
Detecting Communities of Methods using Dynamic

Analysis Data

Boyd Duffee and Peter Andras

School of Computing and Mathematics

Keele University

Keele, United Kingdom, ST5 5BG

Abstract—Maintaining large-scale software is difficult due
to the size and variable nature of such software. Network
analysis is a promising approach to extract useful knowledge
from network representations of large and complex systems.
Community detection is a network analysis method that aims
to detect communities of nodes that share some common feature
that is relevant for the whole system. We aim in this paper to
investigate the usefulness of community detection for software
maintenance considering networks of methods and method calls
that represent execution traces of the analysed software. Our
results show that the method communities that we extract are
relatively persistent over multiple execution traces and that they
are associated with functional features of the software. Our
results also show that method communities are not associated
with method level design features, but each method community
has a specific distribution over method stereotypes.

I. INTRODUCTION

Large-scale software is developed by many programmers

over considerable time and includes many integrated compo-

nents, which may be written by different teams at different

times and in response to changing requirements [1], [2]. Such

software is typically over 100 KLOC and often over 1MLOC

in size — for example the Google Chrome browser has over

6 MLOC [3].

Maintaining such huge software systems is difficult because

of the many interdependencies and the limited understanding

by any developer of the whole software. This triggers the

need for automated tools and computational techniques that

can support the analysis large-scale software and improve the

understanding of it by software developers [4]–[7].

Software systems developed in object oriented languages

can be considered as networks of interactions where the

interacting nodes can be classes or objects and the interactions

the method calls between these [8], [9]. In a finer grained

view the network nodes themselves are considered as being

the methods of classes and the calls between the methods the

interactions between the nodes [10], [11]. These networks can

be considered in static sense [12], when the network is built

by analysing the code of the software, or in a dynamic sense

[12], when the network is built by considering the behaviour

of the software at runtime (e.g. through some dynamic analysis

instrumentation). Furthermore, another more social-network

aspect of the large software can be captured by considering the

joint work of developers in various teams [13], [14]. Given the

success of network analysis methods applied to biological and

social networks [15], [16], it may be expected that analysing

the network representation of large-scale software may lead to

useful insight that can help the understanding of these huge

systems.

In general network analysis methods rely on the assumption

that structurally important parts of the network representation

of a system represent functionally important parts of the

system. So network analysis applied to software systems

is expected to reduce the complex search for functionally

meaningful parts in a large-scale software in some functional

context to the search for the structurally important parts of

network representation of the software. Network analysis has

been applied to develop novel metrics for large-scale software

[3], [11]–[14], [17]–[19] and these metrics may be used to

assess software quality, error proneness, or for functionality

localisation [11]–[14], which are all useful for the understand-

ing and maintenance of large-scale software systems.

While the success of network analysis methods in uncover-

ing the nature of complex systems is celebrated in many fields

[15], [16], often these methods are developed and tested using

artificially generated surrogate data because there are relatively

few real world large network data sets that are available

widely. Thus in order to confirm the functional validity of

these methods in any particular application area they should

be tested with relevant real world data sets. In particular,

in the context of engineering and maintenance of large-scale

software these methods have to be applied to real world large-

scale software data to establish to what extent they provide

functionally useful analysis results.

An interesting area of network analysis methods is the de-

tection of communities [20]–[22]. In the context of networks,

communities are clusters of structurally related nodes that

are associated also in some functional sense such that this

functional aspect of the community contributes to the overall

functionality of the system. For example, in the context of so-

cial networks communities may represent circles of friendship

or groups of specialists. In the case of biological networks

communities may represent proteins involved in functional

cycles in cells or sets of cells that form key components of

tissues. Naturally arises the question whether such community

detection algorithms can help in any sense the functional

understanding of large-scale software systems.

In this paper we investigate the usefulness of community

detection in networks in the context of dynamic analysis data



gathered from large-scale software systems. We use a hard

limit community detection algorithm that allocates each node

to one community. We assess the extent to which communities

detected in the network of methods and method calls have any

associated functional or design related meaning (e.g. is it the

case that a community has some well defined function — for

example exporting data in a range of file formats, or is it the

case that belonging to a community means the sharing of some

design features — for example in terms of method stereotypes

[7], [23]). Our analysis shows that the network communities

that we find have associated functional meaning, but the

methods belonging to a community do not share particular

design features. We also find that some, but not all method

communities that we detect are preserved across execution

traces. The communities that are more preserved across traces

are likely to deliver core functionalities of the software, while

less preserved communities are likely to contribute to the

delivery of trace-specific software features.

The rest of the paper is structured as follows. First we

review briefly the related works, including the interpretation

of software as a network, the application of network analysis

to software systems, and the community detection algorithms

in networks. Next we present the conceptual framework for

the application of network community detection algorithms

to software systems. Then we present our results and their

interpretation. Next we discuss the implications of our analysis

and results. Then we address the validity limitations of our

approach and results. Finally the paper is closed by the

conclusion section.

