

This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, noncommercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. **Electronic Appendices**

Table of contents

E-Appendix A: Tables	7
A1 Prognostic factors in HF	7
A2 Validation of HF prognostic models	8
A3 Causal criteria	9
A4 Final database search results	10
A5 Data extracted from each article that was included in the final review	12
A6a Formula for combining the mean and standard deviation of groups	13
A6b Alternative formula for combining the mean and standard deviation of groups	13
A7a QUIPS Domains	13
A7b Objective information assessed during quality appraisal and supplementary criteria	14
A8 Study characteristics: prognostic factors (chronic disease focus) studies	15
A9 Study characteristics: prognostic factors (general) studies	22
A10 Study characteristics of prognostic model studies	27
A11 Study Risk of bias assessment	31
A11 cont'd Study Risk of bias assessment: additional assessments for prognostic model studies	
A12 Sensitivity analysis summary: Diabetes comorbidity	
A13 Sensitivity analysis summary: CKD comorbidity	
A14 Heart failure selection code set	
A15 Exclusion criteria for CPRD heart failure cohort	40
A16 Baseline characteristics of the sample comparing the pre-match sample with the matched sample: mortality	41
A17 Baseline characteristics of the sample comparing the pre-match sample with the matched sample: first hospital admission	42

A18 COPD drug severity framework; extraction algorithms	43
A19 Missing data	45
A20 Exploration of missing data by mortality outcome	46
A21 Exploration of missing data by hospital admission outcome	47
A22 Pre and post imputed data: mortality outcome	48
A23 Pre and post imputed data: hospital admission linked sub-sample	49
A24 Summary of goodness of fit measures	
A25 Baseline characteristics of the HF sample by mortality outcome in short, medium and long follow up periods	51
A26 Baseline characteristics of the HF sample by mortality outcome in two temporal periods of HF diagnosis (pre and post April 2006)	53
A27 Time-matched patient characteristics of the matched sample by comorbid COPD status	54
A28 Time-matched general characteristics of the matched sample by comorbid diabetes mellitus status	55
A29 Time-matched general characteristics of the matched sample by comorbid CKD status Er	ror! Bookmark not defined.
A30 Baseline Characteristics of the HF-HA sample by first hospital admission outcome in short, medium and long follow up periods	57
A31 Time-matched general characteristics of the matched hospital admission linked sample by comorbid COPD status	59
A32 Time-matched general characteristics of the matched sample by comorbid DM status	60
A33 Time-matched general characteristics of the matched sample by comorbid CKD status	61
A34 Unadjusted associations of each comorbidity with mortality by status (present or not) and then in strata of the potential confounders	62
A35 Adjusted comorbidity associations with all-cause mortality by each potential confounder	63
A36 Summary of linearity investigations for continuous variables and mortality	65
A37 Unadjusted associations of each comorbidity by status (present or not) with first hospital admission and then in strata of the potential confo	ounders66
A38 Adjusted comorbidity associations with first hospital admission by each potential confounder	67
A39 Summary of linearity investigations for continuous variables with risk of first hospital admission	69
E-Appendix B: Figures	70

B1 Galbraith Plot of studies investigating all-cause mortality risk associated with comorbid DM in HF	70
B2 Funnel plot for adjusted all-cause mortality risk associated with comorbid DM with pseudo 95% confidence intervals	70
B3 All-cause mortality associated with comorbid DM: prognostic factor (general)	71
B4 All-cause mortality associated with comorbid DM: prognostic model studies	71
B5 All-cause hospital admission risk associated with comorbid DM in HF	72
B6 Galbraith Plot of studies investigating all-cause mortality risk associated with comorbid COPD in HF	72
B7 Funnel plot for adjusted all-cause mortality risk associated with comorbid COPD with pseudo 95% confidence intervals	73
B8 All-cause mortality associated with comorbid COPD: prognostic factor (general) and prognostic model studies	73
B9 Galbraith Plot of studies investigating all-cause mortality risk associated with comorbid RD	74
B10 Funnel plot for adjusted all-cause mortality risk associated with any RD with pseudo 95% confidence intervals	74
B11 All-cause mortality associated with comorbid RD: prognostic factor (general) studies	75
B12 All-cause mortality associated with comorbid RD: prognostic model studies	75
B13 All-cause hospital admission associated with comorbid RD: prognostic factor (general) and model studies	75
B14 Comorbidities at baseline by mortality outcome	76
B15 Comorbidity combinations at baseline by mortality outcome	76
B16 Comorbidities at baseline by first hospital admission outcome	77
B17 Comorbidity combinations at baseline by event status	77
E-Appendix C: Statistical output	78
C1 Combined adjusted all-cause mortality risk associated with comorbid diabetes	
C2 Sensitivity analysis removing From et al (2006) (combined adjusted all-cause mortality risk associated with diabetes)	
C3 Sensitivity analysis removing Gustafsson et al (2004) (combined adjusted all-cause mortality risk associated with diabetes)	79
C4 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid diabetes)	79
C5 Sensitivity analysis removing Berry et al (2008) and Burger et al (2005) (combined adjusted all-cause mortality risk associated with comorbid diab	etes)80

C6 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid diabetes)	80
C7 Combined adjusted all-cause mortality risk associated with comorbid COPD	81
C8 Sensitivity analysis removing Lainscak (2009) (combined adjusted all-cause mortality risk associated with comorbid COPD)	81
C9 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid COPD)	82
C10 Combined adjusted all-cause mortality risk associated with any renal dysfunction	82
C11 Sensitivity analysis removing Campbell et al (2009) (combined adjusted all-cause mortality risk associated with comorbid RD)	83
C12 Sensitivity analysis removing Ismailov et al (2007) (combined adjusted all-cause mortality risk associated with comorbid RD)	83
C13 Sensitivity analysis removing Campbell et al (2009) and Ismailov et al (2007) (combined adjusted all-cause mortality risk associated with comorbid	RD)84
C14 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid COPD).	84
C15 Correlation matrix for covariates for mortality outcome	85
C16 Correlation matrix for centred covariates with quadratic extensions	86
C17 Correlation matrix of variables in hospital admission linked HF cohort	87
C18 Correlation matrix for centred covariates with quadratic extensions; hospital admission outcome	88
E-Appendix D: Protocols	89
D1 Systematic review: PROSPERO protocol	89
D2 CPRD scientific protocol	
E-Appendix E: Miscellaneous	112
E1 Cochrane prognosis methods group letter	112
E2 Medline HF filter	112
E3 Heart failure string: database search results	113
E4 Heart failure search string	115
E5a Updated Haynes filter for MEDLINE	116
E5b Prognosis search filter for EMBASE	116

E5c Prognosis search filter for CINAHL	116
E6 Outcomes search string	117
E7 Inter-rater reliability assessment using Cohen's kappa	118
E8 Frequency of subject use in case control analyses	119
E9a Chronic obstructive pulmonary disease search strategy	120
E9b Diabetes mellitus search strategy	120
E9c Chronic kidney disease search strategy	120
E10 Chronic Obstructive Pulmonary Disease Code set	121
E11 Diabetes Mellitus Code set	125
E12 Chronic Kidney Disease Code set	145
E13 Comorbidity and covariate CPRD physiological data conversion and cleaning	152
E14 Exploration of continuous variables in the CPRD mortality sample	153
E15 Exploration of continuous variables in the CPRD hospital admission sample	156
E16 Testing the linearity assumption; continuous variable and all-cause mortality	160
E17 Testing the linearity assumption; continuous variable and first hospital admission	165
E18 Quality of life outcome study 1: HF and OA publication on QoL	169
E19 Quality of life outcome study 2: 2C_HF prospective hospital investigation	169
E20 Quality of life outcome study 3: Swedish HF registry study	183
E20 Trials acronyms	195
References	

E-Appendix A: Tables

A1 Prognostic factors in HF(1,2)

Prognostic factors	Risk increasing factor
Environment	
Health care provision	Hospital admission Within hospital care, non specialist cardiology care
Treatments	No beta-blocker and/or ACEi
Deprivation	More deprived
Host	1
Gender	Male
Age	Older age
Smoking	Current
BMI	Lower BMI
Cholesterol	Lower cholesterol
Functional class	Higher NYHA class
Exercise capacity	Lower peak exercise VO ₂ Shorter distance in 6 minute walking test
Comorbidities	Chronic diseases (e.g. diabetes, COPD, renal disease, cardiovascular disease) and conditions (e.g. cachexia, anaemia, insulin resistance, depression)
Quality of life (QoL)	Patient reported lower quality of Life
HF Disease	
Aetiology	Ischemic heart disease Coronary artery disease
Cardiothoracic ratio	Higher ratio
Ejection fraction (EF)	In LVSD, lower EF
Hemodynamic variables	Reduced cardiac output Higher LV filling pressure or systemic vascular resistance Lower cardiac index Higher right atrial pressure
Neurohormones and blood chemistry	Higher plasma norepinephrine Low sodium Higher renin, aldosterone or angiotensin II Higher atrial natriuretic peptide Higher brain natriuretic factor, N-terminal pro-B-type natriuretic peptide Higher endothelin Higher cytokines (e.g beta interleukin-1, interleukin-6, C-reactive protein, alpha tumor necrosis factor) Higher uric acid
Arrhythmias	VT and AF
Heat rate variability	Reduced variability

A2 Validation of HF prognostic models

Model	Variables	Outcome and tool	Validation	Discrimination and calibration
HF survival score	Ischemic cardiomyopathy*	Outcome: Death OR urgent	8 Independent cohorts (2240	Discrimination: C-Index 0.56-0.79. Lower
	QRS>120ms*	transplant/ ventricular assist device	patients)	discrimination was found in more recent
	LVEF		Mean age 51-70	studies and where a higher percentage of
	HR	Tool: Score for three risk categories	Men 65-82%	beta blockers was prescribed or
	Mean blood pressure		Mean LVEF 20-30%	Implantable cardioverter defibrillator
	Peak oxygen concentration			implanted (more contemporary
	Sodium			interventions).
				Calibration: overestimated survival by
				20% in low risk group in 1 study
Seattle HF model	Age, LVEF, NYHA, Systolic blood pressure,	Outcome: Death OR urgent	14 independent cohorts (16,057	Discrimination: 0.63-0.81 (<0.7 in 50%).
	Diuretic dose (weight adjusted),	transplant/ ventricular assist device	patients in total)	Lower discrimination where more ICD
	Lymphocyte count	Taali Oantinuun nieluseene and	Mean age 52-77	were implanted
	Haemoglobin, Serum sodium	1001: Continuous risk score and		Calibration, High correlation between
	Icohomic cardiomycrathy* OPS>120ms*	predicted survival at 1, 2 and 5 years	Weall LVEF 17-45%	characteristic and predicted value (P
	Poto blockors* ACEi* ADEs* Detassium			coefficient (0.07) Overectimated curvival
	sparing diuratic* Statins* Allonurinol*			by 2% at one year and 10% at 5 years
Frankenstein et al's	Brain natriuretic pentide*	Outcome: All-cause mortality	1 independent cohort (676 natients)	Discrimination: 0.66-0.68
Model	6-minute walk test (adjusted for gender and		Mean age 74	
	beta-blocker use)*	Tool: Three risk categories	Men 76%	Calibration: not reported
PACE risk score (for	Peripheral vascular disease*	Outcome: all-cause mortality	1 independent (1812 patients) with	Discrimination: 0.69
ICD patients)	Age>70yrs*		ICD, Mean age 64	
	Creatinine>2mg/dL*, LVEF<20%*	Tool: Continuous risk score from 1-5	Men 77%, Mean LVEF 31-58%	Calibration: not reported
SHOCK Predictors	Age>75yrs*	Outcome:	1 independent ICD cohort (27,893	Discrimination: 0.74
	NYHA>class II*		patients)	Calibration: High correlation between
	Atrial fibrillation*, LVEF<20%*	Tool: Continuous risk score from 0-	Age: 39% >75yrs	observed and predicted value (R-
	COPD*, Diabetes*	400 and estimates 1,2,3 and 4 year	Men 75%	coefficient 0.89). Goodness of fit
		survival	31% LVEF <20%	inadequate at 2 and 3 years

Adapted from Alba et al (2013)(3)

A3 Causal criteria

Criterion	Meaning(4)	Considerations(5)
Strength	The magnitude of association between the exposure and effect.	The strength depends on the prevalence of other factors and can be confounded
Consistency	Whether the association is repeatedly observed by different persons and places	Causal relations have exceptions
Specificity	The exposure is related to a single outcome	There can have many effects from one cause
Temporality	The exposure needs to precede the effect	This can be difficult to measure
Biologic gradient	Changes to the exposure correspond to changes in the associated risk	This can be confounded and is often complicated by threshold effects
Plausibility	The possible causative relationship is biologically plausible	Subjective
Coherence	The possible causative relationship is coherent with general known facts or other population evidence	Similar to consistency and plausibility. Subjective and non-precise
Experimental evidence	The observed association is manipulated by experiment that assumes the causative relationship	Not always possible
Analogy	Other similar exposures produce similar outcomes	There are a lot of analogies

A4 Final database search results

No.	Search	MEDLINE	EMBASE	CINAHL
	[Date of search]	31/1/13	31/1/13	4/2/13
	POPULATION (title)			
1.	Heart failure	41834	57644	12229
2.	"Ventricular dysfunction"	3238	4278	698
3.	"Cardiac edema"	138	105	1
4.	"Heart edema"	1	1	0
5.	Cardiomyopathy	22000	28147	3514
6.	"Cardiac failure"	1957	2358	157
7.	"Myocardial failure"	137	145	8
8.	"Heart decompensation"	45	39	1
9.	"Ventric* failure"	4447	1044	91
10.	"Ventricular ejection fraction"	1235	1690	282
11.	"Cor Pulmonale"	2446	2339	67
12.	"diastolic dysfunction"	1340	2102	339
13.	"systolic dysfunction"	829	1239	303
14.	"congestive heart disease"	18	27	2
15	1–14 combined using OR	74636	98484	17178
	OUTCOMES (title/abstract)			
6	Mortalit*	421532	528340	60044
7	Death*	494668	604841	61670
8	Survival	531947	662909	40447
9	Admission*	124512	168010	26836
10	Readmission*	8561	11852	2780
11	Hospitalization* OR rehospitalization*	76726	103280	17013
12	"guality of life"	126212		
13	health	980189	180676	41997
14	"Kansas City Cardiomyopathy Questionnaire"	114	1165590	397359
15	KCCQ	81	186	46
16	"Minnesota Living with Heart Failure Questionnaire"	0	164	27
17	"Short form"	14951	512	107
18	Sf-36	11460	18119	4843
19	Sf36	663	15800	3643
20	Sf12	120	1286	3643
21	Sf-12	1769	275	606

22 23	EuroQol EQ-5D			1827 2309		2561 2495 2677	606 453 712
24 25	"Heart Failure Symptom Scale" 6-24 combined using OR			0 2280022		3 2785858	1 557577
No.	Medline Search Date of search	Hits	EMBASE Search		Hits	CINAHL Search	Hits
26.	PROGNOSIS Predict[tiab]	177260	exp disease course/		1795632	TX "Disease course"	1735
27.	predictive value of tests[mh]	125552	risk*.mp		1978039	TX risk*	584679
28.	scor*[tiab]	467982	diagnos*.mp		2923603	TX diagnos*	688781
29.	observ*[tiab]	2261478	follow-up.mp		976807	TX follow-up	168955
30.	observer variation[mh]	28557	ep.fs		890615	MH "Epidemiology+"	332812
31.	"Stratification"	26322	outcome.tw		697229	TX outcome	230552
32.	"Roc curve"[Mesh]	24246					
33.	"Discrimination"	94561					
34.	"Discriminate"	36680					
35.	"c-statistic"	1288					
36.	"c statistic"	1288					
37.	"Area under the curve"	17482					
38.	"AUC"	30299					
39.	"Calibration"	56013					
40	"Indices"	104700					
41	"Algorithm"	88202					
42	"Multivariable"	24530					
43	Risk*[tiab]	1166759					
44	Hazard[tiab]	64704					
45	HR[tiab]	138588					
46	25–45 combined (OR)	4166006	26-31 combined (OR)		6687119	26-31 combined (OR)	1312829

COMBINED SEARCHES	MEDLINE	EMBASE	CINAHL
15 AND 24 AND 46	10616	23228	3397
LIMITED SEARCHES*	6927	7789	2142
*Medline: Human, Age>19, 1990>	*Embase: Human, Age>18, 1990>		*Cinahl: Adults, 1990>

A5 Data extracted from each article that was included in the final review

Data	Description
Study source - Author - Year	First author surname Year of publication
Methods -Design -Trial/Database -Inclusion -Exclusion -Period -Follow-up length	Case-control, cohort, RCT, Other Name of trial or database used Any important study inclusion criteria Any important study exclusion criteria Date of recruitment period Total, mean (SD)
Participants -Clinical definition - Setting -Sample size -Centres/hospitals -Age -Gender -Systolic/LVF -Ethnicity -Ejection fraction -NYHA Stages -Country	HF study definition used Community or hospital Number of people in the study Number of different centres/hospitals included Mean (SD) or median (range) % male % participants with EF<40% or study defined point) % caucasian Mean (SD) or median (range) % with stage 3 and 4 HF Country of residence
Exposure -Chronic Disease -Study indicator -Unit of measurement -No. included in study -Prevalence	Name of chronic disease included Type, severity, severity change measure Study definition of chronic disease factor Number of participants with the disease % of participants with the disease
Outcomes Outcome definition Primary or secondary outcome	Mortality, Hospital admission, Readmission, Health All-cause or health status measure Primary or secondary study outcome
Results - Participants included in the analysis -Survival -Number outcome -Percentage outcome -Number diseased who died -Percentage diseased who died -Percentage diseased who died -Rate - Effect type -Unadjusted Effect estimate -P value -Significance level -Adjusted Effect estimate -P value -Significance level -C statistic Analysis	Number, Mean (SD) or median (range) Number of participants with the outcome Percentage of participants with the outcome Number of diseased participants with the outcome Percentage of diseased participants with the outcome Number with outcome per person years Odds, hazard, risk ratio or mean difference Effect and confidence interval Significance level of confidence interval Effect and confidence interval Significance level of confidence interval C statistic for model studies
Study focus Statistical technique Other factors adjusted for in the analysis	Chronic disease focus, General predictor, prognostic model Logistic, linear, proportional hazards regression Yes or no

A6a Formula for combining the mean and standard deviation of groups (Adapted from Cochrane handbook)(6).

	Group 1 (e.g. males)	Group 2 (e.g. females)	Combined groups
Sample size	N1	N ₂	N1 + N2
Mean	M1	M2	$\frac{N_1 M_1 + N_2 M_2}{N_1 + N_2}$
SD	SD1	SD ₂	$\sqrt{(N_1 - 1)SD1^2} + (N_2 - 1)SD_2^2}$ N1+N2 -1

A6b Alternative formula for combining the mean and standard deviation of groups(6)

	Group 1 (e.g. males)	Group 2 (e.g. females)	Combined groups
Sample size	N1	N2	N1 + N2
Mean	M1	M2	$\frac{N_1 M_1 + N_2 M_2}{N_1 + N_2}$
SD	SD1	SD2	$\sqrt{\frac{(N_1 - 1) SD_1^2 + (N_2 - 1) SD_2^2 + \frac{N_1 N_2}{N_1 + N_2} (M_1^2 + M_2^2 - 2M_1 M_2)}{N_1 + N_2 - 1}}$

A7a QUIPS Domains(7)

Domain	Goal
Study participation	To judge the risk of selection bias (likelihood that relationship between PF and outcome is different for participants and eligible non-participants).
Study attrition	To judge the risk of attrition bias (likelihood that relationship between PF and outcome are different for completing and non-completing participants).
Prognostic factor measurement	To judge the risk of measurement bias related to how PF was measured (differential measurement of PF related to the level of outcome).
Outcome Measurement	To judge the risk of bias related to the measurement of outcome (differential measurement of outcome related to the baseline level of PF).
Study confounding	To judge the risk of bias due to confounding (i.e. the effect of PF is distorted by another factor that is related to PF and outcome).
Statistical analysis and reporting	To judge the risk of bias related to the statistical analysis and presentation of results.

A7b Objective information assessed during quality appraisal and supplementary criteria(8)

QUIPs Domains	Objective information assessed
Study participation	Baseline population discussed in some detail Sample described by key characteristics
Study attrition	Loss to follow-up <10%
Prognostic factor measurement	Description of chronic disease prognostic factor Method of missing data used
Outcome Measurement	Outcome measure/event is described
Study confounding	Confounders (or predictors for models) reported Confounders (or predictors for models) discussed/ rationale given
Statistical analysis and reporting	Adjusted AND unadjusted effects reported Interactions examined Linearity for continuous predictors assessed Proportional Hazards assumptions tested where relevant Predictor selection
Additional model factors considered	Correlations tested More than 10 events per variable Clinical tool developed Internal validation performed Discrimination assessed Calibration performed External validation

A8 Study characteristics: prognostic factors (chronic disease focus) studies

	Trial/	Recruitment	Study Follow	Follow-up Mean(SD)/ Median	Heart Failure Clinical				Sample size (no. in analysis if	Centres/	
	Database	Period	length	(IQR)* (R) l	definition	Inclusions	Exclusions	Setting	different)	hospitals	Country
						DIABETES					
Ahmed 2007	DIG	1991-93	4.8y	38m*	Symptoms/signs or objective evidence		>=76y, Serious CM, high Cr, recent acute cardiac event/intervention	RCT	4112	Multicentre (n=302)	USA and Canada
Berry 2008		2000	33m	27(21-33)mł	Discharge code OR prescription +symptoms/signs or objective evidence	HF admission	Recent acute cardiac event/intervention	Hospital	454	Single	UK
Burger 2005	VMAC	1999-00		6m	Signs/ symptoms	Decompensated HF requiring diuretics	Low bp, high risk death	RCT	498	Multicentre (n=55)	USA
de Boer 2010	SENIORS			21(9)m	Clinical record + discharge code HF or low ef		<70y, significant renal dysfunction	RCT	2128	Multinational (n=11)	Europe
Flores-Le Roux 201		2000-02	6-9y		Discharge code			Hospital	400	Single	Spain
From 2006	REP	1979-99	20y	5(4.6)y	Discharge and Framingham criteria	Incident HF		Hospital/ Community	655	Regional	USA
Gerstein 2008	CHARM	1999-01		36.7m*	Clinical diagnosis	NYHA 2-4	Recent acute cardiac event/intervention, high CR, low bp, serious cardiac CM	RCT	2412	Multinational (n=26)	Multiple
Greenberg 2007	OPTIMIZE HF	E- 2003-04	6-9m		Clinical diagnosis			Hospital	5791	Multicentre (n=91)	USA
Gustafsson	DIAMON	D 1993-95	5-8y		Symptoms/signs	NYHA 3-4	Recent acute	RCT	5491	Multicentre	Denmark

2004					or objective evidence		cardiac event/intervention			(n=34)	
lssa 2010	REMADHE	1999-07		3.6(2.2)y	Boston criteria	HF for >=6m	Recent acute cardiac event/intervention, serious CM	RCT	456	Single	Brazil
MacDonald 2008	Scottish morbidity data	1986-03	1y AND 5y		Discharge code	De novo HF		Hospital	55173 (MEN) 61383 (WOMEN)	Countrywide	UK
						COPD					
De Blois 2010		2000-08	8у	13.3m	ESC guidelines			Hospital/ Community	4132 (3242)	Multicentre (n=22)	Norway
lversen 1010	ECHOS			4.46(2.9- 5.5)y l	Symptoms/signs or objective evidence	Decompensated HF, NYHA 2-4	Recent acute cardiac event/intervention, serious cardiac CM	RCT	532	Multicentre (n=11)	Denmark
Lainscak 2009		2001-03	7γ	2.9(2.1)y	Discharge code	Х		Hospital	638	Single	Slovenia
Macchia 2007		2000-02	12m	9.6(4)m	Discharge code with prescription			Hospital	1020 (873)	Regional	Italy
Rusinaru 2008		2000,	5y		Framingham criteria amended by ESC	De novo HF	Severe cardiac disease	Hospital	799	Multicentre (n=11)	France
						RENAL					
Aronson 2010	VMAC	1999-00	6m		Signs/ symptoms	Decompensated HF requiring diuretics	Low bp, high risk death	RCT	467	Multicentre (n=55)	USA
Breidthardt 2011		2001-2 and 2006-10	1y		ESC guidelines		Trauma, haemodialysis	Hospital	657	Multicentre (n=5)	Switzerland
Campbell 2009	DIG	1991-93	4.8y	38m*	Symptoms/signs or objective evidence		>=76y, Serious CM, high Cr, recent acute cardiac event/intervention,	RCT	4798	Multicentre (n=302)	United States and Canada

							rhythm				
Damman 2009	COACH	2002-07	18m		Symptoms/signs or objective evidence	Decompensated HF requiring diuretics	Recent acute cardiac event/intervention	RCT	1023	Multicentre (n=17)	Netherlands
Go 2006	Kaiser Permanente	1996-02		2.1(0.8- 3.9)y*	Discharge code			Hospital/ Community	59772 (55170 known)	Regional	United States
Gotsman 2010		2001-02		6.5y	Symptoms/signs and/or reduced LVF		Heamodialysis	Hospital	355	Single	Israel
Hamaguchi 2009	JCARE-CARD	2004-05		2.4(0.7)y	Framingham criteria	Decompensated HF		Hospital	2013 (1617)	Multicentre (n=164)	Japan
Hillege 2006	CHARM	1999-01		34.4(1- 45.2)mł	Clinical diagnosis	NYHA 2-4	Acute cardiac event or intervention, high CR, low bp, serious cardiac CM	RCT	2680	Multinational (n=26)	United States
Ismailov 2007		1995 and 2000	5 y		Framingham criteria		Recent acute cardiac event/intervention	Hospital	4350	Multicentre (n=11)	United States
Kimura 2010		2000-04	5 y	26.4(19.9)m	Framingham criteria	NYHA 2-4	Recent acute cardiac event/intervention, heamodyalisis, serious cardiac CM	Hospital	711	Single	Japan
Kociol	OPTIMIZE-HF	2003 -04	1 y		Discharge code		<65y, in-hosp death	Hospital	20063 (15792)	Multicentre (n=259)	United States
Maeder 2012	TIME-CHF	2003-06	18m		HF HA within 12 months, symptoms and BNP	NYHA 2-4, admission within 12mnths	<60y, high CR, serious CM, serious cardiac CM, BMI>35, recent acute cardiac event/intervention	RCT	566	Multicentre (n=15)	Switzerland/ Germany
Olandoski 2012		2005-06	4γ	19.7(10.6)m	Clinical diagnosis	Incident admission with HF		Hospital	328	Regional	Brazil
Petretta		2002-05		15.2(0.3-	Framingham		Recent acute	Hospital	153	Single	Italy

2007			45.6)m l	criteria		cardiac event/intervention, list for device. Serious CM, serious cardiac CM, high CR, dialysis				
Takagi 2010	2002-05		20.3(1- 54.2)m l	not specified	Acute HF	High risk of death, transplant, dialysis, serious cardiac CM	Hospital	194	Single	Japan
Testani 2011	2004-09		2.6(1.2- 4.2)γ*	Clinical diagnosis	BNP>100pg/mL	Acute cardiac event or intervention, dialysis	Hospital	903	Single	United States
Waldum 2010	2000-06	5у	9m*	ESC guidelines	NYHA 1-4		Hospital	3605	Multicentre (n=24)	Norway
				RHEUI	MATOID ARTHR	ITIS				
Davis	1979-00	1y		Framingham	Incident		Hospital	955	Single Un	ited States
2008				criteria	Cases		Community			

Follow up is expressed as mean(SD), median (IQR)* or median (range) + years (y) or months (m). CM, comorbidity; RCT, randomised control trial; Cr, creatinine; bp, blood pressure; ef; ejection fraction; NYHA, New York Heart Association; BMI, body mass index; BNP, brain natriuretic peptide. See appendix E20 for trial acronyms.

A7 cont'd											
	Age Mean(SD/ Median	Gender (%	Systolic HF (% with EF <40%(or study	Causcasian	EF Mean(SD)/ Median (IQR)*	NYHA Stages		Unit of chronic disease	No. included		Outcome/s
	(IQR)*(R) f	male)	defined)	(%)	(R)t	(% 3/4) DIAB	Study Indicator	exposure measurement	in study	Prevalence	*secondary
Ahmed 2007	64(11)	73		87	32(13)	36	Туре	Clinical record	2056	29	AC Mortality/ Hospital admission
Berry 2008	72(13)	49	70				Туре	Clinical record/Prescription/ admission glucose >11	110	24	AC Mortality
Burger 2005	62(14)	69	87		27(14)	84	Туре	Patient reported/ Prescription/ Diet therapy	236	47	AC Mortality
de Boer 2010	76(5)	63	64(<=35%)		36(12)	41	Туре	Clinical record/Prescription	555	26	AC Mortality*
Flores-Le Roux 2011	72(10)	51			46(18)		Type All then stratified by treatment	Undiagnosed(blood test) Clinical record/ Prescription/Diet	63 149	16 37	AC Mortality
From 2006	77(12)	46			47(13)		Туре	Blood test/Prescription	128	19	AC Mortality
Gerstein 2008	66	67			46	64	Severity	HbA1c (per 1% higher in all sample)	907	38% diabetes	AC Mortality*
Greenberg 2007	73(14)	48	49	74	39(18)		Туре	All:Clinical record/Prescription Insulin treated	2464 986	42 17	AC Mortality
Gustafsson 2004	73*	60	47(<=35%)	100		63	Туре	Clinical record/ Patient reported	900	16	AC Mortality
Issa 2010	50(11)	70			35(11)	43	Severity	Fasting glucose <=5.5 mmol/L (guideline and evidence driven cut point)	124 (diabetes)	27	AC Mortality
MacDonald 2008	72(12) 77(11)	100 0					Туре	Discharge code	7356 7805	13 13	AC Mortality
						CO	PD				
De Blois 2010	70(12)	71	83		33(11.7)	52	Туре	GOLD guidelines	699	17	AC Mortality
lversen 2010	72	63			39	67	Type and Severity	Self reported FEV1 <80%	107 182	22 35	AC Mortality

								FF\/1 50-79%	92	18	
								FEV1 <49%	90	17	
								per 10% of predicted	50	1,	
Lainscak 2009	73(10)	48	25		44(13)	74	Туре	Discharge code	106	17	AC Mortality
Macchia	80(75-	50			, ,		Туре	Prescriptions/ Discharge	241	24	AC Mortality
2007	87)*							codes			
Rusinaru	75(12)	51	55 (<50%)		50(16)	95	Туре	Clinical record/ Patient	156	20	AC Mortality
2008								reported AND prescription			
						RE	NAL				
Aronson	62(15)	68			27(12)	84	Severity change	Increase CR (>=0.5 mg/dL)	115	25	AC Mortality
2010							(0-30days).	Reduction eGFR (>=25%)	159	34	
							(stratified by				
							transient and				
							persistant change)				
Breidthardt	79(71-85)*	55			40(30-60)*		Severity change	Increase CR	136	21	AC Mortality*
2011								(>0.3mg/dl) (in-hosp)			
Campbell	65(9)	76		88	32(13)	32	Severity	"eGFR<60	2399	50	AC Mortality /
2009								eGFR30-59	2284	48	Hospital
								eGFR <=30"	115	2	admission
Damman	71(11)	62			34(16)	38	Severity change	Increase Cr >26.5umol/L	(or >25%)		AC Mortality /
2009								in-hosp	106	11	Hospital
								0-6m	101	16	admission*
								6-12m	43	9	
Go	72(12)	57	57	72			Severity	"eGFR >60 (ref)	29240	53	AC Mortality
2006							(all pre admission –	eGFR 45-59	13241	24	
							steady state	eGFR 30-44	5958	11	
							measure)"	eGFR 15-29	1821	3	
								eGFR <15	331	0.6	
								Dialysis	221	0.4	
Gotsman	74(12)	53	64			58	Severity	eGFR <53	237	67	AC Mortality /
2010							(All discharge	eGFR <35	118	33	Hospital
					<u>.</u> .		values)	eGFR per ml/min			readmission
Hamaguchi	72(13)	59			44(16)		Severity	"eGFR=>60	478	30	AC Mortality
2009							(All baseline values)	eGFR=30-59	831	51	
								eGFR <30ml or dialysis	308	19	

Hillege	65(12)	67			39(16)	64	Severity	eGFR >90	577	22	AC Mortality
2006							(All baseline values)	eGFR 89.9-75	519	19	
								eGFR 74.9-60	618	23	
								eGFR 59.9-45	547	20	
								eGFR <45	419	16	
							(decrease from 75)	eGFR per 10ml/min			
							(decrease from 75)	eGFR per 20ml/min			
Ismailov	76,	43		94			Severity	"eGFR >60			AC Mortality
2007							(All admission	eGFR 45-59	763	18	
							values)	eGFR 30-44	725	17	
								eGFR <30	569	13	
Kimura 2010	69(14)	56			40(15)		Severity	eGFR <60	388	55	AC Mortality
Kociol 2010	80*	44	36	90			Severity change	Increase Cr	3581	18	AC Mortality /
							(in hosp)	>=0.3mg/dL			Readmission
Maeder 2012	77(8)	60	81.6 (<45%)		35(13)	75	Severity change (baseline - 6 mnths)	Increase Cr of >0.5 mg/dL	124	22	AC Mortality
Olandoski 2012	68(12)	46	x				Severity change (over a month in 1 year pre or post hosp admission)	reduction in eGFR of >=1%	105	32	AC Mortality
Petretta 2007	64(19-87) 	72	77		34	63	Туре	per eGFR 1ml/min increase			AC Mortality
Takagi 2010	69(13)	71			36(11-81) 		Туре	eGFR <60	75	39	AC Mortality
Testani	63(16)	54		34	29(15-45)*		Severity change				AC Mortality
2011							(any time)	Increase eGFR >=20%	279	31	
							(persisting at	Increase eGFR >=20%	163	18	
							discharge)				
Waldum 2010	71(12)	70	72.8		33(12)	53	Туре	eGFR per 5ml/min increase			AC Mortality*
					RHE	UMATO	D ARTHRITIS				
Davies 2008	77(12)	45	51 (<50%)		44		Туре	1987 American College of Rheumatology criteria	103	11	AC Mortality
Percentages are	e expressed as	mean(SI	D), Median (IQR)*	or Median (Ran	ge)ł. All outcom	ies are all-c	ause (AC). Ejection fra	ction (EF), New York Heart Asso	ciation (NYHA). HbA1c, gly	cated
naemogioum; F	EVI, IUICED EX	piratory	volume in 1 secol	iu eurn, estima	iteu giorrierular	mulation f	ale. Outcomes are all p	minary study outcomes except	where the s	.αάγ σαιέσπ	e was secondary.

A9 Study characteristics: prognostic factors (general) studies

	Trial/ Database	Recruitment Period	Study Follow- up length	Follow-up Mean(SD)/ Median (IQR)* (R) l	Heart Failure Clinical definition	Inclusions	Exclusions	Setting	Sample size (no. in analysis if different)	Centres/ hospitals	Country
Ahluwalia 2012	Medicare	2001-02	5 y		Discharge code		<=65y	Hospital Community	9166 9166	National	USA
Ahmed 2006	DIG	1991-93	4.8y	37 (28- 58)m l	Symptoms/signs or objective evidence	WOMEN	>=76y, Serious CM, high Cr,recent acute cardiac event/ intervention	RCT	1926	Multicentre (n=302)	USA and Canada
Aranda 2009	Medicare	2002-04	6-9 m		Discharge code			Hospital	28919 (27646)	National	USA
Barsheshet 2010	HSIS	2003	4 y		Symptoms/ objective evidence at rest			Hospital	1182 (>75y group) 1154 (<=75y group)	Multicentre (n=25)	Israel
Chaudhry 2010	Medicare	1998-99 or 2000-01	5y		Discharge code		<65y, heamodyalysis	Hospital	62330	Multistate (n=6)	USA
Chaudhry 2013	CHS	1989-99	20y	3.4(1.8- 5.9)y*	Clinical history	Incident	Cancer	Hospital/ Community	758	Regional	USA
Dunlay 2009	REP	1987-06	19y	4.7(3.9)y	Discharge Code + Framingham criteria	Incident		Hospital/ Community	1077	Regional	USA
Fernandez- Berges 2013		2000-09	1y		Discharge Code			Hospital	2220	Single	Spain
Fonarow 2008	OPTIMIZE- HF	2003-04	6-9m		Clinical diagnosis. Symptoms/signs	HF admissions		Hospital	5791	Multicentre (n=91)	USA

Garty 2007	HSIS	2003	1y		Symptoms/signs and objective evidence	AHA stage B-D		Hospital	4102	Multicentre (n=117)	Israel
Gorelik 2009				47.5m	Modified Framingham criteria	Decompensated HF, NYHA 2-4	<60yrs, Serious cardiac CM, cancer, dialysis	Hospital	473	Single	Israel
Gotsman 2008		2001-02	1 y		Symptoms/signs and objective evidence	Clinical diagnosis of HF + echoe		Hospital	289	Single	Israel
Hamaguchi 2011	JCARE- CARD	2004-05		2.1(0.9)y	Framingham criteria	Decompensated HF	<80yrs	Hospital	765(620)	Multicentre (n=164)	Japan
Harjola 2010	EHFS	2004 -05	1 y		ESC guidelines	HF admissions	High output HF	Hospital	2981	Multinationa l (n=30)	Europe
MacIntyre 2000	Scottish morbidity data	1986-95	1-10y		Discharge code	De Novo HF		Hospital	31040(MEN) 35507(WOMEN)	Countrywide	United Kingdom
Mahjoub 2008		2000	5y		Framingham criteria amended byESC	De Novo HF	>=80yrs, serious cardiac CM	Hospital	305	Multicentre (n=11)	France
Mogensen 2011	DIAMOND and ECHOES	1993-96 2001-02	8 y		Symptoms/signs or objective evidence	NYHA 2-4	Recent acute cardiac event/intervention	Hospital	8507	Multicentre (n=43)	Denmark , Norway and Sweden
Mosterd 2001	Rotterdam study	1990-93	4.8- 8.5y		Symptoms, signs and objective evidence		<55yrs, COPD	Community	181	Regional	Nether- lands
Pons 2010		2001-08		36(16.6- 64.5)m*	Clinical diagnosis			Hospital	960	Single	Spain
Rusinaru 2009		2000	5у	,	Framingham criteria amended by ESC	De novo HF, women	Serious cardiac CM	Hospital	389 (306)	Multicentre (n=11)	France
Shiba	CHART	2000-03		1.88(0.92)y	Framingham			Hospital	1154	Multicentre	Japan

2004			criteria				(684)	(n=26)	
Tribouilloy 2010	2000	7yrs	Framingham criteria amended byESC	De novo HF	Serious cardiac CM	Hospital	735	Multicentre (n=11)	France

Follow up is expressed as mean(SD), median (IQR)* or median (range) years (y) or months (m). CM, comorbidity; RCT, randomised control trial; Cr, creatinine; NYHA, New York Heart Association. See appendix E20 for trial acronyms.

A9 cont'd

	Age Mean(SD/ Median (IQR)*(R) l	Gender (% male)	Systolic/ (% with EF <40% (or study defined)	Causcasian (%)	EF Mean(SD)/ Median (IQR)*(R) I	NYHA Stages (% 3/4)	Chronic disease	Study indicator	Unit of chronic disease exposure measurement	No. included in study	Prevalence	Outcome/s
Ahluwalia	81(75-86)*	41	х	86	х		Diabetes	Туре	Discharge codes	7739	42	AC Mortality
2012	81(75-86)*	41		85			COPD			6129	33	
							Renal disease			5035	27	
							Arthritis			5399	29	
							Dementia			4266	23	
							Depression			3173	17	
							Osteoporosis			2454	13	
							Cancer- Prostate			637	4	
							Cancer- Breast			298	2	
							Cancer- Lung			214	1	
							Cancer- Colorectal			234	1	
							Cancer- Endometrial			20	0.1	
Ahmed 2006	66(12)	0	79 (<45%)	82	35(14)		Diabetes Renal dysfunction	Туре	Not specified eGFR per ml	650	34	Mortality Hospital admission
Aranda 2009	x	44	x	83	х		Diabetes	Туре	Not specified	X	37	Readmission
Barsheshet	82 (78-87)*	47	48			48	Renal dysfunction	Туре	eGFR <60	1361	58	AC Mortality
2010	67 (59-72)*	63	53			42	Diabetes		Clinical record/	1207	52	
									blood			
									test/prescription			
Chaudhry	80	42		87	Х		Diabetes	Туре	Clinical record	24745	40	AC Mortality
2010							Dementia			6046	10	
							Cancer (any)			1496	2	
							COPD			21192	34	

Chaudhry	80(6)	50	43 (<45%)	87	х	30	Renal disease	Туре	eGFR<60	280	37	Hospital
2013							COPD		Patient reported	112	15	admission
							Depression		Depression scale	296	395	
							Diabetes		Patient report/	193	26	
									Prescription/			
									Blood test			
Dunlay	77(13)	46			46(18)		COPD	Туре	Clinical record	253	24	Hospital
2009							Diabetes		National diabetes	232	21	admission
									data group			
									criteria			
Fernandez-	76(10)	47					Diabetes	Туре	Clinical record	970	44	Mortality
Berges							Renal disease			390	18	
2013							COPD			648	29	
Fonarow	72(14)	51	53	78	37(17)		Renal dysfunction	Worsening	Clinical record	509	9	Mortality
2008								Pre-				
								admission				
Garty	73(12)	57	52			40	Renal failure	Туре	Cr=>1.5mg/dl	1672	41	Mortality
2007							COPD		Clinical record	803	20	
Gorelik	73(10)	57	61 (<50%)		41(14)	46	Renal dysfunction	Severity	eGFR <60		70	Mortality
2009							Cancer – any		(admission)		12	
									Clinical record:			
									Non advanced			
Gotsman	73(12)	53	64			40	Diabetes	Туре	Clinical record	122	42	Mortality
2008							Chronic renal disease			110	38	
Hamaguchi	85(4)	45			48(17)	12	Renal dysfunction	Severity	eGFR per ml/min			Mortality
2011									decrease			
									(baseline)			
Harjola	72(62-79)*	62	65 (<45%)		38(15)		Diabetes	Туре	Clinical record	987	33	Mortality
2010												
MacIntyre	72*	100					Arthritis	Туре	Admission code	3383	5	Mortality
2000	78*	0					Cancer – any		(prior to HF	3330	5	
							Renal failure		admission)	454	1	
							Diabetes			1760	3	
							Lung Disease			4818	7	

Mahjoub 2008	86(5)	37	39(<50%)	52(16)		Cancer – any Diabetes	Туре	Clinical record	37 48	12 16	Mortality
Mogensen	72(11)	60	55(<45%)			Diabetes	Туре	Clinical record/ Px	1361	16	Mortality
2011						COPD		Clinical record/ Px	1948	23	
						Renal dysfunction		eGFR<30	970	11	
Mosterd 2001	77(8)	40		х		Diabetes	Туре	Blood test/ Prescription	32	18	Mortality
Pons 2010	69*	71		31	39	Diabetes	Туре	Not specified	377	39	Mortality
Rusinaru	78(11)	n/a	36(<50%)	54(15)	96	Cancer	Туре	Clinical record	34	9	Mortality
2009						Diabetes			106	27	
Shiba2004	68(13)	67		49(16)	16	Diabetes	Туре	Clinical record	223	19	Mortality
Tribouilloy	75(12)	52	43 (<50%)	51(16)		Cancer	Туре	Clinical record	75	10	Mortality
2010						Diabetes			181	25	
						COPD			146	20	

Percentages are expressed as mean(SD), Median (IQR)* or Median (Range)[†]. All outcomes are all-cause (AC). Cr, creatinine; eGFR, estimated glomerular filtration rate. Outcomes are all primary study outcomes except * where the study outcome was secondary.

A10 Study characteristics of prognostic model studies

	Trial/ Database	Recruitment Period	Study Follow- up length	Follow-up Mean(SD)/ Median (IQR)* (R) l	Heart Failure Clinical definition	Inclusions	Exclusions	Setting	Sample size (no. in analysis if different)	Centres/ hospitals	Country
Barlera 2013	GISSI-HF	2002-05	4y	3.9γ*	ESC guidelines	NYHA 2-4	Recent acute cardiac event/intervention, serious CM	RCT	6975	Multicentre (n=357)	Italy
Bouvy 2003			18m		Discharge code		High risk of death	RCT	152	Multicentre (n=7)	Netherlands
Huynh 2006		1990-94	14y	2.5y*	Objective evidence OR signs/symptoms and response to diuresis		<70yrs, high risk of death	RCT	282	Single	United States
Krumholz 2000	Medicare	1994-95	6m		Discharge code, symptoms or objective evidence		<65yrs, serious cardiac CM, in- hopsital death	Hospital	1129 (derivation)	Multicentre (n=9)	United States
Lee 2003	EFFECT	1999-01	1y		Discharge code and modified Framingham criteria	HF admission		RCT	2624	Multicentre (n=34)	Canada
Martinez- Selles 2010	HOLA	1996	10y	5.2(4.2)y	Symptom and (Sign or objective evidence)		Recent acute cardiac event/intervention	Hospital	701	Single	Spain
O'Connor 2008	OPTIMIZE- HF	2003-04	60- 90days	2.4(0.7)m	Clinical diagnosis	HF admissions		Hospital	5791(4402)	Multicentre (n=91)	United States
Pocock 2006	CHARM	1999-01		38m*	Clinical diagnosis	NYHA 2-4	Acute cardiac event or intervention, high CR, low bp, serious cardiac CM	RCT	7599	Multinational (n=26)	Multiple
Pocock	MAGIC			2.5y*				Hospital	39372	Multinational	Multiple

2013	database									
Senni		2003	1yr	ESC guidelines		In-hosp death, heart	Hospital/	292	Multicentre	Italy
2006						surgery	Community	(derivation)	(n=3)	
Senni		2002-06	1 yr	Symptoms, signs		In-hosp death, cancer	Hospital	2016	Multicentre	Europe
2013				and objective				(derivation)	(n=8)	
				evidence						
Wang	VHA	2009-10	1yr	Discharge codes	Chronic HF		Hospital/	198640	National	United
2012							Community			States

Follow up is expressed as mean(SD), median (IQR)* or median (range)+ years (y) or months (m). CM, comorbidity; RCT, randomised control trial; Cr, creatinine; bp, blood pressure; NYHA, New York Heart Association. See appendix E20 for trial acronyms.

