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Abstract  
 

The essentiality of silicon and the toxicity of aluminium within humans are both topics of much debate; the 

current conception is that silicon is essential in ameliorating aluminium toxicity, however, the evidence for this 

remains inconclusive.  

To be able to elucidate the connection between silicon and aluminium in neurological disorders, it is first 

important to understand the relationship between the elements in healthy individuals. This research was 

designed to investigate whether supplementing the diet with a silicic acid-rich mineral water could be a non-

invasive means of reducing aluminium body burden in both healthy individuals and those suffering from multiple 

sclerosis.  

Drinking a silicic acid-rich mineral water significantly enhanced the urinary excretion of aluminium, in both 

healthy individuals and in multiple sclerosis.  

Collecting whole daily urinary excretions for healthy individuals indicated that aluminium was concomitantly 

excreted with silicon; this was most effective when the mineral water was consumed as a bolus, suggesting that 

the mineral water has greater influence when consumed in large quantities over a short time. In addition, 

reductions in urinary aluminium were also witnessed over time, supporting the use of silicic acid-rich mineral 

water in reducing and maintaining aluminium body burden at a lower level.  

Supplementing the diet with a silicon-rich mineral water, for a period of 12 weeks, reduced aluminium body 

burden in individuals with multiple sclerosis; concomitantly, in this short amount of time, disability scoring 

showed clinically relevant improvements in 2 out of 15 individuals. Longer-term studies, involving larger study 

populations, are now needed to see if these effects are long lasting; if improvements are seen over time, it could 

support the link between aluminium and multiple sclerosis.  

This research also presents preliminary evidence that sweat may be a more efficient excretory mechanism in 

lowering the body burden of aluminium in healthy individuals.  
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In conclusion, the results suggest that including a silicic acid-rich mineral water into the regular diet, without the 

need of following strict restrictions, could be a prophylactic therapy against aluminium toxicity in healthy 

individuals, and in addition, could be beneficial as a chelating agent for endogenous aluminium. 
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Chapter 1 – Introduction. The quintessential nature of silicon 

 

Silicon, is a chemical element, with the atomic number of 14. In 1808, the name silicium 

(from Latin: silex meaning a hard stone/flint) was first given to the element (Weeks 1968), with the –

ium word ending suggesting a metal like form, a name which is preserved in several languages. The 

English name, as we know it today was suggested in 1817 to conform to the properties of the physically 

similar elements, boron and carbon (Weeks 1932). Silicon was first characterised and prepared in its 

purity in 1823 and is a solid crystalline structure at room temperature with a boiling point of 3,265oC. 

Like water, its density is greater in the liquid state and expands when it freezes (Hull 1999). Silicon is 

described to be a metalloid, displaying both metal and non-metal properties. In its crystalline form, it 

is grey in colour and has a metallic lustre. The outer obital, like carbon, has 4 valence electrons. The 

1s, 2s, 2p and 3s subshells are filled completely, there are 2 electrons located in the 3p subshell out of 

a possible 6. Silicon is a semiconductor with a negative temperature coefficient of resistance, this is 

due to the increase in the number of free charge carriers with increase temperatures (Hull 1999).  

 

 

 

 

 

 

 

Figure 1.1 Structural image of silicon (Hong, Xiao 1993) 
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Silicon is the second most abundant in the Earth’s crust, but is rarely found in its elemental form due 

to its high affinity for oxygen, forming rocks and minerals; such as, quartz, aluminosilicates, 

sedimentary and igneous rocks which are not readily broken down unless exposed to substantial 

weathering. Chemical and biological weathering of these rocks and minerals, through algae, plants 

and lichens for example, release the element. This causes the bioavailability of silicon in the natural 

environment to increase (Jugdaohsingh 2007). The dissolution of silica from these minerals in water 

results in the formation of soluble silica species below 2mM (Jugdaohsingh 2007), such as orthsilicic 

acid, SiOH4 (see figure 1.2), this ‘free’ form of silicon is now in a form that is biologically available and 

can be actively taken up by plants and animals (Jugdaohsingh 2007). 

 

 

 

 

Fig 1.2: Structural view of orthosilicic acid 

 

Si is considered to be a beneficial element in biology (Neilsen 1984). Within the natural world it is 

known that there are various sea sponges and microorganisms such as diatoms which form skeletal 

structures composed of silica. Silica is also deposited in many plant tissues, thought to contribute to 

structural support in the vascular system (Pilon-Smits et al 2009). Silicified trichomes of Cannabis 

sativa, horsetails and many grass species are also seen (Cutter 1978). 
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1.1 Si essentiality in higher animals 
 

There has been much debate over the role of Si in higher animals. Epstein (1999) stated that ‘an 

element is defined as quasi-essential if it is ubiquitous in plants, and if a deficiency of it can be severe 

enough to result in demonstrable adverse effects or abnormalities in respect to growth, development, 

reproduction, or viability’. Research has shown that a Si deficient diet can result in poor growth, 

Carlisle found that by feeding chicks an identical diet accompanied by a Si supplement showed fifty 

percent higher growth and normal development.  

 

 

 

 

 

 

Fig 1.1.1 Carlisle’s Chicks: The chick on the right had been given a normal diet, whereas the chick on 

the left had been supplemented with Si (Carlisle 1972) 

 

Not only was there a clear size difference between the two chicks, see Figure 1.1.1, but the general 

health of the non-supplemented chick was poorer, with muddyish yellow subcutaneous skin as 

opposed to the healthy pinkish white of the supplemented chick (Carlisle 1972). Carlisle then began 

to investigate this further by looking at the effects of silicon supplemented diet on bone formation, 

looking in particular at the skull and bone (Carlisle 1980). The beaks and legs of the non-supplemented 
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chicks were thinner, paler, and more easily fractured than those of the supplemented chicks, see 

Figure 1.1.2. 

 

 

 

 

 

 

Figure 1.1.2: The top left skull and femur bones B are those of a chick consuming a normal diet, whilst 

the bottom left skull and femur bones A are taken from a Si supplemented chick of the same age. 

(Carlisle 1980) 

 

Silicon is regarded as a beneficial element for the human body, and has the primary function of 

developing and maintaining connective tissue and the structural system. There are a number of 

studies focusing on the effect of increased silicon on the human body. The effect on bone and cartilage 

has been explored in humans as early as 1979, when the activity of a soluble Si drink was studied 

against the trabecular bone volume (TBV) in men. The study noted a significant increase in TBV 

compared to the controls (Schiano et al 1979). Silicon has been described to be ‘essential’ for the 

strength and integrity of the tunica intima (Schwartz 1977), the inner layer of an artery, observing that 

there is an inverse relationship between the concentration of silicic acid in drinking water and the 

prevalence of cardiovascular disease in Finland. 
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The effect of silicon on skin, hair and nails appears regularly in literature, Lassus (1993) performed an 

open study with an oral Si colloidal solution during a 3 month period, from which he saw statistically 

significant improvements in turgor and thickness of the skin, hair and nails. 

 

This presents the argument whether silicon is beneficial or essential. Humans are exposed to silicon 

every day, through pharmaceuticals, cosmetics and dust, but, the major and most important source 

of exposure for the general population, is the diet. 

 

1.2 Si in the diet 
 

The vast majority of silicon we are exposed to comes from our diets. High levels of silicon are found in 

foods derived from plants, such as; grains, barley and rice, which is to no surprise when the abundance 

of silicon in the Earth’s crust is considered. Silicon in the bioavailable form of orthosilicic acid is at a 

high exposure in drinking water and beer. 

In the western world, an average daily intake of silicon is approximated at 20-50mg/day; (Bowen & 

Peggs, 1984; Pennington, 1991; Anasuya et al. 1996; Uthus & Seaborn, 1996; Van Dyck et al. 1999a; 

Robberecht et al. 2009) including around 60% of this value coming from cereals and grains, and 20% 

from water (Pennington, 1991; Uthus & Seaborn, 1996; Jugdaohsingh et al. 2002; Robberecht et al. 

2009). Due to differences in diet between the sexes, intake is generally lower in women than in men 

and has been suggested to decrease with age (Pennington, 1991; Jugdaohsingh et al. 2002; Bisse et 

al. 2005). As foods have varying levels of silicon, it is clear to see how the different diets around the 

world affect dietary silicon intake. Table 1.2.1 is taken from a study (Jugdaohsingh et al 2002) showing 

the top 10 food sources contributing to total silicon intake within the population. 
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Table 1.2.1 Major (top 10) food sources that contribute to total silicon intake in the population 

(Jugdaohsingh 2002) 

 

 

2Total percentage contribution of the foods listed: 54.6% and 45.1% for men and women, respectively. 

3Total percentage contribution of the foods listed: 55.3% and 51.2% for men and women, respectively 

 

 High fibre diets are linked to being more silicon rich, therefore due to their traditional plant based 

diet, eastern communities are shown to have higher silicon intake (Chen et al. 1994; Anasuya et al. 

1996).  The concentration of silicic acid in drinking water and beer falls below the 2mM saturation, 

therefore containing a form of Si that is highly bioavailable and absorbable (Sripanyakorn et al. 2004). 

The geographic location at which the water is sourced has a large effect on the silicic acid 

concentration of the water, with water sourced from more volcanic environments containing the 

greatest concentrations. Silicon in hard waters is also noted to be at a higher concentration than that 

of soft waters (Sripanyakorn et al. 2004). 
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 As previously discussed, the amount of Si leached from rocks and minerals is variable due to the 

weathering taking place. Table 1.2.2 shows a variety of different tap and mineral waters, as well as 

their source and corresponding silicon contents to represent the differences found in water. 

Table 1.2.2: The silicon content of mineral waters and tap waters from different sources. 

Author  Country  Source  Silicon content  

Dobie, 1982 cited by 
Birchall, 1991  

U.K.  Tap water (n = 23)  7 – 256 μmol L-1  

Giammarioli et al. 2005  Italy  Mineral waters  
(n = 207)  

77% <10 mg L-1  
>25 mg L-1 sourced from 
volcanic areas  

Gillette-Guyonnet et al. 
2005  

France  Tap water (n = 7)  
Mineral water (n = 8)  

4 – 11.2 mg L-1  
8.6 – 36.4 mg L-1  

Powell et al. 2005  U.K.  Tap water (n = 4)  
Mineral water (n = 3)  

0.25 ± 0.11 mg 100g-1  
0.54 ± 0.49 mg 100g-1  

Robberecht et al. 2009  Belgium  Mineral water (n = 24)  0.76 – 19.13 mg kg- 

 

1.3 Absorption and excretion of silicon 
 

As the essentiality of silicon in humans is yet to be confirmed, what can be looked at is the manner in 

which silicon is absorbed in the body. Studies have shown that the concentration of silicon excreted 

in the urine is directly proportional to that consumed in a controlled diet, with a very small amount 

being lost in the faeces (Reffitt 1999). Despite this, it must be understood that the degree of 

gastrointestinal absorption is relatable to the polymerisation involved (Yokoi & Enomoto, 1979; Reffitt 

et al. 1999; Jugdaohsingh et al. 2000; Sripanyakorn et al. 2009). For instance, smaller molecules of 

silica or orthosilicic acid are readily absorbed by the gastrointestinal tract, whereas the larger are 

broken down using hydrolysis into soluble monomeric repeating units, which can be readily absorbed. 

From this, it is understood that the absorption of silicon from plant material is low, whereas of silicon 

in drinking water and beer, in the form of SiOH4, shows high bioavailability and is therefore the most 
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efficient form of silicon for absorption through the gastrointestinal wall (Bellia et al. 1994a). This also 

provides evidence that the movement of silicic acid follows the water pool. 

As silicon is more soluble in near neutral environments than acidic, the majority of the absorption 

occurs via the intestinal wall, rather than the gastric one, allowing more time for higher silicon 

complexes to be broken down.  

The main excretory organ for silicon is the kidney (Dobbie & Smith, 1982a; Reffitt et al. 1999; van Dyck 

et al. 1999b; Sripanyakorn et al. 2004). Once absorbed, silicon is then filterable by the kidney. It is 

worth noting however that there is a very small occurrence of renal reabsorption within the nephron. 

There is currently no known mechanism behind silicon reabsorption in the kidney (Adler & Berlyne, 

1986), however, a significant amount of silicon is seen to be retained in the kidneys of rats after 

intravenous silicon injections (Mehard & Volcani, 1975; Berlyne et al. 1986b; Adler et al. 1986). Studies 

have seen an increase in the blood plasma concentrations of silicon in uremic patients, once again 

highlighting that the kidney is the main excretory point for silicon.  

The excretion value for the renal clearance of Si is reported to be 28.9±13.3 mg L-1 (Dhaese et al. 1995), 

which is a value that relates well to the expected dietary intake lying at 20-50mg d-1. This high 

excretory value further indicates that silicic acid is readily absorbed across the intestinal wall and then 

swiftly excreted in the urine (Bellia et al. 1994b; Popplewell et al. 1998), furthermore, peaks in the 

silicon values were recorded in the urine as little as 4 hours after ingestion (Reffitt et al. 1999). Renal 

clearance is estimated to be between 80 – 100 mL Si min-1 (Adler & Berlyne, 1986; Reffitt et al. 1999) 

with a half-life of 2.7 hours (Popplewell et al. 1998) further highlighting that urinary excretion is a 

preferred route for the removal of Si from the body (Reffitt et al. 1999; Sripanyakorn et al. 2004). 

 

There is a lot of evidence suggesting that the gastrointestinal absorption of silicon is directly 

proportional to urinary excretion of the element. This absorption is facilitated by aquaporins, protein 
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channels in the gastrointestinal wall that aid the transfer of water and smaller ions through to the 

bloodstream. There has been increased attention on this element and its pathway through the body, 

through strong associations with the beneficial elements, copper and zinc (Henk-Maarten 2007). 

Silicon is also related to an increase in calcium absorption, again, suggesting a positive effect on bone 

health (Jugdaohsingh 2007).  

 

1.4 Mechanisms of silicon essentiality 
 

In spite of the fact that silicon is widely regarded as an essential element in lower organisms and is 

reported to be beneficial to mammals, the biochemistry to explain its requirement in biota remains 

undefined. Silicic acid is not bound to proteins and exhibits no activity towards organic species at 

physiological pH (D’Haese et al. 1995). Indeed, there is no evidence to support the presence of organic 

structures of Si-C or Si-O-C bonds in bio-systems and no stable binding of silicic acid in biological 

molecules has been witnessed (Birchall, 1990). 

The only known biological mechanism of silicon is in the interaction with aluminium which is basic at 

physiological pH (Birchall et al. 1996). It has been proposed that the bioinorganic interaction between 

silicon and aluminium is the reason behind silicon’s essentiality (Exley, 1998). 

 

1.5 Toxicity of aluminium 
 

Aluminium (Al) is a trivalent cation found in its ionic form in most kinds of animal and plant tissues 

and in natural waters everywhere (Jiang et al 2008). Despite being the third most abundant element 

in the Earth’s crust, and being located right next to silicon in the periodic table, aluminium is not 

tolerated by living organisms. In fact, reports documenting aluminium toxicity in plants, fish and higher 
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animals have been accumulating. Cases on aluminium toxicity in mammals have been well reported, 

and many conditions are now associated with the accumulation of this element, specifically 

neurological conditions. The severity of these conditions seems linked with the route, the quantity 

introduced, absorption rates, the tissue distribution and the excretion rate (Riihimaki et al. 2008; 

Lemire et al. 2009; Hernandez et al. 2008). 

In contrast to Si, no biological requirements have been attributed to aluminium, more importantly, 

aluminium is not tolerated by living organisms. Exploration of aluminium toxicity is vast in plants, fish 

and higher animals. Accounts of aluminium toxicity in mammals and humans include osteomalacia, 

anemia (Kaiser et al. 1984) and a myriad of neurological disorders (discussed later in this section).  

 

1.6 Exposure to aluminium 
 

 

Aluminium has become particularly isolated from biological systems and generally requires another 

element to ‘deliver’ it into the human body, therefore increasing its bioavailability.  

Throughout the history, humankind have lived through various ‘metal ages’ including the Iron Age and 

the Bronze Age. The world has now entered the ‘Aluminium Age’, and aluminium is accumulating in 

the natural world due to recent anthropogenic factors; increased use in industry and deposition of 

aluminium in soils. This is resulting in elevated aluminium throughout the biosphere (Kawahara et al. 

2007; Gomez et al. 2008; Exley, 2009). 

 

There are a variety of routes from which aluminium can end up entering the body. Dermally it can be 

absorbed through using anti-persperants (Flarend et al. 2001), where aluminium chloride is a 
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significant component. It can be delivered intravenously, through vaccines containing aluminium 

adjuvants (Keith et al. 2002) and inhaled from dust in an occupational environment (Rifat et al. 1990; 

McLachlan et al. 1995). Oral introduction is also a significant contribution to the overall burden of 

aluminium, foods such as spinach, potatoes and tea are high in Al (Pennington & Jones, 1989), while 

the worst culprits are chemicals involved in food additives, water purifiers and medicinal products. 

(Harris et al. 1996; World Health Organization, 1998). 

 

1.7 Aluminium in the body 

 
Once aluminium has found its way into the body, where does it go?  

Aluminium presents low solubility in neutral solutions. This hydrolytic chemistry has meant that this 

omnipresent element exists in a form of low biological availability and has therefore remained mostly 

sequestered from biological systems (Exley, 2009). However, recent anthropogenic dynamics, 

including acid deposition of soils and increased use in industry are increasing the availability of 

aluminium within the biosphere (Kawahara et al. 2007; Gomez et al. 2008; Exley, 2009) and resulting 

in the initiation of aluminium accumulation within living organisms. 

Fortunately, only around 0.1% of total aluminium ingested is absorbed through the gastrointestinal 

tract (Day et al. 1991), of which the majority is excreted rapidly through the kidneys. This fact may 

signify that aluminium has little benefit to human health. The aluminium that does remain in the body, 

which is around 5% of that absorbed into the bloodstream, slowly accumulates in various tissues 

(Priest et al. 1997). Over time, this could lead to morbidity and mortality due to various mechanisms, 

which is an important implication to consider when studying human disease (Denton et al. 1984; Alfrey 

et al. 1986; Wilhelm et al. 1990; Day et al. 1991; Yokel, 2006; Verstraeten et al. 2008).  
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Aluminium is rarely in its free state, however, it can be seen forming biological complexes in the 

bloodstream, of which the most common reaction is that with the iron transporter ferrin, accounting 

for around 90% of all aluminium interaction in the blood (Harris & Sheldon, 1990; Wrobel et al. 1995; 

Milacic et al. 2009). The movement of aluminium to binding sites in the tissue is facilitated by these 

weak interactions (Priest, 2004).  

On average, a healthy individual would contain a total measured body burden of around 60mg 

aluminium within their bones and tissues (Yokel, 2013). Although research states that aluminium can 

be found in all tissues in the body, it is very unevenly distributed, showing the greatest accumulation 

in bone tissue (Ganrot, 1986; Zafar et al. 1997). Other favourable spots for aluminium deposition are 

the skin, kidneys, liver, heart and brain (Alfrey, 1980; Exley, 2001; Xu et al. 1990; Hellstrom et al. 2008; 

Gonzales et al. 2009). On a cellular level, Al accumulation is mostly associated with lysosome, 

chromatin and cell nucleus (Galle, 1987; Lukiw et al. 1992; Karlik et al. 1980).  

Elimination rate of aluminium is dependents of the location of aluminium in the tissues, as aluminium 

can move throughout cellular compartments (Exley et al. 1996). When analysing the accumulation of 

aluminium in bone, it is possible to determine a half-life for aluminium in the body of around 50 years 

(Yokel, 2013). This ‘pool’ of aluminium allows to increase accumulation under prolonged exposure 

(Krewski et al. 2007). 

Many studies have set about to investigate the mechanism surrounding aluminium’s movement 

across the blood brain barrier. Aluminium is associated with many neurological conditions and can be 

viewed in the brain tissue histochemically. Modified haemotoxylin or lumigallion are the gold standard 

for aluminium staining in tissues. A common condition associated with increased brain aluminium 

pathology is Alzheimers disease, which is usually characterised by the presence of senile plaques, 

composed of Beta-Amyloid (Jones et al 2011). This study highlighted the relationship between 

aluminium and AB-42. Staining methods were combined to show a clear association between amyloid 
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protein, stained with Highman’s congo red and thioflavin t, and aluminium, stained with modified 

haemotoxylin, see Figure 1.7.1. 

 

 

Figure 1.7.1: Brain tissue of Alzheimer’s disease patients stained for aluminium and amyloid using modified 

haemotoxyln, congo red and thioflavin T. Tissue section (20 "m thickness) from occipital lobe (A–D) stained with 

modified haematoxylin and Highman’s Congo red and showing (arrow and insert) a spherulite (ca 20 "m diameter 

under, A) optical light; B) partially polarized light; C) crossed polarizers; D) fluorescence. Scale bar in A–D is 100 

"m. Tissue section (20 "m thickness) from frontal lobe (E–G) stained with modified haematoxylin and thioflavin T 

and showing (arrows and inserts) numerous spherulites (ca. 5–25 "m diameter) under, E) optical light; F) crossed 

polarizers; G) fluorescence. Scale bar inE–G is 200 "m. Tissue section (20 "m thickness) from frontal lobe (H–L) 

stained with Perl’s stain for Fe(III) and showing, H) under optical light no obvious spherulites but some ‘green’ 

stainingfor Fe(III) (arrow); I) numerous spherulites in the same section under crossed polarizers. Counter staining 

of the same section with thioflavin T shows numerous spherulites appearing, J) yellowunder optical light; K) as 

‘green’ Maltese crosses under polarized light; L) fluorescent green under fluorescent light. Scale bar in H–I is 200 

"m. (Jones et al. 2011) 
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The mechanism behind the uptake of aluminium into the brain is much more efficient than its release, 

this indicates that the amount of aluminium residing in our brain tissues increases with age (Exley and 

House 2011).  

1.8 Sources of Al exposure 
 

 

In this ‘Aluminium Age’ there are myriad sources responsible for this level of Al exposure. Al can be 

absorbed dermally through use of antiperspirants (Flarend et al. 2001), injected as vaccine adjuvants 

(Keith et al. 2002) or inhaled as dust in an occupational hazard risk (Rifat et al. 1990; McLachlan et al. 

1995). 

As explored during this thesis, oral introduction is also a significant source of Al exposure, one that 

with efforts could be minimised. Plant based foods, such as spinach, potatoes and teas are naturally 

abundant in Al (Pennington & Jones, 1989); in addition the application of Al in medicines, food 

additives and as a flocculent in water treatment further increases this oral exposure (Harris et al. 1996; 

World Health Organization, 1998). Typical diets in the western world contain about 20mg d-1 

(Pennington & Jones, 1989); although Al intake has been noted at up to 5g d-1 through the ingestion 

of antacids (World Health Organization, 1998). 

The presence of Al in tap water is relatively small in comparison with the amount contained within the 

food we eat (Priest et al. 1998); a mere 3-8 % of dietary Al comes from municipal water; the guideline 

for this is given by WHO (1998) and should not exceed 0.2mg L-1. However, it has been proposed that 

Al may be more bioavailable in water compared to food (Flaten, 2001). 
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The bioavailability of Al is highly affected by other dietary mechanisms; Al absorption is increased by 

fatty acids (Aspenstrom-Fagerlund et al. 2009) and affiliated with the ingestion of organic acids found 

in fruits and juices, particularly citrate (Slanina et al. 1986; Weberg & Berstad, 1986; Molitoris et al. 

1989; Walker et al. 1990; Day et al. 1991; Domingo et al. 1991; Taylor et al. 1992a; 1998). In direct 

contrast, silicic acid can reduce the bioavailability of aluminium (discussed later in this section), even 

in the presence of citrate (Birchall et al. 1989; Birchall & Chappell, 1989; Edwardson et al. 1993; 

Birchall, 1995). 

 

1.9 Al distribution around the human body 
 

 

Despite a number of studies highlighting the danger of large concentrations of Al on our diets, only a 

fraction (0.1%) of Al ingested by healthy individuals is actually absorbed through the gastrointestinal 

tract (Day et al. 1991) and the bulk of this is readily excreted through the kidneys (Ganrot, 1986; Exley 

et al. 1996; Popplewell et al. 1998; Powell et al. 1999b). This adds to the hypothesis that Al is of little 

significance to human health. However, about 5% of this absorbed amount of bioavailable Al is 

retained in the body (Priest et al. 1997), and over time, this accumulates in various tissues; potentially 

resulting in morbidity and mortality through a variety of mechanisms. This is an important implication 

for copious human diseases. (Denton et al. 1984; Alfrey et al. 1986; Wilhelm et al. 1990; Day et al. 