II. RELATED WORKS

A. Software as network

Software has been considered as a graph or network since

the beginning of research on computer programs. In the

context of software developed in object oriented programming

languages the network nature of software is obvious. One

may consider such software as a network of classes, where

the method calls between classes constitute the directed arcs

(or undirected edges) of the network, the latter may also be

labelled by the called method [9], [10]. Another approach

considering the runtime instantiation of classes as objects

views the software as a network of objects linked by method

calls between objects, and again the calls may be labelled by

the called method [9], [10]. A further approach is to consider

the methods themselves as the nodes of the network and the

arcs (or edges) of the network as the calls from one method

to another [11], [12] — note that this approach does not

emphasise the class-based grouping of the methods.

The network representation of a software system may be

constructed on the basis of the code of the software [24], in

which case the network is static network representation of the

software. In static networks all possible links between classes

or methods are considered according to the code of the soft-

ware. The alternative is to consider the network representation

of the software during runtime and to take into consideration

only classes or objects that get instantiated and methods and

method calls that get actually executed [8], [11], [12], [24].

For this purpose the software has to be instrumented such

that the trace of execution in terms of method-to-method calls

can be extracted [11], [12], [24]. The resulting network is a

dynamic network representation of the software corresponding

to an execution trace that may represent the delivery of some

functionality of functional feature of the software. We note that

dynamic analysis has been used recently to support program

understanding, for example by the identification of concept

locations [25]–[27].

A further take on the network aspect of large-scale software

is to consider the collaboration network of software developers

who contributed to the development of the software [13], [14],

[17], [18]. This approach represents the human development

environment of the software, assigning parts of the software to

parts of this network, depending on the involved developers.

In general the network representation of the software or

of its human development environment is expected to allow

the use of structural analysis of the network representation

in order to discover functionally important parts or features

of the software. This expectation is based on the assumption

that structurally important components of the network rep-

resentation of a system indicate functionally important parts

of the system that is represented by the network [11]. This

assumption has been tested widely in biological and social

networks and has been confirmed in many instances [15], [16].

B. Software network analysis

The earliest network metrics for software are based on

graph-theoretic analysis of the graph representing the software,

such as coupling measures [28], [29]. More recently through

the consideration of network representation of large-scale soft-

ware a number of other network-based metrics and measures

have been considered [3], [11]–[14], [17]–[19]. These metrics

and measures in general are based on structural analysis of

the network and are associated with the functional parts of

the software system which is represented by the analysed

structural component.

For example, such network metrics are proposed to assess

the error proneness of the software using the analysis of the

software developer network and estimating the error proneness

of software developed through the collaboration of different

teams of software developers [13], [14], [18]. A similar

approach can provide a classification of developers indicating

likely developer roles which may be useful for setting up

developer teams in the future [17]. Another approach uses

network analysis to assess the level of vulnerability of methods

in the context of delivery of functional features of the software

[11].

Complexity metrics play an important role in the context of

security and exposure to vulnerability [14]. Network analysis

is can be used to assess the complexity of the software leading

to network metrics of software complexity [3], [14]. One ap-

proach is to calculate a fractal dimension metric of the network

representing the software to estimate the complexity of the

software [30]. Researchers have shown that in many cases



the network complexity of the software grows as it undergoes

further development [19]. Similar network complexity metrics

may also be applied to software developer networks as well

in order to assess the likelihood of developing security related

problems [14].

Network analysis of dynamic networks can be used to

develop metrics that indicate functional importance of methods

for the delivery of a given functional feature [11]. This metric

can used for feature localisation in the code. This can reduce

very much the maintenance effort in the context of adapt-

ing large-scale software to changing functional requirements.

Similarly network based metrics calculated using dynamic net-

works can be used to assess the match between the design and

implementation of the software system and indicate problems

with the quality of the software (i.e. mismatch between design

and implementation) [12].

The above mentioned network metrics for large-scale soft-

ware work reasonably well as reflected by the published papers

that propose and analyse them. However, in principle, these

network analysis methods can be expected to work to the ex-

tent to which software networks share their structural features

with networks representing social and biological systems for

which network analysis methods were proposed in the first

place. Comparative analysis of static software networks and

biological networks shows that although there is some match

between these networks there are also considerable differ-

ences, which are attributed to the designed and engineered

nature of the software system [31]. On the other side, dynamic

networks representing software at runtime appears to be more

similar in general structural terms to biological and social

networks than static software networks [11]. Naturally, the

application of network metrics to software developer networks

is expected to work well, given that these are instances of

social networks.

C. Network community analysis

Early work in social networks identified the relevance

of communities to the information flow along the network

through personal contacts [32]. Although no single definition

of community is accepted in all areas of research [33], for

simplicity it is defined in network studies in terms of its

topological features as a subgraph with higher link density

within the subgraph than external to it [34]. The assumption is

that members of the community have properties in common. In

a social context, the structural meaning of a community might

signify the physical or organisational proximity, such as being

neighbours, while the functional meaning would imply strong

interpersonal connections, such as friendship. Protein inter-

action networks (PIN), with proteins as nodes and chemical

interactions as links, can be also analysed in a meaningful way

by using community detection algorithms [16]. Communities

in a PIN are interpreted as modules corresponding to cellular

functions that fulfil differing biological roles. It has been

found that topological properties can correlate with functional

homogeneity [35] and the network structure of these PINs

allow cells to adapt to a changing environment.