A10 cont'd

	Age Mean(SD) Median (IQR)* (R) l	Gender (% male)	Systolic/ LVF (% with EF <40% (or study defined)	Causcasian (%)	EF Mean(SD)/ Median (IQR)*(R) I	NYHA Stages (% stage 3 or 4)	Chronic disease	Study indicator	Unit of chronic disease exposure measurement	No. included in study	Prevalence	Outcome/s
Barlera 2013	67(10)	78			33(9)	37	Diabetes COPD Renal dysfunction	Туре	Clinical record Clinical examination eGFR per unit decrease<60	1974 1533	28 22	AC Mortality
Bouvy 2003	70(37-91) 	34			х	41	Diabetes Renal dysfunction	Туре	Clinical record	43 19	28 22	AC Mortality
Huynh 2006	79(6)	37	63 (<45%)	45	43(14)		Dementia	Туре	Clinical record	13	5	AC Mortality
Krumholz 2000	78(8)	41	44	92			Diabetes	Туре	Clinical record	412	36	Readmission
Lee 2003	76 (11)	50	53				Dementia COPD Liver cirrhosis Cancer	Туре	Clinical record	225 543 34 234	9 21 1 9	AC Mortality
Martinez- Selles 2010	72(12)	45					COPD	Туре	Clinical record	188	27	AC Mortality
O'Connor 2008	72(14)	51	53	78	37(17)		Liver disease Reactive airways disease	Туре	Clinical record	126 498	2 9	AC Mortality
Pocock 2006	66(11)	68			39(15)	55	Diabetes	Туре	Clinical record stratified by treatment	707	9	AC Mortality
Pocock 2013	67(11)	67		91	36(14)	44	Diabetes COPD	Туре	Varies across studies	8919 4035	23 10	AC Mortality
Senni 2006	71(13)	62	61		38(13)	25	COPD Diabetes with target organ damage	Type <i>,</i> severity	Clinical record	45 40	15 14	AC Mortality
							Renal dysfunction			41	14	

							(moderate to severe) Cancer (metastatic or >2 tumors)			7	2	
Senni 2013	68 (58- 76)*	70	90 (<50%)	35 40)*	(27-	34	Diabetes with target organ damage	Severity	Clinical record	304	15	AC Mortality
							Renal dysfunction			157	8	
Wang	73	98					Renal failure	Туре	Clinical record	50454	25	Hospital
2012							COPD			61380	31	admission
							Diabetes			98724	50	
							Dementia			16487	8	
							Cancer*			5363	3	
							Liver cirrhosis			5363	3	

Percentages are expressed as mean(SD), Median (IQR)* or Median (Range). All outcomes are all-cause (AC). Ejection fraction (EF), New York Heart Association (NYHA). Outcomes are all primary study outcomes except * where the study outcome was secondary.

A11 Study Risk of bias assessment

ATT Study Risk of blas														
									Outcon	ne				
	Study	participatior	<u>ا</u>	Study a	ttrition	Progn	ostic factor measuremer	nt	Measurer	nent	Study	confounding		
	Baseline	Sample	Risk	Loss to	Risk	Chronic	Method of missing	Risk	Outcome	Risk	Confounders	Confounders	Risk	
	population	described	level	follow-	level	disease	data	level	measure	level	(or predictors	Rationale	level	
	level of			up		exposure			description		for models)	provided		
	nrovided					description					reported			
	provided			1		Di	abetes		1		l			
Ahmed 2007	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	Low	
Berry 2008	Brief	Yes	Med	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med	
Burger 2005	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Med	Yes	No	Med	
de Boer 2010	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Med	Yes	No	Med	
Flores-Le Roux 2011	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med	
From 2006	Detailed	Yes	Low	<10%	Low	Yes	Single imputation	Low	Yes	Low	Yes	No	Med	
Gerstein 2008	Brief	Yes	Med	<10%	Low	Yes	No missing data	Low	Yes	Low	Yes	No	Med	
Greenberg 2007	Detailed	yes	Low	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med	
Gustafsson 2004	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med	
Issa 2010	Brief	Yes	High	<10%	Low	Yes	NR	Med	Yes	Med	Yes	No	Med	
MacDonald 2008	Detailed	Yes	Low	NR	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med	
						(COPD							
De Blois 2010	Brief	Yes	Med	>10%	Med	Yes	No missing data	Low	Yes	Med	Yes	No	Low	
lversen 2010	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Low	Yes	Low	Yes	No	Med	
Lainscak 2009	Brief	Yes	High	<10%	Low	Yes	NR	High	Yes	Low	Yes	No	Med	
Macchia 2007	Brief	yes	Med	NR	Low	Yes	NR	Med	Yes	low	Yes	No	High	
Rusinaru 2008	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	low	Yes	No	Low	
						F	Renal							
Aronson 2010	Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Low	Yes	No	Med	
Breidthardt 2011	Brief	Yes	Med	>10%	High	Yes	No missing data	Low	Yes	Low	Yes	No	Med	
Campbell 2009	Brief	Yes	Med	<10%	Low	Yes	NR	Low	Yes	Low	Yes	No	Low	

Damman 2009	Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Low	No	Yes	Low
Go 2006	Detailed	Yes	Low	NR	Med	Yes	Full case analysis	Med	Yes	Low	Yes	Yes	Low
Gotsman 2010	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med
Hamaguchi 2009	Brief	Yes	Med	>10%	Med	Yes	NR	Med	Yes	Low	Yes	Yes	Med
Hillege 2006	Detailed	Yes	Low	<10%	Low	Yes	NR	Med	Yes	Low	Yes	Yes	Low
Ismailov 2007	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Med	Yes	No	Med
Kimura 2010	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med
Kociol 2010	Detailed	Yes	Low	NR	Low	Yes	Single imputation	Med	Yes	Low	Yes	No	Low
Maeder 2012	Brief	Yes	Med	<10%	Low	Yes	NR	Low	Yes	Low	Yes	No	Med
Olandoski 2012	Brief	Yes	Med	NR	Med	Yes	NR	High	Yes	Med	No	No	High
Petretta 2007	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Low	No	No	High
Takagi 2010	None	Yes	High	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	High
Testani 2011	Brief	Yes	Med	NR	Med	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med
Waldum 2010	Brief	Yes	Med	<10%	Low	Yes	Full case analysis	Med	Yes	Med	Yes	No	Med
Davis 2008	Brief	Yes	Low	NR	Low	Yes	NR	Med	Yes	Low	Yes	No	High
					l	Prognostic f	actors (general)						
Ahluwalia 2012	Brief	Yes	Med	<10%	Low	Yes	No missing data	Med	Yes	Med	Yes	No	Med
Ahmed 2006	Brief	Yes	Med	NR	Med	No	NR	Med	Yes	Low	Yes	No	Low
Aranda 2009	Brief	Yes	Med	NR	High	Yes	NR	Med	Yes	Med	No	No	High
Barsheshet 2010	Detailed	Yes	Low	NR	Med	Yes	Full case analysis	Low	Yes	Low	Yes	Yes	Low
Chaudhry 2010	Brief	Yes	Med	<10%	Low	No	Missings catagorised	Med	Yes	Low	Yes	No	Med
Chaudhry 2013	Detailed	Yes	Low	<10%	Low	Yes	Missings catagorised	Med	Yes	Low	Yes	Yes	Low
Dunlay 2009	Detailed	Yes	Low	<10%	Low	Yes	Multiple imputation	Low	Yes	Low	Yes	No	Med
Fernandez-Berges 2013	Brief	Yes	Med	<10%	Low	No	NR	High	Yes	Med	Yes	Yes	Med
Fonarow 2008	Detailed	Yes	Low	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med
Garty 2007	Brief	Yes	Med	<10%	Low	No	NR	Med	Yes	Low	No	No	High
Gorelik 2009	Brief	Yes	High	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	Med
Gotsman 2008	Brief	Yes	Med	NR	Med	Yes	NR	Med	yes	Low	Yes	No	Med
Hamaguchi 2011	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med

Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Low	Yes	No	Med
Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med
Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med
Brief	Yes	Low	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med
Detailed	Yes	Med	<10%	Low	Yes	Full case analysis	Med	Yes	Low	No	No	High
Brief	Yes	Med	<10%	Low	No	NR	Med	Yes	Low	Yes	No	Med
Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med
Detailed	Yes	Low	<10%	Low	No	Full case analysis	High	Yes	Med	Yes	No	Med
Detailed	Yes	Low	<10%	Low	No	Full case analysis	Med	Yes	Low	Yes	No	Med
					Prognosti	c model studies						
Brief	Yes	Med	<10%	Low	Yes	Multiple imputation	Low	Yes	Low	Yes	No	Low
Brief	Yes	Med	<10%	Low	No	Single imputation	Med	Yes	Low	Yes	Yes	Med
Brief	Yes	High	<10%	Low	No	Full case analysis	Med	Yes	Low	Yes	No	Med
Brief	Yes	Med	NR	Med	No	Missings catagorised	Med	Yes	Low	Yes	Yes	Low
Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	Yes	Low
Brief	Yes	Med	NR	Med	No	NR	Med	Yes	Low	Yes	No	Med
Detailed	Yes	Low	<10%	Low	No	Full case analysis	Med	Yes	Low	Yes	No	Med
Detailed	Yes	Low	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	Low
Brief	Yes	Med	NR	Med	No	Multiple imputation	Med	Yes	Med	Yes	No	Med
Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Low	Yes	Yes	Med
Brief	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	Yes	Low
Brief	Yes	Med	NR	Med	Yes	Single imputation	Med	Yes	Med	Yes	No	Med
	Brief Detailed Detailed Brief Detailed Detailed Detailed Detailed Brief Brief Brief Detailed Brief Detailed Brief Detailed Brief Brief Brief Brief Brief Brief Brief	BriefYesDetailedYesDetailedYesDetailedYesBriefYesDetailedYesDetailedYesDetailedYesDetailedYesDetailedYesDetailedYesDetailedYesBriefYesBriefYesBriefYesBriefYesBriefYesBriefYesDetailedYesBriefYesDetailedYesBriefYes <td< td=""><td>BriefYesMedDetailedYesLowDetailedYesLowBriefYesMedBriefYesMedDetailedYesMedDetailedYesLowDetailedYesLowDetailedYesLowDetailedYesLowDetailedYesLowDetailedYesLowBriefYesMedBriefYesMedBriefYesMedBriefYesMedDetailedYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMed</td><td>BriefYesMed<10%DetailedYesLow<10%</td>DetailedYesLow<10%</td<>	BriefYesMedDetailedYesLowDetailedYesLowBriefYesMedBriefYesMedDetailedYesMedDetailedYesLowDetailedYesLowDetailedYesLowDetailedYesLowDetailedYesLowDetailedYesLowBriefYesMedBriefYesMedBriefYesMedBriefYesMedDetailedYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesLowBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMedBriefYesMed	BriefYesMed<10%DetailedYesLow<10%	BriefYesMed<10%LowDetailedYesLow<10%	BriefYesMed<10%LowYesDetailedYesLow<10%	BriefYesMed<10%LowYesSingle imputationDetailedYesLow<10%	BriefYesMed<10%LowYesSingle imputationLowDetailedYesLow<10%	BriefYesMed<10%LowYesSingle imputationLowYesDetailedYesLow<10%	BriefYesMed<10%LowYesSingle imputationLowYesLowDetailedYesLow<10%	BriefYesMed<10%LowYesSingle imputationLowYesLowYesDetailedYesLow<10%	BriefYesMed<10%LowYesSingle imputationLowYesLowYesNoDetailedYesLow<10%

A11 Cont'd

	Statistical analysis and reporting										
	Adjusted AND	Interactions	Linearity for	Proportional							
	unadjusted	examined	continuous	Hazards	Due distant coloration	Dials laws	Dials Laural				
	effects reported		predictors assessed	Dishetes	Predictor selection	RISK IEVEI	RISK LEVEI				
Abmed 2007	Vac	Voc	NI / A	Diabetes	Full model	Low	Mad				
	res	res	N/A	NK NR		LOW	ivied				
Berry 2008	Yes	NR	NR	NK	Selected by significance level + stepwise	Med	Med				
Burger 2005	No	NR	NR	NR	Full model	Low	Med				
de Boer 2010	Yes	Yes	N/A	NR	Full model	Low	Med				
Flores-Le Roux 2011	No	NR	No	NR	Pre-specified predictors	Med	Med				
From 2006	No	Yes	N/A	NR	Full model	Low	Low				
Gerstein 2008	No	NR	NR	Yes	Full model	Med	Med				
Greenberg 2007	No	Yes	Yes	NR	Stepwise	Med	Low				
Gustafsson 2004	Yes	Yes	Yes	Yes	Pre-specified predictors	Low	Low				
Issa 2010	No	Yes	No	NR	Selected by significance level	Med	Med				
MacDonald 2008	No	Yes	No	NR	Full model	Med	Low				
				COPD							
De Blois 2010	Yes	NR	N/A	NR	Selected by significance level	Med	Med				
lversen 2010	Yes	Yes	yes	Yes	Backward selection	Low	Low				
Lainscak 2009	Yes	NR	NR	NR	Selected by significance level	Med	Med				
Macchia 2007	Yes	NR	NR	NR	Selected by significance level	Med	Med				
Rusinaru 2008	Yes	NR	NR	NR	Backward selection	Med	Low				
Renal											
Aronson 2010	Yes	NR	NR	NR	Selected by significance level	Med	Med				
Breidthardt 2011	Yes	NR	N/A	NR	Selected by significance level	Med	Med				
Campbell 2009	N/A	Yes	N/A	Yes	N/A	Low	Low				
Damman 2009	Yes	NR	N/A	NR	Full model	Med	Low				
Go 2006	No	Yes	N/A	NR	Pre-specified predictors	Low	Low				

.

Gotsman 2010	No	Yes	Yes	NR	Pre-specified predictors	Med	Med
Hamaguchi 2009	Yes	NR	NR	NR	Pre-specified predictors	Med	Med
Hillege 2006	Yes	Yes	Yes	Yes	Pre-specified predictors	Low	Low
Ismailov 2007	Yes	NR	NR	NR	Selected by significance level	Med	Med
Kimura 2010	No	NR	NR	NR	Selected by significance level	High	Med
Kociol 2010	No	NR	NR	NR	Full model	Med	Low
Maeder 2012	No	Yes	NR	NR	Selected by significance level	Med	Med
Olandoski 2012	No	Yes	No	NR	Pre-specified predictors	High	High
Petretta 2007	Yes	Yes	Yes	Yes	Selected by significance level + stepwise	Med	Med
Takagi 2010	No	NR	NR	NR	Full model	High	Med
Testani 2011	Yes	Yes	NR	NR	Selected by significance level + backwards	Med	Med
Waldum 2010	No	Yes	Yes	Yes	Selected by significance level	Med	Med
				Rheumatoid arthrit	is		
Davis 2008	No	NR	N/A	NR	Full model	High	Med
			Pro	ognostic factors (gen	ieral)		
Ahluwalia 2012	No	Yes	N/A	Yes	Full model	Med	Med
Ahmed 2006	No	NR	NR	NR	Full model	Med	Med
Aranda 2009	No	NR	NR	N/A	Full model	High	High
Barsheshet 2010	No	Yes	NR	NR	Selected by significance level	Med	Low
Chaudhry 2010	Yes	NR	Yes	N/A	Stepwise	Low	Med
Chaudhry 2013	Yes	NR	NR	N/A	Selected by significance level + backwards	Low	Low
Dunlay 2009	Yes	Yes	Yes	N/A	Full model	Low	Low
Fernandez-Berges 2013	Yes	NR	NR	NR	Selected by significance level	Med	Med
Fonarow 2008	No	NR	Yes	NR	Stepwise	Med	Med
Garty 2007	No	NR	NR	N/A	Stepwise	High	Med
Gorelik 2009	No	NR	NR	NR	Selected by significance level	High	Med
Gotsman 2008	No	NR	NR	NR	Pre-specified predictors	High	Med
Hamaguchi 2011	No	NR	NR	NR	Pre-specified predictors	Med	Med
							-
Harjola 2010	Yes	NR	yes	yes	Selected by significance level	Low	Low
----------------------	-----	-----	-------	---------------	--	------	-----
MacIntyre 2000	No	Yes	N/A	Yes	Full model	Low	Low
Mahjoub 2008	No	NR	NR	NR	Selected by significance level + backwards	Med	Low
Mogensen 2011	No	Yes	Yes	Yes	Backward selection	Low	Low
Mosterd 2001	No	NR	No	NR	Pre-specified predictors	High	Med
Pons 2010	Yes	NR	NR	NR	Backward selection	Med	Med
Rusinaru 2009	No	NR	NR	NR	Pre-specified predictors	Med	Med
Shiba 2004	No	NR	NR	NR	Backward selection	High	Med
Tribouilloy 2010	No	NR	Yes	Yes	Full model	Med	Med
			Progr	nostic models			
Barlera 2013	No	Yes	Yes	Yes	Stepwise	Low	Low
Bouvy 2003	Yes	NR	NR	N/A	Selected by significance level	Med	Med
Huynh 2006	Yes	NR	NR	NR	Selected by significance level + forwards	High	Med
Krumholz 2000	No	NR	NR	Yes	Stepwise	Med	Med
Lee 2003	Yes	yes	yes	N/A	Selected by significance level	Low	Low
Martinez-Selles 2010	No	Yes	NR	NR	Selected by significance level + backwards	Med	Med
O'Connor 2008	yes	yes	Yes	Yes	Stepwise	low	Low
Pocock 2006	No	Yes	Yes	NR	Forward selection	Low	Low
Pocock 2013	No	Yes	Yes	NR	Forward selection	Med	Med
Senni 2006	No	NR	NR	N/A	Selected by significance level	Med	Med
Senni 2013	No	Yes	NR	N/A	Other e.g. LASSO, bootstrap	Low	Low
Wang 2012	No	Yes	Yes	N/A	Backward selection	Med	Med

	Internal validity				External validity		
	Correlations tested	More than 10 events per variable	Clinical tool developed	Internal validation (bootstrap, cross validation, random split-sample)	Performance (AUC/ ROC)	Calibration (Goodness of fit/ Hosmer-Lemeshow test/ Score categories tested)	External validation
Barlera 2013	NR	Yes	Score	Yes	Yes	Yes	No
Bouvy 2003	NR	No	Score	No	Yes	Yes	No
Huynh 2006	No	Yes	Score	Yes	Yes	No	No
Krumholz 2000	NR	Yes	Score	Yes	NR	Yes	No
Lee 2003	Yes	Yes	Score	Yes	Yes	Yes	Yes
Martinez-Selles 2010	NR	Yes	Score	No	Yes	Yes	No
O'Connor 2008	NR	Yes	Score	Yes	Yes	NR	Yes
Pocock 2006	NR	Yes	Score	Yes	Yes	Yes	No
Pocock 2013	NR	Yes	Score	Yes	NR	Yes	No
Senni 2006	NR	No	Score	Yes	Yes	Yes	No
Senni 2013	NR	Yes	Score	Yes	Yes	Yes	Yes
Wang 2012	Yes	Yes	Score	Yes	Yes	Yes	No

A12 Sensitivity analysis summary: DM comorbidity

Study	Reason for removal	Combined all-cause mortality risk associated with diabetes	Test
All		HR 1.34 (1.24, 1.46)	Chi² (p=0.008) /² = 61% Egger's (p=0.119)
From et al (2006)	More community patients	HR 1.34 (1.22, 1.47)	Chi ² (p=0.004), <i>I</i> ² =66%
Gustafsson et al (2004)	More chronically severe patients, Galbraith plot	HR 1.30 (1.21, 1.39)	Chi ^{2 (} p=0.15), <i>I</i> ² =35%
Berry et al (2008) and Burger et al (2005)	Small study effects, funnel plot	HR 1.31(1.22, 1.41)	Eggers's (p=0.431)

A13 Sensitivity analysis summary: CKD comorbidity

Study	Reason for removal	Combined all-cause mortality risk associated with renal dysfunction	Test
All		HR 1.52 (1.34, 1.71)	Chi² (p=<0.0001) l² = 88% Egger's (p=0.56)
Cambell et al (2009)	More males, lower ejection fraction, Galbraith plot	HR 1.59(1.41, 1.78)	Chi ² (p=<0.0001), I ² =83%
Ismailov et al (2007)	Older, less males, Galbraith plot	HR 1.57 (1.35, 1.84)	Chi² (p=<0.0001), l²=81%
Campbell et al (2009) and Ismailov et al (2007)		HR 1.62(1.59, 1.67)	Chi ² (p=0.823), I ² =0%

A14 Heart failure selection code set		Validation		Code type		
Medcode	Read code	Read term	Previous literature	QOF listed	Read code type	Study code type
398	G580.00	Congestive heart failure		\checkmark	Diagnostic	Index
884	G581.00	Left ventricular failure		\checkmark	Diagnostic	Index
2062	G5800	Heart failure		\checkmark	Diagnostic	Index
2906	G580.11	Congestive cardiac failure		\checkmark	Diagnostic	Index
4024	G58z.00	Heart failure NOS		\checkmark	Diagnostic	Index
1223	G5811	Cardiac failure		\checkmark	Diagnostic	Index
5942	G581.13	Impaired left ventricular function		\checkmark	Diagnostic	Index
5255	G581000	Acute left ventricular failure		\checkmark	Diagnostic	Index
32671	G580100	Chronic congestive heart failure		\checkmark	Diagnostic	Index
10079	G580.12	Right heart failure		\checkmark	Diagnostic	Index
9524	G580.14	Biventricular failure	\checkmark	\checkmark	Diagnostic	Index
17278	G58z.12	Cardiac failure NOS		\checkmark	Diagnostic	Index
23707	G580000	Acute congestive heart failure	\checkmark	\checkmark	Diagnostic	Index
10154	G580.13	Right ventricular failure	\checkmark	\checkmark	Diagnostic	Index
27964	G582.00	Acute heart failure		\checkmark	Diagnostic	Index
27884	G580200	Decompensated cardiac failure		\checkmark	Diagnostic	Index
23481	G581.11	Asthma – cardiac		\checkmark	Diagnostic	Index
43618	G581.12	Pulmonary oedema – acute		\checkmark	Diagnostic	Index
11424	G580300	Compensated cardiac failure		\checkmark	Diagnostic	Index
22262	G58z.11	Weak heart		\checkmark	Diagnostic	Index
12590	G583.00	Heart failure with normal ejection fraction		\checkmark	Diagnostic	Index
101138	G580400	Congestive heart failure due to valvular disease		\checkmark	Diagnostic	Index
94870	G584.00	Right ventricular failure		\checkmark	Diagnostic	Index
104275	G583.11	HFNEF - heart failure with normal ejection fraction $$		\checkmark	Diagnostic	Index
101137	G1yz100	Rheumatic left ventricular failure $$		\checkmark	Diagnostic	Index
9913	10100	Heart Failure confirmed			Process	Index
21837	G232.00	Hypertensive heart&renal dis wth (congestive) heart failure			Diagnostic	Index

A15 Exclusion criteria for CPRD heart failure cohort

		Frequency	Percent
	Included patients Excluded patients:	50,114	62.9
	(1) current registration date or up to standard date was less than 3 years before the index date	14,633	17.9
	(2) current registration date or up to standard date was after the index date	12,346	16.0
Valid	(3) transfer out of the practice date was before the index date	169	0.2
	(4) Unexplained gaps	74	0.02
	(5) Current registration date, up to standard date, transfer out date or index date greater than one month after death date	2,002	2.6
	(6) Office of National Statistics death and CPRD death date differ >93days	102	0.1
	(7) HES identified multiple patid for same patient	189	0.2
	Total	79,629	100.0

A16 Baseline characteristics of the sample comparing the pre-match sample with the matched sample: mortality

	Pre matched	Matched cohort	Absolute difference in
	cohort (n=50,114)	(133,645 observations)	units
Age, years	78(IQR 71-85)	77[IQR 69-83]	1
Women	23,595 (47.1)	61,732(46.2)	0.9
IMD quintile			
1	5,846 (19.5)	15,908(20.0)	0.5
2	6,952 (23.2)	18,089(22.8)	0.4
3	6,340 (21.1)	16,666(21)	0.1
4	6,235 (20.8)	16,451(20.7)	0.1
5	4,613 (15.4)	12,269(15.5)	0.1
Systolic BP (mmHg)	137.3 ±21.5	138.4±21.4	1.1
Diastolic BP (mmHg)	76.7 ±12	77.4±11.9	0.7
BMI (Kg/m ²)	27(IQR 23.8-31)	27.3[24.1-31.2]	0.3
Cholesterol (mmol/L)	4.7 ±1.2	4.7±1.2	0
HB (g/dL)	13.1 ±1.9	13.2±1.8	0.1
Smoking status			
yes	6,841 (14.2)	18833(14.7)	0.5
No	22,618 (46.9)	59492(46.5)	0.4
Ex	18,757 (38.9)	49670(38.8)	0.1
Alcohol status			
Yes	31,228 (70.9)	84370(72)	1.1
No	11,093 (25.2)	28557(24.4)	0.8
Ex	1,746 (4.0)	4260(3.6)	0.4
Diuretics	32,071(64.0)	91,068(68.1)	4.1
Beta blocker	16,382 (32.7)	47581(35.6)	2.9
ACEi	22,582 (45.1)	62,074(46.5)	1.4
ARB	6,118 (12.2)	16,225(12.1)	0.1
COPD	5,848 (11.7)	14483(10.8)	0.9
FEV1 (pp) (in COPD only)	53.2(IQR 39-69.6)	54.1(39.7-70.0)	0.9
Diabetes	10,533 (21.0)	27,175(20.3)	0.7
HbA1c (%) (in diabetes only)	7.1(IQR 6.4-8.1)	7.1[6.4-8.2]	0
Renal disease at baseline (medical code)	7,621 (15.2)	16,801(12.6)	2.6
Renal disease (eGFR<60) at baseline	20,084 (49.8)	50,834(48.9)	0.9
eGFR (ml/min/1.73m ²)	60.9 ±20.3	61.3±19.6	0.4
Number of the listed comorbidities at			
baseline (renal code)			
0	30,358 (60.6)	84795(63.5)	2.9
1	15,810 (31.6)	39892(29.9)	1.7
2	3,646 (7.3)	8307(6.2)	1.1
3	300 (0.6)	651(0.5)	0.1
Number of the listed comorbidities at			
baseline (egfr definition)			
0	13565 (33.6)	35930(34.6)	1
1	19471 (48.3)	50,181(48.3)	0
2	6,795 (16.8)	16700(16.1)	0.7
3	515 (1.3)	1169(1.1)	0.2

Data are number patients (%) or mean± standard deviation or median[IQR]. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate; BMI, body mass index; HB, haemoglobin

A17 Baseline characteristics of the sample comparing the pre-match sample with the matched sample: first hospital admission

	Pre matched	Matched cohort (110,789	Absolute difference in
Ago vooro			
Age, years Womon	14 162 (47 1)	70(70-04) 53 804(48 6)	15
	14,103 (47.1)	55,604(46.0)	1.5
	E 944 (10 E)	22 402(20 4)	0.0
	0,044 (19.0) 0.040 (00.0)	22,493(20.4)	0.9
2	0,940 (23.2)	20,525(24.0)	0.8
3	6,340 (21.2)	22,936(20.8)	0.4
4	6,232 (20.8)	22,505(20.4)	0.4
5	4,612 (15.4)	15,988(14.5)	0.9
Prior Hospital admission			
<3 months	11,719 (39)	26,461 (23.9)	15.1
3-6 months	2,471 (8.2)	10,143 (9.2)	1
>6months to 1 year	2,711 (9.0)	11,400 (10.3)	1.3
Systolic BP (mmHg)	137.4 ±21.4	138.8 ±21.1	1.4
Diastolic BP (mmHg)	76.8 ±12	`77.8±11.6	1
BMI (Kg/m²)	26.9[IQR 23.7-30.8]	27.3(24.1-31.2)	0.4
Cholesterol (mmol/L)	4.7 ±1.2	4.7±1.2	0
HB (g/dL)	13.1 ±1.9	13.4±1.7	0.3
Smoking status			
ves	3,866 (13.3)	13,034(12.2)	1.1
No	13,614 (47.0)	51,480(48.2)	1.2
Ex	11,504 (39,7)	42,293(39.6)	0.1
Alcohol status		,	
Yes	19,296 (72,8)	73,125(74,6)	1.8
No	6 152 (23 2)	21 497(21 9)	13
Fx	1 060 (4 0)	3 364(3 4)	0.6
Diuretics	19,359(64.4)	74 394(67 2)	2.8
Beta blocker	9 683 (32 2)	38 717(35 0)	2.8
ACEI	13 589 (45 2)	54 985(49 6)	<u> </u>
ARB	3 779 (12 6)	15 325(13 8)	12
COPD	3 504 (11 7)	10,843(9,8)	1.2
EEV1 (np) (in COPD only)	53 5110R 38 8-70 71	53(IOR 37 4-68 4)	0.5
Dishetes	6 208 (21 0)		3.1
HbA1c (%) (in diabotes only)		7 1/10P 6 4 8 0)	0
Ponal disease (aGEP/60) at baseline	12 687 (50 1)	A2 067(A7 2)	20
aGED (ml/min/1 72m ²)	60.8 ± 20.3	43,507 (47.2) 62 1±18 8	2.9
Number of the listed comercidities at	00.0 ±20.3	02.1±10.0	1.5
heading (agt definition)			
	0 540 (00 6)	25 122/27 7	1 1
0	0,010 (JJ.D)	33,133(37.7)	4.1
	12,290 (48.5)	45,013(48.3)	0.2
2	4,202 (16.6)	12,279(13.2)	3.4
3	322 (1.3)	823(0.9)	0.4

Data are number patients (%) or mean± standard deviation or median(IQR). ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate; BMI, body mass index; HB, haemoglobin

A18 COPD drug severity framework; extraction algorithms

Cont'd on next page

KEY

Drug class	BNF chapter	CPRD category code
Beta2-antagonists: SHORT	3.1.1.1	1
Beta2-antagonists: LONG	3.1.1.1	2
Anti-cholinergics: SHORT	3.1.2	3
Anti-cholinergics: LONG	3.1.2	4
Methylxanthines	3.1.3	5
Compound inhalers (SHORT x2)	3.1.4	6
Inhaled steroids	3.2	7
Inhaled steroids + beta2-antagonist:SHORT	3.2	8
Inhaled steroids + beta2-antagonist:LONG	3.2	9
Oral steroids – prednisolone	6.3.2	10
Oral steroids – methylprednisolone	6.3.2	11
Oxygen	3.6	12

COPD drug severity CPRD extraction algorithms

Severity Group	Severity category description	Extraction algorithm using CPRD category codes
A Short acting	Any short acting bronchodilators	At least one of (1,3 or 6) and NOT (2, 4, 5, 7-9 or 12 or more)
B Monotherapy	Any one long acting bronchodilator on its own or Methylxanthines monotherapy (without other step up therapy) or inhaled steroid on its own. May be in addition to short acting inhalers	One of [2 OR 4 OR 5] OR [7 OR 8 OR both]) AND NOT [9 or more]
C Dual therapy	Any long acting bronchodilator and an inhaled steroid (separate or combined). Methylxanthines may replace one of the bronchodilators	2 AND [7 or 8 or 9 – any or all] AND NOT [4, 5 or 10 or more] OR One of [4 OR 5] AND [7 OR 8 OR both] AND NOT [2 or 9 or more] OR 9 but NOT [4, 5, or 10 or more]
	Or both long acting bronchodilators without inhaled steroid	[2 AND 4] AND NOT [5, 7,8 ,9 or more] [2 AND 5] AND NOT [4, 7,8 ,9 or more] [5 AND 4] AND NOT [2, 7,8 ,9 or more]
D Triple therapy	Both long acting bronchodilators and an inhaled steroid Methylxanthines may replace one of the bronchodilators or be additional to both	Two of [2, 4 or 5] AND one or all of [7 or 8 or 9] AND NOT 10 or more OR 9 AND [4 or 5] AND NOT [10, 11 or 12]
E Additional therapy	On long term oxygen therapy or oral steroids	Any or all of 10,11 or 12

A19 Missing data

	Total missing; Mortality	Total missing; Hospital admission linked sub sample
IMD quintile	54262(40.6)	342(0.31)
BMI (Kg/m2)	11,855(8.9)	10,596(9.6)
Cholesterol (mmol/L)	19,194(14.4)	19,600(17.7)
HB (g/dL)	15,565(11.6)	12,165(11.0)
Systolic and Diastolic BP (mmHg)	736(0.6)	521(0.47)
Smoking status	2480(1.9)	2,634(2.4)
Alcohol status	12279(9.2)	11,132(10.1)
HbA1c (%) compared to no diabetes	3097 (2.3% total sample, 9.7% in diabetes)	6,713 (6.1% total sample, 31.5% in diabetes)
HbA1c change compared to no diabetes	5788 (4.3% total sample, 18.1% in diabetes)	9,049 (8.2% total sample, 42.5% in diabetes)
FEV ₁ (pp)	9,963 (7.5% total sample, 53.9% in COPD)	10,031(9.1% total sample, 84.3% in COPD)
FEV1 (pp) severity change	13,796 (10.3% total sample, 74.7% in COPD)	11,250 (10.2% total sample, 94.5% in COPD)
eGFR	14030(10.5)	38,390(34.7)
eGFR change	28761(21.5)	56,017(50.6)

IMD, Index Multiple Deprivation; BMI, body mass index; HB, haemoglobin, FEV1, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate. Shaded area = values to be imputed.

A20 Exploration of missing data by mortality outcome

	Total missing	Controls	Cases	Absolute difference in %*
IMD quintile	54262(40.6)	43,915(41.1)	10,347(38.7)	-2.4*
Systolic and Diastolic BP (mmHg)	736(0.6)	542(0.5)	194(0.7)	0.2
BMI (Kg/m2)	11,855(8.9)	8485(7.9)	3370(12.6)	4.7*
Cholesterol (mmol/L)	19,194(14.4)	14094(13.2)	5100(19.1)	5.9*
HB (g/dL)	15,565(11.6)	12877(12.0)	2688(10.1)	-1.9*
Smoking status	2480(1.9)	1823(1.7)	657(2.5)	0.8
Alcohol status	12279(9.2)	9294(8.7)	2985(11.2)	2.5*
FEV ₁ (pp)	9,963 (7.5% total sample)	8192 (7.7% total sample)	1771 (6.6% total sample)	-1.1
	(53.9% in COPD)	(59.2 in COPD)	(38.3 in COPD)	-20.9*
FEV ₁ (pp) severity change	13,796 (10.3% total sample)	10,861 (10.2% total sample)	2,935 (11.0% total sample)	1.2
	(74.7% in COPD)	(78.4% in COPD)	(63.4% in COPD)	-15*
HbA1c (%) compared to no diabetes	3097 (2.3% total sample)	2356 (2.2% total sample)	741 (2.8% total sample)	0.6
	(9.7% in diabetes)	(9.3% in diabetes)	(9.4% in diabetes)	0.1
HbA1c change compared to no diabetes	5788 (4.3% total sample)	4548 (4.3% total sample)	1240 (4.6% total sample)	0.3
	(18.1% in diabetes)	(18.0% in diabetes)	(18.5% in diabetes)	0.5
eGFR	14030(10.5)	11216(10.5)	2814(10.5)	0
eGFR change	28761(21.5)	23310(21.8)	5451(20.4)	-1.4

FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate; BMI, body mass index; HB, haemoglobin . *Missing data was compared for cases and controls to identify whether missing values differed significantly between the groups. Given the large sample size rather than using a statistical test, difference was assessed using the absolute difference in the percent of missing data with >1.5% difference considered important

A21 Exploration of missing data by hospital admission outcome

	Total missing	Controls	Cases	Absolute difference in %
IMD quintile	342(0.31)	272(0.31)	70(0.29)	-0.2
Systolic and Diastolic BP (mmHg)	521(0.47)	362(0.42)	159(0.7)	0.28
BMI (Kg/m2)	10,596(9.6)	8,019(9.3)	2,577(10.6)	1.3
Cholesterol (mmol/L)	19,600(17.7)	14,934(17.3)	4,666(19.2)	1.9
HB (g/dL)	12,165(11.0)	9,627(11.4)	2,538(10.4)	-1.0
Smoking status	2,634(2.4)	2,013(2.3)	621(2.6)	0.3
Alcohol status	11,132(10.1)	8,587(9.9)	2,545(10.5)	0.6
FEV ₁ (pp)	10,031(9.1% total sample)	7,348(8.5% total sample)	2,683 (11% total sample)	2.5
	(84.3% in COPD)	(84.7% in COPD)	(83.1% in COPD)	-1.6
FEV ₁ (pp) severity change	11,250 (10.2% total sample)	8,213 (9.5% total sample)	3,037(12.5% total sample)	3.0
	(94.5% in COPD)	(94.7% in COPD)	(94 % in COPD)	-0.7
HbA1c (%) compared to no diabetes	6,713 (6.1% total sample)	4,757 (5.5% total sample)	1,956 (8.0% total sample)	2.5
	(31.5% in diabetes)	(30.2% in diabetes)	(35.1% in diabetes)	4.9
HbA1c change compared to no diabetes	9,049 (8.2% total sample)	6,507 (7.5% total sample)	2,542 (10.4% total sample)	2.9
	(42.5% in diabetes)	(41.4% in diabetes)	(45.6% in diabetes)	4.2
eGFR	38,390(34.7)	29,943(34.6)	8,447(34.7)	0.1
eGFR change	56,017(50.6)	43,995(50.9)	12,022(49.4)	-1.5

FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate; BMI, body mass index; HB, haemoglobin . *Missing data was compared for cases and controls to identify whether missing values differed significantly between the groups. Given the large sample size rather than using a statistical test, difference was assessed using the absolute difference in the percent of missing data with >1.5% difference considered important

	Pre imputation ALL	Post imputation ALL (n=133,645)	Pre imputation cases	Post imputation cases (n= 26,729)	Pre imputation controls	Post imputation controls (n=106,916)
BMI (Kg/m2)	26.9(IQR 23.7-31)	26.9(23.5-31)	25.4(22.2-29.3)	25.4(22.1-29.3)	27.3(24-31.3)	27.3(24-31.3)
Cholesterol (mmol/L)	4.5±1.2	4.5±1.2	4.4±1.2	4.4±1.2	4.5±1.2	4.5±1.2
HB (g/dL)	12.9±1.9	13.0±1.9	12.2±2.0	12.3±2.0	13.1±1.2	13.1±1.8
Systolic BP (mmHg)	131.4±20.5	131.4±20.5	126.9±22.3	126.9±22.3	132.5±19.9	132.5±19.9
Diastolic BP (mmHg)	73.3±11.4	73.3±11.4	71.1±11.4	71.1±12	73.9±11.1	73.9±11.1
Smoking status						
yes	14,737(11.2)	15,002(11.2)	3066(11.8)	3,127 (11.7)	11671(11.1)	11,875 (11.1)
No	60,527(46.1)	61,936(46.3)	12177(46.7)	12,573 (47.0)	48350(46.0)	49,363 (46.2)
Ex	55901(42.6)	56,707(42.4)	10829(41.5)	11,029(41.3)	45072(42.9)	45,678(42.7)
Alcohol status						
Yes	84,114(69.3)	92,438(69.2)	15744(66.3)	17,740(66.4)	68370(70.0)	74,698(69.9)
No	31330(25.8)	34,755(26.0)	6730(28.3)	7,611(28.5)	24600(25.2)	27,144(25.4)
Ex	5922(4.9)	6,452(4.8)	1270(5.4)	1,378(5.2)	4652(4.8)	5,074(4.8)

A22 Pre and post imputed data: mortality outcome

BMI, body mass index; HB, haemoglobin. Shaded area = final values following imputation.

A23 Pre and post imputed data: hospital admission linked sub-sample

	Pre imputation ALL	Post imputation ALL (n=110,789)	Pre imputation cases	Post imputation cases	Pre imputation controls	Post imputation controls (n=84,450)
IMD quintile						
1	22,493 (20.4)	22,567(20.4)	4,659(19.2)	4,676(19.2)	17,834(20.7)	17,891(20.7)
2	26,525 (24.0)	26,602(24.0)	5,597(23.1)	5,612(23.1)	20,928(24.3)	20,990(24.3)
3	22,936 (20.8)	23,003(20.8)	5,142(21.2)	5,155(21.2)	11,794(20.7)	17,848(20.6)
4	22,505 (20.4)	22,579(20.4)	5,046(20.8)	5,060(20.8)	17,459(20.7)	17,519(20.3)
5	15,988 (14.5)	16,038(14.5)	3,825(15.8)	3,836(15.8)	12,163(14.1)	12,202(14.1)
BMI (Kg/m2)	27.2(IQR 24-31.2)	27.2(23.9-31.2)	26.8(23.5-30.6)	26.7(23.5-30.6)	27.3(24.2-31.4)	27.3(24.1-31.3)
Cholesterol (mmol/L)	4.7±1.2	4.7±1.2	4.6±1.2	4.7±1.2	4.7±1.2	4.7±1.2
Hb (g/dL)	13.3±1.7	13.3±1.7	12.9±1.9	12.9±1.9	13.4±1.6	13.4±1.6
Systolic BP (mmHg)	135.6±20.2	135.6±20.2	134.1±21.6	134.1±21.5	136.0±19.8	136.0±19.8
Diastolic BP (mmHg)	75.7±11.2	75.7±11.2	74.7±12.0	74.7±12.0	75.9±11.0	75.9±11.0
Smoking status						
yes	11,796(10.9)	12,028(10.9)	2,965(12.5)	3,025 (12.4)	8,831(10.5)	9,003 (10.4)
No	51,774(47.9)	53,310(48.1)	10,899(46.0)	11,240(46.2)	40,875(48.4)	42,070 (48.7)
Ex	44,585(41.2)	45,451(41.0)	9,854(41.6)	10,074(41.4)	34,731(41.1)	35,377(40.9)
Alcohol status		04,070(70,7)	(= 0 = 0 (= 1 = 0)		== 000/=4 0	
Yes	73,560(73.8)	81,676(73.7)	15678(71.9)	17,500(71.9)	57,882(74.3)	64,176(74.2)
No	22,167(22.2)	24,783(22.4)	5,161(23.7)	5,779(23.7)	17,006(21.8)	19,004(22.0)
EX	3,930 (3.9)	4,330(3.9)	955(4.4)	1,060(4.4)	2,975(3.8)	3,270(3.8)

IMD, index of multiple deprivation; BMI, body mass index; Hb, haemoglobin. Shaded area = final values following imputation.

A24 Summary of goodness of fit measures

Test	Description	Interpretation
ROC/ c-index	How well does the model separate those who do and do not have the event?	C-index 0.5 = no discrimination
Log-likelihood	How likely is the data given the model?	Higher = better fit
Likelihood ratio test	How many times more likely the data are under one model than the other? Should the null model be rejected in favour of the alternative model?	p≤0.01 = reject the null model
AIC/ BIC	How well does the model fit the data given the number of parameters in the model?	Lower = better fit Difference of 2 AIC between models = model with smaller AIC preferred
McFadden's R ²	How much improved id the fitted model from the null model?	0.2 to 0.4 = excellent fit

	Cohort upto 1 year follow up (n=50114)		Cohort 1-5 years follow up (n=36161)			Cohort > 5 years follow up (n=12336)			
Characteristics	Dead (n=11661)	Alive (n=38453)	Р	Dead (n=11609)	Alive (n=24552)	Р	Dead (n=3459)	Alive (n=8877)	Р
Person and socio demographic fa	ctors								
Age, years	83[IQR 76-88]	77[69-84]	< 0.001	81[74-86]	75[67-81]	<0.001	78[71-83]	72[64-78]	<0.001
Women	5919(50.76)	17,676(46)	<0.001	5,447(46.9)	10999(44.8)	<0.001	1608(46.5)	3914(44.1)	0.02
IMD quintile			0.003			0.003			0.31
1	1374(18.3)	4472(19.9)		1287(18.8)	2919(20.4)		403(19.8)	1069(20.6)	
2	1720(22.9)	5232(23.3)		1545(22.6)	3351(23.5)		443(21.8)	1210(23.3)	
3	1678(22.4)	4662(20.7)		1455(21.3)	2939(20.6)		437(21.5)	1057(20.3)	
4	1594(21.2)	4641(20.7)		1420(20.8)	2943(20.6)		413(20.3)	1069(20.6)	
5	1141(15.2)	3472(15.5)		1131(16.5)	2134(14.9)		341(16.7)	796(15.3)	
Anthropometric and clinical factors	S								
Systolic BP (mmHg)	134.9±22.2	138±21.2	<0.001	138.7±21.8	137.8±20.9	<0.001	141.1±21.9	138.5±20.9	<0.001
Diastolic BP (mmHg)	74.7±12	77.3±11.9	<0.001	76.3±11.6	77.8±12.0	<0.001	77.9±11.9	79.1±12	<0.001
BMI (Kg/m ²)	25.5[IQR22.4-29.3]	27.4[24.3-31.4]	<0.001	26.5[23.4-30.3]	27.9[24.7-31.9]	<0.001	27.2[24.4-31]	28.1[25-32.1]	<0.001
Cholesterol (mmol/L)	4.6±1.3	4.7±1.2	<0.001	4.6±1.2	4.7±1.2	<0.001	4.8 1.2	4.8 1.2	0.51
HB (g/dL)	12.5±2	13.2±1.8	<0.001	12.9±1.9	13.5±1.7	<0.001	13.3 1.7	13.7 1.7	<0.001
Lifestyle factors									
Smoking status			<0.001			0.03			0.288
yes	1637(14.8)	5204(14)		1641(14.8)	3282(13.8)		520(16.9)	1284(15)	
No	5341(48.2)	17277(46.5)		5070(45.7)	11.65(46.4)		1487(46)	3958(46.17)	
Ex	4098(37)	14659(39.5)		4381(39.5)	9501(39.8)		1224(37.9)	3330(38.9)	
Alcohol status			<0.001			<0.001			<0.001
Yes	6759(67.9)	24469(71.7)		6928(68.9)	16230(73.7)		2135(72.3)	5956(75.4)	
No	2755(27.7)	8338(24.4)		2739(27.2)	4975(22.6)		735(24.9)	1677(21.2)	
Ex	441(4.4)	1305(3.8)		392(4)	830(3.8)		82(2.8)	266(3.4)	
Drug factors									
Diuretics	8,277(71.0)	23,794(61.9)	<0.001	8,519(73.4)	14,485(59.0)	<0.001	2,515(72.7)	5,381(60.6)	<0.001
Beta blocker	3219(27.6)	13,163(34.2)	<0.001	3638(31.3)	9129(37.2)	<0.001	1076(31.11)	3513(39.6)	<0.001
ACEi	4366(37.4)	18216(47.4)	<0.001	5227(45)	11996(48.9)	<0.001	1636(47.3)	4384(49.4)	0.04
ARB	1061(9.1)	5057(13.2)	<0.001	1408(12.1)	3407(13.9)	<0.001	380(11)	1147(12.92)	0.003
Comorbidity exposures									
COPD	1615(13.9)	4233(11)	<0.001	1659(14.3)	2337(9.5)	<0.001	366(10.6)	663(7.47)	<0.001
FEV ₁ (pp) (COPD only)	52.3[IQR 38.0-69.5]	54.0[40.3-69.8]	0.1239	52.3[37.9-68]	57.1[45-71]	<0.01	55.0[42.5-70.8]	57[45-69.6]	0.8059
Diabetes	2461(21.1)	8072(21)	<0.001	2723(23.5)	4900(20.0)	<0.001	699(20.2)	1476(16.6)	<0.001

A25 Baseline characteristics of the HF sample by mortality outcome in short, medium and long follow up periods

HbA1c (%) (diabetes only)	7[IQR6.3-8]	7.1[6.4-8.1]	<0.001	7.1[6.4-8.2]	7.1[6.4-8.1]	0.4721	7.3[6.4-8.4]	7.2[6.5-8.1]	0.2104
Renal disease (medical code)	2106(18.1)	5515(14.3)		1909(16.4)	3218(13.1)		179(5.2)	810(9.1)	
Renal disease (eGFR<60)	5568(59.4)	14516(46.9)	<0.001	5277(56.9)	8259(41.8)	<0.001	1287(52.8)	2643(39.5)	< 0.001
eGFR (ml/min/1.73m ²)	56.4±21.9	62.4±19.7	<0.001	57.8±20.1	64.7±19.0	<0.001	59.4±17.6	65.1±17.2	< 0.001
Number of listed comorbidities			<0.001			<0.001			< 0.001
0	2425(25.9)	11140 (36)		2442(26.3)	8039(40.6)		756(31.0)	2946(44.1)	
1	4929(52.5)	14542(47)		4740(51.1)	8904(45)		1247(51.2)	2995(44.8)	
2	1863(19.9)	4932(15.9)		1949(21)	2668(13.5)		412(16.9)	714(10.7)	
3	165(1.8)	350(1.1)		152(1.64)	173(0.9)		22(0.9)	32(0.5)	

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; HB, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate. Number of comorbidities is based on those listed (COPD, DM, CKD [eGFR]). HbA1c and FEV₁ were measured in the respective diabetes and COPD groups only. eGFR was measured in all HF patients.

