactions compared to
those for charged particle fusion reactions. The procedure is a little more complicated
if one wishes to include weak reactions in the nuclear reaction network since now there
are rates with two-dimensional dependencies. In order to avoid large memory usage
when computing stellar evolution models with a large nuclear reaction network, weak
reaction rates are usually tabulated on the order of 10 x 10 co-ordinates in (log,, Yep, Ty)

space, for the ranges

1 <log,Y.p0 < 11
> 10g1g Lep (4.1)

0.001 <7y < 30.

As I have already briefly mentioned, under degenerate conditions in the stellar
interior the distribution of electron energies is given by Fermi-Dirac statistics and hence
weak interaction rates become very steep functions of density, an effect that is even

stronger with decreasing temperature.
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4.1.2 The problem with currently available rates

Figure 4.1 shows an example of the available tabulated weak reaction rates that have
been published in the literature. The rate of **Mg(e™,»)?**Na is shown as a function
of logy,(pYe) at a fixed temperature of Ty = 0.4 GK, and the two types of points show
the results from the calculations of Takahara et al. (1989) and Oda et al. (1994). The
lines joining the points in Figure 4.1 show the rate that would result from a linear
interpolation of log;,(\/s™!), which is the technique that is used in the code to obtain
the rate for a given temperature, density and electron fraction.

It becomes clear from Figure 4.1 that when using a log-interpolation technique,
the sparsity of the Oda et al. (1994) tables is insufficient to properly resolve the degen-
eracy threshold in the rate, which is better represented by the tables of Takahara et al.
(1989) since there is a better sampling of the calculated rates. The figure highlights
the numerical errors that are introduced into the code because the reaction rate will
strongly depend upon the resolution of the reaction rate tables. The extent to which
these numerical errors propagate through to the results is shown in section 4.4. The
rate of 2*Mg+ e~ jumps by about 20 orders of magnitude from log,,(pY./gcm=3) = 9.0
to 10.0 at the temperature of interest (7' = 0.4 GK). This is a problem for resolving the
rate at the threshold density and interpolation results in a significant underestimation
of the rate.

One may achieve a smoother rate with more continuous behaviour by changing
the technique of interpolation. For example, the result of using a cubic spline interpo-
lation instead of the linear is shown in Figure 4.2 for the 2*Mg election capture rate.
The cubic spline method introduces new errors into the rate, giving an overestimation
in the crucial regime where the rate jumps several orders of magnitude at the thresh-
old. Simply using the sparsely sampled rates with different interpolation routines is
thus not a viable option. There are still more shortcomings of calculations involving
electron capture rates that are poorly resolved in the p — T plane. For example, the
vast majority of widely used rate tables for sd-shell nuclei possess a grid spacing of 1

dex in pYe.
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Figure 4.1: A\(**Mg+e7) at T =4 x 108K from the compilations of Oda et al. (1994)
and Takahara et al. (1989). It is immediately clear that the denser sampling in the
rate of Takahara et al. (1989) better represents the threshold density for the rate. The
lines show the resulting interpolation of these rates that is used in the code.
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Figure 4.2: Reaction rates for *!Mg(e™,v)*Na from the Oda et al. (1994) compila-
tion as a function of electron density for various temperatures (Ty = 7/10° K). The
solid lines show the result of a cubic spline interpolation for fixed temperature. The
rate resulting from the interpolation is vastly overestimated in the crucial regime (in
particular for Ty = 0.4 and 0.1, which are appropriate central temperatures for the
super-AGB progenitors of EC-SNe).
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4.1.3 Proposed solutions

In order to overcome the issue of under-sampled weak interaction rates outlined above,
there are two general approaches one can take: (i) use the rates from existing tables
with a more intelligent interpolation technique informed by nuclear physics or (ii) create
new tables with the desired resolution in log,,(pYe) — Ty space with the latest nuclear
physics, and continue to use the log-interpolation method.

An example of method (i) with which to vastly reduce the error that is introduced
into the rates by interpolation of sparsely sampled rates was proposed by Fuller, Fowler
& Newman (1985). The ft value is the product of the phase space integral, f, and the
half-life, ¢ (or t;,), for a single transition—from a specific state in the parent nucleus
to a specific state in the daughter. The ft value is a quantity that depends only on the
strength of the transition (i.e. on the transition matrix element, B;;; see section 4.2.1).
Fuller, Fowler & Newman (1985) demonstrated that one could produce effective ft!
values by using an efficient analytical approximation to the ground-state to ground-
state phase space integral, ¢gs (the expression for ¢ under various conditions is given by
Fuller, Fowler & Newman 1985 as functions of the degeneracy parameter), normalising
the rate to produce a quantity that varied smoothly with respect to log,,(pYz). The
relationship between the rate A\, ground-state to ground-state phase space integral ¢gg

and the effective ft value (ft) is

(ft) = ¢GSIHT2- (4.2)
More details of what comprises the phase space integral are given in section 4.2, but for
now its relevance need only be summarised by considering that the density dependence
of the reaction rate A is introduced by the ¢ term. Thus, interpolating the log,,(ft)
values and converting them back into a rate, A/s™!, using the relation in equation
4.2 should provide a much more accurate representation of the rate. However, this

formalism has a major caveat in that it will only be appropriate when the rate is

!The use of triangular brackets, e.g. (ft), indicates the effective value of ft in this discussion.
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dominated by ground-state to ground-state transitions. In order to demonstrate that
log,,(ft) is not a smoothly varying quantity with respect to log,,(pY:), I have calculated
its values for the Oda et al. (1994) compilation. For the ground-state to ground-state
phase space integral, ¢gs, I used the analytical formulae of Fuller, Fowler & Newman
(1985). The resulting (ft) values are shown in Figure 4.3. While for the ?°Ne electron
capture rate, the (ft) values vary by less than an order of magnitude, the rate of electron
capture by Mg produces a much less smoothly varying value. The (ft) value jumps
more than two orders of magnitude between log,,(pY.) = 7 and 9, and then falling
4 orders of magnitude between log,,(pYe) = 9 and 10. Thus, the log,,(ft) formalism
does not produce a smoothy varying function of Ty and log,,(pY.) for some of the
weak interactions involved in the evolution of electron capture supernova progenitors
where transitions other than ground-state to ground-state have large contributions to
the rate. The same is true for [-decays; the rate of which is in fact dominated by
transitions other than those from ground-state to ground-state. One always wishes
to use a consistent format of input for the rates together with a consistent method
of interpolation in order to best quantify the error in the calculation and without
the possibility of introducing new sources of error. For this reason, I find the log,,(ft)
formalism redundant in this scenario and thus choose not to employ it, even for nuclear
and thermodynamical regimes in which an accurate physical representation of a number
of rates may be achieved in this manner.

In light of the previous discussion, 1 find it preferable to calculate new weak
reaction rates for a more appropriate grid in log,,(pYe) — Ty space, option (ii). I will
still use a linear log-interpolation technique to provide rates in-between the grid points.
In the regime where the degeneracy is mild, electron chemical potential is much lower
than the reaction threshold (p. < @;;), the reaction rate will be very low and will not
vary much as a function of the density. This means that the new tabulated rates need
not be so densely resolved in all regions. Focussing on the URCA process reactions

(A =23, 25 and 27), I have determined that an appropriate grid would require:

Alog,o(pYe/gem™) = 0.02
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Figure 4.3: log,o(ft) values for the electron capture rates of **Mg and *’Ne using
the formalism of Fuller, Fowler & Newman (1985) at Ty = 0.7. For **Mg(e™, 7)*Na,
log,,(ft) is not a smoothly varying function of log,, Y, p since a significant contribution
to the rate is made by transitions to (from) excited states in the daughter (parent)
nucleus.
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Alog,,(T/K) = 0.05

for the conditions

7.0 <log,, (T/K) < 9.2
8.0 < log,, (pYe/gem ™) < 9.2

For the nuclei with A = 20 and 24, the density range should be revised to have an
upper limit at log,,(pYs) = 11.