Using the concept of link density to define community,

many different algorithms have been developed to find clusters

in the topology of the network. Community finding algorithms

place nodes into either hard clusters where membership is

of a binary nature or soft clusters where membership can

belong to more than one cluster and is characterised by a

degree of association. It has been shown that finding an exact

solution for the best network partition based on modularity,

a measure which evaluates the strength of clustering, is NP-

complete (believed to be NP-hard) [36] and all such algorithms

make accommodations in order to reduce the computational

difficulty.

The Louvain algorithm performs hard clustering based on

the Fast Greedy optimisation of modularity increases the value

of modularity, Q, by combining small communities into larger

ones, making it a very fast algorithm and has been shown

to exceed other community finding algorithms in efficiency

while maintaining good quality community detection [37]. An

example of soft clustering is the Infomap algorithm. Rather

than optimising modularity, it uses a random walker on the

network to explore the flow between components. The “map

equation” minimises the description length of the path of the

random walker and each node is assigned a strength to which

it is associated to each community [38]. A review that provides

an extensive list of community finding algorithms with detailed

descriptions and commentary was published by Fortunato [39].

While community finding and clustering are used almost

interchangeably, if a difference is to be made, clustering is

associated with the structural properties of the network down

to the microscopic level whereas community tends to refer to

the functional groupings that bind the members together.

Recent work in finding communities has focused on how

close the clusters are to the “ground truth” of the actual

communities in the network [40]. Benchmarks for algorithms

are small, real networks e.g. Zachary’s karate club [41] or large

synthetic networks featuring clusters intentionally constructed

as a part of the network synthesis. Large annotated networks

have only recently become available and no community find-

ing algorithm has been found to perform particularly well in

extracting the annotated groups from the topological structure

of large social networks such as Flickr or Orkut [40].

III. NETWORK COMMUNITY ALGORITHMS FOR SOFTWARE

ANALYSIS

Communities in networks are clusters of nodes that share

their connectivity patterns, for example they are connected to

similar sets of other nodes or they form relatively densely

connected sub-networks [20]–[22]. Such communities can

be identified in networks representing large-scale software

systems. In the context of social or biological systems com-

munities within network representations of the system often

have an associated specific functionality in the context of the

overall system, e.g. ethnic, professional and interest-driven

communities within social systems. In principle, we may

expect that communities in network representations of large-

sale software also have some associated meaning in terms of



shared function or shared design, for example. However, it is

not obvious to what extent this may hold actually true. The

research question that we address in this paper is the following:

RQ: To what extent can we associate a functional or design

meaning to communities of methods that can be determined

from the network representation of large-scale software having

as nodes the methods and edges the calls between methods?

From the perspective of software maintenance the actual

running part of the code is more relevant than the parts

of the code that are not practically used in the delivery of

commonly used features and functionalities. For example, if

requirements related to a feature or functionality are revised

the code that may require maintenance intervention is the part

of the code that delivers the relevant feature or functionality.

Consequently, analysing the dynamic network representation

of the running software with the aim to identify method

communities is likely to be practically more useful than the

analysis of the static network representation of the full code

of the software. Given that the execution trace that delivers

the chosen feature or functionality involves methods that are

required for this purpose, it is more likely that the method

communities that can be determined have some associated

functional nature.

Considering that we analyse dynamic network representa-

tion of the software system that corresponds to an execu-

tion trace that delivers a feature or functionality (or some

combination of these) in the first instance it is expected

that if method communities have an associated meaning this

is likely to be related to their functionality. For example,

methods belonging to a community may belong to the same

class, or may deal with the same kind of data, or may share

functionality in some other sense. However, it is also possible

that method communities get established according to shared

design features [7], [12], [23]. For example, GET methods may

share the pattern of connectivity to other methods on which

basis they may form a community within the network. It is also

possible that network communities may lift out some other

common aspect of the methods belonging to a community,

e.g. mapping on aspects of non-functional requirements.

Assuming that network communities of methods have some

associated meaning that makes sense in the context of the

software (e.g. design, functionality, etc.) it is expected that

communities that are associated with functionalities or de-

sign features of central importance within the software are

preserved across execution traces. Naturally, execution traces

will vary in terms of the list of methods invoked within the

trace, but there will be many methods shared between some

traces. The expectation of preservation of communities with

core importance means that the corresponding best matching

communities determined for different traces will share a large

number of methods (the majority of the methods within the

community) across traces. The best match may be calculated

using the Jaccard index [42], [43] or by using a comparison of

the communities through some indicators of functionality or

design features — for example by using the cosine similarity

[42], [43] of vectors of values indicating the presence of

functionality or design features among methods belonging to a

community. If the level of preservation is low for a given com-

munity across two execution traces this may indicate that the

respective communities in these traces relate to functionally

orthogonal features of the software.

If there is a valid association of these communities with

functional or design features (or some combination of these

or other aspects of the software) — i.e. the meaning of the

community in the context of the software — then the determi-

nation of network communities can be used for localisation of

methods for which the meaning of the community is relevant.

Depending on this meaning this may help the localisation of

features or functionalities within the software, or the dominant

design features, and so on. This in turn may support software

maintenance (e.g. localisation of methods that need revision

in response to changing requirements), design and implemen-

tation quality assessment (e.g. are the intended design features

indeed the dominant ones for the methods), or other revision,

assessment or validation of the software (e.g. the extent of

matching non-functional requirements).