A26 Baseline characteristics of the HF sample by mortality outcome in two temporal periods of HF diagnosis (pre and post April 2006)

Factors and exposures	Pre April 2006 (22,351)	Post April 2006 (27,763)	Ρ
Person and socio-demographic factors			
Age, years	79(IQR 71-84)	78(IQR 70-85)	0.2113
Women	10,866(48.6)	12,729(45.9)	<0.001
IMD quintile			0.297
1	2,645(19.6)	3201(19.4)	
2	3055(22.7)	3,897(23.6)	
3	2,897(21.5)	3,443(20.9)	
4	2,794(20.7)	3,441(20.9)	
5	2,095(15.5)	2,518(15.3)	
Anthropometric and clinical factors			
BMI (Kg/m ²)	26.8.9[IQR 23.7-26.8]	27.2[23.9-31.3]	<0.001
Cholesterol (mmol/L)	4.9±1.2	4.5±1.2	<0.001
HB (g/dL)	13.1±1.9	13.0±1.9	<0.001
Systolic BP (mmHg)	140.9±22.2	134.4`±20.4	<0.001
Diastolic BP (mmHg)	`78.3±11.9	75.4±11.9	<0.001
Lifestyle factors			
Smoking status			<0.001
yes	3422(16.6)	3419(12.4)	
No	10,044(48.7)	12574(45.6)	
Ex	7177(34.8)	11580(42.0)	
Alcohol status	, , , , , , , , , , , , , , , , , , ,		<0.001
Yes	13412(72.0)	17816(70.1)	
No	4665(25.0)	6,428(25.3)	
Ex	557(3.0)	1189(4.7)	
Drug factors			
Diuretics	15,301(68.5)	16,770(60.4)	<0.001
Beta blocker	6118(27.4)	10264(37.0)	<0.001
ACEi	9460(42.3)	13122(47.3)	<0.001
ARB	2005(9.0)	4113(14.8)	<0.001
Comorbidity exposures			
Diabetes	4,165(18.6)	6368(22.9)	<0.001
HbA1c (%) (in diabetes only)	7.2[IQR 6.5-8.3]	7[IQR 6.3-8]	<0.001
COPD	2,248(10.1)	3600(13.0)	<0.001
FEV1 (pp) (in COPD only)	51.4[IQR 36-68]	54[40.6-70]	0.0028
Renal disease (medical code)	655(2.9)	6966(25.1)	<0.001
Renal disease (eGFR<60)	8590(55.0)	11494(46.5)	< 0.001
eGFR (mL/min/1.73m ²)	58.3±18.8	62.7±21.2	<0.001
Number of listed comorbidities			< 0.001
0	4820(30.9)	8745(35.4)	
1	8,022(51.4)	11449(46.3)	
2	2,614(16.8)	4181(17.0)	
3	154(1.0)	361(1.5)	

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; HB, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate. Number of comorbidities is based on those listed (COPD, DM, HF).

Factors	COPD (n=18,478)	No COPD (n=115,167)
Age, years	76[IQR 69-81]	77[69-84]
Women	7,247(39.2)	54,485(47.3)
IMD quintile		
1	1,664(15.0)	14,244(20.9)
2	2237(20.2)	15,852(23.2)
3	2291(20.7)	14,375(21.04)
4	2520(22.8)	13,931(20.4)
5	2,361(21.3)	9,908(14.5)
BMI (Kg/m2)	26.7[23-31.1]	26.9 [23.6-30.9]
Cholesterol (mmol/L)	4.5±1.1	4.5±1.2
Hb (g/dL)	13.1±1.9	12.9±1.8
Systolic BP (mmHg)	128.9±19.9	131.8±20.6
Diastolic BP (mmHg)	72.1±11.2	73.5±11.4
Smoking status		
yes	3820(20.7)	11,182(9.7)
No	3191(17.3)	58,745(51.01)
Ex	11467(62.1)	45,240(39.3)
Alcohol status		
Yes	12856(69.6)	76582(69.1)
No	4502(24.4)	30253(26.3)
Ex	1120(6.1)	5332(4.6)
Beta blocker	6786(36.7)	67,435(58.6)
ACEi	9960(53.9)	64413(55.9)
ARB	3036(16.4)	19717(17.1)
ACEi or ARB	12725(68.9)	81822(71.1)
Diuretics	14,957(80.9)	88,326(76.7)
Diabetes	4276(23.1)	27686(24.0)
Renal disease (eGFR <60)	8384(49.9)	57917(56.3)
eGFR (ml/min/m ²⁾	61.0±22.4	57.3±20.9

A27 Time-matched patient characteristics of the matched sample by comorbid COPD status

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; Hb, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; eGFR, estimated glomerular filtration rate.

Factors	Diabetes (n= 31,962)	No diabetes (n=101,683)
Age, years	75[IQR 67-81]	78[70-84]
Women	13,127(41.1)	48605(47.8)
IMD quintile		
1	3,181(16.8)	12,727(21.1)
2	4,033(21.3)	14,056(23.3)
3	4,009(21.2)	12,657(20.9)
4	4,251(22.5)	12,200(20.2)
5	3,448(18.2)	8,821(14.6)
BMI (Kg/m2)	29.2[25.5-33.7]	26.3 [23.1-30]
Cholesterol (mmol/L)	4.1±1.1	4.6±1.2
Hb (g/dL)	12.7±1.9	13.0±1.8
Systolic BP (mmHg)	131.3±20.1	131.4±20.6
Diastolic BP (mmHg)	71.7±11.1	73.8±11.4
Smoking status		
yes	3153(9.9)	11,849(11.7)
No	13492(42.2)	47444(47.6)
Ex	15,317(47.9)	41390(40.7)
Alcohol status		
Yes	20805 (65.1)	71633(70.5)
No	9101(28.5)	25654(25.2)
Ex	2056(6.4)	4396(4.3)
Beta blocker	19,663(61.5)	54,558(53.7)
ACEi	19,104(59.8)	55,269(54.4)
ARB	6,727(21.1)	16,026(15.8)
ACEi or ARB	24,900(77.9)	6,9647(68.5)
Diuretics	26,361 (82.5)	76,922(75.7)
COPD	14276(13.4)	14,202(14.0)
Renal disease (eGFR <60)	18345(60.2)	47,956(53.8)
eGFR (ml/min/m ²⁾	55.6±22.4	58.6±20.7

A28 Time-matched general characteristics of the matched sample by comorbid diabetes mellitus status

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; Hb, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate.

A29 Time-matched general characteristics of the matched sample by comorbid CKD status

Factors	CKD (n= 66,301)	No CKD (n=53,314)
Age, years	80[IQR 73-85]	74[65-81]
Women	34847(52.6)	20264(38)
IMD quintile		
1	8344(20.4)	16462(20.0)
2	9471(23.1)	7314(22.6)
3	8758(21.4)	6637(20.5)
4	8453(20.6)	6705(20.7)
5	5979(14.6)	5206(16.1)
BMI (Kg/m2)	26.8[23.5-30.8]	27.2[23.8-31.3]
Cholesterol (mmol/L)	4.5±1.2	4.5±1.1
Hb (g/dL)	12.5±1.8	13.4±1.8
Systolic BP (mmHg)	130.7±21.0	131.2±19.4
Diastolic BP (mmHg)	72.0±11.4	74.2±10.9
Smoking status		
yes	5326(8.0)	7061(13.2)
No	32750(49.4)	22598(42.4)
Ex	28225(42.6)	23,655(44.4)
Alcohol status		
Yes	44246(66.7)	38405(72.0)
No	18785(28.3)	12222(22.9)
Ex	3270(4.9)	2687(5.0)
Beta blocker	19,663(61.5)	54,558(53.7)
ACEi	19,104(59.8)	55,269(54.4)
ARB	6,727(21.1)	16,026(15.8)
ACEi or ARB	24,900(77.9)	6,9647(68.5)
Diuretics	26,361 (82.5)	76,922(75.7)
COPD	8384(12.7)	8422(15.8)
Diabetes	18345(27.7)	12125(22.7)
eGFR (ml/min/m ²⁾	42.7±11.7	76.6±14.0

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; Hb, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate..

	Cohort up to ≤1 mo	onth (n=30,061)		Cohort >1 mont	h and \leq 1 year (n='	18,749)	Cohort > 1 year	(n=8,291)	
Factors and exposures	First admission (n=9,911)	Not admitted (n=18,749)	Р	First admission (n=9,478)	Not admitted (n=8,291)	Р	First admission (n=5,149)	Not admitted (n=3,142)	Р
Person and socio-demographic factors									
Age, years Women IMD quintile	80[72-86] 4,734(47.8)	79[IQR 71-85] 9,429(46.8)	<0.001 0.113 0.143	78[70-85] 4,242(44.8)	78[71-84] 4,476(48.3)	0.875 <0.001 <0. 01	78[71-84] 2,509(48.7)	77[68-83] 1,455(46.3)	<0.001 0.03 0.23
1 2 3 4 5	1,851(18.7) 2,276(23.0) 2,119(21.4) 2,094(21.2) 1,545(15.6)	3,993(19.9) 4,670(23.3) 4,221(21.0) 4,138(20.6) 3.067(15.3)		1,827(19.4) 2,143(22.7) 1,993(21.1) 1,943(20.6) 1,538(16.3)	1,893(20.5) 2,225(24.1) 1,921(20.8) 1,888(20.4) 1,319(14.3)		1,020(19.9) 1,221(23.8) 1,069(20.8) 1,053(20.5) 776(15.1)	665(21.3) 749(23.9) 657(21.0) 638(20.4) 421(13.5)	
Anthropometric and clinical factors	.,,			<u> </u>			·····		
BMI (Kg/m ²) Cholesterol (mmol/L) Hb (g/dL) Systolic BP (mmHg) Diastolic BP (mmHg) Prior Hospital admission <3 months	26.6[23.4-30.4] 4.7±1.2 12.8±2 137.0±22.1 76.3±12.5 3,914 (39.5)	27.1[IQR 23.9-31] 4.7±1.2 13.2±1.8 137.6±21.1 77.0±11.7 7,805 (38.7)	<0.001 0.049 <0.001 0.023 <0.001 <0.01	27[23.8-30.8] 4.6±1.2 13.1±1.8 136.9±21.0 76.6±11.8 4,248 (44.8)	27.4[24.2-31.3] 4.7±1.2 13.4±1.7 138.6±21 77.7±11.5 3,021 (32.6)	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	27.4[24.2-31.2] 4.8±1.2 13.4±1.7 140.2±21.1 78±11.6 1,617 (31.4)	27.7[24.5-32.9] 4.7±1.2 13.5±1.7 136.6±20.5 77.5±11.4 1,003 (31.9)	<0.01 <0.001 0.39 <0.001 0.04 0.450
3-6 months >6months-1 vear	861 (8.7) 940 (9.5)	1,610 (8.0) 1,771 (8.8)		818 (8.6) 845(8.9)	696 (7.5) 825 (8.9)		385 (7.5) 472 (9.2)	254 (8.1) 262 (8.3)	
Lifestyle factors				<u> </u>			<u> </u>	(0.0)	
Smoking status yes No Ex	1,393(14.6) 4,361(45.6) 3,806(39.8)	2,473(12.7) 9,253(47.6) 7,698(39.6)	<0.001	1,175(12.8) 4,263(46.3) 3,764(40.9)	1,076(12.1) 4,336(48.6) 3,502(39.3)	<0.01	630(12.8) 2,339(47.6) 1,941(39.5)	351(11.4) 1,501(48.9) 1,218(39.7)	0.163
Alcohol status Yes No Ex	6,197(71.1) 2,142(24.6) 383(4.4)	13,099(73.7) 4,010(22.6) 677(3.8)	<0.001	6,182(73.1) 1,949(23.1) 325(3.9)	6,121(74.9) 1,753(21.5) 299(3.7)	0.03	3,411(75.5) 952(21.1) 156(3.5)	,2120(75.1) 594(21.0) 110(3.9)	0.612
Drug factors									
Diuretics Beta blocker ACEi	5,773(58.3) 2,898(29.2) 3,701(37.3)	13,586(67.4) 6,785(33.7) 19,888(49.1)	<0.001 <0.001 <0.001	6,569(69.3) 3,215(33.9) 4,705(49.6)	6,241(67.3) 3,257(35.1) 4,720(50.9)	<0.01 0.08 0.08	3,747(72.8) 1,764(34.3) 2,638(51.2)	1,879(59.8) 1,242(39.5) 1,649(52.5)	<0.001 <0.001 0.27

A30 Baseline characteristics of the HF-HA sample by first hospital admission outcome in short, medium and long follow up periods

ARB	1,180(11.9)	2,599(12.9)	0.015	1,236(13.0)	1,266(13.7)	0.216	675(13.1)	481(15.3)	<0.01
Comorbidity exposures									
Diabetes	2,340(23.6)	3,958(19.6)	<0.001	2,061(21.8)	1,649(17.8)	< 0.001	944(18.3)	554(17.6)	0.421
HbA1c (%) (diabetes only)	7.1(6.3-8.1)	7.1(IQR 6.4-8.0)	0.8243	7.1(6.4-8.)	7 (6.4-8)	0.34	7.2(6.5-8.2)	6.9(6.3-7.7)	< 0.001
COPD	1,243(12.5)	2,261(11.2)	<0.01	1,226(12.9)	890(9.6)	<0.001	499(9.7)	287(9.1)	0.401
FEV ₁ (pp) (COPD only)	52.9[IQR 37.7-70.3]	54.1[39.6-71]	0.2378	54[40.4-71]	54.1[38.6-68.7]	0.58	54.1[38-70.3]	54.6[39-66]	0.943
Renal disease (medical code)	1,669(16.8)	2,851 (14.1)	<0.001	1,462(15.4)	1,204(13.0)	<0.001	531(10.3)	501(16.0)	< 0.001
Renal disease (eGFR<60)	4,455(53.4)	8,232(48.5)	<0.001	4,088(50.2)	3,597(46.2)	<0.001	2,073(49.6)	1,108(39.6)	< 0.001
eGFR (ml/min/1.73m ²)	59.2±21.3	61.6±19.7	<0.001	60.8±20.0	62.7±18.9	<0.001	61.1±17.8	65.7±19.6	< 0.001
Number of comorbidities (renal code)			<0.001			<0.001			<0.01
0	5,661(57.1)	12,591(62.5)		5,574(58.1)	6,098(65.8)		3,445(66.9)	2,030(64.6)	
1	33,16(33.5)	6,164(30.6)		3,128(33)	2,634(28.4)		1,449(28.1)	894(28.5)	
2	866(8.7)	1,289(6.4)		707(7.5)	508(5.5)		240(4.7)	206(6.6)	
3	68(0.7)	106(0.5)		69(0.7)	31(0.3)		15(0.3)	12(0.4)	
Number of listed comorbidities (eGFR			<0.001			<0.001			< 0.001
definition)									
0	2,497(29.9)	6,021 (35)		2,676(32.9)	2,986(38.4)		1,456(34.8)	1,244(44.5)	
1	4,089(49.0)	8,201(48.3)		3,951(48.5)	3,734(48)		2,121(50.7)	1,211(43.3)	
2	1,630(19.5)	2,572(15.1)		1,400(17.2)	1,007(12.9)		571(13.7)	328(11.7)	
3	128(1.5)	194(1.1)		119(1.5)	59(0.8)		36(0.9)	15(0.5)	

Data are number patients (%) or mean± standard deviation or median[IQR]. First hospital admission is the first all-cause admission following the incident HF date. BMI, body mass index; Hb, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; HbA1c, glycated haemoglobin; eGFR, estimated glomerular filtration rate; Number of comorbidities is based on those listed (COPD, DM, HF).

Factors	COPD (n= 11,903)	No COPD (n=98,886)
Current age, years	77(70-82)	79(70-85)
Women	4,982(41.9)	48,822(49.4)
IMD quintile		
1	1,784(15.0)	20,783(21.02)
2	2,366(19.9)	24,236(24.5)
3	2,460(20.7)	20,543(20.8)
4	2,717(22.8)	19,862(20.10)
5	2,576(21.6)	13,462(13.6)
BMI (Kg/m2)	27[23.5-31.4]	27.2 [24-31.2]
Cholesterol (mmol/L)	4.7±1.1	4.7±1.2
HB (g/dL)	13.5±1.8	13.3±1.7
Systolic BP (mmHg)	132.7±19.8	135.9±20.3
Diastolic BP (mmHg)	74.2±11.3	75.9±11.2
Prior Hospital admission		
<3 months	1,104 (9.27)	7,559(7.6)
3-6 months	1,005(8.44)	7,382 (7.5)
>6 months to 1 year	1,550(13.02)	11,380 (11.5)
Smoking status		
yes	2,534(21.3)	9,494(9.6)
No	2,038(17.1)	51,272(51.9)
Ex	7,331(61.6)	38,120(38.6)
Alcohol status		
Yes	8,670 (72.8)	73,006 (73.8)
No	2,666 (22.4)	22,117 (22.4)
Ex	567 (4.8)	3,763 (3.8)
Beta blocker	2,391(20.1)	42,076(42.6)
ACEi	6,915(58.1)	56,992(57.6)
ARB	1,892(15.9)	17,432(17.6)
ACEi or ARB	8,586(72.1)	71,834(72.6)
Diuretics	9,025(75.8)	70,835(71.6)
Diabetes	2,107(17.7)	19,184(19.4)
Renal disease (eGFR <60)	3,686(46.6)	34,098(52.9)
eGFR (ml/min/m ²⁾	62.0±20.0	59.2±19.3

A31 Time-matched general characteristics of the matched hospital admission linked sample by comorbid COPD status

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; HB, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; pp, percent predicted; eGFR, estimated glomerular filtration rate

Factors	Diabetes (n=21,291)	No diabetes (n=89,498)
Current age, years	76[68-82]	79[71-85]
Women	8,918(41.9)	44,886(50.2)
IMD quintile	· · /	
1	3,617(17.0)	18,950(21.2)
2	4,788(22.5)	21,814(24.4)
3	4,509(21.1)	18,494(20.7)
4	4,457(21.4)	18,032(20.2)
5	3,830(18.0)	12,208(13.6)
BMI (Kg/m2)	29.6[26-34.1]	26.6[23.5-30.4]
Cholesterol (mmol/L)	4.3±1.1	4.8±1.2
HB (g/dL)	13.1±1.9	13.4±1.7
Systolic BP (mmHg)	135.2±19.8	135.7±20.3
Diastolic BP (mmHg)	73.4±11.0	76.2±11.2
Prior Hospital admission		
<3 months	2,084(9.8)	6,579(7.4)
3-6 months	1,787(8.4)	6,600(7.4)
>6 months to 1 year	2,573(12.1)	10,357(11.6)
Smoking status		
yes	2,124(10.0)	9,904(11.1)
No	8,785(41.3)	44,525(49.8)
Ex	10,382(48.8)	35,069(39.2)
Alcohol status		
Yes	14,122 (66.3)	67,554(75.5)
No	5,858(27.5)	18,925(21.2)
Ex	1,311(6.2)	3,019(3.4)
Beta blocker	9,772(45.9)	34,695(38.8)
ACEi	13,603(63.9)	50,304(56.2)
ARB	4,716(22.2)	14,608(16.3)
ACEi or ARB	17,475(82.1)	62,945(70.3)
Diuretics	16,291(76.5)	63,569(71.0)
COPD	2,107(9.9)	9,796(11.0)
Renal disease (eGFR <60)	9.024(54.3)	28,760(51.6)
eGFR (ml/min/m ²⁾	58.6±20.7	59.7±19.0

A32 Time-matched general characteristics of the matched sample by comorbid DM status

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; HB, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate.

Factors	Renal dysfunction (n= 37,784)	No renal dysfunction (n=34,618)
Current age, years	81[75-86]	75[66-82]
Women	21,027(55.7)	13,546 (39.1)
IMD quintile		
1	7,730(20.5)	7,135 (20.6)
2	8,977(23.8)	8,338(24.1)
3	8,233(21.8)	7,084(20.5)
4	7,633(20.2)	7,009(20.3)
5	5,211(13.8)	5,049(14.6)
BMI (Kg/m2)	27.1[23.8-31]	27.6[24.3-31.8]
Cholesterol (mmol/L)	4.7±1.2	4.6±1.1
Hb (g/dL)	12.8±1.7	13.7±1.6
Systolic BP (mmHg)	135.1±20.9	134.5±19.3
Diastolic BP (mmHg)	74.1±11.4	76.2±10.9
Prior Hospital admission		
<3 months	3,214 (8.5)	2,441 (7.1)
3-6 months	3,031(8.0)	3,020(8.7)
>6 months to 1 year	4,689(12.4)	4,260 (12.3)
Smoking status		
yes	2,985(7.9)	4,199(12.1)
No	19,107(50.6)	15,100(43.6)
Exf	15,692(41.5)	15,316(44.3)
Alcohol status		
Yes	26,630(70.5)	26,612(76.9)
No	9,584(25.4)	6,583(19.0)
Ex	1,570(4.2)	1,420(4.1)
Beta blocker	16,067(42.5)	14,807(42.8)
ACEi	22,194(58.7)	22,087(63.8)
ARB	7,590(20.1)	5,900(17.0)
ACEi or ARB	28,681(75.9)	26,889(77.7)
Diuretics	30,773 (81.4)	23,472(67.8)
Diabetes	9,024(23.9)	7,597(22.0)
COPD	3,686(9.8)	4,218(12.2)
eGFR (ml/min/m ²⁾	44.7±10.5	75.6±13.1

A33 Time-matched general characteristics of the matched sample by comorbid CKD status

Data are number patients (%) or mean± standard deviation or median[IQR]. BMI, body mass index; Hb, haemoglobin; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate. A34 Unadjusted associations of each comorbidity with mortality by status (present or not) and then in strata of the potential confounders

Potential confounders	Diabetes	COPD	CKD
Unadjusted RR	1.09 (1.05, 1.12)	1.41 (1.36, 1.46)	1.77 (1.72, 1.82)
Person and socio-demogra	phic factors		
Age quartile			
1	1.54 (1.38, 1.71)*	2.03 (1.78, 2.30)*	2.22 (1.98, 2.50)*
2	1.32 (1.21, 1.44)	1.70 (1.53, 1.88)	1.41 (1.29, 1.54)
3	1.21 (1.11, 1.33)	1.65 (1.49, 1.84)	1.36 (1.24, 1.50)
4	1.16 (1.06, 1.13)	1.17 (1.05, 1.31)	1.21 (1.12, 1.31)
Male	1.10 (1.05, 1.16)	1.47 (1.39, 1.55)	1.94 (1.85, 2.03)*
Female	1.13 (1.07, 1.19)	1.36 (1.27, 1.46)	1.55 (1.47, 1.63)
Anthropometric and clinica	I factors		
BMI quartile			
1	1.36 (1.24, 1.50)*	1.24 (1.13, 1.36)*	1.45 (1.34, 1.57)*
2	1.34 (1.22, 1.47)	1.45 (1.30, 1.62)	1.72 (1.57, 1.88)
3	1.29 (1.17, 1.41)	1.37, 1.22, 1.54)	2.02 (1.83, 2.23)
4	1.25 (1.14, 1.37)	1.52 (1.35, 1.72)	2.19 (1.98, 2.43)
Cholesterol >=4.3	1.09 (1.03, 1.16)	1.39 (1.31, 1.48)	1.71 (1.62, 1.80)
Cholesterol <4.3	1.04 (0.99, 1.09)	1.39 (1.31, 1.47)	1.84 (1.75, 1.93)
Haemoglobin >=13	1.10 (1.03, 1.17)	1.59 (1.49, 1.70)*	1.74 (1.65, 1.84)
Haemoglobin <13	0.96 (0.91, 1.00)*	1.36 (1.28, 1.44)	1.38 (1.31, 1.44)*
Systolic BP >=130mmHg	1.07 (1.02, 1.12)	1.45 (1.36, 1.54)	1.67 (1.59, 1.76)
Systolic BP <130mmHg	1.08 (1.03, 1.14)	1.34 (1.26, 1.42)	1.84 (1.75, 1.94)
Lifestyle factors			
Smoking yes	1.05 (0.87, 1.26)	1.43 (1.20, 1.70)	1.83 (1.51, 2.22)
Smoking no	1.08 (1.05, 1.12)	1.39 (1.33, 1.45)	1.78 (1.72, 1.84)
Alcohol yes	1.09 (1.05, 1.14)	1.43 (1.36, 1.50)	1.79 (1.72, 1.87)
Alcohol no	1.03 (0.97, 1.11)	1.33 (1.22, 1.45)	1.66 (1.55, 1.78)
Drug factors			
Beta blocker yes	1.21 (1.15, 1.26)*	1.37 (1.28, 1.47)	2.10 (2.00, 2.21)*
Beta blocker no	1.01 (0.96, 1.07)	1.15 (1.09, 1.22)*	1.56 (1.48, 1.64)
ACEi or ARB yes	1.18 (1.13, 1.23)	1.51 (1.43, 1.58)	1.90 (1.82, 1.98)
ACEi or ARB no	1.11 (1.03, 1.20)	1.14 (1.05, 1.23)*	1.51 (1.40, 1.61)*
Diuretic yes	1.02 (0.99, 1.06)	1.39 (1.33, 1.45)	1.66 (1.60, 1.72)
Diuretic no	1.23 (1.10, 1.38)*	1.31 (1.14, 1.49)	1.81 (1.63, 2.02)
Comorbidity exposures			
Diabetes	-	1.51 (1.35, 1.69)	1.95 (1.78, 2.13)*
No diabetes	-	1.42 (1.36, 1.48)	1.76 (1.69, 1.82)
COPD	1.06 (0.92, 1.21)	-	1.29 (1.13, 1.47)*
No COPD	1.10 (1.06, 1.13)	-	1.91 (1.85, 1.98)
eGFR<60	1.08 (1.03, 1.13)	1.29 (1.22, 1.37)	-
eGFR60	1.05 (0.98, 1.13)	1.79 (1.66, 1.93)*	_

*10% Difference in comorbidity effect in at least one of the strata of the confounder. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; BMI, body mass index;

	Diabetes								COPD						
	Diabetes	HbA1c	HbA1c	HbA1c	No	Oral (+/-	Insulin	COPD	FEV ₁	FEV ₁	FEV ₁	FEV ₁	No	Steroids	Oxygen
	Status	6.5-7.5%	>7.5%	<6.5%	drugs	Insulin)	only	Status	≥80%	50-79%	30-49%	<30%	steroids/	/no	
					-								oxygen	oxygen	
Unadjusted RR	1.09	1.01	1.01	1.24	1.30	0.93	1.32	1.41	1.88	1.87	2.47	2.84	1.19	1.79	3.14
Adjusted by:															
Age	1.28	1.15	1.32	1.38	1.38	1.12	1.74	1.56	1.95	2.00	2.78	3.89	1.30	2.02	3.80
Sex	1.09	1.02	1.01	1.24	1.30	0.94	1.33	1.42	1.89	1.90	2.52	2.91	1.21	1.80	3.17
IMD	1.05	0.99	0.95	1.21	1.3	0.89	1.25	1.36	1.77	1.83	2.49	2.77	1.17	1.74	2.85
BMI (Kg/m2)	1.32	1.21	1.28	1.41	1.41	1.15	1.68	1.39	1.79	1.89	2.35	2.56	1.19	1.75	3.10
Cholesterol (mmol/L)	1.05	0.97	0.98	1.19	1.27	0.90	1.27	1.41	1.87	1.85	2.47	2.87	1.19	1.81	3.15
Hb (g/dL)	0.98	0.92	0.93	1.06	1.23	0.84	1.12	1.50	1.95	1.93	2.59	3.63	1.26	1.90	3.37
Systolic BP (mmHg)	1.10	1.02	1.03	1.24	1.31	0.94	1.34	1.37	1.79	1.80	2.37	2.71	1.17	1.73	2.95
Diastolic BP (mmHg)	1.05	0.97	0.97	1.18	1.28	0.90	1.23	1.38	1.82	1.80	2.38	2.78	1.16	1.76	3.03
Smoking status	1.09	1.01	1.01	1.24	1.30	0.93	1.33	1.45	1.95	1.94	2.55	2.95	1.23	1.85	3.25
Alcohol status	1.08	1.00	0.99	1.23	1.30	0.92	1.30	1.41	1.89	1.88	2.47	2.86	1.20	1.79	3.12
Not on beta blocker	1.12	1.05	1.04	1.26	1.33	0.96	1.37	1.24	1.68	1.67	2.13	2.34	1.07	1.53	2.69
Not on ACEi	1.12	1.04	1.03	1.26	1.3	0.97	1.33	1.40	1.84	1.88	2.47	2.80	1.19	1.75	3.03
Not on ARB	1.11	1.03	1.04	1.25	1.31	0.95	1.38	1.40	1.91	1.87	2.44	2.78	1.19	1.78	3.01
Diuretic	1.07	0.99	0.98	1.22	1.29	0.91	1.29	1.39	1.87	1.84	2.42	2.82	1.18	1.76	3.06
COPD/ Diabetes	1.09	1.01	1.01	1.24	1.30	0.93	1.33	1.41	1.88	1.87	2.47	2.86	1.20	1.79	3.15
eGFR <60ml/min ⁾	1.05	0.98	0.97	1.19	1.28	0.91	1.20	1.47	1.97	1.90	2.70	3.44	1.23	1.97	3.41
eGFR (ml/min/m2)	1.03	0.96	0.95	1.16	1.25	0.91	1.09	1.51	1.98	1.93	2.81	3.74	1.25	2.06	3.52

A35 Adjusted comorbidity associations with all-cause mortality by each potential confounder

All Diabetes and COPD exposure measures are compared to the reference group of no diabetes or no COPD respectively. Red text indicates a $\geq 10\%$ adjustment to the OR. IMD, Index Multiple Deprivation; Hb, haemoglobin; BMI, body mass index ; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate..

A35 cont'd Adjusted comorbidity associations with all-cause mortality by each potential confounder

	Renal any (eGFR<60)	>105	90-105	45-59	30-44	15-29	<15
Unadjusted RR	1.77	1.59	1.09	1.30	1.99	3.60	5.53
Adjusted by:							
Age	1.34	2.12	1.37	1.07	1.48	2.71	5.30
Sex	1.76	1.60	1.09	1.29	1.98	3.59	5.52
IMD quintiles*	1.72	1.69	1.07	1.25	1.96	3.58	5.42
BMI (Kg/m2)	1.74	1.57	1.10	1.28	1.95	3.61	5.59
Cholesterol (mmol/L)	1.77	1.59	1.09	1.30	1.98	3.58	5.46
HB (g/dL)	1.42	1.57	1.11	1.16	1.58	2.51	3.47
Systolic BP (mmHg)	1.75	1.58	1.08	1.29	1.95	3.59	5.72
Diastolic BP (mmHg)	1.69	1.62	1.10	1.26	1.89	3.35	5.19
Smoking status	1.78	1.57	1.08	1.30	2.00	3.62	5.54
Alcohol status	1.76	1.59	1.09	1.29	1.97	3.57	5.48
Not on beta blocker	1.79	1.51	1.06	1.30	2.00	3.71	5.76
Not on ACEi	1.73	1.58	1.10	1.29	1.95	3.40	5.04
ot on ARB	1.79	1.56	1.08	1.31	2.01	3.65	5.47
Diuretic	1.72	1.62	1.10	1.27	1.93	3.48	5.55
Diabetes	1.76	1.59	1.09	1.30	1.99	3.60	5.53
COPD	1.79	1.55	1.07	1.31	2.01	3.66	5.65

Renal status eGFR <60 is compared to eGFR \geq 60 mls/min/m2. Renal severity exposures are compared to the reference group of eGFR 60-89 mls/min/m². Red text indicates a \geq 10% adjustment to the OR. IMD, Index Multiple Deprivation; Hb, haemoglobin; BMI, body mass index ; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate. A36 Summary of linearity investigations for continuous variables and mortality

Continuous factor	^r Margins-plots	Likelihood ratio tests	Fitted lines	Eccles plots	Decision
Age	Some departure from linearity	Quadratic extension significant but change to log- likelihood small (53.26)	Linear fit close to observed data for most of age distribution	Good fit between observed data and model with age (linear) and model with age (quadratic)	Age linear
BMI	Curved line	Quadratic extension significant with large change in log- likelihood (121.69). Cubic extension significant with small change in log-likelihood (4.59).	Quadratic line fit close to observed data for most of BMI distribution (IQR 23.5-31kg/m2)	Good fit between observed data and model with BMI (quadratic) and model with BMI (cubic)	BMI + BMI ²
Cholesterol	Small departure from linearity in lower deciles	Quadratic extension significant but change to log- likelihood small (50.7)	Linear fit close to observed data for most of CH distribution (mean 4.5 ± 1.2)	Good fit between observed data and model with CH (linear) and model with CH (quadratic)	CH linear
Haemoglobin	Curved line	Quadratic extension significant with large change in log- likelihood (114.53). Cubic extension significant with a smaller change in log-likelihood (71.37). Log transformation non-significant.	Quadratic line fit close to observed data for most of Hb distribution (mean 13.1±1.9)	Good fit between observed data and model with Hb (quadratic) and model with Hb (cubed)	Hb + Hb ²
Systolic blood pressure	Curved line	Quadratic extension significant with large change in log- likelihood (297.25). Cubic extension significant with small change in log-likelihood (27.3).	Quadratic line fit close to observed data for most of systolic distribution (mean 137.3±21.5)	Reasonable fit between observed data and model with systolic (quadratic) and model with systolic (cubed)	systolic + systolic ²
Diastolic blood pressure	Curved line	Quadratic extension significant with large change in log- likelihood (97.66). Cubic extension significant with small change in log-likelihood (5.93).	Quadratic line fit close to observed data for diastolic	Good fit between observed data and model with diastolic (quadratic) and model with diastolic (cubed)	diastolic + diastolic ²
eGFR	Curved line	Quadratic extension significant with large change in log- likelihood (385.06). Cubic extension significant with small change in log-likelihood (9.53).	Quadratic extension fit close to observed data	Good fit between observed data and model with eGFR (quadratic)	eGFR + eGFR ²

A37 Unadjusted associations of each comorbidity by status (present or not) with first hospital admission and then in strata of the potential confounders

Potential confounders	Diabetes	COPD	CKD
Unadjusted	1.33 (1.28, 1.37)	1.36 (1.31, 1.43)	1.34 (1.29, 1.40)
Person and socio-demographic factors			
Age quartile 1	1.31 (1.19, 1.45)	1.40 (1.23, 1.59)	1.69 (1.46, 1.96)*
2	1.36 (1.23, 1.50)	1.55 (1.37, 1.76)*	1.21 (1.08, 1.37)*
3	1.54 (1.38, 1.72)*	1.60 (1.40, 1.83)*	1.18 (1.04, 1.34)*
4	1 52 (1 35, 1 72)*	1 41 (1 21 1 64)	1 16 (1 02 1 32)*
Male	1 24 (1 18 1 31)	1 36 (1 28, 1 46)	1 53 (1 44 1 64)*
Female	1 44 (1 35, 1 53)	1.38 (1.27, 1.50)	1 17 (1 09, 1 26)*
IMD quintile 1	1 37 (1 10 1 57)	1 20 (1 07 1 55)	1 / 7 (1 26 1 71)*
	1.07 (1.10, 1,07)	1.20 (1.07, 1,55)	1.47 (1.20, 1,71)
2	1.32 (1.10, 1.40)	1.39 (1.20, 1.01)	1.34 (1.10, 1.33)
3	1.33 (1.18, 1.51)	1.17 (1.00, 1.37)"	1.40 (1.21, 1.62)
4	1.45 (1.29, 1.64)	1.50 (1.29, 1.74)*	1.37 (1.18, 1.60)
5	1.18 (1.01, 1.38)*	1.38 (1.15, 1.65)	1.19 (0.97, 1.46)*
Anthropometric and clinical factors			
No hospital admissions in previous year	1.28 (1.22, 1.35)	1.33 (1.25, 1.42)	1.35 (1.28, 1.43)
Hospital admission ≤3 months ago	1.16 (0.97, 1.40)*	1.56 (1.23, 1.97)*	1.38 (1.10, 1.73)
Hospital admission >3-6 months ago	1.36 (1.11, 1.66)	1.31 (1.02, 1.69)	1.03 (0.81, 1.29)*
Hospital admission >6months to 1 year ago	1.41 (1.19, 1.66)	1.66 (1.34, 2.04)*	1.15 (0.95, 1.40)*
BMI guartile 1	1.45 (1.28, 1.65)	1.45 (1.28, 1.64)	1.20 (1.06, 1.35)*
2	1.50 (1.34, 1.69)*	1.28 (1.12, 1.47)	1.29(1.13, 1.46)
3	1 20 (1 08, 1 33)*	1 33 (1 15, 1 53)	1.31 (1.15, 1.50)
4	1.38 (1.26, 1.52)	1.36 (1.19, 1.56)	1 41 (1 25, 1 60)
Cholesterol <4 6	1 30 (1 24, 1 37)	1 37 (1 27 1 47)	1 44 (1 35, 1 54)
Cholesterol >1 6	1.00 (1.24, 1.07)	1.07(1.27, 1.47) 1.40(1.30, 1.51)	1 25 (1 17 1 35)
Happendichin <13 I	1.23 (1.20, 1.30)	1.40 (1.30, 1.51)	1.20 (1.17, 1.33)
Haemoglobin >13.4	1.33 (1.20, 1.40)	1.40 (1.30, 1.30)	1.20 (1.13, 1.20)
$\frac{1}{2} \frac{1}{2} \frac{1}$	1.14 (1.07, 1.21)	1.39 (1.29, 1.49)	1.22 (1.13, 1.31)
Systelic DP > 13 IIIIIIIIIII Systelic DD>125mmHz	1.20 (1.21, 1.33)	1.37 (1.20, 1.47)	1.40(1.32, 1.49)
	1.39 (1.31, 1.40)	1.33 (1.23, 1.43)	1.31 (1.22, 1.41)
Lifestyle factors	4.00.(0.07.4.00)*		
Smoking yes	1.09 (0.87, 1.38)*	1.33 (1.08, 1.65)	1.04 (0.77, 1.41)*
Smoking no	1.34 (1.29, 1.40)	1.36 (1.29, 1.42)	1.34 (1.28, 1.39)
Alcohol yes	1.34 (1.28, 1.40)	1.37 (1.30, 1.45)	1.34 (1.28, 1.41)
Alcohol no	1.26 (1.15, 1.37)	1.33 (1.18, 1.51)	1.30 (1.15, 1.46)
Drug factors			
Beta blocker yes	1.37 (1.28, 1.47)	1.37 (1.28, 1.47)	1.40 (1.30, 1.52)
Beta blocker no	1.38 (1.31, 1.45)	1.15 (1.09, 1.22)*	1.31 (1.23, 1.39)
ACEi or ARB yes	1.40 (1.34, 1.46)	1.51 (1.43, 1.58)*	1.34 (1.28, 1.41)
ACEi or ARB no	1.45 (1.31, 1.61)	1.14 (1.05, 1.23)*	1.37 (1.22, 1.54)
Diuretic yes	1.31 (1.25, 1.36)	1.39 (1.33, 1.45)	1.33 (1.27, 1.40)
Diuretic no	1.48 (1.34, 1.63)*	1.31 (1.14, 1.49)	1.49 (1.31, 1.69)*
Comorbidity exposures	······	<u>`</u>	////
Diabetes	-	1 54 (1 30 1 82)*	1 50 (1 31 1 70)*
No diabetes	_	1.38 (1.32, 1.46)	1.29 (1.22, 1.35)
COPD	1 28 (1 03 1 60)	-	1 38 (1 06, 1 79)
No COPD	1 34 (1 29, 1 39)		1 35 (1 29, 1 41)
Renal dysfunction	1 24 (1 14 1 35)	1 43 (1 29 1 58)	-
No renal dysfunction	1 32 (1 23 1 42)	1.37 (1.24, 1.53)	
No renal dysiunction	1.52 (1.25, 1.42)	1.57 (1.24, 1.55)	-

First hospital admission is the first all-cause admission following the incident HF date. *10% Difference in comorbidity effect in at least one of the strata of the confounder. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; BMI, body mass index;

	Diabetes							COPD							
	Diabetes	HbA1c	HbA1c	HbA1c	No	Oral (+/-	Insulin	COPD	FEV ₁	FEV ₁	FEV ₁	FEV ₁	No steroids	Steroids /no	On
	Status	6.5-7.5%	>7.5%	<6.5%	drugs	Insulin)	only	Status	≥80%	50-79%	30-49%	<30%	or oxygen	oxygen	oxygen
Unadjusted	1.33	1.14	1.31	1.25	1.17	1.34	1.63	1.36	1.38	1.59	1.43	1.28	1.20	1.74	3.34
Adjusted by:															
Age	1.37	1.17	1.39	1.27	1.18	1.39	1.75	1.39	1.39	1.61	1.44	1.34	1.22	1.78	3.41
Sex	1.32	1.13	1.30	1.24	1.17	1.33	1.62	1.36	1.38	1.57	1.42	1.26	1.19	1.73	3.35
IMD quintiles	1.32	1.13	1.30	1.23	1.16	1.33	1.62	1.35	1.36	1.55	1.42	1.26	1.18	1.71	3.31
Prior admissions	1.27	1.13	1.29	1.21	1.10	1.32	1.46	1.35	1.50	1.52	1.41	1.36	1.21	1.67	2.89
BMI (Kg/m2)	1.42	1.23	1.44	1.32	1.22	1.45	1.78	1.36	1.38	1.60	1.40	1.22	1.20	1.73	3.27
Cholesterol (mmol/L)	1.30	1.11	1.29	1.22	1.16	1.31	1.60	1.37	1.38	1.58	1.44	1.29	1.20	1.75	3.36
Hb (g/dL)	1.26	1.08	1.26	1.15	1.16	1.25	1.55	1.43	1.44	1.62	1.45	1.49	1.25	1.83	3.53
Systolic BP (mmHg)	1.33	1.14	1.32	1.24	1.17	1.34	1.65	1.35	1.38	1.58	1.41	1.24	1.18	1.71	3.18
Diastolic BP (mmHg)	1.29	1.11	1.29	1.21	1.15	1.30	1.57	1.34	1.38	1.56	1.41	1.26	1.18	1.72	3.20
Smoking status	1.32	1.14	1.31	1.24	1.16	1.34	1.64	1.33	1.37	1.54	1.39	1.24	1.17	1.70	3.28
Alcohol status	1.31	1.13	1.30	1.24	1.16	1.32	1.62	1.36	1.38	1.60	1.43	1.28	1.20	1.73	3.31
Not on beta blocker	1.34	1.16	1.33	1.27	1.18	1.36	1.66	1.32	1.35	1.53	1.38	1.21	1.16	1.66	3.20
Not on ACEi	1.36	1.18	1.34	1.29	1.18	1.38	1.68	1.37	1.40	1.60	1.45	1.26	1.21	1.72	3.32
Not on ARB	1.34	1.16	1.33	1.26	1.18	1.35	1.67	1.20	1.40	1.58	1.41	1.26	1.20	1.73	3.33
Diuretic	1.34	1.15	1.33	1.26	1.17	1.35	1.65	1.37	1.38	1.60	1.46	1.30	1.21	1.75	3.35
COPD	1.33	1.14	1.33	1.25	1.17	1.34	1.66	1.37	1.41	1.59	1.45	1.31	1.20	1.76	3.43
eGFR <60ml/min)	1.29	1.17	1.33	1.23	1.05	1.35	1.54	1.39	1.40	1.87	1.51	1.18	1.22	1.86	3.03
eGFR (ml/min/m2)	1.29	1.17	1.32	1.21	1.04	1.36	1.50	1.40	1.40	1.88	1.50	1.24	1.23	1.87	2.99

A38 Adjusted comorbidity associations with first hospital admission by each potential confounder

First hospital admission is the first all-cause admission following the incident HF date. All Diabetes and COPD exposure measures are compared to the reference group of no diabetes or no COPD respectively. Red text indicates a $\geq 10\%$ adjustment to the OR. IMD, Index Multiple Deprivation; Hb, haemoglobin; BMI, body mass index; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate.

	Renal any (eGFR<60)	>105	90-105	45-59	30-44	15-29	<15
Unadjusted	1.34	1.19	1.15	1.16	1.41	2.50	9.17
Adjusted by:							
Age	1.29	1.23	1.18	1.13	1.36	2.39	9.01
Sex	1.37	1.19	1.14	1.19	1.45	2.58	9.42
IMD quintiles*	1.35	1.18	1.14	1.16	1.41	2.50	9.10
Prior admission	1.30	1.22	1.10	1.16	1.34	2.22	7.48
BMI (Kg/m2)	1.33	1.19	1.15	1.15	1.40	2.47	9.13
Cholesterol (mmol/L)	1.35	1.19	1.15	1.17	1.42	2.51	9.08
Hb (g/dL)	1.15	1.22	1.19	1.08	1.18	1.85	6.08
Systolic BP (mmHg)	1.34	1.19	1.15	1.16	1.41	2.51	9.29
Diastolic BP (mmHg)	1.31	1.21	1.15	1.15	1.37	2.43	8.87
Smoking status	1.36	1.16	1.13	1.17	1.43	2.56	9.21
Alcohol status	1.33	1.19	1.15	1.16	1.40	2.48	9.04
Not on beta blocker	1.35	1.17	1.15	1.16	1.41	2.52	9.12
Not on ACEi	1.33	1.18	1.14	1.16	1.39	2.41	8.77
Not on ARB	1.35	1.19	1.15	1.17	1.42	2.52	9.22
Diuretic	1.35	1.19	1.14	1.17	1.43	2.55	9.25
COPD	1.36	1.18	1.15	1.17	1.43	2.53	9.27
Diabetes	1.34	1.18	1.14	1.16	1.40	2.47	8.88

Table A38 cont'd Adjusted comorbidity associations with first hospital admission by each potential confounder

First hospital admission is the first all-cause admission following the incident HF date. Renal status eGFR <60 is compared to eGFR ≥60 mls/min/m2. Renal severity exposures are compared to the reference group of eGFR 60-89 mls/min/m². Red text indicates a ≥10% adjustment to the OR. IMD, Index Multiple Deprivation; Hb, haemoglobin; BMI, body mass index; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate.