4.2 Rate Calculations

The last section outlined the motivation for calculating new weak reaction rates for sd—
shell nuclei, particularly the A = 23, 25 and 27 URCA process nuclei and the A = 20
and 24 nuclei that are important during the late evolutionary stages of electron-capture
supernova progenitors. This section will briefly describe the calculations performed by
collaborators to evaluate weak interaction rates for sd-shell nuclei for this study (Toki

et al. 2013).

4.2.1 General form

The methodology employed for the calculation of new S*-decay, eT-capture, v-loss and
v-loss rates from nuclear quantities (energy levels, transition strengths, spins) is similar
to that in the literature (Fuller, Fowler & Newman 1980; Oda et al. 1994; Langanke
& Martinez-Pinedo 2000; Toki et al. 2013), however I will briefly describe the general
method here for completeness.

The rate for a weak reaction, A*, where a denotes the type of reaction (5 -
decay, e”-capture, fT-decay or eT-capture; bm, ec, bp and pe respectively) is given by

the general formula

. —E;/kgT
)\a _ IH_Q Z (2JZ + 1)6
K G(Z,, Ay, T)

Z B3 (4.3)
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where K = 6146 + 6 s is a constant related to fine structure (Langanke & Martinez-
Pinedo 2000), ¢ and j denote quantities pertaining to the parent and daughter nuclei
respectively, and

G(Zy, Ay, T) =Y (2, + 1)e F/ksT (4.4)
l
is the partition function of the parent nucleus. Bj;; is the transition matrix element — the

strength of the transition from state ¢ in the parent nucleus to state j in the daughter

nucleus (sometimes called the transition strength) — and is a probability given by
Fermi GT

Bge’”mi and BgT are the Fermi and Gamow-Teller contributions to the transition prob-
ability respectively. The total spin quantum number of the electron and neutrino is
0 for Fermi transitions and 1 for Gamow-Teller transitions. BgT is calculated using
the spin and isospin operators (o and t respectively) and an experimentally observed
quenching factor. Further details of the transition strength calculations are beyond
the scope of this thesis and are therefore not discussed. ¢f; is the phase space integral,
in which information about the density dependence of the rate is introduced into the
calculation. The expression is slightly different depending upon the reaction type (see

§ 4.2.2), but the general form is

= /(Qij + w)?wpF(Z, w)Sep(1 —5,)dw. (4.6)

In 4.6 and throughout this description, w = # (mec*+ Fk) is the energy of the electron

ec?

in units of mec?, and p = vw? — 1 is the electron momentum, in units of mec. Qij =
ﬁ(Mp — My + E; — E;) is the transition @-value in units of mec?, where M, and My
are the nuclear rest masses of the parent and daughter nuclei respectively. Hence, the
term (Q;; £w) pertains to the energy of the reaction neutrino, depending upon . Se,,
and S, are the distributions of electrons/positrons and neutrinos respectively, however
based on the relevant conditions in the stellar interior one assumes non-interaction of
neutrinos and hence S, is always zero. For reference, the electron distribution function
is given by

Se — [e(Ee_Ne)/kBT + 1] -1 , (47)
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where i, is the chemical potential of the electron and E, = wm.c?. Finally, the Fermi
function F(Z,w) corrects for the Coulomb distortion of the electron wavefunction by

the nuclear potential.

4.2.2 Phase space integrals

The phase space integrals have different forms depending on a (bm, ec, bp or pc). These

are:

G = / 00(% +w)?wpF (Z, w)Se(w)(1 — S, (Qyj + w))duw. (4.8)

= [ QP2 8,00 - 5.0y + . (09

1

Qij
b= /1 (Qij — w)*wpF(Z + 1,w)(1 — Se(w))(1 = S, (Qij — w))dw.  (4.10)

Qij
QSZ) = /1 (QZ] - w>2pr(_Z + 1, w)(1 - Sp(IU))(l — SV(QZ‘]‘ —w))dw. (4.11)

For electron and positron captures, the lower limit w; is set to

The phase space integrals are evaluated numerically at each log,,(pYs, Ty) coordinate,

which is by far the most time consuming task and presents the strongest case against

computing the rates in real-time during the stellar evolution calculations.

4.2.3 Nuclear Physics input: USDB shell model

Using equation 4.3, one can calculate the rates of S¥-decays and e¥ captures. In
order to do this, one requires the energy stratification of the states of the parent and
daughter nuclei, the spin and isospin of each state and the GT transition strengths
for transitioning between those states (recall that the strengths of Fermi transition
strengths are not required directly, but are calculated from the spin and isospins of the

nuclear states).
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For sd-shell nuclei with 18 < A < 38 the atomic masses, excitation energies
of the parent and daughter nuclei and GT transition strengths between each pair of
parent-daughter states for 3*-decay and eT-capture are calculated using a shell model
code (e.g. Richter, Mkhize & Brown 2008). The shell model code used by Toki et al.
(2013) to calculate the transition strengths—and hence, the weak reaction rates—that
were used in the present work considers the USD (universal sd) interaction (Wildenthal

1984) along with the USDA and USDB (versions A and B) updates to the Hamiltonian.

4.2.4 Neutrino fluxes and ~v-ray heating rates

For each reaction, one would also need to calculate the neutrino luminosity €, and the
v-ray heating rate e,. These terms are important when using weak reaction rates in
calculations of stellar evolution or supernovae. For example, the neutrino luminosity
appears in the equation of energy conservation of stellar structure (equation 2.5).

For neutrino fluxes, €, (MeV/s), an extra factor of ();; & w, the neutrino energy,
is introduced into the integrand of the phase space integral. Yet to be mentioned
is the ~-ray heating rate of a reaction. For every transition to an excited state in
the daughter nucleus, a y-ray will be emitted upon its decay to the ground state.
Assuming that the daughter nucleus will instantaneously decay to the ground state
if is created in an excited state (an assumption held for the calculations associated
with this work), emitting the aforementioned ~v-ray, then the v-ray heating rate, e,
(MeV/s), is given by equation 4.3 with an extra factor of E; in the final summation
(over the daughter states). As I will explain in section 4.3, in order to calculate the
averaged net energy production due to a weak reaction, one need only consider either
(E,) or (E,) — the average neutrino and gamma-ray energies, respectively — not both.
Since the neutrino luminosity is simply energy removed from the star per second and
assuming the daughter nucleus decays instantaneously to the ground state, (F,) is

generally considered the more useful quantity.
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4.2.5 Screening of weak reactions

At high densities, the Coulomb interaction of the electron ‘background’ and the nu-
clei becomes non-negligible. In order to produce the most accurate, up-to-date rate
calculations, Coulomb corrections to the nuclear chemical potential, u; and to the elec-
tron chemical potential, y, must be accounted for. The former manifests itself as a
correction to the transition ()-value );; in the phase space integrals (4.8-4.11). The
treatment of the Coulomb corrections follows that of Juodagalvis et al. (2010), which
is summarised below.

The self-manifested Coulomb field in which the ion and electron gas exists pro-
motes interactions between the particles, altering the energy of the particles in the
system. The correction to the chemical potential of species ¢, assuming that the nu-
clear charges do not affect the background distribution of electrons, is (Yakovlev &

Shalybkov 1989)
pic = kT fo(Ly), (4.13)

making the corrected nuclear chemical potential

Wi = o + Mic, (4.14)

where ;¢ is the uncorrected nuclear chemical potential from Boltzmann statistics. T’
is the ion-coupling parameter — the ratio of the potential energy of the ions (due to
Coulomb interactions) to their thermal energy. fc is the Coulomb free energy per
ion; for I' > 1 (the ‘free energy regime’) an analytical expression for the Coulomb free
energy per ion is given by Yakovlev & Shalybkov (1989) with fitting coefficients from
Ichimaru (1993). The Coulomb free energy per ion for I' < 1 is also given by Yakovlev
& Shalybkov (1989). In the case of I' < 1, Coulomb interactions are negligible however
they do become significant while I' is still well below unity. In that regime, the Debye-
Hiickel limit is reproduced by the Yakovlev & Shalybkov (1989) formula for fc in the
case that I' < 1 (Juodagalvis et al. 2010; see also Cox & Giuli 1968 section 15.5).

