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Abstract. Images from omnidirectional cameras are used frequently in
applications involving artificial intelligence and robotics as a source of
rich information about the surroundings. A useful feature that can be
extracted from these images is the distribution of gradients of the edges
in the scene. This distribution is affected by the pose of the camera
on-board a robot at any given location in the environment. This paper
investigates the effect of the pose on this distribution. The gradients in
the images are extracted and arranged into a histogram which is then
compared to the histograms of other images using a chi-squared test. It
is found that any differences in the distribution are not specific to either
the position or orientation and that there is a significant difference in the
distributions of two separate locations. This can aid in the localisation
of robots when navigating.

1 Introduction

The goal of this paper is to test a bio-inspired system that can recognise and
distinguish between two locations1 using visual information, specifically infor-
mation from edges within the scene. Tests will measure how changes in pose
may effect this information and whether or not there is a significant difference
between separate locations. Tests are made simpler by using an omni directional
camera. Visual information is used as it is the primary sense that mammals
use to navigate in their environments. The omnidirectional camera emulates the
near omnidirectional vision of rodents and to reduce the amount the variability
of images that can be taken from same position.

In the field of robotics there are many parts of a design one might want to
consider. One very important ability that is required for an autonomous robot
would be to navigate within its environment. Navigation can be broken down

1 During the course of this paper the word ”location” will refer to the immediate
environment (the set of positions that share the same contextual name) of the robot
for example the kitchen or the lab. Whereas ”position” will be an exact measure
of where the robot is (eg coordinates x, y). Pose defines the position (x, y) and
orientation (theta) of the robot.



into three distinct tasks, localisation, mapping, and path finding [1]. There are in
essence two ways to approach robot navigation; there are the pure computational
methods and biologically inspired methods. Pure methods include examples such
as those described in [2],[3], and [4]. These methods have come a long way in
producing reliable results for navigation but they often produce a lot of data
and high fidelity maps that then require optimisation before they can be used
efficiently(see [3]). This means that these methods have a high demand for mem-
ory and computational power. In contrast animals seem to do the same tasks
without high fidelity maps, using primarily visual stimuli. Biologically inspired
robotic navigation can be further broken down into two more categories; top
down methods and bottom up methods. For example top down methods start
by observing the behaviour of living organisms and how they react to stimuli
and situations, whilst attempting to reproduce these behaviours in robots. Franz
and Mallot demonstrate a review of some top down biologically inspired robot
navigation methods, which take inspiration from insects and rodents [5]. In con-
trast bottom up methods attempt to reproduce natural navigation by looking
at how individual parts of an animal may work in tandem to navigate in an
environment. This could be how individual neurones fire in response to stimuli
within their receptive field. Work produced by Kyriacou (see [6]) is one such ex-
ample; this work focuses on producing a working computational model of head
direction cells within the brain that aid in determining the orientation of the
robot.

Bio-inspired computing has influenced the way in which robots localise and
navigate in their environments. Sensors designed to mimic the way insects use
polarised light from the sky to navigate to and from their nests as described
in work by [10]. Other notable examples include teaching a system to change
navigation methods based on environmental cues and the concept of Time Till
Contact (TTC) which can be utilised for obstacle avoidance without feature
detection by using optical flow. This can be improved by incorporating angular
velocities and a Kalman filter [11, 12, 13]. Localisation using vision is essentially
the ability to compare the current view to images in memory that are linked to a
spatial location [14]. It has been found and discussed by Anzai [15] how the visual
system in monkeys exhibits selective firing when encountered edges and textures
that correspond to certain angles that exist within the visual field within the V2
region of the brain. The cells within V2 region of the visual system respond more
to complex stimuli such as curves and angles. This suggests that this information
is an important component of the image, the image itself being important for
localisation. By developing a localisation system based on information gathered
from the behaviour of the brains of animals it is hoped that the resulting system
will be robust.

There have been studies that use edges and gradient information from images
to compute image similarity [16][17] and localise [18]. However there is a lack
of information about how this kind of information changes with respect to the
pose of the camera and whether or not it can be used as a stand-alone method
to differentiate between locations in the navigable environment.



Omnidirectional images could be used to compare the views taken at differ-
ent locations. Images taken using omni-directional cameras are unwrapped in
such a way so as to form a continuous panorama image. During the unwrapping
process there is some warping of the original image, distorting the information
density, due to the nature of the omni-directional camera lens and the inter-
polation methods that have to be employed [19]. Omni directional images used
in applications that also use image gradient distribution could potentially suf-
fer with inaccurate comparisons due to changes in camera pose. Work in object
recognition with omni-directional cameras, for example [20], could be affected
by these changes in pose. There is little available research on the effect that
a change in pose can have on the gradient distribution of an omnidirectional
image. This study explores the effect of changing pose on the gradient distribu-
tion by comparing similarity of the histograms of gradients in images using the
chi-squared test [22] as a metric of similarity.

