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ABSTRACT 

 

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterised by chronic 

synovial inflammation, ultimately leading to joint destruction and permanent disability. 

Disease expression may be affected by genetic variations and environmental factors 

such as cigarette smoking. The main objective of this study was to identify some of the 

main determinants of poor outcome in RA, both in terms of disease severity and co-

morbidity. Analysis of possible interaction of genetic factors with smoking was carried 

out. Candidate genes included GSTM1, GSTT1, VEGFA, eNOS, MMP1, MMP2, 

MMP3, TGFB1 and PTPN22.  

 

Smoking was associated with seropositive RA, in particular with RF+ RA. It was 

associated with the development of erosive disease and with more severe functional 

outcome in seronegative patients.  

 

Promoter polymorphism VEGFA-2578(A/C) (rs699947) was associated with serum 

VEGF-A level, which may reflect a genotype-specific response to inflammation. This 

polymorphism was associated with disease activity, which only occurred in non-

smokers. The same polymorphism was also associated with the occurrence of IHD and 

MI, which may be due to an interaction with smoking.  

 

Both MMP1 (rs1799750) and MMP3 (rs679629, rs3025058) polymorphisms were 

independently associated with serum MMP-1 level, whereas serum MMP-3 was mainly 

associated with MMP3 polymorphisms. MMP3 SNPs were associated with disease 

activity, independent of systemic inflammation and serum MMP-3. A haplotype across 
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the MMP1-3 loci was associated with the development of erosive disease in earlier RA. 

Evidence of interaction with smoking was also found regarding the above association. 

 

No association of polymorphisms in TGFB1 with serum TGF-β1 level was found. A 

missense polymorphism TGFB1+868(C/T) (rs1800470) was associated with the 

occurrence of IHD and MI, which may be explained by an interaction with smoking.  

 

The current thesis highlighted the complexity of factors associated with severity and co-

morbidity in RA, and showed the importance of smoking in exacerbating various 

aspects of disease outcome. 
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1.1 RHEUMATOID ARTHRITIS 

 

1.1.1 History, definition and classification 

 

The first known traces of arthritis date back at least as far as 4500 BC. A text dated 123 AD 

first described symptoms very similar to rheumatoid arthritis (RA). In 1800, the first 

recognized description of RA was made by the French physician Dr. Augustin Jacob 

Landré-Beauvais. The name “RA” itself was coined in 1859 by the British rheumatologist 

Dr. Alfred Baring Garrod.  

 

The initial definition was a more general description of rheumatoid disease that has since 

been classified into a number of separate disease entities. Although the description today is 

more detailed and specific, there is no exact definition. It is suggested that the present 

classification of RA may still incorporate more than one disease entity. Generally, based on 

its clinical feature, RA is described as a systemic autoimmune disease characterised by 

chronic inflammation of the synovial joints, ultimately leading to joint destruction and 

permanent disability. The widely accepted classification of RA is the 1987 American 

College of Rheumatology (ACR) criteria for the diagnosis of RA (Table 1.1.1a). Recently, 

a new classification criteria was released jointly by the ACR and the European League 

Against Rheumatism (EULAR) (Table 1.1.1b).  
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Table 1.1.1a The 1987 ACR criteria for the diagnosis of RA  

Criterion Comments 

1. Morning stiffness Duration > 1 hour, lasting > 6 weeks 

2. Arthritis of at least three joints* Soft tissue swelling/exudation, lasting > 6 

weeks 

3. Arthritis of hand joints Wrists, MCPs or PIPs, lasting > 6 weeks 

4. Symmetrical arthritis At least one area, lasting > 6 weeks 

5. Rheumatoid nodules   

6. Positive rheumatoid factor (RF)  

7. Radiographic changes Erosions, particularly wrists, hands and 

feet 

At least 4 criteria must be fulfilled and there are no exclusion criteria; * Possible area: 

metacarpophalangeal joints (MCPs), proximal interphalangeal joints (PIPs), wrist, elbow, 

knee, ankle, metatarsophalangeal joints (MTPs).  

                                                                              (Reproduced from Arnett et al, 1988) 
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Table 1.1.1b The 2010 ACR/EULAR classification criteria for RA 

 Score 

Target population (Who should be tested?): Patients who  

1) have at least 1 joint with definite clinical synovitis (swelling)*  

2) with the synovitis not better explained by another disease†  

Classification criteria for RA (score-based algorithm: add score of categories A 

– D; a score of ≥ 6/10 is needed for classification of a patient as having definite 

RA)‡ 

 

A. Joint involvement§  

1 large joint¶ 0 

2 – 10 large joints 1 

1 – 3 small joints (with or without involvement of large joints)# 2 

4 – 10 small joints (with or without involvement of large joints) 3 

> 10 joints (at least 1 small joint)** 5 

B. Serology (at least 1 test result is needed for classification) ††  

Negative RF and negative anticitrullinated protein/peptide antibodies (ACPA) 0 

Low-positive RF or low-positive ACPA 2 

High-positive RF or high-positive ACPA 3 

C. Acute-phase reactants (at least 1 test result is needed for classification) ‡‡  

Normal C-reactive protein (CRP) and normal erythrocyte sedimentation rate 

(ESR) 

0 

Abnormal CRP or abnormal ESR 1 

D. Duration of symptoms§§  

< 6 weeks 0 

≥ 6 weeks 1 

* The criteria are aimed at classification of newly presenting patients. In addition, patients 

with erosive disease typical of RA with a history compatible with prior fulfilment of the 

2010 criteria should be classified as having RA. Patients with longstanding disease, 

including those whose disease is inactive (with or without treatment) who, based on 

retrospectively available data, have previously fulfilled the 2010 criteria should be 
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classified as having RA; † Differential diagnoses vary among patients with different 

presentations, but may include conditions such as systemic lupus erythematosus, psoriatic 

arthritis, and gout. If it is unclear about the relevant differential diagnoses to consider, an 

expert rheumatologist should be consulted; ‡ Although patients with a score of < 6/10 are 

not classifiable as having RA, their status can be reassessed and the criteria might be 

fulfilled cumulatively over time; § Joint involvement refers to any swollen or tender joint 

on examination, which may be confirmed by imaging evidence of synovitis. Distal 

interphalangeal joints, first carpometacarpal joints, and first MTPs are excluded from 

assessment. Categories of joint distribution are classified according to the location and 

number of involved joints, with placement into the highest category possible based on the 

pattern of joint involvement;  ¶ “Large joints” refers to shoulders, elbows, hips, knees, and 

ankles; # “Small joints” refers to the MCPs, PIPs, second through fifth MTPs, thumb 

interphalangeal joints, and wrists; ** In this category, at least 1 of the involved joints must 

be a small joint; the other joints can include any combination of large and additional small 

joints, as well as other joints not specifically listed elsewhere (e.g. temporomandibular, 

acromioclavicular, sternoclavicular, etc.); †† Negative refers to international unit (IU) 

values that are less than or equal to the upper limit of normal (ULN) for the laboratory and 

assay; low-positive refers to IU values that are higher than the ULN but ≤ 3 times the ULN 

for the laboratory and assay; high-positive refers to IU values that are > 3 times the ULN 

for the laboratory and assay. Where RF information is only available as positive or 

negative, a positive result should be scored as low-positive for RF; ‡‡ Normal/abnormal is 

determined by local laboratory standards; §§ Duration of symptoms refers to patient self-

report of the duration of signs or symptoms of synovitis (e.g. pain, swelling, tenderness) of 

joints that are clinically involved at the time of assessment, regardless of treatment status.  

(Reproduced from Aletaha et al, 2010) 
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1.1.2 Epidemiology 

 

RA afflicts both males and females of all ages, although the peak onset is between 40 – 50 

years of ages. It affects females more often than males, with a female-to-male excess of 

between 2 and 4 times. Females usually exhibit a more aggressive disease and a poorer 

long-term outcome. Males, however, are more likely to die from extra-articular 

complications of RA. The specific reason for these differences is not well understood, 

although this has been interpreted as suggestive of involvement of sex hormones (Da Silva 

and Hall, 1992). 

 

RA is a worldwide disease. It affects all races and ethnic groups, although the prevalence 

of the disease may vary. In Caucasians, the figure for prevalence is approximately 1%. In 

other nationalities, such as the residents in eastern Asia, rural Africa and Caribbean, the 

rate is normally lower. In contrast, dramatically increased prevalence has been reported in 

several American Indian and Alaska Native populations, with the highest record at 7.1% 

(Ferucci et al, 2005). These data support a genetic role in disease risk. Furthermore, they 

also imply that the geography and culture related factors including climate, lifestyle and 

diet may also have an affect. 

 

The family history can be a risk factor for RA. In particular families, the occurrence of the 

disease is higher, especially with the first- and second-degree relatives compared to the 

background population (Grant et al, 2001). Twin study has estimated that genetics account 

for approximately 50 – 60% towards RA susceptibility (MacGregor et al, 2000).  
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Permanent remissions of RA are very rare once the joint damage has started. The majority 

of patients suffer from RA until their death. In most case, the disease is chronic and 

becomes progressively more severe over time. The life expectancy is reduced by 

approximately 7 years in males and 3 years in females, which is mainly due to the co-

morbidities including infections, cardiovascular, respiratory and renal diseases, and RA 

itself (Hakim et al, 2006). 

 

1.1.3 Aetiology  

 

Knowledge of the chain of aetiological approaches that lead to the development of RA is 

unknown, although it is believed that multiple factors, including environmental and genetic 

ones, are involved. Complicated interactions between these factors are thought to be 

important in triggering immunologic events that eventually result in the clinical signs of 

RA. The relative contribution of the genetic component is though to be 50 – 60% and the 

remaining risks are attributable to environment, which indicates that both constitute great 

influence on the development of disease. The role of environmental and genetic factors on 

the aetiology of RA will be discussed in Sections 1.2 and 1.3 respectively.  

 

It is more likely that each of the individual disease phenotypes results from a number of 

different combinations of genetic and environmental risk factors. Some risk factors may 

have a strong effect but only in a small proportion of patients, while others will have weak 

effects and be present in a larger number of individuals but require the involvement of 

other risk factors.  
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1.1.4 Pathology 

 

The fundamental pathological abnormality in RA is synovitis. The synovial membrane in 

RA becomes hyperplastic and, on direct visualization both the lining and sublining layers 

of synovium demonstrate characteristic changes in histology. In the lining layer, the 

number of macrophage-like and fibroblast-like synoviocytes increases, and the thickness of 

the intima increases from the normal 2~3-cell layers up to 10-cell layers. The sublining 

becomes highly infiltrated with peripheral blood-derived inflammatory cells that 

particularly include macrophages, B- and cluster of differentiation (CD)4+T-lymphocytes. 

Follicles of lymphoid cells may be present, resembling germinal centres of lymph nodes. 

Neovascularization driven by vascular endothelial growth factor A (VEGFA) and vascular 

cell adhesion molecule-1 (VCAM-1) develops dramatically, which is an essential feature of 

the hyperplastic sublining layer.  

 

The nature of the synovium changes along with the disease progression. Hyperplastic 

synovial lining forms an aggressive front called pannus which ignores the normal tissue 

boundaries and extends from the joint margins, and erodes the articular cartilage. Extensive 

erosion of cartilage and bone, with concomitant involvement of surrounding tissue, leads to 

joint destruction.  

 

Imbalance of inflammatory mediators may be a central pathogenic mechanism in RA. 

Increased levels of cytokines are present in the RA synovium. Tumour necrosis factor 

alpha (TNF-α) and interleukin (IL)-1 are the prominent cytokines, but many other pro-

inflammatory ones, including IL-6, IL-12, IL-15 and IL-18 are also present. The overall 

spectrum of cytokines present is more consistent with a macrophage rather than with a T-
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cell source, although low levels of T-helper 1 (Th1) related interferon gamma (IFN- γ), and 

T-helper 2 (Th2) related IL-4 are detected. Nevertheless, the RA joints also contain anti-

inflammatory cytokines, such as IL-10, IL-13 and transforming growth factor alpha (TGF-

α), and high levels of cytokine-neutralizing factors, such as soluble TNF-α receptors and 

IL-1 receptor antagonist (IL-1ra). These findings together, however, give a suggestion that 

cytokine imbalance in favour of pro-inflammatory mediators may play an important role in 

resulting in RA. Other pro-inflammatory factors present within the RA joints include the 

pleiotropic mediator nitric oxide (NO), prostaglandins and leukotrienes, and reactive 

oxygen intermediates. Synovial TNF-α could influence the expression of other pro-

inflammatory mediators such as IL-1 and granulocyte-macrophage colony-stimulating 

factors (GM-CSF), which implicates its central role in the RA cytokine cascade. Its 

production may be driven by T-cells. Cell-to-cell contact between activated T-cells and 

synovial monocytes may be a stimulus to TNF-α production (Hakim et al, 2006).  

 

The mechanism behind bone and cartilage destruction in RA is not well understood. 

However, it is known that a variety of destructive enzymes are secreted by pannus. A 

superfamily of proteases called metzincins (zinc-dependent metallopeptidases) is 

prominently involved. In this superfamily, there are the matrixin family of matrix 

metalloproteinases (MMPs), the transmembrane proteases containing disintegrin and 

metalloprotease domains (ADAMs) and the secreted ADAMs with thrombospondin 

domain (ADAMTSs). There are more than 20 members in the MMP and ADAMTS family 

including the collagenases, gelatinases, stromelysins, some elastases and aggrecanases. 

These enzymes act on collagen and the proteoglycan matrix, thereby destroying the central 

structure of articular cartilage, tendon and bone extracellular matrix (ECM) proteins in 

synovial joint arthritis (Malemud, 2006). Furthermore, MMPs also appear to play an 
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essential role in the early T-cell mediated phase of RA (Kammer et al, 1985), in the 

cytokine-induced inflammatory response that promotes progressive ECM protein 

degradation (Malemud, 2004) and in dysfunctional apoptosis (Malemud et al, 2005), all of 

which are important features of arthritis pathophysiology. Tissue inhibitors of 

metalloproteinases (TIMPs) are well known for their MMP inhibitory activity, and there is 

evidence that some TIMPs also inhibit specific ADAM and ADAMTS enzymes 

(Mohammed et al, 2003). A balance between destructive and inhibitory metalloproteinases 

in the microenvironment is thought to be essential to maintain the normality of joints. 

Metalloproteinase activity is linked to the activation of various cytokines involved in 

inflammation. The net metalloproteinase activity can shift the balance between some pro- 

and anti-inflammatory cytokines. Cytokines, in turn, also induce the production and 

activation of various metalloproteinases. An imbalance in one axis can potentially cause 

imbalance in the other, perpetuating a loop of destructive activity in RA (Mohammed et al, 

2003). 
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Figure 1.1.4a The projected interactions between the metalloproteinase axis and the 

cytokine axis in RA 

 

(Reproduced from Mohammed et al, 2003) 

 

1.1.5 Co-morbidity 

 

A co-morbid condition is a medical condition that co-exists along with the disease of 

interest. Co-morbidity can be further defined in terms of a current or past condition. It may 

be affected by risk factors also for the primary disease, may be linked to the process and/or 
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the treatment of the primary disease, or may be completely independent of these. The more 

co-morbidities a patient has, as may be expected, the greater the utilization of health 

services, the greater societal and personal costs, the poorer the quality of life, and the 

greater chances of hospitalization, disability and mortality. Furthermore, co-morbidity 

usually makes diagnosis and treatment decisions more challenging, leading to greater 

difficulty in terms of patient care. Therefore, for researchers, it is important to understand 

the linkage/relationship between the primary disease and its co-morbidities; for physicians, 

it is essential to recognize such co-morbid illnesses and to account for them in the care of 

the individual patients.  

 

A RA patient has approximately 1.6 co-morbidities on average (Wolfe and Michaud, 2008), 

and the number increases with the progress of RA and the patient’s age. RA leads to 

outcomes in different aspects including mortality, work disability, hospitalization, medical 

costs, quality of life, happiness, etc. Different co-morbidities influence such outcomes 

variously. For example, cardiac and pulmonary co-morbidities are mostly associated with 

the premature death, while depression is thought to be strongly associated with work 

disability (Gabriel and Michaud, 2009). 

 

Cardiovascular disease  

 

Cardiovascular disease (CVD) is a major co-morbid condition in RA with increased 

prevalence compared with that in the general population. It has been reported to account 

for almost 50% of the excess mortality in RA (Naz and Symmons, 2007; van Doornum et 

al, 2002). The most common CVD is ischemic heart disease (IHD). Adequate studies have 

demonstrated significantly higher incidence of IHD in RA patients in comparison to 
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control subjects (Maradit-Kremers et al, 2005; Watson et al, 2003; Wolfe, et al, 2003; 

Solomon et al, 2003; Fischer et al, 2004; Sodergren et al, 2007; Turesson et al, 2004; del 

Rincon, 2001). Research also has shown that the clinical presentation of IHD in RA 

appears to be different to that in the normal population, with RA patients more likely to 

experience unrecognized myocardial infarction (MI) and sudden death (Maradit-Kremers 

et al, 2005). An emerging body of literature now indicates that individuals with RA are also 

at high risk for developing heart failure, especially in RF positive patients (Nicola et al, 

2005). 

 

Malignancy 

 

Cancer is the second most common cause of death in RA, just after CVD. Overall, there is 

only slightly increased incidence rate in RA subjects with the “standardized incidence rate” 

estimated to be 1.05 (95% CI = 1.01 – 1.09), provided by a meta-analysis study which has 

summarized 13 recent publications during the past decade (Smitten et al, 2008). This 

increase appears to be due to only a few specific malignancies which may include 

lymphoma and lung cancer. After reviewing 6 recent studies, Smitten and co-workers has 

suggested that there is approximately 2-fold increased incidence of lymphoma in RA 

(Smitten et al, 2008). Another study has further demonstrated that this increased risk is 

associated with severity and inflammatory activity of the primary disorder (Baecklund, et 

al, 2006). An increased incidence of lung cancer of approximately 1.6 times has been seen 

in RA patients (Smitten et al, 2008). This is probably due, at least in part, to the excess 

exposure of cigarette smoking in both lung cancer and RA populations. Smoking has been 

strongly associated with the development of both disorders. In contrast, for certain cancer 

types, the incidence decreases in persons with RA. For example, the incidence of breast 
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cancer is reduced, although it is the second most common cause of malignancy among RA 

individuals after lung cancer (Smitten et al, 2008). The risk for colorectal cancer has also 

been reported to be decreased in RA (Smitten et al, 2008).  

 

Lung disease 

 

Among pulmonary disorders, interstitial lung disease (ILD) is an important complication of 

RA, and is associated with substantially increased mortality. The rate of ILD in RA varies 

from one study to another, ranging between 1 to 58% (Carmona et al, 2003; Dawson et al, 

2001; Gabbay et al, 1997; Gochuico et al, 2008; Mori et al, 2008; Turesson et al, 2003). 

This great difference is probably due to the lack of validated classification criteria for ILD, 

and the plethora of detection methods employed to diagnose ILD. Furthermore, the above 

studies are based on referral cohorts, since extra-articular disease is thought to be more 

frequent in patients with more severe RA, the rate of ILD may be over-estimated in some 

reports. Recently, a population based study has suggested that the lifetime-risk of 

developing ILD is 7.7% for RA population and 0.9% for subjects without RA, and that ILD 

contributes approximately 13% to the excess mortality in RA (Bongartz et al, 2010). The 

cause of ILD in individuals with RA is not well known. However, several drugs have been 

linked to certain lung diseases and/or ILD, including injectable gold, penicillamine, 

sulfasalazine (SSZ), methotrexate (MTX), infliximab and leflunomide, with some reports 

linking infliximab to rapidly progressive and/or fatal ILD (Gabriel and Michaud, 2009). In 

addition, there has been evidence suggesting cigarette smoking as a co-factor in the 

development of RA-associated ILD (Patel, et al, 2008). 
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Infection 

 

Similar to most other inflammatory diseases, RA appears to increase the risk for bacterial, 

tubercular, fungal, opportunistic and viral infections, with all infections being more 

common in more active and severe RA. This may be due to the immuno-modulatory 

effects of RA, or to the agents with immunosuppressive effects applied in its treatment 

(Doran et al, 2002). Recently, Franklin and co-authors have indicated that there is at least a 

2.5 times increased incidence of infection in inflammatory polyarthritis subjects compared 

to that in the general population within the same community. Furthermore, they also have 

suggested cigarette smoking, presence of RF and corticosteroid use as significant 

independent predictors of infection-related hospitalization (Franklin et al, 2007). There is 

another report revealing that the use of corticosteroid is associated with increased infection 

in RA, whereas the use of other disease-modifying anti-rheumatic drugs (DMARDs), 

including MTX, is not (Lacaille et al, 2008). The data with regard to the association of 

anti-TNF therapy with infection is contradictory, with positive (Bongartz et al, 2006; Curtis 

et al, 2007; Costenbader et al, 2006) and negative (Schneeweiss, et al, 2007; Wolfe et al, 

2006; Dixon et al, 2006) results both existing. Tuberculosis seems to be increased in RA 

individuals independent of treatment (Brassard et al, 2009; Carmona et al, 2003; Seong et 

al, 2007), although an American study differed in this regard (Wolfe et al, 2004). Anti-TNF 

therapy substantially enhances the risk for tuberculosis, notably in patients treated with 

infliximab (Seong et al, 2007; Wolfe et al, 2004; Keane et al, 2001). Herpes zoster has been 

increased in RA patients. Although the reason remains unclear, it may be related to 

functional status as measured by the Health Assessment Questionnaire (HAQ), and to 

treatment where monoclonal anti-TNFs are used (Wolfe et al, 2006; Strangfeld et al, 2009).  
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Gastrointestinal ulcer disease 

 

There is no evidence showing that gastrointestinal ulcers are related to a specific process of 

RA. However, increased incidence of gastrointestinal ulcers occurs in patients with RA, 

which is probably due to the use of nonsteroidal anti-inflammatory drugs (NSAIDs). 

Selective cyclooxygenase (COX)-2 inhibitors, named “coxibs”, have been associated with 

less gastroduodenal damage and risk of gastrointestinal bleeding by sparing COX-1 

enzyme in the gastric mucosa and in platelets, in comparison with conventional NSAIDs 

(Coruzzi et al, 2007). However, this reduction is incomplete, and gastrointestinal toxicity 

still exists. The risk for gastrointestinal ulceration is also associated with corticosteroid use, 

and increased further by concomitant NSAID usage (Garcia Rodriguez et al, 2001).  

 

Hypertension 

 

Increased rate of hypertension amongst RA patients has been observed, although 

contradictory reports have been also published (Panoulas et al, 2008). Several studies have 

demonstrated that hypertension is associated with subclinical atherosclerosis (Gerli et al, 

2005; Roman et al, 2006; Dessein et al, 2006) and is an important independent predictor of 

CVD with relative risk ranging from 1.49 – 4.3 (Wolfe et al, 2003; Assous et al, 2007; 

Wallberg-Jonsson et al, 1999), in patients with RA. Overall, the impact of hypertension on 

cardiovascular outcome is thought to be similar between RA patients and those who do not 

have RA (Gonzalez et al, 2008). However, since cardiovascular mortality is higher in RA 

patients compared with the general population, the number of deaths attributed to 

hypertension may be higher amongst RA subjects (Panoulas et al, 2008). 
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Anaemia 

 

Anaemia is a common co-morbid condition in individuals with RA. The estimated rate of 

mild anaemia ranges from 31.5 to 60%, at least 3 times more compared to the general 

population (Wilson et al, 2004; Wolfe and Michaud, 2006). However, severe chronic 

anaemia is rare (3.4%) in RA (Wolfe and Michaud, 2006). The literature has suggested that 

anaemic RA patients are likely to have more severe joint disease, leading to a low quality 

of life (Wilson et al, 2004). Moreover, successful treatment of anaemia has been shown to 

reduce the RA symptoms and/or improve the quality of life (Wilson et al, 2004). 

Inflammatory activity appears to be linked with anaemia, since both ESR and CRP are 

parameters among the strongest predictors of anaemia (Wolfe and Michaud, 2006). RA 

patients with co-morbid CVD, diabetes and gastrointestinal disease are more likely to have 

anaemia (Furst et al, 2009). In addition, renal function, as measured by estimated 

creatinine clearance, may also have a relationship with anaemia in RA subjects (Wolfe and 

Michaud, 2006).  

 

Osteoporosis 

 

Osteopenia is considered as a consequence of RA, decreased physical activity and 

treatment with corticosteroids. Fracture, resulting from osteoporosis, ranks highly among 

co-morbidities contributing to increased disability, future hospitalization, and mortality. 

There is approximately a 2-fold increase of fracture among patients with RA, compared to 

the general population (Gabriel and Michaud, 2009). Although osteoporosis is increased in 

RA independent of corticosteroids, the usage of this drug substantially increases the risk 
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(van Staa et al, 2006; Lane et al, 1995; Kroger et al, 1994; Haugeberg et al, 2000; Sinigalia 

et al, 2000).  

 

1.1.6 Clinical features 

 

RA usually presents as a polyarthritis affecting small joints or small and large joints. In 

addition, a wide variety of other systems may be affected by the rheumatoid process. 

Among extra-articular manifestations, rheumatoid nodules are the most common ones. As 

a disease characterized by systemic auto-immunity, the presence of several autoantibodies 

including RF and ACPA have been detected in serum and synovial fluid of RA subjects. 

 

Joint damage 

 

The start of the disease is usually insidious but also can be episodic or acute. At first 

presentation, RA is typically observed in the small peripheral synovial joints such as those 

of the hands and feet. Examples include the PIPs and MCPs of the fingers, and the MTPs 

of the toes. Early disease is characterized by pain and other cardinal signs of inflammation 

such as heat, swelling, functional loss and erythema over joints, but not by damage and 

deformity. The clinical features of synovitis are particularly apparent in the morning.  

 

If the disease remains active and uncontrolled, the inflammation will usually spread to 

additional joints, with disease manifesting also in the larger synovial joints such as the 

wrists, ankles, elbows and knees. The number and particular joints involved in each 

individual varies. It is unclear what governs the development of disease in specific joints. 

Gradual irreversible tissue damage (e.g. to tendon, cartilage, bone) may occur during the 
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disease progress, causing deformity and instability of joints. The most serious long term 

disability is associated with damage to the larger weight bearing joints.  

 

Although RA predominantly affects peripheral joints, discovertebral joints of the cervical 

spine are often affected. This may lead to atlantoaxial subluxation or, less commonly, 

subluxation at lower levels, with subsequent compression of the spinal cord. The earliest 

and most common symptom of cervical subluxation is pain radiating up into the occiput. 

Other symptoms include paraesthesia, sudden deterioration in hand function, sensory loss, 

abnormal gait, and urinary retention or incontinence (Akil et al, 1995). 

 

Extra-articular manifestation 

 

RA is a systemic inflammatory disease, which, in addition to the characteristic peripheral 

polyarthritis, can involve other tissue and organs. Nodules are the most common extra-

articular feature, while many of the other classic features occur in 5% or less normal clinic 

settings. Currently, there are no reliable predictors for these features in early RA, although 

they are generally associated with males, smokers, more severe joint disease, worse 

function, high levels of inflammatory markers, and the presence of RF, antinuclear 

antibodies (ANA) and the human leukocyte antigens (HLA)-DRB1 shared epitope (SE) 

(Young and Koduri, 2007). On the other hand, the presence and severity of extra-articular 

manifestations do not necessarily predict the development of more severe joint course. 

However, it has been suggested that the occurrence of extra-articular manifestations is 

associated with excess mortality (Turesson et al, 2002). Severe extra-articular diseases are 

also associated with an increased risk of first ever cardiovascular events in patients with 

RA (Turesson et al, 2007), which may further increase the mortality rate. Thus, a prompt 
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and specific management is needed in order to minimize extra-articular manifestations 

itself and its impact.   

 

Subcutaneous nodules are often found in patients with RA and occur as classic rheumatoid 

nodules (CRN), accelerated rheumatoid nodulosis (ARN), or rheumatoid nodulosis (RN). 

CRNs occur in approximately 20% to 25% of patients with seropositive RA, whereas this 

rate is significantly lower in seronegative disease. A much greater incidence (75%) is 

observed in patients with RA-associated Felty syndrome (Sayah and English, 2005). The 

frequency of CRN correlates directly with RF titer and more aggressive forms of disease, 

such as joints erosions and rheumatoid vasculitis (García-Patos, 2007). CRNs are relatively 

frequent in the white population, and affect males more than females. Their occurrence is 

thought to have a genetic involvement. RA patients with heterozygosity for HLA-DRB1 

alleles, specifically *0401 with B1*0404/8 or *0101, are at high risk for nodular disease 

(MacGregor et al, 1995). Most CRNs are painless, although those found on the palms or 

soles may feel uncomfortable. ARNs are recognized complication of MTX therapy in 

patients with RA. They are often painful, small nodules that are found preferably on the 

hands, feet and ears of male patients with severe RA (Segal et al, 1988; Salaffi et al, 1995; 

Filosa et al, 1999). Most ARNs are histologically identical to CRNs. HLA-DRB1*0401 

allele and RF seropositivity have been associated with MTX-induced ARN (Ahmed et al, 

2001; Williams et al, 1998). RNs commonly occur in patients with severe, seropositive 

RA. However, in some instances, skin nodules are the predominant sign, with minor or 

absent joint symptoms (García-Patos, 2007). Ginsberg and co-workers considered this 

disease entity as an unusual variant of RA (Ginsberg et al, 1975). RN patients are generally 

men in their 30 – 50 of ages. Unlike traditional RA, RN appears to have a poor association 
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with the HLA-DRB1 alleles and does not seem to lead to future development of erosive 

arthritis and systemic manifestations of classical RA (Toussirot et al, 1998). 

 

Other extra-articular manifestations are relatively rare compared to rheumatoid nodules, 

except for ILD which has been described as a complication of RA (Section 1.1.5). Ever 

published conditions are listed in Table 1.1.6a. 

 

Table 1.1.6a Published extra-articular features of RA 

Extra-articular RA  

Nodules Glomerulonephritis 

Raynaud’s phenomenon Systemic vasculitis 

Secondary Sjögren’s syndrome Severe cutaneous vasculitis 

ILD – pulmonary fibrosis Benign cutaneous and nail-fold vasculitis 

Pericarditis Lymphadenopathy 

Pleuritis Weight loss, cachexia 

Felty’s syndrome Malaise, fatigue, fever 

Polyneuropathy, mononeuropathy, 

mononeuritis multiplex 

Episcleritis, scleritis, kerato-conjunctivitis 

perforans 

Myopathy, polymyositis Amyloid 

(Modified from Young and Koduri, 2007) 

 

Autoantibodies 

 

RA is typically associated with serological evidence of systemic auto-immunity, indicated 

by the presence of autoantibodies in serum and synovial fluid. Since the initial description 

of RF (Waaler, 1940), a number of other autoantibodies have been discovered in patients 

with RA. The autoantigens recognized by these autoantibodies include cartilage 

components, stress proteins, enzymes, nuclear proteins and citrullinated proteins (Table 
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1.1.6b), demonstrating that RA is not characterized by only one autoreactivity to a single 

autoantigen but by accumulated autoreactivities in both B and T cells (Song and Kang, 

2009). The spectrum of these self-antigens and immunologically relevant epitopes 

probably varies during the disease course, and the set of autoantigens in one patient may 

differ from that in another (Bläss et al, 1999). The clinical importance and pathogenic roles 

of these antibodies are largely unknown expect for RF and ACPA, whose clinical 

usefulness has been acknowledged due to their acceptable sensitivities and specificities, 

and prognostic values. 

 

Table 1.1.6b A summary of well-characterised autoantigens in RA 

Citrullinated proteins and peptides CCP-1 and -2, fibrinogen, fibrin, vimentin, 

filaggrin, citrullinated peptides of collagen 

II, citrullinated α-enolase, citrullinated 

translation initiation factor 4G1 

Components of articular cartilage Collagen II, IX and XI 

Circulating serum proteins IgG, Fibrinogen, plasminogen, ferritin 

Nuclear components RA33/hnRNP A2, eukaryotic translation 

elongation factor 1 α 

Stress proteins HSP-65, -70 and -90, BiP 

Inflammatory/immune factors B7-H1, IL-1 α, IL-8 

Enzymes Calpastatin, α-enolase, aldolase-A, 

dipeptidyl peptidase, osteopontin, glucose-

6-phosphate isomerase 

Receptors Lipocortin 1 

Anti-neutrophil cytoplasmic antibodies  

(Adapted from Mewar and Wilson, 2006) 
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RFs are a family of autoantibodies directed to the Fc region of IgG. They are locally 

produced in RA by B cells present in lymphoid follicles and germinal center-like structures 

that develop in inflamed synovium (Wernick et al, 1985; Jones et al, 1984). There has been 

no clear evidence whether RFs are involved in the initial events triggering the disease 

process of RA or they themselves are triggered by RA. IgM isotype of RFs are the major 

RF species in RA and are detected in 60 – 80% of RA patients (Nell et al, 2005). RF has 

been proven to be a very useful marker for disease diagnosis, as included in ACR 

classification criteria for RA. However, it is not specific for RA. RF also has been 

observed in many other autoimmune disorders, such as in systemic lupus erythematosus, 

mixed connective tissue disease and primary Sjögren syndrome, as well as in some non-

autoimmune conditions, such as in chronic infections and old age (Nell et al, 2005). RFs in 

healthy individuals are distinguished from those in RA subjects. RFs from healthy 

individuals are synthesised by CD5+ B cells, exhibit low affinity for IgG, polyreactivity 

and a low ratio of replacement to silent mutations in their cluster of differentiation 

receptors (CDRs). They are under strict control to prevent the emergence of high affinity 

RF. However, in rheumatoid synovium, B cells produce high affinity RFs with multiple 

replacement mutations in their CDRs, in a process dependent on T cell help (Mewar and 

Wilson, 2006). CD40 signalling has been proven to play a crucial role here (Kyburz et al, 

1999). RF specificity to RA is increased at high titers and with IgA isotypes (Nell et al, 

2005; Jónsson T et al, 1998). High titer RF and IgA isotypes are also associated with 

radiologic erosion, extra-articular manifestations and thus, poorer disease outcome 

(Jónsson T et al, 1995; Jorgensen et al, 1996; Päi et al, 1998). The association of high titer 

RF with a poor prognosis suggests that RF may have a role in the pathogenesis of RA. 

Furthermore, RF status is a strong predictor of mortality in RA. Increased rate of early 

death has been found in patients with RF positive RA. By contrast, patients with 
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persistently RF negative RA have mortality rate similar to that in the general population 

(Gonzalez et al, 2008).  

 

ACPAs such as anti-perinuclear factor (APF), anti-keratin antibody (AKA), anti-Sa and 

anti-cyclic citrullinated protein antibodies (anti-CCP) are an overlapping group of 

antibodies with a remarkable specificity completely dependent on the citrullination of 

arginine residues (Mewar and Wilson, 2006). Citrullination is the term used for the post-

translational modification of arginine in a protein into citrulline. This reaction is performed 

by peptidylarginine deiminase (PADI) enzymes during a variety of biologic processes, and 

needs the presence of sufficient concentration of Ca2+. Apoptotic granulocytes create a 

working environment for PADI, in which cytosolic Ca2+ level rises due to caspase-

mediated plasma membrane Ca2+ pump cleavage (Vossenaar et al, 2003). Therefore, when 

the apoptotic cells are not cleared efficiently as in an inflammatory environment, 

intracellular citrullinated proteins and/or PADI are released into the extracellular space, 

where the former are taken up by antigen-presenting cells and the latter induces the 

citrullination of synovial proteins (Song and Kang, 2009). ACPAs are consequently 

produced in RA joints, where proteins are citrullinated during the inflammatory process.  

 

Although citrullination is a prerequisite to ACPA synthesis, it dose not always induce 

APCA production. APCA production appears to be limited to subjects with certain genetic 

backgrounds, among which HLA-DRB1 SE is thought to be the most dominant genetic 

factor (van Gaalen et al, 2004; Kaltenhäuser S, et al, 2007; Berglin et al, 2004). ACPAs are 

found in 70 – 90% of RA patients with high disease specificity over 90% (Schellekens et 

al, 2000; Suzuki et al, 2003). Accordingly, they are rarely detected in other diseases or in 

healthy individuals. In general, ACPA has better diagnostic value than RF in terms of 
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sensitivity and specificity. Furthermore, it has been found that ACPA precedes up to 9 

years prior to RA onset (Rantapää-Dahlqvist et al, 2003; Nielen et al, 2004), suggesting the 

production of these antibodies as the earliest preclinical events in the disease process. Their 

detection, thus, is of major interest regarding the identification of RA among most recent 

arthritides. In some RA subjects, however, ACPA sero-conversion occurs after RA onset. 

ACPA status is a predictor of disease outcome. It is associated with more erosive RA 

(Kroot et al, 2000; van der Helm-van Mil AH, et al, 2005; Im et al, 2009). Furthermore, it 

is also greatly associated with increased radiological progression, in the presence of HLA-

DRB1 SE (van Gaalen et al, 2004; Berglin et al, 2004). Thus, its prognostic value may lead 

to early aggressive treatment to prevent irreversible joint damage. Since citrullinated 

residues are the key antigenic determinants recognised by ACPAs, an anti-cyclic 

citrullinated peptides second generation assay (anti-CCP2) has been developed as a proxy 

to test this overlapping heterogeneous group of antibodies.  

 

Both RF and ACPA are present during the preclinical stage of RA, months to years prior to 

disease onset. The risk of RA development is highest when RF and ACPA are present in 

conjunction (Rantapää-Dahlqvist et al, 2003; Nielen et al, 2004). The titers of 

autoantibodies increase as disease onset is approached and most of the negative to positive 

sero-conversion occur within 3 year prior to the symptoms onset. However, in certain 

patients, sero-conversion towards either one of the two antibodies continues to occur after 

RA onset, most likely within the first few years of disease (Nielen et al, 2004). In respect 

of sensitivity and specificity, ACPA appears to have better diagnostic value. On the other 

hand, RF is a better predictor of the extra-articular manifestations of RA. However, 

recently, it has been demonstrated that citrullination occurs in the lung tissues of RA 

patients with ILD (Bongartz et al, 2007), suggesting ACPA response may be involved in 
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the pathology of RA-associated ILD. Both autoantibodies are related to high disease 

activity and bad radiological outcome. They are shown to be independently associated with 

erosive disease (De Rycke et al, 2004; Berglin et al, 2006). However, it has been suggested 

the superiority of ACPA over RF in predicting an erosive course. During RA treatment, 

both RF and ACPA tend to decrease in responsive patients, usually with a more significant 

reduction in RF (Song and Kang, 2009). 

 

1.1.7 Clinical measurement 

 

Inflammation, disease activity, joint damage and functional outcome can be described by 

several measurements to provide an indication of disease.  

 

Inflammation level 

 

A raised ESR and the presence of CRP are commonly found in patients with RA, 

especially when the disease is active. They provide the best information about the acute 

phase response, and their raised levels reflect the strength of the underlying inflammation. 

The disease is likely to progress if a raised ESR/CRP persists. Although not specific to RA, 

they are important laboratory-based parameters.  

 

ESR value tends to rise with age and be generally higher in females. It is also increased in 

states of anaemia and in black populations. The widely used rule for calculating normal 

maximum ESR values in adults is given by: ESR (mm/hour) ≤ [Age (in years) + 10 (if 

female)]/2 (Miller et al, 1983). CRP is a circulating protein synthesized by liver. In 

comparison with ESR, it is influenced by fewer known factors (apart from liver failure). 
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Although < 1 mg/l is ideal, clinical diagnosis usually identifies a level < 10 mg/l as normal 

and a level ≥ 10 mg/l as presentation of inflammation.  

 

Disease activity 

 

Tender joint count, swellen joint count, ESR level and a self-reported visual analogue scale 

(VAS) of general health are included in a combined index, called the disease activity score 

(DAS), to measure the disease activity in patients with RA. It has been extensively 

validated for its use in clinical trails in combination with EULAR response criteria. It 

provides a number between 1 and 10, indicating how active the RA is. A modified vision 

which includes 28 joint counts (DAS28) is widely used (including in the present study) 

(Prevoo et al, 1995). The formulas for DAS28 calculation is shown in Appendix 8.1.1. 

Recently, CRP levels, as a replacement of ESR, are used in DAS28-CRP (Wells et al, 

2009).  

 

Erosive damage 

 

Persistent active disease leads to largely irreversible joint damage which can be seen on X-

ray. Abnormalities seen on radiographs are important measurement to assess the course of 

RA, although it is not commonly evident in patients recently diagnosed. There are several 

types of methods available to score progressive joint damage ranging from a global score 

for the whole patient to the more sophisticated methods of scoring erosions and joint space 

narrowing in a selected number of joints. These latter abnormalities give additive 

information and are the most important features in scoring radiographs in RA. The Larsen 

score (Larsen et al, 1977) which gives a global assessment per joint is most commonly 
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used. Recently, ultrasonography and magnetic resonance imaging provide information 

about synovitis and erosion in early disease when inflammatory and destructive articular 

change is typically sub-radiographic, which gives a great advantage in early assessment of 

RA (Grassi et al, 1998; McQueen et al, 1998).  

 

Functional outcome 

 

The Health Assessment Questionnaire (HAQ) is a disability index (Fries et al, 1982) which 

was developed as a comprehensive measure of outcome in patients with a wide variety of 

rheumatoid diseases, including RA. It is a self-reported patient-oriented outcome 

measurement, and has become a mandated outcome measure for both clinical trials and 

observational studies in RA worldwide. The HAQ form is presented in Appendix 8.1.2.   

 

The mechanical joint score (MJS) (Johnson et al, 2002) is a newly developed index used to 

assess the total amount of joint damage and impairment of mechanical function in patients 

with RA. The examination and scoring system for this clinical index is presented in 

Appendix 8.1.3. 

 

1.1.8 Treatment 

 

The major therapeutic strategy for RA is to reduce the levels of inflammation and to slow 

the destructive process in the joints. There are various chemical agents available to combat 

the disease. These can be divided into 2 broad categories, the NSAIDs and the DMARDs. 

The NSAIDs are drugs with analgesic, antipyretic and anti-inflammatory (in higher doses) 

effects. They are used to reduce the levels of inflammation, to diminish symptoms, and to 
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lessen the pain. The term “nonsteroidal” is used to distinguish these drugs from steroids 

which, among a broad range of others effects, have a similar eicosanoid-depressing anti-

inflammatory action. The most prominent members of this group of drugs include aspirin, 

ibuprofen and naproxen. Most of the NSAIDs act as inhibitors of the enzyme COX, 

inhibiting both the COX-1 and -2 isoenzymes.  

 

The DMARDs are used to help suppress the destructive process in the joint and to slow 

disease progression. Although within a category, most DMARDs are unrelated, and operate 

by different mechanisms. The most commonly prescribed DMARDs are MTX and SSZ. 

MTX is an antifolate agent which impairs the function of folic acids, while SSZ plays 

several roles including suppression of IL-1 and TNF-α, promotion of apoptosis of 

inflammatory cells and increase of chemotactic factors. MTX is usually the first-line drug 

of choice, particularly when active RA has been diagnosed. However, combinations of 

DMARDs are often used together, since each drug in the combination can be used in 

smaller dosage than if it were given alone, thus reducing the risk of side effects. It is usual 

that patients receive both NSAIDs and DMARDs.  

 

Recently, the focus of drug development to treat RA has shifted away from the use of 

chemical agents and has been superseded by the development of various biological agents. 

This has evolved from an increasing understanding of the pathology within the synovium, 

in particular of the cells and proteins that appear to have significant roles in the chronic 

inflammation that resides. The most promising research has focused on TNF-α, which is 

based on the recognition of the role of TNF-α as the “master regulator” of the 

inflammatory response in many organ systems (Feldmann and Maini, 2003). TNF-α is 

elevated in the serum and synovial fluid of patients with RA (Altomonte et al, 1992; Borzi 
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et al, 1993; Barrera et al, 1993; Yocum et al, 1989). Since TNF-α is proinflammatory in 

nature, measures to neutralise these levels may lead to a therapeutic effect. This 

neutralization can be achieved with monoclonal antibodies such as infliximab (Remicade), 

adalimumab (Humira), certolizumab pegol (Cimzia) and golimumab (Simponi), or with a 

circulating receptor fusion protein such as etanercept (Enbrel).  These biological agents 

have been applied in treatment of RA, with high efficacy. However, side effects have been 

observed which include lymphoma, infections, congestive heart failure, demyelinating 

disease, a lupus-like syndrome, induction of autoantibodies, injection site reactions, and 

systemic side effects (Scheinfeld, 2004). 

 

 

1.2 ENVIRONMENTAL RISK FACTOR FOR RA 

 

1.2.1 Cigarette smoking  

 

Smoking is one of the most potent and prevalent addictive habits, influencing the 

behaviour of human beings for over 4 centuries. Tobacco smoke affects multiple organ 

systems and results in numerous smoking-induced disorders, notably the neoplastic, 

respiratory and cardiovascular diseases. Cigarette smoking has been associated with 

several autoimmune diseases, including RA (Table 1.2.1a). It influences the immune 

system in many ways with different impact according to various autoimmune diseases. In 

RA and many others, smoking substantially increases the incidence and/or leads to a worse 

outcome, whereas in ulcerative colitis, Behçet’s disease and aphthous stomatitis, it appears 

to serve as a beneficial factor.  
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It is difficult to fully understand how cigarette smoking affects a host’s immune system, 

since burning a cigarette creates as many as 6000 different components, including nicotine, 

polycyclic aromatic hydrocarbons, tobacco glycoprotein and some metals. However, it is 

known that smoking affects both cell-mediated and humoral immune responses, and is 

associated with both release and inhibition of pro-inflammatory and anti-inflammatory 

mediators. Cigarette smoke generally has been shown to augment the release of numerous 

pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, IL-8 and GM-CSF, and to suppress 

the production of anti-inflammatory cytokines such as IL-10 (Arnson et al, 2010). 

Furthermore, it has also been shown to play a role in driving macrophage and dendritic cell 

activation (Arnson et al, 2010). On the other hand, however, it has been associated with 

decrease of many immune mediators regardless of their immunological properties, through 

certain pathways and/or upon particular cell types, acting as an immunosuppressive agent. 

Indeed, there are mixed effects of smoking on the function of immune system (Table 

1.2.1b).  
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Table 1.2.1a Influence of smoking on autoimmune diseases 

Disease Manifestations of smoking 

Exacerbated by smoking  

RA Increased prevalence in smokers, mostly men 

and long-term smokers. Higher rate of 

rheumatoid nodules and multiple joint 

involvements. Low response to treatment. 

Systemic lupus erythematous Slightly elevated risk for present smokers. 

Elevated titers of anti-dsDNA in current and 

past smokers. 

Graves’ hyperthyroidism Higher disease prevalence in past and current 

smokers. Increased rates of Graves’ 

ophthalmopathy. 

Crohn’s disease Increased prevalence in past and current 

smokers. Higher prevalence of ileal disease and 

a lower prevalence of colonic involvement in 

smokers. Greater likelihood for complicated 

disease. 

Goodpasture’s syndrome Smoking predisposes to pulmonary hemorrhage 

regardless of anti-GBM titers. 

Buerger’s disease Prevalent almost entirely in young, male 

smokers. 

Primary biliary cirrhosis Increased disease prevalence in smokers. 

Systemic sclerosis Higher rates of digital ischemia in smokers. 

Multiple sclerosis Higher incidence of disease in smoking women, 

worse clinical progression. 

Firbomyalgia More pain, numbness, disease severity and 

functional difficulties in smokers. 

Improved by smoking  

Ulcerative colitis Reduced risk in current smokers. Slightly 

elevated risk in former smokers. More benign 

disease course in smokers. Symptom 

exacerbating during smoking cessation. 

Behçet’s disease and aphthous stomatitis Fewer oral aphthae in smokers. 

(Modified from Arnson et al, 2010) 
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Table 1.2.1b The mixed effects of smoking on the function of immune system 

Pro-inflammatory effects Immunosuppressive effects 

Effects on dentritic cells and antigen-presenting activity 

Activation of dendritic cell-mediated adaptive 

immunity. 

Suppression of dendritic cell maturation and 

cytokine release. 

 

Action on neutrophils and macrophages 

Increased circulatory levels of polymorphonuclear 

neutrophils. 

Suppression neutrophil-mediated inflammatory 

actions. 

Depressed polymorphonuclear neutrophils migration 

and chemotaxis.  

Reduced macrophage activity against intracellular 

organisms.  

 

Action on the T-cell lymphocyte population 

Polyhenol-rich glycoprotein stimulates the 

proliferation of peripheral T-lymphocytes. 

Increased circulatory levels of T-lymphocytes. 

Abnormal CD4+/CD8+ ratio. 

Favored activity of the Th2 allergic pathway. 

 

Nicotine inhibits the antibody-forming cell response, 

impairs antigen-mediated signalling in T-cells, and 

induces T cell anergy. 

 

Action on B cell lymphocyte population 

Augmentation of auto-reactive B cells. 

 

 

Effects on humoral immunity 

 Reduced circulating levels of immuno-globulins. 

 

Action on inflammatory markers and mediators 

Chronic smoking increases levels of acute phase 

proteins and pro-inflammatory cytokines, especially 

TNF-α, TNF-α receptors and IL-6. 

Inhibition of IL-1β, IL-2, IL-10, TNF-α, and IFN-γ 

release. 

Inhibition of endothelial cell release of IL-8. 

 

Other general non-specific mechanisms 

Exposure and release of autoantibodies. 

Release of intracellular antigens via tissue hypoxia 

or toxin-mediated cellular necrosis. 

Increased free radicals, which interact with DNA. 

Attenuation of IFN signalling. 

(Adapted from Arnson et al, 2010) 
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The first observation showing the linkage between smoking and RA was demonstrated by 

Vessey et al in the 1980s, which was a serendipitous finding from an investigation focusing 

on the effects of sex hormones in RA (Vessey et al, 1987). Since then, numerous studies 

have confirmed smoking as the best-known environmental risk factor for RA, in respect of 

both disease susceptibility and outcome. It has been suggested that both intensity and 

duration of smoking are directly related to the risk, with prolonged effects (10 – 20 years) 

after cessation (Costenbader et al, 2006). In studies evaluating intensity and duration 

separately, it appears that duration is more important (Stolt et al, 2003; Karlson et al, 

1999). However, a cumulative dose of exposure (intensity multiplied by duration) may be 

the best predictor of the risk. 

 

Smoking has a stronger influence in males than in females, on the development of RA. A 

recent meta-analysis reviewing this issue has indicated that the risk for male smokers of 

developing RA is about twice that of male non-smokers. For females, this figure drops to 

1.3. However, for heavy smokers (20 pack-years or more), the risk is equally high for both 

genders (Sugiyama et al, 2009).  

 

Smoking has been identified as a risk factor for seropositive RA. Several studies have even 

identified an association between smoking and RF in subjects without RA (Hayahara et al, 

2010; Jonsson et al, 1998; Mathews et al, 1973; Tuomi et al, 1990), supporting a role for 

this exposure very early during the development of clinical disease. In this regard, it has 

been proposed that exposure to tobacco smoke may stimulate RF production, thereby 

contributing to the clinical onset of RA. Strong association of smoking with anti-CCP has 

also been found in RA subjects. It appears that the risk for anti-CCP presence positively 

increases with the number of pack-years of smoking, in particular among individuals 
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whose exposure of smoking is over 20 pack-years. An interaction between smoking and 

HLA-DRB1 SE may be involved in the production of anti-CCP, since smoking has been 

found to be a risk factor for anti-CCP positive RA only in SE positive subjects (Linn-

Rasker, 2006). Recently, Mahdi and co-workers have demonstrated that the combined 

effect of smoking, HLA-DRB1 SE and protein tyrosine phosphatise, non-receptor 22 

(PTPN22) is strongly and preferentially associated with the presence of antibodies to the 

immunodominant citrullinated α-enolase CEP-1 epitope (anti-CEP-1), a subset of anti-CCP 

detected in 43 – 63% of the anti-CCP positive individuals (Mahdi et al, 2009). The 

literature has generally concluded the existence of association between smoking, RF and 

anti-CCP. However, most studies are based on white populations. One study indicated that 

such smoking-autoantibodies association was not seen in African Americans with recent-

onset RA (Mikuls et al, 2008).  

 

RA severity can be defined according to the degree of structural damage and to the 

occurrence of extra-articular manifestations or cardiovascular involvement. The presence 

of RF and anti-CCP is known to be associated with a more significant radiological 

progression and structural damage. Ever smokers with RA have a disease characterized by 

a greater proportion of autoantibody positivity, thereby expecting a more severe 

radiographic outcome. In the same serological group, however, recent studies conducted in 

Icelandic and German cohorts with recent-onset RA and the Swiss population-based 

registry of RA included in the Swiss Clinical Quality Management program for RA 

(SCOM-RA) all failed to show an influence of smoking on radiographic outcome 

(Manfredsdottir et al, 2006; Westhoff et al, 2008; Finckh et al, 2007). The Icelandic study 

suggested that smoking promoted the disease activity but did not significantly increase the 

structural damage of joints (Manfredsdottir et al, 2006). Meanwhile, the German study 
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found that although there was no worse joint damage, smokers usually felt worse 

(Westhoff et al, 2008). Thus, more aggressive treatment and/or better care may be applied 

amongst smokers in response to high disease activity and more pain, which may mask the 

negative impact from cigarette smoking.  

 

A smoking involved interaction with glutathione S-transferase mu 1 (GSTM1) 

polymorphism has been suggested as a predictor of structural damage. Mattey and co-

workers indicated that female RA patients who carried the GSTM1-null polymorphism 

(lack of the locus) and had ever smoked had significantly higher Larsen scores, compared 

with the remaining combinations. Since GSTM1 gene has the ability to detoxify chemicals 

and potential carcinogens in cigarette smoke, this observation provided a potential 

mechanism relative to smoking effects on RA (Mattey et al, 2002). 

 

Smoking seems to contribute significantly to the occurrence of extra-articular 

manifestations in many ethnic backgrounds including European, African-American and 

Korean populations. Several studies have seen that smokers, especially with RF positive 

disease, have an increased risk of rheumatoid nodules (Mattey et al, 2002; Nyhall-Wahlin 

et al, 2006; Mikuls et al, 2008; Kim et al, 2008). Furthermore, tobacco exposure appears to 

be associated with ILD in patients with RA (Gochuico et al, 2008; Patel et al, 2008).  

 

The majority of mortality studies concerning RA subjects have identified excess mortality 

in RA cohorts compared to that in the general population, and many have highlighted RF 

as a strong predictor. On the other hand, it also has been known that this excess mortality is 

mainly due to cardiovascular and respiratory diseases, and severe RA itself. Since cigarette 

smoking is closely linked with production of RF, is associated with heart and lung diseases, 
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and is probably connected with more severe RA, it should be considered as a risk relative 

to excess mortality in RA. In respect of the increased death from CVD particularly, study 

has found that an interaction between smoking, HLA-DRB1 SE alleles and anti-CCP is 

involved (Farragher et al, 2008). 

 

Smoking status has been associated with RA treatment responsiveness. Patients with RA 

who smoke show a greater need for DMARDs, with non- and light-smokers having a 

significantly higher probability of improvement than heavy smokers (20 pack-years or 

more) (Westhoff et al, 2008). RA patients with a history of smoking have been found to 

show a poor response to treatment with TNF antagonists, irrespective of smoking status at 

initiation of anti-TNF therapy (Mattey et al, 2009). This may be due to smoking having a 

long-term effect on TNF-α release (Glossop et al, 2006). Most recently, there is a report 

indicating that smoking is associated with less response to both MTX and anti-TNF 

treatment, with a significant increased number of non-responders amongst current smokers, 

compared with non-smokers (Wedren et al, 2009). 

 

1.2.2 Other environmental factors 

 

Although cigarette smoking is the only well-established environmental risk factor for RA, 

a number of other environmental agents are probably also involved.  

 

Drink and diet 

 

The consumption of coffee has been considered as risk factor for RA. A linkage between 

caffeine and RF positive RA, but not RF negative RA, has been observed (Heliovaara et al, 
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2000). Interestingly, decaffeinated coffee has also been associated with an increased risk of 

RA. The authors suggest that the use of industrial solvents during the decaffeination 

process may play a role in the disease development (Mikuls et al, 2002). Nevertheless, 

there is research revealing no association of caffeine/coffee intake with RA (Karlson et al, 

2003).Tea has been shown to have a protective effect, which may be due to its anti-

inflammatory and antioxidative properties (Mikuls et al, 2002). A decreased rate of RA, 

benefited by alcohol consumption, has been reported (Pedersen et al, 2006; Källberg et al, 

2009).  

 

High consumption of red meat and meat products has been associated with increased risk 

of inflammatory polyarthritis (Pattison et al, 2004). However, such association was not 

seen in a more recent study (ito-Garcia et al, 2007). The so-called “Mediterranean diet” has 

been linked with health benefits for a number of diseases and it is also true for RA 

(Skoldstam et al, 2003; Linos et al, 1999). Therefore, in order to prevent RA, consumption 

of olive oil, oil-rich fish, fruit and vegetables, and vitamin D is highly recommended.  

 

Infection 

 

There have been a large number of infectious agents that have been implicated in RA, 

including Epstein-Barr virus, retroviruses, parvovirus B19, Mycobacterium tuberculosis, 

Escherichia coli and Proteus mirabilis (Edwards and Cooper, 2005). These associations 

have been supported by increased antibody titres to the infectious organism being present 

in RA, or the possibility of molecular mimicry. However, no particular microbe has been 

directly identified as a causative factor of RA. 
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Occupational exposure 

 

An increased frequency of RA has been observed in several job categories. Many such 

occupations involve certain exposures. Studies have consistently reported that exposure of 

silica is associated with RA (Klockars et al, 1987; Steenland et al, 1995; Steenland et al, 

2001; Calvert et al, 2003). Exposure to mineral oil has also been suggested as a risk factor, 

particularly for the seropositive diseases (Sverdrup et al, 2005). Animal studies have shown 

that mineral oils can induce polyarthritis in rat, and it has been suggested that they may act 

as so-called adjuvants enhancing immune reactions (Kleinau et al, 1994; Sverdrup et al, 

1998; Svelander et al, 2001). A similar mode of action has been introduced for silica as 

well (Parks et al, 1999). Other occupational exposures associated with RA include organic 

solvents (Lundberg et al, 1994), asphalt and flour (Olsson et al, 2004).  

 

Non-genetic host factor: hormonal and reproductive factor 

 

Like most autoimmune disorders, RA has a predisposition for females, which has led to 

considerable effort on examining the role of hormonal and reproductive factors in disease 

occurrence/outcome. It has been hypothesized, based on these trends in incidence, that 

female sex hormones may be involved in the RA development, whereas androgens may 

play a suppressive role (Da Silva and Hall, 1992). Several observations have supported this 

hypothesis. For example, pregnancy is associated with a period of remission in a 

substantial proportion of female patients with RA, whereas the postpartum period and 

breastfeeding after a first pregnancy are associated with increased risk of the disease 

(Silman and Pearson, 2002). Furthermore, there is evidence suggesting that the use of oral 

contraceptives is associated with reduced incidence and severity of RA (Brennan et al, 
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1997; Jorgensen et al, 1996). In addition, it is worth mentioning that, in men, male sex 

hormones, particularly testosterone, are lower in patients with RA compared to non-RA 

subjects (Silman and Pearson, 2002). Although much effort has been devoted to the 

elucidation of hormonal pathways in the development of RA, little has been discovered.  

 

Environmental and non-genetic host factor: other 

 

Other non-genetic risk factors that have been associated with the development of RA 

include blood transfusion, obesity (Symmons et al, 1997), high birth weight (Mandl et al, 

2009) and stress (Cutolo and Straub, 2006). Low socioeconomic status has been associated 

with RF positive disease (Bengtsson et al, 2005; Pedersen et al, 2006). Furthermore, a 

sexually transmitted agent with a higher male-to-female than female-to-male transmission 

rate might theoretically explain the female predominance in RA, but only a few studies 

have examined sexual behaviour and venereal diseases as possible risk factors (Yli-

Kerttula et al, 1985; Drevlow et al, 1996).  

 

 

1.3 GENETIC INVOLVEMENT IN RA 

 

1.3.1 Identification of genetic risk  

 

The early evidence for a genetic component to RA was derived from familial and twin 

studies. In certain families, the incidence of RA is increased compared to the general 

population. It was observed that first- and second-degree relatives of a RA patient have an 

increased risk of RA (Grant et al, 2001). Twin studies provide best estimates of heritability. 

The monozygotic twin concordance rate for RA is about 4 times greater than the dizygotic 
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twin concordance rate, suggesting a heritability of 50 – 60% (Lawrence, 1969; Aho et al, 

1986; Silman et al, 1993). However, the absence of complete concordance indicates that 

RA aetiology is not solely genetic. Also, among individuals the content of genetics 

contributing to RA may vary from one to another.  

 

Currently, over 40 genetic loci have been convincingly associated with risk for RA. Apart 

from the HLA locus, the majority of the susceptibility genes have been identified in the last 

5 years, thanks to the rapidly advancing genotyping technologies and genome-wide 

association studies (GWASs). However, the function and role in disease pathogenesis of 

the newly defined risk genes are largely unknown.  A large proportion of genetic risk for 

RA still remains to be identified. Some of this “missing heritability” will likely be due to 

rare genetic variation (Gregersen 2010), thus larger sample size and extensive 

resequencing in future GWAS is required. Since the genetic regulation of a gene is 

complex, it is not easy to identify the actual causative variation (or combination of 

variants) responsible for an observed association. In addition, interaction between genes 

may play an important role relative to a disease phenotype. Indeed, it is still a very long 

way to go before we understand the genetic influence on RA.  

 

1.3.2 The major histocompatibility complex 

 

The discovery of the major histocompatibility complex (MHC) was a significant 

breakthrough in the understanding of the immune response and related biological 

processes. It was first identified and named precisely after its significant role in transplant 

rejection between mice from different endogamic strains. The MHC is a complex of 

numerous genes that encode proteins important in the assembly of antigen-presenting 
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MHC molecules, the processing of peptide antigens, and the presentation of these to T 

lymphocytes. It also houses genes for a number of other proteins that have essential roles 

in the immune and inflammatory responses. Therefore, the MHC is critical for the ability 

of the host immune system to recognise self from non-self and to elicit the appropriate 

immune response in the latter case.  

 

In humans, the MHC is also referred to as the HLA. It is located on chromosome 6 

(6p21.3), and extends over 3.6Mb between flanking genetic markers myelin 

oligodendrocyte glycoprotein (MOG) and collagen alpha-2(XI) chain (COL11A2). It is the 

most gene dense region and a highly polymorphic region. The HLA is divided into three 

subgroups, class I, class II and class III. The class I region, at the telomeric end of the 

HLA, contains the HLA class I genes, HLA-A, -B, -C, –E, -F and -G. In the class II region 

there are the HLA-DR, -DP, -DQ, -DM and -DO loci. The class III region lies between the 

class I and II regions.  
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Figure 1.3.2a Genetic location and organization of the MHC, termed the HLA in humans 

 

The class I F and G sub-region, and the class II DP and DO are not displayed.  

