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Abstract. 

Fish are in contact with microbiota from the moment of hatching. Exterior 

organs, i.e. skin, gills and intestinal system, are colonised by commensal bacteria 

populations and a symbiotic relationship is formed. The fish provides a niche and 

nutrients for the bacteria which stimulate development of the immune response, act 

as an additional barrier against invading pathogens and, within the gut, aid in 

digestion. 

β-glucans are used within aquaculture as a means of improving fish health and 

can be applied in various forms, e.g. via diet or injection. Whilst the application of β-

glucan is performed to modulate a fish’s immune system, it has also been shown to 

affect the gut microbiota population at concentrations above 1% w/w within the diet 

which is particularly important to consider when applied orally.  

The effect of the commercially available β-glucan MacroGard® upon the gut of 

common carp (Cyprinus carpio) is studied after oral application and injection. Whilst 

feeding with MacroGard® at 0.1% w/w within the diet does not influence the gut 

bacteria nor expression of bactericidal innate immune genes, injection (2mg kg-1 and 

5mg kg-1) resulted in a 90% reduction in bacteria numbers in the gut after 24 hours. 

Injection of MacroGard® did not significantly alter the expression of CRP, iNOS, bf/C2, 

IL-1β, ApoA1, HAMP1, LEAP2 and Muc2 within the gut however MSS1, a synthesised 

β-glucan, significantly increased the gene expression of iNOS, CRP and Muc2. 0.1% 

MacroGard® in the diet was, however, capable of influencing bacterial species 

diversity when injection was also performed. This revealed a high proportion of 

Alphaproteobacteria, which are typically associated with plants rather than gut 
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systems, and corresponded with a reduction in potential pathogenic bacteria. This 

showed combining injection and oral application of MacroGard® together is capable 

of influencing the gut microbiota population within a 2 week period. 
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Chapter 1 – Introduction. 

 

Fish were the earliest vertebrates to evolve and have been present on Earth 

since the Cambrian explosion, around 540 million years ago. Adaptations to cope with 

different temperatures, pressures, salinities, diets, availability of light, water qualities 

and predator/prey dynamics have resulted in highly diverse evolutionary changes 

resulting in over 40,000 fish species which represents approximately half of all 

vertebrates on the planet. Fish are prominent in religion, mythology and pop culture, 

and have a growing economic importance as both a recreational commodity and food 

source. 

Sports fishing represents a huge economic market to many countries, for 

example the American Sportfishing Association highlighted that $115 billion was 

spent on recreational fishing in the U.S. in 2011 including equipment and associated 

touristic costs such as travel, accommodation and spending in local economies 

(American Sportfishing Association, 2013). In the UK, sport fishing represents a £3 

billion industry that is regularly threatened by illegal fish imports to meet the 

demand for large fish that are not cost effective to produce in the UK’s climate 

(Mewett, 2015). Although public aquaria and marine parks are often maintained as 

non-profit organisations, their educational value has a huge impact with several, for 

example Georgia Aquarium and the Sea Life chain (part of Merlin Entertainments), 

running conservation programs, in addition to simply educating the public on fish 

health and the health of the seas and oceans (www.georgiaaquarium.org/conserve 

and www.sealifetrust.org respectively).  
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The global trade of fish is of vast importance to the economic output in a range 

of countries including the UK and the USA. The Food and Agriculture Organization of 

the United Nations report in 2014 stated that approximately 10% of agricultural 

trade and 1% of all trade worldwide was associated with fish. Aquaculture produced 

90.4 million tonnes of fish in 2012 with an economic value of US$144.4 billion, whilst 

capture fisheries in 2011 generated 93.7 million tonnes of produce which is the 

second highest ever tonnage recorded (FAO, 2014). Fish are therefore an important 

and growing source of food highlighted by the fact that in 2010, 16.7% of protein 

consumed by humans across the globe came from fish (FAO, 2014). Indeed, the Earth 

Policy Institute (2013) reported that in 2011, the production of meat from beef was 

overtaken by that produced by fish farms. The per capita consumption of fish globally 

has almost doubled in the past 50 years (9.9kg to 19.2kg. FAO, 2014) and aquaculture 

is becoming of increasing importance in meeting the demands to produce a 

sustainable source of nutrients in the human diet (Figure 1.1). Not only does 

aquaculture help meet these food demands, it also elevates some of the pressures on 

wild populations caused by overfishing, enabling stocks to recover. For example the 

Atlantic tuna (Thunnus thynnus), a common fish species farmed for use in sushi and 

sashimi dishes, currently has a rating of endangered from the International Union for 

Conservation of Nature and Natural Resources 

(http://www.iucnredlist.org/details/21860/0) and the European eel (Anguilla 

anguilla), a key ingredient in the English dish of jellied eels, is critically endangered 

(http://www.iucnredlist.org/details/60344/0). Their red list status, however, has 

not necessarily translated to human views of fish. TV shows such as the BBC’s 

MasterChef have, in the past, received criticism for their use of eels as a main 
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component of dishes regardless of their endangered status (The Guardian, 1st 

November 2009).  

 

 

Figure 1.1: Image taken from the 2014 report published by the FAO: the state of world fisheries and 
aquaculture. The graph shows the increase in fish production (in million tonnes) over time for both 
aquaculture (dark blue at the top of the graph) and capture fishing (pale blue at the bottom of the 
graph). As can be seen, capture production plateaued in the early 90’s with aquaculture steadily 
increasing over the 60 year period shown.  

 

Overfishing can also have a severe impact on human communities in addition 

to environmental ramifications. Approximately 12% of the world’s human population 

depends on fish for their survival (FA0, 2012). In 2012, it was estimated that over 58 

million people worked in the primary sector of fisheries/aquaculture, however this is 

not uniformly distributed with 84% of these people living in Asia (FAO, 2014). 

Overfishing has resulted in events such as the crash of the Canadian cod (Gadus 

morhua) population in 1992 where it was reported that 40,000 people lost their jobs 

in towns along the coast in Newfoundland as a consequence (BBC news, 16th 

Image 

removed 

for 

copyright 

reasons. 
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December 2002). Although over the last 20 years a series of legislative conditions 

have been introduced, such as maximum fishing limits, the potential impact on 

smaller communities that depend heavily, if not solely, on capture fishing could still 

be devastating.  

The increase in aquaculture helps to relieve the pressure on capture fishing 

and reduces the potential for overfishing, however both are equally susceptible to 

other factors such as global warming, disasters and disease. The increasing 

international trade of fish is resulting in easier routes for pathogens to travel around 

the globe. For example, Koi Sleepy Disease, caused by the carp edema virus (CEV), has 

recently (2014) been detected in koi (Cyprinus carpio koi) in Germany and other parts 

of Europe where it had previously been limited to fish in Japan (Jung-Schroers et al. 

2015b, Lewisch et al. 2015). Mardones et al. (2014) cite both local transmission and 

long distance movement as influencing factors of the infectious salmon anaemia virus 

(ISAV) epidemic in Chile (2007-2009) in Atlantic salmon, and the spring viremia of 

carp virus (SVCV) causes mortalities and financial losses globally. The UK, however, 

has had a SVCV free status since 2010. Taylor et al. (2013) describe the pattern of 

infection in the UK prior to this as a result of international trading rather than an 

endemic infection spread locally.  

Monoculture, often utilised in aquaculture as the preferred practice for fish 

production, facilitates an optimal environment for the spread of disease. High 

densities of a single species population that is susceptible to a particular disease can 

result in significant mortality rates and economic losses. Vaccination programs and 

the use of antibiotics are employed as means to avoid such catastrophes, however the 

liberal use of antibiotics and antimicrobial agents throughout aquaculture, agriculture 
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and for treating human disease have led to a massive increase in drug resistance 

amongst pathogens (Who, Fact sheet No. 194). The introduction of various legislative 

policies, such as Regulation (EC) No 1831/2003 which banned the use of antibiotics 

as growth promotors in animal feeds, restricts the use of a range of chemicals in fish 

production and as a consequence, a need for alternatives has arisen.  

To reduce the dependency on antibiotics and antimicrobials in agriculture, 

including aquaculture, there is increasing interest in proactively improving the health 

of animal stocks by increasing resistance to pathogens. Two such approaches include 

the modulation of the gut microflora populations so that they contain more “good” 

bacteria species that are beneficial to their host, and the improvement of the animal’s 

ability to defend against pathogenic attack by modulating its immune response prior 

to possible infection. This thesis studies the effect of β-glucan, a known 

immunomodulant also capable of influencing the gut microbiota population 

(Kuhlwein et al. 2013, Jung-Schroers et al. 2015a), on the health of common carp 

(Cyprinus carpio) in disease free conditions.  

 

1.2 – The importance of the microbiome. 

By cell number, humans are actually only 10% Homo sapiens (Candela et al. 

2012) with the remaining 90% being composed of the human microbiome – a 

collection of commensal bacteria and other microbes that, under normal conditions, 

live in harmony with us. Whilst it has been known since the 19th century that the 

microbial population is important for human health (Falk et al. 1998), the technology 

with which to fully study it has only recently become available. Analysis of the 
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microbiome has become a major line of research with several large scale projects 

such as the Human Microbiome Project (www.hmpdaac.org), being funded in order to 

better understand the relationship between host and microbe and how this 

influences health and incidents of disease. The relationship between a host and its 

microbiome is symbiotic in nature and begins at birth/hatching (Nayak 2010b). The 

host provides an environment for the bacteria to live and supplies nutrients, whilst 

the bacteria play roles in development of the immune system, provides an additional 

barrier against pathogens and, within the gut, aids in digestion (Nayak 2010a). 

Studies with gnotobiotic mammals have shown the microbiota is essential for the 

formation of gut associated lymphoid tissue (GALT) and Immunoglobulin (Ig) A 

production (Rhee et al. 2004, Peterson et al. 2007, Nayak 2010a). In germ free 

zebrafish (Danio rerio), a lack of gut epithelium maturation was noted the re-

induction of a microbiota population stimulates epithelial growth and maturation 

(Bates et al. 2006). In their study comparing the effects of diet upon gut microbiota 

populations in rainbow trout (Oncorhynchus mykiss) during Yersinia ruckeri infection, 

(Ingerslev et al. 2014b) concluded that a “plant diet gave rise to a prebiotic effect 

favouring the presence of bacterial taxons proving protective in connection to bath 

challenge by Y. ruckeri” highlighting the role of gut microbiota in disease prevention. 

In his review, Nayak (2010a) stated that the gut microbiota could supply several 

digestive enzymes including carbohydrases, phosphatases, lipases and proteases, in 

addition to synthesising essential vitamins and amino acids. Bacterial strains isolated 

from the gut have been shown to have antibacterial capabilities against pathogenic 

bacteria and to be a protective barrier against disease (Romero et al. 2014). Sugita et 

al. (1998) showed 2.7% of isolates cultured from the gut of Japanese coastal fish 



Chapter 1 – Introduction. Harris 

�� ! 

 

7 

inhibited the growth of Vibrio vulnificus, and bacteria species isolated from the gut 

have also shown antibacterial activity towards multiple Aeromonas sp. (Sugita et al. 

1996). Even if the gut microbiota were to perform only one of these roles, it would 

still constitute a major asset to a host organism and is clearly vital to survival. 

The gut microbiota is however a complex ecosystem that can be divided into 

two distinct populations: the autochthonous and allochthonous bacteria. The 

allochthonous bacteria are those that simply pass through the intestinal tract, i.e. the 

bacteria within the faecal matter, whilst the autochthonous bacteria are those that 

adhere to the mucosal layer and are considered as “permanent” residents of the 

intestine (Romero et al. 2014).  

As previously stated, it has been known since the 1800’s that the symbiotic 

microbiota population is vital to survival (Falk et al. 1998), however it is only recently 

that the technology has become available that allows a full exploration of large 

microbial communities, and, even more recently, the relationship with the immune 

response (Gomez and Balcazar 2008, Lazado and Caipang 2014). The gut is constantly 

exposed to signals from both the commensal microbial population and potentially 

pathogenic bacteria that exist within the environment. There must therefore be a 

balance between activation of the immune response and the presence of microbes 

within the gut, however the study of this balance using ichthyological models is still in 

its infancy.  

Whilst the number of publications considering both immunity and microbiota 

populations within fish is on the increase, analysis of any relationship between these 

two components is often missing. Dawood et al. (2016) noted an increase in total gut 
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bacteria population size after feeding red sea bream with the probiotics Lactobacillus 

rhamnosus and Lactobacillus lactis in conjunction with a significant increase in 

alternative complement pathway activity, serum bactericidal activity, mucus 

lysozyme activity, peroxidase activity and superoxide dismutase production in blood 

serum. Similarly, Miest et al. (2016) observed differences in both the gut microbiota 

population and immune responses in whole turbot larvae after feeding with 

MacroGard®, a β-glucan product with immunomodulatory properties. In contrast, 

however, where Akrami et al. (2015) noted a significant increase in leucocyte counts 

and haemoglobin concentration in juvenile beluga (Huso huso) fed with a combination 

of Enterococcus faecium and fructooligosaccharides (FOS), they did not see any 

differences in lactic acid bacteria (LAB) counts. It is therefore unlikely that there is a 

functional relationship between leucocyte counts and haemoglobin concentration, 

and LAB within the gut.  

Whilst it is important to look at the overall health of a fish when considering 

microbiota populations, i.e. any effects on systemic immunity, it is equally important 

to consider the effects upon local immunity, i.e. gut immunity. Ingerslev et al. (2014b) 

analysed both the gut microbiota and the expression of innate immune genes, 

including IL-1β and C3, in the gut tissue of rainbow trout and observed that the 

feeding of a plant based diet, in comparison to a marine based diet, resulted in a lower 

incidence of infection. Expression of both innate immune genes and stress markers in 

the gut of hybrid tilapia was studied alongside gut microbiota composition and it was 

shown that feeding with soybean diet resulted in a decrease in IL-1β expression 

alongside changes in the gut microbiota population (Zhang et al. 2014). What these 

previous five studies all have in common, however, is a lack of comparison between 
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the immune parameters analysed and the gut microbiota.  

In contrast, Tapia-Paniagua et al. (2015) use Principle Component Analysis 

(PCA) to reveal a relationship between intestinal microbiota populations and 

expression of CASPASE-6 and NAPDH oxidase in the liver of Senegalese sole (Solea 

senegalensis). To date, this is the only published example of a statistical comparison 

between the host immune response and the whole gut microbiota population in an 

ichthyological model, however there are examples of correlation analysis being 

performed between the immune response and specific pathogens. Pearson’s 

correlation was employed by Gorgoglione et al. (2013) to determine if there was a 

relationship between the presence of Tetracapsuloides bryosalmonae, the causative 

agent of Proliferative Kidney Disease (PKD) in rainbow trout, and the immune status 

which showed B-cell and antibody response to be linked to PKD pathogenesis. The 

same statistical means were used to study chemokines in brown trout (Salmo trutta) 

after infection with either Yersinia ruckeri or Viral Haemorrhagic Septicaemia Virus 

(Gorgoglione et al. 2016). This showed a predominant trend of significant positive 

correlations between novel chemokine expression in the kidney and spleen, and both 

bacterial and viral pathogen loads indicating their role in a pro-inflammatory 

systemic immune response.  

 

1.3  – Manipulation of the intestinal microbiome. 

Manipulation of the gut microbiota population in a way that is beneficial to the 

host organism is typically performed using pre and probiotics. Prebiotics are 

oligosaccharides that positively influence the growth and/or activity of “good” 
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bacteria within the gut (Merrifield et al. 2010). Gibson et al. (2004) additionally 

stated that a prebiotic must resist gastric acidity and absorption, and be fermented by 

the intestinal microbiota. Examples of prebiotics utilised within aquaculture include 

mannanoligosaccharides (MOS), galactooligosaccharides (GOS) and inulin (Merrifield 

et al. 2010). Probiotics, however, are live bacteria introduced into a population in 

order to alter the existing population in favour of “good” bacteria. Merrifield et al. 

(2010) highlighted that whilst the textbook definitions of a probiotic, such as that 

given by Fuller (1989), were written considering mammals and not fish, the 

differences in typical microbiomes between mammals and fish are great enough that 

a separate definition as to the characteristics a fish probiotic should be considered 

and should be different to that of a mammalian probiotic. These characteristics 

include, but are not limited to, a lack of pathogenicity towards humans and other 

animals within the local environment, must not contain any plasmids that comprise of 

antibiotic resistance genes so that transfer to potential pathogens does not occur, 

must be tolerant of bile salts and low pH as found within the gut, and must be able to 

thrive within intestinal mucus (Spanggaard et al. 2001, Merrifield et al. 2010). 

Balcazar et al. (2006) outlined a selection process for how best to identify and test 

potential probiotics before commercial use.  

The manipulation of the gut microbiota has become increasingly popular in 

aquaculture. A literature search within Web of Science using the key words “gut 

microbiota fish” identifies 70 research articles, 8 reviews and 1 book that have been 

published since 2012 (Table 1.1). Between 2000 and 2014, Ringo et al. (2014) 

referenced 53 probiotic trials including research with the commercially important 

fish species Japanese flounder (Paralichthys olivaceus), common carp, tilapia 
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(Oreochromis sp.), grouper (Epinephelus coioides), rainbow trout, brown trout, cod, 

turbot (Scophthalmus maximus), sea bass (Dicentrarchus labrax), and pollock 

(Pollachius sp.). These authors also noted that LAB are considered to be good 

potential probiotics with the majority of trials using species of Lactobacillus and 

Enterococcus. They are present in multiple fish species naturally (Ringo and 

Gatesoupe 1998) and feeding with Lactobacillus sp. as a probiotic has shown 

increased body weight and decreased cortisol levels in sea bass and gilthead sea 

bream larvae (Sparus aurata) (Abelli et al. 2009), increase the proportion of 

Firmicutes within the gut of zebrafish (Falcinelli et al. 2016), and increase 

complement and lysozyme activity in red sea bream (Pagrus major) (Dawood et al. 

2016). Several probiotics have been shown to act against different bacterial 

pathogens, for example Bacillus sp. has shown protective abilities against Aeromonas 

hydrophila, Edwardsiella ictaluri, Vibrio harveyi and Yersinia ruckeri, and Enterococcus 

sp. has been noted to defend against E. tarda, V. harveyi and V. parahaemolyticus 

(Akhter et al. 2015).  
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Table 1.1: (part A) A literature search using the engine Web of Science and the key words “gut microbiota fish” was performed to identify publications studying the 
effect of probiotics, prebiotics, antibiotics or carbohydrates on the gut microbiota in different fish. The numbers of different publication types by year are given 
followed by examples of publications over the past 2 years (2014-2016).  References are either given alongside details of the trial performed or are included in a list 
at the end of the table. 

Article type 2016 * 2015 2014 2013 2012 

Research paper 6 17 11 23 13 

Review 1 1 4 1 1 

Books   1   

Conference abstract  1 1   

Total 7 19 17 24 14 

Fish species Modulators Reference 

Asian seabass (Lates calcarifer) Hydrolysed wheat gluten Apper et al. 2016 

Atlantic salmon (Salmo salar) 
Fish meal versus pea protein, soy protein, extracted sunflower, hydrolyzed 
feather meal or poultry biproduct 

Hartviksen et al. 2014 

Beluga (Huso huso) Biomin IMBO Akrami et al. 2015 

Black carp (Mylopharyngodon 

piceus) 
Intestinal casing meal and yeast of monosodium glutamate Li et al. 2015 

Blunt snout bream (Megalobrama 

amblycephala) 

Common carp (Cyprinus carpio) 
Fructooligosaccharide  Hoseinifar et al. 2014 

Mannanoligosaccharide Momeni-Moghaddam et al. 2015 

Fathead minnow (Pimephales 

promelas) 
Triclosan Narrowe et al. 2015 

Gibel carp (Carassius gibelio) Intestinal casing meal and yeast of monosodium glutamate Li et al. 2015 

Gilthead seabream (Sparus aurata) 

Fish meal versus vegetable meal Estruch et al. 2015 

S. putrifaciens Cordero et al. 2015 

Short chain fructooligosaccharides Guerreiro et al. 2016 

Goldfish (Carassius auratus) Pentachlorophenol Kan et al. 2015 

Grouper (Epinephelus coioides) 
B. pumilus Yang et al. 2014 

Psychrobacter sp. Sun et al. 2014 

Hybrid tilapia (Oreochromis niloticus 
♀ X O. aureus ♂) 

Completely hydrolyzed feather meal (tradename Aoyouyuan-A) Zhang et al. 2014 
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Table 1.2: (part B) A literature search using the engine Web of Science and the key words “gut microbiota fish” was performed to identify publications studying the 
effect of probiotics, prebiotics, antibiotics or carbohydrates on the gut microbiota in different fish species. The number of different publication types by year is 
given followed by examples of publications over the past 2 years (2014-2016).  References are either given alongside details of the trial performed or are included 
in a list at the end of the table.  

 

Fish species Modulators Reference 

Jundia (Rhamdia quelen) Multiple carbohydrates: ground corn, wheat, cassava bagasse, broken rice Pedrotti et al. 2015 

Rainbow trout (Oncorhynchus 

mykiss) 

Aeromonas sp., Bacillus sp., C. braakii, mix of all three Koca et al. 2015 

Different protein: carbohydrate ratios Geurden et al. 2014 

Kocuria and Rhodococcus sp. Sharifuzzaman et al. 2014 

Plant based versus marine diet Ingerslev et al. 2014a, Ingerslev et al. 2014b 

Red sea bream (Pagrus major) L. rhamnosus and/or L. lactis Dawood and Koshio 2016 

Schizothorax prenanti Oxidized konjac glucomannan Zheng et al. 2015 

Sea bass (Dicentrarchus labrax) 

β-glucans and essential oil Carda-Dieguez et al. 2014 

Carbohydrates: amylopectin versus high amylose versus fibre Gatesoupe et al. 2014 

Protein hydrolysate Delcroix et al. 2015 

Senegalese sole (Solea senegalensis) Shewanella putrefaciens Lobo et al. 2014, Tapia-Paniagua et al. 2014) 

Tilapia (O. mossambicus) Azomite Musthafa et al. 2016 

Tilapia (O. niloticus) 

AquaStar® Growout (L. reuteri, B. subtilis, E. faecium, P. acidilactici) Standen et al. 2015, Standen et al. 2016 

Baker’s yeast Ran et al. 2015 

GroBiotic-A Peredo et al. 2015 

Multiple carbohydrates: ground corn, wheat, cassava bagasse, broken rice Pedrotti et al. 2015 

Zebrafish (Danio rerio) 

L. rhamnosus Falcinelli et al. 2015, Falcinelli et al. 2016 

N-acyl homoserin lactonase Cao et al. 2014 

Wheat products Savarese et al. 2014 

*Jan-March. Additional references counted in literature search: Askarian et al. 2012, Cerezuela et al. 2012, Desai et al. 2012, Geraylou et al. 2012, Giannenas et al. 
2012, He et al. 2012, Liu et al. 2012, Omar et al. 2012, Raggi and Gatlin 2012, Rendueles et al. 2012, Sun et al. 2012a, Sun et al. 2012b, Yang et al. 2012, Abid et al. 
2013, Askarian et al. 2013, Bakke et al. 2013, Cerezuela et al. 2013a, Cerezuela et al. 2013b, Del'Duca et al. 2013, Geraylou et al. 2013a, Geraylou et al. 2013b, 
Gisbert et al. 2013, Green et al. 2013, He et al. 2013a, He et al. 2013b, Jaafar et al. 2013, Kuhlwein et al. 2013, Merrifield et al. 2013, Navarrete et al. 2013, Nikapitiya 
2013, Ramos et al. 2013, Respondek et al. 2013, Sun et al. 2013a, Sun et al. 2013b, Zhou et al. 2013a, Zhou et al. 2013b, Zychowski et al. 2013, Merrifield et al. 2014, 
De et al. 2014, Lazado and Caipang 2014, Llewellyn et al. 2014, Ringo et al. 2014, Ghanbari et al. 2015, Dawood and Koshio 2016. 
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There are fewer publications available on the action of prebiotics in 

comparison to probiotics (Akhter et al. 2015), however there are several products, 

such as β-glucan, that are widely studied yet do not meet all the criteria to be 

considered a prebiotic. The effect of orally applied FOS and MOS has been shown to 

increase lysozyme activity in Japanese flounder (Ye et al. 2011), and red drum 

(Sciaenops ocellatus) are similarly affected after feeding with inulin and GOS (Zhou et 

al. 2010). Complement activity has also been shown to be increased in gilthead 

seabream fed with inulin (Cerezuela et al. 2013), black amur bream (Megalobrama 

terminalis) fed with FOS (Zhang et al. 2015), and Siberian sturgeon (Acipenser baerii) 

fed with arabinoxylanoligosaccharides (AXOS) (Geraylou et al. 2013a). FOS has been 

shown to increase LAB in the gut of carp (Hoseinifar et al. 2014) and the relative 

abundance of Lactobacillus sp. and Lactococcus lactis increased in the gut of Siberian 

sturgeon after feeding with AXOS (Geraylou et al. 2013b). In gilthead sea bream there 

was a higher level of bacterial species richness in the gut after the fish were fed with 

MOS (Dimitroglou et al. 2010) however, in contrast in lobsters (Homarus gammarus) 

a decrease in bacterial species richness occurred in the gut after feeding with a 

combination of MOS and Bacillus sp. (Daniels et al. 2013).  

 

1.4 – Host immunomodulators: what is a β-glucan? 

β-glucans are carbohydrates found, for example, within the cell walls of yeasts 

and plants. Comprised of β-D-glucose monomers, chains are formed when the 

hydroxyl group of the carbon (C) 1 within the ring joins with the hydroxyl group on 

either C3 or C4 resulting in a β-glucose dimer and water (Figure 1.2). β-glucan chains 

can be any length and can also have branches between the C1 and C6 carbons. β-
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glucans differ from α-glucans, such as starch and glycogen, in that the C1 hydroxyl 

group is in the same plane as the C6. β-glucans from oats are chains with β-1:3 and β-

1:4 glycosidic linkages. Laminarin, found in seaweeds such as Laminaria digitata, and 

the cell walls in baker’s yeast (Saccharomyces cerevisiae) are chains of β-1:3 

glycosidic links with β-1:6 branches.  

 

Figure 1.2: Image showing the linkages found in β-D-1,3/1,6-glucan molecules. Taken from Harris 
2013. 

 

β-glucans are immunomodulatory molecules which promote an immune 

response in vertebrates (Dalmo and Bogwald 2008).  In mammalian models it has 

been suggested that the Dectin-1 receptor binds with a β-glucan and activates the 

immune response (Martin 2012) however to date, this receptor has not been found in 

fish. Dectin 1 is a C-type lectin (Huysamen and Brown 2009) found on mammalian 

macrophage cells. In the early 1990’s Atlantic salmon macrophages were identified as 

having a “β-glucan receptor” (Engstad and Robertsen 1993, Engstad and Robertsen 

1994) and more recently three C-type lectins (sclra, sclrb and sclrc) and a 
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complement receptor (CR) 3 have been noted which could be recognising β-glucan 

molecules (Kiron et al. 2016). Although receptors were not identified, Pietretti et al. 

(2013) proposed that multiple receptors were capable of detecting β-glucans in carp 

macrophages.  

Although the mechanism of identification of β-glucans by a fish has yet to be 

elucidated, it is well documented that β-glucans are able to elicit immune responses 

in many fish species and reviews by Dalmo and Bogwald (2008), Meena et al. (2013), 

and Vetvicka et al. (2013) focus specifically on the use and effects of β-glucans in fish.  

 

1.5 – Immunity in fish. 

Immunity can be divided into the innate and adaptive responses. The innate 

immune response is the immediate defence mechanism found in vertebrates and 

invertebrates, and responds broadly against pathogen types, i.e. bacteria or viruses, 

rather than against specific diseases. On the other hand, the adaptive immune 

response is only found in vertebrates and results in the development of antibodies 

against pathogens it encounters that result in infection. Immunity can also be divided 

by location, i.e. a local immune response at the infection site and a systemic response 

in tissues and/or organs that may not be directly affected.  

The importance of local immunity in external organs that come into contact 

with a wide array of different microbes is highlighted by the increasing number of 

publications in this area such as gut immunity which are reviewed by Gomez and 

Balcazar (2008), Nayak (2010a, 2010b), Rombout et al. (2011), and Salinas (2015). 

Gomez and Balcazar (2008) describe the gut as having “tolerogenic mechanisms” that 
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allow for coexistence with the commensal microbiota whilst still responding to 

pathogenic microbes. Gut immunity is comprised of both the innate and adaptive 

immune response and includes, but is not limited to, components such as a layer of 

mucus covering the external surface, i.e. the inside of the gut, signalling molecules 

including cytokines, antimicrobial peptides (AMPs), the complement system, and the 

respiratory burst. The mucosal layer provides both a home for the commensal 

microbiota population and a cover protecting the epithelial layer underneath from 

direct exposure to the environment (Gomez and Balcazar 2008). AMPs, complement 

and the respiratory burst are all defence mechanisms against invading pathogens.  

  

1.5.2 – The role of mucus and mucins. 

Mucus is cited as “one of the most important components for fish mucosal 

immunity” (Koshio 2016). It is involved in osmoregulation, reproduction, and 

movement, in addition to defence against pathogens and protection, and contains 

several immune proteins and enzymes such as complement proteins, proteolytic 

enzymes, AMPs (Koshio 2016) and glycoproteins known as mucins. Mucins are the 

main component of the mucosal layer with several genes that show differential 

expression patterns based upon the mucosal membrane. For example, in carp Muc5B 

expression is found in the skin and gill tissues, but not in the gut and, conversely, 

Muc2 expression is limited to the gut and not found in the skin or gills of naive fish 

(Van der Marel et al. 2012). The adherence of bacteria to the mucosal surface can be a 

desirable trait in commensal bacterial species, however the ability of pathogens to 

adhere is the first step of pathogenesis (Schroers et al. 2008).  
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Studies looking at mucins using ichthyo-models are limited in comparison to 

mammalian systems. Sloughing of the skin mucosal layers has been seen in carp 

infected with CyHV-3 as a means of removing pathogens from the surface of the fish 

(Adamek et al. 2013). Chub (Squalius cephalus) have been shown to have “excessive 

yellowish mucus” at the site of infection in the gut with the acanthocephalan 

Pomphorhynchus laevis that was not present at other sites along the intestinal axis nor 

in parasite free controls (Bosi and Dezfuli 2015). Differences have been seen in the 

composition of gut mucus in carp such as the amount of and molecular size of 

glycoproteins were seen after infection with two different strains of Aeromonas 

hydrophila (Schroers et al. 2009). Feeding sea bass with MOS for 8 weeks has been 

shown to increase the number of mucin secreting cells within the gut (Torrecillas et 

al. 2011) and feeding with β-glucans for 2 weeks increases the expression of Muc5B 

in the skin and gills of carp but a decreases Muc2 gene expression in the gut (Van der 

Marel et al. 2012).  

 

1.5.3 – Communication within the immune system. 

Cell communication, which is highly important in maintaining a homeostatic 

balance, also plays a significant role during activation of the immune response. In the 

latter, this homeostatic balance is mediated by small molecules known as cytokines. 

There are three types of cytokines: regulators of the innate immune response, 

regulators of the adaptive immune response, and stimulators of haematopoiesis 

(Gomez and Balcazar 2008). Interleukins (ILs) and tumour necrosis factors (TNFs) 

are two examples of cytokines that are induced by a broad range of pathogen types.  
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Interleukins can be both instigators and inhibitors of the inflammatory 

immune response, and are referred to as either being pro- or anti-inflammatory. IL-

1β is a pro-inflammatory cytokine that has been found in several fish species 

including carp, Atlantic salmon, and rainbow trout (Plouffe et al. 2005). IL-1β shows 

differential gene expression patterns in response to pathogens and feeds, in a location 

dependent manner. Internal organs have been shown to have increased IL-1β gene 

expression in several fish species after exposure to bacteria/dietary supplements. For 

example, expression was increased in the liver and spleen of Nile tilapia after 30 days 

of feeding with dietary acidifiers (Reda et al. 2016), the spleen and kidney of tilapia 

fed with the probiotic Lactobacillus acidophilus after 24 hours (Villamil et al. 2014), 

the spleen and head kidney of sea bass infected with Vibrio anguillarum (Meloni et al. 

2015), and in the head kidney of carp infected with Aeromonas salmonicida (Falco et 

al. 2012b). The external organs, i.e. the skin, gills and gut, have different expression 

patterns for IL-1β. The gut was shown to have increased levels of IL-1β gene 

expression in rainbow trout 5 days post infection with Yersinia ruckeri (Ingerslev et 

al. 2014b) and in carp 6 hours post infection with Aeromonas salmonicida (Falco et al. 

2012b). Catfish, however, were shown to have differential expression levels in the gut 

including up and down regulation upon exposure to LPS from different Edwardsiella 

ictaluri strains 6 hours after treatment (Santander et al. 2014). Feeding hybrid tilapia 

with completely hydrolyzed feather meal (a potential alternative to soybean meal) 

resulted in a decrease in the gene expression of IL-1β within the gut after 8 weeks 

(Zhang et al. 2014), however expression in the gut of common carp was not 

influenced by feeding with β-glucans over 14 days (Falco et al. 2012b). This 

differential gene expression seen in external organs could be as a result of constant 
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exposure to microbes in the environment. 

TNFα is another pro-inflammatory marker within the innate immune response 

and is involved in homeostasis and the induction of apoptosis (Goetz et al. 2004). 

Similar to IL-1β, gene expression of TNFα was shown to be upregulated in internal 

organs after exposure to pathogens. In turbot infected with Enteromyxum scophthalmi 

there was a significantly higher expression of the TNFα gene expression in the spleen 

and kidney 6 hours post infection (Ronza et al. 2015). Whole zebrafish also showed 

an increase in expression of the TNFα gene up to 22 hours post inoculation with 

Listonella anguillarum in comparison to non-inoculated controls (Rojo et al. 2007), 

and carp infected with Aeromonas salmonicida showed higher expression levels of 

two TNFα isoforms 6 hours post infection (Falco et al. 2012b). Interestingly, feeding 

carp with β-glucans for 2 weeks did not impact on the gene expression of TNFα-1 in 

the head kidney, although a decrease in expression of TNFα-2 gene did occur in this 

organ.  This could indicate a sensitivity to signals from live organisms versus extracts. 

Limited data is currently available on the expression of the TNFα gene in the gut of 

fish, however there seems to be a trend of decrease in expression. Nile tilapia were 

shown to have lower expression of this gene after feeding with live yeast as a 

probiotic for 8 weeks (Ran et al. 2015), although in carp fed with β-glucans for 2 

weeks there was no effect upon the expression of TNFα-1 gene, but a decrease in 

expression of TNFα-2 (Falco et al. 2012b).  

 

1.5.4 – The Complement system.  

 The Complement system, which predates adaptive immunity and is thought to 
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have evolved at least 1,300 million years ago (Holland and Lambris 2002, Nonaka and 

Kimura 2006), is comprised of four pathways (the Alternative, Classical, Lectin and 

Cytolytic) centred around the C3 protein. In mammals, the system consists of more 

than 35 proteins (Sunyer et al. 2003, Boshra et al. 2006) which are activated by a 

range of pathogens including viral, bacterial and parasitical, leading to the induction 

of phagocytosis, cytolysis and inflammation (Holland and Lambris 2002, Sunyer et al. 

2003, Boshra et al. 2006). Figure 1.3 illustrates the three activation pathways within 

the Complement system: the Classical pathway, the Alternative pathway and the 

Lectin pathway.  

 

 

Figure 1.3: Taken from (Sunyer and Lambris 1998), an illustration of the three main Complement 
pathways in mammals. 

 

Whilst the complement system of teleosts is similar to that found in 

mammalian models, there are a few differences. Mammalian complement has evolved 

Image 

removed 

for 

copyright 

reasons. 
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to work best at temperatures found in endothermic organisms, e.g. 37°C in humans, 

whereas it functions at much lower temperatures (down to 0°C) in teleosts (Sunyer et 

al. 2003). There are also differences in the organs that produce the different 

complement proteins. In mammals, complement is mainly produced in the liver, 

whilst in fish, there are a range of production sites including the brain, skin, gills, 

intestine, kidney and head kidney (Nakao et al. 2011). The main difference between 

mammalian and fish complement, however, is the degree of polymorphism found in 

each system. On a genetic level, fish are a highly polymorphic vertebrate group and 

the complement system is subject to several isoforms per component. For example, 

C3 has been shown to be polymorphic in rainbow trout (Sunyer et al. 1996) and 

gilthead sea bream (Sunyer et al. 1997), and that isoforms have different functions 

within the overall system.  

Several studies have highlighted the differential effects that β-glucan can have 

on the complement system in fish. Ai et al. (2007) noted that β-glucan fed yellow 

croaker (Pseudosciaena crocea) showed no differences in serum alternative 

complement pathway (ACP) activity, whereas in sea bass and rohu (Labeo rohita) 

there was an increased complement activity in the serum (Bagni et al. 2000, Misra et 

al. 2006). Duration of feeding period appears to affect spontaneous haemolytic 

complement activity in channel catfish (Ictalurus punctatus) with a decrease in 

activity occurring after 2 weeks (Welker et al. 2012) but not after 4 weeks when fish 

were fed with β-glucans (Welker et al. 2007). In carp, there is conflicting data as to 

the effect of β-glucan feeding. Selvaraj et al. (2006) report no effect on ACP activity 

after 2 weeks of feeding with β-glucan, however Pionnier et al. (2013) noted an 

increase in the same parameter when carp were fed with β-glucan for 2 weeks. 
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Pionnier et al (2013) also revealed that, whilst there was no effect of feeding with β-

glucan on the expression of the genes encoding for bf/C2 (marker for the alternative 

pathway), MASP2 (marker for the lectin pathway) and C3, there was a significant 

increase in C1rs gene expression (marker for the classical pathway). Differential 

expression of genes encoding for 3 different C3 isoforms was shown to occur after 

rainbow trout were injected with β-glucan however overall, expression of the 

different isoforms was shown to increase (Lovoll et al. 2007). C3 gene expression was 

also shown to be upregulated in turbot larvae fed with MacroGard® treated rotifers 

(Miest et al. 2016). 

 

1.5.5 – Antimicrobial peptides. 

Antimicrobial peptides (AMPs) are short chain polypeptides with the ability to 

kill invading pathogens. Falco et al. (2009) defined AMPs as “gene encoded small 

cationic peptides” with the ability to act against bacteria, viruses, fungi and parasites. 

The first AMP was discovered in 1981 in the cecropia moth (Hyalaphora cecropia) 

and since then, over 1200 have been identified (Falco et al. 2009, Zhu and Gao 2013). 

AMPs are considered to work through two different mechanisms: the formation of 

transmembrane channels in pathogens, or by entering the cell and inhibiting growth 

and metabolism (Falco et al. 2009, Zhu et al. 2013). In fish, AMPs are generally 

produced by immune cells, particularly neutrophils, and tissues that come into 

contact with external environments such as the skin, digestive system and gills (Noga 

et al. 2011). Although there are more than a thousand known AMPs, those studied in 

fish include defensins, cathelicidins, piscidins, lysozyme, hepcidin, and 

apolipoproteins (Noga et al. 2011). 
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In carp, the gene expression of two β-defensin genes was shown to be 

significantly upregulated in the skin and gills after β-glucan feeding, however 

expression was not seen in the intestine (Van der Marel et al. 2012). In contrast, an 

increase in expression of the gene encoding cathelicidin occurred in intestinal cells 

from rainbow trout after feeding with zymosan for 4 weeks (Schmitt et al. 2015). 

Expression of genes encoding LEAP2, two β-defensins and two cathelicidins in the 

skin of rainbow trout has been shown to be influenced by peptidoglycans within the 

diet (Casadei et al. 2015).  

The three antimicrobial peptides analysed within this thesis are 

Apolipoprotein-I (ApoA-I), hepcidin antimicrobial peptide 1 (HAMP1) and liver 

expressed antimicrobial peptide 2 (LEAP2). This is the first time the effects of β-

glucan upon the expression of these three genes have been studied in fish. ApoA-I 

proteins from rainbow trout have been shown to inhibit bacterial endotoxins and 

have antiviral activity (Dietrich et al. 2015). HAMP1 gene, which encodes for the 

protein hepcidin, is a regulator of iron metabolism, and in sea bass has been shown to 

be influenced by iron overload and anemia, whereas HAMP2 has antimicrobial 

activity against several bacterial strains (Neves et al. 2015). LEAP2 shows 

antimicrobial activity by disrupting the membranes of pathogens (Li et al. 2015). All 

three genes have been shown to be constitutively expressed in the gut of carp (Dr. 

Mikolaj Adamek, unpublished data). 

 

1.5.6 – Respiratory burst as a means of defence. 

The release of reactive oxygen species during phagocytosis is an innate 
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immune response known as the respiratory burst (Dahlgren and Karlsson 1999). 

Hydrogen peroxide and superoxide anion, which are both produced during the 

respiratory burst, are highly antimicrobial but can also cause damage to the host 

organism (Dahlgren and Karlsson 1999). The free radical NO- is cytotoxic and 

produced by nitric oxide synthase (NOS) which has multiple isoforms including 

endothelial NOS, inducible NOS and neuronal NOS (Aktan 2004) with inducible NOS 

(iNOS) being part of the innate immune response.  

Studies have been performed looking at the effects of naturally derived 

products in fish diets on iNOS production Expression of the iNOS gene is 

downregulated in the head kidney and intestine of rohu (Labeo rohita) after guava 

leaves were incorporated into the diet (Giri et al. 2015) and in carp, the iNOS gene 

was upregulated in the head kidney, spleen and intestine after feeding with Chinese 

foxglove (Wang et al. 2015). The expression of iNOS in the gut of carp fed with β-

glucans was also shown to be significantly upregulated after 25 days of feeding in 

comparison to non β-glucan fed carp (Miest et al. 2012). iNOS expression has also 

been associated with infection, for example in rainbow trout larvae this gene was 

upregulated during infection with Yersinia ruckeri (Chettri et al. 2012), and in 

Chinook salmon (Oncorhynchus tshawytscha) from two different locations in America, 

different levels of iNOS gene expression occurred after infection with Renibacterium 

salmoninarum, the causative agent of bacterial kidney disease (Metzger et al. 2010).  

 

1.5.7 – C-reactive protein. 

The Acute Phase Response is described as “the entire array of metabolic and 
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physiological changes which occur in response to tissue injury of infection” (Bayne 

and Gerwick 2001), which results in a surge of hormones and leucocytes at the site of 

injury or infection (Magor and Magor 2001). Those that are considered to be the most 

responsive are termed Acute Phase Proteins (APPs) which includes molecules such as 

C-reactive protein (CRP), Serum Amyloid (SA) A and P, and α-2-Macroglobulin (Magor 

and Magor 2001). Whilst increases in APPs are used as indicators of infections, some 

APPs will decrease in order to equilibrate the osmotic pressure that builds due to the 

influx of so called positive APPs to a location (Bayne and Gerwick 2001). 

β-glucan feeding, both on its own and in conjunction with Edwardsiella ictaluri 

infection, in the liver of striped catfish showed no effect upon the expression of the 

CRP gene (Sirimanapong et al. 2015). Differential expression patterns of two CRP 

isoforms were seen in different organs of common carp in response to infection with 

CyHV-3. A decrease in CRP1 gene expression versus an increase in expression of 

CRP2 gene in the liver, and an increase in CRP1 expression in the gills was not 

mirrored by CRP2, which showed a significant increase in expression 1 and 14 days 

post infection, but a significant decrease in expression 3 and 5 days post infection 

(Pionnier et al. 2014). Infection of tongue sole (Cynoglossus semilaevis) with Vibrio 

anguillarum resulted in an increase in CRP gene expression in the kidney, spleen and 

liver (Li et al. 2013). Serum CRP levels in tilapia have also been shown to increase 

after infection with Streptococcus iniae (Gulec and Cengizler 2012). Carp infected with 

Aeromonas hydrophila showed an induction of serum CRP, however carp treated with 

LPS from Escherichia coli did not show a similar induction (MacCarthy et al. 2008).  
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1.6 – The use of vaccination in fish health. 

The earliest publication in regards to vaccination describes the concept thus: 

“no discovery in nature nor in medicine has been more important to the interests of 

humanity” (Blane 1819). Since its discovery at the end of the 18th century, vaccination 

has become one of the leading tools in preventing the spread of disease in human 

medicine, agriculture and aquaculture. Fish vaccinations have been studied since the 

1930s (Gudding and Van Muiswinkel 2013) and are available for diseases such as 

vibriosis, streptococcosis, infectious haematopoietic necrosis virus and viral 

haemorrhagic septicaemia virus (Lorenzen and LaPatra 2005, Toranzo et al. 2005). 

Vaccines target the adaptive immune response in order to produce antibodies against 

specific pathogens so that when an organism, for example a fish, comes into contact 

with these pathogens, it can mount an effective, disease specific immune response 

much more quickly than if it had not encountered the pathogen before. Vaccinations 

can be combined with adjuvants which target the innate immune system and 

research using mammalian models has shown β-glucans to be effective in this role 

(Bromuro et al. 2010, Huang et al. 2013, Berner et al. 2015). Whilst bathing or oral 

application of vaccines is considered to be less stressful, injection of vaccines is still 

the method of application used for the majority of vaccines (Plant and LaPatra 2011). 

It is therefore important to understand the effects of potential adjuvants, such as β-

glucans, both upon the innate immune response, but also their possible effect upon 

the gut microbiota population when fish are injected in addition to oral application. 

(Liu et al. 2008) showed that whilst LPS was capable of influencing bacterial species 

richness in the gut of Atlantic salmon 28 days post injection, injection with β-glucan 

had no effect. Similarly, injection with β-glucan showed no difference in bacterial 
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species richness within the gut 23 days post injection in carp, however there was a 

difference 12 days post injection (Harris 2013). Harris also indicated a possible 

influence upon overall bacterial population size within the gut post injection, 

however noted that due to the time points analysed, further analysis should be 

performed to confirm if there was indeed a trend or data was coincidental.  

 

1.7 – Aims and objectives. 

The aim of the study presented in this thesis was to determine if there was an 

influence of β-glucans on the relationship between the common carp and its intestinal 

microbiota population. To this end, several objectives were devised. Firstly, chapters 

2 and 3 outline the optimisation of different methodologies employed within this 

thesis. Chapter 2 established the effectiveness of RT-qPCR as a method of detecting 

changes within a microbial population using in silico analysis to establish primer 

specificity towards target and non-target DNA sequences. Chapter 3 compares 

different methods of analysing in vitro bacterial growth including development and 

optimisation of an image analysis tool, PENGUIN, as a means of accurately measuring 

bacterial colony sizes. These methods are then employed in Chapter 4 which studies 

the gut microbiota population in carp fed a diet with and without MacroGard®. 

Bacteria genus specific qPCR primers analysed using the model presented in Chapter 

2 are used to compare the proportions of different bacterial genera within the gut of 

carp fed with and without MacroGard®, and bacterial isolates taken from the gut of 

carp fed without MacroGard® were tested for their ability to utilise MacroGard® as a 

substrate in vitro using the methodologies outlined in Chapter 3. This thesis studies 

the effects of β-glucans upon the immune response in the gut of common carp and the 
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gut microbiota population when applied orally (Chapter 4) and via intraperitoneal 

injection (Chapter 5). This includes statistical analysis to determine if there is a 

correlation between the gut microbiota and immune response. The final experimental 

chapter looks at the effects of combining both the oral application of MacroGard® and 

the use of injection focusing on the effects upon the gut microbiota population. To 

conclude, Chapter 7 gives an overall discussion of all work presented in this thesis 

and how this can be used to influence current aquaculture practices in order to obtain 

healthier fish populations.  
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Chapter 2 – In silico analysis of 16S qPCR primers. 

The specificity of tools used in research is instrumental in ensuring accurate 

data is obtained. qPCR assays are now widely used in microbiological analysis, 

particularly when looking at mixed populations (Thompson et al. 2004, Martinez-Puig 

et al. 2007, Desai et al. 2009, Himmelheber et al. 2009, Bergmark et al. 2012) such as 

those found within the gut of fish (Adamek et al. 2013). Genetic markers such as the 

16S rDNA gene (also known as 16S rRNA gene) can be very useful when dealing with 

individual bacteria species or when analysing a mixed bacterial population due to a 

high level of homogeneity that allows for a single primer pair to successfully anneal to 

almost all bacteria, whilst analysis of the DNA sequence can identify to a strain 

specific level. This homogeneity, however, can lead to challenges when looking at 

taxonomic levels such as genus or family. Genetic differences that allow for species 

specific identification may prevent primers from annealing, whereas regions that 

allow for amplification of all bacteria do not distinguish between different families or 

genera. This can make primer design for qPCR assays a challenge and, as this chapter 

will show, there are several examples of published primer pairs that amplify non-

target DNA sequences from other genera in addition to those they are designed to 

amplify.  

In Chapter 4, genus specific 16S RT-qPCR primers are utilised in order to 

quantify the changes in the relative proportions of individual bacterial genera in the 

gut microbiome. Whilst details for this can be found in section 4.3, it is important to 

note that primer sequences based on previously published work (Thompson et al. 

2004, Martinez-Puig et al. 2007, Adamek et al. 2013) for three bacterial genera 
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(Aeromonas, Vibrio and Lactobacillus) resulted in proportions that represented more 

than 100% of the overall 16S rDNA expression within each sample as measured using 

the total 16S rDNA primers designed by (Adamek et al. 2013). This discrepancy may 

be the result of: 

• total 16S primers not detecting all the copies of the 16S gene present in the 

samples. 

or,  

• individual genus primers amplifying non-target 16S sequences in addition to 

target sequences. 

Prior to their initial use, all primer pairs were analysed using both a standard 

BLAST search (Basic Local Alignment Search Tool) and a more specific primer BLAST. 

Neither of these had highlighted the potential for non-target amplification in genus 

specific primer pairs, nor a lack of target amplification for the total 16S primers, 

thereby indicating an even more stringent analysis was required. The aims of this 

chapter are to develop a model to determine the likelihood of amplifying both target 

and non-target sequences, and to test this model using DNA generated from pure 

bacterial cultures. 

 

2.2 – The importance of primer/sequence similarity. 

The NCBI online primer BLAST tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) identifies sequences with at least 

1 mismatch in a primer sequence with a maximum of 9 mismatches to the primer 
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sequence. The program did not, however, identify any sequences with more than 3 

mismatches to each primer analysed. Therefore a library of sequences was generated 

against which primer sequences could be compared. Sequence data were obtained 

from the European Nucleotide Archive (http://www.ebi.ac.uk/ena) and aligned using 

the program BioEdit (Thompson et al. 1994) by genus to allow for up to 100 

sequences to be compared (see Appendix 1 for accession numbers). Sites of primer 

binding were identified using target sequences and potential binding sites in non-

target sequences identified based upon alignments with target sequences. Scores 

were given based upon the number of “errors” in comparison to the primer 

nucleotide sequence. 

The biggest challenge was in determining the most appropriate way to score 

errors. Primer design must take into consideration the target DNA sequence, 

similarities to non-target sequences, similarities to the partner primer and to itself, 

i.e. the formation of tertiary structures that will inhibit annealing to DNA, and the 

conditions within the PCR reaction. It is possible to design effective primer pairs that 

are not 100% homologous to the target DNA site, as happens with degenerate primer 

pairs, therefore it was first necessary to determine how different to a DNA sequence a 

primer must be before annealing does not occur. In order to determine how many 

errors should be analysed, the following points were considered: 

• Primer BLAST analysis of primer pairs did not reveal any sequences that may 

be detected that had more than 3 errors per primer. 

• Assuming the total 16S primers were amplifying all 16S sequences, genus 

specific primers were amplifying non-target sequences that must have at least 3 
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errors per primer. 

So whilst the maximum number of errors that would inhibit annealing is not known, 

any model developed must take into account that at least 3 errors could occur but 

successful annealing would not be prevented.  

Determining the importance of an error can be based upon several factors. 

Errors could occur when swapping an adenine (A) for a guanine (G), i.e. substitution 

of a purine, or a thymine (T) for a cytosine (C), i.e. pyrimidine substitution. This 

would potentially have less of an impact than if a purine was swapped for a 

pyrimidine. Although the number of hydrogen bonds holding the primer in place 

would be different, the distance between the parallel nucleotides would still be the 

same. In instances where the error results in parallel nucleotides being both either 

purines or pyrimidines, the distance between the hydrogen atoms is altered which in 

turn will impact the strength of the bond. Both of these changes, i.e. the number or the 

strength of the hydrogen bonds, will affect the ability of the primer to remain 

annealed to the sample nucleotide sequence during PCR (Figure 2.1). Extra 

nucleotides or deletions will also impact on the ability of a primer to remain annealed 

to a template sequence and are likely to have a stronger influence than mismatches as 

they may also influence the binding of the nucleotides on either side of them. 
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Figure 2.1: Image showing nucleotide bonding of DNA (A) and potential mismatches (B) that can occur 
between a sequence and a PCR primer. Possible mismatches include the pairing of two purine base 
pairs (A and G) or two pyrimidine base pairs (T and C) rather than a purine paired with a pyrimidine 
(A and T or G and C). The altered distance will influence the strength of the hydrogen bonds between 
the two strands. Mismatches also include swapping an A for a G or a C for a T which leads to differences 
in the number of bonds between the two strands. 

 

In addition to the type of error, the position of the error must also be 

considered. Polymerase joins the “spine” of the nucleotide sequence together in the 

direction of 3’ to 5’, therefore errors closer to the 3’ end of the primer sequence are 

more likely to inhibit the action of the enzyme due to misaligned nucleotides.  

 

2.3 – Initial considerations of the model. 

The model designed had to factor in mismatches and additions/deletions as 

well as the position of a nucleotide relative to the 1st 3’ nucleotide of the primer 

being analysed. Correct pairings were given a score (��) of +2, all types of mismatch 

were considered together and given a score of -3, and an addition or deletion was 

given a score of -7. This was then multiplied by a rating (�) relative to the position of 
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the nucleotide in the sequence. The sum of all of these values was then taken, divided 

by the sum of all factors multiplied by a correct pairing, i.e. a 100% similar primer 

and the highest possible score, and given as a percentage. This is expressed by the 

following equation:  

��������	
 �
��� =  
∑ (����� × �)

∑ (2�)���

× 100 

whereby 	 = the total number of nucleotides in the primer sequence, �� = the score 

each nucleotide recieves (+2, -3 or -7) and � is a nucleotides ranking based upon its 

position relative to the 3’ end of the sequence. For example, in a 20 base pair primer 

the 1st nucleotide at the 3’ end of the sequence would be given a factor of 20 and the 

nucleotide at the 5’ end of the primer would be given an � of 1. Therefore: 

• A mismatch at nucleotide 14 from the 3’ end of the primer would have a result 

of -3x6, i.e. �� multiplied by �.  

• A mismatch at nucleotide 3 from the 3’ end of the primer would have a result 

of -3x18, i.e. �� multiplied by �. 

• When an addition or deletion occurs, the � is given as that of the closest 3’ 

nucleotide minus 0.5, i.e. the value half way between two nucleotides. This is 

done so as not to affect the impact of the remaining nucleotides towards the 5’ 

end of the sequence as adding an integer would alter the numerical values of 

all other nucleotides. An addition/deletion will have a greater impact than a 

mismatch, therefore the extra � is included in the calculation. However, due to 

the direction in which polymerase acts, it will be less important than 

nucleotides closer to the 3’ end and more important closer to the 5’ end. An 
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addition/deletion between nucleotides 9 and 10 would therefore have a score 

of -73.5. 

Using the above example, Figure 2.2 gives a diagrammatic representation of how the 

similarity score is calculated.  