The resulting correction to the reaction Q)-value is

AQc = pc(Z = 1) — pc(Z), (4.15)
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(Couch & Loumos 1974), yielding the screened transition energy
iy = Qij + AQc. (4.16)

For electron capture, AQc < 0 and thus the threshold energy is increased (since @Q);;
itself is negative) and the electron capture rate is reduced for a given thermodynamic
condition. The screening potential, Vi, is assumed to be constant inside the nucleus
with a value evaluated at the nuclear radius given by Itoh et al. (2002) as an analytical
fitting formula.

The screening potential results in a distorted electron distribution that is now

given by

S, = [e(Ee+Vs—ue)/kBT + 1] -1 ’ (4.17)

which one can equivalently describe as a modification of the electron chemical potential,

using the fact that

Se(Ee + ‘/tsa He, T) = Se(Eepre - ‘/tsa T) (418)

This yields screened weak reaction rates by using the same formalism for the phase
space integrals that is outlined above in section 4.2.2, and replacing Q;; with @7, =

Qi + AQc and g with pf = e — V.

4.3 Implementation in a stellar evolution code (MESA)

In section 4.2, the calculation of 3% -decay and eT capture was outlined, along with
the method of calculation of their respective neutrino emission and y-ray heating rates.
These rates (log;, A%, log,, €, and log,, €,) are tabulated in log,,(pY.) — Ty space. This
section will describe how the weak reaction rates are implemented inside the MESA
stellar evolution code. First, in section 4.3.1 I will summarise the chapter so far before

the implementation is described in section 4.3.2.
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4.3.1 A quick reality check

During the very late stages of the 8.75 and 8.8 M, stars electron captures by sd-shell
nuclei become crucial to the fate of the star. In the degenerate core, there is a very sharp
jump in the rates of these electron captures, which corresponds to a threshold density at
which the electron chemical potential, j., exceeds the threshold energy for the reaction
to proceed. Tabulated electron capture rates that are used as input for the models
must properly resolve this steep transition if one wants to know at what density the
oxygen deflagration is ignited. One should want to know that density so that it can be
determined whether nuclear energy release from burning the core to nuclear statistical
equilibrium (NSE) composition is high enough to exceed the gravitational binding
energy of the core and thus lead to its explosion (Gutierrez et al. 1996). Otherwise,
the core would collapse to a neutron star following its deleptonisation through electron
captures on 2°Ne, iron-group isotopes and free protons.

Because the rates are so sensitive to density, any form of interpolation cannot
properly represent the physical situation without some input from knowledge of the
nuclear physics. This is why several groups employ an interpolation of effective log ft
values (Fuller, Fowler & Newman 1985). I have explained that the effective log ft
value for a reaction is related to its raw rate by the relationship in equation 4.2, where
¢as is the ground-state to ground-state phase space integral, and that the aim is to
produce a quantity that varies smoothly with 7" and p. From this new, smoothly
varying quantity, the raw rate may be obtained within a stellar evolution calculation
by approximation of the phase space integral at the desired conditions. I concluded that
while this method is considered to be relatively robust for those weak rates for which
ground-state to ground-state transitions dominate, it is not valid for the reactions of
interest in electron-capture supernova progenitors. The change in Y, is not the only
important facet of the electron captures; they also possess a strong heating effect. The
heating is due to the y-decay of the daughter nuclei to their ground state from the
excited states in which they were created. Hence this demonstrates the importance of

excited states when one attempts to normalise the reaction rate using simplifications
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or approximations such as the log(ft) formalism.

Having concluded that there are two possible sets of desired quantities, either
grids of weak reaction rates for sd-shell nuclei that are appropriately resolved through
the threshold density or logft values that incorporate all important transitions in the
normalisation of the rate, I have approached solving the problem with the former
method. The rationale here is that there are contributions from many states of the
parent and daughter nuclei for these reactions and to perform phase space integral
routines (see section 4.2) within a stellar evolution code to account for this could be
exceptionally inefficient?. It is also important to use 3*-decay and neutrino-loss rates
calculated with the same physics and grid resolution to ensure consistency when one
examines the impact of the URCA process on the evolution. More generally, since
the energy production is calculated from the tabulated neutrino luminosity (see 4.34,
where €, is the neutrino luminosity), consistent grids are required for any weak rate,

not just those operating as part of an URCA pair.

4.3.2 Implementing weak reactions into the stellar evolution
code

As in any nuclear reaction network, the abundance change of a species ¢ is given in
equation 2.48. Weak reactions contribute to the first term in this equation (one-body).
As such, the rate of change in abundance of species ¢ that is undergoing, for example,

electron capture, is simply given by

Y = —YiX“(logyg pYe, T), (4.19)
where A has been interpolated from the rates produced using methods akin to those in
section 4.2, for the appropriate log,,(pYe), Ty coordinate.

The energetics of an electron capture reaction are illustrated in Figure 4.4.

Conservation of energy requires that

2The rates are in fact dominated by transitions from the ground state of the parent nucleus to
excited states in the daughter nucleus.
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Figure 4.4: Schematic diagram illustrating the energetics of electron capture from
Miyaji et al. (1980). The parent (A, Z) and daughter (A, Z — 1) nuclei are shown along
with the electron distribution. The electron chemical potential is labelled as ¥.kT
and the neutrino and gamma-ray energies are F, and E,, respectively. FEy, o is the
ground-state to ground-stage transition energy.
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Myoc® + E, + E. = Myoc® + E;+ E,, (4.20)

where M, oc?, Maoc?, E, and E, are the ground state and excitation energies of the
parent and daughter nuclei respectively, E, is the energy of the captured electron and
E, is the energy of the emitted neutrino. Since I assume that the daughter nucleus

decays instantaneously to the ground state, one can replace E; directly with £,
Myoc* + E, + E. = Myoc* + E, + E,, (4.21)

where E, is the energy of the v-ray from the decay of the daughter nucleus if it is
created in an excited state. In the case for which all transitions are from the ground
state of the parent nucleus, £, = 0, and if all transitions are directly to the ground
state of the daughter nucleus, £; = E, = 0. For a transition to a fixed state in the
daughter nucleus, the higher the initial state of the parent, the higher the energy of
the emitted neutrino for the reaction. Similarly, a transition from a fixed state in the
parent nucleus yields a higher neutrino energy for a lower final state in the daughter.

In Figure 4.4, 1, is the degeneracy parameter, which is related to the electron

chemical potential, pe, by

e = ek T. (4.22)
By definition,
oFE
.= — , 4.2
p N (4.23)

Using the notation of Miyaji et al. (1980), the threshold energy for the reaction is
Euy = (Maoc® + Eg) — (Mo + E,). (4.24)
Substituting Ejp, into equation 4.20 and rearranging gives
Ee = Euyy + Ey, (4.25)

and for electron capture in general, Ey,, = —@Q;; > 0. Assuming the daughter nucleus
decays directly to the ground state and that the parent nucleus is almost always in the

ground state, Fi,, = Fineo + E, and the expression becomes

Ee = Ethr,O + El/ + Efy- (426)
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We have seen from the detail of the rate calculations in section 4.2 that it is not
possible to deal with each reaction explicitly within the stellar evolution code (or in
most applications). Instead, the averages of quantities are calculated tables and as

such, equation 4.26 becomes

(Ee) = Einro + (E,) +(E,), (4.27)

taking
() = 1%, (4.28)
(B) = 15 (4:29)

with both € and A\ terms found by interpolation with respect to the position in the
(logyo Yep, To) plane. (E,) is the average energy of a captured electron, and in theory
should be given by integrating the electron distribution function from FEj,. for each

transition (the electron energy at which the capture is possible) as in equation 4.30.