(Figure reproduced from Newton et al, 2004) 
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The class I and II region house the HLA genes mainly responsible for production of the 

cell-surface proteins (classic HLA molecules) that present antigens to T lymphocytes. For 

example, the HLA-A, -B and -C genes code for the α chain of the HLA class I molecule 

whose function consists in antigen presentation to the T8 lymphocytes, and genes of the 

HLA-DR, -DP and -DQ loci code for components of the HLA class II molecule whose role 

is to present peptides to T4 lymphocytes. However, the HLA-E, -F and -G genes in class I 

or  the HLA-DM and -DO loci of class II do not contribute to produce classic HLA 

molecules. Instead, the HLA-E, -F and -G genes code for non-classic molecules that have 

functions interacted with inhibitory receptors in nature killer cells, whereas the molecules 

encoded by HLA-DM and -DO are intracellular proteins. The class III region does not 

house HLA genes but contains numerous individual genes encoding for other immune 

components such as complement components (e.g. C2, C4, factor B), cytokines (e.g. TNF-

α, LTA, LTB) and heat shock protein 70 (Hsp70) (Milner and Campbell, 2001). 

 

Association with RA susceptibility 

 

Since RA is characterised by auto-immunity and pronounced inflammatory response, 

analysis of genes involving in the immune- and inflammation-related pathways is of most 

value for identifying genetic aetiological and pathogenetic factors. Accordingly, the HLA 

has become the most thoroughly investigated genetic locus in RA because of a significant 

proportion of its 200+ genes that function in the immune system.  

 

In the early 1970s, weak and variable associations between RA and HLA class I region 

genes were described using the then available serological regents. When techniques 

became available for testing HLA class II antigens, an association of RA with HLA-Dw4 
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was firstly reported in 1976, using mixed lymphocyte culture (MLC) (Stastny, 1976). 

Thereafter, a serologically defined marker, HLA-DR4, was found to be association with 

RA. Combining MLC and serological techniques distilled the RA association to a few 

specific alleles, namely DR4 Dw4, DR4 Dw14.1, DR4 Dw14.2 and DR5 Dw15. In 1990s, 

various deoxyribonucleic acid (DNA)-based techniques started to provide much greater 

precision in studies, thus the MLC and serological techniques were superseded. It was 

recognized that the MLC and serological markers listed above represented alleles in the 

HLA-DRB1 locus. These alleles are subsequently renamed as HLA-DRB1*0401, *0404, 

*0408 and *0405 respectively (Hochberg et al, 2008). 

 

The development of higher resolution HLA-DRB1 genotyping led to the demonstration 

that different HLA-DRB1 alleles are not equally associated with RA. Some alleles, such as 

DRB1*0401 and *0404, appear to confer a much greater degree of risk than others, for 

example *0101. In particular, certain combination, such as DRB1*0401/*0404, appear to 

confer an especially high risk (Wordsworth et al, 1992; MacGregor et al, 1995). There is 

also demonstration that not all HLA-DRB1 specificities are associated with the 

development of RA. In contrast, there are alleles that are negatively associated with RA 

and therefore provide a protective role. These alleles include DRB1*0103, *0402, *0802 

and *1302 (Milicic et al, 2002). 

 

In different ethnic groups the predominant RA-associated alleles vary considerably: *0401 

and *0404 are the predominant RA risk alleles in Caucasians, *0405 in eastern Asians, 

*1402 in native American Indians, and *0101 and *1001 in Israeli Jews, Greeks and 

Spaniards (Hochberg et al, 2008). Association of RA with DRB1*09 also has been reported 
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in Koreans, Chileans, Japanese and UK Caucasians (Lee et al, 2004; Gonzalez et al, 1992; 

Wakitana et al, 1998; Milicic et al, 2002). 

 

The shared epitope hypothesis 

 

Gregersen and co-workers first reported a unifying hypothesis for the association of 

different HLA-DRB1 specificities associated with RA, termed the SE hypothesis. They 

demonstrated that RA was associated with specific DRB1 alleles that encode a conserved 

sequence of amino acids (QRRAA, RRRAA or QKRAA) at residues 70 – 74 in the third 

hyper variable region (HVR3) of the DRβ1 chain. These residues constitute an α helical 

domain forming one side of the antigen binding site, a site likely to affect antigen 

presentation (Gregersen et al, 1987). The alleles carrying the SE sequence are DRB1*0401, 

*0404, *0405, *0408, *0101, *0102, *1402, *1001, *09, etc. More recently, Tezena and 

co-workers introduced a revision of the SE hypothesis that the amino acid sequence RAA 

at 72 – 74 residues was the key region in increasing susceptibility to RA, whereas the 

amino acid sequence at positions 70 and 71 was a modulator for the RAA sequence 

(Tezena et al, 2005). Mattey and co-workers developed another revised system focusing on 

the function of amino acid residue encoded at position 70. It was demonstrated that the 

presence of SE-containing alleles encoding a glutamic acid at position 70 conferred the 

greatest risk of RA. Alternatively, 2 non-SE alleles encoding an aspartic acid at position 70 

were associated with the lowest risk. The results suggest that the strength of the association 

of DRB1 genotypes with RA is dependent not only on SE status but also on which amino 

acid residues are encoded at position 70, and that the presence of an aspartic acid residue at 

position 70 protects against development of RA (Mattey et al, 2001). The alleles encoding 
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an aspartic acid at position 70 are DRB1*0103, *0402, *0802, *1302, *1102, *1103, 

*1201, etc.  

 

The function of the HLA-DR molecule is to bind peptide antigens for presentation to T 

lymphocytes. The SE motif constitutes a helical domain forming one side of the antigen-

binding site, which suggests functional importance of the SE and an ability to influence the 

nature of potentially arthritogenic peptides. Although it is not clear how SE works in RA, 

there are 3 models that have been proposed. The first model is based on T cell selection. 

HLA molecules are very important in the selection and establishment of the antigen-

specific T cell repertoire. Interactions with HLA molecules in the self-peptide context 

instruct the immature T cell to differentiate between self and non-self. Normally, T cells 

that characterize self-reactivity are deleted or inactivated, while others are positively 

selected to establish capability of recognizing foreign antigens. However, it is thought that 

in some way the SE assists the positive selection of auto-reactive T cells, and consequently 

breaks self-tolerance. Thus, the immune system reacts against the body’s own constituent 

parts. The second model is based on the principle that polymorphic determinants in the 

HLA molecule on antigen-presenting cells (APC) determine the binding and presentation 

of the antigenic peptide. A potential arthitogenic peptide, for example from the joint, might 

be targeted, and presented to mature T cell by these ‘SE-determined’ APC. However, to 

date, no peptide related to RA has been identified. In the third model, a mechanism called 

‘molecular mimicry’ may occur in which similarities between the SE and foreign protein 

might break self-tolerance and generate auto-reactive T cell clones that eventually lead to 

RA (Hochberg et al, 2008). 
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Despite incomplete details, the SE theory reasonably explains a possible mechanism in the 

pathogenesis of RA related to the HLA region genes. However, there are still a number of 

observations that do not fit comfortably with this theory. For example, in African-

Americans the SE was shown to have no significant association with RA (Alarcon et al, 

1983; Karr et al, 1980), and in Arabs RA is associated with DR markers that do not possess 

the SE (Sattar et al, 1990 (1, 2)). The presence of the SE is neither necessary nor sufficient 

for disease to occur. Although the relative risk (RR) for developing RA in SE positive 

individuals is high, the absolute risk (AR) however is relatively low. In Newton’s review, it 

is summarized that carriage of single DRB1*0401 allele has a RR of 4.7, for single *0404 

allele the RR = 5.0, for *0401/*0401 homozygotes the RR = 18.8, and for *0401/*0404 

heterozygotes the RR = 31.0. In contrast, the AR for developing RA if carrying an SE-

encoding allele is 1/35 for *0401, 1/20 for *0404, 1/80 for *0101 and 1/7 for *0401/*0404 

heterozygotes (Newton et al, 2004). Furthermore, modelling of the HLA susceptibility to 

RA has suggested that there are other susceptibility gene(s) within the HLA region, since 

simple dominant/additive/recessive model could not explain the inheritance pattern (Génin 

et al, 1998). Considerable research has gone into trying to identify the further HLA genes 

which are likely to be involved in RA. The most widely studied loci are HLA-DQ which is 

next to DRB1, and TNF genes located in the HLA class III region and approximately 1000 

kb away from DRB1. However, there is no definitive evidence that alleles in HLA-DQ 

influence susceptibility to RA, and there is compelling evidence against a direct role for 

polymorphisms in the TNF gene contributing to RA susceptibility.  
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Association with RA phenotype 

 

Polymorphisms in the HLA-DRB1 locus have been associated with RA susceptibility, with 

the SE alleles associated with increased incidence of RA. The SE alleles may also be 

related to clinical features of RA. Several studies have observed that HLA-DRB1 SE 

alleles are associated with disease onset at an earlier age in Caucasian RA patients 

(MacGregor et al, 1995; Wu H et al, 2004; Karlson et al, 2008). Recently, this association 

was confirmed in Japanese patients (Furuya et al, 2007). HLA-DRB1 SE alleles are 

associated with autoantibodies in RA, and this has been shown to interact with smoking 

and the PTPN22 gene (Padyukov et al, 2004; Klareskog et al, 2006; Linn-Rasker et al, 

2006; Kallberg et al, 2007; Morgan et al, 2009; Mahdi et al, 2010). There was a further 

suggestion that the association between SE and RF+ was primarily due to DRB1*0401 

allele (Mattey et al, 2002). In addition, a recent study, which analyzed 2,221 single-

nucleotide polymorphisms (SNPs) spanning 10.7 Mb from 6p22.2 to 6p21.31 across the 

HLA, indicated that HLA-DRB1 was the only independent risk locus for ACPA positive 

RA within the human MHC (Ding et al, 2009).  

 

HLA-DRB1 SE alleles were shown to be associated with erosive status of RA. However, 

recent evidence indicated that this apparent association may be due to the prior association 

of DRB1 SE with anti-CCP positivity (Karlson et al, 2008). Mattey and co-workers 

reported an association of HLA-DRB1 SE alleles with greater radiographic damage in RA 

patients. Interestingly, this association was only observed in RF- patients, but not in RF+ 

patients. The authors suggested that this does not necessarily mean that the SE has no 

influence on RF+ subjects but any effect may be masked by the greater influence of 

seropositivity, since the study also found RF+ as an independent risk for worse 
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radiographic outcome (Mattey et al, 2001). Among HLA-DRB1 SE alleles, the association 

with the risk of developing worse disease of RA seems to vary, with particular 

combinations being associated with certain disease outcome. For example, *0401/*0404 

combination has been reported to be associated with worse clinical outcome (MacGregor et 

al, 1995). Homozygosity for the *0401 allele has been associated with major organ 

involvement (Weyand et al, 1992), whereas both homozygosity and heterozygosity of 2 

HLA-DRB1 SE alleles have been associated with rheumatoid nodules and vasculitis 

(Weyand et al, 1992; Perdriger et al, 1997; Mattey et al, 2002; Gorman et al, 2004). A 

Spanish report recently demonstrated that HLA-DRB1*04 SE alleles were associated with 

endothelial dysfunction, and thus may predict increased CVD in RA (Gonzalez-Juanatey et 

al, 2003). 

 

Association with RA mortality 

 

Mortality rate is increased in RA patients compared with the general population. Two 

reports published in 2007 independently demonstrated that HLA-DRB1 genotypes may be 

involved. Mattey and co-workers showed that the presence of 2 SE alleles was associated 

with increased risk of mortality from IHD and malignancy. Analysis of specific SE 

genotypes revealed that the *0101/*0401 and *0404/*0404 combinations were the 

strongest predictors of mortality from IHD, while *0101/SE+ was particularly associated 

with the death from malignancy (Mattey et al, 2007). Gonzalez-Gay and co-workers, in 

their report, indicated that the presence of single SE was sufficient to be associated with 

increased cardiovascular mortality. However, the SE was restricted to DRB1*04 alleles, in 

particular the *0404 allele (Gonzalez-Gay et al, 2007).  
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1.3.3 Other RA susceptibility genes 

 

Calculations based on monzygotic twin concordance rates and HLA haplotype sharing in 

affected sibling pairs indicate that HLA genes contribute approximately 30 – 50% of the 

total genetic risk for RA (Deighton et al, 1989). This leaves considerable room for other 

genes that are outside the HLA region to contribute to RA. It is suggested that no other 

individual region has such a powerful role as the HLA. Thus, it is more likely that the 

remaining genetic risk is distributed among several loci on different chromosomes. Since 

the discovery of PADI4 as a susceptibility gene in 2003, over 40 risk genes/loci have been 

found in recent years, which is a great achievement in this research field despite the fact 

that the mechanisms behind the association are largely unknown.  

 

Peptidylarginine deiminase 4 

 

The genome-wide linkage study of RA sibling pairs conducted by the European 

Consortium of RA Families (ECRAF) and Japan found evidence of linkage in the 1p36 

locus encompassing all the known genes that encode citrullinating enzymes (Cornelis et al, 

1998; Shiozowa et al, 1998). These genes are called PADIs, and there are 4 members in 

humans. Since the presence of ACPA is the most specific serological marker for RA, 

PADIs become candidate genes to be analysed for their association with RA. A Japanese 

case-control study first reported that functional haplotypes in PADI4 gene were associated 

with susceptibility to RA, whereas no polymorphisms in the other PADI genes were 

associated (Suzuki et al, 2003). Thereafter, similar results were consistently observed in 

other eastern Asian populations such as Koreans and Chinese (Kang et al, 2006; Fan et al 

2008). However, data based on European populations were conflicting, with positive 
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results obtained in French and German studies and negative results in British and Spanish 

studies (Gandjbakhch et al, 2009; Hoppe et al, 2006; Burr et al, 2010; Martinez et al, 

2005). Recent meta-analysis suggested that PADI4 was a susceptibility gene in both 

eastern Asian and Caucasian population, but its role in eastern Asian populations is much 

more significant (Lee et al; 2007; Iwamoto et al, 2006). Most recently, a report using both 

Japanese and Dutch samples and in consideration of sex and smoking status indicated that 

PADI4 polymorphism highly predisposes male smokers to RA, and that the genetic 

heterogeneity observed between Asian and European populations may be partly explained 

by differences in smoking prevalence among men (Kochi et al, 2010). The relationship of 

PADI4 polymorphisms with the presence of anti-CCP and disease severity (erosive status 

or functional outcome) has been investigated, with negative results in three reports (Barton 

et al, 2005; Suzuki et al, 2006; Nishimoto et al, 2008). However, in a study investigating 

the relationships between PADI4 polymorphism, anti-PADI4 autoantibodies and joint 

destruction, it was shown that PADI4 polymorphism was associated with anti-PADI4 

autoantibodies, and these autobodies were associated with severe joint destruction (Harris 

et al, 2008).   

 

Cytotoxic T lymphocyte-associated antigen 4 

 

T cells play a major role in the pathogenesis of RA. Based on the success of anti-T-cell 

therapy on animal models and association with HLA genes, it has been proposed that RA is 

a T-cell-mediated autoimmune disease (Panayi et al, 1992). Genes involved in the 

regulation of T cell responses are, therefore, strong candidate genes for RA susceptibility. 

Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) (located at 2q33), also known as 

CD152, is a T cell negative regulator. Genetic polymorphism within this gene has been 
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found to be associated with a variety of T-cell-mediated disorders (Kristiansen et al, 2000). 

A recently described CT60 A/G dimorphism (rs3087243) has been reported to associated 

with a variety of autoimmune diseases, with the CT60 A allele being protective and the G 

allele increasing susceptibility (Ueda et al, 2003; Torres et al, 2004). The G allele of CT60 

was associated with lower messenger ribonucleic acid (mRNA) levels of soluble CTLA4 

isoform, which could increase T cell activation and, therefore might have an important role 

in determining susceptibility to autoimmune diseases (Ueda et al, 2003).  

 

The first evidence of association between CTLA4 polymorphism and RA appeared in a 

Japanese study. However, this observed association was restricted to patients carrying the 

susceptible HLA allele (HLA-DRB1*0405) (Yanagawa et al, 2000). In 2005, CTLA4 as an 

independent susceptibility gene to RA was established by several Chinese studies (Lee et 

al, 2003; Cai et al, 2005; Han et al, 2005). The association has been also observed in 

Caucasian populations in larger studies (Plant et al, 2010; van der Helm-van Mil et al, 

2010), implying the influence may be weaker in Caucasians. No report relative to the 

severity of RA has been published.  

 

Signal transducer and activator of transcription 4 

 

The North American RA Consortium (NARAC) recently reported a new RA linkage region 

at chromosome 2q33 (Amos et al, 2006). Gregersen’s group then tested SNPs in and 

around 13 candidate genes within the linked chromosome 2q region for association with 

RA. A variant allele (rs7574865) of signal transducer and activator of transcription 4 

(STAT4), located on the third intron of this gene, was found to be associated with RA 

within this region in both white American and Korean populations (Remmers et al, 2007; 
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Lee et al, 2007). STAT4 encodes a transcription factor that transmits signals induced by 

several key cytokines including IL-12, IL-23 and type 1 interferons. It is a latent cytosolic 

factor that, after activation by cytokines, is phosphorylated and accumulates in the nucleus. 

Activated STAT4 stimulates transcription of specific genes including IFN-γ, a key indictor 

of T cells differentiation into Th1 cells. Thus, STAT4-dependent signalling plays a very 

important role in the development of Th1 cell response (Remmers et al, 2007). Variant 

STAT4, in this signalling pathway, may lead to an alterative T cell response, ultimately 

resulting in RA. To date, numerous publications have demonstrated that STAT4 is a 

consistent RA risk gene across Whites and eastern Asians (Kobayashi et al, 2008; Orozco 

et al, 2008; Zervou et al, 2008; Lee et al, 2010; Kelley et al, 2010; Morgan et al, 2010; van 

der Helm-van Mil et al, 2010; Plant et al, 2010), except for one suggesting that this gene is 

only associated with the presence of RF, but not with the development of disease in Han 

Chinese (Li et al, 2009). Furthermore, STAT4 has been also associated with RA in 

Colombians (Palomino-Morales et al, 2008). In contrast, in Black Americans, no such 

relationship has been seen (Kelley et al, 2010). No reports regarding the relationship with 

disease activity/severity have been published.  

 

Oligodendrocyte lineage transcription factor 3-TNF-α-induced protein 3 

 

The first published case-control GWAS, analyzing the genetics of seven complex human 

diseases, identified a moderate association of 6q23 region with susceptibility to RA 

(Wellcome Trust Case Control Consortium, 2007). Subsequently, this candidate region was 

re-genotyped in a larger independent UK cohort of 5063 cases and 3849 controls. Strong 

evidence of association was detected with SNP (rs6920220) in this region (Thomson et al, 

2007). Independently, a US study reported that there was another SNP (rs10499194) at 
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6q23 associated with RA (Plenge et al, 2007). The associations involving these 2 SNPs 

were independent of each other, and of HLA-DRB1 and PTPN22 genes (Thomson et al, 

2007; Plenge et al, 2007).  

 

The 6q23 is an intergenic region flanked by oligodendrocyte lineage transcription factor 3 

(OLIG3) and TNF-α-induced protein 3 (TNFAIP3). The TNFAIP3 gene acts as a negative 

feedback regulator of the transcription factor nuclear factor kappa-light-chain enhancer of 

activated B cells (NF-kB) in response to TNF- and toll-like receptor-, but not IL-1β-

induced activation (Boone et al, 2004; Wertz et al, 2004). It is now considered as a central 

regulator of immunopathology (Vereecke et al, 2009; Criswell 2010). It is possible that 

genetic variants could influence the function of the adjacent TNFAIP3 gene.  

 

To date, the association of genetic variants at 6q23 with RA has been established in 

European, eastern Asian and African-American populations (Hughes et al, 2010; van der 

Helm-van Mil et al, 2010; Lodolce et al, 2010; Morgan et al, 2010; Shimane et al, 2010; 

Stark et al, 2009). Recently, evidence of association between rare polymorphism within the 

TNFAIP3 gene and RA was seen (Bowes et al, 2010), further supporting TNFAIP3 as the 

responsible gene. Interestingly, another report suggested that the association signals from 

6q23 intergenic region and TNFAIP3 gene locus were interdependent, which may imply a 

very complex mechanism of gene regulation (Dieguez-Gonzalez et al, 2009). Scherer et al 

reported that polymorphism in the 6q23 region was associated with the rate of joint 

destruction in ACPA positive RA (Scherer et al, 2010). SNPs such as rs6920220, 

rs6933404 and rs6927172 have been shown to influence the transcription of TNFAIP3, 

with evidence of differential transcription factor binding to rs6927172 alleles (Elsby et al, 

2010).TNFAIP3 protein (as known as A20) has been shown to suppress inflammatory 
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responses and bone destruction in human fibroblast-like synoviocytes and in mice with 

collagen-induced arthritis (Hah et al, 2010).  

 

TNF receptor-associated factor 1-complement component 5 

 

A SNP (rs3761847) on chromosome 9q33.2 located in linkage disequilibrium (LD) with 2 

genes, TNF receptor-associated factor 1 (TRAF1) and complement component 5 (C5), 

relevant to chronic inflammation was identified to be associated with susceptibility to RA 

in 2007 (Plenge et al, 2007). Independently, another study identified several other SNPs 

that were associated with RA in this region, and furthermore provided evidence of 

association with disease severity measured by radiological damage (Kurreeman et al, 

2007). The TRAF1 gene encodes an intracellular protein that mediates signal transduction 

through TNF receptors 1 and 2, and through CD40. TNF is a critical cytokine in the 

pathogenesis of RA, and its antagonists are an effective treatment for RA (Elliott et al, 

1994; Weinblatt et al, 1999). TRAF1 knockout mice shows exaggerated T cell proliferation 

and activation in response to TNF, or when stimulated by the T-cell-receptor complex, 

suggesting that TRAF1 acts as a negative regulator in these signalling pathways (Tsitsikov 

et al, 2001).  

 

C5 encodes complement component 5. The complement pathway has been implicated in 

the pathogenesis of RA for over 30 years (Zvaifler, 1973; Cooke et al, 1975). Thus, the 

causal polymorphism could possibly act either through TRAF1 or C5 gene. To date, 

several publications have confirmed the association of TRAF1/C5 with susceptibility to 

RA in Caucasians (Chang et al, 2008; Zervou et al, 2008; Plant et al, 2010; Morgan et al, 

2010;Stark et al, 2009; Kurreeman et al, 2008). However, in other populations such as 
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Koreans and Colombians, the results were negative for such association (Palomino-

Morales et al, 2008; Lee et al, 2009; Han et al, 2009). Most recently, it was suggested that 

SNP markers within the TRAF1/C5 locus could predict erosive disease at year 1 and year 5 

in patients with early inflammatory polyarthritis (Plant et al, 2011). In addition, a study has 

also suggested that this locus is associated with mortality, particularly from malignancy or 

sepsis, in patients with RA (Panoulas et al, 2009). However, a later investigation found no 

such associations (van Nies et al, 2010). 

 

Newly identified genes 

 

The number of novel genes/loci susceptibility to RA increased dramatically in the last 3 

years, with the great help from GWAS. On average, approximately 10 genes/loci were 

discovered in each year. The summarized susceptibility genes/loci for RA, if not being 

described, are listed in Table 1.3.3a. Further effort is needed to validate these associations 

in larger and different populations, to evaluate the influence of these genes/loci on disease 

outcome/phenotype, to investigate the biological mechanisms behind them, and to develop 

the solutions to these genetic deficiencies. Also, it is important to emphasize that the recent 

GWAS are primarily designed to detect genetic variation that is relatively common (e.g. 

frequency ≥ 5%), thus rare polymorphism, that may be also importantly involved, is 

missed. Recently, Surolia et al reported that rare genetic variants causing a functionally 

defective enzyme of sialic acid acetylesterase represent a strong association with 

susceptibility in common autoimmune disorders including RA (Surolia et al, 2010). 
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Table 1.3.3a Summary of novel identified susceptibility genes to RA* 

Location Gene Variant Population Reference 

4q27 IL2-IL21 rs13119723, rs6822844 European; 

Argentina 

Stahl et al, 2010; 

Maiti et al, 2010 

6p21.32 HLA-DQA1-A2 rs6457617 European Julia et al, 2008 

20q13.12 CD40 rs4810485 European Raychaudhuri et al, 2008; 

Stahl et al, 2010; 

Plant et al, 2010; 

Orozco et al, 2010 

9p13.3 CCL21 rs2812378, rs951005 European; 

Asian 

Raychaudhuri et al, 2008; 

Stahl et al, 2010; 

Freudenberg et al, 2011; 

Orozco et al, 2010 

1q23.1 CD244 rs3766379, rs6682654 Asian Suzuki et al, 2008 

12q13.3 KIF5A-PIP4K2C rs1678542 European Raychaudhuri et al, 2008; 

Plant et al, 2010 

10p15.1 IL2RA rs706778, rs2104286 European Stahl et al, 2010; 

Kurreeman et al, 2009 

10p15.1 PRKCQ rs4750316 European Raychaudhuri et al, 2008; 

Stahl et al, 2010 

22q13 IL2RB rs743777 European Kurreeman et al, 2009 

2q11.2 AFF3 rs11676922, rs10865035, 

rs1160542 

European; 

Asian 

Stahl et al, 2010; 

Plant et al, 2010; 

Freudenberg et al, 2011 

1p36.32 MMEL1-

TNFRSF14 

rs3890745 European Raychaudhuri et al, 2008; 

Stahl et al, 2010 

2p16.1 REL rs13017599, rs13031237 European Stahl et al, 2010; 

Gregersen et al, 2009; 

Eyre et al, 2010 

8p23.1 BLK rs2736340 European; 

Asian 

Gregersen et al, 2009; 

Freudenberg et al, 2011 

6q25.3 TAGAP rs394581 European Raychaudhuri et al, 2009 

2q33 CD28 rs1980422 European Raychaudhuri et al, 2009 

11p12 TRAF6-RAG1 rs540386 European Raychaudhuri et al, 2009 

1q31 PTPRC rs10919563 European Raychaudhuri et al, 2009 

1q23 FCGR2A rs12746613 European Raychaudhuri et al, 2009 
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6q21 PRDM1 rs548234 European Raychaudhuri et al, 2009 

1p13 CD2-CD58 rs11586238 European Raychaudhuri et al, 2009 

6p12 IL-17A rs2275913 European Nordang et al, 2009 

1q31 IL-10 rs1800872 Asian Ying et al, 2011 

11q22.2 IL-18 rs1946518 Asian Ying et al, 2011 

11q24 SIAE Variants causing 

defective enzyme 

European Surolia et al, 2010 

2p14 SPRED2 rs934734 European Stahl et al, 2010 

4p15.2 RBPJ rs874040 European Stahl et al, 2010 

6q27 CCR6 rs3093023, rs3093024 European; 

Asian 

Stahl et al, 2010; 

Kochi et al, 2010 

7q32.1 IRF5 rs10488631, rs3757385, 

rs2004640, rs10954213 

European Stahl et al, 2010; 

Dawidowicz et al, 2011 

3p14.3 PXK rs13315591 European Stahl et al, 2010 

5q11.2 ANKRD55-IL6ST rs6859219 European Stahl et al, 2010 

18q23 SALL3 rs2002842 European Julia et al, 2008 

7q21.2 CDK6 rs42041 European Raychaudhuri et al, 2008 

14q24.3 BATF rs7155603 European Stahl et al, 2010 

5q21.1 C5orf30 rs26232 European Stahl et al, 2010 

1q24.2 CD247 rs840016 European Stahl et al, 2010 

17q12 IKZF3 rs2872507 European Stahl et al, 2010 

15q23 KIF3 rs17374222 European Stahl et al, 2010 

1p34.3 POU3F1 rs12131057 European Stahl et al, 2010 

12q24.12 SH2B3 rs3184504 European Stahl et al, 2010 

21q22.3 UBASH3A rs11203203 European Stahl et al, 2010 

1q21 FCRL3 rs7528684 Asian Lee et al, 2010; 

Wu et al, 2010 

11q24 FLI1 NA Asian Freudenberg et al, 2011 

3p21 ARHGEF3 NA Asian Freudenberg et al, 2011 

5q33.1 LCP2 NA Asian Freudenberg et al, 2011 

1q42 GPR137B NA Asian Freudenberg et al, 2011 

12q15 TRHDE NA Asian Freudenberg et al, 2011 

6q14 CGA1 NA Asian Freudenberg et al, 2011 

* Genes/loci described elsewhere in the present thesis are not included; NA, not available. 
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1.3.4 Genes studied in the present research 

 

Glutathione S-transferase 

 

Living organisms are continuously exposed to foreign chemical species. These xenobiotics 

may interact deleteriously with an organism, causing toxic effects (Ames et al, 1990). 

Along with strategies such as sequestration, scavenging and binding, catalytic 

biotransformation evolved as a significant biochemical protection mechanism against toxic 

chemical species. This enzymic detoxification of xenobiotics has been classified into 3 

stages which act in a tightly integrated manner. Phase 1 and 2 involve the conversion of a 

lipophilic, non-polar xenobiotic into a more water-soluble and therefore less toxic 

metabolite. In phase 3, these water-soluble metabolites can then be removed more easily 

from the cells (Sheehan et al, 2001). The GSTs are major phase 2 detoxification enzymes 

found mainly in the cytosol. They catalyse the conjugation of activated xenobiotics to an 

endogenous water-soluble substrate, glutathione (GSH) (in reduced form). Importantly, 

reduced GSH is an antioxidant, preventing damage to important cellular components 

caused by reactive oxygen species (ROS) such as free radicals and peroxides (Pompella et 

al, 2003). The GSTs, thus, are thought to be important in the cell detoxification process. 

 

The GSTs comprise a complex and widespread enzyme family that has been subdivided 

further into an ever-increasing number of classes based on a variety of criteria, including 

amino acid/nucleotide sequence, and immunological, kinetic and tertiary/quaternary 

structural properties (Sheehan et al, 2001). To date, in humans, the GST gene family 

comprises 21 genes in 8 classes (Table 1.3.4a). Polymorphisms in these genes have been 
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identified. Notably, the null alleles (detection of the gene sequence) have been observed 

and are common in the GST mu 1 (GSTM1) and GST theta 1 (GSTT1) genes. 

Homozygous detections of these genes result in a complete loss of enzyme function, which 

has been implicated in the predisposition of certain individuals to increased risk from toxic 

xenobiotics (Strange et al, 2000; Hayes and Strange, 2000; Pemble et al, 1994). Several 

human diseases have been linked with these mutations such as a number of cancers 

(Sheehan et al, 2001), Parkinson’s disease, Alzheimer’s disease, atherosclerosis, liver 

cirrhosis and cataract formation (Dourado et al, 2008). 

 

Table 1.3.4a A list of human GSTs 

Class Members 

alpha GSTA1, GSTA2, GSTA3, GSTA4, GSTA5 

kappa GSTK1 

mu GSTM1*, GSTM1L, GSTM2, GSTM3, GSTM4, GSTM5 

omega GSTO1, GSTO2 

pi GSTP1 

theta GSTT1†, GSTT2 

zeta GSTZ1 

microsomal MGST1, MGST2, MGST3 

* The gene coding for GSTM1 is located on chromosome 1p13.3, within a gene cluster 

coding for the mu class of enzymes; † The gene coding for GSTT1 is located on 

chromosome 22q11.23, and is approximately 50kb away from the GSTT2 gene.  

 

Vascular endothelial growth factor 

 

VEGF, also known as vascular permeability factor (VPF), is a sub-family of the platelet-

derived growth factor family of cystine-knot growth factors. The most important member 
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is VEGF-A, normally called just VEGF. Other members (in humans) include placenta 

growth factor (PGF), VEGF-B, VEGF-C and VEGF-D.  

 

VEGF-A is a fundamental promoter of normal and abnormal angiogenesis. It has been 

shown to stimulate endothelial cell mitogenesis and cell migration (Ferrara and Henzel, 

1989; Plouet et al, 1989). It is also a vasodilator and increases microvascular permeability 

(Ferrara, 1999). In normal condition, the function of VEGF-A is to create new blood 

vessels during embryonic development, new blood vessels after injury, new vessels in 

muscle following exercise, new vessels (collateral circulation) to bypass blocked vessels, 

etc. Overall, it is to restore the oxygen supply to tissues when blood circulation is 

inadequate. In diseases, however, it contributes to pathological processes. For example, 

solid cancers cannot grow beyond a limited size without an adequate blood supply, 

whereas those that can express VEGF-A are able to grow and metastasize.  

 

The members of VEGF family stimulate cellular responses by binding to tyrosine kinase 

receptors (also called the VEGFRs, containing 3 types: VEGFR-1, -2 and -3) on the cell 

surface, causing them to dimerize and become activated through transphosphorylation. The 

VEGF receptors have an extracellular portion consisting of 7 immunoglobulin-like 

domains, a single transmembrane spanning region and an intracellular portion containing a 

split tyrosine-kinase domain. VEGF-A binds to VEGFR-1 and -2. VEGFR-2 appears to 

mediate almost all of the known cellular responses to VEGF-A, while the function of 

VEGFR-1 is less well-defined (Holmes et al, 2007).  

 

The human VEGFA gene is localized on chromosome 6p12, and is organized in 8 exons 

(Wei et al, 1996). At least 6 different isoforms of VEGF-A are generated by alternative 
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splicing of the VEGFA gene (Ferrara et al, 2003). VEGFA is regulated by a variety of 

growth factors, cytokines, hormones and hypoxia (Plouet et al, 1989; Klagsbrum and 

D’Amore, 1996), and is produced by numerous cell types including macrophages, 

keratinocytes, T cells, and mesangial and smooth muscle cells as well as by various tumour 

cells (Berse et al, 1992; Iijima et al, 1993; Freeman et al, 1995). Polymorphisms within the 

VEGFA gene have been identified, and have been reported to be associated with many 

disorders where angiogenesis may play important role in disease development, including 

the development of atherosclerosis (Howell et al, 2005).  

 

Nitric oxide synthase 

 

Nitric oxide synthases (NOSs) are a family of enzymes that catalyze the production of NO 

from L-arginine and molecular oxygen (Wang et al, 1995). NO is an important cellular 

signalling molecule, having a vital role in many biological processes such as the control of 

vascular tone and the development of nervous system.  

 

Different members (isoforms) of the NOS family are encoded by separate genes (Taylor et 

al, 1997). In mammals, there are 3 isozymes, including neuronal NOS (nNOS), cytokine-

inducible NOS (iNOS) and endothelial NOS (eNOS). The former 2 are soluble and found 

predominantly in the cytosol, while eNOS is a membrane-associated protein located at 

plasma membranes surrounding cells and the membranes of Golgi bodies within cells. In 

the endothelial cell, NO is synthesised by eNOS. Circulating NO is primarily produced by 

eNOS and it contributes to the control of vascular tone and blood flow, insulin secretion, 

airway tone, and the regulation of cardiac function and angiogenesis (Quyyumi et al, 1995; 

Nava et al, 1995; Nava et al, 1995). The gene encoding for eNOS is mapped on 
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chromosome 7q36. Polymorphisms in this gene have been suggested to be associated with 

several conditions, notably the cardiovascular disorders (Gulec et al, 2008; Velloso et al, 

2010; Cam et al, 2005; Casas et al, 2004; Aroon et al, 1998; Hibi et al, 1998; Shimasaki et 

al, 1998).  

 

Matrix metalloproteinases 

 

MMPs are a group of zinc- and calcium-dependent proteases that contribute to tissue 

remodelling and repair during development, morphogenesis, inflammation, etc. They act 

by specifically degrading all of the components of the ECM, which serves as a scaffold for 

tissue formation. These proteins also process a number of bioactive molecules, known to 

be involved in the cleavage of cell surface receptors, the release of apoptotic ligands (e.g. 

Fas ligand), and chemokine/cytokine (in)activation (van Lint and Libert, 2007). In 

addition, they are thought to play a major role in cell behaviour such as cell proliferation, 

migration (adhesion/dispersion), differentiation, angiogenesis, apoptosis and host defence.  

 

There are at least 24 members of the MMP family in humans, classified into several 

subgroups according to the substrate specificity or the cellular localization (Figure 1.3.4a). 

All the MMPs share a common 3-domain structure. It contains the pro-peptide, the 

catalytic domain, and the haemopexin-like C-terminal domain which is linked to the 

catalytic domain by a flexible hinge region. The MMPs are initially synthesized as inactive 

zymogens with a pro-peptide domain that must be removed before the enzyme is active 

(Pei et al, 2000). 
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In the synovial joint, MMPs are mainly secreted by fibroblasts, macrophages and 

chondrocytes. Much of the joint damage in RA is believed to be mediated by abnormal 

release of MMPs in rheumatoid synovium stimulated by persistent inflammation (MacNaul 

et al, 1990; Konttinen et al, 1991; Gravallese et al, 1991; Konttinen et al, 1999; Cunnane et 

al, 2001). MMP-1 (collagenase-1) and MMP-3 (stromelysin-1) are the most widely studied 

members in RA. MMP-1 is specifically responsible for degradation of type I collagen, a 

major component of the ECM, as well as other fibrillar collagens such as types II, III, V, IX 

and X. MMP-3 has a broader substrate specificity with activity against type II, III, IV, IX, 

X and XI collagens, proteoglycans, fibronectin and laminin. Furthermore, it is able to 

activate other MMPs such as MMP-1, -2, -9 and -13. Elevated levels of MMP-1 and -3 

have been observed in patients with RA in both serum and synovial fluid, and are strongly 

associated with inflammation and joint destruction (Walakovits et al, 1992; Taylor et al, 

1994; Sasaki et al, 1994; Keyszer et al, 1999; So et al, 1999; Cheung et al, 2000; Yamanaka 

et al, 2000; Cunnane et al, 2001; Klimiuk et al, 2002; Green et al, 2003; Tchetverikov et al, 

2004; Fiedorczyk et al, 2006; Ates et al, 2007; Shinozaki et al, 2007).  

 

The genes for MMP1 and 3 are both located on the long arm of chromosome 11 (11q22.3), 

in a cluster together with seven other MMP members, including MMP7, 8, 10, 12 and 13. 

Polymorphisms (MMP1 1G/2G and MMP3 5A/6A SNPs) within these genes have been 

associated with the outcome of RA (Constantin et al, 2002(1); Constantin et al, 2002(2); 

Lee et al, 2003; Mattey et al, 2004; Dörr et al, 2004; Nemec er al, 2007; Ye et al, 2007; 

Tsukahara et al, 2008; Scherer et al, 2010). However, the results between studies are 

conflicting.  
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Figure 1.3.4a Human MMPs classified into subgroups according to the substrate 

specificity or the cellular location 

 

 

Transforming growth factor beta 

 

TGF-β is a protein that controls cell proliferation, cell differentiation, cell motility, 

apoptosis and other functions in most cells (Blobe et al, 2000). It is a secreted protein that 

exists in at least 5 isoforms called TGF-β1, TGF-β2 and TGF-β3. TGF-β1, which contains 

1 isoform, is encoded by the TGFB1 gene, while TGF-β2 and TGF–β3 each including 2 

isoforms are created by alterative splicing of the TGFB2 and TGFB3 genes respectively. 

The TGF-β family is part of a superfamily of proteins known as the transforming growth 

factor beta superfamily, which includes inhibins, activin, anti-müllerian hormone, bone 

morphogenetic protein, decapentaplegic and Vg-1 (Herpin et al, 2004).  

 

The peptide structures of the 3 members of the TGF-β family are highly similar. They are 

all encoded as large protein precursors, with TGF-β1 containing 390 amino acids and the 

other ones each containing 412 amino acids. They each have an N-terminal signal peptide 

of 20 – 30 amino acids that they require for secretion from a cell, a pro-region (called 

latency associated peptide) and a 112 – 114 amino acid (~ 25 kilodaltons) C-terminal 
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region that becomes the mature TGF-β molecule following its release from the pro-region 

by proteolytic cleavage (Khalil, 1999; Derynck et al, 1985; Herpin et al, 2004).  

 

TGF-β1 is the founding and the most important member of this family. It is associated with 

almost all the functions in which TGF-β involves, including cell proliferation, 

differentiation, motility and apoptosis. The TGF-β1 protein is found throughout the body, 

and plays roles in development before birth, the formation of blood vessels, the regulations 

of muscle tissue, body fat development and bone growth, wound healing, immune system 

functions, etc (Blobe et al, 2000). In humans, the gene for TGF-β1 (TGFB1) is located on 

the long arm of chromosome 19 at position 13.2 (Ghadami et al, 2000). Polymorphisms 

within the gene have been identified. It has been suggested that these mutations may be 

associated with the differential expression/activation of this cytokine, and therefore with 

diseases, such as heart disease, cancer and diabetes.  

 

Protein tyrosine phosphatase, non-receptor type 22 

 

PTPN22, in humans, is encoded by the gene located on the short arm of chromosome 1 

near the telomere (1p13.2). The PTPN22 gene is 57,898 bases in length and encodes a 

protein of 807 amino acids. There are 24 exons in the gene, and alternative splicing of this 

gene results in 2 transcript variants encoding distinct isoforms. The encoded protein is a 

lymphoid-specific intracellular phosphatase that associates with the molecular adapter 

protein casitas B-lineage lymphoma (CBL), and may be involved in regulating CBL 

function in the T cell receptor signalling pathway (Gregersen 2005). Mutations in this gene 

may be associated with a range of autoimmune disorders, including RA, systemic lupus 
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erythematosus, autoimmune thyroid disease, type 1 diabetes mellitus and Graves’ disease 

(Matthews et al, 1992; Gregorieff et al, 1998; Cohen et al, 1999).  
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2.1 RESEARCH OBJECTIVES, AIMS AND REASONING 

 

2.1.1 Objectives, aims and reasoning 

 

RA is a chronic condition which has a prevalence of ~ 1% of the population in 

industrialised countries. It is affected by both genetic and environmental factors, and has 

considerable association with permanent disability, morbidity and mortality. The preceding 

literature in the field of genetic epidemiology mainly investigated the genetic susceptibility 

to RA. Recently, in case-control designed GWAS, a great number of new genetic loci 

associated with the occurrence of RA were detected. However, genes associated with 

disease outcome and disease co-morbidity were less studied. Understanding of both kinds 

of genetic association is essential to explore the reasons for disease. However, 

identification of a gene associated with disease severity/co-morbidity is more useful in 

terms of personalized therapeutic care for RA patients. Susceptibility genes are not 

necessarily the genes associated with disease outcome, although HLA-DRB1 SE is 

reported to be associated with both. In the present study, we selected several genes 

including GSTM1, GSTT1, VEGFA, eNOS, MMP1, MMP2, MMP3, TGFB1 and 

PTPN22, based on their importance in immunity (TGFB1 and PTPN22), in angiogenesis 

and atherosclerosis (VEGFA and eNOS), in tissue destruction (MMP1, 2 and 3) or in 

detoxification of products generated by cigarette smoke (GSTM1 and T1), to investigate 

the potential associations of these genes with RA outcome and co-morbidities. Smoking is 

a major environmental risk factor for RA susceptibility, although its role in disease severity 

and/or co-morbidity remains to be clarified. It is possible that smoking may affect RA 

through interaction with the above selected genes. Thus, in this study, interaction between 

smoking and candidate genes were investigated.  
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The research conducted was divided into a number of specific objectives relating to 

cigarette smoking and/or each candidate gene. These are listed below. Further description 

of aims and reasoning for each specific objective is presented in “Brief Introduction” 

Sections in the Results Chapter.   

 

List of specific objectives 

 

• To investigate the associations of smoking with autoantibodies, disease clinical 

measures and co-morbid conditions. 

 

• To investigate the associations of polymorphisms at the GSTM1 and T1 genes with 

disease clinical measures and co-morbid conditions. To assess whether there is an 

interaction with smoking with regard to these associations. 

 

• To investigate the associations of polymorphisms at the VEGFA gene with serum 

levels of VEGF-A, disease clinical measures and co-morbid conditions. To 

investigate if there is an interaction of VEGFA polymorphism with smoking in 

respect of these associations.  

 

• To investigate the associations of polymorphism at the eNOS gene with disease 

clinical measures and co-morbid conditions. To test whether there is an interaction 

with smoking regarding these associations. 
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• To investigate the associations of polymorphisms at the MMP1, 2 and 3 genes with 

serum levels of MMP-1, -2, -3, -8 and -9, serum levels of TIMP-1, -2, -3 and -4, 

disease clinical measures and co-morbid conditions. To investigate if there is an 

interaction of these polymorphisms with smoking in terms of these associations. 

 

• To investigate the associations of polymorphisms at the TGFB1 gene with serum 

levels of TGF-β1, disease clinical measures and co-morbid conditions. To assess 

whether there is an interaction with smoking according to these associations. 

 

• To investigate the associations of polymorphism at the PTPN22 gene with disease 

clinical measures and co-morbid conditions. To test if there is an interaction with 

smoking in respect of these associations.  
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3.1 PATIENT POPULATION 

 

3.1.1 Selection criteria and consent 

 

The study population was consecutively recruited from individuals who were admitted for 

RA to the Haywood Hospital and who were attending established clinics for drug 

monitoring and routine RA follow up in the hospital. All patients satisfied the 1987 ACR 

revised criteria for RA (Arnett et al, 1988), as determined by a consultant rheumatologist. 

Patients less than 18 years old, or with learning difficulties or dementia were excluded. All 

of the patients were British Caucasians, resident in North Staffordshire, England. The data 

for each patient was highly comprehensive, which included clinical measures, laboratory-

determined parameters, and a broad set of demographic and lifestyle factors. Prior to 

inclusion, each patient was informed about the research and its objectives, and given the 

opportunity to voice any questions. Subsequently, all patients in this study provided written 

informed consent. The research was approved by the North Staffordshire local research 

ethics committee (Appendix 8.2). 

 

In total, 431 individuals were included. Since there were specific variables unavailable for 

some patients, for each investigation the number of samples used and the individuals 

involved may be slightly different. The demographic, laboratory-based and clinical 

variables for the whole group and for the specific subsets are presented in the appropriate 

Results Chapter Sections.  
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3.1.2 Demographic and smoking information 

 

The patients studied generally represented a typical hospital based population of RA 

subjects. Of these, 72 were early RA with disease duration (DD) less than 2 years, while 

the remaining subjects were established RA patients with DD longer than 2 years, at the 

time of recruitment. Demographic data was given by each patient, including gender, age, 

weight, height, post code of residence, occupation, etc. Body mass index (BMI) was 

obtained by BMI = weight (in kilograms)/height2 (in metres). Socioeconomic status was 

estimated by the Carstairs score of particular location searched by post code.  

 

Information about cigarette smoking on each patient was carefully recorded. This generally 

included a history and the current status of smoking. Cigarettes per day indicated the 

intensity and years of smoking indicated the duration. To measure the total amount 

someone had smoked, we used pack-years which was calculated by packs (20 cigarettes) 

per day × years of smoking. The smoking questionnaire used in this study is shown in 

Appendix 8.3. Patients classified as ever smokers (including past and current smokers) 

were those who had smoked at least 1 cigarette per day for at least 1 year. This definition 

was used to ensure that we only included patients with clear evidence of a smoking history. 

Some people will start to smoke for a short time when they are young but will give up very 

quickly, so we did not wish to include these as ever smokers.   

 

3.1.3 RA characteristics 

 

A core set of clinical and laboratory-based RA characteristics was recorded at recruitment. 

This included age at RA onset, RA duration, IgM RF, anti-CCP, levels of ESR and CRP, 
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DAS28, MJS, HAQ, the presence/absence of erosive and nodular disease, etc. These 

patients were to be followed up for a period of 60 months. For the follow up visits (every 

12 months), DAS28, HAQ, CRP, ESR and the new development of erosive and nodular 

status were/would be assessed. In Section 1.1.7, the assessments of ESR, CRP, DAS28, 

MJS and HAQ were described. IgM RF and anti-CCP were measured by enzyme-linked 

immunosorbent assay (ELISA) kits according to the manufacturers’ recommendation. To 

determine nodule status, each patient was examined by a consultant rheumatologist for the 

presence of subcutaneous nodules. A full examination was conducted on each patient and 

the presence and site of any nodules were recorded. Erosive evidence was based on 

radiographs, assessed by consultant rheumatologists. The classification of an erosive 

disease was the presence of at least one erosion.  

 

3.1.4 Haemanalysis and co-morbid condition 

 

At recruitment, all patients underwent a physical and medical examination, in which pulse, 

blood pressure, blood tests, etc were assessed. Blood test parameters included 

haemoglobin, leukocyte count, platelet count, cholesterol and creatinine. Blood samples 

were collected for DNA isolation and serum separation.  

 

Evidence of CVD (IHD, previous MI, heart failure, etc) was obtained from a structured 

interview, review of the medical notes and current and cumulative medication. 

Furthermore, all patients also underwent resting 12-lead electrocardiography (ECG). A 

diagnosis of IHD was based on presence of angina pectoris, previous MI (physician 

diagnosed) or evidence of coronary artery disease based on angiography, functional testing 

or previous revascularization procedures such as coronary artery bypass grafting. ECG was 
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further used to identify possible unrecognized previous MI (Q-wave development in 

absence of any conduction defect, suggesting full thickness MI). Hypertension was 

considered to be present if there was a physician’s diagnosis in the medical notes, the 

patient was on anti-hypertensive medication, or high blood pressure (≥ 140 mmHg systolic 

or ≥ 90 mmHg diastolic) recorded during the medical examination at recruitment. 

Hypercholesterolemia was considered to be present if a diagnosis had been recorded in the 

medical notes, or if the patient had ever been prescribed lipid-lowering medication. 

Evidence of diabetes (type 1 and 2) was based on a physician’s diagnosis in the medical 

notes, or use of anti-diabetic medications. Similarly, information of other co-morbid 

conditions (e.g. cancer, renal disease, liver disease, respiratory disease, cerebrovascular 

disease, etc) was obtained based on the medical notes, interviews and prescribed 

medications. New occurrence of any co-morbid condition was/would be recorded in the 

years of follow up.  

 

3.1.5 Drug therapy regimen 

 

All patients were receiving anti-inflammatory and/or anti-rheumatic drugs. Most patients 

(93%) had been treated with one or more DMARDs. The majority were being treated with 

MTX, SSZ or hydroxychloroquine. The commonest combination therapy was MTX and 

SSZ. A small number of patients were being treated with steroids (10%) or cytotoxic drugs 

such as azathioprine or cyclophospamide (< 5%). A number of patients were on a biologic 

agent (mainly etanercept and infliximab) at the time of recruitment (14%).  
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3.2 STUDY DESIGN 

 

3.2.1 Study design 

 

The initial design of this study was a prospective cohort that would be followed up 

annually for a 5-year period, to investigate the prevalence of co-morbid diseases in a 

typical RA population and the mortality rate attributable to certain co-morbid conditions, 

and to assess the relationship with specific genetic and environmental factors. 

Development of a co-morbidity index in this RA population was also planned. 

 

For this particular study, we used this group of RA patients to investigate the association of 

genetic variations and smoking with the disease activity/severity and co-morbidities. It was 

cross-sectional in nature. All the measures used in the present thesis were the baseline data 

(recorded at the time of recruitment), except for the mean time-averaged DAS over 24 

months (DAS28 at baseline, 12th month and 24th month). However, in future, it will be 

possible to assess the influence of genetic variations and smoking on further development 

of co-morbidities, RA progression (measured by the change of clinical parameters) and any 

fatal events, during a certain period.  

 

 

 

 

 

 

 



 79

3.3 GENOTYPING 

 

3.3.1 Isolation of genomic DNA from peripheral blood 

 

In order to perform genotyping, the first step was to isolate genomic DNA from each 

patient. To achieve this, a Nucleon® genomic DNA extraction kit (GE Healthcare, 

Buckinghamshire, UK) was used and performed according to manufacturer’s instructions. 

All reagents and buffers used were integral components of the kit, except for ethanol and 

chloroform. It is an ethanol precipitation based procedure that isolates genomic DNA from 

fresh or frozen blood samples. The method utilises salts to neutralise the positive charge of 

the sugar-phosphate DNA backbone and ethanol to precipitate the DNA by promoting ion 

pair formation between the DNA and salt ions. The kit is able to isolate genomic DNA 

ranging from 250 μl up to 10 ml of whole blood. 

 

Cell preparation from whole blood 

 

The blood samples were removed from storage at -80°C and were thawed at room 

temperature. After a 10 seconds vortex, 1 ml of sample was transferred to fresh 15 ml 

centrifuge tubes. Approximately 4 ml of Reagent A (4 times the volume) was added to the 

tubes. Then, rotary shaking for 4 minutes at room temperature was performed to mix the 

blood and Reagent A completely. After that, samples were centrifuged at 4,000 rpm for 5 

minutes. The supernatant was then discarded without disturbing the cell pellet.  
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Cell lysis 

 

For cell lysis, 350 μl of Reagent B (ensuring that the detergent is fully dissolved) was 

added to the pellet, briefly vortexed to resuspend the pellet, and incubated at 37°C for 10 

minutes. After that, the suspension was transferred to a fresh 1.5 ml microtube. 

 

Deproteinisation 

 

A hundred μl of NaClO4 solution was added to the suspension. This was mixed by 

inverting at least 7 times by hand. After that, 600 μl of CHCl3 was added. To emulsify the 

phases, tubes were inverted at least 7 times for the second time. After adding 75 μl of 

Nucleon Resin (without remixing the phases), samples were centrifuged at 1,500 rpm for 1 

minute.   

 

DNA precipitation 

 

The upper phase (~ 450 μl) was transferred to a new 1.5ml tube without disturbing the 

Nucleon Resin layer (brown in colour). To the upper phase, approximately 2 volumes (~ 

900 μl) of cold absolute ethanol (stored at 4°C) were added. Tubes were inverted to 

precipitate the DNA.  

 

DNA washing 

 

The DNA was pelleted by centrifuging at 12,000 rpm for 5 minutes. After discarding the 

supernatant, 1 ml cold 70% ethanol was added to the pellet. The tubes were inverted 
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several times before the samples were centrifuged and the supernatant was discarded again. 

Pellets were then allowed to air dry (ensuring the complete removal of all ethanol trace). 

After that, 50 – 200 μl (depend on the size of the pellet) of sterile water was added to each 

sample to elute the isolated DNA. The DNA samples were placed at room temperature for 

3 days to dissolve before being stored at 4°C. 

 

3.3.2 Polymerase chain reaction amplification 

 

Following genomic DNA isolation, the next step was to use polymerase chain reaction 

(PCR) technology to amplify the specific sequences of DNA containing each of the 

polymorphism studied in this project. The result of such amplification is the generation of 

a DNA solution that contains upwards of 1 billion copies of the desired sequence. These 

enhanced amounts of identical DNA fragment can then be visualised and analysed using 

electrophoretic methodology. PCR involves the following three steps, denaturation, 

annealing and extension. First, the genetic material is denatured, converting the double 

stranded DNA molecules to single strand. The primers are then annealed to the 

complementary regions of the single stranded molecules. In the third step, they are 

extended by the action of the DNA polymerase. All these steps are temperature sensitive 

and the generic choice of temperature is 94 - 95°C, 55 - 60°C and 70 - 72°C for 

denaturation, annealing and extension respectively.  

 

PCR primers 

 

To be able to amplify the desired DNA sequence, it is necessary to use sequence-specific 

oligonucleotide primers. For each polymorphism, a pair of primers is used which flanks the 
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polymorphism site, one primer binding upstream and the other binding downstream. When 

bound they act both as priming molecules for DNA synthesis to occur and also as 

boundaries within which the synthesis proceeds. This results in the generation of a 

population of pure identical DNA fragments where the targeted polymorphism is located.  

 

To design such primers, the DNA sequence of the targeted region needs to be known. For 

the SNP studies particularly, this information is available in the National Centre for 

Biotechnology Information SNP database (http://www.ncbi.nlm.nih.gov/snp). There are 

several parameters for primer design such as primer length (optimal, 18 – 22 bp), primer 

melting temperature (optimal, 52 - 58°C), primer GC content (optimal, 40 – 60%), product 

length (optimal, ≤ 500 bp in standard PCR) and secondary structure of primer and template 

(to avoid). A number of primer design tools are available that can assist in PCR primer 

design, such as the online software Primer3 (version 0.4.0, http://frodo.wi.mit.edu/primer3) 

which was used in the present study.  

 

PCR optimization 

 

The PCR reaction needed to be very specific so as to make sure that the DNA was 

amplified well, and that only the desired fragment was selectively amplified. To achieve 

this, the amplification conditions were carefully optimised. This required numerous 

preliminary PCR reactions where the condition variables could be individually assessed. 

This included optimising the concentration of each of the PCR reaction mixture 

constituents (in particular, MgCl2, deoxynucleotide triphosphates (dNTPs), Taq polymerase 

and primers), adjusting the annealing temperature and determining the optimum incubation 

periods for each step and the number of PCR cycles. Once established, the optimised 

http://www.ncbi.nlm.nih.gov/snp
http://frodo.wi.mit.edu/primer3
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reaction conditions determined for each genetic variant were used in all subsequent PCR 

amplification reactions.  

 

PCR primers and conditions for each genetic variant 

 

Each PCR amplification was performed in 20 μl volume contained approximately 20 ng 

genomic DNA (2 μl of diluted genomic DNA) in a 0.2 ml PCR tube (NUNC, Roskilde, 

Denmark). All amplification reactions were performed in a Flexigene thermal cycler 

(Techne Limited, Cambridge, UK) using a 96 well heating block. Table 3.3.2a lists the 

primers and PCR conditions for each polymorphism studied in this project. 
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Table 3.3.2a The primers and conditions of PCR amplifications for studied genetic 

polymorphisms 

GSTM1 and T1 combined* 

Primers for GSTM1: Forward: 5’-GAACTCCCTGAAAAGCTAAAGC-3’,  

                                   Reverse: 5’-GTTGGGCTCAAATATACGGTGG-3’. 

Primers for GSTT1: Forward: 5’-TTCCTTACTGGTCCTCACATCTC-3’ 

                                  Reverse: 5’-TCACCGGATCATGGCCAGCA-3’ 

Solution mixture: 1 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1 μl of 50 mM MgCl2, 4.8 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 0.5 μl of each 10 μM primer, 0.1 μl of 5 U/μl Taq polymerase and 7.5 μl of 

double-distilled water (ddH2O). 

Cycling setting: 2.5 minutes at 94°C, followed by 39 cycles of 1 minute at 94°C, 1 

minute at 58°C, 1 minute at 72°C, with final extension at 72°C for 7.5 minutes.  

VEGFA-2578 SNP (rs699947) 

Primers: Forward: 5’-GGCCTTAGGACACCATACC-3’, 

               Reverse: 5’-CACAGCTTCTCCCCTATCC-3’ (Han et al, 2004). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 4.8 μl of 2 × polymate additive, 1.6 μl of 2 mM 

dNTPs mix, 1 μl of each 10 μM primer, 0.12 μl of 5 U/μl Taq polymerase and 6.28 μl 

of ddH2O. 

Cycling setting: 8 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 56°C, 1 minute at 72°C, with final extension at 72°C for 10 minutes. 

VEGFA-460 SNP (rs833061) 

Primers: Forward: 5’-TGTGCGTGTGGGGTTGAGCG-3’, 

                Reverse: 5’-TACGTGCGGACAGGGCCTGA-3’ (Watson et al, 2000). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 4.8 μl of 2 × polymate additive, 1.3 μl of 2 mM 

dNTPs mix, 0.6 μl of each 10 μM primer, 0.16 μl of 5 U/μl Taq polymerase and 7.34 

μl of ddH2O. 

Cycling setting: 8 minutes at 94°C, followed by 35 cycles of 30 secnds at 94°C, 30 

seconds at 62°C, 1 minute at 72°C, with final extension at 72°C for 10 minutes. 
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VEGFA+405 SNP (rs2010963) 

Primers: Forward: 5’-ATTTATTTTTGCTTGCCATT-3’, 

               Reverse: 5’-GTCTGTCTGTCTGTCCGTCA-3’ (Watson et al, 2000). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.6 μl of 50 mM MgCl2, 3.2 μl of 2 × polymate additive, 2 μl of 2 mM dNTPs 

mix, 0.8 μl of each 10 μM primer, 0.12 μl of 5 U/μl Taq polymerase and 7.48 μl of 

ddH2O. 

Cycling setting: 8 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 55°C, 1 minute at 72°C, with final extension at 72°C for 10 minutes. 

VEGFA+936 SNP (rs3025039) 

Primers: Forward: 5’-ATTTATTTTTGCTTGCCATT-3’, 

               Reverse: 5’-GTCTGTCTGTCTGTCCGTCA-3’ (Han et al, 2004). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 0.6 μl of 50 mM MgCl2, 3.2 μl of 2 × polymate additive, 2 μl of 2 mM dNTPs 

mix, 0.8 μl of each 10 μM primer, 0.12 μl of 5 U/μl Taq polymerase and 8.48 μl of 

ddH2O. 

Cycling setting: 8 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 60°C, 1 minute at 72°C, with final extension at 72°C for 10 minutes. 

ENOS+894 SNP (rs1799983) 

Primers: Forward: 5’-AAGGCAGGAGACAGTGGATGGA-3’, 

               Reverse: 5’-CCCAGTCAATCCCTTTGGTGCTCA-3’ (Isordia-Salas et al,                

2010). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 3 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer, 0.2 μl of 5 U/μl Taq polymerase and 8 μl of ddH2O. 

Cycling setting: 4 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 58°C, 1 minute at 72°C, with final extension at 72°C for 10 minutes. 



 86

MMP3 5A6A (rs3025058) 

Primers: Forward: 5’-GGTTCTCCATTCCTTTGATGGGGGGAAAgA-3’†, 

               Reverse: 5-CTTCCTGGAATTCACATCACTGCCACCACT-3’ (Gnasso et 

al, 2000). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 0.6 μl of 50 mM MgCl2, 2 μl of 2 mM dNTPs mix, 1.6 μl of each 10 μM 

primer, 0.16 μl of 5 U/μl Taq polymerase and 10.04 μl of ddH2O. 

Cycling setting: 5 minutes at 95°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 65°C, 1 minute at 72°C, with final extension at 72°C for 5 minutes. 

MMP3 Glu45Lys (rs679620) 

Primers: Forward: 5’-TCCCCGTCACCTCCAATCCAA-3’, 

               Reverse: 5’-TGAGTAACAAGTGGAGAGTGG-3’ (Shibata et al, 2005). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1 μl of 50 mM MgCl2, 3 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer, 0.2 μl of 5 U/μl Taq polymerase and 8.2 μl of ddH2O. 

Cycling setting: 4 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 55°C, 1 minute at 72°C, with final extension at 72°C for 5 minutes. 

Rs495366 (intergenic SNP between MMP1 and 3 genes) 

Primers: Forward: 5’-TGAGCTCCCGAAAGGTAGAA-3’, 

               Reverse: 5’-TGAGACCACATCAGTCTT-3’. 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 3 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer, 0.2 μl of 5 U/μl Taq polymerase and 8 μl of ddH2O. 

Cycling setting: 4 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 58°C, 1 minute at 72°C, with final extension at 72°C for 5 minutes. 
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MMP1 1G2G (rs1799750) 

Primers: Forward: 5’-TGACTTTTAAAACATAGTCTATGTTCA-3’, 

               Reverse: 5’-TCTTGGATTGATTTGAGATAAGTCATAgC-3’‡. 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1 μl of 50 mM MgCl2, 4.8 μl of 2 × polymate additive, 2 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer, 0.16 μl of 5 U/μl Taq polymerase and 6.04 μl of 

ddH2O. 

Cycling setting: 2 minutes at 94°C, followed by 40 cycles of 30 seconds at 94°C, 30 

seconds at 58°C, 30 seconds at 72°C, with final extension at 72°C for 5 minutes. 