The range of similarity scores this model produces, however, showed a high 

range of “overlap” between different numbers of errors depending upon their 

position within the primer. For example, three sequential mismatches at the 5’ end of 

the primer gives a score of 92.9% and a single mismatch at the 3’ end of the primer 

gives a score of 76.2%, whereas in reality, one error is less likely to impact annealing 

than three sequential errors, irrespective of position within the primer. Table 2.1 

shows the number of possible combinations of up to 3 errors and the range of 

possible similarity scores that would be obtained when analysing a 20 base pair 

primer. As can be seen the score does not necessarily relate to the number of errors. 

For example, it is possible a sequence with one mismatch error may have a lower 

score, i.e. be considered as less likely to anneal, than a sequence with 1 mismatch and 

2 gaps whereas in reality, a sequence with 3 errors in comparison to the primer will 

be less likely to anneal than a sequence with only 1 error.  
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Position 

5’ 

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

3’ 

Total 

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Correct pairing score 

(� × �) 
2 4 6 8 10  14 16 18 20 22 24 26 28 30 32 34  38 40 372 

Mismatch score 

(� × −�) 
     -18            -54   -72 

Addition/deletion score 

((� �� � !"#$%�&'(% − ). +)  × −,) 
        -73.5           -73.5 

Final score of 100% similarity = 420 Final score of primer similarity = 226.5 Similarity score =53.9% 

 

 

Figure 2.2: Example calculation of a similarity score for a primer that has two mismatches and an addition/deletion between nucleotides 11 and 12 in a 
hypothetical 20 base pair primer. A hypothetical 20 base pair primer is compared to a DNA sequence and mismatches are found at nucleotides 3 and 15 (counting 
from the 3’ end), and an addition/gap is found between nucleotides 11 and 12. The similarity score is calculated by adding together the score of all correct pairings 
(∑ � × 2 = 372), mismatches (∑ � × −3 = −72) and addition/deletions (∑(� �/ 3 01
���	�2� − 0.5) × −7 = −73.5) which totals 226.5. This is divided by the 
score of a primer with 100% similarity (∑ � × 2 = 420) and multiplied by 100. This gives a similarity score of 53.9%. 

2 4 6 8 10 -18 14 16 18 

-73.5 

20 22 24 26 28 30 32 34 -54 38 40 

5’ 3’ 

Primer 

Mismatch Mismatch Addition 

5#�6% = 5! × � 
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Table 2.1: Scoring the similarity of a 20 base pair primer against a target sequence based upon 
hypothetical errors in different positions along the nucleotide sequence. From the 3’ end of the primer, 
each nucleotide position is assigned a factor (20-1 in descending integers) which is multiplied by a 
score of either 2, -3 or -7 for a correct pairing, a mismatch pairing or an addition/deletion (A/D) 
respectively. The similarity score for the primer is calculated as a percentage similarity relative to a 
score a 100% similar sequence would give. 

 

Type of error 

Number of possible 

combinations across 

whole primer 

Possible similarity score across 

whole primer (%) 

Highest Lowest 

1 mismatch 20 98.8 76.2 

2 mismatches 190 96.4 53.6 

3 mismatches 1150 92.9 32.1 

1 A/D 19 97.5 67.5 

2 A/D 171 93.3 36.7 

3 A/D 969 87.5 7.5 

1 mismatch and 1 A/D 397 96.3 43.7 

2 mismatches and 1 A/D 3610 93.9 21.1 

1 mismatch and 2 A/D 3538 92.1 12.9 

 

Further categorisation was done to reduce the potential overlap range 

between different types of error by dividing the primer into two parts as shown in 

Figure 2.3 – the 25% of nucleotides closest to the 3’ end and the rest of the primer. 

Table 2.2 shows the possible similarity scores of a hypothetical 20 base pair primer 

sequence when the primer is additionally divided into two parts. As can be seen, 

whilst this does reduce overlap, it is still too broad a range to provide useful 

information as to whether or not a primer is likely to anneal during PCR.  
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Figure 2.3: Schematic showing the division of sections in a primer as described for use within a model 
to determine primer specificity based upon location of mismatches and/or deletions in comparison to 
a potential target nucleotide sequence. As errors closest to the 3’ end of a primer sequence are more 
likely to result in failure to amplify a DNA sequence, the primer was separated with errors being 
counted either in the 25% of the primer closest to the 3’ end or the remaining 75%. Possible 
combinations based upon number of errors and position of those errors in relation to this split are 
described in Table 2.2.  

  

5’ 3’ 

25% closest to 
the 3’ end of 
the primer 

75% closest to 
the 5’ end of 
the primer 
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Table 2.2: A hypothetical 20 base pair primer was analysed and the range of possible similarity scores 
calculated for different types of errors that additionally factor in their relative position in comparison 
to the 3’ end of the primer sequence. 5’ is defined as the 75% of nucleotides closest to the 5’ end, i.e. 
nucleotides 1-15. 3’ is defined as the 25% of nucleotides closest to the 3’ end, i.e. nucleotides 16-20. 
Similarity score is calculated as a percentage similarity relative to a primer that is 100% homologous 
to the target nucleotide sequence. 

 

Type and location of error 
Possible similarity score across whole primer (%) 

Highest Lowest 

1 mismatch 5’ 98.8 82.2 

1 mismatch 3’ 82.2 76.0 

2 mismatch 5’ 96.4 65.5 

1 mismatch 5’ and 1 mismatch 3’ 79.8 58.3 

2 mismatch 3’ 60.7 53.8 

3 mismatch 5’ 97.5 50.0 

2 mismatch 5’ and 1 mismatch 3’ 77.4 48.9 

1 mismatch 5’ and 2 mismatch 3’ 59.5 35.7 

3 mismatch 3’ 39.3 32.1 

1 A/D 5’ 97.5 74.2 

1 A/D 3’ 72.5 67.5 

2 A/D 5’ 93.3 50.0 

1 A/D 5’ and 1 A/D 3’ 70.0 41.7 

2 A/D 3’ 43.3 36.7 

3 A/D 5’ 87.5 27.5 

2 A/D 5’ and 1 A/D 3’ 65.8 17.5 

1 A/D 5’ and 2 A/D 3’ 40.8 10.8 

3 A/D 3’ 12.5 7.5 

1 mismatch 5’ and 1 A/D 5’ 96.3 56.3 

1 mismatch 5’ and 1 A/D 3’ 71.3 49.6 

1 mismatch 3’ and 1 A/D 5’ 78.5 55.1 

1 mismatch 3’ and 1 A/D 3’ 53.5 43.7 

1 mismatch 5’ and 2 A/D 5’ 93.9 32.1 

1 mismatch 5’, 1 A/D 5’ and 1 A/D 3’ 68.8 23.8 

1 mismatch 5’ and 2 A/D 3’ 42.1 18.8 

1 mismatch 3’ and 2 A/D 5’ 74.3 26.2 

1 mismatch 3’, 1 A/D 5’ and 1 A/D 3’ 51.0 17.9 

1 mismatch 3’ and 2 A/D 3’ 24.3 12.9 

2 mismatch 5’ and 1 A/D 5’ 92.1 39.7 

2 mismatch 5’ and 1 A/D 3’ 68.9 33.0 

1 mismatch 5’, 1 mismatch 3’ and 1 A/D 5’ 77.3 37.3 

1 mismatch 5’, 1 mismatch 3’ and 1 A/D 3’ 51.1 25.8 

2 mismatch 3’ and 1 A/D 5’ 58.2 27.7 

2 mismatch 3’ and 1 A/D 3’ 33.2 21.1 
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2.4 – Statistical analysis of the primer analysis model.  

As shown in section 2.3, using a numerical means of categorising the impact of 

a nucleotide mismatch, addition or deletion factoring both type and position of an 

error did not prove successful due to the high amount of overlap in similarity score 

between sequences that would result in successful amplification and those that would 

not. Correlation analysis can be used to analyse the similarity between two data sets 

of ordinal data. Spearman’s rank order test is a non-parametric statistical model that 

is used to determine the correlation between two data sets that produces both a p 

value of significant linear correlation and a value of ρ (rho) indicating the level of 

correlation between the two data sets.  

Similar to the model outlined in section 2.3, nucleotide position is scored 

based upon position relative to the 3’ end of the primer sequence. Whereas the 

previous model only considers values “in between” nucleotides when an 

addition/deletion occurs, in this alternative model these values have been built into 

the calculation at all possible positions. Primer nucleotides are ranked 1-x 

(dependent on primer length) starting at the 5’ end of the sequence. If the 

corresponding nucleotide of the target DNA sequence matches this nucleotide an 

equal score is given, i.e. if the corresponding nucleotide to primer nucleotide 5 is the 

same, it will also score +5. If the nucleotide is mismatched, however, it will score 0. 

Each “in between” value will score as if nucleotides match unless next to an 

addition/deletion. In this instance, the addition/deletion will score 0 as will the “in 

between” value on either side. For example, if a deletion occurred “opposite” primer 

nucleotide 15, where the primer nucleotide would score 14, 14.5, 15, 15.5, 16, the 

target nucleotide would score 14, 0, 0, 0, 16. This is done due to additions and 
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deletions having a stronger biological impact than a mismatch that cannot be directly 

translated using scores alone. These scores are then compared utilising the following 

formula: 

7 = 1 −
8 ∑ 9:

;

�(�;<=)
 

where 2> is the difference between each rank, and 0 is the number of ranks. 

Using an example of a 20bp primer with 1 mismatch and 1 deletion, Figure 2.4 

describes how Spearman’s ρ is calculated for this primer. 

Using the model that is fully explained in section 2.5, values of ρ were 

calculated based upon up to 4 errors occurring within a primer. Within this model, 

the primer is divided into three regions: region A is the 25% of the primer closest to 

the 3’ end, region B is the 50% of the primer closest to the 3’ end and includes region 

A, and region C is the 50% of the primer furthest from the 5’ end of the primer. The 

highest and lowest values of ρ were calculated for errors (either a mismatch or an 

addition/deletion) in the following combinations: 1 error irrespective of region 

(category A), 2 errors in region A (B), 1 error in region A and 1 error in region C (C), 2 

errors in region B (D), 1 error in region B and 1 error in region C (E), 3 errors in 

region A (F), 2 errors in region A and 1 error in region C (G), 1 error in region A and 2 

errors in region C (H), 3 errors in region B (I), 2 errors in region B and 1 error in 

region C (J), 1 error in region B and 2 errors in region C (K), 3 errors in region C (L), 

and 4 or more errors irrespective of region (M). These ranges are shown in Figure 

2.5. From this, the more errors there are closer to the 3’ end of the primer (e.g. 

category G), the lower the value of ρ and errors at the 5’ end of the primer give higher 

values of ρ. What this also shows is that a pairing with only 1 error (category B and 
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deemed within the model to have no impact upon primer annealing) may have a 

higher score than a pairing with 4 or more errors (category M and deemed within the 

model to inhibit primer annealing). This may be indicative of issues with the 

proposed classifications of errors within the model, however this could also be due to 

an error within the way in which Spearman’s ρ is calculated. As discussed within the 

previous model, how best to weight a mismatch or an addition/deletion is a relative 

unknown and giving a score of 0 for an error, and weighting additions/deletions 3 

fold in comparison to mismatches may be incorrect. Further analysis into the 

accuracy of using Spearman’s correlation as a marker of likelihood of amplification of 

non-target DNA sequences would require ex silico analysis of known DNA sequences 

for which values of ρ could be calculated and data would be available as to successful 

amplification or not. It was therefore decided a categorical model should be 

considered.   
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Nucleotide 
Primer (5’ � 3’) Target 

d d2 
Number Rank order Number Rank order 

Match 1 1 1 5 4 16 
 1.5 2 1.5 6 4 16 

Match 2 3 2 7 4 16 
 2.5 4 2.5 8 4 16 

Mismatch 3 5 0 2.5 2.5 6.25 
 3.5 6 3.5 9 3 9 

Match 4 7 4 10 3 9 
 4.5 8 4.5 11 3 9 

Match 5 9 5 12 3 9 
 5.5 10 5.5 13 3 9 

Match 6 11 6 14 3 9 
 6.5 12 6.5 15 3 9 

Match 7 13 7 16 3 9 
 7.5 14 7.5 17 3 9 

Match 8 15 8 18 3 9 
 8.5 16 8.5 19 3 9 

Match 9 17 9 20 3 9 
 9.5 18 9.5 21 3 9 

Match 10 19 10 22 3 9 
 10.5 20 10.5 23 3 9 

Match 11 21 11 24 3 9 
 11.5 22 11.5 25 3 9 

Match 12 23 12 26 3 9 
 12.5 24 12.5 27 3 9 

Match 13 25 13 28 3 9 
 13.5 26 13.5 29 3 9 

Match 14 27 14 30 3 9 
 14.5 28 0 2.5 25.5 650.25 

Deletion 15 29 0 2.5 26.5 702.25 
 15.5 30 0 2.5 27.5 756.25 

Match 16 31 16 31 0 0 
 16.5 32 16.5 32 0 0 

Match 17 33 17 33 0 0 
 17.5 34 17.5 34 0 0 

Match 18 35 18 35 0 0 
 18.5 36 18.5 36 0 0 

Match 19 37 19 37 0 0 
 19.5 38 19.5 38 0 0 

Match 20 39 20 39 0 0 
 - - - - Total 2377 

7 = 1 −
6 ∑ 2@

0(0@ − 1)
= 1 −

6 × 2377

39(39@ − 1)
= 1 −

14262

59280
= 1 − 0.241 = ). ,+C 

Figure 2.4: Illustration of how a Spearman’s ρ is calculated for a primer sequence in order to determine 
similarity to a target DNA sequence. Nucleotides are assigned a number based upon position relative to 
the 3’ end of the primer sequence. Additionally, a value of 0.5 is added between each nucleotide in 
order to distinguish between mismatches and additions/deletions. Biologically, deletions/additions 
have a larger impact than mismatches. All errors receive a number of 0. Mismatches score a single 0. 
Additions/deletions score 3 0s, i.e. the position of the nucleotide and the two nearest 0.5 numbers.  
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Figure 2.5: The ranges of values of ρ calculated for different numbers of errors (mismatches and 
additions/deletions) at different locations within the primer based upon the model that is fully 
elucidated in section Chapter 1. Using a 20bp example, firstly the nucleotides are divided into 2 parts, 
the 10 nucleotides closest to the 5’ end and the 10 nucleotides closest to the 3’ end. The 3’ section is 
then further divided by 2. This results in 3 sections: the 25% of the primer closest to the 3’ end, the 
50% closest to the 3’ end (includes the previous section), and the 50% of the primer furthest from the 
3’ end. The range of possible ρ values for up to 3 errors is calculated for the following location 
combinations: 1 error irrespective of location (B), 2 errors in the 3’ 25% (C), 1 error in the 3’ 25% and 
1 error in the 5’ 50% (D), 2 errors in the 3’ 50% (E), 1 error in the 3’ 50% and 1 error in the 5’ 50% (F), 
3 errors in the 3’ 25% (G), 2 errors in the 3’ 25% and 1 error in the 5’ 50% (H), 1 error in the 3’ 25% 
and 2 errors in the 5’ 50% (I), 3 errors in the 3’ 50% (J), 2 errors in the 3’ 50% and 1 error in the 5’ 
50% (K), 1 error in the 3’ 50% and 2 errors in the 5’ 50% (L), 4 or more errors irrespective of location 
(M).   
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2.5 – Re-evaluation of the model.  

As shown in sections 2.3 and 2.4, using a numerical means of categorising the 

impact of a nucleotide mismatch, addition or deletion factoring both type and 

position of an error did not prove successful due to the high amount of overlap in 

similarity score between different numbers of errors. Therefore a simpler approach 

was considered that focused on a broader definition of position and considered both 

mismatches and additions/deletions simply as an “error”.  

Rather than considering the individual position of a nucleotide, primers were 

divided into three sections. As discussed in section 2.2, the closer an error is to the 3’ 

end of the primer, the more likely it is to negatively impact the ability of polymerase 

to successfully start connecting the DNA backbone of nucleotides that are next to each 

other, therefore more emphasis is placed on the 3’ end of the primer sequence. 

Section A is the 50% of the primer closest to the 5’ end, Section B is the 50% of the 

primer closest to the 3’ end, and Section C is the 25% of the primer that is closest to 

the 3’ end (Figure 2.6). In this model, up to 3 errors are considered with an 

assumption that 4 or more errors would result in unsuccessful amplification. The 

scoring system employed is described in Table 2.3.  

 

 

Figure 2.6: Illustration of how a primer is divided into 3 sections. Section A is the 50% of the primer 
that is closest to the 5’ end of the nucleotide sequence, Section B is the 50% of the primer that is closest 
to the 3’ end and Section C is the 25% of the nucleotide closest to the 3’ end. This was done in order to 
emphasise the importance of errors closer to the 3’ end of the sequence. 
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Table 2.3: Scoring of a primer based upon the number of errors (this can be a mismatch, an addition or 
a deletion of a nucleotide) within 3 different sections as shown in Figure 2.6. Section A is the 50% of 
the sequence closest to the 5’ end of the primer, Section B is the 50% of the sequence closest to the 3’ 
end and Section C is the 25% of the primer closest to the 3’ end of the sequence. This is done to 
emphasise the importance of errors closest to the 3’ end of the primer in its ability to anneal to a DNA 
strand. Up to 3 errors within a primer sequence are considered. Four or more errors within the whole 
primer are considered to be too many for successful annealing to occur.  

 

Score 
Number of errors in 

Section A Section B Section C 

A No errors 

B One error in whole primer 

C - - 2 

D 1 - 1 

E - 2 - 

F 1 1 - 

G - - 3 

H 1 - 2 

I 2 - 1 

J - 3 - 

K 1 2 - 

L 2 1 - 

M Four or more errors in whole primer 

 

Once sequences have been scored based upon location of the error as shown in 

Table 2.3, the likelihood of annealing must then be defined. This, however, can 

depend upon the conditions within a PCR reaction and can be influenced by the type 

of polymerase, the primer concentration and MgCl2 concentration. To this end a dual 

system was proposed for this model. Initial scoring is fixed as it is based upon in silico 

data but likelihood of annealing can be altered to suit the specificity of PCR reaction 

conditions. The likelihood of annealing was initially divided as follows: scores of A, B, 

D, F, I and L were considered “likely to anneal”, scores of G, J and M were considered 

“unlikely to anneal”, and the remaining scores of C, E, H and K were considered 

“maybe will anneal”.  
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2.6 – Calculating the probability of a primer pair amplifying a DNA sequence. 

As stated in section 2.2, a library of sequence alignments was generated based 

upon the bacterial 16S rDNA housekeeping gene against which primers could be 

compared. From this, it was possible to calculate the mathematical probability of a 

primer pair annealing to a sequence from a specific genus. This was done using the 

following formula: 

D(E ∩ G) = D(E) × D(G) 

whereby D(E ∩ G) is the probability that both the forward primer (F) and 

reverse primer (R) will anneal, D(E) is the probability that the forward primer will 

anneal and D(G) is the probability that the reverse primer will anneal. The 

probability of an individual primer annealing is calculated based upon the 

categorising of “likely to anneal” given in section 2.5 as follows: 

D(�00����0H) = (IJK + IMK + INK + IEK + IOK + IPK) 

probability of each score, the following equation is used: 

D(�
���) =
�QRSTU VW XTYQT�ZTX [>�\ ] X^TZ>W>Z XZVUT

�V�]_ �QRSTU VW XTYQT�ZTX
 

As an example, a primer pair for the genus Aeromonas sp. (Adamek et al. 2013) 

was compared against 1100 Aeromonas sp. 16S rDNA sequences. From this, 911 hits 

were made for the forward primer and 903 hits were made for the reverse primer. All 

sequences were scored as described in section 2.5 and the number of sequences with 

each score for each primer was recorded as shown in Table 2.5. 
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Table 2.4: Aeromonas sp. 16S rDNA sequences were scored against a set of Aeromonas sp. PCR primers 
for the same gene. Scores are based on the analysis model given in section 2.5 and are assigned based 
upon the number of errors within a primer and their location in relation to the 3’ end of the primer 
sequence. Scores highlighted in green are those expected to result in successful annealing between a 
primer and a DNA sequence. 

Score A B C D E F G H I J K L M 

Forward primer 882 12 0 0 1 2 0 0 0 0 0 1 13 

Reverse primer 793 78 0 0 1 1 0 0 0 0 8 10 12 

 

From this data, the probability of each possible outcome for each primer can 

be calculated as shown in Table 2.5. 

 

Table 2.5: The probability of a 16S rDNA sequence from an Aeromonas sp. achieving a score of A-M 
when compared to a pair of Aeromonas sp. 16S rDNA primers. Probabilities are calculated by dividing 
the number of sequences with a specific score by the total number of sequences analysed for each 
primer. Scores highlighted in green are those expected to result in successful annealing between a 
primer and a DNA sequence. 

Score A B C D E F G H I J K L M 

P(F) 0.968 0.013 0 0 0.001 0.002 0 0 0 0 0 0.001 0.014 

P(R) 0.878 0.086 0 0 0.001 0.001 0 0 0 0 0.009 0.011 0.013 

 

As the probability of a primer annealing to a DNA sequence is not linked to 

other factors at this stage, it is calculated by summing up the probability of all 

outcomes that are likely to result in annealing as follows: 

`(a) = 0.968 + 0.013 + 0 + 0.002 + 0 + 0.001 = ). Cb+ 

`(c) = 0.878 + 0.086 + 0 + 0.001 + 0 + 0.011 = ). C,, 

Unlike the probability of an individual primer annealing to a DNA sequence, 

the probability that there will be successful amplification in a PCR reaction is 

dependent upon both primers annealing to a DNA sequence. To this end, in order to 

calculate this, the probability of both primers annealing must be multiplied as 

follows: 

`(a ∩ c) = 0.985 × 0.977 = ). Cd� 
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From this, based upon the model as stated in section 2.5, the probability of 

Aeromonas sp. 16S rDNA primers amplifying an Aeromonas sp. 16S rDNA sequence is 

0.962. This indicates that the particular primer pair analysed will successfully anneal 

to more than 95% of Aeromonas sp. sequences within a mixed population. Whilst this 

information is important it does not ascertain if a primer pair will bind to non-target 

sequences within a mixed population. In order to resolve this the same primer pair 

was compared to 16S rDNA sequences from other bacteria genera including Vibrio 

sp., Pseudomonas sp., Enterobacteriaceae sp., Lactobacillus sp. and Bacillus sp.. The 

probabilities for the primer pairs annealing to sequences from each of these genera 

are as follows: 

D(e�f��� N�J) = 0 

D(D��12���0�� N�J) = 0 

D(g0	���f�
	����
��� N�J) = 0.039 

D(P�
	�f�
���1� N�J) = 0 

D(M�
���1� N�J) = 0 

This appears to be positive for both the model of analysis described in section 

2.5 and the use of Adamek et al.’s (2013) Aeromonas sp. specific 16S rDNA primers 

within a mixed population. However without confirmation that this translates into a 

PCR reaction mix, the conclusion at this point is theoretical only.  

 

2.7 – Testing of the model. 

In order to test the accuracy of the model outlined in section 2.5, PCRs were 
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conducted using primer pairs designed to amplify Pseudomonas and Lactobacillus, i.e. 

an example of a primer pair that were likely to only amplify target sequences and an 

example that amplified non-target sequences, in addition to target sequences 

respectively. cDNA from a range of different bacterial species was prepared and 

utilised as a template for PCR analysis. Bacteria cultures were donated by Dr. Verena 

Jung-Schroers (University of Veterinary Medicine, Hanover, Germany) and were 

grown at 25°C for 24 hours on blood agar plates before a single colony was 

transferred into 2ml of TriFast reagent and frozen at -80°C. The cultures utilised were 

as follows: Aeromonas allosaccharophila (S39232.2), Aeromonas hydrophila 

(KJ743719.1), Bacillus cereus (KJ833790.1), Bacillus thuringiensis (KJ722440.1), 

Citrobacter freundii (JX860619.1), Edwardsiella ictaluri (KC789872.1), Vibrio sp. 

(GQ359963.1), Aeromonas hydrophila, Aeromonas sobria, Citrobacter farmeri, 

Citrobacter youngae, Pseudomonas alcaligenes, Pseudomonas putida, and Pseudomonas 

fluorescens. Samples were then shipped to Keele University (UK) on ice where RNA 

was isolated using a phenol/chloroform isolation protocol as outlined in section 2.7.1. 

cDNA was synthesised using Moloney Murine Leukemia Virus (MuLV) Reverse 

Transcriptase (RT) as described in section 2.7.2. PCRs were then performed as 

outlined in section 2.7.3 with primer sequences being described in Appendix 3.  

 

2.7.1 – RNA isolation. 

Bacteria cultures suspended in TriFast were incubated at room temperature 

for 5 minutes before 0.2ml of chloroform was added and the tubes shaken by hand for 

15 seconds. Samples were incubated at room temperature for a further 3 minutes 

before centrifugation at 12,000 x g for 15 minutes at 4°C. The RNA containing 
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aqueous phase was removed to a fresh tube and mixed with 0.5ml of 100% 

isopropanol and incubated at room temperature for 10 minutes. Samples were then 

subject to centrifugation (12,000 x g) for 10 minutes at 4°C. The supernatant was 

removed and the remaining pellet washed with 1ml of 75% ethanol. After a final 

centrifugation at 7,500 x g for 5 minutes at 4°C, the supernatant was discarded and 

the samples left to air dry for 5 minutes before being resuspended in RNase free 

water and incubated at 55°C for 10 minutes. Samples were stored at -80°C until used.  

 

2.7.2 – cDNA synthesis. 

cDNA was synthesised as outlined in Falco et al. (2012b) using M-MuLV RT. 

Briefly, 500ng of RNA was incubated with a final concentration of 5mM MgCl2, 1X PCR 

buffer II, 0.5mM dNTPs, 1.25μM random hexamers, 20U RNase Inhibitor and 25U M-

MuLV RT at 25°C for 10 minutes, 42°C for 30 minutes and 95°C in a GeneAmp PCR 

system 9700 thermocycler. Samples were stored at -20°C until further use.  

 

2.7.3 – PCR analysis. 

In order to test the two genus specific 16S rDNA primer pairs, it was decided 

to use the same conditions selected for use in future RT-qPCR analysis of 

experimental samples. RT-qPCR assays were performed using an ABI Prism® 9000 

Sequence Detection System and the SensiFASTTM SYBR® HiROX kit as per the 

manufacturer’s instructions. Assays were performed in a total volume of 20µl with 

primers utilised at a concentration of 0.2µM each. 2µl of undiluted template cDNA 

was used in each assay. A thermal profile of an initial 2 minutes at 95°C and 40 cycles 
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of 5 seconds at 95°C and 30 seconds at 62°C was performed followed by production 

of a dissociation curve based upon the default thermal settings as defined by version 

1.2.3 of the software for the thermocycler. Positive amplification was determined 

using the dissociation curve rather than based upon a Ct in order to eliminate any 

false positives produced by primer dimers, and a PCR is described as successful 

annealing if a peak was obtained in the disassociation curve.  

 

2.7.4 – Results. 

Where sequence data was available for the bacteria analysed, analysis was 

performed using the model described in section 2.5. Successful amplification of DNA 

was determined based upon presence of a PCR product when analysing the 

dissociation curve produced at the end of the thermal program. Table 2.6 shows the 

outcome for each primer pair. The model inaccurately predicted 2 outcomes for the 

Pseudomonas primer pair and only 1 outcome for the Lactobacillus primer pair giving 

the model an overall success rate of 87.5%, i.e. 21/24 predicted outcomes were 

correct. Based upon this, it was decided to continue using the model in its current 

format without further adjustment to the scoring system in order to determine the 

likelihood of qPCR primers amplifying non-target sequences. 
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Table 2.6: Results of analysis of two primer pairs against cDNA from 14 different bacterial isolates. 
Where sequence data was available, predictions as to the likelihood of successful PCR were made using 
the model outlined in section 2.5. Letter/Letter represents the score for the forward and reverse PCR 
primer. P = successful PCR amplification is expected. NP = successful PCR amplification is not expected. 
Results highlighted in orange indicate where the outcome of the PCR was not as predicted by the 
model. 

Species of bacteria 
Model score for each primer and presence of product 

Pseudomonas Lactobacillus 

Aeromonas allosaccharophila S39232.2 M(5)/M(5) NP K/D P 

Aeromonas hydrophila KJ743719.1 M(5)/M(5) NP K/D P 

Bacillus cereus KJ833790.1 -/M(5) NP -/B P 

Bacillus thuringiensis KJ722440.1 M(10)/M(5) NP B/B P 

Citrobacter freundii JX860619.1 M(4)/M(5) NP K/D P 

Edwardsiella ictaluri KC789872.1 L/M(5) NP K/D P 

Vibrio sp. GQ359963.1 K/M(6) NP K/D NP 

Aeromonas hydrophila NP P 

Aeromonas sobria NP P 

Citrobacter farmeri NP P 

Citrobacter youngae P P 

Pseudomonas alcaligenes NP NP 

Pseudomonas putida P NP 

Pseudomonas fluorescens P P 

 

 

2.8 – Using the model to analyse primer pairs. 

Primer pairs for the bacterial 16S rDNA gene (Thompson et al. 2004, Martinez-

Puig et al. 2007, Bergmark et al. 2012, Adamek et al. 2013) were compared against 

sequences obtained from the ENA database as outlined in section 2.2. The model 

described in section 2.5 was utilised in order to assess the likelihood of a primer pair 

amplifying both target and non-target DNA sequences. 

The first set of primers analysed were the total 16S rDNA primers (Adamek et 
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al. 2013). The average likelihood of binding was calculated to be 0.969 (Table 2.7) 

against bacteria that had previously been identified as being present within the gut of 

carp such as Aeromonas, Pseudomonas, Lactobacillus, Enterobacteriaceae and Vibrio 

(Sugita et al. 1996, Jung-Schroers et al. 2015). 

A pair of 16S primers generated against Enterobacteriaceae sp. (Martinez-Puig 

et al. 2007) were analysed using the model and both forwards and reverse primers 

had a probability of less than 0.15 of annealing to target sequences therefore further 

analysis was not performed (Table 2.8) due to the low probability of amplification of 

target sequences. 

From the same paper as the Enterobacteriaceae sp. primers (Martinez-Puig et 

al. 2007), a pair of 16S primers to Lactobacillus sp. were also analysed (Table 2.9). 

From the model, a probability of 0.984 was calculated when the primer pair were 

compared to target 16S sequences. Although the probability of successful annealing 

as calculated based upon sequences receiving a score of A, B, D, F, I or L is less than 

0.005 for the genera Aeromonas, Vibrio and the class Enterobacteriaceae, it can clearly 

be seen in Table 2.9 that many sequences received a score where it was not known if 

successful annealing would occur (C, E, H or K). Additionally, the primers have a 

probability of 0.947 of annealing to a 16S sequence from a Bacillus sp.. The only genus 

analysed where amplification will not occur is Pseudomonas due to the fact the 

forward primer scored exclusively M, i.e. 4 or more errors within each primer, for the 

sequences analysed based upon the model in its current format. If it proves that 4 

errors can still result in successful annealing of a primer, due to the fact the reverse 

primer of 0.951 of successfully annealing, there is a strong chance Pseudomonas sp. 

sequences will also be amplified by this primer pair. 
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The Vibrio sp. 16S primers analysed (Thompson et al. 2004) have a probability 

of 0.978 that they will successfully anneal to target sequences (Table 2.10). The 

calculated probability of successful annealing as described in section 2.6 is less than 

0.001 for all other genera analysed, however the reverse primer has a probability of 

0.990 of successfully annealing to a sequence from an Aeromonas sp.. Additionally, 

99% of the Aeromonas sp. sequences against which the forward primer was 

compared gave a score where it is unknown whether successful annealing is likely to 

happen (C, E, H or K). In order to accurately determine if this primer pair will amplify 

Aeromonas sp., a more in depth analysis of the annealing capabilities of primers with 

a “maybe” score (C, E, H or K) must be performed. 

Pseudomonas sp. specific 16S primers (Bergmark et al. 2012) have a 

probability of 0.947 of annealing to target sequences (Table 2.11). The probability of 

these primers successfully annealing to sequences from the genera Aeromonas, 

Lactobacillus and Bacillus is less than 0.001. This is also the probability for the genus 

Vibrio, however 70% of the Vibrio sequences against which the reverse primer was 

compared gave a score where it is unknown if successful annealing is likely (C, E, H or 

K). Should these scores prove conducive to successful annealing, this could 

significantly increase the probability of the primer pair as a whole amplifying Vibrio 

16S sequences in addition Pseudomonas, i.e. the target sequences.  
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Table 2.7: Analysis of total 16S rDNA primers (Adamek et al. 2013) using the model outlined in section 
2.5. Primers are compared to 16S rDNA sequences from different bacteria genera and the probability 
of the primer pair annealing to sequences from each genus is calculated. Green represents a score of A, 
B, D, F, I or L and is defined as likely to anneal. Blue represents a score of C, E, H or K and is defined as 
unknown if successful annealing will occur. Red represents a score of G, J or M and is defined as 
annealing is unlikely to occur. 

Total 16S rDNA primers: analysis by genus 

Aeromonas sp. 

Forward 469 Reverse 464 

A,B,D,F,I,L 460 A,B,D,F,I,L 464 

C,E,H,K 8 C,E,H,K 0 

G,J,M 1 G,J,M 0 

Probability of successful 
binding 

Forward D(E) = 0.981 

Reverse D(G) = 1.000 

Both `(a ∩ c) = ). Cbh 

Bacillus sp. 

Forward 654 Reverse 616 

A,B,D,F,I,L 642 A,B,D,F,I,L 610 

C,E,H,K 4 C,E,H,K 2 

G,J,M 8 G,J,M 4 

Probability of successful 
binding 

Forward D(E) = 0.982 

Reverse D(G) = 0.990 

Both `(a ∩ c) = ). C,� 

Enterobacteriaceae 
sp. 

Forward 471 Reverse 409 

A,B,D,F,I,L 452 A,B,D,F,I,L 408 

C,E,H,K 11 C,E,H,K 0 

G,J,M 8 G,J,M 1 

Probability of successful 
binding 

Forward D(E) = 0.960 

Reverse D(G) = 0.998 

Both `(a ∩ c) = ). C+, 

Lactobacillus sp. 

Forward 486 Reverse 461 

A,B,D,F,I,L 408 A,B,D,F,I,L 476 

C,E,H,K 0 C,E,H,K 10 

G,J,M 1 G,J,M 0 

Probability of successful 
binding 

Forward D(E) = 0.979 

Reverse D(G) = 0.996 

Both `(a ∩ c) = ). C,+ 

Pseudomonas sp. 

Forward 305 Reverse 327 

A,B,D,F,I,L 287 A,B,D,F,I,L 326 

C,E,H,K 16 C,E,H,K 0 

G,J,M 2 G,J,M 1 

Probability of successful 
binding 

Forward D(E) = 0.941 

Reverse D(G) = 0.997 

Both `(a ∩ c) = ). C�b 

Vibrio sp. 

Forward 338 Reverse 339 

A,B,D,F,I,L 327 A,B,D,F,I,L 339 

C,E,H,K 8 C,E,H,K 0 

G,J,M 1 G,J,M 0 

Probability of successful 
binding 

Forward D(E) = 0.967 

Reverse D(G) = 1.000 

Both `(a ∩ c) = ). Cd, 
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Table 2.8: Analysis of Enterobacteriaceae sp. primers against 16S rDNA sequences from 
Enterobacteriaceae sp. and scored as per the model (section 2.5). The probability of successful 
annealing is calculated. Green represents a score of A, B, D, F, I or L and is defined as likely to anneal. 
Blue represents a score of C, E, H or K and is defined as unknown if successful annealing will occur. Red 
represents a score of G, J or M and is defined as annealing is unlikely to occur. 

Enterobacteriaceae 16S rDNA primers: analysis by genus 

Enterobacteriaceae 
sp. 

Forward 988 Reverse 1036 

A,B,D,F,I,L 448 A,B,D,F,I,L 341 

C,E,H,K 50 C,E,H,K 127 

G,J,M 490 G,J,M 568 

Probability of successful 
binding 

Forward D(E) = 0.453 

Reverse D(G) = 0.329 

Both `(a ∩ c) = ). hiC 
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Table 2.9: Analysis of 16S rDNA primers designed to amplify only bacteria from the genus 
Lactobacillus. Primers are compared against 16S sequences from multiple genera and scored using the 
model described in section 2.5. The probability of successful annealing is shown. Green represents a 
score of A, B, D, F, I or L and is defined as likely to anneal. Blue represents a score of C, E, H or K and is 
defined as unknown if successful annealing will occur. Red represents a score of G, J or M and is 
defined as annealing is unlikely to occur. 

Lactobacillus 16S rDNA primers: analysis by genus 

Aeromonas sp. 

Forward 480 Reverse 473 

A,B,D,F,I,L 0 A,B,D,F,I,L 473 

C,E,H,K 477 C,E,H,K 0 

G,J,M 3 G,J,M 0 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 1.000 

Both `(a ∩ c) = ). ))) 

Bacillus sp. 

Forward 759 Reverse 506 

A,B,D,F,I,L 729 A,B,D,F,I,L 499 

C,E,H,K 25 C,E,H,K 5 

G,J,M 5 G,J,M 2 

Probability of successful 
binding 

Forward D(E) = 0.960 

Reverse D(G) = 0.986 

Both `(a ∩ c) = ). Ci, 

Enterobacteriaceae 
sp. 

Forward 1110 Reverse 1020 

A,B,D,F,I,L 0 A,B,D,F,I,L 970 

C,E,H,K 1083 C,E,H,K 39 

G,J,M 27 G,J,M 11 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.951 

Both `(a ∩ c) = ). ))) 

Lactobacillus sp. 

Forward 657 Reverse 493 

A,B,D,F,I,L 653 A,B,D,F,I,L 488 

C,E,H,K 1 C,E,H,K 3 

G,J,M 3 G,J,M 2 

Probability of successful 
binding 

Forward D(E) = 0.994 

Reverse D(G) = 0.984 

Both `(a ∩ c) = ). CC) 

Pseudomonas sp. 

Forward 416 Reverse 384 

A,B,D,F,I,L 0 A,B,D,F,I,L 367 

C,E,H,K 0 C,E,H,K 13 

G,J,M 416 G,J,M 4 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.956 

Both `(a ∩ c) = ). ))) 

Vibrio sp. 

Forward 464 Reverse 348 

A,B,D,F,I,L 2 A,B,D,F,I,L 342 

C,E,H,K 455 C,E,H,K 1 

G,J,M 7 G,J,M 5 

Probability of successful 
binding 

Forward D(E) = 0.004 

Reverse D(G) = 0.983 

Both `(a ∩ c) = ). ))i 



Chapter 2 – In silico analysis of 16S qPCR primers. Harris 

�� ! 

 

60 

Table 2.10: Analysis of 16S rDNA primers designed to amplify only bacteria from the genus Vibrio. 
Primers are compared against 16S sequences from multiple genera and scored using the model 
described in section 2.5. The probability of successful annealing is shown. Green represents a score of 
A, B, D, F, I or L and is defined as likely to anneal. Blue represents a score of C, E, H or K and is defined 
as unknown if successful annealing will occur. Red represents a score of G, J or M and is defined as 
annealing is unlikely to occur. 

Vibrio 16S rDNA primers: analysis by genus 

Aeromonas sp. 

Forward 998 Reverse 997 

A,B,D,F,I,L 0 A,B,D,F,I,L 987 

C,E,H,K 992 C,E,H,K 4 

G,J,M 6 G,J,M 6 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.990 

Both `(a ∩ c) = ). ))) 

Bacillus sp. 

Forward 672 Reverse 659 

A,B,D,F,I,L 0 A,B,D,F,I,L 0 

C,E,H,K 256 C,E,H,K 0 

G,J,M 416 G,J,M 659 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 

Enterobacteriaceae 
sp. 

Forward 345 Reverse 308 

A,B,D,F,I,L 5 A,B,D,F,I,L 289 

C,E,H,K 332 C,E,H,K 9 

G,J,M 8 G,J,M 10 

Probability of successful 
binding 

Forward D(E) = 0.014 

Reverse D(G) = 0.938 

Both `(a ∩ c) = ). )hi 

Lactobacillus sp. 

Forward 533 Reverse 506 

A,B,D,F,I,L 0 A,B,D,F,I,L 0 

C,E,H,K 0 C,E,H,K 0 

G,J,M 533 G,J,M 506 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 

Pseudomonas sp. 

Forward 527 Reverse 527 

A,B,D,F,I,L 0 A,B,D,F,I,L 0 

C,E,H,K 0 C,E,H,K 91 

G,J,M 539 G,J,M 436 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 

Vibrio sp. 

Forward 373 Reverse 342 

A,B,D,F,I,L 368 A,B,D,F,I,L 339 

C,E,H,K 1 C,E,H,K 1 

G,J,M 4 G,J,M 2 

Probability of successful 
binding 

Forward D(E) = 0.987 

Reverse D(G) = 0.991 

Both `(a ∩ c) = ). C,b 
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Table 2.11: Analysis of 16S rDNA primers designed to amplify only bacteria from the genus 
Pseudomonas. Primers are compared against 16S sequences from multiple genera and scored using the 
model described in section 2.5. The probability of successful annealing is shown. Green represents a 
score of A, B, D, F, I or L and is defined as likely to anneal. Blue represents a score of C, E, H or K and is 
defined as unknown if successful annealing will occur. Red represents a score of G, J or M and is 
defined as annealing is unlikely to occur. 

Pseudomonas 16S rDNA primers: analysis by genus 

Aeromonas sp. 

Forward 1060 Reverse 909 

A,B,D,F,I,L 0 A,B,D,F,I,L 0 

C,E,H,K 0 C,E,H,K 0 

G,J,M 1060 G,J,M 909 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 

Bacillus sp. 

Forward 646 Reverse 657 

A,B,D,F,I,L 1 A,B,D,F,I,L 0 

C,E,H,K 0 C,E,H,K 0 

G,J,M 645 G,J,M 657 

Probability of successful 
binding 

Forward D(E) = 0.002 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 

Enterobacteriaceae 
sp. 

Forward 1117 Reverse 1028 

A,B,D,F,I,L 72 A,B,D,F,I,L 1 

C,E,H,K 21 C,E,H,K 0 

G,J,M 1024 G,J,M 1027 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.001 

Both `(a ∩ c) = ). ))) 

Lactobacillus sp. 

Forward 649 Reverse 500 

A,B,D,F,I,L 0 A,B,D,F,I,L 0 

C,E,H,K 0 C,E,H,K 0 

G,J,M 649 G,J,M 500 

Probability of successful 
binding 

Forward D(E) = 0.000 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 

Pseudomonas sp. 

Forward 880 Reverse 976 

A,B,D,F,I,L 856 A,B,D,F,I,L 950 

C,E,H,K 7 C,E,H,K 7 

G,J,M 17 G,J,M 19 

Probability of successful 
binding 

Forward D(E) = 0.973 

Reverse D(G) = 0.956 

Both `(a ∩ c) = ). C�) 

Vibrio sp. 

Forward 461 Reverse 350 

A,B,D,F,I,L 32 A,B,D,F,I,L 0 

C,E,H,K 7 C,E,H,K 242 

G,J,M 422 G,J,M 108 

Probability of successful 
binding 

Forward D(E) = 0.069 

Reverse D(G) = 0.000 

Both `(a ∩ c) = ). ))) 
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2.9 – Conclusion.  

The model and data presented in this chapter highlights the importance of 

checking primers for specificity, specifically those designed for use with the bacterial 

16S rDNA housekeeping gene, before use, even if they are obtained from published 

journals. Defining the likelihood of a primer pair annealing to non-target DNA 

sequences is not a common way of considering primers during primer design and, as 

such, development of a means of analysing a primers ability to amplify non-target 

DNA needs careful consideration. Testing of primers against DNA templates taken 

from pure bacterial cultures shows that the final model presented is successful in 

identifying if a primer pair is likely to successfully amplify non-target DNA sequences 

before carrying out laboratory work. Although the secondary level of scoring, i.e. if a 

score based upon the number of errors present is likely to result in annealing, has 

only been described for one particular set of PCR conditions, this can be adjusted to 

suit other conditions.  

The advantage of using a model such as the one presented is it reduces the 

long term costs of testing if primers anneal to non-target sequences through 

laboratory based studies. Primer pairs can be analysed in silico and the probability of 

successful annealing to either target or non-target DNA calculated before any time is 

spent within a laboratory. This model was utilised to analyse all 16S primer pairs 

utilised within this thesis.  
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Chapter 3 – Optimisation of microbiological techniques. 

 

This following chapter presents work pertaining to the optimisation of 

techniques used during culture based microbiology analysis. Whilst the molecular 

methodologies employed within this thesis had been previously optimised, those 

required for analysis of bacteria cultures had not. This chapter also details the design 

and optimisation of the digital image analysis program PENGUIN which was built in 

collaboration with web developer Todd Specht (The Woodpecker Project, UK) as a 

means of accurately measuring differences in bacterial colony size. A list of all 

chemicals and equipment utilised within the protocols presented in this chapter can 

be found in Appendix 2. 

 

3.1 – Preparation of MacroGard®. 

The aim of all assays presented within this chapter is to establish the best 

means of measuring the effect of MacroGard® on the rate of bacterial growth. As 

previously stated, MacroGard® is a β-1/3,1/6-glucan compound produced by Biorigin 

(Brazil) that contains approximately 60% β-glucan. MacroGard® was prepared as 

described by the manufacturers as follows: MacroGard® powder was weighed out 

and mixed with sterile nutrient broth at a concentration of 10% w/v. This was then 

sonicated in two 30 second bursts using a Sonics Vibra-cell sonicator set on 6 (high). 

MacroGard® was then incubated at 80°C for 20 minutes and either added to liquid 

agar before cooling (~50°C) or cooled to 4°C in a fridge before being mixed with 

nutrient broth.  
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3.2 – Colourmetric assessment of inhibition of bacterial growth. 

A minimum inhibition concentration assay (Mann and Markham 1998) using 

the dye resazurin was utilised to determine the concentrations of MacroGard® that 

were toxic to a bacterial suspension (see section 4.2.2 for the details of bacteria 

utilised). Using a “checkerboard” format on a 96 well plate, concentrations of both 

bacteria and MacroGard® were analysed as shown in Figure 3.1. Briefly, bacteria were 

incubated with shaking overnight at 100RPM in 50ml nutrient broth at room 

temperature (20°C). In order to ascertain the concentration of the bacteria 

suspension, a colony forming unit (CFU) count was performed. 50μl of a 1:10 serial 

dilution of inoculated broth was applied to nutrient agar plates (3x per dilution) and 

incubated at 20°C for 24 hours and the number of CFUs in the undiluted broth was 

calculated using the following equation:  

jEk(l�� ��) = (�m + 
) × 20 

Where � is the slope of the linear plot of CFU versus dilution factor, m is the 

desired dilution factor, i.e. 1, and 
 is the point at which the linear trendline intercepts 

the y axis.  

During this time, the original inoculated broth was kept at 4°C to minimise 

further growth. Once the concentration was determined, suspensions were warmed 

to room temperature by incubation at 20°C for 20 minutes. MacroGard® was 

prepared as described in section 3.1 and added to a 96 well plate as shown in Figure 

3.1 to produce a final concentration of 0.1% w/v to 0.01% w/v MacroGard® in 100μl 

of nutrient broth. 100μl of bacteria inoculated nutrient broth was added to each well 

across a 96 well plate as described in Figure 3.1 giving a final total volume of 200μl 
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per well. Plates were incubated at room temperature with shaking (MaxQ 4000 

incubator, 125RPM) for 18 hours. 10μl of 0.01% w/v resazurin dye was added to each 

well and the plate incubated for a further 15 minutes at room temperature with 

shaking (125RPM). In this colorimetric assay, live bacteria metabolise the resazurin 

dye turning the solution within the well from blue to pink which is visible by eye as 

illustrated in Figure 3.2. Inhibition of growth is shown by the solution remaining blue 

after the final incubation period.  

 

Figure 3.1: Schematic showing the layout of 96 well plates utilised to determine inhibitory 
concentrations of MacroGard® to bacterial growth. A checkerboard design was applied with columns 
containing varying MacroGard® concentrations (final concentration of 0.1 – 0.0% w/v) and rows 
containing a range of initial bacteria concentrations (1x108 – 1x101 CFU). Column 11 (0.0% 
MacroGard®) is a MacroGard® negative control. Column 12 is a bacteria negative control. Image 
adapted from http://www.cellsignet.com/media/plates/96.jpg. 
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Figure 3.2: Image illustrating the visible by eye colour change that occurs during a resazurin dye based 
assay. As described in section 3.2, 10μl of resazurin dye (0.01%w/v) is added to an overnight culture 
and incubated at room temperature (~20°C) for 15 minutes with shaking (MaxQ 4000 incubator, 
125RPM). Wells 1-11 were inoculated with Aeromonas salmonicida which has metabolised the blue 
resazurin dye (as seen in well 12 which is a negative control) resulting in a visible colour change to 
pink.  

 

 

3.3 – Analysing bacterial growth after incubation in nutrient broth. 

Whilst the resazurin assay presented in section 3.2 is an efficient method of 

analysing a wide range of MacroGard® concentrations in a short space of time, it only 

shows inhibition and not an increase of growth. Therefore a second broth based assay 

was considered that allows for identification of both inhibition and promotion of 

bacterial growth (see section 4.2.2 for details of bacteria utilised). 

50ml nutrient broth was inoculated with bacteria and incubated with shaking 

(100RPM) overnight at room temperature (~20°C). The number of bacteria within 

the broth after incubation was determined by CFU count as previously described in 

section 3.2. 1x105CFU (in a volume of 1ml) of bacteria was added to a fresh 50ml 

nutrient broth preparation, or a 50ml preparation containing 0.1% or 0.01% w/v 

MacroGard®. These newly inoculated cultures were then incubated for 18 hours at 

Wells containing A. salmonicida 
Negative 
control 

Metabolised resazurin turns pink No metabolism 
so resazurin 

stays blue 
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room temperature after which quantification of CFU was performed based upon a 

1:10 serial dilution with counts being taken on plates with less than 300 colonies. To 

compare differences in average CFU at a specific dilution factor, e.g. 1x10-5, a 1 way 

ANOVA was used after the data was checked for normality and homoscedasticity 

using an Anderson-Darling test and Levene’s test respectively.  

 

3.4 – Analysing bacterial growth when MacroGard® is present in a solid agar.  

The advantage of the protocol outlined in section 3.3 is that it is possible to 

detect both inhibition and promotion of bacterial growth, however it is a time 

consuming protocol taking up to 5 days to complete. As such, ways of reducing this 

timeframe whilst still having the ability to analyse both inhibition and promotion 

were considered. The next approach trialled was embedding MacroGard® into a 

nutrient agar plate. As MacroGard® is not completely soluble, different approaches to 

achieve an even distribution within the agar were considered. 

Firstly, MacroGard®, at a final concentration of 0.1% w/v liquid agar, was 

added to the agar mix before being autoclaved (121°C for 15 minutes), however the 

MacroGard® did not disperse evenly within the mix and clumped into visible lumps 

throughout the plates that could not be broken up through shaking or vortexing the 

liquid agar (~50°C).  

Secondly, MacroGard® was prepared at a concentration of 10% w/v in 

nutrient broth as described in section 3.1 and added to the nutrient agar (final 

concentration of 0.1% w/v) after it had been autoclaved. Pouring the MacroGard® 

into the liquid agar (~50°C) and mixing by hand resulted in an even distribution of 

MacroGard® by eye which was confirmed by use of the PENGUIN program (see 
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section 3.5) which showed the same amount of variation between different areas of 

the same plate and different plates as was present in standard nutrient agar without 

MacroGard®.  

These MacroGard® embedded plates were therefore used to establish the 

effects of this carbohydrate on bacterial growth. Briefly: bacteria cultures (as detailed 

in section 4.2.6) were grown overnight at 20°C in 30ml nutrient broth after which 

they were subject to a 1:100,000 dilution (performed as a 1:10 serial dilution) and 

50μl of bacteria was applied to either MacroGard® embedded nutrient agar plates or 

standard nutrient agar plates (control) in triplicate. Plates were then incubated for up 

to 72 hours and the number of CFU per plate measured. Statistical analysis was 

performed as described in section 3.3.  

  

3.5 – Using image analysis to measure bacterial growth rates. 

Whilst the previously described methods measure any toxic effect or an 

increase in bacterial growth, they do not consider if there is an effect upon the speed 

at which the bacteria growth took place. The following sections described the ideas 

behind and optimisation of a program that was used to measure bacteria colony size 

based upon colour changes on an agar plate over time. Using a descriptive moniker, 

the program has been named “PlatE aNalysis proGram UsINg pixels to measure 

bacteria colony size”, i.e. PENGUIN. 

 

3.5.1 – Concept development. 

Vera-Jimenez and Nielsen (2013) describe the use of digital imaging to 

measure rates of cell growth by transforming photographs of monolayers into a 
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binary system whereby measurements were taken of pixel change, i.e. a black pixel 

that was previously white represents growth of the monolayer. Digital imaging has 

been successfully used to map out changes in size of wounds on the skin of carp and 

rainbow trout (Przybylska-Diaz et al. 2013, Schmidt et al. 2016), and it was based on 

these preliminary observations that the idea of utilising this concept to measure 

growth rates of bacterial colonies came about.  

The use of digital image analysis to measure bacteria cell growth is not new 

and there is equipment available (e.g. Sorcerer Colony Counter by Perceptive 

Instruments; Topac Colony Counter) to measure inhibition zones as part of 

microbiological analysis but, within the scope of this PhD, the costs associated with 

such products were prohibitory and have the limitation that they cannot be adapted 

for field based studies.  

To this end, a collaboration was established with Todd Specht (The 

Woodpecker Project, United Kingdom) to generate a tool capable of measuring 

bacterial colony size without incurring the high costs seen with the commercially 

available systems. In addition, it was hoped that such a system could also be applied 

to other aspects of biology, and have some scope to be used in field-based 

aquaculture. Two approaches were taken to this: 1 – a library of “bacteria colours” 

would be generated against which single images of colonies could be compared, and 2 

–images of bacterial growth would be compared to a base image taken directly after 

seeding agar plates. In both cases, images are converted into binary, i.e. pixels that are 

bacteria and pixels that are not bacteria, and from this, growth could be quantified 

using a pixel count.  
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3.5.2 – Writing the script for PENGUIN. 

All coding work was performed by Todd Specht. The script was written using 

the language PHP based upon the program php-skindetection which is designed to 

detect skin/skin tones in images. Initial offline testing of the program showed 

processing power would be a major restriction therefore a cloud based server was 

selected to host the program. It is based upon an RGB colour model and can 

distinguish between 2553 different colours.  

 

3.5.3 – Single image analysis. 

The first approach considered a means of determining pixels that represented 

bacteria based upon the original use for the script from which PENGUIN was 

developed. Php-skindetection is a programme designed to identify human skin in 

photographs and works by calculating the percentage of an image that was “skin” 

based upon a predetermined library of colours. Any pixel within the image that 

matched this library was defined as skin.  

Transposing this concept to use it to measure bacteria colony size required 

knowing the colour palette of a bacteria species for analysis. E. coli (NCIMB 8277 

kindly donated by Nigel Bowers, Keele University, UK) was used during optimisation 

and images of bacteria colonies on a nutrient agar base were taken under natural 

light conditions of colony growth after 24 hours against a black background.  

An individual colony was chosen from which a range of colours (based upon 

the RGB colour palette) was selected for testing and a 249x273 pixel image section 

was analysed. A black and white image was produced whereby black is pixels that are 
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not within the selected colour range and white pixels are (Figure 3.3).  

 

 

Figure 3.3: Transformation of a multi-coloured digital image into a binary representation of bacteria 
colonies. Left: E. coli colony growth after 24 hours at 37°C on nutrient agar. Picture taken using a 
Lumix DMC-TZ8 digital camera against a black background (Exposure time – 0.2 sec. ISO speed – ISO-
400). Right: Binary image generated using a specific colour range (RGB) that represents the colours 
present within a colony. Black shows a pixel is not one of these colours and white pixels are. 