Hard membership algorithms have a very clear expression

for belonging to a community. All boundary cases are placed

in the group in which they share the most links, much like all

methods belonging to only one class or a maximum likelihood

of the method belonging within a group of methods. By

restricting membership, the community labels gain improved

clarity with their leading features. It makes it easier to inter-

pret the common features of the method community and is

conceptually simpler.

Soft community boundaries recognise that some members

interact with other groups to a greater or lesser extent and

ascribe partial membership accordingly. Each method has

an associated distribution over the communities in which

it participates. Delving deeper into its full role within the

program, a complete picture is obtained at the expense of

conceptual complexity which can obscure the interpretation

of the community’s purpose. This can become computationally

intensive for large networks.

To summarise, we investigate the extent to which network

community algorithms applied to dynamic networks of meth-

ods and method calls can reveal useful information about

large-scale software systems that can help the maintenance

of these software. We expect that method communities that

are associated with functional or design features of core

importance are preserved across execution traces. We prefer

the use of hard membership algorithms for the community

detection as these reduce the ambiguity of interpretation of

the association of the meaning to communities and the inter-

pretation of anomalies that we may detect through the analysis

of method communities across a set of execution traces of the

software.

IV. RESULTS

We used three open source software development projects

to explore the usefulness of the determination of network

communities in networks of methods and method calls, these



 0.001

 0.01

 0.1

 10  100

F
re

qu
en

cy
, F

(s
)

 0.001

 0.01

 0.1

 10  100
 0.001

 0.01

 0.1

 10  100

 0.001

 0.01

 0.1

 10  100

F
re

qu
en

cy
, F

(s
)

 0.001

 0.01

 0.1

 10  100
 0.001

 0.01

 0.1

 10  100

 0.001

 0.01

 0.1

 10  100

F
re

qu
en

cy
, F

(s
)

cluster size, s

Level 1

 0.001

 0.01

 0.1

 10  100

cluster size, s

Level 2

 0.001

 0.01

 0.1

 10  100

cluster size, s

Level 3

Fig. 1: Community size v normalized frequency for ArgoUML (top), JabRef (middle) and muCommander (bottom) for Levels

1–3 of the hierarchy found using the Louvain algorithm

software projects are ArgoUML (version 0.22; 924 KLOC)

a UML modelling tool, JabRef (version 2.6; 148 KLOC) a

bibliographic reference manager, and muCommander (version

0.8.5; 85 KLOC) a file manager tool. These software projects

have been used previously in software maintenance research

for benchmarks and they have publicly available execution

traces for many usage scenarios. The definitions of the sce-

narios that generated the execution traces are described in [44].

The traces are available as XML files generated using the

Eclipse Test & Performance Tools Platform (TPTP) [45]. The

trace files were parsed to construct the network of methods

with edges representing calls between methods and weights

corresponding to the frequency of these calls in individual

execution traces. The methods were assigned one or two

stereotypes using the JStereoCode tool for Java [46] and the

results of this were reported previously in [12]. Each network

corresponding to an execution trace was analysed separately

to determine the the communities of methods in the network.

The links (edges) in the method call networks were

weighted by the number of times a method-to-method call

was observed by the number of times the caller method calls

the callee method during the execution trace. Note that we

ignore the direction of the calls between methods. The Louvain

algorithm was then used to find communities in the network.

In the context of the software network, methods are the nodes

i and j of the network, the method calls are the links between

nodes and the method call frequencies are used as the link

weights, represented in Equation 1 by the matrix elements

Aij .

The modularity function is the sum of weights of links

between communities, c, greater than that expected in a

randomly-wired network. The modularity, Q, (derived in [47])

is given by

Q =
1

2m

∑

ij

[

Aij −
kikj
2m

]

δ(ci, cj) (1)

where Aij represents the weight of the link between nodes



TABLE I: Average number of communities found at each level

of the hierarchy with level 0 being a community size of 1

level ArgoUML JabRef muCommander

0 2,682 ± 319 1,030 ± 227 2,695 ± 243

1 498 ± 36 108 ± 25 211 ± 17

2 88 ± 6 35 ± 6 46 ± 19

3 25 ± 2 21 ± 3 24 ± 23

i and j, ki =
∑

j Aij , kj =
∑

i Aij , m = 1

2

∑

ij Aij

and δ is a Kronecker delta function selecting only nodes in

the same community (1 when ci = cj , 0 otherwise where

node i belongs to community ci). Given that kikj/2m is the

probability of a link existing between i and j, a non-zero value

for Q represents a departure from the random linkages of an

equilibrium network. The Louvain algorithm iterates over 2

phases to find the maximum value for Q. It starts with each

node assigned its own community and then calculates, for each

neighbour j of node i, the gain in Q by moving i into a

community with j. Blondel et al. [37] took advantage of the

fact the expression of the difference in modularity is quick

to calculate, such that very large networks (> 106 nodes) are

only limited by the storage space required by the network, not

the computation involved. The difference is given by

(2)

∆Q =

[

∑

in +ki,in
2m

−

(∑

tot +ki
2m

)2
]

−

[

∑

in

2m
−

(∑

tot

2m

)2

−

(

ki
2m

)2
]

,

where
∑

in is the sum of the weights inside the community,
∑

tot is the sum of the weights of links to the community, ki
is the sum of the weights of the links to node i and ki,in is

the sum of the weights from i to nodes inside the community.