MMP2-1306 (rs243865) 

Primers: Forward: 5’-CTTCCTAGGGCTGGTCCTTACTGA-3’, 

               Reverse: 5’-CTGAGACCTGAAGAGCTAAAGAGCT-3’. 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 3 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer, 0.2 μl of 5 U/μl Taq polymerase and 8 μl of ddH2O. 

Cycling setting: 4 minutes at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30 

seconds at 59°C, 1 minute at 72°C, with final extension at 72°C for 5 minutes. 

TGFB1-509 (rs1800469) 

Primers: Forward: 5’-CAGTAAATGTATGGGGTCGCAG-3’, 

               Reverse: 5’-GGTGTCAGTGGGAGGAGGG-3’ (Amirghofran et al, 2009). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 3 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer, 0.2 μl of 5 U/μl Taq polymerase and 8 μl of ddH2O. 

Cycling setting: 3 minutes at 94°C, followed by 35 cycles of 1 minute at 94°C, 1 

minute at 61°C, 1 minute at 72°C, with final extension at 72°C for 5 minutes. 
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TGFB1+868 (rs1800470) ¶ 

Primers: Forward (generic primer): 5’-TCCGTGGGATACTGAGACAC-3’, 

               Reverse (for the C allele): 5’-GCAGCGGTAGCAGCAGCG-3’, 

               Reverse (for the T allele): 5’-AGCAGCGGTAGCAGCAGCA-3’ (Perrey et 

al, 1999). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 0.6 μl of 50 mM MgCl2, 5 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer (internal control primers, generic primer and the 

primer for the C allele/internal control primers, generic primer and the primer for the 

T allele), 0.2 μl of 5 U/μl Taq polymerase and 4.6 μl of ddH2O. 

Cycling setting: 1 minute at 95°C, followed by 10 cycles of 15 seconds at 95°C, 50 

seconds at 65°C and 40 seconds at 72°C, and 20 cycles of 20 seconds at 95°C, 50 

seconds at 59°C and 50 seconds at 72°C.  

TGFB1+913 (rs1800471) ¶ 

Primers: Forward (for the G allele): 5’-GTGCTGACGCCTGGCCG-3’, 

               Forward (for the C allele): 5’-GTGCTGACGCCTGGCCC-3’, 

               Reverse (generic primer): 5’-GGCTCCGGTTCTGCACTC-3’ (Perrey et al, 

1999). 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1.2 μl of 50 mM MgCl2, 3 μl of 2 × polymate additive, 1.6 μl of 2 mM dNTPs 

mix, 1 μl of each 10 μM primer (internal control primers, generic primer and the 

primer for the G allele/internal control primers, generic primer and the primer for the 

C allele), 0.2 μl of 5 U/μl Taq polymerase and 6 μl of ddH2O. 

Cycling setting: 1 minute at 95°C, followed by 10 cycles of 15 seconds at 95°C, 50 

seconds at 65°C and 40 seconds at 72°C, and 20 cycles of 20 seconds at 95°C, 50 

seconds at 59°C and 50 seconds at 72°C.  
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PTPN22 R620W (rs2476601) 

Primers: Forward: 5’-TCACCAGCTTCCTCAACCACA-3’, 

               Reverse: 5’-GATAATGTTGCTTCAACGGAATTT-3’. 

Solution mixture: 2 μl (~ 20 ng) of diluted genomic DNA, 2 μl of 10 × reaction 

buffer, 1 μl of 50 mM MgCl2, 2 μl of 2 mM dNTPs mix, 1 μl of each 10 μM primer, 

0.16 μl of 5 U/μl Taq polymerase and 10.84 μl of ddH2O. 

Cycling setting: 2 minutes at 94°C, followed by 40 cycles of 30 seconds at 94°C, 30 

seconds at 58°C, 1 minute at 72°C, with final extension at 72°C for 2 minutes. 

* This PCR was able to distinguish between homozygous GSTM1*0/GSTT1*0 and 

genotypes with least 1 copy of expressible allele. Since the amplified GSTM1 and GSTT1 

have distinguishable difference in length, 2 PCRs were combined as one and the genotypes 

of both genes can be identified in a single agarose gel using gel electrophoresis. Positive 

control tests, using β-globin (primers forward: 5’-ACACAACTGTGTTCACTAGC-3’and 

reverse: 5’-CAACTTCATCCACGTTCACC-3’, product size 325 bp), were carried out for 

samples with no PCR products in order to determine whether these patients carrying both 

homozygous GSTM1*0 and GSTT1*0 or the failure of amplification was due to 

insufficient genomic DNA; † A mismatch was made at the nucleotide written in lower case 

in order to create a recognition site for the enzyme Tth111I in the case of a 5A allele; ‡ A 

mismatch was made at the nucleotide written in lower case in order to create a recognition 

site for the enzyme AluI in the case of a 1G allele; ¶ Allele-specific PCR systems were used 

(Dennis Lo, 1998). Internal control amplifies a product of 429 bp (primers forward: 5’-

GCCTTCCCAACCATTCCCTTA-3’ and reverse: 5’-TCACGGATTTCTGTTGTGTTTC-

3’). 
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3.3.3 Restriction fragment length polymorphism analysis 

 

Following amplification of the desired DNA sequences, the final step was to use restriction 

fragment length polymorphism (RFLP) analysis to determine which allele each patient 

carried at a particular SNP site. The RFLP analysis involves fragmenting a sample of DNA 

by a restriction enzyme, which can recognize and cut DNA wherever a specific short 

sequence occurs, in a process known as a restriction digest. Selected restriction enzymes 

are used to cut DNA at a recognition site in the case of one allele, but not the other one. 

The resulting DNA fragments are then separated by length using gel electrophoresis. The 

alleles that a patient carried are therefore able to be distinguished according to the digest 

outcome on gels.  

 

Restriction enzyme and digestion conditions for each genetic variant 

 

Initial optimisation digestion reactions were performed first to produce an efficient system 

that generated reproducible results. Generally, each digestion reaction was performed in a 

20 μl volume made up of 10 μl of PCR product (or more in case there was not enough 

amplified DNA), 1 × appropriate (numbered 1 - 4) reaction buffer, 1 × bovine serum 

albumin (BSA) when necessary, ddH2O, and appropriate restriction enzyme. The 

incubation temperature and period varied between assays, usually ranging from 25°C (as 

room temperature) to 65°C and ranging from 1 hour to 20 hours respectively. Table 3.3.3a 

lists the restriction enzyme and digestion conditions for each polymorphism studied. 
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Table 3.3.3a The restriction enzymes and digestion conditions for studied genetic 

polymorphisms 

BstYI (for VEGFA-2578 A/C SNP) 

Recognition site: 5’…R▼GATCY…3’ 

                              3’…YCTAG▲R…5’ (New England Biolabs, Inc.). 

Cuttable allele: A. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 2, 2 units of BstYI 

(0.2 μl) and 7.8 μl of ddH2O. Incubation: at 60°C for 3 hours. 

BstU I (for VEGFA-460 T/C SNP) 

Recognition site: 5’…CG▼CG…3’ 

                              3’…GC▲GC…5’ (New England Biolabs, Inc.). 

Cuttable allele: C. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 3 units of BstUI 

(0.3 μl) and 7.7 μl of ddH2O. Incubation: at 60°C for 3 hours. 

BsmF I (for VEGFA+405 C/G SNP) 

Recognition site: 5’…GGGAC(N)10
▼…3’ 

                              3’…CCCTG(N)14▲…3’ (New England Biolabs, Inc.). 

Cuttable allele: G. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 2 units of 

BsmFI (1 μl), 0.2 μl of BSA and 6.8 μl of ddH2O. Incubation: at 65°C for 3 hours. 

NlaIII (for VEGFA+936 C/T SNP) 

Recognition site: 5’…CATG▼…3’ 

                              3’…▲GTAG…5’ (New England Biolabs, Inc.). 

Cuttable allele: T. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 1 unit of NlaIII 

(0.1 μl), 0.2 μl of BSA and 7.7 μl of ddH2O. Incubation: at 37°C for 3 hours. 
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MboI (for eNOS+894 G/T SNP) 

Recognition site: 5’…▼GATC…3’ 

                              3’…CTAG▲…5’ (New England Biolabs, Inc.). 

Cuttable allele: T. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 2 units of MboI 

(0.4 μl) and 7.6 μl of ddH2O. Incubation: at 37°C for 20 hours. 

Tth111I (for MMP3 5A6A polymorphism) 

Recognition site 5’…GACN▼NNGTC…3’ 

                             3’…CTGNN▲NCAG…5’ (New England Biolabs, Inc.). 

Cuttable allele: 5A. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 4 units of 

Tth111I (1 μl), 0.2 μl of BSA and 6.8 μl of ddH2O. Incubation: at 65°C for 3 hours. 

TaqαI (for MMP3 Glu45Lys A/G SNP) 

Recognition site: 5’…T▼CGA…3’ 

                              3’…AGC▲T…5’ (New England Biolabs, Inc.). 

Cuttable allele: G. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 10 units of 

TaqαI (0.5 μl), 0.2 μl of BSA and 7.3 μl of ddH2O. Incubation: at 65°C for 2 hours. 

SfcI (for rs495366 A/G SNP) 

Recognition site: 5’…C▼TRYAG…3’ 

                              3’…GAYRT▲C…5’ (New England Biolabs, Inc.). 

Cuttable allele: G. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 2 units of SfcI 

(0.2 μl), 0.2 μl of BSA and 7.6 μl of ddH2O. Incubation: at 25°C for 16 hours. 

AluI (for MMP1 1G2G polymorphism) 

Recognition site: 5’…AG▼CT…3’ 

                              3’…TC▲GA…5’ (New England Biolabs, Inc.). 

Cuttable allele: 1G. 

Digestion condition: 15 μl of PCR product, 2 μl of reaction buffer 4, 10 units of AluI 

(1 μl) and 2 μl of ddH2O. Incubation: at 37°C for 16 hours. 
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BfaI (for MMP2-1306 C/T SNP) 

Recognition site: 5’…C▼TAG…3’ 

                              3’…GAT▲C…5’ (New England Biolabs, Inc.). 

Cuttable allele: T. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 4, 2.5 units of BfaI 

(0.5 μl) and 7.5 μl of ddH2O. Incubation: at 37°C for 16 hours. 

Bsu36I (for TGFB1-509 C/T SNP) 

Recognition site: 5’…CC▼TNAGG…3’ 

                              3’…GGANT▲CC…5’ (New England Biolabs, Inc.). 

Cuttable allele: C. 

Digestion condition: 10 μl of PCR product, 2 μl of reaction buffer 3, 5 units of 

Bsu36I (0.5 μl), 0.2 μl of BSA and 7.3 μl of ddH2O. Incubation: at 37°C for 16 hours. 

XcmI (for PTPN22 R620W C/T SNP) 

Recognition site: 5’…CCANNNNN▼NNNNTGG…3’ 

                              3’…GGTNNNN▲NNNNNACC…5’ (New England Biolabs, Inc.). 

Cuttable allele: T. 

Digestion condition: 12 μl of PCR product, 2 μl of reaction buffer 2, 5 units of XcmI 

(1 μl) and 5 μl of ddH2O. Incubation: at 37°C for 4 hours. 

R = A or G; Y = C or T; N = A, C, G or T. 

 

Agarose gel electrophoresis of digestion fragments for each polymorphism 

 

To identify which alleles each patient carried, the digested products were analysed using 

agarose gel electrophoresis on (1 – 4%) agarose gels. Better separation and resolution are 

provided by increasing the percentage of agarose. However, it increases running time and 

costs more in materials. Each gel was prepared by dissolving the appropriate amount of 

agarose in 30 ml of running buffer (3 ml 5 × Tris/Borate/EDTA (TBE) buffer plus 27 ml 

ddH2O), with the addition of 3 μl ethidium bromide (500 μg/ml, Sigma-Aldrich Inc.). The 

solution was then boiled and poured into a pre-assembled gel eletrophoresis unit. Each gel 
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was allowed to set at room temperature or at 4°C. Concurrently, restriction fragments 

generated from digestion were prepared by the addition of the appropriate volume (~ 3 μl) 

of 6 × loading buffer (Novagen, Darmstadt, Germany). Gels were then loaded with 10 μl of 

each digest sample, 10 μl of negative control and 5 μl of DNA marker (1.5 kb DNA ladder, 

Bioline Ltd.). The gel tanks were subsequently filled with running buffer to submerse the 

gels and the samples eletrophoretically separated at 120 volts until sufficient separation of 

the bands had been seen. To analyse the banding pattern, gels were exposed to UV 

illumination on a transilluminator. A photograph of the banding pattern was taken as a 

permanent record using film or digital camera specifically designed for gel photography. A 

diagram of digestion outcome for each polymorphism is shown in Appendix 8.4. 

 

 

3.4 QUANTIFICATION OF SERUM PROTEINS 

 

3.4.1 Serum collection 

 

Serum was collected from the blood by the use of a serum separator tube (SST) and 

allowed to clot for 30 minutes prior to centrifugation at 3,000 rpm. When collected, 

samples were stored at -80°C before assay.  

 

3.4.2 Types of assay used in the present study 

 

Luminex suspension array system (Bio-Rad) was used in this project to measure the MMPs 

(including MMP-1, -2, -3, -8 and -9), TIMPs (including TIMP-1, -2, -3 and -4) and the 

angiogenesis associated proteins (including Angiopoietin-2, Follistatin, granulocyte 
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colony-stimulating factor (G-CSF), hepatocyte growth factor (HGF), IL-8, Leptin, platelet-

derived growth factor (PDGF-BB), platelet endothelial cell adhesion molecule (PECAM-1) 

and VEGF-A). The system is based on a bead-based ELISA and a flow cytometer with 2 

lasers, which allows measurement of numerous analytes (up to 100 analytes) in parallel. 

The microsphere beads used contain a 2-dye fluorescent variable intensity to create a 100-

distinct bead set. Molecules bind to the specific probes attached to the bead surface which 

are then tagged by fluorescent reporter labels. The beads pass individually through a 2 laser 

column in the machine and their fluorescent biochemical reactions are measured and 

reported (see http://www1.imperial.ac.uk/resources/6DB4DBCF-7A48-4655-85ED-

21C3E2C63932/).   

 

A standard ELISA was used in the present study to determine the level of TGF-β1 in each 

patient.  

 

3.4.3 Luminex assay for angiogenesis associated proteins 

 

Measurement of circulating angiogenesis associated proteins was performed on the serum 

samples using Bio-Plex ProTM Human Angiogenesis 9-plex immunoassay kits (Bio-Rad) 

and was read on a Bio-Plex 200TM system (Bio-Rad). Sample preparation and assay 

procedure were followed according to the manufacturer’s recommendation. In addition, 3 

μg/ml of Heteroblock (Omega Biologicals, Bozeman, USA) was added into the sample 

diluent prior to assay to block any non-specific binding to RF (Hueber et al, 2007). 
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Preparation of samples 

 

The serum samples were removed from storage at -80°C and were thawed at 4°C. Samples 

were centrifuged at 13,200 rpm for 10 minutes at 4°C to clear the precipitate. Immediately, 

50 μl of serum was diluted with 150 μl of Sample Diluent containing 4 μg/ml of 

Heteroblock (dilution at 1:4). The prepared samples were kept on ice until ready for use.  

 

Preparation of standards 

 

One vial of lyophilized standard was reconstituted with 500 μl of the Standard Diluent. 

After a gentle vortex (1 – 3 seconds), the standard solution was incubated on ice for 30 

minutes. 

 

A set of tubes was labelled as S1 (standard 1), S2, S3, S4, S5, S6, S7 and S8. Four hundred 

μl of reconstituted standard was added to the S1 tube. Four hundred and fifty μl of Serum 

Standard Diluents were added into the remaining tubes. A 4-fold dilution series were 

produced by transferring 150 μl of solutions from the tube ahead to the next one 

(S1→S2→S3→S4→S5→S6→S7→S8). The reconstituted standard served as the high 

standard, whereas the Serum Standard Diluent served as the blank. Vortexing and change 

of the pipet tips were performed during every transfer. The serial standards were kept on 

ice until ready for use.  
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Preparation of controls 

 

One vial of lyophilized control was reconstituted with 800 μl Serum Standard Diluent. 

After a gentle vortex (1 – 3 seconds), the control solution was incubated on ice for 30 

minutes.  

 

The reconstituted control was further diluted to create the desired quality control samples 

(3-level controls). A set of tubes was labelled as C1 (control 1), C2 and C3. Three hundred 

μl of Serum Standard Diluents were added into these three tubes. After that, 150 μl of the 

reconstituted control solution was added into the C1 tube. A 3-fold dilution series were 

made by transferring 150 μl of solutions from the tube ahead to the next one 

(C1→C2→C3). Vortexing and change of the pipet tips were performed during every 

transfer. Control samples were kept on ice until ready for use. 

 

Preparation of magnetic beads, detection antibody and streptavidin-PE 

 

The coupled magnetic beads were protected from light by covering the tubes with 

aluminium foil. The beads (25×) were vortexed at medium speed for 15 – 20 seconds 

before diluting. Assay Buffer was used to dilute beads from 25× to 1×. Each well required 

50 μl of beads (1×) (2 μl of beads (25×) + 48 μl of Assay Buffer). Prepared beads were 

kept on ice until ready to use. 

 

Detection Antibody Diluent was used to dilute detection antibody from 10× to 1×. Each 

well required 25 μl of detection antibody (1×) (2.5 μl of detection antibody (10×) + 22.5 μl 

of Detection Antibody Diluent). 
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The streptavidin-PE (100×) was diluted with Assay Buffer to the concentration of 1×. Each 

well required 50 μl of streptavidin-PE (1×) (0.5 μl of streptavidin-PF (100×) + 49.5 μl of 

Assay Buffer). 

 

Assay procedure  

 

The diluted standards, samples and controls, and all buffer solutions were brought to room 

temperature 20 minutes prior to use. The wells of the 96-well filter plate were pre-wetted 

with 100 μl of Assay Buffer and then removed by a vacuum manifold designed to 

accommodate a 96-well plate. Coupled magnetic beads (1×) were vortexed for 15 – 20 

seconds. After that, 50 μl of the beads was added to each well and vacuum-filtration was 

performed immediately. Washing was performed by adding 100 μl of Wash Buffer to each 

well and performing vacuum-filtration to remove the liquid. Washing was carried out 

twice. After washing, 50 μl of standard, control or sample (gently vortexed, 1 – 3 seconds) 

was added into each well, followed by incubation at room temperature on a horizontal 

orbital shaker for 30 minutes (plate covered with a foil plate sealer during incubation). 

During this incubation period, the detection antibody (1×) was prepared (as described). 

After incubation, the plate was filtered through the vacuum manifold, and washed 3 times. 

Then, 25 μl of detection antibody (gently vortexed, 1 – 3 seconds) was added into each 

well, followed by the second incubation at room temperature on an orbital shaker for 30 

minutes. In this period, streptavidin-PE (1×) was prepared (as described). After the 

detection antibody incubation, vacuum-filtration and washing (3×) were performed. 

Addition of 50 μl of streptavidin-PE (gently vortexed, 1 – 3 seconds) into each well was 

carried out before the third incubation at room temperature on an orbital shaker for 10 

minutes. When the streptavidin-PE incubation was completed, further vacuum-filtration 
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and washing (3×) were carried out. After the final wash, 125 μl of Assay Buffer was added 

into each well, followed by a shaking at room temperature on an orbital shaker for 30 

seconds. The plate was then ready to be read on the Luminex Bio-Rad Analyzer (setting for 

data acquisition not shown). 

 

3.4.4 Luminex assay for MMPs 

 

Quantification of circulating MMPs was performed on the serum samples using Human 

MMP Fluorokine MAP multiplex kits (R&D Systems, Minneapolis, USA) and was read on 

a Bio-Plex 200TM system (Bio-Rad). Sample preparation and assay procedure were 

followed according to the manufacturer’s recommendation. Three μg/ml of Heteroblock 

(Omega Biologicals, Bozeman, USA) was added into the sample diluent prior to assay to 

block any non-specific binding to RF (Hueber et al, 2007). 

 

The procedure of this assay was similar to that for the angiogenic proteins. This assay 

measured the pro-form of MMPs.  

 

3.4.5 Luminex assay for TIMPs 

 

Measurement of circulating TIMPs was performed on the serum samples using Human 

TIMP Fluorokine MAP multiplex kits (R&D Systems, Minneapolis, USA) and was read on 

a Bio-Plex 200TM system (Bio-Rad). Sample preparation and assay procedure were 

followed according to the manufacturer’s recommendation. Three μg/ml of Heteroblock 

(Omega Biologicals, Bozeman, USA) was added into the sample diluent prior to assay to 

block any non-specific binding to RF (Hueber et al, 2007). 



 100

The procedure of the TIMP assay was similar to that of the assay for the angiogenic 

proteins. 

 

3.4.6 ELISA assay for TGF-β1 

 

Measurement of circulating TGF-β1 was performed on the serum samples using a Duoset 

Human TGF-β1 ELISA kit (R&D Systems, Minneapolis, USA) and was read on a TiterTek 

Multiskan Plus MKII microplate reader (Flow Laboratories Ltd., Richmansworth, UK). 

Sample and solution preparations and assay procedure were followed according to the 

manufacturer’s recommendation.  

 

Preparation of plate 

 

Capture antibody (mouse anti-TGF-β1) was reconstituted with 1 ml of phosphate buffered 

saline (PBS). The reconstituted capture antibody (360 μl/ml) was stored at 4°C. To dilute 

the capture antibody to the working concentration (2 μl/ml), 66.6 μl of reconstituted 

capture antibody was added into 11,933.4 μl of PBS. For coating a 96-well microplate 

(Costar 3590, Corning Incorporated, NY, USA), 100 μl of the diluted capture antibody was 

added into each well. After that, the plate was sealed with foil and was incubated overnight 

at room temperature. By aspirating each well, and inverting the plate and blotting it against 

clean paper towels, liquid was removed from the wells. Washing was carried out 4 times. 

Each wash step was performed by adding 300 μl of Wash Buffer (0.05% Tween® 20 in 

PBS) into each well and removing the liquid as described above. For blocking the plate, 

300 μl of Block Buffer (5% Tween® 20 in PBS with 0.05% NaN3) was added into each 
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well and the plate was incubated at room temperature for 1.5 hours. After that, another 

washing (4×) was required before the plate was ready for sample addition.  

 

TGF-β1 activation and dilution for samples 

 

To activate latent TGF-β1 to immunoreactive protein, an acid activation was required, 

followed by a neutralization. To do this, firstly, 20 μl of 1 N HCl was mixed with 40 μl of 

serum and the mixture was incubated at room temperature for 10 minutes. Then, the 

acidified sample was neutralized by adding 20 μl of 1.2 N NaOH with 0.5 M 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). During this, samples were 

diluted 1:2.  

 

Prior to the assay, a further 20-fold dilution was performed by adding 20 μl of activated 

sample into 380 μl of Reagent Diluent (Catalog # DY997, R&D Systems, Minneapolis, 

USA). Thus, the final dilution was at 1:40.   

 

Preparation of standards  

 

One vial of lyophilized standard was reconstituted with 500 μl of Reagent Diluent. The 

reconstituted standard (120 ng/ml) was allowed to sit for 20 minutes with gentle agitation 

prior to making dilutions for serial standards. 

 

A set of tubes was labelled as S1, S2, S3, S4, S5, S6 and S7. Into the S1 tube, 16.7 μl of 

reconstituted standard and 983.3 μl of Reagent Diluent were added to make the high 

standard (2,000 pg/ml). Five hundred μl of Reagent Diluents were added into the 
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remaining tubes. A 2-fold dilution series were produced by transforming 500 μl of 

solutions from the tube ahead to the next one (S1→S2→S3→S4→S5→S6→S7). A 7-point 

standard curve was then made and the Reagent Diluent served as the blank. Vortexing and 

change of pipet tips were performed during every transfer.  

 

Preparation of detection antibody and streptavidin-HRP 

 

Detection antibody (biotinylated chicken anti-TGF-β1) was reconstituted with 1 ml of 

Reagent Diluent. The reconstituted detection antibody (54 μg/ml) was stored at 4°C. To 

dilute the detection antibody to the working concentration (300 ng/ml), 66.6 μl of 

reconstituted detection antibody was mixed with 11,933.4 μl of Reagent Diluent.  

 

To dilute the streptavidin-HRP to the working concentration, a 1:200 dilution was required. 

Addition of 60 μl of streptavidin-HRP into 11,940 μl of Reagent Diluent was carried out 

for each assay.  

 

Assay procedure  

 

One hundred μl of sample or standard was added to each well, followed by incubation at 

room temperature for 2 hours (plate covered with an adhesive strip when incubating). After 

removing the liquid from wells (as described), washing was carried out 3 times (as 

described). Then, 100 μl of diluted detection antibody was added into each well, followed 

by incubation at room temperature for 2 hours. Washes were carried out 3 times. After that, 

100 μl of diluted streptavidin-HRP was added into each well. The plate was protected from 

light and was incubated at room temperature for 20 minutes. Washes (3×) were performed 
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after this incubation. Addition of 100 μl of Substrate Solution (1:1 mixture of Colour 

Reagent A (H2O2) and Colour Reagent B (tetramethylbenzidine), Catalog # DY999, R&D 

Systems, Minneapolis, USA) to each well was performed, followed by incubation at room 

temperature for 20 minutes (avoiding the light). Before reading, 50 μl of Stop Solution (2 

N H2SO4, Catalog # DY994, R&D Systems, Minneapolis, USA) was added into each well 

and the plate was gently tapped to ensure thorough mixing. Determination of the optical 

density of each well was carried out immediately, using a reader set to 550 nm for 

wavelength correction and 450 nm for result-obtaining reading.  

 

 

3.5 STATISTICAL ANALYSIS 

 

3.5.1 Significance level 

 

In the present study, univariate statistics and multivariate regression analysis were applied 

to assess relationships. The significance level was set at a p value of 0.05. All p values 

were based on 2-tailed tests.  

 

3.5.2 Analysis for genotypic distribution, linkage disequilibrium and haplotype 

 

Hardy-Weinberg equilibrium (HWE) for the genotypic distributions of each polymorphism 

was tested with the Chi-Square goodness-of-fit test. LD indexes, D’ (Lewontin, 1964) and 

r2 were used to indicate the strength of LD and the correlation of linked alleles between 

each pair of markers respectively. The LD block was defined by the four gamete rule. The 

haplotype frequencies were estimated using an expectation-maximization algorithm to 
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determine the maximum-likelihood frequencies of multi-locus haplotypes (Excoffier and 

Slatkin, 1995). Haploview (version 4.2) (Barrett et al, 2005) was applied to perform these 

analyses and to export related figures. 

 

3.5.3 Analysis for relationship between categorical variables 

 

The relationship between categorical variables was initially assessed using contingency 

tables. In the present study, categorical variables for outcome measures were all binary 

variables. The p value obtained from Chi-Square tests was used to determine whether there 

was significant difference between at least 2 groups. Odds ratio (OR) with 95% confidence 

interval (CI) was calculated based on proportions (Fisher’s Exact Test was applied where 

samples sizes were small (≤ 5)). If a trend was seen, the p value for trend was determined 

by extended Mantel-Haenszel Test. Thereafter, multivariate logistic regression was used to 

test the association when adjusting for confounding factors (e.g. sex, age, DD, etc) and to 

investigate whether the risk factor was independent of other established risk factors 

(outcome variable as dependent variable, and risk variables and confounders as 

independent variables). The Number Cruncher Statistical System for Windows (version 

NCSS 2000) was used to perform all analysis, except for the assessment of p for trend. P 

for trend was obtained using WinPEPI (version 9.4). 

 

3.5.4 Analysis for relationship between categorical and quantitative variables 

 

The relationship between categorical variables and quantitative variables was assessed 

using T-test (categories = 2) or using one-way ANOVA (categories ≥ 3) initially. For T-test, 

if 2 populations being compared were both in normal distribution and had equal variance, 
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Student’s T-test was applied; if they were both in normal distribution but had the unequal 

variance, Aspin-Welch Test was applied; and if they were neither in normal distribution nor 

had the unequal variance, the Mann-Whitney Test was used. For one-way ANOVA, if 

compared groups were all in normal distribution and had equal variance, the standard test 

were applied; if they were not all in normal distribution but had equal variance, Kruskal-

Wallis Test was used. When there was a trend, the p value for trend was assessed. In the 

present study, the p value for trend was determined by the Jonckheere Terpstra Test 

(assessment of trend among three non-parametric distributed quantitative trait groups).  

Multivariate multiple regression analysis was carried out to test the independence of 

associations and to adjust for potential confounding factors (outcome variable as dependent 

variable, and risk variables and confounders as independent variables). NCSS performed 

most analyses, while WinPEPI was used to calculate the p for trend.  

 

3.5.5 Analysis for relationship between quantitative variables 

 

Correlation testing was used to assess the relationship between quantitative variables. 

Since the majority of these variables were not in normal distribution, Spearman’s 

Correlation was mostly applied. Multiple regression analysis was also used to assess the 

independence of association and to adjust for potential confounding factors. When using 

multiple regression analysis, a normal distribution of the dependent variable was required 

and where possible a normal distribution of the independent variables. Thus, some 

transformations to normality were applied (e.g. log, square root, etc). These analyses were 

carried out using NCSS.  
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3.5.6 Analysis for relationship involving haplotype 

 

The relationship between haplotypes and binary variables was analyzed in Haploview. The 

analysis was based on the estimated frequencies of haplotypes and the contingency tables. 

The relationship between haplotypes and quantitative variables was assessed under 

regression-based models in HAPSTAT (version 3.0, Department of Biostatistics, 

University of North Carolina at Chapel Hill, USA) (Lin et al, 2005). 

 

3.5.7 Assessment of biological interaction  

 

Evidence of interaction between categorical variables in relation to a binary variable was 

assessed by examining for evidence of departure from additivity using the methods of 

Rothman and Greenland (Rothman and Greenland, 1998). Using this approach the 

attributable proportion due to interaction (AP) was calculated, together with 95% CI, as 

detailed by Andersson et al (Andersson et al, 2005). The AP refers to the attributable 

proportion of disease that is due to interaction among persons with both exposures. In the 

case of no biological interaction, AP = 0, while an AP = 1 corresponds to complete additive 

interaction.   
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PART A: SMOKING, AUTOANTIBODIES, SEVERITY AND CO-MORBIDITY IN 

RA (4.1 – 4.4) 

 

 

4.1 SMOKING AND AUTOANTIBODIES 

 

4.1.1 Brief introduction 

 

Cigarette smoking has been identified as a risk factor for seropositive RA regardless of 

gender. However, with which marker (RF vs. anti-CCP) it is primarily associated remains 

to be fully evaluated. With the interaction involving HLA-DRB1 SE alleles smoking seems 

to be responsible for the presence of anti-CCP (Vittecoq et al, 2008), while other 

observations have shown that smoking is more significantly associated with the RF 

production in patients carrying certain genotypes such as GSTM1-null (Mattey et al, 2002). 

It was therefore of interest to evaluate the relationship between smoking and the presence 

of autoantibodies (RF and anti-CCP) in our RA population.  

 

4.1.2 Smoking characteristics 

 

Smoking status was successfully recorded on 428 patients. The demographic and clinical 

characteristics of the total RA population, and patients stratified by ever-smoking status are 

shown in Table 4.1.2a. The majority of smokers had started smoking as teenagers, with 

median age = 17 (interquartile range (IQR) 15 - 19). Table 4.1.2b shows the smoking 

history of patients stratified by gender. A higher frequency of smokers (ever-smoked) was 

found in males (p = 0.037). Male smokers consumed more cigarettes per day than female 
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smokers did (p = 0.0013). However, between genders there was no significant difference in 

smoking duration. In terms of total amount of smoking, males were more likely to be 

heavier smokers compared to females (p = 0.024).  

 

Preliminary analysis showed that there was no significant difference in outcome variables 

between past and current smokers (data not shown). In the present section (Part A, Results 

Chapter), we therefore combined past and current smokers and thus present the data only 

on patients who had ever smoked.  
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Table 4.1.2a Demographic and clinical characteristics of RA patients stratified by ever-

smoking status 

 Variable All patients Non-smoking Ever-smoking p‡ 

Demographics     

 Age, years 62.0 (54.0 – 69.0) 60.0 (53.0 – 67.0) 63.0 (55.0 – 70.0) NS 

 Male: Female 137:291 24:121 113:170 < 0.0001 

 BMI, kg/m2 27.3 (24.5 – 30.5) 27.3 (24.6 – 30.6) 27.4 (24.5 – 30.4) NS 

 CSUM (≥ median) 196/400 (49.0) 57/134 (42.5) 138/266 (51.9) NS 

RA characteristics     

 Age of onset 50.0 (41.0 – 58.0) 48.8 (38.0 – 56.0) 50.0 (42.0 – 59.0) NS 

 Duration, years 9.0 (3.0 – 18.0) 9.0 (3.3 – 17.8) 9.0 (3.0 – 18.0) NS 

 RF  243/426 (57.0) 64/143 (44.8) 179/283 (63.3) 0.05 

 Anti-CCP  314/415 (75.7) 96/138 (69.6) 218/277 (78.7) NS 

 ESR, mm/hr 19.0 (10.0 – 35.0) 18.0 (10.0 – 33.0) 20.0 (10.5 – 38.0) NS 

 CRP (≥ 10 mg/l) 229/428 (53.5) 72/143 (50.3) 157/282 (55.7) NS 

 *DAS28 4.19 (1.38) 4.07 (1.34) 4.25 (1.40) NS 

 Erosive status 312/423 (73.8) 99/144 (68.8) 212/278 (76.3) NS 

 MJS 7.0 (3.0 – 15.0) 7.0 (3.0 – 15.0) 7.0 (3.0 – 15.0) NS 

 HAQ score 1.63 (1.0 – 2.0) 1.44 (0.78 – 2.0) 1.63 (1.13 – 2.0) NS 

 Nodular disease 54/399 (13.5) 15/137 (10.9) 39/261 (14.9) NS 

Co-morbidities      

 IHD 78/424 (18.4) 11/143 (7.7) 67/281 (23.8) < 0.0001 

 MI 46/424 (10.8) 4/143 (2.8) 42/281 (14.9) 0.0001 

 Diabetes type 1 11/424 (2.6) 3/143 (2.1) 8/281 (2.8) NS 

 Diabetes type 2 22/424 (5.2) 6/143 (4.2) 15/281 (5.3) NS 

 Asthma 44/423 (10.4) 13/143 (9.1) 31/280 (11.1) NS 

 CVA 15/424 (3.5) 4/143 (2.8) 11/281 (3.9) NS 

 Solid cancers 31/398 (7.8) 10/137 (7.3) 21/261 (8.0) NS 

 Hypertension 167/424 (39.4) 48/143 (33.6) 119/281 (42.3) NS 

 Hypercholesterolemia 70/424 (16.5) 19/143 (13.3) 51/281 (18.1) NS 

Haemanalysis     

 Hemoglobin, g/dl 13.0 (12.1 – 13.9) 13.0 (12.0 – 13.7) 13.1 (12.2 – 13.9) NS 

 Leukocyte, × 109/l 7.5 (6.2 – 9.3) 7.3 (6.1 – 8.9) 7.7 (6.2 – 9.5) NS 
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 Platelet, × 109/l 293 (240 – 366) 291 (252  –373) 297 (231 - 365) NS 

Values are n (%) or median (IQR); * Values are mean (SD); ‡ p values (from Chi-square or 

two samples’ T-test) show significant differences between patients who never smoked and 

who ever smoked, without adjustment for potential confounding factors; NS, not 

significant. 

 

Table 4.1.2b Characteristics of cigarette smoking in all RA patients and patients stratified 

by gender 

 All 

(n = 428) 

Male 

(n = 137) 

Female 

(n = 291) 

Ever-smoked 285/428 (66.6) 113/137 (82.5) 170/291 (58.4) 

       Current smokers, n (%) 75/428 (17.5) 25/137 (18.2) 50/291 (17.2) 

       Past smokers, n (%) 210/428 (49.1) 88/137 (64.2) 120/291 (41.2) 

*Cigarettes per day, n  15 (8 - 20) 20 (10 - 20) 10 (7 - 20) 

*Years of smoking, year 31 (18 - 41) 33 (18.8 - 44) 29 (18 - 40) 

*Total amount, pack-years 18.8 (8.5 - 33) 22 (9 - 37) 16.5 (7.75 - 30) 

* Excluded the non-smoking samples; Values are n of positive case (%) or median (IQR); 

pack-years, packs (20 cigarettes) per day × years of smoking. 

 

4.1.3 Smoking, RF and anti-CCP 

 

Complete data of RF, anti-CCP and ever-smoked status was available in 413 patients. RF 

and anti-CCP status were strongly associated with each other (p < 0.0001). Among 413 

patients, 221 (53.5%) were positive for both RF and anti-CCP, while 84 (20.3%) were 

negative for both markers. There were 91 (22.0%) patients recorded as RF-/anti-CCP+, and 

17 (4.1%) as RF+/anti-CCP-. A trend in terms of frequencies of ever smokers in each 

subset (Table 4.1.3a) implied that smoking may be more closely associated with RF in this 
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RA population. This was a general indication without consideration of any genetic 

interaction with smoking.  

 

Table 4.1.3a Combination of RF and anti-CCP status stratified by smoking 

 

 

Never-smoked 

(n = 137) 

Ever-smoked 

(n = 276) 

OR (95% CI) 

RF-/anti-CCP- 38 (45.2%) 46 (54.8%) Referent 

RF-/anti-CCP+ 36 (39.6%) 55 (60.4%) 1.26 (0.69 – 2.29) 

RF+/anti-CCP- 4 (23.5%) 13 (76.5%) 2.48 (0.79 – 7.84) 

RF+/anti-CCP+ 59 (26.7%) 162 (73.3%) 2.26 (1.34 – 3.80) 

Values are n (%). 

 

We tested the effects of smoking (ever-smoked) and anti-CCP status on the presence of RF 

using multivariate logistic regression analysis. In a model that contained both smoking and 

anti-CCP as independent variables and RF as dependent variable, it was found that 

smoking and anti-CCP were both independently associated with RF (OR 1.92, 95% CI 

1.18 – 3.13 and OR 11.75, 95% CI 6.50 – 21.23 respectively, corrected for sex, age and RA 

duration). The effect of smoking (independent variable) on the presence of anti-CCP 

(dependent variable) also achieved significance (OR 1.92, 95% CI 1.17 – 3.15, corrected 

for sex, age and RA duration) in a model without inclusion of RF. However, addition of RF 

(independent variable) as well as smoking in the same model revealed a strong association 

with RF, while the association with smoking became insignificant (OR 1.32, 95% CI 0.75 

– 2.29, corrected for sex, age and RA duration).  

 

The level of RF and anti-CCP were strongly correlated with each other (r = 0.44, p < 

0.0001). In smokers (ever-smoked), the RF level was associated with the number of years 
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of smoking (p < 0.0001, corrected for sex, age and RA duration), but not with the cigarettes 

per day. It was also associated with the pack-years (p = 0.007, corrected for sex, age and 

RA duration), although this association disappeared when included in a model with the 

number of years of smoking. The latter appeared to be the primary association. Anti-CCP 

level was also associated with the number of years of smoking (p = 0.0012, corrected for 

age, sex and RA duration), but not with the cigarettes per day. Once adjusted for RF level, 

the significance of this association reduced (p = 0.074, corrected for age, sex and RA 

duration).  

 

In both genders, smoking was associated with the presence of RF. It showed a more 

significant effect in males with OR = 4.35 (95% CI 1.61 – 11.74, corrected for age and RA 

duration), compared to that in females (OR 1.95, 95% CI 1.20 – 3.14, corrected for age and 

RA duration). In either males or females only, no significant association was achieved 

between smoking and anti-CCP status (adjusted for age and RA duration). 

 

4.1.4 Smoking and RF in GSTM1-null genotype 

 

A previous report from our laboratory demonstrated that RF production was associated 

with cigarette smoking only in GSTM1-null patients (Mattey et al, 2002). In the present 

study we have confirmed this association in a larger group of patients. GSTM1 genotyping, 

RF and smoking status were available in 423 patients. In GSTM1-null patients (n = 236), 

ever-smoked status was associated with higher rate of RF positivity compared with never-

smoking (never-smoking vs. ever-smoking, 32/80 (40.0%) vs. 101/155 (65.2%), OR 95% 

CI 3.32 (1.84 – 5.98), p = 0.046, corrected for age, sex and RA duration). In contrast, in 

GSTM1-expressing patients (n = 187) there was no such significant difference (never-
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smoking vs. ever-smoking, 31/61 (50.8%) vs. 75/124 (60.5%), OR 95% CI 1.50 (0.79 – 

2.86), p = 0.51, adjusted for age, sex and RA duration). 

 

 

4.2 SMOKING AND DISEASE SEVERITY 

 

4.2.1 Brief introduction 

 

The presence of RF and anti-CCP is known to be associated with a more significant disease 

activity and worse functional outcome. Whether there are effects of smoking on disease 

severity independent of its influence on seropositive status remains to be clarified.  

 

4.2.2 RF, anti-CCP and RA clinical measures 

 

In order to assess whether the effects of smoking on RA outcome were independent of RF 

and/or anti-CCP, the effects from these autoantibodies were first tested. Activity/severity of 

RA were estimated by several clinical measures including DAS28, MJS, HAQ, and erosive 

and nodular diseases. Since disease activity will largely be determined by the levels of 

inflammation over time we also investigated associations with inflammatory markers 

including ESR and CRP in these patients.  

 

RF positive patients displayed higher levels of disease activity and worse outcome for all 

clinical measures, compared to that in RF negative patients (Table 4.2.2a). Significant 

differences were achieved in ESR, CRP, DAS28, nodular disease, MJS and HAQ. When 

stratified by anti-CCP status, it was found that ESR, CRP, DAS28, MJS, and erosive and 
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nodular diseases showed significant differences between positive and negative patients 

(Table 4.2.2a).  

 

As shown, RF and anti-CCP were highly correlated with each other. In order to test their 

individual impact on disease measures, the confounding effect between these 2 factors 

needed to be considered. Multivariate multiple or logistic regression models that contained 

both RF and anti-CCP as independent variables thus were used. In these models, the 

association of RF with disease measures remained significant, whereas the association of 

anti-CCP with most parameters was lost except for that with ESR and erosive disease 

(Table 4.2.2b). Based on these adjusted results, RF was strongly associated with most 

measures of disease activity and severity, although it was not predictive of erosive disease. 

On the other hand, anti-CCP was a marker that specifically associated with erosive disease 

in RA. 
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Table 4.2.2a Difference of disease process and outcome measures between seropositive and negative RA 

 Process (activity) measures Outcome (severity) measures 

 ESR CRP DAS28 Nodules Erosion MJS HAQ 

Stratified by RF        

+ 26.0 (13.0 – 42.0) 12.3 (5.0 – 23.1) 4.49 ± 1.41 42/245 (17.1%) 186/231 (77.2%) 8.0 (4.0 – 18.0) 1.8 (1.1 – 2.1) 

– 14.5 (8.3 – 25.0) 8.0 (3.8 – 16.1) 3.79 ± 1.24 10/184 (5.4%) 124/180 (68.9%) 6.0 (2.0 – 13.0) 1.4 (0.8 – 2.0) 

Positive vs. negative p < 0.0001 p = 0.003 p < 0.0001 p = 0.0002 

 

NS p = 0.011 p < 0.0001 

Stratified by anti-CCP        

+ 22.0 (11.0 – 39.0) 11.5 (4.5 – 20.8) 4.27 ± 1.38 46/315 (14.6%) 245/312 (78.3%) 8.0 (4.0 – 17.0) 1.6 (1.0 – 2.1) 

– 14.0 (7.0 – 25.3) 8.1 (3.8 – 15.8) 3.89 ± 1.39 6/103 (5.8%) 57/97 (58.8%) 4.0 (2.0 – 11.0) 1.5 (0.8 – 2.0) 

Positive vs. negative p < 0.0001 p = 0.038 p = 0.008 p = 0.019 p = 0.0001 p = 0.0008 NS 

Values are median (IQR) or mean ± standard deviation (SD); NS, not significant. 
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Table 4.2.2b Relationship between disease measures and RF/anti-CCP status in multivariate multiple/logistic regression models 

 Dependent variable 

 Model 1: 

ESR* 

Model 2: 

CRP* 

Model 3: 

DAS28 

Model 4: 

Nodules 

Model 5: 

Erosion 

Model 6: 

MJS† 

Model 7: 

HAQ 

Independent variable        

 

RF +/- 

 

p < 0.0001 

 

p = 0.016 

 

p < 0.0001 

p = 0.003 

OR (95% CI): 

3.55 (1.52 – 8.31) 

 

NS 

 

p = 0.020 

 

p < 0.0001 

 

Anti-CCP +/- 

 

 

p = 0.041 

 

 

NS 

 

NS 

 

NS 

p = 0.017 

OR (95% CI): 

2.06 (1.14 – 3.72) 

 

NS 

 

NS 

OR, odds ratio; NS, not significant; * and †, log and square root transformation respectively; Multiple or logistic regression models (1 - 7) 

contained both RF and anti-CCP status as independent variables at the same time, and adjusted for age, sex and RA duration. 
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4.2.3 Smoking and RA clinical measures 

 

Initial analysis indicated that there were relationships between smoking and disease 

outcome measures including HAQ (p = 0.023) and erosive disease (p = 0.050), adjusted for 

sex, age and RA duration. However, these may be due to the confounding associations of 

RF with HAQ and anti-CCP with erosive disease. Adjustment of these confounders in 

multivariate regression (multiple or logistic) models revealed an insignificant effect of 

smoking on disease outcome measures (HAQ and erosive disease) in the whole RA cohort 

(Table 4.2.3a and 4.2.3b).  

 

Interestingly, when we analysed the relationship in seropositive and negative patients 

separately, we found that smoking was associated with HAQ in RF- and anti-CCP- 

patients. Also, smoking was associated with erosive disease in anti-CCP- patients. It was 

associated with an increase in the HAQ score and the occurrence of erosive disease in 

seronegative patients who displayed less disease severity compared to seropositive patients 

(Table 4.2.3a and 4.2.3b). Similar trends were also seen with regard to inflammatory and 

disease activity measures (ESR, CRP and DAS28), but only the association with ESR 

achieved significance in anti-CCP negative patients (data not shown). Effects on MJS and 

nodular disease were not seen.   

 

To completely remove any effect from RF and anti-CCP, we also carried out analyses 

restricted to patients who were negative for both RF and anti-CCP. Among these samples, 

46 (54.8%) were classified as ever-smokers, while 38 (45.2%) were non-smokers. 

Differences were found in regard to HAQ and erosive disease between patients who had 

ever or never smoked (Table 4.2.3a and 4.2.3b).  
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Table 4.2.3a Relationship between smoking and HAQ in patients stratified by RF or anti-

CCP 

Patient groups HAQ 

In all patients  

Ever-smoked (n = 283) 1.63 (1.13 – 2.0) 

Never-smoked (n = 145) 1.44 (0.78 – 2.0) 

Ever-smoked vs. never-smoked NS 

 

In RF+ patients  

Ever-smoked (n = 179) 1.75 (1.25 – 2.13) 

Never-smoked (n = 65) 1.75 (1.13 – 2.25) 

Ever-smoked vs. never-smoked NS 

In RF- patients  

Ever-smoked (n = 103) 1.50 (0.88 – 2.0) 

Never-smoked (n = 79) 1.25 (0.63 – 1.88) 

Ever-smoked vs. never-smoked p = 0.038  

(age, sex and RA duration adjusted) 

In anti-CCP+ patients  

Ever-smoked (n = 218) 1.63 (1.10 – 2.13) 

Never-smoked (n = 95) 1.63 (1.0 – 2.10) 

Ever-smoked vs. never-smoked NS 

In anti-CCP- patients  

Ever-smoked (n = 58) 1.63 (1.0 – 2.0) 

Never-smoked (n = 42) 1.25 (0.50 – 1.91) 

Ever-smoked vs. never-smoked p = 0.037 

(age, sex, RA duration and RF adjusted) 

In RF- and anti-CCP- patients  

Ever-smoked (n = 46) 1.50 (0.88 – 2.0) 

Never-smoked (n = 38) 1.19 (0.44 – 1.78) 

Ever-smoked vs. never-smoked p = 0.027 

(age, sex and RA duration adjusted) 

Values are median (IQR); NS, not significant; P values are obtained from multivariate 

multiple regression models and are adjusted for confounding factors where appropriate. 
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Table 4.2.3b Relationship between smoking and erosive status in patients stratified by RF 

or anti-CCP 

Patient groups Erosive status 

In all patients  

Ever-smoked  212/278 (76.3) 

Never-smoked 45/144 (68.8) 

Ever-smoked vs. never-smoked NS 

 

In RF+ patients  

Ever-smoked  137/176 (77.8) 

Never-smoked 48/64 (75.0) 

Ever-smoked vs. never-smoked NS 

In RF- patients  

Ever-smoked  74/101 (73.3) 

Never-smoked 50/29 (63.3) 

Ever-smoked vs. never-smoked NS  

 

In anti-CCP+ patients  

Ever-smoked  171/216 (79.2) 

Never-smoked 72/95 (75.8) 

Ever-smoked vs. never-smoked NS 

In anti-CCP- patients  

Ever-smoked  35/55 (63.6) 

Never-smoked 22/42 (52.4) 

Ever-smoked vs. never-smoked p = 0.030 

(age, sex, RA duration adjusted) 

In RF- and anti-CCP- patients  

Ever-smoked  27/44 (61.4) 

Never-smoked 19/38 (50.0) 

Ever-smoked vs. never-smoked p = 0.047 

(age, sex and RA duration adjusted) 

Values are n (%); NS, not significant; P values are obtained from multivariate logistic 

regression models and are adjusted for confounding factors where appropriate. 
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4.3 SMOKING AND CO-MORBIDITY 

 

4.3.1 Brief introduction 

 

Cigarette smoking affects multiple organ systems and results in numerous smoking-

induced diseases, notably CVD. The most common CVD is IHD. In RA, the clinical 

presentation of IHD appears to be different to that in the normal population. It was 

therefore of a great interest to investigate the relationship between smoking and IHD as 

well as other disease conditions in this specific subset of the RA population. 

 

4.3.2 Smoking, IHD and MI 

 

Patients who had ever smoked had an increased likelihood of IHD and MI, compared to 

those who had never smoked (OR 95% CI, 2.52 (1.28 – 4.95) and OR 95% CI, 4.24 (1.45 – 

12.37) respectively, adjusted for age, sex and RA duration). Amongst smokers, strong 

associations were found between pack-years and IHD/MI (p = 0.009 and p = 0.006 

respectively, corrected for age, sex and RA duration). Further details, including 

associations with VEGFA-smoking interaction and TGFB1-smoking interaction are 

presented in Part C and Part F of the Results respectively.   

 

4.3.3 Smoking and the number of presented co-morbidities 

 

Although no significant associations were found between smoking and other co-morbid 

conditions (including diabetes type 1 and 2, cerebrovascular accident (CVA), asthma, 

cancers, hypertension and hypercholesterolaemia), patients who had ever smoked had an 
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increased likelihood of presenting with more co-morbidities (Table 4.3.3a, n < 3 vs. n ≥ 3 

(n: any recorded co-morbid condition), OR 2.02, 95% CI 1.10 – 3.73, corrected for age, 

sex and RA duration). This suggests that smoking may be a risk factor for several co-

morbid conditions in RA. The lack of association of smoking with individual co-

morbidities (apart from CVD) may be a reflection of the relatively low numbers of some 

conditions in this group of patients.  

 

Table 4.3.3a Relationship between ever-smoked status and the number of presentation of 

co-morbid conditions (n < 3 vs. n ≥ 3) 

 Number of co-morbid conditions ≥ 3 

Ever-smoked status – + 

– 118 20 (14.5) 

+ 194 75 (27.9) 

 

 

4.4 SUMMARY OF FINDINGS FOR 4.1 – 4.3 

 

• Smoking was more closely associated with the presence of RF than anti-CCP in this 

RA population. The release of RF was associated with the number of years of 

smoking rather than cigarettes per day or pack-years. 

 

• This study provided support for a previous report (Mattey et al, 2002) that smoking 

was only significantly associated with RF in GSTM1-null patients.  
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• Seropositive RA was more likely to have high disease activity, leading to more 

severe disease. In particular, RF appeared to be more closely associated with 

markers of disease activity (ESR, CRP and DAS28), nodular status and those 

disease severity measures that included an element of functional outcome (MJS and 

HAQ). On the other hand, there was superiority of anti-CCP over RF in predicting 

an erosive course.  

 

• Smoking was associated with RA outcome measures (HAQ and erosive disease) 

particularly in seronegative patients. 

 

• There were associations of smoking with the presence of IHD and previous MI in 

patients with RA. 

 

• Smoking was associated with increased number of co-morbid conditions in patients 

with RA. 
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PART B: GSTM1, T1 POLYMORPHISM, SEVERITY AND CO-MORBIDITY IN 

RA (4.5 – 4.8) 

 

 

4.5 GSTM1, T1 POLYMORPHISM 

 

4.5.1 Brief introduction 

 

The GST enzymes are believed to be important in detoxifying products generated by the 

activity of ROS. Homozygous deletions of the GSTM1 and GSTT1 genes are common and 

result in a complete loss of enzyme activity (Rebbeck 1997; Bell et al, 1993; Pemble et al, 

1994). It has been shown that GSTM1-null and GSTT1-null genotypes are associated with 

increased risk of smoking-related diseases, such as lung cancer (Seidergard et al, 1990; 

Taioli et al, 2003). Thus, it was of interest to investigate whether the GSTM1/T1 

polymorphism was associated with disease severity and/or co-morbid conditions in RA 

population.  

 

4.5.2 Non-functional null polymorphism 

 

Both GSTM1 and T1 genes have expressible alleles and a non-functional null allele 

(GSTM1*0/GSTT1*0) caused by deletion of the GSTM1/GSTT1 gene sequence. By 

amplifying the gene sequence (using PCR), it is possible to distinguish between 

homozygous GSTM1*0/GSTT1*0 and genotypes with least 1 copy of the expressible 

allele.  
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Genotypic distribution 

 

GSTM1 and GSTT1 genotypes were both determined in 430 RA patients. Two hundred 

and thirty eight (55.3%) patients did not express GSTM1 enzyme (homozygous 

GSTM1*0), while 67 (15.5%) patients did not express GSTT1 enzyme (homozygous 

GSTT1*0). The frequencies of homozygosity for GSTM1*0 and GSTT1*0 in this group of 

RA patients were similar to those in the general population. Homozygosity for GSTM1*0 

and GSTT1*0 occurred in ~ 50% and ~ 20% of Caucasians respectively (Hatagima et al, 

2004). Table 4.5.2a shows the combination of GSTM1 and T1 genotypes in this group of 

RA patients.  

 

Table 4.5.2a Combination of GSTM1 and T1 genotypes (expressing vs. null) in RA 

Combination Number (%) 

M1-expressing, T1-expressing 157 (36.5%) 

M1-null, T1-expressing 206 (47.9%) 

M1-expressing, T1-null 35 (8.1%) 

M1-null, T1-null 32 (7.4%) 

 

 

4.6 GSTM1, T1 POLYMORPHISM AND DISEASE SEVERITY 

 

4.6.1 Brief introduction 

 

It has been well established that smoking plays a significant role in RA. Previous work 

from our laboratory indicated that the non-functional null polymorphism of the GSTM1 

gene was associated with worse radiographic damage (Larsen score) and functional 
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outcome (HAQ) in a group of 164 female RA patients. This association primarily occurred 

in ever smokers, which may suggest the importance of this enzyme in detoxifying products 

generated by cigarette smoking. Furthermore, it was also found that the production of RF 

was only linked to smoking in the absence of functional GSTM1 gene, implying this gene 

may be associated with the prevention of RF release (Mattey et al, 2002). This study was to 

confirm the previous data and to evaluate the GSTT1 function in a larger population of 

RA. 

 

4.6.2 GSTM1, T1 genotype, smoking and RF 

 

In patients carrying homozygosity for GSTM1*0, there was an association of ever-smoked 

status with RF production, whereas in patients with functional GSTM1 gene, this 

association did not exist. This observation was described in Section 4.1.4. Stratified by 

GSTT1 genotypes (T1-expressing vs. T1-null) ever-smoked status was associated with RF 

in both subsets of patients (data not shown), suggesting that the GSTT1 gene was not 

involved in this association.   

 

4.6.3 GSTM1 genotype and erosive status 

 

In all patients, no association of GSTM1 and T1 genotypes with disease measures 

including DAS28, MJS, HAS and nodular and erosive status was found. A significant 

association of GSTM1-null genotype with erosive disease occurred in patients with RF 

positive status (Table 4.6.3a). A similar relationship was also found when patients were 

stratified by anti-CCP or ever-smoked status, although the result was not significant (Table 
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4.6.3b and c). Combination of GSTM1 and T1 genotypes revealed no additional 

associations.  

To test which factors (RF, anti-CCP, ever-smoked) were the primary ones that interacted 

with GSTM1-null in terms of the development of erosive disease, we carried out a 

multivariate logistic regression analysis, which contained RF, anti-CCP and ever-smoked 

status together as independent variables and erosive status as dependent variable, within 

patients carrying GSTM1-null genotype. Interestingly, the model indicated that ever-

smoking and anti-CCP+ were independently associated with erosive disease in GSTM1-

null patients, while RF+ status was not significantly involved in the same patients (Table 

4.6.3d). Analysis within the patients carrying GSTM1-expressing genotype revealed that 

none of these factors were associated with erosive disease (Table 4.6.3d). This suggested 

that the association of ever-smoking and anti-CCP+ with erosive disease depended on their 

interactions with the GSTM1-null genotype.  
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Table 4.6.3a Relationship between GSTM1 genotype (expressing vs. null) and erosive 

disease in all patients and in patients stratified by RF status 

 All patients RF-patients RF+ patients 

GSTM1 Erosive- Erosive+ Erosive- Erosive+ Erosive- Erosive+ 

expressing 56 133 (70.4) 23 56 (70.9) 33 75 (69.4) 

null 55 176 (76.2) 33 67 (67.0) 22 108 (83.1) 

 NS NS *p = 0.028 

Values are n (%); * Adjustment for age, sex and RA duration; NS, not significant.  

 

Table 4.6.3b Relationship between GSTM1 genotype (expressing vs. null) and erosive 

disease in all patients and in patients stratified by anti-CCP status 

 All patients Anti-CCP- patients Anti-CCP+ patients 

GSTM1 Erosive- Erosive+ Erosive- Erosive+ Erosive- Erosive+ 

expressing 56 133 (70.4) 17 27 (61.4) 37 103 (73.6) 

null 55 176 (76.2) 23  30 (56.6) 31  139 (81.8) 

 NS NS NS (*p = 0.095) 

Values are n (%); * Adjustment for age, sex and DD; NS, not significant. 

 

Table 4.6.3c Relationship between GSTM1 genotype (expressing vs. null) and erosive 

disease in all patients and in patients stratified by ever-smoked status 

 All patients Never-smoked patients Ever-smoked patients 

GSTM1 Erosive- Erosive+ Erosive- Erosive+ Erosive- Erosive+ 

expressing 56 133 (70.4) 19 43 (69.4) 35 89 (71.8) 

null 55 176 (76.2) 25 54 (68.4) 29   121 (80.7) 

 NS NS NS (*p = 0.074) 
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Values are n (%); * Adjustment for age, sex and DD; NS, not significant. 

 

Table 4.6.3d Relationship between ever-smoking, anti-CCP and RF status, and erosive 

disease in multivariate logistic regression, analysed separately in GSTM1-null and 

GSTM1-expressing patients 

 Erosive status 

(GSTM1-null patients) 

Erosive status 

(GSTM1-expressing patients) 

Independent 

variable 

Regression 

coefficient 

p value OR 95% CI Regression 

coefficient 

p value OR 95% CI 

Ever-smoked 0.77 0.033 2.14 (1.06 – 4.33) -0.029 0.94 0.97 (0.46 – 2.04) 

Anti-CCP+ 0.81 0.010 2.61 (1.26 – 5.38) 0.66 0.16 1.94 (0.77 – 4.88) 

RF+ 0.32 0.43 1.37 (0.62 – 3.02) -0.45 0.29 0.63 (0.28 – 1.47) 

Age -0.047 0.011 0.95 (0.92 – 0.99) 0.019 0.23 1.02 (0.99 – 1.05) 

Female 0.49 0.19 1.63 (0.78 – 3.38) -0.24 0.56 0.79 (0.36 – 1.74) 

RA duration 0.085 0.0002 1.09 (1.04 – 1.14) 0.064 0.0037 1.06 (1.02 – 1.12) 

 

 

4.7 GSTM1, T1 POLYMORPHISM AND CO-MORBIDITY 

 

4.7.1 Brief introduction 

 

Associations of GSTM1-null and T1-null genotypes with the development of 

atherosclerosis and coronary artery disease have been observed in the general population 

(Abu-Amero et al, 2006; Wang et al, 2010; Girisha et al, 2004; Wilson et al, 2003). In 

particular, there were numerous studies suggested that interaction of these genotypes with 

smoking may be responsible for such associations (Wang et al, 2008; Kim et al, 2008; 

Manfredi et al, 2007; Tamer et al, 2004; Miller et al, 2003; Olshan et al, 2003; Masetti et 

al, 2003; Wang et al, 2002; Li et al, 2000). Furthermore, both M1 and T1 have been 
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associated with the risk of MI (Wilson et al, 2000; Cornelis et al, 2007). Recently, studies 

focusing on these 2 polymorphisms also indicated that they were associated with 

hypertension in the general population (Cruz-Gonzalez et al, 2009; Capoluongo et al, 2009; 

Delles et al, 2008; Oniki et al, 2008; Marinho et al, 2007). It was therefore interesting to 

see if there were such relationships in this RA population.  

 

4.7.2 GSTM1, T1 genotype and co-morbid condition 

 

No association of GSTM1 or T1 genotype with any co-morbid condition recorded in the 

studied population was found. No evidence of interaction with smoking was found. 

 

 

4.8 SUMMARY OF FINDINGS FOR 4.5 – 4.7 

 

• The frequencies of homozygosity for GSTM1*0 and GSTT*0 in RA population 

were similar to those in the general population. 

 

• We confirmed that the association of smoking with RF only occurred in patients 

with non-functional GSTM1 genotype.  

 

• In univariate analyses, RF+ (significantly), anti-CCP+ (insignificantly) and ever-

smoked status (insignificantly) were only associated with erosive disease in 

GSTM1-null patients. Multivariate logistic regression containing these 3 factors 

together as independent variables indicated that anti-CCP+ and ever-smoked status 

were independent risks for erosive disease in patients with GSTM1-null genotype.  
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PART C: VEGFA POLYMORPHISM, SERUM LEVEL OF VEGF-A, SEVERITY 

AND CO-MORBIDITY IN RA (4.9 – 4.12) 

 

 

4.9 VEGFA POLYMORPHISM AND SERUM VEGF-A LEVEL 

 

4.9.1 Brief introduction  

 

Polymorphisms in the VEGFA gene have been reported to be associated with many 

disorders where angiogenesis may play a critical role in disease development. It has been 

suggested that these associations may be explained by the alteration of VEGF-A 

expression. SNPs in the promoter region (rs699947 and rs833061), 5’-untranslated region 

(UTR) (rs2010963) and 3’-UTR (rs3025039) have been associated with differential 

expression of VEGF-A protein, although there is inconsistency between studies (Watson et 

al, 2000; Awata et al, 2002; Stevens et al, 2003; Renner et al, 2000; Koukourakis et al, 

2004; Prior et al, 2006). This relationship has not yet been investigated in subjects with 

RA. As a key promoter of angiogenesis, VEGF-A is thought to play an important role in 

the pathogenesis and progression of RA. Thus, it was interesting to investigate whether 

polymorphism in the VEGFA gene was associated with the circulating level of VEGF-A 

protein in patients with RA. 
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4.9.2 VEGFA polymorphism 

 

Studied SNP 

 

Polymorphism rs699947 is normally known as VEGFA-2578(A/C), named after its 

position relative to the translation start site of the gene (-1540 relative to the transcription 

start site). SNPs rs833061 and rs2010963 are known as VEGFA-460(C/T) and +405(C/G) 

respectively. They are identified by their positions relative to the transcription start site. 