 

 

From this, it was clear that whilst the idea itself showed promise, there was 

overlap between the colours within the agar and the bacteria colonies which may 

potentially be a significant problem at the edges of colonies in producing accurate 

measurements. Additionally, it was noted that whilst variation in the colour palette 

caused by differences in the conditions under which images were taken could be 

accounted for, the optimisation process would need to be repeated and a new colour 

range produced for each bacteria species analysed rather than it being a tool that 

works across multiple bacteria strains. To this end, a new design was considered 

based upon measuring the colour palette of the agar instead of the bacteria as this 

would allow for a wider application of the program. 
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3.5.4 – Before/after image analysis. 

In this second approach to measuring colony size, rather than focusing on the 

colonies themselves, emphasis is put on the agar on which the bacteria grows. In 

order to do this, the program was designed to analyse the colour palette of an agar 

plate immediately after inoculation. This was then used as a base against which 

images of the same plate after bacteria colonies had grown were compared. The same 

plate was used in order to minimise any differences in the colour range that may be 

caused by any variations in the thickness of the agar. Colours that feature only in the 

secondary image are defined as “new” and therefore represent bacterial growth. 

From this, the average size of each colony (measured in pixels) can be determined 

based upon the total number of pixels that are a new colour in an “After” image 

divided by the number of colonies present in a sample (Figure 3.4). 

 

 

 

Figure 3.4: Schematic showing the principle behind a before/after approach to quantifying bacterial 
growth using changes in pixel colour. Images are taken of an agar plate immediately after inoculation 
(Before growth) and after incubation (After growth). These images are then compared to determine 
the size of the bacteria colonies measured in pixels. Any colour that appears in both the before growth 
and after growth image is defined as background. Any colour that features only in the after growth 
image is defined as bacterial growth. The program then calculates the total number of pixels that are a 
new colour in the after image. This value can then be divided by the number of colonies within the 
image to get an average colony size measured in pixels. 
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3.5.5 – Proving PENGUIN works: “simple” image analysis. 

First, it was imperative to determine if the program actually worked and this 

was done with “simple” images, i.e. images with a limited colour palette and where it 

is known how many pixels are a specific colour. These images were generated using 

Microsoft Paint and were 500x500 pixels in size. Firstly, only two colours were used 

with varying numbers of pixels being changed. These results are shown in Table 3.1. 

This analysis showed that PENGUIN was able to accurately detect the differences in 

colour between the two images. Further testing was done including analysing the 

programs sensitivity by introducing more colours to both “Before” and “After” 

images, and by reducing the number of pixels that were altered. PENGUIN can 

accurately determine the difference between each individual colour in the RGB colour 

palette, i.e. 2553 different colours, and can detect when only 1 pixel is a new colour in 

comparison to a “Before” image. Figure 3.5 shows the output when a “Before” image 

with 100 different colours is compared to an “After” image where only 1 pixel has 

been changed to a new colour. 
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Table 3.1: “Simple” images, i.e. images with only two colours, were used to test the program PENGUIN 
worked. Images were generated using Microsoft Paint and are 500x500 pixels in size. Results are given 
as the percentage of the After image that are a “new” colour, i.e. a colour that is not found in the Before 
image. The percentage difference was calculated manually in addition to analysing the images using 
PENGUIN. 

Before After 

Manually calculated 

percentage 

difference 

PENGUIN calculated 

percentage 

difference 

  

50% different 50% different 

  

62.5% different 62.5% different 

  

75% different 75% different 

  

87.5% different 87.5% different 

  

100% different 100% different 
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Figure 3.5: The output generated by PENGUIN when a Before image containing 100 different colours 
(500x500 pixels) is altered by one pixel to a new colour. For the Base Image and Sample Image, i.e. 
before and after, the number of pixels per image and the number of colours present are given. The final 
column, Difference, gives the number of pixels that are a colour that is present only in the Sample 
Image. For all three columns, a visual representation of all colours is given. The Percentage difference 
given at the top of the output is the percentage of pixels within the Sample Image that are a colour 
present only in this image, i.e. the pixels identified in the Difference column.  

 

3.5.6 – Optimisation of conditions for “real” images.  

Having proven that PENGUIN works, the next step was to optimise the 

conditions for “real” images, i.e. images of agar plates with and without bacteria 

colonies. The following aspects were taken into consideration: 

• Length of exposure 

• Source of light 

• Location of light 

Once optimisation of these conditions was performed, PENGUIN was tested 

using E. coli as an example bacteria species. 
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3.5.6.1  – Source of light. 

Light has a significant impact on the colour palette within an image therefore it 

was of the utmost importance to ensure minimal light variation between “Before” and 

“After” images. In order to determine the variation of the colour palette produced for 

“Before” images under different light conditions, 10 images were taken of a nutrient 

agar plate and the number of colours PENGUIN detected and the average percentage 

difference between images taken under the same lighting conditions were compared 

(Table 3.2). Images taken under “natural light” conditions were obtained next to a 

window on a partially cloudy day. Interestingly, these images had the lowest 

variability when comparing the average percentage difference, however use of 

natural light would not be possible if, for example, analysis was to be performed 

every 12 hours. Images were also taken using a Phillips Master TL4 HE strip light 

bulb as the light source. This proved to have the highest level of variability when 

comparing the average percentage difference and an even higher standard deviation. 

In order to actually detect any differences between “Before” and “After” images, the 

number of comparisons that would need to be made would be too great to be 

practically plausible. Finally, using a white tungsten bulb (100W) as a light source 

was tested. The variation when comparing the average percentage difference is 

approximately double that of natural light, however where natural light varies based 

upon the amount of sunlight, the use of a light bulb provides a constant amount of 

light irrespective of time of day and weather conditions that both affect natural light 

conditions. Additionally, the number of colours present under tungsten bulb light 

conditions was the highest indicating these conditions could provide a higher level of 

sensitivity than the other conditions tested.  
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Table 3.2: The impact of three different lighting conditions on the variability of images taken of a 
nutrient agar plate was studied. Average number of colours per image and the difference in the colour 
range were taken into consideration when deciding which conditions were the most suitable for use. 
n=10 images per light condition. s.d. = standard deviation. 

Light conditions 

Average 

number of 

colours 

Average 

percentage 

difference 

Considerations 

Natural 
light 

 

935.5 
(s.d. ±35.0) 

0.29% 
(s.d. ±0.17) 

Smallest variation between 
images however cannot 

control e.g. how time of day 
affects the colour palette. 

Strip light 

 

278.4 
(s.d. ±40.7) 

1.64% 
(s.d. ±2.87) 

High level of variability gives 
a larger standard deviation 

than the average percentage 
difference. 

Tungsten 
bulb 

 

2843.8 
(s.d. ±110.5) 

0.57% 
(s.d. ±0.16) 

Most reproducible conditions 
and widest range of colours 

detected. 

 

 

3.5.6.2  – Length of exposure. 

The time taken for each image to be captured is important for two reasons. 

Firstly, taking images of a closed plate proved troublesome due to the reflective 

properties of the lid of the agar plate, therefore it was decided to take images of open 

plates. This meant the longer a plate was open, the more chance there was of a 

contamination occurring. Secondly, longer exposure times increased the average 

percentage difference between images as shown in Figure 3.6. Images were taken of a 

nutrient agar plate on a black background under a tungsten bulb light source with 

different exposure times ranging from 0.1 seconds to 1 second. Although there was no 

statistical difference between the average percentage difference, i.e. the percentage of 

pixels that are a colour that does not feature in the “Before” image, the smallest 

standard deviation was seen with an exposure time of 0.2 seconds, therefore this was 

selected for further image generation.  
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Figure 3.6: The effect of exposure time on the average percentage difference in the colours present 
within images of a nutrient agar plate was studied. Images (n=10) were taken under using a tungsten 
bulb as a light source against a black background. Error bars represent standard deviation.  

 

3.5.6.3  – Location of the light source.  

Another challenge faced when designing the conditions under which images 

were captured was the position of the light source. Placing the bulb directly above the 

plate resulted in both a shadow being produced by the camera and a reflection of the 

light itself, which obscured colonies within the image (this reflection of light was why 

using the camera’s own flash was not considered in section 3.5.6.1). Having the bulb 

to the side of the plate resulted in the potential for shadows being cast by the edge of 

the plate and also from the colonies themselves. Therefore it was suggested that 

taking multiple images with the light source in different locations could eliminate any 

impact of shadow on the data produced. This was achieved by rotating the plate 

rather than moving the equipment in order to ensure the distance of the light source 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.5 1

A
v

e
ra

g
e

 p
e

rc
e

n
ta

g
e

 d
if

fe
re

n
ce

Exposure time (seconds)



Chapter 3 – Optimisation of microbiological techniques. Harris 

�� ! 

 

79 

and the camera from the nutrient agar plate were kept the same at all times. In 

addition, at this stage of optimisation, a light box (a three sided frame made of white 

390mm squares set as a square base with the side where the tripod stood “open”) 

was introduced to minimise the effect of light bouncing off the surfaces of any nearby 

equipment within the laboratory which could introduce variation between images.  

Images were taken of a nutrient agar plate immediately after inoculation with 

E. coli under a tungsten light bulb on a black background with an exposure time of 0.2 

seconds. The plate was initially rotated by 90° with two images being taken at each 

orientation. Images were taken under the same conditions after 24 hours of 

incubation at 37°C. PENGUIN was used to calculate the percentage difference 

between images taken at different orientations. A 2-sample t power analysis was 

performed on this data in order to determine the number of images that should be 

taken “Before” and “After” incubation to gain an accurate value for how many pixels 

were a “new” colour, i.e. were bacteria. This data is shown in Table 3.3 and shows that 

the minimum number of comparisons performed to have a power of 0.8 is 33. This 

translates to 6 images to be taken “Before” and “After”, i.e. 36 comparisons, however 

in order to accommodate the possibility of a “bad” image (e.g. out of focus) impacting 

the data, it was decided to take 8 images at each time point. This additionally reduced 

the “distance” between each orientation, i.e. plates were rotated 45° between each 

image rather than 60° (360/6).  
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Table 3.3: Data used to perform a power analysis to determine how many “Before” and “After” images 
are required to accurately utilise the program PENGUIN. Before images were taken of nutrient agar 
plates immediately after inoculation with E. coli under a tungsten lightbulb on a light background with 
an exposure time of 0.2 seconds. After images were taken under the same conditions 24 hours after 
incubation at 37°C. Images were taken in 4 different orientations (rotating 90° between each 
orientation) with 2 images being taken per orientation. Comparisons were made using PENGUIN 
between plates with different orientations. A 2-sample t power analysis was performed using the 
difference between the mean percentage difference of Before and After images and the mean standard 
deviation. Power was set at 0.8 to obtain the number of replicates required per plate, i.e. the number of 
comparisons between Before and After images that must be made. 

 

Parameter 
Data used in 2-sample t power 

analysis 

Difference between mean number of pixels 0.1476 

Mean of standard deviation of each  mean 0.2892 

Power 0.8 

Number of replicates required to obtain power 33 

 

3.5.7 – Final protocol.  

The final protocol adopted for use is as follows: 

• Images are taken in a dark room using a tungsten bulb as a source of light. 

• An exposure time of 0.2 seconds is used for each image. 

• Eight images are taken per plate Before and After incubation.  

• Plates are rotated 45° between each image. 

 

3.5.8 – Testing PENGUIN against measuring colony sizes by hand. 

Whilst it had already been proven that PENGUIN worked on “simple” images 

(section 3.5.5), it was important to ensure it worked accurately with “real” images, i.e. 

pictures taken of agar plates. As previously in a single image system, there is the 

possibility that colours that feature within the bacterial colonies may also feature in 

the colour of the agar. In order to test this, E. coli colony sizes were measured using 

the optimised protocol for PENGUIN (average number of pixels that are a “new” 
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colour divided by the number of colonies per image) and “by hand”, i.e. drawing 

round each colony and counting the number of pixels within the area using ImageJ. 

Figure 3.7 shows there is no difference in the number of pixels counted using each 

method indicating there are no colours that feature in both the agar and in the 

bacteria colonies. Whilst this appears to work for E. coli, it is noted that this test 

should be performed for each new bacteria species analysed to confirm the data 

produced is reproducible.  

 

 

Figure 3.7: The accuracy of PENGUIN was compared against measuring colony size by hand. The 
average number of pixels per colony was measured using ImageJ (measuring) and by dividing the total 
number of pixels that are a new colour by the number of colonies per image (PENGUIN). There is no 
difference in the size of colonies when comparing these two methods. 

 

3.5.9 – Conclusion. 

PENGUIN was designed as a low cost method of accurately measuring bacteria 

colony sizes and the development of the methodologies to achieve this goal are 
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outlined within section 3.5. As previously stated, the concept of digitally analysing a 

bacteria colony to measure its size is not new, however the costs involved in 

acquiring equipment that can do this was prohibitive within the scope of this 

research project and current instrumentation is not portable. It has been shown here 

that the program itself works with a very high level of accuracy and that it was 

possible to generate appropriate conditions under which images could be taken 

within a limited budget. PENGUIN is used to measure average bacteria colony size 

during Chapter 3. 
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Chapter 4 – Analysis of gut microbiota and immune status 

after feeding with MacroGard®. 

 

Where the previous chapters have focused upon methodologies, in this 

chapter the effect of MacroGard® upon the immune status and gut health of common 

carp will be investigated incorporating some of the methodologies established in the 

previous chapters. As discussed previously, although there is some debate on 

whether β-glucans can be considered as prebiotics, it is generally accepted within the 

scientific community that they can have an impact on the microbiome within the gut. 

Jung-Schroers et al. (2015a) and Kühlwein et al. (2013) both showed that, 

particularly at higher concentrations (1%+ w/w inclusion into feed), MacroGard® has 

an effect on bacterial species richness within the gut of carp when fed for less than a 

month. Whilst MacroGard® is regularly used as a β-glucan source in many fish feeds, 

e.g. Tetra GmbH (Germany) and Skretting (Norway), it is usually included at a lower 

concentration of 0.1% w/w within the feed as higher concentrations make the feed 

prohibitively expensive. 

Manipulation of the gut microbiota population is not, however, the motivation 

for including MacroGard® within the diet and its primary aim is the 

immunomodulation of the host. There are a substantial number of publications 

documenting the immunomodulatory effects of β-glucans in fish (for review see 

(Dalmo and Bogwald 2008, Vetvicka et al. 2013, Akhter et al. 2015) and indeed there 

are several focusing on carp (Van der Marel et al. 2012, Przybylska-Diaz et al. 2013, 

Vera-Jimenez et al. 2013, Pionnier et al. 2014b), yet there still exists a deficit of 
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knowledge with regards to the relationship between the immune response and gut 

microbiota using ichthyo-models both in general and more specifically during 

MacroGard® feeding regimes. 

The aim of this chapter is to explore the microbiology and health status of a 

“normal” carp gut, i.e. under disease free conditions. This comprises three studies:  

Firstly, in vitro analysis of the gut microbiota in carp that have been 

maintained upon a 0% MacroGard® diet. Previous studies have shown there are 

limited differences in bacterial species diversity along the intestinal axis using non 

culture based methods of analysis (Harris 2013). Therefore, the first study aims 

ascertain if the same lack of bacterial species diversity along the intestinal axis is seen 

when different methods are used to access this diversity, i.e. culture based methods.  

Secondly, some bacteria are known to be able to use β-glucans as a substrate 

due to their possessing β-glucanase enzymes (Planas 2000, Beckmann et al. 2006, 

Hattori et al. 2013). Isolates procured from the gut of carp and examples of potential 

fish pathogens and probiotics were tested to ascertain the effects of MacroGard® on 

in vitro growth of individual bacterial species.  

Finally, an in vivo study looking at the impact of orally applied MacroGard® on 

the gut of carp will be considered using PCR based means of analysis. In this model 

the intestinal microbiome is exposed to both MacroGard® and any 

immunomodulatory affects that occur within the host. Analysis of both aspects of the 

symbiont, i.e. gut microbiota and carp immune response, were performed to establish 

if there is any correlation between expression of selected bactericidal innate immune 

genes within the gut and the bacterial component of the associated microbiome. As 
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discussed in Chapter 1, whilst in the past few years, research has begun to consider 

both the immune status of a host fish and the microbiota population (Akrami et al. 

2015, Dawood et al. 2016, Miest et al. 2016), there is only one published report on the 

statistical analysis comparing the overall gut microbiome and the host immune status 

(Tapia-Paniagua et al. 2015). In order to fully elucidate the health promoting abilities 

of the gut microbiome, such as aiding in disease prevention by outcompeting 

potential pathogens for space and nutrients (Nayak 2010b), it is imperative to 

understand the symbiotic relationship between the host and its associated 

commensal bacterial population. In this chapter, emphasis is put on bactericidal 

innate immune responses such as antimicrobial peptides (Villarroel et al. 2007, 

Subramanian et al. 2008), nitric oxide production (Vera-Jimenez and Nielsen 2013, 

Wiegertjes et al. 2016), and pro-inflammatory cytokines such as IL-1β and TNFα 

(Secombes et al. 2001, Rieger and Barreda 2011) that have been shown to be 

influenced by feeding with MacroGard® (Miest et al. 2012, Falco et al. 2013, Pionnier 

et al. 2014b), and how these correlate with bacterial species diversity within the gut.  

 

4.1 – Analysis of the culturable microbiota population from the gut of carp.  

Whilst the intestine of carp can be divided into multiple sections, there are 

limited differences in the physical structure along the intestinal axis in comparison to 

other fish species and vertebrates (Barrington 1957, Jung-Schroers et al. 2015). Carp 

which are a stomachless fish species possess an intestinal bulb anterior to the 

oesophagus. Additionally, carp do not possess pyloric caeca, outgrowths that increase 

the surface area within the gut, and the hindgut is much more primitive in fish species 

in comparison to higher vertebrates such as humans (Barrington 1957). This 
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“simplified” gut structure in carp has previously been shown to result in comparable 

microbiota populations (Harris 2013) however, this was established utilising non 

culture based methodologies. In this chapter, analysis is performed using culture 

based techniques in order to obtain bacterial isolates for in vitro analysis of the effect 

of MacroGard® on bacterial growth (section 4.2). 

 

Materials and methods. 

A list of all equipment and chemicals used can be found in Appendix 2.  

 

4.1.2 – Fish husbandry. 

Four carp, obtained from Hampton Spring Fisheries, UK in September 2013, 

were maintained on the 0% MacroGard® experimental diet (section 4.1.3) produced 

by Tetra GmbH at 1% body weight per day for 6 months prior to experimentation. 

Tanks were 225L in size with Eheim 2227 filter systems and external water chilling 

units. Water temperature was kept at 15°C and tanks maintained under a 12/12 hour 

light/dark photoperiod.  

 

4.1.3 – Diet. 

A 0% MacroGard® feed was produced by Tetra GmbH (Melle, Germany) 

comprising of fish protein concentrate (45%), wheat starch (41%), cellulose (2.57%), 

soybean oil (4.5%), fish oil (4.5%), ethoxyquin (0.02%), vitamin-premix (0.25%), 

stabilized vitamin C (0.11%) and mineral-premix (2.06%). A second diet was also 

produced containing 0.1% MacroGard® which was included as a part of the wheat 

starch proportion of the feed as outlined above. 



Chapter 4 – Analysis of gut microbiota and immune status after 

feeding with MacroGard®. 

Harris 

�� ! 

 

87 

4.1.4 – Obtaining bacterial isolates from the carp gut. 

Four carp were euthanized by submersion in anaesthetic (2-phenoxyethanol, 

1ml/5l) before dissection via a ventral incision and the intestines removed. The 

intestinal tract was divided into four sections: the intestinal bulb, the upper midgut, 

the lower midgut and the hindgut (Figure 4.1). These sections were then opened 

lengthways in order to expose the internal gut wall. Any faecal matter was removed 

by gentle scraping with an inoculation loop with care being taken not to disturb the 

mucosal layer. Inoculation loops were gently scraped along the intestinal wall to 

collect bacteria from the mucosal layer which were then washed into 1ml of nutrient 

broth from the loop. 100μl of inoculated broth was applied to a single agar plate. For 

each gut section, the following nutrient bases were used: nutrient agar, M.R.S. agar, 

MacConkey agar or Aeromonas base. Plates were left to grow aerobically except for 

M.R.S. agar plates which were grown under anaerobic conditions (see below). All 

plates were incubated at 20°C for 24 hours before subculture. Colony subcultures 

were maintained on the same agar as they were initially grown.  

In order to generate optimum conditions for the growth of facultative 

anaerobic bacteria, two methods were used: M.R.S. agar set in plastic plates were 

sealed using Parafilm to prevent entry of oxygen into the plate, or M.R.S. agar set in 

glass plates were placed in a bell jar and the oxygen content reduced by burning a 

small flame inside the jar which was sealed to a Perspex base using Vaseline grease.  
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Figure 4.1: Schematic showing the regions of the intestine of the common carp as sampled for isolation 
of bacteria. The intestine has been divided into 4 sections: the intestinal bulb, the upper midgut, the 
lower midgut and the hindgut. Following the natural structure of the intestine, the intestinal bulb is 
defined as the notably thicker in texture section of the intestine at the start (oesophagus end) of the 
intestine. This region continues until the first natural kink found along the axis. The upper midgut 
describes the length of intestine found between the two obvious kinks found at this end of the 
intestine. Next, the lower midgut describes the region 40-60% of the length between the second 
intestinal kink and the anus end of the intestine. Finally, the hindgut is the last 5% of the intestine. 
Bacterial swabs were taken from each of these 4 sections with the loop being run over the whole area 
indicated with a red arrow.  

 

4.1.5 – Gram staining.  

Gram staining of bacteria isolates obtained from the gut of carp was 

performed. Individual bacterial colonies taken from plate cultures were suspended in 

sterile water and spread on to a microscope slide. Slides were then dried over a 

Bunsen flame before staining with crystal violet which was liberally applied across 

the surface of the slide and incubated for 60 seconds before rinsing with double 

distilled water. Gram’s iodine was then applied and the slide incubated for a further 

60 seconds before rinsing with double distilled water. 95% ethanol was applied on a 

drop by drop basis until the solution ran clear (on average, between 8-10 drops) and 
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the slide was then rinsed again with double distilled water. Lastly, Gram’s saffranin 

was liberally applied and slides incubated for 30 seconds before a final rinse with 

double distilled water. Slides were viewed at 400x magnification under oil and 

bacteria isolates characterized based upon colour, shape and size.  

 

4.1.6 – Testing for catalase activity. 

1% hydrogen peroxide, diluted in double distilled water, was applied to 

bacterial colonies. Isolates that produced bubbles were categorised as catalase 

positive, whilst isolates that did not produce bubbles were catalase negative (Reiner 

2013).  

 

4.1.7 – Testing for oxidase activity.  

Bacteria colonies were exposed to oxidase detection strips and categorised as 

either oxidase positive or negative based respectively upon the strip turning blue or 

remaining the same colour after 5 seconds of exposure (Gordon and McLeod 1928).  

 

4.1.8 – Comparison of diversity along the intestinal axis. 

Bacteria were differentiated based upon Gram stain, cell shape and size, 

catalase activity and oxidase activity to define distinct colony types which were then 

utilised as variates for further analysis. As a measure of species diversity, the 

Shannon-Weiner index and Evenness for each gut segment was calculated (Kuhlwein 

et al. 2013, Jung-Schroers et al. 2015a, Standen et al. 2015) as follows: 

n = − ∑(l� ∗ ln(l�)) 

Where n=Shannon-Weiner index, l�=number of individual species/total 
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number of species, and ln is the natural log.  

g = n/nR]s  

Where g=Evenness, and nR]s=maximum amount of diversity possible as 

calculated by: 

nR]s = ln (�) 

Where �=species richness, i.e. number of different species present. 

The presence of a colony type per gut segment (as a pool of all 4 fish; see 

section 4.1.4) was counted and the dissimilarity of each segment calculated using the 

Bray-Curtis dissimilarity index. Briefly, Bray-Curtis dissimilarity is a non-metric index 

that is highly tolerable of zeros within a data set. In Excel, the following formula 

(Podani 2000) was used to generate a matrix of dissimilarities: 

Mjtu =
∑ |s:w<s:x|y

:z{

∑ (s:w|s:x)y
:z{

 

where j is gut segment 1, k is gut segment 2 and m>  is the number of isolates of 

a distinct colony type found within a gut segment. This was calculated for all gut 

segment combinations. Bray-Curtis dissimilarities were then plotted on a non-metric 

MultiDimensional Scaling ordination (nMDS) using SPSS 21 in order to visually show 

the “distance” between each gut segment, i.e. the dissimilarity in species diversity. 

 

4.1.9 – Results. 

64 plates were inoculated with bacteria from the gut of carp. From these, 157 

bacterial samples were produced. Based upon Gram stain colour, bacteria cell shape, 
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bacteria cell size, catalase activity and oxidase activity, 28 distinct colony types were 

produced. 39 isolates came from the intestinal bulb, 37 came from the upper midgut, 

36 from the lower midgut, and 45 from the hindgut. Only 2 distinct colony types were 

found in all 4 gut segments and 14 were found in 1 segment only. To assess the 

similarities between each gut section, the Shannon-Weiner index was calculated for 

the intestinal bulb, upper midgut, lower midgut and hindgut as 2.42, 2.26, 2.19 and 

2.41 respectively. The Evenness was determined for the intestinal bulb as 0.89, upper 

midgut 0.94, lower midgut 0.91 and hindgut was 0.89. Figure 4.2 shows the Bray-

Curtis dissimilarity between all 4 gut segments (as a pool of all fish analysed) plotted 

as an nMDS ordination. The two midgut sections are the least dissimilar, i.e. they have 

highly similar species diversity. The hindgut however is the most dissimilar to the 

other three gut segments, and the intestinal bulb is more dissimilar to the lower 

midgut than the upper midgut, i.e. there is more similarity between the intestinal bulb 

and the two sections of the midgut than with any section and the hindgut, and the 

intestinal bulb shares a more similar level of species diversity with the upper midgut 

than with the lower midgut.  
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Figure 4.2: Non metric Multidimensional Scaling ordination of the dissimilarities in species diversity 
between 4 segments of the carp intestine as calculated using a Bray-Curtis dissimilarity index (stress – 
0.0005). The intestine of 4 carp was divided into 4 segments following the intestinal axis from 
oesophagus to anus: the intestinal bulb (between the oesophagus and the first natural kink in the 
intestine), the upper midgut (from just after the first natural kink to 45% of the intestine length), the 
lower midgut (the subsequent 45% of the intestine after the upper midgut) and the hindgut (the 2cm 
of intestine before the anus). Each point represents the total number of isolates found in a pool of 4 
carp fed on a 0% MacroGard® diet. Isolates were distinguished as distinct colony types based upon 
Gram stain, cell shape, cell size, catalase activity and oxidase activity.  

 

4.2 – Analysis of the in vitro effect of MacroGard® upon bacterial growth and 

survival. 

In section 4.1, the species diversity of cultured bacteria within the gut of fish 

fed on 0% MacroGard® was determined. This formed a baseline to establish if 

MacroGard® had an effect on bacteria species in vitro. A resazurin dye assay, 

incubation with MacroGard® suspended within a broth and MacroGard® embedded 

into a nutrient agar plate, and a comparison of bacteria colony size after incubation 

with different concentrations of MacroGard® were used to determine the possible 

inhibitory and stimulatory effects on growth patterns of 7 bacterial isolates were 
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studied in the presence and absence of MacroGard®.  

 

Materials and methods. 

A list of all equipment and chemicals utilised within this chapter can be found 

in Appendix 2.  

 

4.2.2 – Bacteria reference strains. 

Two reference strains were obtained from the National Collection of Industrial 

and Marine Bacteria (NCIMB) in October 2014: 

NCIMB1102 – Aeromonas salmonicida subsp. salmonicida batch reference 

19/11/1998. 

NCIMB8054 – Bacillus subtilis subsp. spizizenii batch reference 16/04/2013. 

Strains were obtained in the form of freeze-dried bacterial culture and grown 

aerobically in nutrient broth at 20°C (A. salmonicida) or 30°C (B. subtilis) overnight 

before being plated onto nutrient agar and incubated at the correct temperatures for 

each strain as stated by NCIMB (20°C and 30°C respectively). All subsequent 

subcultures were performed either using nutrient agar plates or nutrient broth.  

 

4.2.3 – Other isolates selected for analysis. 

In addition to the two reference strains described in section 4.2.2, a lab strain 

of E. coli (NCIMB8277 courtesy of Nigel Bowers, Keele University, UK) was analysed 

for effect of MacroGard® upon growth. E. coli cultures were grown at 37°C, the 

temperature for optimum growth of this strain, using either nutrient agar or nutrient 
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broth. 

The growth patterns of four bacterial isolates (342LMB, ISO 20, ISO46 and ISO 

60) cultured from the gut of carp were determined. Details as to the identified 

characteristics of these isolates can be found in Table 4.1. All cultures were grown at 

20°C and after initial separation into individual cultures, maintained using either 

nutrient broth or nutrient agar.  

 

Table 4.1 – Details as to the characteristics for 4 bacterial isolates cultured from the gut of common 
carp. 

Isolate Gut section 
Original 

agar base 

Gram 

stain 
Shape 

Size 

(nm) 
Oxidase Catalase 

342LMB Hindgut 
MacConkey 

agar 
Positive Bacillus <1 Negative Negative 

ISO 20 
Intestinal 

bulb 
Nutrient 

agar 
Negative Bacillus 3 Negative Positive 

ISO 46 Hindgut 
Nutrient 

agar 
Negative Bacillus 1 Negative Negative 

ISO 60 
Upper 
midgut 

Nutrient 
agar 

Negative Bacillus 1 Positive Positive 

 

 

4.2.4 – Analysis of MacroGard® toxicity.  

Analysis of the toxicity of a range of MacroGard® concentrations was 

performed using A. salmonicida, B. subtilis and E. coli as described in section 4.2.2. A 

range of MacroGard® concentrations from 0.1-0.01% w/v was utilised in conjunction 

with a range of initial bacteria concentrations of 1x108 to 1x101 CFU per well in a final 

volume of 200μl of nutrient broth in a checkerboard formation as shown in Figure 

3.1. Plates were replicated in triplicate. Incubation was performed at room 

temperature (25°C) for 18 hours before 15μl 0.01% w/v resazurin dye was added to 

each well. Plates were left to incubate at room temperature for 15 minutes before 

noting any colour change from blue to pink within each well.  
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4.2.5 – Growth after incubation with MacroGard® within a nutrient broth 

suspension.  

Analysis of the effect of growth after incubation with MacroGard® within a 

nutrient broth suspension was performed using A. salmonicida, B. subtilis and E. coli 

as described in section 4.2.2. 1ml of 1x105 CFU bacteria was added to either 50ml of 

0% MacroGard® nutrient broth, 0.01% MacroGard® nutrient broth or 0.1% 

MacroGard® nutrient broth and incubated at room temperature for 18 hours. Each 

broth was then subject to a 1:100,000 dilution and 50μl applied to a nutrient agar 

plate (0% MacroGard®). Plates were incubated at 20°C for 48 hours before CFU per 

plate was determined.  

 

4.2.6 – Growth upon MacroGard® embedded plates. 

Analysis of bacterial growth upon nutrient agar plates infused with 0.1% w/v 

MacroGard® was performed using 342LMB, ISO 20, ISO 46 and ISO 60 as described in 

section 4.2.3. Bacteria cultures were grown for 24 hours in nutrient broth at room 

temperature before being subjected to a 1:100,000 dilution. 50μl of broth was applied 

to either nutrient agar plates containing 0% MacroGard® or 0.1% MacroGard®. Plates 

were incubated at 20°C for 72 hours before CFU per plate was determined.  

 

4.2.7 – Analysis of differences in the rate of colony growth using PENGUIN. 

In order to determine if there was a difference in colony size due to incubation 

with MacroGard®, colonies grown on nutrient agar plates were analysed after 

incubation in a broth with and without MacroGard® (section 4.2.5), and after 
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inoculation on nutrient agar plates embedded with MacroGard® (section 4.2.6) using 

PENGUIN. Immediately after the bacteria was applied to each plate, 8 images were 

taken as described in section 3.5.7 followed by 8 more images being taken after 

incubation was complete, i.e. 48 hours for bacteria incubated in a broth and 72 hours 

for bacteria inoculated onto MacroGard® embedded nutrient agar plates. Images 

were cropped so that a 1500x1500 pixel section from the centre of the plate 

remained, i.e. each image was cropped by removing 1250 pixels from the left and 

right edges and 750 pixels from the top and bottom of the image. This was then 

resized to 500x500 pixels before analysis using PENGUIN. “After” images, i.e. those 

taken after incubation, were compared to “Before” images, i.e. those taken 

immediately after inoculation, resulting in 64 values as to the number of pixels that 

were a colour that appeared only in the after image. As rotation of the plate resulted 

in slight variation in the number of bacteria colonies per image, the average number 

of different coloured pixels for each “After” image against all “Before” images was 

taken and divided by the number of colonies within that image. The average number 

of pixels per colony was then taken across all 8 “After” images.  

 

4.2.8 – Results. 

Analysis of the 7 bacterial isolates including 2 fish specific reference strains, 

i.e. A. salmonicida and B. subtilis, and 4 isolates taken from the gut of carp showed no 

effect of MacroGard® upon bacterial survival, rate of growth or colony size (Table 

4.2). Analysis of survival of A. salmonicida, B. subtilis and E. coli based upon 

metabolism of resazurin showed no toxic effect of MacroGard® at any concentration. 

There were significantly more B. subtilis CFUs after incubation with 0.01% 
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MacroGard® in comparison to 0.1% MacroGard® (p=0.0360), however neither 

concentration resulted in a significant difference in the number of CFUs when 

compared to the 0% MacroGard® treatment group. Also the number of CFU of A. 

salmonicida and E. coli was not different when the bacteria was incubated with 

MacroGard® in a broth in comparison to controls, i.e. bacteria incubated in nutrient 

broth with no MacroGard®. Similarly, none of the bacterial isolates taken from the gut 

of carp had a significant difference in the number of CFUs when grown upon 

MacroGard® embedded agar in comparison to control agar plates, i.e. nutrient agar 

plates without MacroGard® embedded into the agar. None of the bacterial species 

incubated with MacroGard® within a broth had a significant difference in average 

colony size, however ISO 46 did have significantly (p=0.021) smaller colonies after 

incubation with MacroGard®. No other isolates showed a difference in colony size.  
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Table 4.2: (part A) Results of analysis of the effect of MacroGard® upon 7 different bacterial isolates using 4 different analysis techniques. Toxicity was analysed 
using a resazurin metabolism assay allowing for a wide range of MacroGard® concentrations and initial bacterial counts. CFU counts after incubation with and 
without MacroGard® within a nutrient broth and also embedded within a nutrient agar plate were performed to assess promotion of growth. On all plates analysed 
for CFU counts, a secondary analysis of average colony size was performed using the program PENGUIN which calculates average number of pixels per bacteria 
colony. 

Isolate 
Concentration of 

MacroGard® 
Number of bacteria Results Effect 

Resazurin toxicity assay 

A. salmonicida 

0.01-0.1% w/v 
1x101 – 1x108 CFU per well 

at start of incubation 

Metabolism of resazurin in all bacteria positive wells No 

B. subtilis Metabolism of resazurin in all bacteria positive wells No 

E. coli Metabolism of resazurin in all bacteria positive wells No 

Incubation with MacroGard® in broth 

 
Mean CFU ± Standard deviation 

 
0% MacroGard® 0.01% MacroGard® 0.1% MacroGard® 

A. salmonicida 0.01% and 0.1% 
w/v 

1x105 CFU into broth. 50μl 
of 1:105 dilution onto agar 

plates 

158±35 200±9 187±13 No 

B. subtilis 60±3 49±4 87±23 Yes 

E. coli 0.1% w/v 287±48 - 348±64 No 

Incubation with MacroGard® in agar 

 
Mean CFU ± Standard deviation 

 
0% MacroGard® 0.1% MacroGard® 

342LMB 

0.1% w/v 
50μl of 24 hour culture 

(50ml at RT) diluted 1:105 
times 

77±9 59±12 No 

ISO 20 65±7 34±13 No 

ISO 46 33±4 30±4 No 

ISO 60 33±7 35±10 No 
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Table 4.2: (part B) Results of analysis of the effect of MacroGard® upon 7 different bacterial isolates using 4 different analysis techniques. Toxicity was analysed 
using a resazurin metabolism assay allowing for a wide range of MacroGard® concentrations and initial bacterial counts. CFU counts after incubation with and 
without MacroGard® within a nutrient broth and also embedded within a nutrient agar plate were performed to assess promotion of growth. On all plates analysed 
for CFU counts, a secondary analysis of average colony size was performed using the program PENGUIN which calculates average number of pixels per bacteria 
colony.  

Isolate 
Concentration of 

MacroGard® 
Number of bacteria Results Effect 

Difference in colony size using PENGUIN 

 
Mean pixels per colony ± Standard deviation 

 
0% MacroGard® 0.1% MacroGard® 

A. salmonicida 

0.1% w/v 

1x105 CFU into broth. 50μl 
of 1:105 dilution onto agar 

plates 

40±8 54±11 No 

B. subtilis 90±26 46±38 No 

E. coli 153±23 118±8 No 

354LMB 
50μl of 24 hour culture 

(50ml at RT) diluted 1:105 
times 

49±4 80±27 No 

ISO 20 65±7 34±13 Yes 

ISO 46 672±23 957±103 No 

ISO 60 704±41 569±95 No 
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4.3 – Oral application of MacroGard® and the effects on the intestinal 

microbiome over time.  

Previous studies have shown that there is a change in species richness of the 

intestinal microbiome of the common carp after 2-3 weeks (Jung-Schroers et al. 

2015a) and 4 weeks (Kuhlwein et al. 2013) of feeding MacroGard® at a w/w 

concentration of 1% within the diet.  Such concentrations are, however, higher than 

those typically found in commercial fish feeds as producers limit the inclusion of 

MacroGard® in their products to 0.1% w/w because of financial constraints. 

Kühlwein et al. (2013) also ascertained that 0.1% w/w MacroGard® in a diet did not 

affect bacterial species richness in the gut highlighting the possibility that the effect of 

MacroGard® on bacterial species richness may be dose dependent when it is applied 

orally. What both of these studies lack, however, is an accompanying comparison with 

the immune parameters that, whilst studied, were not compared (Kuhlwein et al. 

2014, Syakuri et al. 2014).  

In this trial the effect of MacroGard® on the microbiota and innate immune 

response within the gut of carp will be ascertained and any correlation determined. 

Gene expression of selected innate immune genes will be assessed using RT-qPCR and 

analysis of bacterial species richness will be determined using PCR-DGGE. 

Quantitative analysis of the total bacteria load and the presence of specific bacteria 

genera within the gut will be determined. Statistical correlation models will be 

employed to study the relationship between the carp immune status and the profile 

of the gut microbiota.  
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Materials and methods. 

4.3.2 – Fish husbandry and experimental design. 

90 carp obtained from Hampton Spring Fisheries, UK in October 2012, were 

divided between 6 tanks (15 fish per tank) and maintained as described in section 

4.1.2. At the start of this trial, carp had a mean weight of 56.5g (s.d. ±13.5g) and mean 

length of 14.6cm (s.d. ±1.1cm). Carp were fed at a rate of 1% body weight per day 

with a diet containing either 0% MacroGard® (3 tanks) or 0.1% MacroGard® (3 tanks) 

for a period of 7 weeks (see section 4.1.3). Samples of the upper midgut were taken as 

described in section 4.3.3 at all time points. Sampling was performed at the very start 

of the trial, i.e. when all fish had only eaten 0% MacroGard® feed (referred to as week 

0 in all Tables and Figures), and then 1, 3, 5 and 7 weeks after the start of feeding 

with the 0.1% MacroGard® diet. At each time point, 3 carp per tank were sampled as 

shown in Table 4.3.  

 

Table 4.3: Experimental design of 7 week feeding trial analysing the effect of 0.1% w/w MacroGard® in 
the diet of common carp (C. carpio) compared to carp maintained on a 0% MacroGard® diet. Table 
shows the number of fish sampled at each time point from each tank. 

 0% MacroGard® feed 0.1% MacroGard® feed 

 Tank A Tank B Tank C Tank D Tank E Tank F 

Time 

point 

Week 0 3 3 3 3 3 3 

Week 1 3 3 3 3 3 3 

Week 3 3 3 3 3 3 3 

Week 5 3 3 3 3 3 3 

Week 7 3 3 3 3 3 3 

 

 

4.3.3 – Tissue sampling of carp.  

Carp were euthanized by submersion in anaesthetic (2-phenoxyethanol, 

1ml/5L), dissected, the upper midgut (defined as the region after the intestinal bulb) 



Chapter 4 – Analysis of gut microbiota and immune status after 

feeding with MacroGard®. 

Harris 

2017 

 

102 

was removed and stored in RNAlater at -80°C until further use. Upper midgut 

sections were divided as follows; total gut (including any faecal matter), gut wall (no 

faecal matter) and gut contents (faecal matter only) as shown in Figure 4.3. 

 

 

Figure 4.3: Schematic showing the location along the intestinal axis of the common carp at which 
samples are taken. Total gut is defined as both intestinal tissue and any faecal matter present and 
includes both the indigenous and transient microbiota populations. Gut wall is defined as intestinal 
tissue and indigenous microbiota only with faecal matter being removed by gentle squeezing. Both 
samples were taken from the upper midgut area of the intestine which is defined within this thesis as 
starting directly after the first natural kink along the gut axis.  

 

4.3.4 – Quantitative analysis of innate immune gene expression and bacterial 

16S rDNA expression.  

Gene expression analysis was performed on selected innate immune genes in 

carp and the bacterial 16S rDNA gene. These were as follows: ApoA1, Bf/C2, CRP 2, 

C1rs, C3, HAMP1, iNOS, IL-1β, the IL-1β receptor, LEAP2, MASP2, muc2, TNFα1 and 

TNFα2. 

 

  

Total gut sample 
(1cm in length) 
taken 1cm after 

first natural kink 
along the 

intestinal axis.  

Anus 

Natural kinks 

Oesophagus 

Gut wall sample 
(1cm in length) 
taken directly 
after total gut 

sample. 
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4.3.4.1 – RNA isolation. 

RNA isolation was performed using the Qiagen RNeasy Mini Kit optimised for 

bacteria samples as per the manufacturer’s instructions. Briefly, approximately 3mm3 

of gut wall tissue was placed into 250µl of PBS solution and subjected to sonication 

utilising a BioruptorTM set on high for 10 minutes (pausing after 5 minutes to refresh 

the ice within the water bath). 500µl of RNAprotect was added to each sample and 

vortexed before incubating at room temperature for 5 minutes. Samples were 

pelleted by centrifugation (5,000 x g for 10 minutes) and the supernatant removed. 

100µl of lysozyme (15mg/ml) suspended in TE buffer (10mM Tris-HCl, 1mM EDTA) 

was applied to each sample and mixed gently via pipetting to re-suspend the pellet 

before 10µl of proteinase K (10mg/ml in PCR grade water) was added. Samples were 

vortexed every 2 minutes in 10 second bursts for 10 minutes before 700µl RLT buffer 

was added. Samples were then stored overnight at -80°C. After thawing, debris was 

pelleted by centrifugation (14,000 x g for 3 minutes) and 760µl of supernatant added 

to 590µl of 80% ethanol and mixed by pipetting. Samples were applied to a spin 

column (two volumes of a maximum of 700µl per column) and the supernatant 

removed by centrifugation at 8,000 x g for 15 seconds. Samples were then washed 

firstly in 500µl RW1 buffer (centrifugation at 8,000 x g for 15 seconds) and then in 

two washes with 500µl RPE buffer (first wash – centrifugation at 8,000 x g for 15 

seconds, second wash – centrifugation at 10,000 x g for 2 minutes). The washing 

buffer was then removed by an additional centrifugation step of 8,000 x g for 2 

minutes. RNA, attached to the spin column membrane, was incubated in 35µl of 

RNase free water at room temperature for 2 minutes before a final centrifugation step 

of 8,000 x g for 1 minute. Concentrations were determined using a Nanodrop 1000 
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spectrophotometer and samples stored at -80°C until further use.  

 

4.3.4.2 – DNase treatment of RNA samples. 

Prior to cDNA synthesis, RNA samples were treated with DNase to remove any 

DNA contamination. Briefly, 1µg RNA of sample was suspended in RQ1 buffer (final 

concentration – 1X), 1ng DNase and 10U RNaseOUT RNase inhibitor in a total volume 

of 10µl and incubated at 37°C for 30 minutes before the addition of 1µl of RQ1 DNase 

stop solution. Samples were then incubated at 65°C for 10 minutes.  

 

4.3.4.3 – cDNA synthesis.  

500ng of DNase treated RNA was mixed with a final concentration of 2.5μM 

random hexamers, 1mM dNTP mix (1mM of each dATP, dGTP, dCTP, and dTTP) in a 

total volume of 12µl. Samples were incubated at 65°C before briefly being chilled on 

ice and centrifuged to collect any condensation to the bottom of the tube. First Strand 

Buffer, DTT and RNase Inhibitor (final concentrations – 1X, 0.01M and 40U 

respectively) were then added to each sample and incubated at 37°C for 2 minutes 

before 200U of M-MuLV RT was added and the samples incubated in the following 

conditions: 25°C for 10 minutes, 27°C for 50 minutes, 70°C for 15 minutes. Samples 

were then stored at -20°C until further use.  

 

4.3.4.4 – RT-qPCR analysis. 

In order to quantitatively analyse changes in gene expression levels, RT-qPCR 

analysis was performed on gut samples. During this feeding trial, the following 

immune genes were selected for analysis: ApoA1, Bf/C2, CRP2, C1rs, C3, HAMP1, 
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iNOS, IL-1β, the IL-1β receptor, LEAP2, MASP2, Muc2, TNF α1, and TNFα2. In addition 

to studying the outlined immune parameters, RT-qPCR analysis of the 16S rDNA gene 

expression in the bacterial population within the gut was also analysed. Assays were 

performed to quantify total 16S expression, i.e. an approximation of the overall 

bacterial population size, and the proportion of the total expression represented by 

the genera Aeromonas, Pseudomonas, Flavobacterium, Vibrio and Streptococcus. 

Primers for all genes can be found in Appendix 3. 

 

Running PCRs for in vivo sample analysis. 

RT-qPCR assays were performed using either an ABI Prism® 9000 Sequence 

Detection System or an Mx3000P qPCR System, and the SensiFASTTM SYBR® HiROX 

kit as per the manufacturer’s instructions. Assays were performed in a total volume of 

20µl with primers utilised at a concentration of 0.2µM each. 2µl of template cDNA was 

used in each assay with concentration being determined based upon analysis of a 

serial dilution of a pool of all samples within an experiment. Individual samples were 

diluted by a factor of either 1:4 or 1:10 based upon a Ct of 25 from pooled samples. 

Unless otherwise stated, data was analysed utilising a relative standard generated 

from a pool of all cDNA samples within a single experiment in a 1:3 serial dilution. 

Values are calculated as relative expression per 500ng RNA translated to cDNA. For 

genus specific bacterial assays, an absolute plasmid standard was used for data 

analysis. Recombinant plasmids were donated by Dr. Mikolaj Adamek at the 

University of Veterinary Medicine, Hanover, Germany (Adamek et al. 2013) and 

values calculated as absolute copy number.  
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Statistical analysis of carp immune gene expression data. 

Statistical analysis was performed firstly by testing for outliers using Grubbs’ 

test. Outliers, i.e. values that are outside of the normal distribution of a data set, were 

removed before further analysis. Analysis was performed in Excel by calculating the Z 

score for each sample using the following formula:  

} = (~= − ~�)/� 

Where ~= is the sample, ~�  is the mean of all samples and � is the standard 

deviation. Z scores that were higher than the critical value (based upon experimental 

sample size and a critical value of 5%, Grubbs and Beck 1972) were removed from 

the dataset as outliers before any further analysis was performed. 

Analysis of variance was performed using Minitab 14. Data points from each 

gene were tested for normality using an Anderson-Darling test and homoscedasticity 

using Levene’s test. In cases were a p value of <0.05 was obtained using these tests, 

data were transformed using a Box-Cox transformation and retested for normality 

and homoscedasticity. Differences between time points and feeding regimes were 

compared using either a 2-way nested ANOVA with post hoc Tukey’s or, in cases were 

data could not be normalised with a Box-Cox transformation, a 2-way Scheirer-Ray-

Hare test was performed. Each figure within this and subsequence chapters includes 

the results of the Anderson-Darling and Levene’s tests to show if data met the 

conditions required for a parametric test, and values of λ when data was transformed 

prior to further statistical analysis. 

 

4.3.4.5 – Comparing immune gene expression with 16S rDNA expression.  

In order to determine if there was any correlation between immune gene 
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expression and the 16S expression in the total bacteria population and individual 

bacterial genera, expression data was analysed using Spearman’s rank order test 

(SPSS 21). All data points including those identified as statistical outliers were 

included in this comparison.  

 

4.3.5 – Qualitative analysis of bacterial species richness. 

In order to study changes in species richness (presence/absence only), the 

non-culture based method of PCR-DGGE was employed. This section outlines the 

protocol employed to isolate genDNA from total gut samples and the PCR-DGGE 

analysis.  

 

4.3.5.1 – genDNA isolation. 

GenDNA was isolated utilising the QIAamp DNA Mini Kit optimised for bacteria 

isolation as per the manufacturer’s instructions. Nomenclature for buffers, e.g. AL 

buffer, was set by the manufacturer and are given within this section as labelled in 

the kit except for lysis buffer which was produced by the author. Briefly, total gut 

samples were prepared for genDNA isolation by homogenizing approximately 5mm3 

of tissue suspended in lysis buffer (20mg/ml lysozyme, 20mM Tris-HCl, 2mM EDTA, 

1.2% Triton X100) using a TissueLyser II – 20Hz for 2 minutes. Samples were then 

incubated at 37°C for 1 hour. 200µl of AL buffer and 20µl of proteinase K were added 

to each sample and pulse vortexed for 15 seconds. Samples were then incubated at 

65°C for 30 minutes and 95°C for 15 minutes, mixed with 200µl of absolute ethanol 

by pulse vortexing before being applied to a DNA spin column. Samples were bound 

to the membrane and the liquid removed by centrifugation at 6,000 x g for 1 minute. 
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Samples then underwent two washing steps, first with 500µl AW1 buffer 

(centrifugation at 6,000 x g for 1 minute) and secondly with 500µl of AW2 buffer 

(centrifugation at 20,000 x g for 3 minutes) before an additional centrifugation step 

at 20,000 x g for 1 minute to remove any remaining wash solution. They were then 

incubated in 150µl AE buffer at room temperature for 5 minutes before a final 

centrifugation step at 6,000 x g for 1 minute and stored at -20°C until use. 

 

4.3.5.2 – End point PCR for PCR-DGGE analysis. 

PCRs were performed under sterile conditions utilising the following PCR mix 

(values refer to final concentration): 1X KAPA2G Buffer A, 0.2mM dNTP mix, 10µM 

each primer in the primer pair DGGE (sequences can be found in Appendix 3), 0.25U 

Hot Start KAPA2G Robust polymerase, 5µl genDNA (average concentration of 

300ng/µl) in a total volume of 25µl. Samples were incubated in an Eppendorf 

Gradient Mastercycler® with the following touchdown program: 95°C for 5 minutes, 

5x cycles of 95°C for 30 seconds, 63-58°C for 30 seconds (-1°C per cycle), 72°C for 1 

minute, 35x cycles of 95°C for 30 seconds, 57°C for 30 seconds, 72°C for 1 minute, and 

a final incubation at 72°C for 7 minutes. Samples were tested for a correct sized 

product and to confirm no contamination in the template free control on a 1% 

agarose gel (mixed in 50ml 1X TBE buffer with 2.5µl of Roti®-Safe gel stain for 

visualisation) which was subject to a voltage of 105V for 20 minutes and visualised 

under UV light.  

 

4.3.5.3 – DGGE gel preparation and electrophoresis. 

PCR samples were pooled by tank and by time point (3 fish per pool) and 
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mixed with an equal volume of loading buffer (40% glycerol with cresol red) before 

use. 8% polyacrylamide gels (Rotiphorese® Gel 30 mixed with a final concentration of 

1X TAE buffer) containing a 40-60% gradient of urea and formamide (whereby 100% 

is equivalent to 7M urea and 40% formamide solution) were prepared manually 

using 40µl of TEMED and 400µl 10% (w/v) APS as setting agents. Gels were prepared 

and performed using a TV400-DGGE system with a gel size of 16.5x17.5cm. 

Electrophoresis was performed at 60°C. Samples were initially drawn into the gel at 

250V for 2 minutes and then separated at 120V for 820 minutes. Gels were stained 

using the UV marker SYBRgold by incubation in a 0.01% (v/v) suspension for 30 

minutes at room temperature. Samples were visualised under UV light and imaged 

using a Nikon D3200 Digital SLR with a 55-300mm VR lens and a minimum exposure 

time of 10 seconds. 

 

4.3.5.4 – PCR-DGGE gel analysis. 

After imaging, band patterns were analysed in a binary format, i.e. presence or 

absence of a band. Bands are arbitrarily ordered from the top of the gel to the bottom 

with all bands being considered regardless of band pattern. Band 1 represents the 

band that has undergone the least migration and therefore has the lowest melting 

temperature. The highest numbered band (gel dependent) within a gel is the band 

that has migrated the furthest and has the highest melting temperature.  

PCR-DGGE analysis works under the assumption that each band within a band 

pattern represents a single operational taxonomic unit (OTU) with the further 

assumption that each OTU represents a different bacterial species although this 

cannot be confirmed without sequence data for each band. Using these assumptions, 
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however, it is possible to compare how alike each band pattern is in comparison to 

other band patterns within the same gel. Assumptions of correlation between the 

presence/absence of bands cannot be made with data alone from a band pattern, 

therefore metric tests cannot be used. Following the work of Attramadal et al. (2014) 

and Kühlwein et al. (2013), Bray-Curtis dissimilarity index followed by plotting 

dissimilarities using nMDS was performed to compare band patterns within each gel 

as described in section 4.1.8. 

 

4.3.6 – Results.  

The data presented for this experiment is divided into three sections – 

expression of immune genes (4.3.6.1), analysis of the gut microbiome (4.3.6.2) and 

statistical analysis to look at any correlation between the size of the microbial 

population within the gut and expression of the analysed bactericidal immune genes 

(4.3.6.3). 

 

4.3.6.1 – Expression of immune genes in the gut. 

Prior to analysis of individual fish, PCRs were performed using a pool of all 

samples in order to determine how far cDNA samples should be diluted. This revealed 

that the expression levels of certain genes did not give a low enough Ct value to 

analyse expression levels within individual samples and/or limited presence of peaks 

(i.e. product) when analysing the dissociation curve produced at the end of the PCR 

cycles. To this end, further analysis of the following genes was not completed: two 

isoforms of TNFα, and the complement proteins MASP2, C1rs, and bf/C2. The three 

complement proteins were expressed within the pool of all cDNA samples at lower 
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levels than required for further analysis within this experiment. There was no 

expression of either isoform of TNFα in the pool of all samples from this experiment. 