The Louvain algorithm is a hierarchical community finder.

It creates large communities by combining small groups that

are interlinked. It has been observed that the distribution of

community sizes displays a power law form, but unlike the

preferential attachment mechanism for the degree distribution

of a complex network, no reason for this behaviour has yet

been proposed [48]. This is shown in Fig. 1 at the lowest level

of the hierarchy. As communities are combined at higher levels

the plot trends to higher values on the right as the numbers of

small communities are depleted.

The algorithm found 4 levels of hierarchy in the dynamic

method networks that we analysed. The lowest level of the hi-

erarchy with the greatest number of communities was selected

for analysis, yielding between 47 and 582 communities found

in a network. A label was automatically generated for each

community by finding the term frequencies of the classname or

stereotype of each method in the community and normalising

them with the document frequencies to avoid uncommon terms

being undervalued in the label ordering.

To compare the communities found across method traces,

the Jaccard index was used to match the closest communities

between traces based on the list of method names. The

weighted descriptors in the labels were treated as values of

vector components in descriptor-space and the cosine simi-

larity between the two labels was calculated using the dot

product of the label vectors [49]. The similarity was then

plotted against the Jaccard index of the communities grouped

according to size with large groups having more than 10

members, as shown in Fig. 2. On the whole, the cosine

similarity of the labels is higher than the Jaccard index of

the communities indicated by the weight of data points lying

above the diagonal line, more so for large groups. This means

that if a community exists across method traces, indicated by

a high Jaccard index, the cosine similarity of the labels of the

two communities is also high, implying that the distribution

of class or method names is stable even if the community

membership varies to some extent.

In order to associate functionality to method communities

we analysed the class labels and method names of the methods

in each community. This analysis indicates that methods

belonging to a community perform together a functionality or

intended action of the software system. Usually some of the

class names represents closely related classes, but also usually

there are methods in the community, which belong to classes

further away in the class hierarchy. Overall, the communities

that we were able to determine represent functionalities of the

software that can be expected to map on functionalities implied

by requirements that apply to the software system. We note

that the analysis that leads to the association of functionality

to method communities involves subjective assessment of the

meaning of class and method names, however, this analysis

can be performed in a semi-automated manner by cataloguing

the class belonging of the involved methods (see above the

generation of class labels for communities).

Analysing the method stereotype labels associated with the

communities we found that in most cases it is not possible

to associate a dominant stereotype to the communities. In

the cases when this was possible for communities with more

than 10 methods, it was always the case that the Constructor

stereotype dominated the stereotype label of the community. In

general we found that communities that are preserved across

traces (i.e. indicated by high Jaccard index for the matched

communities) have a stable distribution over stereotypes even

if the list of methods belonging to the communities changes

to some extent from one execution trace to another execution

trace. The lack of dominant method stereotype association to

most communities indicates that the delivery of the function-

ality that can be associated to method communities requires

in most cases a mix of method stereotypes. Exceptions from

this are communities for which the associated functionality

is the creation of functionally related objects in which case

the community may have the Constructor stereotype as the

associated dominant method stereotype.

To measure cross-trace community preservation, commu-

nities were matched across method traces using the highest

Jaccard Index found. If the Jaccard Index exceeded a threshold

of 0.5, a link in a preservation chain was recorded. For those

method traces falling below that threshold, up to 5 other



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
gr

ou
p 

la
be

ls

Jaccard Index between group members

Fig. 2: A plot of label similarity against the Jaccard Index of

the community membership for small groups on the left and

large groups on the right, classname labels above, stereotype

labels below, ArgoUML(top), JabRef (middle), muComman-

der (bottom)

trace comparisons were examined in order to keep the chain

from too early ending. Fig. 3 shows the joint distribution

of chain length and community size for each considered

TABLE II: Statistics on persistence for each software project

where group sizes are divided into Large(> 10 methods) and

Small, the top block refers to the proportion of those groups

that have a chain length above the threshold and their mean

chain length divided by the maximum number possible and the

bottom block refers to the proportion of groups with a chain

length below the threshold and their normalised mean chain

length.

project group size threshold proportion norm. length

ArgoUML Large 70 0.23 0.98
ArgoUML Small 70 0.46 0.97

JabRef Large 30 0.89 0.94
JabRef Small 30 0.47 0.92

muCommander Large 70 0.44 0.97
muCommander Small 70 0.47 0.96

ArgoUML Large 30 0.77 0.09
ArgoUML Small 30 0.46 0.07

JabRef Large 12 0.11 0.21
JabRef Small 12 0.45 0.11

muCommander Large 30 0.38 0.09
muCommander Small 30 0.40 0.07

software project. The cross-trace community preservation anal-

ysis shows that most communities have either short or long

preservation chains across execution traces, and relatively few

communities have a mid-size preservation chain. The results

(see also Table II) show that the preservation pattern of

method communities differs across the three software projects.