/ wSe(w, e, T') dw

Ee MeC
< >2: Bt /mect (4.30)
Mec / S, 1o, T) dus

Ethr/mec2

The average energy of the captured electron for each transition will therefore depend
upon Fyy, for the transition. Moreover, there are large contributions from several states
in the daughter nuclei, as I have discussed already in section 4.1.

To consider the net energy production from a given reaction, I refer to Figure 4.4,
which illustrates the fate of the energy of the captured electron. Its energy is distributed
between (i) the nuclear potential energy (rest mass) of the daughter nucleus compared
to the parent nucleus, (ii) the energy of the neutrino and (iii) the energy of the -
ray, should the daughter be created in an excited state. Hence, except for the energy
that will be returned to the system via the y-decay of the daughter, the entire energy
of the captured electron is ‘lost” in the emitted neutrino and the extra energy in the
ground state of the newly created daughter nucleus (compared to its parent). A simple

rearrangement of equation 4.23,

OE = —11.0N,, (4.31)
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shows that under fixed conditions, electron capture will increase the thermal energy of
the system by an amount p.. This means that one may then write an expression for

the net energy production per reaction, E.., in terms of these average quantities as
Eee = pe + <E’Y> - <Ee>' (4'32)

The implications are such that if the electron chemical potential is lower than the
threshold energy for the reaction (pe < Enro) the reaction will proceed slowly since
the number of electrons with energy of at least Ey,, o will be extremely low. Under
these circumstances, the reaction will actually be endothermic because (Ee) > fie.

Re-writing equation 4.32 by substituting in (E,.) as it is given in equation 4.27,
since one does not wish to repeatedly calculate it within the stellar evolution code,
gives

Eec = He — Ethr,O - <El/>7 (433)

which now contains only a constant from nuclear physics, the electron chemical poten-
tial from the equation of state (EOS) and (E, ), which is taken from the weak reaction
rate tables as described in equation 4.28. This gives the expression for the net energy
production (MeV s71) due to a particular electron capture reaction from tables,

€y

€ec = <He - Ethr,O - F) )\ec . (434)

One may follow a similar derivation for the process of 5~ -decay (‘bm’), yielding

€
€ym = (Ethr,() — He — _> )\bm 5 (435)

and likewise for positron capture and 5% decay.

These quantities must be included when solving the energy equation of stellar
structure (2.5). Clearly, €., €, and their respective €, terms will contribute some
fraction of the net € and €, in the energy equation. This fraction will vary depending
upon the composition and thermodynamic conditions of the stellar plasma, but is
highest in compact, degenerate conditions such as the cores of white dwarfs, the cores
of intermediate-mass and massive stars during the late stages of their evolution and

the crusts of neutron stars.
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4.4 Impact of new weak reaction rates on the stellar
models

New weak reaction rates have been computed for the A = 23, 25 and 27 classical URCA
pairs (Toki et al. 2013) and for the A = 20 and 24 nuclei that are important during the
late phases of electron capture supernova progenitors (Martinez-Pinedo et al. 2014).
In this section the properties of the rates themselves are examined and compared with
rates that were previously available in the literature (Takahara et al. 1989; Oda et al.
1994). The impact of these new rates on the evolution of failed massive stars is then

presented and discussed.

4.4.1 URCA rates

In chapter 3, it was shown that the evolution of stars at the transition between super-
AGB and massive stars is dominated by weak reactions. This is illustrated in the
central evolution of the 8.75 and 8.8 My models in Figures 3.3 and 4.5. The onset of
the URCA process modifies significantly the evolution during the neon-oxygen shell
burning phase of failed massive stars and aids the central contraction, so long as some
degree of mixing between the convective shell and underlying radiative layer operates.
In massive super-AGB stars, the Chandrasekhar mass is also reduced when electrons
are captured during the URCA process and the evolution of the core is accelerated
towards the critical central density at which electron captures by ?*Mg are activated.
Thus, it is imperative to treat the URCA process as accurately as possible to best
predict the fate of 8 — 12 M, stars.

Motivated by the present work, Toki et al. (2013) have produced well resolved
(Alog;, pYe/gem ™ = 0.02 and Alog,, T/K = 0.05) reaction and neutrino loss rates
for the A = 23,25 and 27 URCA pairs under the conditions 7.0 < log,, (7/K) < 9.2
and 8.0 < log;, (pYe/gem™3) < 9.2, The difference between the Oda et al. (1994)
compilation and the newly calculated Toki et al. (2013) rates that are available to use

in stellar evolution calculations for the A=25 pair is shown in Figure 4.6. The most
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Figure 4.5: Evolution of the 8.8 M model in the p. — T;. plane along with the central
abundances (right axis) of the key URCA process isotopes. This calculation used the
weak reaction rates of Oda et al. (1994). Electron captures on Mg and *Na cool the
central regions while those on 27Al provide little contribution due to the low abundance
of fuel and the Pauli blocking of 2"Mg —2" Al + 3~ + . The A = 23 pair provides
stronger cooling than the A = 25 pair.
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Figure 4.6: Mg electron capture rate (top left panel) and ?*Na beta decay rate (top
right panel) at T = 4 x 108K from the compilation of Oda et al. (1994) and the new
calculation by Toki et al. (2013). The lower panel shows the same for the A = 23 pair
2Na <23 Ne. These particular rates from Toki et al. (2013) do not include Coulomb
corrections for the purpose of more direct comparison with the Oda et al. (1994) rates,
which do not include these corrections either.

striking difference between the linear interpolation of the Oda et al. (1994) rates and
the Toki et al. (2013) rates can be seen for the *Na [~ -decay rate in the top right
panel of Figure 4.6. The maximum discrepancy between the linearly interpolated Oda
et. al. rate and the new Toki et. al. rate is almost 10 orders of magnitude! As I
have discussed in section 4.2.5, the most up-to-date rates should include the effects of
Coulomb screening. The rates from Toki et al. (2013) in Figure 4.6 for the A = 25 and
23 pairs do not include the effects of Coulomb corrections purely for the purposes of a

more direct comparison to the interpolation of the Oda et al. (1994) rates, with which
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I intend to illustrate the large discrepancies.

As T described in detail in section 3.1.3, the URCA process operates in regimes
where the forward (electron-capture) and reverse ((-decay) rates between a pair of
nuclei (4Z and 4(Z — 1)) are both high. Under these conditions, energy is rapidly
removed via the production of neutrinos and the process produces a net cooling effect.
For a given pair of nuclei linked in this way, the potential strength of the URCA
process for that pair can be illustrated by plotting the product of the electron-capture
and (-decay rates as a function of density for relevant temperatures. Such a plot
for the A = 23, 25 and 27 pairs is shown in Figure 4.7 for the rates of Toki et al.
(2013). The figure shows that the cooling should be strong from the 2*Mg <+ Na and
2Na 2% Ne pairs. For the 27Al «+27 Mg pair, the S-decay rate is blocked before the
electron capture rate becomes significant and hence there is a negligible cooling effect.
Instead, the heating due to the electron capture reaction 2"Al + e~ —2" Mg + v + v
has a stronger impact. This is a known result for the classical A = 27 URCA pair
(see Ritossa, Garcia-Berro & Iben 1999 and section 3.1.3). Also plotted in Figure
4.7 are the quantities A\*, A~ and \°*)\?~ for the neutron-rich counterparts of the
classical URCA pairs, i.e. 23Ne <323 F, 2Na «+% Ne and Mg <+2" Na. These could
be considered a second set of URCA pairs where the electron-capture parent is the
electron-capture daughter of its classical URCA process pair counterpart. One can
see that the two (the classical URCA and the neutron-rich URCA) do not operate
under the same thermodynamic conditions; the neutron rich pairs all have higher Q-
values and thus operate at higher electron densities. Although these neutron-rich pairs
display generally higher values of A\**\?~ (recall that this quantity is an indication of
the strength of the cooling), the evolution of stars at these densities is much more
rapid than at those where the classical URCA process operates. Moreover, under these
thermodynamic conditions the rate of Mg 4 e~ —24 Na + v is already several orders
of magnitude higher than any of the electron-capture rates by the neutron-rich URCA
parent nuclei **Ne, *Na and ?"Mg (see section 4.4.2).