Due to a high level of variation in gene expression naturally existing within 

cohorts of outbred carp it was decided, as standard, to employ a statistical outlier test 

to all gene expression data before further analysis. Grubbs’ outliers test revealed at 

least one outlying value for each immune gene analysed. These outlying values were 

not limited to one individual, however the decision was made to remove these data 

points anyway on the basis that normal distribution and equal variance presumptions 

were violated, even after a Box-Cox transformation was performed when outliers 

were included. Whilst a non-parametric 2-way Scheirer-Ray-Hare test could have 

been used in lieu of the parametric 2-way nested ANOVA in cases were outliers 

caused the presumptions of normal distribution and equal variance to be violated, 

post hoc analysis is not possible with the Scheirer-Ray-Hare test and it is also the 

weaker of the two types of analysis, i.e. potentially significant differences that would 

be highlighted using an ANOVA would not be seen when using the Scheirer-Ray-Hare 

test.  73.3% of outlier values (15 in total across all genes) were from carp fed with the 

0% MacroGard® diet with at least 1 outlier coming from this feed group for all genes 

analysed except Muc2. Each of these outlier values came from different fish in 

different tanks at different time points. In comparison, there were only 4 outlier 

values from carp fed with the 0.1% MacroGard® diet. These were found in the gene 

expression of iNOS (1 value), Muc2 (1 value) and CRP2 (2 values). As with the outlier 

data points from the 0% MacroGard® fed fish, these all came from different fish from 

different tanks and different time points.  

A 2-way nested ANOVA revealed that there was no statistically significant 
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difference in expression levels between fish cohorts, i.e. from different tanks, which 

received the same feed regime for any of the genes analysed. Levels of C3 expression 

could not be normalised therefore the non-parametric Scheirer-Ray-Hare test was 

performed, however, due to limitations of this test, tank effect could not be analysed 

for this data set.   

The inclusion of 0.1% MacroGard® in the diet only had a statistically 

significant overall effect on the expression of the IL-1β receptor (p=0.019, Figure 4.4) 

and IL-1β (p=0.047, Figure 4.5). The IL-1β receptor had greater expression levels in 

carp fed with the 0.1% MacroGard® at all sampling times except for those sampled at 

the very start of the trial where all fish had only been fed the 0% MacroGard® (week 0 

in Figure 4.4). The expression of the IL-1β receptor was only significantly higher in 

carp fed with the 0.1% MacroGard® diet in comparison to those fed the MacroGard® 

free diet at week 3 (p=0.0121). Inversely, where expression of the IL-1β receptor was 

higher in MacroGard® fed carp, expression of the IL-1β gene itself was significantly 

lower in 0.1% MacroGard® fed carp in comparison to those on the 0% MacroGard® 

diet. Post hoc analysis did not, however, reveal any significant differences between 

the two feed groups at individual time points.  

Whereas feed had a minimal impact upon gene expression, time, irrespective 

of diet, had a significant effect on the expression of the IL-1β receptor, IL-1β, iNOS 

(Figure 4.6), Muc2 (Figure 4.7) and CRP2 (Figure 4.8) with significance at p=0.033, 

p=0.001, p=0.007, p<0.001 and p<0.001 respectively. The IL-1β receptor, whilst 

showing a significant effect of time overall, did not show any significant differences 

between each individual time point.  
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The greatest expression of IL-1β was noted at the very start of the trial before 

the tanks were divided by diet (described as week 0 in Figure 4.5) and was 

significantly higher compared to expression seen after 1 week (p=0.0057), 3 weeks 

(p=0.0016) and 7 weeks (p=0.0355) but not after 5 weeks. In comparison iNOS gene 

expression was significantly greater at the end of the trial (week 7) compared to 

those seen at weeks 1 (p=0.0069) and 3 (p=0.0358). Both Muc2 and CRP2 expression 

levels are significantly lower at week 5 (p<0.001) in comparison to all other time 

points. There are no significant differences in the expression levels of C3 (Figure 4.9) 

or the three antimicrobial peptides HAMP1 (Figure 4.10), LEAP2 (Figure 4.11) and 

ApoA1 (Figure 4.12) over time. 

Whilst statistical analysis of data is highly useful in discussing whether an 

effect is present or simply an artefact of chance, considering the biology is equally as 

important when interpreting data. The data presented in Figure 4.4 to Figure 4.12 

shows that whilst there are statistically significant differences in the levels of gene 

expression, the magnitude of these differences is minimal. Where expression of the 

IL-1β receptor gene is significantly greater in carp fed with the 0.1% MacroGard® diet 

after 3 weeks, the average expression is less than twice (1.8 times) the average 

expression of carp fed with the 0% MacroGard® diet. Similarly, the higher expression 

levels of IL-1β seen at the start of the trial (represented in Figure 4.5 as week 0) 

irrespective of feed are only 1.6, 1.7 and 1.2 times higher than the significantly lower 

levels of expression after 1, 3 and 7 weeks of feeding. The statistically significant 

differences in iNOS expression over time irrespective of feed correspond to a 1.6 

times higher level of expression at week 1 in comparison to week 7, and a 1.1 times 

higher level at week 3 in comparison to week 7. Expression of Muc2 was significantly 
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lower irrespective of feed at week 5 in comparison to all other time points with the 

largest fold difference (2.0 times higher) in average expression being seen between 

weeks 5 and 7. The largest fold difference seen for any gene with an associated 

statistically significant difference is found in CRP2. As with Muc2 expression, this 

difference is seen between weeks 5 and 7 with expression at week 7 being 3.3 times 

higher than two weeks previous.  
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Anderson-Darling test for 

normality 
p=0.418 Levene’s test for equal variance p=0.944 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=30.14%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 5.72 0.019 * 

Nested effect of tank variation 4 0.24 0.914  

Overall difference over time 4 2.77 0.033 * 

Interaction of feed and time 4 3.54 0.011 * 

Post hoc analysis  

Time point: 3 weeks, 0% versus 0.1% MacroGard® p=0.0121 * 

 

Figure 4.4: Expression of the Interleukin 1β receptor gene in the upper midgut of common carp (C. 

carpio) during a 7 week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® 
experimental diet designed by Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given 
to 3 tanks with 3 carp being sampled per tank per time point (total fish n=90). The bar chart shows the 
average gene expression for each feed (n=9). Error bars are given as standard error of the mean. 
Grubbs test was utilised to identify any statistical outliers which were removed before any further 
statistical analysis. One fish was categorised as an outlier from tank C (0% MacroGard® feed) at time 
point 3 weeks. Data was checked for normality using the Anderson-Darling test on both raw data and 
residual data, and Levene’s test for equal variance. A 2-way nested (tank within feed) ANOVA with 
Tukey’s as post hoc analysis was utilised to compare differences over time and between feeds. Details 
of the statistical analysis are shown beneath the graph. Degrees of freedom, F distribution and P values 
for overall significance are given with significant (p<0.05) post hoc comparisons being listed. Both in 
the graph and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=0.32 

Anderson-Darling test for 

normality 
p=0.479 Levene’s test for equal variance p=0.993 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=32.67%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 4.06 0.047 * 

Nested effect of tank variation 4 2.08 0.091  

Overall difference over time 4 5.42 0.001 ** 

Interaction of feed and time 4 0.48 0.749  

Post hoc analysis  

Time: 0 weeks versus 1 week p=0.0057 ** 

Time: 0 weeks versus 3 weeks p=0.0016 ** 

Time: 0 weeks versus 7 weeks p=0.0355 * 

 

Figure 4.5: Expression of the Interleukin 1β gene in the upper midgut of common carp (C. carpio) 
during a 7 week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet 
designed by Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 
carp being sampled per tank per time point (total fish n=90). Bars represent average gene expression 
for each feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to 
identify any statistical outliers which were removed before any further statistical analysis. One fish 
was categorised as an outlier from tank B (0% MacroGard® feed) at time point 3 weeks. Data was 
checked for normality using the Anderson-Darling test on both raw data and residual data, and 
Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a Box 
Cox transformation before further analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as 
post hoc analysis was utilised to compare differences over time and between feeds. Details of the 
statistical analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for 
overall significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the 
graph and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=-0.24 

Anderson-Darling test for 

normality 
p=0.255 Levene’s test for equal variance p=0.981 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=20.28%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.43 0.516  

Nested effect of tank variation 4 0.40 0.811  

Overall difference over time 4 3.80 0.007 ** 

Interaction of feed and time 4 0.52 0.719  

Post hoc analysis  

Time: 1 week versus 7 weeks p=0.0069 ** 

Time: 3 weeks versus 7 weeks p=0.0358 * 

 

Figure 4.6: Expression of the iNOS gene in the upper midgut of common carp (C. carpio) during a 7 
week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by 
Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being 
sampled per tank per time point (total fish n=90). Bars represent average gene expression for each 
feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to identify any 
statistical outliers which were removed before any further statistical analysis. Two fish were 
categorised as outliers: one from tank C (0% MacroGard® feed) at time point 5 weeks, and one from 
tank E (0.1% MacroGard® feed) at time point 7. Data was checked for normality using the Anderson-
Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw data was not 
normally distributed therefore was subject to a Box Cox transformation before further analysis. A 2-
way nested (tank within feed) ANOVA with Tukey’s as post hoc analysis was utilised to compare 
differences over time and between feeds. Details of the statistical analysis are shown beneath the 
graph. Degrees of freedom, F distribution and P values for overall significance are given with 
significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * signifies p<0.05, 
** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=0.16 

Anderson-Darling test for 

normality 
p=0.192 Levene’s test for equal variance p=0.929 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=41.09%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.36 0.549  

Nested effect of tank variation 4 0.44 0.783  

Overall difference over time 4 12.16 <0.001 *** 

Interaction of feed and time 4 0.52 0.719  

Post hoc analysis  

Time: 0 weeks versus 5 weeks p<0.0001 *** 

Time: 1 week versus 5 weeks p<0.0001 *** 

Time: 3 weeks versus 5 weeks p<0.0001 *** 

Time: 5 weeks versus 7 weeks p<0.0001 *** 

 

Figure 4.7: Expression of the Muc2 gene in the upper midgut of common carp (C. carpio) during a 7 
week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by 
Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being 
sampled per tank per time point (total fish n=90). Bars represent average gene expression for each 
feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to identify any 
statistical outliers which were removed before any further statistical analysis. One fish was categorised 
as an outlier from tank D (0.1% MacroGard® feed) at time point 0 weeks. Data was checked for 
normality using the Anderson-Darling test on both raw data and residual data, and Levene’s test for 
equal variance. Raw data was not normally distributed therefore was subject to a Box Cox 
transformation before further analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as post 

hoc analysis was utilised to compare differences over time and between feeds. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the graph 
and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=0.22 

Anderson-Darling test for 

normality 
p=0.233 Levene’s test for equal variance p=0.946 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=40.56%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 2.80 0.098  

Nested effect of tank variation 4 0.70 0.592  

Overall difference over time 4 10.02 <0.001 *** 

Interaction of feed and time 4 0.80 0.527  

Post hoc analysis  

Time: 0 weeks versus 5 weeks p<0.0001 *** 

Time: 1 week versus 5 weeks p=0.0002 *** 

Time: 3 weeks versus 5 weeks p=0.0004 *** 

Time: 5 weeks versus 7 weeks p<0.0001 *** 

 

Figure 4.8: Expression of the CRP2 gene in the upper midgut of common carp (C. carpio) during a 7 
week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by 
Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being 
sampled per tank per time point (total fish n=90). Bars represent average gene expression for each 
feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to identify any 
statistical outliers which were removed before any further statistical analysis. Three fish was 
categorised as outliers: one from tank B (0% MacroGard® feed) at time point 3 weeks, one from tank F 
(0.1% MacroGard® feed) at time point 5 weeks, and one from tank D (0.1% MacroGard® feed) at time 
point 7 weeks. Data was checked for normality using the Anderson-Darling test on both raw data and 
residual data, and Levene’s test for equal variance. Raw data was not normally distributed therefore 
was subject to a Box Cox transformation before further analysis. A 2-way nested (tank within feed) 
ANOVA with Tukey’s as post hoc analysis was utilised to compare differences over time and between 
feeds. Details of the statistical analysis are shown beneath the graph. Degrees of freedom, F 
distribution and P values for overall significance are given with significant (p<0.05) post hoc 
comparisons being listed. Both in the graph and table, * signifies p<0.05, ** signifies p<0.01, and *** 
signifies p<0.001. 
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Box Cox transformation λ>-5 

Anderson-Darling test for 

normality 
p<0.005 Levene’s test for equal variance p=0.636 

2-way Scheirer-Ray-Hare test 

(R2=11.64%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.10 0.755  
Overall difference over time 4 2.28 0.067  
Interaction of feed and time 4 0.33 0.860  

 

Figure 4.9: Expression of the C3 gene in the upper midgut of common carp (C. carpio) during a 7 week 
feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by Tetra 
(GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being sampled 
per tank per time point (total fish n=90). Bars represent average gene expression for each feed (n=9). 
Error bars are given as standard error of the mean. Grubbs test was utilised to identify any statistical 
outliers which were removed before any further statistical analysis. Two fish were categorised as 
outliers: one from tank C (0% MacroGard® feed) at time point 1 week, and one from tank A (0% 
MacroGard® feed) at time point 5 weeks. Data was checked for normality using the Anderson-Darling 
test on both raw data and residual data, and Levene’s test for equal variance. Raw data was not 
normally distributed and using a +1 followed by Box Cox transformation showed a value of λ smaller 
than -5 was required to normalise the data. The non-parametric Scheirer-Ray-Hare test was used for 
further statistical analysis. Details are shown beneath the graph. Degrees of freedom, F distribution 
and P values for overall significance are given with significant (p<0.05) post hoc comparisons being 
listed.  
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Box Cox transformation λ=0.01 

Anderson-Darling test for 

normality 
p=0.928 Levene’s test for equal variance p=0.914 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=13.54%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.08 0.774  
Nested effect of tank variation 4 0.86 0.490  
Overall difference over time 4 1.89 0.122  
Interaction of feed and time 4 0.10 0.980  

 

Figure 4.10: Expression of the HAMP1 gene in the upper midgut of common carp (C. carpio) during a 7 
week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by 
Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being 
sampled per tank per time point (total fish n=90). Bars represent average gene expression for each 
feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to identify any 
statistical outliers which were removed before any further statistical analysis. Three fish were 
categorised as outliers: one from tank C (0% MacroGard® feed) at time point 1 week, one from tank E 
(0.1% MacroGard® feed) at time point 1 week, and one from tank A (0% MacroGard® feed) at time 
point 5 weeks. Data was checked for normality using the Anderson-Darling test on both raw data and 
residual data, and Levene’s test for equal variance. Raw data was not normally distributed therefore 
was subject to a Box Cox transformation before further analysis. A 2-way nested (tank within feed) 
ANOVA with Tukey’s as post hoc analysis was utilised to compare differences over time and between 
feeds. Details of the statistical analysis are shown beneath the graph. Degrees of freedom, F 
distribution and P values for overall significance are given with significant (p<0.05) post hoc 
comparisons being listed.  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 3 5 7

L
e

v
e

l 
o

f 
e

x
p

re
ss

io
n

 n
o

rm
a

li
se

d
 a

g
a

in
st

 t
h

e
 

h
o

u
se

k
e

e
p

in
g

 g
e

n
e

 4
0

S
 (

c
o

p
ie

s 
p

e
r 

c
o

p
y

 o
f 

4
0

S
)

Time (weeks)

0% MacroGard® feed

0.1% MacroGard® feed



Chapter 4 – Analysis of gut microbiota and immune status after 

feeding with MacroGard®. 

Harris 

2017 

 

122 

 

Box Cox transformation λ=-0.01 

Anderson-Darling test for 

normality 
p=0.661 Levene’s test for equal variance p>0.999 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=17.04%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.00 0.950  
Nested effect of tank variation 4 0.31 0.868  
Overall difference over time 4 1.91 0.117  
Interaction of feed and time 4 1.71 0.157  

 

Figure 4.11: Expression of the LEAP2 gene in the upper midgut of common carp (C. carpio) during a 7 
week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by 
Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being 
sampled per tank per time point (total fish n=90). Bars represent average gene expression for each 
feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to identify any 
statistical outliers which were removed before any further statistical analysis. One fish was categorised 
as an outliers from tank A (0% MacroGard® feed) at time point 5 weeks. Data was checked for 
normality using the Anderson-Darling test on both raw data and residual data, and Levene’s test for 
equal variance. Raw data was not normally distributed therefore was subject to a Box Cox 
transformation before further analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as post 

hoc analysis was utilised to compare differences over time and between feeds. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed.  
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Box Cox transformation λ=-0.11 

Anderson-Darling test for 

normality 
p=0.661 Levene’s test for equal variance p=0.983 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=17.96%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.13 0.716  
Nested effect of tank variation 4 1.16 0.336  
Overall difference over time 4 2.27 0.070  
Interaction of feed and time 4 0.63 0.642  

 

Figure 4.12: Expression of the ApoA1 gene in the upper midgut of common carp (C. carpio) during a 7 
week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by 
Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 carp being 
sampled per tank per time point (total fish n=90). Bars represent average gene expression for each 
feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to identify any 
statistical outliers which were removed before any further statistical analysis. Two fish were 
categorised as outliers: one from tank C (0% MacroGard® feed) at time point 1 week, and one from 
tank A (0% MacroGard® feed) at time point 5 weeks. Data was checked for normality using the 
Anderson-Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw 
data was not normally distributed therefore was subject to a Box Cox transformation before further 
analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as post hoc analysis was utilised to 
compare differences over time and between feeds. Details of the statistical analysis are shown beneath 
the graph. Degrees of freedom, F distribution and P values for overall significance are given with 
significant (p<0.05) post hoc comparisons being listed.  
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4.3.6.2 – Gut microbiome analysis. 

Both quantitative and qualitative analyses were performed on the gut 

microbiome populations of carp in order to ascertain the impact of MacroGard® 

consumption on bacterial population sizes and species richness. Quantification of 

total 16S rDNA expression (Figure 4.13) revealed a significant effect of time, but not 

diet, on the overall size of the bacterial population in the gut (p<0.001). Expression 

levels at the very start of the trial when all fish had only consumed the 0% 

MacroGard® diet (described as week 0 in all figures) are significantly higher than 

those found at week 3 (p=0.0458), and week 5 has significantly higher expression 

levels than weeks 1 (p<0.0001), week 3 (p<0.0001) and week 7 (p=0.0201). Although 

different mean expression levels are seen when comparing between diets at each 

time point, post hoc analysis revealed no statistical significance between these 

differences. The largest difference in expression levels over time irrespective of feed 

is seen between weeks 1 and 5 with the latter being 3.8 times higher than that seen 1 

week after the start of the trial. Within each feed over time, the range of average 16S 

expression was a 6.5 fold difference between the highest and lowest expression levels 

seen for carp fed with the 0% MacroGard® diet and a 5.3 fold difference for carp fed 

with the 0.1% MacroGard® diet. 

In addition to the analysis of total bacterial population expression of individual 

genera, i.e. Aeromonas sp., Pseudomonas sp., Flavobacterium sp., Vibrio sp., and 

Streptococcus sp., were analysed in fish sampled at the start and end of the trial 

(labelled weeks 0 and 7 in Figure 4.14). No copies of Vibrio sp. or Streptococcus sp. 

16S rDNA were detected in any of the carp analysed. Figure 4.14 shows the relative 

proportion of the total microbial population in each fish represented by Aeromonas 
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sp., Pseudomonas sp., and Flavobacterium sp.. As can be seen there is a large amount 

of variability both within individual tanks, for example carp from tank E contain 

proportionally a higher amount of Aeromonas sp. than can be seen in carp from tank 

D, and between the start and end of the trial as can be seen in tank A where 

Pseudomonas sp. and Flavobacterium sp. are seen in much higher proportions at the 

end of the trial than at the start. A 2-way nested ANOVA revealed no statistical 

differences in the proportions of Aeromonas sp. or Pseudomonas sp. within the fish 

gut, however the proportion of Flavobacterium sp. was significantly different when 

comparing fish from different tanks. 

Qualitative analysis of species richness was performed based upon PCR-DGGE 

band patterns. The Bray-Curtis dissimilarity test revealed no difference in the level of 

dissimilarity between fish from different tanks which received the same feed or 

between time points, i.e. they were all similar (Figure 4.15), and non-metric 

Multidimensional Scaling (nMDS) analysis of the data further confirmed this (Figure 

4.16). The stress of the nMDS ordination, i.e. how well the data fits within a 2D matrix, 

is given as 0.1294 which falls within the range described as an acceptable level of 

stress for 2D graphical representations of data (Podani 2000). The nMDS ordination, 

constructed from Bray-Curtis dissimilarities from multiple gels and with averaged 

dissimilarity being used when a comparison occurred on more than one gel (n=1/2 

for each comparison), shows that there is no grouping of data points (average level of 

species richness within a tank at each time point) either by time point or by feed 

group. 
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Box Cox transformation λ=0.22 

Anderson-Darling test for 

normality 
p=0.565 Levene’s test for equal variance p=0.927 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=44.87%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between feeds 1 0.90 0.345  

Nested effect of tank variation 4 2.17 0.081  

Overall difference over time 4 9.74 <0.001 *** 

Interaction of feed and time 4 3.86 0.007 ** 

Post hoc analysis  

Time: 0 weeks versus 3 weeks p=0.0458 * 

Time: 1 week versus 5 weeks P<0.0001 *** 

Time: 3 weeks versus 5 weeks P<0.0001 *** 

Time: 5 weeks versus 7 weeks p=0.0201 * 

 

Figure 4.13: Expression of the bacterial 16S rDNA gene in the upper midgut of common carp (C. carpio) 
during a 7 week feeding trial. Carp were fed with either a 0% or 0.1% MacroGard® experimental diet 
designed by Tetra (GmbH) at a rate of 1% body weight per day. Each feed was given to 3 tanks with 3 
carp being sampled per tank per time point (total fish n=90). Bars represent average gene expression 
for each feed (n=9). Error bars are given as standard error of the mean. Grubbs test was utilised to 
identify any statistical outliers which were removed before any further statistical analysis. One fish 
was categorised as an outlier from tank A (0% MacroGard® feed) at time point 5 weeks. Data was 
checked for normality using the Anderson-Darling test on both raw data and residual data, and 
Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a Box 
Cox transformation before further analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as 
post hoc analysis was utilised to compare differences over time and between feeds. Details of the 
statistical analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for 
overall significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the 
graph and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Figure 4.14: (part A) Expression of the bacterial 16S rDNA gene for three different bacterial genera in the upper midgut of common carp (C. carpio) at week 0 and 
week 7 of a 7 week feeding trial (part A). Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by Tetra (GmbH) at a rate of 1% body 
weight per day. Each feed was given to 3 tanks with 3 carp being sampled per tank per time point (total fish n=36). Graph shows the relative proportion of 100% of 
total 16S rDNA expression for each fish within each group. Pastel colours represent the remaining bacteria genera in each fish. Data was checked for normality 
using the Anderson-Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw data was not normally distributed therefore was 
subject to a Box Cox transformation before further analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as post hoc analysis was utilised to compare 
differences over time and between feeds for each of the analysed bacterial genera. Details are shown in part 2 of this figure. Degrees of freedom, F distribution and 
P values for overall significance are given.  
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Aeromonas sp. 

Box Cox transformation λ=-0.01 
2-way nested ANOVA (tank within feed) 

(R2=34.40%) Degrees of freedom F distribution P value Significance 

Anderson-Darling test for 
normality  

p=0.134 
Overall difference between feeds 1 1.58 0.220  

Overall effect of tank 4 2.53 0.063  

Levene’s test for equal variance  p=0.862 
Overall difference over time 1 2.60 0.118  

Interaction of feed and time 1 0.39 0.537  

Pseudomonas 

sp. 

Box Cox transformation 
λ=-0.00 

 

2-way nested ANOVA (tank within feed) 

(R2=15.19%) Degrees of freedom F distribution P value Significance 

Anderson-Darling test for 
normality 

P=0.097 
Overall difference between feeds 1 1.81 0.189  

Overall effect of tank 4 0.41 0.803  

Levene’s test for equal variance  
 

p=0.605 
Overall difference over time 1 0.76 0.391  

Interaction of feed and time 1 0.82 0.374  

Flavobacterium 

sp. 

Box Cox transformation 
λ=0.01 

 

2-way nested ANOVA (tank within feed) 

(R2=34.70%) Degrees of freedom F distribution P value Significance 

Anderson-Darling test for 
normality 

p=0.795 
Overall difference between feeds 1 2.08 0.161  

Overall effect of tank 4 2.92 0.039 * 

Levene’s test for equal variance  p=0.951 
Overall difference over time 1 1.08 0.308  

Interaction of feed and time 1 0.06 0.802  

Figure 4.14: (part B) Expression of the bacterial 16S rDNA gene for three different bacterial genera in the upper midgut of common carp (C. carpio) at week 0 and 
week 7 of a 7 week feeding trial (part B). Carp were fed with either a 0% or 0.1% MacroGard® experimental diet designed by Tetra (GmbH) at a rate of 1% body 
weight per day. Each feed was given to 3 tanks with 3 carp being sampled per tank per time point (total fish n=36). Graph shows the relative proportion of 100% of 
total 16S rDNA expression for each fish within each group. Pastel colours represent the remaining bacteria genera in each fish. Data was checked for normality 
using the Anderson-Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw data was not normally distributed therefore was 
subject to a Box Cox transformation before further analysis. A 2-way nested (tank within feed) ANOVA with Tukey’s as post hoc analysis was utilised to compare 
differences over time and between feeds for each of the analysed bacterial genera. Details are shown in part 2 of this figure. Degrees of freedom, F distribution and 
P values for overall significance are given.   
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Figure 4.15: Average Bray-Curtis dissimilarities for carp fed with either a 0% or 0.1% MacroGard® diet 
for up to 7 weeks. Error bars represent standard deviation. A dissimilarity of 0 indicates two samples 
are identical. A shows the average dissimilarity between feed groups. B shows the average 
dissimilarity between time points.   
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Grouping Marker 

0% MacroGard® fed fish Square 
0.1% MacroGard® fed fish Diamond 

Week 0 Black 
Week 1 Blue 
Week 3 Red 
Week 5 Green 
Week 7 Orange 

 

Figure 4.16: Non metric Multidimensional Scaling (nMDS) ordination (stress: 0.1294) of Bray-Curtis 
dissimilarities looking at the differences in species richness based on PCR-DGGE band patterns of carp 
that had been fed with either a 0% or 0.1% MacroGard® diet. Data is shown twice to easily visualise 
groupings by feed (A) and by time point (B). Where a comparison between two band patterns was 
performed on multiple gels, an average was used to generate the nMDS ordination (n=1/2).  
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4.3.6.3 – Comparing the immune response of carp and the gut microflora 

population. 

In sections 4.3.6.1 and 4.3.6.2, the expression of innate immune genes and 

quantitative analysis of both the overall bacteria population size and amount of 

selected bacterial genera were performed. In this section this data is compared in 

order to study the relationship between these genes and the associated microflora 

within the gut and correlation is assigned based upon the classifications defined by 

Fowler et al. (1998). As shown in Table 4.4, the expression of the IL-1β receptor, IL-

1β and CRP2 show a significant, modest correlation to total 16S rDNA expression 

(p<0.001). Both the IL-1β receptor and CRP2 were negatively correlated whereas IL-

1β expression was positively correlated with 16S rDNA expression. There was no 

correlation between the expression of iNOS, C3, or the antimicrobial peptides HAMP1, 

LEAP2 and ApoA1 when compared against total 16S rDNA expression. Similarly, the 

expression of these genes at weeks 0 and 7 did not correlate with the expression of 

the 16S gene from the genera Aeromonas, Pseudomonas or Flavobacterium (see Table 

4.5). The strongest correlation coefficient seen was between LEAP2 and the amount 

of Pseudomonas in the gut (positive correlation), however this is still only considered 

to be a weak correlation. 
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Table 4.4: The probability of a linear relationship between each of the immune genes analysed in the 
gut of common carp during a 7 week feeding trial and the size of the bacterial population within the 
gut as measured by total 16S rDNA expression (n=90). As data was not normally distributed, 
Spearman’s test was used to calculate the correlation coefficient, i.e. how linear a correlation is, and the 
statistical significance. A rating as to how strong the correlation is (as described by Fowler et al. 1998) 
is also given with a coefficient of 0.00-0.19 being a very weak correlation, 0.20-0.39 being a weak 
correlation, 0.40-0.69 being a modest correlation, 0.70-0.89 being a strong correlation and 0.90-1.00 
being a very strong correlation. 

Gene Correlation coefficient P value Correlation 

IL-1β receptor -0.498 <0.001 Modest negative 

IL-1β 0.488 <0.001 Modest positive 

iNOS -0.135 0.205 Very weak 

C3 0.022 0.838 Very weak 

Muc2 -0.344 0.001 Weak negative 

CRP2 -0.479 <0.001 Modest negative 

HAMP1 0.075 0.479 Very weak 

LEAP2 0.065 0.544 Very weak 

ApoA1 0.080 0.451 Very weak 
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Table 4.5: The probability of a linear relationship between each of the immune genes analysed in 
weeks 0 and 7 of a 7 week feeding trial and the presence of the genera Aeromonas, Pseudomonas and 
Flavobacterium as measured by 16S rDNA expression. As data was not normally distributed, 
Spearman’s test was used to calculate the correlation coefficient, i.e. how linear a correlation is, and the 
statistical significance. A rating as to how strong the correlation is (as described by Fowler et al. 1998) 
is also given with a coefficient of 0.00-0.19 being a very weak correlation, 0.20-0.39 being a weak 
correlation, 0.40-0.69 being a modest correlation, 0.70-0.89 being a strong correlation and 0.90-1.00 
being a very strong correlation. 

Gene Correlation coefficient P value Correlation 

Aeromonas sp. 

IL-1β receptor 0.216 0.206 Weak 

IL-1β 0.014 0.937 Very weak 

iNOS 0.140 0.417 Very weak 

C3 0.018 0.916 Very weak 

Muc2 0.180 0.293 Very weak 

CRP2 0.090 0.293 Very weak 

HAMP1 -0.005 0.997 Very weak 

LEAP2 0.225 0.185 Weak 

ApoA1 0.007 0.185 Very weak 

Pseudomonas sp. 

IL-1β receptor 0.250 0.142 Weak 

IL-1β -0.047 0.787 Very weak 

iNOS 0.141 0.411 Very weak 

C3 0.033 0.847 Very weak 

Muc2 0.134 0.435 Very weak 

CRP2 0.262 0.122 Weak 

HAMP1 -0.118 0.492 Very weak 

LEAP2 0.308 0.068 Weak 

ApoA1 -0.003 0.988 Very weak 

Flavobacterium sp. 

IL-1β receptor 0.203 0.234 Weak 

IL-1β -0.125 0.467 Very weak 

iNOS 0.065 0.707 Very weak 

C3 0.092 0.592 Very weak 

Muc2 0.076 0.660 Very weak 

CRP2 0.098 0.571 Very weak 

HAMP1 -0.132 0.442 Very weak 

LEAP2 0.232 0.172 Weak 

ApoA1 0.060 0.727 Very weak 
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4.4 – Discussion. 

Analysis of the cultured microbiota population within the gut of 0% 

MacroGard® fed carp revealed that the diversity observed was similar to that seen in 

other studies. Jung-Schroers et al. (2015) and Kuhlwein et al. (2013) both performed 

comparable trials containing groups of carp that received a 0% MacroGard® diet. The 

level of bacterial species diversity noted in this thesis falls between that described by 

Jung-Schroers et al. (2015) who reported a slightly lower level of diversity whereas 

Kühlwein et al. (2013) report a slightly higher level. As the carp in all three of these 

trials come from different locations and from a mix of outdoor and indoor reared fish, 

this indicates a comparable level of cultured bacterial diversity irrespective of 

environment.  

Comparing dissimilarities between the different gut segments indicates 

differences in species diversity that are potentially geographically comparable to 

their location along the intestinal axis, i.e. the segments are more dissimilar the 

further away from each other they are. Whilst this is the opposite of previous studies 

looking at species richness along the carp intestinal axis (Harris 2013), the 

differences in methods employed to study the microbiota could contribute to the 

differences noted. Site specific microbial profiles are found in, for example, humans 

(Methe et al. 2012, Weinstock 2012), therefore it is not surprising to see a difference 

along the intestinal axis in fish. However it does highlight the interesting question 

that if non culture based methodologies do not elucidate differences along the axis 

and culture based methods do, are the differences seen using culture based 

techniques truly differences at all? It has been widely accepted that only a limited 

proportion of microbiota populations can be studied using culture based techniques 
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owing to the fact many bacterial species cannot be successfully grown under 

laboratory conditions (for review: Nayak 2010b) and as technology has evolved there 

is much less reliance upon more classic techniques in favour of methodologies such as 

PCR-DGGE and high throughput sequencing (Muyzer and Smalla 1998, Methe et al. 

2012). This does not, however, discount culture based analysis as a viable means of 

studying gut ecology, and indeed allows for the procurement of samples for in vitro 

trials such as those performed within this thesis to study the effect of MacroGard® 

upon bacteria growth and survival separately from the influence of host immunity.  

That MacroGard® did not influence the growth of A. salmonicida can be viewed 

as a positive outcome. A. salmonicida is the causative agent of furunculosis in 

salmonid species (Romer Villumsen et al. 2015) and has also been utilised as a 

pathogenic agent in experimental infection trials in carp (Falco et al. 2012b, Pionnier 

et al. 2013). Whilst it would be advantageous if MacroGard® was toxic to A. 

salmonicida, particularly when applied orally, that it does not promote growth of a 

potential pathogen is still a positive result. The lack of toxicity also indicates that 

greater survival rates seen after β-glucan application against furunculosis is possibly 

due to immunomodulation of the host rather than simply a reduction in pathogen 

number (Siwicki et al. 1994).  

There are several studies on the use of Bacillus sp. as potential probiotics for 

fish (for review see Wang et al. 2008, Nayak 2010a), in addition to the use of 

probiotics and prebiotics in a combined approach to positively influence the gut 

microbiota population (Saad et al. 2013, Dawood and Koshio 2016). It is therefore 

unfortunate that MacroGard® did not promote increased growth of this potential 

bacterial probiotic, however this does not rule out other carbohydrates as potential 
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prebiotics that could promote the growth of Bacillus species (Abhari et al. 2015, 

Tamamdusturi et al. 2015). Application of probiotic and synbiotic diets of B. 

coagulans and inulin to rats lead to an increase in lactic acid bacteria, and significant 

decrease in Enterobacteriaceae within the GI tract (Abhari et al. 2015). In iridescent 

sharks (Pangasianodon hypophthalmus), a combination of Bacillus sp. NP5 and MOS 

resulted in a higher specific growth rate and food conversion rate than either Bacillus 

sp. or MOS feeding alone, and a higher CFU count was recovered from sharks fed with 

the synbiotic diet in comparison to those fed with the probiotic alone (Tamamdusturi 

et al. 2015). The absence of toxic effects on B. subtilis could still lead to combined 

feeding regimes with an immunomodulative effect of β-glucan directly upon the host 

and a probiotic effect from the bacteria itself.  

The study of the effect of prebiotics and other carbohydrates such as β-glucan 

on the intestinal microbial population has become a highly popular area of research 

during the past 10 years with the development of technology allowing for in depth 

analysis of in vivo systems (for review see Ghanbari et al. 2015, Dawood and Koshio 

2016). In comparison, the relationship between the microbiota and its host, remains 

relatively unknown due in part to the vast number of potential interactions, although 

studies, particularly in mammals, are highlighting possible interactions are involved 

in diseases such as irritable bowel disease (IBD) (Alipour et al. 2015, Jones-Hall et al. 

2015, Peterson et al. 2015). With MacroGard® having been shown previously to be 

able to influence the intestinal microbiota of carp when orally applied (Kuhlwein et al. 

2013, Jung-Schroers et al. 2015a), it is important to understand whether this is due to 

the immunomodulative capabilities of β-glucans or due to a prebiotic effect directly 

upon the microbiota population itself. As only some bacteria possess β-glucanases 
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(Planas 2000, Hattori et al. 2013), it should therefore not be surprising that none of 

the isolates selected for analysis showed an increase in growth after incubation with 

MacroGard® as isolates were taken from carp maintained on a 0% MacroGard® diet, 

i.e. an environment that would not necessarily selectively favour bacterial species 

that possess β-glucanases based solely upon this characteristic. It is interesting, 

however, that MacroGard® appeared to reduce the colony sizes, but not number of 

colonies of ISO20. This implies there is not a toxic effect, which logically would have 

resulted in fewer colonies, but there could be an impact upon the rate at which the 

bacteria replicates, i.e. how quickly the colonies grow. A retardation of growth of a 

bacterial species could influence the overall species diversity of a mixed population 

depending upon what proportion that species represented. This implies any prebiotic 

effect MacroGard® may have upon the microbiota population within the gut is likely 

to be subtle or on a smaller proportion of the species present which has an impact on 

the larger population overall.  

In in vivo studies, tank or pond affect can be of major concern in aquaculture 

and experimental trials due to pseudoreplication, i.e. individual fish are replicates 

within a single tank (Riley and Edwards 1998). The use of a design and statistical 

model utilised in this thesis, which took the concept of pseudoreplication into 

consideration, showed there was no effect of tank on immune parameters within the 

feeding trial. Overall, feeding carp with a diet containing 0.1% MacroGard® did not 

result in any differences in the expression of selected immune genes in the gut when 

compared to carp fed with a 0% MacroGard® diet. Activation of the immune system 

without an association of a pathogen involvement is typically associated with asthma 

and allergies (Lewis 2002, McLoughlin and Mills 2011), therefore it can be seen as a 
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positive outcome as the fish during this trial were apparently healthy, were not 

experimentally exposed to potential pathogens, and additionally did not experience 

an alteration of immune status.  

There are publications that also analyse the expression of innate immune 

parameters in carp that contradict the data shown in this thesis. Pionnier et al. (2013) 

detailed the expression of key components of the three different complement 

pathways, in addition to the central protein, C3, within the gut of carp after 14 days of 

feeding with MacroGard®. Interestingly, where the data presented by Pionnier et al. 

(2013) show expression of C1rs, bf/C2 and MASP2 in the gut of individual carp, 

expression levels within pooled samples within this thesis were too low to continue 

with further analysis. It is, however, unknown as to what level of expression for each 

gene Pionnier et al. (2013) saw as their data is presented as relative to negative 

controls i.e. expression seen in 0.1% MacroGard® fed carp relative to those fed with a 

0% MacroGard® diet. Whilst the primers for analysis of expression levels of these 

genes were the same in both Pionnier et al.’s (2013) study and the data presented 

here, the PCR conditions, i.e. the polymerase utilised, were different. C3 expression is 

shown to be significantly higher 11 days after hatching in turbot (Scophthalmus 

maximus) fed with MacroGard® treated rotifers in comparison to non-treated rotifers 

(Miest et al. 2016). The majority of studies, however, looking at the effect of β-glucans 

upon complement activity focus on analysis of serum complement.  

Results presented in this thesis do not support the observations made by 

(Falco et al. 2012b) who showed that expression of both TNFα isoforms occurred in 

both non MacroGard® fed and MacroGard® fed carp. The lack of expression seen in 

my studies could be related to the fish utilised. Different carp strains have been 
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shown to have different survival rates against viral pathogens such as Cyprinid 

herpesvirus (CyHV) 3 (Shapira et al. 2005, Piackova et al. 2013, Adamek et al. 2014) 

and although the effect of fish strain on the mechanisms of the immune response is 

still being elucidated, it has been shown that strains of carp and crossbreeding can 

have an effect on serum complement levels (Nath et al. 2014) and TNFα in crossbred 

cattle showed differential expression patterns based upon polymorphisms which 

affected their susceptibility to mastitis (Ranjan et al. 2015).  

In addition to there being no observed effect upon the expression of the 

immune genes analysed, there was also no difference in overall bacterial population 

size within the gut between 0% and 0.1% MacroGard® fed carp. In contrast, time 

seems to be a highly influential factor in 16S expression. Kuhlwein et al. (2013) 

showed a decrease over time in culturable aerobic heterotrophic autochthonous 

bacteria analysed using culture based methods. This indicates variation in gut 

microbiota population size over time could occur naturally irrespective of feed 

regime. Whilst Miest et al. (2016) analysed total 16S expression in turbot larvae 

during a feeding trial, they presented their data as the relative percentage of specific 

genera of total expression therefore it is unknown if diet influences the overall gut 

microbiota population size within the gut.  

In contrast to Jung-Schroers et al. (2015a), there was no change in bacterial 

species richness within the gut due to MacroGard® feeding. Studies carried out by 

Kuhlwein et al. (2013) however, may explain the difference in these findings. Where 

Jung-Schroers et al. (2015) fed MacroGard® at an inclusion rate of 1% w/w within the 

diet, in my investigation MacroGard® was only included at 0.1% w/w. Kuhlwein et al. 

(2013) utilised both concentrations of MacroGard® i.e. 0.1% and 1% which, together 
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with the data presented by Jung-Schroers et al. (2015) and within this thesis, suggests 

the effect on species richness is dependent on the dose of MacroGard® utilised. This 

makes sense in that bacteria capable of utilising β-glucans as a substrate would be 

more prolific when there is a larger food source available and would ultimately 

outcompete species that could not use β-glucan. This data indicates the concentration 

of MacroGard® required to influence bacterial species richness within the gut is 

greater than that found in commercial food products, i.e. greater than 0.1% w/w 

within the feed.  

Whilst qualitative analysis showed no differences between feeds or time 

points, quantitative analysis of the genera Aeromonas, Pseudomonas and 

Flavobacterium revealed that there was a large amount of variation and the lack of 

any significance between both time points and feeding regimes is linked to a small 

sample size. There is too much variation when comparing individual fish, i.e. a 

standard deviation that is almost equal to the mean copy number of 16S for each 

genus, to make any discernible conclusions as to what can be considered as a 

“normal” amount of each bacterial genera to be present within the gut under standard 

rearing conditions.  

Flavobacterium sp. are the causative agents of multiple diseases including 

bacterial cold water disease (Sugahara and Eguchi 2012) and bacterial gill disease 

(Sink and Lochmann 2008). As the presence of Flavobacterium sp. was only 

significantly influenced by tank and not by time or feeding with MacroGard®, this 

highlights the importance of taking tank effect into consideration based upon the 

analysis to be performed (Riley and Edwards 1998). Infection of Flavobacterium has 

also been shown to cause secondary bacterial infections after preliminary viral 
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infections in carp (Adamek et al. 2013) however if a potential pathogen is only 

present in some tanks within an experimental design, this could have implications in 

how any resultant data is analysed, i.e. if a secondary bacterial infection were to occur 

in only a proportion of fish analysed but all fish within a single tank showed 

symptoms of infection, reporting data irrespective of tank would not be appropriate. 

In summary, culture based analysis of the intestinal microbiota population 

showed differences in species diversity along the intestinal axis in carp fed with a 0% 

MacroGard® diet, although previous studies have shown no difference when using 

non culture based methods of analysis (Harris 2013). In vitro analysis of bacteria 

isolates have revealed a limited effect of MacroGard® upon growth and survival of 

bacteria, however it did not promote growth of known potential pathogens which can 

be considered as a positive effect. The oral application of MacroGard® did not 

influence either the immune status of carp nor the microbiota population which is in 

contrast to the data presented by Jung-Schroers et al. (2015) who showed, in 

association with this investigation and work carried out by Kuhlwein et al. (2013), 

that there could be a dose effect of MacroGard® with higher concentrations being able 

to influence the microbiota population. These concentrations are, however, beyond 

those that are present in commercial feeds indicating any protective effects seen in 

other β-glucan trials and in the field are due to the immunomodulatory effect rather 

than due to a biproduct prebiotic effect.  
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Chapter 5 – Analysis of the effect of injection upon the gut 

microbiota and immune status. 

 

In Chapter 4 the effect of oral application of MacroGard® on the bacterial fauna 

in and immune status of the gut in carp was described. Since β-glucan has previously 

been shown to also act as an immunomodulant when applied via injection (Selvaraj et 

al. 2005, Selvaraj et al. 2006), the effect of intraperitoneal injection of MacroGard® on 

the immune status of carp and gut bacterial fauna was elucidated.  

To date, only two published papers (Liu et al. 2008, Liu et al. 2015) and one 

masters thesis (Harris 2013) have addressed the impact of injection of β-glucans 

upon the intestinal microbiome in fish. Liu et al. (2008) noted that whilst LPS was 

able to influence the bacterial species richness in the microbiome within the gut of 

Atlantic salmon (Salmo salar) 28 days after injection, β-glucan did not. Unfortunately, 

analysis on the total size of the bacterial population was not performed. Liu et al. 

(2015) similarly did not analyse the total size of the gut bacteria population in their 

trial which studied the effect of bath vaccination of grass carp (Ctenopharyngodon 

idella) against Aeromonas hydrophila infection. Analysis of species richness 10 days 

post injection with a pathogenic strain of the bacterial species did however show a 

decrease in Aeromonas sp. within the gut microbial population. In addition to 

studying bacterial species richness, the author, in her previous studies (Harris 2013), 

compared gut bacteria population size in carp before and after injection with 

MacroGard®. Bacterial species richness (as measured using PCR-DGGE) 23 days post 

injection with MacroGard® was similar to that found in non-injected controls 

however the richness was notably different 12 days post injection to both non 
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injected controls and at day 23. In addition to a difference in species richness, total 

16S rDNA expression revealed the overall bacterial population size was lower at day 

12 post injection with MacroGard®. Based upon this evidence, it was suggested that 

injection with MacroGard® reduced the bacterial population size within the gut and 

that species richness was affected as the population “returned to normal”, i.e. species 

richness and population size seen in non-injected controls.  

β-glucans are macromolecules based upon β-D-glucose monomers and, as 

such, chain length, degree of branching and solubility can vary between molecules. β-

glucan products are typically defined by type of linkage between individual 

monomers, i.e. carbon 1 linking to either carbon 3, 4 or 6 of the following unit, but 

they are heterogeneous mixes within this description. It is known that size can 

influence the effect of β-glucan upon the innate immune system (Przybylska-Diaz et 

al. 2013), but the mechanisms as to how and why require elucidation.  

MacroGard® is a heterogeneous mix of β-1/3,1/6-glucans and whilst it is 

extensively used within aquaculture, results vary on its effect on immune parameters. 

For example, Selvaraj et al. (2005) showed no difference in ACP activity between 

control (β-glucan free) and β-glucan fed carp, whereas Pionnier et al. (2014) noted an 

increase in ACP activity in β-glucan fed carp in comparison to carp fed a β-glucan free 

diet. This could be due to structural differences in the β-glucan such as different chain 

lengths and number of branches, both of which are affected by processing 

methodologies, or even concentration of a particular β-glucan structure within a 

heterogeneous mix. Research at Keele University is generating a library of different 

purified β-1/3,1/6-glucans to test their individual activities as opposed to their effect 

within a heterogeneous mix. One of these β-glucans, MSS1, has been shown to be 
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more effective than MacroGard® at eliciting an immune response during in vitro trials 

(Nawroz Kareem, unpublished data).  

The aim of this chapter is therefore to establish if injection of MacroGard® and 

the specifically formulated MSS1 affected the immune response of the gut and the gut 

microbiome when injected intraperitoneally into carp.  

An initial small scale injection trial focused on total 16S rDNA expression and 

species richness of the microbiome in the gut of carp. In addition, the expression of 

bactericidal innate immune genes (iNOS and C3) and immune associated signalling 

genes (TNFα and IL-1β), known to be significantly affected by orally applied 

MacroGard® during infection trials (Falco et al. 2012b, Miest et al. 2012, Pionnier et 

al. 2014), was established and correlated against bacterial 16S rDNA expression as a 

measure of the gut microbiota population size. In the second trial, carp were injected 

separately with MacroGard® and MSS1 and the effects on the expression of selected 

bactericidal innate immune genes in the gut and the intestinal microbiota population 

ascertained. As discussed in Chapter 4, there are limited studies that consider both 

the immune response and the intestinal microbiota and how they may interact with 

each other. Statistical analysis will therefore be used to determine if there is any 

correlation between innate gene expression and the size of the bacteria population 

within the gut. 
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5.1 Materials and methods. 

 

5.1.1 – Small injection trial: fish husbandry and experimental design. 

35 carp, obtained from Hampton Spring fisheries, UK, in October 2012, were 

maintained (section 4.1.2) in a single tank and fed on 0% MacroGard® feed (section 

4.1.3) prior to and during the experiment at a rate of 1% body weight per day. Carp 

had an average weight of 49.4g (s.d. ±11.2g) and an average length of 127mm (s.d. 

±10mm) at the start of the trial. Carp were divided into 4 treatment groups as 

outlined in Table 5.1 and received either no injection, injection with PBS, injection 

with LPS (4mg kg-1) or injection with MacroGard® (2mg kg-1). Injections were 

prepared as described in sections 5.1.3, 5.1.5, and 5.1.6 respectively. Carp (n=5) that 

did not receive any injection were sampled at the start of the trial and are described 

as 0 days post injection. Fish were briefly submerged in 2-phenoxyethanol (1ml/5L) 

for approximately 1 minute before receiving their injection in the mid ventral aspect 

and a small cut to their tail fin to identify treatment group. These fish were then 

observed for 10 minutes to ensure no immediate adverse effects of 

handling/injection before being returned to the experimental tank. From each 

treatment group, 5 carp were sampled 1 day and 4 days post injection. Before 

sampling, fish were euthanized by submersion in 2-phenoxyethanol (1ml/5L), 

sections of total gut, gut wall and gut content taken from the upper midgut as 

illustrated in Figure 4.3 and were stored in RNAlater at -80°C until further analysis.  
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Table 5.1: Experimental design of intraperitoneal injection pilot trial. Table shows time points and 
treatments. Each group consists of n = 5 fish. 

  
Treatment 

No injection PBS LPS MacroGard® 

Time point 

0 days 5 - - - 

1 day - 5 5 5 

4 days - 5 5 5 

 

5.1.2 – Large injection trial: fish husbandry and experimental design. 

120 carp were acquired in September 2013 and maintained in 8 tanks (n=15 

fish per tank) on a 0% MacroGard® diet for 4 months prior to analysis and during the 

experimental period at a feed rate of 1% body weight per day (see sections 4.1.2 and 

4.1.3 for fish husbandry and feed details). These fish were treated with Banish Fish 

Ulcer, Parasite and White Spot Treatment 3 weeks after entering the aquarium due to 

an outbreak of Ichthyophthirius multifiliis and were not utilised for experimental use 

until 3 months after the final treatment. 

Carp had an average weight of 91.4g (s.d. ±12.4g) and an average length of 

162mm (s.d. ±8mm). Treatment groups were divided as described in Table 5.2 with 

30 carp in each treatment group (2 tanks with 15 carp per tank). Fish that received an 

injection of MacroGard® were injected with 10mg kg-1 (section 5.1.6) and those that 

received MSS1 did so at a concentration of either 5mg kg-1 or 10mg kg-1 (section 

5.1.7). Both substances were suspended in sterile double distilled water and carp that 

were part of the injected negative control group were injected with sterile double 

distilled water (section 5.1.3). Before injection, carp were sedated in 2-

phenoxyethanol (1ml/5L) and monitored for 10 minutes before being returned to 

their original tank for the remainder of the trial. From each tank, 3 carp which did not 

receive any injection were sampled at the very start of the trial (described in all 
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figures and tables at time point 0 days post injection). Carp were euthanized by 

submersion in 2-phenoxyethanol (section 4.3.3) and segments of the total gut, gut 

wall and gut content were stored in RNAlater at -80°C until further use. Carp (n=3 per 

tank) were sampled 1, 3, 7 and 14 days post injection. 

 

Table 5.2: Experimental design of injection trial utilising MacroGard® and MSS1, a novel β-glucan 
isoform, to modulate the immune system of common carp via intraperitoneal injection. Each treatment 
group consists of two tanks and n=3 fish per tank. Carp samples on day 0 received no injection and 
acted as a treatment negative control. 

Treatment Water MacroGard® MSS1 5mg kg-1 MSS1 10mg kg-1 

Tank A B C D E F G H 

Time 
point 
(days 
post 

injection) 

0 3 3 3 3 3 3 3 3 

1 3 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 3 

7 3 3 3 3 3 3 3 3 

14 3 3 3 3 3 3 3 3 

 

5.1.3 – Preparation of injections and fish identification.  

All injections within this chapter were performed by Professor David Hoole 

(Keele University, United Kingdom. PPL 40/3532). In both trials, carp were injected 

with 100μl of liquid regardless of size, experiment or treatment. Treatments were 

suspended in either phosphate buffer saline (PBS) or sterile water for injection. 

Negative control groups were injected with eluent alone. All syringes were prepared 

within the 24 hours prior to injection and kept at 4°C during the interim period 

between preparation and use. Prior to injection carp were, as previously described, 

anaesthetised in 2-phenoxyethanol (1ml/5L) for approximately 1 minute before 

receiving an intraperitoneal injection through the ventral body wall between the 

pelvic and pectoral fins. Fish were placed in fresh water and observed for up to 10 

minutes to ensure a full recovery.  
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5.1.4 – Identification of treatment groups within a single tank – small injection 

trial only. 

As carp were maintained in the same tank to reduce variation in the water 

microbial population during this trial, they were marked via clipping of the tail fin in 

order to identify different treatment groups. This was performed at the same time as 

anaesthetisation.  

 

5.1.5 – Preparation of LPS for injection (small injection trial only). 

Lipopolysaccharide (LPS) from E. coli (O55:B5) was utilised as a positive 

control for immunostimulation of innate immune gene expression in the gut of 

common carp (Falco et al. 2012b). LPS was prepared as per the manufacturer’s 

instructions. 5mg of LPS was dissolved in 1ml of PCR grade water and the 

concentration adjusted accordingly using sterile PBS solution (negative control used 

within this trial). LPS preparation was performed in the 6 hours prior to injection and 

stored at 4°C until use.  

 

5.1.6 – MacroGard® preparation (both trials). 

MacroGard® was prepared at a concentration of 10% w/v PBS solution or 

sterile water as described in section 3.1. The concentration was adjusted to 1% w/v, 

mixed by inversion before incubation at 80°C for 20 minutes and then held at 4°C 

until use on the same day of preparation.  

 

5.1.7 – MSS1 preparation (large injection trial only). 

MSS1 was prepared by Nawroz Kareem as follows. MacroGard® (500g) was 
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added to pre-chilled dry pyridine in advance of the addition of chlorosulfonic acid 

(1:16 v/v). The mixture was incubated at 95°C for 2 hours prior to cooling with the 

assistance of an ice-bath. Sodium hydroxide (10M) was added to the mixture with 

stirring until precipitation occurred. The contents were subsequently transferred to 

ice cold ethanol that had been pre-saturated with sodium acetate. The precipitate was 

washed extensively before dissolution in and dialysis against double distilled water. 

The dialysed solution was frozen and lyophilised before size exclusion 

chromatography was performed using HPLC grade water and a pre-packed PD-10 

column, as per the manufacturer's instructions. The carbohydrate was then 

suspended in 100μl of double distilled water at concentrations corresponding to 5mg 

kg-1 and 10mg kg-1. 

 

5.1.8 – Taking of tissue samples from carp.  

Samples of the gut wall, gut content and total gut were taken as described in 

section 4.3.3 and stored in RNAlater at -80°C until further use. 

 

5.1.9 – Quantitative analysis of innate immune gene expression and total 16S 

rDNA expression. 

For both trials within this chapter, very similar techniques were employed 

during analysis as outlined for the feeding trial described in Chapter 4. RNA was 

isolated from gut wall samples as outlined in section 0. Prior to cDNA synthesis, RNA 

was treated with DNase to remove any DNA contamination. This was performed as 

outlined in section 4.3.4.2. Although the same Moloney Murine Leukemia Virus 

Reverse Transcriptase (M-MuLV RT) kit was used for cDNA synthesis, a change in the 
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protocol by the manufacturer, Invitrogen, unavoidably resulted in two slightly 

different protocols being employed within this chapter. cDNA synthesis from RNA in 

the small injection trial was performed as described in section 2.7.2 whereas cDNA in 

the large injection trial was synthesised as described in section 4.3.4.3. RT-qPCR 

analysis was performed as described in section 4.3.4.4. The following genes were 

analysed in each trial (sequences are given in Appendix 3) with the 40S housekeeping 

gene being used as a baseline: 

Small injection trial: 16S_uniBact, C3, IL-1β, iNOS TNFα isoforms 1 and 2.  