1991; Yokel, 2006; Verstraeten et al. 2008). 

Once in the blood, Al can complex with biological molecules (Harris, 1992; Priest, 2004), of which 

approximately 90% involves the iron transporter transferrin (Harris & Sheldon, 1990; Wrobel et al. 

1995; Milacic et al. 2009). These complexes are bound weakly and therefore the transport of Al to 

binding sites in our tissues is readily facilitated (Priest, 2004). 
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Al has been confirmed to accumulate in all tissues in mammals (Gonzales et al. 2009); however, the 

distribution of Al between tissue group is variable, with the highest levels seen in bone (Ganrot, 1986; 

Zafar et al. 1997). Other primary locations of notable Al deposition include the skin, kidneys, liver, 

heart and brain (Alfrey, 1980; Exley, 2001; Xu et al. 1990; Hellstrom et al. 2008; Gonzales et al. 2009). 

Al distributions also shows varied distribution within cell organelles, accumulating predominantly in 

the lysosome (Galle, 1987), cell nucleus (Lukiw et al. 1992) and chromatin (Karlik et al. 1980). 

Total body aluminium has been shown to transfer between different systemic compartments (Exley 

et al. 1996). This is highly dependent on the elimination rate of the tissue (Yokel & McNamara, 1989). 

The terminal half-life of Al in humans is estimated to be up to 50 years, a value calculated from Al in 

bone (Yokel, 2013); in addition, this notable high deposition of aluminium within the bone may allow 

it to serve as a reservoir for prolonged exposure (Krewski et al. 2007). 

As associations between Al and neurological disease continue, many studies have highlighted that Al 

may increase the permeability of the blood brain barrier. Uptake of aluminium into the brain is at least 

an order of magnitude more efficient than its release, which has a half-life of 7 years (Yokel et al. 

2006). In conclusion, aluminium within the brain increases with age; a review by Exley & House (2011) 

concluded that ‘normal’ human brains contain between 0.1 – 4.5 μg g-1 dry weight, with typically <2 

μg g-1 dry weight being associated with non-demented elderly. 

 

Gray matter appears to be the primary site for aluminium deposition in the brain (McDermott et al. 

1978), a region with a high density of transferrin receptors, such as the cerebral cortex and 

hippocampus (Edwardson et al. 1992). Specific compartments for brain aluminium are identified in 

Table 1.9.1. 
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Table 1.9.1: Major sinks/sources of aluminium within the brain (reviewed in Exley & House 2011). 

 

Despite the limited knowledge of the aluminium distribution throughout the tissues, it is known 

through histochemistry and quantitative analysis that it is present and has a strong association with 

neurodegenerative disease, specifically; Alzheimer’s disease, Parkinsons disease and multiple 

sclerosis. 

1.10 Role of metals: essential or neurotoxic? 
 

 

A number of metals are involved in the normal functioning and maintenance of the central nervous 

system. To mention a small number of examples, iron is critically required in the synthesis of 

neurotransmitters and plays a leading role in oxygen transport and electron transfer (Takeda, 2004); 

copper is a vital precursor in the electron transport chain involved in adenosine triphosphate 

synthesis, and finally, copper and zinc biochemistry is connected to messaging events within the 

synaptic cleft (Duce & Bush, 2010) and are components of superoxide dismutase (SOD). 

However, a level of neurotoxicity can result from a deviation in the natural balance of these essential 

metals (Olanow & Arendash, 1994; Bush, 2000; Sayre et al. 2005; Proudfoot, 2009). To measure 

Astrocytes, oligodendrocytes, microglia, mononuclear migratory cells.

Senile plaques, neurofibrillary tangels, Lewy bodies, lipofuscin.

Brain interstitial fluid

Pathological features

Non-neuronal cells

Neurons

Blood-brain barrier Endothelia, choroid epithelia, cerebrospinal fluid, pericytes, basal laminas.

Proteins (transferrin, albumin), neurotransmitters (glutamate, gamma amino butyric acid, 

acetylcholine, dopamine), nucleotides (ATP, ADP, AMP), amino acids (aspartate, serine, 

Sink/Source for Al Including
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toxicity, the underlying mechanisms are examined. These mechanisms of toxicity include alterations 

in cell membrane permeability, changes in nucleic acid function, and inhibition of protein synthesis 

resulting in variable enzyme activity. 

In multiple sclerosis, the levels of urinary aluminium excretion have been noted as similar to those 

seen in aluminium intoxication suggested that aluminium may be a hitherto unrecognized 

environmental factor associated with the aetiology of MS (Exley et al 2006).The cellular accumulation 

of lead and mercury has been associated with the development of autoantibodies against neuronal 

cytoskeletal proteins, neurofilaments, and myelin basic protein in humans and animals. Overexposure 

to lead and mercury ions is known to be neurotoxic, particularly to motor neurons. Low-to-moderate 

levels of lead exposure can cause functional alterations in T-lymphocytes and macrophages that lead 

to increased hypersensitivity and can alter cytokine production, which increases risk of inflammation-

associated tissue damage (Napier et al. 2016).  

The relationship between these essential trace metals and neurological disease is thought to be 

directly linked to a disruption in homeostatic mechanisms, leading to significant changes in their 

distribution and regulation (Duce & Bush, 2010). Evidence advocates that aluminium toxicity 

promotes the disruption of essential metal homeostasis (Exley, 2001; Kawahara et al. 2007; Wu 

et al. 2012). 

This has led to the idea that there is a connection between these metals and that their 

involvement in neurological disease may actually be a result of aluminium toxicity. 

 

1.11 Potential mechanisms of aluminium toxicity 
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Chemical properties, including charge and size, of aluminium are similar to many elements that the 

human body sees as essential, this enables it to act as a competitive inhibitor with other metals for 

target sites on specific enzymes, receptors and signalling molecules, resulting in a manipulation in 

activity (Exley, 2009). 

Magnesium and calcium play a leading role in neuronal reactions, being involved in neurotransmitter 

release and neuronal growth. Aluminium has been observed to replace magnesium at phosphate at 

binding sites on cell membranes, ATP, and DNA (Exley, 1992; Harris et al. 1996; Kawahara & Kato-

Negishi, 2011), and even demonstrated to replace calcium ions within bone, which results in an 

interference between calcium-based signaling events. This can trigger apoptosis within the tissue 

(Platt, 1994; Exley, 2001; Kawahara et al. 2007; Nday et al. 2010). 

Biological processes dependent on iron are considered to be a main target of aluminium toxicity. By 

disturbing iron homeostasis, the presence of aluminium subsequently leads to the production of 

reactive oxygen species (ROS) (Bondy & Kirstein, 1996; Exley, 2004; Wu et al. 2012), contributing to 

any toxicological effects. An increase in oxidative events have been noticed with interactions between 

aluminium and copper (Bondy et al. 1998; Becaria et al. 2003). 

In addition to this exploration about aluminium’s ability to affect homeostasis of essential metals in 

the body, other mechanisms for aluminium induced neurotoxicity have been proposed, mainly 

focussing on multiple sclerosis. 

The most commonly discussed suggestions include: 

a) Aluminium enhanced oxidative stress caused by lipid peroxidation of nervous tissue 

phospholipids, which affects the integrity of cell membranes (Sarin et al. 1997; Nayak & 

Chatterjee, 1999; Drago et al. 2008; Dua et al. 2010). 

b) Aluminium promotes neuro-inflammatory events (Platt et al. 2001: see also Bondy, 2010). 
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As it is believed that the occurrence of MS is liked to both genomic and environmental factors, the 

idea that Al may interact directly with the genomic structure (Nayak & Chatterjee, 1999) further 

supports this theory. Al is attracted to negative binding sites on nucleic acids (Lukiw et al. 1998). This 

could have detrimental effects on neuronal activity and could be linked to the several genetic 

mutations identified in multiple sclerosis. A possible mutation found, in a gene called NR1H3, is a 

missense mutation that causes loss of function of its gene product, LXRA protein. LXRA controls 

transcriptional regulation of genes involved in lipid homeostasis, inflammation, and innate immunity. 

Mice with this gene knocked out are known to have neurological problems, including a decrease in 

myelin production (Wand et al, 2016).  A detailed review on the potential mechanisms of Al toxicity 

can be found in Tomljenovic (2011). 

By considering of the variety of biological molecules able to bind to Al and the evidence that Al is 

able to displace essential metals from their binding sites, the idea can be consulted that Al toxicity 

could potentially affect any metabolic pathway (Exley, 2009) and may arise from a number of 

different interactions with the nervous system. 

1.12 Evidence for a role of aluminium in neurotoxicity 
 

 

The first report connecting aluminium and neurotoxicity in animals was reported by Dollken in 1897. 

However, the first evidential report confirming the connection was provided by Klatzo et al. (1965), 

who noted that rabbits injected with aluminium containing salts over time, formed neurofibrilary 

tangles in the brain. 

Evidence of aluminium neurotoxicity in humans was not presented until almost a century after this 

first connection (possibly because aluminium wasn’t as widely available during this time) when 

neurotoxicity was observed in individuals receiving dialysis treatment (Alfrey et al. 1976), confirming 
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the primary route of aluminium excretion is the kidney. Individuals with renal insufficiency are 

unable to effectively excrete aluminium (Flaten et al. 1996); dialysis encephalopathy occurred 

from notably high levels of aluminium in dialysis solutions (Wills & Savory, 1983); stemming from 

this, brain aluminium was revealed to be 10-fold in dialysis patients (Alfrey et al. 1976) compared 

to normal ranges < 2 μg g-1 (Andrasi et al. 2005). By treating the water used for dialysis, aluminium 

levels were decreased and aluminium related conditions were concededly reduced in these 

uremic individuals (Arenas et al. 2008). 

 

Since these investigations, aluminium toxicity has been linked to numerous neurological disorders, 

including amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer’s disease and Parkinson’s 

disease (Harris et al. 1996; Jeffery et al. 1996; van Landeghem et al. 1997; Altmann et al. 1999; 

Van der Voet et al. 1999; Jaffe, 2005; Peto, 2010; Bondy, 2010). However, the elements 

involvement in these conditions remains controversial as the specific role has not yet been 

concluded, despite increasing research being performed in this area (a full review of this is shown 

by Kawahara, 2005). 

It is thought that a common occupational exposure to aluminium is in dust and is suggested that 

this may contribute to cognitive impairment (Longstreth et al. 1985; Sjogren et al. 1990; 1996; 

White et al. 1992; Meyer-Baron et al. 2007) and Alzheimer’s disease (Kobayashi et al. 1987). As a 

lower urinary aluminium concentration may suggest a higher body burden, studies have related a 

urinary aluminium concentration below 135μg/L to a reduction in cognitive performance (Meyer-

Baron et al. 2007). In the mining industry, workers given McIntyre powder, an aluminium rich 

powder, as a prophylactic treatment against pneumoconiosis, saw a connotation between the on-

set of cognitive impairment with the length of their treatment (Rifat et al. 1990). However, to 
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refer back to the controversy surrounding this link, some authors state that there is little or no 

evidence to relate neurotoxicity to the occupational exposure of aluminium (Graves et al. 1998). 

 

The Camelford incident, in July 1988, twenty tonnes of aluminium sulphate was discharged by the 

South West Water Authority into the drinking water supplied to a large region of North Cornwall, 

raising the concentration to over three thousand times the admissible amount. Up to 20 000 people 

were exposed to concentrations of aluminium which were 500–3000 times the acceptable limit under 

European Union legislation (0.200 mg/l). When the first neuropathological examination of a person 

who was exposed and died of an unspecified neurological condition was carried out (Exley & Esiri, 

2006), a rare form of sporadic early-onset β-amyloid angiopathy in cerebral cortical and 

leptomeningeal vessels, and in leptomeningeal vessels over the cerebellum was identified. In addition, 

high concentrations of aluminium were found coincident with the severely affected regions of the 

cortex. Since then, there have been reports from individuals affected by this event who have 

developed long-term cerebral impairment (Altmann et al. 1999) and severe cerebral congophilic 

angiopathy (Exley & Esiri, 2006). 

 

A wealth of research has explored the use of aluminium adjuvants in vaccines. Adjuvants are included 

in vaccines as immunopotentiators (i.e. in order to stimulate the body's immune response to the small 

amount of coadministered antigen). 
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Figure 1.12.1, taken from Exley, Siesjö & Eriksson (2010). The aluminium adjuvant armoury and innate and 

adaptive immunity. (a) Dilution of the vaccine preparation into the muscle interstitial fluid (MIF) results in an array 

of potential agonists of the immune cascade, including: (1) Al3+
(aq); (2) free antigen (AG); (3) particulate adjuvant 

(ADJ); (4) ADJ with associated AG; (5) AG-Al complex; (6) MIF ligand-Al complex; (7) ADJ with associated MIF 

ligand; (8) MIF ligand-AG complex; (9) particulate iron (as contaminant of adjuvant) either free or with adsorbed 

Al/AG and resultant reactive oxygen species (ROS); (10) ADJ with associated MIF ligand-AG complex; (11) ADJ 

with associated MIF ligand-Al complex. MIF ligands might include biomolecules such as; ATP, albumin, transferrin, 

citrate, fibrinogen. (b) The array of agonists act upon a number of cell types including, the resident muscle tissue 

(potentially causing necrotic and/or apoptotic cell death) and infiltrating innate cells such as, monocytes (potential 

for AlADJ-induced differentiation to dendritic cells), granulocytes (potential for AlADJ-induced eosinophilia acting 

directly on B cells), macrophages (are known to persist for long periods close to the injection site and may be 

characterised by inclusions of AlADJ) and dendritic cells (DC). The latter may be the major antigen presenting cell 

(APC). (c) There are myriad possible modes of interaction between agonists and innate cells including; (i) toll-like 

receptor (TLR) binding of AG2, AG-Al complex5, MIF ligand-AG complex8, Al3+
(aq)

1; (ii) multiple TLR binding of AG-

ADJ4; (iii) phagocytosis of ADJ3, AG-ADJ4, MIF ligand-ADJ7, MIF ligand-Al complex-ADJ11, MIF ligand-AG 

complex-ADJ10; (iv) direct1 or indirect6 binding of Al3+
(aq) by membrane receptors and extracellular (lipid membrane) 
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or intracellular (nucleus) activity of ROS9. (d) APCs activate adaptive immunity through; (a) Nalp3 inflammasome 

dependent or independent release of chemokines and cytokines (green saucers) including IL-1β and IL-18; (b) AG 

presentation by MHC to T cell receptor combined with co-stimulatory molecules; (c) direct action of ADJ and/or 

Al3+
(aq) on B/T cells. The superscripts refer to the numbers in parentheses in the figure. 

 

 

 Neurotoxity has been associated with this use and allied with chronic cognitive dysfunction in 

macrophagic myofascitis (Couette et al. 2009). In one study it was documented that Gulf war veterans 

who were offered aluminium hydroxide injections as protective measure against anthrax, saw an 

increase in occurance of motor neuron disease (Shaw & Petrik, 2009). Individual case reports and 

supporting animal studies in rats have highlighted associations between the use of oral Al-containing 

antacids during pregnancy and abnormal fetal neurologic development (Gilbert-Barness et al. 1998; 

Shuchang et al. 2008). 

 

 

 

1.13 The monster inside me: Multiple Sclerosis  
 

 

 

Multiple sclerosis (MS)  is a potentially debilitating disease of the brain and spinal cord (central nervous 

system) affecting 2.5 million people worldwide (Fox 2014). MS is an acquired, inflammatory, 

demyelinating, neurodegenerative disease of the central nervous system (CNS) (Fulgenzi et al 2011). 

MS is referred to as an auto-immune disease. The protective fatty myelin sheath that surrounds the 
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nerve cells, to increase efficiency of a nerve impulse, is attacked by local immune cells, because it is 

mistaken for a foreign body, much like an immune reaction (Mcfarlin 1982), see figure 1.13.1. This 

damage disrupts the conductivity of the nerve cell, delaying and distorting messages, or simply 

stopping message transmission altogether (Perry 2014). The disease tends to progress in adults at 

young age (between 20 and 40 years), variably progressing in severity of symptoms for the entirety of 

life, for which there is no cure (Reiber et al 2009; Ibrahim and Gold 2005). The neurological 

impairments (attacks) that characterise multiple sclerosis, can be followed by asymptomatic periods, 

e.g., the pathology can present a relapsing-remitting course. Progression of the disease is generally 

accompanied by presence in the central nervous system of focal inflammatory lesions which are 

visualised using magnetic resonance imaging (MRI) (Fulgenzi et al 2011). Although the mechanisms 

involved in the pathogenesis of multiple sclerosis an autoimmune reaction against a myelin-related 

antigen have been identified, the aetiology of the disease is yet unknown (Exley et al 2009). A 

consensus leads to the opinion that the disorder is the result of a relationship between environmental 

factors and susceptibility genes. A number of studies propose the association of neurodegenerative 

diseases with toxic metal (especially aluminium) exposition and accumulation in the CNS (Kumar and 

Gill 2009; Zahran et al. 2009; Taber and Hurley 2008). 

 

 

Figure 1.13.1 A normal nerve cell compared to a typical damaged nerve cell of an MS patient 
(RelayHealth 2009) 
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 1.14 The role of aluminium in MS 
 

In MS, the immune system attacks the protective myelin sheath that coats the nerve fibres. The 

damaged myelin forms scar tissue (sclerosis), giving the disease its name. The damage to myelin 

sheath results in nerve impulses traveling to and from the brain and spinal cord becoming distorted 

or interrupted, producing a wide variety of symptoms (Goldenberg, 2012). The aetiology and 

pathogenesis of MS has not yet been established although at autopsy, multiple, discrete pink or 

gray areas that have a hard, rubbery texture are identified within the white matter. The lesions are 

composed of areas of myelin and oligodendrocyte loss along with infiltrates of inflammatory cells, 

including lymphocytes and macrophages. The relative preservation of axons and neurons within these 

lesions helps to differentiate MS from other destructive pathological processes that are accompanied 

by focal inflammation (Goldenberg, 2012). 

More than 30% of MS patients have moderate-to-severe spasticity, mostly in the legs. Initial clinical 

findings in MS patients are often sensory disturbances, the most common of which are paresthesias 

(numbness and tingling), dysesthesias (burning and “pins and needles”), diplopia, ataxia, vertigo, and 

bladder (urinary sphincter) disturbances. A common manifestation of MS is unilateral numbness 

affecting one leg that spreads to involve the other leg and rises to the pelvis, abdomen, or thorax 

(Goldenberg, 2012). Sensory disturbances usually resolve but sometimes evolve into chronic 

neuropathic pain. Another common presenting sign of MS is optic neuritis, highlighted by complete or 

partial loss of vision. Bladder dysfunction occurs in more than 90% of MS patients and results in weekly 

or more frequent episodes of incontinence in one-third of patients. At least 30% of patients experience 

constipation. Fatigue occurs in 90% of patients and is the most common work-related disability 

associated with MS (Goldenberg, 2012). Sexual problems are often experienced as well. 
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Both mortality and morbidity data confirm that multiple sclerosis is a geographically-related disease, 

and thus MS can be thought of as an acquired exogenous illness (Kurtzke, 1977). MS occurrence is 

high in America, medium in Europe, and low in Asia. Processed foods which are high in aluminium are 

common in the diets in individuals residing in the western world, and make up a lower proportion of 

a traditional Asian diet (Pingali, 2007) In addition, an Asian diet is traditionally high in silicon rich foods 

(Jugdaohsingh, 2002), including rice, further highlighting the importance of the relationship between 

silicon and aluminium and how there may be a direct link between the prevalence of MS and body 

bioburden of aluminium. 

 

Several risk factors, including age, genetic disposition and environmental agents, have been 

connected with MS. Aluminium is a commonly discussed factor and has been associated with a 

multitude of neurophysiological processes responsible for the characteristic degeneration 

associated with MS; however, its actual role remains controversial (Exley, 2006). Dietary intake of 

aluminium from food and chemicals added may also be a noteworthy risk of MS (Rogers & Simon, 

1999). Tea, a significant part of the British diet, is estimated to contribute up to 50% of daily intake 

due to the high levels of aluminium it contains (Yokel, 2013). When greater than four cups of tea 

were consumed per day, aluminium in the urine was elevated, although not significantly (Forster 

et al. 1995). As aluminium is bound to organic complexes within tea, this may lead to it being 

poorly absorbed (French et al. 1989; Flaten, 2002). 

 

The level of aluminium found in the urine of MS patients is similar to that of aluminium intoxication, 

ranging from 0.22-0.66 µM (Exley et al 2006). There are no previous data on aluminium in MS, 

however a large incidence of MS was reported in macrophagic myofascitis (Authier et al 2001), an 
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inflammatory myopathy, linked to intramuscular injections of aluminium adjuvant containing vaccines 

(Gherardi et al 2001). Animal studies have shown that the favoured target of aluminium neurotoxicity 

was via accumulation in the myelin (Verstraeten et al 1998; Verstraeten et al 1997). Several reports 

exploring aluminium intoxication demonstrate a significant thinning of the myelin sheath, in both the 

spinal cord and hippocampus (Golub et al 1999; Deloncle et al 2001; Miu et al 2004). Aluminium has 

also been seen to increase kinase activity, responsible for the phosphorolation of myelin basic protein 

and decrease the activity of the myelin specific enzyme, 2’3’-cyclic nucleotide phosphohydrolase 

(Arroyo-Serralta et al 2005; Sarin et al 1997). This research indicates clear precedents that in animal 

research, if not yet in humans, the role of aluminium in MS is important. Those persons with a higher 

body burden of aluminium may accumulate the metal in oligodendrocytes and myelin, where it can 

disrupt the chemical pathways and facilitate iron-mediated oxidative damage (Exley 2004). The levels 

of urinary aluminium that are seen in relapse remissive MS may represent an association with myelin 

and demyelination, the breakdown of myelin may release aluminium that has accumulated in the 

protein, this may even mirror with the reactions involved with a relapse (Whitaker et al 2001). These 

neurotoxic results are mirrored in Alzheimer’s disease (Bartzokis 2004). 

 

1.15 Treating Al toxicity 
 

Evidence is compiling against aluminium and suggesting that it is a contributory factor in neurological 

disease. If this indeed is the case, if aluminium is a casual or at least contributory factor, it could be 

theorised that if the aluminium body burden was reduced and maintained at a lower level, the 

occurrence of the disease would decrease (Crapper McLachlan et al. 1991; Exley et al. 2006). We can 

also assume that a lowering of aluminium levels in the body would relieve symptoms of a disease in 

those previously diagnosed. 



40 | P a g e  

 

If aluminium is contributing so prolifically to neurodegeneration, it is crucial to educate the general 

population to understand the risks and symptoms surrounding the toxicity of the element. This may 

result in the population actively avoiding aluminium rich products (anti-persperant) and foodstuffs 

(tea). Accompanying this with current metal chelation techniques will produce a double whammy 

effect on aluminium levels in the body, as research has demonstrated chelation therapy as having 

positive effects on aluminium removal from body stores ((Nakamura et al. 2000). 

Desferrioxamine (DFO), a common chelating agent typically used as a treatment for ion toxicity, has 

also shown effectiveness when removing aluminium from the bone and brain (Nakamura et al. 2000; 

Yokel et al. 2001). DFO is linked to an increase in the urinary excretion of aluminium as well as reducing 

the rate of decline in Alzheimer’s disease patients suffering with a lowered performance of daily skills 

(Crapper McLachlan et al. 1991). Despite these positive findings, treatments involving the use of DFO 

is limited due to noticed side effects (Cronin & Henrich, 2006). Despite this, recent studies have 

suggested that a lower dose may still be effective, while lowering the occurrence of nasty side effects 

(Kan et al. 2010). There are other compounds which are seen to act as aluminium chelators, for 

example, ascorbate and feralex-G are commonly used in research (Kruck et al. 2004). Research into 

the synthesis of new ligands for aluminium is also increasing (Santos, 2008; Crisponi et al. 2012).  

In recent research, silicon has been deduced as an active antagonist towards aluminium. By 

supplementing the diet with silicon, as bioavailable silicic acid, a reduction in the bioburden of 

aluminium has been demonstrated, suggesting removal from tissue compartments such as the brain 

and surrounding nervous tissue (Exley 2009). 
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1.16 Silicon and its possible protection against aluminium toxicity. 
 

There is a wealth of evidence supporting the effect of silicon on aluminium accumulation in the body. 

It is also thought that silicon may have an influence on the oral absorption of aluminium (Belle’s et al 

1998).  