Alternatively, rs2010936 is also referred to as VEGFA-634 based on its location according 

to the translation start site. These 3 polymorphisms are upstream of the VEGFA coding 

region, with -2578 and -460 in the promoter region, and +406 in the 5’-UTR. SNP 

rs3025039, known as VEGFA+936(C/T), is named after its position relative to the 

transcription end site. It is located in the 3’-UTR, downstream of the VEGFA coding 

region. These 4 SNPs are the most common and studied polymorphisms in the VEGFA 

gene. Figure 4.9.2a shows the location of each SNP and their physical distance between 

each other. 
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Figure 4.9.2a Diagram of human VEGFA gene highlighting the location of its common 

polymorphisms 

 
The positions of rs699947, rs833061, rs2010963 and rs3025039 at chromosome 6 are 

43736389, 43737486, 43738350 and 43752536 respectively. Physical distances in bp 

between SNPs are shown. Left and right dots indicate the transcription start site and end 

site respectively.  

 

Allelic and genotypic distribution 

 

Genotypes were determined in 428 RA subjects for VEGFA-2578 SNP, 430 subjects for -

460 and 429 subjects for +405 and +936. The allelic and genotypic frequencies of the 4 

VEGFA SNPs in our RA patients and in healthy subjects of UK Caucasoid origin are 

shown in Table 4.9.2a. Genotypes of -2578, -460, +405 and +936 were all distributed in 

accordance with a close fit to HWE. No significant difference of allelic distribution 

between our RA patients and healthy UK Caucasians was observed. 
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Table 4.9.2a Distribution of allelic and genotypic frequencies of VEGFA-2578(A/C), -460(C/T), +405(C/G) and +936(C/T) polymorphisms in 

RA patients and in the normal healthy UK Caucasians 

 Patients 

with RA 

n (%) 

Healthy 

subjects*

n (%) 

 Patients 

with RA 

n (%) 

Healthy 

subjects*

n (%) 

 Patients 

with RA 

n (%) 

Healthy 

subjects*

n (%) 

 Patients 

with RA 

n (%) 

Healthy 

subjects*

n (%) 

-2578   -460   +405   +936   

Genotype   Genotype   Genotype   Genotype   

AA 112(26.2) 16(21.6) CC 106(24.7) NA CC 40(9.3) NA CC 308(71.8) NA 

AC 207(48.4) 34(45.9) CT 218(50.7) NA CG 186(43.4) NA CT 107(24.9) NA 

CC 

 

109(25.5) 24(32.4) TT 106(24.7) NA GG 203(47.3) NA TT 14(3.3) NA 

Allele   Allele   Allele   Allele   

A 431(50.4) 66(44.6) C 430(50.0) 121(52.6) C 266(31.0) 67 (29.1) C 723(84.3) NA 

C 425(49.6) 82(55.4) 

p > 0.05 

T 430(50.0) 109(47.4) 

p > 0.05 

G 592(69.0) 163(70.9) 

p > 0.05 

T 135(15.7) NA 

 

* Adapted data from Brogan et al, 1999 (VEGFA-2578) and Watson et al, 2000 (VEGFA-460 and +405); NA, not available. 
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Linkage disequilibrium and haplotype 

 

Pair-wise LD coefficients (D’) and correlations (r2) between the 4 SNPs are shown in 

Figure 4.9.2b and c respectively. Strong LD was detected in the following pairs (-2578, -

460), (-2578, +405) and (-460, +405), with D’ being over 0.93 for all pairs. It was 

noteworthy that the pair (-2578, +405) scored the highest D’ (0.98), although these 2 SNPs 

were not physically next to each other. Pair-wise correlation between VEGFA-2578 and -

460 was high (r2 = 0.85), whereas the correlations between +405 and the 2 promoter SNPs 

were only moderate (r2 ≈ 0.40). A high D’ and low r2 can occur if the alleles that tend to 

occur on the same haplotype have very different allele frequencies. No LD was observed 

between +936 and any other SNPs within the upstream region of the VEGFA gene.  

 

It was noted that the A (-2578), C (-460) and G (+405) alleles were strongly linked with 

each other, with the majority of A (-2578) and C (-460) alleles being components of the A-

C-G haplotype, whereas the C (-2578) and T (-460) alleles were highly associated with 

each other, and together with the +405 SNP they tended to occur in the C-T-C and C-T-G 

haplotypes (Figure 4.9.2d). The frequencies of A-C-G, C-T-C and C-T-G haplotypes were 

0.483, 0.297 and 0.182 respectively. Haplotypes across the 4 SNPs are listed in Table 

4.9.2b. In the promoter region marked with -2578 and -460, the major haplotypes were A-

C and C-T only.  
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Figure 4.9.2b-c Pair-wise LD of VEGFA SNPs measured by D’ and r2 

 

Numbers in boxes represent D’ and r2 values (%) between paired SNPs in Figure b and c 

respectively. 

 

Figure 4.9.2d Details of allelic linkage between neighbouring SNPs of VEGFA-2578, -

460, +405 and +936 

 
One, 2, 3 and 4 represent VEGFA-2578, -460, +405 and +936 respectively. Numbers next 

to alleles shows the frequencies of the alleles. Numbers at bottom shows the D’ values 

between the neighbouring SNPs. Thick/thin lines represent the different strength of 

linkage, with thin lines showing the connection > 1% but ≤ 10%, while thick lines showing 

the connection > 10.0%. 
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Table 4.9.2b Frequency of haplotypes across the VEGFA-2578, -460, +405 and +936  

Haplotype Frequency Haplotype Frequency 

A-C-C-C 0.0 C-C-C-C 0.009 

A-C-C-T 0.0 C-C-C-T 0.0 

A-C-G-C 0.399 C-C-G-C 0.007 

A-C-G-T 0.084 C-C-G-T 0.001 

A-T-C-C 0.0 C-T-C-C 0.241 

A-T-C-T 0.003 C-T-C-T 0.056 

A-T-G-C 0.017 C-T-G-C 0.169 

A-T-G-T 0.001 C-T-G-T 0.013 

Common haplotypes are marked in black (frequency threshold = 0.05). 

 

4.9.3 Serum level of VEGF-A 

 

Determination and distribution 

 

Serum VEGF-A levels were determined in 414 patients. Its distribution was rejected for 

normality. However, after log transformation, the values were normally distributed (Figure 

4.9.3a). The median level was 82.72 (IQR 57.46 – 119.13) pg/ml.  

 

Figure 4.9.3a Distribution of serum VEGF-A levels before (left) and after (right) log 

transformation 
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Serum VEGF-A level, cigarette smoking and patient demographics 

 

No difference of serum VEGF-A levels between smokers and non-smokers was seen (ever-

smoker vs. non-smoker, 83.36 vs. 82.28 pg/ml, p = 0.77), although there was some 

insignificant effects from heavy cigarette consumption (pack-years > 30 vs. the remaining 

subjects, 88.51 vs. 81.70 pg/ml, p = 0.32). No significant association of age, sex, BMI or 

RA duration with serum VEGF-A levels was found.  

 

4.9.4 VEGFA polymorphism and serum VEGF-A level 

 

Analysis in the whole population 

 

VEGFA genotypes and serum VEGF-A data were both available in 410 patients. Serum 

levels of VEGF-A in each genotypic group of the studied VEGFA SNPs are shown in 

Figure 4.9.4a-d. Polymorphisms in the promoter region (-2578 and -460) showed a 

relationship with serum VEGF-A. Statistical analysis indicated that the association with -

2578 was significant, whereas the one with -460 was not. Stratified by -2578 genotypes, 

VEGF-A levels displayed an increasing trend that was associated with the number of 

copies of the C allele (AA vs. AC vs. CC, 74.0 vs. 83.54 vs. 87.18 pg/ml, p trend = 0.056). 

Alternatively, a dominant model suggested that the levels were significantly higher in 

patients carrying the C allele of VEGFA-2578, compared with that in AA subjects (85.74 

vs. 74.0 pg/ml, p = 0.033). This association remained significant (p = 0.045) after 

adjustment for age, sex and RA duration in multiple regression where the levels had been 

log transformed. Haplotype analysis with HAPSTAT program suggested a relationship 

between A-C-G (-2578/-460/+405) and decreased serum VEGF-A levels, although it was 
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not significant (vs. the remaining haplotypes, dominant model, p = 0.058). Status of ever-

smoking, RF or anti-CCP did not differentiate the above observation.  

 

Figure 4.9.4a-d A box-and-whisker diagram of serum VEGF-A levels stratified by 

VEGFA-2578, -460, +405 and +936 polymorphisms in RA 

 
Boxplot with whiskers with 5 – 95 percentile. 

 

Stratification by inflammation status 

 

At the time of recruitment, 52.1% of patients presented with increased CRP levels (≥ 10 

mg/l), suggesting that obvious inflammation was present in these patients. The remaining 

patients showed normal CRP levels (< 10 mg/l), indicating an absence of obvious 

inflammation. The characteristics of all patients, and patients stratified by CRP status (< 10 
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mg/l vs. ≥ 10 mg/l) are displayed in Table 4.9.4a. No differences of age, gender 

distribution, BMI, age of RA onset, RA duration and smoking status were seen between 

stratified groups. Not surprisingly, increased positivity for autoantibodies, higher disease 

activity and worse functional outcome were associated with the group with increased CRP. 

No difference in nodular or erosive status was found between these 2 subsets.  

 

Table 4.9.4a Characteristics of all patients and patients stratified by CRP status  

 All patients Patients with normal 

CRP 

(< 10 mg/l), n = 195 

Patients with 

increased CRP 

(≥ 10 mg/l), n = 213 

p† 

Age, year 62.0 (54.0 – 69.0) 62.0 (53.0 – 69.0) 62.0 (55.0 – 70.0) NS 

Male: female 133: 276 62:134 71:142 NS 

BMI, kg/m2 27.44 (24.61 – 30.55) 27.35 (24.55 – 30.27) 27.60 (24.66 – 30.62) NS 

Age of onset, year 50.0 (41.0 – 58.0) 49.0 (41.1 – 57.8) 50.0 (41.0 – 59.0) NS 

RA duration, year 9.0 (3.0 – 17.0) 10.0 (3.5 – 17.0) 9.0 (3.0 – 18.0) NS 

RF  233/407 (57.2) 96/195 (49.2) 137/212 (64.6) 0.0017 

Anti-CCP  307/408 (75.2) 137/195 (70.3) 170/213 (79.8) 0.025 

Nodular disease 58/409 (14.2) 30/196 (15.3) 28/213 (13.1) NS 

Erosive status 293/401 (73.1) 142/193 (73.6) 151/208 (72.6) NS 

ESR, mm/hr 19.0 (10.0 – 34.25) 14.0 (7.0 – 22.0) 29.0 (14.0 – 46.0) < 0.0001 

*DAS28 4.19 (1.39) 3.67 (1.30) 4.66 (1.30) < 0.0001 

HAQ score 1.625 (1.0 – 2.0) 1.50 (0.75 – 1.875) 1.625 (1.219 – 2.156) 0.0004 

Ever smoked 271/406 (66.7) 122/193 (63.2) 149/213 (70.0) NS 

Current smoker 70/406 (17.2) 28/193 (14.5) 42/213 (19.7) NS 

Values are median (IQR) or n (%) of positive case; * Values are mean (SD); NS, not 

significant; † Values without adjustment for confounding factors. 

 

We postulated that the level of VEGF-A influenced by particular VEGFA variants may be 

differentially expressed relative to inflammation status. Thus, we analysed the association 

of VEGFA-2578 polymorphism with serum VEGF-A levels in patients with normal CRP 
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(< 10mg/l) and increased CRP (≥ 10 mg/l) separately (Table 4.9.4b). No difference in 

VEGFA-2578 distribution was seen between patients with normal and increased CRP. In 

patients with normal CRP, no difference in VEGF-A levels between genotypes was seen, 

although it appeared that patients carrying the C allele may have slightly higher VEGF-A 

compared to the AA genotype. In contrast, in patients with increased CRP there was 

significant difference in VEGF-A levels between genotypes, with CC associated with the 

highest levels (AA vs. AC vs. CC, p trend = 0.041; AA vs. C allele, p = 0.027).  

 

Comparison of VEGF-A levels in the same genotypes between patients with normal CRP 

and increased CRP showed an interesting finding that the levels of VEGF-A were the same 

in patients carrying VEGFA-2578 AA and AC, whereas the levels significantly increased 

along with inflammation in CC patients (Table 4.9.4b). This suggested that regulation of 

VEGF-A expression may be related to inflammation only in patients carrying specific 

alleles in the VEGFA gene. Addition of other polymorphisms into the analysis provided no 

stronger associations.  

 

Table 4.9.4b Relationship between VEGFA-2578 polymorphism and serum levels of 

VEGF-A stratified by CRP status  

Patients with normal CRP, n = 195 Patients with increased CRP, n = 213 

Genotypes (n) VEGF-A levels (IQR) Genotypes (n) VEGF-A levels (IQR) 

-2578 AA (50) 72.98 (53.83 – 104.12) -2578 AA (54) 74.24 (54.69 – 108.43)† 

-2578 AC (92) 83.84 (57.51 – 111.30) -2578 AC (108) 83.50 (57.63 – 149.41)† 

-2578 CC (54) 78.76 (54.63 – 108.31)‡ -2578 CC (51) 94.28 (67.65 – 130.02)†‡ 

CRP status cut-point, < 10 mg/l as normal levels, ≥ 10 mg/l as increased levels; † AA vs. 

AC vs. CC, p trend = 0.041 (as additive model), AA vs. C allele, p = 0.027 (as dominant 

model), age, sex and RA duration adjusted; ‡ p = 0.010, age, sex and RA duration adjusted. 
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4.10 VEGFA POLYMORPHISM, SERUM VEGF-A LEVEL AND DISEASE 

ACTIVITY 

 

4.10.1 Brief introduction 

 

The pathology of RA is characterized by the proliferation of synovial cells and pannus 

formation. To cope with the increased requirement for oxygen and nutrients in the 

pathologic progression, angiogenesis is needed to be highly active, particularly during the 

early stage of the disease (Ealeolog, 2009; Koch, 1998; Yoo et al, 2008). It has been seen 

that the VEGF-A expression is increased in RA patients, compared with the general 

population. Previous studies have demonstrated that the VEGF-A level is associated with 

RA activity and severity (Lee et al, 2001; Ballara et al, 2001; Ozgonenel et al, 2010; 

Kurosaka et al, 2010). Polymorphism in the VEGFA gene has also been associated with 

susceptibility to RA (Han et al, 2004), but the relationship of VEGFA genetic variants with 

RA activity and outcome measures remains unclear. Thus, it was of great interest to 

investigate whether genetic variants were associated with disease activity and/or outcome 

in this population of RA patients. 

 

4.10.2 Serum VEGF-A, inflammatory markers and RA clinical measures 

 

Serum VEGF-A and ESR/CRP 

 

In the total population, serum VEGF-A level was correlated with systemic inflammatory 

markers including ESR and CRP (r = 0.12, p = 0.015; r = 0.14, p = 0.004 respectively, see 

Figure 4.10.2a and b). The previous data suggested that VEGF-A expression may respond 
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to inflammation only in patients carrying VEGFA-2578 CC genotype, we therefore 

postulated that there would be correlations of serum VEGF-A with CRP and ESR only in 

patients with VEGFA-2578 CC, but not in others. The results were supportive of this idea 

since there was a significant correlation of serum VEGF-A level with CRP level, and a 

significant correlation with ESR level in VEGFA-2578 CC subjects, whereas no significant 

correlation was found in patients carrying -2578 AC or AA genotypes (Table 4.10.2a).  

 

Serum VEGF-A and MMPs 

 

Serum VEGF-A level was also shown to be correlated with major destructive enzymes of 

the MMP family (serum levels) such as MMP-1, -3, -8 and -9 (r = 0.15, p = 0.003; r = 0.13, 

p = 0.009; r = 0.28, p < 0.0001; r = 0.24, p < 0.0001 respectively, see Figure 4.10.2c, d, e 

and f), but not with RF or anti-CCP, in the total population.  

 

Table 4.10.2a Correlations between serum VEGF-A level and CRP and ESR levels 

stratified by VEGFA-2578 polymorphism 

In patients with VEGFA-2578 AA genotype 

 CRP level ESR level 

VEGF-A level 

 

0.081 (0.41) 0.076 (0.44) 

In patients with VEGFA-2578 AC genotype 

 CRP level ESR level 

VEGF-A level 

 

0.12 (0.11) 0.086 (0.23) 

In patients with VEGFA-2578 CC genotype 

 CRP level ESR level 

VEGF-A level 0.25 (0.012) 0.20 (0.045) 

Values are r (p), obtained from Spearman correlation.  
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Figure 4.10.2a-f Correlations of serum VEGF-A levels with ESR, CRP, and serum levels 

of MMP-1, -3, -8 and -9 in RA 

 
The lines show least-squares regression line (trend line); r values are obtained from 

Spearman correlation.  

 

Correlation between proteins important in angiogenesis 

 

Apart from VEGF-A, serum levels of angiopoietin-2, follistatin, G-CSF, HGF, IL-8, leptin, 

PDGF-BB, PECAM-1 were also measured. These proteins are believed to be important in 

angiogenesis. The median levels of angiopoietin-2, follistatin, G-CSF, HGF, IL-8, leptin, 

PDGF-BB and PECAM-1 were 422.12 (IQR 259.52 – 660.76) pg/ml, 440.31 (IQR 341.01 

– 573.57) pg/ml, 203.47 (IQR 135.84 – 286.99) pg/ml, 1401.29 (IQR 1135.83 – 1709.55) 

pg/ml, 94.53 (IQR 70.86 – 126.19) pg/ml, 4376.81 (IQR 2497.68 – 7167.25) pg/ml, 

2551.62 (IQR 1633.42 – 3600.49) pg/ml and 3911.85 (IQR 3235.57 – 4674.04) pg/ml 

respectively. The relationships between these proteins levels are shown in Table 4.10.2b. 
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Data indicated that these proteins were strongly correlated with each other in patients with 

RA, although there were some exceptions.  

 

Table 4.10.2b Correlations between serum levels of proteins important in angiogenesis  

 Ang.-2* Follistatin G-CSF HGF IL-8 Leptin PDGF-BB PECAM-1 

VEGF-A 0.32 

(<0.0001) 

0.50 

(<0.0001) 

0.42 

(<0.0001) 

0.50 

(<0.0001) 

0.25 

(<0.0001) 

0.23 

(<0.0001) 

0.56 

(<0.0001) 

0.35 

(<0.0001) 

Ang.-2* - 0.34 

(<0.0001) 

0.28 

(<0.0001) 

0.35 

(<0.0001) 

0.34 

(<0.0001) 

0.23 

(<0.0001) 

0.19 

(0.0002) 

0.41 

(<0.0001) 

Follistatin - - 0.75 

(<0.0001) 

0.53 

(<0.0001) 

0.30 

(<0.0001) 

0.18 

(0.0002) 

0.39 

(<0.0001) 

0.47 

(<0.0001) 

G-CSF - - - 0.64 

(<0.0001) 

0.46 

(<0.0001) 

NS 0.26 

(<0.0001) 

0.44 

(<0.0001) 

HGF - - - - 0.66 

(<0.0001) 

0.28 

(<0.0001) 

0.40 

(<0.0001) 

0.69 

(<0.0001) 

IL-8 - - - - - 0.16 

(0..0012) 

NS 0.65 

(<0.0001) 

Leptin - - - - - - 0.25 

(<0.0001) 

0.29 

(<0.0001) 

PDGF-BB - - - - - - - 0.24 

(<0.0001) 
Values are r (p), obtained from Spearman correlation; * Angiopoietin-2; NS, not 

significant. 

 

Serum VEGF-A and RA clinical measures 

 

Furthermore, VEGF-A levels were found to be associated with disease activity (as 

measured by DAS28, p < 0.0001) and functional outcome (as measured by HAQ and MJS, 

p = 0.001 and 0.007 respectively), independent of age, sex and RA duration. No 

association with erosive or nodular disease was found.  
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4.10.3 VEGFA polymorphism and RA clinical measures 

 

VEGFA polymorphism and age at onset of RA 

 

The T allele at the VEGFA+936 polymorphism was associated with earlier age at onset of 

RA, compared to the CC genotype (T allele (n = 116) vs. CC (n = 294), 46.5 ± (SD 14.3) 

vs. 50.5 ± (SD 12.4), p = 0.011, adjusted for sex and ever-smoking). Sex and ever-smoking 

also had effects, with females and non-smokers associated with earlier onset (females vs. 

males, 48.1 ± (SD 13.1) vs. 51.7 ± (SD 12.6), p = 0.056; non-smokers vs. ever-smokers, 

47.2 ± (SD 13.6) vs. 50.4 ± (SD 12.6), p = 0.077, borderline associations). 

 

VEGFA polymorphism, smoking and RF 

 

An interesting association between cigarette smoking and the VEGFA+405 polymorphism 

was found, with a trend showing that the highest proportion of smokers occurred in 

patients carrying the GG genotype (GG vs. GC vs. CC, 73.1 vs. 62.3 vs. 52.5, Appendix 

8.6.3c, p trend = 0.003). Other studied polymorphisms were not involved. Adjustment for 

age, sex and RA duration made little difference to the above result (data not shown). This 

trend was also observed in another independent cohort of RA (data not shown). It implied 

that polymorphisms in the VEGFA gene might be somehow related to tobacco addiction.  

 

Interestingly, we also found that the VEGFA+405 G allele was associated with decreased 

RF positive RA (G allele vs. CC, OR 0.47, 95% CI 0.23 – 0.97, adjusted for age, sex and 

RA duration) and decreased RF level (G allele vs. CC, 27.0 vs. 60.5, p = 0.048, adjusted 
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for age, sex and RA duration). Since it was noticed that decreased RF+ status was found in 

a group of patients (carrying a G allele) with a high proportion of smokers, we postulated 

that this association may occur only in non-smoking subjects. This hypothesis was 

supported when patients were stratified into never and ever smokers (Table 4.10.3a). This 

suggested that the G allele of VEGFA+405 may have a protective role against RF 

production, but this function would be significantly lost in the presence of cigarette smoke. 

However, this result should be treated with some caution as the number with the 

VEGFA+405 CC genotype was relatively small. Analysis including other polymorphisms 

did not provide additional effects.  

 

Table 4.10.3a Relationship between RF status and VEGFA+405 polymorphism in all 

patients and patients stratified by ever-smoked status 

 All patients Never-smoked Ever-smoked 

 RF- RF+ RF- RF+ RF- RF+ 

+405 CC 11 29 (72.5) 5 14 (73.7) 6 15 (71.4) 

+405 GC 82 100 (54.7) 39 28 (41.8) 41 71 (63.4) 

+405 GG 90 110 (55.0) 34 20 (37.0) 56 90 (61.6) 

G allele 172 210 (55.0) 

*p = 0.042 

73 48 (39.7) 

*p = 0.006 

97 161 (62.4) 

NS 

Values are n (%); * CC vs. G allele (as dominant model), adjusted for age, sex and RA 

duration; NS, not significant. 

 

VEGFA polymorphism and disease activity 

 

Figure 4.10.3a-d shows the DAS28 stratified by the genotypes of studied VEGFA 

polymorphisms in all patients. There were trends suggesting that patients carrying double 
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copies of A (-2578) and C (-460) alleles tended to have the lowest DAS28. Significance 

was achieved with the -2578 polymorphism (AA vs. AC vs. CC, 3.95 vs. 4.26 vs. 4.33, p = 

0.045), but not with the -460 (CC vs. CT vs. TT, 3.95 vs. 4.24 vs. 4.32, p = 0.078). 

Haplotype analysis revealed no stronger associations.  

 

Figure 4.10.3a-d Disease activity score (DAS28) stratified by VEGFA-2578, -460, +405 

and +936 polymorphisms in RA 

 
Boxplot with whiskers with 5 – 95 percentile. 

 

Using multivariate multiple regression, VEGFA-2578 AA genotype was shown to be 

associated with lower DAS28 after adjustment for age, sex, RA duration, and serum levels 

of VEGF-A, MMP-1 and -3 (Table 4.10.3b, model 1). Interestingly, this model implied that 

the VEGFA SNP association was independent of the VEGF-A serum level association. 
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Other polymorphisms did not reach significance in similar models. However, haplotype 

analysis with HAPSTAT program demonstrated that A-C-G (-2578/-460/+405), the most 

frequent haplotype (48.3%), was associated with lower DAS28 (vs. the remaining 

haplotypes, dominant model, p = 0.017), playing a protective role against high disease 

activity. To investigate whether VEGFA-2578 polymorphism influenced the disease 

activity over time, we analysed the relationship between VEGFA-2578 (AA vs. C allele) 

and the mean time-averaged DAS28 over 24 months (DAS28 at baseline, 12th month and 

24th month) on 296 patients using a model similar to the above one (Table 4.10.3b, model 

2). We observed a similar trend, but the p value was not significant. Serum VEGF-A level 

remained significant, suggesting a predictive value of this marker in terms of the disease 

activity over time in RA.  

 

Table 4.10.3b Relationship between VEGFA-2578 and DAS28 in multivariate multiple 

regression 

Independent 

variable 

Regression 

coefficient 

p Independent 

variable 

Regression 

coefficient 

p 

Model 1 Model 2 

VEGFA-2578* 0.31 0.046 VEGFA-2578* 0.20 0.20 

VEGF-A levels 0.0031 0.004 VEGF-A levels 0.0025 0.034 

MMP-1 levels 2.1 × 10-5 0.030 MMP-1 levels 1.5 × 10-5 0.18 

MMP-3 levels 6.4 × 10-6 0.002 MMP-3 levels 4.5 × 10-6 0.038 

Age 0.018 0.006 Age 0.016 0.022 

Female 0.37 0.012 Female 0.38 0.017 

RA duration -0.0053 0.45 RA duration 0.0031 0.67 

* VEGFA-2578 AA vs. C allele (as dominant model); Model 1, baseline DAS28, all 

patients; Model 2, mean time-averaged DAS28 over 24 months (baseline, 12th month and 

24th month) on 296 patients; Serum VEGF-A, MMP-1 and -3, baseline levels.  
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We further investigated whether the above relationship primarily occurred in a particular 

subset of patients (e.g. ever-smoked+/-, RF+/-, anti-CCP+/-). Interestingly, we observed 

that the association of VEGFA-2578 AA genotype with a decrease of diseae activity 

(DAS28) occurred only in patients who had never smoked (AA vs. C allele, 3.55 ± 1.14 vs. 

4.22 ± 1.37, p = 0.014). In contrast, in those who had ever smoked, no such association 

existed (AA vs. C allele, 4.17 ± 1.47 vs. 4.30 ± 1.38). Figures 4.10.3 e and f show the 

DAS28 stratified by the genotypes at VEGFA-2578 polymorphism in patients who had 

never smoked and in patients who had ever smoked respectively. Taking these together, 

reduced disease activity only occurred among patients who had never smoked and were 

carrying the AA genotype at -2578 polymorphism. This suggested that the protective role 

of AA against high disease activity was conditional, being limited to the condition in non-

smokers. 

 

Figure 4.10.3e-f Disease activity score (DAS28) stratified by the genotypes at VEGFA-

2578 in patients who had never smoked (figure e) and in patients who had ever smoked 

(figure f) 

 
Boxplot with whiskers with 5 – 95 percentile. 
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Using multivariate multiple regression, the association of the VEGFA-2578 AA genotype 

with reduced DAS28 in non-smokers was shown to be independent of age, sex, RA 

duration and serum levels of VEGF-A, MMP-1 and -3 (Table 4.10.3c model 1). Also, 

serum levels of VEGF-A, MMP-1 and -3 were significant in this model. In contrast, all of 

these markers were not associated with disease activity in patients who had ever smoked 

(Table 4.10.3c model 2). Analysis of the relationship with the mean time-averaged DAS28 

over 24 months indicated similar results (Tbale 4.10.3d). 

 

Table 4.10.3c Relationship between VEGFA-2578 and DAS28 (baseline) in multivariate 

multiple regression, analysed separately by ever-smoked status 

Independent 

variable 

Regression 

coefficient 

p Independent 

variable 

Regression 

coefficient 

p 

Model 1 (never-smoked) Model 2 (ever-smoked) 

VEGFA-2578* 0.73 0.0044 VEGFA-2578* 0.16 0.40 

VEGF-A levels 0.0048 0.0045 VEGF-A levels 0.0023 0.090 

MMP-1 levels 5.5 × 10-5 0.0023 MMP-1 levels 1.5 × 10-5 0.21 

MMP-3 levels 8.3 × 10-6 0.0012 MMP-3 levels 3.0 × 10-6 0.34 

Age 0.039 0.69 Age 0.022 0.0088 

Female 0.22 0.44 Female 0.48 0.0070 

RA duration -0.0039 0.72 RA duration -0.0052 0.56 

* VEGFA-2578 AA vs. C allele (as dominant model); Serum VEGF-A, MMP-1 and -3, 

baseline levels.  
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Table 4.10.3d Relationship between VEGFA-2578 and DAS28 (over time) in multivariate 

multiple regression, analysed separately by ever-smoked status 

Independent 

variable 

Regression 

coefficient 

p Independent 

variable 

Regression 

coefficient 

p 

Model 1 (never-smoked) Model 2 (ever-smoked) 

VEGFA-2578* 0.75 0.0057 VEGFA-2578* -0.020 0.92 

VEGF-A levels 0.0038 0.053 VEGF-A levels 0.0022 0.16 

MMP-1 levels 3.9 × 10-5 0.11 MMP-1 levels 1.2 × 10-5 0.36 

MMP-3 levels 5.5 × 10-6 0.041 MMP-3 levels 2.3 × 10-6 0.51 

Age 0.0098 0.41 Age 0.014 0.10 

Female 0.47 0.14 Female 0.39 0.030 

RA duration 0.0053 0.69 RA duration 0.0044 0.62 

* VEGFA-2578 AA vs. C allele (as dominant model); Available samples n = 291, non-

smokers n = 95, ever-smokers n = 196; DAS28 over time, mean time-averaged DAS28 

over 24 months (baseline, 12th month and 24th month); Serum VEGF-A, MMP-1 and -3, 

baseline levels.  

 

VEGFA polymorphism and functional outcome 

 

It was found that heterozygous VEGFA-2578 and -460 were associated with the highest 

HAQ score (VEGFA-2578: AA vs. AC vs. CC, 1.50 (IQR 0.75 – 2.0) vs. 1.63 (IQR 1.13 – 

2.13) vs. 1.50 (IQR 0.94 – 2.0), p = 0.043; VEGFA-460: CC vs. CT vs. TT, 1.50 (IQR 0.69 

– 2.0) vs. 1.63 (IQR 1.13 – 2.13) vs. 1.50 (IQR 0.94 – 2.0), p = 0.019). The associations 

also fit to dominant models where VEGFA-2578 C allele and -460 T allele associated with 

higher HAQ score (C allele vs. AA, 1.63 (IQR 1.0 – 2.13) vs. 1.50 (IQR 0.72 – 2.0), p = 

0.045; T allele vs. CC, 1.63 (IQR 1.0 – 2.13) vs. 1.50 (IQR 0.69 – 2.0), p = 0.02 

respectively). However, these associations became insignificant after adjustment for RA 

duration. Haplotype analysis indicated an association between haplotype A-C-G (-2578/-
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460/+405) and lower HAQ (vs. the remaining haplotypes, dominant model, p = 0.013, 

without adjustment for confounding factors). No association of VEGFA polymorphism 

with MJS, erosive status or nodular disease was seen. 

 

 

4.11 VEGFA POLYMORPHISM AND CO-MORBIDITY 

 

4.11.1 Brief introduction 

 

RA has been strongly associated with morbidity and mortality. It is known to be associated 

with a reduction in life expectancy, much of which can be attributed to co-morbid 

conditions such as CVD. The most common cardiovascular condition, IHD, is increased in 

RA populations, and its clinical presentation appears to be different to that in the normal 

population, with RA patients more likely to experience unrecognized MI and sudden death 

(Maradit-Kremers et al, 2005). VEGF-A is a fundamental promoter of angiogenesis, and 

may also play roles in atherosclerosis. A recent study reported that the VEGFA-2578 CC 

genotype was associated with less atherosclerosis (Howell et al, 2005). The role of VEGFA 

polymorphisms in the development of CVD in RA has not been investigated previously. In 

order to do this, we examined the association of VEGFA SNPs (-2578/-460/+405/+936) 

with the presence of IHD or previous MI in our cohort patients with RA. Since smoking 

has a causal role in the development of atherosclerotic change in CVD, we also looked for 

any evidence of interaction between smoking and VEGFA. Other co-morbid conditions 

recorded in these patients were also investigated.  
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4.11.2 VEGFA polymorphism, smoking and IHD/MI 

 

Patient characteristics stratified by IHD/MI status 

 

VEGFA genotyping (-2578/-460/+405/+936), and the records of smoking, IHD and 

previous MI were complete in 418 patients. Evidence of IHD and previous MI was found 

in 18.7% (n = 78) and 11.0% (n = 46) of patients respectively. Of the 46 patients with 

previous MI, 13 had no medical history of MI and were identified on the basis of their 

ECG (Q-wave development in absence of any conduction defect, suggesting full thickness 

MI).  

 

The patient characteristics in the total population and stratified by the presence of IHD are 

displayed in Table 4.11.2a. Patients with IHD were older and more likely to be male 

(30.1% vs. 13.1%, p < 0.0001). They also had a later onset of RA in this population. There 

was no significant difference in RA duration between patients with or without IHD. 

Increased frequencies of RF status and CRP abnormality (CRP ≥ 10 mg/l) were observed 

in patients with IHD, and although insignificant, ESR (p = 0.074) and DAS28 (p = 0.091) 

values were also elevated in these patients. Furthermore, evidence of worse functional 

outcome measured by HAQ score was seen. Patients with IHD were more likely to have 

suffered from other co-morbid conditions including diabetes type 2, asthma, CVA, 

hypertension and hypercholesterolemia. The use of MTX was less in patients with IHD 

compared to those without IHD.  

 

To do a more detailed analysis, we compared patient characteristics within RA-IHD 

patients, stratified by previous MI status (Table 4.11.2b). Patients who had a previous heart 
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attack were more likely to be males and had longer RA duration. Interestingly, we found 

that MI was more likely to occur in autoantibody (RF and anti-CCP) positive RA, although 

for anti-CCP it was not significant (p = 0.074).  By assessing the whole patients’ data 

(including Table 4.11.2a and b) we suggested that RF may be a risk factor particularly for 

MI, since its frequency was increased only in MI patients but not in IHD patients without 

MI, compared to patients without IHD. No differences of inflammation, disease activity 

and functional outcome measures were seen between RA-IHD patients with and without 

MI. However, erosive status and nodular disease were enhanced in patients with MI, 

although for erosive disease it was not significant (p = 0.075). CVA and MI highly co-

existed with each other, and cases of hypertension may be increased in patients with MI 

(insignificant, p = 0.081). 
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Table 4.11.2a Demographic and clinical characteristics of RA patients stratified by the 

presence of IHD 

 Variable All patients Patients without 

IHD (n = 340) 

Patients with IHD 

(n = 78) 
p‡ 

Demographics     

 Age, years 62.0 (54.0 – 69.0) 61.0 (54.0 – 68.0) 68.0 (58.8 – 74.3) 0.001 

 Male:Female 136:282 95:245 41:37 < 0.0001 

 BMI, kg/m2 27.3 (24.5 – 30.5) 27.3 (24.4 – 30.5) 27.3 (25.2 – 30.6) NS 

 CSUM (≥ median) 196/400 (49.0) 160/328 (48.8) 36/72 (50.0) NS 

RA characteristics     

 Age of onset 50.0 (41.0 – 58.0) 49.0 (40.8 – 57.0) 55.0 (45.0 – 65.0) 0.001 

 Duration, years 9.0 (4.0 – 18.0) 10.0 (3.0 – 18.0) 8.0 (3.9 – 19.3) NS 

 RF  239/418 (57.2) 185/340 (54.4) 54/78 (69.2) 0.02 

 Anti-CCP  306/406 (75.4) 251/332 (75.6) 55/74 (74.3) NS 

 ESR, mm/hr 19.0 (10.0 – 35.0) 18.0 (10.0 – 34.0) 26.0 (10.0 – 43.0) NS 

 CRP (≥ 10 mg/l) 224/417 (53.7) 169/339 (49.9) 55/78 (70.5) 0.001 

 *DAS28 4.2 (1.4) 4.2 (1.4) 4.4 (1.4) NS 

 Erosive status 303/411 (73.7) 251/334 (75.1) 52/77 (67.5) NS 

 MJS 7.0 (3.0 – 15.0) 7.5 (3.0 – 15.0) 7.0 (3.0 – 17.0) NS 

 HAQ score 1.6 (1.0 – 2.0) 1.6 (0.9 – 2.0) 1.8 (1.3 – 2.3) 0.01 

 Nodular disease 54/418 (12.9) 40/340 (11.8) 14/78 (18.0) NS 

Cigarette smoking     

 Ever smoked 278/418 (66.5) 211/340 (62.1) 67/78 (85.9) 0.0001 

 Current smoker 73/418 (17.5) 60/340 (17.6) 13/78 (16.7) NS 

 †Cigarettes per day 15 (8 - 20) 12 (8 - 20) 20 (10 - 20) 0.007 

 †Years of smoking 30.0 (17.8 – 41.0) 27.5 (16.8 – 40.0) 36.0 (25.0 – 42.5) 0.011 

 †Total pack-years 18.3 (8.3 – 33.0) 17.0 (7.2 – 30.0) 28.0 (15.5 – 45.5) 0.0004 

Co-morbidities      

 MI 46/418 (11.0) – 46/78 (59.0) – 

 Diabetes type 1 11/418 (2.6) 7/340 (2.1) 4/78 (5.1) NS 

 Diabetes type 2 22/418 (5.3) 9/340 (2.6) 13/78 (16.7) < 0.0001 

 Asthma 44/418 (10.5) 29/340 (8.5) 15/78 (19.2) 0.004 
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 CVA 15/418 (3.6) 6/340 (1.8) 9/78 (11.5) < 0.0001 

 Solid cancers 31/398 (7.8) 28/323 (8.7) 3/75 (4.0) NS 

 Hypertension 163/418 (39.1) 115/340 (33.8) 48/78 (61.5) < 0.0001 

 Hypercholesterolemia 70/418 (17.2) 41/340 (12.1) 29/78 (37.2) < 0.0001 

Haemanalysis     

 Hemoglobin, g/dl 13.0 (12.1 – 13.9) 13.0 (12.1 – 13.9) 13.3 (12.1 – 14.1) NS 

 Leukocyte, × 109/l 7.5 (6.2 – 9.3) 7.5 (6.1 – 9.1) 7.6 (6.5 – 9.5) NS 

 Platelet, × 109/l 293 (240 - 366) 297 (241 – 370) 285 (289 - 347) NS 

Serum VEGF-A level 82.9 (57.2 – 119) 82.6 (57.1 - 120) 83.3 (61.9 - 114) NS 

Drug treatment     

 DMARDs use 389/418 (93.1) 317/340 (93.2) 72/78 (92.3) NS 

 MTX use 247/418 (59.1) 212/340 (62.3) 35/78 (44.9) 0.007 

 Steroid use 40/418 (9.6) 29/340 (8.5) 11/78 (14.1) NS 

 Biologic agent use 60/418 (14.4) 53/340 (15.6) 7/78 (9.0) NS 

Values are n (%) or median (IQR); * Values are mean (SD); CSUM, Carstairs score upper-

median; † Excluded the non-smoking samples; ‡ p values show significant differences 

between patients with and without IHD (un-adjusted); NS, not significant.  
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Table 4.11.2b Demographic and clinical characteristics of RA-IHD patients stratified by 

previous MI 

 Variable All RA-IHD 

patients 

Patients without 

MI (n = 32) 

Patients with MI 

(n = 46) 

p‡ 

Demographics     

 Age, years 68.0 (58.8 – 74.3) 63.0 (55.5 – 76.3) 68.5 (60.8 – 73.5) NS 

 Male:Female 41:37 12:20 29:17 0.026 

 BMI, kg/m2 27.3 (25.2 – 30.6) 27.3 (24.3 – 32.3) 27.4 (25.4 – 30.1) NS 

 CSUM (≥ median) 36/72 (50.0) 11/29 (37.9) 25/43 (58.1) NS 

RA characteristics     

 Age of onset 55.0 (45.0 – 65.0) 55.8 (47.3 – 62.8) 52.5 (42.8 – 65.3) NS 

 Duration, years 8.0 (3.9 – 19.3) 5.5 (1.4 – 14.0) 10.5 (5.0 – 20.3) 0.05 

 RF  54/78 (69.2) 18/32 (56.3) 36/46 (78.3) 0.038 

 Anti-CCP  55/74 (74.3) 19/30 (63.3) 36/44 (81.8) NS 

 ESR, mm/hr 26.0 (10.0 – 43) 25.0 (10.0 – 40.0) 26.5 (14.3 – 43.3) NS 

 CRP (≥ 10 mg/l) 55/78 (70.5) 23/32 (71.9) 32/46 (69.6) NS 

 *DAS28 4.4 (1.4) 4.59 (1.58) 4.33 (1.34) NS 

 Erosive status 52/77 (67.5) 18/32 (56.3) 34/45 (75.6) NS 

 MJS 7.0 (3.0 – 17.0) 7.0 (2.3 – 17.8) 6.5 (3.0 – 13.3) NS 

 HAQ score 1.8 (1.3 – 2.3) 1.8 (1.3 – 2.2) 1.9 (1.3 – 2.3) NS 

 Nodular disease 14/78 (18.0) 2/30 (6.7) 12/45 (26.7) 0.029 

Cigarette smoking     

 Ever smoked 67/78 (85.9) 25/32 (78.1) 42/46 (91.3) NS 

 Current smoker 13/78 (16.7) 7/30 (23.3) 6/45 (13.3) NS 

 †Cigarettes per day 20 (10 - 20) 14 (8 - 20) 20 (10 - 25) NS 

 †Years of smoking 36.0 (25.0 – 42.5) 36.5 (13.8 – 43.5) 36.0 (25.8 – 42.5) NS 

 †Total pack-years 28.0 (15.5 – 45.5) 19.0 (5.6 – 44.5) 28.4 (15.0 – 47.1) NS 

Co-morbidities      

 Diabetes type 1 4/78 (5.1) 1/32 (3.1) 3/46 (6.5) NS 

 Diabetes type 2 13/78 (16.7) 7/32 (21.9) 6/46 (13.0) NS 

 Asthma 15/78 (19.2) 6/32 (18.8) 9/46 (19.6) NS 

 CVA 9/78 (11.5) 1/32 (3.1) 8/46 (17.4) 0.05 
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 Solid cancers 3/75 (4.0) 1/30 (3.3) 2/45 (4.4) NS 

 Hypertension 48/78 (61.5) 16/32 (50.0) 32/46 (69.6) NS 

 Hypercholesterolemia 29/78 (37.2) 10/32 (31.3) 19/46 (41.3) NS 

Haemanalysis     

 Hemoglobin, g/dl 13.3 (12.1 – 14.1) 13.4 (11.9 – 14.4) 13.3 (12.1 – 14.1) NS 

 Leukocyte, × 109/l 7.6 (6.5 – 9.5) 7.8 (6.7 – 9.8) 7.3 (6.1 – 9.5) NS 

 Platelet, × 109/l 285 (289 - 347) 286 (245 - 340) 285 (199 - 360) NS 

Serum VEGF-A level 83.3 (61.9 - 114) 87.5 (65.3 - 106) 80.6 (55.5 - 119) NS 

Values are n (%) or median (IQR); * Values are mean (SD); CSUM, Carstairs score upper-

median; † Excluded the non-smoking samples; ‡ p values show significant differences 

between patients with and without IHD (un-adjusted); NS, not significant.  

 

VEGFA polymorphism and IHD/MI 

 

Associations between VEGFA genotypes and the presence of IHD/MI, without adjustment 

for confounders, are shown in Table 4.11.2c. The associations of VEGFA-2578, -460 and 

+405 with IHD/MI were best explained by dominant models in which the A, C and G 

alleles respectively provided an increased risk, although for +405 it was not statistically 

significant. The VEGFA+936 polymorphism was not associated with IHD or MI.  

 

When adjusted for age, sex and RA duration in logistic regression analyses, VEGFA-2578 

A showed the strongest association with IHD (OR 2.9, 95% CI 1.4 – 6.2) compared with 

VEGFA-460 C (OR 2.2, 95% CI 1.1 – 4.5) and VEGFA+405 G (OR 2.1, 95% CI 0.7 – 

6.1). The OR for age, sex and RA duration adjusted associations of -2578 A, -460 C and 

+405 G with MI were 8.4 (95% CI 2.0 – 35.8), 3.9 (95% CI 1.3 – 11.3) and 5.0 (95% CI 

0.7 – 38.3) respectively.  
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Since there is strong LD between VEGFA-2578, -460 and +405, the associations involving 

-460 and +405 may be due to the greater association of -2578 with IHD and MI. This was 

supported by logistic regression analysis that included the -2578 A allele, -460 C allele and 

+405 G allele together as independent variables, and used forward stepwise selection to 

determine which factor(s) was most strongly associated with IHD and MI. The VEGFA-

2578 A allele maintained significance in relation to both IHD (OR 2.96, 95% CI 1.28 – 

6.83) and MI (OR 8.39, 1.97 – 35.77), while the other 2 SNPs lost significance in these 

models (adjusted for age, sex and RA duration).  

 

Common haplotypes of VEGFA-2578, -460 and +405, and their relationship with the 

presence of IHD/MI are presented in Table 4.11.2d. The A-C-G haplotype displayed a 

significant difference in distribution between patients with and without IHD/MI, 

suggesting an increased risk associated with this haplotype. No significant difference in the 

frequency of C-T-C or C-T-G was found between patients with and without IHD/MI. 
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Table 4.11.2c Frequency of IHD and MI in RA patients stratified by VEGFA SNP genotypes 

IHD MI 

 Negative Positive (%) Odds ratio (95% CI) Negative Positive (%) Odds ratio (95% CI) 

VEGFA-2578 (A/C)       

CC 98 9 (8.4) 1.0 (referent) 105 2 (1.9) 1.0 (referent) 
AC 154 47 (23.4) 3.19 (1.52 – 6.69) 167 34 (16.9) 8.69 (2.35 – 32.10) 
AA 

A allele 
88 

242 
22 (20.0) 
69 (22.2) 

2.63 (1.17 – 5.93) 
2.97 (1.45 – 6.09) 

100 
267 

10 (9.1) 
44 (14.1) 

4.41(1.08 – 17.99) 
7.02 (1.93 – 25.60) 

VEGFA-460 (T/C)       
TT 93 11 (10.6) 1.0 (referent) 100 4 (3.8) 1.0 (referent) 
CT 165 45 (21.4) 2.23 (1.15 – 4.48) 179 31 (14.8) 3.91 (1.42 – 10.84) 
CC 

C allele 
82 

247 
22 (21.2) 
67 (21.3) 

2.22 (1.03 – 4.79) 
2.22 (1.14 – 4.33) 

93 
272 

11 (10.6) 
42 (13.4) 

2.75 (0.89 – 8.47) 
3.48 (1.28 – 9.45) 

VEGFA+405 (C/G)       
CC 36 4 (10.0) 1.0 (referent) 39 1 (2.5) 1.0 (referent) 
CG 146 32 (18.0) 1.80 (0.63 – 5.14) 159 19 (10.7) 3.22 (0.59 – 17.57) 
GG 

G allele 
158 
304 

42 (21.0) 
74 (19.6) 

2.17 (0.77 – 6.13) 
1.98 (0.72 – 5.46) 

174 
333 

26 (13.0) 
45 (11.9) 

3.99 (0.74 – 21.47) 
3.59 (0.68 – 18.89) 

VEGFA+936 (T/C)       
TT 11 3 (21.4) 1.0 (referent) 13 1 (7.1) 1.0 (referent) 
CT 89 14 (13.6) 0.53 (0.14 – 1.99) 95 8 (7.8) 0.80 (0.13 – 4.98) 
CC 
– 

240 61 (20.3) 0.84 (0.24 – 2.87) 264 37 (12.3) 1.28 (0.23 – 7.13) 

Values are n (%). 
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Table 4.11.2d Frequency of VEGFA haplotypes in RA patients with and without IHD or MI 

 All patients IHD  MI  

VEGFA haplotype  Negative Positive  Negative Positive  

(-2578/-460/+405) EM freq. EM freq. EM freq. OR (95% CI) EM freq. EM freq. OR (95% CI) 

A-C-G 0.483 0.469 0.544 2.37 (1.22 – 4.62)† 0.476 0.541 4.10 (1.45 – 11.59)† 

C-T-C 0.297 0.309 0.242 0.73 (0.49 – 1.09)‡ 0.307 0.217 0.62 (0.37 – 1.04)‡ 

C-T-G 0.182 0.190 0.147 0.74 (0.46 – 1.20)‡ 0.185 0.161 0.85 (0.47 – 1.53)‡ 

Rare 0.038       

EM freq., frequency estimated by the expectation/maximization algorithm; Maximum EM iteration = 500, EM convergence tolerance = 

0.0001; Frequency threshold = 0.05; Best odds ratio achieved in † dominant model, ‡ additive model. 
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Smoking and IHD/MI 

 

Cigarette smoking is a well known risk factor for CVD in the normal population and in 

RA. In our RA population, an increased frequency of ever-smoking was observed in 

patients with IHD, compared with those without IHD (Table 4.11.2a). Both intensity and 

duration of smoking (measured by cigarettes per day and the number of years of smoking 

respectively) were associated with the incidence of IHD (Table 4.11.2a). The total amount 

of smoking measured by pack-years showed the strongest association (Table 4.11.2a).  

 

After adjustment for age, sex and RA duration, it was found that RA patients who ever 

smoked had a 2.5-fold increased likelihood of IHD (95% CI 1.28 – 4.95, p = 0.007) and a 

4-fold increased likelihood of MI (95% CI 1.45 – 12.37, p = 0.009), compared to RA 

patients who had never smoked.  

 

VEGFA-smoking interaction and IHD/MI 

 

We found evidence of a strong interaction between smoking and the SNPs within the 

VEGFA promoter with regard to both IHD and MI (Table 4.11.2e). A strongly enhanced 

risk was observed only in patients with both a VEGFA risk allele and a history of smoking. 

The AP due to interaction for the VEGFA-2578 A allele plus smoking, and the -460 C 

allele plus smoking were significant for both IHD and MI, although the AP for the +405 G 

allele plus smoking did not reach significance. Patients who had ever smoked but did not 

carry a VEGFA risk allele, or those who carried a risk allele but did not smoke, did not 

have a significantly increased risk of having IHD or MI compared to the patients who 

neither smoked nor carried risk alleles.  
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To test the effect of pack-years of smoking in VEGEA-smoking interaction relative to 

IHD/MI, we carried out an analysis which only recruited patients carrying VEGFA risk 

alleles, and in which pack-years were divided into 3 categories, 0< n ≤ 15, 15 < n  ≤ 30 and 

n > 30, as light-, medium- and heavy-smoking respectively (Table 4.11.2f). The amount of 

smoking quantified in pack-years demonstrated a dose effect with regard to the occurrence 

of IHD and MI in the presence of VEGFA risk alleles. Among those with pack-years > 30 

(heavy smokers), the presence of IHD and previous MI were found to be approximately 

40% and 30% respectively, whereas in non-smokers they were only about 9% and 4% 

respectively.   
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Table 4.11.2e Association of VEGFA polymorphisms and ever having smoked with IHD and MI in RA patients 

IHD MI 
 Negative Positive (%) Odds ratio (95% CI) Negative Positive (%) Odds ratio (95% CI) 

Smoke/VEGFA-2578 A       
-/- 38 2 (5.0) 1.0 (referent) 40 0 (0.0) 1.0 (referent) 
-/+ 91 9 (9.0) 1.59 (0.38 – 6.77) 96 4 (4.0) 3.77 (0.26 – 17.15) 
+/- 60 7 (10.4) 1.91 (0.43 – 8.45) 65 2 (3.0) 3.09 (0.14 – 11.84) 
+/+ 151 60 (28.4) 6.15 (1.65 – 22.87) 

 
AP: 0.63 (0.27 – 0.98) 

171 40 (19.0) 19.13 (1.84 – 101.7) 
 

AP: 0.76 (0.52 – 0.99) 

Smoke/VEGFA-460 C       
-/- 36 2 (5.3) 1.0 (referent) 38 0 (0.0) 1.0 (referent) 
-/+ 93 9 (8.8) 1.48 (0.35 – 6.29) 98 4 (3.9) 3.52 (0.24 – 15.96) 
+/- 57 9 (13.6) 2.41 (0.56 – 10.32) 62 4 (6.1) 5.54 (0.37 – 25.19) 
+/+ 154 58 (27.4) 5.53 (1.52 – 20.61) 

 
AP: 0.54 (0.07 – 1.0) 

174 38 (17.9) 16.99 (1.63 – 90.12) 
 

AP: 0.52 (0.13 – 0.91) 
Smoke/VEGFA+405 G       

-/- 18 1 (5.3) 1.0 (referent) 19 0 (0.0) 1.0 (referent) 
-/+ 111 10 (8.3) 1.16 (0.20 – 6.89) 117 4 (3.3) 1.49 (0.07 – 6.64) 
+/- 18 3 (14.3) 2.33 (0.31 – 17.56) 20 1 (4.8) 2.85 (0.05 – 7.61) 
+/+ 193 64 (24.9) 4.11 (0.76 – 22.23) 

 
AP: 0.57 (-0.28 – 1.43) 

216 41 (16.0) 7.48 (0.69 – 38.96) 
 

AP: 0.56 (-0.02 – 1.14) 

Values are n (%); AP, the attributable proportion due to interaction.
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Table 4.11.2f A dose effect of amount of smoking quantified in pack-years in the presence of VEGFA risk alleles relative to IHD/MI in RA 

                   IHD                     MI 

VEGFA-2578 (A+) Negative Positive p trend VEGF-2578 (A+) Negative Positive p trend 

0 91 9 (9.0)  0 96 4 (4.0)  

0 < n ≤ 15 72 16 (18.2)  0 < n ≤ 15 78 10 (11.4)  

15 < n ≤  30 40 13 (24.5)  15 < n ≤  30 43 10 (18.9)  

n > 30 37 28 (43.1) < 0.0001 n > 30 45 20 (30.8) < 0.0001 

VEGFA-460 (C+)    VEGF-460 (C+)    

0 94 9 (8.7)  0 99 4 (3.9)  

0 < n ≤ 15 73 16 (18.0)  0 < n ≤ 15 79 10 (11.2)  

15 < n ≤  30 41 13 (24.1)  15 < n ≤  30 44 10 (18.5)  

n > 30 39 26 (40.0) < 0.0001 n > 30 47 18 (27.7) < 0.0001 

VEGFA+405 (G+)    VEGF+405 (G+)    

0 112 10 (8.2)  0 118 4 (3.3)  

0 < n ≤ 15 95 18 (15.9)  0 < n ≤ 15 102 11 (9.7)  

15 < n ≤  30 52 14 (21.2)  15 < n ≤  30 56 10 (15.2)  

n > 30 44 29 (39.7) < 0.0001 n > 30 53 20 (27.4) < 0.0001 

Values are n (%); VEGFA-2578 A, -460 C and +405 G are risk alleles for IHD and MI.
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Multivariate analysis: factors associated with IHD/MI 

 

We carried out multivariate logistic regression analysis using models containing the 

VEGFA risk allele/smoking interaction terms as well as other potential IHD/MI associated 

factors such as hypertension, hypercholesterolemia, asthma, diabetes, CVA, RF, anti-CCP, 

ESR, CRP, DAS28, nodular disease, erosive disease, HAQ, male, age and the use of MTX. 

The “best” models obtained from forward selection (cut-point = 0.10) analyses are shown 

in Table 4.11.2g. For both IHD and MI, independent associations were found with the 

VEGFA-2578 A/smoking interaction term, hypercholesterolemia, CVA and male sex. The 

presence of type 2 diabetes and CRP (≥ 10 mg/l), and older age were associated with IHD, 

while HAQ score and the presence of hypertension and asthma were associated with MI. 

RF positive status was also shown to be nearly associated with  MI, but not with IHD. 

MTX use was negatively associated with MI, and showed a trend towards negative 

association with IHD. Variables not significant in these models were VEGFA-460 

C/smoking and VEGFA+405 G/smoking interaction terms, anti-CCP status, ESR, DAS28, 

and nodular and erosive diseases.  
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Table 4.11.2g Multivariate stepwise logistic regression analysis of variables associated with IHD and MI 

IHD (model 1†) MI (model 2‡) 

Variable Regression 

coefficient 

OR (95% CI) p Variable Regression 

coefficient 

OR (95% CI) p 

*Smoke + VEGFA-2578 A (+/-) 1.347 3.85 (1.93 – 7.66) 0.0001 *Smoke + VEGFA-2578 A (+/-) 2.129 8.40 (2.52 – 27.99) 0.0005 

Hypercholesterolemia (+/-) 1.222 3.39 (1.68 – 6.85) 0.0006 Hypercholesterolemia (+/-) 0.902 2.47 (1.0 – 6.07) 0.050 

Age, per year  0.047 1.05 (1.01 – 1.08) 0.0050 HAQ score 0.656 1.93 (1.07 – 3.46) 0.030 

CRP ≥ 10mg/l (+/-) 1.044 2.84 (1.48 – 5.45) 0.0017 Hypertension (+/-) 1.043 2.84 (1.17 – 6.86) 0.021 

Diabetes type 2 (+/-) 1.947 7.01 (2.16 – 22.74) 0.0012 Asthma (+/-) 1.106 3.02 (1.02 – 8.95) 0.046 

CVA (+/-) 1.614 5.02 (1.27 – 19.76) 0.021 CVA (+/-) 2.50 12.14 (2.52 – 58.56) 0.0019 

Male (+/-) 0.687 1.99 (1.07 – 3.70) 0.030 Male (+/-) 1.725 5.62 (2.35 – 13.51) 0.0001 

MTX use (+/-) -0.575 0.56 (0.32 – 0.99) 0.096 MTX use (+/-) -0.764 0.47 (0.22 – 0.97) 0.040 

 RF (+/-) 0.862 2.37 (0.94 – 5.97) 0.068 

* Patients who have ever smoked and carry a VEGFA-2578 A allele, compared with all remaining patients; † Patients with IHD vs. without 

IHD; ‡ Patients with MI vs. all non-MI patients. 
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Serum VEGF-A level, IHD/MI and other co-morbidity 

 

No association was found between serum VEGF-A level and IHD/MI status (Table 4.11.2a 

and b).  We showed that serum VEGF-A level was not significantly influenced by smoking 

status. However, it was influenced by VEGFA-2578 polymorphism, with A allele 

associated with low levels. Analysis stratified by VEGFA-2578 A/smoking interaction term 

suggested that serum VEGF-A expression was not significantly affected by this interaction 

(interaction+ vs. the remaining, 81.5 (IQR 54.7 – 117.1) vs. 83.7 (IQR 59.9 – 121.8), p = 

0.64).  

 

No significant association between serum VEGF-A and other co-morbid conditions 

recorded in RA was found. 

 

4.11.3 VEGFA polymorphism and hypertension 

 

Patient characteristics stratified by hypertension status 

 

VEGFA genotyping (-2578/-460/+405/+936) and hypertension status were completely 

recorded in 426 subjects. Evidence of hypertension occurred in 166 patients, which was 

39% of the whole group. The patient characteristics in all patients and those stratified by 

the presence of hypertension are shown in Table 4.11.3a. Patients with hypertension were 

older and more likely to be male (49.6% vs. 33.9%, p = 0.045). Hypertension was also 

associated with higher BMI and lower socioeconomic status measured by Carstairs score 

upper-median (CSUM). There was a significant older age of onset of RA in patients with 

hypertension. These patients were associated with a higher disease activity and a more 
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severe functional outcome, measured by DAS28 and HAQ respectively. MJS was also 

higher in patients with hypertension, but this was not statistically significant (p = 0.075). 

No difference of RF and anti-CCP status, and erosive and nodular diseases was found 

between patients stratified by the presence of hypertension. Ever-smoking may be a risk 

factor for hypertension. However, in un-adjusted analysis it was not significant (p = 0.098). 