Large injection trial: 16S_uniBact, ApoA1, Bf/C2, CRP2, C1rs, HAMP1, iNOS, 

LEAP2, MASP2 and Muc2. 

 

5.1.10 – Comparing immune gene expression with 16S rDNA expression.  

Correlation analysis of the expression of the 16S rDNA gene, i.e. an 

approximation of the overall bacteria population size within the gut, against each of 

the immune genes studied was performed as described in section 4.3.4.5. 

 

5.1.11 – Qualitative analysis of bacterial species richness. 

genDNA isolation and PCR-DGGE analysis of total gut samples from both trials 

were performed as described in section 4.3.5. 

 

5.2 – Results: initial small injection trial. 

The results for this experiment are divided into three sections: analysis of 

innate immune parameters (section 5.2.1), gut microbiota population (section 5.2.2) 

and statistical analysis comparing these two components (section 5.2.3). 



Chapter 5 – Analysis of the effect of injection upon the gut microbiota 

and immune status. 

Harris 

2017 

 

151 

 

5.2.1 – Bactericidal innate immune parameters within the gut. 

The expression levels of the innate immune genes IL-1β (Figure 5.1), iNOS 

(Figure 5.2), TNFα 1 & 2 (Figure 5.3 and Figure 5.4 respectively) and C3 (Figure 5.5) 

were analysed. As with the feeding trial presented in section 4.3, Grubbs’ test was 

employed before further statistical analysis to eliminate outliers within the data. One 

outlier was found for each gene analysed. Four out of five outliers were found in 

either the non-injected control group (iNOS) or the PBS injected group (both isoforms 

of TNFα and C3) with the outlier for IL-1β appearing in the LPS injected group 4 days 

post injection.  

There was no significant effect of either time or treatment on expression of IL-

1β gene, however expression was significantly higher (2 fold increase) in MacroGard® 

injected carp 4 days post injection than 1 day post injection (p=0.0354). There was 

also no significant difference within each time point between expression in 

MacroGard® injected carp and those that received PBS only. In contrast, whilst iNOS 

expression did not show any significant differences when comparing treatments 

within time points, expression was significantly higher in LPS injected carp than the 

control group (p=0.0087). At both time points, average expression was at least 5 

times higher in LPS injected carp (5.0 times higher 1 day post injection, 5.6 times 

higher 4 days post injection). MacroGard® injection had no significant effect upon 

iNOS gene expression.  

A similar expression profile occurred in both isoforms of the TNFα gene. The 

average expression for each treatment group within each time point was lower than 

that seen in the non-injected control carp, however there was no significant effect of 
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time or treatment seen for either isoform. Expression of the C3 gene was significant 

different when comparing treatment and time point (1 and 4 days post injection only, 

p=0.041), however post hoc analysis revealed no further significance between 

treatments at each time point. Expression levels of carp sampled 1 day after injection 

were similar to those in non-injected controls.  
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Box Cox transformation λ=0.06 

Anderson-Darling test for 

normality 
p=0.157 

Levene’s test for equal 

variance 
p=0.918 

2-way ANOVA with post hoc Tukey’s 

(R2=37.82%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 2 0.81 0.456  

Overall difference over time 1 0.82 0.374  

Interaction of treatment and time 2 5.65 0.010 * 

Post hoc analysis  

Time within treatment: MacroGard® day 1 vs day 4 p=0.0354 * 

 

Figure 5.1: Expression of the IL-1β gene in the gut of common carp (C. carpio) within a small scale 
injection trial (n=35). Carp were divided into 4 treatment groups: non injected control fish were 
sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 days post 
injection. Bars represent average gene expression for each treatment group (n=5). Error bars are given 
as standard error of the mean. Grubbs test was utilised to identify any statistical outliers using all data 
points which were removed before any further statistical analysis. One outlier was found in the LPS 
treatment group at time point 4 days. Further statistical analysis did not include data from time point 
0. Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a 
Box Cox transformation before further analysis. A 2-way ANOVA with Tukey’s as post hoc analysis was 
utilised to compare differences over time and between treatment groups. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the graph 
and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=0.19 

Anderson-Darling test for 

normality 
p=0.428 Levene’s test for equal variance p=0.282 

2-way ANOVA with post hoc Tukey’s 

(R2=25.89%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 2 5.49 0.011 * 

Overall difference over time 1 0.09 0.768  

Interaction of treatment and time 2 0.27 0.762  

Post hoc analysis  

Treatment: PBS versus LPS p=0.0087 ** 

 

Figure 5.2: Expression of the iNOS gene in the gut of common carp (C. carpio) within a small scale 
injection trial (n=35). Carp were divided into 4 treatment groups: non injected control fish were 
sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 days post 
injection. Bars represent average gene expression for each treatment group (n=5). Error bars are given 
as standard error of the mean. Grubbs test was utilised to identify any statistical outliers using all data 
points which were removed before any further statistical analysis. One outlier was found in the non-
injected control group at time point 0. Further statistical analysis did not include data from time point 
0. Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a 
Box Cox transformation before further analysis. A 2-way ANOVA with Tukey’s as post hoc analysis was 
utilised to compare differences over time and between treatment groups. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the graph 
and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Anderson-Darling test for 

normality 
p=0.485 Levene’s test for equal variance p=0.965 

2-way ANOVA with post hoc Tukey’s 

(R2=8.19%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 2 0.23 0.796  
Overall different over time 1 0.01 0.921  
Interaction of treatment and time 2 0.81 0.455  

 

Figure 5.3: Expression of the TNFα-1 gene in the gut of common carp (C. carpio) within a small scale 
injection trial (n=35). Carp were divided into 4 treatment groups: non injected control fish were 
sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 days post 
injection. Bars represent average gene expression for each treatment group (n=5). Error bars are given 
as standard error of the mean. Grubbs test was utilised to identify any statistical outliers using all data 
points which were removed before any further statistical analysis. One outlier was identified within 
PBS injected fish at time point 1 day. Further statistical analysis did not include data from time point 0. 
Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. A 2-way with Tukey’s as post hoc analysis was utilised to compare 
differences over time and between treatment groups. Details of the statistical analysis are shown 
beneath the graph. Degrees of freedom, F distribution and P values for overall significance are given 
with significant (p<0.05) post hoc comparisons being listed.  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 4

E
x

p
re

ss
io

n
 o

f 
ta

rg
e

t 
g

e
n

e
 n

o
rm

a
li

se
d

 a
g

a
in

st
 

4
0

S
 e

x
p

re
ss

io
n

Time post injection (days)

Non injected control

PBS injection

LPS injection

MacroGard® injection



Chapter 5 – Analysis of the effect of injection upon the gut microbiota 

and immune status. 

Harris 

2017 

 

156 

 

Anderson-Darling test for 

normality 
p=0.130 Levene’s test for equal variance p=0.820 

2-way ANOVA with post hoc Tukey’s 

(R2=13.88%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 2 0.08 0.919  
Overall different over time 1 0.20 0.662  
Interaction of treatment and time 2 1.65 0.214  

 

Figure 5.4: Expression of the TNFα-2 gene in the gut of common carp (C. carpio) within a small scale 
injection trial (n=35). Carp were divided into 4 treatment groups: non injected control fish were 
sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 days post 
injection. Bars represent average gene expression for each treatment group (n=5). Error bars are given 
as standard error of the mean. Grubbs test was utilised to identify any statistical outliers which were 
removed before any further statistical analysis. Further statistical analysis did not include data from 
time point 0. Data was checked for normality using the Anderson-Darling test on both raw data and 
residual data, and Levene’s test for equal variance. A 2-way ANOVA with Tukey’s as post hoc analysis 
was utilised to compare differences over time and between treatment groups. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed.  
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Box Cox transformation λ=-0.11 

Anderson-Darling test for 

normality 
p=0.118 

Levene’s test for equal 

variance 
p=0.625 

2-way ANOVA with post hoc Tukey’s 

(R2=26.29%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 2 0.15 0.865  
Overall difference over time 1 0.45 0.507  
Interaction of treatment and time 2 3.69 0.041 * 

 

Figure 5.5: Expression of the C3 gene in the gut of common carp (C. carpio) within a small scale 
injection trial (n=35). Carp were divided into 4 treatment groups: non injected control fish were 
sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 days post 
injection. Bars represent average gene expression for each treatment group (n=5). Error bars are given 
as standard error of the mean. Grubbs test was utilised to identify any statistical outliers which were 
removed before any further statistical analysis. One outlier was found at time point 1, treatment PBS 
injection. Further statistical analysis did not include data from time point 0. Data was checked for 
normality using the Anderson-Darling test on both raw data and residual data, and Levene’s test for 
equal variance. Raw data was not normally distributed therefore was subject to a Box Cox 
transformation before further analysis. A 2-way ANOVA with Tukey’s as post hoc analysis was utilised 
to compare differences over time and between treatment groups. Details of the statistical analysis are 
shown beneath the graph. Degrees of freedom, F distribution and P values for overall significance are 
given with significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * 
signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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5.2.2 – Analysis of the gut microbiota. 

Total 16S rDNA expression was measured as an approximation of overall 

bacterial population size within the gut of common carp (Figure 5.6). Expression 

levels in PBS injected carp at both time points post injection, i.e. day 1 and 4 were 

comparable to those in non-injected control fish sampled at the time of injection (day 

0). There was a significant overall effect of treatment as shown with a 2-way ANOVA 

(p=0.005) with post hoc analysis revealing MacroGard® injected carp had significantly 

lower levels of 16S rDNA expression than PBS injected carp (p=0.0041). The mean 

expression level in LPS and MacroGard® injected carp were 2.37% and 2.18% of the 

expression levels of non-injected control fish respectively. For PCR-DGGE analysis, 

samples were pooled at each time point by treatment, i.e. each band pattern is 

representative of the microbiota from 5 fish. A comparison of species richness using 

the Bray-Curtis dissimilarity index plotted using nMDS (Figure 5.7) showed 

differences between treatment and time points. There was no overlap between circles 

drawn round the different time points. There was however an overlap between 

treatments with the microbiota in PBS and LPS injected carp on day 4 having a 

dissimilarity score of 0, i.e. they were identical. It should, however, be noted that the 

sample size for this trial is small and is only between 7 sets of data.  
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Box Cox transformation λ=-0.29 

Anderson-Darling test for 

normality 
p=0.476 Levene’s test for equal variance p=0.709 

2-way ANOVA with post hoc Tukey’s 

(R2=39.88%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 2 6.84 0.005 ** 

Overall difference over time 1 0.06 0.805  

Interaction of treatment and time 2 0.70 0.505  

Post hoc analysis  

Treatment: PBS vs MacroGard® p=0.0041 ** 

 

Figure 5.6: Expression of the bacterial 16S rDNA gene in the gut of common carp (C. carpio) within a 
small scale injection trial (n=35). Carp were divided into 4 treatment groups: non injected control fish 
were sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 
days post injection. Bars represent average gene expression for each treatment group (n=5). Error bars 
are given as standard error of the mean. Grubbs test was utilised to identify any statistical outliers 
which were removed before any further statistical analysis. One outlier was identified in the PBS group 
at time point 1 day post injection. Further statistical analysis did not include data from time point 0. 
Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a 
Box Cox transformation before further analysis. A 2-way ANOVA with Tukey’s as post hoc analysis was 
utilised to compare differences over time and between treatment groups. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the graph 
and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Grouping Marker 

No injection control Diamond 
PBS injection Square 
LPS injection Triangle 

MacroGard® injection Circle 
Day 0 White 
Day 1 Black 
Day 4 Red 

 

Figure 5.7: Non metric Multidimensional Scaling (nMDS) ordination (stress: 0.1872) of Bray-Curtis 
dissimilarities looking at the differences in species richness based on PCR-DGGE band patterns of carp 
within a small scale injection trial. Carp were divided into 4 treatment groups: non injected control fish 
were sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were sampled 1 and 4 
days post injection. Data is shown twice to easily visualise groupings by time point (A) and by 
treatment (B).  
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5.2.3 – A comparison of innate immune gene expression against gut microbiota 

size. 

The expression levels of each of the innate immune genes analysed were 

compared to the 16S rDNA gene found in the bacteria within the gut using 

Spearman’s rank correlation. Table 5.3 shows there was no correlation between these 

genes and the overall size of the bacterial gut population.  

 

Table 5.3: The probability of a linear relationship between each of the immune genes analysed in the 
gut of common carp during a 4 day injection trial and the size of the bacterial population within the gut 
as measured by total 16s rDNA expression (n=35). Carp were divided into 4 treatment groups: non 
injected control fish were sampled 0 days post injection, PBS, LPS and MacroGard® injected carp were 
sampled 1 and 4 days post injection. As data was not normally distributed, Spearman’s test was used to 
calculate the correlation coefficient, i.e. how linear a correlation is, and the statistical significance. A 
rating as to how strong the correlation is (as described by Fowler et al. (Fowler, Cohen et al. 1998)) is 
also given with a coefficient of 0.00-0.19 being a very weak correlation, 0.20-0.39 being a weak 
correlation, 0.40-0.69 being a modest correlation, 0.70-0.89 being a strong correlation and 0.90-1.00 
being a very strong correlation. 

Gene Correlation coefficient P value Correlation 

IL-1β -0.030 0.863 Very weak 

iNOS -0.088 0.614 Very weak 

TNFα-1 0.128 0.465 Very weak 

TNFα-2 0.041 0.814 Very weak 

C3 0.120 0.492 Very weak 
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5.3 – Results: large injection trial. 

As with the feeding trial and initial small scale injection trial described in 

Chapter 4 and section 5.2 respectively, this section considers the effect of exposure to 

MacroGard®, via injection, on innate immune gene expression in the gut (section 

5.3.1) the intestinal microbiota population (section 5.3.2) and a statistical comparison 

of gene expression levels of the innate immune parameters to the total 16S rDNA 

gene expression, i.e. an approximation of the overall size of the bacteria population 

within the gut (section 5.3.3). 

 

5.3.1 – Bactericidal innate immune gene expression. 

As multiple tanks were utilised for each treatment, where possible, a nested 2-

way ANOVA was utilised to compare data. None of the expression levels of the genes 

analysed were shown to be significantly affected by tank, however the expression of 

CRP2 (Figure 5.9) had a p value of 0.05. (Lew 2012) discusses the concept of 

misunderstanding p values based upon a hybridisation of the definition of 

“significance” as defined by Fisher (1925) and Neyman-Pearson (1933). Where Fisher 

defines p values as an “index of evidence against the null hypothesis” (Lew 2012), the 

Neyman-Pearson consider the rate of false positive conclusions (type I errors) and 

false negative conclusions (type II errors). In this thesis, the tolerance for false 

positives (α) is set at 0.05, and p values lower than this are thus considered 

statistically significantly different, however the use of the p value as set out by Fisher 

requires more fluidity. Where the p value for the effect of tank upon the expression of 

CRP2 was 0.05, i.e. on the threshold of being statistically significantly different 

expression levels between tanks based upon the Neyman-Pearson interpretation of 
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“significant”, further statistical analysis was performed to determine if tank had an 

effect upon CRP2 expression. A 1-way nested ANOVA comparing CRP2 expression in 

non-injected negative controls showed no variation between tanks (p=0.931).  

There was an overall significant effect of treatment on the expression of iNOS 

(Figure 5.8 – p=0.019), CRP2 (Figure 5.9 – p=0.033), Muc2 (Figure 5.11 – p=0.038) 

and LEAP2 (Figure 5.13 – p=0.032). Post hoc analysis revealed that carp injected with 

MSS1 at the low dose (5mg kg-1) had significantly higher expression levels of iNOS, 

CRP2 and Muc2 genes than the water injected control carp. Expression of these genes 

was, however, not significantly different in carp injected with either MacroGard® or 

the high dose of MSS1 (10mg kg-1) compared to negative controls. Overall expression, 

however, of iNOS at day 1 and 7 was significantly higher than those on days 3 and 14 

irrespective of treatment. In contrast, expression of CRP2 gene, irrespective of 

treatment, was significantly higher at days 3 and 7 in comparison to day 1, and 

significantly higher again at day 14 in comparison to day 3. Similar to CRP2, Muc2 has 

lower expression levels 1 day post injection irrespective of treatment with days 7 and 

14 being significantly higher than day 1. Analysis of the genes expressing the 

antimicrobial peptides revealed differential responses. There was no significant effect 

of treatment on ApoA1 (Figure 5.12) and HAMP1 (Figure 5.14) expression, however 

there were significant differences in expression of these genes over time, for example, 

ApoA1 expression was significantly lower 3 days post injection in comparison to 14 

days post injection (p=0.0181). Expression of ApoA1 in control carp, i.e. injection with 

water, was highly variable and had a large standard error of the mean, in comparison 

to other genes analysed. In comparison, expression of the other antimicrobial peptide, 

HAMP1, is highest at day 1 post injection (significantly higher than 3 and 7 days, 



Chapter 5 – Analysis of the effect of injection upon the gut microbiota 

and immune status. 

Harris 

2017 

 

164 

p<0.0001 and p=0.0001 respectively) which declines during days 3 and 7 before 

increasing again after 14 days (significantly higher than day 3, p=0.0317) irrespective 

of treatment. Neither treatment nor time had an effect on expression of bf/C2 (Figure 

5.10).  
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Box Cox transformation λ=0.00 

Anderson-Darling test for 

normality 
p=0.854 Levene’s test for equal variance p=0.942 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=45.07%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 3.53 0.019 * 

Nested effect of tank variation 4 1.04 0.394  

Overall difference over time 3 9.65 <0.001 *** 

Interaction of treatment and time 9 1.91 0.063  

Post hoc analysis  

Treatment: negative control vs MSS1 low dose p=0.0366 * 

Time: day 1 vs day 3 p=0.0002 *** 

Time: day 1 vs day 14 p=0.0004 *** 

Time: day 3 vs day 7 p=0.0133 * 

Time: day 7 vs day 14 p=0.0248 * 

 

Figure 5.8: Expression of the iNOS gene in the gut of common carp (C. carpio) within an injection trial 
(n=120). Carp were divided into 5 treatment groups: non injected control fish were sampled 0 days 
post injection, negative control (water), MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose 
(10mg kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene 
expression for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs 
test was utilised to identify any statistical outliers which were removed before any further statistical 
analysis. Data was checked for normality using the Anderson-Darling test on both raw data and 
residual data, and Levene’s test for equal variance. Raw data was not normally distributed therefore 
was subject to a Box Cox transformation before further analysis. Details of the statistical analysis are 
shown beneath the graph. Degrees of freedom, F distribution and P values for overall significance are 
given with significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * 
signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001.   
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Box Cox transformation λ=-0.04 

Anderson-Darling test for 

normality 
p=0.680 Levene’s test for equal variance p=0.994 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=45.07%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 3.06 0.033 * 

Nested effect of tank variation 4 2.50 0.050  

Overall difference over time 3 26.15 <0.001 *** 

Interaction of treatment and time 9 1.96 0.056  

Post hoc analysis  

Treatment: negative control vs MSS1 low dose p=0.0451 * 

Time: day 1 vs day 3 p=0.0003 *** 

Time: day 1 vs day 7 p<0.0001 *** 

Time: day 1 vs day 14 p<0.0001 *** 

Time: day 3 vs day 14 p=0.0007 *** 

 

Figure 5.9: Expression of the CRP2 gene in the gut of common carp (C. carpio) within an injection trial 
(n=120). Carp were divided into 5 treatment groups: non injected control fish were sampled 0 days 
post injection, negative control (water), MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose 
(10mg kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene 
expression for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs 
test was utilised to identify any statistical outliers which were removed before any further statistical 
analysis. Two outliers were identified at time point 14 days, one from the negative control and one 
from the MacroGard® injection groups. Further statistical analysis did not include data from time point 
0. Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a 
Box Cox transformation before further analysis. Details of the statistical analysis are shown beneath 
the graph. Degrees of freedom, F distribution and P values for overall significance are given with 
significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * signifies p<0.05, 
** signifies p<0.01, and *** signifies p<0.001.  
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Box Cox transformation λ=-0.16 

Anderson-Darling test for 

normality 
p=0.228 Levene’s test for equal variance p=0.990 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=20.00%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 1.99 0.122  
Nested effect of tank variation 4 0.64 0.638  
Overall difference over time 3 2.14 0.098  
Interaction of treatment and time 9 0.47 0.891  

 

Figure 5.10: Expression of the bf/C2 gene in the gut of common carp (C. carpio) within an injection trial 
(n=120). Carp were divided into 5 treatment groups: non injected control fish were sampled 0 days 
post injection, negative control (water), MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose 
(10mg kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene 
expression for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs 
test was utilised to identify any statistical outliers which were removed before any further statistical 
analysis. One outlier was identified from the treatment group MSS1 low dose at time point 1 day. 
Further statistical analysis did not include data from time point day 0. Data was checked for normality 
using the Anderson-Darling test on both raw data and residual data, and Levene’s test for equal 
variance. Raw data was not normally distributed therefore was subject to a Box Cox transformation 
before further analysis. Details of the statistical analysis are shown beneath the graph. Degrees of 
freedom, F distribution and P values for overall significance are given with significant (p<0.05) post 

hoc comparisons being listed.  
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Anderson-Darling test for 

normality 
p=0.232 

Levene’s test for equal 

variance 
p>0.999 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=30.25%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 2.96 0.038 * 

Nested effect of tank variation 4 1.49 0.214  

Overall difference over time 3 4.95 0.003 ** 

Interaction of treatment and time 9 0.37 0.948  

Post hoc analysis  

Treatment: negative control vs MSS1 low dose p=0.0222 * 

Time: day 1 vs day 7 p=0.0082 ** 

Time: day 1 vs day 14 p=0.0318 * 

 

Figure 5.11: Expression of the Muc2 gene in the gut of common carp within an injection trial (n=120). 
Carp were divided into 5 treatment groups: non injected control fish were sampled 0 days post 
injection, negative control (water), MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose (10mg 
kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene 
expression for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs 
test was utilised to identify any statistical outliers which were removed before any further statistical 
analysis. No outliers were found in this data set. Further statistical analysis did not include time point 0 
days. Data was checked for normality using the Anderson-Darling test on both raw data and residual 
data, and Levene’s test for equal variance. Details of the statistical analysis are shown beneath the 
graph. Degrees of freedom, F distribution and P values for overall significance are given with 
significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * signifies p<0.05, 
** signifies p<0.01, and *** signifies p<0.001.  
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Box Cox transformation λ=-0.04 

Anderson-Darling test for 

normality 
p=0.348 Levene’s test for equal variance p=0.996 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=45.07%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 0.90 0.445  

Nested effect of tank variation 4 1.13 0.347  

Overall difference over time 3 3.18 0.029 * 

Interaction of treatment and time 9 1.08 0.391  

Post hoc analysis  

Time: day 3 vs day 14 p=0.0181 * 

 

Figure 5.12: Expression of the ApoA1 gene in the gut of common carp (C. carpio) within an injection 
trial (n=120). Carp were divided into 5 treatment groups: non injected control fish were sampled 0 
days post injection, negative control (water), MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high 
dose (10mg kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average 
gene expression for each treatment group (n=6). Error bars are given as standard error of the mean. 
Grubbs test was utilised to identify any statistical outliers which were removed before any further 
statistical analysis. One outlier was identified at time point 14 days from the negative control 
treatment group. Data was checked for normality using the Anderson-Darling test on both raw data 
and residual data, and Levene’s test for equal variance. Raw data was not normally distributed 
therefore was subject to a Box Cox transformation before further analysis. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the graph 
and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001.  
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Box Cox transformation λ=-0.01 

Anderson-Darling test for 

normality 
p=0.375 Levene’s test for equal variance p=0.974 

2-way Scheirer-Ray-Hare test 

(R2=27.51%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 3.07 0.032 * 

Overall difference over time 3 3.35 0.023 * 

Interaction of treatment and time 9 1.23 0.287  

 

Figure 5.13: Expression of the LEAP2 gene in the gut of common carp (C. carpio) within an injection 
trial (n=120). Carp were divided into 5 treatment groups: non injected control fish were sampled 0 
days post injection, water, MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose (10mg kg-1) 
injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene expression 
for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs test was 
utilised to identify any statistical outliers which were removed before any further statistical analysis. 
Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a 
Box Cox transformation before further analysis. Details of the statistical analysis are shown beneath 
the graph. Degrees of freedom, F distribution and P values for overall significance are given with 
significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * signifies p<0.05, 
** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=-0.04 

Anderson-Darling test for 

normality 
p=0.271 

Levene’s test for equal 

variance 
p=0.873 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=39.05%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 1.38 0.256  

Nested effect of tank variation 4 0.25 0.906  

Overall difference over time 3 10.94 <0.001 *** 

Interaction of treatment and time 9 0.99 0.452  

Post hoc analysis  

Time: day 1 vs day 3 p<0.0001 *** 

Time: day 1 vs day 7 p=0.0001 *** 

Time: day 3 vs day 14 p=0.0317 * 

 

Figure 5.14: Expression of the HAMP1 gene in the gut of common carp (C. carpio) within an injection 
trial (n=120). Carp were divided into 5 treatment groups: non injected control fish were sampled 0 
days post injection, water, MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose (10mg kg-1) 
injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene expression 
for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs test was 
utilised to identify any statistical outliers which were removed before any further statistical analysis. 
Data was checked for normality using the Anderson-Darling test on both raw data and residual data, 
and Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a 
Box Cox transformation before further analysis. Details of the statistical analysis are shown beneath 
the graph. Degrees of freedom, F distribution and P values for overall significance are given with 
significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * signifies p<0.05, 
** signifies p<0.01, and *** signifies p<0.001.  
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5.3.2 – Analysis of the intestinal microbiota population. 

Expression of the bacterial 16S rDNA gene in the gut of carp (Figure 5.15) 

during this trial was not effected by tank. There was a significant overall effect of time 

(p<0.001) and a significant interaction of time and treatment (p=0.040), however 

post hoc analysis revealed no further significant effects. Expression of the 16S rDNA 

gene was significantly higher 3 days post injection irrespective of treatment in 

comparison to all other time points in injected fish, and day 14 is significantly lower 

than all other time points in injected fish. There were differences in the mean 

expression of control injected carp with 1 and 14 days post injection being lower than 

non-injected control carp from the same tanks as well as lower than the mean at 3 

and 7 days post injection. The average expression of the 16S rDNA gene 1 day post 

injection in carp that received the control and MacroGard® treatments were 2.27% 

and 3.43% respectively of the expression in non-injected carp from the same tanks 

samples 24 hours previously. Injection with MSS1 at both the low and high dose 

showed a lower mean expression relative to non-injected controls from the same tank 

(61.88% and 33.28% respectively).  

Qualitative analysis of bacterial species richness during this trial was 

performed by comparing PCR-DGGE band patterns of pooled samples (by treatment 

at each time point). Bray-Curtis dissimilarity comparisons were made between all 

samples and data is presented on an nMDS plot in Figure 5.16 with groupings 

highlighted by treatment and by time point. No effect of treatment or time point can 

be seen during this trial with all four treatments and all five time points overlapping 

at the centre of the plot.  
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Box Cox transformation λ=0.07 

Anderson-Darling test for 

normality 
p=0.414 Levene’s test for equal variance p=0.894 

2-way nested (tank within 

treatment) ANOVA with post hoc 

Tukey’s (R2=55.01%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall difference between treatments 3 1.17 0.326  

Nested effect of tank variation 4 1.89 0.122  

Overall difference over time 3 19.18 <0.001 *** 

Interaction of treatment and time 9 2.11 0.040 * 

Post hoc analysis  

Time: day 1 vs day 3 p=0.0001 *** 

Time: day 1 vs day 14 p=0.0418 * 

Time: day 3 vs day 7 p=0.0078 ** 

Time: day 3 vs day 14 p<0.0001 *** 

Time: day 7 vs day 14 p=0.0008 *** 

 

Figure 5.15: Expression of the bacterial 16S rDNA gene in the gut of common carp (C. carpio) within an 
injection trial (n=120). Carp were divided into 5 treatment groups: non injected control fish were 
sampled 0 days post injection, water, MacroGard®, MSS1 low dose (5mg kg-1) and MSS1 high dose 
(10mg kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. Bars represent average gene 
expression for each treatment group (n=6). Error bars are given as standard error of the mean. Grubbs 
test was utilised to identify any statistical outliers which were removed before any further statistical 
analysis. Data was checked for normality using the Anderson-Darling test on both raw data and 
residual data, and Levene’s test for equal variance. Raw data was not normally distributed therefore 
was subject to a Box Cox transformation before further analysis. Details of the statistical analysis are 
shown beneath the graph. Degrees of freedom, F distribution and P values for overall significance are 
given with significant (p<0.05) post hoc comparisons being listed. Both in the graph and table, * 
signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Grouping Marker 

Water injected control Diamond 
MacroGard® injection Square 
MSS1 5mg injection Triangle 

MSS1 10mg injection Circle 
Day 0 Blue 
Day 1 Green 
Day 3 Red 
Day 7 Orange 

Day 14 Black 

 

Figure 5.16: Non metric Multidimensional Scaling (nMDS) ordination (stress: 0.0809) of Bray-Curtis 
dissimilarities looking at the differences in species richness based on PCR-DGGE band patterns of carp 
within a large injection trial. Carp were divided into 5 treatment groups: non injected control fish were 
sampled 0 days post injection, water, MacroGard® MSS1 low dose (5mg kg-1) and MSS1 low (10mg kg-

1) injected carp were sampled 1, 3, 7 and 14 days post injection. Data is shown twice to easily visualise 
groupings by time point (A) and by treatment (B).  
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5.3.3 – Statistical analysis of innate immune gene expression and overall 

bacteria population size. 

Expression levels of each of the immune genes analysed was compared to 

expression of the 16S rDNA gene using the non-parametric Spearman’s rank order 

correlation test (Table 5.4). This revealed a weak negative correlation between the 

16S rDNA gene and bf/C2 (ρ=-0.228, p=0.014), ApoA1 (ρ=-0.383, p<0.001) and 

HAMP1 expression (ρ=-0.223, p=0.016). There was no correlation with expression of 

iNOS, CRP2, Muc2 or LEAP2. 

 

 

Table 5.4: The probability of a linear relationship between each of the immune genes analysed in the 
gut of common carp during a 14 day injection trial and the size of the bacterial population within the 
gut as measured by total 16s rDNA expression (n=116). Carp were divided into 5 treatment groups: 
non injected control fish were sampled 0 days post injection, water, MacroGard®, MSS1 low dose (5mg 
kg-1) and MSS1 high dose (10mg kg-1) injected carp were sampled 1, 3, 7 and 14 days post injection. As 
data was not normally distributed, Spearman’s test was used to calculate the correlation coefficient, i.e. 
how linear a correlation is, and the statistical significance. A rating as to how strong the correlation is 
(as described by Fowler et al. (Fowler, Cohen et al. 1998)) is also given with a coefficient of 0.00-0.19 
being a very weak correlation, 0.20-0.39 being a weak correlation, 0.40-0.69 being a modest 
correlation, 0.70-0.89 being a strong correlation and 0.90-1.00 being a very strong correlation. 

Gene Correlation coefficient (ρ) P value Correlation 

iNOS -0.129 0.168 Very weak 

CRP2 -0.127 0.175 Very weak 

bf/C2 -0.228 0.014 Weak (negative) 

Muc2 -0.074 0.432 Very weak 

ApoA1 -0.383 <0.001 Weak (negative) 

LEAP2 0.159 0.087 Very weak 

HAMP1 -0.223 0.016 Weak (negative) 
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5.4 – Discussion. 

This chapter aimed to ascertain if injection with MacroGard® caused a 

decrease in the amount of bacteria within the gut. The data presented revealed a 

significant effect on overall gut microbiota population size and indicates there may be 

an impact upon species richness however, interpretation must at this stage be 

cautious due to the relatively low sample size. The differences seen indicate that LPS 

and MacroGard® have a limited effect on the gene expression of the selected innate 

immune parameters. A lack of upregulation of the inflammation markers, IL-1β and 

TNFα, suggests a systemic immune response did not occur within the gut. 

Additionally, C3, the central marker for an activation of the complement pathways, 

was not affected by injection with LPS or MacroGard®, however an upregulation of 

iNOS was seen for LPS injected carp. In contrast however, there was more than a 95% 

reduction in overall gut bacteria population size after LPS and MacroGard® injection. 

A lack of correlation between the decrease in bacteria population size and iNOS 

expression, however, does not preclude NO production as having an impact upon the 

gut microbiota population. For example, whilst Pijanowski et al. (2015) showed 

higher expression of the iNOS gene in stressed carp neutrophils, this did not correlate 

with production of superoxide anion as determined by NBT assay. Both Falco et al. 

(2012b) and Syakuri et al. (2013) showed IL-1β expression to be increased within the 

gut within the first 24 hours after injection (A. salmonicida and CyHV-3 respectively) 

however the levels of expression return to similar to control levels by 24 hours. IL-1β 

and TNFα are signals that induce immune cascades rather than directly act upon 

microbes and therefore the lack of correlation with bacterial population size does not 

exclude their role in the reduction of gut bacteria population size. Indeed, studies in 
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other systems have noted a possible link between gut microflora and these immune 

signals, for example Irritable Bowel Disease (IBD) in humans is a disharmony 

between the intestinal immune response and the commensal bacteria population 

within the gut. TNFα blockers are used as a treatment for the symptoms of this 

disease, possibly indicating a role of signalling molecules, e.g. TNFα, in dysbiosis 

between host and microbiota (de Bie et al. 2012, Jones-Hall et al. 2015, Tursi et al. 

2015).  

In this chapter the immunomodulatory properties of a formulated β-glucan, 

MSS1, on gut immune status was also investigated. As with the initial smaller trial, 

only a limited effect of MacroGard® injection was seen upon the immune responses 

analysed, however the lower dose of MSS1 had a significant effect upon several of the 

immune genes studied. MSS1 was selected out of a range of β-glucans generated from 

MacroGard® for its stimulation of cell proliferation/lack of toxicity in in vitro studies 

working with carp leucocyte cells (CLCs) and head kidney cells (Nawroz Kareem, 

unpublished data). Where MSS1 is a singular β-glucan structure rather than a mix of 

different chain lengths, degrees of branching and solubility, MacroGard® is a 

heterogenous mix. The initial carbohydrate material from which MSS1 was generated 

was MacroGard® therefore it is likely that MacroGard® will contain some of the same 

β-glucan structures as MSS1, i.e. the same chain lengths, degrees of branching and 

solubility. The data presented in this chapter shows that the particular β-glucan 

structure of MSS1 has a stronger immunomodulatory capability than MacroGard®. 

That MSS1 did not have the same affect at the higher concentration (10mg kg-1 versus 

5mg kg-1), however, is intriguing. This indicates that there is an optimal concentration 

at which MSS1 has an effect. The expression levels of the genes analysed in carp 
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injected with the higher concentration of MSS1 (10mg kg-1) are generally lower than 

expression levels seen in carp injected with the lower concentration (5mg kg-1), 

therefore there could be a potentially inhibitory affect above a certain concentration. 

A dose dependent immune response has also been seen after the oral application of 

lyophilised whole yeast cells (S. cerevisiae) to gilthead seabream (Ortuno et al. 2002) 

with an increase in phagocytic ability/capacity of head kidney leucocytes as the 

concentration of yeast cells within the diet increased. The data presented by Ortuno 

et al. (2002), however, did not indicate a maximum concentration at which the yeast 

was effective in inducing a greater immune response. Chitin, a β-1,4 linked N-acetyl-

D-glucosamine polymer, shows different dose dependent responses in Catla (Catla 

catla) when comparing between in vitro and in vivo trials (Sangma and Kamilya 

2015). When catla were fed diets containing chitin, production of superoxide anion by 

head kidney leucocytes increased as the concentration of chitin increased, however in 

vitro studies showed the lowest concentration of chitin (0.01mg/ml) showed the 

highest increase with a dose dependent decrease in production as the concentration 

of chitin was increased (Sangma and Kamilya 2015). The concept of dose dependent 

inhibition of activity has been considered since the 1980s in relation to anti-cancer 

drugs as reviewed by (Powis 1983) however studies looking at MacroGard® have 

only previously shown a dose dependent increase in activity at higher concentrations 

of the carbohydrate (Kuhlwein et al. 2013, Vera-Jimenez et al. 2013).  

The decrease in gut bacterial population size was greater in MacroGard® 

injected carp than those that received MSS1. This is interesting considering the 

significantly higher levels of gene expression of the immune parameters seen within 

this trial. The limited correlation between immune parameters and bacterial numbers 
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seen within the gut indicates that, if indeed the immune response is directly 

responsible for the decrease in bacteria population size, it is not via the pathways 

considered within this study or it is simply not detectable on the level of gene 

expression. Further studies in determining what causes the reduction in bacteria 

numbers could focus on Pattern Recognition Receptors (PRRs) such as Toll Like 

Receptors (TLRs) e.g. TLR4 which recognises LPS, a bacteria associated endotoxin 

(Swain et al. 2008) rather than bactericidal activity. 

Whilst Tapia-Paniagua et al. (2015) used Principle Component Analysis (PCA) 

as a statistical means of comparing immune activity in the liver of Senegalese sole 

with the intestinal microbiota, immune genes in the studies presented in this thesis 

were compared individually to total 16S rDNA expression. This was done due to data 

not being normally distributed which is an assumption of PCA. Whilst Spearman’s 

rank order correlation revealed slight correlation between expression of the three 

antimicrobial peptides analysed and the bacteria population size, biologically it is 

most likely that it is a combination of multiple immune parameters working together 

that are affecting the gut microbiota rather than one individual parameter. Examples 

of different immune pathways working together to reduce infections in carp models 

include infection with Cyprinid herpesvirus (CyHV) 3 and the parasite Trypanoplasma 

borreli. During CyHV-3 infection, there is an increase in expression of genes 

associated with the complement pathway, iNOS, interferon, CRP, lysozyme and a 

decrease in defensin B (Adamek et al. 2013, Pionnier et al. 2014), and nitric oxide, 

Immunoglobulin M and complement are indicated to work together resulting in lysis 

during T. borreli infection (Forlenza et al. 2009b).  

As previously stated, this is the first trial in which quantification of the gut 
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microbiota population size has been compared against immune gene expression in 

the gut in an ichthyo-model. As has been shown through studying gnotobiotic models, 

the presence of bacteria is highly important for the development of the immune 

system from hatching and, in zebrafish (Danio rerio), the species diversity of the gut 

microbiota population is thought to stabilise by the time the fish are considered as 

juveniles (Rombout et al. 2011). Examples of dysbiosis within the symbiont, i.e. an 

instability in bacterial species diversity and over activation of the host immune 

response, are found in disease conditions such as Ulcerative Colitis in which a loss of 

α-diversity has been seen (Alipour et al. 2015). The lack of variation in bacterial 

species richness seen in the trials presented here, however, implies this may not be a 

suitable comparison due to IBDs being chronic conditions, whereas the model 

presented here could be considered acute, i.e. a singular event rather than continuous 

modulation of the immune response due to the lack of differences in species richness 

between injected (irrespective of treatment) and non-injected carp. 

Due to there being no strong correlation between any of the immune 

parameters analysed and overall gut microbiota population size, alternative means as 

to how the reduction in gut bacteria population size occurred were considered. Carp 

have been shown to slough their mucosal layer within the gut as a means of ejecting 

pathogens during CyHV-3 infection trials (Adamek et al. 2013) which, if a sloughing 

event occurred during the trial presented here, this would give an explanation as to 

the lower number of bacteria within the mucus layer 1 day post injection. Analysis of 

Muc2, the gene expressed in the gut that encodes for mucin, the backbone of the 

peptoglycan molecules that are the main constituents of mucus (Van der Marel et al. 

2012), did not show any difference either between treatment groups or over time, 
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nor was there any correlation with total 16S expression. Unfortunately, histological 

analysis of the gut was not performed to determine if any change in the thickness of 

the mucosal membrane occurred, however due to the lack of change in gene 

expression, it is likely there was no effect as an increase in Muc2 gene expression 

would be expected in order to replenish the mucosal membrane. 
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Chapter 6 – Studying the effect of combining different 

methods of applying MacroGard® on the gut microbiota 

population. 

 

The modulation of the intestinal microbiome in favour of so called “good” 

bacteria, i.e. species which promote health of the host organism, is currently receiving 

a lot of attention as an alternative means of reducing incidents of pathogenic infection 

in aquaculture (for reviews, see Gatesoupe 1999, Wang et al. 2008, Nayak 2010b, 

Perez et al. 2010, Saad et al. 2013, Merrifield et al. 2014). Whilst the oral application 

of MacroGard® is capable of influencing bacterial species diversity within the 

intestine of carp at higher concentrations (Kuhlwein et al. 2013, Jung-Schroers et al. 

2015a), this is not the primary reason for including it into the diet of commercial fish 

species and, indeed, the data presented in Chapter 4 shows there is no effect upon 

bacterial species richness when fish are fed MacroGard® at a comparable 

concentration to that found in commercial diets.  

Chapter 5, however, revealed that injection with MacroGard® was capable of 

reducing the population size of the gut microbiota by more than 95% (as measured 

by 16S copy number). Research using mammalian models has also shown that β-

glucans to be effective adjuvants in combination with vaccines (Bromuro et al. 2010, 

Huang et al. 2013, Berner et al. 2015). Although the majority of research as to the 

immunomodulatory properties of β-glucans in ichthyo-models focuses on oral 

application, there are examples of its use as an adjuvant in fish species (Midtlyng and 

Lillehaug 1998, Guselle et al. 2006, Kubilay et al. 2008). The adjuvant concept is 

important as injection has also been cited as the application method of choice used 
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for the majority of vaccines in aquaculture (Plant and LaPatra 2011). 

The influence of orally and injected application of β-glucan bacterial species 

diversity within the gut, could have potential uses within aquaculture, i.e. timing of 

injection based vaccination programs with β-glucan based feeding regimes in order 

achieve both immune protection against specific pathogens through vaccination and 

an overall “better” gut microbiota that promotes health within the host organism and 

can outcompete potential pathogens from colonising the gut. 

Considering the concepts of orally applied MacroGard® influencing gut 

microbiota species diversity at higher concentrations and injection of MacroGard® 

reducing the gut microbiota population size, the aim of this chapter is to establish if a 

combination of orally applied and injected MacroGard® can influence gut bacterial 

species diversity, so as to improve overall health of the fish by injection and 

maintaining or improving a diverse gut microbiome. To achieve this a combination 

feeding and injection trial where carp will be maintained on either a 0% or 0.1% 

MacroGard® diet and fish from both feed groups will receive an injection of 

MacroGard® will be undertaken. Assessment of the impact of this β-glucan exposure 

regime expression of a range of immune related genes will be undertaken. IL-1β and 

C3 gene expression has been previously shown to be effected by orally applied 

MacroGard® during infection trials (Falco et al. 2012b, Miest et al. 2012, Pionnier et 

al. 2014), and the iNOS gene was shown to have higher expression levels 1 day post 

injection with a β-glucan in chapter 5. Therefore these three genes were selected as 

markers of host immunomodulation. The bacterial 16S rDNA gene was used as a 

measure of gut microbiota population size and next generation sequencing 

techniques were utilised in order to ascertain if orally applied MacroGard® was 
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capable of influencing bacterial species diversity within the gut after carp were 

additionally injected with MacroGard®. 

During the development of experimental design from the injection trials 

described in Chapter 5 to the combination feeding and injection trial presented here, 

the decision was made to alter the way in which the non-injected negative controls 

were handled. As shown in Chapter 4, significant changes in gut microbiota 

population size would occur over a 2 week period, and it was concluded that fish 

should be compared to non-injected controls sampled at the same time point rather 

than comparing them against fish that were sampled up to 2 weeks previous, as 

would occur if non injected controls were only taken at the time of injection. This, 

however, brought up logistical complications in terms of experimental design, and in 

particular, if handling fish i.e. netting, submersion in anaesthetic and tail clipping 

affected the gut microbiota population size. An initial trial was therefore undertaken 

to investigate this. 
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6.1 – Comparison of gut microbiota population size when different handling 

techniques for non-injected negative controls are used. 

 

6.1.1 Materials and Methods. 

Ten carp were selected from the stock population acquired from Hampton 

Spring Fisheries, UK, in October 2014 and were moved to a single tank and 

maintained as described in section 4.1.2 until the start of the trial and fed at a rate of 

1% body weight per day on a 0% MacroGard® diet (section 4.1.3). All carp were 

removed from the tank simultaneously with 5 being subject to manipulation, i.e. fish 

dipped briefly (approximately 30 seconds) to anaesthetise in 2-phenoxyethanol 

(1ml/5L) before their tails were cut and then returned back to their tank. Five carp 

were euthanized straight away by submersion in 2-phenoxyethanol followed by 

destruction of the brain before dissection. Gut samples were taken as described in 

section 4.3.3 with samples of total gut, gut wall and gut contents being stored in 

RNAlater at -80°C until further use. 24 hours after the first group of carp were 

sampled, the 5 fish that were subject to manipulation were euthanized and gut 

samples taken for analysis. Tail cuts were performed by Professor Dave Hoole (Keele 

University, UK). RNA was isolated from gut wall samples as outlined in section 0 and 

treated with DNase before being translated to cDNA as described in sections 4.3.4.2 

and 4.3.4.3. RT-qPCR analysis was performed as outlined in section 4.3.4.4 with the 

primer pairs 40S (carp) and uniBact_16S (bacteria). Primer sequences are listed in 

Appendix 3. Statistical analysis was performed using a 1-way ANOVA after a Box-Cox 

transformation in order to ensure data did not violate the assumptions of normality 

and homoscadicity.  
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6.1.2 Results.  

Although there was a decrease in 16S expression (relative to expression of the 

40S gene) when comparing the two methods of handling, this difference was not 

significant (Figure 6.1). It was therefore concluded that non injected negative controls 

within the combination feeding and injection trial would be handled in the same way 

as injected fish. 

 

 

Box Cox transformation λ=0.13 

Anderson-Darling for 

normality 
p=0.380 

Levene’s test for 

equal variance 
p=0.982 

One way ANOVA 

(R2=25.26%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall effect of handling 1 2.37 0.168  

Figure 6.1: Expression of the bacterial 16S rDNA gene in carp (C. carpio) that were either sampled 
straight after removal from the tank or were briefly dipped in anaesthetic, had their tails cut and and 
were returned to the tank for 24 hours before sampling as a comparison of the two different methods 
employed for handling non injected negative controls (total n=10). Bars represent average gene 
expression for each treatment group (n=5). Error bars are given as standard error of the mean. Grubbs 
test was utilised to identify any statistical outliers which were removed before any further statistical 
analysis. One outlier was identified from the group of carp that were sampled after manipulation. Data 
was checked for normality using the Anderson-Darling test on both raw data and residual data, and 
Levene’s test for equal variance. Raw data was not normally distributed therefore was subject to a Box 
Cox transformation before further analysis. A one way ANOVA was performed to determine statistical 
significance. Details of the statistical analysis are shown in the table below the graph. Degrees of 
freedom, F distribution and P values for overall significance are given. 
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6.2 – Analysing the effect of orally applied MacroGard® in combination with 

application via intraperitoneal injection.  

 

6.2.1 – Materials and methods.  

120 Carp were acquired from Hampton Spring Fisheries, UK, in October 2014 

and divided between two tanks maintained at 18°C. All fish were fed on a 0% 

MacroGard® diet prior to the start of the trial at a rate of 1% body weight per day for 

4 months (see sections 4.1.2 and 4.1.3 for details on fish husbandry and feed 

composition). During the trial carp were either fed with a 0% MacroGard® diet 

(n=60) or a 0.1% MacroGard® diet (n=60) at a rate of 1% body weight per day for 3 

weeks prior to injection and for the duration of the experiment. Carp were 

anaesthetised (30 seconds in 2-phenoxyethanol at 1ml/5l) before receiving an 

injection and a cut to their tail fin for identification of treatment groups. Fish were 

observed for 10 minutes before being returned to their original tank. Carp received 

either no injection, PBS injection, MacroGard® 2mg kg-1, or inactivated Aeromonas 

salmonicida sp. salmonicida (reference strain NCIMB 1102, see section 4.2.2. 105 CFU 

per fish) with details for the preparation of each injection being found in section 

6.2.1.1. 30 fish received each treatment as described in Table 6.1. Samples were taken 

1, 8 and 15 days post injection as described in section 4.3.3. Carp were euthanized by 

submersion in 2-phenoxyethanol (1ml/5L) and samples of the total gut, gut wall and 

gut content were stored in RNAlater at -80°C until further use.  
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Table 6.1: Experimental design for a trial studying the effect of combining both oral application of 
MacroGard® and intraperitoneal injection with either PBS, MacroGard® (2mg kg-1) or heat inactivated 
Aeromonas salmonicida subsp. salmonicida (105 CFU per fish) to common carp (C. carpio). Carp were 
split into 2 tanks, one of which received the 0% MacroGard® experimental feed and the other was 
maintained on the 0.1% MacroGard®. All fish were fed at a rate of 1% body weight per day for a 3 week 
period on each diet before injection and for the remainder of the trial. In order to distinguish between 
treatment groups, fish were marked with an incision in the tail fin. 

Feed Injection 
Time point (days) 

1 8 15 

0% MacroGard® 

No injection 5 5 5 

PBS 5 5 5 

MacroGard® 5 5 5 

A. salmonicida 5 5 5 

0.1% 

MacroGard® 

No injection 5 5 5 

PBS 5 5 5 

MacroGard® 5 5 5 

A. salmonicida 5 5 5 

 

6.2.1.1 – Preparation of MacroGard® and inactivated Aeromonas salmonicida 

subsp. salmonicida for injection. 

MacroGard® was prepared at a final concentration of 2mg kg-1 per fish in 

100μl of PBS as described in section 3.1. 

Aeromonas salmonicida subsp. salmonicida (NCIMB 1102, see section 4.2.2 for 

details of this strain) was incubated for 18 hours in 50ml nutrient broth at room 

temperature (approximately 25°C). Undiluted broth was heat inactivated by 

autoclaving at 121°C for 15 minutes. Before the bacteria was autoclaved, a serial 1:10 

dilution (1x10-1 to 1x10-10) was performed using 50μl nutrient broth applied to a 

nutrient agar plate (in triplicate for each dilution) and incubated at 20°C for 24 hours. 

The number of bacteria present within the undiluted broth was calculated based 

upon colony forming unit (CFU) count. Confirmation of successful heat inactivation 

was performed in triplicate by applying 50μl of undiluted autoclaved bacteria to 

nutrient agar plates which were incubated at 20°C for 72 hours after which no 

colonies were produced.  
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6.2.1.2 – Quantitative analysis of innate immune gene expression and total 16S 

rDNA expression in the gut.  

Gut wall, gut content and total gut samples were taken as described in section 

4.3.3 and stored in RNAlater at -80°C until further use. RNA was isolated as outlined 

in section 0, treated with DNase before being reverse transcribed to cDNA as 

described in sections 4.3.4.2 and 4.3.4.3. RT-qPCR analysis was performed as outlined 

in section 4.3.4.4 to establish gene expression for C3, IL-1β, iNOS and the bacterial 

16S rDNA gene. Correlation analysis of gene expression of the 16S rDNA gene against 

the analysed immune parameters was performed as described in section 4.3.4.5. 

 

6.2.1.3 – Next generation sequencing analysis of species diversity in 

MacroGard® injected carp from both feed groups. 

Carp sampled 8 and 15 days post injection that received an injection with 

MacroGard® irrespective of feed were analysed by the Fish Health and Nutrition 

group at the University of Plymouth (United Kingdom) using next generation 

sequencing analysis. genDNA from gut wall samples was isolated and OTU 

identification was performed to the genus level. genDNA isolation was performed as 

outlined in section 4.3.5.1. 

Next Generation Sequencing Analysis was performed by Dr. Ana Rodiles of the 

University of Plymouth (United Kingdom) and Appendix 4 gives the full report 

including methodologies provided by Dr. Daniel Merrifield. Briefly, the V1-V2 region 

of the 16S rDNA gene was amplified in a reaction mix consisting of the primer pair 

16S_seq (see Appendix 3 for sequences) at a final concentration of 0.568μM, 50μl of 

MyTaqTM, and 2μl of genDNA in a total volume of 88μl. PCR was performed using the 
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following protocol and a TC-512 thermal cycler: initial denaturation at 94°C for 7 min, 

then 10 cycles at 94°C for 30 sec, followed by a touchdown of 1°C per cycle from 62 -

53°C for 30 sec and 72°C for 30 sec. A further 20 cycles were performed at 94°C for 

30 sec, 53°C for 30 sec and 72°C for 30 sec before a final extension for 7 min at 72°C. 

PCR products were subject to electrophoresis using an agarose gel and bands of the 

correct expected size (300bp) isolated and cleaned using a QIAquick Gel Extraction 

Kit as per the manufacturer’s instructions. Samples were then adjusted to a 

concentration of 26pM before being prepared using an Ion PGMTM Template OT2 kit. 

Sequencing was performed using an Ion Torrent Personal Genome Machine. 
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6.2.2 – Results  

As with the previous chapters results will be considered by analysis of the 

expression of 3 innate immune genes utilised, followed by analysis of the overall gut 

microbiota size in all samples and NGS analysis of the species richness within the gut. 

Finally, a comparison of innate immune gene expression and the overall size of the 

microbiota population was carried out.  

 

6.2.2.1 – Innate immune gene expression. 

Although expression of iNOS gene was significantly influenced by time 

(p=0.001), treatment or feed regime did not appear the affect the expression of iNOS 

(Figure 6.2). Expression 1 day post injection was significantly lower than expression 

at 8 (p=0.0037) and 15 (p=0.0025) days post injection. In contrast, C3 gene 

expression was not significantly different over time, between injection or between 

feed groups (Figure 6.3). Whilst IL-1β expression (Figure 6.4) was not significantly 

affected by injection, there was a significant difference between feed groups 

(p=0.001) and time point within feed groups (p=0.024). Gene expression for IL-1β in 

fish fed 0.1% MacroGard® was significantly higher 1 and 8 days post injection 

(p=0.0146 and p=0.0433 respectively) compared to 0% MacroGard® fed fish.  

  



Chapter 6 – Studying the effect of combining different methods of 

applying MacroGard® on the gut microbiota population. 