Once aluminium has found its way into the bloodstream, it is seen to co-localise with silicon, especially 

in aluminium rich regions such as the plaques characterising Alzheimer’s disease (Candy et al. 1986). 

This suggests that perhaps like aluminium, silicon, in its biological form of silicic acid, can cross the 

blood brain barrier (Yokel 2006). It may in fact be added that silicon in the brain could possess 

neuroprotective properties, being able to quench aluminium from the brain, hereby relieving the 

symptoms of AD and other neurodegenerative conditions. 

When introducing a silicon rich dietary source to rats, aluminium levels were significantly reduced in 

all tissues compared to that of the control group. Furthermore, urinary excretion levels of Al were also 

substantially lower (Belles et al 1998). This focuses primarily on the potential role of silicon in 

preventing oral aluminium absorption and retention in mammals. The results of a number of studies 

suggest that dietary silicon supplementation could be of therapeutic value for preventing chronic 

aluminium accumulation in the nervous system, and hence, be a potential therapy for 

neurodegenerative disease, such as MS (Domongo et al 2011).  

When processing all of the positive associations of silicon in drinking water, it can be suggested that 

the further addition of silicon to the diet in this manner, through silicon-rich mineral waters, can 

provide a non-invasive means to reduce aluminium body burden. The aluminium and silicon research 

group at Keele University (Exley et al 2006) was the leading pioneer in testing this suggestion. The 

initial study, investigating a potential non-invasive solution of reducing aluminium body burden in 
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Alzheimer’s disease patients, involved the consumption of up to 1L of silicon rich mineral water daily. 

An association between aluminium and MS has been established, so suggesting an increased silicon 

uptake, through consuming mineral water naturally high in silicon, is a viable method to reduce the 

aluminium bioburden in MS patients. The current results corroborate that silicon effectively prevents 

gastrointestinal aluminium absorption, which may be of concern in protecting against the neurotoxic 

effects of aluminium.  

1.17 Mechanisms behind the chelating effect of silicon. 
 

It was first proposed by Birchall et al (1989) that silicon could offer an ameliorating effect. When 

looking at salmon fry in acidic water, it was shown that acute toxicity of aluminium was eliminated in 

the presence of silicic acid. This mechanism was believed to involve hydroxyaluminosilicates (HAS) 

(Birchall et al. 1989; Birchall, 1990) and two discrete forms of HAS, called HASA and HASB. The 

structures of HASA and HASB have been determined are shown in Figure 1.17.1. It was theorised that 

similar mechanisms would apply to humans (Birchall et al 1989) and that interactions with human 

renal tubing may affect aluminium elimination by reducing reabsorption (Birchall, 1992).  

 

Figure 1.17.1 Hydroxyaluminosilicate structures (left); biological availability and solid phase, HASA 

and HASB self-aggregation (right) (Birchall et al 1989) 
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Investigating these two subspecies of HAS molecules, HASA and HASB may shine further light onto the 

protective mechanism of silicon against aluminium (Doucet et al 2003). Fig 1.17.2, a schematic 

showing pH-dependent formation and stability of Al(OH)3(s), HASA and HASB with particular 

reference to their abilities to carry charge, their pH of minimum solubility and their aggregation 

towards filterable sizes. (Exley 2012). 

 

Figure 1.17.2: Schematic showing pH-dependent formation and stability of 1 - Al(OH)3(s), 2 - HASA 

and 3 - HASB with particular reference to their abilities to carry charge, their pH of minimum solubility 

and their aggregation towards filterable sizes. From Exley (2012). 

Although it is believed that silicic acid is involved in the homeostasis of aluminium by reducing 

gastrointestinal absorption and facilitating the renal excretion of aluminium though the inhibition of 

reabsorption of systemic aluminium (King et al 1997), even in the presence of citrate, a natural 

aluminium binding agent (Birchall and Chappell 1989). Despite these positive findings, some studies 

show that there is no evidence that the ingestion of silicic acid promotes aluminium excretion (Reffitt 

et al 1999), and the presence of HAS in the body has yet to be proven (Exley, 1998). What is known is 

that the administration of silicic acid causes a peak in aluminium excretion, followed by a steady 

1 

2 

3 
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reduction, indicating that aluminium body burden is being reduced (Birchall et al 1989; Birchall, 1990; 

Bellia et al. 1996). Work stemming from this, carried out by Birchall and Exley (1992,1993) 

demonstrated that silicic acid inhibits the growth and nucleation of aluminium hydroxide at 

physiological levels when the pH is above 4.5, through the formation of filterable molecules of HAS. 

These studies suggest a minimum silicon concentration of 0.1 mmol L-1 is required to deliver this effect 

(Birchall 1992). 

Desouky and colleagues (2003) attempted to clarify the mechanisms behind the chelating effect of 

silicon on aluminium and how uptake of aluminium is in turn prevented in the water pathway, hereby 

reducing aluminium in the tissues. These studies involved the pond snail (Lymnaea stagnalis) and 

signified that instead of orthosilicic acid preventing the accumulation of aluminium within the tissues, 

the protective effect is in fact due to the formation of HAS, either in the water column or in the 

digestive tract. This idea correlated with notions theorised by Birchall and his colleages (1989). 

The Exley group reviewed the role of HAS(s) in controlling the biological availability of aluminium and 

considered the protective effects of HAS(s), which is known to extend to humans and human 

physiology, but is very poorly understood.  

What did Louis Pasteur have in mind when he said “Effects of silicic acid are destined to play a great 

and major role in therapy” (Pasteur 1878). 

Whatever it was that heightened Pasteur’s interest in the mid-nineteenth regarding the therapeutic 

properties of Si(OH)4 has remained largely unexplained, although the therapeutic potential of Si(OH)4 

still holds significant interest (Martin 2007). 

With increasing attention and focus on health, it is a hot topic to explore any method that causes 

significant health improvements, for such little invasiveness and cost. The fascination with Si(OH)4 and 

health possibly originates from the reputed health benefits of bathing in spa waters rich in Si(OH)4 
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(Domino and Gomez, 2011). Nutritional essentiality of silicon has been demonstrated in laboratory 

animals, using experiments which have given scientific support to theories of silicon essentiality in 

humans. Another study demonstrated that a higher level of urinary and faecal silicon was present in 

mice exposed to aluminium, while being administered silicic acid. These excretion levels were higher 

in those mice dosed with aluminium, suggesting that silicon and aluminium interact and combine to 

form a species, not taken up by the digestive tract (González-Muñoz et al. 2008a). Although, low blood 

serum correlated with high urinary silicon levels divulge that silicon-aluminium interactions limit 

reabsorption in the kidney (Bellia et al. 1996). 

The case for the importance of silicon is strengthened further by evidence that proves that living things 

grow better and healthier when they are grown in silicon rich environments (Epstein, 1994; 

Sripanyakorn et al 2009). Silicon is recognised as an essential trace element (Carlisle 1982). 

1.18 Concluding remarks 
 

The therapeutic mechanism of silicon when coupled with the toxicity of aluminium remains 

controversial, despite numerous studies supporting these claims. There is a wealth of evidence 

exploring the protective effects of silicon on the accumulation of aluminium. If biological systems have 

in fact evolved a protective mechanism, through interactions between silicon and aluminium, 

heightened also due to the increase in biospheric levels of aluminium (Birchall, 1990), it is understood 

that sufficient silicon (>0.1 mmol L-1 Birchall, 1992) is required to prevent the adverse effect correlated 

with aluminium intoxication. .  

 

Therefore, silicic acid-rich mineral water may be applied as a prophylactic means of diminishing the 

accumulation of aluminium within the body, providing an inexpensive and non-invasive method of 

reducing the risk of aluminium toxicity. 
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Chapter 2 -  Materials and methods 

 

Each study that included sweat and urinary measurements of aluminium and silicon were performed 

using TH GFAAS. Creatinine concentrations of urine were determined by UV-Vis spectroscopy. Further 

details of the study protocols are discussed in their relevant chapters.   

2.1.0 Background 
 

Techniques involving analysis at the atomic and molecular level are common when determining 

accurate concentrations of elements.  

Atomic techniques involve flame spectroscopy, inductively coupled plasma – optical emission 

spectroscopy (ICP-OES) and graphite furnace atomic absorption spectroscopy (GFAAS). Molecular 

techniques involve UV-visible spectroscopy (UV-Vis), infrared (IR) and nuclear resonance spectroscopy 

(NMR). 

This study involves the use of TH GFAAS to determine the concentration of aluminium and silicon in 

samples of human urine and sweat, these were complemented by creatinine concentrations 

determined by colourimetric analysis involving UV-Vis. 

2.1.1 Spectroscopy 
 

Spectroscopy is a branch of science concerned with the investigation and measurement of the 

interaction of electromagnetic radiation within matter. Electromagnetic radiation has wave and 

particle properties. This includes wavelength, frequency and amplitude, while light is composed of 

photons which possess certain characteristic energies.  

There is a relationship between these quantities and it can be represented by the following equation 

(Eq 2.1.1): 
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E = hv = hc/λ    Eq 2.1.1 

 

In this equation, E denotes energy (J), c represents the celerity of light (2.99792x108 m s-1) h is the 

Planck’s constant (6.62608x10-34 J s), v and λ denote frequency (s-1) and wavelength (m) respectively.  

The electromagnetic spectrum (Fig. 2.1.1) is composed of a wide array of wavelengths, ranging from 

gamma rays (<5nm) to radio waves (>300mm). In this study, only a small part of this spectrum is 

incorporated: UV-Vis spectroscopy is limited to the range of 190nm-750nm whilst atomic absorption 

spectroscopy occupies a range of 180nm-900nm. These techniques cover the range of the ultraviolet, 

visible and near infrared portions of the spectrum. 

 

Fig. 2.1.1 The wavelengths of the electromagnetic spectrum (NASA-imagine the universe, 2013). 

When light passes through a sample, the energy from the photons promotes a transition within the 

atoms in the sample. This transition results in the transfer of electrons in the molecule, atom or ion to 

be relocated to a different energy state.  

When an electron is promoted to a higher energy state from a lower energy state, this is known as 

absorption of energy. When an electron drops from a higher energy state to a lower energy state, this 

is known as emission of energy.  
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The Bohr frequency condition shows that the energy absorbed or emitted is equal to that of the energy 

difference between these levels and as each atom is unique, these values are characteristic to the 

atom involved and so the amount of radiation needed for these transitions is also characteristic of the 

element (Fig 2.1.2). 

 

Fig 2.1.2 Transition from a ground state (GS) to an excited state (ES) results in 

absorption, transitions from an excited state to the ground state results in emission. Energy 

absorbed or emitted is equal to the energy difference (ΔE) between energy levels. 

 

The two main methods used in this thesis involve types of absorption spectroscopy, therefore 

promoting electrons from a ground state to an excited state.  

These techniques involve a monochromatic light source of intensity (Io) passing through a cell of 

analyte (gaseous for GFAAS and liquid for UV-Vis). The analyte in the cell absorbs a quantity of this 

light which is directly proportional to the concentration of the analyte. The transmitting light (I) is 

turned into an electrical signal at the detector which is processed to indicate the amount of analyte 

present in the cell (Fig 2.1.3). 
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Fig 2.1.3 Schematic diagram of the atomic absorption of analyte in a cell. I0 is the incident 

intensity, I is the transmitted intensity and l is the path length. 

 

Transmittance, τ (no units), is the fraction of light that passes through the cell of analyte and is the 

ratio of intensity transmitted, I, and incident intensity, I0 (Eq2.1.2). 

τ = I/I0            (Eq 2.1.2) 

If a high concentration of analyte is present, very little light will be able to pass through the cell, this 

will result in a transmittance value close to zero; when no analyte is present in the cell, all of the light 

will pass through and a transmittance value of one occurs. Percentage transmittance can also be used 

to determine the amount of analyte in a cell. 

As there is no linear relationship between transmittance and concentration, quantitative 

measurements are presented in absorbance, A (no units). Absorbance can be related to transmittance 

using the following equation (Eq 2.1.3). 

A = -log τ = -log I/I0 = log I0/I       (Eq 2.1.3) 
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As concentration of the analyte increases, absorption value increases in consequence. There is a 

quantitative relationship here between absorbance and concentration and is governed by the Beer 

Lambert law. 

A = εCl      (Eq 2.1.4) 

Where ε is the molar absorptivity coefficient (m2 mol-1); l is the path length of the cell (m) and C is the 

concentration of the analyte (mol m-3). In AAS, sensitivity is increased by using long illuminated beam 

paths for the atom cells. This is due to the direct proportionality between path length and absorbance. 

 

As previously discussed, the Beer Lambert law states that there is a linear relationship between 

absorbance and concentration. However, when investigating larger concentrations, interactions 

between neighbouring atoms can cause non-linearity by affecting the absorbing ability at the given 

wavelength. As no light source is truly monochromatic, there are limits to the Beer Lambert law 

although these can be improved using background correction methods. 

 

2.1.1.1 Atomic absorption spectrometry (AAS) 
 

The principle of AAS is that atoms of different elements absorb characteristic wavelengths of light. To 

analyse a sample to determine whether it contains a particular element means using light from that 

element. For example with aluminium, a lamp containing aluminium will emit light from excited 

aluminium ions, producing the right wavelengths to be absorbed by aluminium ions in the sample. As 

this light is absorbed, electrons are promoted to an excited state. During the process of AAS, the 

sample is initially atomised then a beam of electromagnetic radiation which is emitted from the 
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excited aluminium ions is passed through the vaporised sample. The greater the number of aluminium 

atoms in the sample, the more radiation is absorbed; therefore, the amount of light absorbed is 

proportional to the number of aluminium atoms. A unique spectrum is achieved for each element due 

to a unique set of energy levels. 

Kirchhoft’s experiment can be used to demonstrate that gases absorb the same radiation they emit, 

which is a good illustration of atomic absorption. When white light projected through a split is 

dispersed by a prism, its constituent linear spectrum is observed. If this radiation source were to be 

replaced by a Bunsen burner, sprinkled with sodium chloride (NaCl) crystals, an emission of sodium is 

obtained presenting a yellow glow at 589nm and producing faded zones in its emission spectrum. This 

is the result of a high concentration of Na atoms in the flame which absorb these characteristic 

frequencies. This phenomenon is a manifestation of atomic absorption. 

An AAS requires three components; a light source, a cell compartment to produce gaseous atoms and 

a method of analysing the specific wavelengths absorbed. The most common light source is a hollow 

cathode lamp containing a tungsten anode and cylindrical hollow cathode, composed of the element 

to be quantified. These are sealed in a glass tube, containing an inert gas such as argon.  

During normal conditions, atoms are in their ground states (M) and upon light energy exposure are 

promoted to their excited state (M*). (Eq 2.1.1.1) 

M(g) + hv → M*(g) (Eq2.1.1.1) 

The ratio between these ground state (No) and excited state (N1) is given by the Boltzmann 

distribution equation (Eq2.1.1.2). 

 

 (Eq 2.1.1.2)                    
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In this equation, k represents the Boltzmann constant (1.381x10-23 J K-1). Temperature is noted as T (K) 

and g1/g0 represent the statistical weight of these states, showing each number of degenerative states 

contributing to the make-up of that level. 

 

Skoog et al (1998) shows that the energy difference between the ground (3s) state and the excited 

(3p) state for sodium is 3.37x10-19 J. Within these, there are 2 quantum levels in the 3s state and 6 

quantum levels contained by this 3p state. 

 

 

When values are submitted into the Boltzmann constant equation, it is shown that at 2500K more 

than 99.98% of sodium atoms exist in their ground state 

 

 

 

 

When the effect of temperature is examined, even with an increase of 10K, a value of N1/N0 = 1.79 x 

10-4 is given. This temperature change hardly affects the ground state population and therefore has 

very little effect on atomic absorption. The temperatures produced in a graphite furnace atomiser 

coupled to an AAS, ensure maximum sensitivity.  
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2.1.1.2 Graphite furnace atomic absorption spectrometry (GFAAS) 
 

Using a graphite atomiser is particularly useful when dealing with low analyte concentrations (ppb and 

ng/mL). 

A few millilitres of sample is injected into a graphite tube through a dosing hole (~1-3mm). The tube 

is heated electronically in several temperature ramping cycles, the highest being up to 3000oC, this is 

the atomisation step and is required to convert the sample into gaseous atoms.  

The entirety of this atomisation protocol consists of four stages: drying, pyrolysis, atomising and 

cleaning (Fig 2.1.1.2.1).The drying stage and pyrolysis stage involve the evaporation of solvent and 

removal of volatile matrix respectively. During atomisation, an atomic vapour of the analyte is formed 

during the decomposition of the prepared sample. The final stage concludes a cleaning process 

between each sample. 

 

 

Fig 2.1.1.2.1: Schematic of the temperature cycle employed in GFAAS. 1 = sample introduction, 2 = 

drying, 3 = pyrolysis, 4 = cooling, 5 = atomisation and 6 = cleansing. Adapted from Butcher and 

Sneddon (1998). 
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Throughout the entirety of this step, argon gas is passed through each side of the tube to channel out 

vaporised sample through the injection site. The gas flow is only ceased for the atomisation step, 

purely to ensure maximum sample residence time and maintain a higher temperature which coupled, 

will provide thorough sensitivity. 

 

The specific light energy emitted from the hollow cathode lamp is split and directed along two 

different paths; one beam is channelled throughout the atomised gaseous analyte, promoting the 

valence electrons to the higher energy level, while the other beam acts as a reference. These beams 

then pass through a monochromator which separate the multiple wavelengths receives from those 

from the analytical line. The detector then coverts the photons of light received at this wavelength 

into an electrical signal. The ratio of signal detected from the incident beam and transmitted beam 

respectively is logged and from these values, the absorbance, is recorded over the total analysis time. 

Following this step, the atoms are removed from the graphite tube. The absorbance value will increase 

in consequence to more atoms being formed. The concentration can then be accurately determined 

by using a range of calibration standards of known analyte concentration and compared using fit 

analysis.  

GFAAS offers many advantages over other instruments used for elemental analysis. Very low sample 

volumes can be used offering a high level of sensitivity therefore lower limits of detection. Despite 

this, analysis using GFAAS is very slow compared to other conventional methods of elemental 

detection; one replicate can take up to three minutes for a complete step cycle. The technique may 

also give a poor quality analysis result on a sample with many interfering matrices. More accurate 

absorption values may be obtained through a specific temperature design ramping protocol, removing 

this interfering matrix prior to the atomisation step. This measurement quality may also be improved 
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if the vaporisation of the analyte is prevented until the wall of the tube reaches a constant 

temperature. A L’vov platform may improve the efficiency of this step (Fig 2.1.1.2.2). 

 

 

 

 

 

 

 

Fig 2.1.1.2.2:  L’ov platform inside a graphite furnace 

The L’vov platform has minimal connections to the wall of the graphite tube which means that it heats 

at a steadier rate allowing a more constant temperature to be accomplished prior to the sample 

becoming atomised, giving a more accurate recording of absorbance. The furnace reaching this 

uniform temperature reduces any memory effects between readings.  

Analyte measurements may also be improved through the incorporation of matrix modifiers. A matrix 

modifier will increase the volatility of the matrix, thermally stabilising it, therefore reducing any 

chemical interferences. This is particularly useful when measuring elemental concentration in 

biological samples, for example silicon in urine; nickel chloride was used as a matrix modifier for the 

determination of silicon in urine, enhancing sensitivity and reducing background absorption 

(Kobayashi et al. 1997a; Matsusaki et al. 1996). 
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As previously discussed, the Zeeman background correction is used for those spectral interferences. 

This involved the addition of a 0.8T magnetic field. Measurements are made with and without a 

magnetic field; upon the addition of a magnetic field, only background readings are measured, whilst 

when the magnetic field is turned off, background and sample measurements are taken into account. 

The difference between these two readings equate to the measurement of the sample. The problem 

here is the interference of the magnetic field, the Zeeman background correction fails to take this into 

account.  

 

The carbon of the graphite tube can cause refractory carbides to form coupled with a loss of silicon 

dioxide from the atomisation process, causing a loss of sensitivity and reproducibility.  These 

limitations can be overcome by coating the graphite tube with titanium carbide and as previously 

discussed, incorporating a matrix modifier into the atomisation step. Matsusaki et al. (1996) carried 

out experiments involving a 0.04 mol L-1 cobalt nitrate and 0.01 mol L-1 boric acid mixture. The 

detection limit here was noted to be 0.0006mg L-1, providing high analytical sensitivity. 

The graphite tube is pyrolytically coated to minimise analyte diffusion into the material, reduce 

memory effect and reduce production of carbides (reducing chemical reactivity). This tube is enclosed 

by a blanket of argon to prevent combustion at the elevated temperatures witness in the graphite 

tube. The temperatures in this analysis chamber can be controlled up to 2700oC, with ramped heating 

up to 1500oC/s. 

This technique is not suitable for multi element simultaneous sample analysis due to the need for 

separate cathode lamp and furnace parameters per element. High dilution factors are required for the 

high sensitivity and limited calibration range of AAS. 
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2.1.1.3 UV-Vis Spectroscopy 
 

UV-Vis spectroscopy also involves the investigation of the absorption of photons as a principle. All 

compounds of different colours will absorb different wavelengths of radiation. UV-Vis makes use of 

this fact and can detect light absorption in the range of 190-900nm, covering ultraviolet, visible and 

near infra-red portions of the electromagnetic spectrum. The technique can be routinely used to 

quantify organic compounds by measuring this degree of absorption and the wavelengths at which 

this absorption occurs. The readings of absorption typically seen using UV-Vis measure between 0 (no 

absorption) and 2 (99% absorption). 

Energy is required to promote an electron to its excited state. When light passes through a ‘coloured’ 

complex, this energy corresponds to that particular wavelength and is sufficient to promote or excite 

a molecular electron to a higher energy orbital. As a rule, energetically favoured electron promotion 

will be from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular 

orbital (LUMO). The resulting species referred to as existing in its excited state. 

The light transmitted adopts the complementary colour to that of the absorbed wavelength. In the 

case of the creatinine complex, an absorbance of 500-520nm is observed.  

 

 

 

Fig 2.1.1.3.1 Colour wheel representing absorbed colour and their complementary colours 

The absorbance value witness corresponds directly to the number of absorbing molecules in the 

sample. These absorbing molecules are known as chromophores. Chromophore are molecular 
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identities able to absorb light in the visible region of the spectrum and display colour. Chromophores 

possess a conjugated system of pi electrons or a lone pair of non-bonding valence electrons.  

Conjugation is an important concept when analysing chromophores. Conjugation can cause an 

absorption maximum at a longer wavelength, known as a bathochromic shift phenomenon. During 

this study, picrate was added to creatinine to form a larger conjugated compound, shifting the 

absorption to a longer wavelength, inducing a colour change of yellow to orange/red. This 

phenomenon was also noticed when quantifying silicic acid in water samples, when a colour change 

was observed from yellow to blue. 

 

2.1.2 Quantification of compounds using UV-VIS Spectroscopy 

 
 

UV-VIS spectroscopy was used to quantify amounts of creatinine in urine using the Jaffe reaction, 

and silicic acid concentration in water samples using the molybdenum blue reaction, details of which 

are provided in the following sections. 

 

2.1.2.1 Creatinine 
 

 

Creatinine (structure shown in Fig 2.1.2.1.1), is the major breakdown product of creatine. Creatine is 

a component of muscle of which its main role is to facilitate recycling of adenosine triphosphate (ATP), 

the energy currency of the cell.  
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Fig 2.1.2.1.1 Molecular structure of creatinine 

 

Creatinine however, has no known function and is readily excreted from the body in urine at a 

reasonably consistent rate (Rodriguez et al. 2004). Detecting levels of creatinine is an important 

diagnostic medical tool to monitor glomerular filtration rate (GFR), which has clinical importance in 

measuring kidney function as well as muscular function (Costa et al. 2007; Spierto et al. 1997). In this 

study however, creatinine will be measured to account for dilution factors in the sampling protocol.  

The concentration of creatinine observed is sensitive to age and lean body mass, it can naturally range 

between 500-2000mg/day (Dugdale, 2009). Individuals that regularly carry out a lot of sport will 

naturally have a higher proportion of lean body mass, therefore excreting a larger amount of 

creatinine per day. Vegetarians however, will on average excrete less creatinine per day as they will 

consume less creatinine in their diets (Smith-Palmer, 2002).  