The presence of IHD, MI, type 1 and 2 diabetes, and hypercholesterolemia were shown to 

be significantly associated with the presence of hypertension. Also, it was shown that the 

concentration of platelets in blood was lower in patients with hypertension.  
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Table 4.11.3a Demographic and clinical characteristics of RA patients stratified by the 

presence of hypertension 

 Variable All patients Patients without 

hypertension      

(n = 260) 

Patients with 

hypertension      

(n = 166) 

p‡ 

Demographics     

 Age, years 62.0 (54.5 – 69.0) 59.0 (52.0 – 66.0) 66.5 (59.0 – 72.3) < 0.0001 

 Male:Female 139:286 70:189 69:97 0.002 

 BMI, kg/m2 27.4 (24.5 – 30.5) 26.8 (23.6 – 29.6) 28.4 (25.9 – 31.2) < 0.0001 

 CSUM (≥ median) 193/396 (48.7) 106/243 (43.6) 87/153 (56.9) 0.01 

RA characteristics     

 Age of onset 50.0 (41.0 – 58.0) 48.9 (39.0 – 56.0) 51.5 (43.3 – 63.4) 0.0003 

 Duration, years 9.0 (3.0 – 18.0) 9.0 (2.6 – 17.0) 10.0 (4.0 – 18.0) NS 

 RF  239/423 (56.5) 148/258 (57.4) 91/165 (55.2) NS 

 Anti-CCP  310/413 (75.1) 190/251 (75.7) 120/162 (74.1) NS 

 ESR, mm/hr 20.0 (10.0 – 36.5) 17.0 (10.0 – 33.0) 25.0 (14.0 – 29.8) 0.006 

 CRP (≥ 10 mg/l) 226/422 (53.6) 135/257 (52.5) 91/165 (55.2) NS 

 *DAS28 4.2 (1.4) 4.1 (1.4) 4.4 (1.4) 0.005 

 Erosive status 306/417 (73.4) 191/254 (75.2) 115/163 (70.6) NS 

 MJS 7.0 (3.0 – 15.0) 6.0 (3.0 – 14.0) 8.0 (3.0 – 16.0) NS 

 HAQ score 1.6 (1.0 – 2.0) 1.5 (0.8 – 1.9) 1.8 (1.3 – 2.1) < 0.0001 

 Nodular disease 54/394 (13.7) 32/239 (13.4) 22/155 (14.2) NS 

Cigarette smoking     

 Ever smoked 279/419 (66.6) 162/255 (63.5) 117/164 (71.3) NS 

 Current smoker 73/399 (18.3) 53/242 (21.9) 20/157 (12.7) 0.021 

 †Cigarettes per day 15 (8 - 20) 15 (8 - 20) 15 (9.5 - 20) NS 

 †Years of smoking 30.0 (17.0 – 41.0) 29.0 (16.8 – 39.3) 32.0 (19.0 – 43.0) NS 

 †Total pack-years 18.6 (8.4 – 33.5) 17.6 (7.2 – 32.1) 22.0 (9.7 – 41.5) NS 

Co-morbidities      

 IHD 78/421 (18.5) 30/257 (11.7) 48/164 (29.3) < 0.0001 

 MI 46/421 (10.9) 14/257 (5.4) 32/164 (19.5) < 0.0001 

 Diabetes type 1 10/421 (2.4) 3/257 (1.2) 7/164 (4.3) 0.042 
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 Diabetes type 2 22/421 (5.2) 6/257 (2.3) 16/164 (9.8) 0.0008 

 Asthma 42/420 (10.0) 25/257 (9.7) 17/163 (10.4) NS 

 CVA 15/421 (3.6) 6/257 (2.3) 9/164 (5.5) NS 

 Solid cancers 31/394 (7.9) 18/239 (7.5) 13/155 (8.4) NS 

 Hypercholesterolemia 71/421 (16.9) 19/257 (7.4) 52/164 (31.7) < 0.0001 

Haemanalysis     

 Hemoglobin, g/dl 13.0 (12.1 – 13.9) 13.1 (12.2 – 13.9) 12.9 (11.9 – 13.9) NS 

 Leukocyte, × 109/l 7.5 (6.2 – 9.2) 7.3 (6.0 – 9.1) 7.7 (6.4 – 9.4) NS 

 Platelet, × 109/l 293 (239 - 366) 299 (245 - 382) 286 (230 - 334) 0.012 

Serum VEGF-A level 82.9 (57.3 – 119) 83.4 (57.4 - 116) 82.2 (57.1 - 126) NS 

Values are n (%) or median (IQR); * Values are mean (SD); † Excluded the non-smoking 

samples; ‡ p values show significant differences between patients with and without IHD 

(un-adjusted); NS, not significant.  

 

VEGFA polymorphism and hypertension 

 

Association between promoter polymorphisms in the VEGFA gene and the presence of 

hypertension, without adjustment for confounders, are displayed in Table 4.11.3b. The 

associations of VEGFA-2578 and -460 with hypertension were best explained by dominant 

models in which the A and C alleles respectively provided an increased risk, although for -

460 it was not significant. The 5’-UTR SNP (+405) and the 3’-UTR SNP (+936) were not 

associated with the presence of hypertension. When adjusted for age, sex, RA duration, 

BMI and CSUM in logistic regression analyses, the association between VEGFA promoter 

SNPs (-2578 and -460) and hypertension was lost. 

 

Although the association was not significant in the whole group of patients, we provided 

some evidence showing this association may be restricted to RF positive patients (Table 
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4.11.3c), and it was significant (only for -2578 SNP) after adjustment for age, sex, RA 

duration, BMI and CSUM. However, further adjustment including IHD/MI largely reduced 

its significance.  

 

Table 4.11.3b Frequency of hypertension in RA patients stratified by VEGFA SNP 

genotypes in all patients 

Hypertension 

 Negative Positive (%) Odds ratio (95% CI) 

VEGFA-2578 (A/C)    

CC 75 33 (30.6) 1.0 referent 

AC 116 90 (43.7) 1.75 (1.07 – 2.86) 

AA 69 43 (38.4) 1.41 (0.81 – 2.46) 

A allele 185 133 (41.8) 1.62 (1.02 – 2.58) 

VEGFA-460 (T/C)    

TT 72 33 (31.4) 1.0 referent 

CT 123 92 (42.8) 1.62 (0.99 – 2.65) 

CC 65 41 (38.7) 1.37 (0.78 – 2.41) 

C allele 188 133 (41.4) 1.53 (0.96 – 2.44) 

VEGFA+405 (C/G)    

CC 25 15 (37.5) 1.0 referent 

CG 116 68 (37.0) 0.97 (0.48 – 1.94) 

GG 119 83 (41.0) 1.15 (0.58 – 2.29) 

–    

VEGFA+936 (T/C)    

TT 10 4 (28.6) 1.0 referent 

CT 68 37 (35.2) 1.28 (0.39 – 4.13) 

CC 182 125 (40.7) 1.60 (0.52 – 4.95) 

C allele 250 162 (39.3) 1.51 (0.49 – 4.64) 

Values are n (%). 
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Table 4.11.3c Association of VEGFA-2578 with the presence of hypertension (HT) 

restricted to RF positive patients 

 RF- patients RF+ patients 

 HT- HT+ OR (95% CI) HT- HT+ OR (95% CI) 

-2578 CC 30 18 (37.5) 1.0 referent 44 15 (25.4) 1.0 referent 

-2578 AC 49 37 (43.0) 1.3 (0.6 – 2.6) 66 53 (44.5) 2.3 (1.2 – 4.6) 

-2578 AA 31 19 (38.0) 1.0 (0.5 – 2.3) 38 23 (37.7) 1.8 (0.8 – 3.8) 

A allele 80 56 (41.2) 1.2 (0.6 – 2.3) 104 76 (42.2) 2.1 (1.1 – 4.0) 

 NS  *p = 0.047  

Values are n (%); * CC vs. A allele (as dominant model), adjusted for age, sex, RA 

duration, BMI and CSUM; NS, not significant. 

 

 

4.12 SUMMARY OF FINDINGS FOR 4.9 – 4.11 

 

• No difference in allelic distribution of VEGFA polymorphisms between RA patients 

and healthy UK Caucasians was found.  

 

• Strong LD was detected across the region marked by VEGFA-2578 (A/C), -460 

(C/T) and +405 (G/C) polymorphisms, in the promoter region and 5’-UTR of the 

VEGFA gene. A-C-G, C-T-C and C-T-G were the most frequent haplotypes.  

 

• VEGFA-2578 C allele was associated with high serum VEGF-A level, compared to 

AA genotype. No clear evidence showing other polymorphisms associated with 

levels of VEGF-A was seen.    
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• The above association only occurred in patients with increased CRP (≥ 10mg/l), 

suggesting that increased VEGF-A expression may be a response to inflammation. 

Furthermore, this increase was only observed in patients carrying the VEGFA-2578 

CC genotype, suggesting an allele-specific mechanism. 

 

• We confirmed the previous findings that serum VEGF-A level was correlated with 

inflammatory markers and major destructive enzymes in the MMP family, and that 

it was associated with disease activity and functional outcome measured by 

DAS28, and HAQ and MJS respectively.  

 

• Most serum levels of investigated angiogenic proteins were correlated with each 

other. 

 

• The T allele at VEGFA+936 was associated with earlier age at onset of RA, 

compared to the CC genotype. 

 

• An increased proportion of smokers occurred in individuals carrying the 

VEGFA+405 G allele, especially in those carrying 2 copies. Interestingly, this allele 

was associated with decreased production of RF in the absence of smoking, but the 

association was lost in smokers. 

 

• VEGFA-2578 AA genotype was associated with low disease activity, which was 

independent of the VEGF-A serum level association. Haplotype A-C-G may be 

responsible for this association if there are multiple influential sites in the gene 

sequence. 
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• The above association only occurred in patients who had never smoked, suggesting 

the AA genotype at VEGFA-2578 playing a protective role only in non-smokers. 

 

• VEGFA promoter polymorphisms (-2578 and -460) were found to be associated 

with the risk of IHD and MI in RA, with VEGFA-2578 SNP showing the strongest 

relationship. Interestingly, it was shown that these associations may be due to a 

novel smoking-gene interaction where a dramatic increase of IHD/MI occurred in 

patients who had ever smoked and carried VEGFA risk alleles, compared to other 

combinations.  

 

• Within the above interaction, the amount of smoking, measured by pack-years, 

showed a dose effect relationship in terms of the increased incidence of IHD/MI. 

 

• There were independent risk factors associated with IHD and/or MI in RA, 

including male, age, RF, increased CRP, HAQ, hypercholesterolemia, hypertension, 

CVA, diabetes type 2, asthma and VEGFA-2578-smoking interaction. The use of 

MTX was found to be a protective factor, independent of those risk factors.  

 

• VEGFA promoter polymorphism appeared to be associated with hypertension in RF 

positive patients. However, this may be due to the main association of VEGFA 

polymorphism with IHD/MI.  

 

• Several co-morbid conditions tended to co-exist in RA, such as MI-CVA, IHD-

diabetes type 2, hypertension-diabetes type 2, and hypertension-

hypercholesterolemia. 
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PART D: ENOS POLYMORPHISM, SEVERITY AND CO-MORBIDITY IN RA 

(4.13 – 4.16) 

 

 

4.13 ENOS POLYMORPHISM  

 

4.13.1 Brief introduction  

 

Reduction in basal NO release in the circulation is known to be associated with 

hypertension, thrombosis, vasospasm and atherosclerosis (Quyyumi et al, 1995; Nava et al, 

1995; Nava et al, 1995; Warren et al, 1994; Tikkanen et al, 1995). In contrast, markedly 

elevated NO levels are reported to be associated with endotoxic shock and exaggerated 

inflammatory reaction (Moilanen et al, 1995). We hypothesised that functionally important 

polymorphism in the eNOS gene could influence the enzyme expression/activity, 

subsequently the amount of NO generated by endothelial cells and eventually the disease 

severity and/or co-morbid condition in RA.  

 

4.13.2 ENOS polymorphism 

 

Studied SNP 

 

Polymorphism rs1799983 (G/T) is a missense variant in exon 7 of the gene which encodes 

a Glu → Asp amino acid substitution at residue 298 of eNOS (+894 according to the 

translational start site of the gene).  

 



 178

Allelic and genotypic distribution 

 

Genotypes were determined in 427 patients. The allelic frequencies were 63.35% (n = 541) 

and 36.65% (n = 313) for G and T allele respectively. The genotypic distributions were 

40.75% (n = 174), 45.20% (n = 116) and 14.05% (n = 60) for GG, GT and TT respectively. 

Genotype distribution was distributed in accordance with a close fit to HWE.  

 

 

4.14 ENOS POLYMORPHISM AND DISEASE SEVERITY 

 

4.14.1 Brief introduction 

 

Polymorphism in the eNOS gene has been associated with RA susceptibility (Melcher et al, 

2007; Vazgiourakis et al, 2007). However, there are few publications concerning the 

relationship with disease activity/severity. In the present study, we looked at whether the 

missense SNP eNOS+894 was associated with disease outcome in our patients with RA.  

 

4.14.2 ENOS polymorphism and RA clinical measures 

 

No association of the eNOS+894 polymorphism with any disease clinical measures was 

observed.  
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4.15 ENOS POLYMORPHISM AND CO-MORBIDITY 

 

4.15.1 Brief introduction 

 

The eNOS+894 polymorphism has been associated with hypertension (Rossi et al, 2003), 

impaired coronary collateral development (Gulec et al, 2008), heart failure (Velloso et al, 

2010), coronary artery disease (Cam et al, 2005; Casas et al, 2004; Aroon et al, 1998) and 

the incidence of MI (Hibi et al, 1998; Shimasaki et al, 1998) in the general population. It 

was particular interesting to see whether this polymorphism was associated with 

hypertension, IHD and/or MI in our patients of RA. The relationships with other co-morbid 

conditions were also investigated.  

 

4.15.2 ENOS polymorphism, smoking and IHD/MI 

 

ENOS polymorphism and IHD/MI 

 

The patient characteristics stratified by IHD/MI status were described before (Section 

4.11.2). The relationship between eNOS+894 genotypes and the presence of IHD/MI, 

without adjustment for confounders, are shown in Table 4.15.2a. Patients carrying the TT 

genotype were associated with the highest occurrence of IHD and MI, whereas carriage of 

the G allele showed a reduced risk, although for MI it was only a borderline association.  

 

When adjusted for age and sex in logistic regression analyses, the significance of the 

association between eNOS+894 SNP and IHD/MI was lost (TT vs. G allele, p = 0.12 and 

0.24 for IHD and MI respectively; TT vs. GT vs. GG, p = 0.16 and 0.20 for IHD and MI 
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respectively). Further adjustment for other independent risk factors for IHD and/or MI 

revealed similar results.   

 

ENOS-smoking combination and IHD/MI 

 

Although the association between eNOS polymorphism and IHD/MI was not significant 

after adjustment, we looked at whether there was excess effect due to interaction with 

smoking (Table 4.15.2b). Results showed some evidence of an interaction based on AP. 

However, the 95% CI for IHD was not significant, whereas 95% CI for MI was not 

available (due to no MI case in the smoke-/TT+ combination). 
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Table 4.15.2a Frequency of IHD and MI in RA patients stratified by eNOS+894 genotypes 

IHD MI 

 Negative Positive (%) Odds ratio (95% CI) Negative Positive (%) Odds ratio (95% CI) 

eNOS+894 (G/T)       

TT 43 16 (27.1) 1.0 (referent) 49 10 (16.9) 1.0 (referent) 

GT 157 34 (17.8) 0.58 (0.29 – 1.14) 170 21 (11.0) 0.59 (0.27 – 1.33) 

GG 

G allele 

145 

302 

26 (15.2) 

60 (16.6) 

0.48 (0.24 – 0.97) 

0.53 (0.28 – 0.99) 

157 

327 

14 (8.2) 

35 (9.7) 

0.43 (0.18 – 1.02) 

0.51 (0.24 – 1.08) 

Values are n (%). 
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Table 4.15.2b Association of eNOS+894 polymorphism and ever having smoked with IHD and MI in RA patients 

IHD MI 

 Negative Positive (%) Odds ratio (95% CI) Negative Positive (%) Odds ratio (95% CI) 

Smoke/TT genotype       

-/- 115 9 (7.3) 1.0 (referent) 120 4 (3.2) 1.0 (referent) 

-/+ 15 2 (11.8) 1.96 (0.44 – 8.71) 17 0 (0.0)* 0.77 (0.04 – 14.83) 

+/- 184 51 (21.7) 3.39 (1.64 – 7.04) 204 31 (13.2) 4.12 (1.50 – 11.36) 

+/+ 28 14 (33.3) 6.19 (2.48 – 15.45) 

 

AP: 0.30 (-0.25 – 0.96) 

32 10 (23.8) 8.65 (2.68 – 27.88) 

 

AP: 0.55 (95% CI: NA) 

Values are n (%); AP, the attributable proportion due to interaction; NA, not available; * Replacement of 0 with 1 reveals an insignificant AP 

with 95% CI (0.44 (-0.17 – 1.05)).
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4.16 SUMMARY OF FINDINGS FOR 4.13 – 4.15 

 

• Patients carrying the TT genotype of eNOS+894 were associated with higher 

occurrence of IHD and MI, compared to those carrying a G allele. However, the 

significance was reduced (became insignificant) after adjustment for confounding 

factors including sex and age.   

 

• With regard to the above association, our initial data suggested that there may be an 

interaction of eNOS+894 SNP with smoking, although it was not significant.  
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PART E: MMP POLYMORPHISM, SERUM MMP LEVEL, SEVERITY AND CO-

MORBIDITY IN RA (4.17 – 4.21) 

 

 

4.17 MMP POLYMORPHISM AND SERUM MMP LEVEL 

 

4.17.1 Brief introduction 

 

MMP-1 (collagenase-1) and MMP-3 (stromelysin-1) are the most widely studied MMPs in 

RA. A relationship between the MMP3 5A/6A (rs3025058) polymorphism and circulating 

levels of MMP-3 in RA has been found in 2 studies (Mattey et al, 2004; Tsukahara et al, 

2008) although another study found no relationship (Dörr et al, 2004). The latter study also 

found no relationship between the MMP1 1G/2G (rs1799750) polymorphism and 

circulating MMP-1 levels, but no other studies have investigated this. We believed it would 

be of interest to further evaluate the relationship between polymorphisms in the MMP1 and 

3 region and the circulating levels of MMP-1 and -3. In addition to MMP1 1G/2G and 

MMP3 5A/6A polymorphisms we selected 2 variants (rs495366 and rs679620) on the basis 

of recent studies (Cheng et al, 2009; Beyzade et al, 2003) showing the likely importance of 

these polymorphisms in relation to MMP-1 levels (Cheng et al, 2009) and MMP-3 function 

(Beyzade et al, 2003). Other MMPs such as -2 (gelatinase-1), -8 (neutrophil collagenase) 

and -9 (gelatinase-2) may be also important in RA. The relationship between 

polymorphisms in MMP2 gene and the circulating MMP-2 levels have not been 

investigated yet. Thus, it was also interesting to see whether MMP2 promoter SNP 

(rs243865) influences the circulating levels of MMP-2.  
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4.17.2 MMP polymorphism 

 

Studied SNP 

 

MMP1 and 3 are neighboring genes on the long arm of chromosome 11 (11q22.3). 

Rs3025058 (MMP3 5A/6A polymorphism) is a deletion/insertion polymorphism which 

occurs in the MMP3 promoter and at -1612 relative to the transcriptional start site. 

Polymorphism rs67620 A/G, located in exon 2 of the MMP3 gene, results in an amino acid 

change (Glu → Lys) at residue 45. Rs495366 G/A is located in the intergenic region of the 

MMP1 and 3 genes. Rs1799750 (MMP1 1G/2G polymorphism) is also a deletion/insertion 

polymorphism at -1607 relative to the transcriptional start site, in the promoter region of 

the MMP1 gene. Figure 4.17.2a shows the locations of MMP1 and 3 polymorphisms, and 

their physical distance between each other. MMP2 gene is located on the long arm of 

chromosome 16 (16q12.2). Polymorphism rs243865 is normally known as MMP2-1306 

C/T, named after its position relative to the transcription start site.  

 

Figure 4.17.2a Diagram of genetic region across human MMP1 and 3 genes highlighting 

the locations of the polymorphisms investigated 

 
The positions of rs3025058, rs679620, rs495366 and rs1799750 at chromosome 11 are 

102715952, 102713620, 102695108 and 102670496 respectively. Physical distances in bp 

between neighboring polymorphisms are shown. Dots placed before and after the MMP3 

and MMP1 coding regions demonstrate the transcription start and end sites.  

 



 186

Allelic and genotypic distribution 

 

Genotypes were determined on 430 subjects for rs3025058 (5A/6A), on 423 subjects for 

rs679620 (A/G), on 419 subjects for rs495366 (G/A), on 429 subjects for rs1799750 

(1G/2G), and on 417 subjects for rs243865 (C/T).The allelic and genotypic frequencies of 

these polymorphisms in RA patients are shown in Table 4.17.2a. The Chi-Square 

goodness-of-fit test showed that the genotypic distribution of the 5 polymorphisms were all 

in HWE.  

 

Table 4.17.2a Distribution of allelic and genotypic frequencies of rs3025058 (5A/6A), 

rs679620 (A/G), rs495366 (G/A), rs1799750 (1G/2G) and rs243865 (C/T) polymorphisms 

in RA patients 

Polymorphism Genotypic distribution Allelic distribution 

Rs3025058 (5A/6A) 5A5A: 112 (26.1) 5A: 454 (52.8) 

(n = 430) 5A6A: 230 (53.5) 6A: 406 (47.2) 

 6A6A: 88 (20.5)  

Rs679620 (A/G) AA: 110 (26.0) A: 446 (53.3) 

(n = 423) AG: 226 (53.4) G: 390 (46.7) 

 GG: 82 (20.6)  

Rs495366 (G/A) GG: 215 (51.3) G: 609 (72.7) 

(n = 419) GA: 179 (42.7) A: 229 (27.3) 

 AA: 25 (6.0)  

Rs1799750 (1G/2G) 1G1G: 129 (30.1) 1G: 457 (53.3) 

(n = 429) 1G2G: 199 (46.4) 2G: 401 (46.7) 

 2G2G: 101 (23.5)  

Rs243865 (C/T) CC: 227 (54.4) C: 632 (75.8) 

(n = 417) CT: 178 (42.7) T: 202 (24.2) 

 TT: 12 (2.9)  

Values are n (%). 
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Linkage disequilibrium and haplotype 

 

LD and haplotype were analysed among polymorphisms in the MMP1-3 genetic region. 

Analysis with the Haploview program demonstrated that the MMP3 SNPs rs3025058 and 

rs679620, and the intergenic SNP rs495366 were in the same LD block with D’ being over 

0.93 for all pairs (Figure 4.17.2b). Pair-wise correlation (r2) between rs3025058 and 

rs679620 was very high (0.97, Figure 4.17.2c), whereas the correlation between rs495366 

and the other 2 SNPs was only moderate (r2 ≈ 0.40, Figure 4.17.2c). A high D’ and low r2 

can occur if the alleles that tend to occur on the same haplotype have very different allele 

frequencies. MMP1 SNP rs1799750 was not included in this LD block. However, there 

was still a moderate LD between rs1799750 and the LD block (D’ = 0.44, Figure 4.17.2d), 

although the pair-wise correlations between rs1799750 and the other SNPs were low (r2 < 

0.2, Figure 4.17.2c). According to the location of the SNPs, this newly identified LD block 

included at least part of the MMP3 promoter, the whole MMP3 gene and part of the 

intergenic region of the MMP1 and 3 genes. 

 

It was noted that the most frequent haplotype within the LD block (5A-A-G) was linked 

with the majority of 1G alleles of rs1799750 (73%), thereby forming the 5A-A-G-1G 

haplotype, with a frequency of 38.3% (Figure 4.17.2d). Frequencies of other haplotypes 

across the 4 polymorphisms are also listed (Table 4.17.2b).  
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Figure 4.17.2b-c Pair-wise LD of MMP1 and 3 polymorphisms measured by D’ and r2 

 
Numbers in boxes represent D’ and r2 values (%) between paired polymorphisms in Figure 

b and c respectively. Polymorphisms within black border are in the same LD block. 

 

Figure 4.17.2d Details of allelic linkage between common haplotypes within the LD block 

and rs1799750 

 
One, 2, 3 and 4 represent rs3025058, rs679620, rs495366 and rs1799750 respectively. 

Numbers next to alleles/haplotypes show the frequencies. The value 0.44 shows the D’ 

between the LD block and rs1799750. Thick/thin lines represent the different strength of 

linkage, with thin lines showing the connection > 1% but ≤ 10%, while thick lines showing 

the connection > 10%. Black colour represents 5A, A, G and 1G alleles for rs3025058 (as 

1), rs679620 (as 2), rs495355 (as 3) and rs1799750 (as 4) respectively, whereas grey colour 

represents 6A, G, A and 2G alleles for rs3025058 (as 1), rs679620 (as 2), rs495355 (as 3) 

and rs1799750 (as 4) respectively. 
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Table 4.17.2b Frequency of haplotypes across rs3025058, rs679620, rs495366 and 

rs1799750 

Haplotype Frequency Haplotype Frequency 

5A-A-G-1G 0.383 6A-A-G-1G 0.001 

5A-A-G-2G 0.133 6A-A-G-2G 0.002 

5A-A-A-1G 0.003 6A-A-A-1G 0.0 

5A-A-A-2G 0.003 6A-A-A-2G 0.0 

5A-G-G-1G 0.001 6A-G-G-1G 0.071 

5A-G-G-2G 0.0 6A-G-G-2G 0.135 

5A-G-A-1G 0.0 6A-G-A-1G 0.073 

5A-G-A-2G 0.002 6A-G-A-2G 0.192 

Common haplotypes are marked in black (frequency threshold = 0.05). 

 

4.17.3 Serum level of MMP 

 

Determination and distribution 

 

Serum levels of MMP-1, -2, -3 as well as -8 and -9 were determined on 413, 415, 411, 412 

and 414 patients respectively. MMP-2 levels were distributed close to normality (Figure 

4.17.3b), while others were clearly not normally distributed. For the latter MMPs, their 

values were normally distributed (MMP-1 and -8) or close to a normal distribution (MMP-

3 and -9) after a log transformation (Figure 4.17.3a, c-e). The median levels for MMP-1, -

2, -3, -8 and -9 were 5587.8 (IQR 3383.6 – 9405.3) pg/ml, 175344.8 (IQR 150811.3 – 

202218.1) pg/ml, 20487.2 (IQR 13426.1 – 33915.2) pg/ml, 15061.3 (IQR 8014.4 – 

24849.7) pg/ml and 462987.0 (IQR 302560.4 – 668509.9) pg/ml respectively.  
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Figure 4.17.3a Distribution of serum MMP-1 levels before (left) and after (right) log 

transformation in RA patients 
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Figure 4.17.3b Distribution of serum MMP-2 levels in RA patients 
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Figure 4.17.3c Distribution of serum MMP-3 levels before (left) and after (right) log 

transformation in RA patients 
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Figure 4.17.3d Distribution of serum MMP-8 levels before (left) and after (right) log 

transformation in RA patients 
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Figure 4.17.3e Distribution of serum MMP-9 levels before (left) and after (right) log 

transformation in RA patients 
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Correlation between MMPs 

 

Serum MMP-1 was correlated with serum MMP-2 and -3, while it had weak or no 

relationship with serum MMP-8 and -9. Serum MMP-2 and -3 were correlated with each 

other, and their relationship with serum MMP-8 and -9 was much weaker. It was 

interesting to see that serum levels of MMP-8 and -9 were highly correlated, with r value 

reached 0.70.  
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Table 4.17.3a Correlations between serum levels of MMP-1, -2, -3, -8 and -9 in studied 

RA population 

 Serum MMP-1 Serum MMP-2 Serum MMP-3 Serum MMP-8 

Serum MMP-2 0.25 (< 0.0001) – – – 

Serum MMP-3 0.20 (< 0.0001) 0.18 (0.0002) – – 

Serum MMP-8 0.10 (0.047) NS 0.10 (0.038) – 

Serum MMP-9 NS -0.10 (0.042) NS 0.70 (< 0.0001) 

Values are r (p), obtained from Spearman correlation; NS, not significant.  

 

Serum MMP level, cigarette smoking and patient demographics 

 

The relationship between smoking (including status and quantitative measures) and serum 

levels of MMP-1, -2, -3, -8 and -9 was investigated. Stratification by ever-smoked status 

(never vs. ever smoking) revealed no significant relationships. However, interestingly, we 

found that some MMP levels were particularly associated with current smoking, while 

there was not much difference between never and past smokers. For MMP-2 and -3, 

decreased levels were observed in current smokers (current smokers vs. the remaining 

patients, MMP-2: 156595.8 (IQR 140945.4 – 185712.5) vs. 176701.7 (IQR 153259.6 – 

202846.1) pg/ml, p = 0.0016; MMP-3: 16380.1 (IQR 12192.7 – 30266.8) vs. 21184.2 (IQR 

13697.8 – 34343.7) pg/ml, p = 0.080, borderline association). For MMP-9, an increased 

level was found in those patients (current smokers vs. the remaining patients, 564277.3 

(IQR 412057.8 – 799009.9) vs. 424269.1 (IQR 283565.9 – 643137.1) pg/ml, p = 0.0004).  

 

The relationships between MMP levels and parameters such as age, sex, BMI and RA 

duration were also investigated. Interestingly, we found that there were a positive 

correlation of MMP-2 with age (r = 0.31, p < 0.0001) and a negative correlation of MMP-2 
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with RA duration (r = -0.13, p = 0.0076). Analysis by multivariate multiple regression 

indicated that both age and RA duration were independently associated with MMP-2 level 

(adjusted for sex, p < 0.0001 and p = 0.023 respectively). MMP-3 level in male patients 

was higher than that in female patients (25265.8 vs. 17037.0 pg/ml, p = 0.050, adjusted for 

age and RA duration). 

 

4.17.4 MMP1, 2, 3 polymorphism and serum MMP level 

 

Polymorphism in MMP1-3 loci and serum level of MMP-1 and -3 

 

The serum levels of MMP-1 were not only associated with the MMP1 promoter 

polymorphism rs1799750 but also with the markers of the LD block, including rs495366, 

rs679620 and rs3025058 (Figure 4.17.4a-d). In order to test whether the latter associations 

were independent from the former association, multivariate multiple regression analyses 

were carried out (adjusted for age, sex and RA duration) with rs1799750 and each of the 

other 3 SNPs as independent variables, and MMP-1 level (log transformed) as the 

dependent variable. In each model, both the association with rs1799750 and the LD block 

polymorphism remained significant, indicating the independence of these associations 

(Table 4.17.4a, models 1, 2 and 3). There was also an association of the intergenic SNP 

(rs495366) independent of the MMP3 SNPs (Table 4.17.4a, models 4 and 5). 

 

Analysis of triple combinations of SNPs revealed a model in which rs1799750, rs495366 

and rs3025058 were each independently associated with MMP-1 levels (Table 4.17.4a, 

model 6).  In model 6, we show the rs3025058 SNP as being independent of rs1799750 

and rs495366. However, replacement of rs3025058 with rs679620 in this model gives 
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almost identical results. Analyses were also carried out which investigated possible 

interactions between SNPs by including a SNP x SNP interaction term, as well as the main 

effects, in each analysis. None of the interaction terms were found to be significant.  

 

Our data suggest that there is at least another functional site if not multiple sites, located 

probably within or close-by the LD block, which has functional effects on MMP-1 

expression, apart from the rs1799750 polymorphism. The independent association of 

rs1799750 and rs3025058 with MMP-1 levels was confirmed in a second cohort of patients 

(n = 291) with established RA (data not shown). 

 

In un-adjusted analyses of single SNPs, the circulating levels of MMP-3 were associated 

with the MMP3 SNPs rs3025058 and rs679620, but not with the intergenic SNP rs495366 

or the MMP1 SNP rs1799750 (Figure 4.17.4e-h). The 6A allele of rs3025058 and the G 

allele of rs679620 were associated with the highest levels of circulating MMP-3. 

Interestingly, in joint analysis of 2 SNP combinations (adjusted for age, sex and RA 

duration) we found that the MMP1 SNP rs1799750 was associated with MMP-3 levels 

after adjustment for the intergenic SNP (Table 4.17.4a, model 1). However, the MMP1 

SNP was no longer associated when analysed jointly with either of the MMP3 SNPs (Table 

4.17.4a, models 2 and 3). In contrast, the intergenic SNP demonstrated an association with 

MMP-3 levels (Table 4.17.4a, models 4 and 5) when adjusted for either MMP3 SNP, each 

of which remained highly significant (p < 0.0001). The association of rs3025058 with 

MMP-3 levels was confirmed in a second cohort of patients (n = 291, data not shown). 
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Figure 4.17.4a-h Relationship between genotypes of rs1799750, rs495366, rs679620 and 

rs3025058 and serum levels of MMP-1 and -3 

 
Boxplot with whiskers with 5 – 95 percentile. 
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Table 4.17.4a Test of independence of MMP SNP associations with MMP serum levels in 

multiple regression analyses  

 Response variable 

MMP-1 pg/ml (log transformed) 

Response variable 

MMP-3 pg/ml (log transformed) 

Independent variable 

 

Regression 

coefficient (SE) 

p Regression  

coefficient (SE) 

p  

Model 1     

rs1799750 (1G1G > 1G2G > 2G2G) 0.077 (0.024) 0.0017 - 0.047 (0.018) 0.009 

rs495366 (GG > AG > AA) 

 

0.110 (0.029) 0.0003 - 0.012 (0.021) 0.57 

Model 2      

rs1799750 (1G1G > 1G2G > 2G2G) 0.066 (0.025) 0.0096 - 0.012 (0.018) 0.50 

rs679620 (AA > AG > GG) 

 

0.110 (0.027) < 0.0001 - 0.090 (0.019) < 0.0001 

Model 3     

rs1799750 (1G1G > 1G2G > 2G2G) 0.066 (0.026) 0.0110 - 0.011 (0.018) 0.53 

rs3025058 (5A5A > 5A6A > 6A6A) 0.110 (0.027) < 0.0001 - 0.091 (0.019) < 0.0001 

     

Model 4     

rs495366 (GG > AG > AA) 0.067 (0.034) 0.047 0.068 (0.025) 0.007 

rs679620 (AA > AG > GG) 0.090 (0.030) 0.0029 - 0.132 (0.022) < 0.0001 

     

Model 5     

rs495366 (GG > AG > AA) 0.067 (0.029) 0.02 0.065 (0.025) 0.01 

rs3025058 (5A5A > 5A6A > 6A6A) 0.085 (0.025) 0.0009 - 0.131 (0.022) < 0.0001 

     

Model 6*     

rs1799750 (1G1G > 1G2G > 2G2G) 0.064 (0.021) 0.002 - 0.012 (0.019) 0.57 

rs495366 (GG > AG > AA) 0.060 (0.028) 0.034 0.063 (0.025) 0.01 

rs3025058 (5A5A > 5A6A > 6A6A)  0.058 (0.026) 0.028 - 0.125 (0.023) < 0.0001 

Multiple regression analyses adjusted for age, sex and RA duration; SE, standard error; * 

Replacement of rs3025058 with rs679620 in this model gives almost identical results. 
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We next tested the haplotypic associations with MMP-1 and MMP-3 levels (Table 

4.17.4b). Analysis with the HAPSTAT program indicated that the 5A-A-G-1G (rs3025058, 

rs679620, rs495366, rs1799750) was associated with the highest levels of MMP-1 (p < 

0.0001, in both additive and dominant models, vs. the remaining haplotypes). This 

association could be explained mainly by the 2 SNP 5A-1G haplotype since over 98% of 

patients with this haplotype carried 5A-A-G-1G. The 6A-G-A-2G haplotype was correlated 

with the lowest levels of MMP-1 (p < 0.0001, in both additive and dominant models, vs. 

the remaining haplotypes). Furthermore, the 6A-G-A-1G haplotype was also associated 

with low MMP-1 levels compared to the other haplotypes, excluding 6A-G-A-2G (p ≤ 0.02 

in both additive and dominant models). This supports the idea that the polymorphisms 

within the LD block region have a strong effect on the regulation of MMP1 expression, 

independent of the rs1799750 polymorphism.  

 

The 4 SNP haplotype associated with the highest MMP-3 levels was 6A-G-G-2G (p ≤ 

0.004 in additive and dominant models, vs. the remaining haplotypes), although the 

association was stronger after exclusion of the rs1799750 SNP (6A-G-G, p < 0.0001). Due 

to the high LD and correlation between rs3025058 and rs679620, the association could be 

explained mainly by the 2 SNP (rs3025058-rs495366) 6A-G haplotype or the (rs679620-

rs495366) G-G haplotype, both of which gave highly significant associations (p < 0.0001). 

This association was lost if the rs495366 G allele was replaced by the A allele to give 6A-A 

or G-A haplotypes (p > 0.5). The lowest MMP-3 levels were associated with the 5A-A-G-

1G haplotype, although this could be explained mainly by the 2 SNP haplotype 5A-G 

(rs3025058-rs495366).  
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Table 4.17.4b Association of haplotypes in MMP1-3 loci with serum MMP-1 and -3 levels 

  Response variable 

MMP-1 pg/ml (log transformed) 

Response variable 

MMP-3 pg/ml (log transformed) 

Haplotype Frequency Regression coefficient 

(SE) 

p  Regression 

coefficient (SE) 

p  

4 SNP      
6A-G-A-1G 0.073 -0.127 (0.053) 0.015 -0.087 (0.049) 0.077 

6A-G-G-1G 0.071 -0.011 (0.058) 0.85 0.190 (0.049) < 0.0001 

5A-A-G-1G 0.383 0.159 (0.026) < 0.0001 -0.067 (0.024) 0.005 

6A-G-A-2G 0.192 -0.147 (0.034) < 0.0001 0.042 (0.032) 0.18 

6A-G-G-2G 0.133 -0.048 (0.041) 0.24 0.100 (0.035) 0.004 

5A-A-G-2G 0.135 -0.031 (0.039) 0.43 -0.059 (0.036) 0.10 

3 SNP*      

6A-A-1G 0.073 -0.130 (0.052) 0.013 -0.085 (0.050) 0.085 

5A-G-1G 0.383 0.152 (0.025) < 0.0001 -0.058 (0.024) 0.015 

6A-G-1G 0.074 -0.004 (0.057) 0.95 0.190 (0.049) 0.0001 

5A-A-2G 0.005 0.036 (0.153) 0.82 -0.242 (0.139) 0.082 

6A-A-2G 0.193 -0.149 (0.033) < 0.0001 0.043 (0.032) 0.18 

5A-G-2G 0.133 -0.035 (0.040) 0.38 -0.063 (0.036) 0.082 

6A-G-2G 0.135 -0.051 (0.040) 0.20 0.100 (0.035) 0.004 

2 SNP†      

5A-1G 0.385 0.150 (0.025) < 0.0001 -0.058 (0.024) 0.014 

6A-1G 0.147 -0.068 (0.038) 0.077 0.050 (0.035) 0.15 

5A-2G 0.140 0.029 (0.038) 0.44 -0.073 (0.035) 0.035 

6A-2G 0.328 -0.123 (0.027) < 0.0001 0.082 (0.026) 0.001 

2 SNP‡      

5A-A 0.008 0.009 (0.131) 0.94 -0.181 (0.120) 0.13 

6A-A 0.270 -0.145 (0.028) < 0.0001 0.007 (0.027) 0.79 

5A-G 0.516 0.130 (0.025) < 0.0001 0.083 (0.023) 0.003 

6A-G 0.206 -0.031 (0.031) 0.32 0.124 (0.028) < 0.0001 

* 3 SNP haplotype rs3025058-rs495366-rs1799750; † 2 SNP haplotype rs3025058-

rs1799750; ‡ 2 SNP haplotype rs3025058-rs495366; SE, standard error. The results are 

based on additive models of inheritance (dominant models demonstrated less significant 

results, and therefore are not shown). 



 199

Previous studies had shown significant correlations of MMP-1, and particularly MMP-3 

serum levels with levels of inflammation in RA (Taylor et al, 1994; Keyszer et al, 1999; 

Cheung et al, 2000; Cunnane et al, 2001; Green et al, 2003). We were therefore interested 

to see whether the relationship between variations across the MMP1-3 loci and the levels 

of MMP-1 and -3 was independent of the level of systemic inflammation. In multiple 

regression models we included CRP as an independent variable together with each SNP or 

combination of SNPs. We found that CRP was strongly associated with MMP-1 levels, but 

each SNP was also independently associated. By analysis of 2 and 3 SNPs jointly, together 

with CRP levels, the best overall model associated with MMP-1 levels was found to 

consist of rs3025058, rs1799750 and CRP (Table 4.17.4c). This was confirmed in the 

second cohort of patients with established disease (n = 291, data not shown). 

 

MMP-3 was also strongly associated with CRP, but single marker analyses of the MMP3 

SNPs, rs3025058 and rs679620, also showed associations with MMP-3 independent of 

CRP. In 2 SNP analyses we found that the intergenic SNP rs495366 was associated (p ≤ 

0.01) with MMP-3 levels after adjustment for rs3025058 or rs679620, and independently 

of CRP levels (Table 4.17.4c). Replication of the independent association of rs3025058 and 

CRP with MMP-3 levels was confirmed in the second cohort of patients (n = 291, data not 

shown).  
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Table 4.17.4c Polymorphisms in MMP1-3 loci are associated with MMP-1 and MMP-3 

serum levels independently of CRP levels  

 Response variable 

MMP-1 pg/ml (log transformed) 

Response variable 

MMP-3 p/ml (log transformed) 

Independent variable 

 

Regression 

coefficient (SE) 

p  Regression 

coefficient (SE) 

p  

rs1799750  

(1G1G > 1G2G > 2G2G) 

0.060 (0.020) 0.003   

rs3025058  

(5A5A > 5A6A > 6A6A) 

0.096 (0.022) < 0.0001 -0.136 (0.022) < 0.0001 

rs495366 

(GG > AG > AA) 

  0.066 (0.025) 0.01 

CRP (mg/l) 0.0028 (0.0006) < 0.0001 0.0043 (0.0006) < 0.0001 

Multiple regression analyses adjusted for age, sex and RA duration; SE, standard error. 

 

MMP2 polymorphism and serum level of MMP-2 

 

No association was found between MMP2 promoter SNP rs243865 (C/T) and serum levels 

of MMP-2 in this RA population (CC vs. T allele, 175109.8 vs. 186198.4 pg/ml, p = 0.23).  

 

Polymorphisms in MMP1-3 loci and serum levels of MMP-2 

 

In un-adjusted analysis, 1G allele of rs1799750 (MMP1 SNP) and G allele of rs495366 

(intergenic SNP) were found to be associated with increased levels of MMP-2 (Figure 

4.17.4i and j). Although it was not significant, MMP3 polymorphisms including rs679620 

and rs3025058 also showed a trend in which high MMP-2 levels were related to A and 5A 

alleles respectively (Figure 4.17.4k and l). Haplotype analysis with HAPSTAT suggested 

that 5A-A-G-1G (rs3025058-rs679620-rs495366-rs1799750) was associated with 



 201

increased MMP-2 (p = 0.028, additive model, vs. the remaining haplotypes), whereas 6A-

G-A-2G was associated with decreased MMP-2 (p = 0.025, additive model, vs. the 

remaining haplotypes). Exclusion of MMP3 polymorphisms gave more significant 

associations (G-1G associated with high MMP-2, p = 0.0066, additive model; A-2G 

associated with low MMP-2, p = 0.020, additive model). Further analysis in multivariate 

regression revealed that SNP rs495366 appeared to be associated with MMP-2 levels 

independently of current smoking, and serum MMP-1 and -3 levels (Table 4.17.4d). 

 

Figure 4.17.4i-l Relationship between genotypes of rs1799750, rs495366, rs679620 and 

rs3025058 and serum levels of MMP-2 

 
Boxplot with whiskers with 5 – 95 percentile. 
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Table 4.17.4d Relationship between rs495366 polymorphism and serum MMP-2 levels in 

multivariate multiple regression 

 Serum MMP-2  

Independent variable Regression coefficient p 

Rs495366* 17137.32 0.026 

Serum MMP-1 levels† 22211.19 < 0.0001 

Serum MMP-3 levels† 14119.08 0.017 

Current smokers¶ -9618.09 0.044 

Age 1066.98 < 0.0001 

Female 3706.74 0.36 

RA duration -399.75 0.040 

* Rs495366 AA vs. G allele (as dominant model); † log transformed; ¶ vs. the remaining 

subjects. 

 

MMP1 SNP rs1799750 and serum level of MMP-9 

 

MMP1 polymorphism rs1788750 was associated with serum MMP-9 levels, with 1G allele 

associated with low levels (1G1G vs. 1G2G vs. 2G2G, p trend = 0.044, Figure 4.17.4n). 

Other polymorphisms in the MMP1-3 gene loci did not seem to be involved. Using 

multivariate multiple regression, we found that this association (p = 0.022) was 

independent from CRP, MMP-1, age, sex and RA duration.  
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Figure 4.17.4n Relationship between MMP1 SNP rs1799750 and serum MMP-9 levels 

 
Boxplot with whiskers with 5 – 95 percentile. 

 

 

4.18 MMP POLYMORPHISM, SERUM MMP AND DISEASE SEVERITY 

 

4.18.1 Brief introduction 

 

Much of the joint damage in RA is believed to be mediated by abnormal release of MMPs 

in rheumatoid synovium stimulated by persistent inflammation (MacNaul et al, 1990; 

Konttinen et al, 1991; Gravallese et al, 1991; Konttinen et al, 1999; Cunnane et al, 2001). 

We have found a relationship between polymorphisms in the MMP1-3 genetic loci and the 

serum levels of MMP-1 and -3, and have further indicated that the associations are 

independent of inflammatory status. Other previous studies have examined the relationship 

between MMP polymorphisms (including SNPs in MMP1, 3, 7, 9, 12 and13 genes) and the 

development and/or severity of RA (Constantin et al, 2002(1); Constantin et al, 2002(2); 

Lee et al, 2003; Mattey et al, 2004; Dörr et al, 2004; Nemec et al, 2007; Ye et al, 2007; 

Tsukahara et al, 2008; Scherer et al, 2010). No association has been found between these 
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polymorphisms and susceptibility to RA, apart from one study which showed a lower 

frequency of the MMP3 rs3025058 5A allele in RA patients compared with controls 

(Scherer et al, 2010). With regard to disease severity evidence of an association has been 

found, but results between studies are conflicting. On the base of our observation, it was of 

interest to further evaluate the association of variants of MMP1 and 3 and serum levels of 

MMP-1 and -3 with disease activity/outcome measures in this group of RA patients. 

 

4.18.2 Serum MMP and RA clinical measures 

 

No difference in MMP levels was found between patients stratified by RF or anti-CCP 

status. The correlations between serum levels of MMP-1, -2, -3, -8 and -9, and 

inflammatory markers including ESR and CRP and disease measures including DAS28, 

MJS and HAQ are shown in Table 4.18.2a. Serum MMP-1 was shown to be correlated 

with both inflammatory markers and clinical measures, although the correlations with ESR 

and MJS were not statistically significant (r = 0.08, p = 0.11; r = 0.10, p = 0.059 

respectively). However, in further analyses adjusted for sex, age and RA duration, all these 

relationships reached significance and provided much stronger signals (data not shown). 

MMP-3 level was primarily correlated with inflammatory markers and with disease 

activity, but no significant correlations were achieved with functional outcome measures. 

No correlations were found between MMP-2, -8 and -9 and these listed disease measures. 

We also tested their relationships with nodular and erosive diseases. In the whole 

population no association was found with nodular disease, although decreased MMP-1 was 

associated with nodular disease particularly in female patients (4460.2 (IQR 3097.1 – 

7256.8) vs. 5842.5 (IQR 3359.9 – 9905.0), p = 0.034). Interestingly, we found that serum 

MMP-2 was decreased in patients with erosive disease, compared to those without joint 
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erosions (172220.3 (IQR 149212.9 – 196414.8) vs. 182885.6 (IQR 156451.3 – 211862.7), 

p = 0.021). Further analysis suggested that the association only occurred in autoantibody 

positive patients (RF+: p = 0.008; Anti-CCP+: p = 0.004) or patients who had ever smoked 

(p = 0.010) (statistics remained significant after adjusting for sex, age and RA duration, 

data not shown).  

 

Table 4.18.2a Correlations between serum MMP levels and inflammatory and disease 

measures in RA  

 ESR CRP DAS28 MJS HAQ 

MMP-1 NS 0.16 (0.0009) 0.10 (0.048) NS 0.10 (0.038) 

MMP-2 NS NS NS NS NS 

MMP-3 0.14 (0.0045) 0.28 (< 0.0001) 0.12 (0.013) NS NS 

MMP-8 NS NS NS NS NS 

MMP-9 NS NS NS NS NS 

Values are r (p), obtained from Spearman correlation; NS, not significant. 

 

4.18.3 MMP polymorphism and RA clinical measures 

 

Polymorphism rs495366 and age at onset of RA 

 

The AA genotype at the intergenic SNP rs495366 was associated with earlier age at onset 

of RA, compared to the G allele (AA (n = 24) vs. G allele (n = 376), 41.7 ± (SD 12.9) vs. 

50.1 (SD 13.0), p = 0.0048). In a multivariate multiple regression model that contained 

age, ever-smoking, VEGFA+936 SNP (T allele vs. CC) and rs495366 (AA vs. G allele) 

together as independent variables, it was shown that the T allele at VEGFA+936, the AA 
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genotype at rs495366 and females were independently associated with earlier age at onset 

of RA (Table 4.18.3a). 

 

Table 4.18.3a Association of the AA genotype at rs495366 with earlier age at onset of RA 

in a multivariate multiple regression model, independent of age, sex and VEGFA+936 SNP 

 Response variable: age at onset of RA 

Independent variable Regression coefficient (SE) p 

Rs495366* -8.26 (2.69) 0.0023 

VEGFA+936† -3.77 (1.41) 0.0082 

Female -3.08 (1.40) 0.028 

Ever-smoking 2.36 (1.39) 0.091 

SE, standard error; * AA vs. G allele (as dominant model); † T allele vs. CC (as dominant 

model). 

 

Polymorphism in MMP1-3 loci and disease activity 

 

We investigated whether there was a relationship between variations across the MMP1-

MMP3 loci and the level of disease activity (measured by DAS28). Analysis of each of the 

MMP1 and MMP3 SNPs and haplotypes (adjusted for age, sex and RA duration) did not 

find any significant associations although there was a trend of increasing DAS28 with 5A 

allele number for the MMP3 rs3025058 SNP (p trend = 0.070) and with A allele number 

for the MMP3 rs679620 SNP (p trend = 0.10). When these SNPs were analysed singly in 

separate multiple regression models adjusted for levels of MMP-1 and MMP-3 (log 

transformed) as independent variables we found that the DAS28 was associated with each 

MMP3 SNP (rs3025058, 5A5A vs. 5A6A vs. 6A6A, p = 0.035; rs679620, AA vs. AG vs. 

GG, p = 0.038) as well as independently with the levels of both MMP-1 and MMP-3 (Table 
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4.18.3b, model 1 and 2 respectively). The association of each SNP with the DAS28 

remained when CRP was also included in these models as an independent variable, 

although the association of MMP-1 with disease activity was lost. Table 4.18.3b shows the 

model containing rs3025058 SNP, MMP-3 and CRP levels (model 3). A very similar model 

was seen with rs679620 polymorphism (data not shown). Haplotype analysis did not reveal 

any additional associations.  

 

Further evidence of an association between MMP3 polymorphism and DAS28 was 

provided by analysis of the mean time-averaged DAS28 measurements on 301 patients 

followed up for 24 months (DAS28 at baseline, 12th month and 24th month). Once again, 

both MMP3 SNPs were associated with the mean time-averaged DAS28 (p ≤ 0.015), 

independently of baseline MMP-3 levels (log transformed) (p ≤ 0.001, Table 4.18.3c). As 

at baseline, there was an increasing time-averaged DAS28 with increasing rs3025058 5A 

allele dose or rs679620 A allele dose. Baseline MMP-1 levels were not significantly 

associated in these models.  
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Table 4.18.3b Association of MMP3 polymorphism with DAS28 in multivariate multiple 

regression models, independent from MMP-1, MMP-3 and CRP levels  

 Response variable: DAS28 

Independent variable Regression coefficient (SE) p 

Model 1   

rs679620 (AA > AG > GG) 0.212 (0.102) 0.038 

Serum MMP-1  0.021 (0.01) 0.038 

Serum MMP-3  0.009 (0.002) < 0.0001 

   

Model 2   

rs3025058 (5A5A > 5A6A > 6A6A)  0.215 (0.102) 0.035 

Serum MMP-1  0.021 (0.01) 0.035 

Serum MMP-3  0.008 (0.002) < 0.0001 

   

Model 3*   

rs3025058 (5A5A > 5A6A > 6A6A)  0.216 (0.092) 0.025 

Serum MMP-3  0.004 (0.002) 0.028 

CRP  0.024 (0.003) < 0.0001 

Multiple regression analyses adjusted for age, sex and RA duration; SE, standard error; * 

Replacement of rs3025058 with rs679620 gives similar results. 
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Table 4.18.3c Association of MMP3 polymorphism with mean time-averaged DAS28 over 

2 years (on 301 patients) in multivariate multiple regression models, independent from 

baseline MMP-3 

 Response variable: Mean time-averaged  DAS28 (over 

2 years) 

Independent variable Regression coefficient (SE) p 

Model 1   

rs679620 (AA > AG > GG) 0.228 (0.103) 0.028 

   

Model  2   

rs3025058 (5A5A > 5A6A > 6A6A) 0.213 (0.102) 0.037 

   

Model 3   

rs679620 (AA > AG > GG) 0.266 (0.102) 0.010 

Baseline serum MMP-3  0.008 (0.002)  0.0007 

   

Model 4   

rs3025058 (5A5A > 5A6A > 6A6A)  0.249 (0.101) 0.015 

Baseline serum MMP-3  0.007 (0.002)  0.001 

Multiple regression analyses adjusted for age, sex and RA duration at baseline; SE, 

standard error. 

 

Polymorphism in MMP1-3 loci and erosive disease 

 

We analysed the relationship between variations across the MMP1 and 3 genes and the 

development of erosive disease. The presence of at least one erosion was found in 312/423 

(73.8%) of patients for whom radiographs were available. In the whole group of patients 

no significant association of erosive status with any genotypes or haplotypes were found. 

However, we observed a general trend where patients carrying genetic markers associated 

with high levels of MMP-1 were more likely to have a higher frequency of erosive disease 
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(Table 4.18.3d). It has been suggested that when erosiveness is used as an outcome 

measure, such analyses should be restricted to patients early in the disease since it suffers 

from a ceiling effect i.e. the majority of patients will have developed erosions in more 

advanced disease (van der Helm-van Mil 2010). Since this was a cross-sectional study it 

was not possible to follow the development of erosions prospectively in individual 

patients. We therefore re-analysed the data by only including patients with RA durations up 

to particular time points (2 years, 4 years, 6 years and > 6 years). We found that analysis of 

the data in patients with up to 6 years RA duration (n = 167) revealed significant 

associations of erosive status with both MMP1 and MMP3 genotypes (Table 4.18.3d). We 

found no significant associations in patients with RA duration greater than 6 years.  

 

Significant trends were found with rs1799750 (1G1G vs. 1G2G vs. 2G2G) and rs3025058 

(5A5A vs. 5A6A vs. 6A6A) genotypes in patients with RA duration ≤ 6 years. To test 

whether these 2 polymorphisms were associated with erosive status independently, a 

multivariable logistic regression model containing both rs1799750 and rs3025058 as 

independent variables and erosive status as response variable was carried out. The model 

was adjusted for sex, age and RA duration. The results showed that the association of 

rs1799750 with erosive status remained significant (p = 0.032), whilst the association with 

rs3025058 was no longer significant. The association involving rs3025058 may thus be 

explained by its linkage with the rs1799750 polymorphism.  
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Table 4.18.3d Relationship between polymorphism in MMP1-3 loci and erosive 

development 

 All patients Group 1: patients with 

disease duration ≤ 6 yrs 

Group 2:  patients with 

disease duration > 6 yrs 

Erosions Erosions Erosions 

Genotype    

rs1799750 

1G1G 

 

96/123 (78.0) 

 

35/47 (74.5) 

 

61/76 (80.3) 

1G2G 145/198 (73.2) 50/80 (62.4)  95/118 (80.5) 

2G2G 68/98 (69.4) 

NS 

17/39 (43.6) 

p trend = 0.004 

51/59 (86.4) 

              NS 

rs495366 

GG 

 

149/207 (72.0) 

 

53/84 (63.1) 

 

96/123 (78.0) 

GA 132/177 (74.6) 46/77 (59.7) 86/100 (86.0) 

AA 20/25 (80.0) 

NS 

2/5 (40.0) 

NS 

18/20 (90.0) 

                  NS 

rs679620 

AA 

 

81/105 (77.1) 

 

28/40 (71.8) 

 

53/66 (80.3) 

AG 160/222 (72.1) 58/96 (60.4) 102/126 (81.0) 

GG 62/86 (72.1) 

NS 

15/30 (50.0) 

     NS 

47/56 (83.9) 

                 NS 

rs3025058 

5A5A 

 

84/107 (78.5) 

 

29/39 (74.4) 

 

55/68 (80.9) 

5A6A 163/226 (72.1) 59/98 (60.2) 104/128 (81.3) 

6A6A 62/87 (71.3) 

NS 

14/30 (46. 7) 

p trend = 0.019 

48/57 (84.2) 

NS 

Values are n of positive case (%); NS, not significant. 

 

Analysis of haplotypes indicated that carriage of the 5A-A-G-1G (rs3025058-rs679620-

rs495366-rs1799750) haplotype provided an increased risk for the development of erosive 

disease during the early years of disease. In contrast, 6A-G-G-2G may be a protective 
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haplotype (Table 4.18.3e). Haplotypes which carried the 1G allele but not 5A, or the 5A 

allele but not 1G, were not associated with an increased risk of erosive disease in early 

years of disease.  

 

The DAS28 was not significantly associated with erosive disease, although in patients with 

RA duration ≤ 6 years it was higher in subjects with erosions (4.28 vs. 4.07). Similarly, the 

circulating levels of MMP-1 and -3 were not associated with erosive status (as mentioned 

before), although in patients with RA duration ≤ 6 years a higher levels of MMP-1 was 

observed in those with erosions, compared to those without (6523.25 vs. 5324.7 pg/ml). 

When the DAS, MMP-1 or -3 levels were included as independent variables along with the 

5A-A-G-1G haplotype in logistic regression models, only the haplotype was found to be 

significantly associated (p ≤ 0.004) with erosive disease in patients with RA duration ≤ 6 

years.  
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Table 4.18.3e Relationship between haplotypes across rs3025058, rs679620, rs495366 and 

rs1799750, and the development of erosive disease 

All patients 
Haplotype 

 

Case, control 

frequencies 

Chi square Odds ratio 

(95% CI) 

p value 

5A-A-G-1G 0.395, 0.331 2.863 1.33 (0.96 – 1.83) 0.091 

6A-G-A-2G 0.197, 0.185 0.165 1.08 (0.73 – 1.60) 0.684 

6A-G-G-2G 0.123, 0.170 3.105 0.68 (0.44 – 1.03) 0.078 

5A-A-G-2G 0.129, 0.145 0.358 0.88 (0.56 – 1.36) 0.550 

6A-G-G-1G 0.080, 0.062 0.690 1.24 (0.68 – 2.29) 0.406 

6A-G-A-1G 0.065, 0.088 1.270 0.69 (0.40 – 1.21) 0.260 

Group 1: patients with RA duration ≤ 6 yrs (n = 167) 
Haplotype 

 

Case, control 

frequencies 

Chi square Odds ratio 

(95% CI) 

p value 

5A-A-G-1G 0.456, 0.303 6.771 1.83 (1.15 – 2.91) 0.004 

6A-G-A-2G 0.183, 0.216 0.624 0.80 (0.46 – 1.38) 0.330 

6A-G-G-2G 0.120, 0.202 3.651 0.56 (0.31 – 0.95) 0.020 

5A-A-G-2G 0.108, 0.123 0.437 0.75 (0.38 – 1.48) 0.493 

6A-G-G-1G 0.057, 0.071 0.093 0.83 (0.34 – 1.98) 0.770 

6A-G-A-1G 0.066, 0.041 0.412 1.24 (0.47 – 3.30) 0.337 

Group 2: patients with RA duration > 6 yrs (n =  256) 
Haplotype 

 

Case, control 

frequencies 

Chi square Odds ratio  

(95% CI) 

p value 

5A-A-G-1G 0.362, 0.380 0.095 0.94 (0.59 – 1.52) 0.758 

6A-G-A-2G 0.201, 0.138 1.822 1.55 (0.81 – 2.95) 0.177 

6A-G-G-2G 0.144, 0.153 0.051 0.89 (0.47 – 1.66) 0.821 

5A-A-G-2G 0.124, 0.117 0.026 1.05 (0.52 – 2.14) 0.872 

6A-G-G-1G 0.089, 0.091 0.003 0.93 (0.42 – 2.03) 0.955 

6A-G-A-1G 0.070, 0.119 2.457 0.53 (0.26 – 1.09) 0.117 

 

Possible MMP1-3-loci-smoking interaction and erosive disease 

 

As described above, analysis of individual polymorphisms suggested that the 1G allele at 

rs1799750 and the 5A allele at rs3025058 were associated with higher rate of erosive 
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damage in patients with earlier disease (RA duration ≤ 6 yrs), while other polymorphisms 

were not significantly involved. Patients carrying 2 copies of the risk alleles were 

associated with the highest rate, which was best explained by an additive model of genetic 

heritability. Meanwhile, haplotype analysis in these patients indicated the 5A-A-G-1G as 

the risk haplotype. This could be explained by the 2 SNP 5A-1G haplotype since over 98% 

of patients with this haplotype carried 5A-A-G-1G. To reduce complexity we used the 2 

SNP haplotype to investigate the possible interaction between smoking and sequence 

variation within the MMP1-3 loci relative to erosive course in RA. The number of copies 

of 5A-1G was determined on each patient based on the genotype information (for analyses 

using additive model). It should be noted that all of the patients carrying 5A6A at 

rs3025058 and 1G2G at rs1799750 were categorized into those with 1 copy of 5A-1G, 

since the majority (84%) of these subjects was estimated to be carrying a copy of 5A-1G 

due to the LD between rs3025058 and rs1799750 (calculation method shown in Appendix 

8.5). 

 

In the above analysis, individual polymorphism was not significantly associated with 

erosive course in the whole population (Table 4.18.3d). Based on an additive model we 

tested whether the number of copies of 5A-1G (2 copies vs. 1 copy vs. 0 copy) would 

increase the significance of association. A significant p value (0.047) was achieved after 

adjustment for sex, age, RA duration and smoking (ever-smoked) in a multivariant 

regression model. This model also suggested that smoking showed an independent effect (p 

= 0.054). Thus, it was interesting to see the combination effect of 5A-1G (copy numbers, 

as additive model) with smoking in relation to the occurrence of erosive disease in all 

patients (Table 4.18.3f). Since we found that the association mostly occurred during the 

earlier disease (RA duration ≤ 6 years), we also particularly looked at the 5A-1G effect in 
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those patients (Table 4.18.3f). Figure 4.18.3a shows the RA-duration-restricted relationship 

between the number of copies of 5A-1G haplotype and the occurrence of erosive damage.  

 

Figure 4.18.3a Relationship between the number of copies of 5A-1G haplotype and the 

occurrence of erosive disease, stratified by RA duration (n ≤ 2, 2 < n ≤ 4, 4 < n ≤ 6, n > 6, 

years) 
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In the total group the results suggested that patients with the combination of smoking with 

2 copies of 5A-1G were associated with a significantly increased likelihood of erosive 

disease compared to non-smokers with 0 copies of 5A-1G. However, the interaction effect 

was not significant (see AP (95% CI) value, Table 4.18.3f). In patients with RA duration ≤ 

6 years, a greater proportion of risk due to the risk combination was detected, and analysis 

provided a significant 95% CI for AP. These data suggest a possible interaction between 

smoking and 2 copies of 5A-1G haplotype in relation to erosive disease, especially in 

patients with early disease.  
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Table 4.18.3f Occurrence of erosive disease stratified by the copy number of 5A-1G 

haplotype and ever-smoking in RA 

All patients 

In never-smokers In ever-smokers 

5A-1G copy Erosions OR (95% CI) 5A-1G Copy Erosions OR (95% CI) 

0 34/55 (61.8) 1.0 referent 0 66/88 (75.0) 1.84 (0.90 – 3.78) 

1 50/66 (75.8) 1.91 (0.88 – 4.14) 1 107/143 (74.8) 1.84 (0.95 – 3.54) 

2 13/19 (68.4) 1.29 (0.44 – 3.81) 2 37/43 (86.0) 3.60 (1.33 – 9.69) 

Additive interaction AP (95% CI) 

1 copy of 5A-1G with smoking ND 

2 copies of 5A-1G with smoking 0.41 (-0.25 – 1.08) 

Patients with RA duration ≤ 6 years (n = 162) 

In never-smokers In ever-smokers 

5A-1G copy Erosions OR (95% CI) 5A-1G Copy Erosions OR (95% CI) 

0 9/21 (42.9) 1.0 referent 0 17/33 (51.5) 1.40 (.047 – 4.10) 

1 15/24 (62.5) 2.15 (0.67 – 6.90) 1 38/56 (67.9) 2.74 (1.0 – 7.51) 

2 7/11 (63.6) 2.19 (0.52 – 9.27) 2 15/17 (88.2) 8.16 (1.68 – 39.6) 

Additive interaction AP (95% CI) 

1 copy of 5A-1G with smoking ND 

2 copies of 5A-1G with smoking 0.57 (0.22 – 1.24) 

Values are number of positive case (%); AP, the attributable proportion due to interaction; 

ND, not detected. 