(a) Reference position image for empirical analysis.

(b) Image after moving camera forward 80cm showing an apparent distortion on the
tables.

(c) Image after rotation the reference image by 60 degrees.

Fig. 1: These photographs show the unwrapped omnidirectional images taken at
two different positions in the same room. At first glance it seems that there is a
greater apparent change in the images between the change in position compared
to the change in orientation

It is hypothesised by looking at images such as those in Figure 1, that there
will be a greater difference in the gradient histograms due to position than there
will be due to the orientation as the camera lens is rotationally symmetric and
a change in position seems to cause a greater distortion. Also there will be a



significant difference between the histograms of gradients between two different
locations (between Figs. 1&4) that could be utilised as a determinant of location.

The aim of this study is to see how, by using the gradients of edges, a scene
may be used to localise a robot within it’s environment using only visual infor-
mation received from it’s camera. In order to test this, omni-directional images
taken in the same location (room) but from different poses (in terms of position
and orientation) are compared with each other by means of their edge content.
Also, images taken in another location (i.e. a different room) are compared with
the first set using the same method.

2 Method

Fig. 2: This image shows the camera with 360 degree lens attachment mounted
with velcro on the back of an RC car.

A Sony Bloggie 2 camera with a 360 lens attachment, as shown in Figure 2, was
used to capture all the images that were used in this study. A limited perspective
camera was not used due to the fact that locations would require the capture of
multiple views from which to be identified. Many animals benefit from wild fields
of views that allow them to be aware of more of their environment without having
to move around a lot to do so. An omnidirectional camera can handle this issue
better as all possible views of a position are incorporated into a single image.
The room where a majority of the images were captured (GR) conveniently had
a floor of tiled equilateral triangles as shown in Figures 3a&3b. This room was
chosen for this reason to ensure that distances and angles between images were
constant. Initially, to check if there was any inherent time dependant error due
to the hardware, software, or the environment, multiple images were taken from
the same pose (Figure 3b centre point at 0 degrees). Images taken from this one

2 https://www.sony.co.uk/electronics/support/webbie-hd-bloggie-cameras-mhspm-
series/mhs-pm5 Last accessed: 1/05/2018

https://www.sony.co.uk/electronics/support/webbie-hd-bloggie-cameras-mhspm-series/mhs-pm5
https://www.sony.co.uk/electronics/support/webbie-hd-bloggie-cameras-mhspm-series/mhs-pm5


pose were used to compute the minimum difference that could be attributed to
temporal error. The Positions that images were taken from are also described in
Figure 3b, which shows the 7 positions and the various angles at which the images
were taken for a total of 24 images for the GR. The centre point has smaller
angle intervals as this is used primary to test for changes due to orientation
without changes in position. Whereas points 1-6 are used to test for changes due
to position, and changes due to changes in position and orientation.

(a)

(b)

Fig. 3: (a) Shows the GR and its convenient tiled flooring. (b) Shows a partial
layout of the first room images were taken with all the positions and orientations
marked. Length of triangle sides are 40cm.



For future comparison, another set of images were taken from a different
room (TR), see Figure 4 using the same angle increments as the centre point in
the GR. The angular increments were kept constant with the use of a regular
hexagon template. This is also another point of comparison for how changes in
orientation alter the edge gradient distribution.

Fig. 4: This is an image of the TR from which images were used to distinguish
the viability of this method as one that would be suitable to distinguish between
different locations.

2.1 Image Processing

To process the images the OpenCV 3 library was used in conjunction with the
Sony Playmemory Home software. Playmemory Home was used to unwrap the
raw images into a panorama like image. OpenCV was then used to extract the
gradient information from the image. To do this, Sobel operators [21] in the x
and y direction were used to get two gradient images, and after this a method
was used to combine these images to produce two new images. One of the result-
ing images being the image where each pixel value represents an angular value
between 0 and 360 which is also the direction of the edge as shown in Figure 5c.
The other image being a magnitude image where each pixel value is the magni-
tude of the gradient as shown in Figure 5b. The magnitude image was altered
via a binary threshold where the cut off point was one fifth the maximum mag-
nitude. This threshold was empirically chosen. The chosen threshold appeared
to be a good value where prominent edges persist whilst artefacts due to low
magnitude edges such as textures were removed. The resultant binary image was
used as a mask to remove noisy gradients with low magnitudes that do not pro-
vide any useful information in this context. Once the gradient image had been
masked the value of every non zero pixel was written to a file for comparison
against other images.

3 https://opencv.org/ Last accessed: 1/05/2018

http://support.d-imaging.sony.co.jp/www/disoft/int/download/playmemories-home/win/en/
https://opencv.org/


(a) Unwrapped image before processing.

(b) Full magnitude image.

(c) Full angle image.

(d) Binary threshold of magnitude image.