Creatinine excretion remains quite linear for each individual, ranging only slightly from any variations 

in diet and exercise. Creatinine values can fluctuate throughout the day, corresponding to dietary 

intake, work load and volumes of liquids consumed (Clarke, 1961). 
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2.1.2.2 Jaffe reaction for the quantification of creatinine 
 

The Jaffe reaction was used for the colourmetric measurement of creatinine in urine. In 1886, Max 

Jaffe (1841–1911) wrote about the basic principles of the paper ‘Über den Niederschlag, welchen 

Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins’ (1886) in which he 

described the properties of creatinine and picric acid in an alkaline solution. The colour change that is 

observed is directly proportional to the concentration of creatinine 

The method using in the investigations presented in this thesis was adapted from Gentaur (2004) and 

Accura Diagnostics Inc. (2009) although other current methods can include; capillary electrophoresis 

(CE), biosensors and HPLC. 

In this Jaffe reaction, an alkaline picric reagent is added to a prepared sample, producing a red 

coloured complex when combined with structures of creatinine. The intensity of this red colouring 

formed in the reaction mixture directly correlates with the concentration of creatinine and can be 

accurately quantified using UV-Vis spectroscopy, measured at 520nm (Clarke, 1961; Cambridge 

Biomedical Research Group, 2009). 

 

 

 

Fig 2.1.2.2.1 Possible interactions of the creatinine – picrate complex (Vasiliades, 1976) 

The Jaffe reaction is a reproducible and reliable method of quantifying creatinine in urine samples, as 

interferences from picrate interactions with glucose and proteins are not as high in urine as they are 

in serum.  
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2.1.2.1.1 Stability of creatinine 

 

During the urine collection protocol, patients were asked to keep urine samples in a cool place, such 

as a fridge. Once the samples had been collected and transported to the University they were stored 

in the appropriately labelled laboratory refrigerator until removed for analysis. It was imperative to 

investigate the stability of creatinine in urine and consider how long the sample could be kept for and 

what conditions must be maintained. Readings of creatinine may be lower in older samples, if 

creatinine were to be unstable. 

A study looking into the decomposition of creatinine in sheep urine by Van Niekerk et al. (1963), 

showed a rapid decay when urine is stored above room temperature, however, when he stored his 

samples below 4oC there was no notable change in the concentration of creatinine over a 5 month 

period.  

 

 

Fig 2.1.2.1.1 The percentage reduction in creatinine concentration over time in sheep urine stored 

between 27-30ºC (Van Niekerk et al. 1963). 
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It is worth noting that the pH of sheep urine is higher than that of humans, ranging from 8.4-8.7, 

therefore being slightly alkaline (Van Niekerk et al, 1963). Human urine has a larger range, due to a 

more varied diet, of 4.6-8, although is typically around 6.5 (Smith-Palmer 2002). More reliable 

methods of analysis can be obtained without treating the urine with acid, therefore creatinine 

concentration is acquired prior to acid digestion. 

As with sheep’s urine, when human urine is maintained at a higher temperature, the creatinine value 

depletes at a faster rate. When human urine is kept at <4oC, it is much more stable over that same 

period of time (Fig 2.1.2.1.2). In fact, at room temperature, a creatinine reduction of 0.5% was witness 

compared with a 3% reduction at 55oC (Spierto et al. 1997). 

 

 

 

 

 

Fig  

2.1.2.1.2 Creatinine levels (% of initial values) in human urine stored at 4, 25 and 55˚C for 1hour to 30 

days (Spierto et al. 1997) 

 

In summary, literature indicates that the manner in which urine is stored leaves creatinine 

concentration virtually affected. The urine should also be left untreated prior to analysis ((Miki & Sudo 

1998; Ng et al. 1984). The National Committee for Clinical Laboratory Standards (Lockitch et al. 1997) 
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advise that sample analysis should take place no more than 2 hours after sample collection, and if this 

cannot be accomplished, the sample must be kept refrigerated. 

 

2.1.2.3 Quantification of silicic acid by molybdenum blue 
 

The molybdenum blue method is generally used to determine the concentration of soluble silica in 

water samples due to its high degree of sensitivity, allowing for the determination of trace 

concentrations of silicon (Karge Weitkamp, 2002). The determination of silicon is an example of the 

use of heteropoly-molybdenum blue in analytical chemistry. Silicic acid (SiOH4) combined with an 

acidic solution of MoVI, in this case ammonium molybdate, produces the yellow complex SiMo12O40
3−, 

which has an α-Keggin structure (Eq 2.1.2.3.1). 

 

7Si(OH)4 + 12H6Mo7O24·4H2O + 17H2O ⇔ 7H4SiMo12O40·29H2O (Eq 2.1.2.3.1) 

 

 The reaction could be stopped here and transferred to a UV-Vis cell for analysis, with readings taken 

at 568nm but a further step and colour change is often used to observe increased sensitivity and 

accuracy. The SiMo12O40
3− anion can be then reduced by ascorbic acid to form the blue coloured β-

keggin ion, SiMo12O40
7−, a silicomolybdic acid cluster (Fig 2.1.2.3.1). The amount of the blue coloured 

ion produced is proportional to the amount of Si(OH)4 present. The blue analyte can then be measured 

using UV-VIS Spectroscopy, set at 700nm, to determine the concentration of Si(OH)4. 
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Fig.2.1.2.3.2 Structure of the silicomolybdic acid cluster. The silicon atom (in grey) is caged by twelve 

MoO6 octahedra (oxygen atoms in white). (Coradin et al. 2004) 

 

2.1.3 TH GFAAS analysis 
 

 

 

2.1.3.1 Reagents  
 

Laboratory reagent grade HCl (12.4M, Fisher Scientific, UK) was used in solutions for rinsing and 

storing of polyethylene equipment and storage containers. An analytical grade HNO3 (15.9M, Fisher 

Scientific, UK) was used for all acid digests and acidification of samples. Ultrapure water from and Elga 

option R 7/15 (conductivity ≤ 6.8 x 10-6 S m-1) was used throughout. 

 

2.1.3.2 Treatment of microwave vessels  
 

In an effort to limit contamination, microwave vessels (PFA Teflon©) were stored in 5% HCl and rinsed 

3 times with UPW then allowed to dry before use. In the case of urinary analysis, 5mL of urine samples 

(20% v/v HNO3) and 1.25mL sweat samples (20% v/v HNO3 / 30% w/v H2O2) were added to the 
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microwave vessels which were weighed before and after the digest to check for any loss of sample. 

One method blank acidified to 20% v/v HNO3 was also added for approximately every 10 samples for 

quality assurance. Used vessels were cleaned well with detergent (Decon 90) and rinsed 3 times with 

UPW. Each vessel was then put through the microwave digest programme with 1mL of HNO3, rinsing 

a final 3 times with UPW before being transferred back into the 5% HCl acid bath.  

 

 

 

2.1.3.6 Microwave digest programme 
 

The above described digestions of sweat and urine samples were carried out using the Microwave 

Accelerated Reaction System, Model MARSXpress (CEM Mircowave Technology Ltd, UK). Prepared 

samples were heated from room temperature to 180ºC over a 10minute period; they were then held 

at 180ºC for 15minutes (1600W) before a final cooling period over 30minutes (0W). Vessels were then 

removed from the system and left on the work top to cool to room temperature. 

 

2.1.3.7 Instrumentation 

 

Concentrations of total Si and Al were measured using an AAnalylist 600 atomic absorption 

spectrometer with a Transversely Heated Graphite Atomiser (THGA). This was equipped with a 

longitudinal Zeeman effect background corrector and an AS-800 autosampler (Perkin-Elmer UK). 

Standard THGA pyrolytic-coated graphite tubes with an integrated L’vov platform were used (Perkin 

Elmer UK). 
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2.0mL acrylic TH GFAAS sample cups (Gradco International Ltd) were used and were rinsed with the 

sample before use. Each measurement was performed using lumina hollow cathode lamps and the 

software employed by the system was Winlab 32 (Perkin Elmer, UK). The TH GFAAS instrument 

parameters are shown in Table 2.1.3.7.1 and the temperature programmes are shown in Table 

2.1.3.7.2The Zeeman background corrected peak area of the atomic absorption signal was used for 

the determination of each experimental reading was the mean of three injections with relative 

standard deviation <10% accepted for each sample. 

 

 

Table 2.1.3.7.1 TH GFAAS instrument parameters for the measurement of aluminium and silicon in 

human urine and sweat samples. 

Instrument Parameters Aluminium Silicon 

Lamp current (mA) 25 30 

Wavelength (nm) 309.3 251.6 

Bandwidth (nm) 0.7 0.2 

Injection Volume (µL) 30 30 

Injection Temperature (oC) 20 20 

Pipette speed (%) 100 100 

Read Time (s) 2 3 

Delay Time (s) 0 0 

BOC Time (s) 0 0 
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Table 2.1.3.7.2: TH GFAAS atomisation programme for aluminium and silicon. 

Stage Temperature Ramp Time Hold Time Internal Flow 

 (oC) (oC /s-1) (s) (Lmin-1) 

Aluminium 

Drying 110 10 40 250 

Drying 130 15 40 250 

Pyrolysis 500 10 10 250 

Pyrolysis 1200 10 15 250 

Atomisation 2300 0 5 0 

Cleansing 2300 1 5 250 

 

Stage Temperature Ramp Time Hold Time Internal Flow 

 (oC) (oC /s-1) (s) (Lmin-1) 

Silicon 

Drying 110 10 40 250 

Drying 130 15 40 250 

Pyrolysis 1200 10 20 250 

Atomisation 2350 0 5 0 

Cleansing 2450 1 5 250 
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2.1.3.8 TH GFAAS calibration standards 
 

TH GFAAS was calibrated by automated serial dilution from 300, 60, 100, 40 ppb (w/v) standard 

solutions of Si, Al, Fe and Cu respectively, with 1% HNO3 to give the standards outlined in Table 2.1.3.8. 

Solutions were prepared by the dilution of 10 ppm (w/v) stock solutions with 1% HNO3 in 10 mL 

borosilicate volumetric flasks. The 10 ppm (w/v) stock solutions were prepared by dilution of 1000 

ppm (w/v) (2% HNO3) pure atomic spectrometry certified standards (Perkin Elmer, UK) with 1% HNO3 

in 100mL polyethylene volumetric flasks. 

 

Table 2.1.3.8: TH GFAAS calibration standard concentrations 

 

 

 

 

 

 

 

Blank correction was performed using 1% HNO3. Non-Linear through zero WinLab 32 generated 

calibration fits were applied (Perkin Elmer, UK). 

 

2.1.3.9 Dilutions of urine samples  
 

Urine samples were diluted to achieve concentrations within the calibration range. Analysis for Al, Fe 

and Cu were made using a 1:1 dilution (digested sample: 1% HNO3); silicon required higher dilutions 

of: 1:50, 1:100 and 1:200. Therefore, dilution effects were investigated for silicon. 

Silicon

Aluminium

50, 100, 200, 300

10, 20, 40, 60

Analyte Concentration of calibration standards (ppb w/v)
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2.1.3.9 Dilution effects on silicon determination  

 

 

24-hour treatment samples from three participants were used to investigate the effects of dilution on 

the Si readings. These samples were chosen because the lowest dilution (1:50) was within the 

calibration range. The results of these measurements are shown in Table 2.1.3.9.1.1. 

 

Table 2.1.3.9.1.1: The effect of dilution on the measured mean (n = 3) silicon concentrations 

 

 

 

 

As the Si samples are highly diluted in order to obtain an absorbance reading in the middle of the 

calibration range, it was not considered necessary to use matrix modifiers as high dilutions will reduce 

matrix effects. 

 

2.1.3.10 Quality control for TH GFAAS  
 

As some error is inherent to all analytical techniques, it is important to quantify this error and ensure 

that it does not exceed a tolerable level.  

 

 

 

1:50 1:100 1:200 1:50 1:100 1:200

299.72 153.04 71.15 0.00 -2.10 5.18

301.52 152.71 76.27 0.00 -1.29 -1.17

272.5 134.49 65.36 0.00 1.30 4.14

Percentage Difference from 

the 1:50 Dilution

24F8W1-3

24F1W12-1

24M4W1-4

Sample ID

Measured Means (ppb w/v)

for dilutions of
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2.1.3.10.1 Limit of detection (LoD)  
 

The LoD is the smallest quantity of analyte which is significantly different from the blank. TH GFAAS 

LoD for Si and Al were determined from three times the standard deviation (n = 3) of the absorbance 

of the 1% HNO3 calibration blank divided by the slope of the calibration fit. Means and SD of the LoD 

for each element are provided in Table 2.1.3.10.1.1. 

 

Table 2.1.3.10.1.1: Mean (SD) limit of detection of silicon and aluminium 

 

 

 

 

 

2.1.3.10.2 Limit of quantification (LoQ) 
 

 

LoQ is the amount of analyte which carries a reasonable degree of statistical certainty. TH GFAAS LoQ 

for Si and Al were determined from ten times the standard deviation (n = 3) of the absorbance of the 

1% HNO3 calibration blank divided by the slope of the calibration curve. Means and SD of the LoQ for 

each element are provided in Table 2.1.3.10.2.1 

 

 

 

SD 3.5 0.71

n 77 84

TH GFAAS Limit of Detection μg L-1

Element Silicon Aluminium

Mean 4.53 0.43
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Table 2.1.3.10.2.1: Mean (SD) limit of quantification of silicon and aluminium 

 

 

 

 

2.1.3.11 Method blanks  
 

Method blanks were used to determine the level of contamination which occurs from the procedure; 

the blanks were treated in exactly the same way as the samples, i.e. acidified to 20% v/v HNO3 and 

digested, they were then diluted with 1% HNO3 before analyses in relation to the element being 

determined. Frequency distributions are given for the method blanks after dilution factors were taken 

into account (Figure 2.1.3.11.1). The mean was taken from measured values as a source of 

contamination. 

 

Figure 2.1.3.11.1: Frequency distributions of method blanks for a) Si at dilutions 50, 100 and 200, b) 

Al. 

SD 11.66 2.35

n 77 84

TH GFAAS Limit of Quantification μg L-1

Element Silicon Aluminium

Mean 15.1 1.42
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2.1.3.12 Routine calibration standards 
 

Throughout analysis, standards of known concentrations are analysed to determine any changes in 

signal. A reading is considered adequate when it is within 10% of the known concentration value and 

subsequent measurements fall within 15% of the initial reading. Frequency distributions have been 

expressed for the initial calibration standards (CS1) and the continuing calibration standards (CS2, CS3 

and CS4) (Fig 2.1.3.12.1). Percentage differences from these initial calibration values are given in Table 

2.1.3.12.1.  

 

  

 

 

 

Figure 2.1.3.12.1: Frequency distribution of calibration standards for a) Si and b) Al. This figure 

represents CS1 as the initial calibration standard and CS2, CS3 and CS4 are the continuing calibration 

standards. 

  

Table 2.1.3.12.1: Mean concentrations (μg L-1) of calibration standards (M) with standard deviations 

(SD) and percentage difference (%D) from initial concentration standard (CS1). 

 

 

 

 

 

 

M SD %D M SD %D

CS1 157 8 N/A 30.9 1.91 N/A

CS2 162 8.89 3.23 31 2.22 0.29

CS3 167 9.06 6.41 30.1 2.17 2.84

CS4 169 9.39 5.42 29.7 2.4 3.27

Silicon Aluminium
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2.1.3.13 Replicate samples 
 

Replicates of the same sample were also measured to evaluate the precision of the equipment. The 

precision of the instrument was accepted if the replicate samples were within a percentage difference 

of 5. Examples are given in Appendix 1. 

 

2.1.3.14 Duplicate samples 
 

Duplicates of samples were independently analysed to determine the precision of the preparation 

methods. The precision of the preparation methods was accepted if the duplicate samples were within 

a percentage difference of 5. Examples are given in Appendix 2. 

 

2.1.3.15 Spike recovery 
 

A known concentration of analyte was added to a sample as a spike, the recovery of which allowed 

determination of the amount of analyte lost and may suggest the occurrence of any interferences. 

Spikes were added to selected urine samples and method blanks (reagent spikes). The quantity of 

spike added were selected to gain a concentration at the mid-point of the calibration curves at 100% 

recovery (Table 2.1.3.15.1). 
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Table 2.1.3.15.1: Spike recovery from reagents and urine samples 

 

  Reagent Spike Urine Sample Spike 

Element 

Mean 
recovery % 

(n = 10) 

SD Mean 
recovery % 

(n = 10) 

SD 

Silicon 99.73 3.42 103.00 2.39 

Aluminium 98.23 2.68 100.52 2.29 

 

 

On summary of this data, a high reliability of the analytical methods is shown through approximately 

100 % of the reagent and sample spikes being recovered; in this instance the need to account for 

interferences is not required. 

 

2.1.3.16 Contamination control 
 

Treatment of samples was performed in the clean room. Blank samples (UPW) were stored in plastic 

vessels and analysed in order to test for contamination. All plastic ware was washed and stored in acid 

bins to reduce adsorption of metals. 
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2.2.0 Materials and methods for the determination of creatinine by UV-Vis 

spectroscopy 
 

 

2.2.1. Reagents 
 

Reagent grade sodium hydroxide (2M, Fisher-Scientific, UK) and reagent grade picric acid (1%, Sigma-

Aldrich, UK) were used in the determination of creatinine concentration in urine. Anhydrous creatinine 

(Sigma-Aldrich, UK) was used in the calibration. UPW was used throughout. 

 

2.2.2 Treatment of samples 
 

Urine samples were diluted by 10 fold with UPW and mixed (1:10) with a freshly prepared reactant 

comprising of equal amounts of 1% picric acid and 0.75M NaOH; these were then agitated and left to 

react for 20 minutes before analysis by UV-Vis spectroscopy. Each sample was analysed three times 

and an average was taken. 

 

2.2.3 Instrumentation 
 

Creatinine concentration was determined using a Lambda 14 UV-Vis spectrometer (Perkin Elmer, UK), 

set to read wavelengths between 400–600 nm; maximum absorbance was at 520 nm. 
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2.2.4 Determination of creatinine concentration 
 

An 8 mM stock solution of creatinine was prepared by addition of anhydrous creatinine to UPW. This 

stock solution was serially diluted to give calibration standards containing 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 

and 8 mM creatinine in UPW. The absorption of each calibration standard at 520 nm (25°C, cuvette 

path length 1 cm) was recorded. An example of a typical Beer Lambert calibration curve is shown in 

Figure 2.2.4.1. 

 

 

 

 

 

 

 

 

Figure 2.2.4.1: A standard Beer Lambert calibration curve for the creatinine-picrate complex: the 

absorbance of aqueous solutions containing creatinine concentrations between 0.2 and 8 mM 

measured using UV-Vis at 520nm. 

 

The Beer-Lambert calibration curve (Fig. 2.2.1.3.1)  was linear (R2=1) up to and including the highest 

concentration (8mM) indicating that its application is suitable for the determination of creatinine 
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concentration. However, the standards 6.4 and 8 mM gave absorbance readings > 1.0 and so 3.2 mM 

was chosen as the highest calibration standard during testing. 

 

2.2.5 Quality control for the determination of creatinine 
 

 

2.2.5.1The limit of detection 
 

The LoD was determined to be 0.00324 ± 0.00168 A. 

2.2.1.5.2 The limit of quantification 
 

The LoQ was determined to be 0.0108 ± 0.00559 A. 

 

2.2.1.5.3 Precision 
 

Precision was determined by sampling five replicates of 5 separate samples (Table 2.2.1.5.3.1). Each 

sample was diluted by 1:10, removing matrix interference and ensuring that they were within this 

measured detectable range of calibration. The reproducibility of each sample, highlighted by the low 

standard deviations, indicates that the precision of the technique is acceptable. 
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Table 2.2.1.5.3.1: sampling of five replicates of 5 separate samples to determine precision in the 

quantification of creatinine using the Jaffe reaction and UV-Vis Spectroscopy. 

 

 

2.2.1.5.4 Spike recovery  

 

A known concentration of creatinine was added to selected urine samples as a spike and the recovery 

determined (Table 2.2.1.5.4.1). 

Table 2.2.1.5.4.1 Spike recovery in creatinine analysis. 

 

Recovery was within the 10% acceptable limit, indicating the reliability of the analytical methods 

without the need to account for interferences. 

2.3.0 Detection of elements within mineral waters 
 

2.25 2.27 2.32 2.34 2.29 2.3 0.004

6.24 6.19 6.27 6.25 6.19 6.2 0.036

4.32 4.35 4.31 4.36 4.28 4.3 0.032

4.22 4.26 4.17 4.25 4.19 4.2 0.038

3.98 3.92 3.95 3.97 4.05 4 0.048

Measured Creatinine Concentration mM

Mean SD
Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

Sample

F001-24-1

M004-24-3

F009-24-3

F013-24-4

M007-24-1

92.77

102.64

101.85

14.1 14.44

22.1 22.48

Spike 

Concentration 

(mM) Expected

Total Creatinine Concentration (mM)

Measured

4.00

8.00F015-24-1

16.00

10.1 9.92

Sample
Recovery 

(%) 
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The brand of mineral water used within the healthy volunteer study and MS study was provided by 

the Malaysian company Spritzer. This mineral water, Spritzer, is commercially available within 

Malaysia, but was not available within the U.K during the time of the study. It is now commercially 

available under the name ACILIS. 

The amount of Si and Al within a variety of mineral waters was determined by TH GFAAS (Table 2.3.1). 

 

Table 2.3.1: Mean and SD of the amount of Si and Al detected in the mineral waters (n = 10). 

 

 

 

 

 

 

2.4.0 Study Protocols 
 

These studies aimed to investigate if silicic acid-rich mineral waters could be used as a completely non-

invasive tool of ‘everyday’ diets to lower the body burden of aluminium. For this reason all volunteers, 

for each procedure, were asked to continue as normal with their daily routine and were not requested 

to avoid any products other than mineral waters not provided for the study. Specific aims for each 

study are provided at the beginning of the relevant results section. 

The technique of measuring the urinary excretion of Al has been used as a non-invasive indicator of 

the body burden of Al (Bellia et al. 1996; Exley et al. 1996; Roberts et al. 1998; Exley et al., 2006). 

Spritzer

Volvic

Evian

Silicon (µmol) Aluminium (nmol)

84 ± 6

81 ± 4

Amount in 1L of the water

Buxton

1053 ± 16

576 ± 17

24 ± 7

124 ± 6

Brand of Water

Island Chill

31 ± 4

1879 ± 32

768 ± 18

69 ± 5

127 ± 6

131 ± 8

Fiji
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Control measurements were always used to obtain estimates of volunteer’s ‘normal’ urinary excretion 

of Al. Comparisons of the urinary excretion of aluminium, before and after consumption of Si-rich 

mineral water, enabled accurate determination of the influence of the mineral water on the body 

burden of Al (see for example, Exley et al. 2009). Witnessing an initial increase in aluminium excretion 

would propose the removal of systemic aluminium from body stores. A reduction in aluminium 

excretion over time would suggest that aluminium body burden has been reduced (see Exley, 2012). 

Details of methods used here are provided in the relevant chapters. 

 

2.4.1 Silicic acid-rich mineral water as a non-invasive method of reducing the 

aluminium body burden in healthy individuals 

 

Nineteen healthy volunteers, comprising of 9 males and 10 females, with a mean age of 24 years 

(range 18-34 years), were recruited through Keele University. This was attained by personal invitations 

to volunteer via email, and through oral communication. All volunteers provided written consent prior 

to participation. Ethical approval for the study was obtained from Keele University Research Ethics 

Committee (favourable outcome is included in the appendix). 

The inclusion criteria for participation consisted of individuals between the ages of 18-35 years, who 

were considered to be in good health, could carry out a mild exercise regime and would not suffer any 

practical difficulties from the ingestion of up to 1.5L mineral water over a short time period. 

The exclusion criteria removed any individuals with any medical conditions or reoccurring ailments 

(e.g. bladder infections) which may lead to discomfort and/or influence results of the study. Those 

taking any medications containing the examined elements in the study, such as antacids, were 

excluded from the study as this may affect the results. 
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The project protocol was divided into two objectives (detailed below); each volunteer was requested 

to participate in both parts of the study. Therefore the same group is used for both of the following 

procedures. 

2.4.1.1 Record Sheets 
 

It was a crucial aspect of the study to ensure that participants did not change their diets or lifestyles 

in any way for the study. They were asked to complete a Life Style Questionnaire which was devised 

to give an approximate value of their daily exposures to Al. Dietary record sheets were also completed 

for the duration of each 24 hour urine collection procedure to observe the amount and type of 

beverages consumed within these periods, this information is provided for each volunteer in the 

appendix of this thesis. It was decided too much to ask for a full dietary analysis (as silicic acid will be 

released from food during digestion); the most bioavailable form of silicon is in the form of silicic acid 

found in the water. Therefore a general diet analysis and beverage record sheets were decided to give 

ample information. 