 

 

4.19 MMP POLYMORPHISM, SERUM MMP AND CO-MORBIDITY 

 

4.19.1 Brief introduction 

 

Polymorphisms in the MMP genes (including MMP1, 2, 3, 7, 9, 12 and 13) have been 

associated with CVD in the general population (Ye, 2006). Both MMP1 and 3 SNPs were 

found to be associated with the occurrence of coronary artery disease and particularly MI 

(Zhou et al, 2004; Wu et al, 2009; Román-García et al, 2009; Pearce et al, 2005; Horne et 
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al, 2007; Kaplan et al, 2008), with some reports suggesting an interaction with smoking 

(Liu et al, 2003; Liu et al, 2006). Recently, genetic variants in the MMP2 gene were 

associated with systolic heart failure prognosis in a Chinese report (Hua et al, 2009). In 

addition, research also has observed that MMP3 polymorphisms are associated with blood 

pressure and CVA (Taylor et al, 2008; Kaplan et al, 2008), and that MMP1 polymorphisms 

are associated with several cancer types such as lung cancer, and head and neck cancer 

(Zhou et al, 2001; O-charoenrat et al, 2006). These associations may be due to the 

differential levels of MMP influenced by genetic polymorphisms. In the present study, we 

tested whether there were associations of MMP polymorphisms and serum MMP levels 

with the occurrence of co-morbid conditions in patients with RA, with particular interests 

in the relationship with IHD, MI and hypertension. 

 

4.19.2 MMP polymorphism, serum MMP and IHD/MI 

 

MMP polymorphism and IHD/MI 

 

The patient characteristics stratified by the presence of IHD and MI were described 

previously (Section 4.11.2). No association of MMP polymorphisms with IHD/MI in the 

whole population was found. However, further analysis provided some tentative evidence 

that polymorphism in the MMP1-3 loci may have a relationship with the occurrence of 

IHD and MI in patients who were RF positive or in patients who had ever smoked. MMP1 

polymorphism (rs1799750) seemed not to be involved, while the other 3 studied SNPs 

(rs3025058, rs679620 and rs495366) showed a trend where the 6A6A genotype of 

rs3025058, the GG genotype of rs679620 and the AA genotype of rs495366 were related 

with the highest occurrence of IHD and MI (additive models). Only the associations of 
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rs495366 with IHD reached significance. Table 4.19.2a and b show the frequency of IHD 

and MI stratified by MMP1-3 loci polymorphisms in patients who were RF positive and in 

patients who had ever smoked respectively. Haplotype analysis did not provide significant 

association (data not shown). No association of MMP2 SNP rs243865 with IHD/MI in any 

subset of RA patients was found.  

 

Since an increased occurrence of IHD was found to be associated with the AA genotype at 

rs495366 in patients who had ever smoked, we carried out an analysis to investigate 

whether there was excess risk to due this combination. According to AP (0.67), a possible 

interaction between smoking (ever-smoked status) and the AA genotype at rs495366 was 

seen (Table 4.19.2c). However, the 95% CI for AP was not available as there was no IHD 

case in the smoke-/AA genotype+ combination.  
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Table 4.19.2a Frequency of IHD and MI stratified by MMP1-3 loci polymorphisms in RF+ 

patients (n = 242) 

 IHD (n = 54) MI (n = 36) 

 Negative Positive (%) Negative Positive (%) 

Rs3025058 (5A/6A)     

5A5A 52 10 (16.1) 55 7 (11.3) 

5A6A 97 30 (23.6) 108 19 (15.0) 

6A6A 37 14 (27.5) 41 10 (19.6) 

 NS NS 

Rs679620 (A/G)     

AA 50 10 (16.7) 53 7 (11.7) 

AG 96 29 (23.2) 106 19 (15.2) 

GG 36 14 (28.0) 40 10 (20.0) 

 NS NS 

Rs495366 (G/A)     

GG 96 21 (17.9) 102 15 (12.8) 

GA 75 23 (23.5) 83 15 (15.3) 

AA 10 7 (41.2) 14 3 (17.6) 

 p trend = 0.044* NS 

Rs1799750 (1G/2G)     

1G1G 58 17 (22.7) 63 12 (16.0) 

1G2G 79 24 (23.3) 87 16 (15.5) 

2G2G 49 13 (21.0) 54 8 (12.9) 

 NS NS 

Values are n (%); * p for trend, based on additive model; based on dominant model (G 

allele vs. AA), p = 0.047; NS, not significant. 
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Table 4.19.2b Frequency of IHD and MI stratified by MMP1-3 loci polymorphisms in 

patients who had ever smoked (n = 282) 

 IHD (n = 67) MI (n = 42) 

 Negative Positive (%) Negative Positive (%) 

Rs3025058 (5A/6A)     

5A5A 60 15 (20.0) 67 8 (10.7) 

5A6A 113 36 (24.2) 126 23 (15.4) 

6A6A 39 16 (29.1) 44 11 (20.0) 

 NS NS 

Rs679620 (A/G)     

AA 59 14 (19.2) 65 8 (11.0) 

AG 109 36 (24.8) 122 23 (15.9) 

GG 38 16 (29.6) 43 11 (20.4) 

 NS NS 

Rs495366 (G/A)     

GG 114 30 (20.8) 127 17 (11.8) 

GA 86 27 (23.9) 94 19 (16.8) 

AA 8 7 (46.7) 12 3 (20.0) 

 NS* NS 

Rs1799750 (1G/2G)     

1G1G 67 22 (24.7) 74 15 (16.9) 

1G2G 99 32 (24.4) 112 19 (14.5) 

2G2G 46 13 (22.0) 51 8 (13.6) 

 NS NS 

Values are n (%); * p = 0.030 if based on dominant model (G allele vs. AA); NS, not 

significant. 

 

 

 

 

 



 221

Table 4.19.2c Assocition of MMP1-3 intergenic SNP rs495366 and ever having smoked 

with IHD in RA patients 

 IHD  

Smoke/AA genotype Negative Positive (%) Odds ratio (95% CI) 

-/- 117 12 (9.3) 1.0 referent 

-/+ 10 0 (0.0)* 0.45 (0.09 – 5.88) 

+/- 201 56 (21.8) 2.64 (1.37 – 5.07) 

+/+ 8 7 (46.7) 8.29 (2.56 – 25.99) 

 

AP: 0.67 (95% CI: NA) 

Values are n (%); AP, the attributable proportion due to interaction; NA, not available; * 

Replacement of 0 with 1 reveals a significant AP with 95% CI (0.67 (0.23 – 1.11)). 

 

Serum MMP and IHD/MI 

 

No serum MMP levels were different between IHD and non-IHD patient. MMP-3 

increased particularly in patients with MI (MI- vs. MI+, p = 0.020, Table 4.19.2d). 

Interestingly, serum MMP-3 in IHD+/MI- patients showed the lowest level, although it was 

not significantly lower compared to that in IHD- patients (IHD+/MI- vs. MI+, p = 0.021; 

IHD+/MI- vs. IHD-, p = 0.26, Table 4.19.2d). Adjustment for age, sex and RA duration 

made little different (data not shown). 

 

Table 4.19.2d Levels of serum MMP-3 stratified by IHD/MI status in RA 

Patient group Serum MMP-3 level, pg/ml 

IHD- (n = 354) 20323.8 (13336.6 – 34371.0) 

IHD+/MI- (n = 22) 16818.3 (12337.1 – 31304.3) 

MI+ (n = 32) 24676.0 (19317.3 – 32192.9) 

Values are median (IQR). 
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MMP polymorphism, serum MMP and other co-morbidity 

 

MMP polymorphisms were not associated with other recorded co-morbidities. We 

observed some associations of serum MMP levels with certain co-morbid conditions. 

Elevated MMP-9 was associated with hypercholesteraemia (539075 (IQR 344750 - 

792333) vs. 448568 (IQR 295588 - 648629) pg/ml, p = 0.0051, adjusted for age, sex and 

RA duration), and elevated MMP-8 was associated with CVA (26440.6 (IQR 15291.8 – 

39784.7) vs. 14882.3 (IQR 7912.2 – 24404.8) pg/ml, p = 0.036, adjusted for age, sex and 

RA duration). 

 

 

4.20 MMP POLYMORPHISM, SERUM MMP AND SERUM TIMP 

 

4.20.1 Brief introduction 

 

The action of MMPs is controlled (or limited) by their natural inhibitors, known as TIMPs, 

which neutralize the activity of the MMPs under normal conditions (Firestein, 1997; 

Matrisian, 1990). Thus, MMPs and TIMPs and especially the imbalance between these 

enzymes and inhibitors are thought to play an important role in the destruction and 

remodelling of articular tissues in patients with RA. Some MMPs and TIMPs interact with 

each other and form MMP-TIMP complexes. These complexes are thought to have 

functional roles, although the detail of function is largely unknown (Brew et al, 2000). The 

up-regulation of MMPs in RA is well documented. However, little is known about their 

tissue inhibitors and the MMP/TIMP ratios in patients with RA. In the present study, we 

observed that genetic polymorphisms within the MMP1-3 loci were associated with serum 
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levels of MMP-1, -2, -3 and -9. Furthermore, these variants were also associated with the 

development of erosive disease in patients with earlier RA (RA duration ≤ 6 years). Since 

TIMPs act closely with MMPs and have a highly specific inhibition role, it was interesting 

to see whether the genetic polymorphisms were also associated with serum levels of 

TIMPs and/or the ratios of MMP/TIMP. Furthermore, the associations of serum levels of 

TIMPs and the ratios of MMP/TIMP with disease measurements and co-morbid conditions 

were also investigated.  

 

4.20.2 Serum level of TIMP 

 

Determination and distribution 

 

Serum levels of TIMP-1, -2, -3 and -4 (all the members in the TIMP family) were 

determined on 160 patients with earlier disease (RA duration ≤ 6 years), since the 

association of polymorphisms in the MMP1-3 loci with erosive disease occurred primarily 

in those patients. TIMP-2 levels were normally distributed (Figure 4.20.2b), while the 

others were not (Figure 4.20.2a, c and d). For TIMP-1 and -4, their values were close to a 

normal distribution after a log transformation (Figure 4.20.2a and d). Transformations (e.g. 

log, square root, etc) could not improve the distribution of TIMP-3 (data not shown).  The 

median levels for TIMP-1, -2, -3 and -4 were 168322.3 (IQR 150147.3 – 194878.9) pg/ml, 

125302.0 (IQR 117803.2 – 138980.1) pg/ml, 12241.5 (IQR 1000.0 – 24895.7) pg/ml, and 

2111.1 (IQR 1750.8 – 2834.5) pg/ml respectively.  
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Figure 4.20.2a Distribution of serum TIMP-1 levels before (left) and after (right) log 

transformation in RA (RA duration ≤ 6 years) 
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Figure 4.20.2b Distribution of serum TIMP-2 levels in RA (RA duration ≤ 6 years) 
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Figure 4.20.2c Distribution of serum TIMP-3 levels in RA (RA duration ≤ 6 years) 
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Figure 4.20.2d Distribution of serum TIMP-4 levels before (left) and after (right) log 

transformation in RA (RA duration ≤ 6 years) 
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Correlation between MMPs and TIMPs 

 

The correlations between MMPs in patients with RA duration ≤ 6 years (Table 4.20.2a) 

were similar to those in the whole population (as described in Section 4.17.3).  

 

For TIMPs, most members were significantly associated with each other, with moderate 

correlations ranging from 0.20 to 0.40, except for one pair (TIMP-3, TIMP-4) which did 

not reach significance (Table 4.20.2a).  

 

MMP-1 was significantly correlated with TIMP-1, -2 and -3, but not with TIMP-4 (Table 

4.20.2a). MMP-2 was found to be particularly associated with TIMP-2, with a significant 

correlation which reached 0.40 (Table 4.20.2a). MMP-3 was correlated with TIMP-1 only, 

in a relatively weak relationship (Table 4.20.2a). MMP-8 and -9 were very strongly 

correlated with each other (r = 0.75). However, they showed slightly different relationships 

with TIMPs, with MMP-8 correlated only with TIMP-2 while MMP-9 correlated with both 

TIMP-1 and -2 (Table 4.20.2a). 
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Table 4.20.2a Correlations between serum levels of MMP-1, -2, -3, -8 and -9, and TIMP-1, 

-2, -3 and -4 in RA patients with RA duration ≤ 6 years 

 MMP-1 MMP-2 MMP-3 MMP-8 MMP-9 TIMP-1 TIMP-2 TIMP-3 

MMP-2 0.25 

(0.0014) 
– – – – – – – 

MMP-3 0.33 

(< 0.0001) 

0.16 

(0.040) 
– – – – – – 

MMP-8 0.18 

(0.023) 

NS NS – – – – – 

MMP-9 NS NS NS 0.75 

(< 0.0001) 
– – – – 

TIMP-1 0.23 

(0.0037) 

NS 0.20 

(0.011) 

NS 0.18 

(0.026) 
– – – 

TIMP-2 0.25 

(0.0018) 

0.40 

(< 0.0001) 

NS 0.25 

(0.0013) 

0.25 

(0.0016) 

0.40 

(< 0.0001) 
– – 

TIMP-3 0.30 

(0.0001) 

NS NS NS NS 0.31 

(< 0.0001) 

0.20 

(0.012) 
– 

TIMP-4 NS NS NS NS NS 0.24 

(0.0024) 

0.25 

(0.0016) 

NS 

Values are r (p), obtained from Spearman correlation; NS, not significant. 

 

Serum TIMP level, cigarette smoking and patient demographics 

 

No significant associations between serum levels of TIMPs (including TIMP-1, -2, -3, and 

4) and smoking characteristics (including ever-smoked status, current-smoking status, 

cigarettes per day, years smoked and pack-years) were found in these patients with RA 

duration ≤ 6 years.  

 

The relationships between TIMP levels and parameters such as age, sex, BMI and RA 

duration were also investigated. No association of TIMPs with RA duration or BMI was 

observed. Interestingly, serum levels of TIMP-1, -2 and -4 were positively correlated with 
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age, with r (p) values = 0.19 (0.015), 0.40 (< 0.0001) and 0.24 (0.0022) respectively, 

whereas TIMP-3 was not correlated. These relationships remained significant after 

adjustment for sex and RA duration (data not shown). Furthermore, we also found a 

relationship with sex. Serum TIMP-4 was shown to be higher in female patients (n = 109), 

compared to that in male subjects (n = 49) (2277.5 (IQR 1799.0 – 3009.6) vs. 1917.1 (IQR 

1616.4 – 2389.1) pg/ml, p = 0.013, adjusted for age and RA duration).  

 

MMP/TIMP ratio, cigarette smoking and patient demographics 

 

Each MMP/TIMP ratio (e.g. MMP-1/TIMP-2, MMP-3/TIMP-1, etc) was obtained from 

each patient with RA duration ≤ 6 years (where both MMP and TIMP were available). In 

total, there were 20 combinations (5 MMPs × 4 TIMPs). Although each TIMP may have 

specific activity on particular MMP(s), such detail is not clear. Thus, we used all the 

possible 20 combinations to investigate the relationships.  

 

No significant difference in MMP/TIMP ratios was observed between patients who had 

never smoked (n = 51) and who had ever smoked (n = 105), although for MMP-9/TIMP-1 

and MMP-9/TIMP-4, patients who had ever smoked had higher ratios (MMP-9/TIMP-1: 

2.91 (IQR 1.92 – 4.01) vs. 2.34 (IQR 1.61 – 2.34), p = 0.087; MMP-9/TIMP-4: 246.20 

(IQR 125.68 – 357.21) vs. 195.65 (124.86 – 251.60), p = 0.059). Current smoking (n = 35) 

was associated with lower ratios of MMP-2/TIMP-1, -2, -3 and -4, compared with never or 

past smoking (Table 4.20.2b). No other significant association according to current-

smoking stratification was found. In the present study, we also observed correlations 

between pack-years (excluded non-smoking samples) and ratios of MMP-9/TIMP-2 (r = 
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0.17, p = 0.045) and MMP-9/TIMP-4 (r = 0.19, p = 0.023). No correlations with other 

quantitative measures (cigarettes per day, years smoked) were found.  

 

The relationships between ratios of MMP/TIMP and parameters including age, sex, BMI 

and RA duration were evaluated. No associations with age and BMI were seen. We found 

that several TIMP4-related ratios (including MMP-3/TIMP-4, MMP-8/TIMP-4 and MMP-

9/TIMP-4) were associated with sex, with decreased values observed in females (data not 

shown). This could be explained by the higher TIMP-4 levels observed in these female 

patients. Negative correlations between RA duration, and MMP-2/TIMP-1 (r = -0.19, p = 

0.023), MMP-2/TIMP-2 (r = -0.31, p = 0.0001), MMP-3/TIMP-1 (r = -0.16, p = 0.046) and 

MMP-3/TIMP-2 (r = -0.17, p = 0.044) were seen. These remained significant after further 

adjustment for age and sex (data not shown). 

 

Table 4.20.2b Ratios of MMP-2/TIMP-1, -2, -3 and -4 stratified by never-, past- and 

current-smoking in RA (RA duration ≤ 6 years) 

 Never-smoking 

(n = 51) 

Past-smoking   

(n = 63) 

Current-smoking 

(n = 35) 

p* 

MMP-2/TIMP-1 1.08 (0.86 – 1.28) 1.11 (0.98 – 1.24) 0.96 (0.79 – 1.12) 0.0071 

MMP-2/TIMP-2 1.43 (1.22 – 1.61) 1.47 (1.32 – 1.66) 1.34 (1.07 – 1.58) 0.062 

MMP-2/TIMP-3 16.1 (8.8 – 119.5) 16.6 (8.6 – 153.2) 11.7 (6.5 – 111.3) 0.093 

MMP-2/TIMP-4 80.7 (61.6 – 109.1) 97.4 (74.9 – 108.2) 78.8 (54.8 – 88.4) 0.0074 

Values are median (IQR); * Current-smoking vs. never- + past-smoking (no significant 

difference between never and past smoking). Values adjusted for age, sex and RA duration. 

Some associations were borderline associations. 
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4.20.3 MMP1, 2, 3 polymorphism, serum TIMP level and MMP/TIMP ratio 

 

MMP1, 2, 3 polymorphism and serum TIMP level 

 

MMP3 SNPs rs3025058 and rs679620, MMP1-3 intergenic SNP rs495366, and MMP2 

SNP rs243865 were not associated with any serum TIMP level (data not shown). MMP1 

SNP rs1799750 was found to be significantly associated with serum TIMP-1 (Figure 

4.20.3a), while its relationship with TIMP-2, -3 or -4 was not significant (Figure 4.20.3b, c 

and d). In addition, we also tested the relationship between copy numbers of 5A-1G 

haplotype and TIMP levels. No association was found (data not shown). 

 

Figure 4.20.3a-d Relationship between genotypes of rs1799750 and serum levels of 

TIMP-1, -2, -3 and -4 in RA (RA duration ≤ 6 years) 

 
Boxplot with whiskers with 5 – 95 percentile. 
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MMP1, 2, 3 polymorphism and MMP/TIMP ratio 

 

MMP1 SNP rs1799750 was found to be associated with both serum MMP-1 and TIMP-1 

(as shown). Hence, we investigated whether genotypes in this polymorphism differentiate 

the MMP-1/TIMP-1 ratio. We found that it was not only associated with MMP-1/TIMP-1 

but also with MMP-1/TIMP-2 and -4 ratios, with 1G1G associated with higher ratios 

compared to the 2G allele (Table 4.20.3a). However, this polymorphism was not associated 

with MMP-1/TIMP-3 ratio, and other MMP/TIMP ratios (Table 4.20.3a). 

 

MMP3 SNP rs3025058 was associated with serum MMP-3, and serum MMP-1 

independently of rs1799750 (as shown). Similar to rs1799750, we found that this 

polymorphism was associated with MMP-1/TIMP-1, -2 and -4 ratios with 5A5A associated 

with higher ratios compared to the 6A allele, but was not associated with MMP-1/TIMP-3 

ratio (Table 4.20.3b). We also found that this polymorphism was not associated with MMP-

3-related ratios, and other MMP/TIMP ratios (Table 4.20.3b). Analysis with MMP3 

rs6799750 gave almost identical results compared to the rs3025058 data (data not shown).  

 

These relationships were also investigated using the MMP1-3 intergenic polymorphism 

rs495366. Although it was not significant, the GG genotype was associated with the 

highest ratio of MMP-1/TIMP-1, -2, -4 (Table 4.20.3c). Furthermore, it was also seen that 

the G allele was associated with higher ratios of MMP-3/TIMP-1, -2, -3 and -4 compared 

to AA genotype, although for MMP-3/TIMP-3 and -4 it was not significant (Table 4.20.3c). 

However, these results should be treated with some caution since the number of AA 

genotype at rs495366 was very low (n = 4). Analysis with MMP2 SNP rs243865 did not 

show any association or trend (data not shown).  
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Since we found that 5A at rs3025058, A at rs679620 (data not shown), G at rs495366 and 

1G at rs1799750 were associated with certain MMP/TIMP ratios, it was interesting to see 

the effects of the 5A-A-G-1G haplotype. To reduce the complexity, we used the 2 SNP 5A-

1G haplotype as over 98% of patients with this haplotype carried 5A-A-G-1G (as 

mentioned). Patients carrying 2 copies of 5A-1G were associated with the highest ratios of 

MMP-1/TIMP-1, -2, -3 and -4 (all the MMP-1-related ratios), while patients without any 

copy of 5A-1G were related to low ratios (mostly the lowest ratios) (Table 4.20.3d). The 

significance levels obtained here seemed to be stronger compared to those achieved from 

individual SNPs, suggesting this haplotype as the best predictor. However, analysis using 

this haplotype did not show the association with ratios of MMP-3/TIMP. 
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Table 4.20.3a Relationship between genotypes of rs1799750 and ratios of MMP/TIMP in 

RA (RA duration ≤ 6 years) 

MMP/TIMP ratio Rs1799750 p 

1G1G          

 (n = 46) 

1G2G          

(n = 76) 

2G2G          

 (n = 36) 

MMP-1/TIMP-1 0.054 0.033 0.038 0.017* 

MMP-1/TIMP-2 0.074 0.044 0.045 0.0007* 

MMP-1/TIMP-3 0.77 0.56 0.95 NS 

MMP-1/TIMP-4 4.38 2.69 2.15 0.0018*/0.0029† 

MMP-2/TIMP-1 1.04 1.10 1.07 NS 

MMP-2/TIMP-2 1.52 1.42 1.44 NS 

MMP-2/TIMP-3 15.10 13.45 16.80 NS 

MMP-2/TIMP-4 82.37 83.41 85.60 NS 

MMP-3/TIMP-1 0.11 0.14 0.12 NS 

MMP-3/TIMP-2 0.17 0.18 0.14 NS 

MMP-3/TIMP-3 2.19 2.11 2.63 NS 

MMP-3/TIMP-4 10.63 9.96 7.61 NS 

MMP-8/TIMP-1 0.093 0.087 0.084 NS 

MMP-8/TIMP-2 0.14 0.12 0.12 NS 

MMP-8/TIMP-3 1.80 1.27 2.10 NS 

MMP-8/TIMP-4 8.09 7.34 6.37 NS 

MMP-9/TIMP-1 2.58 2.72 2.78 NS 

MMP-9/TIMP-2 3.86 3.78 3.50 NS 

MMP-9/TIMP-3 39.83 46.85 50.95 NS 

MMP-9/TIMP-4 215.38 231.37 184.16 NS 

Values are median; * 1G1G vs. 2G allele (as dominant model); † p for trend (as additive 

model); NS, not significant. 
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Table 4.20.3b Relationship between genotypes of rs3025058 and ratios of MMP/TIMP in 

RA (RA duration ≤ 6 years) 

MMP/TIMP ratio Rs3025058 p 

5A5A          

(n = 41) 

5A6A           

(n = 91) 

6A6A          

(n = 27) 

MMP-1/TIMP-1 0.054  0.037 0.025 0.0013*/0.0002† 

MMP-1/TIMP-2 0.072 0.047 0.037 0.0014*/0.0005† 

MMP-1/TIMP-3 0.92 0.53 0.98 NS 

MMP-1/TIMP-4 4.39 2.62 2.41 0.0007*/0.0057† 

MMP-2/TIMP-1 1.08 1.09 1.01 NS 

MMP-2/TIMP-2 1.52 1.43 1.37 NS 

MMP-2/TIMP-3 16.87 11.75 22.61 NS 

MMP-2/TIMP-4 90.32 80.38 87.72 NS 

MMP-3/TIMP-1 0.10 0.13 0.12 NS 

MMP-3/TIMP-2 0.14 0.18 0.17 NS 

MMP-3/TIMP-3 1.79 2.06 4.89 NS 

MMP-3/TIMP-4 8.76 9.96 10.23 NS 

MMP-8/TIMP-1 0.080 0.087 0.087 NS 

MMP-8/TIMP-2 0.13 0.13 0.12 NS 

MMP-8/TIMP-3 1.98 1.17 3.64 NS 

MMP-8/TIMP-4 7.86 7.19 7.49 NS 

MMP-9/TIMP-1 2.67 2.59 2.93 NS 

MMP-9/TIMP-2 3.49 3.51 4.51 NS 

MMP-9/TIMP-3 39.96 34.96 48.96 NS 

MMP-9/TIMP-4 215.69 194.69 264.33 NS 

Values are median; * 5A5A vs. 6A allele (as dominant model); † p for trend (as additive 

model); NS, not significant. 
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Table 4.20.3c Relationship between genotypes of rs495366 and ratios of MMP/TIMP in 

RA (RA duration ≤ 6 years) 

MMP/TIMP ratio Rs495366 p 

GG (n = 82) GA (n = 71) AA (n = 4) 

MMP-1/TIMP-1 0.042 0.036 0.019 NS 

MMP-1/TIMP-2 0.058 0.044 0.027 NS 

MMP-1/TIMP-3 0.62 0.63 0.75 NS 

MMP-1/TIMP-4 3.02 2.82 1.88 NS 

MMP-2/TIMP-1 1.09 1.07 0.93 NS 

MMP-2/TIMP-2 1.43 1.47 1.13 NS 

MMP-2/TIMP-3 14.21 16.34 15.19 NS 

MMP-2/TIMP-4 83.13 85.60 67.88 NS 

MMP-3/TIMP-1 0.12 0.13 0.059 0.046* 

MMP-3/TIMP-2 0.17 0.18 0.085 0.049* 

MMP-3/TIMP-3 2.14 2.75 1.46 NS 

MMP-3/TIMP-4 9.50 10.23 5.29 NS 

MMP-8/TIMP-1 0.087 0.082 0.12 NS 

MMP-8/TIMP-2 0.13 0.12 0.15 NS 

MMP-8/TIMP-3 1.93 1.65 3.15 NS 

MMP-8/TIMP-4 7.67 6.46 9.73 NS 

MMP-9/TIMP-1 2.79 2.54 2.27 NS 

MMP-9/TIMP-2 3.78 3.75 3.46 NS 

MMP-9/TIMP-3 46.12 41.16 66.81 NS 

MMP-9/TIMP-4 207.82 205.25 213.75 NS 

Values are median; * AA vs. G allele (as dominant model); NS, not significant. 
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Table 4.20.3d Relationship between number of copies of 5A-1G haplotype and ratios of 

MMP/TIMP in RA (RA duration ≤ 6 years) 

MMP/TIMP ratio Number of 5A-1G copies p 

2 copies         

(n = 30) 

1 copy           

(n = 76) 

0 copy           

(n = 52) 

MMP-1/TIMP-1 0.058 0.038 0.031 0.0011*/< 0.0001† 

MMP-1/TIMP-2 0.075 0.052 0.038 0.0004*/< 0.0001† 

MMP-1/TIMP-3 1.34 0.53 0.83 0.023* 

MMP-1/TIMP-4 4.45 2.94 2.15 0.001*/< 0.0001† 

MMP-2/TIMP-1 1.08 1.08 1.07 NS 

MMP-2/TIMP-2 1.53 1.43 1.40 NS 

MMP-2/TIMP-3 18.85 11.95 16.80 NS 

MMP-2/TIMP-4 88.50 82.18 84.02 NS 

MMP-3/TIMP-1 0.11 0.14 0.12 NS 

MMP-3/TIMP-2 0.15 0.18 0.14 NS 

MMP-3/TIMP-3 3.37 1.99 3.11 NS 

MMP-3/TIMP-4 9.19 10.50 8.31 NS 

MMP-8/TIMP-1 0.11 0.085 0.084 NS 

MMP-8/TIMP-2 0.14 0.12 0.12 NS 

MMP-8/TIMP-3 2.21 1.07 2.43 NS 

MMP-8/TIMP-4 8.72 7.34 6.59 NS 

MMP-9/TIMP-1 2.88 2.59 2.78 NS 

MMP-9/TIMP-2 3.99 3.51 3.69 NS 

MMP-9/TIMP-3 58.32 39.18 58.18 NS 

MMP-9/TIMP-4 227.24 208.40 201.33 NS 

Values are median; * 2 copies vs. 1 copy + 0 copy (as dominant model); † p for trend (as 

additive model); NS, not significant. 
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4.20.4 Serum TIMP level, MMP/TIMP ratio and RA clinical measures 

 

Serum TIMP and RA clinical measures 

 

Serum TIMP-3 was found to be increased in RF+ patients, compared to that in RF- patients 

(13245.4 (IQR 3494.8 – 25338.3) vs. 11189.4 (IQR 1000.0 – 23854.1), p = 0.049, adjusted 

for age, sex and RA duration). Other TIMPs were not associated. No association between 

serum TIMPs and anti-CCP was found. The correlations between serum levels of TIMP-1, 

-2, -3 and -4, and inflammatory markers including ESR and CRP and disease measures 

including DAS28, MJS and HAQ are shown in Table 4.20.4a. Serum TIMP-1 was shown 

to be correlated with inflammatory markers, disease activity, and the functional severity 

measured by HAQ score. TIMP-4 was correlated with disease activity and with MJS. 

These correlations remained significant after adjustment for sex, age and RA duration (data 

not shown). No correlations were found between TIMP-2 and -3, and the listed disease 

measures. We also tested their relationships with erosive and nodular diseases. No 

significant difference was seen either stratified by erosive or nodular status.  

 

Table 4.20.4a Correlations between serum TIMP levels and inflammatory and disease 

measures in RA (RA duration ≤ 6 years) 

 ESR CRP DAS28 MJS HAQ 

TIMP-1 0.16 (0.048) 0.21 (0.0068) 0.18 (0.024) NS 0.19 (0.015) 

TIMP-2 NS NS NS NS NS 

TIMP-3 NS NS NS NS NS 

TIMP-4 NS NS 0.17 (0.034) 0.27 (0.0005) NS 

Values are r (p), obtained from Spearman correlation; NS, not significant. 
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MMP/TIMP ratio and RA clinical measures 

 

The MMP/TIMP ratio stratified by RF status was investigated. Six MMP/TIMP ratios were 

significantly lower in RF+ patients (n = 85) compared to those in RF- patients (n = 73). 

They were MMP-1/TIMP-3 (0.53 vs. 0.89, p = 0.0084), MMP-3/TIMP-1 (0.11 vs. 0.15, p 

= 0.0074), MMP-3/TIMP-2 (0.16 vs. 0.18, p = 0.0018), MMP-3/TIMP-3 (1.65 vs. 4.84, p 

= 0.020), MMP-3/TIMP-4 (9.20 vs. 11.54, p = 0.027) and MMP-8/TIMP-3 (1.34 vs. 2.41, 

p = 0.022). Furthermore, MMP-2/TIMP-1 (1.07 vs. 1.12, p = 0.071), MMP-2/TIMP-3 

(12.7 vs. 18.4, p = 0.092) and MMP-9/TIMP-3 (35.0 vs. 62.8, p = 0.057) were also lower 

in RF+ patients, although they were not significant. When stratified by anti-CCP status 

(anti-CCP-, n = 55; anti-CCP+, n = 105), no difference was seen except for MMP-8/TIMP-

3 ratio which was lower in anti-CCP+ patients (1.68 vs. 2.22, p = 0.010). All these results 

were adjusted for age, sex and RA duration.  

 

The relationships between MMP/TIMP ratio, and ESR, CRP, DAS28, MJS and HAQ were 

investigated. MMP-2/TIMP-1 ratio was negatively correlated with inflammatory markers 

ESR (r = -0.14, p = 0.075 insignificant) and CRP (r = -0.17, p = 0.032), and disease 

activity score (DAS28, r = -0.19, p = 0.016). Also, it had a borderline correlation (negative) 

with HAQ (r = -0.15, p = 0.059). MMP-2/TIMP-4 was found to be negatively correlated 

with MJS (r = -0.19, p = 0.017) and HAQ (r = -0.24, p = 0.0023). MMP-3-related ratios 

were positively correlated with disease measures, with MMP-3/TIMP-1 correlated with 

MJS (r = 0.19, p = 0.016), MMP-3/TIMP-2 correlated with CRP (r = 0.19, p = 0.016), 

DAS28 (r = 0.17, p =0.038) and MJS (r = 0.20, p = 0.012), MMP-3/TIMP-3 correlated 

with MJS (r = 0.19, p = 0.015), and MMP-3/TIMP-4 correlated with CRP (r = 0.22, p = 
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0.0066). Adjustment for age, sex and RA duration made little difference in terms of p 

values (data not shown). 

 

4.20.5 Serum TIMP level, MMP/TIMP ratio and co-morbidity 

 

Serum TIMP and co-morbidity 

 

Initial data suggested that serum levels of TIMP-1 and -2 were increased in patients with 

IHD (n = 31) compared to those levels in patients without IHD (n = 127), although the p 

values were not significant after adjustment for age, sex and RA duration (TIMP-1: 

178959.9 (IQR 162785.5 – 223176.2) vs. 166577.6 (IQR 145901.9 – 191216.2) pg/ml, p = 

0.092; MMP-2: 132640.8 (IQR 119972.4 – 145734.1) vs. 124765.6 (IQR 116962.3 – 

136934.7) pg/ml, p = 0.16). No other trend was found.  

 

MMP/TIMP ratio and co-morbidity 

 

MMP-8/TIMP-3 ratio was found to be increased in patients with hypertension (n = 60) 

compared with that in patients without hypertension (n = 95) (2.34 (IQR 0.80 – 12.62) vs. 

1.39 (IQR 0.59 – 4.53), p = 0.0040 adjusted for age, sex and RA duration). Similarly, 

elevated MMP-9/TIMP-3 ratio was found in hypertensive patients (45.72 (IQR 20.85 – 

401.27) vs. 41.22 (IQR 17.36 – 149.96), p = 0.021 adjusted for age, sex and RA duration). 

Since there was strong correlation between MMP-8 and -9, we used multivariate logistic 

regression which contained both MMP/TIMP-3 ratios as independent variables to test the 

independence of these associations. Both associations lost significance in the regression 

model (data not shown), implying that these 2 associations were not independent of each 
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other. We also observed a reduction of MMP-3/TIMP-4 ratio in patients with 

hypercholesteraemia (n = 29), compared to the ratio in patients without 

hypercholesteraemia (n = 127) (7.38 (IQR 5.55 – 10.35) vs. 10.63 (IQR 6.78 – 17.17), p = 

0.027 adjusted for age, sex and RA duration).  

 

 

4.21 SUMMARY OF FINDINGS FOR 4.17 – 4.20 

 

• MMP3 SNPs rs3025058 and rs679620, and the intergenic SNP rs495366 were 

within the same LD block. The 2 MMP3 SNPs were almost identical in terms of 

allelic/genotypic distribution. MMP1 SNP rs1799750 linked moderately with the 

above LD block.  

 

• All the 4 polymorphisms in the MMP1-3 loci were found to be associated with 

serum levels of MMP-1. The associations of non-MMP1 polymorphisms 

(rs3025058, rs679620 and rs495366) with serum MMP-1 were independent of the 

association with rs1799750.  

 

• 5A-A-G-1G, the most common haplotype across the 4 polymorphisms (38.3%), 

was associated with the highest levels of serum MMP-1, whereas 6A-G-A-2G 

(19.2%) was associated with the lowest levels. 

 

• Polymorphism within the MMP3 gene (rs3025058 and rs679620) was associated 

with serum levels of MMP-3. The other 2 polymorphisms (rs495366 and 

rs1799750) may also have some effect, as indicated by multivariate analyses.  
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• 6A-G-G-2G (13.5%) was associated with the highest levels of MMP-3 in 

haplotypic analysis. The association was stronger after exclusion of the MMP1 

rs1799750 SNP. 5A-A-G-1G (38.3%) was associated with the lowest MMP-3 

levels, although this could be explained mainly by the 2 SNP haplotype 5A-G 

(rs3025058-rs495366).  

 

• Polymorphism in the MMP1-3 loci was associated with serum MMP-2 levels, with 

the strongest association occurring at rs495366. The association was found to be 

independent of the associations of MMP-1 and -3 levels with MMP-2 levels.  

 

• MMP1 SNP rs1799750 was found to be associated with serum levels of MMP-9. 

 

• Both serum levels of MMP-1 and -3 were associated with inflammation and thus 

disease activity. MMP-1 may be more related to disease functional outcome 

measured by HAQ.  

 

• Decreased serum MMP-2 was found in patients with erosive disease, restricted to 

those with autoantibody (RF or anti-CCP) or those who had ever smoked.  

 

• The AA genotype at the intergenic polymorphism rs495366 was associated with 

earlier age at onset of RA, compared to the G allele.  

 

• MMP3 polymorphisms (rs3025058 and rs679620) were associated with disease 

activity over a 2-year period. The associations were independent of inflammation 

(marked by CRP), and serum MMP-1 and -3. 
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• MMP1 rs1799750 1G and MMP3 rs3025058 5A alleles were found to be associated 

with an increased risk of erosive disease in patients with short RA duration (≤ 6 

years). However, these genetic variants did not significantly differentiate between 

erosive and non-erosive disease in patients with longer RA duration. 

 

• A possible interaction between smoking (ever-smoked) and the MMP1-3 genetic 

variants (marked by 5A-1G haplotype) was found in terms of the development of 

erosive disease in the early years of RA (≤ 6 years).  

 

• There was a trend showing that genetic polymorphism in the MMP1-3 loci may be 

associated with the occurrence of IHD/MI in patients who were RF positive or in 

patients had ever smoked, with 6A (at rs3025058), G (at rs679620) and A (at 

rs495366) alleles related to an increased risk.  

 

• Elevated serum MMP-3 was found in patients with previous MI particularly, but 

not in IHD patients without MI. 

 

• There were correlations between MMPs and TIMPs, with MMP-1 correlated with 

TIMP-1, -2 and -3, MMP-2 correlated with TIMP-2, MMP-3 correlated with 

TIMP-1, MMP-8 correlated with TIMP-2, and MMP-9 correlated with TIMP-1 and 

-2.  

 

• Current smokers were found to be associated with lower ratios of MMP-2/TIMP-1, 

-2, -3 and -4, compared to the remaining subjects. 
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• MMP1 SNP rs1799750 was associated with serum level of TIMP-1, with 1G1G 

associated with an increased level.  

 

• Polymorphisms within the MMP1-3 loci were particularly associated with MMP-1-

related MMP/TIMP ratios. Haplotype analysis indicated that patients carrying 

double copies of 5A-1G were associated with the highest ratios of MMP-1/TIMP-1, 

-2, -3 and -4. 

 

• Interestingly, many MMP/TIMP ratios were lower in RF+ patients, compared to 

those in RF- patients.  

 

• MMP-8/TIMP-3 and MMP-9/TIMP-3 ratios were increased in patients with 

hypertension, while MMP-3/TIMP-4 was reduced in patients with 

hypercholesteraemia. 
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PART F: TGFB1 POLYMORPHISM, SERUM LEVEL OF TGF-β1, SEVERITY 

AND CO-MORBIDITY IN RA (4.22 – 4.25) 

 

 

4.22 TGFB1 POLYMORPHISM AND SERUM TGF-β1 LEVEL 

 

4.22.1 Brief introduction  

 

TGF-β1 is a multifunctional cytokine which regulates the proliferation and differentiation 

of a wide variety of cell types in vitro. Misregulation of this cytokine has been implicated 

in the development of several major diseases, including cancer, atherosclerosis, fibrotic 

disease and autoimmune disease. Polymorphisms (including rs1800469, rs1800470 and 

rs1800471) in the TGFB1 gene have been associated with the expression of TGF-β1 

(Grainger et al, 1999; Awad et al, 1998; Yamada et al, 1998; Yokota et al, 2000; 

Suthanthiran et al, 2000). However, this relationship has not yet been investigated in RA 

individuals. Since TGF-β1 is increased in RA and is considered to be an anti-inflammatory 

regulator in RA, it was interesting to investigate the relationship between functional SNPs 

and the circulating levels of TGF-β1 in this group of RA patients. 

 

4.22.2 TGFB1 polymorphism 

 

Studied SNP 

 

Polymorphism rs1800469 is normally known as TGFB1-509 (C/T), named after its 

position relative to the transcription start site. It is a common SNP in the promoter region 
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of the gene. SNPs rs1800470 and rs1800471 are known as +868 (C/T) and +913 (C/G) 

respectively according to the positions relative to the transcription start site. They are 

located at positions 29 and 74 of the translated sequence (exon 1) of TGFB1 and give rise 

to amino acid substitutions at positions 10 (Pro → Leu) and 25 (Pro → Arg) in the signal 

peptide of TGF-β1 respectively. Figure 4.22.2a shows the location of each SNP and their 

physical distance between each other.  

 

Figure 4.22.2a Diagram of human TGFB1 gene highlighting the location of studied 

polymorphisms 

 
The positions of rs1800469, rs1800470 and rs1800471 at chromosome 19 are 41860296, 

41858921 and 41858876 respectively. Physical distances in bp between SNPs are shown. 

Left and right dots indicate the transcription start and end site respectively.  

 

Allelic and genotypic distribution 

 

Genotypes were determined in 429, in 427 and in 427 patients for TGFB1-509 (C/T), +868 

(C/T) and +913 (C/G) respectively. The allelic and genotypic frequencies of the 3 TGFB1 

SNPs are listed in Table 4.22.2a. Genotypes of these polymorphisms were all distributed in 

accordance with a close fit to HWE. The genotypic/allelic distribution of TGFB1+868 in 

our samples was comparable with the genotyping in another RA population from a nearby 

region (Dudley) (TT: 161 (40.8), TC: 176 (44.6), CC: 58 (14.7), p = 0.88 vs. the 

frequencies in the present study). In that study, the authors suggested that there was no 
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difference in distribution of +868 polymorphism between RA and healthy subjects 

(distribution in healthy subjects, TT: 161 (40.1), TC: 186 (46.4), CC: 54 (13.5)) (Panoulas 

et al, 2009). 

 

Table 4.22.2a Distribution of allelic and genotypic frequencies of TGFB1-509 (C/T), +868 

(C/T) and +913 (C/G) polymorphisms in subjects with RA 

Polymorphism Genotypic distribution Allelic distribution 

TGFB1-509 (C/T) CC: 213 (49.7) C: 614 (71.6) 

(n = 429) CT: 188 (43.8) T: 244 (28.4) 

 TT: 28 (6.5)  

TGFB1+868 (T/C) TT: 174 (40.8) T: 543 (63.6) 

(n = 427) TC: 195 (45.7) C: 311 (36.4) 

 CC: 58 (13.6)  

TGFB1+913 (G/C) GG: 368 (86.2) G: 793 (92.9) 

(n = 427) GC: 57 (13.4) C: 61 (7.1) 

 CC: 2 (0.5)  

Values are n (%). 

 

Linkage disequilibrium and haplotype 

 

Pair-wise LD coefficients (D’) and correlation (r2) between TGFB1-509, +868 and +913 

are shown in Figure 4.22.2b and c respectively. They were strongly linked with each other, 

and formed a LD block according to the four gamete rule. C-T-G and T-C-G were the only 

major haplotypes across these polymorphisms (Figure 4.21.2d). Their frequencies were 

0.634 and 0.281 respectively (Table 4.22.2b). 
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Figure 4.22.2b-c Pair-wise LD of TGFB1 SNPs measured by D’ and r2 

 
Numbers in boxes represent D’ and r2 values (%) between paired SNPs in Figure b and c 

respectively. The definite D’ values for pairs (-509, +913) and (+868, +913) are not shown, 

due to the very low frequencies of C allele and CC genotype in +913 polymorphism. 

Polymorphisms within black border are in the same LD block. 

 

Figure 4.22.2d Details of allelic linkage between neighbouring SNPs of TGFB1-509, +868 

and +913 

 
One, 2 and 3 represent TGFB1-509, +868 and +913 respectively. Numbers next to alleles 

shows the frequencies of the alleles. Numbers at bottom shows the D’ values between the 

neighbouring SNPs. Thick/thin lines represent the different strength of linkage, with thin 

lines showing the connection > 1% but ≤ 10%, while thick lines showing the connection > 

10%. 
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Table 4.22.2b Frequency of haplotypes across the TGFB1-509, +868 and +913 

Haplotype Frequency Haplotype Frequency 

C-C-C 0.072 T-C-C 0.0 

C-C-G 0.010 T-C-G 0.281 

C-T-C 0.0 T-T-C 0.0 

C-T-G 0.634 T-T-G 0.004 

Common haplotypes are marked in black (frequency threshold = 0.05). 

 

4.22.3 Serum level of TGF-β1 

 

Determination and distribution 

 

Serum TGF-β1 level was determined in 415 patients. Its distribution was rejected for 

normality (Figure 4.22.3a). Transformations (e.g. log, square root, etc) could not improve 

the distribution of normality (data not shown). The median level was 16764 (IQR 12720 - 

21428) pg/ml. 

 

Figure 4.22.3a Distribution of serum TGF-β1 levels in RA  
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Correlation between TGF-β1 and other investigated proteins 

 

The relationships between serum TGF-β1 and serum MMP-1, -2, -3, -8 and -9 were tested. 

TGF-β1 was positively correlated with MMP-1 (r = 0.18, p = 0.0002), MMP-8 (r = 0.17, p 

= 0.0004) and MMP-9 (r = 0.18, p = 0.0003). Adjustment for age, sex and RA duration did 

not alter the significance of these correlations (data not shown). 

 

In patients whose levels of TIMPs were measured, the relationships between serum TGF-

β1 and TIMP-1, -2, -3 and -4 were investigated. We found that TGF- β1 was correlated 

with TIMP-1 (r = 0.25, p = 0.0012) and TIMP-2 (r = 0.15, p = 0.061 (p = 0.0041 after 

adjustment for age, sex and RA duration)), but not with TIMP-3 and -4.  

 

The relationships between serum levels of TGF-β1 and serum levels of angiogenic proteins 

(including VEGF-A, angiopoietin-2, follistatin, G-CSF, HGF, IL-8, leptin, PDGF-BB and 

PECAM-1) were assessed. Serum TGF-β1 was correlated with serum levels of VEGF-A (r 

= 0.19, p < 0.0001), HGF (r = 0.13, p = 0.010) and PDGF-BB (r = 0.30, p < 0.0001). 

Adjustment for age, sex and RA duration made little difference to the results (data not 

shown). 

 

Serum TGF-β1 level, cigarette smoking and patient demographics 

 

No difference was seen when TGF-β1 was stratified by ever-smoked status. When 

stratified by never/past/current status, interestingly we observed that the lowest level 

occurred in past smokers (never vs. past vs. current, 17660 vs. 15672 vs. 18854 pg/ml), 

although there was no significant difference between these 3 groups after adjustment for 
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age, sex and RA duration. No correlation of TGF-β1 with cigarettes per day, years smoked 

or pack-years was found.  

 

No significant association of serum TGF-β1 with sex or BMI was found. Interestingly, we 

found a negative correlation with age (r = -0.13, p = 0.0092), and a positive correlation 

with RA duration (r = 0.13, p = 0.0087). These 2 correlations were independent of each 

other in multiple regression analysis.  

 

4.22.4 TGFB1 polymorphism and serum TGF-β1 level 

 

Serum levels of TGF-β1 in each genotypic group of the studied TGFB1 polymorphisms are 

shown in Figure 4.22.4a-c. These polymorphisms were not associated with serum TGF-β1. 

Haplotype analysis with HAPSTAT program indicated that there was no haplotype across 

these SNPs associated with the serum level (data not shown).  

 

Figure 4.22.4a-c A box-and-whisker diagram of serum TGF-β1 levels stratified by 

TGFB1-509, +868 and +913 polymorphisms in RA 

 
Boxplot with whisker with 5 – 95 percentile. 
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4.23 TGFB1 POLYMORPHISM, SERUM TGF-β1 AND DISEASE SEVERITY 

 

4.23.1 Brief introduction 

 

TGF-β1 has regulatory effects on lymphocytes, dendritic cells, macrophages, chondrocytes 

and osteoblasts, and therefore is considered as an important modulator in RA pathogenesis. 

The severity and long term outcome of RA have been related to this cytokine. A recent 

study showed that soluble TGF-β1 serum levels were associated with the functional class 

evaluated in patients with RA (Muñoz-Valle et al, 2010). Other studies provided evidence 

based on genetic polymorphisms. Mattey et al suggested that the T allele of +868 SNP was 

associated with more severe disease measured by Larsen score and HAQ (Mattey et al, 

2005). Kim et al found that the progression of radiographic severity, which was defined by 

a modified Sharp score plotted against disease duration, was significantly faster in carriers 

of the T allele at the -509 SNP (Kim et al, 2004). Muñoz-Valle et al observed that patients 

carrying the GG genotype of +913 SNP presented the highest Spanish HAQ-DI scores. 

However, no other reports have been published. In the present study, we included these 3 

SNPs simultaneously to further evaluate their relationship with disease severity and to 

consider the influence of haplotypes across these SNPs.  

 

4.23.2 Serum TGF-β1 and RA clinical measures 

 

Serum TGF-β1 was not associated with RF or anti-CCP. It was not significantly associated 

with inflammatory markers including ESR and CRP, disease activity measured by DAS28, 

or functional outcome measured by MJS and HAQ. Further analysis within specific subsets 

(e.g. RF+ patients, current smoker patients, etc) also revealed no significant association. 



 251

The relationships between TGF-β1, and nodular and erosive diseases were also 

investigated. A decreased serum TGF-β1 was observed in patients with nodular disease (n 

= 52), compared to the levels in patients without nodular disease (n = 330) (15310 (IQR 

10152 - 19873) vs. 17348 (IQR 13194 - 21918) pg/ml, p = 0.041 adjusted for age, sex and 

RA duration). In contrast, in the whole population no association was found between TGF-

β1 and erosive disease. However, we saw a significant association restricted to RF+ 

patients, with increased TGF-β1 associated with erosive development (erosion (n = 179) 

vs. non-erosion (n = 54), 18508 (IQR 13756 - 22264) vs. 14650 (IQR 11374 - 19671) 

pg/ml, p = 0.045 adjusted for age, sex and RA duration). In a forward stepwise multivariate 

logistic regression model which included levels of TGF-β1, angiogenic proteins and 

MMPs, it was found that TGF-β1 level was the only one positively associated with erosive 

disease (p = 0.028) in RF+ patients. MMP-2 level was negatively associated (p = 0.0048) 

in the same model.  

 

4.23.3 TGFB1 polymorphism and RA clinical measures 

 

No major association of TGFB1 SNPs or haplotypes with RA clinical measures was 

observed in this group of patients. However, patients carrying the GC/CC genotype at +913 

may be associated with increased inflammation, since both ESR and CRP were higher in 

these subjects (ESR: GC + CC vs. GG, 25.0 (IQR 14.0 – 43.0) vs. 19.0 (IQR 10.0 – 34.0), 

p = 0.12; CRP: GC + CC vs. GG, 12.0 (IQR 7.0 – 24.0) vs. 10.1 (IQR 4.0 – 19.2), p = 

0.050), although for ESR it was not significant.  

 

We observed an interesting association between TGFB1+913 polymorphism and serum 

levels of MMP-1, with GG genotype (GG vs. C allele) associated with lower levels (GG 
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vs. C allele, 5309.9 (IQR 3359.9 – 8783.8) vs. 7659.5 (IQR 4006.2 – 12308.3) pg/ml, p = 

0.0092 adjusted for age, sex, RA duration, and MMP1 rs1799750 and MMP3 rs3025058 

genotypes). A similar trend was also found in relation to serum levels of MMP-2, although 

it was not significant (GG vs. C allele, 173665.1 (IQR 149276.1 – 201548.9) vs. 186846 

(IQR 164086.5 – 209254.8) pg/ml, p = 0.098 adjusted for age, sex, RA duration and 

MMP1-3 intergenic rs495366 genotype). These results implied that the TGFB1 gene may 

have a regulatory effect on MMP-1 and -2 levels.  

 

 

4.24 TGFB1 POLYMORPHISM, SERUM TGF-β1 AND CO-MORBIDITY  

 

4.24.1 Brief introduction 

 

Polymorphisms in the TGFB1 gene have been associated with cardiac events, especially 

MI in case-control studies (Cambien et al, 1996; Crobu et al, 2008; Koch et al 2006). 

However, studies with no association have also been reported (Sie et al, 2006). 

Investigation of the relationship between TGFB1 SNPs and CVD in an RA population has 

not been reported yet. It was thus of interest to determine whether TGFB1 polymorphisms 

were associated with the occurrence of IHD and previous MI in our cohort of RA. Since 

TGFB1 polymorphisms may be associated with hypertension in RA (Panoulas et al, 2009), 

we also looked for any association with hypertension. Other co-morbid conditions recorded 

in patients were also investigated.  
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4.24.2 Serum TGF-β1 and co-morbidity 

 

Initial analysis suggested that there was a relationship between hypertension status and 

serum TGF-β1, with the condition associated with lower levels (15912 (IQR 12372 - 

26404) vs. 17550 (IQR 13155 - 22431) pg/ml, p = 0.050). However, significance was lost 

after further adjustment for age, sex and RA duration (p = 0.25). 

 

We analysed the relationship between serum TGF-β1 and the status of diabetes mellitus 

(including type 1 and 2). We observed a significant relationship between TGF-β1 and 

diabetes type 2, with the disease (n = 21) associated with a reduction of serum TGF-β1 

(13008 (IQR 10474 - 17450) vs. 17252 (IQR 12920 - 21764) pg/ml, p = 0.031 adjusted for 

age, sex and RA duration). Again, we found a trend that a decreased level of TGF-β1 was 

associated with diabetes type 1, although it was not significant (15324 (IQR 7984 - 20152) 

vs. 16924 (IQR 12794 - 21540), p = 0.25 adjusted for age, sex and RA duration). This may 

be due to the low case number of this condition (n = 11). Combination of type 1 and 2 

diabetes indicated that patients with diabetes were associated with lower serum levels of 

TGF-β1 compared to those without diabetes in RA (13398 (IQR 10453 - 17969) vs. 17348 

(IQR 13037 - 21770), p = 0.013 adjusted for age, sex and RA duration). 

 

Serum TGF-β1 was not associated with the status of IHD/MI. However, there was 

evidence in these RA patients that this protein may be associated with overall heart 

diseases. We found that a reduced TGF-β1 level was associated with current use of 

medications for heart-related diseases (based on interviews and on patients’ medical 

records). In patients who were taking heart medication at recruitment (n = 143) the median 

of serum TGF-β1 was 15460 (IQR 11436 - 19752) pg/ml, while in the remaining patients 
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(n = 264) the median was 18500 (IQR 13853 - 22485) pg/ml (p = 0.026 adjusted for age, 

sex and RA duration). There was no difference in TGF-β1 levels between patients on 

statins and on non-statin drugs (15456 (IQR 11490 - 20518) vs. 15484 (IQR 9780 - 19060) 

pg/ml).  

 

4.24.3 TGFB1 polymorphism, smoking and IHD/MI 

 

TGFB1 polymorphism and IHD/MI 

 

The patient characteristics stratified by IHD/MI status were described before (Section 

4.11.2). The relationship between TGFB1 genotypes and the presence of IHD/MI, without 

adjustment for confounders, are shown in Table 4.24.2a. Results suggested that 

heterozygosity of TGFB1-509 (CT genotype) and +868 (TC genotype) showed a 

relationship with increased occurrence of IHD and MI, although for TGFB1-509 no 

significant association with IHD was achieved. There was no relationship between 

TGFB1+913 and the presence of IHD/MI.  

 

Since there is strong LD between TGFB1-509 and +868, the weaker association involving 

-509 may be due to the greater association of +868 with IHD and MI. This was supported 

by logistic regression analysis which contained both -509 (CT vs. CC + TT) and +868 (TC 

vs. TT + CC) together as independent variables and used forward stepwise selection to test 

for primary risk factor if factors were not independent of each other.  The associations 

involving TGFB1+868 maintained significance in relation to both IHD (OR 1.98, 95% CI 

1.17 – 3.34) and MI (OR 3.23, 95% CI 1.63 – 6.41), whereas the others involving -509 lost 

significance in these models (adjusted for age, sex and RA duration).  
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Although the TGFB1+868 SNP showed the strongest association, we carried out haplotype 

analysis to test whether there was any particular haplotype involved. Common haplotypes 

across TGFB1-509, +868 and +913, and their relationship with the presence of IHD/MI are 

presented in Table 4.24.2b. The T-C-G haplotype displayed a difference in distribution 

between patients with (31.5%) and without (27.8%) MI (Table 4.24.2b), although it was 

not significant (p = 0.087). The frequency of C-T-G and C-C-C was generally equal 

between patients with and without IHD/MI (Table 4.24.2b). Comparison between T-C-G 

and C-T-G suggested that the differential risk was related to the genetic region flanked by 

TGFB1-509 and +868 and is not associated with TGFB1+913. Exclusion of +913 SNP in 

the analysis made little difference (data not shown). 

 

No significant association of TGFB1 polymorphisms with other co-morbidities including 

hypertension and diabetes mellitus was found.  
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Table 4.24.2a Frequency of IHD and MI in RA patients stratified by TGFB1 SNP genotypes 

IHD MI 
 Negative Positive (%) Odds ratio (95% CI) Negative Positive (%) Odds ratio (95% CI) 

TGFB1-509 (C/T)       
CT 146 40 (21.5) 1.0 (referent) 159 27 (14.5) 1.0 (referent) 
CC 175 35 (16.7) 0.73 (0.44 – 1.21) 192 18 (8.6) 0.56 (0.30 – 1.04) 
TT 

CC + TT 
24 

199 
3 (11.1) 

38 (16.0) 
0.52 (0.16 – 1.67) 
0.70 (0.43 – 1.14) 

26 
218 

1 (3.7) 
19 (8.0) 

0.33 (0.06 – 1.79) 
0.52 (0.28 – 0.96) 

TGFB1+868 (T/C)       
TC 138 45 (23.3) 1.0 (referent) 161 32 (16.6) 1.0 (referent) 
TT 146 25 (14.6) 0.53 (0.31 – 0.91) 158 13 (7.6) 0.42 (0.22 – 0.83) 
CC 

TT + CC 
50 

196 
7 (12.3) 
32 (14.0) 

0.45 (0.20 – 1.04) 
0.50 (0.31 – 0.83) 

56 
214 

1 (1.8) 
14 (6.1) 

0.13 (0.02 – 0.70) 
0.34 (0.18 – 0.64) 

TGFB1+913 (G/C)       
GC 44 13 (22.8) 1.0 (referent) 52 5 (8.8) 1.0 (referent) 
GG 297 65 (18.0) 0.73 (0.37 – 1.41) 321 14 (11.3) 0.43 (0.15 – 1.20) 
CC 
– 

2 
 

0 (0.0) 
 

0.66 (0.03 – 14.59) 
 

2 0 (0.0) 1.91 (0.08 – 45.04) 

Values are n (%). 
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Table 4.24.2b Frequency of TGFB1 haplotypes in RA patients with and without IHD or MI 

 All patients IHD  MI  

TGFB1 haplotype  Negative Positive  Negative Positive  

(-509/+868/+913) EM freq. EM freq. EM freq. OR (95% CI) EM freq. EM freq. OR (95% CI) 

C-T-G 0.634 0.637 0.617 0.68 (0.41 – 1.13) ‡ 0.634 0.630 0.98 (0.63 – 1.54) ‡ 

T-C-G 0.281 0.280 0.292 1.32 (0.81 – 2.16) † 0.278 0.315 1.71 (0.94 – 3.13) † 

C-C-C 0.072 0.069 0.084 1.34 (0.68 – 2.61) † 0.074 0.054 0.73 (0.28 – 1.95) † 

Rare 0.013       

EM freq., frequency estimated by the expectation/maximization algorithm; Maximum EM iteration = 500, EM convergence tolerance = 

0.0001; Frequency threshold = 0.05; Best odds ratio achieved in †dominant model, ‡additive model. 
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TGFB1-smoking interaction and IHD/MI 

 

Analysis was also carried out to investigate if there was potential interaction of TGFB1 

ploymorphism with smoking relative to the occurrence of IHD/MI. Table 4.24.2c shows 

the occurrence of IHD and MI stratified by the combination of TGFB1 polymorphism (-

509 and +868) with ever-smoked status in RA. Evidence of interaction was tested based on 

AP with 95% CI. For TGFB1-509, the values of AP (95% CI) only demonstrated weak and 

insignificant results. In contrast, for +868, AP showed a large proportion of effect due to 

interaction (in relation to IHD: 0.54; MI: 0.39), and 95% CI indicated the significance of 

these results. Interestingly, it was seen that the genotypes (heterozygosity) of the TGFB1 

gene itsef did not have any effect on the risk for IHD (see the smoke-/genotype+ 

combination in Table 4.24.2c). However, patients carrying the heterozygote combination 

with smoking were at the highest risk for IHD. The risk was significantly higher compared 

to that among patients who had ever smoked but did not carry these genotypes (according 

to TGFB1+868: OR 2.25 (1.28 – 3.96), p = 0.0042). A similar pattern was also seen in 

relation to MI, but the TGFB1 polymorphisms also showed some independent effect.  
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Table 4.24.2c Association of TGFB1 polymorphisms and ever having smoked with IHD and MI in RA patients 

IHD MI 
 Negative Positive (%) Odds ratio (95% CI) Negative Positive (%) Odds ratio (95% CI) 

Smoke/-509 CT       
-/- 70 5 (6.7)  1.0 (referent) 75 0 (0.0) 1.0 (referent) 
-/+ 60 6 (9.1) 1.38 (0.42 – 4.51) 62 4 (6.1) 10.87 (0.76 – 49.87) 
+/- 127 33 (20.6) 3.37 (1.31 – 8.69) 141 19 (11.9) 20.81 (1.95 – 109.38) 
+/+ 85 34 (28.6) 5.17 (1.99 – 13.42) 

 
AP: 0.26 (-0.20 – 0.73) 

96 23 (19.3) 36.77 (3.49 – 194.74) 
 

AP: 0.17 (-0.37 – 0.71) 

Smoke/+868 TC       
-/- 71 7 (9.0) 1.0 (referent) 78 0 (0.0) 1.0 (referent) 
-/+ 58 5 (7.9) 0.90 (0.28 – 2.84) 59 4 (6.3) 11.87 (0.83 – 54.49) 
+/- 125 25 (16.7) 1.94 (0.82 – 4.60) 136 14 (9.3) 16.68 (1.52 – 86.54) 
+/+ 88 40 (31.3) 4.36 (1.89 – 10.10) 

 
AP: 0.54 (0.20 – 0.89) 

100 28 (21.9) 44.52 (4.28 – 237.16) 
 

AP: 0.39 (0 – 0.80) 
Values are n (%); AP, the attributable proportion due to interaction. 
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Multivariate analysis: factors associated with IHD/MI 

 

In the present study, we have shown that VEGFA-2578-smoking interaction, older age, 

male, CRP ≥ 10 mg/l, hypercholesterolemia, diabetes type 2, CVA and MTX use are 

independently associated with IHD (model 1, Table 4.11.2g), and that VEGFA-2578-

smoking interaction, male, RF, HAQ score, hypercholesterolemia, hypertension, asthma, 

CVA and MTX use are independently associated with MI (model 2, Table 4.11.2g). Here, 

we further included TGFB1+868-smoking interaction into those models and demonstrated 

that the associations of TGFB1+868-smoking interaction with IHD/MI were independent 

of other factors including the VEGFA-2578-smoking interaction (Table 2.24.2d). 
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Table 4.24.2d Multivariate logistic regression analysis of variables associated with IHD and MI 

IHD (model 1†) MI (model 2‡) 

Variable Regression 

coefficient 

OR (95% CI) p Variable Regression 

coefficient 

OR (95% CI) p 

*Smoke + TGFB1+868 CT (+/-) 0.716 2.05 (1.11 – 3.74) 0.020 Smoke + TGFB1+868 CT (+/-) 0.896 2.45 (1.15 – 5.21) 0.020 
¶Smoke + VEGFA-2578 A (+/-) 1.198 3.31 (1.68 – 6.51) 0.0005 Smoke + VEGFA-2578 A (+/-) 1.683 5.38 (1.93 – 15.0) 0.0013 

Hypercholesterolemia (+/-) 1.279 3.59 (1.84 – 7.02) 0.0002 Hypercholesterolemia (+/-) 1.0 2.74 (1.18 – 6.34) 0.019 

Age, per year  0.040 1.04 (1.01 – 1.07) 0.011 HAQ score 0.481 1.62 (0.93 – 2.80) 0.081 

CRP ≥ 10mg/l (+/-) 0.872 2.39 (1.29 – 4.44) 0.0058 Hypertension (+/-) 0.904 2.47 (1.09 – 5.58) 0.030 

Diabetes type 2 (+/-) 1.686 5.40 (1.77 – 16.44) 0.0030 Asthma (+/-) 0.778 2.18 (0.80 – 5.94) 0.13 

CVA (+/-) 1.80 6.05 (1.78 – 20.59) 0.0040 CVA (+/-) 2.331 10.29 (2.60 – 40.73) 0.0009 

Male (+/-) 0.619 1.86 (1.02 – 3.37) 0.042 Male (+/-) 1.373 3.95 (1.79 – 8.70) 0.0007 

MTX use (+/-) -0.575 0.56 (0.32 – 0.99) 0.096 MTX use (+/-) -0.764 0.47 (0.22 – 0.97) 0.040 

 RF (+/-) 0.611 1.84 (0.79 – 4.29) 0.16 

* Patients who have ever smoked and carry the TGFB1+868 CT genotype, compared with all remaining patients; ¶ Patients who have ever 

smoked and carry a VEGFA-2578 A allele, compared with all remaining patients; † Patients with IHD vs. without IHD; ‡ Patients with MI vs. 

all non-MI patients.
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Total risk due to VEGFA-2578, TGFB1+868 and smoking 

 

In the present study, we have found 2 smoking-gene interactions (VEGFA-2578 A-

smoking and TGFB1+868 CT-smoking) relative to an increased risk of IHD and MI in 

patients with RA. They seemed to be independent of each other, although smoking played 

significant roles in both interactions. We here investigated the total risk for IHD and MI 

when a RA patient had ever smoked and carried both risk variants at VEGFA-2578 (the A 

allele) and TGFB1+868 (the CT genotype). Table 4.24.2e and f show the occurrence of 

IHD and MI respectively, stratified by VEGFA-2578 (A allele- vs. A allele+), TGFB1+868 

(CT- vs. CT+) and smoking (non-smoking vs. ever-smoking). Data indicated an extremely 

high rate of IHD (36.1%, OR = 8.14 compared to those without these risk factors) and MI 

(27.8%, OR = 17.55 compared to those without these risk factors) amongst individuals 

carrying the 3 risk factors. 