The same type of plot for the same rates, this time from the compilation of Oda

et al. (1994) with linear interpolation is shown in Figure 4.8. Putting the somewhat
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Figure 4.7: Product of electron-capture and [S-decay rates for A=23, 25 and 27 (solid
lines) using the newly calculated rates from Toki et al. (2013) including Coulomb
corrections. The dot-dashed lines show the respective electron-capture rates and the
dotted lines show the -decay rates. A peak in each solid line shows roughly where a
given pair of nuclei will induce cooling via the URCA process, and the height of the
peak gives an indication of the strength of the cooling. The classical URCA pairs are
in yellow, red and black, and one can clearly see that the A = 27 pair does not produce
a significant cooling effect.
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obvious shortcomings aside, the figure resembles the behaviour seen in Figure 4.7 for
the rates of Toki et al. (2013). For example, cooling is provided by the A = 23 and
25 pairs but not the A = 27 pair. The A = 23 pair produces stronger cooling than
the A = 25 pair, which is the opposite of what is seen in the new Toki et al. (2013)
rates. The electron density of strongest cooling is the same for both A = 23 and 25
pairs, which is an artefact of the sparse grid resolution. In Figure 4.7 it is clear that
cooling from the A = 25 pair taking place at lower electron densities (earlier in the
evolution) than the A = 23 pair, due to the lower magnitude of the Q-value for the
A = 25 reactions. Although the Toki et al. (2013) rates in Figure 4.7 include Coulomb
corrections, it is difficult to comment on the differences this causes when compared to
the Oda et al. (1994) rates in Figure 4.8 because of the resolution issues. In fact, the
inclusion of Coulomb corrections in the Toki et al. (2013) calculations shift the curves
in Figure 4.7 by about 0.05 dex to the right (higher electron density).

The impacts of these new, well-resolved rates compared to those of Oda et al.
(1994) on failed massive star models at Z = 0.014, 0.001 and 10~ are shown in
Figure 4.9. Not only is the cooling effect more pronounced, as predicted by the close
examination of the rates above, but the reaction thresholds are more clearly identifiable
in the central evolution and occur at higher densities than with the rates of Oda et al.
(1994). A neon-oxygen shell flash occurs in the model with Z = 0.001 when **Na is
almost depleted in the centre. As I described in section 3.1.3, the centre’s response to
the shell flash is expansion and cooling along the adiabatic slope (down and leftwards
in the plot). This brings the centre of the star back to the electron density where
some heating is produced by **Mg(e™, v)*Na, producing a different central trajectory
during the flash compared with the same model using the rates of Oda et al. (1994).
When the shell extinguishes and the core once more contracts, the central regions again
evolve through the electron densities where the A = 23 pair can provide cooling. The
timescale is shorter than before, and so only a small amount of cooling takes place this
time.

All of the failed massive star models in which the Coulomb corrected rates of Toki

et al. (2013) were used are cooler in the centre than their equivalent models using the
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Figure 4.9: Central evolution of the failed massive stars at 3 metallicities (Z = 0.014,
0.001 and 107°) governed by the URCA process. Dashed lines show the models where
the weak rates of Oda et al. (1994) were used and solid lines those where the new rates
of Toki et al. (2013) including Coulomb corrections were used.
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Oda et al. (1994) rates. This lower temperature makes the transition from low to high
rates at the reaction thresholds for electron captures by Mg and 2*Ne much steeper
functions of the electron density. This is because the step at E, = u. in the Fermi-
Dirac distribution becomes more defined with decreasing temperature. Hence, at lower
temperature it is less probable for an electron to have an energy greater than the g,
and the reaction proceeds extremely slowly when only electrons from the exponential
tail of the distribution can contribute (see section 4.3.2). Thus, the effect of the lower
temperatures on the rate thresholds mean that the impact of the A = 24 and 20 weak
reactions occurring later in the evolution will be felt by the star at higher densities.
This is a similar effect that the operation of the URCA process has on carbon ignition
in degenerate CO cores and WDs. The models of Paczyriski (1973) showed that with
increasing abundances of odd-A nuclei (i.e. the stronger the cooling effect), the ignition
density of carbon in the degenerate material would be greater. However, one can not

draw too many parallels to this work.
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4.4.2 A =20 and 24 rates

The sensitivity of the oxygen-deflagration ignition density to the threshold density of
A = 20 electron captures has been demonstrated by Gutierrez et al. (1996). Coulomb
corrections cause an increase in the threshold density for those electron captures. There
were some shortcomings of the work of Gutierrez et al. (1996), in which the authors
only implemented screening corrections to the sparsely resolved tabulated rates of Oda
et al. (1994) and not to the (parent, daughter and electron) chemical potentials.

An increase in the threshold density of *Ne(e™, v)?°F would cause the oxygen
deflagration to ignite under denser conditions in the super-AGB progenitors. However
in the failed massive star case the centre is approaching the ignition temperatures of Ne
and O almost adiabatically, and so the oxygen deflagration could ignite before 2°Ne+e~
becomes significant if there were an increase in its threshold density.

The A = 20 and 24 reaction rates have different properties to the A = 23, 25 and
27 reaction rates. These differences stem from the underlying nuclear physics (section

4.4.2.1) and propagate to their effect on the evolution of stars (section 4.4.2.2).

4.4.2.1 Different behaviour from Nuclear physics

Martinez-Pinedo et al. (in prep.) have calculated new weak reaction rates linking *°Ne,
W 200, Mg, ?*Na and ?*Ne. The method used to calculate the rates is the same
as I have described in section 4.2 and screening corrections were also included in the
same way. One significant difference between these newly calculated A = 20 and 24
rates and the new URCA process rates (A = 23, 25 and 27; Toki et al. 2013) is that
some of the GT strengths were re-determined experimentally. Martinez-Pinedo et al.
also found a forbidden transition (not measured experimentally) to make a significant
contribution to the rate for **Ne(e™, v)*F.