A39 Summary of linearity investigations for continuous variables with risk of first hospital admission

Continuous factor	Margins-plots	Log-likelihood ratio tests	Fitted lines	Eccles plots	Decision
Age	Some departure from linearity	Quadratic extension significant but change to log- likelihood small (11.78)	Linear fit close to observed data for most of age distribution	Good fit between observed data and model with age (linear) and model with age (quadratic)	Age linear
BMI	Curved line	Quadratic extension significant but with minimal change to log-likelihood (8.48). Cubic extension non-significant.	Linear fit close to observed data for most of BMI distribution (IQR 23.9-31.2 kg/m2)	Good fit between observed data and model with BMI (linear) and model with BMI (quadratic)	BMI linear
Cholesterol	Small departure from linearity in lower deciles	Quadratic extension significant but change to log- likelihood small (8.91)	Linear fit close to observed data for most of CH distribution (mean 4.7±1.2)	Good fit between observed data and model with CH (linear) and model with CH (quadratic)	CH linear
Haemoglobin	Curved line	Quadratic extension significant with large change in log-likelihood (122.32). Cubic extension and log transformation non-significant.	Quadratic line fit close to observed data for most of Hb distribution (mean 13.3±1.7)	Good fit between observed data and model with Hb (quadratic) and model with Hb (cubed)	Hb + Hb ²
Systolic blood pressure	Curved line	Quadratic extension significant with change in log- likelihood (77.05). Cubic extension significant with small change in log-likelihood (5.5).	Quadratic line fit close to observed data for most of systolic distribution (mean 135 6+20 2)	Good fit between observed data and model with systolic (quadratic)	systolic + systolic ²
eGFR	Curved line	Quadratic extension significant change in log-likelihood (84.67). Cubic extension significant with small change in log-likelihood (19.25).	Quadratic extension fit close to observed data	Good fit between observed data and model with eGFR (linear) and eGFR (quadratic)	eGFR + eGFR ²

E-Appendix B: Figures

B1 Galbraith Plot of studies investigating all-cause mortality risk associated with comorbid DM in HF

B2 Funnel plot for adjusted all-cause mortality risk associated with comorbid DM with pseudo 95% confidence intervals

B3 All-cause mortality associated with comorbid DM: prognostic factor (general)

Study	Sample size (n)	Diabetes (n)	Prevalence (%)	Adjusted		ES (95% CI)	Effect
Ahluwalia et al (2012) (Community)	9166	3122	34	A, G, E	•	1.22 (1.15, 1.31)	HR
Ahluwalia et al (2012) (Hospital)	9166	4617	50	A, G, E	•	1.16 (1.11, 1.22)	HR
Ahmed et al (2006)	1926	650	34	A, G,E,C,At,Sv,D,L,P,Ef	-	1.63 (1.36, 1.95)	HR
Barsheshet et al (2010) (<75 years)	1154	706	61	A, G,C,At,Sv,D,L,P,Ef	-	1.43 (1.15, 1.77)	HR
Barsheshet et al (2010) (>75 years)	1182	501	42	A, G,C,At,Sv,D,L,P,Ef	-	1.28 (1.07, 1.53)	HR
Chaudhry et al (2010)	62330	24745	40	A, G,E,C,L,P,Ef	•	1.28 (1.23, 1.34)	OR
Fernandez-Berges et al (2013)	2220	970	44	A, R,C,D	-	1.35 (1.11, 1.66)	HR
Gotsman et al (2008)	289	122	42	A, G,S,C,L,Ef	—	1.68 (1.03, 2.74)	HR
Harjola et al (2010)	2981	987	33	A, G,C,At,L,P	-	1.38 (1.08, 1.76)	HR
MacIntyre et al (2000) (Men)	31040	*		A, S,C	+	1.55 (1.41, 1.70)	HR
MacIntyre et al (2000)(Women)	35507	*		A, S,C	•	1.50 (1.38, 1.62)	HR
Mogensen et al (2011)	8507	1361	16	A, G,R,C,Ef	•	1.47 (1.37, 1.58)	HR
Mosterd et al (2001)	181	32	18	Α,	$ \longrightarrow$	3.19 (1.80, 5.65)	HR
Pons et al (2010)	960	377	40	A, G,C,At,Sv,D,Ef		1.60 (1.27, 2.01)	HR
Rusinaru et al (2009)	389	106	27	A, G,R,C,Sv,Ef	—	2.05 (1.41, 3.00)	HR
Shiba et al (2004)	1154	223	19	A, S,C,Sv,L		1.94 (1.26, 2.99)	HR
Tribouilloy et al (2010)	735	181	25	A, G,R,C,D,L	-	1.53 (1.22, 1.92)	HR
					<u> </u>		

.5 1 1.5 Lower risk Higher risk

Fig B3 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(EF) *not reported

B4 All-cause mortality associated with comorbid DM: prognostic model studies

	Sample						
	size	Diabetes	Prevalence				
Study	(n)	(n)	(%)	Adjusted		ES (95% CI)	Effect
Barlera et al (2013)	6975	1974	28	A,G,R,C,Sv,L,P,Ef	•	1.34 (1.22, 1.48)	HR
Bouvy et al (2003)	152	43	28	A,G,C,D,P		2.37 (1.15, 4.85)	OR
Pocock et al (2006) (Other)	7599	2164	29	A,G,R,C,Sv,P,Ef	•	1.50 (1.34, 1.68)	HR
Pocock et al (2006) (Insulin group	o)7599	707	9	A,G,R,C,Sv,P,Ef	+	1.80 (1.56, 2.08)	HR
Pocock et al (2013)	39372	8919	23	A,G,R,C,Sv,D,P,Ef	•	1.42 (1.37, 1.48)	HR
Senni et al (2006)	292	40	14	A,C,Sv,D,Ef	•••• >	2.41 (0.28, 8.80)	LogOR
Senni et al (2013)	2016	304	15	A,C,Sv,D,Ef	•	1.62 (1.40, 1.80)	OR

Lower riskHigher risk

Fig B4 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(EF)
B5 All-cause hospital admission risk associated with comorbid DM in HF

	Sample						
	size	Diabetes	Prevalence	Adjusted			
Study	(n)	(n)	(%)	variables		ES (95% CI)	Effect
Prognostic factors (gei	neral)						
Ahmed et al (2006)	1926	650	34	A,G,E,C,At,Sv,D,L,P,Ef	$\rightarrow \rightarrow$	1.44 (1.27, 2.63)	HR
Aranda et al (2009)	28919	10700	37	*	+	1.13 (1.07, 1.20)	OR
Chaudhry et al (2013)	758	193	26	A,G,S,C,Sv,D,Ef		1.36 (1.13, 1.64)	HR
Dunlay et al (2009)	1077	232	21	A,G,C,Ef		1.53 (1.31, 1.79)	HR
Prognostic model							
Krumholz et al (2000)	1129	412	36	Sv,L		1.17 (0.99, 1.39)	HR
					1		

Lower riskHigher risk

Fig B5 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef) *not reported

B6 Galbraith Plot of studies investigating all-cause mortality risk associated with comorbid COPD in HF

B7 Funnel plot for adjusted all-cause mortality risk associated with comorbid COPD with pseudo 95% confidence intervals

B8 All-cause mortality associated with comorbid COPD: prognostic factor (general) and prognostic model studies

Study (n) (n) (%) variables ES (95% Cl) type Prognostic factors (general) Ahluwalia et al (2012) (Community) 9166 1866 20 A,G,E,C + 1.70 (1.58, 1.82) HR Ahluwalia et al (2012) (Hospital) 9166 4263 47 A,G,E,C + 1.24 (1.19, 1.31) HR Chaudhry et al (2010) 62330 21192 34 A,G,E,C,L,P,Ef + 1.25 (1.04, 1.50) OR Mogensen et al (2017) 4102 803 20 A,G,C,Sv,D + 1.25 (1.04, 1.50) OR Mogensen et al (2011) 8507 1948 23 A,G,R,C,St + 1.44 (1.13, 1.55) HR Prognostic model Earlera et al (2013) 6975 1533 22 A,G,R,C,Sv,L,P,Ef + 1.43 (1.30, 1.58) HR Lee et al (2003) 2624 543 21 A,C,L,P + 1.43 (1.30, 1.58) HR Prognostic model Earlera et al (2010) 701 188 27 A,C,L,Ef + 1.43 (1.30, 1.90) HR Pocock et al (2013) 39372 4	ittect	Effect			Adjusted	Prevalence	COPD	Sample	
Prognostic factors (general) Ahluwalia et al (2012) (Community) 9166 1866 20 A,G,E,C + 1.70 (1.58, 1.82) HR Ahluwalia et al (2012) (Hospital) 9166 4263 47 A,G,E,C + 1.24 (1.19, 1.31) HR Chaudhry et al (2010) 62330 21192 34 A,G,E,C,L,P,Ef + 1.51 (1.44, 1.57) OR Garty et al (2007) 4102 803 20 A,G,C,Sv,D + 1.25 (1.04, 1.50) OR Mogensen et al (2011) 8507 1948 23 A,G,R,C,Ef + 1.46 (1.37, 1.55) HR Tribouilloy et al (2010) 735 146 20 A,S,R,C,D,L - 1.44 (1.13, 1.84) HR Prognostic model - - 1.43 (1.30, 1.58) HR - - 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef - 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.60 (1.30, 1.90) HR	ype C-statistic	type	ES (95% CI)		variables	(%)	(n)	(n)	Study
Ahluwalia et al (2012) (Community) 9166 1866 20 A,G,E,C + 1.70 (1.58, 1.82) HR Ahluwalia et al (2012) (Hospital) 9166 4263 47 A,G,E,C + 1.24 (1.19, 1.31) HR Chaudhry et al (2010) 62330 21192 34 A,G,E,C,L,P,Ef + 1.51 (1.44, 1.57) OR Garty et al (2007) 4102 803 20 A,G,C,Sv,D + 1.25 (1.04, 1.50) OR Mogensen et al (2011) 8507 1948 23 A,G,R,C,Ef + 1.46 (1.37, 1.55) HR Prognostic model - 1.44 (1.13, 1.84) HR Lee et al (2013) 6975 1533 22 A,G,R,C,Sv,L,P,Ef + 1.43 (1.30, 1.58) HR Vertex et al (2013) 2624 543 21 A,C,L,Ef + 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef + 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.									Prognostic factors (general)
Ahluwalia et al (2012) (Hospital) 9166 4263 47 A,G,E,C + 1.24 (1.19, 1.31) HR Chaudhry et al (2010) 62330 21192 34 A,G,E,C,L,P,Ef + 1.51 (1.44, 1.57) OR Garty et al (2007) 4102 803 20 A,G,C,Sv,D + 1.25 (1.04, 1.50) OR Mogensen et al (2011) 8507 1948 23 A,G,R,C,Ef + 1.46 (1.37, 1.55) HR Tribouilloy et al (2010) 735 146 20 A,S,R,C,D,L + 1.44 (1.13, 1.84) HR Prognostic model	-IR	HR	1.70 (1.58, 1.82)	+	A,G,E,C	20	1866	9166	Ahluwalia et al (2012) (Community)
Chaudhry et al (2010) 62330 21192 34 A,G,E,C,L,P,Ef + 1.51 (1.44, 1.57) OR Garty et al (2007) 4102 803 20 A,G,C,Sv,D - 1.25 (1.04, 1.50) OR Mogensen et al (2011) 8507 1948 23 A,G,R,C,Ef + 1.46 (1.37, 1.55) HR Tribouilloy et al (2010) 735 146 20 A,S,R,C,D,L - 1.44 (1.13, 1.84) HR Prognostic model	-IR	HR	1.24 (1.19, 1.31)	+	A,G,E,C	47	4263	9166	Ahluwalia et al (2012) (Hospital)
Garty et al (2007) 4102 803 20 A,G,C,Sv,D → 1.25 (1.04, 1.50) OR Mogensen et al (2011) 8507 1948 23 A,G,R,C,Ef → 1.46 (1.37, 1.55) HR Tribouilloy et al (2010) 735 146 20 A,S,R,C,D,L → 1.44 (1.13, 1.84) HR Prognostic model Barlera et al (2013) 6975 1533 22 A,G,R,C,Sv,L,P,Ef → 1.43 (1.30, 1.58) HR Lee et al (2003) 2624 543 21 A,C,L,P → 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef → 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.60 (1.30, 1.90) HR)R	OR	1.51 (1.44, 1.57)	+	A,G,E,C,L,P,Ef	34	21192	62330	Chaudhry et al (2010)
Mogensen et al (2011) 8507 1948 23 A,G,R,C,Ef + 1.46 (1.37, 1.55) HR Tribouilloy et al (2010) 735 146 20 A,S,R,C,D,L → 1.44 (1.13, 1.84) HR Prognostic model)R	OR	1.25 (1.04, 1.50)	—	A,G,C,Sv,D	20	803	4102	Garty et al (2007)
Tribouilloy et al (2010) 735 146 20 A,S,R,C,D,L → 1.44 (1.13, 1.84) HR Prognostic model 1.44 (1.13, 1.84) HR Barlera et al (2013) 6975 1533 22 A,G,R,C,Sv,L,P,Ef → 1.43 (1.30, 1.58) HR Lee et al (2003) 2624 543 21 A,C,L,P → 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef → 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.23 (1.15, 1.31) HR	-IR	HR	1.46 (1.37, 1.55)	+	A,G,R,C,Ef	23	1948	8507	Mogensen et al (2011)
Prognostic model → 1.43 (1.30, 1.58) HR Barlera et al (2013) 6975 1533 22 A,G,R,C,Sv,L,P,Ef → 1.43 (1.30, 1.58) HR Lee et al (2003) 2624 543 21 A,C,L,P → 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef → 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.23 (1.15, 1.31) HR	IR	HR	1.44 (1.13, 1.84)		A,S,R,C,D,L	20	146	735	Tribouilloy et al (2010)
Barlera et al (2013) 6975 1533 22 A,G,R,C,Sv,L,P,Ef → 1.43 (1.30, 1.58) HR Lee et al (2003) 2624 543 21 A,C,L,P → 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef → 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.23 (1.15, 1.31) HR									Prognostic model
Lee et al (2003) 2624 543 21 A,C,L,P → 1.41 (1.13, 1.75) OR Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef → 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.23 (1.15, 1.31) HR	-IR .75	HR	1.43 (1.30, 1.58)	-	A,G,R,C,Sv,L,P,Ef	22	1533	6975	Barlera et al (2013)
Martinez-Selles et al (2010) 701 188 27 A,C,L,Ef → 1.60 (1.30, 1.90) HR Pocock et al (2013) 39372 4035 10 A,G,R,C,Sv,D,P,Ef + 1.23 (1.15, 1.31) HR	JR .77	OR	1.41 (1.13, 1.75)	—	A,C,L,P	21	543	2624	Lee et al (2003)
Pocock et al (2013) 39372 4035 10 A.G.R.C.Sv.D.P.Ef + 1.23 (1.15, 1.31) HR	-IR .75	HR	1.60 (1.30, 1.90)		A,C,L,Ef	27	188	701	Martinez-Selles et al (2010)
	IR *	HR	1.23 (1.15, 1.31)	+	A,G,R,C,Sv,D,P,Ef	10	4035	39372	Pocock et al (2013)
Senni et al (2006) 292 45 15 A,G,R,C,D,L	.ogOR 0.82	LogOR	→ 1.41 (0.99, 2.35)	•	A,G,R,C,D,L	15	45	292	Senni et al (2006)

All-cause mortality associated with COPD: prognostic factor (general) and model studies

1 Lower risk Higher risk

Fig 4.15

Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef) *not reported

B10 Funnel plot for adjusted all-cause mortality risk associated with any RD with pseudo 95% confidence intervals

74

B11 All-cause mortality associated with comorbid RD: prognostic factor (general) studies

Study	Renal dysfunction (n)	Renal dysfunction (n)	Prevalence (%)	Adjusted variables	Measure		Hazard Ratio (95% CI)	Effect type
Ahluwalia et al (2012) (communit	y) 365	1365	15	A,G,E,C	Туре	+	1.77 (1.63, 1.92	2) HR
Ahluwalia et al (2012) (hospital)	3670	3670	40	A,G,E,C	Туре	•	1.57 (1.49, 1.65) HR
Barsheshet et al (older)	793	793	67	A,G,C,At,Sv,D,L,P,Ef	Туре		1.35 (1.11, 1.63) HR
Barsheshet et al (younger)	568	568	50	A,G,C,At,Sv,D,L,P,Ef	Туре		1.58 (1.28, 1.95) HR
Fernandez-Berges (2013)	390	390	18	A,R,C,D	Type		1.49 (1.19, 1.87) HR
Garty et al (2007)	1672	1672	41	A,G,C,Sv,D	Type	-	1.79 (1.53, 2.09)) OR
Gorelik et al (2009)	331	331	70	A,C,S,D,L	Туре		1.42 (1.04, 1.95) HR
Gotsman et al (2008)	110	110	38	A,G,S,C,L,Ef	Type		2.27 (1.42, 3.61) HR
MacIntyre et al (2000) (men)	454	454	1	A,S,C	Severity (Renal failure)	-	2.12 (1.80, 2.50) HR
MacIntyre et al (2000) (women)	454	454	1	A,S,C	Severity (Renal failure)	-	1.58 (1.32, 1.88	s) HR
Mogensen et al (2011) (older)	291	291	35	A,G,R,C,Ef	Severity (severe)		1.36 (1.13, 1.63) HR
Mogensen et al (2011) (younger)	6990	6990	9	A,G,R,C,Ef	Severity (severe)	+	2.21 (2.02, 2.43) HR
Fonarow et al (2008)	509	509	9	*	Severity change (pre-hospital)	_ _	1.46 (1.06, 2.00) OR
Ahmed et al (2006)(women)	*	*	*	A,G,E,C,At,Sv,D,L,P,E	feGFR (per ml/min increase)	•	0.99 (0.98, 0.99) HR
Hamaguchi et al (2011)	*	*	*	A,G,R,C,At,Sv,D,Ef	eGFR (per ml/min decrease)	1	1.02 (1.01, 1.04) HR
					1	+		

.5 1 1.5 Lower risk Higher risk

B11 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef) *not reported

B12 All-cause mortality associated with comorbid RD: prognostic model studies

Study	Sample size	Renal dysfunction (n)	Prevalence (%)	Adjusted variables	Measure		Hazard Ratio (95% Cl)	Effect type	C-statistic
Bouvy et al (2003)	152	19	13	A,G,C,D,P	Туре) 5.22 (1.88, 14.45)	OR	.8
Senni et al (2006)	292	41	14	A,C,Sv,D,Ef	Туре	- 	1.37 (0.63, 5.54)	logOR	.82
Senni et al (2013)	2016	157	8	A,C,Sv,D,Ef	Туре	+	1.79 (1.50, 2.10)	OR	.87
Barlera et al (2013)	6975	*	*	A,G,R,C,Sv,L,P,Ef	eGFR(per ml/min decrease)	•	1.02 (1.01, 1.02)	HR	.75
					Lower ri	5, 1 1.5 Shligher ris	;k		

B12 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef) *not reported

B13 All-cause hospital admission associated with comorbid RD: prognostic factor (general) and model studies

Study	Sample (n)	Renal dysf (n)	Prevalence (%)	Adjusted	Measure		ES (95% CI)	Effect type
Prognostic factor(ge	eneral)							
Chaudhry (2013)	758	280	37	A,G,S,C,Sv,D,Ef	Туре	-	1.32 (1.14, 1.53)	HR
Prognostic model								
Wang et al (2012)	198640	50454	25	A,G,S,R,C,Sv,D,L,P	Туре	*	1.09 (1.04, 1.14)	OR
					.5	1 1.5		

B13 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), HF severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)

B14 Comorbidities at baseline by mortality outcome

B15 Comorbidity combinations at baseline by mortality outcome

B16 Comorbidities at baseline by first hospital admission outcome

B17 Comorbidity combinations at baseline by event status

E-Appendix C: Statistical output Meta-analysis supplementary tables

Study		ES	[95% Conf.	Interval]	% Weight		
Ahmed et al	Ì	1.310	1.180	1.450	18.44		
Berry et al	1	2.380	1.300	4.370	1.71		
Burger et al		1.780	1.190	2.650	3.62		
de Boer et al		1.250	0.990	1.580	8.36		
Flores-Le Roux et al	1	1.480	1.100	1.990	5.92		
From et al	1	1.330	1.070	1.660	9.09		
Greenberg et al		1.080	0.870	1.350	9.08		
Gustafsson et al		1.500	1.300	1.600	18.35		
MacDonald et al		1.260	1.230	1.290	25.42		
D+L pooled ES		1.341	1.235	1.456	100.00		
I-V pooled ES	1	1.275	1.247	1.303	100.00		
Heterogeneity calcul Q = SIGMA_i{ (1/var where variance_i = (at ia: (up:	ed by forr nce_i)*(er per limit	nula Efect_i - e - lower li	ffect_pooled)^ mit)/(2*z))^2	2 }		
Heterogeneity chi-squared = 20.70 (d.f. = 8) p = 0.008 I-squared (variation in ES attributable to heterogeneity) = 61.4% Estimate of between-study variance Tau-squared = 0.0068							

C1 Combined adjusted all-cause mortality risk associated with comorbid diabetes

Test of ES=1 : z= 7.01 p = 0.000

C2 Sensitivity analysis removing From et al (2006) (combined adjusted all-cause mortality risk associated with diabetes)

Study	1	ES	[95% Conf.	Interval]	% Weight			
Ahmed et al	- + - 1	1.310	1.180	1.450	20.07			
Berry et al	i	2.380	1.300	4.370	2.05			
Burger et al	L	1.780	1.190	2.650	4.28			
de Boer et al	L	1.250	0.990	1.580	9.62			
Flores-Le Roux et al	1	1.480	1.100	1.990	6.91			
Greenberg et al	1	1.080	0.870	1.350	10.40			
Gustafsson et al	1	1.500	1.300	1.600	19.99			
MacDonald et al	1	1.260	1.230	1.290	26.69			
D+L pooled ES	- + - 1	1.344	1.228	1.471	100.00			
I-V pooled ES		1.274	1.246	1.303	100.00			
<pre>Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2</pre>								
Heterogeneity chi-s	au	ared =	20.56 (d.f. =	= 30 = 30	004			

I-squared (variation in ES attributable to heterogeneity) = 65.9% Estimate of between-study variance Tau-squared = 0.0078

Test of ES=1 : z= 6.43 p = 0.000

C3 Sensitivity analysis removing Gustafsson et al (2004) (combined adjusted all-cause mortality risk associated with diabetes)

Study		ES	[95% Conf.	Interval]	% Weight	
Ahmed et al Berry et al Burger et al	+-	1.310 2.380 1.780	1.180 1.300 1.190	1.450 4.370 2.650	23.17 1.36 2.99	
de Boer et al Flores-Le Roux et	 al	1.250	0.990	1.580 1.990	7.77 5.17	
From et al Greenberg et al MacDonald et al		1.330 1.080 1.260	1.070 0.870 1.230	1.660 1.350 1.290	8.60 8.60 42.33	
D+L pooled ES I-V pooled ES	+- 	1.295 1.265	1.205 1.236	1.391 1.294	100.00 100.00	·
	+-					

```
Heterogeneity calculated by formula
Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 }
where variance_i = ((upper limit - lower limit)/(2*z))^2
```

Heterogeneity chi-squared = 10.80 (d.f. = 7) p = 0.148
I-squared (variation in ES attributable to heterogeneity) = 35.2%
Estimate of between-study variance Tau-squared = 0.0030

Test of ES=1 : z= 7.06 p = 0.000

C4 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid diabetes).

Egger's test for small-study effects: Regress standard normal deviate of intervention effect estimate against its standard error

Number of stud	dies = 9				Root MSE	= 1.429
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	.2206232 1.063904	.0203807 .5999956	10.83 1.77	0.000 0.119	.1724305 3548604	.2688158 2.482668

Test of H0: no small-study effects P = 0.119

C5 Sensitivity analysis removing Berry et al (2008) and Burger et al (2005) (combined adjusted all-cause mortality risk associated with comorbid diabetes).

Study	ES.	[95% Conf.	Interval]	% Weight	
Ahmed et al	1.310	1.180	1.450	19.76	
de Boer et al	1.250	0.990	1.580	7.57	
Flores-Le Roux et al	1.480	1.100	1.990	5.16	
From et al	1.330	1.070	1.660	8.32	
Greenberg et al	1.080	0.870	1.350	8.31	
Gustafsson et al	1.500	1.300	1.600	19.64	
MacDonald et al	1.260	1.230	1.290	31.24	
D+L pooled ES	1.313	1.220	1.413	100.00	
I-V pooled ES	1.272	1.244	1.301	100.00	
Heterogeneity calcula Q = SIGMA_i{ (1/var. where variance_i = ((1	ated by for iance_i)*(e upper limit	mula ffect_i - ef - lower lim	fect_pooled	1)^2 } 2	
Heterogeneity chi-so I-squared (variation Estimate of between	quared = 1 n in ES att -study vari	3.92 (d.f. = ributable to ance Tau-squ	= 6) p = 0.0 b heterogene mared = 0.0	30 ity) = 56.9% 044	

Test of ES=1 : z = 7.27 p = 0.000

C6 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid diabetes).

. drop in 2/3 (2 observation	ns deleted)	eleted)									
. metabias logHRa SElogHRa, egger											
Note: data inp	Note: data input format theta se_theta assumed.										
Egger's test for small-study effects: Regress standard normal deviate of intervention effect estimate against its standard error											
Number of stud	lies = 7				Root MSE	= 1.558					
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]					
slope bias	.2275579 .6686409	.0234434 .7808384	9.71 0.86	0.000 0.431	.1672948 -1.338568	.287821 2.67585					

Test of HO: no small-study effects P = 0.431

.

C7 Combined adjusted all-cause mortality risk associated with comorbid COPD

Study	ES	[95% Conf.	Interval]	% Weight	
De Blois et al	1.190	1.020	1.390	32.19	
Iversen et al	1.510	1.100	2.090	13.83	
Lainscak et al	1.380	1.040	1.830	16.61	
Macchia et al	1.420	1.090	1.860	17.92	
Rusinaru et al	1.700	1.320	2.180	19.46	
D+L pooled ES	1.395	1.214	1.602	100.00	
I-V pooled ES	1.357	1.224	1.504	100.00	
Heterogeneity calcu $Q = SIGMA_i \{ (1/va)$ where variance_i = 0	llated by for riance_i)*(e (upper limit	cmula effect_i - e: c - lower lir	ffect_poolec nit)/(2*z))^	1)^2 } 2	
Heterogeneity chi- I-squared (variati Estimate of betwee	squared = on in ES att en-study vari	6.42 (d.f. = cributable to iance Tau-squ	= 4) p = 0.1 o heterogene uared = 0.0	.70 pity) = 37.7% 0093	
Test of ES=1 : z=	4.71 p = (0.000			

C8 Sensitivity analysis removing Lainscak (2009) (combined adjusted all-cause mortality risk associated with comorbid COPD)

Study	ES	[95% Conf.	Interval]	% Weight									
De Blois et al	1.190	1.020	1.390	34.87									
Iversen et al	1.510	1.100	2.090	18.35									
Macchia et al	1.420	1.090	1.860	22.64									
Rusinaru et al	1.700	1.320	2.180	24.15									
	+												
D+L pooled ES	1.410	1.184	1.680	100.00									
I-V pooled ES	1.353	1.353 1.211 1.512											
Heterogeneity calcul Q = SIGMA_i{ (1/var where variance_i = ((<pre>Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2</pre>												
Heterogeneity chi-squared = 6.40 (d.f. = 3) p = 0.094 I-squared (variation in ES attributable to heterogeneity) = 53.1% Estimate of between-study variance Tau-squared = 0.0166													

Test of ES=1 : z= 3.85 p = 0.000

C9 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid COPD).

Egger's test for small-study effects: Regress standard normal deviate of intervention effect estimate against its standard error

Number of stud	dies = 5				Root MSE	= .9114
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	063053 3.249777	.1760321 1.495121	-0.36 2.17	0.744 0.118	6232657 -1.508366	.4971596 8.00792

Test of H0: no small-study effects P = 0.118

C10 Combined adjusted all-cause mortality risk associated with any renal dysfunction

Study		ES	[95% Conf.	Interval]		
Campbell et al	+-	1.220	1.090	1.360		
Go et al	I	1.620	1.590	1.660		
Hamaguchi et al	I	1.670	1.250	2.220		
Hillege et al	I	1.690	1.370	2.080		
Ismailov et al	1	1.370	1.290	1.450		
Kimura et al	1	1.870	1.300	2.600		
Takagi et al	1	2.220	1.040	4.730		
	+-					
D+L pooled ES		1.517	1.344	1.711		
I-V pooled ES		1.577	1.546	1.608		
Heterogeneity ca Q = SIGMA_i{ (1 where variance_i	alculat /varia = ((up	ed by fo nce_i)* per limi	ormula (effect_i - e: it - lower lir	ffect_pooled) nit)/(2*z))^2	^2 }	
Heterogeneity of	chi-squ	ared =	51.20 (d.f. =	= 6) p = 0.00	0	
Q = SIGMA_1{ (. where variance_i Heterogeneity (l/varia = ((up chi-squ	nce_1)* per limi ared =	(effect_1 - effect_1 -	<pre>tfect_pooled) nit)/(2*z))^2 = 6) p = 0.00</pre>	[~] 2 }	

I-squared (variation in ES attributable to heterogeneity) = 88.3% Estimate of between-study variance Tau-squared = 0.0160

Test of ES=1 : z = 6.76 p = 0.000

C11 Sensitivity analysis removing Campbell et al (2009) (combined adjusted all-cause mortality risk associated with comorbid RD)

Study	I	ES	[95% Conf.	Interval]							
Go et al Hamaguchi et al Hillege et al Ismailov et al Kimura et al Takagi et al	+- 	1.620 1.670 1.690 1.370 1.870 2.220	1.590 1.250 1.370 1.290 1.300 1.040	1.660 2.220 2.080 1.450 2.600 4.730							
D+L pooled ES I-V pooled ES	+- 	1.586 1.590	1.411 1.559	1.782 1.623							
Heterogeneity calc Q = SIGMA_i{ (1/v where variance_i =	culat varia ((up	ed by for nce_i)*(e per limit	rmula effect_i - ef c - lower lim	fect_pooled) it)/(2*z))^2	^2 }						
Heterogeneity chi-squared = 29.85 (d.f. = 5) p = 0.000 I-squared (variation in ES attributable to heterogeneity) = 83.2% Estimate of between-study variance Tau-squared = 0.0109											

Test of ES=1 : z=7.74 p = 0.000

C12 Sensitivity analysis removing Ismailov et al (2007) (combined adjusted all-cause mortality risk associated with comorbid RD)

Study	1	ES	[95%	Conf.	Interval]						
Campbell et al	-+	1.220	1.	090	1.360						
Go et al	1	1.620	1.	590	1.660						
Hamaguchi et al	I	1.670	1.	250	2.220						
Hillege et al	1	1.690	1.	370	2.080						
Kimura et al	I	1.870	1.	300	2.600						
Takagi et al	I	2.220	1.	040	4.730						
D+L pooled ES	-+	1.574	 1.	 348	1.838						
I-V pooled ES	Ì	1.606	1.	573	1.640						
Heterogeneity calcul Q = SIGMA_i{ (1/var where variance_i = (-+ late riar (upp	ed by form nce_i)*(ef per limit	nula ffect_ - low	i – et er lir	ffect_pooled)^2						
Heterogeneity chi-s	squa	ared = 26	6.07 (d.f. =	= 5) p = 0.000	2.0					
I-squared (variation Estimate of betweer	n-st	n ES atti udy varia	ributa ance T	ble to au-squ	ared = 0.0225	58					
Test of $ES=1$: $z=5.73 p = 0.000$											

C13 Sensitivity analysis removing Campbell et al (2009) and Ismailov et al (2007) (combined adjusted allcause mortality risk associated with comorbid RD)

Study | ES [95% Conf. Interval] ------

 Go et al
 | 1.620

 Hamaguchi et al
 | 1.670

 Hillege et al
 | 1.690

 1.590 1.660 2.220 1.250 1.370 2.080 1.300 1.040 Kimura et al | 1.870 2.600 Takagi et al | 2.220 4.730 ------D+L pooled ES | 1.622 1.588 1.657 I-V pooled ES | 1.622 1.588 1.657 ------Heterogeneity calculated by formula Q = SIGMA i{ (1/variance i)*(effect i - effect pooled)^2 } where variance $i = ((upper limit - lower limit)/(2*z))^2$ Heterogeneity chi-squared = 1.51 (d.f. = 4) p = 0.825 I-squared (variation in ES attributable to heterogeneity) = 0.0% Estimate of between-study variance Tau-squared = 0.0000

Test of ES=1 : z= 44.48 p = 0.000

C14 Test of publication bias (combined adjusted all-cause mortality risk associated with comorbid COPD).

```
Egger's test for small-study effects:
Regress standard normal deviate of intervention
effect estimate against its standard error
```

Number of stuc	lies = 7				Root MSE	= 3.082
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope	.4714044	.0400606	11.77	0.000	.3684253	.5743836
bias	9391171	1.505771	-0.62	0.560	-4.809826	2.931591

Test of H0: no small-study effects P = 0.560

C15 Correlation matrix for covariates for mortality outcome

	Age_c	gender	imd200~5	COPD_p~l	Diabet~l	Stag~D_2	egfr_M~1	egfr2	ACE_or~B	Beta_b~r	Diuretic	Systol~I	sys2	Diasto~I	BMI_I
Age_c	1.0000														
gender	0.2092	1.0000													
imd2007_5	-0.1010	0.0309	1.0000												
COPD_prese~l	-0.0285	-0.0573	0.0818	1.0000											
Diabetes_p~l	-0.1154	-0.0568	0.0655	-0.0119	1.0000										
Stage_MDRD_2	0.2908	0.1431	-0.0160	-0.0406	0.0576	1.0000									
egfr_MDRD_1	-0.3215	-0.1492	0.0234	0.0529	-0.0604	-0.7951	1.0000								
egfr2	-0.3234	-0.1476	0.0308	0.0570	-0.0429	- <mark>0.7616</mark>	0.9719	1.0000							
ACE_or_ARB	0.1703	0.0696	0.0013	0.0167	-0.0753	0.0283	-0.0549	-0.0353	1.0000						
Beta_blocker	0.1444	0.0696	0.0165	0.1562	-0.0565	-0.0068	0.0128	0.0120	0.1816	1.0000					
Diuretic	0.1226	0.0768	0.0118	0.0322	0.0645	0.1705	-0.1842	-0.1805	-0.1056	-0.0134	1.0000				
Systolic_I	0.0482	0.1092	-0.0039	-0.0500	0.0105	-0.0165	0.0131	0.0078	0.0234	0.0591	-0.0647	1.0000			
sys2	0.0489	0.1097	-0.0023	-0.0494	0.0089	-0.0103	0.0059	0.0020	0.0243	0.0587	-0.0589	0.9917	1.0000		
Diastolic_I	-0.1182	0.0507	-0.0066	-0.0453	-0.0736	-0.0985	0.1136	0.0999	0.0311	0.0454	-0.0843	0.5469	0.5319	1.0000	
BMI_I	-0.3217	-0.0196	0.0768	-0.0048	0.2289	-0.0398	0.0427	0.0411	-0.1196	-0.0697	0.0642	0.0802	0.0741	0.0975	1.0000
BMI2	-0.3163	0.0019	0.0800	0.0011	0.2221	-0.0412	0.0462	0.0463	-0.1070	-0.0575	0.0637	0.0741	0.0688	0.0931	0.9825
CH_mmol_L_I	0.0085	0.2479	-0.0286	-0.0044	-0.1937	0.0001	0.0051	-0.0026	0.0854	0.1391	-0.0226	0.1317	0.1317	0.1577	-0.0442
Hb_gdL_I	-0.2724	-0.2056	0.0002	0.0320	-0.0876	-0.2454	0.2890	0.2457	-0.0922	-0.0489	-0.0980	0.0325	0.0252	0.1893	0.0987
Smoking_~s_I	-0.2267	-0.2082	0.1169	0.2274	0.0306	-0.0883	0.1051	0.1137	-0.0130	0.0246	-0.0477	-0.0372	-0.0351	-0.0143	0.0023
ALC_status_I	-0.0637	-0.1644	-0.0633	0.0080	-0.0495	-0.0580	0.0616	0.0564	-0.0343	-0.0182	-0.0315	-0.0155	-0.0166	0.0097	-0.0112

	BMI2	CH_mmo~I	Hb_gdL_I	Smok~s_I	ALC_~s_I
BMI2	1.0000				
CH_mmol_L_I	-0.0389	1.0000			
Hb_gdL_I	0.0858	0.0924	1.0000		
Smoking_~s_I	0.0043	-0.0385	0.1186	1.0000	
ALC_status_I	-0.0158	-0.0015	0.0876	0.0781	1.0000

	egfr_M~1 e	egfr_c~3		egfr_M~1	egfr_p~3
egfr_MDRD_1	1.0000		egfr_MDRD_1	1.0000	
egfr_chang~3	0.2375	1.0000	egfr_p_cha~3	0.1997	1.0000

	BMIC	bmiCsq	bmiCsq SysC sysCsq		HbC	hbCsq	egfrC	egfrCsq
	1 0000							
BWIC	1.0000							
bmiCsq	0.4352	1.0000						
SysC	0.0806	0.0159	1.0000					
sysCsq	-0.0228	0.0085	0 <mark>.2353</mark>	1.0000				
HbC	0.0996	-0.0089	0.0276	-0.0459	1.0000			
hbCsq	0.0050	0.0149	-0.0241	0.0158	- <mark>0.213</mark> 4	1.0000		
egfrC	0.0400	0.0391	0.0067	-0.0536	0.2904	-0.0520	1.0000	
egfrCsq	0.0084	0.0434	-0.0174	0.0235	-0.0766	0.0787	<mark>0.228</mark> 6	1.0000

C16 Correlation matrix for centred covariates with quadratic extensions

.

	Age_c	gender imd200~5 HAny_1~I CH_mmo~I			BMI_I Hb_gdL_I Hbsq Systol~I			syssq Smok~s_I ALC_~s_I egfr_M~1			egfrsq Beta_b~r ACE_or~B Diuretic Diabet~l COPD_p								
Aqe c	1.0000																		
gender	0.2068	1.0000																	
imd2007 5	-0.1071	0.0440	1.0000																
HAny lyr B~I	-0.0153	-0.0273	0.0199	1.0000															
CH mmol L I	0.0203	0.2575	-0.0214	-0.0415	1.0000														
BMI I	-0.3324	-0.0150	0.0948	-0.0258	-0.0583	1.0000													
Hb qdL I	-0.2957	-0.2689	-0.0112	-0.0733	0.0554	0.0875	1.0000												
 Hbsq	-0.3036	-0.2785	-0.0088	-0.0724	0.0527	0.0906	0.9947	1.0000											
Systolic I	0.0849	0.1153	-0.0085	-0.0434	0.1376	0.0625	-0.0222	-0.0240	1.0000										
svssa	0.0825	0.1146	-0.0058	-0.0392	0.1380	0.0573	-0.0252	-0.0266	0.9924	1.0000									
Smoking ~s I	-0.2220	-0.2023	0.1000	0.0148	-0.0405	0.0221	0.1407	0.1461	-0.0502	-0.0468	1.0000								
ALC status I	-0.0749	-0.2092	-0.1041	-0.0107	-0.0214	-0.0175	0.1436	0.1439	-0.0187	-0.0199	0.0999	1.0000							
eqfr MDRD 1	-0.3471	-0.1752	0.0151	-0.0054	-0.0271	0.0617	0.2859	0.2825	-0.0166	-0.0225	0.0968	0.0865	1.0000						
eafrsa	-0.3427	-0.1680	0.0206	0.0005	-0.0300	0.0600	0.2481	0.2467	-0.0171	-0.0222	0.1007	0.0783	0,9762	1.0000					
Beta blocker	0.1224	0.0611	0.0127	-0.0161	0.1548	-0.0676	-0.0440	-0.0406	0.0558	0.0546	0.0229	-0.0183	0.0017	0.0015	1.0000				
ACE or ARB	0.1384	0.0645	-0.0217	0.0035	0.0954	-0.1081	-0.0656	-0.0640	0.0378	0.0358	-0.0254	-0.0191	-0.0368	-0.0257	0.1415	1.0000			
Diuretic	0.1385	0.0706	0.0070	0.0029	-0.0037	0.0387	-0.0966	-0.0971	-0.0095	-0.0057	-0.0339	-0.0337	-0.1739	-0.1629	-0.0937	-0.0596	1.0000		
Diabetes p~l	-0.1089	-0.0611	0.0642	0.0126	-0.1973	0.2228	-0.0730	-0.0674	0.0021	0.0008	0.0533	-0.0718	-0.0237	-0.0107	-0.0467	-0.0831	0.0357	1.0000	
COPD prese~1	-0.0402	-0.0494	0.0842	0.0243	-0.0024	-0.0026	0.0380	0.0410	-0.0569	-0.0551	0.2172	-0.0060	0.0449	0.0453	0.1444	0.0029	0.0266	-0.0097	1.0000
Stage MDRD 2	0.3102	0.1652	-0.0037	0.0017	0.0244	-0.0592	-0.2367	-0.2362	0.0142	0.0192	-0.0849	-0.0763	-0.7941	-0.7543	0.0026	0.0210	0.1571	0.0230	-0.0389

C17 Correlation matrix of variables in hospital admission linked HF cohort

	AgeC	gender	imd200~5	HAny_1~I	CHC	BMIC	HbC	HbCsq	SysC	SysCsq	Smok~s_I	ALC_~s_I	egfrC	egfrCsq	Beta_b~r	ACE_or~B I	Diuretic	Diabet~l	COPD_p~l
AgeC	1.0000																		
gender	0.2068	1.0000																	
imd2007_5	-0.1071	0.0440	1.0000																
HAny_lyr_B~I	-0.0153	-0.0273	0.0199	1.0000															
CHC	0.0203	0.2575	-0.0214	-0.0415	1.0000														
BMIC	-0.3324	-0.0150	0.0948	-0.0258	-0.0583	1.0000													
HbC	-0.2957	-0.2689	-0.0112	-0.0733	0.0554	0.0875	1.0000												
HbCsq	-0.0924	-0.1080	0.0229	0.0050	-0.0232	0.0349	0.0037	1.0000											
SysC	0.0849	0.1153	-0.0085	-0.0434	0.1376	0.0625	-0.0222	-0.0184	1.0000										
SysCsq	0.0052	0.0271	0.0194	0.0209	0.0426	-0.0235	-0.0302	0.0210	0.2234	1.0000									
Smoking_~s_I	-0.2220	-0.2023	0.1000	0.0148	-0.0405	0.0221	0.1407	0.0603	-0.0502	0.0122	1.0000								
ALC_status_I	-0.0749	-0.2092	-0.1041	-0.0107	-0.0214	-0.0175	0.1436	0.0112	-0.0187	-0.0147	0.0999	1.0000							
egfrC	-0.3471	-0.1752	0.0151	-0.0054	-0.0271	0.0617	0.2859	-0.0167	-0.0166	-0.0516	0.0968	0.0865	1.0000						
egfrCsq	-0.1085	-0.0325	0.0303	0.0244	-0.0230	0.0150	-0.0625	0.0687	-0.0084	0.0098	0.0530	-0.0043	0.2635	1.0000					
Beta_blocker	0.1224	0.0611	0.0127	-0.0161	0.1548	-0.0676	-0.0440	0.0305	0.0558	0.0067	0.0229	-0.0183	0.0017	-0.0003	1.0000				
ACE_or_ARB	0.1384	0.0645	-0.0217	0.0035	0.0954	-0.1081	-0.0656	0.0116	0.0378	-0.0056	-0.0254	-0.0191	-0.0368	0.0359	0.1415	1.0000			
Diuretic	0.1385	0.0706	0.0070	0.0029	-0.0037	0.0387	-0.0966	-0.0103	-0.0095	0.0273	-0.0339	-0.0337	-0.1739	-0.0152	-0.0937	-0.0596	1.0000		
Diabetes_p~l	-0.1089	-0.0611	0.0642	0.0126	-0.1973	0.2228	-0.0730	0.0501	0.0021	-0.0098	0.0533	-0.0718	-0.0237	0.0490	-0.0467	-0.0831	0.0357	1.0000	
COPD_prese~l	-0.0402	-0.0494	0.0842	0.0243	-0.0024	-0.0026	0.0380	0.0310	-0.0569	-0.0016	0.2172	-0.0060	0.0449	0.0186	0.1444	0.0029	0.0266	-0.0097	1.0000

C18 Correlation matrix for centred covariates with quadratic extensions; hospital admission outcome

E-Appendix D: Protocols

D1 Systematic review: PROSPERO protocol

PROSPERO International prospective register of systematic reviews

Comorbidity and prognosis in heart failure populations: a systematic review

Claire Rushton, Lucy Doos, Umesh Kadam, Peter Jones, Umesh Kadam

Citation

Claire Rushton, Lucy Doos, Umesh Kadam, Peter Jones. Comorbidity and prognosis in heart failure populations: a systematic review. PROSPERO 2013:CRD42013003605 Available from http://www.crd.york.ac.uk/PROSPERO_REBRANDING/display_record.asp?ID=CRD42013003605

Review question(s)

1. To determine which clinical comorbidities influence the HF-outcomes of patient reported measures, hospital admissions or mortality.

2. To investigate if and how 'change' in comorbidity status has been used in HF prognosis studies.

3. To determine how comorbidity has been included in current HF prediction models, by chronic disease type, severity or status change.

Searches

The following electronic clinical bibliographic databases will be searched for citations between 1990 to present: MEDLINE (Medical Literature Analysis and Retrieval System Online), EMBASE (Excerpta Medica Database), CINAHL (Cumulative Index to Nursing and Allied Health Literature), DARE (Database of Abstract of Reviews of Effects), CDSR (Cochrane Database of systematic reviews) and The Cochrane Central Register of Controlled Trials (CENTRAL).

To reduce publication bias, online databases will be searched for unpublished studies such as HMIC (Health Management Information Consortium) and Index to Scientific and Technical proceedings. Zetoc and the Conference Papers Index will be used to search for conference abstracts. Where relevant conference abstracts exist, final reports will be requested, where available, for consideration for inclusion in the review. ETHOS, ProQuest and Networked Digital Library of Theses and Dissertations will be used to search for related theses.

The search strategy will include terms relating to the review objectives and prognosis methods. Validated search strategies for prognostic studies (factors and models) for EMBASE and MEDLINE and heart failure for MEDLINE will be used. The search strategies will be adapted for use with other bibliographic databases.

Medline - prognosis search string

Ref: Geersing G-J, et al. (2012) Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews. PLoS ONE 7(2):e32844. doi:10.1371/journal.pone.0032844

Embase – prognosis search string

Ref: Wilczynski N and Haynes R (2005) Optimal Search Strategies for Detecting Clinically Sound Prognostic Studies in EMBASE: An Analytic Survey. Journal of the American Medical Informatics Association 12(4):481-485

Medline - heart failure search string

Ref: Damarell et al. (2011) BMC Medical Research Methodology, 11:12

http://www.biomedcentral.com/1471-2288/11/12

Exclusions will be:

UNIVERSITY of York Centre for Reviews and Dissemination

(i) Studies that focus on novel biomarkers or independent biochemical or electrophysiological indicators that are not clearly linked to a specific chronic disease

(ii) Studies that select populations e.g. clinical trials who exclude patients with comorbid disease

(iii) Prognostic factor studies that do not focus on the association between chronic disease and heart failure outcomes i.e. heart failure prognosis studies that only adjust for chronic disease

(iv) Non-English language papers (subject to assessment)

All database searches will be saved and rerun prior to the final analyses and further studies retrieved for inclusion. Database email alert facilities, where available, will be used to provide on-going feedback when a paper is added that matches the review search criteria.