In JabRef, a large part of large communities are preserved,

in ArgoUML, the larger part of large communities are not

preserved and in muCommander, more large communities are

preserved than not preserved across traces. In terms of small

communities, the three software projects behave similarly

having almost half of the small method communities preserved

and almost half not preserved across all execution traces.

V. DISCUSSION

The community analysis of dynamic networks of methods

and method calls identifies methods that contribute to the

delivery of a certain functionality or functional feature of the

analysed software. As we already suggested, this analysis can

support the identification of methods that need changing in

response to changing functional requirements, or methods that

are involved in the delivery of undesired functional features or

bugs. We note that the methods belonging to a community do

not necessarily belong to the same class, but they all are likely

to contribute to the delivery of the same functional feature of

the software.

The method communities that we found do not associate

with a particular design feature of the methods (i.e. in terms

of method prototypes [7], [12], [23]). Thus the considered

approach cannot be used to detect design commonalities across

methods belonging to network communities. However, the

distribution over method stereotypes of method communities

is stable across execution traces, even as the list of methods

belonging to matching communities changes to some extent.

Thus it appears that the delivery of software functionality

by communities of methods is associated with a particular



 1

 10

 100

 1000

 10  20  30  40  50  60  70  80  90

A
ve

ra
ge

 c
om

m
un

ity
 s

iz
e

Chain length

ArgoUML

 1

 10

 100

 5  10  15  20  25  30  35  40

A
ve

ra
ge

 c
om

m
un

ity
 s

iz
e

Chain length

JabRef

 1

 10

 100

 1000

 10  20  30  40  50  60  70  80  90

A
ve

ra
ge

 c
om

m
un

ity
 s

iz
e

Chain length

muCommander

Fig. 3: Average community size versus persistence chain

lengths for ArgoUML, JabRef and muCommander

distribution of design features. This property of network

communities of methods can be used to detect undesired

deviations of the delivery of software functionalities from the

well established and valid way of delivering it, following a

revision of the software. Alternatively it may also be used to

quantify the change from one version to another version of

the software with respect to the delivery of a given software

functionality (e.g. in response to modified requirements).

Some but not all method communities are preserved across

execution traces. The communities with high preservation

across traces are likely to deliver core functional features

of the software, while those which are less preserved are

likely to deliver more specialist features. This implies that

revisions of methods that belong to highly preserved method

communities might impact the delivery of core functionali-

ties of the software while revisions of methods involved in

less preserved method communities are likely to have less

wide ranging potential impact. This may help in prioritising

checking and testing efforts during extensive revisions of the

software system.

Naturally, our results invite the extension of this work

to the use of soft membership based community detection

algorithms. As we noted the disadvantage of this approach

is the ambiguity of the results, however on the other side this

approach may provide a finer grained picture of how methods

collaborate to deliver functional features of the software. The

use of soft membership methods is also much more computa-

tionally intensive, which makes the analysis of large volumes

of network data slow. The overlapping communities may

make the interpretation of functional meaning associated with

communities less clear. At the same time the measurement

of community preservation across traces may work as a more

sensitive measure of design and implementation problems than

the same measure applied to non-overlapping communities.

VI. LIMITATIONS OF VALIDITY

The software systems that we analysed are modestly large

(only one of them is around 1 MLOC, the other two are

smaller). All three software systems that we analysed are open

source developed by a community of developers. These mean

that software developed in a stricter industrial context may

behave to some extent differently in terms of method commu-

nity analysis, although in principle we expect that our results

will hold in the case of such software as well. In the case

of smaller scale software the results of method community

analysis may be different from those presented here, given that

small software may be designed and implemented in a more

controlled and more optimal way than large-scale software

developed over long time by multiple teams.

As we already noted the use of hard membership based com-

munity detection algorithms means that methods that could

have been allocated to multiple communities get allocated to

the community to which they mostly belong. On one side,

this make the interpretation of the community detection more

clear, but on the other side ignores the multiple community

affiliations of methods. The choice of the community detection

algorithm also has an impact on the detected communities.

Here we used a well established algorithm which gives very

consistent community detection. Other algorithms may lead

to detection of different method communities with potentially

different associated meaning.

To build the dynamic networks of methods and method calls

it is required to do dynamic analysis instrumentation of the



software. This may slow down the software although with

current fast machines this is likely to be not very significant.

At the same time, the instrumentation in genera requires access

to the code, so this kind of analysis can be applied to software

for which the code is accessible.

The association of functionality to network communities is

based on interpretation of the results. This may input some

subjective judgement in the case of large communities with

methods that belong to a number of classes and deliver a

number of elementary functional features. In the case of

smaller communities this is usually not a problem.

VII. CONCLUSIONS

In this paper we investigated the usefulness of network

community detection algorithms in the context of software

maintenance and the use of dynamic networks representing

methods as nodes and calls between methods as edges. We

considered hard community detection which assigns each

method to only one community. We applied this analysis to

three open source software projects (ArgoUML, JabRef, and

muCommander) for which dynamic analysis data is publicly

available. The results show that the communities that we can

detect have an associated function that can be determined

by analysing the class names, method names, and method

contents. We also found that many communities that we detect

persist over many execution traces indicating that these com-

munities of methods deliver some core functionality within

the software. At the same time we found no clear association

of method stereotypes to communities, however, the method

stereotype signature (i.e. distribution over method stereotypes)

of the persistent communities remains unchanged even as the

list of methods changes to some extent across the traces.