(e) Angle image after being masked with the binary threshold. This shows the location
and direction of edges in degrees.

Fig. 5: This figure shows intermediate image Processing Steps. Images (b) and
(c) are obtained from (a). Image (d) is obtained via a binary threshold applied
to image (b). Image (d) is used to select important information from image (c).
Image (e) is the final product used to produce the gradient distribution

2.2 Data Representation

The edge information from the collected images was used to produce histograms
that describe the gradient distribution at each of the sampled positions in the two
locations used. These histograms were then compared using openCV’s compHist
method. The compHist method has four different tests it can use to compare the
similarity of the histograms. The one that was chosen to compare the histograms
was the chi-squared test [22] where big values of the test statistic (chi-square)
mean big differences (in terms of edge distribution) in any two images being



compared. Figs. 6a and 6b illustrate how the chi-squared value represents a
distance between the histograms of seemingly similar and different places.

(a) This Figure shows how two seemingly similar places look when their histograms are
overlaid. This would give a very small chi-squared metric as there is a small difference
between the lines at any point.

(b) This Figure shows how two seemingly different places look when their histograms
are overlaid. This would give a large chi-squared metric as there is a large difference
between the lines at many points.

Fig. 6: The x axis of the histograms are values that gradients can take in the
image. The y axis is how many time a given gradient occurs.

3 Results

The check for temporal errors resulted in some low level differences across dif-
ferent frames taken from the same pose. The mean chi-squared distance from
images at the same position and orientation was 860.8 ± 98.8, this information
gives an estimate of how much error there may be within any other results due
purely to external factors, e.g: camera auto exposure calibration(no camera op-
tion to disable), light changes due to flickering lights, and sensor noise on the
camera.
The main aim of this work was to check whether changes in pose are more depen-
dant on position or orientation, therefore a comparison of the image data where
only the position and only the orientation was changed was performed. To do
this, for every image recoded the histogram generated from it was compared to



that of the other images, resulting in a table of chi-squared results that could be
used to easily visualise any relationships between the different poses from which
the images were captured. The table in Figure 7 is illustrated visually (using
grey-scale to represent the chi-square value) . A t-test was performed to check
whether there was a significant difference between images where only position
was changed and images where only orientation was changed, this was done us-
ing images from both the GR and the TR. To do this all the data points that
are the result of positional changes only were averaged and data points that are
the result of changes in orientation only were also averaged. These averages were
used to perform the T-test. The average chi-squared distance due to changes
in position was 1947 ± 1448 whereas the average chi-squared distance due to
changes in orientation only was 1851± 1005. A rejection of the leading hypothe-
sis is attained showing that there is no significant difference between the means
(p = 0.393 > 0.05).

Fig. 7: This image shows how every image was compared to all other image.
Each pixel represents a chi-squared value, resulting from a comparison of two
rooms which can be found on the axis. It highlights the distinction between
similar and dissimilar rooms where low values-dark correspond to comparisons
of images captured at different poses in the same room (GR) and high values-light
correspond to comparisons of images taken in different rooms (GR&TR). The
axes of this illustration refer to the position and orientation of the corresponding
image; e.g Point 1 60 is the image taken from Point 1 at 60 degrees as shown in
Figure 3b.



Using the same method of comparison (i.e the t-test), all the data points
from the Figure 7 that corresponded to comparisons of images taken in different
rooms (i.e the light regions) were averaged and compared to the average of the
data points from image comparisons of the same room (i.e the dark regions).
The mean difference between images from the same room was 1917.8 ± 1062
and the mean from images of different rooms was 13574.1 ± 2920. Due to this
data the alternate hypothesis, that there will be a significant difference between
the histograms of differing rooms, fails to be rejected as there is a significant
difference between the means of the two sets of data (p = 2.6 × 10−95 < 0.05).

Conclusion and Further Work

It was found that a change of position seemed to have a similar difference to a
change in orientation; this was shown within the results section with the t-test
showing no significant difference between the data from each. It has also been
confirmed how gradient histograms as a global feature could potentially be used
as a distinguishing feature between two locations. This global feature could be
used as a coarse localisation feature as a fast way to limit any search space
for finer localisation later. However, more research would be required to further
justify this statement. This could be done by comparing images taken from
multiple locations in the environment of the robot in the same way as this work
has shown. How will a larger set of areas affect the robots ability differentiate
between locations? The method discussed on the paper has not been designed
to handle transitional locations. For example, if the robot were in a door way
and could see 2 separate locations where would it say it belongs? Future work
could look at developing a strategy to handle this scenario. This could possibly
be accomplished by segmenting the image if there are two locations with similar
chi-squared distances. Future work could also use video as opposed to still images
will be used, providing multiple images per position but also the temporal link
between them. This could mitigate any false positives due to a poor comparisons
as the incorrect comparison would be overshadowed by the average from the
other images.
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