Other sources will include:

- Reference lists from relevant studies.
- Contacting study authors where appropriate.
- Searching relevant internet resources such as Cochrane Prognostic Method's Group.

- Citation search.

Types of study to be included

We will include study designs that designs that focus on the association between a comorbidity factor and outcome in heart failure populations, including:

(i) Observational studies (cohort, case control, cross sectional).

(ii) Development, validation or impact assessment of a HF prediction model that includes comorbidity as an indicator/s.

(iii) RCTs will be included where appropriate using the usual arm cohort.

Condition or domain being studied

Chronic heart failure.

Comorbidity.

Prognosis - patient reported outcomes, hospital admission, mortality.

Participants/ population

Inclusion: Adults with a clinical diagnosis of chronic heart failure (with or without preserved ejection fraction) from general practice, specialist or hospital settings.

Context: The clinical diagnosis of heart failure will vary according to the study setting and time of investigation. Current European diagnosis recommendations include the combination of symptoms, signs and objective evidence of heart failure. However the use of echocardiogram to confirm diagnosis has only been widely recommended in the past 10 years (since 2003 in national evidence and introduced into the Quality Outcomes Framework for general practitioners since 2006 in the UK). Research definitions of heart failure are likely to vary within the time frame of the review and across settings and this factor will be acknowledged in the data synthesis.

Exclusion: Adults younger than 40years

```
Intervention(s), exposure(s)
Inclusion:
```


Comorbidity will be defined as any clinically defined diagnosis of chronic disease additional to heart failure. Chronic disease indicators that have been identified as independent and statistically significant prognostic factors will be included.

Comorbidity indicators may include

(i) chronic disease type e.g. diabetes, chronic obstructive pulmonary disease.

(ii) chronic diseases severity measure e.g. diabetes with target organ damage or chronic kidney dysfunction with a defined creatinine level.

(iii) Chronic disease severity change measure e.g.

a) changes to drug prescription or dose.

b) change in blood test indicator such as a reduction in estimated glomerular filtration rate (eGFR) in renal disease or increase in glycosylated haemoglobin (HbA1c) in diabetes.

c) frequency of healthcare episodes e.g. general practice consultations or hospital admissions.

Exclusion:

(i) Illnesses and symptoms that are not clearly linked to a specific chronic disease.

(ii) novel biomarkers or independent biochemical or electrophysiological indicators that are not clearly linked to a specific chronic disease.

Comparator(s)/ control

Not applicable.

Context

Studies in general practice or specialist settings such as hospitals.

Outcome(s)

Primary outcomes

A synthesis of evidence on the influence of clinical comorbidities on heart failure patient reported measures, hospital admissions and mortality.

Secondary outcomes

An analysis of current approaches to including 'change' in comorbidity status in heart failure prognosis studies.

A synthesis of evidence on how comorbidity has been included in current heart failure prognostic models, by chronic disease type, severity or status change.

Data extraction, (selection and coding)

Title and abstract screening: Papers will be selected for initial inclusion based on the title (CR) then the abstract (CR and LD). The title review will be crosschecked using a sample of 50 titles (UK) and the abstracts list will be screened (UK). Any disagreement on papers for inclusion will be passed between the 2nd and 3rd reviewers (UK and LD) for a decision with CR as the final adjudicator.

Paper reviews: The 1st reviewer will review all the final papers. The papers will then be shared between the 2nd and 3rd (UK and LD) for final inclusion. All papers will then undergo a quality assessment by CR and LD.

The software package Refworks will be used to manage the references.

Using Excel to construct a data extraction form information will be collected on:

UNIVERSITY of York Centre for Reviews and Dissemination

- Publication
- Study ID
- Report ID
- Review author
- Author(s), year
- Article title
- Citation
- Type (journal, conference abstract)
- Study characteristics
- Aims/objectives
- Study design (prospective or retrospective, case-control/cohort/cross sectional/RCT)
- Duration of follow-up
- Inclusion and exclusion criteria
- Participants
- Sample size, age, gender, ethnicity, country, clinical definition, setting
- Predictor Variables
- Comorbidity indicator/s included
- Unit of measurement (continuous, binary, categorical)
- Other variables included in multivariate analyses
- Outcome Variables
- Prognostic outcome/s and definition
- Unit of measurement (continuous, binary, categorical)
- Measurement tool
- Analysis
- method of analysis (univariate, multivariate, risk score)
- Statistical techniques used
- If multivariate analysis or risk score; statistical approach used
- Results
- Number participants included in the analysis

UNIVERSITY of York Centre for Reviews and Dissemination

- Summary outcome (dichotomous: number of events/participants, continuous: mean and standard deviation, time-toevent: number of events, person years)

- Estimate of effect with confidence interval and p value (unadjusted and adjusted where available)
- Significance level of comorbidity effect within univariate or multivariate analysis
- Any subgroup analysis
- Other
- Key conclusions of the study authors
- References to other relevant studies
- Correspondence required.
- Miscellaneous comments by the review authors

The data extraction form will be piloted by CR and LD on a small sample of included studies prior to the review to ensure all the relevant data are captured and that there is consistency in data recording.

Data will then be extracted independently by CR and LD. Study data presented in a number of reports will be extracted directly into a single data collection form. The level of inter-rater agreement will be measured using a Kappa statistic.

Risk of bias (quality) assessment

The Quality In Prognosis Studies (QUIPS) assessment will be used for quality assessment. The QUIPS assessment tool assesses bias in relation to:

- Study participation: are the population, sampling frame, recruitment, diagnostic criteria and participants adequately described?

- Study attrition: was there an adequate response rate? Is loss to follow up adequately described?

- Bias related to prognostic factor development: are definitions, units of measurement and measurement approaches appropriate? Are imputation methods for missing data appropriate?

- Outcome measurement: are definitions, units of measurement and measurement approaches appropriate?

- Confounding measurement: are any important confounders taken into account? Are definitions, measurement and imputation methods appropriate?

- Analysis: are data sufficiently presented? Are the results representative or selected?

Ref: Hayden JA, Côté P, Bombardier C. Evaluation of the quality of prognosis studies in systematic reviews. Annals Internal Medicine 2006; 144: 427-437

The QUIPS tool has domains that are relevant to the appraisal of both prognostic factor and prediction model studies. However there are some additional specific considerations for prognostic model studies that will be included:

- model building: are the assumptions of the modelling method (e.g. logistic or survival model) checked? How are the predictors for inclusion in multivariable analysis chosen? How are the predictors for the final model selected during multivariable modelling (e.g. backward elimination, forward selection, forced in model, added value of a particular predictor)? Were different models developed and/or compared?

- model performance: is calibration or discrimination assessed? are overall performance measures or clinical

usefulness measures assessed?

- model testing: are any internal (bootstrap, cross validation, random split-sample) or external (temporal, geographical, setting) used? If so was the model updated or recalibrated after (poor) external validation

Strategy for data synthesis

Due to potential heterogeneity in observational study designs, population and analyses, the narrative approach may be the primary synthesis. The comorbidity prognostic factors will be summarised using the following hierarchy (1) prognostic outcome category (1.1) setting (1.2) chronic disease type. Prognostic factors reported in different papers on the same cohort will be counted once. If there are a large variety of factors, only those factors found significant (p<0.05) in more than one study of moderate/high quality will be presented.

An additional summary of prediction models will be provided for each outcome category.

For specific chronic diseases; where sufficient studies of good quality (following QUIPs assessment), with an adequate sample size (>100 participants)(1) and of similar design (including common representation of variable data e.g. dichotomous or continuous and/or common effect size e.g. odds or hazard ratio, mean difference) and outcomes are available, meta-analysis methods will be employed as follows:

(i) An I-squared test of heterogeneity will be performed to quantify the degree of inconsistency across studies for each chronic disease comorbidity. The I-squared test will describe the percentage of variability in the effect estimates that can be attributed to the heterogeneity that is inherent across observational studies. An I-squared value of <50% will be deemed acceptable for meta-analysis. Where unacceptable heterogeneity is present, studies will be stratified by important study level characteristics. These are likely to be (a) study setting or (b) heart failure definition. An I-squared test will then be performed for each strata.

(ii) Forest plots will be used to display the effects of unadjusted and adjusted associations between comorbidity indicator and outcome.

(iii) Effect sizes will be combined into an overall estimate using the metan procedure in STATA . A random effects model which takes account of within and between study variance will be used to combine the results, with odds ratios for binary outcomes, hazard ratios for time-to-event outcomes and standardised mean differences for continuous outcomes. 95% confidence intervals with two sided P values will be calculated for each outcome. If the number of studies is small, due to the poor precision of tau-squared (between study variance), individual effects only, will be reported.

(iv) For time-to-event outcome studies, where a hazard ratio and variance are reported or a coefficient of the exposure effect and the variance from a Cox model are provided, these will be used in a meta-analysis directly. Where these are not available, other summary statistical data or survival curves will be used to estimate the Hazard ratio using a range of direct and indirect approaches(2).

(v) For each meta-analysis, sensitivity analyses will be performed where considered necessary. This will depend on the studies included but may be performed where:

a) studies have a heart failure or chronic disease measure that differs slightly from other studies but that were still deemed appropriate to include in the meta-analysis

- b) studies that required effect sizes to be estimated using indirect methods
- c) studies with the smallest sample sizes

Meta-analysis will be restricted to prognostic factor studies

(1) Centre for Reviews and Dissemination.

(2) Tierney J, Ghersi G, Burdett S, Sydes M. Practical methods for incorporating summary time-to-event data into

meta-analysis. Trials 2007;8:16.

Analysis of subgroups or subsets

None planned.

Dissemination plans

The systematic review will be one of the PhD thesis chapters.

The systematic review will be submitted as a paper in journal

Contact details for further information

Claire Rushton

Health Services Research Unit,

Innovation Centre 1,

Keele University,

Staffordshire,

ST5 5BG

c.a.rushton@keele.ac.uk

Organisational affiliation of the review

Keele University

www.keele.ac.uk

Review team

Ms Claire Rushton, Keele University Dr Lucy Doos, Keele University Professor Peter Jones, Keele University Dr Umesh Kadam, Keele University

Anticipated or actual start date

21 January 2013

Anticipated completion date 30 April 2013

Funding sources/sponsors The review forms part of a PhD study funded by a NIHR Doctoral research Fellowship (NIHR-DRF-2012-05-288)

Conflicts of interest None known

Language English

Country England

Subject index terms status

Subject indexing assigned by CRD

Subject index terms

Comorbidity; Heart Failure; Humans; Prognosis

Stage of review

Ongoing

Date of registration in PROSPERO 04 February 2013

Date of publication of this revision

04 February 2013

Stage of review at time of this submission	Started	Completed
Preliminary searches	Yes	No
Piloting of the study selection process	No	No
Formal screening of search results against eligibility criteria	No	No
Data extraction	No	No
Risk of bias (quality) assessment	No	No
Data analysis	No	No

PROSPERO

International prospective register of systematic reviews

The information in this record has been provided by the named contact for this review. CRD has accepted this information in good faith and registered the review in PROSPERO. CRD bears no responsibility or liability for the content of this registration record, any associated files or external websites.

ISAC APPLICATION FORM PROTOCOLS FOR RESEARCH USING THE CLINICAL PRACTICE RESEARCH DATALINK (CPRD)

Protocol12_162AIf you have any queries, please contact ISAC Secretariat:					
Number <u>ISAC@cprd.com</u>					
Date submitted 15 Oct 2013					
1. Study Title					
Comorbidity and changing prognosis in heart failure patients					
2. Principal Investigator (full name, job title, organisation & e-mail address for correspondence regarding					
this protocol)					
Claire A Rushton, NIHR Doctoral Fellow, Keele University, c.a.rushton@keele.ac.uk					
3. Anniation (Tuli address)					
Health Services Research Unit, Innovation Centre 1, Keele University, Staffordshire, ST5 5BG					
4. Protocol's Author (if different from the principal investigator)					
5. Type of Institution (please tick one box below)					
Academia x Research Service Provider NUS					
6. Financial Sponsor of study					
Pharmaceutical Industry (please specify) Academia (please specify)					
Other (please specify)					
7. Data source (please tick one box below)					
Sponsor has on-line access					
Commissioned study					
Other (please specify)					
8. Has this protocol been peer reviewed by another Committee?					
Yes* 🛛 No 🗌					
* Please state in your protocol the name of the reviewing Committee(s) and provide an outline of the review					
process and outcome.					
9 Type of Study (please tick all the relevant boxes which apply)					
Adverse Drug Reaction/Drug Safety Drug Use Disease Epidemiology					
Drug Effectiveness Pharmacoeconomic Other					
Drug Effectiveness Dhag Ose Other					
Drug Effectiveness Pharmacoeconomic Other 10. This study is intended for:					
Drug Effectiveness Pharmacoeconomic Other 10. This study is intended for: Publication in peer reviewed journals Presentation at scientific conference					

11. Does this protocol also seek access to data held under the CPRD Data Linkage Scheme?						
Yes	\boxtimes	Νο				
12. If you are seeking access to data held under the CPRD Data Linkage Scheme, please select the source(s) of linked data being requested.						
⊠ Hospi ⊠ ONS M □ Mothe	tal Episode Stat Aortality Data r Baby Link	istics	 ☐ Cancer Registry Data* ☐ MIN/ ☑ Index of Multiple Deprivation/ Townsend Score ☐ Other: (please specify) 	¥Ρ		
*Please note that applicants seeking access to cancer registry data must provide consent for publication of their study title and study institution on the UK Cancer Registry website. Please contact the CPRD Research Team on +44 (20) 3080 6383 or email <u>admin@cprd.com</u> to discuss this requirement further.						
13. If you discu	are seeking ac Issed your requ	cess to data est with a m	held under the CPRD Data Linkage Scheme, have you ember of the Research team?	ı already		
Yes	\boxtimes	No*				
*Please o discuss y	contact the CPR our requiremer	D Research its before si	Team on +44 (20) 3080 6383 or email <u>admin@cprd.com</u> bmitting your application.	<u>1</u> to		
Please lis request. Kendal C	st below the nan hidwick	ne of the pe	son/s at the CPRD with whom you have discussed yo	ur		
14. Does	this protocol in	volve reque	sting any additional information from GPs?			
Yes*] N (0				
* Please indicate what will be required: Completion of questionnaires by the GP ^{IV} Yes □ No □ Provision of anonymised records (e.g. hospital discharge summaries) Yes □ No □ Other (please describe)						
[♥] Any que	estionnaire for o	completion l	y GPs or other health care professional must be appr	oved by		
 15AC before circulation for completion. 15. Does this protocol describe a purely observational study using CPRD data (this may include the review of anonymised free text)? 						
Yes* 🗵	N N	0**				
Yes: If you will be using data obtained from the CPRD Group, this study does not require separate ethics approval from an NHS Research Ethics Committee. * No: You may need to seek separate ethics approval from an NHS Research Ethics Committee for this study. The ISAC will provide advice on whether this may be needed.						
16. Does this study involve linking to patient <i>identifiable</i> data from other sources?						
Yes		No	\boxtimes			
17. Does this study require contact with patients in order for them to complete a questionnaire?						
Yes		No	\boxtimes			

N.B. Any questionnaire for completion by patients must be approved by ISAC before circulation for completion.					
18. Does this study require contact with patients in order to collect a sample?					
Yes* □ No ⊠					
* Please state what will be collected					
19.					
Previous GPRD/CPRD Studies Publications using GPRD/CPRD data					
None □ 1-3 ⊠ >3 □					
Is statistical expertise available within the research team? Yes S No No If yes, please outline level of experience Professor of Statistics					
Is experience of handling large data sets (>1 million records) available within the research team? If yes, please outline level of experience GP Epidemiologist, Senior Lecturer					
Is UK primary care experience available within the research team? Yes No If yes, please outline level of experience GP over 15 years clinical and research experience and using the CPRD database					
20. References relating to your study					
Please list up to 3 references (most relevant) relating to your proposed study.					
Braunstein J, Anderson G, Gerstenblith G, Weller W, Niefeld M, Herbert R, et al (2003) Noncardiac comorbidity increases preventable hospitalizations and mortality among medicare beneficiaries with chronic heart failure. <i>Journal of the American College of Cardiology</i> , 42(7):1226-1233.					
Kadam UT, Schellevis F, van der Windt, DAWM et al (2008) Morbidity severity based on routine consultation data from English and Dutch general practice indicates physical function status. <i>Journal of Clinical Epidemiology</i> , 61:386-393.					
Senni M, Santilli G, Parrella P, Renata De Maria S, Alari G, Berzuini C, et al (2006) A novel prognostic index to determine the Impact of cardiac conditions and co-morbidities on one-year outcome in patients with heart failure. <i>American Journal of Cardiology</i> , 98:1076-1082.					

PROTOCOL CONTENT CHECKLIST

In order to help ensure that protocols submitted for review contain adequate information for protocol evaluation, ISAC have produced instructions on the content of protocols for research using CPRD data. These instructions are available on the CPRD website (<u>www.cprd.com/ISAC</u>). All protocols using CPRD data which are submitted for review by ISAC must contain information on the areas detailed in the instructions. IF you do not feel that a specific area required by ISAC is relevant for your protocol, you will need to justify this decision to ISAC.

Applicants must complete the checklist below to confirm that the protocol being submitted includes all the areas required by ISAC, or to provide justification where a required area is not considered to be relevant for a specific protocol. Protocols will not be circulated to ISAC for review until the checklist has been completed by the applicant.

, i i i i i i i i i i i i i i i i i i i	Included in		
	protocol?		
Required area	Yes	No	If no, reason for
			omission
Lay Summary (max.200 words)	Х		
Background	X		
Objective, specific aims and rationale	X		
Study Type			
Descriptive	Х		
Hypothesis Generating	Х		
Hypothesis Testing	Х		
Study Design	X		
Sample size/power calculation	X		
(Please provide justification of			
sample size in the protocol)			
Study population			
(including estimate of expected number of	Χ		
relevant patients in the CPRD)		_	
Selection of comparison group(s) or controls	X		
Exposures, outcomes and covariates	х		
Exposures are clearly described	х		
Outcomes are clearly described	х		
Data/ Statistical Analysis Plan	X		
There is plan for addressing confounding	х		
There is a plan for addressing missing data	х		
Patient/ user group involvement †	X		
Limitations of the study design, data sources	X		
and analytic methods			
Plans for disseminating and communicating study	X		
results			

Please note, your protocol will be returned to you if you do not complete this checklist, or if you answer 'no' and fail to include justification for the omission of any required area.

[†] It is expected that many studies will benefit from the involvement of patient or user groups in their planning and refinement, and/or in the interpretation of the results and plans for further work. This is particularly, but not exclusively true of studies with interests in the impact on quality of life. Please indicate whether or not you intend to engage patients in any of the ways mentioned above.

ISAC strongly recommends that researchers using CPRD consider registering as a NRR data provider in order that others engaged in research within the UK can be made aware of current works. The National Research Register (NRR) is a register of ongoing and recently completed research projects funded by, or of interest to, the United Kingdom's National Health Service. Information on the NRR is available on <u>www.nrr.nhs.uk</u>. Please Note: Registration with the NRR is entirely voluntary and will not replace information on ISAC approved protocols that are published in summary minutes or in the ISAC annual report.

Project: Comorbidity and changing prognosis in heart failure (HF) patients – (2C-HF)

Lay summary

Heart Failure (HF) is an increasing burden in ageing populations and carries a poor prognosis and an uncertain disease trajectory. HF patients commonly experience other chronic diseases at the same time and these 'comorbidities' have been shown to influence the clinical course of disease. Yet many current clinical prediction models do

not take into account the importance of other diseases in determining health or healthcare outcomes. This project forms part of a PhD that will investigate patients with heart failure, and the influence of other diseases on their risk of death. Key questions addressed are (i) *which comorbidities are important in influencing mortality in HF general practice populations* and (ii) *how does change in comorbidity status influence the prediction of mortality*? The selection of comorbidities will be guided by systematic review of current evidence and clinical expertise to generate *a priori* hypothesises for testing. The Health Services Research Unit at Keele has access to previous CPRD data (protocol #07_104R) to investigate cardiovascular disease comorbidity, and this dataset had a HF sample (approximate N=6000). This study proposes to extend previous work to investigate HF comorbidity and prognosis. This prognostic evidence will provide a better basis for clinical decision making in HF and in improving patient outcomes by targeting the comorbidity.

Background

Heart failure (HF) carries a poor prognosis with 30% of people dying within 6 months of diagnosis and 38% within a year⁽¹⁾. Whilst a diverse range of prognostic indicators exist⁽²⁾, very little is known of how prognosis changes in HF populations over time. HF patients commonly experience other chronic diseases at the same time, partly due to age-association and partly due to cardiovascular complications⁽³⁾. Comorbidity has been shown to influence the clinical course of HF and there is growing evidence that comorbid conditions such as stroke, diabetes, atrial fibrillation or renal impairment influence outcomes such as mortality⁽⁴⁾. Each comorbid chronic disease will carry its own prognosis 'value' and one crucial question from patients' point of view is how these combine together to influence health and healthcare outcomes. However the full importance of comorbidity, as defined in this instance as 'other chronic diseases', in determining health or healthcare outcomes is seldom used in clinical practice or included in prognostic models⁽⁵⁻⁶⁾.

Current prognostic approaches in HF commonly rely on complex and invasive clinical data and biometrics ⁽⁷⁾ and are often developed using selected hospital based and clinical trial patient populations, rather than in general settings⁽⁸⁻⁹⁾. Where comorbidity is included, they tend to focus on the absence or presence of a defined comorbid condition or disease state e.g. diabetes with target organ damage or chronic kidney dysfunction with a defined creatinine level^(4,8-10). This approach lacks sensitivity in determining prognosis change and may reduce the utility of such models for routine use in clinical practice.

Better approaches would include the range of common chronic diseases that patients experience, and incorporate comorbidity indicators that are sensitive to changing prognosis in an index condition such as HF. There is growing evidence that change in one disease is related to the change in another disease, for example the risk of mortality and readmission for HF has been found to increase for patients recently discharged for another condition, including stroke, diabetes, AF or renal dysfunction⁽¹³⁾. Current interest in 'cardiorenal' syndrome has demonstrated a close link between worsening renal function and reduced survival in patients with HF⁽¹⁴⁻¹⁵⁾. This evidence has not yet been translated effectively into prognostic assessment in HF. This study will use routinely available clinical data and incorporate time-dependent markers of general comorbidity status from general practice data, to identify and develop prognostic models for mortality. This CPRD study is the second phase of the PhD. The first phase of the PhD is on systematic review which will identify the key and common comorbidities for the CPRD investigation. The CPRD investigation then links to third PhD phase, in which I will investigate other outcomes including hospital admissions and patient reported outcomes in other datasets.

OBJECTIVES

Aim:

To identify prognostic comorbidity factors in heart failure and to construct comorbidity prognostic models for the outcome mortality in the general practice population.

Primary objective:

To investigate the association between comorbidity factors in heart failure and all-cause mortality in general practice populations.

Secondary objective:

To develop comorbidity 'change' measures from general practice data and construct comorbidity prognostic models to predict mortality in HF populations.

Study Type

Observational study incorporating nested case-control design.

Study Design

A nested case-control design will be used to identify comorbidity prognostic indicators for mortality within a national population of heart failure patients. The HF sample from the current CPRD dataset will be used to construct cases and controls aged 40 years and over. The HF sample has twelve continuous years (1995-2006) of observation to assess all-cause mortality. Since the HF patients may be at different stages of severity, a nested case-control design will be used to develop the prognostic model.

Study population

A previously extracted cohort of patients diagnosed with heart failure within the Clinical Practice Research Datalink (CPRD) population (Protocol #07_104R) will be used. This cohort consists of 6000 patients with a recorded medical diagnosis of HF (incident or prevalent) (Read code CG58 and daughter codes and associated OXMIS codes) in their clinical or referral record in a 2-year time period (1st January 1995 to 31st December 1996). All patients had at least two years of up-to-standard follow-up prior to the date of the first recorded HF diagnosis during this time window.

- (i) Cases: Within the HF population, cases will be defined as those with a record of death (all-cause mortality) within 12-month windows in the 10 year follow-up time-period (1st January 1996 to 31st December 2006).
- (ii) Controls: Within the HF population, controls will be defined as those without a record of death within corresponding 12 month time-windows in the 10 year follow-up time-period (1st January 1996 to 31st December 2006).

Sample Size

For the development of prognostic models it is recommended that sample sizes are calculated based on a requirement of at least 10 observations for each parameter to be estimated in regression models⁽¹⁶⁻¹⁷⁾. The available CPRD dataset has a total of 6000

patients with HF. Based on this number, and a HF general population mortality risk of $9\%^{(18)}$ there is likely to be around 3600 cases over the 10 years. This will allow for the exploration of a large number of parameters (prognostic factors and interactions) to be included in the logistic regression models.

Exposures, Outcomes, and Covariates

Ascertainment window study population: 1st January 1995 to 31st December 1996 Outcome window: 1st January 1996 to 31st December 2006

Objective 1: To investigate the association between comorbidity factors and all-cause mortality in HF general practice populations

Adults aged 40 years and over who consulted for HF (incident or prevalent HF consultations) within the ascertainment time window and who have an all-cause mortality code within the outcome time window will be compared to living HF controls for comorbidity measures, with 12-month windows in the follow-up time-period used to construct nested case and control groups.

Exposure measurement:

The comorbidity measures will be based on chronic disease type which will be selected *a priori* based on (i) evidence of their prevalence in HF (prior systematic review), (ii) evidence of their prior association with mortality risk (prior systematic review) and (iii) using the Kadam morbidity index which provides a defined code list of common illness and chronic disease based on routine GP consultations(RW.ERROR - Unable to find reference:947). A clinical expert panel group will use the findings of systematic review to provide guidance on the approach to identifying comorbidity measures to be tested in the CPRD case-control study. It is likely that the systematic review will reveal a broad range of factors that are associated with heart failure outcomes and the expert panel will bring focus and feasibility to the possible factors in terms of their; importance in predicting the outcomes of interest, prevalence in the general population, ease of measurement in routine practice and availability of routine data collection.

Within the CPRD dataset the *selected* comorbid chronic diseases will be identified by their Read codes applied during the 2-year time windows before death for the cases and controls. Each 2-year time-period will allow for the measurement of chronic disease recording either as new events or as monitoring review events. This also means there will be five 2-year time-windows in the 10 year follow-up period, which can be used to nest case and control groups.

Objective 2: To develop comorbidity 'change' measures from general practice data and construct comorbidity prognostic models to predict mortality in HF populations

Two 3-month time windows for each case and control will be constructed to allow for the assessment of change.

a. First time window: for the cases this time window will cover the 3-months immediately prior to the date of death and for the controls this will cover the 3-months prior to the date of control selection.

b. Second time window: 3-month period leading up-to the 12-months prior to the case event and control selection. This will allow the measurement of comorbidity change in the year immediately prior to death.

Exposure measurement:

This time the comorbidity exposures will focus on chronic disease *type* measures, *severity* measures and *healthcare use* measures of chronic disease to allow us to assess change.

- (i) Chronic disease type
 - a. New diagnosis: This refers to a new chronic disease diagnostic code applied in the first time window that was not applied in the second time window or the year preceding this. This new diagnosis code will be defined at the biological system level (Read code chapters) e.g. cardiovascular, respiratory, gastro-intestinal and identified using the Kadam severity index. This prevents the complication of distinguishing between clinical presentations that are part of the same disease spectrum. The aim of this approach is to capture patients who have developed a new disease *or* who have developed a change to an existing previously stable disease or disease state that requires consultation prior to death.
 - b. New drug prescription: Prescriptions can be used as a proxy indication of disease and will allow us to capture patients who have developed a new disease (the drug was not prescribed in the second time window but is prescribed in the first time window) but who may not have consulted for this disease during the first time window. Again the new drug definition will be applied at the main body system level. The BNF which is routinely used to code prescriptions in general practice has 15 chapters which each relate to a different body systems⁽²⁰⁾ and observing prescriptions from different BNF chapters provides a proxy measure of the range and scope of a patient's comorbidity.
- (ii) Chronic disease severity
 - a. Drug prescription change: For each of the limited number of comorbid diseases identified for investigation in objective 1, the mean number of disease specific drug changes between the two time windows will be calculated. Changes will include discontinued drugs and new prescriptions but *not* dose changes for the same drug. This will allow for the comparison of disease instability between the cases and controls.
 - b. Drug dose change. For each of the selected comorbid diseases *one* common drug that is expected to increase or change in dose as the condition

progresses will be identified. The mean dose of this drug will be calculated in the two 3-month time windows. Different drugs for one indication will be standardised using WHO defined daily doses based on average daily maintenance doses e.g. within proton pump inhibitors Omeprazole 20mg is equivalent to 30mg of Lansoprazole and within ace inhibitors Captopril 50mg, Enalopril 10mg and Lisinopril 10mg are equivalent doses⁽²¹⁾.

- (iii) Healthcare use indicators
 - a. The frequency of consultations in general practice can be used as a proxy indication of patient change (i.e. the hypothesis that more frequent consultation means health status is changing). For the comorbid diseases identified in objective 1, the frequency of consultations between the two 3-month time windows will be counted. Increasing frequency will be calculated by the difference between the mean numbers of consultations between the two time-windows. In addition the purpose of consultations as Read coded by HF, other CVD and non-CVD comorbidity will be identified and then compared between cases and controls.

The 3-month time windows allow for construction of the 'change' concept which are admittedly fixed to allow the investigation of prognostic factors in the immediate timeperiod before death, but this analysis is set against the overall 2-year time window in objective 1, to ensure 'change' measurement is real and not due to time gaps. *Covariate measurement:*

Known predictive factors will be added to the comorbidity model. These factors, again guided by systematic review, will include socio-demographic factors including age, gender and social deprivation⁽²²⁻²³⁾, health factors including smoking history in the two year prior to event and BMI⁽²⁴⁾ (latest recording prior to event will be used), and index disease factors including co-drug treatments and severity factors. Patients who are not prescribed mainline treatment in HF (beta blocker and ace-inhibitors) are known to have a higher mortality risk and comorbid disease is known to influence treatment prescription⁽²⁵⁾. Duration of HF disease will be estimated by the time since date of diagnosis will also be included as proxy measure of HF severity.

Statistical Analysis

Statistical analysis will be performed in three stages:

- (i) Descriptive analyses First, the prevalence of chronic disease comorbidity in the case and control groups will be presented in the 2-years prior to the date of death or control selection.
- (ii) Prognostic model building
 - a. Unadjusted associations using odds ratios will be calculated to compare cases with controls for each chronic disease to be tested and the results will be stratified by important covariates such as age, gender and deprivation.
 - b. Multiple binary logistic regression methods will be used to compare cases with controls in relation to mortality. Comorbidity factors and covariates will be fitted into a logistic model. A stepwise approach will be used to obtain a subset of predictors including interactions out of the many identified. Categorical and continuous variables where possible will be

compared to test for model fit and likelihood-ratio tests will be used to identify any interactions to be included in the model.

- (iii) Modelling prognostic change
 - a. Unadjusted associations using odds ratios will be calculated to compare cases with controls for each change measure and the results will be stratified by important covariates as above.
 - b. Multiple binary logistic regression methods will be used to model comorbid prognostic 'change' measures for mortality. Disease type, severity and healthcare use measures will be fitted into the logistic regression model along with the defined chronic diseases and covariates and a stepwise approach used to reduce the model. The influence of the comorbidity *change* measure in addition to the chronic disease *type* on mortality will be investigated. Missing data: Methods of multiple imputation will be considered using the procedure ICE in Stata (this may for example be required for BMI or smoking). The comorbidity prognostic model for HF that is built as a part of this process will be further tested and calibrated in other GP datasets, and in longitudinal survival analyses.

Patient or user group involvement

Patients and service users were involved in the development of potential measures. A prior study on HF multi-drug therapy has helped to develop the project ideas around comorbidity measures (draft paper in submission). This had active engagement with Stoke-on-Trent Community Health and discussions, particularly in terms of the complexity of drug regimes that HF patients are exposed to, guided the measures that were used in the multi-drug study and will be used in this study.

Limitations of study design, data sources, and analytic methods

The case and control definitions are based on a consultation for HF in a 2-year time period, constructing an ascertainment group to follow-up for the outcome of mortality. Consultation sources such as the GPRD are based on routinely collected data, and as such rely on both the patient's decision to consult and the GP's precision in recording. This could lead to mis-classification of some morbidity data including the HF label and this may affect some morbidities more than others particular in the context of patients will multiple diagnosis. However given that the study population and the exposures to be measured relate to chronic disease it is likely that patients will have on-going chronic disease management plans requiring consultation and further investigation. Any miscoding or classification of morbidity whilst potentially disproportionate across different morbidities is likely to be proportionate across cases and controls and does not detract from *a priori* hypothesis testing. The GPRD does have clear framework for ensuring the quality of data.

The other issue in terms of using a dataset to build a prognostic model is the application of the model to an individual patient. Whilst the GPRD will provide a rich data source in terms of chronic disease within a large general population, a linked cohort study will provide the mechanism to further refine and test the model in HF patients.

Finally, given the length of follow-up (12 years) there is likely to be patients who were lost to follow-up in the observation window. It will be important to compare these
patients to the study groups in terms of factors that might influence the exposures or the outcomes (e.g. socio-demographic data).

Dissemination

This study forms part of a three phase PhD that will be delivered over three years and is supported by an NIHR Doctoral Research Fellowship. Dissemination will be through peer-reviewed general practice, cardiology, epidemiological and statistical journals and through presentations at relevant conferences, for example the British Society of Heart Failure Annual Autumn Meeting, RCN Annual International Nursing Research Conference and the American College of Epidemiology Conference. We also have links with local practices, health professionals and patient groups, as well as collaborative links with research professors in Sweden who have an international programme of HF research, so that key messages can be communicated widely. There is no restriction on extent and timing of publications.

This protocol has been previously reviewed by the NIHR and is supported by a full time doctoral Fellowship.

References

- (1) Cowie M, Wood D, Coats A. Survival of patients with a new diagnosis of heart failure: a population based study. Heart 2000; 83:505-510.
- (2) Lainscak M, Anker S. Prognostic factors in chronic heart failure; a review of serum biomarkers, metabolic changes, symptoms, and scoring systems. Herz 2009; 34:141–7.
- (3) Wong CY, Chaudhry SI, Desai MM, Krumholz HM. Trends in comorbidity, disability, and polypharmacy in heart failure. Am J Med 2011; 124(2):136-143.
- (4) Braunstein J, Anderson G, Gerstenblith G, Weller W, Niefeld M, Herbert R, et al. Noncardiac comorbidity increases preventable hospitalizations and mortality among medicare beneficiaries with chronic heart failure. Journal of the American College of Cardiology 2003; 42(7):1226-1233.
- (5) Levy W, Mozaffarian D, Linker D, Sutradhar S, Ankr S, Cropp A, et al. The Seattle Heart Failure Model: Prediction of Survival in Heart Failure. Circulation 2006;113:1424-1433.
- (6) Koelling T, Joseph S, Aaronson K. Heart failure survival score continues to predict clinical outcomes in patients with heart failure receiving beta-blockers. Journal of Heart Lung Transplant 2004:1414-1422.
- (7) Mazza A, Tikhonoff V, Casiglia E, Pessina A. Predictors of Congestive Heart Failure mortality in elderly people from the general population. International Heart Journal 2005; 46:419-431.
- (8) Lee D, Austin P, Rouleau J. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA 2003; 290:2581-2587.
- (9) Cuffe M, Califf R, Adams K. Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Investigators. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 2002; 287:1541-1547.
- (10) Mosterd A, Cost B, Hoes A, Bruijne M, Deckers J, Hofman A, et al. The prognosis of heart failure in the general population. European Heart Journal 2001; 22:1318-1327.

- (11) Philbin E, DiSalvo T. Prediction of Hospital readmission for heart failure: development of a simple risk score based on administrative data. Journal of the American Journal of Cardiology 1999; 33(6):1560-1566.
- (12) Senni M, Parrella P, De Maria R, Cottini C, Böhm M, Ponikowski P, Filippatos G etal. Predicting heart failure outcome from cardiac and comorbid conditions: The 3C-HF score, International Journal Cardiology 2001; available online http://dx.doi.org/10.1016/j.ijcard.2011.10.071
- (13) Brown A, Cleland J. Influence of concomitant disease on patterns of hospitalization in patients with heart failure discharged from Scottish hospitals in 1995. European Heart Journal 1998; 19:1063-1069.
- (14) Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. Journal of Cardiac Failure 2007; 13(8):599-608.
- (15) Belziti CA, Bagnati R, Ledesma P, Vulcano N, Fernandez S. Worsening renal function in patients admitted with acute decompensated heart failure: incidence, risk factors and prognostic implications. Revista Española de Cardiología 2010; 63(3):294-302.
- (16) Altman DG, Andersen PK: Bootstrap investigation of the stability of a Cox regression model. Statistics in Medicine 1989;8:771–83.
- (17) Concato J, Peduzzi P, Holford TR, Feinstein AR: Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. Journal of Clinical Epidemiology 1995, 48:1495-1501.

Amendments

Using the same methods and statistical approach we would like to amend this protocol to include hospital admission outcome using incident heart failure cases over a ten year period (1^{st} March 2002 – 31^{st} March 2012). We would like to investigate patients with heart failure, and the influence of other diseases on their risk of hospital admission and death.

The aims and objectives remain the same with the addition of hospital admission outcome.

With a new CPRD data set the population will now consist of patients aged 40 years and over with a recorded medical diagnosis of HF (incident cases) (Read code CG58 and daughter codes) in their clinical or referral record over the 10 year time period. As before, all patients will have at least two years of up-to-standard follow-up prior to the date of the first recorded HF diagnosis during this time window.

Exposures, Outcomes, and Covariates

The exposures and covariates remain the same. The objectives have been rewritten here to reflect the hospital admission outcome:

Objective 1: To investigate the association between comorbidity factors *and hospital admission* and all-cause mortality in HF general practice populations

Adults aged 40 years and over who consulted for HF (incident HF consultations) within the 10 year ascertainment time window and who have *(i) a hospital admission* or (ii) an all-cause mortality code during follow-up (minimum 1 year) will be compared to HF

controls for comorbidity measures. 12-month windows in the 10 year time-period will be used to construct nested case and control groups.

For hospital admissions:

- (iii) Cases: Within the HF population, cases will be defined as those with a record of a hospital admission within 12-month windows in the 10 year time-period
- (iv) Controls: Within the HF population, controls will be defined as those without a record of a hospital admission for 12 months prior to and after the control selection date, within corresponding 12 month time-windows in the 10 year time-period

Objective 2 (same as in the previous protocol): To develop comorbidity 'change' measures from general practice data and construct comorbidity prognostic models to predict mortality and hospital admission in HF populations

Hospital admission:

Two 1-month time windows for each case and control will be constructed to allow for the assessment of change.

- c. First time window: for the cases this time window will cover the month immediately prior to the date of hospital admission and for the controls this will cover the month prior to the date of control selection.
- d. Second time window: 1-month period leading up-to the 3-months prior to the case event and control selection. This will allow the measurement of comorbidity change in the 3 months immediately prior to hospital admission.

Statistical Analysis:

The analysis plan remains the same with the addition of hospital admission outcome. Where multiple hospital admissions occur in a 12-month analysis time window the first hospital admission during that time-period will be used.

Sample Size

We intend to perform the study in a new CPRD data set with linkage to HES. Previous enquiries to CPRD have indicated approximately 20,000 incident HF cases with HES linkage in the 10 year time period and this would allow for:

- A larger set of prognostic factors and some clinically relevant higher order interaction terms to be tested
- An adjustment of significance levels to incorporate multiple analyses with different outcome measures
- An ability to internally validate the models produced from a "training set" on an independent "test set" of data

E-Appendix E: Miscellaneous

E1 Cochrane prognosis methods group letter

Claire Rushton <c.a.rushton@keele.ac.uk>

(no subject) 2 messages

Moons, K.G.M. <K.G.M.Moons@umcutrecht.nl> To: Claire Rushton <c.a.rushton@keele.ac.uk> Cc: Richard Riley <r.d.riley@bham.ac.uk>, "jill.hayden@cdha.nshealth.ca" <jill.hayden@cdha.nshealth.ca> 3 April 2013 20:06

Dear Claire,

I have read it and in principle it looks fine to me.

Your review clealry focuses not on models but on a prognostic factor - and Jil Haydn and Richrad Riley are the experts on this. I cc them in, both convenors of the cochrane PMG. a few notes for starters: Quips is just updated and see also the recent PRogress paper 2 in BMJ 2013, by Riley et al, which also addresses this topic.

Jill and Richard would one of you please have a short feed back perhaps for Claire, who apporached the PMG for feed back on her protocol.

BW,

Carl

E2 Medline HF filter(9)

#	Searches
1	HF.mp.
2	ventricular dysfunction, left.sh.
3	cardiomyopathy.mp.
4	left ventricular ejection fraction.mp.
5	Or/1-4

E3 Heart failure string(9): database search results

No.	Search	MEDLINE	EMBASE	CINAHL	MEDLINE	Embase	CINAHL
	[Date of search]				22/1/13	22/1/13	22/1/13
	POPULATION						
1.	heart failure	[tw] OR [mh]	.tw OR exp	.tx OR exp	126808	218293	60176
2.	ventricular dysfunction, left	[mh]	exp	exp	19559	0	3400
	(heart left ventricle function for Embase exp)						
3.	cardiomyopathy	[tw] OR [mh]	.tw OR .exp	.af	83613	88408	9656
4.	left ventricular ejection fraction	[tw] OR [mh]	.tw OR .exp	.tx OR exp	14913	21866	8856
	(heart left ventricle ejection fraction for Embase exp)						
	(ventricular ejection fraction for Cinahl exp)						
5.	1–4 combined using OR				211089	291188	68180
	OUTCOMES	[tiab]	.ti,ab	.ti,ab			
6	Mortalit*				420960	552820	50117
7	Death*				494095	634892	52962
8	Survival				531260	693740	32464
9	Admission*				124353	176330	23547
10	Readmission*				8527	12405	2456
11	"quality of life"				125986	184775	34942
12	health				978950	1210425	341800
13	"Kansas City Cardiomyopathy Questionnaire"				114	190	44
14	KCCQ				81	166	26
15	"Minnesota Living with Heart Failure Questionnaire"				0	519	99
16	"Short form"				14920	18532	4297
17	Sf-36				11445	16146	3192
18	Sf36				659	1332	3192
19	St12				120	289	533
20	St-12				1762	2629	222
21					1825	2557	590
22					2303	3/8/	550
23	"Heart Failure Symptom Scale"				U 00 400 50	ు	1
24	6-23 combined using OR				2242958	2863960	467281

No	Modlino Soarch	Hite	EMDASE Soarch	Hitc		Hite
INO.		TILS	EIVIDAJE JEdi LII	TILS		
	Date of search	22/1/13		22/1/13		22/1/13
	PROGNOSIS		PROGNOSIS		PROGNOSIS	
25.	Predict[tiab]	176976	Exp DISEASE COURSE/	1832649	"Disease course".af	1420
26.	predictive value of tests[mh]	125438	risk*.tw OR exp	2030149	risk*.af	480890
27.	scor*[tiab]	467190	diagnos*.tw OR exp DIAGNOSIS/	3259540	diagnos*.af	508960
28.	observ*[mh]	2259239	follow-up.tw OR exp FOLLOW UP/	1007458	follow-up.af	143818
29.	observer variation	28527	ep.fs	894954	exp EPIDEMIOLOGY/	251693
30.	"Stratification"[mh]	26264	outcome.tw	714375	outcome.tx	196555
31.	"Roc curve"	241187				
32.	"Discrimination"	94487				
33.	"Discriminate"	36646				
34.	"c-statistic"	1282				
35.	"c statistic"	1282				
36.	"Area under the curve"	17455				
37.	"AUC"	30265				
38.	"Calibration"	55958				
39.	"Indices"	104597				
40	"Algorithm"	88075				
41	"Multivariable"	24450				
42	25–41 combined (OR)	3209003	25-30 combined (OR)	7103036	25-30 combined (OR)	1018837

COMBINED SEARCHES	MEDLINE	EMBASE	CINAHL	
4 AND 24 AND 42	16955	69266	15791	
LIMITED SEARCHES*	10976	23343	7775	
*Medline: Human, Ag	e>19, 1990>	*Embase	e: Human, Age>18, 1990>	*Cinahl: Adults, 1990>

E4 Heart failure search string

Controlled vocabulary terms	Condensed Unique list
Medline	
MeSH:	Heart failure
Heart failure	Ventricular dysfunction
Ventricular dysfunction, left	Cardiac edema
Edema, cardiac	Cardiomyopathy
Heart failure, systolic	Cardiac failure
Heart failure, diastolic	Myocardial failure
Cardiomyopathy, dilated	Heart decompensation
Entry terms:	Ventricular failure
Cardiac Failure	Ventricular ejection fraction
Congestive Heart Failure	Cor Pulmonale
Heart Decompensation	
Heart Failure, Congestive	
Heart Failure, Left-Sided	
Heart Failure, Right-Sided	
Left-Sided Heart Failure	
Myocardial Failure	
Right-Sided Heart Failure	
Cor Pulmonale	
ventricular ejection fraction	
EMBASE	
EMTREE:	Heart failure
heart failure	Ventricular dysfunction
congestive heart failure	Heart edema
diastolic dysfunction	cardiac failure
forward heart failure	diastolic dysfunction
heart ventricle failure	systolic dysfunction
high output heart failure	cor pulmonale
systolic dysfunction	congestive cardiomyopathy
heart failure, congestive	congestive heart disease
heart failure, diastolic	ventricular ejection fraction
heart failure, systolic	ventricle failure
congestive cardiac failure	
cor pulmonale	
heart edema	
congestive cardiomyopathy	
congestive heart disease	
left ventricular systolic dysfunction	
ventricular ejection fraction	
CINAHL	
Heart failure	Heart failure
Combined list of unique terms	
Heart failure	Myocardial failure"
"Ventricular dysfunction"	"Heart decompensation"
	"Ventric* failure"
"Cardiac edema"	
"Cardiac edema" "Heart edema"	"Ventricular ejection fraction"
"Cardiac edema" "Heart edema" Cardiomyopathy	"Ventricular ejection fraction" "Cor Pulmonale"
"Cardiac edema" "Heart edema" Cardiomyopathy "Cardiac failure"	"Ventricular ejection fraction" "Cor Pulmonale" "diastolic dysfunction"

E5a Updated Haynes filter for MEDLINE(10)

Predict*[tiab] OR Predictive value of tests[mh] OR Scor*[tiab] OR Observ*[tiab] OR Observer OR variation[mh] OR "Stratification" OR "ROC Curve" [Mesh] OR "Discrimination" OR "Discriminate" OR "c-statistic" OR "c statistic" OR "Area under the curve" OR "AUC" OR "Calibration" OR "Indices" OR "Algorithm" OR "Multivariable"

E5b Prognosis search filter for EMBASE(11)

exp disease course/ OR risk*.mp. OR diagnos*.mp. OR follow-up.mp. OR ep.fs. OR outcome.tw.