Our results show that the community detection applied to

dynamic networks of methods with edges representing calls

between methods, is able to group together methods belonging

to multiple classes such that the methods in the community

have a functional association. This means that this analysis

can identify in automated manner functionally related methods

across classes and these method communities then can be used

to map onto functionalities of the software that correspond to

requirements. Turning this around this approach can help to

map requirements onto functional features of the software that

are realised by communities of methods. This can be useful

in the context of design and implementation of changes of the

software in response to changes in the requirements for the

software.

The determination of method communities and the analysis

of the preservation of these across execution traces may

also help the assessment of the software quality. The pos-

sible change of the method stereotype signature of method

communities as the software evolves through versions may

indicate stricter or more relaxed design guidelines and may

also indicate the extent of revision of methods delivering

the community associated functionality between versions. The

reduction in the extent of preservation of method commu-

nities across traces may indicate functional fragmentation of

the software and potentially also functional overlap between

method communities, which might be undesirable features for

the software that require quality improving intervention.

We intend to extend in the future this research by consider-

ing a range of hard and soft community detection algorithms

comparing the communities that they detect and the interpre-

tation of these in functional or design or other terms relevant

for the understanding and maintenance of the software. We

find exciting the challenge to look for or develop community

detection algorithms that are able to pick our communities

with certain functional or design features. We find also very

intriguing the comparison between the interpretation of the

results of hard and soft community detection algorithms and

the assessment of the benefits of these approaches and trade-

offs between the benefits and costs of the application of them

to method networks. We expect that this research will lead

to interesting new results and potentially also to new tools

that can support effectively the understanding of large-scale

software and the maintenance of such software systems.

REFERENCES

[1] G. Goth, “Ultralarge systems: Redefining software engineering?” Soft-

ware, IEEE, vol. 25, no. 3, pp. 91–94, 2008.

[2] K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and mainte-
nance of large-scale multi-language software applications,” in Software

Maintenance, 2006. ICSM’06. 22nd IEEE International Conference on.
IEEE, 2006, pp. 497–500.

[3] D. Li, “Complexity measurement of large-scale software system based
on complex network,” Journal of Networks, vol. 9, no. 5, pp. 1317–1324,
2014.

[4] “The chromium projects,” Jan 2015. [Online]. Available:
http://www.chromium.org

[5] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Using metrics to identify
design patterns in object-oriented software,” in Software Metrics Sym-

posium, 1998. Metrics 1998. Proceedings. Fifth International. IEEE,
1998, pp. 23–34.

[6] J. K. Ng, Y. Guéhéneuc, and G. Antoniol, “Identification of behavioural
and creational design motifs through dynamic analysis,” Journal of

Software Maintenance and Evolution: Research and Practice, vol. 22,
no. 8, pp. 597–627, 2010.

[7] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification
of class stereotypes,” in Software Maintenance (ICSM), 2010 IEEE

International Conference on. IEEE, 2010, pp. 1–10.

[8] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” Software Engineering, IEEE Transactions on, vol. 35,
no. 5, pp. 684–702, 2009.

[9] C. R. Myers, “Software systems as complex networks: Structure, func-
tion, and evolvability of software collaboration graphs,” Physical Review

E, vol. 68, no. 4, p. 046116, 2003.

[10] L. Wang, Z. Wang, C. Yang, L. Zhang, and Q. Ye, “Linux kernels as
complex networks: A novel method to study evolution,” in Software

Maintenance, 2009. ICSM 2009. IEEE International Conference on.
IEEE, 2009, pp. 41–50.

[11] A. Pakhira and P. Andras, “Using network analysis metrics to discover
functionally important methods in large-scale software systems,” in
Emerging Trends in Software Metrics (WETSoM), 2012 3rd International

Workshop on. IEEE, 2012, pp. 70–76.

[12] P. Andras, A. Pakhira, L. Moreno, and A. Marcus, “A measure to assess
the behavior of method stereotypes in object-oriented software,” in
Emerging Trends in Software Metrics (WETSoM), 2013 4th International

Workshop on. IEEE, 2013, pp. 7–13.

[13] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th international

conference on Software engineering. ACM, 2008, pp. 531–540.



[14] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” Software Engineering, IEEE Transactions on,
vol. 37, no. 6, pp. 772–787, 2011.

[15] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509 –512, Oct 1999.

[16] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The
large-scale organization of metabolic networks,” Nature, vol. 407, no.
6804, pp. 651–654, 2000.

[17] M. Pohl and S. Diehl, “What dynamic network metrics can tell us about
developer roles,” in Proceedings of the 2008 international workshop on

Cooperative and human aspects of software engineering. ACM, 2008,
pp. 81–84.

[18] R. Premraj and K. Herzig, “Network versus code metrics to predict
defects: A replication study,” in Empirical Software Engineering and

Measurement (ESEM), 2011 International Symposium on. IEEE, 2011,
pp. 215–224.