Volunteers were asked to consume the full amount of mineral water suggested, 1.5L per protocol. 

Although if this wasn’t possible, they were asked to record the volume that they could comfortably 

manage to consume within the given time period. 

 

2.4.1.2 Objectives 
 

Each of these protocols involved a time period in which the participant consumed the silicon rich 

mineral water and provided the urine sample for analysis. 

Sweat samples were collected at the time of the study.  

a) 24 hour trial (Chapter 3) 
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Investigation of total urinary excretion of Si and Al in 24h samples.  

Nineteen participants, 9 male and 10 female (age range 18–34) were recruited from the student 

population at Keele University and ethical approval was obtained from the University’s Life Sciences 

Ethical Review Body (Details of which are provided in the appendix). All participants were self-assessed 

as healthy and agreed to partake in a mild exercise program as part of the procedure for collecting the 

urine samples 

Participants provided a 24h urine sample before and following the consumption of up to 1.5L of 

mineral water, these before and after periods are hereafter referred to as control and treatment 

periods.  

The treatment period involved two different aspects, a loading and dosing mechanism. Following the 

first urinary excretion after waking, the volunteers were requested to collect all subsequent urinary 

excretions up to and including the first sample the following morning. This is a standard procedure for 

the collection of a 24-hour urine sample (CLS, 2007). For the loading treatment period, participants 

were asked to consume as much of the 1.5L of mineral water as they could manage between their first 

and second urinary excretion of the day. For the second part, referred to as the dosing protocol, the 

participants were instructed to consume approximately 150mL of the water each hour for 10 hours of 

the day. This way, the most effective measure of silicon delivery could be established.  

Differences in the urinary excretions of Si and Al between control and treatment periods were 

determined using the paired t-test, in addition comparisons between males and females were 

performed using the 2-sample t-test. 

Results for the 24 hour studies are displayed as being corrected for total amount excreted in the 24 

hours. These results display the total excretion of the elements in the urine sample. These results 
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provide the most effective information on the urinary excretions of the elements and are regularly 

used in similar studies (CLS 2007). 

Both creatinine-corrected data and 24 hour corrected data were collected for each individual. 

 

b) 30 – minute exercise trial (Chapter 4) 

Investigation of sweat excretion of Si and Al collected after 30 minutes of mild exercise 

Nineteen participants, 9 male and 10 female (age range 18–34) were recruited from the student 

population at Keele University and ethical approval was obtained from the University’s Life Sciences 

Ethical Review Body (Details of which are provided in the appendix). All participants were self-

assessed as healthy and agreed to partake in a mild exercise program as part of the procedure for 

collecting the sweat samples.  

 

An appropriate material was selected for the absorption of sweat, details of this analysis is 

presented in Chapter 4.3.1. This material, cut into 5 x 5cm sections, were soaked in 5% HCl for 2 

hours, UPW for 24 hours, and then placed in a drying oven overnight before use. Prior to the 

exercise protocol, the upper back was cleaned using a pad immersed in 100% ethanol, then six 

pieces of this prepared material was transferred to the upper back of each individual, covered with a 

plastic film and secured with an adhesive medical tape to prevent any allergic reaction to adhesives. 

The individual was then instructed to complete a total of thirty minutes cycling on an exercise bike, 

including five minutes initial fast paced cycling, twenty minutes moderate paced cycling and a final 

five minutes fast paced cycling. Once this program was completed, the sweat soaked material was 

transferred to 7mL centrifuge tubes and span down at 6000RPM for 6 minutes to extract the volume 

of sweat collected in the material to the bottom of the tube, this series of steps is shown in Figure 

2.4.1.2.1. 
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Figure 2.4.1.2.1: Sweat collection apparatus and exercise protocol 

 

Differences in the excretions of Si and Al in sweat between control and treatment periods were 

determined using the paired t-test, in addition comparisons between males and females were 

performed using the 2-sample t-test. 
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2.5.0 Silicic acid-rich mineral water as a non-invasive method of reducing the aluminium body 

burden in multiple sclerosis participants 

 

Fifteen multiple sclerosis patients were recruited through the University Hospital of North 

Staffordshire (UHNS, now Royal Stoke) through the MS department by a qualified clinician following 

the inclusion and exclusion criteria. Ethical approval was attained by myself, from the national 

research ethics committee (North Staffordshire NREC). All volunteers provided written consent prior 

to participation, which was obtained by a qualified clinician. 

All SPMS patients attending the Neurology clinics were screened for possible inclusion in the study. 

Suitable and interested patients will be posted a participant information pack, including the PIS and 

coversheet, explaining the outline of the study. This was followed up via telephone calls/postal letters 

by a study clinical to confirm their interest and participation. Those who were interested were asked 

to be come back to a research clinic where a screening assessment was carried out by a study clinician 

and eligible patients were asked to sign the consent form. A standard time period of 24 hours was 

given between the receipt of the study information sheet and taking informed consent. 

The inclusion criteria included: All patients must have a confirmed diagnosis, by a study clinician, of 

secondary progressive multiple sclerosis (SPMS) according to the McDonald inclusion criteria. Patients 

must be willing and able to give informed consent in line with the Mental Capacity Act. Patients had a 

carer to help ensure that the protocol was followed accordingly. Carer was willing and able to give 

informed consent. Patient would not suffer any ill effects or practical difficulties on the consumption 

of up to 1L of mineral water and had no restriction on fluid ingestion. As well as any patients not 

satisfying the above inclusion criteria, a potential study participant would be excluded; those patients 

on disease modification treatment, patients with current urinary infections and patients with a history 

of impaired renal function. The patient could be initiated onto the study once an infection free urine 
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sample had been provided. During recruitment, a Kurtjze EDSS score was given to each patient. This 

was followed up at the end of the study to look for improvements in mobility, as well as a 

questionnaire querying general wellness. 

One patient (008) had to be withdrawn from the study due to a series of urine infections. The mean 

age of the remaining 15 MS patients who completed the study, was 72 (range 56 - 81) and 8 were 

female. 

 

2.5.1 Protocol 
 

 

The project protocol was divided into two objectives; the primary objective was to measure the 

urinary excretions of Si and Al over a 24 week period during which patients consumed up to 1.5L of 

silicon-rich mineral water each day. The first 12 weeks of the study, referred to as the control, required 

each participant to provide urine samples following their normal diets, thus acting as their own control 

to determine individual changes. The secondary objective was to observe changes in mobility using 

EDSS scores at the beginning and end of the study. 

 

 

 

2.5.2 Urinary excretions 
 

This study examined the effects of long-term consumption of mineral water on the urinary excretion 

of Si and Al. The study duration was split up into two parts, the first 12 weeks (W1-W12), known as 

the control period and the second 12 weeks (W13-W24) referred to as the treatment period. 
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Participants collected all of their urine (24 hour samples) for the 5 days in W1, W12, W13 and W24 

into 3L sterile containers. During the rest of the study weeks, the first morning sample of the day on 

the same day of each week was collected into sterile 50mL containers. These collections were made 

for the baseline (W1 to W12 - no mineral water consumption) and treatment periods (W13 to W24 - 

including consumption of up to 1.5L of mineral water each day).  

Differences in the urinary excretions of Si and Al between control and treatment weeks 1, 2, 13 and 

24 for each individual were determined using one-way ANOVA and Tukey’s paired comparison tests. 

Differences for control and treatment data were measured using repeated measures ANOVA and 

Wilcoxon signed-rank tests. 

 

Results were displayed as creatinine-corrected data in order to account for the deviations in urine 

volumes of spot samples. Volunteers were requested to consume as much as the 1.5L of the provided 

mineral water as they could comfortably manage. This volume is the same as the healthy individual 

urine study because the consumption of 1.5L every day for a period of 12 weeks seemed acceptable 

to the patients, although, unlike the loading treatment in the healthy volunteer study, patients in this 

study were able to make up their normal drinks with the water, essentially replacing other water 

consumed in their daily diets with the Spritzer. 

It was thought to be inconvenient for the patients to provide record sheets as in the health volunteer 

study. Instead, the patients were provided with a tick sheet to recognise their water consumption and 

sample collection.  

 

As in the healthy volunteer study, results are recorded both before and following correction for 

creatinine concentrations, and 24 hour samples were expressed in both formats. 
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The requirements for this study were maintained at a minimum so not to make participation too 

complexed for individuals suffering from MS. Therefore, dietary record sheets, as collected in the 

healthy individual, study were not required during this study. The length of the control period satisfied 

this as it meant that a thorough indication of normal Si and Al excretion could be deduced. 

 

 

Differences in the urinary excretions between the control and treatment periods were determined 

using the paired t-test, and comparisons between males and females were performed using the 2-

sample t-test. An aged matched healthy control group was not sought after for this study, but instead 

data available from other studies was used (Minshull et al 2014). 

 

 

2.5.3 EDSS Score 
 

 

The Kurtzke Expanded Disability Status Scale (EDSS) is a method of quantifying disability in multiple 

sclerosis. The scale has been developed by John F. Kurtzke (1983). 

Each individual completed the EDSS test prior to and following the treatment of the mineral water, 

this was performed by the qualified clinician. Comparisons between the initial and final score were 

used to determine whether the consumption of the mineral water had any influence on their mobility. 

It is accepted that an EDSS score reduced by 0.5 or more points (Kurtjze 1983) indicates an 

improvement in mobility performance. 



89 | P a g e  

 

Overall scores of the EDSS tests were provided by the clinical nurse on the completion of the urinary 

analysis and are noted in the appendix of this thesis, referenced by patient ID. Detailed reports of the 

performance of the tests (i.e. scores of each section) were not made available for this thesis due to 

patient confidentiality. Patient questionnaires were collected post study to determine any 

improvements in health, wellbeing and general feedback. 

 

 

2.6.0 Biostatistical analysis 
 

 

As discussed within the study protocols, the purpose of these analyses were to assess the use of silicic 

acid-rich mineral waters as a potential non-invasive therapy to reduce aluminium body burden. The 

primary null hypothesis was that the consumption of silicic acid-rich mineral waters would have no 

effect on the urinary excretion of aluminium, thereby, would have no effect on aluminium body 

burden. 

Analysis of the biological data has been statistically examined using the software Minitab ® 15. This 

section includes a description of the general statistical tests that were conducted to identify changes 

in urinary excretions of Si and Al. Details on the statistical tests used within this thesis can be found in 

(Zar, 1996). 

The results are ordered by study (HV U, HV S and MS) and within each study are ordered by element 

(Si andAl). Comparisons are made between control and treatment periods, male and female 

populations using the appropriate tests. 
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2.6.1 Power analysis 
 

Power analysis with values of 80% and 90% were calculated using Minitab’s Power and Sample Size 

calculation for a single sample. This was in order to provide an indication of the sample size needed 

for each study to conduct a statistically reliable experiment (Table 2.6.1.1). Expected differences (SD) 

were derived from Exley et al. (2006) and used to calculate the effect size (Difference/SD). 

 

Table 2.6.1.1: Sample size needed for each study. 

 

 

 

2.6.1 P-value 
 

The P-value was accepted as statistically significant when it was below P = 0.05. All confidence intervals 

were set to 95%. P-values were noted to 3 decimal places and a P-value less than 0.001 was reported 

as < 0.001. 

 

2.6.2 Normality and transformations 
 

Parametric tests assume that the data has a normal distribution; these were always attempted before 

the non-parametric tests. They are more powerful and offer increased accuracy in determining 

statistical significance. However, if the data wasn’t to follow a normal distribution, these parametric 

tests may not provide reliable results. 

Power 80% Power 90%

10 13

SD Effect size
Sample size

24 1

Expected difference

24
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Anderson-Darling normality checks were performed on the residual data for each data set; P > 0.05 

directed that the data followed a Gaussian distribution and could therefore be considered as being 

normally distributed. Data sets which did not follow a normal distribution were rendered normal using 

logarithmic transformations.  

If the transformation of the data didn’t normalise the distribution, non-parametric tests were used as 

these are distribution free, reducing the influence that outlying data points have on the overall data 

set. 

Minitab highlighted outliers in the data but these points were only removed from the data set if there 

was reason to assume that the results were unreliable (i.e. contamination); it’s possible to suggest 

that some outliers represented natural biological variability. Where a direct comparison was made 

between data sets and at least one set was not normally distributed the selection of non-parametric 

tests were used. 

 

2.6.3 Study variables 
 

Independent variable = urinary/sweat excretion under control conditions (i.e. before consumption of 

the mineral water). 

Dependent variable = urinary/sweat excretion under treatment conditions (i.e. after consumption of 

the mineral water). 

Confounding variables = differences in dietary intake, including the amount of mineral water the 

individual managed to consume. 
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2.6.4 Statistical tests used 
 

The different parametric tests used within this study are highlighted in Table 2.6.10.1. Details of the 

test and their non-parametric equivalents are described below. 

 

2.6.5 Pearson’s correlation coefficient and linear regression 
 

Purpose - Test for relationships between two variables 

Rational - Simple linear regression and correlations performed to determine a relationship between 

variables and to describe this particular witnessed relationship. The best fit was determined by 

Minitab using the available method of least squares. 

The Pearson’s correlation coefficient (r) measures the strength of linear relationships. Values are 

between -1, which indicates a perfect negative relationship and 1, which indicates a perfect positive 

relationship. The non-parametric analogue used was the Spearman’s rank correlation. 

 

2.6.6. Paired t-test 
 

Purpose - Compare the means of two measurements within a single group. 

Rational - The paired t-test calculates the difference between two measurements for each individual 

member of a population and determines whether the mean difference is different from zero. This test 

was used to compare urinary excretions before and after the treatment of mineral water. Wilcoxon 

signed rank is the non-parametric equivalent to the paired t-test. This test compares the medians of 

the two groups. 
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2.6.7 One-way ANOVA 
 

Purpose – Compare the variance in the mean for more than two measurements between groups. 

Rational - One-way ANOVA uses the F-distribution to compare the variance between the means of 

three or more measurements and to determine whether or not there is a difference. The F-distribution 

is related to the F-crit value to determine significance of the data. This test was used to determine 

whether an individual showed a difference in their urinary excretions between the two control and 

treatment weeks. 

The F-distribution is calculated by dividing the sum of squares between each group (SSB) by the sum 

of squares within each group (SSW). 

 

F = 
Variance due to difference between means

Variance due to difference within means
 

 

 

Tukey’s paired comparison was used in conjunction with ANOVA to distinguish where the differences 

lie between specific pairs. Kruskal-Wallis test is the non-parametric equivalent to one-way ANOVA. 

 

2.6.8 Repeated measures ANOVA 
 

Purpose – Compare variance in the mean for more than two measurements for a single group. 

Rational – Repeated measures ANOVA uses the F-distribution (as described above) to compare the 

variance between the means of three or more measurements and to determine whether or not there 
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is a significant difference. This test was performed in Excel, and was used to determine whether the 

group showed a difference in their urinary excretions between the control weeks and treatment 

weeks. 

 

2.6.9 2-sample t-test 
 

Purpose - Compare the means of a single measurement between two different populations. 

Rational - The 2-sample t-test calculates the difference between the means of two populations which 

are independent of each other. The difference in means is compared with an approximation of the 

standard error calculated between the two populations. This test was used to compare the urinary 

excretion of the elements between different groups, i.e. between males and females, BMI data and 

relationships between age. Mann-Whitney U test is the non-parametric equivalent to the 2-sample t-

test. This compares the medians of the two groups. 

 

Table 2.6.10.1: Summary of the different parametric tests used within the statistical analyses 

 

 

 

 

 

 

 

Urine Sweat

 

 

 

Repeated measures ANOVA

Study

MS
HV











Statistical test

Pearson’s Correlation Coefficient

paired t- test

2 sample t- test

One way ANOVA
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Chapter 3. - Silicic acid mineral water as a non-invasive method of 

reducing aluminium body bioburden in healthy individuals. 

 

3.1.0 Aims 
 

The aim of this chapter is to investigate if regular drinking of a silicon-rich mineral water can 

facilitate the removal of Al from the body of healthy individuals. 

 

3.2.0 Introduction 
 

Previous studies have demonstrated that silicic acid reduces the gastrointestinal absorption of 

aluminium (Edwardson et al. 1993), facilitating the removal of systemic aluminium within the body 

(King et al. 1997; Exley et al. 2006). Certain commercial mineral waters, such as Volvic, provide a 

good source of silicic acid and could potentially be utilized as a preventative measure against the 

accumulation of aluminium within the body. This could be exploited in young, healthy individuals, 

which could in turn reduce the rate and slow the progression of aluminium-related disorders. 

However, the role of silicon in drinking water and how humans handle this silicon has not been 

widely studied, particularly with respect to healthy individuals. 

The purpose of this work was to elucidate the effect of drinking silicic acid-rich mineral waters on 

the urinary excretion of silicon in healthy individuals. The main aim of this research was to 

investigate the influence of a silicic acid-rich mineral water, as a non-invasive therapy, on the urinary 

excretion of aluminium. This was investigated following the objectives detailed in Chapter 2. Data for 

each individual are provided in Appendix 3. 
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3.3.0 Methodology 
 

Nineteen healthy volunteers, comprising of 9 males and 10 females, with a mean age of 24 years 

(range 18-34 years), were recruited through Keele University. This was attained by personal 

invitations to volunteer via email, and through oral communication. All volunteers provided 

written consent prior to participation. Ethical approval for the study was obtained from Keele 

University Research Ethics Committee (See Appendix for favourable outcome letter). 

The inclusion criteria for participation consisted of individuals between the ages of 18-35 years, 

who were considered to be in good health, could carry out a mild exercise regime and would not 

suffer any practical difficulties from the ingestion of up to 1.5L mineral water over a short time 

period. 

The exclusion criteria removed any individuals with any medical conditions or reoccurring 

ailments (e.g. bladder infections) which may lead to discomfort and/or influence results of the 

study. Those taking any medications containing the examined elements in the study, such as 

antacids, were excluded from the study as this may affect the results. 

The project protocol was divided into two objectives (detailed below); each volunteer was 

requested to participate in both parts of the study. Therefore the same group is used for both of 

the following procedures. 
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3.3.1 Treatment of urine samples 
 

Urine samples were collected and stored directly into pre-acid washed 3L polypropylene 

containers for each twenty four hour trial. The twenty four hour sample volumes were 

measured, vortex to ensure uniformity, and a portion transferred to a washed 50mL Falcon™ 

tube for storage in a clearly marked refrigerator. The remaining sample was disposed of down 

the toilet and the jug thoroughly cleaned with decon. An aliquot of un-acidified urine sample 

was taken and diluted to 10% with UPW for creatinine (Crt) analysis using the Jaffe method 

(Toora, 2002). The remaining urine was acidified using 15.8M HNO3 to 20% v/v and subjected to 

microwave digestion to prepare samples for measurement of total silicon and aluminium by 

THGFAAS.  

 

3.3.1 Record Sheets 
 

It was a crucial aspect of the study to ensure that participants did not change their diets or 

lifestyles in any way for the study. They were asked to complete a Life Style Questionnaire which 

was devised to give an approximate value of their daily exposures to Al (see Appendix). 

Dietary record sheets were also completed which indicated the amount and type of foods 

consumed by each participant in their average daily diet. It was decided that it was too much to 

ask for a full dietary analysis (as silicic acid will be released from food during digestion); the most 

bioavailable form of silicon is in the form of silicic acid found in the water. Full beverage record 

sheets were decided on to give the most appropriate information. 
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Volunteers were asked to consume the full amount of mineral water suggested during the loading 

protocol, 1.5L in 1 hour. Although if this wasn’t possible, they were asked to record the volume 

that they could comfortably manage to consume within the given time period. 

3.3.2 Investigation of total urinary excretion of Si and Al in 24h samples.  

 

Participants provided a 24h urine sample before and following the consumption of up to 1.5L of 

mineral water, these before and after periods are hereafter referred to as control and treatment 

periods.  

The treatment period involved two different aspects, a loading and dosing mechanism. Following 

the first urinary excretion after waking, the volunteers were requested to collect all subsequent 

urinary excretions up to and including the first sample the following morning. This is a standard 

procedure for the collection of a 24-hour urine sample (CLS, 2007). For the loading treatment 

period, participants were asked to consume as much of the 1.5L of mineral water as they could 

manage between their first and second urinary excretion of the day. For the second part, referred 

to as the dosing protocol, the participants were instructed to consume approximately 150mL of 

the water each hour for 10 hours of the day. This way, the most effective measure of silicon 

delivery could be established.  

Differences in the urinary excretions of Si and Al between control and treatment periods were 

determined using the paired t-test, in addition comparisons between males and females were 

performed using the 2-sample t-test. 

Results for the 24 hour studies are displayed as being corrected for total amount excreted in the 24 

hours. These results display the total excretion of the elements in the urine sample. These results 
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provide the most effective information on the urinary excretions of the elements and are regularly 

used in similar studies. 

 

Methods of analysis are detailed in Chapter 2. 

 

3.4.0 Results 
 

This chapter includes all the statistical comparisons between the control and treatment data for the 

24-hour trial. Comparisons were made for the overall group and for males and females separately; 

however, male and female data are only presented within the main text when showing a 

noteworthy difference from the overall group. 

Results are displayed as total amounts excreted and expressed as 24-hour data. 

The group size (n) is equal to 19, 9 male and 10 female. 

 

 

3.4.1 Urinary creatinine and sample volume 

 
Creatinine (Crt) concentrations were measured for each sample in order to correct for 

differences in renal functioning between individuals and to take any dilution effects of the 

urine into consideration. 
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Figure 3.4.1.1: Crt concentration (mM) against sample volume (mL) for control (●) and treatment 

samples, loading (●) and dosing (●) in a 24-hour urine sample. 

  

There was no significant difference between males and females in mean Crt concentrations 

within all protocols; the control protocol gave an average Crt measurement of 4.7mM for males 

and 7.7mM for females (t = 2.87: P = 0.012), the loading treatment gave an average Crt 

measurement of 5.3 mM for males and 4.9mM for females (t = 0.82: P = 0.424) and dosing 

treatment periods gave an average Crt measurement of 4.0 mM for males and 4.4mM for 

females (t = 1.09: P = 0.293). There was also no significant difference between males and 

females in the mean volumes collected within both treatment protocols; the loading protocol 

gave an average volume of 1866mL for males and 1708mL for females (t = -1.1: P = 0.29), and 

the dosing treatment gave an average volume of 1963mL for males and 1811mL for females (t = 

-2.38: P = 0.031) periods (Table 3.4.1.1). 
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Table 3.4.1.1 Mean (SD) Crt concentration (mM) and sample volume (mL) provided in a 24-hour urine 

sample for the control and loading/dosing treatment periods for males (n = 9) and females (n = 10). 

 

 

 

Females revealed a higher Crt in their urine, specifically for the control period, equating to an 

average of 7.7mM (1.7) compared with an average male Crt concentration of 4.7mM (2.7). 

In comparison, urinary volume collected for the 24 hour period was, on average, larger in males 

than females. This difference was significant during the baseline collection period (t = -3.97: P = 

0.001), when an average urine collection was measured at 1705mL in males and 968mL in 

females. During the treatment protocol, the amount of urine collected during the 24 hours was 

comparable, 1867mL (385) collected for males and 1709mL (SD=510) collected for females. 

 

 

 

 

 

 

1709 (509.5)

1810.5 (219.4)

4.9 (1.5)

4 (1.9)

7.7 (1.7)

5.3 (2.0)

4.4 (1.9)

1705 (336.8)

1866.7 (385)

1963.3 (357.9)

Male Female Male Female

4.7 (2.7) 968 (446.5)

Creatinine Concentration                                                                                                                                                    

(mM/24h)

Sample Volume                                             

(mL/24h)

Control

Loading Treatment

Dosing Treatment
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3.4.2 Comparison between the urinary excretion of silicon with the 

volume of silicon rich mineral water consumed 
 

 

The mean amount of all beverages imbibed was significantly increased for the loading treatment 

period compared to the control period for the overall group, increasing from 1527mL (±501mL) 

to 2579mL (±139mL), (t = -5.84, P < 0.001). When considered separately (Table 3.4.2.1), this 

increase was less significant for males (t = -3.61, P = 0.006), presenting an increase of beverages 

consumed from 1918mL (±245) than for females (t = -4.47, P = 0.001), who in the control 

consumed 1175mL (±398mL) and in the loading treatment consumed 2592mL (±154mL). 