The newly calculated rates are shown in Figure 4.10. The plot is the same style
as Figure 4.7 where electron capture rates are plotted with a dot-dashed line style,

[—decay rates with a dotted line style and the product of the two competing rates
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(A\P~) with a solid line. Comparing Figure 4.10 with Figure 4.7, one can see that
the solid peaks have lower magnitudes for the A = 20 and 24 rates (Figure 4.10) than
for the URCA process rates (Figure 4.7). This indicates that the A = 20 and 24 nuclei
will not provide strong cooling like the URCA pairs because there is a smaller window
in which both the forward and reverse rates are high. Another important feature is that
for the odd-A nuclei (23, 25, 27, Figure 4.7), the secondary (more neutron-rich) pair
for each A has a higher ()-value, and thus operates at higher density than the primary
pair. In contrast, for the even-A nuclei (20 and 24, Figure 4.10), the secondary pair
has a lower )-value than the primary pair and thus operates at lower density. As a
result of this behaviour for the even-A nuclei (A = 20 and 24, Figure 4.10), the URCA
process does not operate and instead the following sequence occurs. 2*Mg begins to
capture electrons, producing some ?Na. The ?*Na will likely not 3~—decay back to
Mg since there is only a very narrow window where both the forward and reverse
rate of Mg <+ 2!Na is reasonably high (still 3 orders of magnitude lower at the
crossing point then for any of the odd-A pairs). However, because the Q-value (and
thus threshold density) is much lower for the secondary pair, ?*Na «» ?‘Ne, the ?'Na
almost instantaneously captures another electron, producing ?*Ne. The ?*Ne is created
for the first time in such dense conditions where the fermi energy is so high that its
[~—decay channel is completely blocked, and the reaction chain ceases. The same
order of events occurs for the A = 20 chain, ?°Ne ++ 2°F « 2°0. The net effect is that
both Mg and ?°Ne undergo double electron captures, where each nucleus effectively
removes 2 electrons from the plasma.

The simplest way to understand the physical reason for the different behaviour
of the odd-A and even-A nuclei is to consider the expression for the binding energy of
the nucleus in the semi-empirical mass formula (e.g. Krane 1987, page 68, 3.28),
(A—22)?

B = a,A — a,A*? — a.Z(Z — 1)A_1/3 — Qsym T

+6. (4.36)

The formula consists of volume, surface, Coulomb and symmetry terms (terms 1-4,
respectively). The last term, ¢, is a pairing term. Protons and neutrons are fermions

and as such their spin quantum numbers are + % As fermions, the nucleons obey the
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Pauli exclusion principle and thus no proton may exist with the same set of quantum
numbers as another; the same is true for neutrons. It is more energetically favourable
for the protons and neutrons to couple together and form spin-zero pairs because in this
configuration there is a strong overlap of the spatial wave function of the two protons
or two neutrons. The pair will thus spend more time closer together within the range
of the strong nuclear force and be more tightly bound (higher binding energy; Lilley
2001, page 40). For nuclei with even A (e.g. the A = 20 and 24 nuclei), either both the
proton and neutron number will be even (even-even) or both will be odd (odd-odd).
When both are even, the protons and neutrons will be coupled in spin 0 pairs, adding
to the binding energy (§ > 0). For both N and Z odd, there will be an unpaired proton
and an unpaired neutron, and the nucleus as a result will be less tightly bound (6 < 0).
The pairing energy 4 is given in Krane (1987) as 4 a,A~%/* with a, = 34 MeV. For
nuclei with an odd atomic mass number A, either Z or N must be odd, and so there is
always one nucleon that will be unpaired. Thus for the odd-A nuclei, the pairing term
0=0.

To illustrate the relevance of this discussion of the pairing term, I show the curves
of binding energy (magnitude) per nucleon (|B|/A) for nuclides with A = 23 and 24
in Figures 4.11 and 4.12, respectively. The solid curves are simply quadratic fits to
the values of | B|/A calculated using the formula in 4.36, since the binding energy for
constant A is a second order function of Z. There are two solid curves in Figure 4.12,
corresponding individually to the even-even and odd-odd cases.

The electron capture process transforms a nucleus of 4 Z into a nucleus of 4(Z—1),
i.e. reducing the proton number by 1 for the same atomic mass number (f—decay is of
course the opposite process). For the odd-A nuclei, Figure 4.11 illustrates the electron
capture process (drawn with a dashed line) as a transformation from the parent nucleus
to the daughter nucleus, where both nuclei lie on the same binding energy curve. For
all odd-A nuclei, the pairing energy 6 = 0, as described above, and hence all odd-A
nuclei lie along the same curve. Conversely, in Figure 4.12 the non-zero pairing energy
of the A = 24 nuclei means that the parent and daughter nuclei always lie on different

curves (alternating between odd-odd and even-even).
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Figure 4.11: Binding energy per nucleon (MeV) as a function of proton number Z for
A = 23 nuclei (odd-even or even-odd) calculated using the expression from the semi-
empirical mass formula (SEMF), equation 4.36. The solid curve shows a quadratic
interpolation since for constant A, |B] is a second order function of Z. The dashed
lines show the transitions between nuclei undergoing electron capture (to lower Z)
or beta decay (to higher Z). The y-component of the dashed lines is related to the
threshold energy of the ground-state to ground-state transition. Because the binding
energy per nucleon drops steeply from its maximum as Z decreases, the threshold
energy of the secondary reaction **Ne(e™,v)®F is higher than that of the primary,
ZNa(e™,v)?*Ne, and thus is activated at higher densities where the electron chemical
potential is higher.
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Figure 4.12: Same as Figure 4.11 but for A = 24 nuclei. Even-A nuclei can be either
even-even or odd-odd, which have separate solid curves for | B| /A against Z. The parent
and daughter nuclei never lie on the same curve when A is even because of the difference
in the pairing energy for even-even (§ > 0) and odd-odd (6 < 0) nuclei (see equation
4.36 and the text for more details). Converse to the odd-A nuclei, an example of which
is shown in Figure 4.11, the threshold energy of the secondary reaction ?*Na(e™, v)?*Ne
is much lower than that of the primary, **Mg(e™,v)*'Na. As a result, the secondary
reaction is activated at lower densities, however its reactant 2*Na is only produced once
the primary reaction is activated at high density. By this point, the secondary reaction
rate is very high and effectively the 2*Mg undergoes a rapid double electron capture.
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The most abundant nuclei produced in stars will generally be the most stable
(near the maximum of the |B|/A curves in Figures 4.11 and 4.12, e.g. ?*Na and
2"Mg). The (Q-value) ground-state to ground-state threshold energy Eyp,. o for the weak
reactions is related to the difference in |B|/A of the parent and daughter nuclei (the
y-component of the dashed lines). Because the curve steeply drops off with decreasing
Z and all of the nuclei lie on the same curve, the threshold energy is higher for the
secondary reaction **Ne(e™,v)?F than for the primary reaction **Na(e™, v)**Ne for
the odd-A nuclei. In the stellar interior, the secondary reaction is thus activated at
higher densities than the primary, where the electron chemical potential is higher.
Conversely, the threshold energy is lower for the secondary reaction ?*Na(e™, v)*'Ne
than for the primary reaction >*Mg(e™, v)**Na for the even-A nuclei (A = 24) because of
the fluctuation of the pairing energy ¢ with Z. This means that the secondary reaction
is activated at lower densities than the primary reaction, and because the secondary
reaction can only operate once the primary has produced its reactant (?*Na), the rate
of the secondary reaction is already very high once it can proceed. This is why the
A = 20 and 24 nuclei, upon reaching their threshold densities in the stellar interior,

essentially undergo double electron captures.

4.4.2.2 Results of the new calculations

I have simulated the evolution of failed massive stars (FMS) that experience off-centre
neon and oxygen ignition which is recurrently quenched by mixing at the convective
boundary (see chapter 3) for three metallicities: Z = 0.014 (solar composition), Z =
1073 and Z = 107°. These models were calculated using the rates of Oda et al. (1994)
for the A = 23, 25 and 27 URCA pairs, and later using both the rates of Oda et al.
(1994) and Martinez-Pinedo et al. (in prep) for the A = 20 and 24 rates. [ have
described these new rates themselves in the previous section (4.4.2.1). The evolution
of the three models using the two different sets of rates in the p. — 7. plane is shown in
Figure 4.13. The solid lines show the models with the new rates from Martinez-Pinedo

et al. (in prep.) and the dotted lines show the models with the rates of Oda et al.
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(1994).