[19] Y. Qu, Q. Zheng, T. Liu, J. Li, and X. Guan, “In-depth measurement
and analysis on densification power law of software execution,” in
Proceedings of the 5th International Workshop on Emerging Trends in

Software Metrics. ACM, 2014, pp. 55–58.
[20] M. E. J. Newman, “Fast algorithm for detecting community structure

in networks,” Physical Review E, vol. 69, no. 6, p. 066133, Jun 2004,
arXiv:cond-mat/0309508.

[21] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proceedings of the

19th international conference on World wide web. ACM, 2010, pp.
631–640.

[22] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences

of the United States of America, vol. 99, no. 12, pp. 7821 –7826, Jun
2002.

[23] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse engineering
method stereotypes,” in Software Maintenance, 2006. ICSM’06. 22nd

IEEE International Conference on. IEEE, 2006, pp. 24–34.
[24] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in

WODA 2003: ICSE Workshop on Dynamic Analysis, 2003, pp. 24–27.
[25] F. Asadi, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A heuristic-

based approach to identify concepts in execution traces,” in 2010 14th

European Conference on Software Maintenance and Reengineering

(CSMR), Mar 2010, pp. 31–40.
[26] S. Medini, P. Galinier, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol,

“A fast algorithm to locate concepts in execution traces,” in Search

Based Software Engineering, ser. Lecture Notes in Computer Science,
M. B. Cohen and M. . Cinnide, Eds. Springer Berlin Heidelberg, 2011,
no. 6956, pp. 252–266.

[27] L. Alawneh and A. Hamou-Lhadj, “Identifying computational phases
from inter-process communication traces of HPC applications,” in
2012 IEEE 20th International Conference on Program Comprehension

(ICPC), Jun 2012, pp. 133–142.
[28] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6, pp.
476–493, 1994.

[29] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling mea-
surement for object-oriented software,” Software Engineering, IEEE

Transactions on, vol. 30, no. 8, pp. 491–506, 2004.
[30] I. Turnu, G. Concas, M. Marchesi, and R. Tonelli, “The fractal dimen-

sion metric and its use to assess object-oriented software quality,” in
Proceedings of the 2nd International Workshop on Emerging Trends in

Software Metrics. ACM, 2011, pp. 69–74.
[31] K.-K. Yan, G. Fang, N. Bhardwaj, R. P. Alexander, and M. Gerstein,

“Comparing genomes to computer operating systems in terms of the
topology and evolution of their regulatory control networks,” Proceed-

ings of the National Academy of Sciences, vol. 107, no. 20, pp. 9186–
9191, 2010.

[32] M. S. Granovetter, “The strength of weak ties,” American Journal of

Sociology, vol. 78, no. 6, pp. 1360–1380, May 1973.
[33] L. Danon, J. Duch, A. Arenas, and A. Dı́az-Guilera, “Community struc-

ture identification,” in Large scale structure and dynamics of complex

networks: from information technology to finance and natural science,
ser. Complex Systems and Interdisciplinary Science, G. Caldarelli and
A. Vespignani, Eds. World Scientific, 2007, vol. 2.

[34] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, Jun 2005.

[35] A. C. Lewis, N. S. Jones, M. A. Porter, and C. M. Deane, “The function
of communities in protein interaction networks at multiple scales,” BMC

Systems Biology, vol. 4, no. 1, p. 100, Jul 2010.
[36] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer,

Z. Nikoloski, and D. Wagner, “Maximizing modularity is hard,”
arXiv:physics/0608255, Aug 2006, arXiv: physics/0608255.

[37] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, Oct
2008.

[38] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National

Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, Jan 2008.
[39] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.

486, no. 35, pp. 75–174, Feb 2010.
[40] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in

networks: structural clusters versus ground truth,” arXiv:1406.0146

[physics, q-bio], Jun 2014.
[41] W. Zachary, “An information flow model for conflict and fission in small

groups,” Journal of anthropological research, vol. 33, no. 4, pp. 452–
473, 1977.

[42] L. Leydesdorff, “On the normalization and visualization of author
cocitation data: Salton’s cosine versus the jaccard index,” Journal of

the American Society for Information Science and Technology, vol. 59,
no. 1, pp. 77–85, 2008.

[43] L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters,
R. Rousseau, and A. Vanhoutte, “Similarity measures in scientometric
research: the jaccard index versus salton’s cosine formula,” Information

Processing & Management, vol. 25, no. 3, pp. 315–318, 1989.
[44] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location

in source code: a taxonomy and survey,” Journal of Software: Evolution

and Process, vol. 25, no. 1, pp. 53–95, Jan 2013.
[45] “Eclipse test & performance tools platform project.” [Online]. Available:

http://eclipse.org/tptp/
[46] L. Moreno and A. Marcus, “JStereoCode: automatically identifying

method and class stereotypes in java code,” in Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineer-

ing. ACM, 2012, pp. 358–361.
[47] M. E. J. Newman, “Analysis of weighted networks,” Physical Review

E, vol. 70, no. 5, p. 056131, Nov 2004.
[48] S. Battiston, M. Catanzaro, and G. Caldarelli, “Social and financial

networks,” in Large scale structure and dynamics of complex net-

works: from information technology to finance and natural science,
ser. Complex Systems and Interdisciplinary Science, G. Caldarelli and
A. Vespignani, Eds. World Scientific, 2007, vol. 2.

[49] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-

tion retrieval. Cambridge University Press, 2008.