Consumption of the mineral water provided approximately half of the total volume of beverages 

consumed in the loading treatment period for the group, total beverages equalled 2579mL 

(±139mL) and each individual consumed on average 1357mL of the provided mineral water 

during this protocol. When completing the mineral water dosing protocol, the mineral water 

provided approximately three quarters of the total volume of beverages as total consumed 

equalled 2112mL (±177mL) and each individual consumed all 1500mL of mineral water during 

this protocol. 

 

3.4.2.1 Total mineral water excreted vs amount of urinary volume and 

silicon excreted 
 

 

Males consumed significantly more than females for both the control (t = 2.53, P = 0.020), and both 

loading and dosing treatment (t = 2.05, P = 0.060) periods, males consumed 1918mL (±245mL), 

2564mL (±128mL) and 2142mL (±229mL) respectively compared to females who consumed 1175mL 
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(±398mL), 2592mL (±154mL) and 2086mL (±119mL) respectively. In addition, males consumed a 

greater volume on average of the mineral water than females (t = 4.31, P = 0.001), 1447mL (±81mL) 

compared to 1437mL (±137mL). 

There was a significant relationship (Figure 3.4.2.1.1) between the urinary excretion of Si with the 

total urine collected for the loading treatment period (r = 0.48, P = 0.022) and dosing treatment 

period (r = 0.44, 0.036), suggesting that a higher urinary volume produces a larger Si excretion. The 

relationship was not significant for the control (r = 0.28, P = 0.200) where no additional Si was being 

added to the diet. 

 

When looking into the difference in Si excretion between the control and combined treatment 

periods (i.e. excretion of Si in the treatment group minus excretion of Si in the control group), this 

overall relationship was considered as insignificant (r = 0.26, P = 0.226) when considering the total 

amount of beverages consumed over the 24-hour periods (i.e. total volume of beverages consumed 

in the treatment group minus total volume of beverages consumed in the control portion of the 

study). 

The amount of Si measured in the provided mineral water was 865±17μmol L-1. There was no 

correlation (r = 0.35, P = 0.099) between the difference in Si excretion (i.e. Si excreted in either 

treatment period minus Si excreted in control period) and the amount of Si present in the 

imbibed mineral water.  
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Table 3.4.2.1.1: Total volume (mL) of all beverages consumed over the 24-hour period  

 

Total refers to the sum of all beverages consumed over the 24-hour period. MW is the volume 

of mineral water consumed; this counts towards the total in the treatment period.  

 

 

 

 

 

 

 

 

Figure 3.4.2.1.1: Amount of Si excreted (μg/24h) against total urine excreted during the 24 hours 

for the control (●) and loading treatment (●) and dose treatment (●) samples. 

 

 

Control

Total MW Total MW Total

1526 (501) 1442 (111) 2579 (139) 1500 2112 (177)

1917 (245) 1447 (81) 2564 (128) 1500 2142 (229)

1175 (398) 1437 (137) 2592 (155) 1500 2086 (119)

Group

Males

Females

Loading treatment Dosing treatment

Volume of beverages consumed (mL) 
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Table 3.4.2.1.2: Percentage of Si consumed as mineral water which equates to the difference in 

Si excretion between the control and treatment period.    

Ref 

Amount of 
silicon 

consumed as 
mineral water 

(μmol) 

Difference in 
silicon 

excretion 
(Loading 

treatment – 
Control, μmol) 

Difference in 
silicon 

excretion 
(Dose 

treatment – 
Control, μmol) 

Percentage of 
mineral water 

which equates to 
the difference in 
silicon - Loading 

Percentage of 
mineral water 

which equates to 
the difference in 

silicon - Dose 

M1 764 215 372 28 43 

M2 865 511 1154 59 133 

M3 865 634 939 73 109 

M4 865 621 882 72 102 

M5 865 665 800 77 93 

M6 865 612 993 71 115 

M7 865 711 993 82 115 

M8 793 223 803 28 93 

M9 761 363 782 48 90 

F1 865 533 751 62 87 

F2 865 91 597 10 69 

F3 865 447 720 52 83 

F4 865 322 607 37 70 

F5 643 499 761 78 88 

F6 724 1160 702 160 81 

F7 865 432 771 50 89 

F8 865 372 1197 43 138 

F9 865 382 1200 44 139 

F10 865 488 657 56 76 

ẍ 831 (64) 488 (232) 825 (215) 59 (31) 95 (25) 

  

ẍ represents the mean values. Pink represents females and blue represents males. 

 

The concentration of Si in the urine collected from the dosing treatment protocol was larger 

than that collected from the loading dosing protocol, equating to 951.1µmol/24hr (±245.8 

µmol/24hr) compared to 614.2 µmol/24hr (253.0 µmol/24hr). This equated to a difference in Si 
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excretion of between 59 ± 31% for the loading treatment and 95± 25% for the dosing period of the 

amount of Si consumed from the mineral water. An elevated Si excretion in the dosing protocol 

was seen for both male and female participants.  

Patient ID F6 was an anomaly to this trend who excreted a much larger amount of Si during the 

loading protocol compared to the dosing protocol, measuring 1160 µmol/24hr and 702 

µmol/24hr respectively, this individual was notably one of the two female patients who didn’t 

consume the suggested volume of mineral water. All remaining participants were shown to 

excrete more Si during the dosing protocol than the loading treatment protocol (Table 

3.4.2.1.2). 

 

3.4.3 Urinary excretion of silicon and aluminium in control and 

treatment periods 
 

 

24-hour collections provide the most reliable information on urinary excretions and were 

collected for 2 consecutive days. One week was allowed between protocols. Data from each 

individual is considered below and presented in concentrations of nmol/24 hr for Al excretion 

and μmol/24 hr for Si excretion. When examined as a group (patient F6 omitted), Al excretion 

correlates positively with Si excretion (r = 0.76) during the loading protocol. This relationship 

indicates statistical significance for the healthy treatment protocol for long term Si consumption as a 

method of removing bioavailable Al (P < 0.001). 
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Silicon 
 

There is a weak positive correlation between the urinary excretion of Si in the control and loading 

treatment data (r = 0.20, P = 0.015). When an individual presents a small urinary Si concentration 

during their baseline, a comparatively small concentration is noticed during the addition of a high 

dose of Si to the diet (Figure 3.4.3.1). This is true for all of the data except for one patient, ID F007 

presenting the largest concentration of Si in their loading treatment compared to a comparatively 

small Si concentration in the baseline quantification, equating to 1160µmol and 724 µmol 

respectively. Removing this outlier produced a stronger correlation between this data set (r = 0.76, P 

= 0.012). When considering the whole group data, correlation was stronger between the control and 

dosing treatment (r = 0.40, P = 0.011). 

The mean excretion of Si during both treatment protocols is significantly higher (t = -5.13, P < 0.001) 

than the control period (Table 3.4.3.1); no individuals excreted more Si prior to drinking the mineral 

water. 

Males excreted significantly more Si than females for the treatment period (t = 2.95, P = 0.008), but 

not for the control (t = 1.30, P = 0.208). 
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Table 3.4.3.1: Mean (SD) urinary excretion of Si (µmol/24hr) for the healthy volunteer study 

population for both loading and dosing treatment protocols (n=7) 

 

 

 

Data presented for the whole study population in figure 3.4.3.2 is a visual representation of the 

difference in Si excretion between the baseline and the loading protocol. This figure shows a 

similarity in this for fifteen out of the nineteen participants. Participant F7 presents a clear peak in 

this data, excreting more Si than other participants. Individuals F2, M2 and M8 excreted a smaller 

difference in Si between the control and treatment periods. 

 

Mean (SD) 125.8 (55.3) 614.2 (253.0) 951.1 (245.8)

140.5 1340.7

140.7 798.0

522.6

628.4

70.1 841.4

111.0 1307.7

502.0

483.2

80.9 841.7

80.0 781.9

580.1

1240.3

70.3 789.9

60.4 667.6

517.2

382.0

170.3 921.6

70.0 667.1

703.5

160.7

80.3 302.8 883.3

61.0 424.0 842.8

210.2 822.6 1202.8

210.7 921.4 1203.4

140.5 761.0 1022.6

140.9 806.1 941.1

F10

150.7 365.2 523.2

230.7 741.4 1384.4

170.2 804.4 1109.2

F4

F5

F6

F7

F8

F9

M7

M8

M9

F1

F2

F3

M1

M2

M3

M4

M5

M6

ID
Si Concentration - Control 

(µmol/24 Hr)

Si Concentration - Loading 

(µmol/24 Hr)

Si Concentration - Dose 

(µmol/24 Hr)

Healthy Volunteer Urine Study                                                                                                                                                                                            

Mean (SD) Si concentration (n=5)
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Figure 3.4.3.1: Urinary excretion comparison of Si (μmol/24h) during control and treatment 

periods. Control vs loading (●) and control vs dosing treatment (●) 

 

 

 

 

 

 

 

 

Fig 3.4.2.2 Difference in Si excretion (μmol/24h) between control and treatment data for each 

individual (loading treatment – control) (n=5). 

 



110 | P a g e  

 

Values collected for the difference in Si excretion between the dosing protocol and the baseline are 

consistently higher than the loading protocol in Figure 3.4.3.2. When visualising this data, it 

represents a similar pattern in that fifteen out of the nineteen participants present a similar 

difference in Si excretion. Patients F9, F10 and M13 excrete a notably higher amount of Si during this 

protocol, while patient M2 presents a much lower excretory value of Si, see Figure 3.4.3.3. 

 

 

 

 

 

 

Fig 3.4.3.3: Difference in Si excretion (μmoles/24h) between control and treatment data for each 

individual (dosing treatment – control) (n=5) 

 

Aluminium 
 

 

The mean excretion of Al during both treatment protocols is significantly higher (t = -4.87, P < 0.001) 

than the control period (Table 3.4.3.2); no individual excreted more Al prior to drinking the mineral 

water. Males excreted significantly more Al than females for the treatment period (t = 3.16, P = 

0.006), and the control (t = 3.84, P = 0.011).  
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Al excretion was highest during the loading protocol. Considering the whole study population, Al 

excretion rose from 934.4nmol/24 hr to 2889.1nmol/24 hr and 2049.6nmol/24 hr during the loading 

treatment and dosing treatment respectively.  

Patient M1 and F6 saw a large increase in Al excretion during the loading protocol, although 

presented a urinary Al excretion similar to that of the baseline amount during the dosing protocol. 

Patient M1 revealed a mean baseline Al urinary concentration of 645.3±34.1nmol/24hr, giving rise to 

a urinary Al concentration of 1602.6±143.7nmol/24hr during Si loading. This value falls back to 

741.6±28.5nmol/24hr during the dosing protocol. 

 

 

Table 3.4.3.2: Mean (SD) urinary excretion of Al (nmol/24hr) for the healthy volunteer study 

population for both loading and dosing treatment protocols (n=7) 

F10 342.8 4240.6 1407.6

Mean (SD) 934.4 (682.8) 2889.1 (1297.1) 2049.6 (1065.6)

F8 467.1 2781.7 2198.5

F9 546.9 3641.3 2000.1

F6 287.5 1684.2 551.5

F7 567.1 3111.4 2762.4

F4 622.5 2762.2 2408.2

F5 360.5 2003.1 1102.4

F2 661.5 1605.1 1271.5

F3 343.0 1647.6 1406.5

M9 392.9 1723.6 1208.6

F1 1047.3 1531.0 1144.4

M7 1944.8 5016.9 2643.5

M8 300.0 960.4 1004.8

M5 1367.6 4652.7 3144.6

M6 1842.0 3702.5 2961.0

M3 2021.6 4551.6 3726.4

M4 1949.1 4527.0 4216.6

645.3 1602.6 741.6

M2 2044.4 3147.4 3042.5

Healthy Volunteer Urine Study                                                                                                                                                                                            

Mean (SD) Al concentration (n=5)

ID
Al Concentration - Control 

(nmol/24 Hr)

Al Concentration - Loading 

(nmol/24 Hr)

Al Concentration - Dose 

(nmol/24 Hr)

M1
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There was a significant positive correlation between the urinary excretion of Al in the control and 

loading treatment (r = 0.5, P < 0.001) as well as control and dosing treatment (r = 0.6, P < 0.001), as 

shown in Figure 3.4.3.4. When an individual presents a small urinary Al concentration during their 

baseline, a comparatively small concentration is noticed during the addition of a high dose of Si to 

the diet. 

 

 

 

Figure 3.4.3.4: Urinary excretion comparison of Al (nmol/24hr) between the control and 

treatment periods. Control vs loading (●) and control vs dosing treatment (●) 

 

Urinary excretion of silicon and aluminium in control and treatment 

periods 
 

 

Urinary excretion of Al and Si differed greatly when a Si rich mineral water was added to the diet of 

nineteen healthy volunteers. The excretion of Si was higher during the dosing protocol, whereas the 
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concentration of Al in urine was higher during the loading protocol. These differences were more 

predominant in males than females. 

 

Table 3.4.3.3: Mean (SD) urinary excretion of Si (µmol/24hr) and Al (nmol/24hr) for the healthy 

volunteer study population for both loading and dosing treatment protocols  

 

 

 

Data for the three protocols are shown in Table 3.4.3.3 with means and deviations for the data 

population shown at the bottom of the table. Comparisons between male and female individual data 

are made later on in chapter 3.  

The variance between the data points is smaller for Si than Al. In the control period, standard 

deviation in Si concentration is 55.3, whereas the deviation between the same data points is 682.8 

Si Al Si Al Si Al

150.7 645.3 365.2 1602.6 523.2 741.6

230.7 2044.4 741.4 3147.4 1384.4 3042.5

170.2 2021.6 804.4 4551.6 1109.2 3726.4

140.5 1949.1 761.0 4527.0 1022.6 4216.6

140.9 1367.6 806.1 4652.7 941.1 3144.6

210.2 1842.0 822.6 3702.5 1202.8 2961.0

210.7 1944.8 921.4 5016.9 1203.4 2643.5

80.3 300.0 302.8 960.4 883.3 1004.8

61.0 392.9 424.0 1723.6 842.8 1208.6

170.3 1047.3 703.5 1531.0 921.6 1144.4

70.0 661.5 160.7 1605.1 667.1 1271.5

70.3 343.0 517.2 1647.6 789.9 1406.5

60.4 622.5 382.0 2762.2 667.6 2408.2

80.9 360.5 580.1 2003.1 841.7 1102.4

80.0 287.5 1240.3 1684.2 781.9 551.5

70.1 567.1 502.0 3111.4 841.4 2762.4

111.0 467.1 483.2 2781.7 1307.7 2198.5

140.5 546.9 522.6 3641.3 1340.7 2000.1

140.7 342.8 628.4 4240.6 798.0 1407.6

125.8 (55.3) 934.4 (682.8) 614.2 (253.0) 2889.1 (1297.1) 951.1 (245.8) 2049.6 (1065.6)

Healthy Volunteer Urine Study                                                                                                                                                                                            

Mean (SD) Si (µmol/24hr) and Al (nmol/24hr) concentration (n=5)

F9

F10

Mean (SD)

Control Loading Treatment Dose Treatment

F3

F4

F5

F6

F7

F8

M6

M7

M8

M9

F1

F2

ID

M1

M2

M3

M4

M5
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for Al. The differences between the standard deviation values for both treatment protocols remains 

similar for Si, at 253.0µmol/24hr and 245.8 µmol/24hr respectively, this variance represents the 

difference in Si handling between individuals. Despite a significantly larger excretion in Al during the 

loading protocol, variability between the data for both loading and dosing protocol does not vary 

largely, equating to 1297.1 nmol/24hr and 1065.5 nmol/24hr respectively. Baseline excretion of Si 

ranged from 60.4-230.7µmol/24hr, this range increases to 365.2-1240.3µmol/24hr during the 

loading protocol and 523.2-1384.4µmol/24hr. This range further highlights the difference in Si 

handling between individuals. This difference may promote a similar affect in Al excretion, which is 

seen in the range of data points seen in urinary Al concentration throughout the three protocols. 

Baseline Al excretion was large and ranged from 287.5-2044.4nmol/24hr, this range increased to 

960.4-5016.9nmol/24hr and 551.5-4216.6nmol/24hr for the loading and dosing treatment protocols 

respectively.  

 

The small variance between Si excretion data points and large deviation between Al excretion data 

points is shown in Figure 3.4.3.5. 
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Table 3.4.3.4: Mean (SD) excretion of Si (μmol/24h) and Al (nmol/24h) in control and treatment 

urine samples for the healthy volunteer group (n = 19). 

 

 

 

 

 

Figure 3.4.3.5 Mean  and standard deviation bars of excreted Si (μmol/24h) and Al 

(nmol/24h) in the control and treatment samples (n=19) 

 

 

 

 

 Urinary excretions in a 24-hour urine sample 

  

Silicon                                            
(μmol/24h) 

Aluminium                                    
(nmol/24h) 

Mean  SD Range Mean  SD Range 

Control 126 55 60-231 967 687 288-2044 

Loading treatment 614 253 161-1240 2814 1292 960-5017 

Dosing treatment 951 246 583-1384 2085 1085 552-4217 
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3.4.4 Gender comparisons 
 

 

When comparing male and female data, increases in Si and Al were significant for both treatment 

protocols. When comparing the amount of Si consumed, the p-value between genders for these 

weeks are below 0.04 (P = 0.038, Pearson) which is consistent with the idea that all patients are 

consuming the same amount of silicon during this time. The excretion of Al is more sporadic and 

p-value between each treatment protocol shows a clear difference and variation between the 

means for loading and dosing (P = 0.56 and P = 0.52, Wilcoxon signed ranked), showing a large 

variation between genders during this treatment period (Table 3.4.4.2). 

 

 Table 3.4.4.1: Mean (SD) excretion of Si (μmol/24h) and Al (nmol/24h) in control and 

treatment urine samples for males (n=9) and females (n=10) in the healthy volunteer group. 

 

 

Differences between gender elemental excretions are smaller for Si than Al. Although males 

consistently excrete more Si and Al in each of the protocols, this difference is more notable for Al 

excretion. During the control protocol, Si excretion was noted to average at 155µmol/24hr while 

Urinary excretions in a 24-hour urine sample 

  

Silicon                                            
(μmol/24h) 

Aluminium                                   
(nmol/24h) 

Male Female Male Female 

Control 155 (58) 99 (39) 1390 (741) 525 (225) 

Loading treatment 661 (230) 572 (277) 3321 (1536) 1501 (956) 

Dosing treatment 1013 (253) 896 (239) 2521 (1244) 1625 (687) 
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this value for females is 99µmol/24hr, this difference is comparably larger for Al excretion during 

the same time period, varying from 1390nmol/24hr for males and 525nmol/24hr for females. 

During the loading protocol, Males excrete more than double the amount of Al than females, 

3321nmol/24 hr compared with 1501nmol/24 hr, despite only showing a slight positive increase 

in Si excretion, 661µmol/24hr compared with 572 µmol/24hr for females. 

These relationships were confirmed with Wilcoxon signed-rank statistical testing. Differences 

between the means were smaller for Si than Al and data was considered statistically similar (P = 

0.08) between males and females for baseline Si excretion, indicating that there is no notable 

difference in the metabolism of Si between genders in a normal population. However, the large 

difference between the means between genders considering Al excretion suggests that there may 

be a difference in Al body burden in this pool of individuals. 

 

Table 3.4.4.2: Summary of Wilcoxon signed-rank - differences between pairs of means of 

excretion for male (n = 9) and female groups (n = 10). 

 

 

 

 

 

 

 

 

0.08 0.37

0.22 0.56

0.27 0.52

Control

Loading

Dosing

Male v Female Healthy Volunteers

Silicon Aluminium

P - Value P - Value
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3.4.5 Urine volume 
 

 

Urinary excretion of Si demonstrated a significant relationship, using Pearson correlation analysis, 

with sample volume for both the control (r = 0.56, P = 0.005), and treatment periods (r = 0.45, P = 

0.030); however, this correlation was not seen in the treatment period when males were examined 

separately (r = 0.04, P = 0.901). 

A significant relationship was highlighted between urinary excretion of Al and sample volume for both 

the control (r = 0.45, P = 0.030), and treatment periods (r = 0.46, P = 0.029); however, no correlation 

was seen when males (Control, r = 0.29, P = 0.414; Treatment, r = 0.43, P = 0.214) and females (Control, 

r = 0.48, P = 0.099; Treatment, r = 0.42, P = 0.156) were considered separately. 

Figure 3.4.5.1: Excretion of Si (μmol/24h) and Al (nmol/24h) in the control and the treatment 

periods, loading and dosing, against sample volume (mL). 
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3.4.5.1 Silicon 
 

Urine volume increased as Si excretion increased within the female population, however, three out of 

the nine males saw a decrease in urine volume correlated with an increase in Si during one of the 

treatment protocols. Patient ID M1 gave a baseline 24 hour urine sample of 1535mL which contained 

150.7µmol Si, while during the dosing treatment protocol the same patient passed 1150mL urine 

during this 24 hour period despite excreting 523.2µmol Si (see Table 3.4.5.1).   

 

Table 3.4.5.1: Mean (SD) urinary excretion of Si (µmol/24hr) total urine volume (mL) for the 

healthy volunteer study population for both loading and dosing treatment protocols  

 

Si Volume Si Volume Si Volume

150.7 1535 365.2 1550 523.2 1150

230.7 1850 741.4 1600 1384.4 2100

170.2 2020 804.4 2150 1109.2 2300

140.5 1950 761.0 2150 1022.6 2400

140.9 1835 806.1 2350 941.1 2050

210.2 1870 822.6 1850 1202.8 2050

210.7 1960 921.4 2300 1203.4 1900

80.3 1145 302.8 1280 883.3 1870

61.0 1180 424.0 1570 842.8 1850

170.3 1300 703.5 2140 921.6 1790

70.0 550 160.7 650 667.1 1600

70.3 1240 517.2 1500 789.9 1900

60.4 575 382.0 1200 667.6 1450

80.9 1490 580.1 2100 841.7 2150

80.0 1300 1240.3 1800 781.9 1760

70.1 610 502.0 1470 841.4 1700

111.0 520 483.2 1980 1307.7 2050

140.5 520 522.6 1900 1340.7 2025

140.7 1575 628.4 2340 798.0 1680

125.8 (55.3) 1317 (541) 614.2 (253.0) 1783 (450) 951.1 (245.8) 1883 (295)Mean (SD)

F5

F6

F7

F8

F9

F10

M8

M9

F1

F2

F3

F4

M2

M3

M4

M5

M6

M7

Healthy Volunteer Urine Study                                                                                                                                                                                            

Mean (SD) Si (µmol/24hr) and Volume (mL) (n=5)

ID
Control Loading Treatment Dose Treatment

M1
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Overall, an increase in urine volume was coupled with an increase in the excretion of Si. A mean 

increase in urine volume from 1317mL in the control period to 1783mL in the loading treatment 

period was twinned with an increase of silicon from 125.8µmol to 614.2 µmol. A larger increase 

still was seen during the dosing protocol, showing an increase in urine volume from 1317mL to 

1883mL correlating with an increase in Si from 125.8µmol to 951.1µmol. This increase was 

consistent between males and females. 

 

Aluminium 
 

Urine volume increased as Al excretion increased within the female population, however, three out 

of the nine males saw a decrease in urine volume correlated with an increase in Al in their urine during 

at least one of the treatment protocols. Patient ID M1 gave a baseline 24 hour urine sample of 1535mL 

which contained 645.3nmol Al, while during the dosing treatment protocol the same patient passed 

1150mL urine during this 24 hour period despite excreting 1602.6nmol Al (see Table 3.4.5.2).   
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Table 3.4.5.1: Mean (SD) urinary excretion of Al (nmol/24hr) total urine volume (mL) for the 

healthy volunteer study population for both loading and dosing treatment protocols 

 

 

 

Overall, an increase in urine volume was coupled with an increase in the excretion of Al. A mean 

increase in urine volume from 1317mL in the control period to 1883mL in the dosing treatment 

correlating with an increase in Al from 934.4nmol to 2049.6nmol. A larger increase still was seen 

during the loading protocol, showing an increase in urine volume from 1317mL to 1783mL, 

Al Volume Al Volume Al Volume

645.3 1535 1602.6 1550 741.6 1150

2044.4 1850 3147.4 1600 3042.5 2100

2021.6 2020 4551.6 2150 3726.4 2300

1949.1 1950 4527.0 2150 4216.6 2400

1367.6 1835 4652.7 2350 3144.6 2050

1842.0 1870 3702.5 1850 2961.0 2050

1944.8 1960 5016.9 2300 2643.5 1900

300.0 1145 960.4 1280 1004.8 1870

392.9 1180 1723.6 1570 1208.6 1850

1047.3 1300 1531.0 2140 1144.4 1790

661.5 550 1605.1 650 1271.5 1600

343.0 1240 1647.6 1500 1406.5 1900

622.5 575 2762.2 1200 2408.2 1450

360.5 1490 2003.1 2100 1102.4 2150

287.5 1300 1684.2 1800 551.5 1760

567.1 610 3111.4 1470 2762.4 1700

467.1 520 2781.7 1980 2198.5 2050

546.9 520 3641.3 1900 2000.1 2025

342.8 1575 4240.6 2340 1407.6 1680

934.4 (682.8) 1317 (541) 2889.1 (1297.1) 1783 (450) 2049.6 (1065.6) 1883 (295)

F8

F9

F10

Mean (SD)

F2

F3

F4

F5

F6

F7

M5

M6

M7

M8

M9

F1

Healthy Volunteer Urine Study                                                                                                                                                                                            

Mean (SD) Al (nmol/24hr) and Volume (mL) (n=5)

ID
Control Loading Treatment Dose Treatment

M1

M2

M3

M4
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twinned with an increase of silicon from 934.4nmol to 2889.1 nmol. This increase was consistent 

between males and females. 