Harris 

2017 

 

192 

 

Box Cox transformation λ=0.01 

Anderson-Darling test for 

normality 
p=0.953 Levene’s test for equal variance p=0.626 

3-way ANOVA with post hoc Tukey’s 

(R2=25.68%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall effect of time 2 7.64 0.001 ** 

Overall effect of injection 3 1.04 0.380  

Overall effect of feed 1 0.11 0.739  

Interaction between time and injection 6 0.81 0.563  

Interaction between time and feed 2 0.36 0.700  

Interaction between injection and feed 3 0.16 0.922  

Interaction between all variables 6 1.35 0.244  

Post hoc analysis  

Time: day 1 vs day 8 p=0.0037 ** 

Time: day 1 vs day 15 p=0.0025 ** 

 

Figure 6.2: Expression of iNOS in the gut of common carp (C. carpio) within a combined feeding and 
injection trial (n=120). Carp were fed either a 0% or 0.1% MacroGard® diet and were further divided 
into one of 4 treatment groups: no injection, PBS injection, MacroGard® injection, inactivated A. 

salmonicida injection. Carp were sampled 1, 8 and 15 days post injection (n=5). Bars represent average 
gene expression for each treatment group (n=6). Error bars are given as standard error of the mean. 
Grubbs test was utilised to identify any statistical outliers which were removed before any further 
statistical analysis. One outlier was identified from the non-injected group of carp that received the 0% 
MacroGard® diet at time point 15 days. Data was checked for normality using the Anderson-Darling 
test on both raw data and residual data, and Levene’s test for equal variance. Raw data was not 
normally distributed therefore was subject to a Box Cox transformation before further analysis. Details 
of the statistical analysis are shown beneath the graph. Degrees of freedom, F distribution and P values 
for overall significance are given with significant (p<0.05) post hoc comparisons being listed. Both in 
the graph and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001.  
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Box Cox transformation λ=-1.98 

Anderson-Darling test for 

normality 
p=0.007 Levene’s test for equal variance p=0.998 

3-way ANOVA with post hoc Tukey’s 

(R2=25.68%) 

Degrees of 

freedom 

F 

distribution 
P value Significance 

Overall effect of time 2 1.41 0.249  
Overall effect of injection 3 1.74 0.164  
Overall effect of feed 1 1.06 0.307  
Interaction between time and injection 6 0.94 0.473  
Interaction between time and feed 2 0.05 0.947  
Interaction between injection and feed 3 0.67 0.574  
Interaction between all variables 6 0.86 0.525  

 

Figure 6.3: Expression of C3 in the gut of common carp (C. carpio) within a combined feeding and 
injection trial (n=120). Carp were fed either a 0% or 0.1% MacroGard® diet and were further divided 
into one of 4 treatment groups: no injection, PBS injection, MacroGard® injection, inactivated A. 

salmonicida injection. Carp were sampled 1, 8 and 15 days post injection (n=5). Bars represent average 
gene expression for each treatment group (n=6). Error bars are given as standard error of the mean. 
Grubbs test was utilised to identify any statistical outliers which were removed before any further 
statistical analysis. Four statistical outliers were identified: inactivated A. salmonicida injection 0.1% 
MacroGard® feed at time point day 1, PBS injection 0% MacroGard® feed at time point day 8, 
MacroGard® injection 0% MacroGard® feed at time point day 8, and PBS injection 0.1% MacroGard® 
feed at time point day 8. Data was checked for normality using the Anderson-Darling test on both raw 
data and residual data, and Levene’s test for equal variance. Raw data was not normally distributed 
therefore was subject to a +1 followed by Box Cox transformation before further analysis. Details of the 
statistical analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for 
overall significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the 
graph and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Box Cox transformation λ=0.09 

Anderson-Darling test for 

normality 
p=0.305 Levene’s test for equal variance p=0.769 

3-way ANOVA with post hoc Tukey’s 

(R2=29.03%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall effect of time 2 0.69 0.505  

Overall effect of injection 3 0.67 0.575  

Overall effect of feed 1 12.30 0.001 ** 

Interaction between time and injection 6 1.23 0.298  

Interaction between time and feed 2 3.87 0.024 * 

Interaction between injection and feed 3 0.93 0.432  

Interaction between all variables 6 0.67 0.675  

Post hoc analysis  

Time and feed: day 1 between feeds p=0.0146 * 

Time and feed: day 8  between feeds p=0.0433 * 

 

Figure 6.4: Expression of IL-1β in the gut of common carp (C. carpio) within a combined feeding and 
injection trial (n=120). Carp were fed either a 0% or 0.1% MacroGard® diet and were further divided 
into one of 4 treatment groups: no injection, PBS injection, MacroGard® injection, inactivated A. 

salmonicida injection. Carp were sampled 1, 8 and 15 days post injection (n=5). Bars represent average 
gene expression for each treatment group (n=6). Error bars are given as standard error of the mean. 
Grubbs test was utilised to identify any statistical outliers which were removed before any further 
statistical analysis. Data was checked for normality using the Anderson-Darling test on both raw data 
and residual data, and Levene’s test for equal variance. Raw data was not normally distributed 
therefore was subject to a Box Cox transformation before further analysis. Details of the statistical 
analysis are shown beneath the graph. Degrees of freedom, F distribution and P values for overall 
significance are given with significant (p<0.05) post hoc comparisons being listed. Both in the graph 
and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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6.2.2.2 – Analysis of the gut microbiota population. 

Analysis of total 16S rDNA expression. 

Expression of the bacterial 16S rDNA gene (Figure 6.5) was significantly 

affected by time (p<0.001) and a combination of time and feed group (p=0.001), but 

not by injection group. 16S expression levels 1 day post injection were significantly 

lower than expression on days 8 and 15 post injection irrespective of feed group and 

injection treatment (p<0.0001 in both cases). For all 4 injection treatment groups, 

there is a general trend of an increase in total 16S expression over time. Non injected 

negative controls showed a non-significant increase in 16S expression for the 

duration of the trial irrespective of diet. Similarly, PBS injected negative controls also 

showed a trend of increased 16S expression for the duration of the trial irrespective 

of diet, however expression in carp fed with the 0% MacroGard® diet was 

significantly higher (p=0.0006) 15 days post injection compared to 1 day post 

injection. There was no significant difference in 16S expression between time points 

for carp that received the 0.1% MacroGard® diet and PBS injection. For both 

MacroGard® and inactivated A. salmonicida injected carp that were fed the 0.1% 

MacroGard® diet, 16S expression followed the same trend as both negative controls, 

i.e. an increase in expression over time. This increase was not significant for either 

injection treatment. For 0% MacroGard® fed carp that received an injection of either 

MacroGard® or A. salmoncida, however, a significant increase in expression was seen 

8 days post injection in comparison to 1 day post injection (MacroGard® p=0.0017, A. 

salmonicida p=0.0059). Expression levels then decreased by 15 days post injection in 

both injection groups. Expression at day 15 in MacroGard® injected carp was still 

significantly higher than 1 day post injection (p=0.0306).  
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Figure 6.5: (part A) Expression of the bacterial 16S rDNA gene in the gut of common carp (C. carpio) 
within a combined feeding and injection trial (n=120). Carp were fed either a 0% or 0.1% MacroGard® 
diet and were further divided into one of 4 treatment groups: no injection, PBS injection, MacroGard® 
injection, inactivated A. salmonicida injection. Carp were sampled 1, 8 and 15 days post injection (n=5). 
Bars represent average gene expression for each treatment group (n=6). Error bars are given as 
standard error of the mean. Grubbs test was utilised to identify any statistical outliers which were 
removed before any further statistical analysis. Data was checked for normality using the Anderson-
Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw data was not 
normally distributed therefore was subject to a Box Cox transformation before further analysis. Details 
of the statistical analysis are shown in part C of this figure. Degrees of freedom, F distribution and P 
values for overall significance are given with significant (p<0.05) post hoc comparisons being listed. 
Both in the graph and table, * signifies p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 
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Figure 6.5: (part B) Expression of the bacterial 16S rDNA gene in the gut of common carp (Cyprinus 

carpio) within a combined feeding and injection trial (n=120). Carp were fed either a 0% or 0.1% 

MacroGard® diet and were further divided into one of 4 treatment groups: no injection, PBS injection, 

MacroGard® injection, inactivated A. salmonicida injection. Carp were sampled 1, 8 and 15 days post 

injection (n=5). Bars represent average gene expression for each treatment group (n=6). Error bars are 

given as standard error of the mean. Grubbs test was utilised to identify any statistical outliers which 

were removed before any further statistical analysis. Data was checked for normality using the 

Anderson-Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw 

data was not normally distributed therefore was subject to a Box Cox transformation before further 

analysis. Details of the statistical analysis are shown in part C of this figure. Degrees of freedom, F 

distribution and P values for overall significance are given with significant (p<0.05) post hoc 

comparisons being listed. Both in the graph and table, * signifies p<0.05, ** signifies p<0.01, and *** 

signifies p<0.001. 
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Box Cox transformation λ=-0.24 

Anderson-Darling test for 

normality 
p=0.538 Levene’s test for equal variance p=0.959 

3-way ANOVA with post hoc Tukey’s 

(R2=56.19%) 

Degrees of 

freedom 
F distribution P value Significance 

Overall effect of time 2 44.73 p<0.001 *** 

Overall effect of injection 3 0.68 0.565  

Overall effect of feed 1 0.00 0.968  

Interaction between time and injection 6 0.34 0.916  

Interaction between time and feed 2 7.47 0.001 ** 

Interaction between injection and feed 3 0.74 0.529  

Interaction between all variables 6 1.28 0.276  

Post hoc analysis  

Time: day 1 vs day 8 p<0.0001 *** 

Time: day 1 vs day 15 p<0.0001 *** 

Time and feed: day 0, 0% versus 0.1% p=0.0346 * 

0% feed: PBS day 1 vs PBS day 15 p=0.0006 *** 

0% feed: MacroGard® day 1 vs MacroGard® day 8 p=0.0306 * 

0% feed: MacroGard® day 1 vs MacroGard® day 15 p=0.0017 ** 

0% feed: A. salmonicida day 1 vs A. salmonicida day 8 p=0.0059 ** 

 

Figure 6.5: (part C) Expression of the bacterial 16S rDNA gene in the gut of common carp (Cyprinus 

carpio) within a combined feeding and injection trial (n=120). Carp were fed either a 0% or 0.1% 
MacroGard® diet and were further divided into one of 4 treatment groups: no injection, PBS injection, 
MacroGard® injection, inactivated A. salmonicida injection. Carp were sampled 1, 8 and 15 days post 
injection (n=5). Bars represent average gene expression for each treatment group (n=6). Error bars are 
given as standard error of the mean. Grubbs test was utilised to identify any statistical outliers which 
were removed before any further statistical analysis. Data was checked for normality using the 
Anderson-Darling test on both raw data and residual data, and Levene’s test for equal variance. Raw 
data was not normally distributed therefore was subject to a Box Cox transformation before further 
analysis. Details of the statistical analysis are shown in part C of this figure. Degrees of freedom, F 
distribution and P values for overall significance are given with significant (p<0.05) post hoc 
comparisons being listed. Both in the graph and table, * signifies p<0.05, ** signifies p<0.01, and *** 
signifies p<0.001. 
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Bacterial species richness and diversity in carp injected with MacroGard®. 

Analysis of the bacterial species richness of the autochthonous population in 

the gut, i.e. gut wall samples, from both feed groups that were injected with 

MacroGard® at time points 8 and 15 days post injection (n=20), was performed using 

next generation sequencing technology. In total, 3 011 088 OTUs were obtained for all 

samples analysed and taxonomic identification was performed to the species level 

based upon 97% sequence similarity and a 0.8 confidence threshold. Cyanobacteria 

(2,736 sequences) and Propionibacteriaceae (1,111 sequences) sequences were 

discarded as contaminants as recommended by Dr. Ana Rodiles of Plymouth 

University (UK). This left a total of 1 288 902 identified OTUs. Data was analysed 

based upon overall presence/absence and percentage of sequences obtained per fish 

as an approximation of relative abundance.  

Proteobacteria (61 genera) accounted for 70.1% of identified OTUs followed 

by Fusobacteria (27.2% - 3 genera) and Firmicutes (2.2% - 39 genera). The remaining 

genera belonged to the phylum Actinobacteria (17 genera), Bacteroidetes (9 genera), 

Spirochaetes (1 genus), Verrucomicrobia (1 genus) and 4 different OTUs that were 

unidentified at the phylum level. Time did not have an effect on the percentage 

relative abundance of any phylum, however feed had a significant effect on the 

presence of Fusobacteria and Proteobacteria. Fusobacteria was significantly lower 

(p=0.03) in 0.1% MacroGard® fed carp in comparison to those fed with the 0% 

MacroGard® diet. In contrast, there was a significantly higher proportion of 

Proteobacteria (p=0.03) in carp fed with the 0.1% MacroGard® diet.  

At the class level within the Proteobacteria, the percentage relative abundance 
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of Alphaproteobacteria is significantly higher (p=0.016) in 0.1% MacroGard® fed carp 

whereas the proportion of Gammaproteobacteria is significantly lower (p=0.009) in 

these fish.  

Table 6.2 lists each genus identified and the number of carp per group (by feed 

and time point) in which it is present at more than 0.1% of the OTUs within a fish. 25 

OTUs were present in all fish analysed, however only 3 of these (Cetobacterium, 

Phyllobacterium and unknown Rhizobiales genus) were present in all fish with a 

relative abundance greater than 0.1%. 26 OTUs appeared only in the guts of carp fed 

with the 0% diet 8 days post injection, however only 5 of these (Akkermansia, 

unknown Acidimicrobiales, unknown Actinobacteria, unknown Deltaproteobacteria 

and unknown Firmicutes) were present with a relative abundance greater than 0.1%. 

No OTUs were found exclusively 15 days post injection in carp fed the 0% 

MacroGard® diet. For carp fed with the 0.1% MacroGard® diet, 1 OTU was found at 

each time point (unknown Sphingobacteriales at day 8 and unknown Lactobacillales 

at day 15). Neither of these were more than 0.1% of the relative abundance and both 

only appeared in 1 fish. Two OTUs were time point specific irrespective of feed 

(unknown Procabacteriaceae at 8 days post injection and an unidentified OTU 15 

days post injection). In both cases, the OTU was found in 4 fish per time point (2 per 

treatment), however only 1 fish (0.1% feed, 15 days post injection) was shown to 

have greater than 0.1% relative abundance of the unidentified OTU. No OTU was 

present at both time points for carp fed with the 0% MacroGard® diet, however one 

OTU (unknown Actinomycetales) was found at both time points for 0.1% MacroGard® 

fed carp (1 fish per time point) and represented less than 0.1% of the OTUs identified 

per fish. 129 unique OTUs were found in at least 1 fish fed with the 0% MacroGard® 8 
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days post injection, 86 were found in carp fed the 0.1% MacroGard® diet 8 days post 

injection, 88 were found in carp fed with the 0% MacroGard® diet 15 days post 

injection, and finally 106 were found in carp fed the 0.1% MacroGard® diet 15 days 

post injection. Of these, 45%, 62%, 65% and 54% respectively were found in all 5 fish 

within each treatment group.  
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Table 6.2: (part A) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 
 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Unknown bacteria 2 3 1 4 1 - - - 

Unknown Microthrixaceae 1 - - - - - - - 

Unknown Acidimicrobiales 1 - - - 1 - - - 

Unknown Actinomycetales - 1 - 1 - - - - 

Corynebacterium 4 4 2 4 - - 1 - 

Cryocola 2 2 2 4 - - - - 

Microbacterium 5 5 5 4 1 1 - - 

Unknown Microbacteriaceae 1 - - 1 1 - - 1 

Mycobacterium 4 3 3 4 - - - - 

Rhodococcus 1 5 2 3 - - - - 

Propionicimonas 1 - - 1 - - - - 

Unknown Nocardioidaceae 1 - - 1 - - - - 

Unknown Pseudonocardiaceae 1 - - - - - - - 

Unknown Actinomycetales 4 5 5 5 1 - - 1 

Bifidobacterium 1 - - - - - - - 

Collinsella 1 - - - - - - - 

Patulibacter 5 5 5 5 1 5 2 4 
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Table 6.2: (part B) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Unknown Actinobacteria 1 - - - 1 - - - 

Sediminibacterium 2 - 1 1 - - - - 

Paludibacter 1 1 2 2 - - - 1 

Unknown Rikenellaceae 3 - - - - - - - 

Unknown Rikenellaceae 2 - - - - - - - 

Chryseobacterium 5 5 5 5 - - - - 

Unknown Weeksellaceae 3 4 4 4 - - - - 

Flavobacterium 5 5 5 5 2 2 - 3 

Unknown Sphingobacteriales - 1 - - - - - - 

Sphingobacterium 2 - - 3 - - - 1 

Bacillus 5 4 4 4 - - - - 

Unknown Bacillaceae 1 - - 1 - - - - 

Brevibacillus 2 3 4 5 - - - - 

Staphylococcus 5 4 5 5 - - - - 

Unknown Bacillales 3 1 3 2 - - - - 

Unknown Gemellales 1 - - 1 - - - - 

Aerococcus 1 - 2 2 - - - - 
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Table 6.2: (part C) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Carnobacterium 1 - - 1 - - - - 

Enterococcus 4 4 4 5 1 - - - 

Vagococcus 1 - - 1 - - - - 

Unknown Enterococcaceae 4 2 4 3 - - - - 

Unknown Lactobacillaceae 1 2 - 1 - - - 1 

Lactobacillus 5 5 5 5 1 - 3 2 

Pediococcus 1 - - 2 - - - 1 

Unknown Leuconostocaceae 5 5 5 5 1 - - - 

Leuconostoc 5 5 5 5 1 - 3 2 

Weissella 5 5 5 5 1 - - 1 

Unknown Leuconostocaceae 1 - - - - - - - 

Lactococcus 4 4 5 5 - - - 1 

Streptococcus 5 5 5 5 2 - 4 2 

Unknown Streptococcaceae 5 5 5 4 - - - - 

Unknown Lactobacillales - - - 1 - - - - 

Unknown Bacilli 4 4 5 4 - 1 1 - 

Unknown Clostridiales 1 - - 1 1 - - - 
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Table 6.2: (part D) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Unknown Mogibacteriaceae 3 - - - 1 - - - 

Finegoldia 2 1 4 4 - - - 1 

Unknown Christensenellaceae 1 - - - - - - - 

Christensenella 1 - - - - - - - 

Clostridium 4 5 5 5 - - - - 

Unknown Clostridiaceae 5 5 5 5 - - 1 1 

Epulopiscium 3 2 4 3 - - - - 

Unknown Lachnospiraceae 5 3 4 5 2 - - - 

Oscillospira 2 - - 1 1 - - - 

Ruminococcus 3 - - - 1 - - - 

Unknown Ruminococcaceae 2 - - - 1 - - - 

Unknown Clostridiales 5 5 5 5 3 1 3 2 

Eubacterium 1 - - - - - - - 

Catenibacterium 1 - - - - - - - 

Unknown Firmicutes 1 - - - 1 - - - 

Cetobacterium 5 5 5 5 5 5 5 5 

Psychrilyobacter 3 - - 1 - - - - 
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Table 6.2: (part E) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Unknown Fusobacteriaceae 4 1 3 1 1 - - - 

Unknown bacteria - - 2 2 - - - 1 

Unknown Caulobacteraceae 4 5 5 5 - - - - 

Mycoplana 2 3 5 4 - - - - 

Phenylobacterium 1 - - - - - - - 

Unknown Caulobacteraceae 4 5 5 5 - 2 1 2 

Afipia 3 4 5 4 - - - - 

Bradyrhizobium 5 5 5 5 4 5 5 5 

Unknown Bradyrhizobiaceae 4 5 5 5 1 3 1 3 

Unknown Methylobacteriaceae 4 5 4 5 - 1 1 1 

Unknown Methylobacteriaceae 3 4 4 2 - - - - 

Mesorhizobium 5 5 5 5 2 5 3 4 

Phyllobacterium 5 5 5 5 5 5 5 5 

Unknown Phyllobacteriaceae 5 5 5 5 4 5 5 5 

Labrys 4 4 3 3 - - - - 

Unknown Rhizobiales 5 5 5 5 5 5 5 5 

Amaricoccus 1 - - - - - - - 
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Table 6.2: (part F) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Paracoccus 1 - - 1 1 - - - 

Phaeobacter 1 - - - - - - - 

Rhodobacter 3 4 2 4 1 - - - 

Ruegeria 1 - - - - - - - 

Unknown Rhodobacteraceae 2 3 3 4 - - - - 

Unknown Rhodospirillaceae 5 5 5 5 4 5 5 5 

Unknown Pelagibacteraceae 2 2 5 2 - - - - 

Novosphingobium 1 1 2 2 - - 1 - 

Sphingobium 5 5 5 4 1 1 1 - 

Sphingomonas 1 2 3 3 - - 1 1 

Unknown Sphingomonadaceae 5 5 5 5 - 2 2 2 

Unknown Alcaligenaceae 2 - 1 1 - - - - 

Unknown Alcaligenaceae 2 - 2 1 - - - - 

Burkholderia 3 3 4 3 - - - - 

Acidovorax 3 4 5 5 - - - - 

Alicycliphilus 1 3 4 2 - - - - 

Delftia 1 1 2 2 - - - - 
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Table 6.2: (part G) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Limnohabitans - 2 1 1 - - - - 

Unknown Comamonadaceae 4 5 5 4 - - - - 

Polynucleobacter 5 5 5 5 2 2 - 3 

Unknown Oxalobacteraceae 4 5 4 2 2 - - - 

Unknown Burkholderiales 1 - 2 3 - - - - 

Unknown Procabacteriaceae 2 2 - - - - - - 

Unknown Deltaproteobacteria 2 - 2 1 - - - - 

Unknown Desulfovibrionaceae 3 - - - 1 - - - 

Unknown Deltaproteobacteria 1 - - - 1 - - - 

Arcobacter 2 - - - 1 - - - 

Unknown Campylobacteraceae 1 - - - - - - - 

Unknown Aeromonadales 5 5 5 5 5 1 4 2 

Shewanella 5 5 5 3 1 - 2 - 

Escherichia 1 - - 1 - - - 1 

Pantoea 2 3 4 2 - - - - 

Plesiomonas 3 3 4 4 - - - - 

Trabulsiella 3 5 5 4 - - - - 

 



Chapter 6 – Studying the effect of combining different methods of applying MacroGard® on the gut of microbiota 

population. 

Harris 

2017 

 

209 

Table 6.2: (part H) Bacterial species richness within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made at the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Data was first analysed based upon 
presence/absence and, secondly, presence/absence whereby presence is defined as representing more than 0.1% of OTUs obtained, i.e. relative abundance. When a 
genus is present in all carp within a treatment group, this is highlighted in bold red. When further analysis of a specific genus has been performed, the genus is 
highlighted in bold. 

 

 Number of fish where genus is present 
Number of fish where genus represents >0.1% of 

sequences analysed (relative abundance) 

Time point Day 8 Day 15 Day 8 Day 15 

Percentage MacroGard® in diet 0% 0.1% 0% 0.1% 0% 0.1% 0% 0.1% 

Unknown Enterobacteriaceae 5 5 5 5 1 1 4 3 

Acinetobacter 2 4 4 4 - - - - 

Enhydrobacter 5 5 5 5 2 5 5 4 

Psychrobacter - 1 1 - - - - - 

Pseudomonas 4 5 5 5 - - 1 - 

Pseudoalteromonas 1 3 - 2 - - - - 

Vibrio 5 5 5 5 5 4 5 4 

Unknown Vibrionales 5 5 5 5 2 - 4 3 

Unknown Sinobacteraceae 5 4 4 4 - - - - 

Nevskia 1 2 2 1 - 1 - - 

Stenotrophomonas 5 5 5 5 2 4 2 4 

Unknown Gammaproteobacteria 3 3 3 4 - - - - 

Unknown Brevinemataceae 3 4 5 2 - - - - 

Unknown bacteria 3 1 1 1 - - - - 

Unknown bacteria 1 - - - - - - - 

Akkermansia 1 - - - 1 - - - 
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Statistical analysis of percentage relative abundance data at different 

taxonomic levels. 

Statistical analysis was performed on percentage relative abundance data on 

the taxonomic levels of class, order, family and genus when a classification was 

present in all 20 fish analysed (Table 6.3). For example, the class 

Gammaproteobacteria was found in all 20 carp therefore statistical analysis was 

performed, however the genus Escherichia was only present in 2 fish therefore 

statistical analysis was not performed. A 2-way ANOVA was performed when data 

was or could be normalised. In cases where this was not possible, the Scheirer-Ray-

Hare test was utilised. 

Out of the 48 data sets analysed across the taxonomic levels of class to genus, 

22 showed statistically significant differences. 15 were due to an effect of diet, 4 were 

due to an effect of time, and 3 showed an interaction between diet and time point. Out 

of 9 classes, 3 were shown to be significantly different and in each case, based upon 

the data shown in Table 6.3, diet was determined to be the influential factor. The 

percentage relative expression of both Thermoleophilia and Alphaproteobacteria was 

significantly higher in 0.1% MacroGard® fed carp (p=0.032 and p=0.016 respectively) 

whereas in contrast, Gammoproteobacteria was significantly lower in 0.1% 

MacroGard® fed carp (p=0.009). Only 1 Thermoleophilia OTU was detected, however 

26 unique OTUs were identified as Alphaproteobacteria and 18 unique OTUs were 

identified as Gammaproteobacteria.  

The 26 Alphaproteobacteria OTUs were divided between 6 different orders of 

which 4 were present in all fish analysed. Of these 4, the percentage relative 

abundance of Rhizobiales and Rhodospirillales was both shown to be significantly 
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greater in carp fed with the 0.1% MacroGard® diet in comparison to carp fed with the 

0% MacroGard® diet (p=0.016 and 0.032 respectively).  

Within the order Rhizobiales, 5 families were detected but only 2 of these 

were found to be present in all fish. The relative abundance of the family 

Bradyrhizobiaceae was not influenced by diet, however there was a significant 

difference when comparing over time with a higher percentage relative abundance 

found 15 days post injection in comparison to 8 days post injection (p=0.006). 3 

genera within this family were detected with only 1 genus being present in all 20 fish. 

As with Bradyrhizobiaceae, there was significantly more Bradyrhizobium present in 

samples taken on day 15 than on day 8 (p=0.005). The relative abundance of this 

genus was not significantly affected by diet. The other family present in all 20 fish 

within the order of Rhizobiales was Phyllobacteriaceae. Unlike Bradyrhizobiaceae, 

the percentage relative abundance was not affected by time but by diet (p=0.016). 3 

different OTUs were detected at the genus level and all 3 showed a statistically 

significantly higher percentage relative expression in 0.1% MacroGard® in 

comparison to those fed with the 0% MacroGard® diet (Mesorhizobium p=0.0.23, 

Phyllobacterium p=0.015 and an unknown Phyllobacteriaceae p=0.018).  

Within the class of Gammaproteobacteria, 18 OTUs were identified. This 

revealed 7 orders of which 5 were present in all carp analysed and 4 of these showed 

statistically significant differences. 1 genus belonging to the order Aeromonadales 

was identified and this was present in significantly lower amounts in carp fed with 

the 0.1% MacroGard® diet in comparison to those on the 0% MacroGard® diet 

(p=0.002). Within the order Enterobacteriales, only 1 family was identified 

(Enterobacteriaceae) in which 5 genera were found. Overall, there was a significantly 
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larger proportion of Enterobacteriales 15 days post injection in comparison to 8 days 

post injection (p=0.019) with no effect of diet. There was a significant difference in 

the percentage relative abundance of Pseudomonadales (2 families) with a p value of 

0.029 for effect of feed and a value of 0.031 for the effect of an interaction between 

time and feed. Whilst there was no difference in the mean percentage relative 

abundance between feeds at day 15, there was significantly more in 0.1% 

MacroGard® fed carp 8 days post injection. Within the order of Pseudomonadales, the 

family Moraxellaceae showed the same pattern with a significant effect of feed 

(p=0.025) and an interaction between time and feed (p=0.029). Out of 3 genera 

within the Moraxellaceae family, only Enhydrobacter was present in all fish analysed. 

As with its order and family, the same pattern of percentage relative abundance was 

seen (feed p=0.026, interaction p=0.033). Finally, the order of Vibrionales, composing 

of 3 families, was significantly lower (p=0.003) in carp fed with the 0.1% MacroGard® 

diet in comparison to those fed with the 0% MacroGard® diet. Within this order, 3 

families were identified, each containing 1 genus. The family Vibrionaceae and an 

unidentified Vibrionales were present in all fish analysed. The percentage relative 

abundance of both Vibrionaceae and the unknown Vibrionales was significantly lower 

(p=0.002 and p=0.025 respectively) in carp fed with the 0.1% MacroGard® diet in 

comparison to those on the 0% MacroGard® diet.  
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Table 6.3: (part A) Bacterial species diversity within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made to the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Percentage abundance of each OTU 
relative to the total number of OTUs per fish was calculated at the levels of class, order, family and genus. Statistical analysis was performed when a level was 
present in all 20 carp. Data was tested for normality and homoscedasticity using the Anderson-Darling and Levene’s test respectively. Where data was not normally 
distributed, a BOX-COX transformation was performed (values of λ are given) and statistical differences analysed using a 2-way ANOVA with post hoc Tukeys. In 
instances were transformed data was still not normally distributed, data was analysed using the Scheirer-Ray-Hare test. Both in the graph and table, * signifies 
p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 

Bacteria BOX-

COX 

(λ) 

Statistical test R2 
Significant differences 

Taxonomic level Name Sublevels Time Feed Interaction Difference 

Class Actinobacteria 2 orders -0.09 2-way ANOVA 4.00%     

 Order Actinomycetales 8 families -0.09 2-way ANOVA 4.10%     

  Family Microbacteriaceae 3 genera 0.11 2-way ANOVA 1.93%     

Class Thermoleophilia 1 genus 0.05 2-way ANOVA 40.56%  p=0.032  ↑ 0.1% 

Class Flavobacteriia 1 order 0.35 2-way ANOVA 12.69%     

  Family Flavobacteriaceae 1 genus 0.25 2-way ANOVA 20.69%     

  Family Weeksellaceae 2 genera  2-way ANOVA 31.84%     

   Genus Chryseobacterium   2-way ANOVA 33.32% p=0.049   ↑ day 15 

Class Bacilli 4 orders -0.27 2-way ANOVA 25.60%     

 Order Lactobacillales 7 families -0.29 2-way ANOVA 35.04%     
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Table 6.3: (part B) Bacterial species diversity within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made to the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Percentage abundance of each OTU 
relative to the total number of OTUs per fish was calculated at the levels of class, order, family and genus. Statistical analysis was performed when a level was 
present in all 20 carp. Data was tested for normality and homoscedasticity using the Anderson-Darling and Levene’s test respectively. Where data was not normally 
distributed, a BOX-COX transformation was performed (values of λ are given) and statistical differences analysed using a 2-way ANOVA with post hoc Tukeys. In 
instances were transformed data was still not normally distributed, data was analysed using the Scheirer-Ray-Hare test. Both in the graph and table, * signifies 
p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 

 

Bacteria BOX-

COX 

(λ) 

Statistical test R2 
Significant differences 

Taxonomic level Name Sublevels Time Feed Interaction Difference 

  Family Lactobacillaceae 3 genera -0.25 2-way ANOVA 21.77%     

   Genus Lactobacillus  -0.25 2-way ANOVA 23.34%     

  Family Leuconostocaceae 4 genera -0.18 2-way ANOVA 27.34%     

   Genus Leuconostoc   2-way ANOVA 24.16%     

   Genus Weissella  -0.09 2-way ANOVA 26.58%     

  Family Streptococcaceae 3 genera -0.25 2-way ANOVA 29.17%     

   Genus Streptococcus   2-way ANOVA 28.18%     

Class Clostridia 1 order -0.11 2-way ANOVA 29.76%     

 Order Clostridiales 8 families -0.11 2-way ANOVA 17.52%     

  Family Clostridiaceae 2 genera  2-way ANOVA 22.79%     
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Table 6.3: (part C) Bacterial species diversity within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made to the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Percentage abundance of each OTU 
relative to the total number of OTUs per fish was calculated at the levels of class, order, family and genus. Statistical analysis was performed when a level was 
present in all 20 carp. Data was tested for normality and homoscedasticity using the Anderson-Darling and Levene’s test respectively. Where data was not normally 
distributed, a BOX-COX transformation was performed (values of λ are given) and statistical differences analysed using a 2-way ANOVA with post hoc Tukeys. In 
instances were transformed data was still not normally distributed, data was analysed using the Scheirer-Ray-Hare test. Both in the graph and table, * signifies 
p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 

 

Bacteria BOX-

COX 

(λ) 

Statistical test R2 
Significant differences 

Taxonomic level Name Sublevels Time Feed Interaction Difference 

  Family Fusobacteriaceae 3 genera  2-way ANOVA 29.76%  p=0.030  ↓ 0.1% 

   Genus Cetobacterium   2-way ANOVA 29.52%  p=0.023  ↓ 0.1% 

Class Alphaproteobacteria 6 orders  2-way ANOVA 33.89%  p=0.016  ↑ 0.1% 

 Order Caulobacterales 
1 family 
4 genera 

 2-way ANOVA 20.18%     

 Order Rhizobiales 5 families  2-way ANOVA 33.98%  p=0.016  ↑ 0.1% 

  Family Bradyrhizobiaceae 3 genera  2-way ANOVA 38.19% p=0.006   ↑ day 15 

   Genus Bradyrhizobium   2-way ANOVA 40.18% p=0.005   ↑ day 15 

  Family Phyllobacteriaceae 3 genera  2-way ANOVA 34.38%  p=0.016  ↑ 0.1% 

   Genus Mesorhizobium   2-way ANOVA 28.43%  p=0.023  ↑ 0.1% 

   Genus Phyllobacterium   2-way ANOVA 34.41%  p=0.015  ↑ 0.1% 
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Table 6.3: (part D) Bacterial species diversity within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made to the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Percentage abundance of each OTU 
relative to the total number of OTUs per fish was calculated at the levels of class, order, family and genus. Statistical analysis was performed when a level was 
present in all 20 carp. Data was tested for normality and homoscedasticity using the Anderson-Darling and Levene’s test respectively. Where data was not normally 
distributed, a BOX-COX transformation was performed (values of λ are given) and statistical differences analysed using a 2-way ANOVA with post hoc Tukeys. In 
instances were transformed data was still not normally distributed, data was analysed using the Scheirer-Ray-Hare test. Both in the graph and table, * signifies 
p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 

 

Bacteria BOX-

COX 

(λ) 

Statistical test R2 
Significant differences 

Taxonomic level Name Sublevels Time Feed Interaction Difference 

   Genus 
Unknown 
Phyllobacteriaceae 

  2-way ANOVA 34.10%  p=0.018  ↑ 0.1% 

 Order Rhodospirillales 1 family  2-way ANOVA 27.32%  p=0.032  ↑ 0.1% 

 Order Sphingomonadales 
1 family 
4 genera 

0.06 2-way ANOVA 19.25%     

Class Betaproteobacteria 2 orders  Scheirer-Ray-Hare 2.68%     

 Order Burkholderiales 5 families  Scheirer-Ray-Hare 2.68%     

  Family Oxalobacteraceae 2 genera -0.09 2-way ANOVA 12.81%     

   Genus Polynucleobacter  -0.11 2-way ANOVA 8.01%     

Class Gammaproteobacteria 7 orders -0.31 2-way ANOVA 39.41%  p=0.009  ↓ 0.1% 

 Order Aeromonadales 1 genus  2-way ANOVA 48.84%  p=0.002  ↓ 0.1% 

 Order Enterobacteriales 
1 family 
5 genera 

 2-way ANOVA 33.82% p=0.019   ↑ day 15 
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Table 6.3: (part E) Bacterial species diversity within the gut of common carp (C. carpio) within a combined feeding and injection trial (n=20). Carp were fed either a 
0% or 0.1% MacroGard® diet and, after 3 weeks of feeding, received an intraperitoneal injection of MacroGard®. Carp were sampled 8 and 15 days post injection 
(n=5) and gut samples analysed using High Throughput Sequencing. OTUs were analysed using the Greengenes database (DeSantis, Hugenholtz et al. 2006) and 
taxonomic identification was made to the genus level based upon 97% sequence similarity and a 0.8 confidence threshold. Percentage abundance of each OTU 
relative to the total number of OTUs per fish was calculated at the levels of class, order, family and genus. Statistical analysis was performed when a level was 
present in all 20 carp. Data was tested for normality and homoscedasticity using the Anderson-Darling and Levene’s test respectively. Where data was not normally 
distributed, a BOX-COX transformation was performed (values of λ are given) and statistical differences analysed using a 2-way ANOVA with post hoc Tukeys. In 
instances were transformed data was still not normally distributed, data was analysed using the Scheirer-Ray-Hare test. Both in the graph and table, * signifies 
p<0.05, ** signifies p<0.01, and *** signifies p<0.001. 

 

Bacteria BOX-

COX 

(λ) 

Statistical test R2 
Significant differences 

Taxonomic level Name Sublevels Time Feed Interaction Difference 

 Order Pseudomonadales 1 genus 0.11 2-way ANOVA 45.96%  p=0.029 p=0.031 
↑ 0.1% day 

8 

  Family Moraxellaceae 3 genera 0.07 2-way ANOVA 46.38%  p=0.025 p=0.029 
↑ 0.1% day 

8 

   Genus Enhydrobacter  0.07 2-way ANOVA 45.61%  p=0.026 p=0.033 
↑ 0.1% day 

8 

 Order Vibrionales 3 families -0.16 2-way ANOVA 43.52%  p=0.003  ↓ 0.1% 

  Family Vibrionaceae 1 genus -0.17 2-way ANOVA 45.01%  p=0.002  ↓ 0.1% 

  Family Unknown Vibrionales 1 genus -0.02 2-way ANOVA 40.15%  P=0.025  ↓ 0.1% 

 Order Xanthomonadales 2 families  2-way ANOVA 22.50%     

  Family Xanthomonadaceae 1 genus  2-way ANOVA 20.49%     
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Correlation between innate immune gene expression and size of the gut 

microbiota population. 

As with the previous trials, expression of carp innate immune genes was 

compared to expression of the bacterial 16S rDNA gene, i.e. the total size of the 

bacteria population within the gut. Spearman’s rank test (Table 6.4) showed a 

significant but weak positive correlation between the 16S rDNA gene and both iNOS 

(ρ=0.252, p=0.003) and IL-1β gene expression (ρ=0.284, p=0.001). There was no 

correlation between 16S gene expression and C3 gene expression. 

 

Table 6.4: The probability of a linear relationship between each of the immune genes analysed in the 
gut of common carp during a combination feeding and injection trial and the size of the bacterial 
population within the gut as measured by total 16s rDNA expression (n=120). Carp were fed either a 
0% or 0.1% MacroGard® diet and were further divided into one of 4 treatment groups: no injection, 
PBS injection, MacroGard® injection, inactivated A. salmonicida injection. Carp were sampled 1, 8 and 
15 days post injection (n=5). As data was not normally distributed, Spearman’s test was used to 
calculate the correlation coefficient, i.e. how linear a correlation is, and the statistical significance. A 
rating as to how strong the correlation is (as described by Fowler et al. 1998) is also given with a 
coefficient of 0.00-0.19 being a very weak correlation, 0.20-0.39 being a weak correlation, 0.40-0.69 
being a modest correlation, 0.70-0.89 being a strong correlation and 0.90-1.00 being a very strong 
correlation. 

Gene Correlation coefficient P value Correlation 

iNOS 0.252 0.003 Weak (positive) 

C3 -0.036 0.346 Very weak 

IL-1β 0.284 0.001 Weak (positive) 
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6.3 – Discussion. 

The aim of this chapter was to ascertain if a combination of oral application 

and injection of MacroGard® would affect bacterial species diversity within the gut of 

carp. As shown in Chapter 4, the inclusion of MacroGard® into the diet at 0.1% w/w 

did not have any influence on bacterial species richness, however Chapter 5 showed 

injection of MacroGard® was capable of reducing the overall gut bacteria population 

size by more than 95% relative to non-injected controls. Kuhlwein et al. (2013) and 

Jung-Schroers et al. (2015) both showed that influencing the bacterial species 

richness within the gut is possible at higher concentrations of MacroGard®. It was 

hypothesised by the author that by reducing the overall bacteria population size, the 

lower concentration of orally applied MacroGard® may be great enough to influence 

species diversity, i.e. a reduction in population size should have a similar impact upon 

bacterial species diversity as an increase in MacroGard® concentration within the 

food. In addition to analysing bacteria population size and species diversity within 

the gut, iNOS, IL-1β and C3 gene expression were analysed as markers of an immune 

response within the gut. iNOS gene expression was shown in chapter 5 to be 

increased after injection with MacroGard®, and IL-1β and C3 gene expression have 

both been shown to be significantly influenced by MacroGard® feeding during 

bacterial infection conditions (Falco et al. 2012b, Pionnier et al. 2013). 

iNOS gene expression in the gut did not appear to be influenced either by diet 

or by injection which supports the observations of (Miest et al. 2012) who noted a 

similar response in the gut of carp injected with live A. salmonicida 1 and 3 days post 

injection. However, they did show significant differences in the iNOS gene expression 

in the liver and spleen, which may indicate differential organ response, but also 
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highlighting a systemic response was present. Injection of zebrafish with a pathogenic 

strain of A. hydrophila did not induce an increase in iNOS gene expression in the gut in 

the first 6 hours post injection irrespective of whether the bacteria was alive or dead 

(Rodriguez et al. 2008). In a review by Wiegertjes et al. (2016) iNOS gene expression 

was proposed as a marker of the presence of M1 type macrophages which directly 

produce Reactive Oxygen Species (ROS), Nitric Oxide (NO) and Interferon (IFN)-γ, 

and activated the production of TH1 cells, all of which are involved in defence against 

bacterial infection. It is feasible, therefore, that the subsequent immune response 

caused by an increase in M1 cells, as indicated by iNOS gene expression, may have an 

impact upon the gut microbiota population. Whilst the lack of iNOS expression seen 

within the trial presented here does not exclude ROS, IFN-γ and TH1 cell production 

from having occurred and having been involved in the reduction of the number of 

bacteria within the gut, it does indicate M1 cells may not have been involved. Analysis 

such as fluorescence-activated cell sorting (FACS) should be performed in order to 

determine if M1 cell presence alters within the gut after injection with MacroGard®, 

and to ascertain there is a correlation between a specific immune cell type and size of 

the bacterial population within the gut.  

Feed, treatment or time did not appear to have an effect on C3 gene 

expression. Whilst Gomez et al. (2013) noted that there is a distinct lack of 

publications relating to C3 gene expression at mucosal sites, previous studies at Keele 

University have shown the complement system may be affected by β-glucan feeding 

(Pionnier et al. 2013, Pionnier et al. 2014). In contrast to the work presented here, 

Pionnier et al. (2013) showed a significant increase in C3 expression 3 and 5 days 

post injection with A. salmonicida and a difference in expression between the PBS 
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injected controls fed with both a 0% and 0.1% MacroGard® diet. Their 2014 paper 

also revealed a significant increase in C3 gene expression after LPS injection in non 

MacroGard® fed carp and a significant decrease in expression of this gene in fish fed 

with MacroGard®. Both these studies contrast with the data presented in this chapter 

and as discussed in Chapter 4, may result from different strains of carp (Shapira et al. 

2005, Piackova et al. 2013, Adamek et al. 2014, Nath et al. 2014). Analysis of the effect 

of different potential probiotics in gnotobiotic cod larvae also revealed that C3 gene 

expression is not only influenced by the different species of probiotic, but also 

whether the bacteria are alive or dead (Forberg et al. 2012). Changes have been seen 

in both serum complement levels and the autochthonous gut microbiota population 

in hybrid tilapia after feeding with DVAQUA® although it is not known if they were 

correlated (He et al. 2009).  

The higher levels of IL-1β gene expression seen in all 0.1% MacroGard® fed 

carp at 1 and 8 days post injection suggest that MacroGard® feeding influences 

expression during a systemic immune response irrespective of injection treatment. In 

contrast, (Falco et al. 2012b) did not observe an effect of feeding MacroGard® 

supplemented diet to carp injected with A. salmonicida however, there was a 

significant increase in IL-1β gene expression in 0% MacroGard® fed carp that were 

infected 6 hours post injection. In contrast to the data presented here, Lee et al. 

(2014) observed a decrease in IL-1β expression in mice after oral application in 

Irritable Bowel Disease (IBD) models. Lee et al. (2014) attribute the recovery of the 

gut after artificial induction of IBD to the upregulation of anti-inflammatory genes 

such as IL-10 after β-glucan feeding. This could indicate the involvement of an 

inflammatory response in the reduction of the gut bacteria population size however, 
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the increase of IL-1β expression seen in MacroGard® fed fish did not correlate with a 

smaller number of bacteria. Further studies should be performed analysing a wider 

range of pro-inflammatory and also anti-inflammatory markers to determine if it is 

indeed an inflammation response that is having an impact upon the gut bacteria 

population size.  

Next generation sequencing analysis revealed an increase in 

Alphaproteobacteria which coincided with a decrease in Gammaproteobacteria in 

0.1% MacroGard® fed fish. The presence of Alphaproteobacteria is interesting as they 

are typically associated with plant roots and soil rather than with gut environments. 

Three genera of the Alphaproteobacteria, Bradyrhizobium, Phyllobacterium and 

Mesorhizobium, are examples of nitrogen fixing bacteria which do not have any 

obvious biological role within the gut of fish. Wu et al. (2012) have identified a single 

Phyllobacterium sequence within a clone library of the gut of yellow catfish 

(Pelteobagrus fulvidraco), and Bradyrhizobium was identified through 

pyrosequencing in the gut of European sea bass (Dicentrarchus labrax), their function 

in the gut was however not ascertained (Carda-Dieguez et al. 2014). 

Alphaproteobacteria have also been found in the gut of a limited number of 

invertebrates such as earthworms, queen European honey bees (Apis mellifera) and 

land snails (Helix pomatia) (Depkat-Jakob et al. 2010, Nicolai et al. 2015, Tarpy et al. 

2015). If analysis of mixed bacteria populations was still solely reliant upon culture 

based methodologies, a lack of identification of Alphaproteobacteria within the gut of 

fish species could be explained by the logic that media selected for the isolation of 

cultures would favour expected bacteria genera such as Pseudomonas, Vibrio or 

Aeromonas, and if it was not expected to find Alphaproteobacteria, selection media 
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specifically for these bacteria would not be used. Advances in molecular biology, 

however, eliminate the need for specific growth conditions and that identification of 

Alphaproteobacteria is still limited to 2 publications (Wu et al. 2012, Carda-Dieguez 

et al. 2014) which indicates their presence within the intestinal system of ichthyo-

models is not common. It is therefore likely that the abundance with which they are 

present within the gut of these carp is opportunistic rather than functional.  

Further research into Alphaproteobacteria within the ENA database revealed 

over 250 sequences encoding for β-glucanases in genera such as Phyllobacterium, 

Bradyrhizobium and Mesorhizobium. This could account for the significantly higher 

predominance of Phyllobacterium and Mesorhizobium OTUs in 0.1% MacroGard® fed 

carp as the immunomodulant, being a carbohydrate (β-glucan), could be an additional 

food source.  

The decrease in Gammaproteobacteria noted may result of being outcompeted 

for space (Moons et al. 2009) by the Alphaproteobacteria which represent the largest 

proportion of the bacteria identified within the gut samples. The 

Gammaproteobacteria comprise several pathogenic bacteria such as A. salmonicida, 

Pseudomonas anguilliseptica and Vibrio anguillarium, therefore a decrease in the 

overall presence of Gammaproteobacteria may be beneficial irrespective of whether 

this is a direct or indirect effect of MacroGard® itself.  

As previously stated, the genera of Phyllobacterium and Bradyrhizobium have 

only been reported in the gut of fish by Wu et al. (2012) and Carda-Dieguez et al. 

(2014) and there are no published examples of Mesorhizobium sp. in association with 

a fish species. This therefore leads to an interesting speculation on the source of these 
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bacteria. The carp used within this investigation were originally reared in outdoor 

ponds before being transferred into indoor aquaria. Carp are a naturally omnivorous 

species and eat plant debris within their environment (Barrington 1957), and thus 

Phyllobacterium sp. and Mesorhizobium sp. may enter the gut as part of the normal 

feeding process. The original body of water hosting the carp therefore needs to be 

analysed for the presence of these bacterial genera, although it should be noted that 

carp were maintained in indoor aquaria for 3 months before the start of the trial.  

To conclude, the aim of this chapter was to ascertain if it was possible to 

influence the gut microbiota population within the gut of carp with a commercially 

viable concentration of MacroGard® in the feed, by combining oral application with 

injection of MacroGard®. The data presented here showed the bacterial species 

diversity within the gut of carp that received the 0.1% MacroGard® was indeed 

different to that found in 0% MacroGard® fed carp. An increase in the relative 

abundance of Alphaproteobacteria was seen in 0.1% MacroGard® fed carp which 

corresponded with a decrease in Gammaproteobacteria. Examples of 

Gammaproteobacteria include the fish pathogens A. salmonicida, P. anguilliseptica 

and V. anguillarium, therefore it was considered beneficial to have an overall smaller 

proportion of Gammaproteobacteria within the gut. This research highlights the 

potential benefits of combining injection and oral application of MacroGard® and 

future work should include ascertaining if it is possible to preferentially promote the 

growth of, for example, probiotic strains of bacteria such as Lactobacillus and Bacillus 

sp..  
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Chapter 7 – General discussion. 

The aim of the study presented in this thesis was to determine if there was an 

influence of β-glucans on the relationship between the gut immune response of the 

common carp and its intestinal microbiota population. To this end, the results 

presented in chapters 4, 5 and 6 show that modulation of the intestinal microbiota 

population by MacroGard®, a commercially available β-1/3,1/6-glucan, varies based 

upon method of application. Chapter 4 reveals that the oral application of 

MacroGard® at a concentration of 0.1% w/w within the feed does not alter the overall 

bacteria population size within the gut, nor does it have an effect upon bacterial 

species richness. Injection of MacroGard®, however, has the ability to drastically 

reduce the bacterial population size within the gut 24 hours post injection, yet when 

carp are additionally maintained on a 0% MacroGard® diet, there is no effect seen on 

bacterial species richness (Chapter 5). Interestingly, bacterial species diversity within 

the gut is influenced when MacroGard® is applied in a combination of both oral 

application and intraperitoneal injection (Chapter 6). There is, however, only a 

limited amount of correlation seen between the expression of some of the immune 

genes analysed, i.e. the IL-1β receptor, IL-1β, bf/C2, ApoA1, HAMP1 and iNOS and the 

overall gut bacteria population size. It was essential prior to undertaking the 

experimentation to meet the whole thesis aim that optimisation of different methods 

of analysing bacteria, both in vivo and in vitro was carried out.  

One of the major challenges faced when designing genus specific qPCR assays 

as a means of quantifying individual bacteria genera within a mixed population, such 

as those found within the gut (Jung-Schroers et al. 2015), is the amplification of non-
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target DNA sequences. The specificity of genus specific qPCR primers that had been 

previously published (Thompson et al. 2004, Martinez-Puig et al. 2007, Adamek et al. 

2013) was questioned when analysis of Aeromonas, Vibrio and Lactobacillus within a 

mixed population resulted in more than 100% of the total 16S expression as 

measured by “universal” primers, i.e. those designed to amplify all bacterial 16S 

sequences. Prior to initial use, all primer pairs were subject to analysis to determine 

specificity, which showed primer pairs would only amplify target sequences. This 

indicated the use of the primer BLAST search was not necessarily appropriate for the 

bacterial 16S rDNA gene. 

The advantage of considering each nucleotide individually within a primer is 

that the effect of distance from the 3’ end of the sequence can be taken into 

consideration. However, translating this into a numerical output and factoring in the 

different types of errors, i.e. mismatches or additions/deletions, in order to compare 

between different numbers of errors, types of errors and location of errors 

highlighted challenges with assigning values. The use of a score, such as ρ as 

calculated using Spearman’s rank order correlation, would allow for further analysis 

to determine if the similarity of non-target sequences to PCR primers was statistically 

different from that between target sequences and primers. However, in addition to 

determining the most correct means of calculating ρ, i.e. accurate emphasis on 

mismatches and additions/deletions based upon ex silico data, any analysis must also 

factor in that both primers within a primer pair must successfully anneal to allow 

amplification. This is something that the initial models considered in Chapter 2 do not 

do, i.e. they consider each primer separately rather than as a pair. Desai et al. (2009) 

presented genus specific primers for 4 different bacterial genera (Alcaligenes, 
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Bacillus, Stentrophomonas and Enterococcus) where, whilst having 4 different forward 

primers, each assay uses the same “universal” reverse primer. It is especially 

important to ensure the forward primers only amplify target DNA sequence as the 

reverse primer will not distinguish between different bacterial genera. It highlights 

that primers must be considered as a pair rather than individually, as whilst one 

primer may anneal to many non-target sequences, the other primer within the pair 

must also anneal to the same sequence to result in amplification.  

The final model presented in Chapter 2 is less sophisticated than the previous 

models in that it does not distinguish between types of error and the position of an 

error is based upon sections of the primer rather than an individual position. 

However comparison with ex silico data showed 21/24 predictions as to annealing to 

be accurate. Not all scores within the model were given a definitive classification of 

successful/unsuccessful annealing, i.e. a score of C, E, H or K was classified as 

unknown if successful annealing will occur. In order to increase the accuracy of the 

model, ex silico analysis should be performed using template DNA with scores of 

either C, E, H or K therefore allowing determination of whether these scores result in 

successful annealing. This will further improve the accuracy of the model before 

future use. As only one set of PCR conditions were utilised within this research, the 

effectiveness of the model, i.e. ability to accurately predict successful amplification of 

a DNA sequence, was only compared against this one set of conditions. Successful 

amplification, however, is not solely dependent upon the similarity of the primer to 

the template DNA. Temperature, concentration of template, MgCl2, primer, and type 

of polymerase can all influence successful annealing (Harris 2013). Future work to 

improve this model should include testing accuracy under different PCR conditions. It 
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may be prudent to develop a second layer to the model, i.e. where the scoring of a 

primer based upon its similarity to a DNA sequence is fixed (number of errors in a 

specific location), whether or not the likelihood of a score resulting in successful 

amplification can be varied based upon the PCR conditions being used.  

There are both advantages and disadvantages to the use of probability as a 

means of predicting the successful amplification of a DNA sequence that considers 

both primers within a pair. The probability of two separate events occurring 

simultaneously can be calculated which allows for the likelihood of both primers 

within a primer pair annealing to a DNA sequence being more easily determined. In 

comparison, the use of Spearman’s ρ, as performed within this thesis, considers 

primers individually and did not take into consideration the fact that both primers 

must anneal in order for successful amplification to occur. The main disadvantage to 

probability, however, is that only a small proportion of the sequence data available 

through databases, such as the ENA database, were analysed. Where statistical 

analysis gives a more fluid result, i.e. at a confidence level of 0.05, if you were to 

repeat a trial 20 times with 20 independent data sets, you would expect the same 

outcome in 19 trials (95%). Probability, however, considers data more rigidly and any 

additional data analysed would inevitably alter the probability value obtained. Whilst 

this may not appear to strongly impact the outcome when determining the 

probability of an individual primer successfully annealing, this could have a larger 

effect upon the overall probability of annealing when both primers are considered 

together. Further refinement of the model should take both approaches, i.e. based 

upon probability and statistical analysis, into consideration. 

The overall conclusion from Chapter 2, however, is that the model worked as a 



Chapter 7 – General discussion. Harris 

2017 

 

229 

good predictor as to primer specificity, i.e. annealing only to target DNA sequences. 

Total 16S and genus specific 16S PCR primers used throughout Chapters 4, 5 and 6 

were analysed using this model and where initial trials showed the relative 

proportion of only 3 bacterial genera to be greater than 100%, the summation of the 

individual genera analysed in Chapter 4 did not exceed 50% of the total 16S 

expression.  

The aim of Chapter 3 was to explore different methods of analysing bacterial 

growth using in vitro models with all methods analysed being subsequently utilised in 

Chapter 4. Whilst equipment is available to measure bacteria colony sizes, the 

prohibitive costs of these lead to the development of the image analysis program 

PENGUIN. This proved to be a cheap, accurate method of measuring bacteria colony 

sizes.  

Whilst PENGUIN was shown to be highly accurate and reliable, the main 

challenge faced with this method of analysis was ensuring the consistency of the 

conditions used for analysis. Lighting proved the most difficult factor to control with 

even different models of the same light bulb resulted in different values of power, i.e. 

different numbers of comparisons between “Before” and “After” images. Further work 

in developing this method of analysis should take into consideration variations in 

lighting thereby allowing its use in a broader range of conditions. 

Chapter 4 is the first of three experimental chapters and discussed the impact 

of direct exposure of the gut microbiota population to MacroGard® through in vitro 

studies and through an oral application in vivo trial. Although some bacteria possess 

β-glucanases and are capable of utilising β-glucans as a substrate (Planas 2000), 
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MacroGard® showed only a slight impact upon bacterial growth in vitro. The number 

of colonies of B. subtilis produced after incubation within a nutrient broth containing 

0.01% MacroGard® and the size of ISO 20 colonies after incubation on MacroGard® 

embedded nutrient agar plates were both reduced indicating a reduction in bacterial 

survival. Feeding with MacroGard® had no effect upon bacterial species richness or 

overall bacteria population size within the gut of carp. This can be considered as a 

positive as this means there was no increase in different potential pathogens, i.e. 

feeding MacroGard® is unlikely influence the gut microbiota in favour of bacterial 

disease conditions.  