E5c Prognosis search filter for CINAHL

"Disease course".af OR risk*.af OR diagnos*.af OR follow-up.af OR exp EPIDEMIOLOGY/ OR outcome.tx

E6 Outcomes search string

"mortalit*".ti,ab. OR survival.ti,ab. OR "Admission*".ti,ab. OR "Readmission*".ti,ab. OR "rehospitalization*".ti,ab. OR "hospitalization*".ti,ab. OR 20 or 21 OR "death*".ti,ab. OR "quality of life".ti,ab. OR health.ti,ab. OR "Kansas City Cardiomyopathy Questionnaire".ti,ab. OR KCCQ.ti,ab. OR "Minnesota Living with Heart Failure Questionnaire".ti,ab. OR "Short form".ti,ab. OR sf-36.ti,ab. OR sf36.ti,ab. OR sf12.ti,ab. OR sf-12.ti,ab. OR eurogol.ti,ab. OR eq-5d.ti,ab. OR "Heart Failure Symptom Scale".ti,ab.

E7 Inter-rater reliability assessment using Cohen's kappa(6)

		Screener 2	
Screener 1	Moderate score	Other score	Total
Moderate score	39	2	41
Other score	3	24	27
Total	42	26	68

Crude agreement

'Other' indicates where a score other than moderate was allocated (i.e high or low). Any disagreements between the two reviewers in this study were where one reviewer had allocated a moderate score and the other a high or low score. Two 'other' scores therefore in this case were always agreement (either high or low).

Crude agreements = 39 +24/68 = 0.93%

Taking account of chance agreement

Include = $42 \times 41/68 = 25.32$

Exclude 27x24/68 = 9.53

Total = 34.85 agreed articles expected by chance

Proportion expected by chance = 34.68/68 = 0.513

Maximum agreement is 1.0 therefore the inter-rater reliability agreement (Kappa) =

<u>Crude agreement – chance agreement</u> 1 – chance agreement

= 0.93-0.513 / 1-0.513 = **86%**

E8 Frequency of subject use in case control analyses

MORTALITY							
Frequency of	Frequency	%	Cumulative				
same subject			%				
use in matched							
set (N)							
1	14005	29.9	29.9				
2	11225	23.9	53.8				
3	7995	17.0	70.8				
4	5512	11.7	82.6				
5	3377	7.2	89.8				
6	2122	4.5	94.3				
7	1245	2.7	97.0				
8	680	1.4	98.4				
9	390	.8	99.2				
10	199	.4	99.7				
11	95	.2	99.9				
12	37	.1	99.9				
13	16	.0	100.0				
14	8	.0	100.0				
15	4	.0	100.0				
16	1	.0	100.0				
Total	46911	100.0	<u>, </u>				

HOSPITAL ADMISSION						
Frequency of	Frequency	%	Cumulative %			
same subject						
use in matched						
set (N)						
1	16055	57.4	57.4			
2	1118	4.0	61.4			
3	1164	4.2	65.5			
4	1310	4.7	70.2			
5	1282	4.6	74.8			
6	1101	3.9	78.7			
7	1034	3.7	82.4			
8	868	3.1	85.5			
9	674	2.4	88.0			
10	545	1.9	89.9			
11	489	1.7	91.6			
12	381	1.4	93.0			
13	307	1.1	94.1			
14	270	1.0	95.1			
15	234	.8	95.9			
16	168	.6	96.5			
17	131	.5	97.0			
18	146	.5	97.5			
19	134	.5	98.0			
20	87	.3	98.3			
21	76	.3	98.6			
22	63	.2	98.8			
23	61	.2	99.0			
24	54	.2	99.2			
25	46	.2	99.4			
26	37	.1	99.5			
27	45	.2	99.7			
28	19	.1	99.7			
29	16	.1	99.8			
30	14	.1	99.8			
31	12	.0	99.9			
32	9	.0	99.9			
33	11	.0	99.9			
34	5	.0	100.0			
35	1	.0	100.0			
36	2	.0	100.0			
37	4	.0	100.0			
38	2	.0	100.0			
43	1	.0	100.0			
Tatal	27976	100.				
Iotal		0				

E9a Chronic obstructive pulmonary disease search strategy

Read Code,h3*

Read Term,*COPD*

Read Term,*emphysem*

Read Term,*bronchiectas*

Read Term,*bronchitis*

Read Term,*chronic air*

Read Term,*chronic obstruct*

E9b Diabetes mellitus search strategy

Read Code c10*

Read Term *diabet*

E9c Chronic kidney disease search strategy

Read Term,*renal*

Read Term,*nephro*

Read Term,*nephri*

Read Term,*medullary*

Read Term,*kidney*

Read Code,k0*

Read Code,k1*

Read Code,g2*

Read Code,1z*

Read Code,14d*

Read Code,pd1*

Read Code,9h*

E10 Chronic Obstructive Pulmonary Disease Code set

CPRD			Previous	QoF	Read code	
Medcode	Read code	Read Term	validation	listed	type	Study code type
1001	H300	Chronic obstructive pulmonary disease	V	V	Diagnostic	Index
998	H311	Chronic obstructive airways disease	V	V	Diagnostic	Index
10863	H3600	Mild chronic obstructive pulmonary disease	V	٧	Diagnostic	Index
5710	H3z00	Chronic obstructive airways disease NOS	V	٧	Diagnostic	Index
10802	H3700	Moderate chronic obstructive pulmonary disease	V	٧	Diagnostic	Index
794	H3200	Emphysema	V	٧	Diagnostic	Index
9876	H3800	Severe chronic obstructive pulmonary disease	V	٧	Diagnostic	Index
93568	H3900	Very severe chronic obstructive pulmonary disease	V	٧	Diagnostic	Index
14798	H312100	Emphysematous bronchitis	V	V	Diagnostic	Index
12166	H3y00	Other specified chronic obstructive airways disease	V	V	Diagnostic	Index
33450	H32z.00	Emphysema NOS	V	V	Diagnostic	Index
37247	H3z11	Chronic obstructive pulmonary disease NOS	V	V	Diagnostic	Index
26306	H320.00	Chronic bullous emphysema	V	V	Diagnostic	Index
10980	H322.00	Centrilobular emphysema	V	V	Diagnostic	Index
23492	H320z00	Chronic bullous emphysema NOS	V	V	Diagnostic	Index
44525	H312z00	Obstructive chronic bronchitis NOS	V	V	Diagnostic	Index
11287	66YM.00	Chronic obstructive pulmonary disease annual review	V		Process	Prevalence
9520	66YB.00	Chronic obstructive pulmonary disease monitoring	V		Process	Prevalence
28755	90i0.00	Chronic obstructive pulmonary disease monitoring 1st letter	V		Process	Prevalence
18621	66YL.00	Chronic obstructive pulmonary disease follow-up	V		Process	Prevalence
34202	90i1.00	Chronic obstructive pulmonary disease monitoring 2nd letter	V		Process	Prevalence
18476	66YL.11	COPD follow-up	V		Process	Prevalence
34215	90i2.00	Chronic obstructive pulmonary disease monitoring 3rd letter	V		Process	Prevalence
18792	90i00	Chronic obstructive pulmonary disease monitoring admin	V		Process	Prevalence
37371	66YD.00	Chronic obstructive pulmonary disease monitoring due	V		Process	Prevalence

26018	66YS.00	Chronic obstructive pulmonary disease monitoring by nurse	٧		Process	Prevalence
45771	66Yh.00	Chronic obstructive pulmonary disease does not disturb sleep	v		Process	Prevalence
45998	66YT.00	Chronic obstructive pulmonary disease monitoring by doctor	V		Process	Prevalence
3243	H3100	Chronic bronchitis		V	Diagnostic	Index
15157	H31z.00	Chronic bronchitis NOS		V	Diagnostic	Index
15626	H310000	Chronic catarrhal bronchitis		V	Diagnostic	Index
5798	H312000	Chronic asthmatic bronchitis		V	Diagnostic	Index
7819	H312.00	Obstructive chronic bronchitis		V	Diagnostic	Index
5603	H310.00	Simple chronic bronchitis		V	Diagnostic	Index
5909	H312011	Chronic wheezy bronchitis		V	Diagnostic	Index
11150	H311.00	Mucopurulent chronic bronchitis		V	Diagnostic	Index
26125	H312300	Bronchiolitis obliterans		V	Diagnostic	Index
45089	H31y100	Chronic tracheobronchitis		V	Diagnostic	Index
L6410	H32yz00	Other emphysema NOS		V	Diagnostic	Index
10788	H32y.00	Other emphysema		V	Diagnostic	Index
ł0159	H311000	Purulent chronic bronchitis		V	Diagnostic	Index
51118	H310z00	Simple chronic bronchitis NOS		V	Diagnostic	Index
04608	H3A00	End stage chronic obstructive airways disease		V	Diagnostic	Index
24248	H313.00	Mixed simple and mucopurulent chronic bronchitis		V	Diagnostic	Index
51513	H311z00	Mucopurulent chronic bronchitis NOS		V	Diagnostic	Index
53479	H32y200	MacLeod's unilateral emphysema		V	Diagnostic	Index
56043	H31y.00	Other chronic bronchitis		V	Diagnostic	Index
58066	H31yz00	Other chronic bronchitis NOS		V	Diagnostic	Index
6578	H321.00	Panlobular emphysema		V	Diagnostic	Index
50188	H320200	Giant bullous emphysema		V	Diagnostic	Index
56860	H320000	Segmental bullous emphysema		V	Diagnostic	Index
58662	H320100	Zonal bullous emphysema		V	Diagnostic	Index
) 9536	H320300	Bullous emphysema with collapse		V	Diagnostic	Index
57040	H3y11	Other specified chronic obstructive pulmonary disease		V	Diagnostic	Index

37959	H311100	Fetid chronic bronchitis	V	Diagnostic	Index
70787	H32y100	Atrophic (senile) emphysema	V	Diagnostic	Index
59263	H32y111	Acute interstitial emphysema	V	Diagnostic	Index
103733	H320311	Tension pneumatocoele	V	Diagnostic	Index
92955	H32y000	Acute vesicular emphysema	V	Diagnostic	Index
1446	H312200	Acute exacerbation of chronic obstructive airways disease		Diagnostic	Index
28743	66Yf.00	Number of COPD exacerbations in past year		Process	Prevalence
18501	66YI.00	COPD self-management plan given		Process	Prevalence
7884	H3y1.00	Chron obstruct pulmonary dis wth acute exacerbation, unspec		Diagnostic	Index
1019	8H2R.00	Admit COPD emergency		Process	Index
12313	679V.00	Health education - chronic obstructive pulmonary disease		Process	Prevalence
101042	8BMW.00	Issue of chronic obstructive pulmonary disease rescue pack		Process	Prevalence
8074	90i4.00	Chronic obstructive pulmonary disease monitor phone invite		Process	Prevalence
45777	8CR1.00	Chronic obstructive pulmonary disease clini management plan		Process	Prevalence
19106	66Yd.00	COPD accident and emergency attendance since last visit		Process	Prevalence
19003	66Ye.00	Emergency COPD admission since last appointment		Process	Prevalence
2258	90i3.00	Chronic obstructive pulmonary disease monitoring verb invite		Process	Prevalence
1061	H3y0.00	Chronic obstruct pulmonary dis with acute lower resp infectn		Diagnostic	Index
7092	H3012	Recurrent wheezy bronchitis		Diagnostic	Index
103007	66YB100	Chronic obstructive pulmonary disease 6 monthly review		Process	Prevalence
L02685	66YB000	Chronic obstructive pulmonary disease 3 monthly review		Process	Prevalence
19721	8CE6.00	Chronic obstructive pulmonary disease leaflet given		Process	Prevalence
99948	9kf0.00	COPD patient unsuitable for pulmonary rehab - enh serv admin		Process	Prevalence
L04117	661M300	COPD self-management plan agreed		Process	Prevalence
104169	661N300	COPD self-management plan review		Process	Prevalence
46036	66Yi.00	Multiple COPD emergency hospital admissions		Process	Prevalence
103494	14B3.12	History of chronic obstructive pulmonary disease		Process	Prevalence
104265	9e03.00	GP OOH service notified of COPD care plan		Process	Prevalence
103758	8Hkw.00	Referral to COPD community nursing team		Process	Prevalence

103678	8BMa000	Chronic obstructiv pulmonary disease medication optimisation	Process	Prevalence
45770	66Yg.00	Chronic obstructive pulmonary disease disturbs sleep	Process	Prevalence
105457	8CMW500	Chronic obstructive pulmonary disease care pathway	Process	Prevalence
97800	9kf00	COPD - enhanced services administration	Process	Prevalence
22905	H581.00	Interstitial emphysema	Diagnostic	Index
103558	8CeD.00	Preferred place of care for next exacerbation of COPD	Process	Prevalence
104481	8CMV.00	Has chronic obstructive pulmonary disease care plan	Process	Prevalence
98284	9kf1.00	Refer COPD structured smoking assessment - enhanc serv admin	Process	Prevalence
65733	Hyu3100	[X]Other specified chronic obstructive pulmonary disease	Diagnostic	Index
98283	9kf2.00	COPD structured smoking assessment declined - enh serv admin	Process	Prevalence
104985	9NgP.00	On chronic obstructive pulmonary disease supprtv cre pathway	Process	Prevalence
103760	9kf2.11	COPD structured smoking assessment declined	Process	Prevalence
103864	9kf0.11	COPD patient unsuitable for pulmonary rehabilitation	Process	Prevalence
103400	9kf1.11	Referred for COPD structured smoking assessment	Process	Prevalence
104710	9NgP.11	On COPD (chr obstruc pulmonary disease) supporty cre pathway	Process	Prevalence

E11 Diabetes Mellitus Code set

			Validation		C	ode type
CPRD Medcode	Read code	Read term	Previous studies	Qof listed	Read code type	Study code type
711	C1000	Diabetes mellitus	V	٧	Diagnostic	Index
18278	C109J00	Insulin treated Type 2 diabetes mellitus	V	٧	Diagnostic	Index
37648	C109J11	Insulin treated non-insulin dependent diabetes mellitus	V	٧	Diagnostic	Index
18264	C109J12	Insulin treated Type II diabetes mellitus	V	٧	Diagnostic	Index
36633	C109K00	Hyperosmolar non-ketotic state in type 2 diabetes mellitus	v	٧	Diagnostic	Index
43453	C10C.00	Diabetes mellitus autosomal dominant	v	٧	Diagnostic	Index
46624	C10C.11	Maturity onset diabetes in youth	v	٧	Diagnostic	Index
98392	C10C.12	Maturity onset diabetes in youth type 1	V	٧	Diagnostic	Index
36695	C10D.00	Diabetes mellitus autosomal dominant type 2	V	٧	Diagnostic	Index
59991	C10D.11	Maturity onset diabetes in youth type 2	V	٧	Diagnostic	Index
1549	C10E.00	Type 1 diabetes mellitus	V	٧	Diagnostic	Index
12455	C10E.11	Type I diabetes mellitus	V	٧	Diagnostic	Index
51261	C10E.12	Insulin dependent diabetes mellitus	V	V	Diagnostic	Index
47582	C10E000	Type 1 diabetes mellitus with renal complications	V	٧	Diagnostic	Index
102946	C10E012	Insulin-dependent diabetes mellitus with renal complications	V	٧	Diagnostic	Index
47649	C10E100	Type 1 diabetes mellitus with ophthalmic complications	V	٧	Diagnostic	Index
99311	C10E111	Type I diabetes mellitus with ophthalmic complications	V	٧	Diagnostic	Index
98071	C10E112	Insulin-dependent diabetes mellitus with ophthalmic comps	V	٧	Diagnostic	Index
42831	C10E200	Type 1 diabetes mellitus with neurological complications	V	٧	Diagnostic	Index
101735	C10E212	Insulin-dependent diabetes mellitus with neurological comps	V	٧	Diagnostic	Index
47650	C10E300	Type 1 diabetes mellitus with multiple complications	v	٧	Diagnostic	Index
91942	C10E311	Type I diabetes mellitus with multiple complications	V	٧	Diagnostic	Index
45276	C10E312	Insulin dependent diabetes mellitus with multiple complicat	v	٧	Diagnostic	Index
43921	C10E400	Unstable type 1 diabetes mellitus	v	٧	Diagnostic	Index
49949	C10E411	Unstable type I diabetes mellitus	V	٧	Diagnostic	Index

54600	C10F412	Unstable insulin dependent diabetes mellitus	V	V	Diagnostic	Index
18683	C10E500	Type 1 diabetes mellitus with ulcer	v	v	Diagnostic	Index
93878	C10E511	Type I diabetes mellitus with ulcer	٧	V	Diagnostic	Index
98704	C10E512	Insulin dependent diabetes mellitus with ulcer	٧	V	Diagnostic	Index
69993	C10E600	Type 1 diabetes mellitus with gangrene	٧	V	Diagnostic	Index
102112	C10E611	Type I diabetes mellitus with gangrene	٧	v	Diagnostic	Index
18387	C10E700	Type 1 diabetes mellitus with retinopathy	٧	v	Diagnostic	Index
95343	C10E711	Type I diabetes mellitus with retinopathy	٧	v	Diagnostic	Index
93875	C10E712	Insulin dependent diabetes mellitus with retinopathy	٧	V	Diagnostic	Index
35288	C10E800	Type 1 diabetes mellitus - poor control	٧	V	Diagnostic	Index
105337	C10E811	Type I diabetes mellitus - poor control	٧	V	Diagnostic	Index
72702	C10E812	Insulin dependent diabetes mellitus - poor control	٧	V	Diagnostic	Index
40682	C10E900	Type 1 diabetes mellitus maturity onset	٧	V	Diagnostic	Index
96235	C10E911	Type I diabetes mellitus maturity onset	٧	V	Diagnostic	Index
97849	C10E912	Insulin dependent diabetes maturity onset	٧	V	Diagnostic	Index
69676	C10EA00	Type 1 diabetes mellitus without complication	٧	V	Diagnostic	Index
62613	C10EA11	Type I diabetes mellitus without complication	٧	V	Diagnostic	Index
99719	C10EA12	Insulin-dependent diabetes without complication	v	V	Diagnostic	Index
68105	C10EB00	Type 1 diabetes mellitus with mononeuropathy	٧	V	Diagnostic	Index
46301	C10EC00	Type 1 diabetes mellitus with polyneuropathy	٧	V	Diagnostic	Index
91943	C10EC11	Type I diabetes mellitus with polyneuropathy	٧	V	Diagnostic	Index
101311	C10EC12	Insulin dependent diabetes mellitus with polyneuropathy	٧	V	Diagnostic	Index
10418	C10ED00	Type 1 diabetes mellitus with nephropathy	٧	V	Diagnostic	Index
102163	C10ED12	Insulin dependent diabetes mellitus with nephropathy	٧	V	Diagnostic	Index
39070	C10EE00	Type 1 diabetes mellitus with hypoglycaemic coma	٧	V	Diagnostic	Index
99716	C10EE12	Insulin dependent diabetes mellitus with hypoglycaemic coma	٧	V	Diagnostic	Index
49554	C10EF00	Type 1 diabetes mellitus with diabetic cataract	٧	V	Diagnostic	Index
100770	C10EF12	Insulin dependent diabetes mellitus with diabetic cataract	٧	V	Diagnostic	Index
93468	C10EG00	Type 1 diabetes mellitus with peripheral angiopathy	٧	V	Diagnostic	Index

18642 C	C10EH00	Type 1 diabetes mellitus with arthropathy	V	V	Diagnostic	Index
54008 C	C10EJ00	Type 1 diabetes mellitus with neuropathic arthropathy	V	V	Diagnostic	Index
30323 C	C10EK00	Type 1 diabetes mellitus with persistent proteinuria	V	V	Diagnostic	Index
30294 C	C10EL00	Type 1 diabetes mellitus with persistent microalbuminuria	V	V	Diagnostic	Index
102620 C	C10EL11	Type I diabetes mellitus with persistent microalbuminuria	V	V	Diagnostic	Index
10692 C	C10EM00	Type 1 diabetes mellitus with ketoacidosis	V	V	Diagnostic	Index
62209 C	C10EM11	Type I diabetes mellitus with ketoacidosis	V	V	Diagnostic	Index
40837 C	C10EN00	Type 1 diabetes mellitus with ketoacidotic coma	V	V	Diagnostic	Index
66145 C	C10EN11	Type I diabetes mellitus with ketoacidotic coma	V	V	Diagnostic	Index
22871 C	C10EP00	Type 1 diabetes mellitus with exudative maculopathy	V	V	Diagnostic	Index
97894 C	C10EP11	Type I diabetes mellitus with exudative maculopathy	V	V	Diagnostic	Index
55239 C	C10EQ00	Type 1 diabetes mellitus with gastroparesis	V	V	Diagnostic	Index
95636 C	C10ER00	Latent autoimmune diabetes mellitus in adult	V	V	Diagnostic	Index
758 C	C10F.00	Type 2 diabetes mellitus	V	V	Diagnostic	Index
22884 C	C10F.11	Type II diabetes mellitus	V	V	Diagnostic	Index
18777 C	C10F000	Type 2 diabetes mellitus with renal complications	V	V	Diagnostic	Index
57278 C	C10F011	Type II diabetes mellitus with renal complications	V	V	Diagnostic	Index
47321 C	C10F100	Type 2 diabetes mellitus with ophthalmic complications	V	V	Diagnostic	Index
100964 C	C10F111	Type II diabetes mellitus with ophthalmic complications	V	V	Diagnostic	Index
34268 C	C10F200	Type 2 diabetes mellitus with neurological complications	V	V	Diagnostic	Index
98616 C	C10F211	Type II diabetes mellitus with neurological complications	V	V	Diagnostic	Index
65267 C	C10F300	Type 2 diabetes mellitus with multiple complications	V	V	Diagnostic	Index
43227 C	C10F311	Type II diabetes mellitus with multiple complications	V	V	Diagnostic	Index
49074 C	C10F400	Type 2 diabetes mellitus with ulcer	V	V	Diagnostic	Index
91646 C	C10F411	Type II diabetes mellitus with ulcer	V	V	Diagnostic	Index
12736 C	C10F500	Type 2 diabetes mellitus with gangrene	V	V	Diagnostic	Index
104323 C	C10F511	Type II diabetes mellitus with gangrene	V	V	Diagnostic	Index
18496 C	C10F600	Type 2 diabetes mellitus with retinopathy	V	V	Diagnostic	Index
49655 C	C10F611	Type II diabetes mellitus with retinopathy	٧	V	Diagnostic	Index

25627	C10F700	Type 2 diabetes mellitus - poor control	V	V	Diagnostic	Index
47315	C10F711	Type II diabetes mellitus - poor control	V	V	Diagnostic	Index
47954	C10F900	Type 2 diabetes mellitus without complication	٧	V	Diagnostic	Index
53392	C10F911	Type II diabetes mellitus without complication	٧	V	Diagnostic	Index
62674	C10FA00	Type 2 diabetes mellitus with mononeuropathy	٧	V	Diagnostic	Index
95351	C10FA11	Type II diabetes mellitus with mononeuropathy	٧	V	Diagnostic	Index
18425	C10FB00	Type 2 diabetes mellitus with polyneuropathy	٧	V	Diagnostic	Index
50527	C10FB11	Type II diabetes mellitus with polyneuropathy	٧	V	Diagnostic	Index
12640	C10FC00	Type 2 diabetes mellitus with nephropathy	٧	V	Diagnostic	Index
102201	C10FC11	Type II diabetes mellitus with nephropathy	٧	V	Diagnostic	Index
46917	C10FD00	Type 2 diabetes mellitus with hypoglycaemic coma	٧	V	Diagnostic	Index
98723	C10FD11	Type II diabetes mellitus with hypoglycaemic coma	٧	V	Diagnostic	Index
44982	C10FE00	Type 2 diabetes mellitus with diabetic cataract	٧	V	Diagnostic	Index
93727	C10FE11	Type II diabetes mellitus with diabetic cataract	٧	V	Diagnostic	Index
37806	C10FF00	Type 2 diabetes mellitus with peripheral angiopathy	٧	V	Diagnostic	Index
104639	C10FF11	Type II diabetes mellitus with peripheral angiopathy	٧	V	Diagnostic	Index
59253	C10FG00	Type 2 diabetes mellitus with arthropathy	٧	V	Diagnostic	Index
103902	C10FG11	Type II diabetes mellitus with arthropathy	٧	V	Diagnostic	Index
35385	C10FH00	Type 2 diabetes mellitus with neuropathic arthropathy	٧	V	Diagnostic	Index
1407	C10FJ00	Insulin treated Type 2 diabetes mellitus	٧	V	Diagnostic	Index
64668	C10FJ11	Insulin treated Type II diabetes mellitus	٧	V	Diagnostic	Index
34450	C10FK00	Hyperosmolar non-ketotic state in type 2 diabetes mellitus	٧	V	Diagnostic	Index
26054	C10FL00	Type 2 diabetes mellitus with persistent proteinuria	٧	V	Diagnostic	Index
60796	C10FL11	Type II diabetes mellitus with persistent proteinuria	٧	V	Diagnostic	Index
18390	C10FM00	Type 2 diabetes mellitus with persistent microalbuminuria	٧	V	Diagnostic	Index
85991	C10FM11	Type II diabetes mellitus with persistent microalbuminuria	٧	V	Diagnostic	Index
32627	C10FN00	Type 2 diabetes mellitus with ketoacidosis	٧	V	Diagnostic	Index
106528	C10FN11	Type II diabetes mellitus with ketoacidosis	٧	V	Diagnostic	Index
51756	C10FP00	Type 2 diabetes mellitus with ketoacidotic coma	٧	V	Diagnostic	Index

106061	C10FP11	Type II diabetes mellitus with ketoacidotic coma	٧	1	Diagnostic	Index
25501		Type 1 diabetes mellitus with exudative maculonathy	v v	v N	Diagnostic	Index
63600	C10ER00	Type 2 diabetes mellitus with excluditive indediopathy	v v	v N	Diagnostic	Index
05090	C10FS00	Natornally inherited diabates mollitus	v	V	Diagnostic	Index
55555	C10F300	Cooperdemuner restrict diabetes mellitus	V	V	Diagnostic	Index
51697	C10G.00	Secondary pancreatic diabetes mellitus	v	V	Diagnostic	index
96506	C10G000	Secondary pancreatic diabetes mellitus without complication	V	٧	Diagnostic	Index
61122	C10H.00	Diabetes mellitus induced by non-steroid drugs	V	V	Diagnostic	Index
67212	C10H000	DM induced by non-steroid drugs without complication	V	V	Diagnostic	Index
43857	C10M.00	Lipoatrophic diabetes mellitus	V	V	Diagnostic	Index
22487	C10N.00	Secondary diabetes mellitus	V	٧	Diagnostic	Index
94383	C10N000	Secondary diabetes mellitus without complication	V	٧	Diagnostic	Index
93380	C10N100	Cystic fibrosis related diabetes mellitus	V	٧	Diagnostic	Index
34528	3882	Diabetes well being questionnaire	V		Process	Prevalence only
98954	3883	Diabetes treatment satisfaction questionnaire	V		Process	Prevalence only
49884	6761	Diabetic pre-pregnancy counselling	v		Process	Prevalence only
21689	13AB.00	Diabetic lipid lowering diet	V		Process	Prevalence only
13078	13AC.00	Diabetic weight reducing diet	V		Process	Prevalence only
13074	13B1.00	Diabetic diet	V		Process	Prevalence only
107423	661N400	Diabetes self-management plan review	V		Process	Prevalence only
3550	66A00	Diabetic monitoring	V		Process	Prevalence only
7563	66A3.00	Diabetic on diet only	V		Process	Prevalence only
1684	66A4.00	Diabetic on oral treatment	V		Process	Prevalence only
8842	66A5.00	Diabetic on insulin	V		Process	Prevalence only
25636	66Aa.00	Diabetic diet - poor compliance	v		Process	Prevalence only
22823	66Ab.00	Diabetic foot examination	V		Process	Prevalence only
10977	66Ac.00	Diabetic peripheral neuropathy screening	V		Process	Prevalence only
53238	66AG.00	Diabetic drug side effects	v		Process	Prevalence only
16490	66AH.00	Diabetic treatment changed	V		Process	Index
28873	66Ai.00	Diabetic 6 month review	v		Process	Prevalence only

42074	66 41 00		,	5	
13071	66AI.00	Diabetic - good control	ν	Process	Prevalence only
2378	66AJ.00	Diabetic - poor control	V	Process	Prevalence only
22023	66AJz00	Diabetic - poor control NOS	V	Process	Prevalence only
43951	66AK.00	Diabetic - cooperative patient	v	Process	Prevalence only
66475	66Ak.00	Diabetic monitoring - lower risk albumin excretion	V	Process	Prevalence only
17869	66AL.00	Diabetic-uncooperative patient	V	Process	Prevalence only
61470	66AI.00	Diabetic monitoring - higher risk albumin excretion	V	Process	Prevalence only
17886	66AM.00	Diabetic - follow-up default	V	Process	Prevalence only
85660	66An.00	Diabetes type 1 review	V	Process	Prevalence only
83532	66Ao.00	Diabetes type 2 review	v	Process	Prevalence only
12506	66AP.00	Diabetes: practice programme	V	Process	Prevalence only
95994	66Aq.00	Diabetic foot screen	v	Process	Prevalence only
12675	66AQ.00	Diabetes: shared care programme	V	Process	Prevalence only
8836	66AR.00	Diabetes management plan given	V	Process	Prevalence only
6125	66AS.00	Diabetic annual review	V	Process	Prevalence only
101728	66As.00	Diabetic on subcutaneous treatment	v	Process	Prevalence only
101177	66At.00	Diabetic dietary review	V	Process	Prevalence only
12307	66AU.00	Diabetes care by hospital only	v	Process	Prevalence only
102434	66Au.00	Diabetic erectile dysfunction review	V	Process	Prevalence only
102490	66Av.00	Diabetic assessment of erectile dysfunction	V	Process	Prevalence only
28769	66AV.00	Diabetic on insulin and oral treatment	v	Process	Prevalence only
50175	66AW.00	Diabetic foot risk assessment	V	Process	Prevalence only
46577	66AX.00	Diabetes: shared care in pregnancy - diabetol and obstet	V	Process	Prevalence only
26604	66AY.00	Diabetic diet - good compliance	V	Process	Prevalence only
13067	66AZ.00	Diabetic monitoring NOS	V	Process	Prevalence only
18311	68A7.00	Diabetic retinopathy screening	v	Process	Prevalence only
19739	68A9.00	Diabetic retinopathy screening offered	٧	Process	Prevalence only
61021	68AB.00	Diabetic digital retinopathy screening offered	٧	Process	Prevalence only
47341	8A12.00	Diabetic crisis monitoring	V	Process	Prevalence only

24363	8A13.00	Diabetic stabilisation	V	Process	Prevalence only
11471	8B3I.00	Diabetes medication review	v	Process	Prevalence only
18066	8CE0.00	Diabetic leaflet given	V	Process	Prevalence only
105585	8CMW700	Diabetes clinical pathway	V	Process	Prevalence only
63412	8CR2.00	Diabetes clinical management plan	V	Process	Prevalence only
47032	8CS0.00	Diabetes care plan agreed	v	Process	Prevalence only
11018	8HBG.00	Diabetic retinopathy 12 month review	v	Process	Prevalence only
18662	8HBH.00	Diabetic retinopathy 6 month review	v	Process	Prevalence only
61557	8HKE.00	Diabetology D.V. requested	V	Process	Prevalence only
47370	8HLE.00	Diabetology D.V. done	V	Process	Prevalence only
18824	8I3W.00	Diabetic foot examination declined	V	Process	Prevalence only
12262	8I3X.00	Diabetic retinopathy screening refused	V	Process	Prevalence only
101456	8IAs.00	Diabetic dietary review declined	V	Process	Prevalence only
103743	8IE2.00	Diabetes care plan declined	V	Process	Prevalence only
103798	9b92000	Diabetic medicine	V	Process	Prevalence only
106269	9m000	Diabetic retinopathy screening administrative status	V	Process	Prevalence only
9897	90L00	Diabetes monitoring admin.	V	Process	Prevalence only
13191	90L11	Diabetes clinic administration	V	Process	Prevalence only
22130	90L3.00	Diabetes monitoring default	V	Process	Prevalence only
13194	90L4.00	Diabetes monitoring 1st letter	V	Process	Prevalence only
13195	90L5.00	Diabetes monitoring 2nd letter	V	Process	Prevalence only
12030	90L6.00	Diabetes monitoring 3rd letter	V	Process	Prevalence only
31240	90L7.00	Diabetes monitor.verbal invite	V	Process	Prevalence only
31141	90L8.00	Diabetes monitor.phone invite	V	Process	Prevalence only
20900	90LA.11	Diabetes monitored	V	Process	Prevalence only
35383	90LD.00	Diabetic patient unsuitable for digital retinal photography	V	Process	Prevalence only
94186	90LF.00	Diabetes structured education programme completed	V	Process	Prevalence only
93854	90LM.00	Diabetes structured education programme declined	V	Process	Prevalence only
101455	90LN.00	Diabetes monitor invitation by SMS (short message service)	V	Process	Prevalence only

31241	90LZ.00	Diabetes monitoring admin.NOS	V	Process	Prevalence only
94647	9Oy00	Diabetes screening administration	V	Process	Prevalence only
95124	90y0.00	Diabetes screening invitation	V	Process	Prevalence only
38986	C100.00	Diabetes mellitus with no mention of complication	V	Diagnostic	Index
24490	C100000	Diabetes mellitus, juvenile type, no mention of complication	V	Diagnostic	Index
1038	C100011	Insulin dependent diabetes mellitus	V	Diagnostic	Index
14803	C100100	Diabetes mellitus, adult onset, no mention of complication	V	Diagnostic	Index
14889	C100111	Maturity onset diabetes	V	Diagnostic	Index
506	C100112	Non-insulin dependent diabetes mellitus	V	Diagnostic	Index
50972	C100z00	Diabetes mellitus NOS with no mention of complication	V	Diagnostic	Index
1682	C101.00	Diabetes mellitus with ketoacidosis	V	Diagnostic	Index
53200	C101000	Diabetes mellitus, juvenile type, with ketoacidosis	V	Diagnostic	Index
54856	C101100	Diabetes mellitus, adult onset, with ketoacidosis	V	Diagnostic	Index
38617	C101y00	Other specified diabetes mellitus with ketoacidosis	\checkmark	Diagnostic	Index
42505	C101z00	Diabetes mellitus NOS with ketoacidosis	\checkmark	Diagnostic	Index
21482	C102.00	Diabetes mellitus with hyperosmolar coma	\checkmark	Diagnostic	Index
40023	C102000	Diabetes mellitus, juvenile type, with hyperosmolar coma	V	Diagnostic	Index
43139	C102100	Diabetes mellitus, adult onset, with hyperosmolar coma	V	Diagnostic	Index
72345	C102z00	Diabetes mellitus NOS with hyperosmolar coma	V	Diagnostic	Index
15690	C103.00	Diabetes mellitus with ketoacidotic coma	V	Diagnostic	Index
42567	C103000	Diabetes mellitus, juvenile type, with ketoacidotic coma	V	Diagnostic	Index
68843	C103100	Diabetes mellitus, adult onset, with ketoacidotic coma	V	Diagnostic	Index
59288	C103y00	Other specified diabetes mellitus with coma	\checkmark	Diagnostic	Index
65062	C103z00	Diabetes mellitus NOS with ketoacidotic coma	\checkmark	Diagnostic	Index
16502	C104.00	Diabetes mellitus with renal manifestation	\checkmark	Diagnostic	Index
2475	C104.11	Diabetic nephropathy	\checkmark	Diagnostic	Index
93922	C104000	Diabetes mellitus, juvenile type, with renal manifestation	\checkmark	Diagnostic	Index
35105	C104100	Diabetes mellitus, adult onset, with renal manifestation	\checkmark	Diagnostic	Index
13279	C104y00	Other specified diabetes mellitus with renal complications	٧	Diagnostic	Index

35107	C104z00	Diabetes mellitus with nephropathy NOS	٧	Diagnostic	Index
33254	C105.00	Diabetes mellitus with ophthalmic manifestation	٧	Diagnostic	Index
69748	C105000	Diabetes mellitus, juvenile type, + ophthalmic manifestation	V	Diagnostic	Index
41389	C105100	Diabetes mellitus, adult onset, + ophthalmic manifestation	V	Diagnostic	Index
47377	C105y00	Other specified diabetes mellitus with ophthalmic complicatn	V	Diagnostic	Index
34283	C105z00	Diabetes mellitus NOS with ophthalmic manifestation	V	Diagnostic	Index
16230	C106.00	Diabetes mellitus with neurological manifestation	V	Diagnostic	Index
59903	C106.11	Diabetic amyotrophy	V	Diagnostic	Index
7795	C106.12	Diabetes mellitus with neuropathy	\checkmark	Diagnostic	Index
16491	C106.13	Diabetes mellitus with polyneuropathy	\checkmark	Diagnostic	Index
67853	C106000	Diabetes mellitus, juvenile, + neurological manifestation	V	Diagnostic	Index
39317	C106100	Diabetes mellitus, adult onset, + neurological manifestation	V	Diagnostic	Index
61523	C106y00	Other specified diabetes mellitus with neurological comps	V	Diagnostic	Index
22573	C106z00	Diabetes mellitus NOS with neurological manifestation	V	Diagnostic	Index
35399	C107.00	Diabetes mellitus with peripheral circulatory disorder	V	Diagnostic	Index
32403	C107.11	Diabetes mellitus with gangrene	V	Diagnostic	Index
32556	C107.12	Diabetes with gangrene	V	Diagnostic	Index
70448	C107000	Diabetes mellitus, juvenile +peripheral circulatory disorder	V	Diagnostic	Index
63357	C107100	Diabetes mellitus, adult, + peripheral circulatory disorder	V	Diagnostic	Index
33807	C107200	Diabetes mellitus, adult with gangrene	V	Diagnostic	Index
69124	C107300	IDDM with peripheral circulatory disorder	V	Diagnostic	Index
56803	C107400	NIDDM with peripheral circulatory disorder	V	Diagnostic	Index
65025	C107z00	Diabetes mellitus NOS with peripheral circulatory disorder	V	Diagnostic	Index
1647	C108.00	Insulin dependent diabetes mellitus	V	Diagnostic	Index
18505	C108.11	IDDM-Insulin dependent diabetes mellitus	V	Diagnostic	Index
17858	C108.12	Type 1 diabetes mellitus	V	Diagnostic	Index
24423	C108.13	Type I diabetes mellitus	V	Diagnostic	Index
46963	C108000	Insulin-dependent diabetes mellitus with renal complications	V	Diagnostic	Index
61344	C108011	Type I diabetes mellitus with renal complications	V	Diagnostic	Index

21983	C108012	Type 1 diabetes mellitus with renal complications	V	Diagnostic	Index
49276	C108100	Insulin-dependent diabetes mellitus with ophthalmic comps	V	Diagnostic	Index
102740	C108112	Type 1 diabetes mellitus with ophthalmic complications	V	Diagnostic	Index
52283	C108200	Insulin-dependent diabetes mellitus with neurological comps	V	Diagnostic	Index
49146	C108211	Type I diabetes mellitus with neurological complications	V	Diagnostic	Index
61829	C108212	Type 1 diabetes mellitus with neurological complications	V	Diagnostic	Index
52104	C108300	Insulin dependent diabetes mellitus with multiple complicatn	V	Diagnostic	Index
26855	C108400	Unstable insulin dependent diabetes mellitus	V	Diagnostic	Index
60107	C108411	Unstable type I diabetes mellitus	V	Diagnostic	Index
97474	C108412	Unstable type 1 diabetes mellitus	V	Diagnostic	Index
44443	C108500	Insulin dependent diabetes mellitus with ulcer	V	Diagnostic	Index
51957	C108511	Type I diabetes mellitus with ulcer	V	Diagnostic	Index
68390	C108512	Type 1 diabetes mellitus with ulcer	V	Diagnostic	Index
60499	C108600	Insulin dependent diabetes mellitus with gangrene	V	Diagnostic	Index
6509	C108700	Insulin dependent diabetes mellitus with retinopathy	V	Diagnostic	Index
38161	C108711	Type I diabetes mellitus with retinopathy	V	Diagnostic	Index
41049	C108712	Type 1 diabetes mellitus with retinopathy	V	Diagnostic	Index
6791	C108800	Insulin dependent diabetes mellitus - poor control	V	Diagnostic	Index
46850	C108811	Type I diabetes mellitus - poor control	V	Diagnostic	Index
45914	C108812	Type 1 diabetes mellitus - poor control	V	Diagnostic	Index
31310	C108900	Insulin dependent diabetes maturity onset	V	Diagnostic	Index
63017	C108911	Type I diabetes mellitus maturity onset	V	Diagnostic	Index
97446	C108912	Type 1 diabetes mellitus maturity onset	V	Diagnostic	Index
56448	C108A00	Insulin-dependent diabetes without complication	V	Diagnostic	Index
95992	C108A11	Type I diabetes mellitus without complication	V	Diagnostic	Index
24694	C108B00	Insulin dependent diabetes mellitus with mononeuropathy	V	Diagnostic	Index
99231	C108B11	Type I diabetes mellitus with mononeuropathy	V	Diagnostic	Index
41716	C108C00	Insulin dependent diabetes mellitus with polyneuropathy	V	Diagnostic	Index
57621	C108D00	Insulin dependent diabetes mellitus with nephropathy	٧	Diagnostic	Index

66872	C108D11	Type I diabetes mellitus with nephropathy	V	Diagnostic	Index
44440	C108E00	Insulin dependent diabetes mellitus with hypoglycaemic coma	V	Diagnostic	Index
42729	C108E11	Type I diabetes mellitus with hypoglycaemic coma	V	Diagnostic	Index
70766	C108E12	Type 1 diabetes mellitus with hypoglycaemic coma	V	Diagnostic	Index
44260	C108F00	Insulin dependent diabetes mellitus with diabetic cataract	V	Diagnostic	Index
17545	C108F11	Type I diabetes mellitus with diabetic cataract	V	Diagnostic	Index
64446	C108G00	Insulin dependent diab mell with peripheral angiopathy	V	Diagnostic	Index
65616	C108H00	Insulin dependent diabetes mellitus with arthropathy	V	Diagnostic	Index
62352	C108H11	Type I diabetes mellitus with arthropathy	V	Diagnostic	Index
39809	C108J00	Insulin dependent diab mell with neuropathic arthropathy	V	Diagnostic	Index
60208	C108J11	Type I diabetes mellitus with neuropathic arthropathy	V	Diagnostic	Index
18230	C108J12	Type 1 diabetes mellitus with neuropathic arthropathy	V	Diagnostic	Index
46290	C108y00	Other specified diabetes mellitus with multiple comps	V	Diagnostic	Index
64449	C108z00	Unspecified diabetes mellitus with multiple complications	V	Diagnostic	Index
4513	C109.00	Non-insulin dependent diabetes mellitus	V	Diagnostic	Index
5884	C109.11	NIDDM - Non-insulin dependent diabetes mellitus	V	Diagnostic	Index
17859	C109.12	Type 2 diabetes mellitus	v	Diagnostic	Index
18219	C109.13	Type II diabetes mellitus	V	Diagnostic	Index
52303	C109000	Non-insulin-dependent diabetes mellitus with renal comps	V	Diagnostic	Index
50225	C109011	Type II diabetes mellitus with renal complications	V	Diagnostic	Index
18209	C109012	Type 2 diabetes mellitus with renal complications	v	Diagnostic	Index
50429	C109100	Non-insulin-dependent diabetes mellitus with ophthalm comps	v	Diagnostic	Index
59725	C109111	Type II diabetes mellitus with ophthalmic complications	v	Diagnostic	Index
70316	C109112	Type 2 diabetes mellitus with ophthalmic complications	v	Diagnostic	Index
55842	C109200	Non-insulin-dependent diabetes mellitus with neuro comps	v	Diagnostic	Index
67905	C109211	Type II diabetes mellitus with neurological complications	v	Diagnostic	Index
45919	C109212	Type 2 diabetes mellitus with neurological complications	v	Diagnostic	Index
62146	C109300	Non-insulin-dependent diabetes mellitus with multiple comps	v	Diagnostic	Index
34912	C109400	Non-insulin dependent diabetes mellitus with ulcer	٧	Diagnostic	Index

55075	C109411	Type II diabetes mellitus with ulcer	V	Diagnostic	Index
65704	C109412	Type 2 diabetes mellitus with ulcer	V	Diagnostic	Index
40401	C109500	Non-insulin dependent diabetes mellitus with gangrene	V	Diagnostic	Index
62107	C109511	Type II diabetes mellitus with gangrene	V	Diagnostic	Index
46150	C109512	Type 2 diabetes mellitus with gangrene	V	Diagnostic	Index
17262	C109600	Non-insulin-dependent diabetes mellitus with retinopathy	V	Diagnostic	Index
58604	C109611	Type II diabetes mellitus with retinopathy	V	Diagnostic	Index
42762	C109612	Type 2 diabetes mellitus with retinopathy	V	Diagnostic	Index
8403	C109700	Non-insulin dependent diabetes mellitus - poor control	V	Diagnostic	Index
24458	C109711	Type II diabetes mellitus - poor control	V	Diagnostic	Index
45913	C109712	Type 2 diabetes mellitus - poor control	V	Diagnostic	Index
29979	C109900	Non-insulin-dependent diabetes mellitus without complication	V	Diagnostic	Index
105784	C109912	Type 2 diabetes mellitus without complication	V	Diagnostic	Index
72320	C109A00	Non-insulin dependent diabetes mellitus with mononeuropathy	V	Diagnostic	Index
50813	C109A11	Type II diabetes mellitus with mononeuropathy	V	Diagnostic	Index
45467	C109B00	Non-insulin dependent diabetes mellitus with polyneuropathy	V	Diagnostic	Index
47409	C109B11	Type II diabetes mellitus with polyneuropathy	V	Diagnostic	Index
59365	C109C00	Non-insulin dependent diabetes mellitus with nephropathy	V	Diagnostic	Index
64571	C109C11	Type II diabetes mellitus with nephropathy	V	Diagnostic	Index
24836	C109C12	Type 2 diabetes mellitus with nephropathy	V	Diagnostic	Index
43785	C109D00	Non-insulin dependent diabetes mellitus with hypoglyca coma	V	Diagnostic	Index
56268	C109D11	Type II diabetes mellitus with hypoglycaemic coma	V	Diagnostic	Index
61071	C109D12	Type 2 diabetes mellitus with hypoglycaemic coma	V	Diagnostic	Index
69278	C109E00	Non-insulin depend diabetes mellitus with diabetic cataract	V	Diagnostic	Index
48192	C109E11	Type II diabetes mellitus with diabetic cataract	V	Diagnostic	Index
44779	C109E12	Type 2 diabetes mellitus with diabetic cataract	V	Diagnostic	Index
54212	C109F00	Non-insulin-dependent d m with peripheral angiopath	V	Diagnostic	Index
54899	C109F11	Type II diabetes mellitus with peripheral angiopathy	V	Diagnostic	Index
60699	C109F12	Type 2 diabetes mellitus with peripheral angiopathy	V	Diagnostic	Index