 

Table 4.24.2e Occurrence of IHD stratified by VEGFA-2578 (A allele- vs. A allele+) and 

TGFB1+868 (CT- vs. CT+) in RA patients who had never smoked and in those who had 

ever smoked  

 Non-smokers Ever-smokers 

A/CT* Non-IHD IHD OR (95% CI) Non-IHD IHD OR (95% CI) 

-/- 21 1 (4.5) 1.0 referent 35 1 (2.8) 0.61 (0.06 – 6.20) 

-/+ 17 1 (5.6) 1.23 (0.12 – 12.88) 25 5 (16.7) 3.09 (0.46 – 20.55) 

+/- 50 5 (9.1) 1.56 (0.24 – 10.18) 89 25 (21.9) 4.08 (0.74 – 22.64) 

+/+ 40 4 (9.1) 1.59 (0.23 – 10.87) 62 35 (36.1) 8.14 (1.48 – 44.82) 

Values are n (%); * VEGFA-2578 A allele/TGFB1+868 CT genotype. 
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Table 4.24.2f Occurrence of MI stratified by VEGFA-2578 (A allele- vs. A allele+) and 

TGFB1+868 (CT- vs. CT+) in RA patients who had never smoked and in those who had 

ever smoked  

 Non-smokers Ever-smokers 

A/CT* Non-MI MI OR (95% CI) Non-MI MI OR (95% CI) 

-/- 22 0 (0.0) 1.0 referent 35 1 (2.8) 1.90 (0.03 – 5.08) 

-/+ 18 0 (0.0) 1.22 (0.02 – 64.31) 29 1 (3.3) 2.29 (0.04 – 6.12) 

+/- 55 0 (0.0) 0.41 (0.01 – 21.06) 101 13 (11.4) 5.99 (0.51 – 30.23) 

+/+ 40 4 (9.1) 5.0 (0.32 – 22.45) 70 27 (27.8) 17.55 (1.59 – 91.35) 

Values are n (%); * VEGFA-2578 A allele/TGFB1+868 CT genotype. 

 

 

4.25 SUMMARY OF FINDINGS FOR 4.22 – 4.24 

 

• Strong LD was detected across the region marked by TGFB1 polymorphism named 

TGFB1-509, +868 and +913. C-T-G and T-C-G were the major haplotypes across 

this region.  

 

• Serum TGF-β1 level was positively correlated with levels of several MMPs (-1, -8 

and -9), TIMPs (-1 and -2) and angiogenic proteins (VEGF-A, HGF and PDGF-

BB). 

 

• No association was found between TGFB1 polymorphisms (-509, +868 and +913) 

and serum levels of TGF-β1 in RA. 

 

• A decreased serum TGF-β1 level was observed in patients with nodular disease, 

compared to those without this extra-articular manifestation. 



 264

• In the subset of RF+ patients, an increase of serum TGF-β1 was associated with 

erosive disease. Such relationship did not exist in RF- patients. 

 

• There was an association between TGFB1+913 polymorphism and serum levels of 

MMP-1 and -2 (insignificant trend), independent of MMP polymorphisms. 

 

• Lower serum levels of TGF-β1 were found in patients with diabetes mellitus, 

especially in those with diabetes type 2. 

 

• Lower serum levels of TGF-β1 were observed in patients who were taking 

medications for heart-related diseases, compared to the levels in the remaining 

subjects. 

 

• There was evidence suggesting that polymorphisms in the TGFB1 gene may be 

associated with IHD and in particular with MI, with TGFB1+868 showing the 

strongest effect. This evidence remained after adjustment for other known factors 

related to IHD and/or MI in this population. 

 

• The above effect was largely due to an interaction with smoking, and was 

independent from other risk factors including the VEGFA-2578 A-smoking 

interaction.  
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PART G: PTPN22 POLYMORPHISM, SEVERITY AND CO-MORBIDITY IN RA 

(4.26 – 4.29) 

 

 

4.26 PTPN22 POLYMORPHISM  

 

4.26.1 Brief introduction  

 

Phosphatases are known to play a role in immune-cell homeostasis. PTPN22 appears to set 

thresholds for T cell receptor signalling. There is a missense SNP (rs2476601) in the 

PTPN22 gene. Carriage of the T allele (known as R620W allele) of this polymorphism is 

associated with increased risk for the development of human auto-immunity, including RA. 

The disease-associated polymorphism encodes an amino acid change in one of four SRC 

homology 3 domain (SH3) binding site in the PTPN22 molecule, which would potentially 

alter the normal function of this protein as a negative regulator of T cell activation 

(Gregersen 2005).  

 

4.26.2 PTPN22 polymorphism 

 

Studied SNP 

 

Polymorphism rs2476601 (C/T) is located at +1858 according to the transcriptional start 

site of the PTPN22 gene, and +620 relative to the translational start site.  
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Allelic and genotypic distribution 

 

Genotypes were determined in 428 patients. The allelic frequencies were 85.3% (n = 730) 

and 14.7% (n = 126) for C and T alleles respectively. The genotypic distributions were 

71.7% (n = 307), 27.1% (n = 116) and 1.2% (n = 5) for CC, CT and TT respectively. 

Genotype distribution was distributed in accordance with a close fit to HWE. 

 

 

4.27 PTPN22 POLYMORPHISM AND DISEASE SEVERITY 

 

4.27.1 Brief introduction 

 

Several studies have suggested that R620W allele in the PTPN22 gene has early onset and 

disease severity effects in Caucasians (Steer et al, 2005; Karlson et al, 2008). An 

association between the PTPN22 risk variant and increased progression rate for structural 

damage has been observed (Lie et al, 2007; Karlson et al, 2008). These indicated that the 

PTPN22 may not only be associated with disease susceptibility, but also with disease 

progression. In this study, we looked at whether this genetic variant was associated with 

disease activity/severity in our patients of RA. 

 

4.27.2 PTPN22 polymorphism and RA clinical measures 

 

No association of the R620W allele in the PTPN22 gene with any disease measures was 

observed, expect for a borderline association between the T allele (TC + TT genotypes) 

and increased MJS (8.5 (IQR 4.0 – 17.0) vs. 7.0 (IQR 3.0 – 13.0), p = 0.063). However, 
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this relationship disappeared after adjustment for age and RA duration in multivariable 

analysis.  

 

 

4.28 PTPN22 POLYMORPHISM AND CO-MORBIDITY 

 

4.28.1 Brief introduction 

 

Since the PTPN22 R620W allele is thought to be a general risk factor for the development 

of human auto-immunity, in the present study we looked at whether this SNP was 

associated with co-morbid conditions in RA, with particular interest in diabetes type 1 and 

2.  

 

4.28.2 PTPN22 polymorphism and co-morbidity 

 

No association of the R620W allele in the PTPN22 gene with any co-morbid condition in 

RA was found, except for an association between TT genotype and increased risk of 

hypercholesterolemia (3/5 (60.0%) vs. 68/417 (16.3%), p = 0.034). Since the frequency of 

TT genotype was extremely low (n = 5), we did not carry out further investigation.  

 

 

4.29 SUMMARY OF FINDINGS FOR 4.26 – 2.28 

 

• PTPN22 R620W polymorphism was not associated with disease activity and 

functional outcome in this population of RA. 
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PART H: RESULTS SUMMARY 

 

 

4.30 SUMMARY OF THE MAJOR FINDINGS 

 

• Cigarette smoking is closely associated with autoantibodies, especially with RF, in 

this RA population. In autoantibody negative patients, it shows significant effect on 

disease outcome.  

 

• An association between polymorphism in the VEGFA gene and serum level of 

VEGF-A is observed. VEGFA polymorphism is not only associated with RA 

activity but also associated with the occurrence of IHD and MI in these patients. A 

strong interaction with smoking is involved in the latter association.   

 

• Polymorphism in the MMP1-3 loci influences serum levels of MMP-1, -2, -3 and -

9, and ratios of MMP-1/TIMP-1, -2, -3 and -4. It also influences RA activity, and 

erosive development especially in earlier disease. 

 

• Polymorphism in the TGFB1 gene influences the occurrence of IHD and MI in RA, 

which may be due to an interaction with cigarette smoking. 
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CHAPTER    5                DISCUSSION 
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5.1 OVERVIEW 

 

The main objective of this study was to identify some of the main determinants of poor 

outcome in RA, both in terms of disease severity and co-morbidity. A number of candidate 

genes were selected based on the findings of earlier studies and their likely importance in 

the immune response, angiogenesis and athereosclerosis, tissue destruction and 

detoxification of ROS. A detailed study of the influence of smoking and its interaction with 

various genetic factors has also been carried out. The results have confirmed and extended 

a number of previous findings from this laboratory, and have identified several, important 

new associations and interactions in relation to RA disease activity, severity and co-

morbidity. The study has highlighted the complexity of factors associated with severity and 

co-morbidity in RA, and has shown the importance of smoking in exacerbating various 

aspects of disease outcome. The discussion is split into a number of sections which follow 

the same general layout as the results section.  

 

5.2 SMOKING, AUTOANTIBODY, SEVERITY AND CO-MORBIDITY IN RA  

 

5.2.1 Smoking characteristics 

 

Much of the data was presented as a comparison between patients who had never smoked 

and those who had ever smoked. Preliminary results showed that there was no significant 

difference in outcome variables (with regard to disease severity and co-morbidity) between 

past and current smokers, so these 2 categories were combined for most analyses. The lack 

of a differential effect of past and current smoking is consistent with previous studies. For 

example, a large longitudinal study found that past and current smokers were associated 
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with similarly elevated risks of RA, in particular seropositive disease, and that a substantial 

effect of past smoking remained up to 20 years after smoking cessation (Costenbader et al, 

2006). Furthermore, in a study evaluating the association of smoking with release of TNF- 

α/soluble tumour necrosis factor receptors (sTNFRs), it was suggested that there was no 

differential effect between past and current smokers, and that the influence of smoking 

appeared to be a chronic response (Glossop et al, 2006). Taking these together, we assumed 

that, in many aspects such as disease susceptibility and autoantibody/cytokines release, the 

effect of smoking on RA was prolonged. On the other hand, there was evidence showing 

that altered levels of some biomarkers (e.g. MMP-2, MMP-3, MMP-9, G-CSF, etc) were 

particularly associated with current smoking (MMP data presented in Section 4.17.3; G-

CSF data not shown).  

 

Ever-smoked status was also considered to be a more appropriate category to investigate 

the relationship with outcome variables related to health conditions. Separate analysis of 

past and current smoking may cause a selection bias since patients associated with poorer 

health conditions, including worse RA and more co-morbidities, were more likely to have 

given up smoking under advice from health professionals.  

 

Nicotine is an important component of cigarette smoke, affecting cytokine production and 

cellular response. Recently, using a rat model of autoimmune arthritis (AA), a study found 

that treatment with nicotine before the onset of AA led to a worse disease, whereas 

interestingly the same treatment starting after the onset of AA suppressed the disease (Yu et 

al, 2011). This observation implied that smoking may have differential impact on disease 

severity depending on its first-exposure time relative to the onset of disease. In the present 

study, the age of RA onset and the age of starting smoking were carefully recorded on each 
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patient. Descriptive statistics demonstrated smoking as an early-exposure factor many 

years prior to the onset of disease. Furthermore, we scanned the whole database and found 

no patient who started smoking after the onset of disease. Thus, the potential confounding 

effect noted by Yu et al did not apply in this study.  

 

It appears that smoking has a stronger influence in males than in females on the 

development of RA. In the most recent meta-analysis, it was indicated that the risk of 

developing RA was about 2-times higher for male smokers than non-smokers, whereas the 

ratio dropped to 1.3-times for females (Sugiyama et al, 2010). Although we were unable to 

directly test this difference in our case-only study, we found an extremely high rate 

(82.5%) of smokers in males, which showed a significant difference compared to that in 

females (58.4%). This was supportive of the conclusion made by Sugiyama et al. RA has 

been inherently more common in females, suggesting that certain female host factors, such 

as female sex hormones, may be involved in the development of RA, and the mechanism 

here does not need the involvement of smoking. For males, however, the occurrence of 

disease relies more upon the smoking-related pathways, since male host factors are thought 

to be protective. The proportion of disease triggered by smoking is higher in men, while 

the higher risk female group is influenced by more risk factors apart from smoking. In 

addition, based on the records of smoking in our RA patients, it seemed that males smoked 

more compared with females, in terms of cigarettes per day, years of smoking 

(insignificant trend) and total pack-years. These quantitative parameters certainly play a 

role, and therefore could be confounding factors in studies where only qualitative status is 

available.  
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5.2.2 Smoking, RF and anti-CCP 

 

Smoking has been associated with the presence of both RF and anti-CCP. In this study, we 

used multivariate logistic regression model to evaluate which association was stronger. Our 

results indicated that smoking was more closely associated with the presence of RF in this 

particular group of RA patients. However, this analysis did not consider the effects from 

certain genetic polymorphisms. In smokers, a correlation between the number of years of 

smoking and the levels of RF was seen, showing a dose response effect. In contrast, the 

linear relationship between pack-years and the levels of RF was less significant. 

Accordingly, the results suggested that smoking duration was more important in relation to 

RF release, compared with smoking intensity. This was comparable with previous studies 

indicating that smoking duration was more important compared with intensity relative to 

the development of RA (Stolt et al, 2003; Karlson et al, 1999). Such correlation was also 

seen with the levels of anti-CCP, but it was considered likely to be due to the strong 

correlation of anti-CCP with RF, since the significance was dramatically reduced after 

adjustment for RF levels. We also showed that the risk of developing RF+ RA influenced 

by smoking was modified by gender, with a stronger association in males (OR: 4.35 in 

males vs. 1.95 in females). Our data was comparable with the latest meta-analysis 

(Sugiyama et al, 2010). The reason for the modification may be associated with a complex 

of other factors which are different between genders, such as hormonal effect and 

metabolic rate. However, interestingly it was found that the overall frequency of RF+ in 

males and females was the same (male 56.5% vs. female 56.9%). 

 

Several genetic factors have been shown to be involved in the association of smoking with 

RF and anti-CCP. According to the literature, it was suggested that HLA-DRB1 SE alleles 
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were involved in the association of smoking with RF, demonstrating an interaction effect 

(Mattey et al, 2002; Padyukov et al, 2004). However, more recent studies indicated that 

smoking was primarily associated with anti-CCP in the presence of HLA-DRB1 SE alleles, 

and that PTPN22 gene may be also involved (Klareskog et al, 2006; Linn-Rasker et al, 

2006; Kallberg et al, 2007). Most recently, a report which recruited 5020 RA patients from 

6 centres across the UK summarised that both HLA-DRB1 SE and smoking were 

independently associated with RF and anti-CCP, and that interaction between smoking and 

HLA-DRB1 SE may occur resulting in anti-CCP+ RA (Morgan et al, 2010). In the present 

study, we were unable to test such proposed interaction, due to lack of HLA-DRB1 

genotyping. We investigated the potential interaction with PTPN22, but obtained negative 

results. However, the frequency of homozygosity for the PTPN22 T allele was very low 

(the major risk genotype), so a larger population size would be required to provide 

sufficient power to test this. 

 

We successfully confirmed another gene-environmental interaction between smoking and 

GSTM1-null genotype in relation to the production of RF (Mattey et al, 2002). Given the 

known role of the GSTM1 enzyme in detoxifying chemicals in cigarette smoke (Rebbeck 

1997; Seidergard et al, 1990; Chenevix-Trench et al, 1995), it has been speculated that lack 

of such enzyme (GSTM1-null type) in smokers may promote increased RF production 

through a failure to detoxify smoke-derived chemicals (and/or their byproducts) which 

have the potential to damage IgG (Mattey et al, 2002). Previous studies have suggested that 

free radical-mediated modification of IgG may stimulate the formation of immune 

complexes with RF antibody, thereby promoting tissue damage during rheumatoid 

inflammation (Lunec et al, 1988; Swaak et al, 1989). 
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5.2.3 RF, anti-CCP and RA clinical measures 

 

The associations of RF and anti-CCP with a more severe disease course have been 

described before. Previous studies showed that both autoantibodies were associated with 

increased disease activity and worse joint radiographic progression (Berglin et al, 2006; 

Lindqvist et al, 2005; van der Helm-van Mil et al 2005; Miriovsky et al, 2010). In 

particular, RF was a better predictor of the extra-articular manifestations of RA, whereas 

anti-CCP had superiority in predicting an erosive course. However, associations with the 

disease severity measures which include an element of functional outcome have been less 

studied. In the present study, functional outcome was assessed using the validated 

measures including MJS and HAQ, and the associations were assessed by multivariate 

regression models containing both autoantibodies as independent variables in order to 

remove the confounding effects between them. Interestingly, we could not find an 

association of anti-CCP with functional outcome measures in this group of patients, but we 

confirmed the association with erosive disease. RF was significantly associated with MJS 

and HAQ as well as markers of disease activity and nodular disease. Our results suggested 

that the presence of RF and anti-CCP may reflect different disease processes/pathways 

which have independent effects on disease outcome. A combination of these 2 may 

increase the ability to predict the long term outcome in RA.  

 

RF includes several isotypes, while ACPA contains many subsets. These different subtypes 

may have individual roles in influencing disease outcome. However, in this study, they 

were not individually tested. Our results were based on diagnostic assays detecting IgM RF 

and anti-CCP2. 
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5.2.4 Smoking and RA clinical measures 

 

There was a large proportion of RA patients characterized by autoantibody positivity (RF+ 

57.6%; anti-CCP+ 75.5%). Since these autoantibodies had great impact on disease severity, 

any smaller effect (e.g. influence from smoking) could therefore be masked in the whole 

population. However, using analysis stratified by RF/anti-CCP status, we found evidence 

of effect of smoking on disease severity (HAQ and erosive course) in autoantibody 

negative patients who displayed less severity compared to autoantibody positive patients. 

In contrast, no effect was observed in autoantibody positive subjects. This suggested that 

smoking may play differential roles in different subsets of RA. The total effect on RA 

outcome attributed to cigarette smoking was considerable, since it contributed to the 

production of autoantibodies prior to the onset and/or in the early stage of disease, and in 

those without autoantibodies it showed a direct impact leading to a worse outcome. A 

radiographic damage measure was not available, thus we were unable to assess its 

relationship with smoking, in particular among seronegative patients. We were therefore 

unable to compare our data with recent studies indicating that there was no obvious 

association between smoking and radiological progression and structural damage restricted 

to the same serological group (Manfredsdttir et al, 2006; Westhoff et al, 2008; Finckh et al, 

2007). The radiographic score does not fully reflect the biological outcome of the disease, 

being primarily a measure of cartilage and bone damage and not of damage to other tissue 

and organs. MJS was not associated with smoking in this study, which may be due to it 

also being a measure concentrating on the joints. Smoking may be more associated with 

measures that describe an overall health and functional status in RA. 

 

 



 

 277

5.2.5 Smoking and co-morbidity 

 

For the first time, the current thesis described interactions of smoking with polymorphisms 

in the VEGFA and TGFB1 genes in relation to IHD/MI in RA. A detailed discussion is 

provided in Sections 5.3 and 5.6 respectively. For other co-morbidities recorded, there was 

no significant association with smoking. However, this may be due to the low incidence of 

the many conditions and the moderate effect from smoking. There was a trend that patients 

who had ever smoked had more co-morbid conditions, compared with those who had never 

smoked.  

 

 

5.3 GSTM1, T1 POLYMORPHISM, SEVERITY AND CO-MORBIDITY IN RA  

 

5.3.1 Genotypic characteristics 

 

The frequency of GSTM1 and GSTT1 genotypes in our population was comparable with 

the data in other Caucasian studies (Mikuls et al, 2010; Keenan et al, 2010; Mattey et al, 

2002; Ghelani et al, 2010; Criswell et al, 2006). According to the literature, in Caucasian 

populations, GST genes are not likely to be significant susceptibility genes. However, with 

the combination of smoking (in particular heavy smoking), both GSTM1 and T1 

polymorphisms were shown to be associated with the risk for RA (Criswell et al, 2006; 

Keenan et al, 2010). In eastern Asian populations, mutations in the GSTM1 gene may have 

a stronger effect, since there are 2 studies independently indicating that the GSTM1-null 

genotype is associated with RA susceptibility without seeking an interaction with smoking 

(Morinobu et al, 2006; Yun et al, 2005). 
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5.3.2 GSTM1, T1 genotype and RA clinical measures 

 

We confirmed a previous finding that the association of smoking with RF occurred only in 

GSTM1-null patients, suggesting a gene-environment interaction relative to RF production 

(as discussed). In the original report, it was also indicated that the combination of GSTM1-

null genotype with smoking was associated with more severe RA measured by Larsen 

score and HAQ score (Mattey et al, 2002). In the present study, Larsen score was not 

available. Results based on HAQ, however, did not show a significant result in the whole 

population. Since the population used in the previous study was a female group, we also 

carried out an analysis using the female patients only. Interestingly, it was found that 

females who had ever smoked and were carrying GSTM1-null were associated with the 

highest HAQ, compared with the remaining combinations (Appendix 8.6). We therefore 

suggest that the effect of smoking-GSTM1-null interaction may be more influential in 

females.  

 

Apart from an interaction with smoking, GSTM1 was found to show interaction with the 

major susceptibility gene, HLA-DRB1, in terms of the ACPA status (Miluls et al, 2010). 

However, we did not see any association of GSTM1-null genotype with anti-CCP+ in this 

population, although HLA-DRB1 genotyping was not available to assess any interaction. 

 

For the first time, we found an association of GSTM1-null genotype with erosive disease, 

restricted to RF+ patients. Similar relationships were also found when patients were 

stratified by anti-CCP and ever-smoked status respectively. Multiple logistic regression 

analysis suggested that RF+ was not associated with erosive disease in patients with 

GSTM1-null genotype after adjustment for anti-CCP+ and ever-smoking. In the same 
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model, the results indicated that ever-smoking and anti-CCP+ were both independently 

associated with erosive disease in patients with GSTM1-null genotype. However, neither 

association was seen in patients with GSTM1-expressing genotype. In the present study 

therefore, we have added a novel contribution to the literature that the association of anti-

CCP+ with erosive disease may, at least partly, depend on the non-functional 

polymorphism of the GSTM1 gene. The mechanism of such interaction is unknown and 

replication of such a relationship in another independent cohort is required.  

 

A recent report suggested that GSTT1-null genotype was associated with higher disease 

activity, and such association was enhanced by the combination with smoking (Bohanec 

Grabar et al, 2009). However, we did not find any association of GSTT1 polymorphism 

with RA measures, either before or after the combination with smoking. 

 

5.3.3 GSTM1, T1 genotype and co-morbidity 

 

Although in the general population, GSTM1-null and GSTT1-null have been proposed as 

risk factors for the development of coronary artery disease, little has been done in RA 

subjects. We looked at the relationship between GSTM1-null/T1-null genotype and 

IHD/MI, and considered any interaction with smoking. No association or trend was found. 

However, this may be due to the relatively small number of patients with IHD/MI in this 

population. Since these polymorphisms have also been associated with hypertension in the 

general population, we also investigated this in our RA population. Our results suggest that 

GSTM1-null or T1-null is not associated with hypertension in RA.   
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5.4 VEGFA POLYMORPHISM, SERUM LEVEL OF VEGF-A, SEVERITY AND 

CO-MORBIDITY IN RA  

 

5.4.1 VEGFA polymorphism 

 

In the present study, we included 4 of the most common SNPs in the VEGFA gene which 

were -2578, -460, +405 and +936. VEGFA-2578 has a novel insertion/deletion of 18 

nucleotides with the sequence 5’-TCCCACTCTTCCCACAGG-3’ (accession number 

AF098331) starting from -2549 relative to the translation start site (Brogan et al, 1999). All 

these polymorphisms may possibly influence the regulation of gene expression at the 

transcriptional and/or translational level. In the promoter region, there is another common 

polymorphism named VEGFA-1154 (after its position relative to the translation start site, 

rs1570360). However, we did not include it in this study since it is close to and is flanked 

by VEGFA-460 and +405. Also, we did not include the polymorphisms within the coding 

region of the gene, since all of the common ones are intronic, and therefore are not likely 

to have a large impact on alteration of protein structure/activity (Hapmap August 2010 

phase II+III database). 

 

A high degree of LD was detected across the 5’-flanking region marked by VEGFA-2578, -

460 and +405 in our population, which was in close agreement with previous observations 

in other populations (Yang et al, 2010; Attar et al, 2010). The 3’-flanking region, marked 

by VEGFA+936, was not linked to the 5’-flanking region.  

 

Allelic and/or genotypic frequencies of VEGFA-2578, -460 and +405 in healthy volunteers 

of UK origin from a nearby region (Manchester) were reported before (Brogan et al, 1999; 
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Watson et al, 2000). We compared the figures to those in our RA population and found no 

significant difference, which implied that polymorphisms in the promoter region and the 

5’-UTR are not associated with RA susceptibility in UK population. It was consistent with 

the data in 2 previous studies based on a Korean and a Spanish population respectively 

(Han et al, 2004; Rueda et al, 2005).  

 

In the Korean study, it was indicated that the 3’-UTR SNP, VEGFA+936, was associated 

with susceptibility to RA (Han et al, 2004). We were unable to test this on our UK 

population. In contrast, recent large GWAS revealed no association between SNPs within 

the VEGFA gene and susceptibility to RA, either in Caucasians or eastern Asians. 

 

5.4.2 Serum level of VEGF-A and other angiogenic factors 

 

The levels of VEGF-A in the circulation are primarily dependent on the cellular release of 

VEGF-A which then enters the peripheral blood. Circulating VEGF-A binds to VEGF 

Receptors (mainly VEGFR2) on vascular endothelial cells, triggering a tyrosine kinase 

pathway leading to angiogenesis. Since this action takes place in the blood vessel, the 

levels in the circulation may be more representative than those restricted to particular cell 

type. In this study, we investigated the concentration of VEGF-A in serum. To determine 

the levels, we used the Luminex suspension array system which has higher sensitivity 

compared to older methods for quantitative detection (e.g. ELISA).  

 

It has been suggested that angiogenesis is more active during the early stage of RA 

compared to that in the established disease since the expansion of abnormal tissue mainly 

occurs in the initial pathologic progress and therefore requires new vessels to deliver 
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oxygen, nutrients, different kinds of molecules (e.g. growth factors, cytokines, etc) and 

blood-derived inflammatory cells (e.g. macrophage, B, CD4+ T lymphocytes, etc). In the 

present study, we did not find an association of VEGF-A levels with RA duration, 

suggesting that the above difference was not directly affected by the levels of VEGF-A in 

the circulation.  However, angiogenesis is a complex mechanism that involves several 

pathways and is also dependent on other angiogenic factors and the local micro-

environment.  

 

The serum levels of VEGF-A have been included as a marker in RA studies. However, 

there have been few studies concerning the serum levels of other angiogenic proteins. 

Furthermore, there has been no research on simultaneous measurement of the group of 

angiogenic proteins, with evaluation of their relationships. In the present study, we also 

measured other angiogenic factors simultaneously. Interestingly, it was found that PDGF-

BB was negatively correlated with RA duration, with a very strong relationship (r = -0.27, 

p < 0.0001, adjusted for sex and age). In addition, angiopoietin-2 and leptin also had 

negative relationships with RA duration (r = -0.12, p = 0.054 and r = -0.14, p = 0.079 

respectively, adjusted for sex and age), although they were not significant. These negative 

relationships suggested that the levels of PDGF-BB, angiopoietin-2 and leptin were the 

highest in the early stage of RA, and therefore suggested that these factors, in particular 

PDGF-BB, may be responsible for the higher activity of angiogenesis in earlier RA. 

PDGF-BB is derived from platelets. We observed a very strong association of platelet 

counts with PDGF-BB levels (p < 0.0001, adjusted for age and sex) in our patients. 

Further, we found that platelet counts also had a negative relationship with RA duration (p 

= 0.054, adjusted for age and sex) although it was not significant. These results suggest 

that platelets may be important in early disease. 
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Angiogenic factors, which were measured in this study, were highly correlated with each 

other, although there were exceptions. It appeared that these factors were all involved in a 

single pathway or pathways depending on each other. However, several independent 

pathways for individual angiogenic factors have already been determined. Abnormality in a 

certain pathway may lead to increased release of a particular angiogenic factor, which may 

induce angiogenesis and therefore play a role in promoting RA. However, the situation in 

which several abnormal pathways occur at the same time and in the same direction is rare. 

Our observation may be better explained by RA-induced hypoxia stimulating several 

angiogenesis pathways at the same time, leading to strong correlations between angiogenic 

factors. Thus, it is more likely that angiogenesis is a consequence of the disease rather than 

a cause/promoter.  

 

5.4.3 VEGFA polymorphism and serum VEGF-A level 

 

The regulatory region of the VEGFA gene contains a number of transcription factor 

binding sites, and the transcriptional regulation of this gene appears to be extremely 

complex, with levels of control at the transcriptional and translational level (Stein et al, 

1998; Akiri et al, 1998). Therefore, polymorphisms within the regulatory region may lead 

to differences in VEGF-A expression between individuals and could potentially contribute 

to a variety of pathological processes where VEGF-A is important.  

 

According to the literature based on non-RA subjects, several common SNPs including 

VEGFA-2578, -460, +405 and +936 have been associated with differential expression of 

VEGF-A protein (Renner et al, 2000; Awata et al, 2002; Stevens et al, 2003; Koukourakis 

et al, 2004; Watson et al, 2000; Prior et al, 2006; Petrovic et al, 2008; Steffensen et al, 
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2010; Chen et al, 2011; Zhai et al, 2007). In the present study, for the first time in a RA 

population, we showed that VEGFA-2578 SNP was associated with the serum levels of 

VEGF-A, with AA associated with the lowest levels. Although haplotype analysis did not 

increase the significance of association, it was suggested that patients carrying A-C-G (-

2578/-460/+405) tended to have lower VEGF-A levels. Our finding thus was in agreement 

with the majority of previous studies which included polymorphisms within the 5’-flanking 

region of the VEGFA gene (Petrovic et al, 2008; Steffensen et al, 2010; Watson et al, 2000; 

Prior et al, 2006; Awata et al, 2002; Stevens et al, 2003; Zhai et al, 2007). However, there 

were 2 reports demonstrating an opposite trend (Koukourakis et al, 2004; Chen et al, 

2011). For the 3’-flanking SNP, our data was in disagreement with the reports which 

indicated that VEGFA+936 was associated with the levels of VEGF-A (Renner et al, 2000; 

Zhai et al, 2007). However, it is acknowledged that, in this SNP, the minor/major allele 

proportion was not ideal, with T allele only being 15.7%. To give a better evaluation, a 

larger population would be required.   

 

The inconsistency between studies may be due to the fact that the studied subjects had 

different conditions. It is known that VEGF-A expression is influenced by a variety of 

growth factors, cytokines, hormones and hypoxia (Ferrara et al, 2003; Shweiki et al, 1992; 

Liu et al, 1995) apart from genetic regulation. In vitro, Watson et al found that 

VEGFA+405 GG genotype was associated with the highest VEGF-A protein production in 

lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMC) but not 

in cobalt-stimulated cells (Watson et al, 2000), suggesting that the relation between 

VEGFA 5’-flanking variants and VEGF-A expression is conditional. In vivo, interestingly, 

evidence of association between VEGFA 5’-flanking polymorphisms and VEGF-A levels 

was only obtained in diseases associated with conditions such as inflammation and hypoxia 
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(Stevens et al, 2003; Koukourakis et al, 2004; Prior et al, 2006; Petrovic et al, 2008; 

Steffensen et al, 2010; Chen et al, 2011; Zhai et al, 2007), and no such association was 

observed in healthy individuals (Lambrechts et al 2003, Prior et al, 2006). These findings 

raise the possibility that conditions that arise during the disease state (e.g. inflammation, 

hypoxia) may have a differential effect on gene expression of particular VEGFA alleles.  

 

In the present study, we found evidence that the association of VEGFA-2578 with serum 

levels of VEGF-A may be depend upon inflammatory status (stratified by CRP status, < 10 

vs. ≥ 10 mg/l). In patients with acute myocardial infarction (AMI), a study focusing on the 

time course of release of VEGF-A found that the serum levels of CRP peaked on day 3 

after admission and the serum VEGF-A peaked on day 7. The CRP on day 3 was correlated 

with the VEGF-A on day 7 (Soeki et al, 2000). This delay may imply a responsive 

expression of VEGF-A to inflammation. CRP is an inflammation marker in blood, 

reflecting the strength of the underlying inflammation. It is influenced by few known 

factors (apart from liver failure). Although < 1 mg/l is ideal, clinical diagnosis usually 

identifies a level < 10 mg/l as normal and a level ≥ 10 mg/l as presentation of obvious 

inflammation. We saw no difference in distribution of VEGFA-2578 genotypes between 2 

groups stratified by CRP status, indicating no association of VEGFA-2578 with 

inflammation. These 2 factors thus were independent of each other, but interestingly they 

seemed to play roles together as a combination. It was seen that serum VEGF-A was 

increased only in patients carrying the VEGFA-2578 CC genotype and having obvious 

inflammation. The correlation analysis further demonstrated that the correlations of serum 

VEGF-A with inflammatory markers (CRP and ESR levels) only occurred in subjects 

carrying VEGFA-2578 CC, implying a genotype/allele specific relationship. The promoter 

sequence containing the C allele at position -2578 may be more sensitive to inflammation 
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(or related conditions), and thus may up-regulate VEGF-A expression in response to 

increased inflammation (or related conditions). The VEGFA-2578 C allele is associated 

with a deletion of 18 nucleotides. Although it has been established that single-base-pair 

changes within the regulatory DNA sequences of a gene can significantly alter the level of 

its expression, it is more likely that the 18 nucleotides insertion/deletion plays a functional 

role. It would be of great interest to investigate the functional role of the 18 nucleotides 

insertion/delection in response to inflammation (or related conditions). In addition, other 

SNPs linked with VEGFA-2578 may also be involved, including the rare ones that have 

not been studied.  

 

It has been known that an element in the 5’-flanking region of the VEGFA gene is sensitive 

to hypoxia (Minchenko et al, 1994). Further study indicated that a 28 bp element within the 

human VEGFA promoter, believed to contain a consensus binding site for HIF-1, was 

necessary and sufficient to increase transcription of a CAT reporter gene in endothelial 

cells cultured under hypoxic conditions (Liu et al, 1995). Although we were unable to test 

the effect of the VEGFA-2578 polymorphism (or other related/linked polymorphisms) on 

VEGF-A expression under hypoxic conditions, we suggest that increased inflammation is 

somehow related to elevated hypoxia since swelling caused by inflammation increases the 

distance between cells/tissues and therefore the burden of oxygen delivery. Abnormal 

activation or deregulation of hypoxia-induced transcriptional pathways may contribute to 

the pathogenesis of conditions including inflammation, vascular disease and cancer 

(Melillo et al, 2004). It seems that there is a regulatory loop between hypoxia and 

inflammation.  
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Our results were based on the analysis stratified by CRP status. However, CRP may not be 

directly involved itself. In RA, VEGF-A release has been known to be positively associated 

with several important pro-inflammatory cytokines including TNF-α and IL-1α (Klimiuk et 

al, 2004). Whether these cytokines are playing the primary roles in signalling remains to be 

clarified. 

 

5.4.4 Serum VEGF-A, serum angiopoietin-2 and RA clinical measures 

 

Both serum and synovial levels of VEGF-A have been shown to be increased in patients 

with RA, compared with osteoarthritis patients or healthy controls (Lee et al, 2001; 

Ozgonenel et al, 2010). Several studies have demonstrated associations between serum 

VEGF-A levels, and inflammatory markers and disease activity (Lee et al, 2001; 

Ozgonenel et al, 2010; Kurosaka et al, 2010; Klimiuk et al, 2004). In the present study, the 

serum VEGF-A was correlated with inflammatory markers including CRP and ESR. 

Specifically, such correlations were restricted to patients carrying VEGFA-2578 CC 

genotype, which suggested a genotype/allele specific relationship responding to 

inflammation (as discussed). This is a novel finding and implies a potential mechanism 

which may be important in many disorders involving angiogenesis and inflammation.  

 

Serum VEGF-A was correlated with the major destructive enzymes in the MMP family 

including MMP-1, -3, -8 and -9. In particular, MMP-1 and -3 are believed to play 

significant roles in joint destruction in RA. The correlation with MMP-3 has been 

described (Kurosaka et al, 2010), but the correlations with serum MMP-1, MMP-8 and 

MMP-9 have not been reported.  
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We confirmed the previous finding that serum VEGF-A was associated with disease 

activity (baseline data), and further indicated that it was also associated with functional 

outcome (measured by HAQ and MJS, baseline data). It has been shown that serum levels 

of VEGF-A at presentation could predict radiographic damage over the subsequent year in 

early RA (Ballara et al, 2001; Taylor 2005). It would be also interesting to see whether 

serum VEGF-A at baseline could predict disease activity over time and thus could predict a 

functional outcome for a longer period of time. Our initial results (based on 296 patients) 

showed that serum VEGF-A was associated with the mean time-averaged DAS28 over 24 

months (baseline, 12th month and 24th month, p = 0.034, adjusted for age, sex and RA 

duration), and was associated with HAQ (p = 0.0040, adjusted for age, sex and RA 

duration) and MJS (p = 0.0059, adjusted for age, sex and RA duration) at the 24th month. 

 

The patients recruited to this study were being followed over a 5-year period, so future 

analysis will be able to better assess the long-term predictive role of serum VEGF-A. We 

were unable to assess the relationship between serum VEGF-A and joint destruction, since 

the measures describing radiographic damage were not available. However, we considered 

that severity indices measuring overall health and functional status were more appropriate 

than those restricted to joint changes, in terms of quality of life of patients.  

 

In addition to serum VEGF-A, several other angiogenic factors, including angiopoietin-2, 

HGF, C-CSF, IL-8, PDGF-BB and PECAM-1, were found to be associated with one or 

more disease measures, adjusted for age, sex, RA duration and serum VEGF-A (data not 

shown). In particular, serum levels of angiopoietin-2 showed relationships with all the 

disease indices including ESR (p = 0.050), CRP (p = 0.064), DAS28 (p = 0.0053), MJS (p 

= 0.039) and HAQ (p = 0.017), although for CRP it was not significant. In RA, no study 
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concerning the levels of serum angiopoietin-2 has been reported, except for one that 

indicated a correlation with CRP level (Kurosaka et al, 2010). In this study, we added the 

association with disease activity and functional outcome, and therefore provided further 

evidence showing that angiopoietin-2 appeared to also have a particular clinical 

significance in RA. Furthermore, serum levels of this protein at baseline showed 

associations with mean time-averaged DAS28 over 24 months, MJS at 24th month and 

HAQ at 24th month, suggesting a predictive role in disease severity (data not shown). 

Further work is required to confirm these relationships.  

 

5.4.5 VEGFA, MMP polymorphism and age at onset of RA 

 

Genetic polymorphisms in the IL8 gene (Emonts et al, 2011), and in the PTPN22 gene (the 

R620W SNP, Kokkonen et al, 2007) have been associated with age at onset of RA. In 

females only, a similar association was found with the variant in the estrogen receptor (ER) 

gene (Ushiyama et al, 1999). Polymorphism in the tumour necrosis factor ligand 

superfamily member 11 (TNFSF11)  gene has also been found to be associated with age at 

onset of RA among 3 independent cohorts, although the association was restricted to 

seropositive patients (Tan et al, 2010). In an earlier report from the same research group, it 

was suggested that the above association was possibly due to an interaction with HLA-

DRB1 (Wu et al, 2004). In the present study, we observed another 2 polymorphisms 

(VEGFA+936 and MMP1-3 intergenic rs495366) that were associated with age at onset of 

RA in Caucasians. The T allele at VEGFA+936 and the AA genotype at rs495366 were 

associated with earlier age at onset. The mechanism behind these associations remains to 

be clarified. VEGFA+936 has been associated with RA susceptibility in a Korean case-

control study (Han et al, 2004). In a GWAS, rs495366 has been shown as the strongest 
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genetic marker for serum levels of MMP-1 in healthy subjects (Cheng et al, 2009). In 

disagreement with Kokkonen et al 2007, we did not find any association between PTPN22 

R620W and age at onset of RA.  

 

In addition, we also showed that sex and smoking status had an effect. Interestingly, our 

result showed that ever-smoking is associated with a later onset of disease, in line with a 

previous study by Hutchinson et al. In their report, the results showed that current-smoking 

was associated with a later onset of disease in sporadic patients with RA, but not in 

familial patients (Hutchinson et al, 2001). Diaz et al has shown that the presence of anti-

CCP is associated with earlier age at onset of RA (Diaz et al, 2011). Our preliminary data 

showed similar results (anti-CCP+ vs. anti-CCP-, 48.3 ± 12.3 vs. 52.7 ± 14.8, p < 0.0001). 

However, the development of anti-CCP antibodies in some patients may have occurred 

after the onset of disease. Thus, we further adjusted for RA duration, after which the 

association disappeared.  

 

5.4.6 VEGFA polymorphism and smoking addiction 

 

In 2 independent cohorts of RA, we observed an interesting association between a higher 

proportion of smokers and the G allele of VEGFA+405. This suggests that genetic variants 

in the VEGFA gene may be somehow related to tobacco addiction. However, our finding 

was only seen in populations with RA, with no data being available on the general 

population. This observation might be explained by smoking and VEGFA+405 G being 

risk factors for the development of RA. There is no doubt about smoking, but the G allele 

of VEGFA+405 has never been reported as a risk factor. However, it is possible that only 
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the combination of smoking with the VEGFA+405 G allele provides a risk for RA. 

Comparison with a control population is needed to test this.  

 

Recently, a nicotine receptor gene called neuronal acetylcholine receptor subunit alpha-5 

(CHRNA5) was found to be associated with tobacco addiction (Weiss et al, 2008). This 

gene is located on chromosome 15, whereas the VEGFA gene is located on chromosome 6. 

Thus, our observation cannot be explained by linkage between the CHRNA5 and the 

VEGFA genes. However, it is possible that VEGFA+405 SNP is linked with some gene 

which has an impact on tobacco addiction. In this regard, Füst et al found a highly 

significant association between ever-smoking and a specific haplotype (RCCX modules 

and TNFA promoter SNPs) containing genes within the HLA class III region on 

chromosome 6 (Füst et al, 2004). Otherwise, the VEGFA gene could be a novel candidate 

gene associated with tobacco addiction.  

 

5.4.7 VEGFA polymorphism and RF production 

 

No studies concerning the relationship between VEGFA polymorphism and the production 

of RF have been reported. In the present study, we found that the G allele of VEGFA+405 

may play a protective role against RF production in patients who had never smoked, 

whereas this effect was largely reduced in those who had ever smoked. It is possible that 

smoking disturbs the normal regulatory pathway. It was noted that in the absence of 

smoking, the difference in RF+ frequency between patients carrying at least 1 copy of the 

G allele and those carrying the CC genotype was dramatic (39.7% vs. 73.7%). We thus 

hypothesized that the VEGFA gene was also involved in inflammation and/or auto-

immunity in relation to RF release. Since the majority of RA patients were smokers 
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(66.6%) and smoking reduced the effect significantly, this relationship would be easily 

masked in the whole population. Furthermore, the finding that the G allele of VEGFA+405 

was associated with higher frequency of smokers (as discussed above) would also reduce 

the impact of this relationship in the whole population.  

 

5.4.8 VEGFA polymorphism and RA clinical measures 

 

In the present study, we described a relationship between VEGFA polymorphism and 

disease activity in RA, which has not been reported previously. The results indicated that 

the VEGFA-2578 polymorphism was significantly associated with disease activity 

measured by DAS28, with the AA genotype associated with the lowest score. Other 

polymorphisms within the 5’-flanking region (-460 and +405) also showed relationships 

(insignificant trends), which may be due to the linkage with the -2578 SNP, and therefore 

may not have a direct functional effect. Alternatively, a number of polymorphisms within 

the promoter and 5’-UTR may play roles based on the complexity of transcriptional 

regulation of the VEGFA gene (Stein et al, 1998; Akiri et al, 1998). Haplotype analysis 

indicated that the most frequent haplotype (48.3%), A-C-G (-2578/-460/+405), was 

associated with lower disease activity. In these patients, we showed that the AA agenotype 

of VEGFA-2578 (or the A-C-G haplotype) was associated with lower VEGF-A in the 

circulation. Thus, the protective role provided by the AA genotype of VEGFA-2578 (or the 

A-C-G haplotype) may be due to the impaired release of VEGF-A protein. Interestingly, a 

multivariate multiple regression containing VEGFA-2578 SNP and serum levels of VEGF-

A as independent variables together demonstrated that their associations with disease 

activity were independent of each other. This implied that polymorphism in the 5’-flanking 

region of the VEGFA gene may play some additional role leading to a differential disease 
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activity apart from its role in regulation of VEGF-A expression. However, this observation 

may possibly be explained by the regulatory effect being non-linear. 

 

More interestingly, we further determined that the above association occurred only in 

patients who had never smoked, whereas in those who had ever smoked the DAS28 was no 

different amongst AA, AC and CC at VEGFA-2578. We therefore speculate that the AA 

genotype at -2578 has a protective role against high disease activity under normal 

conditions (absence of smoking), while in the abnormal environment (presence of 

smoking) such a protective mechanism is blocked. In non-smokers only, significant 

association of the AA genotype with DAS28 over a 2-year period was found, independent 

of serum levels of VEGF-A, MMP-1 and -3. Thus, the VEGFA-2578 polymorphism may 

be useful as a marker to predict future overall disease activity in non-smokers. In addition, 

it was interesting to see that the associations of serum levels of VEGF-A, MMP-1 and -3 

with disease activity were much more significant in patients who had never smoked, 

compared to those who had ever smoked. Again, the reason behind these observations is 

not clear.   

 

In the present study we also showed that VEGFA-2578 SNP had a relationship with HAQ, 

although it was insignificant after adjustment for RA duration. In haplotype analysis, 

patients with A-C-G (-2578/-460/+405) tended to have lower HAQ (without adjustment). 

Our results thus demonstrated some initial but interesting observations that polymorphism 

in the VEGFA gene may influence RA severity including disease activity and functional 

outcome.  
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5.4.9 VEGFA polymorphism, smoking and IHD/MI 

 

We found that SNPs in the VEGFA promoter region (-2578 and -460) were associated with 

an increased risk of IHD, and particularly MI, in patients with RA. Data also suggested that 

another SNP (+936), in the 3’-UTR of the VEGFA gene, was not involved in this 

association. The VEGFA-2578 polymorphism showed the strongest association, suggesting 

that it may provide the primary association where the A allele increased the risk and/or the 

C allele played a protective role. These results were consistent with the findings of Howell 

et al, who showed that the -2578 AA genotype was a risk factor, while the CC genotype 

was protective in the development of atherosclerosis (Howell et al, 2005). Similarly, an 

association between the -2578 AA genotype and the severity of coronary artery disease has 

been shown in a Brazilian population (Biselli et al, 2007). It has been shown in this study 

that the -2578 CC genotype is associated with higher levels of serum VEGF-A compared to 

the AA/AC genotypes, which adds weight to the suggestion that this genotype is associated 

with a protective effect due to greater production of VEGF-A (Howell et al, 2005). 

Comparison of the serum levels of VEGF-A between patients with and without IHD/MI 

indicated that there was no significant difference, although there was a slight reduction in 

MI patients. However, it is understandable that serum levels at presentation may be not 

associated with previous cardiac events. A detailed time course of VEGF-A release may 

help to better evaluate the relationship between VEGF-A levels and cardiac events. In 

addition, treatment for IHD/MI may also have an effect.  

 

As mentioned before, the VEGFA-2578 has an unusual insertion/delection of 18 

nucleotides, with the A allele associated with the insertion. This insertion could be 

responsible for this increased risk. Thus, it would be of great interest to investigate the 
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functional importance of this insertion further. Again, a number of polymorphisms within 

the 5’-flanking region may be involved including -460, +405 and other polymorphisms that 

have not been studied.  

 

We further observed a strong interaction between VEGFA SNPs (-2578 and -460) and 

smoking relative to IHD and especially MI. Our data suggested that the strongest 

interaction was between the VEGFA-2578 A allele and smoking, and it was particularly 

noteworthy that the risk of IHD or MI was increased only in patients carrying this 

combination. Carriage of 1 factor (either smoking or the -2578 A allele) only was not 

sufficient to provide an increased risk. Further, > 60% of the “excess” risk for IHD and > 

75% of the “excess” risk for MI were directly attributable to the gene-smoking interaction. 

In patients carrying the VEGFA-2578 A allele, the amount of smoking quantified in pack-

years demonstrated a dose effect with regard to the occurrence of IHD and MI. In contrast, 

in the absence of the -2578 A allele there was no such relationship between smoking and 

IHD and MI, suggesting a possible protective effect of the -2578 CC genotype.  

 

The kind of interaction demonstrated here has been described before in relation to the 

increased risk of esophageal adenocarcinoma (Zhai et al, 2008). There is evidence that the 

combination of VEGF-A and certain chemical constituents in cigarette smoke may be 

important in particular biological pathways related to angiogenesis, atherosclerosis and 

inflammation. Studies on nicotine have demonstrated that it can induce VEGF-A 

expression via several pathways involving nicotinic acetylcholine receptors (Egleton et al, 

2009; Martin et al, 2009), αvβ3 integrin (Martin et al, 2009) and angiotensin-converting 

enzyme (Saijonmaa et al, 2005). However, investigation of nicotine only is not sufficient to 

understand the pathogenic effect of cigarette smoking, since other components certainly 
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play a role. In contrast, cigarette smoke exposure, overall, has been shown to inhibit 

VEGF-A expression through decreased expression of hypoxia-inducible factor-1α (HIF-

1α) (Michaud et al, 2003). In CVD, smoking has a causal role in the development of 

atherosclerotic changes in the various vascular bed and effects on acute thrombosis of the 

narrowed vascular lumen (Burns et al, 2003). Meanwhile, VEGF-A is involved in the 

repair of damaged vessels by acting on vascular endothelial cells and promoting 

proliferation and migration of endothelial cells, and lumen formation (Neufeld et al, 1999).  

Thus, smoking not only directly damages vessels but also has an effect resulting in 

impaired expression of VEGF-A which inhibits this protein from repairing damaged 

vessels. Furthermore, it has been hypothesized that the ability of the coronary artery 

collateral circulation to protect against myocardial ischemia is strongly associated with the 

ability to induce VEGF-A in response to hypoxia (Schultz et al, 1999). As mentioned, 

Michaud et al indicated that smoking could reduce the expression of HIF-1α (Michaud et 

al, 2003) and therefore weakened the ability to induce VEGF-A, under hypoxic condition.  

 

Studies focusing on the VEGFA gene have indicated that an element in the promoter region 

of the gene is important in relation to hypoxia response (Liu et al, 1995; Pages et al, 2005). 

Therefore, variation in DNA sequence could potentially alter the responsive ability. 

Recently, it has been demonstrated that haplotypes that include the -2578 and +405 SNPs 

influence VEGF-A expression in human myoblasts under hypoxic condition (Prior et al, 

2006). In the present study, although we were unable to test the effect of hypoxia, we 

observed that the -2578 polymorphism may show differential expression of VEGF-A in 

response to inflammation. It has also been discussed in this thesis earlier that there may be 

a regulatory loop between inflammation and hypoxia. Taken together, we speculate that the 
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association of IHD/MI with the VEGFA gene-smoking interaction in our study might be 

related to a mechanism involving differential response to hypoxia. 

 

The associations of VEGFA polymorphisms with IHD and MI were examined only in an 

RA population. We do not know therefore whether similar associations exist in the general 

population or whether this is somehow related to the disease process in RA. If the 

mechanism behind this requires conditions such as hypoxia and inflammation, the kind of 

association would be only easily seen in populations with those conditions and the effect 

would be expected to be weaker in the normal population. Several publications have 

suggested an association of VEGFA polymorphisms with certain cardiovascular disorders 

(Howell et al, 2005; van der Meer et al, 2005; Ripa et al, 2009; Kangas-Kontio et al, 2009; 

Petrovic et al, 2007; Biselli et al, 2008; Petrovic 2009; Vannay et al, 2006), but as far as we 

aware none have looked at interaction between smoking and VEGFA polymorphisms. 

Smoking is a risk factor for RA, thus a greater proportion of smokers in the RA population 

is expected, which provides an advantage in the investigation of smoking-involved 

associations/interactions. To better evaluate this interesting finding, further studies in other 

RA and non-RA patients are needed.  

 

There are some limitations. First, the number of patients with IHD and/or MI was 

relatively small, so further studies, preferably with a larger number of cases, will be needed 

to confirm these results. However, the ORs achieved in the present study were at a very 

high level, especially for risk of MI, and especially when gene-smoking interactions were 

examined. Based on our results there was more than sufficient power (> 80%, a type I error 

rate of 0.05) to achieve the sort of effect sizes we were seeing. Another limitation is the 

possibility that some patients with silent, non-full-thickness or atypical MI were missed. 
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However, we were able to identify 13 patients with previously unrecognized MI who had 

ECG evidence of a full-thickness MI. In a small number of patients (n = 8) there was a 

bundle branch block severe enough to prevent assessment. In the analyses these were 

classed as not having IHD. Exclusion of these patients made no significant difference to 

the associations found (data not shown). More tests to try and identify other silent MI, such 

as the cardiac stress test, would not be appropriate in many patients with RA because of 

their physical limitations. The incidence of MI reported in our RA population is 

comparable with other studies in this field (Maradit-Kremers et al, 2005; Panoulas et al, 

2008). Finally, the study was cross-sectional in design, so it was possible to assess only 

patients who had survived previous cardiac events. However, the patients recruited to this 

study are being followed over a 5-year period. Therefore, future studies will be able to 

assess both fatal and nonfatal cardiac events, as well as further development of IHD in this 

population.  

 

5.4.10 VEGFA polymorphism and hypertension  

 

VEGFA-2578 polymorphism appeared to be associated with hypertension in this RA 

population, especially in RF+ subjects. Further adjustment including IHD/MI indicated 

that it may be a secondary relationship due to the association of VEGFA polymorphism 

with IHD/MI. However, the development of hypertension usually occurs prior to 

cardiovascular events, and is considered as a risk factor for preclinical atherosclerosis. 

More generally, our results may suggest that the VEGFA-2578 polymorphism is a risk 

factor for a co-morbid combination consisting of IHD/MI and hypertension. It was noted 

that several co-morbidities in RA were highly associated with each other, and for some 

particular pairs they tended to co-exist. The presence of one disease may predispose to 
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another. Identification of several particular co-morbid combinations may help to 

understand the pathological mechanism, to improve the patients care and treatment, and to 

better evaluate the impact from these combinations on disability and early mortality of RA.  

 

5.4.11 Differential effects of VEGFA polymorphism in RA and in CVD 

 

We observed that the A allele at VEGFA-2578 was associated with lower disease activity 

of RA (and maybe with less severe functional outcome), whereas the same allele was also 

shown to be associated with higher occurrence of IHD and MI (as RA co-morbid 

conditions). We suggest that this allele may be associated with reduced VEGF-A-induced 

angiogenesis which tends to play a protective role against RA and a pathological role 

promoting IHD/MI. Most interestingly, we observed the protective effect (on RA) only in 

non-smokers, and the risk effect (on IHD/MI) only in ever-smokers. Based on this single 

cohort, our results have shown that a genetic polymorphism could have different effects in 

different diseases and among different subsets stratified by ever-smoking status.  

 

 

5.5 ENOS POLYMORPHISM, SEVERITY AND CO-MORBIDITY IN RA  

 

5.5.1 ENOS polymorphism 

 

There are several common genetic polymorphisms in the eNOS gene, including -1468 

(A/T), -922 (A/G) and -786 (C/T) SNPs in the promoter region, the 4a/b VNTR 

polymorphism (a 27-bp tandem repeat-based polymorphism) in intron 4, and the +894 

(G/T) SNP in exon 7. It has been shown that the former 4 polymorphisms are in LD, with 
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the former 3 in absolute linkage, while the +894 SNP is not linked with others (Jo et al, 

2006). The -786 and 4a/b VNTR polymorphisms have been associated with RA 

susceptibility in a German population (Melcher et al, 2007) and in a Greek population 

living in the island of Crete (Vazgiourakis et al, 2007) respectively, while no research 

regarding the relationship of +894 SNP with RA susceptibility has been published. It 

would be interesting to know whether the missense mutation is associated with the 

development of RA.  

 

5.5.2 ENOS polymorphism and RA clinical measures 

 

Previously, a Brazilian report indicated that the -786 SNP was associated with extra-

articular manifestations in RA (Brenol et al, 2008). Although it was insignificant, in the 

present study we found that patients carrying the T allele of the +894 SNP were associated 

with increased incidence of nodular disease, with the carriage of 2 copies associated with 

the highest risk (GG: 19/161 (11.8%) vs. GT: 25/178 (14.0%) vs. TT: 10/55 (18.2%), p 

trend = 0.24). However, since the +894 SNP is not linked with the -786 SNP, these results 

may be not comparable. Apart from this, we did not find any association of eNOS+894 

SNP with RA clinical measures, suggesting that the +894 polymorphism does not have a 

significant clinical impact on RA progress.  

 

5.5.3 ENOS polymorphism, smoking and IHD/MI 

 

In the general population, the association between polymorphisms in the eNOS gene and 

cardiovascular disorders has been evaluated. Polymorphisms studied mainly included -786 

and +894. Interestingly, in studies based on Caucasian populations, the majority of them 
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demonstrated that +894 was the important risk variant, while -786 was not relevant to 

disease phenomena (Gulec et al, 2008; Velloso et al, 2010; Cam et al, 2005; Casas et al, 

2004; Aroon et al, 1998; Hibi et al, 1998). In contrast, in Asian populations the trend was 

opposite, with the -786 SNP being the more important disease-associated polymorphism 

(Jo et al, 2006; Nakayama et al, 2003). In the present study, we therefore selected +894 to 

assess the relationship with IHD and MI. We found that the TT genotype was associated 

with an increased risk of IHD and MI in patients with RA, although this was not significant 

after further adjustment. Our observation was in agreement with others, showing the T 

allele as the risk allele. We assume that the insignificant result here may be due to the 

relatively small number of IHD and MI patients, since the literature suggested that the 

+894 SNP only provided a moderate risk. Our preliminary data provided information that 

there was an effect from the eNOS+894 SNP on the development of IHD/MI in RA, which 

may be similar to the effect in the general population. However, in order to confirm this, 

further research with sufficient RA-IHD/MI patients is needed.  

 

Several previous reports indicated that the association of eNOS polymorphism with CVD 

(or related conditions) was, at least partly, due to interaction with cigarette smoking 

(Leeson et al, 2002; Mayer et al, 2010; Lee et al, 2006; Jo et al, 2006; Nakayama et al, 

2003). We looked at the interaction in relation to the incidence of IHD/MI in our RA 

patients. Although the 95% CI for AP was not statistical significant, the AP itself took a 

significant part out of the total effect (30% for IHD and 55% for MI), implying possible 

interactive effects. 