Similarly, whilst injection resulted in changes in the overall bacterial 

population size, there were no differences in bacterial species richness between the 

different injection treatments, although a cause of the reduction of the gut microbial 

population was not apparent. Where the initial trial showed injection with LPS and 

MacroGard® drastically reduced the bacterial population size, carp injected with PBS 

did not show this same reduction when compared to non-injected controls. Similarly, 

the large injection trial revealed the same reduction in gut bacteria population size in 

MacroGard® injected carp in comparison to non-injected controls. However in 

contrast, within the combination feeding and injection trial, there was no difference 

in gut bacteria population size when comparing MacroGard® and PBS injected carp. 

This is the first known report of the effect of injection of any compound upon 

bacterial population size within the gut of a fish with previous studies only comparing 

bacterial species richness (Liu et al. 2008, Liu et al. 2015). Additionally, no reports of 

comparable studies could be found in mammalian models therefore more research 

must be performed to fully elucidate the cause of the reduction in bacterial numbers. 
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The results of the combination feeding and injection trial initially indicated that 

handling may have had an effect upon the gut bacterial population, i.e. non handled 

controls showed the same smaller overall population size on day 1 in comparison to 8 

and 15 days post injection as occurred in all injected treatment groups. Stress caused 

by handling is known to affect immune responses in fish including inhibition of pro-

inflammatory cytokines and phagocytosis, lymphocyte proliferation and the 

production of anti-inflammatory cytokines caused by increase in corticosteroids 

including cortisol (Tort 2011). Indeed, feeding fish with immunomodulants during 

periods of stress, i.e. grading, movement between fresh and saltwater, and 

vaccination, has been shown to be effective in reducing outbreaks of disease 

(Bricknell and Dalmo 2005). From this, it was considered that handling stress may be 

involved in causing the much smaller gut bacteria population sizes seen in carp that 

were injected in comparison to non-injected fish. However, a direct comparison of the 

two methods used, i.e. instantly sampling a fish versus handling, returning to the tank 

overnight and sampling after 24 hours, showed no statistical difference in gut 

bacteria population size. This lead to the conclusion that the reduction in gut bacteria 

population size may not be as a result of handling stress. 

A much more comprehensive method of analysis of the gut microbiota 

population was employed in Chapter 6 (Next Generation Sequencing) to study the 

bacteria within the gut of carp than used in Chapter 5 (PCR-Denaturing Gradient Gel 

Electrophoresis). Interestingly, even though the sensitivity of NGS is much greater 

than that of PCR-DGGE, a similar number of OTUs were identified as representing 

>0.1% of the percentage relative abundance with this method as were detected by 

PCR-DGGE which has a higher detection limit of 1% percentage relative abundance 
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(Harris 2013). The obvious advantages NGS has over PCR-DGGE, however, are that 

identification of the OTUs was performed whereas only identification of different 

OTUs was performed with the method of PCR-DGGE, and quantitative analysis was 

performed where only qualitative analysis was possible when using PCR-DGGE. This 

allowed for the identification of both potential pathogens and their proportion within 

the gut bacterial population, and revealed the presence of Alphaproteobacteria in 

proportions that have never before been reported in fish. At this point, it is only 

possible to speculate as to the presence of Phyllobacterium, Mesorhizobium and other 

Alphaproteobacteria within the gut of carp injected with MacroGard® in the 

combination feeding and injection trial. To date, there are only two examples of 

Alphaproteobacteria being found in the gut of fish. Wu et al. (2012) found 

Bradyrhizobiaceae and Phyllobacteriaceae in the gut of yellow catfish from Niushan 

Lake in Central China, and Carda-Dieguez et al. (2014) observed Bradyrhizobiaceae in 

the gut of sea bass fed diets containing β-glucans. Given Alphaproteobacteria such as 

Phyllobacterium, Mesorhizobium and Bradyrhizobium are typically associated with 

plant systems and soil (Vacheron et al. 2013, Laranjo et al. 2014), it would make 

sense that if they were a common component of the gut microbiota of fish, they would 

not have historically been identified using culture based methods of analysis which 

will favour the bacterial species expected to be found (Mackie and McCartney, 1956). 

Recent advances in technology, however, eliminate this need for favouritism (Nayak 

2010) and, as such, if Alphaproteobacteria were a common feature in intestinal gut 

microbiota, logically more examples of their presence would be documented. As this 

is not the case, this indicates the presence of Alphaproteobacteria seen within the 

combination feeding and injection trial is likely to be opportunistic rather than 
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typical. As discussed in Chapter 6, Alphaproteobacteria are able to utilise β-glucans as 

a potential food source, i.e. they have the sequences for β-glucanases within their 

genome (ENA database). The significantly higher proportion of Alphaproteobacteria 

found in carp fed with the 0.1% MacroGard® diet is likely due to a higher availability 

of food that only bacteria with β-glucanases can utilise in comparison to carp fed with 

the 0% MacroGard® diet, i.e. a food source that is unique to these bacteria. Similarly, 

Carda-Dieguez et al. (2014) observed a higher proportion of Bradyrhizobiaceae in 

diets containing β-glucan in comparison to the diet that had no β-glucan. Due to the 

limited number of examples of the presence of Alphaproteobacteria within the gut of 

fish, there is no data available indicating if there is a direct contribution towards fish 

health. In fish, probiotic species such as Lactobacillus sp. and Bacillus sp. are 

associated with good gut health and improved disease resistance (Merrifield et al. 

2010, Romero et al. 2014) however in human models, Bifidobacterium sp. are 

considered to be the promotors of gut health (Nayak 2010a). Further analysis will be 

required to determine if there are health benefits to having Alphaproteobacteria 

within the fish gut microbiota population, i.e. are they capable of positively 

influencing the immune response, defending against invading pathogens and do they 

aid digestion? The reduction in potential pathogenic bacterial genera seen in 

conjunction with a higher presence of Alphaproteobacteria after feeding with 

MacroGard®, however, indicates they were able to outcompete other bacteria in a 

way that was potentially beneficial to the carp.  

One of the aspects of this thesis was to study the relationship between the gut 

microbiota population and the immune response of the gut of common carp. The 

increased interest in the immune capability of the gut of fish (Rombout et al. 2011, 
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Gomez et al. 2013) has been driven by a need to find alternative means of improving 

fish health and resistance to disease to the liberal application of antibiotics. The gut 

microbiota is essential in the initial development of the host’s immune response 

(Nayak 2010a) and several studies have shown that the immune status of the gut of 

carp can be affected by infection, e.g. Aeromonas salmonicida and CyHV-3 infections 

have both been shown to influence cytokine and iNOS expression (Falco et al. 2012b, 

Syakuri et al. 2013), and Aeromonas salmoncida additionally influenced the 

expression of c1rs, bf/C2, MASP2, i.e. markers of three of the complement pathways, 

and C3 (Pionnier et al. 2013).  

It is however only recently that the involvement of the gut microbiome has 

been considered in conjunction with the immune status of the gut, and there are a 

limited number of studies of how the whole system i.e. microbiome and gut immune 

responses interact in either a positive or negative way. The effects of oral application 

of different dietary ingredients upon the immune response and the microbiota 

population have been investigated in turbot (β-glucan), red sea bream (Lactobacillus 

rhamnosus and Lactobacillus lactis), juvenile beluga sturgeon (Enterococcus faecium 

and FOS), rainbow trout (plant and marine based diets) and hybrid tilapia (soybean 

meal), however none of these compare immunity against the microbiota population 

(Ingerslev et al. 2014, Zhang et al. 2014, Akrami et al. 2015, Dawood et al. 2016a, 

Miest et al. 2016). Systemic immunity and the gut microbiota of both turbot (Miest et 

al. 2016) and red sea bream (Dawood et al. 2016a) were shown to be influenced by 

their respective diets, however it is not known if this is directly related. In contrast, 

whilst the number of LAB within the gut of beluga sturgeon did not change after 

feeding with Enterococcus faecium and FOS, the number of leucocytes and 
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haemoglobin concentration in the blood was increased indicating there is no 

relationship between LAB counts and these two immune parameters (Akrami et al. 

2015). The studies in rainbow trout (Ingerslev et al. 2014) and hybrid tilapia (Zhang 

et al. 2014) both focused upon gut immunity and, similar to turbot and red sea bream, 

changes were seen in both the gut microbiota and the immune response yet, again, it 

cannot be said if these are directly related to each other. 

In contrast, Tapia-Paniagua et al. (2015) performed a direct comparison of 

immune genes in the liver and the whole gut microbiota of Senegalese sole using 

Principle Component Analysis, and showed a negative correlation between the gut 

microbiota and expression of CASPASE-6 and NAPDH oxidase. To date, this is the only 

published example of a statistical comparison of an immune response and whole gut 

microbiota population in a fish model. The data presented in this thesis was, however, 

analysed considering each gene individually, similar to the studies presented by 

Gorgoglione et al. (2013, 2016) who compare specific pathogen load against 

immunity. Statistically, it was more appropriate to perform analysis on individual 

genes in this thesis due to the assumption of PCA as defined by Dytham (2003), i.e. 

“[data] is continuous and normally distributed”, being violated and raw data required 

different transformations in order to achieve normality. Any conclusions drawn from 

PCA analysis would not be accurately substantiated.  

Gorgoglione et al. (2013, 2016) showed that correlations occurred between 

specific pathogen load and immune gene expression in Tetracapsuloides 

bryosalmonae versus AMP and pro-inflammatory cytokine expression in rainbow 

trout, and viral haemorrhagic septicaemia virus or Yersinia ruckeri versus novel 

chemokine expression in brown trout respectively. These correlations were of a 
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greater magnitude than those observed in this thesis between total bacteria 

population size and the IL-1β receptor, IL-1β, iNOS, ApoA1, and HAMP2. All these 

studies, however, show varying levels of correlation of the different immune genes 

against the pathogenic/microbiota component. This highlights that whilst it may be 

prudent to consider the immune response as a whole, as done by Tapia-Paniagua et 

al. (2015) through their use of PCA, focusing on individual immune responses can be 

as important. The genes selected for study within this thesis were done so based upon 

their activity against specifically bacteria, therefore it was expected that a greater 

level of correlation between their expression and the gut microbiota population as a 

whole would be seen than actually occurred. Additionally, the lack of consistency in 

the correlations between the microbiota and individual immune genes when 

comparing the different trials indicates the interaction between the overall gut 

immune response and the microbiota is much more complex than linear relationships 

with individual genes. Further analysis in regards to studying the relationship within 

the holobiont, i.e. carp and its associated microbiota population, should consider a 

much larger range of bactericidal immune genes and statistical analysis should, if 

possible, be performed on both an individual gene and overall immune response 

level.  

What Gorgoglione et al. (2013, 2016) and Tapia-Paniagua et al. (2015) show 

with their statistical analysis is the functional relationship between the immune 

response and the pathogenic/microbial counterpart in their studies. Tapia-Paniagua 

et al. (2015) describe lower expression of NADPH, which is involved in the 

production of ROS, within the liver of Senegalese sole treated with the antibiotic 

oxytetracycline (OTC) combined with the probiotic Shewanella putrefaciens, in 



Chapter 7 – General discussion. Harris 

2017 

 

237 

comparison to OTC alone. Their conclusion is that the probiotic “might exert a 

protective effect on the hepatocytes” as ROS are capable of destroying host cells in 

addition to invading pathogens (Dahlgren and Karlsson 1999). Inversely, Gorgoglione 

et al. (2013, 2016) show positive correlations between the pro-inflammatory immune 

response and the presence of pathogens. Within this thesis, overall gut bacteria 

population size most commonly negatively correlates with gene expression, i.e. with 

the IL-1β receptor, Muc2, and CRP2 in the feeding trial, and bf/C2, ApoA1 and HAMP2 

within the large injection trial. This higher level of immune gene expression 

correlating with lower bacteria numbers within the gut does indicate these genes are 

important in determining the overall gut bacteria population size, however the lower 

values of ρ for all of these genes implies they may not be individually responsible, but 

likely work together. Similarly to Gorgoglione et al. (2013), who identified a positive 

correlation between the presence of Tetracapsuloides bryosalmonae and IL-1β 

expression in brown trout, a positive correlation between gut microbiota population 

size and IL-1β expression in both the feeding trial and the combination feeding and 

injection trial presented in this thesis. In all cases, however, correlation was relatively 

low.  

The overall conclusion of this thesis is that MacroGard® is capable of 

influencing both the expression of innate immune genes within the gut of carp and 

also the gut microbiota population however the method of application is critical in 

this modulation. Oral application of MacroGard® at a concentration of 0.1% within 

the feed alone did not show an effect upon the gut microbiota or immune gene 

expression yet injection was capable of influencing both. Combining both of these 

methods of application was able to influence bacterial species diversity within the gut 
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where only injection of MacroGard® did not. It is not currently known if the 

significant increase in the presence of Alphaproteobacteria within the gut is directly 

beneficial to the health of the carp, however the corresponding decrease in the 

presence of genera such as Aeromonas and Vibrio, both of which contain examples of 

fish pathogens (Siwicki et al. 1994, Xie et al. 2007) can be seen as a positive effect of 

modulation. Influencing the gut microbiota in favour of a healthier host is a growing 

field of research and practice (Merrifield et al. 2010, 2014), however, many studies as 

to the effects of pre and probiotics last upwards of 8 weeks (Hartviksen et al. 2014, 

Sun et al. 2014, Estruch et al. 2015) which may have financial implications when 

translated to field trials or use within aquaculture, i.e. the cost of feeding specialist 

diets for long periods of time could become inhibitory when the volume required is 

scaled up to meet the demands of fisheries. Chapter 6, however, shows modulation of 

the gut microbiota occurred within a time frame of 15 days, i.e. a much shorter time 

span than seen in other studies. Further work must be performed in order to 

determine the stability of these changes in the microbiota and, indeed, as to the effect 

of Alphaproteobacteria within the fish gut. As an initial study, however, it points in 

the direction of utilising pre-existing vaccination programs within aquaculture in 

conjunction with pre and probiotic feeding regimes in order to decrease the time 

required to generate a “healthy” microbiota population. This could result in a positive 

economic impact if shorter feeding periods are required to achieve a healthy 

microbiota, i.e. a reduction in the amount of a specific feed ingredient required which 

would reduce feeding costs. 
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Appendix 1.  

Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Aeromonas sp. 

AY532690 AY532691 AY987746 AY987747 AY987776 AY987777 FJ599747 AY987723 AY987725 
Y987726 AY987727 AY987728 AY987730 AY987732 AY987733 AY987734 AY987735 AY987755 
AY987756 AY987757 AY987758 AY987759 AY987760 AY987761 AY987772 AY987773 AY987731 
AY987738 AY987740 AY987743 AY987752 AY987753 AY987764 DQ207728 AY987765 AY987766 
AY987767 AY987768 AY987769 AY987770 AY987771 AY987774 AY987775 AY987724 AY987729 
AY987744 AY987751 AY987762 AY987763 AY987778 GQ426312 AB027541 AB027542 AB027543 
AM179869 AM179870 AM179874 AM179877 AM179878 AM179893 AM179898 AB027005 
AB027006 AB027545 AB027546 AB034759 AB034760 AB034762 AB034763 AJ223181 AJ224308 
X60407 AB034761 X60404 X60405 X60406 X60408 X60409 X60410 X60411 X60412 X60417 
AJ491712 AJ491714 AJ491716 AJ585221 X60413 X60415 X60416 AB028881 AJ223179 AJ318898 
AJ318899 AJ416907 AM184217 AM184242 AM184246 AM184262 AM184282 AM184287 AM184292 
AM184293 AJ458408 AM184306 AM263528 AM263529 AM263531 AJ458409 AJ458411 AJ458414 
AJ458415 AJ458416 AJ536820 AJ223182 AJ536821 AM262153 AM262155 AM262156 AM397652 
AM397653 AF418209 AF418210 AF418211 AF418212 AF418213 AF418214 AF418215 AF418216 
AF418217 X60414 AB027544 AF418218 AF418219 AJ009859 AJ458402 AM296501 AM296502 
AM296504 AM296506 AM296507 AF472489 AF472490 AF472491 AF472492 AF472493 AM262151 
AM296508 AM296509 AM296510 AF472494 AF472495 AF472496 AF472497 AF472498 AF472499 
AF472500 AF472501 AF472502 AF472503 AF472504 AF472505 AF472506 EU488681 EU488682 
EU488683 EU488684 EU488685 EU488686 EU488687 EU488688 EU488689 EU488690 EU488691 
EU488692 EU488693 EU488694 EU488695 EU488696 EU488697 EU488698 EU488699 FJ168769 
FJ168770 GQ891129 HQ832414 HQ832415 HQ832416 HQ832417 JN559379 FJ168771 FJ168772 
FJ168773 FJ168774 FJ168775 FJ168776 FJ168777 KC210757 KC210758 KC210759 KC210760 
KC210761 KC210777 KC210787 KC210788 KC210789 KC210790 KC210791 KC210792 KC210794 
KC210795 KC210796 KC210797 KC210798 KC210799 KC210800 KC210801 KC210802 KC210803 
GU174503 GU174504 GU174505 GU187060 GU205190 GU205191 KC210804 KC210805 KC210806 
KC210807 GU205192 GU205193 GU205194 GU205195 GU205196 GU205197 GU205198 GU205199 
GU205200 GU205201 FJ940793 FJ940794 FJ940795 FJ940796 FJ940797 FJ940798 FJ940799 
FJ940800 FJ940801 JX308270 FJ940802 FJ940803 FJ940804 FJ940805 FJ940806 FJ940807 FJ940808 
FJ940809 FJ940810 FJ940811 FJ940812 FJ940813 FJ940814 FJ940815 FJ940816 FJ940817 FJ940818 
FJ940819 FJ940820 FJ940821 FJ940822 FJ940823 FJ940824 FJ940825 FJ940826 FJ940827 FJ940828 
FJ940829 FJ940830 FJ940831 FJ940832 FJ940833 FJ940834 FJ940835 FJ940836 FJ940837 FJ940838 
FJ940839 FJ940840 FJ940841 FJ940842 FJ940843 FJ940844 FJ940845 FJ940846 FJ940847 FJ940848 
FJ940849 FJ940850 AF468056 AJ278105 DQ979324 EU770270 EF681112 EF681113 FN432809 
GQ466170 HE610109 EU770271 EU770272 EU770273 FJ966347 FJ966348 JN412503 JQ004789 
JX286501 JX987090 EU770274 EU770275 EU770276 EU770277 EU770278 EU770279 EU770280 
EU770281 EU770282 EU770283 EU770284 EU770285 EU770286 EU770287 EU770288 EU770289 
EU770290 EU770291 EU770292 EU770293 EU770294 EU770295 EU770296 EU770297 EU770298 
EU770299 EU770300 EU770301 EU770302 EU770303 EU770304 EU770305 EU770306 EU770307 
EU770308 EU770309 FJ233856 FJ233857 FJ233859 AY538658 FJ233861 FJ233866 FJ407187 
FJ462702 GQ844300 GQ844301 GQ844302 GQ844303 AB472906 GQ845450 GQ845451 GQ845452 
GQ845453 KC776583 KC776584 KC776585 KC776586 KC776587 AB472919 AB472920 AB472921 
AB472922 AB472923 AB472924 AB472925 AB472926 AB472927 AB472928 AB472929 AB472930 
AB472931 AB472932 AB472933 AB472934 AB472935 AB472936 AB472937 AB472938 AB472939 
AB472940 AB472941 AB472955 AB472956 AB472959 AB472969 AB472970 AB472971 AB472972 
AB472973 AB472975 AB472977 AB472983 AB472984 AB472985 AB472986 AB473021 AB473022 
AB473023 AB473024 AB473025 AB473026 AB473027 AB473028 AB473029 AB473030 AB473031 
AB473032 AB473033 AB473034 AB473035 AB473036 AB473037 AB473038 AB473039 AB473040 
AB473041 AB473042 AB473043 AB270590 AF200329 HM032146 HM044908 X74675 EU254223 
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Aeromonas sp. 

EU254224 HM044909 HM044910 HM044911 HM044912 HQ124005 EU254225 EU254226 EU254227 
EU368681 EU368682 EU368683 EU368684 EU678635 GQ184148 GQ262778 GQ334329 JX888463 
KC252599 KC252600 KC254647 KC254648 KC254649 KC254650 KC473947 KC507819 KC549803 
KC549804 HQ407423 HQ453345 KC549805 KC549806 KC549807 KC549808 JF920473 JF920474 
JF920475 JF920476 JF920477 JF920478 JF920479 JF920480 JF920481 JF920482 JF920483 JF920484 
JF920485 JF920486 JF920487 JF920488 JF920489 JF920490 JF920491 JF920492 JF920494 JF920495 
JF920496 JF920497 JF920498 JF920499 JF920500 JF920501 JF920502 JF920503 JF920504 JF920505 
JF920506 JF920509 JF920510 JF920513 JF920514 JF920515 JF920516 JF920517 JF920518 JF920519 
JF920520 JF920533 JF920534 JF920535 JF920536 JF920537 JF920538 JF920539 JF920540 JF920541 
JF920542 JF920543 JF920544 JF920545 JF920546 JF920547 JF920548 JF920549 JF920550 JF920551 
JF920552 JF920553 JF920554 JF920555 JF920557 JF920559 JF920560 JF920561 JF920563 
AF079299 AF079300 AF079301 GQ983052 GU169711 GU296671 JF920507 JF920508 JF920511 
JF920512 EF077527 GU296672 GU296673 JX122726 JX155398 JX390650 JX390651 KC130961 
KC130962 GU596499 GU722154 KC130963 KC130964 KC130965 KC130966 KC130967 JN051353 
JN120259 JN120260 JN120261 JN120263 JN120264 JN120265 JN120269 JN120271 JN120272 
JN120273 JN120280 JN120281 JN120283 JN120284 JN120290 JN120292 JN120293 JN120295 
JN120296 JN120297 JN120298 JN120299 JN120302 JN120303 JN120304 JN120306 JN120308 
JN120309 JN400039 JN400040 JN400041 JN400042 JN400046 JQ040101 JQ040102 JQ040103 
JQ040104 JQ040105 JQ040106 JQ040107 JQ040108 JQ040109 JQ040110 JQ040111 JQ040112 
JQ040113 JQ040114 JQ040115 JQ040116 JQ040117 JQ040118 JQ040119 JQ040120 JQ040121 
JQ040122 JQ040123 JQ040124 JQ045713 FJ026735 FJ202054 FJ515776 FJ515777 FJ599747 
FJ607409 FJ607412 FJ660445 FJ660446 JQ599381 FJ660447 FJ660448 FJ660449 FJ660453 
AY422755 AY827493 AY827494 AY987746 AY987747 AY987776 FJ660458 FJ660459 AY987777 
EU913838 EU913839 EU913840 EU913841 EU913842 EU913843 EU913844 EU913845 EU913846 
AJ508765 EU913849 EU913850 EU913851 EU913854 EU913855 EU913856 EU913858 EU913859 
EU913860 AM296503 AM296505 EU696781 GQ401237 HM240294 JN120266 FJ998415 FJ998416 
FJ998417 KC150866 KC776588 KC776589 KC776590 AJ133636 AJ308468 AM181660 AM913921 
AY928476 AY928481 FJ666317 AJ458403 AJ458404 AJ489337 AJ489339 AM184259 AM235169 
AM269519 AJ876662 FJ562211 AJ876663 AJ876679 AJ876681 GQ259885 U88662 KC210762 
KC210763 KC210764 KC210765 KC210766 KC210767 KC210768 KC210769 KC210770 KC210771 
KC210772 KC210773 KC210774 KC210775 KC210776 KC210778 KC210779 KC210780 KC210781 
KC210782 AF468055 EF681114 FJ936134 GQ470995 GQ470996 JX262991 KC210783 KC210784 
KC210785 KC210786 AM689939 GQ304779 GU563992 JX262992 DQ217638 JN561162 AB472902 
AB472903 AB472904 AB472905 AB472942 AB472943 AB472944 AB472945 AB472946 AB472947 
AB472948 AB472950 AB472952 AB472998 AB472999 AB473000 AB473001 AB473002 AB473003 
AB473004 AB473005 AB473006 AB473007 AB473008 AB473009 AB473010 AB473011 AB473012 
AB473013 AB473014 AB473015 AB473016 AB473017 AB473018 AB473019 AB473020 KC884665 
KC884669 KC884670 KC884671 DQ822699 KC884672 KC884673 KC884674 DQ822746 DQ822759 
X74676 A. X74677 X74678 X74679 X74680 X74681 X74682 X74683 X74684 EF645798 EF645799 
EF669478 EF669480 EU254233 GQ141871 AY130991 AY130992 GQ205446 GQ232759 GQ860944 
HQ541164 HQ541165 HQ609947 JF490061 JF490062 JF490063 JF490064 JF490065 JF490066 
JF490067 JF490068 JF490069 JF490070 JN019024 DQ133170 GU563993 GU563994 GU563995 
JX294914 JN083778 JN836327 JN836328 JN836329 JN836330 JN836331 JN836332 JN836333 
JN836334 JQ319029 AY987723 AY987725 AY987726 AY987727 AY987728 AY987730 AY987732 
AY987733 AY987734 AY987735 AY987736 AY987737 AY987739 AY987741 AY987742 AY987745 
AY987748 AY987749 AY987750 AY987754 AY987755 AY987756 AY987757 AY987758 AY987759 
AY987760 AY987761 AY987772 AY987757 AY987758 AY987759 AY987760 AY987761 AY987772 
AY987773 GQ141871 GQ205446 GQ232759 AB181995 AB181997 AB181998 AB181999 GU563993 
GU563994 GU563995 JX294914 AB182000 AB182003 AB182004 AB182005 AB182007 AB182008 
AB182009 AB182010 AB182011 AB182012 AB182013 AB182014 AB182015 AB182016 AB182017 
AB182018 AB182019 AB368776 AB182020 AB182021 AB182022 AB182023 AB182024 AB182026  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Aeromonas sp. 

AB182027 AB182028 AB182029 AB182030 AB182031 AB182032 AB182033 AB182034 AB182036 
AB182037 AB182042 AB182044 AB182045 AB182048 AB182049 AB182050 AB182051 AB182052 
AB182054 AB182055 AB182056 AB182063 AB182073 AB182081 AB182082 AB182083 AB182084 
AB182085 AB182086 AB182089 AB182090 AB182091 AB182092 AB182093 AB182094 AB182095 
AB182096 AB182097 AB182098 AB182099 AB182100 AB182164 AB182168 AB182169 AB182171 
AB182172 AB182173 AB182176 AB182183 AB182193 AB182196 AB182197 AB182198 AB182210 
AB182212 AB182217 AB182219 AB182220 AB182225 AB182226 AB182232 AB182237 AB182238 
AB182239 GQ860945 HQ189118 HQ189119 EU932930 EU932932 EU932935 EU932936 EU932937 
EU932941 EU932944 EU932947 HQ189120 HQ189121 EU932948 EU932949 EU932950 EU932952 
EU932953 EU932954 EU932956 EU932957 EU932958 FJ230076 FJ230077 FJ464567 FJ464568 
FJ464569 FJ464570 FJ464572 FJ653620 FJ464573 FJ464578 FJ464580 FJ464581 FJ464582 FJ464584 
AJ458405 AJ458406 AJ458407 AJ458410 AJ458412 AJ458413 AJ786806 AM236305 DQ095911 
DQ127823 FJ422569 AF118387 AF118388 AF157690 AF509473 JN038331 JN038335 JN038336 
JN106432 JN106434 JN106435 JN108034 JN108035 JN129493 JN561149 JN561697 JN621033 
JN621034 JN644057 JN644058 JN644059 JN644060 JN644061 JN644062 JN644063 JN644064 
JN644065 JN644542 JN644562 JN644579 JN644601 JN644602 JN703730 JN796925 JQ246785 
JQ301790 JQ301791 JQ315431 JQ389574 JQ389577 JQ389578 JQ389579 JQ389587 JQ389588 
JQ389594 AY136078 AY136084 AY264937 AY297782 GQ983054 GU003810 GU003818 JQ389667 
JQ511594 JQ511641 GU003826 GU003829 GU003836 GU013470 GU227144 GU295963 GU296111 
GU319978 FJ794069 FJ808727 FJ947060 FJ976606 FM208196 FM208200 FM209206 FM875883 
EF579776 EF634207 EF634214 EF634217 EF634218 EF634219 EF634220 EF634223 EF634228 
EU082830 EU082831 EU085557 

 

Bacillus sp. 

AJ316309 EU360724 EU360725 JX512716 KF632441 KF699134 KF700084 KF700242 KF840793 
HQ834723 KF578076 KF636527 KF636528 KF636529 KF636530 KF669646 KF673102 KF673349 
KF751643 JQ323103 KF673350 KF715621 KF715622 KF717600 KF850148 KF914405 KF914406 
KF914407 JQ806056 KC152050 KF658192 KF668669 KF914412 KF914413 KF939332 JQ806052 
JQ806053 KF668670 KF668671 KF668672 KF668673 KF668674 KF683170 KF683171 KF815527 
HG794253 JQ806054 KC634259 KC634265 KC634272 KC634275 KC634279 KC634280 KF447399 
KF447429 KF515654 KF641792 KF641807 KF641812 KF641820 KF641821 KF641824 KF641825 
KF641826 KF641827 KF641830 KF641831 KF641832 KF641833 KF641834 KF641836 KF641852 
KF656779 KF672748 KF675197 KF687005 KF687006 KF687008 KF687009 KF687014 KF687015 
KF687022 KF687024 KF687025 KF687028 KF687031 KF687032 KF687036 KF687037 KF687038 
KF687039 KF687040 KF687041 KF687042 KF687043 KF687045 KF687046 KF687047 KF687048 
KF687049 KF687051 KF687052 KF687054 KF687055 KF687057 KF687058 KF687059 KF687061 
KF687062 KF687064 KF687065 KF687066 KF687067 KF687068 KF687071 KF687073 KF687074 
KF687075 KF687076 KF687077 KF687078 KF687079 KF687080 KF687081 KF687083 KF687085 
KF687086 KF687087 KF687088 KF687089 KF687091 KF687092 KF687093 KF687094 KF687095 
KF687096 KF717367 KF725719 KF751576 KF751578 KF831379 KF831381 KF831382 KF831388 
KF831390 KF831393 KF831395 KF831396 KF831398 JN084160 JN644484 JX984634 JX984639 
KF831399 KF831401 KF831402 KF892538 KF951357 KF951358 FJ867919 FJ867921 HF584764 
HF584770 HF584771 HF584780 HF584790 HF584795 HF584799 JX984640 HF584801 HF584802 
HF584803 HF584808 HF584810 HF584812 HF584814 HF584819 HF584826 HF584829 HF584833 
HF584834 HF584839 HF584841 HF584843 HF584845 HF584848 HF584854 HF584877 HF584901 
HF584905 HF584906 HF584908 HF584910 HF584911 HF584912 HF584916 HF584917 HF584923 
HF584925 HF584928 JX274438 HF584935 HF584946 HF584947 HF584998 HF585005 HF585007 
HF585010 HF585012 HF585017 HF585020 KC223570 KC223571 KC223572 KC223573 KC223574  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Bacillus sp. 

KF725636 AB669589 HG794254 KC223575 KC223576 KC414931 KC634250 KC634261 KC634292 
KC634308 KF179185 KF179188 KF179189 KF447403 KF447406 KF447420 KF447426 KF515652 
KF515657 KF515665 KF560310 KF560311 KF560312 KF564276 KF564277 KF574822 KF624694 
KF640224 KF641789 KF641790 KF641791 KF641793 KF641794 KF641795 KF641798 KF641799 
KF641801 KF641802 KF641803 KF641804 KF641806 KF641809 KF641810 KF641811 KF641813 
KF641814 KF641815 KF641817 KF641818 KF641819 KF641835 KF641839 KF641841 KF641846 
KF641848 KF644462 KF668238 KF668617 KF680995 KF680996 KF686781 KF687013 KF687027 
KF687090 KF696627 KF704144 KF704747 KF709956 KF709958 KF709960 KF710009 KF710010 
KF710015 KF710016 KF710017 KF710018 KF710019 KF710020 KF710021 KF710022 KF710024 
KF710026 KF710028 KF710031 KF726124 KF710033 KF712534 KF717365 KF717366 KF717499 
KF717500 KF717514 KF717517 KF717518 KF717519 KF717520 KF718837 KF724028 KF724029 
KF724906 KF728603 KF735116 KF737353 KF737354 KF737861 KF747359 KF766113 KF800760 
KF800766 KF800768 KF800774 KF800778 KF800780 KF800786 KF800788 KF800789 KF800794 
KF803996 KF831365 KF831366 KF831367 KF831368 KF831369 KF831370 KF831371 KF831372 
KF831377 KF831383 KF831384 KF831392 KF831397 KF831400 KF835724 KF835728 KF835731 
KF835812 KF835815 KF835820 KF835822 KF835829 KF835839 KF861580 KF861581 
KF861583KF861585 KF861588 KF861589 KF861590 KF861592 KF861594 KF861595 KF861596 
KF861597 KF861601 KF861603 KF861604 KF861605 KF861606 KF861607 KF861608 KF861611 
KF861612 KF861615 KF861617 KF861618 KF861776 KF861777 KF892535 KF900213 KF900214 
KF934439 KF939126 KF939127 KF939128 KF939131 KF951359 KF951360 KF957865 KF957997 
KF958869 KF958870 HQ224517 HQ284888 HQ433452 HQ433466 HQ433471 JN084129 JN084137 
JN084146 JN084155 JN084158 JN644485 JN644487 JN644507 JN644518 JN644540 JN644541 
JN644554 JN644556 JN644557 JN644572 JN644573 JN644612 JN644613 JQ905061 JQ905068 
JQ905069 JQ905070 JQ905071 JQ905072 JQ905073 JQ905074 JQ905075 JQ905077 JQ905078 
JQ905079 JQ905080 JQ905081 JQ905083 JQ905084 JQ905085 JQ905092 JQ905096 JX239694 
JX281763 JX281764 JX281765 JX281767 JX281768 JX281772 JX281774 JX281782 JX281783 
JX281786 JX281790 JX984632 JX984641 FJ867920 FJ867925 GU322908 JX984645 JX984646 
JX987716 KC110837 KC315897 KC315899 KC315907 GU583651 HF562877 HF562888 HF562894 
HF584760 HF584761 HF584765 HF584766 HF584767 HF584768 HF584769 HF584772 HF584773 
HF584774 HF584775 HF584776 HF584777 HF584779 HF584781 HF584782 HF584783 HF584789 
HF584794 HF584797 HF584807 HF584809 HF584811 HF584813 HF584816 HF584817 HF584818 
HF584821 HF584822 HF584823 HF584824 HF584827 HF584828 KC311558 HF584831 HF584832 
HF584835 HF584836 HF584837 HF584838 HF584840 HF584842 HF584846 HF584847 HF584849 
HF584850 HF584851 HF584853 HF584855 HF584858 HF584862 HF584865 HF584866 HF584867 
HF584868 HF584869 HF584870 HF584871 HF584875 HF584878 HF584879 HF584883 HF584887 
HF584889 HF584890 HF584891 HF584892 HF584898 HF584899 HF584900 HF584903 HF584907 
HF584913 HF584914 HF584915 HF584919 HF584920 HF584922 HF584926 HF584927 HF584929 
HF584931 HF584932 HF584933 HF584936 HF584939 HF584941 HF584942 HF584943 HF584944 
HF584945 HF584949 HF584950 HF584958 HF584959 HF584970 HF584976 HF584978 HF584982 
HF584983 HF584992 HF584995 HF585003 HF585004 HF585006 HF585009 HF585014 HF585015 
HF585016 HF585021 HF585023 HF585027 HF585028 HF585029 HF585032 HF585033 HF585035 
HF585036 HF585038 HF585069 HF585082 KF646674 KF646693 KF646703 KF672703 KF712896 
KF779071 KF779076 KF815538 KF815545 KF944304 JQ388737 JX994096 JX994097 JX994107 
JX994115 JX994125 JX994144 JX994146 JX994147 KF944307 JX994148 KC435130 KC435131 
KC435132 KC435133 KC435134 KC435135 KC435136 KC435137 KC435138 KC435139 KC435140 
KC435141 KC435142 KC435143 KC435144 KC435145 KC435146 KC435147 KC435148 KC435149 
KC435150 KC435151 KC435152 KC435153 KC435154 KC435155 KC435156 KC435157 KC435158 
GU171377 GU171378 GU171381 KC435159 KC435160 KC435161 KC435162 KC435163 KC435164 
KF578077 JN392971 JQ246449 KC311559 KF415293 KF533727 KF543097 KF578078 KF578079 
KF730662 KF559322 KF585035 KF585036 KF585037 KF646673 KF646675 KF646679 KF646682 
KF646683 KF646684 KF646689 KF646690 KF646691 KF646692 KF646695 KF646700 KF649246  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Bacillus sp. 

KF650698 KF650699 KF650700 KF662318 KF672705 KF672706 KF672707 KF672720 KF672725 
KF688211 KF688217 KF688218 KF702308 KF702310 KF702317 KF702383 KF706412 KF706413 
KF706414 KF706415 KF712895 KF712912 KF712913 KF718836 KF720922 KF722848 KF725773 
KF722855 KF725774 KF737352 KF737355 KF771911 KF771912 KF771915 KF797800 KF797801 
KF814106 KF815530 KF815531 KF815532 KF815535 KF815536 KF815552 KF848488 KF848501 
KF853106 KF853107 KF853108 KF853109 KF853110 KF853111 KF853112 KF853114 KF853116 
KF853118 KF853119 KF853120 KF853121 KF853122 KF853123 KF853126 KF853128 KF853129 
KF853130 KF853131 KF853132 KF900211 HM035089 HM054468 HM054473 HM054474 KF900212 
KF933349 KF944305 KF944308 KF957839 HM460885 HQ834292 HQ834296 HQ834298 HQ834299 
HQ834300 HQ834301 HQ834302 HQ834303 JN036548 JX232168 JX994091 JX994092 JX994099 
JX994100 JX994104 JX994106 JX994112 AB873004 AB889607 GQ925365 GU434676 JX994117 
JX994124 JX994128 JX994129 JX994130 JX994131 AB894827 HG529983 HG794239 HG794256 
HG794257 HG794258 HG794263 HG794264 HG794265 KC847112 KF053357 KF113576 KF147865 
KF220427 KF367460 KF447395 KF447396 KF447404 KF447407 KF466000 KF515660 KF515664  

 

Enterobacteriaceae sp. 

FM178865 AM179868 AM179871 AM179876 AM179880 AM179886 AM179900 AJ302154 AJ302155 
AM403596 AM403598 AM403607 AM403612 AM403613 AM403629 AB523726 AJ620950 AM403639 
AM403641 AM403649 HQ660391 JN662937 JX880249 AB714422 AB714423 AB714424 AB714427 
AB714429 AB714430 AB714431 JX880250 JX880251 AB714432 AB714433 AB714434 AB714435 
AB714436 AB714437 AB714441 AB714446 AB714449 AB714450 AB714451 AB714453 AB714455 
AB714456 AB714457 AB714458 AB714459 AB715425 DQ231044 EU622576 EU622577 DQ436917 
DQ812974 EF581856 AB703078 AB703079 AB703080 AB703081 AB703082 AB703083 AB703084 
AB703085 AB703086 AB703087 AB368822 AB368823 AB368824 AB368825 AB368826 AB368827 
AB368828 AB368829 AB703088 AB703089 AB368830 AB368831 AB368832 AB368833 AB368834 
AB368835 AB368836 AB368837 AB368838 AB368839 AF451273 AF513468 AF513469 DQ226208 
JN050952 JN050953 JN050954 JN050961 JN392785 JN392811 JN392823 JN392824 JN392826 
JN392830 JN392831 JN392836 JN392840 JN392844 JN392846 JN392850 JN392851 JN392855 
JN558594 JN613161 JN613165 JN613167 JN613169 JN872509 JN872510 JQ072087 JQ072088 
JQ266301 JQ314007 JQ314009 JQ314014 JQ314024 JQ314030 JQ314031 JQ314032 JQ314034 
JQ314045 JQ314053 JQ314056 JQ314062 JQ314073 JQ314084 JQ512966 JQ595463 GQ915095 
GQ915098 GQ915099 GU138678 GU213133 GU223213 GU237034 GU237035 GU361689 GU381803 
EF605610 EF605613 EF605614 FJ887888 FJ908094 FJ965841 EU036757 EU040283 EU102275 
EU260287 EU260328 EU341310 EU341313 EU348748 EU360121 EU447445 EU626739 EU626744 
EU626746 EU626747 EU626748 EU626750 EU626751 EU626753 EU626762 EU626777 EU626779 
EU626780 EU626781 EU626782 FR693319 JX987136 KC108998 KC119218 KC119219 KC119220 
KC153267 KC153280 KC153294 KC153296 KC310831 KC310839 KC310841 KC407618 KC407637 
KC410779 KC441057 KC510034 KC560019 KC855287 KC855288 HE604343 HE604344 HQ224621 
KF021738 KF021761 KF057960 KF453765 KF453775 HQ224632 HQ259699 HQ259700 HQ259701 
HQ259702 HQ259703 HQ259704 HQ283408 HQ284818 HQ284819 HQ284821 HQ284822 HQ284823 
HQ284824 HQ284825 HQ284826 HQ284828 HQ284829 HQ284830 HQ284831 HQ284891 HQ284892 
HQ284893 HQ284894 HQ284895 HQ284896 HQ284898 HQ284899 HQ284900 HQ284901 HQ284902 
HQ284903 HQ284904 HQ284905 HQ284906 HQ284948 HQ284949 HQ284950 HQ292694 HQ824844 
HQ824845 HQ824846 HQ824881 HQ825020 JF262584 JF262588 JF495478 JF683277 JF683279 
AB174799 JF683285 JF683287 JF683292 JF683303 JF683306 AB174805 AB174819 AB174820 
AB174830 AB174831 AB174835 AB275371 AB275372 AB304396 AY538694 AY579198 AY618905 
AY633492 GQ152398 EU724058 EU724059 EU863187 EU881982 EU887701 HE805090 EU887702 
EU977298 FJ013300 FJ013301 FJ013302 FJ013304 FJ013333 FJ013344 FJ348017 FJ348018  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Enterobacteriaceae sp. 

FJ348019 FJ348020 FJ348021 FJ348023 FJ357818 FJ357823 FJ357827 FJ477673 FJ486216 FJ664513 
JQ638280 JX067682 JQ680474 JQ638281 JQ638282 JQ638283 JQ638303 JQ638308 JQ638310 
JQ638312 JQ638319 JQ638324 JQ638330 JQ638338 JQ638346 JQ638359 JQ680831 JQ680886 
JQ680888 JQ680895 JQ680896 JX067664 JX067684 JX067699 JX067700 JX067710 JX067714 
JX067721 JX162032 JX162033 JX162034 JX162035 JX162036 JX162037 JX162038 JX162039 
JX162040 JX162041 JX162042 JX162043 JX162045 JX162046 JX162047 JX162048 JX162049 
JX162050 JX162051 JX162057 JX162058 JX162059 JX162060 JX162061 JX162062 JX162063 
JX162064 JX162065 JX162066 JX162067 JX162070 JX162071 JX162072 JX162079 JX162080 
JX162081 JX162085 JX162086 DQ288160 DQ313392 DQ520801 DQ837038 DQ837039 DQ837041 
DQ837042 DQ837043 DQ837052 JX485634 EF151985 EF212936 EF212937 EF212938 EF212939 
EF212940 EF212941 EF212942 EF212943 EF212944 EF212945 EF212946 EF212947 EF212948 
EF212950 EF212951 EF212952 EF212953 EF212955 EF212956 EF212957 EF212958 EF428984 
GU459203 GU935754 EU530451 HM235482 GU935774 GU935780 HM142759 HM235484 HM235485 
HM235486 HM235490 HM235492 HM235493 HM235494 HM235499 HM235500 HM245069 
HM245087 HM245089 HM245128 HM245153 HM245154 HF947094 HM245159 HM245165 
HM245171 HM245177 HM245183 HM245189 HM245195 HM245222 EU530394 Uncultured 
EU530455 EU530459 EU530460 HF953101 EU530462 EU530464 EU530465 EU530469 EU530470 
EU530471 EU530472 EU530473 EU530474 EU530475 EU530476 EU530479 GQ464391 JX568242 
JX568248 JX568250 JX568253 JX568255 JX568299 AB460996 HM054416 HQ912166 JF268887 
JX568326 JX568339 JX568620 JX568697 JX568748 AB461591 AB461609 AB461621 AB461622 
AB461626 AB461643 AB461644 AB461645 AB461647 AB461668 AB461677 AB461741 AB461744 
AB461745 AB461748 AB461749 AB461750 AB461764 AB461789 AB461793 AB461795 AB461797 
AB461798 AB461800 AB461809 AB461810 AB461821 JQ595503 AB438072 AB480765 AB480768 
AB480770 AB480772 GU361685 GU361688 HE802771 KC310833 AB114621 AB114622 AB194673 
AB745443 FN298290 JQ958875 AB745444 EU639760 JX966472 KC011135 KC188063 KC283047 
KC283051 KC283055 EF562123 EF562210 EF562241 EF562276 EU640691 EU641035 EU641703 
DQ453465 DQ453466 DQ453472 EF645302 HM526962 JQ961613 JX104053 JX104054 GU075021 
GU075022 GU075038 GU075039 GU075040 HM592563 HM597893 JQ818206 JQ818207 JQ515704 
JQ516273 JQ516305 JQ516317 JQ516318 JQ516354 JQ818208 JQ818209 JQ818210 JQ516356 
JQ516357 JQ516385 JQ516386 JQ516387 JQ516388 JQ516389 JQ516395 JQ516396 JQ516404 
JQ516407 JQ516408 JQ516409 JQ516412 JQ516414 JQ516416 JQ516418 JQ516419 JQ516421 
JQ516423 JQ516429 JQ516439 JQ516441 JQ516445 JQ516456 JQ516472 JQ516474 JQ516477 
JQ516481 JQ516483 JQ516487 JQ516488 JQ516489 JQ516499 JQ516502 JQ516506 JQ516515 
JQ516519 JQ516520 JQ516523 JQ516524 JQ516529 JQ516537 JQ516540 JQ516554 JQ516561 
JQ516574 JQ516577 JQ516578 JQ516581 JQ516590 JQ683531 JQ683536 JQ683537 FJ485060 
FJ485358 JQ726780 JQ726781 JQ726815 JQ763381 JN420387 JN420396 JN420397 JN420398 
JN420399 JN420401 JN420402 JN420404 JN420406 JN420407 JN420411 JN420412 JN420413 
JN420414 JN420415 JN420416 JN420418 JN420424 JN420425 JN420426 JN420430 JN420431 
JN420432 JN420433 JN420434 JN420438 JN420440 JN420441 JN420446 JN420448 JN420449 
JN420450 JN420459 JN420470 JN420471 JN420472 JN420475 Uncultured JN420485 JN420500 
JN420501 JN420502 JN420503 JN420504 JN420505 JN420506 JN420507 JN420508 JN420511 
JN420512 JN420513 JN420514 JN420515 JN420516 JN420517 JN420518 JN420519 JN420520 
JN420521 JN420522 JN420523 JN420524 JN420525 JN420526 JN420527 JN420528 JN420529 
JN420530 JN420533 JN420534 JN420535 JN420536 JN420537 JN420538 JN420539 JN420540 
JN420542 JN420543 JN420544 JN420546 JN420547 JN420548 JN420549 JN420551 JN420581 
JN420620 JN420635 JN420638 JN420651 JN421150 JN421151 JN421153 JN421154 JN421155 
JN421156 JN421157 JN421158 JN421160 JN421162 JN421163 JN421164 JN421165 JN421166 
JN421167 JN421168 JN421169 JN421170 JN421171 JN421172 JN421175 JN421176 JN421178 
JN421179 JN421181 JN421182 JN421183 JN421184 JN421185 JN421186 JN421187 JN421188 
JN421189 JN421190 JN421191 JN421192 JN421193 JN421194 JN421195 JN421196 JN421197 
JN421201 JN421202 JN421204 JN421205 JN421206 JN421207 JN421208 JN421209 JN421211  
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different bacterial families and genera. 

Enterobacteriaceae sp. 

JN421212 JN421213 JN421214 JN421215 JN421216 JN421218 JN421219 JN421220 JN421221 
JN421222 JN421223 JN421224 JN421225 JN421226 JN421229 JN421230 JN421232 JN421233 
JN421234 JN421235 JN421236 JN421237 JN421238 JN421239 JN421241 JN421242 JN421244 
JN421245 JN421246 JN421248 JN421249 JN421250 JN421251 JN421252 JN421253 JN421254 
JN421255 JN421256 JN421257 JN421259 JN421260 JN421261 JN421262 JN421264 JN421266 
JN421267 JN421268 JN421269 JN421271 JN421272 JN421273 JN421274 JN421275 JN421276 
JN421277 JN421278 JN421279 JN421280 JN421281 JN421282 JN421283 JN421284 JN421285 
JN421287 JN421288 JN421292 JN421293 JN421294 JN421295 JN421296 JN421297 JN421298 
JN421299 JN421300 JN421301 JN421305 JN421306 JN421307 JN421308 JN421310 JN421311 
JN421312 JN421314 JN421315 JN421316 JN421317 JN421318 JN421319 JN421326 JN421404 
JN421405 JN421410 JN421411 JN421413 JN421416 JN421417 JN421418 JN421419 JN421420 
JN421422 JN421424 JN421426 JN421429 JN421430 JN421431 JN421433 JN421434 JN421435 
JN421437 JN421467 JN421486 JN421511 JN421589 JN421590 JN421597 JN421598 JN421599 
JN421602 JN421603 JN421605 JN421609 JN421615 JN421616 JN421618 JN421622 JN421624 
JN421625 JN421627 JN421634 JN421636 JN421640 JN421646 JN421648 JN421662 JN421671 
JN421721 JN421722 JN421723 JN421724 JN421726 JN421727 JN421728 JN421729 JN421731 
JN421732 JN421733 JN421734 JN421736 JN421737 JN421739 JN421740 JN421741 JN421743 
JN421744 JN421745 JN421746 JN421748 JN421749 JN421750 JN421751 JN421752 JN421753 
JN421754 JN421755 JN421756 JN421757 JN421758 JN421759 JN421760 JN421761 JN421762 
JN421763 JN421766 JN421767 JN421768 JN421770 JN421771 JN421772 JN421773 JN421775 
JN421776 JN421777 JN421778 JN421779 JN421780 JN421781 JN421782 JN421783 JN421784 
JN421786 JN421787 JN421788 JN421789 JN421790 JN421791 JN421792 JN421793 JN421794 
JN421796 JN421797 JN421798 JN421799 JN421800 JN421801 JN421802 JN421803 JN421804 
JN421805 JN421806 JN421807 JN421808 JN421809 JN421810 JN421811 JN421812 JN421813 
JN421814 JN421815 JN421816 JN421817 JN421818 JN421819 JN421820 JN421821 JN421822 
JN421823 JN421824 JN421825 JN421826 JN421827 JN421828 JN421829 JN421830 JN421831 
JN421832 JN421833 JN421834 JN421835 JN421836 JN421837 JN421838 JN421839 JN421840 
JN421841 JN421842 JN421844 JN421845 JN421846 JN421847 JN421848 JN421849 JN421850 
JN421851 JN421852 JN421853 JN421854 JN421855 JN421856 JN421857 JN421858 JN421859 
JN421860 JN421861 JN421862 JN421863 JN421864 JN421865 JN421866 JN421867 JN421868 
JN421869 JN421870 JN421871 JN421873 JN421874 JN421875 JN421876 JN421877 JN421878 
JN421879 JN421880 JN421881 JN421882 JN421883 JN421884 JN421885 JN421886 JN421887 
JN421888 JN421889 JN421890 JN421891 JN421892 JN421893 JN421894 JN421895 JN421896 
JN421897 JN421898 JN421900 JN421902 JN421903 JN421904 JN421905 JN421906 JN421907 
JN421908 JN421909 JN421910 JN421911 JN421912 JN421913 JN421914 JN421915 JN421916 
JN421917 JN421922 JN421923 JN421924 JN421925 JN421928 JN421929 JN421930 JN421934 
JN421935 JN421936 JN421937 JN421939 JN421941 JN421942 JN421943 JN421944 JN421945 
JN421946 JN421947 JN421948 JN421949 JN421950 JN421951 JN421952 JN421953 JN421954 
JN421958 JN421959 JN421960 JN421961 JN421962 JN421964 JN421965 JN421966 JN421967 
JN421968 JN421969 JN421972 JN421974 JN421975 JN421976 JN421977 JN421978 JN421979 
JN421980 JN421981 JN421982 JN421983 JN421985 JN421986 JN421987 JN421989 JN421990 
JN421991 JN421992 JN421993 JN421994 JN421996 JN421997 JN421998 JN421999 JN422000 
JN422001 JN422002 JN422003 JN422004 JN422005 JN422006 JN422007 JN422008 JN422009 
JN422010 JN422011 JN422013 JN422014 JN422015 JN422016 JN422017 JN422018 JN422019 
JN422020 JN422022 JN422024 JN422025 JN422026 JN422027 JN422028 JN422029 JN422030 
JN422031 JN422032 JN422033 JN422034 JN422035 JN422036 JN422037 JN422039 JN422040 
JN422041 JN422042JN422043 JN422044 JN422045 JN422046 JN422047 JN422048 JN422049 
JN422050 JN422051 JN422052 JN422053 JN422055 JN422056 JN422057 JN422058 JN422059 
JN422060 JN422061 JN422062 JN422063 JN422065 JN422069 JN422070 JN422071 JN422072 
JN422073 JN422077 JN422078 JN422079 JN422083 JN422084 JN422086 JN422087 JN422088 
JN422089 JN422090 JN422091 JN422093 JN422094 JN422095  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Lactobacillus sp. 