3.4.6 Comparisons between the urinary excretions of silicon and 

aluminium 

Relationships between the excretions of Si with the metal Al was explored to determine variability 

in handling between individuals. Correlations between the compounds were also considered. The 

data showed that there was no significant correlation between Al excretion (Fig 3.4.6.1) with Si 

excretion for the control and both treatment periods. The strongest correlation was seen in the 

control period (r = 0.68), but as amounts of both elements increased, the strength of the relationship 

between them decreased. These differences highlight the variance in individual biochemistry. 

 

Figure 3.4.6.1: Comparative correlation of the excretion of Al (nmol/24h) against excretion of Si 

(μmol/24h) during the three study protocols 
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Table 3.4.6.1: Pearson correlation analysis between the urinary excretions of Al (nmol/24h) with 

the excretion of Si (μmol/24h). 

 

Relationship with silicon 

  

Aluminium 

r Value p Value 

Control 0.65 0.64 

Loading treatment 0.21 0.69 

Dose treatment 0.4 0.64 

 

 

 

3.4.7 Baseline aluminium excretion compared to metadata. 
 

 

The average consumption of beverages during the control period are presented in Figure 3.4.7.1 

Bottled water (neat or with cordial) and coffee make up the majority of beverages consumed (18% 

and 18% respectively). Thirteen out of nineteen individuals consumed tea during the control period. 

There was a very weak positive relationship (r = 0.02; P = 0.77) between the amount of tea consumed 

with Al excretion (Figure 3.4.7.2). Nine out of nineteen individuals consumed bottled water during the 

control period. Four out of nine males consumed beer during the control period, as discussed in 

chapter 1, beer and some bottled waters of which are potentially rich sources of Si.  

 

There was no significant relationship (r = 0.21; P = 0.605) between body mass index (BMI) with Al 

excretion (Figure 3.4.7.2). 
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Figure 3.4.7.1: Average consumption of beverages consumed during the control 24 hour period 

(n = 19) 

 

 

 

 

 

 

 

 

Figure 3.4.7.2 Excretion of Al at baseline against volume of tea consumed by each healthy volunteer 

(n=19) 
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Most of the healthy volunteers were of a normal BMI, ranging from 20-25. Figure 3.4.7.3 shows how 

the individuals with a larger BMI differ from the trend and excrete an Al concentration either side of 

the general trend. The majority of individuals with a normal BMI excrete a lower concentration of Al.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4.7.3 Excretion of Al baseline compared with the body mass index score calculated for each 

participant. 

 

 

3.5 Summary of results for healthy individuals  
 

 

• Creatinine concentration was negatively correlated with sample volume (Section 3.4.2.).  

• The difference in Si excretion between the loading treatment and control periods corresponded 

to 59± 31% of the amount of Si consumed as the mineral water. (Section 3.4.2).  

•The difference in Si excretion between the loading treatment and control periods corresponded 

to 95± 25% of the amount of Si consumed as the mineral water. (Section 3.4.2). 
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• Urinary excretions of Si and Al are significantly increased following the consumption of the 

mineral water (Section 3.4.3).  

• Si and Al showed weak positive correlation with sample volume (Section 3.4.5).  

•Weak positive correlation was demonstrated between Si and Al excretion (Section 3.4.6) 

• No correlation was noted between BMI and urinary excretion of Al and Si during the control 

protocol (Section 3.4.7) 

 

3.6 Discussion of results 
 

This research was undertaken with the aim of elucidating the utilisation of a commercial silicic acid-

rich mineral water as a non-invasive method of reducing Al body burden, when used as part of an 

individual’s regular diet. The primary objectives were to investigate Si handling and the consequent 

effects on urinary Al excretion. 

Despite extensive evidence suggesting a beneficial role of Si in biota, there is very little reliable 

information on Si handling in humans, particularly regarding healthy individuals. In order to determine 

whether there is any change in Si handling in disease it is first important to elucidate Si handling in 

‘normal’ individuals. Thorough investigations concerning healthy individuals were therefore 

performed, using three different protocols. As Si is known to be rapidly absorbed and excreted 

(Popplewell et al. 1998), it was considered that a period of one week between each protocol would 

be sufficient to minimize any influence on Si excretion between each study. However, it is likely that 

Al body burden would have been influenced, if not lowered, after each protocol. 

Al intake in the diet is approximately 20 mg day-1 (Pennington & Jones, 1989); only 0.1% of this is 

absorbed (Day et al. 1991), meaning that around 140 μg of Al could be added to Al body burden from 
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dietary exposure each week. With this in mind, it is unlikely that the time periods between each 

different protocol were sufficient to replenish the Al body burden removed from the preceding Si 

dose. 

However, as each protocol consisted of a control and treatment period in which the urinary excretions 

were compared, the overall effect on Al excretion would not have been negated by the preceding 

protocols. 

 

Comparing urinary volume and creatinine concentration 
 

24-hour collections provide the most reliable information on urinary excretions; however, 

creatinine corrected measurements were also documented. The negative correlation between 

creatinine concentration and sample volume (Figure 3.4.1.1) verifies that creatinine 

concentration provides an acceptable indication of dilution effects. The mean creatinine 

concentration at baseline (5.2 ± 2.5 mM) and volume of urine produced (1687 ± 542 mL) 

correlates well with the literature values (Table 7.1), confirming that the healthy participants had 

normal kidney function. A high level may mean that the kidneys are not working as they should. 

The amount of creatinine in the blood depends partly on the amount of muscle tissue present in 

the body. Men generally have higher creatinine levels than women. Although, in this study, Crt 

values were higher throughout the study for females than males (Table 3.4.1.1).  
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Silicon handling was variable between individuals  
 

Urinary excretion of Si was variable between individuals, for example, the range of urinary Si at 

baseline was 60.4-230.7µmol/24hr (Table 3.4.5.1). As urinary Si is a good marker of absorbed Si, thus 

dietary differences between individuals would have contributed to these variations (Jugdaohsingh et 

al. 2002; Sripanyakorn et al. 2009).  

Overall, an increase in urine volume was coupled with an increase in the excretion of Si. A mean 

increase in urine volume in the control period to the loading treatment period was twinned with 

an increase of Si in the urine. This relationship was further strengthened during the dosing 

protocol, showing an even greater increase in urine volume correlating with an increase in Si 

excretion. An increase that was consistent throughout the study between males and females.  

It must be noted that overall fluid consumption increased for each volunteer between the control 

and either treatment protocol. To improve the outcome of this investigation, the amount of fluids 

consumed each day must be kept constant to minimise variability. 

 

The effect of the mineral water on urinary excretions 
 

Consumption of the mineral water significantly increased the amount of Si excreted in the urine (P < 

0.001, Section 3.4.3), this was coincident with increased Al excretion (P < 0.001). This signifies that 

the consumption of silicic acid-rich mineral water successfully enhanced the urinary excretion of 

Al in healthy individuals. 

The mean amount of Al excreted increased for all healthy volunteers after the addition of the Si 

rich mineral water. Furthermore, Al excretion was highest during the loading protocol than the 

dosing protocol, while Si excretion was consistently larger during the dosing protocol. Considering the 
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whole study population, Al excretion was larger in males, however females saw a notable increase in 

each treatment period (Table 3.4.3.3). Co-excretion of Si and Al was apparent in this data; the 

relationship between Si and Al along with the rapid excretion of Si demonstrates that Al is 

excreted as a bolus following the consumption of the mineral water. 

 

Conclusions 
 

To summarise the healthy individual study; consumption of the mineral water significantly increased 

the urinary excretions of Si and Al. Si and Al were rapidly excreted as a bolus and treatment over a 

long term period may result in reduced Al body burden. 

Baseline 24h urinary excretions of Si and Al were compared with literature values (Table 7.2). With 

the exceptions of the studies by Roberts et al. (1998) and Kazi et al. (2008), who used large study 

populations, the group sizes used in the other studies were considerably lower. These differences 

would have contributed to the high variations seen in urinary excretions between the literature 

sources. For instance, the urinary excretion of Al appears to be higher compared to other studies using 

a similar age range (Morie et al. 1996; Reffitt et al. 1999), however, these studies had population sizes 

of 6 and 5 respectively. In addition, the low excretion of Al in the study by Reffitt et al. (1999) could 

be attributed to participant fasting. 

The higher excretion of Al seen within the present study could also be a reflection of a university 

student’s diet, typically high in processed foods and alcohol (Devine et al. 2006), these food are 

generally high in Al (Pennington & Jones, 1989) and alcohol is noted to increase gut permeability 

(Barchfeld & Deamer, 1988), possibly enhancing Al uptake. Other dietary factors, such as citrate 
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(Taylor et al. 1998) also effects the absorption of Al, therefore, an individual who regularly 

consumes fruit juice may have an increased absorption of Al. 

The majority of individuals in the present study were also regular tea drinkers 13/19. Tea is a 

diuretic which contains high levels of Al (Forster et al. 1995). Even though the bioavailability of Al 

in tea is considered to be low (Powell et al. 1993; Gardner & Gunn, 1995), regular consumption 

could be linked to an increased absorption and to the high amount of Al present (Nieboer et al. 

1995).  

In the study by Reffitt et al. (1999), the participants fasted in order to investigate whether silicic 

acid promotes the urinary excretion of endogenous Al. Their results demonstrated no significant 

change in Al excretion; however, considering the young age of the group (and the small 

population size) it is unlikely that Al accumulation was particularly high and so any effects on 

removing Al from body stores would have been minimal. 
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Chapter 4 - Silicic acid rich mineral water accompanied by exercise to 

reduce body burden of aluminium via sweat excretion in healthy 

volunteers. 
 

 

This chapter includes all the statistical comparisons between the control and treatment data for 

the 30 minute exercise trial. Comparisons were made for the overall group and for males and 

females separately. 

4.1.0 Aims 
 

The aim of this chapter is to investigate if regular drinking of a silicon-rich mineral water can facilitate 

the removal of Al from the body of healthy individuals in sweat. 

 

4.2.0 Introduction 
 

There are few data to describe human excretion of systemic aluminium and almost no reliable data 

which relate to aluminium in sweat, although recent data has suggested that perspiration might be a 

significant route of excretion of systemic aluminium (Exley, 2014). 

Certain commercial mineral waters, provide a good source of silicic acid and could potentially be 

utilised as a preventative measure against the accumulation of aluminium within the body. This could 

be exploited in young, healthy individuals, which could in turn reduce the rate and slow the 

progression of aluminium related disorders, including multiple sclerosis, Alzheimer’s disease and 

Parkinson’s disease. However, the role of silicon in drinking water and how humans handle this silicon 

has not been widely studied, particularly with respect to healthy individuals. 
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The purpose of this work was to elucidate the effect of drinking silicic acid-rich mineral waters on the 

excretion of silicon in the sweat of healthy individuals. The main aim of this research was to investigate 

the influence of a silicic acid-rich mineral water, as a non-invasive therapy, on the excretion of 

aluminium in sweat. Data for each individual are provided in Appendix 3. 

 

4.3.0 Methodology 
 

Details are provided for the specific methods involved during the collection of sweat during a thirty 

minute exercise protocol. Further details regarding sample analysis of Al and Si are presented in 

Chapter 2. 

 

4.3.1 Method blank material analysis 
 

It was paramount to design a sweat collection apparatus that would be effective in absorbing as much 

sweat as possible during a 30 minute duration of exercise, would be comfortable for the healthy 

volunteers and that wouldn’t produce any contamination to the final eluate. 

In previous methods, sweat was collected using measured squares of Whatman’s 541 hardened 

ashless filter paper. When testing materials for their suitability to this study, it was seen that the filter 

paper resulted in a significant contamination of Si and therefore wasn’t suitable for this investigation, 

of which the accurate measurement of silicon was paramount. Other materials were tested with 

solutions of known Al and Si concentrations, to determine contamination level and leachability of 

these elements into the centrifuged eluate. A summary of these results are provided in Table 4.3.1.1. 

Images of the materials tested in addition to the filter paper are taken from Lennard Jones 

Laboratories at Keele University and shown in Figure 4.3.1.1. 
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Figure 4.3.1.1 Materials analysed for Al and Si contamination for use during the sweat collection 

program.1) Cotton wool, 2) Dressing 3) Foam armpit pad 

A 5mM solution of citric acid was used due to its known ability to bind Al and so potential to leach Al 

from the material being tested. Table 4.3.1.1 shows how larger amounts of Al were drawn out of the 

materials when immersed with citric acid; an example being filter paper where 6.2µg/L was quantified 

in the citric acid eluate compared with 1.2 µg/L being quantified in the eluate of the UPW test. This is 

important when considering the absorption of sweat, and how sweat may leach Al from the material. 

Al ‘hiding’ in the material may be drawn out with the eluate, giving a falsely strong signal. 1mL of each 

solution was added to the materials prior to centrifuging. The solutions drawn out of the material 

were diluted 1:1, although dilution corrections were made for this analysis. 

 

Table 4.3.1.1 Comparative summary of materials tested for elemental contamination (n=18) 

 

 

Al Si Al Si Al Si Al Si

Solutions Alone 0.0034 0.012 0.022 0.011 99.82 0.065 0.017 99.981

Filterpaper 1.321 4.533 6.2 4.889 104.53 4.341 1.209 103.618

Cotton wool 0.809 1.244 4.218 3.042 103.56 1.206 0.754 102.312

Foam 0.012 0.026 0.508 0.278 100.52 0.038 0.018 100.192

Dressing 0.112 0.098 0.708 0.498 101.27 0.174 0.154 101.78

UPW 5mM Citric Acid 100µg/L Al 100µg/L Si

 Neat contamination µg/L (SD)

ID

% % 
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The foam material, cut from an armpit sweat collection pad, provided the smallest contamination 

values, see Table 4.3.1.1, and this result was comparable to the control metadata (P = 0.011, R=0.96, 

Pearson) so was therefore selected for the investigation. Method blanks, using this foam material, 

were immersed in 1mL UPW alongside each experiment and treated in the same manner to the 

samples. This control was treated in the same manner as the samples and subjected to the microwave 

digestion program (details of this are given in Chapter 2) to establish the final level of contamination 

that should be considered when processing the experimental data. This value was calculated to be 

57ng/digest (n=50) for aluminium and 92ng/digest for silicon (n=50). These values were subtracted 

from each sweat sample before the aluminium and content of the sweat samples were analysed.  

 

3.4.2 Protocol 
 

Nineteen participants, 9 male and 10 female (age range 19–34) were recruited from the student 

population at Keele University and ethical approval was obtained from the University’s Life 

Sciences Ethical Review Body (details of which are provided in the appendix). All participants were 

self-assessed as healthy and agreed to partake in a mild exercise program as part of the procedure 

for collecting the sweat samples.  

 

Foam pads, taken from an armpit sweat collection apparatus were selected as they delivered a 

good absorbency and minimal aluminium and silicon contamination. Pads were soaked in 5% HCl 

for 2 hours, ultra-pure water for 24 hours, then placed in a drying oven overnight before use. Prior 

to the exercise protocol, the upper back was cleaned using a pad immersed in 100% ethanol, then 

six pads were transferred to the upper back of each individual, covered with a plastic film and 

secured with an adhesive medical tape to prevent any allergic reaction to adhesives. The 
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individual was then instructed to complete a total of thirty minutes cycling on an exercise bike, 

including five minutes initial fast pace cycling, twenty minutes moderate paced cycling and a final 

five minutes fast paced cycling. Once this program was completed, the pads were transferred to 

7mL centrifuge tubes and span down at 6000RPM for 6 minutes to extract the volume of sweat 

collected in the material to the bottom of the tube, this series of steps is shown in Figure 4.3.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2.1 Sweat collection apparatus and exercise protocol 
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Figure 4.3.2.2: Removing sweat from the collection pad 

 

The only difference between the control and treatment protocols was the addition of the Si rich 

mineral water one hour prior to the exercise period. Each protocol was repeated three times for 

each healthy volunteer. 

 

Concentrations of aluminium and silicon in collected sweat were adjusted to take account of the 

volume of sweat produced by men (1342 mL/24 h) and women (712 mL/24 h) in this age range 

(Manz et al, 2012).  

 

The aluminium content of sweat was measured in 19 healthy volunteers (9 male and 10 female) 

following 30 minutes of mild exercise, with and without the addition of theSi rich mineral water, 

hereafter referred to as the control and treatment period. Research has strongly suggested that 

perspiration is the major route of excretion of systemic aluminium in humans (Exley et al 2013). 

The amount of Si in the Spritzer mineral water provided was determined to be 26.1mg/L 
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The mean aluminium content of method blanks equated to a contamination level of 57 ng/digest 

(mean±1.654 SD) and this value was subtracted from each sweat sample before the aluminium 

content of sweat samples were calculated.  

The volumes of sweat collected using this method ranged from 0.3 to 1.4 mL. Method blanks which 

consisted of the same squares of prepared foam material to which 1 mL of ultrapure water had been 

added were centrifuged and the solution extracted was collected in acid-washed centrifuge tubes and 

frozen prior to analysis. These method blanks were estimates of contamination by extraneous 

aluminium of the procedure used for collecting and processing the sweat.  

 
 

4.4.0 Results 

 
This chapter includes all the statistical comparisons between the control and treatment data for the 

controlled exercise experiments. Comparisons were made for the overall group and for males and 

females separately; however, male and female data are only presented within the main text when 

showing a noteworthy difference from the overall group. 

Results are displayed as amounts excreted per L-1 and extrapolated for literature values of sweat 

production for males and females per 24 hours (Manz et al, 2012). 

The group size (n) is equal to 19, 9 male and 10 female. 
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4.4.1 Sweat Volume 
 

 

The amount of sweat collected by the foam pad material is representative of the amount of sweat 

produced during the 30 minute exercise period. In general, Males excreted more sweat than females 

during this time. When comparing the data as a whole, the total sweat volume from men was around 

double that of females, for the control period gaining total volumes (n=6) of 8.82mL (±1.91mL) and 

3.96mL (±1.42mL) for the control and treatment period respectively.  

Sweat production was slightly higher in data collected post Si rich mineral water consumption than in 

the control. In the control period, females excreted an average total volume of 3.96mL, compared to 

a total volume of 4.5mL (±1.77mL) in the treatment period. This relationship was seen for male 

participants, during the control, a total volume of 8.82mL was collected, while in the treatment period, 

this value increased to 9.29mL (±1.81). 
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Table 4.4.1.1: Collection volume average (men and women) including individual sweat collection pad 

total as well as combining all six sweat collection pad volumes (n=3) 

 

 

 

Males had a higher variance in their data for sweat volume; in the control period, total volumes were 

6.04-11.36mL, resulting in a difference of 5.32mL, while for females, sweat volumes during the control 

period were measured of 1.99-6.24mL, a range of 4.25mL. Although, females had a greater variance 

in their sweat volume during the treatment protocol; measured at 2.64-8.44mL, a difference of 5.8mL, 

while for males, sweat volumes during the treatment period were measured of 6.42-11.59mL, a 

difference of 5.17mL. 

 

Mean total collected Mean Individual Volume Mean total collected Mean Individual Volume

F1 5.62 0.94 (0.07) 5.87 0.98 (0.11)

F2 2.63 0.44 (0.04) 3.02 0.5 (0.04)

F3 3.76 0.63 (0.03) 4.29 0.72 (0.06)

F4 2.66 0.44 (0.04) 3.40 0.57 (0.03)

F5 5.15 0.86 (0.05) 5.82 0.97 (0.06)

F6 3.31 0.55 (0.03) 3.32 0.5 (0.03)

F7 6.24 1.04 (0.04) 8.44 1.41 (0.04)

F8 1.99 0.33 (0.04) 2.64 0.44 (0.03)

F9 3.34 0.56 (0.03) 4.12 0.69 (0.05)

F10 4.85 0.81 (0.02) 5.42 0.9 (0.02)

Mean 3.96 (1.42) 0.66 (0.24) 4.5 (1.77) 0.77 (0.3)

M1 7.94 1.32 (0.09) 8.96 1.49 (0.06)

M2 11.01 1.84 (0.06) 11.35 1.89 (0.05)

M3 7.5 1.25 (0.06) 8.23 1.37 (0.03)

M4 6.04 1.01 (0.08) 6.42 1.07 (0.03)

M5 6.69 1.12 (0.04) 7.31 1.22 (0.03)

M6 11.36 1.89 (0.07) 11.59 1.93 (0.04)

M7 9.79 1.63 (0.04) 10.23 1.71 (0.05)

M8 8.69 1.45 (0.04) 8.77 1.46 (0.04)

M9 10.33 1.72 (0.06) 10.71 1.79 (0.04)

Mean 8.82 (1.91) 1.47 (0.32) 9.29 (1.81) 1.55 (0.3)

ID

Control Treatment

Volume of sweat collected mL (SD)
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4.4.2 The effect of a Si rich mineral water on Si excretion in sweat 
 

 

During the baseline, Si excretion equated to a mean of 748 µg/L (±140 µg/L) when considering the 

whole group, while during the treatment protocol, this mean increased to 1660 µg/L (±303 µg/L). In 

the control period, Si concentration in sweat varied from 576-1050µg/L between the study population, 

this value increased to 1110-2327µg/L during the treatment protocol. The smallest increase between 

control and treatment period was seen in individual M3, where the sweat Si content increased from 

874 µg/L to 1281µg/L after the consumption of the mineral water (Table 4.4.2.1). 
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Table 4.4.2.1 Mean (SD) content of Si (µg/L)  in sweat collected and measured after 30 minutes of 

mild exercise for both treatment and control patient data (n=6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean amount of Si excreted in sweat is higher for all study participants during the treatment 

protocol than the baseline. Males excreted statistically similar amounts of Si to females during the 

control period (r = 0.81, P = 0.009 Pearson Correlation analysis used for comparing means), presenting 

mean sweat Si concentrations of 828 µg/L (±153 µg/L) and 676µg/L (±80 µg/L) respectively. 

ID [Si] Sweat control (µg/L) [Si] Sweat treatment (µg/L)

F1 812 (170) 1466 (172)

F2 647 (8) 1609 (23)

F3 601 (9) 1332 (72)

F4 626 (27) 1683 (113)

F5 576 (5) 1476 (22)

F6 668 (37) 1612 (56)

F7 616 (12) 1110 (17)

F8 732 (87) 1634 (323)

F9 787 (57) 1778 (18)

F10 691 (9) 1938 (17)

M1 944 (31) 1661 (18)

M2 1050 (10) 2167 (28)

M3 874 (22) 1281 (35)

M4 743 (34) 1870 (80)

M5 810 (25) 1348 (52)

M6 783 (20) 2327 (73)

M7 994 (15) 1941 (5)

M8 578 (31) 1588 (28)

M9 674 (17) 1726 (41)

Mean (SD) 748 (140) 1660 (303)

Excretion of Si in sweat 
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Concentrations of Si in sweat during the treatment protocol indicated little variance between males 

and females (r = 0.69, P = 0.013 Pearson Correlation analysis) equating to 1768 µg/L and 1564 µg/L 

respectively.  

 

Table 4.4.2.2: Mean (SD) content of Si(µg/L)  in sweat collected and measured after 30 minutes of 

mild exercise for males in both treatment and control patient data (n=6) 

 

 

 

 

 

 

 

The variance seen between male and females in regard to Si excretion in sweat was relatively small. 