 

The mechanism behind the association remains to be clarified. However, it has been 

reported that the +894 SNP differentiates the enzymatic activity and protein level (in 
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postpartum placentas), and subsequently the NO production. Whilst the eNOS protein 

levels were lower in the T allele, the eNOS enzyme activity was significantly higher in the 

same allele (Wang et al, 2000). More interestingly, the same study also showed that 

smokers had lower eNOS protein levels in both alleles, and that smoking reduced the 

eNOS activities only in the subjects with the T allele (Wang et al, 2000). The latter allele-

specific relationship may help to explain the (possible) interaction observed in the present 

study. It was noteworthy that, as mentioned before, reduction in basal NO is associated 

with increased risk of atherosclerosis. Since NO is an upstream and downstream regulator 

of VEGF-A mediated angiogenesis (Suganthalakshmi et al, 2006), and in the present study 

we observed a much stronger interaction of smoking with VEGFA polymorphism, we 

hypothesize that the (possible) interaction here may be somehow related to that stronger 

interaction.  

 

 

5.6 MMP POLYMORPHISM, SERUM MMP LEVEL, SEVERITY AND CO-

MORBIDITY IN RA  

 

5.6.1 MMP polymorphism 

 

The most studied polymorphisms in the MMP1-3 loci are rs3025058 and rs1799750, 

commonly called MMP3 5A/6A and MMP1 1G/2G respectively. These 2 polymorphisms 

have been demonstrated to influence the transcriptional activity (Rutter et al, 1998; Ye et 

al, 1996; Zhu et al, 2006) and therefore the expression of these enzymes. In the present 

study, apart from the above polymorphisms, we included another 2 SNPs designated 

rs679620 and rs495366. SNP rs679620, located in exon 2 of the MMP3 gene, results in an 
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amino acid change (Glu → Lys) at residue 45. Based on the Hapmap August 2010 phase 

II+III database, this variant is the only common SNP across the coding region of the 

MMP3 gene which leads to an amino acid alteration in the CEU population (Utah residents 

with Northern and Western European ancestry). SNP rs495366 is an intergenic 

polymorphism of the MMP1 and 3 genes. A recent GWAS on the investigation of the 

relationship between genetic variants and serum levels of MMP-1 in healthy subjects 

showed this SNP as the strongest marker (Cheng et al, 2009). Although the mechanism of 

action remains to be elucidated, there is more and more evidence suggesting the roles of 

intergenic non-coding DNA sequence in expressional regulation (Lander, 2011). We also 

searched polymorphisms within the coding region of the MMP1 gene. According to the 

Hapmap August 2010 phase II+III database however, no missense variants were found and 

thus no further polymorphisms were included.  

 

Our analysis showed that the MMP3 SNPs rs3025058 and rs679620, and the intergenic 

SNP rs495366 were in the same LD block. Furthermore, pair-wise correlation of genotypes 

between rs3025058 and rs679620 was very high, indicating these 2 polymorphisms were 

almost identical (almost in complete LD). This was comparable with the allelic information 

presented by Beyzade et al (Beyzade et al, 2003). MMP1 rs1799750 demonstrated a 

moderate linkage with the LD block (D’ = 0.44), which was in agreement with a study 

which included rs1799750 and rs3025058, and showed a moderate LD between them with 

D’ = 0.45 (Dörr et al, 2004).  

 

Several studies have examined the association of MMP1 rs1799750 and MMP3 rs3025058 

with the development of RA (Constantin et al, 2002; Dörr et al, 2004; Rodriguez-Lopez et 

al, 2006; Scherer et al, 2010). No significant association has been found between these 
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polymorphisms and susceptibility to RA, apart from one study which found a lower 

frequency of the 5A allele at rs3025058 in RA patients compared with controls (Scherer et 

al, 2010). Moreover, there were also no relative associations in the GWAS. These suggest 

that MMP1 and 3 genes may be not significant susceptibility genes for RA.  

 

5.6.2 Serum level of MMP 

 

Some correlations between MMP levels were found. MMP-8 and MMP-9 were very highly 

and significantly correlated with each other (r = 0.70, p < 0.0001), consistent with the 

results presented by Tchetverikov et al (Tchetverikov et al, 2004). It is known that the 

genes for these 2 enzymes are located on different chromosomes (MMP8: chromosome 11; 

MMP9: chromosome 20). Thus, the correlated expression is unlikely to be due to genetic 

linkage or other effects at the genetic level. It may be a reflection of the biological roles of 

these 2 proteins. It is possible that they act in a co-operative way and/or they are stimulated 

by the same factor(s). We also found a moderate (r = 0.20) but very significant (p < 

0.0001) correlation between MMP-1 and MMP-3. We speculate that the content of LD 

between MMP1 and MMP3 genes may limit the strength of this correlation, since in the 

present study we showed that common haplotypes generally were associated either with 

high MMP-1/low MMP-3 or with low MMP-1/high MMP-3 (Table 4.17.4b). We speculate 

further that this genetic arrangement (selected during evolution) may reduce the chance of 

over-production of both destructive enzymes and therefore could be protective in humans.  

 

The relationship between serum MMP levels and smoking was evaluated in this study. 

Interestingly, we found that some MMP levels were changed particularly in current 

smokers, while there was not much difference between non-smokers and past smokers. 
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This observation contrasts with several previous findings suggesting that the influence of 

smoking has a chronic effect on autoantibody and cytokine production (Costenbader et al, 

2006; Glossop et al, 2006). We speculate that, on the expression of MMPs, smoking may 

have an acute and short term effect.  

 

 5.6.3 MMP polymorphism and serum MMP level 

 

In the present study, we have clearly demonstrated a relationship between important 

polymorphisms across the MMP1 and 3 genetic loci and the circulating levels of MMP-1 

and -3 in patients with RA. To our knowledge we are the first group to have demonstrated 

an association of the rs1799750 with serum levels of MMP-1 in patients with RA. 

Rs1799750 is a deletion/insertion polymorphism where an additional guanine (G) creates 

an Ets binding site at -1607 bp in the MMP1 promoter. The resulting 2G allele has been 

shown to be associated with higher transcriptional activity in normal fibroblasts and in 

melanoma in vitro (Rutter et al, 1998). However, in the present study it was the 1G allele, 

rather than the 2G, that was associated with higher MMP-1 serum levels. Since we also 

found that the 1G allele of rs1799750 and the G allele of rs495366 were in LD our findings 

are consistent with the observation of Cheng et al who showed that the G allele of 

rs495366 is associated with higher serum levels of MMP-1 in healthy subjects (Cheng et 

al, 2009).  

 

We confirmed the association of the intergenic rs495366 SNP with MMP-1 levels and have 

shown for the first time that MMP3 SNPs rs679620 and rs3025058, located in the same LD 

block, are also associated with MMP-1 levels, independent of the rs1799750 association. 

The G allele of rs495366 has been suggested to be the strongest marker associated with 
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high MMP-1 levels in a GWAS (Cheng et al, 2009). It is interesting that the rs495366 G 

allele is associated with either higher MMP-1 or higher MMP-3 levels, depending on 

which MMP1-MMP3 haplotype it is linked with. This suggests that this region has an 

important effect on modulating both MMP-1 and MMP-3 levels.  

 

Although rs679620 and rs3025058 are functional polymorphisms in the MMP3 gene and 

any change of MMP-3 expression/activity may potentially influence MMP-1 release, there 

is currently no direct evidence to support such a relationship. The LD block identified in 

this study may extend to the promoter region of the MMP1 gene where there may be other 

polymorphisms which alter transcriptional activity.  

 

Polymorphism rs679620 leads to an amino acid change (Glu → Lys) at residue 45 in 

MMP-3. Residue 45 is located just after the first alpha helix in the propeptide, in a region 

which is believed to be flexible. It has been suggested that the amino acid change at this 

residue could potentially alter its interaction with other amino acids in this region, and 

have an effect on MMP-3 activation. However, the Glu45 residue is not conserved across 

species, implying that mutations occurring in this residue are unlikely to be significantly 

vital to the function of enzyme (Beyzade et al, 2003). We mentioned before that the 

genotypic/allelic distributions of rs3025058 and rs679620 were almost identical and thus 

almost in complete LD, forming 5A-A and 6A-G as the major haplotypes. RA patients 

carrying 5A-A were associated with lower levels of MMP-3, whereas those carrying 6A-G 

were associated with higher levels. However, assessment of the relationship between 

MMP3 haplotype and level of MMP-3 only is not sufficient. To better understand the 

relationship between the genetic content of MMP3 and overall activity (amount + 
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individual activity) of MMP-3, investigation of whether SNP rs679620 indeed alters 

protein function is required.   

 

The MMP3 promoter polymorphism rs3025058 has been reported to influence the 

transcriptional activity of MMP3, with the 5A allele being associated with higher 

transcriptional activity in IL-1β stimulated human acute monocytic leukaemia (THP-1) 

cells (Zhu et al, 2006). However, in contrast to this in vitro study, the results of studies on 

patients with RA, in the current and 2 other studies (Mattey et al, 2004; Tsukahara et al, 

2008), have consistently shown that the 6A allele is associated with higher serum levels of 

MMP-3. Similar contradictory results have also been shown in studies on patients with 

coronary heart disease and/or MI (Samnegard et al, 2005; White et al, 2007; Ghaderian et 

al, 2010). The reason for this discrepancy is still unclear, although in the case of MI 

patients it has been postulated that increased activation of pro-MMP-3 within the 

atherosclerotic vessel wall may potentially lead to decreased leakage of pro-MMP-3 and/or 

inactivated MMP-3 into the blood stream (Samnegard et al, 2005). A similar argument 

could be put for the inflamed synovial joint. 

 

Serum levels of MMP-1 and -3 have been suggested to mainly reflect levels of 

inflammation in RA. In the present study, we found that in multivariate multiple regression 

models the CRP and MMP1-3 genetic polymorphisms were independently associated with 

MMP-1/MMP-3 levels, suggesting that circulating levels of MMP-1/MMP-3 were 

influenced by both inflammation and genetic factors in RA.  

 

We also found that the genetic polymorphism at the MMP1-3 loci was associated with 

serum levels of MMP-2. Since the MMP2 gene is located on a different chromosome, it 



 

 308

appears that this relationship is not due to the LD between genetic loci. However, this 

association also could not be explained by the influences between serum MMPs, since 

multivariate multiple regression indicated that the association was independent of the 

correlations of MMP-2 with MMP-1 and -3. Thus, it is possible that there may be an 

unknown regulation mechanism linking the MMP1-3 loci and the level of MMP-2. 

 

5.6.4 Serum MMP and RA clinical measures 

 

MMPs degrade the components of the ECM. Specifically, MMP-1 (collagenase-1) is 

responsible for degradation of type I collagen, a major component of the ECM, as well as 

other fibrillar collagens such as types II, III, V, IX and X. MMP-3 (stromelysin-1) has a 

broader substrate specificity with activity against type II, III, IV, IX, X and XI collagens, 

proteoglycans, fibronectin and laminin. Furthermore, it is able to activate other MMPs 

such as MMP-1, -2, -9 and -13. In the present study, we showed that serum MMP-1 was 

weakly correlated with disease activity score and with functional outcome measures, while 

MMP-3 was only weakly correlated with disease activity score but not with functional 

outcome. Other MMPs were less associated with RA clinical measures, although a 

decreased MMP-2 was found in autoantibody positive (RF or anti-CCP)/ever smokers with 

erosive disease. These results were generally in agreement with the concept that MMP-1 

and -3 have the most clinical significance in RA, whereas other members were less 

involved. Since type I collagen is specifically degraded by MMP-1, joint destruction may 

be primarily associated with this enzyme. Although data were lacking on the radiographic 

damage of joints on each patient, the correlation of serum MMP-1 with functional outcome 

measures provided some indirect evidence. Since the actions of these enzymes are in 
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synovial joints, we speculate that much stronger correlations may occur between synovial 

fluid MMPs and clinical measures.  

 

5.6.5 MMP polymorphism and RA clinical measures 

 

We initially showed an association of polymorphism in the MMP3 gene with the disease 

activity score (DAS28) at baseline. Disease activity can fluctuate over time, so we also 

looked at the association with the mean time-averaged DAS28 in 301 patients followed up 

over a 2-year period. We believed that this would be more representative of the longer term 

level of disease activity in each patient than DAS28 measured at a single time point. 

Further analysis indicated that polymorphism in the MMP3 gene was associated with the 

level of disease activity over time, and this was independent of the serum MMP-3 

association. Interestingly, the highest level of disease activity appeared to be associated 

with the rs3025058 5A allele (or the rs679620 A allele) which was associated with lower 

circulating levels of MMP-3 (although it was also associated with the highest levels of 

MMP-1). However, this genetic association appeared to be independent of serum levels of 

MMP-1 and particularly MMP-3. The association of the MMP3 polymorphism with 

disease activity is therefore not a straightforward reflection of circulating MMP levels, but 

may somehow reflect the expression and local activity of individual MMPs within the 

joints. This may depend on the conditions within the joints. Recent work has suggested that 

the rs3025058 polymorphism is functional only during specific environmental conditions 

involving inflammation (Zhu et al, 2006). It has also been shown that the transcription 

factor NF-kB has differential effects on 5A and 6A alleles in macrophages, with the greater 

transcriptional activity of 5A being augmented by NF-kB activation (Souslova et al, 2010). 

Differential expression of MMP-1 in response to inflammatory mediators has also been 
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linked to the MMP1 rs1799750 promoter polymorphism (Cao et al, 2010; Affara et al, 

2011), although one study found that strong and repeated inflammatory stimulation of 

macrophages resulted in higher MMP-1 expression irrespective of MMP1 rs1799750 

genotypes (Repeke et al, 2009). The possibility of cell and tissue specific differences in 

gene expression cannot be ruled out. Further work is therefore needed to investigate the 

influence of MMP1 and 3 polymorphisms on the expression and activity of MMP-1 and -3 

in different cell types of the joint and circulation, and whether this is different under 

normal and inflammatory conditions.  

 

In the present study, we also demonstrated a relationship between polymorphisms in the 

MMP1-3 loci and the development of erosive disease in RA. In patients with shorter RA 

duration (≤ 6 years), the MMP1 polymorphism rs1799750 and the MMP3 polymorphism 

rs3025058 were associated with erosive disease. However, the association of the MMP3 

rs3025058 polymorphism with erosive disease may be an indirect association due to LD, 

suggested by a multivariate regression model that contained both polymorphisms as 

independent variables. Despite this, analysis using haplotypes including both rs1799750 

and rs3025058 revealed a stronger effect compared to that using single polymorphisms 

(data not shown). The 1G allele, associated with high MMP-1 level, was associated with 

more erosive disease in patients with RA duration ≤ 6 years. Several studies have 

demonstrated the association of synovial/serum MMP-1 levels with new joint 

erosion/damage in early RA (Cunnane et al, 2001(1); Cunnane et al, 2001(2); Green et al, 

2003). In the present study the genotypic and haplotypic associations with erosive disease 

were not apparent in patients with longer RA duration. This could suggest that 1) the 

development of erosive disease is mediated by multiple factors where MMP1 

polymorphism plays a more important role in the early period of disease; 2) the eventual 
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development of erosive disease is not determined by the MMP1 variant, and the impact of 

the polymorphism is only to modify (advance/delay) the progress of the erosive course; 3) 

the effect of the MMP1 polymorphism on disease outcome is biphasic where one allele 

could have a very different impact over different periods of the disease course, as 

suggested by Dörr et al (Dörr et al, 2004).  

 

In Dörr et al, possession of the MMP1 rs1799750 1G allele or the 1G-5A (rs1799750-

rs3025058) haplotype appeared to be protective from radiographic progression over the 

first 15 years of disease, but was associated with more pronounced radiographic 

progression later on. In contrast, a small study by Constantin et al failed to find an 

association between the MMP1 rs1799750 polymorphism and radiographic damage over a 

4-year follow-up (Constantin et al, 2002). Previous studies (Mattey et al, 2004; Constantin 

et al, 2002) found an association between increased radiographic damage and the MMP3 

rs3025058 6A allele, although this was not confirmed in the study by Dörr et al (Dörr et al, 

2004), nor in a study of Japanese patients (Tsukahara et al, 2008). We do not have an 

explanation for the disparity between these findings, or between those and the current 

study. One of the limitations of the current study was the lack of sequential radiographs, 

and we looked only at the presence or absence of erosive disease rather than the amount of 

radiographic destruction. However, in this respect our findings are in agreement with those 

of Nemec et al who demonstrated that RA patients carrying an MMP3 rs3025058 5A allele 

were more likely to have erosive disease (Nemec et al, 2007).  

 

Although not statistically significant, our results showed increased serum MMP-1 levels in 

early RA patients with erosive disease. The lack of a significant association may possibly 

be explained by measurement of MMP-1 at only one time point. The same is probably true 
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for the lack of association between erosive disease and DAS28, and is consistent with 

previous studies showing that measurements of inflammation at a single time point are 

poorly associated with erosive damage, the results of cumulative effects over time. Studies 

using area under curve measurements have shown associations of MMP-1 levels with the 

development of new erosions (Cunnane et al, 2001). It is noteworthy that the association of 

the 5A-A-G-1G haplotype with erosive disease remained significant (in patients with RA 

duration ≤ 6 years) in models also containing serum MMP levels or DAS28 as independent 

variables, and may reflect an association of this haplotype with persistently raised levels of 

MMP-1 and higher disease activity. 

 

In patients with RA duration ≤ 6 years, a dramatically increased risk was seen in patients 

who were smokers and carried 2 copies of 5A-1G, whereas those smokers who carried only 

1 copy of 5A-1G were not significantly affected. This increased risk implied a possible 

interaction between smoking and 2 copies of 5A-1G haplotype since a significant 

attributable proportion due to this combination was observed. The reason behind the 

observed interaction is unknown. We speculate that certain component(s) of cigarette 

smoke may interact with MMP(-)1/MMP(-)3 on different levels and result in alterations of 

enzyme expression/activity. Since our results were based on a relatively small sample size, 

further confirmation in a larger early RA population is needed.  

 

5.6.6 MMP polymorphism, serum MMP and co-morbidity 

 

Analysis of the whole cohort did not show any association of MMP polymorphism with 

co-morbid conditions. However, we observed a trend that the 6A allele at rs3025058, the G 

allele at rs679620 and the A allele at rs495366 were associated with an increased 
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occurrence of IHD and MI in patients who were RF positive or who had ever smoked. 

Some of the relationships were not strong enough to reach significance. This may be due to 

the relatively small number of IHD and MI cases. It was interesting to see the relationship 

only in RF+ patients or those who had ever smoked. One suggestion was that RF and/or 

smoking may be involved in the above association. However, since smoking and RF are 

risk factors for IHD and/or MI, an increased frequency of IHD and/or MI can be seen in 

these sub-populations. This may increase the possibility of finding positive relationships. 

 

It was shown in the present thesis that the A allele at rs3025058 and the G allele at 

rs679620 were significantly associated with higher levels of MMP-3. Therefore, the 

relationship between SNPs in the MMP1-3 loci and the occurrence of IHD/MI may be due 

to the alteration of MMP-3 expression. We found that there was elevated serum MMP-3 in 

patients with previous MI compared to the remaining subjects. However, we also observed 

that in IHD+/MI- patients the level of serum MMP-3 was the lowest, although it was not 

significantly lower compared to IHD- patients. Samnegård et al have shown that at MI 

admission the serum MMP-3 is at a low level, while it increases during recovery 

(Samnegård et al, 2006). Taken together, we speculate that MMP-3 may be involved in a 

post-MI mechanism rather than in general atherosclerosis progression. On the other hand, 

serum MMP-1 did not appear to be involved. This was consistent with the genetic data that 

MMP1 SNP rs1799750 was not associated with the occurrence of IHD and MI. For the 

first time, we have provided some preliminary results showing that MMP(-)3 is associated 

with IHD/MI in patients with RA. However, further evaluation using another independent 

database is needed.  
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Our data suggest that polymorphisms in the MMP1-3 loci and in the MMP2 gene, and the 

levels of serum MMPs (including -1, -2, -3, -8 and -9) are not associated with hypertension 

in patients with RA.  

 

5.6.7 Serum MMP and TIMP 

 

Most serum levels of TIMPs were found to be positively correlated with each other. This 

implied that these inhibitors may be, at least partly, influenced by the same 

factor(s)/condition(s). Also, they may interact with each other, and play co-operative roles.  

 

Previous studies have shown that there is an imbalance between MMPs and TIMPs, which 

is in favour of the MMPs, in various pathological conditions including inflammatory 

arthritis (Tchetverikvo et al, 2005). This suggests that MMPs activity may not be 

sufficiently counteracted in those conditions. The extent of activation of the MMPs 

(proMMPs → activated form) is largely unknown in vivo. Our preliminary results based on 

RA synovial fluid suggested that MMP-1 activity was associated with major pro-

inflammatory markers including CRP, IL-1b and TNF-α, whereas these markers were not 

associated with MMP-1 level (data not shown). Furthermore, there was no strong 

association of MMP-1 activity with MMP-1 level in joints (data not shown). On the other 

hand, inactivation of the MMPs involves specific TIMPs and the high molecular weight 

proteinase inhibitor α2 macroglobulin (α2M) (Woessner, 1999). TIMP is thought of as a 

major inhibitor of MMPs at the tissue level. However, determination of specific 

MMP/TIMP complex remains a challenge. In the present study, we observed several 

specific correlations between MMPs and TIMPs. For example, MMP-1 was correlated 
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with TIMP-1, -2 and -3, while MMP-2 was only correlated with TIMP-2. These 

correlations may be a reflection of the inhibitive specificity of a particular TIMP.  

 

The detail of the specificity of the TIMPs is unclear. Thus, in the current study we used all 

the combinations of MMP/TIMP ratios (20 in total) to investigate the possible associations. 

This certainly increased the number of comparisons, and therefore raised the likelihood of 

false associations by chance. Therefore, these results needed to be treated with caution.  

 

We observed that the genetic polymorphisms in the MMP1-3 loci (mainly the MMP1 

rs1799750 and the MMP3 rs3025058) were specifically associated with MMP-1-related 

MMP/TIMP ratios, but not with other ratios. Haplotype analysis indicated that this effect 

was attributed to the 5A-1G (rs3025058-rs1799750) haplotype. We hypothesized that 

patients carrying this haplotype may be associated with higher MMP-1 activity. However, 

none of these ratios were found to be associated with RA clinical measures recorded in this 

study. We therefore speculate that direct use of MMP/TIMP ratio may be not a 

straightforward way to predict the overall MMP activity.  

 

There were relationships between levels of TIMPs (TIMP-1 and -4) and disease measures. 

Interestingly, these were positive correlations, although TIMPs play an inhibitive role. Our 

data was in line with some previous reports. Fiedorczyk et al observed positive correlations 

of serum TIMP-1 and -2 with markers of the disease activity including Ritchie articular 

index, ESR and DAS (Fiedorczyk et al, 2006(2)). Murphy et al found a positive correlation 

between baseline serum TIMP-1 and periarticular bone loss over 1 year in early patients 

with RA (Murphy et al, 2009).  Kawashiri et al observed that serum TIMP-1 was positively 

correlated with the power Doppler ultrasonography score (PDUS), a new clinical measure 
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for RA (Kawashiri et al, 2011). Given these data, we speculate that the levels of TIMPs 

may reflect the activity of disease, but may be less indicative of their overall inhibitive 

effects. In more active RA, increased release of TIMPs may occur in order to respond to 

increased levels of activated MMPs. This hypothesis may help to explain another 

observation in the current study. We found that MMP/TIMP ratios were lower in RF+ 

patients, which may be due to the fact that RF+ patients were associated with a more active 

RA.  

 

 

5.7 TGFB1 POLYMORPHISM, SERUM LEVEL OF TGF-β1, SEVERITY AND CO-

MORBIDITY IN RA  

 

5.7.1 TGFB1 polymorphism 

 

Cambien et al screened the coding region and 2181 bp upstream of the TGFB1 gene, and 

identified several common polymorphisms in Caucasians, including -800, -509, +868, 

+913 and +11929 (Cambien et al, 1996). The -800 G/A and -509 C/T polymorphisms are 

located in the promoter region, near to the consensus DR1 or DR5 nuclear hormone 

receptor binding sites, considered possible modulators of expression of the TGFB1 gene 

and levels (Crobu et al, 2008). In the present study we only included -509, on the basis of 

that there was a better minor/major allele proportion in -509 compared to -800 (Crobu et al, 

2008; Amirghofran et al, 2009) and that there was a very strong LD between these 2 SNPs 

(Sie et al, 2006; Amirghofran et al, 2009; Grainger et al, 1999). The +868 (exon 1, codon 

10, Leu → Pro) and +913 (exon 1, codon 25, Arg → Pro) polymorphisms are located in the 

signal peptide sequence which is involved in the export of synthesized proteins across 
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membranes of the endoplasmic reticulum (Cambien et al, 1996). Furthermore, they were 

also suggested to be located at potentially important positions that influence activation of 

the TGF-β1 protein (Syrris et al, 1998). Compared to +868 and +913, another common 

SNP in the coding region, +11929 C/T (exon 5, codon 263, Thr → Ile), appeared to be less 

important, since it was in the region coding for the precursor part of the protein not present 

in the active form (Cambien et al, 1996). We therefore further included +868 and +913 but 

not +11929 in the present investigation.  

 

Genotypes of -509, +868 and +913 were determined in our RA patients. LD was detected 

across these SNPs, which was in line with previous observations (Sie et al, 2009; Cambien 

et al, 1996; Syrris et al, 1998). Our result on the genotypic distribution of +868 was similar 

to that in another RA population from a nearby region (Dudley). In that study, a case-

control comparison suggested that this SNP was not a risk factor for RA susceptibility 

(Panoulas et al, 2009). To date, no association of polymorphisms in the TGFB1 gene with 

the risk for the development of RA in Caucasians has been reported. In contrast, in Asians 

this gene was associated with RA susceptibility (Kobayashi et al, 2009; Alayli et al, 2009; 

Sugiura et al, 2002). Most recently, a meta-analysis focusing on +868 suggested that 

TGFB1 gene may only play roles in RA susceptibility for Asians but not for non-Asians, 

although other SNPs in the gene were less studied (Chang et al, 2010).  

 

5.7.2 Serum level of TGF-β1 and other investigated serum proteins 

 

We found that the level of TGF-β1 was positively correlated with several other proteins 

that were important in RA such as MMP-1 and VEGF-A. Although it was not associated 
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with the clinical measures of RA, this fundamental cytokine may still have some effects on 

promotion of RA.  

 

5.7.3 TGFB1 polymorphism and serum TGF-β1 level 

 

The relationship between common polymorphisms in the TGFB1 gene and the expression 

of TGF-β1 has been described (Grainger et al, 1999; Awad et al, 1998; Yamada et al, 1998; 

Yokota et al, 2000; Suthanthiran et al, 2000). The associations were mostly seen in healthy 

subjects. In the present study, we investigated such relationship using TGFB1-509, +868 

and +913 SNPs, and serum levels of TGF-β1 in patients with RA for the first time. Based 

on our results, we did not see any association or trend. It was possible that the regulation of 

TGF-β1 in disease conditions (especially in auto-immune conditions) is more complicated, 

compared to that in the normal condition. Genetic polymorphisms may have an effect, but 

this may be masked by other influences. Also, our result is based on the serum level only, 

and is unable to provide information on cell-type/location specific expression. 

 

5.7.4 Serum TGF-β1 and RA clinical measures 

 

Muñoz-Valle et al found an association of increased serum levels of TGF-β1 with the 

functional class evaluated in RA patients (Muñoz-Valle et al, 2010). In contrast, in the 

present study, based on our functional measures (MJS and HAQ) we did not find such 

relationship. However, we found an association between increased TGF-β1 and erosive 

disease, although it achieved significance only in RF+ patients. It was unclear why it was 

only seen in RF+ subjects. We speculate that there may be specific relationships between 

TGF-β1, B cell regulation and RF release.  
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For the first time, we found an association between serum levels of TGF-β1 and nodular 

disease, with lower levels associated with more incidence of this manifestation. Thus, it is 

possible that up-regulation of TGF-β1 in RA may have a protective effect against the 

development of nodular disease. TGF-β1 is a multi-functional cytokine. Our results 

provided evidence that it may have several independent roles in RA, since an increase was 

associated with joint erosion in RF+ patients while a reduction was found to be associated 

with nodular manifestation.  

 

5.7.5 TGFB1 polymorphism and serum MMP-1 and -2 

 

TGFB1+913 polymorphism was found to be associated with serum MMP-1 and -2, 

although for MMP-2 it was not significant. Since these genes are located on different 

chromosomes, this was not likely due to the LD between the genes. Instead, this 

association may suggest that TGF-β1 is involved in the regulation of MMP-1 and -2 in RA. 

In addition, (as mentioned above) we also found that serum TGF-β1 was correlated with 

serum MMP-1. However, an association of TGFB1+913 polymorphism with serum levels 

of TGF-β1 was not seen.  

 

5.7.6 Serum TGF-β1 and diabetes mellitus  

 

Recent data showed that regulatory cells with TGF-β1-dependent activity were able to 

restore self-tolerance in overtly diabetic non-obese diabetic (NOD) mice. Thus, TGF-β1 

seems to have a relevant role in protection from autoimmune diabetes (Olivieri et al, 2010). 

In this study, we found that RA patients with diabetes were associated with lower serum 

levels of TGF-β1, compared to those without diabetes. Our observation was in line with the 
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data from Olivieri et al, and further suggested that down-regulation of TGF-β1 is 

associated with increased risk of diabetes in humans. However, as this was a cross-

sectional study, we were unable to demonstrate any cause-effect relationship. Since this 

association was found in a RA population, we do not know whether such association also 

occurs in the general population or whether this is somehow related to the disease process 

in RA. The results here can only be treated as preliminary data since the number of patients 

with diabetes was low. Further studies both in RA and in the general population are 

required.  

 

5.7.7 TGFB1 polymorphism, serum TGF-β1 and cardiovascular disease 

 

In the present study, for the first time in a RA population we observed that TGFB1+868 

polymorphism was associated with the occurrence of IHD and MI, and that TGFB1-509 

SNP was also associated with MI but the association was weaker. Our results were similar 

to those of Crobu et al and Koch et al which indicated that both TGFB1-509 and +868 had 

relationships with MI but the association involving -509 was insignificant or relatively 

weaker (Crobu et al, 2008; Koch et al, 2006). In contrast, Cambien et al suggested that 

TGFB1+913 provided the strongest signal in relation to the association with MI (Cambien 

et al, 1996). Using multivariate logistic regression model, we suggested that the association 

with -509 may be an indirect one due to LD. However, owing to its location (in the gene 

promoter) this SNP is likely to play roles in influencing the expression of TGF-β1, and 

therefore may also have an effect. TGFB1+868 SNP is located at a position that has 

potential function on effecting activation of the TGF-β1 protein. Overall, the associations 

may very well be attributable to changes in the expression and/or activity of TGF-β1. As 

shown, in our RA patients these genetic polymorphisms were not associated with serum 
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TGFβ1 levels. We therefore speculate that the variants (in particular TGFB1+868 and 

+913) may be associated with different efficiency of protein activation in vivo, although 

the activity of this protein between genotypes has not been assessed in the current study. 

Furthermore, the peptide where the 2 missense polymorphisms (+868 and +913) are 

located is involved in the export of the protein across membranes of the endoplasmic 

reticulum, so these SNPs may also be associated with the transportation and/or localization 

of TGF-β1 and therefore with functional alteration. 

 

Interestingly, we observed that heterozygous genotypes of TGFB1-509 and +868 were 

associated with the increased risks compared to homozygous genotypes. Results in 

previous studies suggested that the TT genotype at -509 and the CC genotype at +868 were 

associated with the increased risk of MI (Crobu et al, 2008; Koch et al, 2006). Our data 

was not in agreement with those. However, our subjects were a specific population of RA 

patients, and therefore unique association in such a population is possible. TGF-β is a 

pleiotropic cytokine with a diversity of effects, with both proatherogenic and 

antiatherogenic effects. It is not known yet what the overall effect of TGF-β1 is. Certain 

expression and/or activity of this protein (neither the highest nor the lowest) may be 

required to be associated with the most proatherogenic effects. In RA, the expression of 

TGF-β1 is elevated compared to the general population. Thus, the association may shift 

from one genotype to another between populations with different conditions. Despite the 

controversial data based on genotypes, haplotype analysis in our study provided some 

evidence that the T-C (-509/+868) haplotype may be associated with increased MI 

(insignificant trend), which was in agreement with the previous studies (Crobu et al, 2008; 

Koch et al, 2006). 
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Our observation that heterozygotes for a genetic polymorphism show a significantly 

greater or lesser effect for a trait than homozygotes can be explained by so-called 

“molecular heterosis”. This kind of effect has been detected in several genes in relation to 

particular phenotypes. These genes included ADRA2C, C3 complement, DRD1, DRD2, 

DRD3, DRD4, ER1, HP, HBB, HLA-DR DQ, HTR2A, properdin B, SLC6A4, PNMT and 

secretor in humans or animals (Comings and MacMurray, 2000). For the dopamine D3 

receptor (DRD3) gene, molecular heterosis was only significant in male schizophrenics, 

but not in female schizophrenics (Asherson et al, 1996). For smoking, also, a positive 

effect of molecular heterosis was only observed in male schizophrenics (Lee et al, 2002). 

These suggested that in some cases molecular heterosis may be gender-specific. In terms of 

our observation and the results published based on the non-RA population, we hypothesize 

that the molecular heterosis effect of TGFB1 SNP on CVD is a disease-specific effect, 

since RA creates a unique environment associated with chronic inflammation which is very 

different from the normal condition. There are several levels at which molecular heterosis 

may be operating, such as the levels of gene regulation, protein subunit interaction, 

lethality for homozygosity of the mutant allele and the whole cell or organ (Comings and 

MacMurray, 2000). Since in the present study TGFB1+868 causes an amino acid change 

and therefore (maybe) the structure of peptide, an interaction at the level of protein 

subunits would be the easiest explanation for our observation. It is not difficult to visualize 

an allosteric effect where 2 identical subunits would function more (or less) efficiently than 

structurally different subunits (Comings and MacMurray, 2000). Such an effect has been 

described for the acid phosphotase enzyme in Drosophilia (Trehan and Gill, 1987). 

However, an inverted “U-shaped” response curve could also be applied to explain the 

molecular heterosis effect in our study. High and low expression/activity of TGF-β1 are 

associated with protective effect while the medium level is associated with the risk.  
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Furthermore, in the current study we found a significant interaction between the 

TGFB1+868 polymorphism and ever-smoking in relation to the occurrence of IHD and 

MI. Interestingly, the data indicated that the risk effect mainly came from this gene-

environemtal interaction while the SNP alone did not confer the risk. It will be worth 

investigating the reason for this observation in future studies. In addition, the interaction 

with smoking added to the specificity of the mechanism of molecular heterosis. 

 

IHD and MI are thought to be under the control of many genes and other factors that 

contribute individual effects. Using multivariate logistic regression models, we found that 

the association of TGFB1+868-smoking interaction with IHD/MI was independent from 

other risk factors tested in the present study, including the VEGFA-2578-smoking 

interaction.  

 

The limitations of study herein were similar to those presented in Section 5.3.8 (discussion 

for the association of VEGFA with IHD/MI). The TGFB1-IHD/MI data had sufficient 

power (> 80%, a type I error rate of 0.05) to achieve the sort of effect sizes we were seeing. 

However, to confirm these observations, other independent populations are required, 

especially those with more cases of IHD/MI. 

 

Serum TGF-β1 was not significantly associated with IHD or MI. However, it was 

significantly reduced in patients who took medications for heart-related diseases. We do 

not know if this is an effect from the medications. Prospective studies are needed to 

determine whether low levels of TGF-β1 are predictive of development of heart disease. 
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5.8 PTPN22 POLYMORPHISM, SEVERITY AND CO-MORBIDITY IN RA  

 

5.8.1 PTPN22 polymorphism 

 

The T allele (R620W allele) of PTPN22 has been the first and the most reproducible 

genetic polymorphism identified as a RA susceptibility gene outside the HLA region in 

Caucasians. This risk allele has been shown to confer an approximately 2-fold increased 

risk for RA development (Begovich et al, 2004; Hinks et al, 2006). There is no evidence of 

association with RA in non-white populations because the PTPN22 risk allele is extremely 

rare in those ethnic groups.  

 

5.8.2 PTPN22 polymorphism and RA clinical measures 

 

Previously, there was a study suggesting that the T allele of rs2476601 was associated with 

increased RF+ RA, with 2 copies conferring the highest risk (Lee et al, 2005). 

Furthermore, as mentioned before, this risk allele was also associated with structural 

damage in joints (Lie et al, 2007; Karlson et al, 2008). In the present study, we did not find 

any significant association between the T allele of rs2476601 and RA clinical measures. 

However, we did not assess the radiographic damage since the data was not available. We 

found an increased MJS in patients with the T allele, although it was an insignificant 

association. In contrast, the HAQ scores were equal between patients with and without the 

T allele of rs2476601. This difference suggests that the PTPN22 risk polymorphism may 

be involved more in joint events rather than the overall outcome of disease.  

 

5.8.3 PTPN22 polymorphism and co-morbidity 
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In the present study, no significant association of the PTPN22 polymorphism with any co-

morbidity recorded was found. Since the R620W allele is thought to be a general risk for 

auto-immunity, we were particularly interested in the possible relationship between this 

allele and diabetes mellitus (including type 1 and 2). No association was found. However, 

the number of patients with diabetes type 1 or 2 was small, and therefore larger studies are 

needed to better investigate this relationship in RA patients.  

 

 

5.9 POSSIBLE LIMITATIONS OF THE RESEARCH 

 

5.9.1 Patient population sample size 

 

A limitation of the work was the number of patients. Although we included over 400 RA 

patients, the numbers were reduced following patient stratification into various subgroups 

(genotypes, smoking status, seropositivity, etc) and because certain data were unavailable 

for some individuals (e.g. serum TIMP levels were only tested among patients with RA 

duration ≤ 6 years). The occurrence of certain co-morbid conditions was low, although it 

may be already elevated in the RA population compared to the general population. As a 

result, the analyses were only able to identifiy major effects. A larger sample size therefore 

is needed to reach sufficient power to test some of the preliminary. Assessment of the 

appropriate population size needed to be made prior to the study using statistical methods 

to perform power calculations. However, this was sometimes not stratightforward since 

some variables used for stratification, such as genotype distributions, were unknown before 

the study.  
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5.9.2 Drug therapy  

 

All the patients were receving anti-inflammatory and/or anti-rheumatic drugs at 

recruitment. Although the majority (93%) were being treated with DMARDs (mainly 

MTX, SSZ and hydroxychloroquine), there was a number of patients (14%) who were 

receiving a biologic agent (mainly etanercept and infliximab). Whilst individual drug 

regimens may have differed to some extent, the commonest drug used was MTX. The 

difference in drug regimens may produce some confounding, especially with regard to the 

investigation of RA clinical measures. However, in such a large cohort of established RA 

on different drug combinations, it was difficult to control for such an effect. Another 

related concern was that there may have been differences in response to drug therapy 

between patients. However, it was not possible to measure this in a systematic way in this 

study. Also, the difference in drug regimens may influence the serum levels of the studied 

proteins and the incidence of certain co-morbid conditions. However, for some of the 

important observations we have adjusted for the use of MTX. 

 

5.9.3 Experimental problems 

 

Due to the low quality/quantity of some DNA samples, some genotyping failed. This led to 

a reduction of sample size. Furthermore, between investigations using each polymorphism, 

the patients included were sometimes slightly different. Also, some serum samples were 

not available, and therefore the levels of some proteins were not measured in certain 

patients.  

 



 

 327

5.9.4 Identification of co-morbid condition 

 

Evidence of co-morbidity was obtained from a structured interview, review of the medical 

notes and current and cumulative medication, and the results from the physical and medical 

examination conducted at recruitment. For specific conditions, such as MI, its clinical 

presentation was suggested to be different in RA compared to that in the normal 

population, with RA patients more likely to experience unrecognized MI. To identify these 

silent MI, all patients also underwent resting 12-lead ECG. Based on this, we were able to 

identify 13 patients with previously unrecognized MI who had evidence of a full-thickness 

MI. However, it was possible that some patients with silent, non-full-thickness or atypical 

MI were still missed, as the sensitivity of ECG was not high. This could be a limitation of 

the current study. However, more tests to try and identify other silent MI, such as the 

cardiac stress test, would not be appropriate in many patients with RA because of their 

physical limitations. 

 

5.9.5 Cross-sectional in design 

 

The current study was cross-sectional in design, so any time course relationship was not 

able to be tested. Also, in a cross-sectional study it was only possible to assess patients who 

had survived from previous events (e.g. cardiac events, stroke, etc). However, this cohort 

would be followed up annually for a 5-year period. Any future analysis regarding the 

further development of co-morbidities, RA progression and fatal events would be 

prospective in design.  

 

5.9.6 Control group 



 

 328

 

It was not essential to have a healthy population as control in this particular study. 

However, addition of a control group may help to investigate whether or not the 

associations observed in RA were disease-spectific associations. In addition, it would allow 

us to assess whether the studied genetic variants were risks for RA susceptibility.  

 

5.9.7 Statistical analyses 

 

Multiple comparisons were performed when comparing patients who were stratified into 

several subgroups according to genotypes, smoking status, etc, and/or further 

combinations. This increased the likelihood of identifying a significant difference between 

two groups if in fact the null hypothesis of no difference between them was true. For 

example, a significant result might be expected in every 20 comparisons performed when 

using a p value of 0.05 (95% significant level). One method to correct for this is to use the 

Bonferroni’s correction for multiple testing. This is a conservative method that simply 

multiplies the p values obtained from each test by the number of comparisons conducted. 

However, whilst this reduces false-positive results (type I errors), it also increases false-

negative results (type II errors) such that true associations might be missed.   

 

The approach used in this thesis was based on the investigation of previously implicated 

candidate genes, and only certain comparisons between specific groups were made. It was 

thus decided to include all the significant associations found without correction in the 

present thesis. The thesis can thus serve as a report of novel but initial findings. Each 

association will need to be further assessed in terms of biological/clinical plausibility. 
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Confirmation studies in other independent populations are usually required for most 

association studies for epidemiology.  

 

 

5.10 SUGGESTED FURTHER RESEARCH 

 

5.10.1 Follow-up study 

 

The design of this study is a prospective cohort that will be followed up annually for a 5-

year period. Further research will focus on the investigation of genetic and environmental 

factors that are associated with any newly developed co-morbid conditions, the RA 

progression measured by the change of clinical parameters, and any fatal events, during a 

certain period. Since the present thesis has shown abundant evidence that smoking and 

polymorphisms in the VEGFA, GSTM1, MMP1, MMP3, eNOS and TGFB1 genes are 

influencing disease severity and/or co-morbidity, these factors will be included in any 

follow-up studies. Serum samples will be collected again from each patient at the final 

visit, which allows us to measure serum markers (e.g. angiogeneic proteins, MMPs, 

TIMPs, etc) at the 5th year. Any relationship involving the change of the level of a 

particular marker during a 5-year peroid can then be assessed.  

 

5.10.2 Repetition of the study 

 

Repeating the studies using larger patient numbers and/or independent RA populations is 

needed. In the current study, since the case numbers of IHD and MI (and other co-morbid 

conditions) are not high, we can only identify some major effect, such as the VEGFA-
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smoking influence on IHD and MI, with a sufficient statistical power. Some smaller 

impacts, such as the eNOS-smoking and the MMP1-3-smoking effects on IHD/MI, are 

either insignificant or lacking in power. Independent populations are always useful to 

confirm associations, although some of the observations in the present thesis, such as the 

association of MMP1-3 polymorphism with serum MMP-1 and -3, are evidenced by 2 

individual populations. In addition, repetition in the general populations is essential for us 

to understand whether or not the observations seen in RA are disease-spectific 

relationships.   

 

5.10.3 Addition of other genes 

 

HLA-DRB1 is the major risk gene both in terms of disease susceptibility and disease 

severity in RA. In addition, evidence of interaction of this gene with smoking has been 

found. Recently, HLA-DRB1 SE has been suggested to be related to several signalling 

pathways involving NO and ROS production, MMP activation, angiogenesis and 

atherosclerosis, immune dysregulation, and T cell hyporesponsiveness (de Almeida et al, 

2011). Addition of the genetic content of HLA-DRB1 would allow us to investigate 

whether there are interactions with the genes investigated in the current thesis. Some 

genes, such as VEGFA, have shown a significant role in influencing RA outcome. 

Therefore, it would be interesting to see whether other genes in the major VEGFA 

signalling pathway are also important to RA. These genes may include HIFα and 

VEGFR2. To date, there are more than 40 susceptibility genes to RA. Some of them may 

also influence the disease outcome. It would be interesting to include some in the future 

studies.  
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5.10.4 Measurement of the levels of local protein and protein activity 

 

Only serum levels of the proteins have been measured, and the activities of the proteins 

have not been introduced in the current study. The levels and the activities of the proteins 

may be different in the circulation compared to that in the local sites such as synovial fluid. 

For example, we have some evidence showing that there is no significant correlation 

between MMP-1 in serum and MMP-1 in synovial fluid (data not shown). Further 

measurement of the levels and the activities of the proteins is needed. 

 

5.10.5 Investigation of molecular and biological mechanisms 

 

Our epidemiological research has provided some very interesting and important 

associations and interactions. However, the reasons behind these relationships are 

unknown. To fully understand the mechanisms involved, molecular, cellular and animal 

based research is needed.  
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CHAPTER    6                CONCLUDING  

SUMMARY 
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The main objective of this study was to identify some of the main determinants of poor 

outcome in RA, both in terms of disease severity and co-morbidity. The results indicate 

that smoking (ever-smoking) is associated with seropositive RA, in particular with RF+ 

RA. The presence of RF and anti-CCP is strongly associated with RA clinical measures, 

with RF associated more with nodular disease, higher disease activity and worse functional 

outcome and anti-CCP more with a greater likehihood of erosive disease. In seropositive 

RA, no association of smoking with measures indicating disease severity was found. We 

speculate that smoking has some effect but any effect in those patients is masked by a 

greater effect from autoantibodies. After removing the influence of autoantibodies (in 

seronegative patients), significant associations of smoking with erosive disease and 

functional outcome measured by HAQ were observed. We conclude that the total effect on 

RA outcome attributed to smoking is considerable, because it contributes to the production 

of autoantibodies prior to the onset and/or in the early stage of disease, and in those 

without autoantibodies it shows a direct impact leading to a worse outcome.  

 

Smoking was associated with the increased number of co-morbid conditions presented in 

RA, implying that smoking may be a risk factor for a number of co-morbidities. In 

particular, smoking was found to be significantly associated with the occurrence of IHD 

and MI.  

 

The results indicated that the association of smoking with the release of RF only occurs in 

patients carrying the GSTM1-null genotype. This confirms the smoking-GSTM1-null 

interaction previously observed by Mattey et al (Mattey et al, 2002). Our results also 

indicate that the association between anti-CCP and erosive disease only occurs in GSTM1-

null patients. Furthermore, this relationship was independent of the association between 
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smoking and erosive disease in those patients. No association of GSTM1, T1 

polymorphisms with any co-morbid condition was found.  

 

VEGFA polymorphisms within the 5’-flank region of the gene are highly linked with each 

other, while no LD is detected with the 3’-flank polymorphism. A SNP in the promoter 

region, VEGFA-2578, was significantly associated with serum levels of VEGF-A, with the 

CC genotype associated with the highest levels. There is evidence suggesting that the 

above association may be depend on the level of inflammation. Furthermore, it appears 

that only this CC genotype is associated with increased levels of VEGF-A when the 

inflammation also increases, suggesting a genotype-specific response. Serum VEGF-A 

level was associated with pro-inflammatory markers and disease clinical measures. 

VEGFA-2578 SNP was also associated with some of the measures, particularly with 

disease activity. Interestingly, this association was restricted to patients who had never 

smoked. The AA allele at VEGFA-2578 seems to play a protective role against high 

disease activity in patients who had never smoked, and this function disappears in patients 

who had ever smoked. Such a relationship was consistent when analysing disease activity 

score over time (a 2-year period). In addition, we find that the genetic association with 

disease activity is independent from the serum level association. The results also provide 

some evidence that polymorphisms in the VEGFA gene may be associated with age at 

onset of RA, tobacco addiction and RF production. A major observation in the current 

study was that by interacting with smoking the polymorphisms in the VEGFA promoter 

region (VEGFA-2578 and -460) are associated with the occurrence of IHD and MI in 

patients with RA. The majority of the effect appears to be from this interaction rather than 

individual factors. In addition, several traditional and established risk factors for CVD 

were confirmed in this study, such as hypertension, diabetes type 2 and the inflammatory 
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markers. Some evidence of an association of the VEGFA-2578 SNP with hypertension in 

RA was also found. 

 

No association of the eNOS+894 polymorphism with any RA clinical measures was found. 

A trend of the G allele with decreased occurrence of IHD and MI was observed. However, 

the results were not significant after adjustment for age, sex and RA duration. Furthermore, 

a possible interaction with smoking was found, although it was an insignificant trend. 

Since NO is an upstream and downstream regulator of VEGF-A mediated angiogenesis, we 

speculate that this possible interaction may be somehow related to the stronger interaction 

of VEGFA-2578 with smoking.  

 

The polymorphisms studied in the MMP1-3 genetic region are all linked, with the 2 MMP3 

(rs679620 and rs3025058) and the intergenic (rs495360) SNPs in the same LD block. 

MMP1 polymorphism (rs1799750) was associated with serum levels of MMP-1. 

Furthermore, the results indicated that the other 3 SNPs were all associated, and that the 

associations were independent of the rs1799750 association. Overall, the haplotype 

analysis indicated that 5A-A-G-1G (rs3025058-rs679620-rs495366-rs1799750) was 

associated with the higest levels of MMP-1, whereas 6A-G-A-2G was correlated with the 

lowest. Serum MMP-3 levels were mainly associated with the MMP3 polymorphisms. 

However, the intergenic and the MMP1 polymorphisms may also have some effect. In 

haplotype analysis containing all the 4 SNPs, 6A-G-G-2G was associated with the highest 

serum levels of MMP-3, while 5A-A-G-1G was associated with the lowest. In addition, 

data suggested that the polymorphisms located within the MMP1-3 gene region may be 

associated with serum levels of MMP-2 (rs495366) and -9 (rs1799750).  
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The results confirm that serum levels of MMP-1 and -3 are positively correlated with some 

of the clinical measures. More interestingly, the genetic polymorphisms in the MMP1-3 

region were found to be associated with disease activity, independent of inflammatory 

markers, and MMP-1 and -3 levels. This impact mainly comes from the MMP3 variants, 

with 5A-A (rs3025058-rs679620) associated with the highest disease activity. Moreover, 

this association was also significant when analysing disease activity over time (a 2-year 

period). 

 

In the current study it was found that the 5A-A-G-1G haplotype may have an effect on 

earlier development of erosive disease, although the major influence appeared to come 

from the MMP1 SNP (rs1799750). Further, this effect was enhanced by the combination 

with cigarette smoking, suggesting a possible interaction.  

 

We found some tentative evidence that polymorphism in the MMP1-3 loci may have a 

relatiponship with the occurrence of IHD and MI. An interaction with smoking may occur 

regarding this relationship. However, more solid evidence is needed. Apart from the above 

findings, other interesting results included an association of the intergenic SNP (rs495366) 

with age at onset of RA and elevation of serum MMP-3 levels in patients with previous 

MI. Information with regard to the relationship between MMP1-3 genetic polymorphisms, 

serum MMPs, serum TIMPs, and outcome variables including disease severity and co-

morbidity is also provided.  

 

Analysis of TGFB1 polymorphisms showed that those studied, including a SNP in the 

promoter region and SNPs in the coding region, are in the same LD block. There was no 

association of serum TGF-β1 levels with these genetic polymorphisms. However, serum 
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TGF-β1 levels were correlated with other serum markers such as MMP-1 and VEGF-A. 

No significant association of polymorphisms in the TGFB1 gene with RA activity/severity 

was found. In contrast, serum TGF-β1 levels were found to be negatively associated with 

nodular disease in the whole population, and positively associated with erosive disease in 

RF+ patients.  

 

The results regarding the relationship with CVD indicated that TGFB1-509 and 

TGFB1+868 SNPs are associated with the occurrence of IHD and MI, with the latter SNP 

demonstrating the strongest effect. Interestingly, the heterozygous genotypes were 

associated with the highest occurrence. We speculate that this may be explained by a 

disease-specific moleculer heterosis. More interestingly, the results indicated a strong 

interaction with cigarette smoking in relation to the above association. This interaction 

appears to be independent of the VEGFA-2579-smoking interaction and other risk factors 

observed in this study.  

 

Although the association of the PTPN22 gene with RA susceptibility is well established, 

the results of this study suggest that this gene is not involved in the determination of RA 

severity or co-morbidity.  

Smoking

MMP1-3 1G-5A
haplotype GSTM1-null

TGFB1+868 CT VEGFA-2578

RF +
Nodules

Disease activity ↑

Severity ↑

Erosive disease ↑

IHD and MI risks↑

C allele

A allele
Disease activity ↓

A composite review of the major findings in the present study, 
highlighting the possible smoking-gene interactions 
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APPENDIX 8.1 CLINICAL INDICES FOR RA  

 

Appendix 8.1.1 Disease activity score based on 28 joints 

 
(Copied from the Rheumatology Information Service Europe (RISE) website, 

http://www.kineret-eu.com/img/en/prodas_das28.gif) 

http://www.kineret-eu.com/img/en/prodas_das28.gif
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Appendix 8.1.2 Health assessment questionnaire 

Date……………………..                             Patient study number…………………. 

We are interested in learning your illness affects your ability to function in daily life. 

Please feel free to add any comments at the end of this form. 

PLEASE TICK THE ONE RESPONSE WHICH BEST DESCRIBES YOUR USUAL ABILITIES OVER 

THE PAST WEEK:                        Without ANY      With SOME      With MUCH      UNABLE 

                                                                         Difficulty            Difficulty          Difficulty          TO DO   

1. DRESSING AND GROOMING 

Are you able to: 

- Dress yourself, including tying shoelaces            □                         □                        □                     □ 

  and doing buttons? 

- Shampoo your hair?                                              □                     □                      □                   □ 

2. RISING 

Are you able to: 

- Stand up from an armless straight chair?              □                     □                      □                   □ 

- Get in and out of bed?                                           □                     □                      □                   □ 

3. EATING 

Are you able to: 

- Cut up your meat?                                                 □                     □                      □                   □ 

- Lift a full glass of milk to your mouth?                □                     □                      □                   □ 

- Open a new carton of milk (or soap powder)?      □                     □                      □                   □ 

4. WALKING 

Are you able to: 

- Walk outdoors on flat ground?                             □                      □                      □                   □ 

- Climb up five steps?                                             □                      □                      □                   □ 

PLEASE TICK ANY AIDS OR DEVICES THAT YOU USUALLY USE FOR ANY OF THESE 

ACTIVITIES: 

……Cane……Devices used for dressing (button hook, zipper pull, long handed shoe-horn etc) 

……Walking frame……Built up special utensils……Crutches……Special or built-up chair 

……Wheelchair      Other (specify)………………………………………………………………………. 
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PLEASE TICK THE ONE RESPONSE WHICH BEST DESCRIBES YOUR USUAL ABILITIES OVER 

THE PAST WEEK:                        Without ANY      With SOME      With MUCH      UNABLE 

                                                                         Difficulty            Difficulty          Difficulty          TO DO   

5. HYGIENE 

Are you able to: 

- Wash and dry your entire body?                          □                          □                       □                   □ 

- Take a bath?                                                         □                       □                     □                   □ 

- Get on and off the toilet?                                     □                       □                     □                   □ 

6. REACH 

Are you able to: 

- Reach and get down a 5lb object                         □                       □                     □                   □ 

(e.g. a bag of potatoes) from just above your head?  

- Bend down to pick clothing from the floor?       □                        □                    □                    □ 

7. GRIP 

Are you able to: 

- Open car doors?                                                  □                        □                     □                    □ 

- Open jars which have been previously opened?□                         □                     □                    □ 

- Turn taps on and off?                                          □                        □                      □                    □ 

8. ACTIVITIES 

Are you able to: 

- Run errands and shop?                                        □                        □                      □                    □ 

- Get in and out of a car?                                       □                        □                      □                    □ 

- Do chores such as vacuuming,                            □                        □                      □                    □ 

housework or light gardening? 

PLEASE TICK ANY AIDS OR DEVICES THAT YOU USUALLY USE FOR ANY OF THESE 

ACTIVITIES: 

……Raised toilet seat……Bath rail……Bath seat……Long handled appliances for reach 

……Jar opener (for jars previously opened) Other (specify)…………………………………………….. 

PLEASE TICK ANY CATEGORIES FOR WHICH YOU USUALLY NEED HELP FROM ANOTHER 

PERSON:…Hygiene…Gripping and opening things…Reach…Errands and housework 



 

 384

Appendix 8.1.3 Mechanical joint score 

 

Examination 

 

“In each hand the PIPs and MCPs are examined by observing the patient making a full fist 

and then fully extending the fingers (Figure 8.1.3a). Wrists are examined using the ‘prayer’ 

and ‘inverse prayer’ manoeuvres (Figure 8.1.3b). Each elbow is examined by bending and 

straightening it (Figure 8.1.3c).” 

 

“The shoulder is examined by asking the patient to place their hand behind their head with 

their arms pointing laterally (Figure 8.1.3d); internal rotation of the shoulder is tested by 

asking the patient to put their hand behind their back and tough their shoulder blade 

(Figure 8.1.3e). Hip abduction is examined by using the examiner’s hand to fix the pelvis 

(Figure 8.1.3f); hip rotation is examined with the patient’s legs held extended (Figure 

8.1.3g). Flexion and extension of the knee are examined with the examiner’s hand on the 

knee to feel for joint instability (Figure 8.1.3h).” 

 

“Dorsiflexion, plantar flexion, inversion and eversion of the ankle joint are examined. 

Finally, in examining the MTPs the feet are inspected for gross deformity and palpated for 

subluxation and callus formation (Figure 8.1.3i).” 
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Scoring 

 

“When scoring each joint or set of joints, 0 is taken to mean no abnormality but is also the 

score given if any joint is absent for any reason or if the joint deformity is congenital in 

origin.” 

 

“A score of 1 represents possible or minor abnormality; it is the score given if there is a 

slight resting deformity or if the reduction in the range of joint movement is less than 20%. 

A score of 2 represents definite or moderate abnormality; i.e. a definite resting deformity or 

a moderate reduction in the range of joint movement (20 – 40%). A score of 3 indicates 

severe abnormality or bony surgery. Total PIPs, MCPs and MTPs of each hand/foot are 

scored as one joint.” 

 

“The final score is calculated by summing the scores for the individual joints or sets of 

joints, giving a minimum score of 0 and a maximum of 54.” 

 

Figure 8.1.3a-i Examination of mechanical joint score 

 
(Reproduced from Johnson et al, 2002) 
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APPENDIX 8.2 ETHICS APPROVAL 

 

Study title: Prevalence of co-morbidity in rheumatoid arthritis 

 

REC reference: 1360 

 

Ethics approval for this study was originally granted to Dr. Julie Barber as the chief 

investigator, with Dr. Derek Mattey as one of the research team. Dr. Barber was a specialist 

registrar in Rheumatology who finished her training shortly after commencement of the 

study, and subsequently left the region. Due to this, an application was made for a 

substantial amendment to allow Dr. Mattey to take over as chief investigator, and for an 

extension of the recruitment period. This amendment was granted in April 2005. The letter 

of approval from the ethics committee for the amendment to the study is enclosed.     
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APPENDIX 8.3 SMOKING QUESTIONNAIRE 

 

To complete the survey we would like to ask some general questions about you, and also 

about your health. 

Please tick the box, which applies to you, or write on the dotted line. 

Qu. 1 Are you                                                         Male □ 

                                                                            Female □ 

Qu. 2 Have you ever smoked?         Yes □          Go to Qu. 3 

                                                          No □          Go to Qu. 8 

Qu. 3 How old were you when you started smoking?...................................................... 

Qu. 4 If you no longer smoke at what age did you stop smoking?.................................. 

Qu. 5 Did or do you smoke cigarette □ 

                                                 cigars □ 

                                                 a pipe □ 

Qu. 6 How many cigarettes or cigars did or do you smoke per day on average?............ 

Qu. 7 If you smoke or smoked a pipe, how many ounces of tobacco per day?............... 

Qu. 8 Dose anyone else you live with smoke?      Yes □        No □ 

Qu. 9 At the moment do you have a paid occupation?      Yes □        No □ 

Qu. 10 Are you retired?      Yes □        No □ 

Qu. 11 What was your last paid employment?................................................................. 

Qu. 12 Do you live      with a partner □      in residential care □      alone □ 

                                     with relatives □      with friends □ 

Qu. 13 If you have a partner what is, or was, their employment……………………….. 

Qu. 14 If you have a partner have they retired?      Yes □      No □ 

Patient study number………. 
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APPENDIX 8.4 DIAGRAMS OF DIGESTION OUTCOME FOR RFLP 
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APPENDIX 8.5 ESTIMATION OF PERCENTAGE OF THE 5A-1G (RS3025058-

RS1799750) HAPLOTYPE IN PATIENTS CARRYING 5A6A AND 1G2G 

GENOTYPES 

 

Appendix 8.5.1 Relationship between genotypic combinations and the 5A-1G 

haplotype 

Genotypic combination (n) Number of copies of 5A-1G 

5A5A/1G1G (65) 

 

2 

5A6A/1G1G (50) 1 

5A5A/1G2G (31) 1 

5A6A/1G2G (123) 

 

1* 

6A6A/1G1G (8) 0 

6A6A/1G2G (37) 0 

5A5A/2G2G (10) 0 

5A6A/2G2G (46) 0 

6A6A/2G2G (39) 0 

* The majority (84%) of the patients carrying 5A6A/1G2G had a copy of 5A-1G due to the 

LD between these 2 polymorphisms. 

 

Appendix 8.5.2 Calculation method 

 

Among the rs3025058-rs1799750 haplotypes, the total percentage of 5A-1G was 38.6% 

(estimated by Haploview). If all 5A6A/1G2G patients contained a copy of 5A-1G, the total 

5A-1G haplotype would be (65 × 2 + 50 +31 +123)/[(65 + 50 + 31 + 123 + 8 + 37 + 10 + 

46 + 39) × 2] = 41%. The determined 5A-1G was (65 × 2 + 50 + 31)/[(65 + 50 + 31 + 123 

+ 8 + 37 + 10 + 46 + 39) × 2] = 26%. Therefore, the percentage of 5A6A/1G2G patients 

who carrying a copy of 5A-1G was (38.6% - 26%)/(41% - 26%) = 84%. 
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APPENDIX 8.6 HAQ SCORE IN FEMALE RA PATIENTS STRATIFIED BY THE 

COMBINATION OF GSTM1 GENOTYPE (NULL VS. EXPRESSING) WITH 

EVER-SMOKED STATUS 

Combination, n HAQ 

Never-smoked, GSTM1-expressing, 53 1.49 ± 0.73 

Never-smoked, GSTM1-null, 65 1.45 ± 0.76 

Ever-smoked, GSTM1-expressing, 76 1.54 ± 0.73 

Ever-smoked, GSTM1-null, 90 1.68 ± 0.69* 

Values are mean ± SD; * p = 0.029, ever-smoked, GSTM1-null vs. the remaining 

combinations as a whole, adjustment for age and DD. 
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