24693	C109G00	Non-insulin dependent diabetes mellitus with arthropathy	V	Diagnostic	Index
18143	C109G11	Type II diabetes mellitus with arthropathy	V	Diagnostic	Index
49869	C109G12	Type 2 diabetes mellitus with arthropathy	V	Diagnostic	Index
40962	C109H00	Non-insulin dependent d m with neuropathic arthropathy	V	Diagnostic	Index
47816	C109H11	Type II diabetes mellitus with neuropathic arthropathy	V	Diagnostic	Index
66965	C109H12	Type 2 diabetes mellitus with neuropathic arthropathy	V	Diagnostic	Index
52236	C10A.00	Malnutrition-related diabetes mellitus	V	Diagnostic	Index
66675	C10A000	Malnutrition-related diabetes mellitus with coma	V	Diagnostic	Index
33969	C10A100	Malnutrition-related diabetes mellitus with ketoacidosis	V	Diagnostic	Index
100347	C10A500	Malnutritn-relat diabetes melitus wth periph circul complctn	V	Diagnostic	Index
11551	C10B.00	Diabetes mellitus induced by steroids	V	Diagnostic	Index
26108	C10B000	Steroid induced diabetes mellitus without complication	V	Diagnostic	Index
37957	C10K.00	Type A insulin resistance	V	Diagnostic	Index
56885	C10K000	Type A insulin resistance without complication	V	Diagnostic	Index
107603	C10P.00		V	Diagnostic	Index
33343	C10y.00	Diabetes mellitus with other specified manifestation	V	Diagnostic	Index
63371	C10y100	Diabetes mellitus, adult, + other specified manifestation	V	Diagnostic	Index
10098	C10yy00	Other specified diabetes mellitus with other spec comps	V	Diagnostic	Index
70821	C10yz00	Diabetes mellitus NOS with other specified manifestation	V	Diagnostic	Index
45491	C10z.00	Diabetes mellitus with unspecified complication	V	Diagnostic	Index
68792	C10z000	Diabetes mellitus, juvenile type, + unspecified complication	V	Diagnostic	Index
63762	C10z100	Diabetes mellitus, adult onset, + unspecified complication	V	Diagnostic	Index
64283	C10zy00	Other specified diabetes mellitus with unspecified comps	V	Diagnostic	Index
64357	C10zz00	Diabetes mellitus NOS with unspecified complication	V	Diagnostic	Index
44033	F345000	Diabetic mononeuritis multiplex	V	Diagnostic	Index
17247	F35z000	Diabetic mononeuritis NOS	V	Diagnostic	Index
5002	F372.11	Diabetic polyneuropathy	V	Diagnostic	Index
2342	F372.12	Diabetic neuropathy	V	Diagnostic	Index
2340	F381311	Diabetic amyotrophy	٧	Diagnostic	Index

37315	F3y0.00	Diabetic mononeuropathy	V	Diagnostic	Index
1323	F420.00	Diabetic retinopathy	V	Diagnostic	Index
3837	F420400	Diabetic maculopathy	V	Diagnostic	Index
11626	F420z00	Diabetic retinopathy NOS	V	Diagnostic	Index
17313	F440700	Diabetic iritis	V	Diagnostic	Index
10659	F464000	Diabetic cataract	V	Diagnostic	Index
34152	G73y000	Diabetic peripheral angiopathy	V	Diagnostic	Index
18142	N030000	Diabetic cheiroarthropathy	V	Diagnostic	Index
57333	N030011	Diabetic cheiropathy	V	Diagnostic	Index
27891	N030100	Diabetic Charcot arthropathy	\checkmark	Diagnostic	Index
68546	ZRB4.00	Diabetes clinic satisfaction questionnaire	V		Prevalence only
94699	ZRB5.00	Diabetes treatment satisfaction questionnaire	\checkmark		Prevalence only
38130	ZRB6.00	Diabetes wellbeing questionnaire	\checkmark		Prevalence only
608.00	66A2.00	Follow-up diabetic assessment	\checkmark	PROCESS	Prevalence only
2379.00	9N1Q.00	Seen in diabetic clinic	\checkmark	PROCESS	Prevalence only
2471.00	K01x100	Nephrotic syndrome in diabetes mellitus	\checkmark	Diagnostic	Index
2478.00	66AJ100	Brittle diabetes	\checkmark	PROCESS	Prevalence only
2986.00	F420200	Preproliferative diabetic retinopathy	\checkmark	Diagnostic	Index
3286.00	F420100	Proliferative diabetic retinopathy	\checkmark	Diagnostic	Index
6430.00	9NM0.00	Attending diabetes clinic	\checkmark	PROCESS	Prevalence only
6813.00	1434.00	H/O: diabetes mellitus	\checkmark	PROCESS	Prevalence only
7045.00	14F4.00	H/O: Admission in last year for diabetes foot problem	\checkmark	PROCESS	Prevalence only
7059.00	8H2J.00	Admit diabetic emergency	\checkmark	PROCESS	Index
7069.00	F420000	Background diabetic retinopathy	\checkmark	Diagnostic	Index
7328.00	M037200	Cellulitis in diabetic foot	\checkmark	Diagnostic	Index
7777.00	8H4F.00	Referral to diabetologist	\checkmark	PROCESS	Prevalence only
8306.00	8H7f.00	Referral to diabetes nurse	\checkmark	PROCESS	Prevalence only
8414.00	8CA4100	Pt advised re diabetic diet	\checkmark	PROCESS	Prevalence only
8618.00	ZLA2500	Seen by diabetic liaison nurse	V	Diagnostic	Prevalence only

9013.00	66AJ.11	Unstable diabetes	V	PROCESS	Prevalence only
9145.00	9N4I.00	DNA - Did not attend diabetic clinic	V	PROCESS	Prevalence only
9835.00	2BBL.00	O/E - diabetic maculopathy present both eyes	V	PROCESS	Prevalence only
9881.00	M271200	Mixed diabetic ulcer - foot	V	Diagnostic	Index
9958.00	42W00	Hb. A1C - diabetic control	V	PROCESS	Prevalence only
9974.00	9N1v.00	Seen in diabetic eye clinic	V	PROCESS	Prevalence only
10099.00	F420300	Advanced diabetic maculopathy	V	Diagnostic	Index
10642.00	ZC2C800	Dietary advice for diabetes mellitus	V	Diagnostic	Prevalence only
10755.00	F420600	Non proliferative diabetic retinopathy	V	Diagnostic	Index
10824.00	9N1i.00	Seen in diabetic foot clinic	V	PROCESS	Prevalence only
11094.00	9NND.00	Under care of diabetic foot screener	V	PROCESS	Prevalence only
11129.00	2BBQ.00	O/E - left eye background diabetic retinopathy	V	PROCESS	Prevalence only
11433.00	2BBP.00	O/E - right eye background diabetic retinopathy	V	PROCESS	Prevalence only
11599.00	7276.00	Pan retinal photocoagulation for diabetes	V	PROCESS	Index
11663.00	M271100	Neuropathic diabetic ulcer - foot	V	Diagnostic	Index
11677.00	8H7r.00	Refer to diabetic foot screener	V	PROCESS	Prevalence only
11930.00	9NN9.00	Under care of diabetes specialist nurse	V	PROCESS	Prevalence only
11977.00	ZL62500	Referral to diabetes nurse	V	Diagnostic	Prevalence only
12213.00	8BL2.00	Patient on maximal tolerated therapy for diabetes	V	PROCESS	Prevalence only
12225.00	8H7C.00	Refer, diabetic liaison nurse	V	PROCESS	Prevalence only
12507.00	9N2i.00	Seen by diabetic liaison nurse	V	PROCESS	Prevalence only
12682.00	679R.00	Patient offered diabetes structured education programme	V	PROCESS	Prevalence only
12703.00	3881.00	Education score - diabetes	V	PROCESS	Prevalence only
13057.00	679L.00	Health education - diabetes	V	PROCESS	Prevalence only
13069.00	66A8.00	Has seen dietician - diabetes	V	PROCESS	Prevalence only
13097.00	2BBT.00	O/E - right eye proliferative diabetic retinopathy	V	PROCESS	Prevalence only
13099.00	2BBR.00	O/E - right eye preproliferative diabetic retinopathy	V	PROCESS	Prevalence only
13101.00	2BBV.00	O/E - left eye proliferative diabetic retinopathy	V	PROCESS	Prevalence only
13102.00	2BBW.00	O/E - right eye diabetic maculopathy	٧	PROCESS	Prevalence only

13103.00	2BBS.00	O/E - left eye preproliferative diabetic retinopathy	V	PROCESS	Prevalence only
13108.00	2BBX.00	O/E - left eye diabetic maculopathy	V	PROCESS	Prevalence only
13197.00	90L1.00	Attends diabetes monitoring	V	PROCESS	Prevalence only
13678.00	ZL62600	Referral to diabetic liaison nurse	V	Diagnostic	Prevalence only
16881.00	ZV65312	[V]Dietary counselling in diabetes mellitus	V	Diagnostic	Prevalence only
17067.00	F171100	Autonomic neuropathy due to diabetes	V	Diagnostic	Index
17095.00	2G5A.00	O/E - Right diabetic foot at risk	v	PROCESS	Prevalence only
18056.00	2G5C.00	Foot abnormality - diabetes related	v	PROCESS	Prevalence only
19381.00	8HTk.00	Referral to diabetic eye clinic	v	PROCESS	Prevalence only
20696.00	66AA.11	Injection sites - diabetic	v	PROCESS	Prevalence only
22967.00	2BBF.00	Retinal abnormality - diabetes related	v	PROCESS	Prevalence only
23479.00	C350011	Bronzed diabetes	v	Diagnostic	Index
24327.00	M271000	Ischaemic ulcer diabetic foot	v	Diagnostic	Index
24571.00	F372200	Asymptomatic diabetic neuropathy	v	Diagnostic	Index
25041.00	ZC2CA00	Dietary advice for type II diabetes	v	Diagnostic	Prevalence only
26605.00	90LB.00	Attended diabetes structured education programme	v	PROCESS	Prevalence only
26664.00	2G5B.00	O/E - Left diabetic foot at risk	V	PROCESS	Prevalence only
26666.00	2G5E.00	O/E - Right diabetic foot at low risk	V	PROCESS	Prevalence only
26667.00	2G51.00	O/E - Left diabetic foot at low risk	V	PROCESS	Prevalence only
27921.00	2G51000	Foot abnormality - diabetes related	V	PROCESS	Prevalence only
28856.00	8CP2.00	Transition of diabetes care options discussed	v	PROCESS	Prevalence only
29041.00	66AN.00	Date diabetic treatment start	v	PROCESS	Prevalence only
30477.00	F420700	High risk proliferative diabetic retinopathy	v	Diagnostic	Index
30648.00	9N4p.00	Did not attend diabetic retinopathy clinic	v	PROCESS	Prevalence only
31053.00	R054300	[D]Widespread diabetic foot gangrene	v	Diagnostic	Index
31156.00	2G5J.00	O/E - Left diabetic foot at moderate risk	v	PROCESS	Prevalence only
31157.00	2G5F.00	O/E - Right diabetic foot at moderate risk	V	PROCESS	Prevalence only
31171.00	2G5G.00	O/E - Right diabetic foot at high risk	V	PROCESS	Prevalence only
31172.00	2G5K.00	O/E - Left diabetic foot at high risk	V	PROCESS	Prevalence only

31790.00	F372.00	Polyneuropathy in diabetes	V	Diagnostic	Index
32359.00	ZRbH.00	Perceived control of insulin-dependent diabetes	V	Diagnostic	Index
32619.00	66Af.00	Patient diabetes education review	V	PROCESS	Prevalence only
32739.00	9N0n.00	Seen in community diabetes specialist clinic	V	PROCESS	Prevalence only
35116.00	2G5L.00	O/E - Left diabetic foot - ulcerated	V	PROCESS	Prevalence only
35316.00	2G5H.00	O/E - Right diabetic foot - ulcerated	V	PROCESS	Prevalence only
35321.00	8H3O.00	Non-urgent diabetic admission	V	PROCESS	Index
35785.00	F372100	Chronic painful diabetic neuropathy	V	Diagnostic	Index
38103.00	9N0m.00	Seen in diabetic nurse consultant clinic	V	PROCESS	Prevalence only
38129.00	9N0o.00	Seen in community diabetic specialist nurse clinic	V	PROCESS	Prevalence only
39420.00	F381300	Myasthenic syndrome due to diabetic amyotrophy	V	Diagnostic	Index
41686.00	Cyu2000	[X]Other specified diabetes mellitus	V	Diagnostic	Index
45250.00	ZL22500	Under care of diabetic liaison nurse	V	Diagnostic	Index
47011.00	8Hj0.00	Referral to diabetes structured education programme	V	PROCESS	Prevalence only
47058.00	8Hg4.00	Discharged from care of diabetes specialist nurse	\checkmark	PROCESS	Prevalence only
47328.00	2BBk.00	O/E - right eye stable treated prolif diabetic retinopathy	\checkmark	PROCESS	Prevalence only
47584.00	F420500	Advanced diabetic retinal disease	V	Diagnostic	Index
48078.00	F372000	Acute painful diabetic neuropathy	\checkmark	Diagnostic	Index
49640.00	2G5W.00	O/E - left chronic diabetic foot ulcer	\checkmark	PROCESS	Prevalence only
50609.00	L180600	Pre-existing diabetes mellitus, non-insulin-dependent	\checkmark	Diagnostic	Index
50937.00	8HTe.00	Referral to diabetes preconception counselling clinic	\checkmark	PROCESS	Prevalence only
50960.00	L180500	Pre-existing diabetes mellitus, insulin-dependent	\checkmark	Diagnostic	Index
52041.00	2BBI.00	O/E - left eye stable treated prolif diabetic retinopathy	\checkmark	PROCESS	Prevalence only
52212.00	Cyu2.00	[X]Diabetes mellitus	\checkmark	Diagnostic	Index
52237.00	9360.00	Patient held diabetic record issued	\checkmark	PROCESS	Prevalence only
52630.00	2BBo.00	O/E - sight threatening diabetic retinopathy	\checkmark	PROCESS	Prevalence only
53634.00	R054200	[D]Gangrene of toe in diabetic	\checkmark	Diagnostic	Index
55431.00	L180X00	Pre-existing diabetes mellitus, unspecified	V	Diagnostic	Index
57389.00	93C4.00	Patient consent given for addition to diabetic register	V	PROCESS	Prevalence only

57723.00	8HHy.00	Referral to diabetic register	V	PROCESS	Prevalence only
58639.00	8157.00	Patient held diabetic record declined	V	PROCESS	Prevalence only
61210.00	TJ23z00	Adverse reaction to insulins and antidiabetic agents NOS	V	Diagnostic	Index
61461.00	9M00.00	Informed consent for diabetes national audit	V	PROCESS	Prevalence only
62384.00	2G5V.00	O/E - right chronic diabetic foot ulcer	V	PROCESS	Prevalence only
65463.00	F420800	High risk non proliferative diabetic retinopathy	V	Diagnostic	Index
65684.00	U602311	[X] Adverse reaction to insulins and antidiabetic agents	V	Diagnostic	Index
67664.00	ZRBa.00	Education score - diabetes	V	Diagnostic	Prevalence only
68714.00	SL23.00	Insulins and antidiabetic poisoning	V	Diagnostic	Index
68818.00	ZRB5.11	DTSQ - Diabetes treatment satisfaction questionnaire	V	Diagnostic	Prevalence only
68928.00	TJ23.00	Adverse reaction to insulins and antidiabetic agents	V	Diagnostic	Index
69043.00	ZC2C900	Dietary advice for type I diabetes	V	Diagnostic	Prevalence only
69163.00	8HTi.00	Referral to multidisciplinary diabetic clinic	V	PROCESS	Prevalence only
72333.00	8HME.00	Listed for Diabetology admissn	V	PROCESS	Prevalence only
82474.00	8HI4.00	Referral to community diabetes specialist nurse	V	PROCESS	Prevalence only
93390.00	90LH.00	Attended DAFNE diabetes structured education programme	V	PROCESS	Prevalence only
93491.00	90LJ.00	DAFNE diabetes structured education programme completed	V	PROCESS	Prevalence only
93529.00	90LK.00	DESMOND diabetes structured education programme completed	V	PROCESS	Prevalence only
93631.00	90LL.00	XPERT diabetes structured education programme completed	V	PROCESS	Prevalence only
93657.00	8Hj4.00	Referral to DESMOND diabetes structured education programme	V	PROCESS	Prevalence only
93704.00	8Hj3.00	Referral to DAFNE diabetes structured education programme	V	PROCESS	Prevalence only
93870.00	8Hj5.00	Referral to XPERT diabetes structured education programme	V	PROCESS	Prevalence only
94011.00	90LG.00	Attended XPERT diabetes structured education programme	V	PROCESS	Prevalence only
94330.00	8H4e.00	Referral to diabetes special interest general practitioner	V	PROCESS	Prevalence only
94955.00	9NiE.00	Did not attend XPERT diabetes structured education programme	V	PROCESS	Prevalence only
94956.00	8184.00	Did not complete XPERT diabetes structured education program	V	PROCESS	Prevalence only
95093.00	8183.00	Did not complete DESMOND diabetes structured educat program	\checkmark	PROCESS	Prevalence only
95094.00	8181.00	Did not complete diabetes structured education programme	\checkmark	PROCESS	Prevalence only
95159.00	9NiD.00	Did not attend DESMOND diabetes structured education program	V	PROCESS	Prevalence only

95553.00	9NiA.00	Did not attend diabetes structured education programme	V	PROCESS	Prevalence only
95813.00	9N1o.00	Seen in multidisciplinary diabetic clinic	\checkmark	PROCESS	Prevalence only
97281.00	9NI4.00	Seen by general practitioner special interest in diabetes	\checkmark	PROCESS	Prevalence only
97809.00	8182.00	Did not complete DAFNE diabetes structured education program	\checkmark	PROCESS	Prevalence only
97824.00	ZRB6.11	DWBQ - Diabetes wellbeing questionnaire	\checkmark	Diagnostic	Prevalence only
99277.00	9NiC.00	Did not attend DAFNE diabetes structured education programme	V	PROCESS	Prevalence only
99628.00	Kyu0300	[X]Glomerular disorders in diabetes mellitus	V	Diagnostic	Index
100033.00	U60231E	[X] Adverse reaction to insulins and antidiabetic agents NOS	V	Diagnostic	Index
100292.00	Cyu2300	[X]Unspecified diabetes mellitus with renal complications	V	Diagnostic	Index
100422.00	8HgC.00	Discharged from diabetes shared care programme	V	PROCESS	Prevalence only
100436.00	679L000	Education in self management of diabetes	V	PROCESS	Prevalence only
101190.00	66AQ100	Declined consent for diabetes year of care programme	V	PROCESS	Prevalence only
101801.00	66At100	Type II diabetic dietary review	V	PROCESS	Prevalence only
101881.00	2BBr.00	Impaired vision due to diabetic retinopathy	V	PROCESS	Prevalence only
102435.00	8CE0000	Gestational diabetes information leaflet given	V	PROCESS	Prevalence only
102611.00	66At111	Type 2 diabetic dietary review	V	PROCESS	Prevalence only
102704.00	66At000	Type I diabetic dietary review	v	PROCESS	Prevalence only
102767.00	67IJ100	Pre-conception advice for diabetes mellitus	V	PROCESS	Prevalence only
102768.00	9NiZ.00	Did not attend diabetes foot screening	v	PROCESS	Prevalence only
104287.00	8Hlc.00	Referral to community diabetes service	v	PROCESS	Prevalence only
104374.00	67D8.00	Provision of diabetes clinical summary	V	PROCESS	Prevalence only
104453.00	66At011	Type 1 diabetic dietary review	V	PROCESS	Prevalence only
104588.00	66Ay.00	Gestational diabetes mellitus annual review	V	PROCESS	Prevalence only
105207.00	8HTE100	Referral to community diabetes clinic	V	PROCESS	Prevalence only
105302.00	K08yA00	Proteinuric diabetic nephropathy	V	Diagnostic	Index
105740.00	2G5d.00	O/E - Left diabetic foot at increased risk	V	PROCESS	Prevalence only
105741.00	2G5e.00	O/E - Right diabetic foot at increased risk	V	PROCESS	Prevalence only
105937.00	8IEQ.00	Referral to community diabetes specialist nurse declined	V	PROCESS	Prevalence only
106218.00	9m0A.00	Declined diabetic retinopathy screening	V	PROCESS	Prevalence only
106328.00	9m07.00	Excluded diabetc retinop screen as under care ophthalmolgist	٧	PROCESS	Prevalence only
-----------	---------	--	---	---------	-----------------
106329.00	9m08.00	Excluded from diabetic retinopathy screening as blind	V	PROCESS	Prevalence only
106332.00	9m00.00	Eligible for diabetic retinopathy screening	V	PROCESS	Prevalence only
106350.00	9m05.00	Excluded from diabetic retinopathy screening as moved away	V	PROCESS	Prevalence only
106445.00	9m0E.00	Excluded from diabetic retinopathy screen physical disorder	V	PROCESS	Prevalence only
106778.00	9m0C.00	Excluded frm diabetic retinopathy screen as terminal illness	V	PROCESS	Prevalence only
107597.00	9m0D.00	Excluded from diabetic retinopthy screen as learn disability	V	PROCESS	Prevalence only

			Validation		Code type	
CPRD Medcode	Read code	Read term	Previous	Qof listed	Read code type	Study code type
			studies			
49028	14S2.00	H/O: kidney recipient	V		Process	Prevalence
12720.00	1Z100	Chronic renal impairment	V		Process	Prevalence
29013.00	1Z10.00	Chronic kidney disease stage 1	V		Process	Prevalence
12586.00	1Z11.00	Chronic kidney disease stage 2	\checkmark		Process	Prevalence
12566.00	1Z12.00	Chronic kidney disease stage 3	\checkmark	V	Process	Prevalence
12479.00	1Z13.00	Chronic kidney disease stage 4	\checkmark	V	Process	Prevalence
12585.00	1Z14.00	Chronic kidney disease stage 5	V	V	Process	Prevalence
94965.00	1Z15.00	Chronic kidney disease stage 3A	V	V	Process	Prevalence
95179.00	1Z16.00	Chronic kidney disease stage 3B	V	V	Process	Prevalence
94789.00	1Z17.00	Chronic kidney disease stage 1 with proteinuria	V		Process	Prevalence
97980.00	1Z17.11	CKD stage 1 with proteinuria	V		Process	Prevalence
95572.00	1Z18.00	Chronic kidney disease stage 1 without proteinuria	V		Process	Prevalence
95146.00	1Z19.00	Chronic kidney disease stage 2 with proteinuria	\checkmark		Process	Prevalence
97979.00	1Z19.11	CKD stage 2 with proteinuria	V		Process	Prevalence
95121.00	1Z1A.00	Chronic kidney disease stage 2 without proteinuria	\checkmark		Process	Prevalence
97978.00	1Z1A.11	CKD stage 2 without proteinuria	V		Process	Prevalence
94793.00	1Z1B.00	Chronic kidney disease stage 3 with proteinuria	V	V	Process	Prevalence
95145.00	1Z1B.11	CKD stage 3 with proteinuria	V	V	Process	Prevalence
95123.00	1Z1C.00	Chronic kidney disease stage 3 without proteinuria	V	V	Process	Prevalence
95188.00	1Z1C.11	CKD stage 3 without proteinuria	V	V	Process	Prevalence
95408.00	1Z1D.00	Chronic kidney disease stage 3A with proteinuria	V	V	Process	Prevalence
95571.00	1Z1D.11	CKD stage 3A with proteinuria	V	V	Process	Prevalence
95175.00	1Z1E.00	Chronic kidney disease stage 3A without proteinuria	V	V	Process	Prevalence
95176.00	1Z1E.11	CKD stage 3A without proteinuria	V	V	Process	Prevalence
95178.00	1Z1F.00	Chronic kidney disease stage 3B with proteinuria	V	V	Process	Prevalence

95180.00	1Z1F.11	CKD stage 3B with proteinuria	V	٧	Process	Prevalence
95177.00	1Z1G.00	Chronic kidney disease stage 3B without proteinuria	V	V	Process	Prevalence
100633.00	1Z1G.11	CKD stage 3B without proteinuria	V	V	Process	Prevalence
95122.00	1Z1H.00	Chronic kidney disease stage 4 with proteinuria	V	V	Process	Prevalence
99312.00	1Z1H.11	CKD stage 4 with proteinuria	V	V	Process	Prevalence
95406.00	1Z1J.00	Chronic kidney disease stage 4 without proteinuria	V	V	Process	Prevalence
97587.00	1Z1J.11	CKD stage 4 without proteinuria	V	V	Process	Prevalence
95508.00	1Z1K.00	Chronic kidney disease stage 5 with proteinuria	V	V	Process	Prevalence
99160.00	1Z1K.11	CKD stage 5 with proteinuria	V	V	Process	Prevalence
95405.00	1Z1L.00	Chronic kidney disease stage 5 without proteinuria	V	V	Process	Prevalence
97683.00	1Z1L.11	CKD stage 5 without proteinuria	V	V	Process	Prevalence
19473	66i00	Chronic kidney disease monitoring	V		Process	Prevalence
30735	6AA00	Chronic kidney disease annual review	V		Process	Prevalence
2997.00	7B00.00	Transplantation of kidney	V		Process	Prevalence
11745.00	7B00100	Transplantation of kidney from live donor	\checkmark		Process	Prevalence
24361.00	7B00200	Transplantation of kidney from cadaver	\checkmark		Process	Prevalence
105328.00	7B00212	Cadaveric renal transplant	V		Process	Prevalence
5504.00	7B00z00	Transplantation of kidney NOS	V		Process	Prevalence
68574.00	7B01011	Nephrectomy and excision of perirenal tissue	V		Process	Prevalence
1600.00	7B01100	Nephroureterectomy-unspecified	V		Process	Prevalence
34834.00	7B01300	Heminephrectomy for horseshoe kidney	V		Process	Prevalence
35225.00	7B01700	Nephroureterectomy with open lower ureterectomy	V		Process	Prevalence
49535.00	7B01800	Nephroureterectomy with pluck lower ureterectomy	V		Process	Prevalence
34999.00	7B02000	Heminephrectomy for duplex kidney	V		Process	Prevalence
31346.00	7B04200	Nephropexy	V		Process	Prevalence
71271	9Ot00	Chronic kidney disease monitoring administration	V		Process	Prevalence
30739	9Ot0.00	Chronic kidney disease monitoring first letter	\checkmark		Process	Prevalence
72962	90t1.00	Chronic kidney disease monitoring second letter	V		Process	Prevalence
72964	9Ot2.00	Chronic kidney disease monitoring third letter	V		Process	Prevalence

88494	9Ot3.00	Chronic kidney disease monitoring verbal invite	V	Process	Prevalence
69679	90t4.00	Chronic kidney disease monitoring telephone invite	V	Process	Prevalence
2475.00	C104.11	Diabetic nephropathy	V	Diagnostic	Index
46963.00	C108000	Insulin-dependent diabetes mellitus with renal complications	V	Diagnostic	Index
47582.00	C10E000	Type 1 diabetes mellitus with renal complications	V	Diagnostic	Index
12640.00	C10FC00	Type 2 diabetes mellitus with nephropathy	V	Diagnostic	Index
11848.00	C314.11	Renal diabetes	V	Diagnostic	Index
52969.00	C341.00	Gouty nephropathy	V	Diagnostic	Index
25394.00	D215000	Anaemia secondary to chronic renal failure	V	Diagnostic	Index
4668.00	G2200	Hypertensive renal disease	V	Diagnostic	Index
17434.00	G2211	Nephrosclerosis	V	Diagnostic	Index
39649.00	G220.00	Malignant hypertensive renal disease	V	Diagnostic	Index
43935.00	G221.00	Benign hypertensive renal disease	V	Diagnostic	Index
32423.00	G222.00	Hypertensive renal disease with renal failure	V	Diagnostic	Index
15106.00	G22z.00	Hypertensive renal disease NOS	V	Diagnostic	Index
29310.00	G22z.11	Renal hypertension	V	Diagnostic	Index
63466.00	G2300	Hypertensive heart and renal disease	V	Diagnostic	Index
21837.00	G232.00	Hypertensive heart&renal dis wth (congestive) heart failure	V	Diagnostic	Index
28684.00	G233.00	Hypertensive heart and renal disease with renal failure	V	Diagnostic	Index
16284.00	G701.00	Renal artery atherosclerosis	V	Diagnostic	Index
20074.00	K0012	Bright's disease	V	Diagnostic	Index
7804.00	K0200	Chronic glomerulonephritis	V	Diagnostic	Index
10647.00	K0211	Nephritis - chronic	V	Diagnostic	Index
11875.00	K0212	Nephropathy - chronic	V	Diagnostic	Index
34998.00	K020.00	Chronic proliferative glomerulonephritis	V	Diagnostic	Index
10809.00	K021.00	Chronic membranous glomerulonephritis	V	Diagnostic	Index
61494.00	K022.00	Chronic membranoproliferative glomerulonephritis	V	Diagnostic	Index
4669.00	K02y200	Chronic focal glomerulonephritis	V	Diagnostic	Index
15097.00	K02z.00	Chronic glomerulonephritis NOS	٧	Diagnostic	Index

33580.00	K0300	Nephritis and nephropathy unspecified	V		Diagnostic	Index
4850.00	K0311	Nephritis and nephropathy unspecified	\checkmark		Diagnostic	Index
11873.00	K0312	Nephropathy, unspecified	V		Diagnostic	Index
24384.00	K032400	Familial glomerulonephritis in Alport's syndrome	٧		Diagnostic	Index
21423.00	K032600	Berger's IgA or IgG nephropathy	٧		Diagnostic	Index
512.00	К0500	Chronic renal failure	٧		Diagnostic	Index
10081.00	K0511	Chronic uraemia	٧		Diagnostic	Index
53852.00	K0512	End stage renal failure	٧		Diagnostic	Index
104981.00	K0513	Chronic kidney disease	٧		Diagnostic	Index
6712.00	K050.00	End stage renal failure	٧		Diagnostic	Index
105392.00	K051.00	Chronic kidney disease stage 1	٧		Diagnostic	Index
105383.00	K052.00	Chronic kidney disease stage 2	٧		Diagnostic	Index
104619.00	K053.00	Chronic kidney disease stage 3	٧	V	Diagnostic	Index
104963.00	K054.00	Chronic kidney disease stage 4	V		Diagnostic	Index
105151.00	К055.00	Chronic kidney disease stage 5	V V		Diagnostic	Index
26220.00	К0700	Renal sclerosis unspecified	V		Diagnostic	Index
2304.00	K070.00	Atrophy of kidney	V		Diagnostic	Index
22876.00	K071.00	Renal fibrosis	V		Diagnostic	Index
7190.00	K072.00	Glomerulosclerosis	V		Diagnostic	Index
4480.00	K07z.00	Renal sclerosis NOS	V		Diagnostic	Index
29638.00	K080.00	Renal osteodystrophy	V		Diagnostic	Index
34637.00	K080z00	Renal osteodystrophy NOS	v		Diagnostic	Index
105302.00	K08yA00	Proteinuric diabetic nephropathy	v		Diagnostic	Index
7154.00	K0900	Small kidney of unknown cause	v		Diagnostic	Index
43919.00	K090.00	Unilateral small kidney	v		Diagnostic	Index
38774.00	K091.00	Bilateral small kidneys	v		Diagnostic	Index
38768.00	K09z.00	Small kidneys unspecified	v		Diagnostic	Index
85659.00	K0A2800	IgA nephropathy	v		Diagnostic	Index
21297.00	K0A3.00	Chronic nephritic syndrome	٧		Diagnostic	Index

36205.00	K0A5.00	Hereditary nephropathy not elsewhere classified	V	Diagnostic	Index
45523.00	K0B00	Renal tubulo-interstitial disorders in diseases EC	V	Diagnostic	Index
48057.00	K0B5.00	Renal tubulo-interstitial disordrs in transplant rejectn	V	Diagnostic	Index
8607.00	K0C0.00	Analgesic nephropathy	V	Diagnostic	Index
41159.00	K0C1.00	Nephropathy induced by other drugs meds and biologl substncs	\checkmark	Diagnostic	Index
8330.00	K0D00	End-stage renal disease	\checkmark	Diagnostic	Index
4654.00	K100.00	Chronic pyelonephritis	\checkmark	Diagnostic	Index
21158.00	K100200	Chronic pyelitis	\checkmark	Diagnostic	Index
35360.00	K100400	Nonobstructive reflux-associated chronic pyelonephritis	\checkmark	Diagnostic	Index
48111.00	K100z00	Chronic pyelonephritis NOS	\checkmark	Diagnostic	Index
27417.00	K130.00	Nephroptosis	\checkmark	Diagnostic	Index
5112.00	K130.11	Floating kidney	\checkmark	Diagnostic	Index
18329.00	K131.00	Hypertrophy of kidney	\checkmark	Diagnostic	Index
104079.00	K132.11	Acquired renal cystic disease	V	Diagnostic	Index
102947.00	K13yB00	Ischaemic nephropathy	\checkmark	Diagnostic	Index
11436.00	K13z000	Non-functioning kidney	\checkmark	Diagnostic	Index
30097.00	PD000	Renal agenesis and dysgenesis	V	Diagnostic	Index
27474.00	PD00.00	Renal agenesis, unspecified	V	Diagnostic	Index
31961.00	PD00100	Unilateral renal agenesis	V	Diagnostic	Index
27471.00	PD01.00	Congenital renal atrophy	\checkmark	Diagnostic	Index
3314.00	PD02.00	Congenital absence of kidney	\checkmark	Diagnostic	Index
23958.00	PD02100	Unilateral congenital absence of kidney	\checkmark	Diagnostic	Index
65407.00	PD02z00	Congenital absence of kidney NOS	\checkmark	Diagnostic	Index
4764.00	PD03.00	Hypoplasia of kidney	\checkmark	Diagnostic	Index
30650.00	PD03100	Unilateral renal hypoplasia	\checkmark	Diagnostic	Index
10063.00	PD04.00	Dysplasia of kidney	\checkmark	Diagnostic	Index
9500.00	PD04000	Bilateral renal dysplasia	\checkmark	Diagnostic	Index
24120.00	PD04100	Unilateral renal dysplasia	\checkmark	Diagnostic	Index
29659.00	PD0z.00	Renal agenesis or dysgenesis NOS	\checkmark	Diagnostic	Index
15917.00	PD100	Congenital cystic kidney disease	٧	Diagnostic	Index

20629.00	PD111	Congenital cystic renal disease	V	Diagnostic	Index
4504.00	PD113	Polycystic kidney	V	Diagnostic	Index
27436.00	PD114	Sponge kidney	V	Diagnostic	Index
4503.00	PD11.00	Polycystic kidney disease	V	Diagnostic	Index
21381.00	PD11000	Polycystic kidneys, infantile type	V	Diagnostic	Index
4505.00	PD11100	Polycystic kidneys, adult type	V	Diagnostic	Index
56852.00	PD11z00	Polycystic kidney disease NOS	V	Diagnostic	Index
9240.00	PD11z11	Cystic kidney disease NEC	V	Diagnostic	Index
42632.00	PD12.00	Medullary cystic disease	V	Diagnostic	Index
47135.00	PD12100	Medullary cystic disease, adult type	V	Diagnostic	Index
7718.00	PD12111	Medullary sponge kidney	V	Diagnostic	Index
11946.00	PD13.11	Multicystic kidney	V	Diagnostic	Index
50331.00	PD1z.00	Congenital cystic kidney disease NOS	V	Diagnostic	Index
5379.00	PD23.00	Congenital hydronephrosis	V	Diagnostic	Index
22571.00	PD23.11	Congenital dilated renal pelvis	V	Diagnostic	Index
4430.00	PD300	Other specified renal anomaly	V	Diagnostic	Index
52700.00	PD30.00	Accessory kidney	V	Diagnostic	Index
28362.00	PD34.00	Double kidney with double pelvis	V	Diagnostic	Index
4431.00	PD34.11	Duplex kidneys	V	Diagnostic	Index
15142.00	PD35.00	Ectopic kidney	V	Diagnostic	Index
2810.00	PD38.00	Horseshoe kidney	V	Diagnostic	Index
16523.00	PD39.00	Hyperplasia of kidney	V	Diagnostic	Index
53965.00	PD3B.00	Malrotation of kidney	V	Diagnostic	Index
29780.00	PD3D.00	Enlarged kidney	V	Diagnostic	Index
15420.00	PD3z.00	Other specified renal anomaly NOS	V	Diagnostic	Index
17356.00	PDz0.00	Unspecified anomaly of kidney	V	Diagnostic	Index
47342.00	Q48y000	Congenital renal failure	V	Diagnostic	Index
34320.00	R135300	[D]Renal scarring	V	Diagnostic	Index
11553.00	SP08300	Kidney transplant failure and rejection	V	Diagnostic	Index

54990.00	TB00100	Kidney transplant with complication, without blame	٧	Diagnostic Index
18774.00	TB00111	Renal transplant with complication, without blame	٧	Diagnostic Index
5911.00	ZV42000	[V]Kidney transplanted	٧	Diagnostic Index
26880.00	ZV59400	[V]Kidney donor	٧	Diagnostic Index
36356.00	ZV6G500	[V]Acquired absence of kidney	V	Diagnostic Index

E13 Comorbidity and covariate CPRD physiological data conversion and cleaning

Physiological measure	Units reported	Standard unit	Formula	Biological plausible range
HbA1c	mmol/mol	%	New number/10.929)+2.15	2.6 to 20%
FEV1	L	% predicted (pp)	Predicted L (PL) Men : FEV1{litres} = 4.30*height{metres} – 0.029*age{years} – 2.49	10-130%
			Women : FEV1{litres} = 3.95*height{metres} – 0.025*age{years} -2.60	
			<u>% predicted</u>	
			100*(L/PL)	
eGFR	Creatinine	eGFR ml/min/m ²	32788 x serum creatinine(umol/L) ^{-1.154} x age ^{-0.203} x [0.742 if Female]	Creatinine 41-2226
	umol/L OR		OR	eGFR upto 130
	mg/dl		186 x serum creatinine(mg/dl) ^{-1.154} x age ^{-0.203} x [0.742 if Female]	
BMI	kg/m2	kg/m2		10-80
Cholesterol	mmol/L	mmol/L		2-20
Haemoglobin	g/dL	g/dL		3-23
Systolic blood pressure	mm/Hg	mm/Hg		40-300
Diastolic blood pressure	mm/Hg	mm/Hg		≥20

HbA1c; Glycated haemoglobin, mmol/mol; millimoles per mole, FEV₁; forced expiration volume in 1 second, pp; percent predicted, L; litres, PL; predicted litres, eGFR; estimated glomerular filtration rate, umol/L; micromole per liter, mg/dl; milligram per decilitre,

E14 Exploration of continuous variables in the CPRD mortality sample

Baseline sample

Age at baseline

Body mass index at baseline

Mean 4.7±1.2, Median 4.5(IQR 3.8-5.4)

Haemoglobin at baseline

Mean 13.1±1.9, Median 13.2(IQR 11.9-14.3)

Diastolic blood pressure at baseline

Systolic blood pressure at baseline

Mean 76.7±12.0, Median 78 (IQR 70-83)

eGFR at baseline

Mean 7.4±1.6, Median 7.1(IQR 6.4-8.1)

Mean 55.8 21.7 Median 53.3(IQR 39-69.6)

E15 Exploration of continuous variables in the CPRD hospital admission sample

Pre match sample

Age at baseline

Body mass index at baseline

Cholesterol at baseline

Haemoglobin at baseline

Cholesterol at baseline: Sample linked to hospital admissions

Mean 4.7±1.2, Median 4.6(IQR 3.8-5.4)

Mean 13.1±1.9, Median 13.2(IQR 11.9-14.3)

Mean 137.4±21.4 Median 138(IQR 123-150)

Diastolic blood pressure at baseline

eGFR at baseline

Mean 60.8±20.3 Median 60.0(IQR 47.0-73.4)

Mean 7.4±1.6, Median 7.1(IQR 6.4-8.1)

Mean 56.2±22.6 Median 53.5(IQR 38.8-70.7)

E16 Testing the linearity assumption; continuous variable and all-cause mortality

BMI	
-----	--

Unadjusted	Log likelihood	LR test	Multivariable	Log likelihood	LR test	
BMI	- 41897.411		BMI	- 30016.982		
BMI+BMI ²	- 41694.718	< 0.001	[†] BMI+BMI ²	-29895.289	< 0.001	
BMI+BMI ² +BMI ³	- 41686.874	< 0.001	*BMI+BMI ² +BMI ³	-29890.704	0.003	
			*Best statistical fit: IChoice of fit taking account of			

difference in Log likelihood and degrees of freedom

Cholesterol

Plots of predicted cholesterol effect where other effects are fixed at zero

Unadjusted	Log likelihood	LR test	Multivariable	Log likelihood	LR test
СН	-42952.338		łCH	-30016.982	
$CH + CH^{2}$	-42845.726	<0.001	CH + CH ²	-29966.281	< 0.001
$CH + CH^2 + CH^3$	-42818.515	< 0.001	$*CH + CH^{2} + CH^{3}$	-29965.575	0.2347
		I	*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom		

Haemoglobin

Unadjusted	Log likelihood	LR test
НВ	-40745.527	
HB+HB ²	-40668.677	<0.001
HB+HB ² +HB ³	-40532.707	<0.001

Multivariable	Log	LR test
	likelihood	
НВ	-30016.982	
HB+HB ²	-29902.455	<0.001
*HB+HB ² +HB ³	-29831.089	<0.001

*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom

Systolic blood pressure

Unadjusted	Log likelihood	LR test	
SBP	-42172.59		
SBP+SBP ²	-41736.52	< 0.0001	
SBP+SBP ² +SBP ³	-41685.97	<0.0001	

Multivariable	Log likelihood	LR test
SBP	-30016.982	
†SBP+SBP ²	-29719.731	< 0.0001
*SBP+SBP ² +SBP ³	-29692.432	< 0.0001

*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom

Diastolic blood pressure

Unadjusted	Log likelihood	LR test	Multivariable	Log likelihood	LR test
DBP	-42373.877		DBP	-30016.982	
DBP+DBP ²	-42244.937	< 0.001	[†] DBP+DBP ²	-29919.327	< 0.001
DBP+DBP ² +DBP ³	-42237.05	< 0.001	*DBP+DBP ² +DBP ³	-29913.395	<0.001
			*Post statistical fit. 1Ch	aica of fit taking acco	wet of

*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom

E17 Testing the linearity assumption; continuous variable and first hospital admission

Age

Unadjusted	Log likelihood	LR test	
Age	-36228.07		
Age+Age ²	-36198.66	< 0.001	
Age+Age ² +Age ³	-36196.52	0.039	

Multivariable	Log likelihood	LR test
łAge	-17245.36	
*Age+Age ²	-17233.58	<0.001
Age+Age ² +Age ³	-17233.39	0.55

*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom

Cholesterol

Plots of predicted cholesterol effect where other effects are fixed at zero

Unadjusted	Log likelihood	LR test	Multivariable	Log likelihood	LR test
СН	-36310.41		łCH	-17245.36	
$CH + CH^{2}$	-36276.84	<0.001	*CH + CH ²	-17236.45	<0.001
$CH + CH^2 + CH^3$	-36271.24	<0.001	$CH + CH^2 + CH^3$	-17235.66	0.21
			*Best statistical fit; +Choice of fit taking account of		

difference in Log likelihood and degrees of freedom

Systolic blood pressure

Plots of predicted systolic BP effect where other effects are fixed at zero

Unadjusted	Log likelihood	LR test
SBP	-36246.67	
SBP+SBP ²	-36104.33	< 0.001
SBP+SBP ² +SBP ³	-36075.66	< 0.001

Multivariable	Log likelihood	LR test
SBP	-17246.30	
[†] SBP+SBP ²	-17169.25	< 0.001
*SBP+SBP ² +SBP ³	-17163.80	<0.01

*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom

eGFR

Plots of predicted eGFR effect where other effects are fixed at zero

Unadjusted	Log likelihood	LR test	Multivariable	Log likelihood	LR test
eGFR	-18197.63		eGFR	-17213.34	
eGFR+eGFR ²	-18014.42	<0.001	teGFR+eGFR ²	-17128.67	< 0.001
eGFR+eGFR ² +eGFR ³	- 17983.58	<0.001	*eGFR+eGFR ² +eGFR ³	-17109.42	< 0.001
		J	*Best statistical fit; +Choice of fit taking account of difference in Log likelihood and degrees of freedom		

E18 Quality of life outcome study 1: HF and OA publication on QoL

E19 Quality of life outcome study 2: 2C_HF prospective hospital investigation

Protocol

Title: Comorbidity and changing prognosis in heart failure patients: Comorbidity Cohort in Heart Failure (2C-HF) study <u>Investigators</u>: Rushton CA (PI), Satchithananda D, Jones P, Kadam UT <u>Wider Study Team</u>: Simon Davies (Professor of Nephrology), Anthony Fryer (Professor of Clinical Biochemistry), Pauline Walsh (Head of School of Nursing), George Hughes (patient representative).

Abstract

The overall plan is to investigate the short and longer-term impact of chronic disease comorbidity on developing health status of heart failure patients. The specific objectives are to:

- (i) investigate the influence of comorbid chronic diseases on general physical and heart failure specific health status in adults with heart failure, aged 40 years and over, using self-completed questionnaires at baseline, 1 and 3 months follow-up
- (ii) examine the contribution of comorbidity prognostic factors to an overall prognostic model for health status change over 2 months in heart failure patients.

The outcomes of the study will result in the determination of the effect of chronic disease comorbidity on the change and progression of health status in individuals with heart failure and on the contribution of such factors to heart failure prognostic models. This will provide clinicians with important information to enable them to target interventions aimed at improving health outcomes and provide patients with improved understanding of their heart failure trajectory so that they can participate in shared decision making.

Background

Heart failure is a serious, life limiting cardiovascular disease which is an increasing burden in older populations affecting up to 15% of people aged over 85 years(12), a figure set to rise over the next 25 years as the population ages(13). Among older people, HF is one of the most common causes of consultation in general practice(14) and accounts for 2% of all hospital inpatient bed days, with over 61,000 hospital admissions between 2011-2012 in the UK(15).

Heart failure carries a high mortality risk with 14-30% of patients dying in the first six months of diagnosis and 38% within a year(16,17). About half of all patients experience daily symptoms including breathlessness and fatigue(18) and up to half of patients remain symptomatic despite optimisation of treatments during hospital admission(19). Patients suffer problems with walking, activities of daily living, self-care, pain and depression and these symptoms are exacerbated with increasing age(20). Consequently the quality of life of patients with heart failure is poor(21), worsens over time as the disease progresses(21) and is associated with hospital admission(22) and mortality(23).

HF patients commonly experience other chronic diseases at the same time, partly due to ageassociation and partly due to cardiovascular complications. A range of comorbidities have been found in HF patients including chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), dementia, diabetes, hypertension, osteoarthritis and osteoporosis(24,25) and some older heart failure patients have been found to have in excess of five comorbidities(26,27). Psychological co-morbidity such as depression is also becoming recognized as important in heart failure outcomes(28,29). Comorbidity has been shown to influence the clinical course of HF and associated outcomes to vary. In general population studies the existence of comorbidities inherent in the average elderly heart failure patient has been associated with increased risk of hospitalization (COPD, CKD, diabetes and depression)(30), higher mortality risk (COPD, CKD, diabetes, depression and cancer)(31-35) increased symptom burden (the number of co-morbidities)(36) and reduced physical function and quality of life (depression, diabetes and respiratory disease)(37). In hospital settings comorbidity has been found to predict increased mortality (cerebrovascular accident (CVA), COPD, hepatic cirrhosis, cancer, dementia)(38) and readmissions (ischemic heart disease (IHD), diabetes, CKD, COPD)(39).