During this late evolutionary phase, the physics assumptions of the models are
modified slightly. Instead of assuming the Schwarzschild criterion to define convective
instability, the Ledoux criterion is used. The choice to modify the physics assumptions
in this way is motivated by the previous work of Miyaji et al. (1980) and Gutierrez
et al. (1996). As I described in chapters 1 and 2, the Ledoux criterion accounts for
the stabilising effect of mean molecular weight gradients in the stellar material, while
the Schwarzschild criterion does not. The activation of rapid electron captures on
such an abundant nuclide as ?°Ne greatly increases the mean molecular weight in the
central regions and produces a steep p gradient. Moreover, the evolutionary timescale
of this phase is very short and as such, there is little time for the over-stability in the
would-be semi-convective region to develop into mixing. Under these conditions, the
convection criterion would quite strictly adhere to that of Ledoux, whereas in other
evolutionary phases where p gradients form the evolutionary timescale is significantly
long for semi-convection to potentially chemically homogenise the region (in that case,
the convection criterion would become identical to that of Schwarzschild).

The general shape of the evolution shows the almost adiabatic increase in tem-
perature of the central region as the core is contracts. As the threshold density for
electron captures by 2°Ne to be activated is surpassed in the stellar centre, the energy
released by the y—decay of the daughter nuclei begins to heat up the material. As a
result, the temperature begins to increase more steeply. In some of the models (the
model at Z = 1072 using both rates and the models at Z = 107° and, to a lesser extent,
Z = 0.014 using the rates of Oda et al. 1994) the temperature rapidly decreases again,
leaving a sharp peak in the p. — T evolution. This sharp temperature drop occurs when
the radiative temperature gradient that would be required to transport the luminosity
becomes so large that convection is induced. The convective luminosity transports heat
away from the centre and the region rapidly cools. As expected, the new weak reaction
rates for the A = 20 nuclei increase the ignition density of the oxygen deflagration
(Figure 4.13). The effect is most pronounced for the case with Z = 1073.

I would like to stress at this point of the discussion that the treatment of convec-
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Figure 4.13: Late evolution of the failed massive star (FMS) models at three metal-
licities (Z = 0.014, 1073 and 107°) using the rates of Oda et al. (1994) and Martinez-
Pinedo et al. (in prep.; ‘GST’).
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tion in the present stellar models becomes rather unphysical at such small evolutionary
timescales. The mixing length theory of convection (MLT; see section 2.2.1 for a full
description) treats the behaviour of convection effectively as a single eddy with velocity
v. Many of the caveats of this treatment and their implications are discussed in section
1.4, however during these short evolutionary timescales a different problem arises. The
evolutionary timescale becomes comparable to the convective turnover timescale, mak-
ing the averaging assumptions of the MLT rather inappropriate. For example, once
a region becomes convective, the average flux is calculated based on the assumption
that the fluid parcels have an average velocity v. If the time step is of the order of
several times the convective turnover timescale, this assumption is relatively safe. If
not, then the average only holds if there is instantaneous acceleration of the fluid and
thus a different method to calculate v should be used for these situations, taking into
account its time-dependency.

The time-dependent formulation of the mixing length theory of convection was
derived by Unno (1967) for the treatment of stellar pulsations. Two coupled differential
equations for the convective velocity v and the average temperature fluctuation DT are
introduced, while the remaining equations of the MLT remain unchanged. In previ-
ous studies of the progenitors of electron capture supernovae (Nomoto 1987; Gutierrez
et al. 1996; Takahashi, Yoshida & Umeda 2013), during the late phases the equation
of hydrostatic balance is also modified to include an acceleration term. Clearly, it is
agreed that the assumptions of hydrostatic equilibrium and the mixing length theory
of convection are not valid in this regime and the problem becomes one of hydrody-
namics. Moreover, the oxygen deflagration of electron capture supernova progenitors
is a phenomenon in which the coupling of turbulent convection and combustion, trans-
sonic flow and strong asymmetries are all likely to be important. In the progenitors of
type la (carbon-deflagration supernovae), a similar deflagration scenario develops, but
in the case of type la supernovae, the energy released by the deflagration is sufficient
to unbind the core, leaving no compact remnant. In the literature, the consensus is
that the asymmetrical effects are so crucial to determining the properties of the explo-

sion and the composition of the ejecta that one-dimensional simulations are no longer
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considered to be a satisfactory approach.
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5 Conclusions and future work

It has been known for a few decades that super-AGB stars with 8 < M/M, < 10
could be the progenitors of supernovae triggered by electron captures on sd—shell nuclei
(Miyaji et al. 1980; Nomoto 1984; Nomoto 1987; Ritossa, Garcia-Berro & Iben 1999;
Poelarends et al. 2008). Further progress was made in uncovering the behaviour of
stars across the transition in initial mass (or helium core mass) from super-AGB stars
to massive stars that would produce iron cores before collapsing (Woosley, Weaver &
Taam 1980; Nomoto 1984; Habets 1986; Nomoto & Hashimoto 1988). The studies
modelled the evolution of helium stars with the exception of Woosley, Weaver & Taam
(1980), who simulated the full star including the envelope. However, the calculations
of Woosley, Weaver & Taam (1980) suffered from poor spatial resolution in a stellar
evolution code optimised for massive stars (rather than AGB stars).

I have shown in chapter 3 that with the MESA code, it is possible to simulate full
stars (including their envelope) across this transition using a consistent set of input
physics. Whilst keeping the many parameters and assumptions of stellar evolution
constant functions of the initial mass of the stars is certainly not physically motivated,
it is an essential step on the road to characterising the evolution of these stars both
individually and collectively.

For the super-AGB progenitors of electron capture supernovae (EC-SNe), the
entire thermal pulse phase has been simulated from the end of the second dredge-
up (2DUP) to the activation of electron captures by ?°Ne in the centre of the core.
The ability to simulate the entire TP-SAGB phase was a long-standing goal of the
community that had previously not been achieved, and is also a testament to the
stability of the MESA stellar evolution code. The structure of the star at the pre-
supernova stage is very similar to the classical models of Nomoto (1984), with a compact
oxygen-neon core surrounded by a hydrogen envelope; at their interface, the density
drops 16 orders of magnitude.

The physics behind the outstanding uncertainties in the efficiency of the third



169

dredge-up and mass loss rate during the super-AGB phase have not been addressed in
the present work, but instead it has been shown that within the current picture (given
the physics assumptions made here), an 8.75 M star at solar metallicity (Z = 0.014)
should produce an electron capture supernova. However, if the high mass loss rates of
Blocker (1995) are accurate, then the models suggest, like those of Poelarends et al.
(2008), that super-AGB stars cannot produce EC-SNe. These conclusions are, however,
drawn from using mass loss rates as functions of luminosity, effective temperature and
surface composition.

The mechanisms driving mass loss from the stellar surface are complex and hard
to constrain. When a dynamical instability is triggered in the 1-D stellar models, the
authors typically conclude that the envelope will be ejected, producing an oxygen-neon
white dwarf (ONeWD). These dynamical instabilities could well be transient behaviour,
and following a brief period of mass-ejection hydrostatic equilibrium could be restored.

The efficiency of third dredge-up is not a new problem in the (super-) AGB
community. A combination of hydrodynamical simulations and nucleosynthesis calcu-
lations make it possible to prescribe an appropriate amount of mixing at the convective
boundary in certain simulations, however it is not clear how this parameterised treat-
ment depends upon initial mass and metallicity (or rather, on the underlying physics).
Hot dredge-up and proton ingestion during the TP-SAGB phase could provide a boost
in the luminosity and therefore both enhance the mass loss rate and the efficiency of
the 3DUP, narrowing the channel for EC-SNe from super-AGB stars. More careful
study of these phenomena at different metallicities should provide better constraints
on the evolution of super-AGB stars towards EC-SNe.