HE573915 HE573916 HE573917 HE573918 HE600693 HM036120 HM070024 HM070025 
HM101282 HM101283 HM101284 HM101285 HM101286 HM101287 HM101288 HM101289 
HM101290 HM101291 HM101292 HM101293 HM101294 HM101295 HM101296 HM101297 
HM101298 HM101300 HM101301 HM101302 HM101303 HM101304 HM101305 HM101306 
HM101307 HM101309 HM101310 HM101311 HM101312 HM101313 HM101315 HM101316 
HM101317 HM101318 HM101319 HM101320 HM101321 HM101322 HM101323 HM101324 
HM101325 HM101326 HM101327 HM101328 HM101329 HM101330 HM101331 HM101332 
HM125048 HM125049 HM125050 HM162410 HM162411 HM162412 HM162413 HM162414 
HM162416 HM162417 HM162418 HM162419 HM162420 HM162424 HM162425 HM448901 
HM585368 EU194344 EU194349 HM623785 HM641232 HM641233 HM800504 HQ010403 
HQ117896 HQ117897 AB366387 AB366390 AB366391 AB366394 AB366395 AB366396 E17066 
EU350220 AB366399 AB429369 AB429372 AB429373 AB063479 AB326301 EF426247 EF426248 
EF426249 EF426250 FJ542295 FJ542296 FJ542297 FJ542298 FJ542299 FJ542300 FJ542301 
FJ542302 FJ542303 FJ542304 FJ581418 FJ595943 JQ775393 JX020702 JX112898 JX112899 JX185493 
JX185494 JX185495 JX185496 JX185497 JX406745 JX406746 JX440372 JX440373 JX440374 
JX440375 JX440376 JX440377 JX440378 JX440379 DQ316398 DQ317562 DQ317604 DQ317605 
DQ333457 DQ444477 DQ480531 JX490159 JX490160 JX501236 DQ644524 DQ644525 DQ644526 
DQ644527 DQ644528 DQ644529 DQ644530 DQ644531 DQ644532 DQ644533 DQ644534 EF053510 
EF053511 EF053512 EF113958 EF113959 EF113960 EF113961 EF113962 EF113963 EF113964 
EF113965 EF113966 EF120368 EF120369 EF120370 EF120371 EF120372 EF120373 EF120374 
EF120375 EF120376 EF375889 EF375890 EF375891 EF442276 EF442277 EF442278 EF442279 
EF442280 EF442281 EF442282 EF442288 EF442289 EF442290 EF442291 EF442292 EF442293 
EF442294 EF442295 EF442296 EF445113 GU591883 GU591884 GU591885 HE573913 HE573914 
FN252881 FN557015 EF113958 EF053510 EF053511 EF053512 EF113959 EF113960 EF113961 
EF113962 EF113963 EF113964 EF113965 EF113966 EF120368 EF120369 EF120370 EF120371 
EF120372 EF120373 EF120374 EF120375 EF120376 EF375889 EF375890 EF375891 EF442276 
EF442277 EF442278 EF442279 EF442280 EF442281 EF442282 EF442288 EF442289 EF442290 
EF442291 EF442292 EF442293 EF442294 EF442295 EF442296 EF445113 EF534204 JQ775393 
JX020702 JX112898 AB107637 HQ449670 HQ650232 HQ726794 HQ853454 JF763842 JF923643 
JF923644 AB547127 AY379071 AY383631 AY522567 AY590769 AY590770 AY590771 AY590772 
AY590773 AY590774 AY590776 AY681131 AY852248 GQ141805 GQ141806 GQ141807 GQ141809 
GQ141810 GQ141811 GQ141812 GQ141813 GQ141814 GQ141815 GQ141816 GQ141817 GQ141818 
GQ141819 GQ141828 GQ141829 GQ202837 GQ202838 GQ202839 GQ202840 GQ303169 GQ337858 
GQ455406 AF090328 EU722291 FJ386571 FJ455518 FJ455519 HF545640 FJ542289 FJ542291 
FJ542292 FJ542293 FJ542294 AY522567 AY590769 AY590770 AY590771 AY590772 AY590773 
AY590774 AY590776 AY681131 AY735405 AY852248 GQ141806 GQ141807 GQ141809 GQ141810 
GQ141811 GQ141812 GQ141813 GQ141814 GQ141815 GQ141816 GQ141817 GQ141818 GQ141819 
GQ141828 GQ141829 GQ202836 GQ202837 GQ202838 GQ202839 GQ202840 GQ303169 GQ337858 
GQ455406 AF090328 EU722291 EU867793 FJ386571 FJ455518 FJ455519 HF545640 FJ542288 
FJ542289 FJ542290 FJ542291 FJ542292 FJ542293 FJ542294 FJ542295 FJ542296 FJ542297 FJ542298 
FJ542299 FJ542300 FJ542301 FJ542302 FJ542303 FJ542304 FJ581418 FJ595943 JQ775393 JX020702 
JX112898 JX112899 JX185493 JX185494 JX185495 JX185496 JX185497 JX406745 JX406746 
JX440372 JX440373 JX440374 JX440375 JX440376 JX440377 JX440378 JX440379 DQ316398 
DQ317562 DQ317604 DQ317605 DQ333457 DQ444477 DQ480531 JX490159 JX490160 JX501236 
DQ644524 DQ644525 DQ644526 DQ644527 DQ644528 DQ644529 DQ644530 DQ644531 DQ644532 
DQ644533 DQ644534 JF923644 JN012220 JN012221 JN012222 JN012223 JN012227 AF090328 
GU086364 GU138143 GU138144 GU138145 GU138146 GU138147 GU138148 GU173834 GU173836 
GU173837 GU173838 GU173839 GU173840 GU173841 GU173844 GU191837 DQ316398 DQ317562 
DQ317604 DQ317605 DQ333457 DQ444477 GU237039 GU237040 GU237041 GU290217 DQ480531 
DQ644524 DQ644525 DQ644526 DQ644527 DQ644528 DQ644529 DQ644530 DQ644531 DQ644532 
DQ644533 DQ644534 EF053510 EF053511 EF053512 EF113958 EF113959 EF113960 EF113961  
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different bacterial families and genera. 

Lactobacillus sp. 

EF113962 EF113963 EF113964 EF113965 EF113966 EF120368 EF120369 EF120370 EF120371 
EF120372 EF120373 EF120374 EF120375 EF120376 EF375889 EF375890 EF375891 EF442276 
EF442277 EF442278 EF442279 EF442280 EF442281 EF442282 EF442288 EF442289 EF442290 
EF442291 EF442292 EF442293 EF442294 EF442295 EF442296 EF445113 EF534204 JQ775393 
JX020702 JX112898 AB107637 HQ449670 HQ650232 HQ726794 HQ853454 JF763842 JF923643 
JF923644 AB547127 AY379071 AY383631 FN252881 FN557015 EU380191 EU380192 EU380193 
EU381121 EU381122 EU381123 EU381124 EU381125 EU381126 EU381128 EU381129 EU547296 
EU547297 EU547298 EU547299 EU547300 EU547301 EU547302 EU547303 EU547304 EU547305 
EU547307 EU547308 EU547309 EU547310 EU547311 EU547312 EU547313 EU555174 EU621848 
EU621849 EU621850 EU621851 EU688975 EU688976 EU722291 GQ141805 GQ141806 GQ141807 
HE663132 GQ141809 GQ141810 GQ141811 GQ141812 GQ141813 GQ141814 GQ141815 GQ141816 
GQ141817 GQ141818 GQ141819 GQ141828 GQ141829 GQ202836 GQ202837 GQ202838 GQ202839 
GQ202840 AB107637 GQ303169 GQ337858 GQ455406 AB547127 AY082883 AY082884 AY196968 
AY196970 AY196977 FR681901 AY230219 AY230220 AY230221 AY230222 AY230223 AY230224 
AY230225 AY230226 AY230227 AY230228 AY230229 AY230230 AY318799 AY318825 AY379071 
AY383631 KC145829 KC155629 KC700038 KC700040 HQ292207 HQ449670 HQ650232 HQ726794 
KC857461 KC857465 KC857466 JF763842 JF923643 AF275311 AB703604 AB703605 AF404708 
AF302116 AF335475 AF382389 EU194344 EU194349 EU350220 AF382390 AF382391 AF385770 
HM036120 HM070024 HM070025 HM101282 HM101283 HM101284 HM101285 HM101286 
HM101287 HM101288 HM101289 HM101290 HM101291 HM101292 HM101293 HM101294 
HM101295 HM101296 HM101297 HM101298 HM101300 HM101301 HM101302 HM101303 
HM101304 HM101305 HM101306 HM101307 HM101309 HM101310 HM101311 HM101312 
HM101313 HM101315 HM101316 HM101317 HM101318 HM101319 HM101320 HM101321 
HM101322 HM101323 HM101324 HM101325 HM101326 HM101327 HM101328 HM101329 
HM101330 HM101331 HM101332 HM125048 HM125049 HM125050 HM125051 HM162410 
HM162411 HM162412 HM162413 HM162414 HM162416 HM162417 HM162418 HM162419 
HM162420 HM162424 HM162425 HM448901 HM585368 HM623785 HM641232 HM641233 
AM920327 HM800504 HQ010403 HQ117896 HQ117897 HQ214673 HQ259238 HQ259243 
AM920328 AM920329 AM920330 EU187503 EU377823 EU377824 EU380190  

 

Pseudomonas sp. 

D84010 AB049747 AB049749 AB049750 AM179865 AM179872 AM179883 D84012 D84009 D84013 
D85991 D85996 D85997 Y11150 D84014 D84020 D84022 D84027 AJ012712 AJ249451 AJ308298 
AJ308302 L28676 AJ308303 AJ308304 AJ308305 AJ308306 AJ308307 AJ308309 AJ308311 AJ308312 
AJ308313 AJ308315 AJ308320 AJ310536 D83788 D85992 AJ537601 AJ537602 AJ537603 D85993 
D85994 D85995 D85998 D85999 D86000 AB030583 AJ492826 AJ492827 AJ492828 AJ492829 
AJ492831 D87104 AJ310393 AJ344082 AJ970164 AM088475 AJ970171 AJ970172 AJ970173 
AJ970174 AM262973 AM419153 D87098 D87099 D87102 D87108 AJ319662 AJ410871 AJ410872 
AJ633553 AJ633554 AJ633555 AJ633556 AJ633557 AJ633558 AJ633559 AJ633560 AJ633561 
AJ633562 AJ633563 AJ633564 AJ876736 X99540 AJ006103 AJ006107 AJ270451 AJ270452 AJ270453 
X99541 AJ270454 AJ270455 AJ270456 AJ270457 AJ270458 AJ292426 AJ312156 AJ312157 AJ312159 
AJ312160 AJ312161 AJ312162 AJ312163 AJ312164 AJ312165 AJ312166 AJ312167 AJ312168 
AJ312169 AJ312170 AJ312171 AJ312172 AJ312173 AJ312175 AJ312176 AM114525 AM114526 
AM905853 AM905855 AM905856 AM905857 AM905858 AM905859 AB009457 AB031277 
AM114527 AM114532 AM114533 AM114534 AJ344226 AJ550469 AJ585226 AJ833919 AJ011331 
AJ132993 AJ278814 AJ288286 AJ288293 AJ288301 AJ288304 AJ288305 AJ288148 AJ288151 
AJ288306 AJ288309 AJ310484 AM062695 AM263483 AM263484 AM293356 AM293357 AM293365 
AM293366 AM263487 AM263488 AM263489 AM263490 AM263492 AM263493 AM263495  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Pseudomonas sp. 

AJ006104 AJ309500 AJ583501 AM263498 AM263499 AM905852 AM111049 AM262071 AM293568 
AM495258 X06684 Z79594 AM293678 AM293679 AM404437 AM410088 AM410615 AM410616 
AM410620 AM410631 AM411058 AM411059 AM411067 AM411071 AM411185 AM411211 
AM419154 AM419155 AM421016 AM491070 AM707022 AM711587 AJ344483 AJ413199 AJ417072 
AJ491835 AJ508696 AM711588 AM711596 AJ509809 AM398412 AM398413 AM398414 AM398415 
AM398416 AM398417 AM398418 AM398419 AM398420 AM398421 AM398422 AM398425 
AM398426 AM398427 AM398428 AM398429 AM398430 AM398431 AM398432 AM398433 
AM398434 AM773555 AM773556 AM773557 AM773558 AM773559 AM773560 AM773561 
AM773562 AM773563 AM773564 AM773565 AM773567 AM773568 AM773573 AM773575 
AM773576 AM773577 AM773578 AM773580 AM773583 AB028924 AM773588 AM773589 AJ512378 
AJ512380 AJ512381 AM399034 AM399035 AJ512385 AJ512386 AJ512387 AJ512389 AJ512390 
AJ512391 AJ512392 AJ512394 AJ512395 AJ512396 AJ512397 AJ512398 AJ512399 AJ512400 
AJ512401 AJ512402 AJ512403 AJ512404 AJ512405 AJ512406 AJ512407 AJ512408 AJ517396 
AJ517397 AJ517398 AJ517399 AJ517400 AJ517401 AJ517402 AJ517403 AJ517404 AJ517405 
AJ517406 AJ517407 AJ517408 AJ517409 AJ517410 AJ292381 AJ293858 AJ293859 AJ544239 
AJ544240 AJ864394 AJ890253 AM041055 AM085309 AJ007526 AJ007527 AJ007533 AJ007535 
AJ007536 AM403529 AJ458198 AJ519791 AJ550465 AJ623285 AJ845183 AJ846267 AM745260 
AJ846268 AJ846270 AJ846274 AJ846276 AJ846278 AJ846279 AJ846280 AJ846281 AJ846282 
AJ846284 AJ846285 AJ846286 AJ846287 AJ846290 AJ868441 AM110955 AM110968 AM110993 
AM111004 AM111013 AM111015 AM111025 AM111029 AM111035 AM111036 AM111037 
AM111039 AM111041 AM111042 AM111043 AM111044 AM111045 AM111046 AM111047 
AJ243603 AJ243606 AJ278107 AM111052 AM111063 AM111077 AM111089 AM111092 AJ288143 
AM076674 AM158279 AM265390 AM265391 AM265392 Z76666  AB038140 Z76652 Z76653 Z76654 
Z76658 AJ631287 Z76663 Z76671 AJ631288 AJ631289 AJ631290 AJ631291 AJ631292 AJ631293 
AJ631294 AJ631295 AJ631296 AJ631297 AJ404575 AJ404580 AJ404603 AJ492830 AJ578066 
AJ617689 AJ970167 AM293370 AM293375 AJ970168 AJ970169 AJ970170 D87100 FN395007 
AM422559 D84004 D87103 D87105 D87107 AB004241 AJ535755 AM396914 AM396933 AM396934 
AM397051 AM398216 AM402949 AM403657 AM410086 AM410089 AM410090 AM410614 
AM410617 AM410619 AM410621 AM410622 AM410623 AM410625 AM410626 AM410627 
AM410628 AM410629 AM410630 AM411057 AM411060 AM411062 AM411063 AM411065 
AM411069 AM411619 AM411620 AM411621 AM411992 AM411994 AM411997 AM411999 
AM412215 AM418387 AM421975 AM421976 AM421981 AM421982 AM489694 AM491058 
AM491059 AM491060 AM491061 AM491463 AM491464 AM491465 AM491466 AM691617 
AM691618 AM691619 AM691622 AM691623 AM691630 AM707021 AM709775 AM746975 
AM746976 AJ318913 AJ318918 AJ410281 AJ410283 AJ410285 AJ413198 AJ417068 AJ417069 
AJ417070 AJ417074 AJ417370 AJ419672 AJ419673 AJ419674 AJ419675 AJ489332 AJ489334 
AJ489342 AJ489344 AJ489346 AJ489348 AJ534859 AJ534869 AJ539228 AJ634921 AJ634922 
AJ634927 AJ634940 AJ634949 AJ704794 AJ785569 AJ864849 AJ864859 AJ867217 AJ870968 
AJ871943 AJ871944 AJ876660 AJ884889 AJ884890 AJ884891 AJ884892 AJ889841 AJ009710 
AM905940 AM905941 AM905942 AM905943 AM913883 AM913885 AM913888 AM913891 
AM913892 AM913893 AM913894 AM913895 AM913896 AM913897 AM913898 AM913900 
AM913903 AM913905 AM913906 AM913915 AM913943 AM913961 AM937256 AJ551097 AJ551146 
AJ551153 AJ551158 AM937258 AM937261 AJ551160 AJ551161 AM050098 AM050101 AM084013 
AM084017 AM084021 AM084027 AM084028 AM084037 AM084071 AM084105 AM084159 
AM084173 AM086250 AM110075 AM158919 AM180745 AM184269 AM184301 AM231084 
AM232729 AM237088 AM237089 AM237090 AM237092 AM260197 AM260540 AM267085 
AM269470 AM269522 AM284989 AM285005 AM285021 AM285023 AJ002801 AJ002813 AJ132994 
AJ237965 AM113740 AM113741 AM286272 U26414 Y18235 AM689940 U26417 U26418 U26419 
U26420 AM689985 AM690033 AB073312 AF058286 EF426771 EU224277 U63901 U63902 U63903 
U63904 AJ306832 AJ306834 U63905 U63906 U63907 U63908 U63909 AJ548920 AJ567594 
AJ576114 AJ576116 AJ577093 AM167976 AM421033 AM421034 AM421035 AM421036 AM421037  
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different bacterial families and genera. 

Pseudomonas sp. 

AM421136 AM421137 AM421138 AM421139 AM421144 AM421145 AM421156 AM421157 
AM421158 AM421159 AM421160 AM421161 AM421162 AM421163 AM421164 AM421165 
AM421180 AM421181 AM421182 AM421183 AM421196 AM421197 AM421198 AM421199 
AM421200 AM421201 AM421202 AM421203 AM421204 AM421205 AM421206 AM421207 
AM421208 AM421209 AM421210 AM421211 AM421212 AM421213 AM421214 AM421215 
AM421217 AM421218 AM421219 AM421220 AM421221 AM421222 AM421223 AM421224 
AM421225 AM421226 AM421227 AM421231 AM421235 AM421238 AM421239 AM421240 
AM489702 AM747115 AM747118 AM747119 AM779870 AM889172 Z36532 EF418612 AF448349 
AF448350 AF448351 AF448352 AB257323 AY063234 AY063235 AY074894 AM403600 AM403604 
AM403615 AM403625 AM412165 AJ968720 AJ516053 AJ536421 AM710608 AJ842221 AJ842224 
AJ842238 AJ842243 AJ842244 AJ842246 AJ842249 AJ842250 AJ842251 AJ842253 AM000005 
AM000006 AM000020 AJ291839 AJ291840 AJ291841 AJ291844 AJ291845 AJ344482 AJ344484 
AJ344485 AJ344486 AJ387903 AJ007005 AJ007006 AJ387904 AJ864722 AB271010 AB576190 
AB621592 AF143245 AJ271413 AY091527 KC428669 AB665551 EU579530 FJ587079 KF317822 
KF478199 U26415 U26416 AF064460 AY623816 DQ286456 GQ327971 KC206029 KC206030 
KC206031 KF055856 U22426 U22427 EU043322 FM881781 KF146882 U25280 U25431 U25432 
U26261 U26262 AB013844 AB062598 AB062599 AB088754 AB204716 EU043323 EU043325 
EU043329 EU043330 AB247185 AB247188 AB247189 AB247194 AB247195 AB247196 AB247197 
AB247198 AB247199 AB247200 AB247201 AB247202 AB247203 AB247204 AB247218 AB302401 
AB302402 AB494443 AB494444 AB494445 AB543806 DQ071557 DQ071559 DQ073449 DQ073450 
DQ073451 DQ073452 DQ073453 DQ073454 DQ133506 DQ140381 DQ140382 DQ140383 JX915743 
JX970974 JX970975 JX970976 EU714901 FN650142 JX970977 JX970978 JX970979 KC333649 
KC662503 KC710974 FJ577676 FR714937 HM151878 HQ141340 HQ454496 HQ680964 HQ680980 
HQ840718 HQ848377 HQ874650 HQ880245 KC845571 FJ705888 FM203408 FN996012 FR820588 
FR820589 KC893551 KC893552 KF195926 KF539786 KF591451 AF494091 EF530571 EF530572 
EF538425 EF552367 EF552368 EU037096 EU194235 EU194236 EU194237 EU194238 EU194239 
EU257454 EU257455 EU350370 EU534410 EU599569 EU661864 JQ669958 JQ691692 JQ691693 
JQ691694 JQ691695 JQ691696 JQ691697 JQ691698 JQ691699 JQ691700 JQ691701 JQ691702 
JQ691704 JQ691705 JQ691707 JQ691708 JQ691709 JQ839149 JX010738 GU220068 HF545840 
HF545842 HF545843 JX010739 JX204836 DQ211696 DQ356904 DQ864462 DQ864463 HF545845 
HF545846 AY121976 AY264292 EF488968 EF488969 JF951725 JN002065 JN051364 JN099687 
JN123466 JN389433 JN600615 JN674083 JN836325 JQ027335 JX913784 JX913785 AF067960 
AF468448 AF468449 AF495871 EU344794 HM217131 JX913786 JX913787 JX913788 JX913789 
AY486350 AY486353 AY486355 AY486356 AY486357 JQ904623 JX104229 AY486358 AY486359 
AY486360 AY486361 AY486362 AY486363 AY486364 AY486365 AY486366 AY486367 AY486368 
AY486369 AY486370 AY486371 AY486384 AY486385 AY486386 GQ870338 GQ870339 GQ870340 
AB189452 AJ583805 AJ966856 AM403308 AM489671 AB504737 AB060131 AB060132 AB060133 
AB060134 AB060135 AB087853 AB117953 AB119535 AB127967 AB060136 AB060137 AB334768 
FJ665502 KC119195 KC428662 KC428666 KC428670 KC428673 AB056120 AB091837 AB440177 
DQ358054 EF026153 EF487999 FJ905913 GQ160904 GQ916542 DQ073039 DQ083947 DQ095878 
DQ095879 DQ095880 DQ095881 DQ095882 DQ095883 DQ095890 DQ095891 DQ095892 DQ095893 
DQ095894 DQ095895 DQ095896 DQ095914 DQ095915 DQ181650 DQ181651 JX271040 JX313019 
JX477649 JX678983 JX885767 JX885769 JX905208 JX915832 JX915833 JX915834 JX915835 
JX915836 JX915837 KC013301 KC189961 KC495567 KC495568 KC495569 KC495570 KC495571 
KC495572 KC505184 KC570343 KC602116 KC631644 KC633744 KC660988 KC663615 KC663616 
KC663617 KC688876 KC699534 KC699535 KC699536 KC699537 KC699538 KC699539 KC699540 
KC699541 KC699542 KC699543 KC762216 AF038653 AF074383 EU834943 EU849119 EU930815 
FN599522 KC762217 EU930816 FJ001818 FJ004920 FJ422406 FJ422810 FJ472580 FJ496659 
FJ534557 FJ534640 FJ556919 FJ605510 HM014234 HM036358 HM036359 HM101170 HM150717 
HM190218 FR668235 FR695882 FR695883 FR695884 HM190219 HM190220 HM190221 HM190222 
HM190223 HM190224 FR695885 FR695886 HM224410 HM245963 HM481449 HM582425 KC83432 
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Pseudomonas sp. 

HM582426 HQ123430 HQ123431 HQ271083 HQ271084 HQ283403 HQ324110 HQ660081 HQ697262 
HQ896494 HQ995498 JF261631 GU447237 GU447238 GU475123 GU480532 GU951516 HE585219 
JF422069 JF495456 KC794741 KC796784 KC796785 KC796786 KC796787 KC796788 KC796789 
KC796790 KC796791 KC796792 KC796793 KC796794 KC820813 KC834302 KC834304 KC834305 
KC834315 KC834317 KC834322  

 

Vibrio sp. 

X99762 L05178 AJ582807 AJ582810 AB038030 AJ316187 AJ515218 AJ515219 AJ515220 AJ515221 
AJ515222 AJ515223 AJ515224 AJ515225 AJ515226 AJ515227 AJ515228 AJ582809 FM162399 
AB013297 FM162401 FM162402 FM162404 AB010811 AJ630202 AJ630203 X97987 X97988 X97989 
X97990 AJ515229 AJ515230 AJ318954 AJ414114 AJ414116 AJ414118 AJ414121 AJ421444 AJ421445 
AJ491832 AJ554204 AJ582808 AJ630102 AJ630103 AJ845012 AJ845014 AJ845016 AJ845018 
AJ845020 AJ845022 AJ874352 AJ874353 AJ874354 AJ874359 AJ874363 AJ874364 AJ874367 
AJ885017 AJ885024 AJ885034 AJ885035 AJ885036 AJ885041 AJ885044 AJ885045 AJ293802 
AJ310647 AJ310648 AM048781 AM181657 AM181658 AB016271 AJ278426 AJ876732 AM777383 
AM902263 AJ316174 AJ316182 AJ316184 AJ316185 AJ316188 D11214 AF134581 AJ609638 
AM921804 HE795132 HE795133 HE795134 HE795135 HE795136 HE795137 HE795138 HE795139 
HE795140 HE795141 HE795142 HE795143 HE795144 HE795145 HE795146 HE795147 HE795148 
HE795149 HE795150 HE795151 AJ345065 HE795152 HE795153 HE795154 HE795155 HE795156 
HE795157 HE795158 JQ409383 AF493805 AJ582803 AJ582804 AJ582805 AJ582806 KC954165 
KC954166 KC954167 KC954168 AF493809 AB038023 AB038024 AB038025 AB038026 AB038029 
AM401583 AM495249 AM495250 AM495251 AM709736 AJ414125 AM747235 AJ784124 AJ784128 
AJ784131 AJ784135 AJ784136 AJ784137 AJ784139 AJ784140 AJ866938 AJ885012 AJ885030 
AJ936940 AM778454 AM778456 AM778457 AM778458 AM778459 AM778460 AM778461 
AM778462 AM778463 AM884367 AM913884 AM913887 AM157655 AM162595 AM913925 
AM913929 AF426805 AF426806 AF426811 AF426814 AF426824 KC740490 AF426825 FM204836 
FM204837 FM204838 FM204839 FM204840 FM204845 FM204846 FM204847 FM204848 FM204849 
FM204850 FM204851 FM204852 FM204853 FM204854 FM204855 FM204856 FM204857 FM204858 
FM204859 FM204860 FM204865 FM204866 FM204867 FM204868 FM204869 FM204870 AF537959 
EU579452 HQ694831 GU727812 HQ694832 HQ694833 HQ849470 JF260912 JF264469 JF264470 
JF264472 JF264473 JF330909 GU727813 GU974342 KC912685 KC954171 KF158717 KF158718 
KF158719 KF158720 KF158721 KF158722 KF158723 KF158724 KF158725 KF158726 KF158727 
KF158728 KF158729 KF158730 KF158731 KF158732 KF158733 KF158734 KF158735 KF158736 
KF158737 KF158738 KF158739 KF158740 KF158741 KF158742 KF158743 KF158744 KF158745 
KF158746 KF158747 KF158748 KF158749 KF158750 KF158751 KF158752 KF158753 KF158754 
KF158755 KF158756 KF158757 KF158758 KF158759 KF158760 KF158761 KF158762 KF158763 
KF158764 KF158765 KF158766 KF158767 KF158768 KF158769 KF158770 KF158771 KF158772 
KF158773 KF158774 KF158775 KF158776 KF158777 KF158778 KF158779 KF158780 KF158781 
KF158782 KF158783 KF158784 KF158785 KF158786 KF158787 KF158788 KF158789 KF158790 
KF158791 KF158792 FJ752498 FJ824663 FJ906747 FJ906748 FJ906749 FJ906750 FJ906751 U37801 
U37802 EF684899 EF684900 EF684901 EF684902 EF684903 EF684904 EF684905 EU031646 
FR797810 EU143769 EU204961 EU652246 EU652252 FN432778 JQ307093 JQ307094 AY456924 
AY494842 AY494843 AY562192 JQ307095 JQ307096 JQ307097 JQ904784 JQ958596 AY628645 
AY628646 AY800101 AY827492 AY863432 HF541921 HF541922 HF541923 HF541924 HF541925 
HF541926 HF541927 HF541928 HF541929 HF541931 HF541932 HF541933 HF541934 HF541935 
HF541936 HF541937 HF541938 HF541939 HF541940 HF541941 HF541942 HF541943 HF541944 
HF541945 HF541946 HF541947 HF541948 HF541949 HF541950 HF541951 HF541952 HF541953 
HF541954 HF541955 HF541956 HF541957 HF541958 HF541959 HF541960 HF541961 HF541962  
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Accession numbers for the 16S rDNA sequences analysed in Chapter 2 from 

different bacterial families and genera. 

Vibrio sp. 

HF541963 HF541964 DQ298045 DQ298046 DQ298047 DQ298048 DQ304558 HF541965 HF541966 
HF541967 HF541968 DQ440933 DQ440936 DQ440937 DQ440938 DQ440939 DQ440940 DQ440941 
DQ440943 DQ440945 DQ440947 DQ440948 DQ440949 DQ440950 DQ440951 DQ440953 DQ440956 
DQ440959 EF467290 DQ440966 DQ440968 DQ440969 DQ440970 DQ440972 DQ440973 DQ440976 
DQ923054 DQ985231 EF178477 EF178478 EF178479 EF178480 EF178481 EF178482 EF178483 
EF178484 EF178485 EF178486 HE795129 AY264936 AY332565 HE795130 HE795131 JF731344 
JF779826 JF779827 JF779828 JF779830 JF779831 JF779833 JF779834 JF779835 JF779836 JF779837 
JF779838 JF779839 JF779840 JF779841 JF907569 JF907572 JN003627 JN108879 JN188401 
JN188402 JN188403 JN188404 JN188405 JN188408 JN188409 JN188411 JN188413 JN188414 
JN188415 JN188416 JN188417 JN188418 JN188419 JN188420 JN188421 JN188422 JN188423 
JN188424 GQ180184 GQ180185 GQ180186 GQ249053 GQ260160 GQ260161 GQ260162 GQ260163 
GQ372983 HE584769 HE584771 HE584774 HE584775 HE584776 HE584777 HE584778 HE584779 
HE584780 HE584782 HE584784 HE584786 HE584787 HE584788 HE584789 HE584790 HE584792 
HE584794 HE584795 HE584797 HQ449744 HQ449745 HQ449746 KC185413 KC185414 KC185415 
HQ449747 FJ906812 HQ449748 HQ449749 HQ449750 HQ449751 HQ449752 HQ449753 HQ449754 
HQ449755 HQ449756 HQ449757 HQ449758 HQ449759 HQ449760 HQ449761 HQ449762 HQ449763 
HQ449764 HQ449765 HQ449766 HQ449767 HQ449768 HQ449769 HQ449770 HQ449771 HQ449772 
HQ449773 HQ449774 HQ449775 HQ449776 HQ449777 HQ449778 JQ409372 JX221044 JX221045 
KC794715 KC794716 GU064357 GU064358 GU064361 GU064369 GU064371 GU064372 GU064373 
GU064375 GU064376 GQ332279 GQ332282 GQ332283 GU064377 GU064378 GU262992 GQ332284 
GQ332285 GQ332286 GQ332287 GQ332288 GQ332289 GQ332290 GQ332291 GQ332292 GQ332293 
FJ404761 FJ404762 FJ404763 FJ404764 GQ332294 GQ332295 GQ332296 GQ332297 GQ332298 
GQ332299 FJ404765 HM996960 HM996961 HM996962 HM996963 HM996964 HM996965 
HM996966 HM996967 HM996968 HM996969 HM996970 HM996971 HM996972 HM996973 
KC954162 KC954163 KC954164 EU091326 EU091331 EU091332 EU091333 EU091334 EU091335 
EU091337 GQ487487 KF150774 KF150776 
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Appendix 2.  

Table outlining all chemicals and equipment utilised within this thesis. 

Product Supplier Catalogue number 

0% MacroGard® experimental feed Tetra GmbH N/A 

0.1% MacroGard® experimental feed Tetra GmbH N/A 

2-phenoxyethanol Sigma P1126 

96 well plate Sarstedt 83.3924.500 

ABI Prism® 9000 Sequence Detection System Applied Biosystems N/A 

Aeromonas Isolation Agar Fluka Analytical 17118-500G 

Aeromonas Selective Supplement Fluka Analytical 17119-5VL 

Aeromonas salmonicida subsp. salmonicida NCIMB NCIMB1102 

Ammonium persulfate (APS) Sigma A3678 

Bacillus subtilis subsp. spizizenii NCIMB NCIMB8054 

BioruptorTM UCD-200 Diagenode N/A 

Bermuda Banish Fish Ulcer, Parasite and White 
Spot Treatment 

Glovers Aquatics N/A 

Crystal violet Pro-lab Diagnostics PL7001 

Dissolved Oxygen Meter Hanna H19142 

dNTPs Invitrogen 10297 

EconoSpinTM Spin column for DNA (silica 
membrane) 

Epoch Life Sciences 1910-250 

EconoSpinTM Spin column for RNA (silica 
membrane) 

Epoch Life Sciences 1940-250 

Eheim 2227 filter system Eheim N/A 

Eppendorf Gradient Mastercycler® Eppendorf 950000015 

Ethidium bromide Sigma E8751 
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Table outlining all chemicals and equipment utilised within this thesis. 

Product Supplier Catalogue number 

Formamide Sigma F9037 

GeneAmp PCR system 9700 thermocycler Applied Biosystems N/A 

GoTaq® G2 Flexi DNA polymerase Promega M7801 

Gram’s iodine Pro-lab Diagnostics PL7004 

“Hi-Pure” Low EEO Agarose BioGene 300-300 

Hot Start KAPA2G Robust Polymerase: 5X 
KAPA2G buffer A, Polymerase, PCR grade Water 

Kapabiosystems KK5511 

Hydrogen peroxide Fisher H/1862/15 

LPS from E. coli O55:B5 Invivogen LPS-B5 

Loading buffer Made in house by Dr. Adamek (TiHo) 

Lysozyme from chicken egg white Sigma L6876 

MacConkey agar Oxoid CM0109 

MacroGard® Biorigin Batch number: 250813 

Magnesium Chloride Promega A3511 

MaxQ 4000 E-class incubator Barnstead/Labline N/A 

Moloney Murine Leukemia Virus Reverse 
Transcriptase (M-MuLV RT). 

Invitrogen No longer available 
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Table outlining all chemicals and equipment utilised within this thesis. 

Product Supplier Catalogue number 

M-MLV Reverse Transcriptase: M-MLV RT, 5X 
First Strand Buffer, 0.1M DTT 

Invitrogen 28025-013 

Microsoft Excel Microsoft N/A 

Minitab 14 Minitab N/A 

M.R.S. agar (de Man, Rogosa and Sharpe) Oxoid CM0361 

Mx3000P qPCR System Stratagene N/A 

Nanodrop 1000 Thermo Scientific N/A 

Nikon AF-S DX NIKKOR 55-300mm f/4.5-5.6G 
VR Lens 

Amazon.co.uk N/A 

Nikon D3200 Digital SLR Camera with 18-55mm 
VR Lens Kit - Black (24.2MP) 3 inch LCD 

Amazon.co.uk N/A 

Nutrient agar Oxoid CM0003 

Nutrient broth Oxoid CM0001 

Oxidase detection strips Oxoid MB0226 

PBS Sigma P-4417 

PCR Buffer II Invitrogen 4379878 

peqGOLD TriFast Peqlab 30-2010 

Primers Eurofins N/A 

Proteinase K Peqlab 0706-1G 

QIAamp DNA Mini Kit: AL buffer, AW1 buffer, 
AW2 buffer, AE buffer 

Qiagen 51304 

Random hexamers Invitrogen N8080127 
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Table outlining all chemicals and equipment utilised within this thesis. 

Product Supplier Catalogue number 

Resazurin Sigma R7017-1G 

RNaseOUTTM RNase inhibitor Invitrogen 10777-019 

RNAprotect Qiagen 76506 

RNeasy Mini kit : RLT buffer, RW1  buffer, RPE 
buffer, RNase free water 

Qiagen 74104 

Roti®-Safe Gel Stain Carl Roth 3865.1 

Rotiphorese® Gel 30 (37.5:1) Carl Roth 3029.1 

RQ1 DNase 10X Reaction Buffer Promega M198A 

RQ1 DNase Stop Solution Promega M199A 

RQ1 RNase-Free DNase Promega M610A 

Safranin Pro-Lab Diagnostics PL7013 

SeKem® LE Agarose Lonza 50004 

SensiFASTTM SYBR® HiROX kit Bioline BIO-92020 

SPSS 21 SPSS N/A 

SYBR® Gold Nucleic Acid Gel Stain (10,000X 
concentrate in DMSO) 

Life Technologies S-11494 

Tea light candle Morrisons N/A 

TEMED Sigma T9281 

TissueLyser II Qiagen 85300 

TV400-DGGE system (gel size 16.5x17.5cm) Biostep TV400-DGGE 

Urea Sigma U5378 

Vaseline Sainsburys N/A 

Water chiller unit HC300A Hailea N/A 

Whatman Nucleopore Polycarbonate 47mm, 3µm Sigma 111112 
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Appendix 3. 

A list of all of the PCR primers used within this thesis. Primer sequences, target, and their intended use is given. 

Primer Sequence (5’ � 3’) Target Reference Use 

16S_seq_27F AGAGTTTGATCMTGGCTCAG V1-V2 region of 16S rDNA gene for high 
throughput sequencing 

See appendix 4. 
Plymouth 
University 16S_seq_338R GCWGCCWCCCGTAGGWGT 

16S_uniBact_fw AGGATTAGATACCCTGGAGTCCA Approximation of total bacteria activity 
– 16S rDNA 

Adamek et al. 2013 
RT-qPCR 
Plasmids 16S_uniBact_rv CATGCTCCACCGCTTGTGC 

40S_fw CCGTGGGTGACATCGTTACA 
Carp – 40S housekeeping gene Huttenhuis et al. 2006 RT-qPCR 

40S_rv TCAGGACATTGAACCTCACTGTCT 

Aero16S_fw GCGAAGGCGGCCCCCTGGACAAAGA 
Aeromonas sp. activity – 16S rDNA Adamek et al. 2013 

RT-qPCR 
Plasmids Aero16S_rv CCACGTCTCAAGGACACAGCCTCCAAATC 

ApoA1_fw CCATCTCCGCCTCCTTTC 
Carp – Apolipoprotein 1 Dietrich et al. 2014 RT-qPCR 

ApoA1_rv ATGTGTTAGTGTGTGTGTGCTTC 

Bergmark_16S_fw ACTTTAAGTTGGGAGGAAGGG 
Pseudomonas sp. activity – 16S rDNA Bergmark et al. 2012 RT-qPCR 

Bergmark_16S_rv ACACAGGAAATTCCACCACCC 

Bf/C2_fw CGGTCATGGGAAAAAGCATTGAGA 
Carp – Complement pathway Forlenza et al. 2009 RT-qPCR 

Bf/C2_rv GATATCTTTAGCATTTGTCGCAG 

CRP1_fw AGCAATGCAACATTTTTCCGTC 
Carp – C-reactive protein isoform Falco et al. 2012a RT-qPCR 

CRP1_rv ACTTGCGTCAAAGCCACCCAC 

CRP2_fw GATGCTGCAGCATTTTTCAGTC 
Carp – C-reactive protein isoform Falco et al. 2012a RT-qPCR 

CRP2_rv CTCCGCATCAAAGTTGCTCAAAT 

C1rs CAAGCCCATCTTGGCTCCTGG 
Carp – Complement pathway Forlenza et al. 2009b RT-qPCR 

C1rs GTCCAGATCAAGCGGGGACGT 

C3_fw GGTTATCAAGGGGAGTTGAGCTAT 
Carp – Complement pathway Forlenza et al. 2009b RT-qPCR 

C3_rv TGCTGCTTTGGGTGGATGGGT 

DGGE_fw CGCCCGCCGCGCGCGGCGGCGGGCGGGGCGGGGGCA
CGGGGGGCCTACGGGAGGCAGCAG 

Qualitative analysis of bacteria diversity 
– 16S rDNA 

Muyzer et al. 1993 
PCR-DGGE 

DGGE_rv ATMTCTACGCATTTCACCGCTAC Steinum et al. 2009 

Flav16S_fw GGGATAGCCCAGAGAAATTTGGAT 
Flavobacterium sp. activity – 16S rDNA Adamek et al. 2013 

RT-qPCR 
Plasmids Flav16S_rv AGTCTTGGTAAGCCGTTACCTT 
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A list of all of the PCR primers used within this thesis. Primer sequences, target, and their intended use is given. 

Primer Sequence (5’ � 3’) Target Reference Use 

HAMP1_fw TGGAGAGTGAGGCACACCAGGAG 
Carp – Hepcidin antimicrobial peptide 1 Designed by Dr. Adamek (TiHo) RT-qPCR 

HAMP1_rv TGCCAGGGGATTGGTTTG 

IL1β_fw AAGGAGGCCAGTGGCTCTGT 
Carp – Interleukin 1β Huttenhuis et al. 2006 RT-qPCR 

IL1β_rv CCTGAAGAAGAGGAGGCTGTCA 

IL1β_rec_fw ACGCCACCAAGAGCCTTTTA 
Carp – Interleukin 1β receptor Designed by Dr. Falco (MHUE) RT-qPCR 

IL1β_rec_rv GCAGCCCATATTTGGTCAGA 

iNOS_fw AACAGGTCTGAAAGGGAATCCA 
Carp – Inducible nitric oxidase Forlenza et al. 2009b RT-qPCR 

iNOS_rv CATTATCTCTCATGTCCAGAGTCTCTTCT 

LEAP2_fw GGATCGTGGGCACTAAACCTC Carp – Liver expressed antimicrobial 
peptide 2 

Designed by Dr. Adamek (TiHo) RT-qPCR 
LEAP2_rv GCCTTTCCTGCATATTCCTGTC 

Martinez_16S_fw GCAGGCCTAACACATGCAAGTC 
Lactobacillus sp. activity – 16S rDNA Martinez-Puig et al. 2007 RT-qPCR 

Martinez_16S_rv CTGCTGCCTCCCGTAGGAGT 

MASP2_fw CAAGCTGTCCAAGGTGATTG 
Carp – Complement pathway Forlenza et al. 2009b RT-qPCR 

MASP2_rv AGCAGTGAGGACCCAGTTGT 

Muc2_fw TGACTGCCAAAGCCTCATTC 
Carp – Mucin isoform Van der Marel et al. 2012 RT-qPCR 

Muc2_rv CCATTGACTACGACCTGTTTCTC 

Pseud16S_fw TGCCTAGGAATCTGCCTGGTAGT 
Pseudomonas sp. activity – 16S rDNA Designed by Dr. Adamek (TiHo) 

RT-qPCR 
Plasmids Pseud16S_rv AATCCGACCTAGGCTCATCTGATAGCG 

Strept16S_fw CGGTAACTAACCAGAAAGGGA 
Streptococcus sp. activity – 16S rDNA Designed by Dr. Adamek (TiHo) 

RT-qPCR 
Plasmids Strept16S_rv ATAAATCCGGACAACGCTCGRAGA 

TNFα1_fw GAGCTTCACGAGGACTAATAGACAGT 
Carp – Tumor necrosis factor α isoform Forlenza et al. 2009a RT-qPCR 

TNFα1_rv CTGCGGTAAGGGCAGCAATC 

TNFα2_fw CGGCACGAGGAGAAACCGAGC 
Carp – Tumor necrosis factor α isoform Forlenza et al. 2009a RT-qPCR 

TNFα2_rv CATCGTTGTGTCTGTTAGTAAGTTC 

Vib16S_fw GTTTGCCAGCGAGTAATGTC 
Vibrio sp. activity – 16S rDNA Designed by Dr. Adamek (TiHo) 

RT-qPCR 
Plasmids Vib16S_rv TAGCTTGCTGCCCTCTGTATGCG 
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Appendix 4. 

Report produced by the University of Plymouth detailing the methodologies used for 

Next Generation Sequencing. 
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1.1. Samples 

Twenty DNA extractions were received from Keele University. The samples were divided 

into two groups: 8MGW and 15MGW, and each group contained 10 replicates. Sample 

details are listed in Appendices 1 and 2. 

 

1.2. PCR Amplification 

The 16S rRNA V1-V2 region was amplified from the DNA extractions using the primers 

338R (GCW GCC WCC CGT AGG WGT) and 27F (5’ - AGA GTT TGA TCM TGG 

CTC AG – 3’). The following reagents were included in each PCR tube: 1 µL of primer 

338R and 1 µL of primer 27F (each 50 pmol µL
-1

; Eurofins MWG, Ebersberg, Germany), 

2 µL of DNA template, 50 µL of MyTaq
TM

 (Bioline, London, UK) and 34 µL of PCR 

grade water. Thermal cycling was conducted using a TC-512 thermal cycler (Techne, 

Staffordshire, UK) under the following conditions: initial denaturation at 94°C for 7 min, 

then 10 cycles at 94°C for 30 s, followed by a touchdown of 1°C per cycle from 62 -53°C 

for 30 s and 72°C for 30 s. A further 20 cycles were performed at 94°C for 30 s, 53°C for 

30 s and 72°C for 30s before a final extension for 7 min at 72°C.  

 

Agarose gel electrophoresis revealed multiple bands after PCR amplification (Figure 1). 

PCR reactions were therefore cleaned using a QIAquick Gel Extraction Kit (QIAGEN) 

following the manufacturer’s instructions.  

 

 
Figure 1. Agarose gel of PCR amplicons. Note several bands (black arrow head) larger 

than 350 bp (V1-2 region) (white arrows). 

 

 

1.3. High-throughput sequencing and bioinformatics 

 

Prior to sequencing the amplicons were assessed for fragment concentration using an Ion 

Library Quantitation Kit (LifeTechnologies
TM

, USA), and concentrations were then 

adjusted to 26 pM. Amplicons were attached to Ion Sphere Particles (ISPs) using Ion 

PGM
TM

 Template OT2 400 kit (LifeTechnologies
TM

, USA) according to the 

manufacturer’s instructions. Multiplexed sequencing was conducted using Ion Xpress
TM

 

Barcode Adapters (LifeTechnologies
TM

) and a 318
TM

 chip (LifeTechnologies
TM

) on an Ion 

Torrent Personal Genome Machine (LifeTechnologies
TM

) at the Systems Biology Centre in 



     January 2016. Plymouth University 
 

279 

Plymouth University (UK). Sequences were binned by sample and filtered within the PGM 

software to remove low quality reads. Data were then exported as FastQ files. 

 

Taxonomic analyses of sequence reads were performance after the removal of low quality 

scores (Q score <20 at 80% probability) with FASTX-Toolkit (Hannon Lab, USA). 

Sequences were concatenated and sorted by sequence similarity into a single fasta file. 

Sequences were denoised and analyzed with QIIME (Caporaso et al., 2010). Briefly, OTU 

mapping was performed using the USEARH quality filter pipeline (Edgar, 2010), to 

remove putatively erroneous reads (chimeras), then OTU picking was achieved with a 

minimum pairwise identity of 97%. The most abundant sequence in each OTU were 

selected to assign a taxonomic classification based on the Greengenes database (DeSantis 

et al., 2006) using the RDP classifier (Wang et al., 2007), clustering the sequences at 97% 

similarity with a 0.80 confidence threshold. PyNast was used to create a multiple 

alignment of the representative sequences for each OTU (Caporaso et al., 2009) with 

minimum sequence length threshold of 150 base pairs and 95% identification. Sequences 

were filtered to remove outliers and filter positions with gaps (0.95) and singletons.  

 

Alpha diversity metrics were calculated on rarefied OTU tables with QIIME to asses 

sampling depth coverage using observed species, Chao1, Shannon’s diversity index and 

Good’s coverage. QIIME was also used to calculate Beta diversity metrics among samples 

using unweighted and weighted Unifrac distances (Lozupone et al., 2007) and Bray-Curtis 

similarity (Bray and Curtis, 1957). The distance matrices were represented by two 

dimensional principal coordinates analysis (PCoA) plots. Reads assigned to the 

Cyanobacteria phylum (after Wong et al., 2013) and the Propionibacteriaceae Family 

were considered as contaminants, and thus were removed from downstream anlyses.  

 

1.4. Statistics 

To test for significant differences among intestinal microbiome data a non-parametric t-test 

was performed to compare OTUs abundance using STAMP and alpha diversity metrics. 

Vegan and ape packages of R were used to analyse the beta diversity of the groups. 

Statistical significance was accepted at the P < 0.05 level. 

 

2. Results and Discussion  

2.1. High-throughput sequencing analysis 

 

High-throughput sequencing libraries from samples generated 3,011,088 sequences. After 

trimming, QC and removal of Cyanobacteria (2,736 reads) and Propionibacteriaceae 

(1,111 reads), a total of 1,288,902 reads were retained. Good’s coverage rarefaction curves 

for all individual samples reached a plateau close to 1 (i.e. 0.9988-0.9989) (Figure 2; Table 

1), thus the microbiome of the samples were fully sampled.   
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Figure 2. Good’s coverage rarefaction curves of the intestine samples. 

 

 

Table 1. Good’s coverage estimations by treatment. 

Sample code Good’s coverage 

8MGW 0.9988 ± 0.0001 

15MGW 0.9989 ± 0.0001 

 

The majority of reads derived from the mucosa samples belonged to members of 

Proteobacteria (accounting for 70.1% of the reads), Fusobacteria (27.2%), Firmicutes 

(2.2%) and to a lesser extent Actinobacteria, Bacteriodetes, GN02, Verrucomicrobia were 

also observed (Table 2 and Figure 3). There were no significant differences in the phyla 

composition between the treatments.  

Table 2. Abundance of the OTUs present in the treatments at the phylum level.  

Taxon 8MGW 15MGW 

Proteobacteria 69.85 ± 34.25 70.27 ± 27.01 

Fusobacteria 26.83 ± 30.33 27.54 ± 27.57 

Firmicutes 2.66 ± 6.84 1.65 ± 2.62 

Actinobacteria 0.37 ± 0.37 0.34 ± 0.28 

Bacteroidetes 0.16 ± 0.11 0.15 ± 0.11 

GN02 0.00 ± 0.00 0.02 ± 0.05 

Verrucomicrobia 0.04 ± 0.14 0.00 ± 0.00 

Bacteria (Other) 0.05 ± 0.15 0.00 ± 0.00 

Data are represented by mean ± SD.  
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Figure 3. The relative abundance (100% stack bars) of the reads from individual samples, 

assigned at the phylum level.  

 

Table 3 and Figure 4 show the most abundant genera per treatment and per sample, 

respectively. The OTUs composition of the samples was very similar, but some significant 

differences were observed for OTUs present at relatively low abundances. For example, 

the abundance of Bradyrhizobium, Enterobacteriaceae, Leuconostoc, Acidovorax, 

Clostridium, Trabulsiella was significantly higher in the 15 treatment than in the 8 group 

(P < 0.05).  

 

At the species level the samples of the treatment 15 contained significantly higher 

abundance of Bradyrhizobium sp., Clostridium butyricum, Leuconostoc sp., Lactobacillus 

zeae, Trabulsiella sp., Acidovorax sp., Brevibacillus reuszeri and some unknown species 

of the Genus Pseudomonas and Bradyrhizobium and unknown species from the Family 

Enterobacteriaceae and Caulobacteraceae (P < 0.05). Data at the species level is provided 

in a separate excel file.  
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Table 3. Abundance of the OTUs at the genus level (where possible). Data represented are 

means ± SD of the genera with abundance accounting for >0.1% of the total reads. 

 8MGW  15MGW 

Phyllobacterium
 

55.72 ± 31.82 52.22 ± 27.69 

Cetobacterium
 

26.61 ± 30.06 27.54 ± 27.57 

Family Phyllobacteriaceae (Other)
 

5.28 ± 3.03 5.27 ± 2.64 

Vibrio
 

2.18 ± 3.15 5.00 ± 10.27 

Family Rhodospirillaceae (Other)
 

1.86 ± 1.15 1.79 ± 1.16 

Bradyrhizobium
 

0.71 ± 0.45
a 

1.57 ± 0.59
b 

Order Rhizobiales (Other)
 

1.22 ± 0.67 1.35 ± 0.80 

Enhydrobacter
 

0.50 ± 0.65 0.62 ± 0.60 

Order Aeromonadales (Other)
 

0.29 ± 0.28 0.43 ± 0.46 

Lactobacillus
 

0.03 ± 0.04 0.42 ± 1.00 

Order Vibrionales (Other)
 

0.13 ± 0.21 0.39 ± 0.68 

Mesorhizobium
 

0.33 ± 0.21 0.33 ± 0.21 

Patulibacter
 

0.14 ± 0.12 0.22 ± 0.21 

Pediococcus
 

0.00 ± 0.00 0.21 ± 0.65 

Lactococcus
 

0.01 ± 0.01 0.18 ± 0.46 

Stenotrophomonas
 

0.11 ± 0.08 0.16 ± 0.11 

Order Clostridiales (Other)
 

0.88 ± 2.38 0.16 ± 0.14 

Enterobacteriaceae (Other)
 

0.06 ± 0.04
a 

0.14 ± 0.09
b 

Family Bradyrhizobiaceae (Other)
 

0.12 ± 0.14 0.14 ± 0.11 

Streptococcus
 

0.25 ± 0.62 0.12 ± 0.12 

Family Sphingomonadaceae (Other) 0.06 ± 0.09 0.12 ± 0.14 

Polynucleobacter 0.40 ± 0.95 0.11 ± 0.15 

Leuconostoc 0.02 ± 0.03
a 

0.09 ± 0.08
b 

Flavobacterium 0.11 ± 0.12 0.08 ± 0.07 

Acidovorax 0.01 ± 0.01
a
 0.04 ± 0.03

b
 

Clostridium 0.00 ± 0.00
a
 0.02 ± 0.01

b
 

Family Lachnospiraceae (Other)
 

0.74 ± 2.13 0.01 ± 0.01 

Trabulsiella
 

0.00 ± 0.00
a
 0.01 ± 0.01

b
 

Family Fusobacteriaceae (Other)
 

0.20 ± 0.59 0.00 ± 0.00 

Ruminococcus
 

0.28 ± 0.82 0.00 ± 0.00 

Family Desulfovibrionaceae (Other)
 

0.22 ± 0.65 0.00 ± 0.00 

Others
 

1.38 ± 1.91 1.11 ± 0.43 
a,b

 different superscripts denote significant differences (P < 0.05) 
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Figure 4. The relative abundance (100% stack bars) of the reads from individual samples, 

assigned at the genus level. Data shown are those accounting for >0.1% of the total 

sequence reads.  

The alpha diversity parameters are displayed in the Table 4. No significant differences 

were detected between the treatments.  

 

Table 4. Alpha diversity parameters. 

Sample code Chao1 
Observed 

species 

Phylogenetic 

tree 
Shannon 

8MGW 189.42 ± 30.26 155.73 ± 29.69
 

6.48 ± 1.2
 

2.53 ± 0.61
 

15MGW 199.4 ± 27.01 170.53 ± 24.11
 

6.72 ± 0.59
 

2.78 ± 0.48
 

t stat -0.738 -1.16 -0.528 -0.949 

P-value 0.463 0.268 0.623 0.353 

Data are represented by mean ± SD.  

 

Figures 5 shows the beta diversity of the samples through PCoA plots (unconstrained). 

Figure 6 shows Distance-based ReDundancy Analysis (dbRDA) when the data are 

constrained by the treatments. No significant differences were observed between the 

treatments in any of the beta rarefactions statistics. 
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          A]                                                              B]              

 
Figure 5. Beta rarefaction PCoA plots of samples using Bray-Curtis (A) and Weighted (B) 

approaches. 8MGW: red; 15MGW: blue. 

 

          A]                                                              B]              

  

 

Figure 6. Distance-based ReDundancy Analysis (dbRDA). Beta rarefaction plots of 

intestines samples following Bray-Curtis (A) and Unweighted (B). 
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Appendix 1. Samples provided. 

Molecular microbiology analysis 

         

Group 1 - Samples to analyse (n=10) 

DNA extraction 8M1GW DNA extraction 8M6GW 

DNA extraction 8M2GW DNA extraction 8M7GW 

DNA extraction 8M3GW DNA extraction 8M8GW 

DNA extraction 8M4GW DNA extraction 8M9GW 

DNA extraction 8M5GW DNA extraction 8M10GW 

Group 2 - Samples to analyse (n=10) 

DNA extraction 15M1GW DNA extraction 15M6GW 

DNA extraction 15M2GW DNA extraction 15M7GW 

DNA extraction 15M3GW DNA extraction 15M8GW 

DNA extraction 15M4GW DNA extraction 15M9GW 

DNA extraction 15M5GW DNA extraction 15M10GW 

 

Appendix 2. Identification of samples used in microbiological analyses and number of 

sequence reads per sample. 

Sample code Sample ID Number of reads 

sample178 8M1GW 49739 

sample179 8M2GW 64042 

sample180 8M3GW 47995 

sample181 8M4GW 54252 

sample182 8M5GW 113940 

sample183 8M6GW 89023 

sample184 8M7GW 88378 

sample185 8M8GW 65637 

sample186 8M9GW 103753 

sample187 8M10GW 55412 

sample188 15M1GW 43512 

sample189 15M2GW 36247 

sample190 15M3GW 31854 

sample191 15M4GW 65047 

sample192 15M5GW 57941 

sample193 15M6GW 67808 

sample194 15M7GW 74304 

sample195 15M8GW 63196 

sample196 15M9GW 55336 

sample197 15M10GW 61486 
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