Prognosis is the prediction of the probable course and outcomes of disease and has the potential to provide clinicians with necessary information to enable them to tailor care and communication of risk to individual patients and to guide shared decision-making (40). 'Prognostication' is challenging in heart failure which has an uncertain disease trajectory and this is

further complicated by comorbidity. Heart failure patients can have a period of relative functional stability, before a gradual and chronic decline in health status, interrupted by acute episodic exacerbation of symptoms and frequent hospital admissions. Sudden death at any point is common(41). In heart failure prognostic information that identifies patients whose health is changing as their disease progresses, would enable clinicians to reassess and optimise patient interventions that could prevent hospitalisation and health deterioration as well as prolong life.

However current prognostic approaches in HF commonly rely on complex and invasive clinical data and biometrics and focus mainly on the imminent risk of mortality at a fixed point in time (usually during hospital admission)(42-44). This means that available prognostic tools have limited use in identifying how heart failure patients' health changes over their disease course from stability to instability from diagnosis until death. This has led to the reluctance of some health professionals to discuss prognosis with patients and patients' preferences in clinical care have been poorly represented in healthcare outcomes(45-47). Despite the recognition that comorbidity in heart failure is significant in determining outcomes for patients, some of the more widely used prognostic tools do not include comorbidity(48,49). Whilst current prognosis research has focused on outcomes such as hospital admissions and death, few studies have investigated patient-centred outcomes such as health related quality of life and there is recognition that good clinical assessments will address patient-centred outcomes in addition to disease risk(41,50)

There is growing evidence that the severity of comorbid chronic disease such as COPD and diabetes is important in determining outcomes in HF(51-53) and that change in the severity of chronic disease may pre-empt subsequent change in HF. The risk of mortality and readmission in HF for instance has been demonstrated to increase in patients recently discharged for another condition, including stroke, diabetes, AF or renal dysfunction⁽¹³⁾. This temporal relationship between comorbid chronic disease and HF has mainly focused on cardio-renal syndrome and the outcome of mortality(54-59). How comorbid chronic disease and its progression influences the health and subsequent change in health for heart failure patients has not yet been investigated. This is important as evidence demonstrates that health related quality of life (HRQoL) measures in heart failure are associated with the severity of the disease(60) and so change in these measures over time provides the potential to identify change in heart failure severity at different stages of heart failure disease from new onset to end stage disease. Each comorbid chronic disease will carry its own prognostic 'value' and one crucial question from patients' point of view is how these combine together to influence either their overall health or, separately, the course of their heart failure over time. Incorporating more sensitive comorbidity factors within prognostic approaches provides the

potential to observe changes in health status and transitions across the primary care and specialist care interfaces and for identifying more specific and useful patient outcomes.

This phase 3 study builds on two initial phases. Phase 1 was a systematic review with the objective to identify and synthesise the current evidence on comorbidity and heart failure prognosis. Phase 2 was to develop comorbidity prognosis factors in non-selected heart failure populations for hospital admissions and mortality using the Clinical Practice Research Datalink (CPRD). The primary objective of this phase is (i) to test the comorbidity prognostic factors in a new cohort of HF patients using changing self-reported health status over a 3-month follow-up period. Evidence has shown that severity of HF disease, usually demonstrated via an increased mortality risk, is associated with patients who have had a hospital admission. This risk further increases in those with repeat admissions and before death. Given the association of these outcomes with poor quality of life, a hypothesis is generated that the factors that predict hospital admissions and death will also predict change in quality of life measures. The primary hypothesis tested (objective 1) will be:

H₁ Chronic disease comorbidity is associated with change in self-reported heart failure specific and general health status

H₀ Chronic disease comorbidity is not associated with change in self-reported heart failure specific and general health status.

The secondary objectives are (ii) to refine comorbidity prognostic factors developed from the first two phases within a specialist-based setting and (iii) to investigate the contribution of comorbidity prognostic factors to heart failure prognostic models for health status change (objective 2) with the hypothesis:

H₁ Chronic disease comorbidity factors will improve the fit of a pre-specified HF prognostic model for self-reported health status.

 H_0 Chronic disease comorbidity factors will not improve the fit of a pre-specified HF prognostic model for self-reported health status.

Methods

Setting: This cohort study will be based in a local specialist HF clinic in the University Hospital North Staffordshire (UHNS) and will recruit patients from both the hospital setting (heart failure specialist clinic and non-surgical wards) and from heart failure specialist clinics in the community. The hospital

specialist clinic acts as a diagnostic and treatment hub for patients referred from within the hospital or externally from general practice. The heart failure service based at the University Hospital of North Staffordshire sits within a large catchment area that covers North Staffordshire, South Staffordshire, Shropshire, South Cheshire and other areas of England. The clinic routinely collects and records clinical data using hospital based electronic systems and works closely with heart failure community services.

Study Population: The 2C-HF cohort study will be based on the recruitment of adults aged 40 years and over with heart failure diagnosed using a combination of signs, symptoms and objective evidence of cardiac abnormality(13,61). Both incident and prevalent HF patients will be recruited over an 8month period and there will be no selection on the basis of ejection fraction. Patients at end stage of disease will be included in order to understand the health progression of patients from across the spectrum of disease although special consent procedures will be developed for this group. A recent Health Foundation funded 'Acute Ambulatory Heart Failure Clinic' project that has recruited Heart Failure patients (including end-stage patients) will form the basis for the development of consent procedures along with patient involvement as part of a steering group. Recruited patients will be categorised by New York Heart Association (NYHA) classification stages 1-1V⁽⁵⁰⁾ (see Appendix 1).

Identifying the cohort sample:

HF cohort patients will be identified through regular checks with the heart failure specialist teams (hospital and community) and their diagnostic status verified. The project principal investigator (CR) as a heart failure nurse specialist and an honorary member of the hospital clinical team and working with Duwarakan Satchithananda, the heart failure consultant lead, will develop standard systems for identification and data collection.

Cohort follow-up and measures of health status:

The baseline and follow-up questionnaire includes validated measures of health status as well as socio-demographic data, which have been successfully collected in previous local studies.

Overall participants will be invited to complete 3 questionnaires – one at baseline and one at 1 and 3 months follow-up (see flow-chart Appendix 2). The 1-month questionnaire will allow us to measure the immediate change in patients' health following specialist care. 1-month following heart failure

decompensation or hospital admission has been found to carry an increased risk of death or readmission for heart failure patients(62). The 1-month period following specialist input will also give patients a period of stabilisation(63) before measurement of health status change over the next 2 months.

To reduce the burden of completing questionnaires the short form of tools where available and previously tested will be used. Patients will be offered assistance with the baseline questionnaire if required. All questionnaires have been designed using large font and require tick box answers for ease of completion and the introductory section of each questionnaire informs patients that their answers will be treated in the strictest confidence. The questionnaires will be coded to allow the research team to make relevant linkages with anonymised data that they have collected about the demographic and clinical characteristics of the patients.

Baseline survey

The identified sampled cohorts will be given a baseline questionnaire (Q1), which will include specific and generic health measures. Heart failure specific and generic measures have been identified that have been previously tested in heart failure populations and that have been found to be responsive and sensitive to clinical change.

For the *primary outcome* of interest, we will use the overall score from The Kansas City Cardiomyopathy Questionnaire (KCCQ)(64-66) which is sensitive to clinical change over 6 weeks(67).

Other CVD-specific measure: The European Heart Failure Self-care Behaviour Scale (EHFScB) is an additional measure that includes different concepts to the measures of health(68) and will be important in understanding the impact of changing comorbidity burden on the patient.

Generic Health Measure: We will use the Physical Component Summary (PCS) of the Short-Form-12 questionnaire as a generic measure of physical health, which has been found to differentiate between stages of HF(69) and be superior to HF specific measures at detecting physical health change(70,71).

Generic Patient Measure: The Brief Illness Perception Questionnaire (IPQ) which has been

used successfully in HF studies(57,58) will provide insight into how patients with HF comorbidity make sense of their overall health burden and symptom experience.

In addition to the health measures the following data will be extracted from patient case notes at baseline (see appendix 3):

- Cardiovascular risk factors (e.g. family history)
- Comorbidity factors
- Heart failure aetiological factors (e.g. valve disease, ischemic heart disease)
- Indicators of HF status (e.g. blood tests, ECG and ECHO)
- Drug therapies in the previous 12 months and at discharge from the current episode of care

The collection of the data items listed above will not place any additional burden on patients as they are routinely collected as part of the normal delivery of clinical care.

Follow-up questionnaires

These will include the same brief health scales as in the baseline questionnaire but will be shorter as they will not include the socio-demographic information.

The baseline and follow-up health questionnaire will have the same format with the proviso that the baseline questionnaire will be administered in clinic and the one month follow-up will be given to the patient with a stamped addressed envelope for self-completion. At baseline consent will also be requested from survey participants to the 3 month follow-up questionnaire to be sent by post and to give permission for the subsequent review of their electronic clinical records.

To maximise response rates, a reminder follow up telephone call will be made to patients who have not returned the follow-up questionnaires. The call will be made by a research nurse and only to patients who had stated at baseline that they were willing to be contacted in this way. Prior to the research nurse making reminder calls, they will access electronic clinical records which are linked to the register of deaths to check that patients are not deceased. This system has been used successfully in other studies.

Anonymised database of survey sample

For the survey sample, with consent, linked general practice and hospital records will be requested for the two years prior to baseline survey and until the end of the cohort follow-up. This will allow for the identification of chronic disease comorbidity indicators that change before or at the same time as general and heart failure specific health status. The linked database of cohort participants will be anonymised and kept securely through governance procedures and using an authorised data custodian.

Analytic plan and numbers

Sampling

The sample size calculation is based on the primary objective to investigate the influence of comorbid chronic diseases on heart failure specific health status in adults with heart failure, using self-completed questionnaires at baseline, 1 and 3 months follow-up. There is limited evidence available that has investigated the association between prognostic factors and change in health measures. A change of 5 points in KCCQ (dependant variable) has been found to be a clinically significant change(66). Prior evidence has demonstrated that 14% of patients measured between 1 and 3 months post hospital admission experienced a reduction in KCCQ of >10 points(63). For common chronic diseases (independent variables) the ratio of exposed to unexposed heart failure patients is commonly 1:2(32). This means that if 5% of unexposed heart failure patients and 21% of exposed heart failure patients were to experience a 5 point reduction in KCCQ (13% of total patients) then a sample size of 173 would give us 90% power with a two sided significance level of 5% to detect this change.

Targeting a population of around 600 HF patients with the recruitment of 220 at baseline (37% response), and allowing for a dropout of 20% at follow-up means that it is estimated that 175 patients would be recruited to completion within the planned timescale.

Analysis

(i) Descriptive analyses - First, data on the HF cohort will be presented by socio-demographic factors (age, gender and deprivation as measured by Index of Multiple Deprivation), comorbidity status and HF measures. Second, cohort data will be presented by the SF-12, KCCQ, IPQR and EHFScB outcomes.

(ii)(a) Comorbidity prognosis factor testing - Multiple logistic regression methods will be used to compare comorbid groups within the HF population in relation to a five point reduction or more in the KCCQ (overall summary score) between baseline and 1 month and between 1 and 3 months. Unadjusted associations will be presented first followed by associations adjusted for known confounders. These will include age, gender, deprivation, BMI, smoking, alcohol, NYHA class, left ventricular ejection fraction, prior hospital admission, atherosclerotic aetiology and drug prescriptions (beta blocker, angiotensin converting enzyme inhibitor and multi-drug count).
(ii)(b) Multiple linear regression methods will be used to compare comorbid groups (independent variables) within the HF population in relation to KCCQ (physical and overall summary score), Brief IPQ and EHFScB summary scores and the physical component summary of SF-12 (dependant variables) and to investigate change from baseline to 1 month and from 1 to 3 months.

(iii) Modelling change – Multiple logistic regression models will be used to test a pre-specified model (using prior systematic review and general database studies to identify covariates) for a five point reduction in 1-3 months KCCQ (overall summary score). The model will be first fitted with known covariates including comorbidity type indicators. Then the new comorbidity measures that include severity and severity change will be fitted. Measures of Goodness of fit will be used to investigate the contribution of the new comorbidity indicators to an overall prognostic model to predict health status change.

Ethical considerations

New cohort recruitment: The initial study design and recruitment has been based on previously completed studies with patient and public involvement. The cohort study will potentially include patients with end-stage heart failure. Participants will be fully informed of the study's objectives and follow up. Specific consent procedures will be developed through links with Patient and Public Involvement Groups (PPI) including the local British Cardiac Patients' Association group. Participants will be offered assistance in completion of questionnaires at their convenience and informed of the right to withdraw from the study at any time.

Cohort consent and medical record review: The selected HF cohort sample will be cross checked with the healthcare professionals to exclude patients that they consider inappropriate for the study.

When a patient attends the hospital-based clinic in the recruitment period (estimated 8 month timewindow), they will be provided with a fully detailed study information sheet explaining the study and asked if they would like to take part. If the patient agrees, then by completing the health survey questionnaire they will be consenting for researchers to use that data and specific consent will be sought to access the patients' medical records. This will enable the collected survey data to be linked with their clinical data, either from hospital or their general practice. This approach will be fully explained to the patient, both verbally and in the study information sheet. The linkage of clinical data to health status information is key to this study and will allow us to examine how health status and health care change over time, and as we have completed in previous studies. These data will be anonymised and stored on secure networks with a data custodian and with access under governance procedures. In terms of cohort follow-up, we will request permission from the patient to send the postal questionnaire in 3-months' time and inform them, that they or their carer can contact us at any time to withdraw from the follow-up study. Permission will also be requested for a telephone reminder conversation from the research nurse if the follow-up questionnaire is not returned within two weeks of the follow-up time points.

Cohort Steering group: A steering group consisting of health care professionals from the community and hospital teams and patients representatives will be formed for oversight of the study. This steering group will continue to advise on the cohort approach and progression of study recruitment and follow-up. Appendix 1: New York Heart Association functional classification based on severity of symptoms and physical activity⁽⁵⁰⁾

Class 1	No limitation of physical activity. Ordinary physical activity does not cause undue breathlessness, fatigue, or palpitations.
Class 2	Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in undue breathlessness, fatigue, or palpitations.
Class 3	Marked limitation of physical activity. Comfortable at rest, but less than ordinary physical activity results in undue breathlessness, fatigue, or palpitations.
Class 4	Unable to carry on any physical activity without discomfort. Symptoms at rest can be present. If any physical activity is undertaken, discomfort is increased.
Appendix 2: 2C_HF Study - Study Flowchart

Phase 1

Comorbidity Cohort in Heart Failure (2C-HF) study. Study Protocol. Version 1.3. 03/02/14

Keele

Appendix 3: Data collection			Linked medical records
Health measures	Baseline	Follow-up	
KCCQ	x	x	
SF-12	х	x	
Brief IPQ	х	x	
EHFScB	х	x	
Socio-demographic			
Age	х		
Gender	х		
Index of Multiple Deprivation	х		
Cardiovascular risk factors: smoking, BMI, family history	х		x
Comorbidity status:			
• Туре			x
 severity measure if available e.g. eGFR (renal), FEV1 (COPD), HBA1C (diabetes) and drug 			x
prescriptions and dose for previous year			
Previous comorbidity admissions			x
Previous comorbidity general practice consultations			x
Multi-drug count			x
Heart failure status:			
Aetiological factors			x
 Indicators of HF status (blood tests, ECG and ECHO) 			x
NYHA class	x	x	
Drug therapies in the previous 12 months.			x
Previous HF admissions			x
Previous HF general practice consultations			x

Comorbidity Cohort in Heart Failure (2C-HF) study. Study Protocol. Version 1.3. 03/02/14

E20 Quality of Life Outcome study 3: Swedish HF registry study

Title: Heart failure comorbidity and self-reported symptoms and quality of life: the Swedish Heart Failure study.

Abstract:

Background: Comorbidity is common in HF and is associated with much worse outcomes. How comorbidity influences patient-centred symptoms and Quality-of-Life (QoL) is unknown.

Research Question: What is the effect of comorbidity on symptoms, functional capacity and QoL in the general population of HF?

Method: Observational cohort design using the Swedish Heart Failure Registry (S-HFR).

Database and Analysis: The S-HFR database contains information on 50,000 patients with data on HF, comorbidity and patient-reported outcome measures (PROMs). Patient factors will be investigated for their mediator and moderator effects on the association between the comorbidities and PROMs using linear and logistic regression methods.

Dissemination Plan: International workshop of nurse specialists to integrate findings into guidelines and practical tools for patient care. Dissemination through Heart Failure Nurse Curriculum, publication and conference presentations

Expected Value to Patients: Better trained HF nurses and patient-centred interventions aimed at improving the QoL of HF patients with comorbidity.

Introduction:

Context: Heart failure (HF) carries a high mortality risk with 38% of patients dying within a year of diagnosis⁽¹⁾. Despite advances in medical treatments, quality of life in heart failure remains poor with half of all patients experiencing daily symptoms including breathlessness and fatigue⁽²⁾ and up to half of patients remaining symptomatic despite optimisation of treatments⁽³⁾. Patients suffer problems with walking, activities of daily living, self-care, pain and depression and these symptoms are exacerbated with increasing age⁽⁴⁾. This poor quality of life worsens over time as the disease progresses⁽⁵⁾ and is itself associated with hospital admission⁽⁶⁾ and death. Comorbidity is a major contributor to these poor outcomes in HF with 68% of patients having at least 2 additional chronic conditions⁽⁷⁾ and most more than five⁽⁸⁻¹²⁾. These comorbidities have been associated with increased hospital admissions, mortality^(8,13-15), symptom burden⁽¹⁶⁻¹⁷⁾ and reduced physical function and quality of life⁽¹⁸⁾. Most of the current evidence has focused on the risk of hospital admission and death, but much less is known about which and how comorbidities influence HF patient-reported outcome measures.

Heart failure nursing: Heart failure specialist nurses (HFSN) have advanced knowledge and nursing skills to prevent and manage HF patients' symptoms and to provide interventions to prevent deterioration. The efficacy of this service in now well documented⁽¹⁹⁾ with HFSN services leading to fewer hospital admissions and deaths and improved QoL⁽²⁰⁻²²⁾. However nurses are now seeing increasing numbers of HF patients with comorbidity. This poses new and important challenges for HF nursing and clinical care. Comorbidity in HF can cause conflicts in treatments and drug interactions. For HF patients with comorbidity, self-care is managed through multiple different disease-specific self-management plans which leads to confusion, poor knowledge, conflicting or duplicated information and poor sense of control and adherence⁽²³⁻³⁵⁾ ultimately leading to worse outcomes⁽²⁶⁾.

The management of co-morbidities is a key component of the holistic nursing care of HF patients. Whilst guidelines should help nurses to make decisions in their daily practice, much of the guidance that nurses' provide patients on the key components of self-care behaviour such as lifestyle advice and symptom monitoring and management, are not adequately included in guidelines. Comorbidity, which is an important consideration, has only brief inclusion in this guidance and focuses on medical management⁽²⁷⁾. In the same way that clinical care is organised around specialism, the review of individual conditions is most often the focus of nurse education and particularly specialist nurse curricula. These combined factors mean that specialist HF nurses lack knowledge about comorbidity, shared disease mechanisms or how to provide optimal management for the HF and the comorbidities for a high percentage of HF patients. Whilst SHFN has demonstrated excellent advantages for HF patients through focused nursing care approaches on the management of aetiology, pathophysiology and symptoms, there now needs to be a broader specialist approach which takes account of the growing number of patients with comorbidity.

HF nursing care gap: Comorbidity care needs to be better incorporated into the overall management of HF patients so that they receive integrated information and nursing care for the main comorbidities that burden them. This needs to be facilitated by more comprehensive inclusion of comorbidities in HFSN education programmes. In order to achieve this we need to know which comorbidities are the most burdensome to HF patients by investigating patient reported outcome measures. In understanding the relationship between comorbidity in HF and outcomes, two questions raised are:

• which other factors in comorbid groups *influence* HF outcomes, (factors that also require addressing to improve outcomes – i.e. mediators)?

• which other factors in comorbid groups *determine* HF outcomes, (factors which interact with the comorbidity to make it worse – i.e. *moderators*)?

There are a range of potential factors that might mediate or moderate the association between comorbidity and poor outcomes in HF which include *patient factors and healthcare interventions*.

Patient factors that complicate HF outcomes have been identified but their interrelationships have not been clearly disentangled. Gender is one factor indicated as important in HF comorbidity. Comorbidity profiles and prevalence differs by gender and whilst women with HF have lower overall risk of mortality, this differs in the context of comorbidity. Diabetes has been found in a number of studies to have a stronger association with mortality in women than men⁽²⁸⁻³⁰⁾. In addition women often have a higher symptom burden and poorer functional capacity⁽³¹⁻³²⁾. Other patient factors that have been found to influence the effect of comorbidity have included aetiology⁽³³⁾ and age⁽³⁴⁻³⁵⁾. Less investigated factors are the burden and challenges of self-care. Whilst better self-care behaviour reduces hospital admissions in HF⁽³⁶⁾, its relationship with comorbidity and QoL is not clear ⁽³⁷⁻³⁸⁾. Prior patient factor studies have focused on specific diseases or used composite scores such as the Charlson Comorbidity Index but information on the range of individual comorbidities that are most influential on quality of life or their mediating patient factors has not been investigated.

Healthcare factors include the differential application of evidence based interventions across comorbid HF groups. The majority of evidence for the benefits of pharmacological treatments in HF is derived from large clinical trials that have excluded patients with complex comorbidities⁽³⁹⁾. The application of these guidelines can be challenging as there is little evidence of potential risks and benefits in patients with comorbidities or on how to reconcile optimal treatment in the presence of co-existing chronic disease, the management of which may conflict with that of HF. We do not know how differential treatment might influence the relationship between comorbidity and quality of life in HF.

Key questions this project will address are:

- Which HF comorbidity groups are important determinants of poor patient-reported outcomes and how can such high-risk groups be identified using routinely collected clinical data by HF nurses?
- Which factors in comorbidity and HF are important in influencing poor patient-reported outcomes and how might these factors be targeted in the nursing care of the patients?
- How will identifying important comorbidity and patient factors in poor HF outcomes be incorporated in nurse education and guidelines and practical tools for patients?

We have completed a systematic review⁽⁴⁰⁾ of comorbidity and prognosis in the general population of HF and found no comorbidity prognosis studies that focused on quality of life. Therefore, this proposal has been developed in collaboration with Professors Strömberg, Jaarsma, Dahlström and Kadam to answer the questions on the relationship between HF, comorbidity and patient-reported outcomes using the largest available database, the Swedish Heart Failure registry, which has collected prospective data on HF patients since 2001.

Aim & Objectives:

The overall aim is to investigate the influence of comorbidities on symptoms, functional capacity and quality of life outcomes in HF. The objectives using the Swedish HF registry data will be to investigate:

i) the association between cardiovascular disease (CVD) and non-CVD comorbidities and patientreported symptoms, physical function and quality of life at one year follow-up

ii) whether the association between cardiovascular disease and non-CVD comorbidities and patient reported outcomes at one year are mediated or moderated by patient or healthcare factors.

Design: An observational cohort study.

Methods

Data: The Swedish Heart Failure Registry (S-HFR) is a National Quality Register, created in 2001 at Linköping University, which provides an enriched source of prospective clinical and patient data from the general population of HF patients in Sweden. The S-HFR consists of about 70 variables including demography, concomitant diseases, diagnostic procedures, haemodynamics, laboratory data, symptoms, functional capacity, medication and quality of life. After 1 year of follow-up, data on mortality and morbidity are collected from National official databases. Information on medications, quality of life, and functional capacity are also collected from a questionnaire sent out to all patients after 1 year of follow-up with >80% response rate. Patients diagnosed with HF are registered either at discharge from hospital (within 1 month) or following an out-patient visit and so the registry captures patients from both primary and secondary care settings which makes it an important resource for epidemiological research

Sample: A cohort of HF patients from the S-HFR will be used to investigate the effect on cardiac and non-cardiac comorbidities on symptoms, physical function and quality of life. Clinical data will be extracted at baseline and one year follow-up from the S-HFR of all acceptable patients who were registered in a ten year time window from January 2005 until January 2015 and aged \geq 40 years and over.

Exposures: Cardiovascular (Myocardial Infarction, hypertension, Atrial Fibrillation/flutter, Heart valve disease, Dilated cardiomyopathy) and non-cardiovascular comorbidities (depression, diabetes (including Hba1c), Chronic Obstructive Pulmonary Disease, chronic kidney disease (based on eGFR), cancer, dementia.

Mediators and Moderators:

Patient factors: Demographic (Age, gender), lifestyle (alcohol, smoking), clinical and risk factors (aetiology, BMI, number of non-CV drugs), heart failure severity (LVEF%, BNP, NYHA), self-care ability, activities of living and physical activity.

Healthcare factors: Procedures (revascularisation, devices, heart valve replacement), drugs (ACEi/ARB, beta blocker).

Outcomes: The EQ5D will be used as the primary 'outcome' measure in this analysis, with a high score indicating better perceived health status. Secondary outcomes will include symptoms (Shortness of Breath (SOB), fatigue, pain/discomfort, anxiety/depression), physical function (mobility, self-care, usual activities) and mortality.

Analysis

Analysis will be performed in four steps; descriptive analyses, crude associations, test of indirect effects (mediators), test of interactions (moderators).

(i) Comorbidities will be described by the patient and healthcare factors and by the physical function, symptoms and quality of life outcomes. Data will be presented as means and standard deviations (SD) for normally distributed continuous data, whilst skewed continuous data will be presented as medians with interquartile ranges [IQR]. Dichotomous data will be presented as counts and percent prevalence. Significant difference between groups will be determined by parametric tests using independent samples t-test, non-parametric tests using the Wilcoxon rank-sum test and categorical variables between groups using the Chi-square test. A p-value will be considered significant if ≤0.05.

(ii) The associations between the comorbid exposure groups and EQ-5D score compared to the reference groups will be estimated using linear regression methods, and expressed as the difference in EQ-5D score. These analyses are presented as unadjusted values with 95% CI, adjusted first for all remaining factors. Ordinal logistic regression will be used to measure the strength of association between the comorbidities and other symptom and physical function outcomes.

(iii) Investigation of mediators: The patient and healthcare factors that differed significantly between comorbid and non-comorbid groups in step (i) will be investigated for their strength of association with the comorbidity exposures and separately with the outcomes. Where both are significant and the association between the comorbidity and outcome is significant in step (ii) further investigation will be as follows a) The comorbidity association with the outcome will be adjusted by the factor. Other potential confounding variables between the potential mediator and the outcome will then also be entered into the model to prevent collider bias⁽⁴¹⁾. Indirect effects will then be calculated using the Kenny and Judd difference of coefficients approach⁽⁴²⁾ where:

$B_{\text{indirect}} = B - B_1$

Where B is the coefficient of the exposure in the unadjusted association between the comorbidity and the outcome and B_1 is the coefficient of the comorbidity exposure which is adjusted by the mediator. Statistical test of the indirect effect will use bootstrapping for standard errors and to calculate 95% confidence intervals for the indirect effect, an approach that increases power in smaller samples⁽⁴³⁾. (iv) Investigation of moderators:

Comorbid effects on one year patient-reported outcomes will first be stratified by patient and healthcare factors. Where there is separation of the confidence intervals across strata we will estimate how the observed associations between a combined group (comorbid exposure with a specific patient or healthcare factor) and EQ-5D score differed from the expected estimates compared to the reference group. The observed estimates will be calculated for the comorbid exposure group, the factor group and the combined group in linear regression, and then the expected figures will be calculated by adding the estimates for the comorbid exposure to the estimate for the factor of interest. The difference between the observed and expected estimates for the combined groups in this additive approach would allow the assessment of the potential casual interaction between the comorbid exposure and the factor of interest. Product terms will be tested in the model using log-likelihood ratio tests to investigate the statistical significance of the interaction. Finally, we will compare each combined group directly with the respective comorbid exposure group, to assess the magnitude of the factor impact on EQ-5D score. Each comparison will be adjusted for the remaining factors.

Steering group

1. A steering group of HF patients and clinical nurse experts in heart failure, renal disease, respiratory disease and diabetes has informed the development of the questions in this proposal (UK).

2. The study project steering group will be Professor Strömberg and Professor Jaarsma (HF nurse research expertise), Professor Dahlström (S-HFR expertise), Professor Kadam (comorbidity and epidemiology expertise) and a S-HFR Statistician (methodological expertise - TBA).

3. As part of the workshop and dissemination activity a steering group will be set up. The purpose of the steering group will be to develop research, training and guidelines activity as result of the study findings. The steering group will draw on international network of nursing academics and work with appropriate PPI members.

Time-lines with achievable milestones

HFA Project	March 16-May 16	June 16 – Aug 16	Sept 16-Nov 16	Dec 16 – Feb 17	March-May 17 (post fellowship)
Academic skills development					(post lenowship)
ANOVA/GLMs with SPSS	April 2016				
Short course (UCL)					
Linear and Logistic Regression Models	May 2016				
using STATA (Bristol University)					
Writing for publication					
Project					
Ethics and Governance					
Expert guidance in the S-HFR and statistical					
analysis (Sweden)					
Collaborative working (UK & Sweden)					
Data analysis					
Retrieval of data and cleaning					
Analysis					
Writing up					
Outputs					
Nurse Workshop					
Update of heart failure matters website					
Report for ESC					
EuroHeartCare					April 2017
Heart Failure conference					May 2017
Publication submission					

Dissemination plan:

International Nurse Workshop: As part of the dissemination an international workshop of nurse specialists will be held including nurses from specialists groups guided by the findings of the study. These are likely to include nurses from the HFA heart failure curriculum development task force group, the National kidney Foundation, International Diabetes Federation, European respiratory society and the European depression association. The remit of the group will be to perform an analysis of current specialist guidelines to identify specific, common and potentially conflicting guidance across guidelines. The intention will be to develop combination nurse guidelines targeting the most prevalent and important HF comorbidities that influence poor quality of life and underpinned by the research findings. The combining of guidelines is likely to include (i) HF specific components (ii) add on advice (comorbidity specific) (iii) shared advice tailored to the comorbidity and (iv) potential conflicts to be resolved (see attached table for a diabetes mellitus and COPD example). These will additionally be incorporated into a combined patient self-care check list.

Nurse curriculum: The research findings together with the information from the workshop will be used to inform the HFA nurse curriculum.

Wider dissemination: The findings of the study will be presented at ESC congresses including EuroHeartCare and Heart Failure 2017. Abstracts will be submitted for publication with the aim to publish at least one article by the end of the fellowship (aimed at the European journal Heart Failure).

Expected value of results to patient care

Comorbidity has become a key challenge for healthcare services globally⁽⁴⁴⁾. With up to 50 million Europeans with comorbidity, a figure set to rapidly increase⁽⁴⁵⁾, better integration of healthcare policies to improve outcomes for patients has become a European health policy priority⁽⁴⁶⁾. HF patients with comorbidity currently receive fragmented care by different specialists which leads to poor integration of information and self-care deficits for patients. These patients are admitted into hospital more frequently, experience poor quality of life and earlier death. Better scientific knowledge about which comorbidities influence patient reported outcomes will provide the necessary information to develop integrated nurse guidelines (International Nurse Workshop), practical patient tools (comorbidity self-care checklists that are tailored to patients' needs) and improve HF nurse education (HFA nurse curriculum group). This will provide patients with holistic, patient-centred care with the most potential benefits for improving quality and quantity of life.

References:

(1) Mehta P, Dubrey S, McIntyre H, Walker D, Hardman S, Sutton G, et al. Improving survival in the 6 months after diagnosis of heart failure in the past decade: population-based data from the UK. Heart 2009; 95(22):1851-1856.

(2) Barnes S, Gott M, Payne S, Parker C, Seamark D, Gariballa S, Small N. Prevalence of symptoms in a community-based sample of heart failure patients. J Pain Symptom Manage 2006; 32(3):208-16.

(3) Cowie M, Komajda M, Murray-Thomas T, Underwood J, Ticho B, POSH Investigators. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J 2006; 27(10):1216-1222.

(4) Komajda M, Hanon O, Hochadel M, Lopez-Sendon JL, Follath F, Ponikowski P, et al. Contemporary management of octogenarians hospitalized for heart failure in Europe: Euro Heart Failure Survey II. Eur Heart J 2009; 30(4):478-486.

(5) Azevedo A, Bettencourt P, Alvelos M, Martins E, Abreu-Lima C, Hense H, et al. Health-related quality of life and stages of heart failure. Int J Cardiol 2008; 129(2):238-244.

(6) Sullivan M, Levy W, Russo J, Crane B, Spertus J. Summary health status measures in advanced heart failure: relationship to clinical variables and outcome. J Card Fail 2007; 13(7):560-568.

(7) Cocchieri A, Riegel B, D'Agostino F, Rocco G, Fida R, Alvaro R et al. Describing self-care in Italian adults with heart failure and identifying determinants of poor self-care. Eur. J. Cardiovasc. Nurs., 2015; 14 (2): 126–136.

(8) Braunstein J, Anderson G, Gerstenblith G, Weller W, Niefeld M, Herbert R, et al. Noncardiac comorbidity increases preventable hospitalizations and mortality among Medicare beneficiaries with chronic heart failure. J Am Coll Cardiol 2003; 42(7):1226-1233.

(9) Dahlstrom U. Frequent non-cardiac comorbidities in patients with chronic heart failure. Eur J Heart Fail 2005;7(3):309-316.

(10) Lang CC, Mancini DM. Non-cardiac comorbidities in chronic heart failure. Heart 2007;93(6):665-671.

(11) Sayers S, Hanrahan N, Kutney A, Clarke S, Reis B, Riegel B. Psychiatric comorbidity and greater hospitalization risk, longer length of stay, and higher hospitalization costs in older adults with heart failure. J Am Geriatr Soc 2007;55(10):1585-1591.

(12) Krum H, lyngkaran P. The black dog and the weak heart: comorbid depression in the patient with heart failure. J Card Fail 2008;14(6):465-466.

(13) Murad K, Goff D, Morgan T, Burke G, Bartz T, Kizer J, Chaudhry S, Gottdiener J, Kitzman D. Burden of Comorbidities and Functional and Cognitive Impairments in Elderly Patients at the Initial Diagnosis of Heart Failure and Their Impact on Total Mortality: The Cardiovascular Health Study. JACC Heart Fail. 2015; 3(7):542-50.

(14) Mazza A, Tikhonoff V, Casiglia E, Pessina AC. Predictors of congestive heart failure mortality in elderly people from the general population. Int Heart J 2005; 46(3):419-431.

(15) Senni M, Santilli G, Parrella P, De Maria R, Alari G, Berzuini C, et al. A novel prognostic index to determine the impact of cardiac conditions and co-morbidities on one-year outcome in patients with heart failure. Am J Cardiol 2006;98(8):1076-1082.

(16) Gott M, Barnes S, Parker C, Payne S, Seamark D, Gariballa S, et al. Predictors of the quality of life of older people with heart failure recruited from primary care. Age Ageing 2006; 35(2):172-177.

(17) Blinderman CD, Homel P, Billings JA, Portenoy RK, Tennstedt SL. Symptom distress and quality of life in patients with advanced congestive heart failure. J Pain Symptom Manage 2008; 35(6):594-603.

(18) Franzen K, Saveman BI, Blomqvist K. Predictors for health related quality of life in persons 65 years or older with chronic heart failure. Eur J Cardiovasc Nurs 2007; 6(2):112-120.

(19) British Heart Foundation. Heart failure nurse services in England: Executive summary. 2008; London, British Heart Foundation.

(20) Strömberg A, Mårtensson J, Fridlund B, Levin LA, Karlsson JE, Dahlström U.mNurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure: results from a prospective, randomised trial. European Journal of Heart Failure 2003; 24: 11, 1014-23.

(21) Thompson D, Rosebuck A, Stewart S. Effects of a nurse-led, clinic and home-based intervention on recurrent hospital use in chronic heart failure European Journal of Heart Failure 2005; 7: 3, 377-384.

(22) Sisk J, Hebert P, Horowitz C, McLaughlin M, Wang J, Chassin M. Effects of nurse management on the quality of heart failure care in minority communities: a randomised trial. Annals of Internal Medicine 2006; 145: 4, 273-283.

(23) Bayliss E, Steiner J, Fernald D, Crane L, Main D. Description of barriers to selfcare by persons with comorbid chronic diseases. Ann. Fam. Med 2003. 1, 15–21.

(24) Riegel B, Jaarsma T, Strömberg A. A middle range theory of self-care of chronic illness. Adv. Nurs. Sci 2012; 35:194–204.

(25) Vogeli C, Shields A, Lee T, Gibson T, Marder W, Weiss K, Blumenthal D. Multiple chronic conditions prevalence, health consequences and implications for quality, care management and costs. J. Gen. Intern. Med. 2007; 22:391–395.

(26) Chriss P, Sheposh J, Carlson B, Riegel B. Predictors of successful heart failure self-care maintenance in the first three months after hospitalization. Heart Lung 2004; 33(6):345–53.

(27) McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012 Aug;14(8):803-869.

(28) MacDonald MR, Jhund PS, Petrie MC, Lewsey JD, Hawkins NM, Bhagra S, et al. Discordant shortand long-term outcomes associated with diabetes in patients with heart failure: importance of age and sex: a population study of 5.1 million people in Scotland. Circulation Heart failure 2008; 1(4):234-241.

(29) Ahmed A, Aban IB, Vaccarino V, Lloyd-Jones D, Goff D, J., Zhao J, et al. A propensity-matched study of the effect of diabetes on the natural history of heart failure: variations by sex and age. Heart 2007; 93(12):1584-1590.

(30) Gustafsson I, Brendorp B, Seibaek M, Burchardt H, Hildebrandt P, Kober L, et al. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol 2004; 43(5):771-777.

(31) Conde-Martel A, Arkuch M, Formiga F, Manzano-Espinosa L, Aramburu-Bodas O, González-Franco Á et al. Gender related differences in clinical profile and outcome of patients with heart failure. Results of the RICA Registry. Rev Clin Esp 2015; 215(7):363-370.

(32) Sakata Y, Miyata S, Nochioka K, Miura M, Takada T, Tadaki S, Takahashi J, Shimokawa H. Gender differences in clinical characteristics, treatment and long-term outcome in patients with stage C/D heart failure in Japan. Report from the CHART-2 study. Circ J 2014; 78(2):428-35.

(33) Greenberg BH, Abraham WT, Albert NM, Chiswell K, Clare R, Stough WG, et al. Influence of diabetes on characteristics and outcomes in patients hospitalized with heart failure: A report from the

Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J 2007; 154(4):647-654.

(34) Mogensen UM, Ersboll M, Andersen M, Andersson C, Hassager C, Torp-Pedersen C, et al. Clinical characteristics and major comorbidities in heart failure patients more than 85 years of age compared with younger age groups. European Journal of Heart Failure 2011; 13(11):1216-1223.

(35) MacDonald MR, Jhund PS, Petrie MC, Lewsey JD, Hawkins NM, Bhagra S, et al. Discordant shortand long-term outcomes associated with diabetes in patients with heart failure: importance of age and sex: a population study of 5.1 million people in Scotland. Circulation Heart failure 2008; 1(4):234-241.

(36) Lee C, Moser D, Lennie T, Riegel B. Event-free survival in adults with heart failure who engage in self-care management. Heart Lung 2011; 40 (1): 12–20.

(37) Buck H, Dickson V, Fida R, Riegel B, D'Agostino F, Alvaro R, Vellone E. Predictors of hospitalization and quality of life in heart failure: A model of comorbidity, self-efficacy and self-care. Int J Nurs Stud. 2015; 52(11):1714-22.

(38) Vellone E, Chung M, Cocchieri A, Rocco G, Alvaro R, Riegel B. Effects of self-care on quality of life in adults with heart failure and their spousal caregivers: testing dyadic dynamics using the Actor–Partner Interdependence Model. J. Family Nurs. 2014; 20 (1): 120–141.

(39) De Keulenaer GW, Brutsaert DL. Systolic and Diastolic Heart Failure Are Overlapping Phenotypes Within the Heart Failure Spectrum. Circulation 2011; 123(18):1996-2005.

(40) Rushton CA, Satchithananda DK, Jones PW, Kadam UT. Non-cardiovascular comorbidity, severity and prognosis in non-selected heart failure populations: A systematic review and meta-analysis. International Journal of Cardiology. 2015; 196:98-106.

(41) Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. International Journal of Epidemiology 2013; doi:10.1093/ije/dyt127

(42) Judd, C.M. & Kenny, D.A. Process Analysis: Estimating mediation in treatment evaluations. Evaluation Review 1981; 5(5), 602-619.

(43) Shrout P, Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods 2002; 7, 422-445.

(44) Organization of Economic Cooperation and Development (OECD). Health Reform:

Meeting the Challenge of Ageing and Multiple Morbidities. 2011; OECD Publishing,

http://dx.doi.org/10.1787/9789264122314-en.

(45) Rijken M, Struckmann V, Dyakova M, Melchiorre M, Rissanen S, Ginneken E. ICARE4EU: improving care for people with multiple chronic conditions in Europe. Eurohealthcare 2013; 19 (3): 29–31.

(46) Struckmann V, Snoeijs S, Melchiorre M, Hujala A, Rijken M, Quentin W, Ginneken E. Caring for people with multiple chronic conditions in Europe. Europealth INTERNATIONAL 2014; 20(3):35–40.

Examples: integrated guideline

	Diabetes	COPD			
HF specific care					
Patient self-care	t self-care Daily weights, HF medication and diuretic self-titration, symptom assessment (breathlessness, swelling, fatigue), cardiac rehabilitation.				
Clinical care	Diagnostic tests (echoe, ECG, BNP), HF drug up titration and monitoring, assessment for devices, heart rate control				
Add on comorbidity care					
Patient self-care	Medicines management including for example oral hypoglycaemic drugs and insulin. Monitoring (blood glucose). Dietary advice (high fibre, low –glycaemic-index carbohyrates, low-fat dairy products and avoidance of hypoglycaemia with regular meals). Personal care (e.g. skin and foot care)	Medications management and use and assessment of inhaler effectiveness. Monitoring (peak flow), dietary advice (good healthy diet but avoid low BMI <21 kg/m ²). Personal care (e.g. oral care with inhaler use).			
Clinical care	Extra renal monitoring in diabetes, eye surveillance. Optimising glucose management and monitoring (HbA1c, serum glucose).	Severity assessment using symptoms, exacerbation history and spirometry. Optimising COPD medication and monitoring effectiveness.			
Tailored shared care					
Patient self-care	Smoking cessation, exercise training, symptom recognition for example depression and erectile dysfunction, understanding prognosis in context of comorbidity.	Smoking cessation, pulmonary and cardiac rehabilitation, exercise training, symptom recognition for depression, muscle weakness and fatigue, understanding prognosis in context of comorbidity. Influenza vaccine.			
Clinical care	Management of common shared comorbidities such as depression, erectile dysfunction and hypertension, blood monitoring and interpretation in context of comorbidity, prognosis in context of comorbidity, palliative end of life care.	Management of common shared comorbidities such as depression, metabolic syndrome, skeletal muscle dysfunction, hypertension. Tailored exercise training (attention to both diseases causing weight loss, nutritional abnormalities and skeletal muscle dysfunction), blood monitoring and interpretation in the context of comorbidity, prognosis in context of comorbidity, palliative end of life care.			
Potential conflicts					
Patient self-care	Symptom recognition (diabetic neuropathic pain may confuse cardiac pain or diabetic neuropathy may mask pain and require closer recognition of other symptoms indicative of cardiac events). Burden of self-maintenance/management and polypharmacy with both diseases.	Symptom recognition (breathlessness – how to attribute to which disease for guiding self-management – inhalers or diuretic?). Burden of self-maintenance/management and polypharmacy with both diseases.			
Clinical care	Avoid thiazolidinediones (glitazones) due to their effects on sodium and water retention and increased risk of worsening HF. Avoid metformin in patients with severe renal or hepatic impairment	Interpretation of spirometry in hypervolemic states. Use of selective beta-1 adrenoceptor antagonist. Caution with oral corticosteroids (cause sodium and water retention and worse HF)			

E20 Trials acronyms

- CHARM: The Candestartan in Heart Failure: Assessment of reduction in mortality and morbidity
- CHART: Chronic heart failure analysis and registry in Tohoku district
- COACH: Coordinating study evaluating Outcomes of Advising and Counselling in Heart Failure
- DIAMOND: Danish Investigations of Arrhythmia and Mortality on Dofetilide
- DIG: Digitalis Investigation group
- ECHOS: EchoCardiography and Heart Outcome Study
- EFFECT: Enhanced feedback for effective cardiac treatment
- EHFS: EuroHeart Failure Survey 11
- GISSI-HF: Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico Heart Failure
- HOLA: HF: Observation of local admissions
- HSIS: HF survey in Israel
- VMAC: Vasodilation in the management of acute decompensated heart failure
- SENIORS: The Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalisation in

Seniors with HF

OPTIMIZE-HF: Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart

Failure

REMADHE: Long-term Prospective Randomized Controlled Study Using Repetitive Education at Six-

Month Intervals and Monitoring for Adherence in Heart Failure Outpatients

VMAC: Vasodilation in the management of acute decompensated heart failure

JCARE-CARD: The Japanese Cardiac Registry of Heart Failure in Cardiology

TIME-CHF: Trial of intensified medical therapy in Elderly patients with Congestive Heart failure

Norwegian HF register

JCARE-CARD: The Japanese Cardiac Registry of Heart Failure in Cardiology

MAGIC database: Meta-Analysis Global Group in Chronic Heart Failure

References

(1) Villacorta H, Mesquita ET. Prognostic factors in patients with congestive heart failure. *Arquivos Brasileiros de Cardiologia.* 1999;72(3):343-362.

(2) Lainscak M, Anker SD. Prognostic factors in chronic heart failure. A review of serum biomarkers, metabolic changes, symptoms, and scoring systems. *Herz*. 2009;34(2):141-147.

(3) Alba AC, Agoritsas T, Jankowski M, Courvoisier D, Walter SD, Guyatt GH, et al. Risk Prediction Models for Mortality in Ambulatory Patients With Heart Failure: A Systematic Review. *Circulation: Heart Failure*. 2013;6(5):881-889.

(4) Hill A. The environment and disease: Association or causation? *Proceedings of the Royal Society of Medicine*. 1965;58:295-300.

(5) Rothman K. Epidemiology, an introduction. 2nd ed. New York: Oxford University Press; 2012.

(6) Higgins J, Deeks J. Selecting Studies and Collecting Data. In: Higgins J, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions* Version 5.1.0 [updated March 2011]. Available from www.cochrane-handbook.org: The Cochrane Collaboration, 2011; 2011. p. Chapter 7.

(7) Hayden J, van der Windt D, Cartwright J, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. *Annals of Internal Medicine*. 2013;158(4):280-286.

(8) Perel P. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. 2008; Available at: <u>http://www.bmj.com/content/336/7641/425</u>. Accessed January, 2013.

(9) Damarell R, Tieman J, Slade R, Davidson P. *Development of a heart failure filter for Medline: an objective approach using evidence-based clinical practice guidelines as an alternative to hand searching.* 2011; Available at: <u>http://www.biomedcentral.com/1471-2288/11/12</u>. Accessed 5th January, 2013.

(10) Geersing G, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons K. Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews. *PLoS ONE.* 2012;7(2):e32844.doi:10.1371/journal.pone.0032844.