My models suggest that stars in the mass range 8-10 M that ignite neon and
oxygen burning off-centre could potentially contribute to the EC-SN rate. If mixing
takes place across the lower convective boundary of the neon-oxygen burning shell, the
flame is recurrently quenched and re-ignited. Upon the quenching of the flame, the
core contracts. This intermittent contraction allows the star to reach the conditions for
the URCA process to operate in the centre of an 8.8 M, star, and accelerated cooling

and contraction leads to the ignition of an oxygen-deflagration. The fate of the same
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model with strictly no mixing at the convective boundary is not certain, but could
produce an iron core and thus collapse as a core collapse supernova (FeCCSN). The
extent to which mixing takes place at the lower boundary of such a convective shell
is at present not clear. However, 3D simulations of oxygen shell burning presented by
Meakin & Arnett (2007) suggest that mixing processes do indeed extend beyond the
convective boundaries—as they would be defined using the Schwarzschild criterion—in
these advanced evolutionary stages.

In computing the evolution of progenitors for electron capture supernovae for
this thesis, it became clear that the present status of available weak reaction rates were
insufficient to represent accurately the physics that dominates the last years of the lives
of these stars. I found that using the log(ft) formalism of Fuller, Fowler & Newman
(1985) was inappropriate for the weak reactions that are relevant for 8-10 M stars
since there is a significant contribution from transitions not directly involving the
ground state of the nuclei. As a result, new weak reaction rates for important nuclei
were computed by Toki et al. (2013; see chapter 4). The new weak rates include
Coulomb corrections, effectively shifting the rate for a given temperature to higher
densities. A log-linear interpolation of the better resolved rate tables represents the
nuclear physics much more accurately than using the same method with the available
rates of Takahara et al. (1989) and Oda et al. (1994). I implemented the new rates into
the stellar evolution code MESA and showed that their impact indeed takes place at
higher densities than the older rates of Oda et al. (1994). The new rates also provide
stronger cooling, increasing the ignition density of the oxygen deflagration in the star

prior to its collapse and explosion.

Future work and scientific outlook

Moving forward, progress in the field of stellar evolution and supernovae should be
driven by the improvement of physics considerations in numerical models. The uncer-

tainties related to the progenitors of electron capture supernovae are certainly not new
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additions to the list of big problems in stellar astrophysics at present:
e Convective and non-convective mixing processes

— Super-adiabatic (inefficient) convection
— Turbulence and mixing at convective boundaries
— Semi-convection and thermohaline mixing

— Internal waves and oscillations
o Mass loss

— Stellar pulsation

— Dynamical effects

— Opacity-driven winds
— Dust formation

— Enshroudment and CSM interaction

These problems themselves are enough to keep the community busy for years to come,
and will be developed and tested alongside improvements in the treatments of rotation
and magnetic fields.

Observational data for supernovae (the ejected mass of *Ni, amount of circum-
stellar medium interaction, light curves), their remnants (isotopic yields, gravitational
mass and spin period of neutron stars) and their progenitors (pre-supernova position
in the Hertzsprung-Russell diagram, rotation rates and surface abundances) will be-
come more abundant and the measurements more constrained as new instruments are
developed. The new generation of gravitational wave and neutrino detectors will also
provide constraints previously unobtainable, and new asteroseismological missions will
complement the current efforts to understand the behaviour of convection and tur-
bulence. Ultimately, however, to explain the observations is the job of theory and

simulation, and while 1-D stellar models are still an excellent tool — the only viable
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method by which to simulate the entire lifetime of a star — they must evolve alongside
more specialised physical experiments and numerical simulations.

For the case of electron capture supernova progenitors, hydrodynamical simula-
tions of the thermal pulse phase will uncover the behaviour of the pulse driven con-
vective zone and the extent of the third dredge-up. This will lead to more accurate
estimates of the dredge-up efficiency and hence the core growth rate. These simula-
tions would also predict the time evolution of the hydrogen burning luminosity during
the thermal pulse phase, which directly influence the mass loss rate from the stellar
surface.

Mixing across the convective boundary has also been shown in this thesis to
affect the propagation of the neon-oxygen burning front towards the stellar centre,
allowing for contraction towards an EC-SN fate, rather than FeCCSN. A similar flame
quenching has been found by Denissenkov et al. (2013b), resulting in the formation of
hybrid white dwarfs (an inner core of CO composition surrounded by an ONe outer
layer). Accretion onto these hybrid white dwarfs could potentially result in peculiar
type Ia supernovae.

The oxygen deflagration during the final evolutionary stages of electron capture
supernova progenitors is a fine example of reactive hydrodynamics in degenerate mate-
rial. This is a phenomenon that is similar to the carbon deflagration in carbon-oxygen
white dwarfs, producing type Ia supernovae. It has been shown that multi-dimensional
effects during the carbon deflagration have a strong impact on the energetics and the
nucleosynthetic yields of type Ia supernovae, and so far there is no evidence to suggest
that similar asymmetrical effects would not have an impact during the oxygen deflagra-
tion of electron capture supernovae. In fact, it is the formation of neutron-rich pockets
in multi-dimensional simulations of the resulting explosion of electron capture super-
novae that produces the heaviest elements (Wanajo, Janka & Miiller 2011), although
only elements up to atomic number of about 40 are produced. Multidimensional sim-
ulations of type Ia supernovae also show that if the carbon burning flame begins as a
detonation, the models cannot reproduce the amount of intermediate alpha elements

(e.g. Siand S). This has led to the delayed-detonation model in which the carbon
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burning begins first as a deflagration and later becomes supersonic (Seitenzahl et al.
2013 and references therein).

Simulating the supernova explosion of the new (8.75 M, ) super-AGB progenitor
model from chapter 3 would be a good first verification step, for which the results
can be compared to those obtained using the Nomoto (1984) progenitor model. I
expect that the differences in the explosion itself would be minimal since the density
profile is so similar and both models would suffer from the same caveats related to the
deflagration. Once the new URCA process rates of Toki et al. (2013) have been included
in the super-AGB models, significant differences may occur in the explosion. In either
case, | expect that the nucleosynthetic yields from the present calculations would be
significantly different from those calculated from Nomoto’s models since I include the
TP phase. Both the *C(a, n)'0 and ?*Ne(a, n)**Mg neutron sources operate in the
TP-SAGB phase, which should be accounted for in galactic chemical evolution (GCE)
models. The GCE models at present do not include the yields of 8 —10M, stars because
of the gap in the available yields (Doherty et al. 2014). Simulating the explosion of the
8.8 M, failed massive star model could produce interesting nucleosynthetic yields due
to the intermediate-density shell located between the ONe core and the envelope (see
section 3.3).

In simulating the oxygen deflagration in three dimensions, the first 3D progen-
itor models for electron capture supernovae will be produced. This would lead to a
breakthrough in linking progenitors and explosion models. Such a link is also much
needed between massive stars (the progenitors of FeCCSN) and supernova simulations
(Ugliano et al. 2012; Couch & Ott 2013). The case of massive stars is potentially more
difficult because of the complicated shell structure, but ultimately the effects of mixing,
burning and angular momentum transport should be considered.

Close attention should be paid to the steep behaviour of weak reaction rates with
respect to density in the future. In particular, accurate weak reaction rates should be
used for the four applications outlined in section 1.3: the URCA process, calculating the
neutron excess in stellar models, the de-leptonisation during core collapse supernovae

and neutron capture nucleosynthesis. Using finely resolved grids of weak reaction
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rates could potentially prove cumbersome in large multi-zone network calculations.
An alternative procedure could be to use the analytical formulae for the phase space
integral from Fuller, Fowler & Newman (1985) to compute the contribution from a
number of transitions for each rate. The computational overhead of this method would
need to be compared to that of interpolating finely resolved (pre-processed) tables
within a stellar evolution or nucleosynthesis post-processing code. The number of
transitions that were included using the analytical method would probably need to
be limited to only the dominant transitions, and the significance of weaker transitions

would need to be tested.
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