Although, this variance was larger during the treatment period than the control period, for males, the 

range in concentrations was 1281 µg/L to 2327 µg/L, and for females, this range was noted at 1110 

µg/L to 1938 µg/L. The SD value increased for each gender during the treatment people, suggesting 

higher variability within the data, increasing from 153 to 333 in males (Table 4.4.2.2), and 80 to 232 in 

females (Table 4.4.2.3). This larger variation in treatment protocol Si excretion is consistent 

throughout the healthy volunteer studies and can be contributed to individual biochemistry. 

 

ID [Si] Sweat control (µg/L) [Si] Sweat treatment (µg/L)

M1 944 (31) 1661 (18)

M2 1050 (10) 2167 (28)

M3 874 (22) 1281 (35)

M4 743 (34) 1870 (80)

M5 810 (25) 1348 (52)

M6 783 (20) 2327 (73)

M7 994 (15) 1941 (5)

M8 578 (31) 1588 (28)

M9 674 (17) 1726 (41)

Mean (SD) 828 (153) 1768 (333)

Excretion of Si in sweat in males
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Table 4.4.2.3: Mean (SD) content of Si (µg/L)  in sweat collected and measured after 30 minutes of 

mild exercise for males in both treatment and control patient data (n=6) 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3 The effect of a Si rich mineral water on Al excretion in sweat 
 

The mean amount of Al excreted in sweat is higher for all study participants during the treatment 

protocol than the baseline. Males excreted significantly more Al than females for the treatment period 

(t = 3.26, P = 0.007), presenting mean sweat Al concentrations of 1208 µg/L (±433 µg/L) and 834 µg/L 

(±334 µg/L) respectively. Contrary to this, baseline sweat concentrations did not show large variance 

between males and female (t = 1.07, P = 0.46), equating to 341 µg/L and 353 µg/L respectively. 

An increase in sweat Al concentration was seen for all study participants during the treatment protocol 

however, this increase was more predominant in some members of the study population. The sweat 

of individual M2 contained 72 µg/L, the lowest concentration of Al of all study participants, although, 

ID [Si] Sweat control (µg/L) [Si] Sweat treatment (µg/L)

F1 812 (170) 1466 (172)

F2 647 (8) 1609 (23)

F3 601 (9) 1332 (72)

F4 626 (27) 1683 (113)

F5 576 (5) 1476 (22)

F6 668 (37) 1612 (56)

F7 616 (12) 1110 (17)

F8 732 (87) 1634 (323)

F9 787 (57) 1778 (18)

F10 691 (9) 1938 (17)

Mean (SD) 676 (80) 1564 (232)

Excretion of Si in sweat in females
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presented the largest increase in sweat Al content after consumption of a Si rich mineral water, 

increasing to 1030 µg/L. 

In the control period, Al concentration in sweat varied from 71-574 µg/L between the study 

population, this value increased to 381-1677 µg/L during the treatment protocol. The smallest 

increase between control and treatment period was seen in individual F2, where the seat Al content 

increased from 217 µg/L to 381µg/L after the consumption of the mineral water. 

 

Table 4.4.3.1 Mean (SD) content of Al (µg/L)  in sweat collected and measured after 30 minutes of 

mild exercise for both treatment and control patient data (n=6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID [Al] Sweat control (µg/L) [Al] Sweat treatment (µg/L)

F1 467 (96) 1184 (169)

F2 217 (11) 381 (33)

F3 270 (10) 1081 (55)

F4 255 (17) 986 (20)

F5 187 (9) 619 (13)

F6 300 (16) 424 (42)

F7 266 (57 427 (29)

F8 520 (120) 1035 (131)

F9 585 (8) 994 (51)

F10 461 (9) 1215 (85)

M1 444 (88) 772 (15)

M2 71 (4) 1030 (42)

M3 526 (6) 1589 (113)

M4 574 (26) 1677 (28)

M5 464 (12) 1666 (33)

M6 183 (36) 1276 (87)

M7 152 (57) 1536 (88)

M8 400 (31) 690 (18)

M9 255 (34) 639 (25)

Mean (SD) 347 (156) 1012 (419)

Excretion of Al in sweat 
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As discussed earlier in this section, the excretion of Al in sweat is significantly higher in males than 

females throughout the treatment protocol.  

Table 4.4.3.2: Mean (SD) content of Al (µg/L)  in sweat collected and measured after 30 minutes of 

mild exercise for males in both treatment and control patient data (n=6) 

 

 

 

 

 

 

 

 

 

Table 4.4.3.3: Mean (SD) content of Al (µg/L)  in sweat collected and measured after 30 minutes of 

mild exercise for females in both treatment and control patient data (n=6) 

 

  

 

 

 

 

 

 

 

 

ID [Al] Sweat control (µg/L) [Al] Sweat treatment (µg/L)

F1 467 (96) 1184 (169)

F2 217 (11) 381 (33)

F3 270 (10) 1081 (55)

F4 255 (17) 986 (20)

F5 187 (9) 619 (13)

F6 300 (16) 424 (42)

F7 266 (57 427 (29)

F8 520 (120) 1035 (131)

F9 585 (8) 994 (51)

F10 461 (9) 1215 (85)

Mean (SD) 353 (141) 835 (334)

Excretion of Al in sweat in females

ID [Al] Sweat control (µg/L) [Al] Sweat treatment (µg/L)

M1 444 (88) 772 (15)

M2 71 (4) 1030 (42)

M3 526 (6) 1589 (113)

M4 574 (26) 1677 (28)

M5 464 (12) 1666 (33)

M6 183 (36) 1276 (87)

M7 152 (57) 1536 (88)

M8 400 (31) 690 (18)

M9 255 (34) 639 (25)

Mean (SD) 341 (245) 1208 (433)

Excretion of Al in sweat in males
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The variance in data is smaller for females than males, in both the control period at 141 µg/L and 245 

µg/L respectively, and the treatment period, at 334 µg/L and 433 µg/L . Al excretion doubled in 

participant F8, increasing from 520 µg/L to 1035 µg/L, while Al excretion quadrupled in participant F3, 

who had a baseline Al sweat excretion of 270 µg/L which rose to 1081 µg/L post Si rich mineral water 

consumption. 

 

Table 4.4.3.4 Mean (SD) content of Al (µg/L) and (µg/L) Si in sweat collected and measured after 30 

minutes of mild exercise for both treatment and control patient data (n=6) 

 

 

 

4.4.4 Comparing the study population 
 

Elemental sweat excretions were comparable within the group, with low variance between the 

collated data. Excretions of Si and Al during the control period were 748 μg/L (±140 μg/L) and 347 

ID Age [Al] Sweat control ( µg/L) [Si] Sweat control (µg/L) [Al] Sweat treatment ( µg/L) [Si] Sweat treatment (µg/L)

F1 24 467 (96) 812 (170) 1184 (169) 1466 (172)

F2 25 217 (11) 647 (8) 381 (33) 1609 (23)

F3 19 270 (10) 601 (9) 1081 (55) 1332 (72)

F4 20 255 (17) 626 (27) 986 (20) 1683 (113)

F5 24 187 (9) 576 (5) 619 (13) 1476 (22)

F6 23 300 (16) 668 (37) 424 (42) 1612 (56)

F7 18 266 (57 616 (12) 427 (29) 1110 (17)

F8 25 520 (120) 732 (87) 1035 (131) 1634 (323)

F9 20 585 (8) 787 (57) 994 (51) 1778 (18)

F10 22 461 (9) 691 (9) 1215 (85) 1938 (17)

M1 27 444 (88) 944 (31) 772 (15) 1661 (18)

M2 34 71 (4) 1050 (10) 1030 (42) 2167 (28)

M3 26 526 (6) 874 (22) 1589 (113) 1281 (35)

M4 24 574 (26) 743 (34) 1677 (28) 1870 (80)

M5 21 464 (12) 810 (25) 1666 (33) 1348 (52)

M6 28 183 (36) 783 (20) 1276 (87) 2327 (73)

M7 21 152 (57) 994 (15) 1536 (88) 1941 (5)

M8 29 400 (31) 578 (31) 690 (18) 1588 (28)

M9 25 255 (34) 674 (17) 639 (25) 1726 (41)

Excretion of Al and Si in sweat 
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μg/L (±156 μg/L) respectively, while during the treatment period, these values were shown to 

increase to 1660 μg/L (±103) and 1012 μg/L (±419) respectively (Table 4.4.4.1). 

 

Table 4.4.4.1: Mean (SD) and median sweat concentrations of Si (μg/L) and Al (μg/L) for patients 

(n = 19) 

 

 

 

 

When comparing the relevance of these means within the study population, a t-test was performed 

to establish the distribution of this data.  This test revealed that the means between the control were 

statistically different for Al (t = 1.52, p = 0.08) and Si (t = 1.22, p = 0.01), this difference was even more 

notable during the treatment period for Al (t = 2.45, p < 0.001) and Si (t = 3.75, p < 0.001) are 

statistically different, highlighting that Si and Al biochemistry varies significantly between individuals.   

 

 

 

 

 

 

Control Treatment Control Treatment

Silicon (µg/L) Aluminium (µg/L)

Group 747.6 (140.4) 1660.3 (303.2) 347.2 (156.0) 1011.5 (419.4)

Mean (SD) elemental sweat concentration
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Table 4.4.4.2: Summary of t-Test for paired means - differences in the urinary excretion of Al  

and Si in control and treatment protocols in the healthy volunteer population (n=19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

The One-way ANOVA statistical testing (Table 4.4.4.3) revealed that data was significant (P < 

0.001) for all nineteen healthy volunteers for Al and Si between control exercise period and 

treatment exercise period for the study group.  

  
t-Test: Paired Two Sample for Means                  

Aluminium (n=19)   

  

Function Control Treatment 

t Stat 1.52 2.45 

P one-tail 0.08 3.65E-05 

t Crit one-tail  1.71 1.91 

P two-tail 0.15 7.29E-05 

t Crit two-tail 2.17 2.23 

Pearson Correlation 0.68 0.93 

      

  
t-Test: Paired Two Sample for Means                                    

Silicon (n=19)   

  

Function Control Treatment 

t Stat 1.22 3.79 

P one-tail 0.0100 0.00 

t Crit one-tail  0.97 2.14 

P two-tail 0.0200 0.00 

t Crit two-tail 1.07 3.45 

Pearson Correlation 0.78 0.96 
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Table 4.4.4.3 Summary of One-way ANOVA - differences in the urinary excretion of Si (μg/L) and 

Al (ug/L) between the control and treatment period of the volunteer group. 

 

 

Means within the data displayed significance when comparing the F crit and F values. F – crit was 

smaller than F for all study participants for Al and Si and when applying Tukey testing, the treatment 

period contained higher elemental excretion of Si and Al in sweat for all individuals. 
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4.4.5 Comparing gender within the study population 
 

 

Wilcoxon signed-rank was used to determine where any differences within the data lie. The 

differences between the mean sweat excretion of Al and Si for the study group are shown in Table 

4.4.5.1. Correlation between the treatment data was stronger than the control, presenting r-

values of 0.96 and 0.51 respectively, highlighting that these two independent variables were 

selected from populations with the same distribution. 

 

Table 4.4.5.1: Summary of Wilcoxon signed-rank - differences between pairs of means of 

excretion for male (n = 9) and female groups (n = 10). 

 

 

 

 

 

 

Males generally excreted more Si and Al, which was statistically significant during the entire study 

duration (P = 0.001). An example of a treatment study replicate showing a mean excretory Al 

value of 619μg/L was seen for female F5, compared to 1276 μg/L for male M5. A further example 

Relationship with Silicon 

  

Aluminium 

r-Value p-Value 

Control 0.51 <0.05 

Treatment 0.96 <0.05 
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for a mean excretory Si value of a treatment study replicate of 1476μg/L was seen for female F5, 

compared to 2327μg/L for male M5. 

 

Table 4.4.5.2 Summary of Wilcoxon signed-rank - differences between pairs of means of 

excretion for male (n = 9) and female groups (n = 10). 

 

 

 

 

 

The Mann-Whitney U test confirms a statistical significance (W=0, P < 0.05) for the study population 

when comparing amount of Al and Si sweat. Table 4.4.5.3 shows this statistical relationship and the 

difference in medians between the control and treatment period. 

 

 

 

 

 

Male v Female Patients 

  Silicon Aluminium 

  P-Value P-Value 

Control 0.018 0.962 

Treatment 0.268 0.039 
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Table 4.4.5.3: Significance of the differences in sweat excretions of Si (μg/L) and Al (μg/L) between 

control and treatment (Mann Whitney U test). 

 

 

 

 

Data (Table 4.4.5.4) showing the excretion of Si in sweat during the control phase was statistically 

similar for males and females (P=0.018) although data held less statistical relevance between the same 

pool of individuals for the treatment period (P = 0.268). In addition to this, the data showed similarities 

between males and females during the treatment period for Al, indicating that people show a similar 

relationship in Al excretion (P = 0.039), however, during the control, this relationship was statistically 

dissimilar different between males and females (P=0.962). 

 

 

Silicon (ug/L) 

Difference  
Male Female 

W-Value P-Value Median W-Value P-Value Median 

Control-Treatment 0 0.014 810-1726 0 0.009 657-1611 

Aluminium (ug/L) 

Difference  
Male Female 

W-Value P-Value Median W-Value P-Value Median 

Control-
Treatment 

0 0.014 400-1276 0 0.009 285-990 
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Table 4.4.5.4 Differences in the median excretions of Si (μg/L) and Al (μg/L) between males and 

females for the healthy volunteer group.(Mann-Whitney U test). 

 

 

 

 

 

 

 

 

 

 

When looking at the difference between amounts of Si and Al excreted in the sweat of the healthy 

volunteers (Table 4.4.5.5), seventeen out of the nineteen individuals excreted 50% more Si in their 

sweat after consuming the Si rich mineral water. Seventeen out of nineteen participants excreted 50% 

more Al in their sweat after the consumption of the mineral water, the two individuals (M3 and M5) 

presenting less than 50% were different for the lower percentage difference in Si excretion (F6 and 

F7). It is interesting to note that for Al these individuals were both male, while for Si these individuals 

were both female. 

 

Male                       

(n=9)

Female                            

(n=10)
P-value

ΣW 1298 1120 0.143

Control

Treatment

826 676 0.018

1767 1564 0.268

Silicon (μg/L)

Patient

0.039

ΣW 775 594 0.5

353 0.962

Aluminium (μg/L)

Patient

Male                       

(n=9)

Female                            

(n=10)
P-value

Treatment 1208

Control 341

835
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Table 4.4.5.5: Mean creatinine corrected urinary excretions of Si (μg/L) and Al (μg/L) for the 

control and treatment groups and the percentage difference between the groups. 

 

 

The correlation between aluminium and silicon excretion in sweat during the baseline and treatment 

period is shown in figure 4.4.5.1.  

 

 

 

 

 

Control Treatment % Difference Control Treatment % Difference

F1 812 1466 57.4 467 1184 86.9

F2 647 1609 85.3 217 381 54.8

F3 601 1332 75.6 270 1081 120.1

F4 626 1683 91.6 255 986 117.8

F5 576 1476 87.7 187 619 107.2

F6 668 1612 82.8 300 424 34.3

F7 616 1110 57.2 266 427 46.5

F8 732 1634 76.2 520 1035 66.2

F9 787 1778 77.3 585 994 51.8

F10 691 1938 94.9 461 1215 90

M1 944 1661 55 444 772 53.9

M2 1050 2167 69.4 71 1030 174.2

M3 874 1281 37.8 526 1589 100.5

M4 743 1870 86.3 574 1677 98

M5 810 1348 49.9 464 1666 112.9

M6 783 2327 99.3 183 1276 149.8

M7 994 1941 64.5 152 1536 164

M8 578 1588 93.3 400 690 53.2

M9 674 1726 87.7 255 639 85.9

Silicon Aluminium
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Figure 4.4.5.1 Sweat excretion of Al (µg/L) for the control (●) and treatment (●) periods against 

Si excretion (μg/L). 

 

4.4.6 Comparison between the excretion of silicon in sweat with the 

volume of silicon rich mineral water consumed 

 

All healthy volunteers were instructed to consume as much of the 1500mL bottle of Spritzer mineral 

water as possible 1 hour before the exercise programme was initiated. The final volumes consumed 

were noted for each control and treatment experimental replicate (n=6) and the amount of Si taken 

on board prior to the exercise was calculated (Table 4.4.2.1). This value was then compared to the 

difference between control and treatment Si excretion values so any influence of the water on Si 

excretion was established.  
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Despite the loading of the mineral water 1 hour before exercise, the difference in Si values represents 

a small proportion of the Si consumed in the water, with low variability between both male and female 

participants, 2.4 and 2.1% respectively.  

The concentration of silicon in sweat increased significantly during the treatment period, a trend seen 

for all volunteers (P < 0.005, ANOVA). Further to sweat volume being larger for male participants, on 

average, silicon excretion was larger in males than females, despite more males not consuming the 

entirety of the Spritzer water provided to them. Five out of the ten females and six out of the nine 

males failed to consume the suggested volume of 1500mL in 1 hour.  

The maximum amount of Si in 1500mL of the mineral water was calculated to be 44.26mg and eight 

out of the nineteen volunteers consumed this full amount. 

When the study population was considered as a group, sweat Si concentration increased after the 

consumption of the mineral water an hour before exercise. During the control, Si excretion was 

calculated at 748µg/L (±140 µg/L) and during the treatment protocol, this value increased to 1660 

µg/L (±303 µg/L). This increase was seen for both males and females (Table 4.4.6.1), although, the 

difference was more significant for the male subjects, when comparing the two means (P < 0.001 and 

P = 0.002 respectively, Pearson correlation analysis). Males excreted 828 µg/L (±153 µg/L) Si in their 

sweat as a baseline and 1767 µg/L (348 µg/L) during the treatment protocol, while females produced 

676 µg/L (±79 µg/L) of Si in the baseline period and 1564 µg/L (±244 µg/L). 
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Table 4.4.6.1: Comparison between the excretion of Si in sweat with the volume of silicon rich 

mineral water consumed (mL) and percentage of Si consumed as mineral water. 

 

 

 

During the healthy volunteer study in Chapter 3, a weak positive correlation was witnessed between 

the amount of Si taken into the body and the amount excreted. This is seen in sweat too. When more 

Si is consumed, more Si is excreted (R=0.39). Eight out of the nineteen volunteers consumed all 

1500mL silicon rich mineral water, but those that didn’t enabled us to see this relationship in Figure 

4.4.6.1. 

 

 

 

 

 

F1 1258 37091 654 1.8

F2 1460 43047 962 2.2

F3 1329 39184 731 1.9

F4 1500 44226 1057 2.4

F5 1376 40570 900 2.2

F6 1500 44226 944 2.1

F7 1247 36767 494 1.3

F8 1500 44226 902 2.0

F9 1500 44226 991 2.2

F10 1500 44226 1247 2.8

Mean 1417 41779 888 2.1

M1 1320 38919 717 1.8

M2 1500 44226 1117 2.5

M3 754 22231 407 1.8

M4 1343 39597 1127 2.8

M5 1022 30133 538 1.8

M6 1500 44226 1544 3.5

M7 1500 44226 947 2.1

M8 1429 42133 1010 2.4

M9 1300 38329 1052 2.7

Mean 1296 38224 940 2.4

ID
Difference in silicon excretion 

(Treatment – Control, μg/L)

Percentage of mineral water which 

equates to the difference in Si
Si consumed (µg)Spritzer consumed (mL)
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Figure 4.4.6.1 Comparing the amount of Si taken on by each participant in the form of Si rich mineral 

water in relation to the amount excreted by each study participant. 

 

4.4.7 Twenty-four hour data correction 
 

The data was corrected for 24 hour sweat excretion using literature values. Concentrations of 

aluminium and silicon in collected sweat were adjusted to take account of the volume of sweat 

produced by men (1342 mL/24 h) and women (712 mL/24 h), values established by Manz et al 

(2012). 

 

4.4.7.1 Silicon 
 

When corrected for 24 hour perspiration, Si excretion increased for males and reduced for females 

over this time (Table 4.4.7.1.1), making these differences more prominent than measurements 
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calculated per L-1. The amount of Si excreted in the sweat of males increased from 1110.9 µg (±205.8 

µg) during the control 24 hour period to 2372.1 µg (±467.7 µg). The variance in this male data was 

from 905 µg to 1409 µg during the control 24 hour period, and 1719.1 µg to 3123.2 µg during the 24 

hours for the treatment protocol. 

 

Table 4.4.7.1.1: 24-hour mean (SD) excretion of Si in the perspiration of males within the study 

population (n=9) 

 

 

 

 

 

 

 

The amount of Si excreted in the sweat of females increased from 486.3 µg (±57.2 µg) during the 

control 24 hour period to 1125.9 µg (±167.3 µg). The variance in this female data was from 414.9 µg 

to 584.6 µg during the control 24 hour period, and 799.2 µg to 1395.2 µg during the 24 hours during 

the treatment protocol (Table 4.4.7.1.2). 

 

 

ID [Si] Sweat control (µg/24hr) [Si] Sweat treatment (µg/24hr)

M1 1267.3 2228.5

M2 1409.0 2907.7

M3 1172.9 1719.1

M4 997.1 2509.7

M5 1086.3 1808.7

M6 1050.1 3123.1

M7 1334.5 2605.0

M8 776.2 2131.0

M9 905.0 2316.6

Mean (SD) 1110.9 (205.8) 2372.1 (467.7)

[Si] in 24 hr sweat excretion in males
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Table 4.4.7.1.2: 24-hour mean (SD) excretion of Si in the perspiration of females within the study 

population (n=9) 

 

 

 

 

 

 

 

After 24-hour correction, a larger difference can be seen between elemental excretion in sweat 

between males and females within the healthy volunteer study (Table 4.4.7.1.3).  When considering 

Si excretion, the baseline Si concentration in sweat for males equated to 1110.0µg/L, while for 

females, less than half of this amount was recorded at 486.3µg/L. This ratio was consistent to the 

treatment protocol, as for males, an average sweat Si content was 2372.1 µg/L, while for females, this 

value equated to 1125.9 µg/L. 

Table 4.4.7.1.3: 24-hour mean (SD) excretion of Si in the perspiration of healthy volunteers within the 

study population (n=19) 

 

 

 

 

ID [Si] Sweat control (µg/24hr) [Si] Sweat treatment (µg/24hr)

F1 584.6 1055.4

F2 465.5 1158.6

F3 432.6 959.1

F4 450.4 1211.6

F5 414.9 1062.9

F6 480.7 1160.6

F7 443.4 799.2

F8 527.1 1176.5

F9 566.6 1279.8

F10 497.5 1395.2

Mean (SD) 486.3 (57.2) 1125.9 (167.3)

[Si] in 24 hr sweat excretion in females

[Si] in 24 hr sweat excretion in healthy volunteers

Gender
[Si] Sweat control (µg/24hr) [Si] Sweat treatment (µg/24hr)

Male

Female 486.3 (57.2) 1125.9 (167.3)

1110.9 (205.8) 2372.1 (467.7)
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4.4.7.2 Aluminium 
 

When corrected for 24 hour perspiration, Si excretion increased for males and reduced for females 

over this time, making these differences more prominent than measurements calculated per L-1. Data 

in Table 4.4.7.2.1 shows how the amount of Al excreted in the sweat of males increased from 457.6 

µg (±241.1 µg) during the control 24 hour period to 1621.5 µg (±581.4 µg). The variance in this male 

data was from 95.8 µg to 769.8 µg during the control 24 hour period, and 857.1 µg to 2250.0 µg during 

the 24 hours for the treatment protocol. 

 

Table 4.4.7.2.1: 24-hour mean (SD) excretion of Al in the perspiration of males within the study 

population (n=9) 

 

 

 

 

 

 

 

The amount of Al excreted in the sweat of females increased from 254 µg (±101.6 µg) during the 

control 24 hour period to 600.8 µg (±240.4 µg). Table 4.4.7.2.2 shows the variance in this female data, 

ranging from 191.2 µg to 421.1 µg during the control 24 hour period, and 305.1 µg to 874.7 µg during 

the 24 hours during the treatment protocol. 

ID [Al] Sweat control (µg/24hr) [Al] Sweat treatment (µg/24hr)

M1 595.8 1036.0

M2 95.8 1382.5

M3 705.2 2132.3

M4 769.8 2250.0

M5 623.0 2236.0

M6 245.9 1712.0

M7 203.7 2061.8

M8 536.5 925.7

M9 342.5 857.1

Mean (SD) 457.6 (241.1) 1621.5 (581.4)

[Al] in 24 hr sweat excretion in males
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Table 4.4.7.2.2: 24-hour mean (SD) excretion of Al in the perspiration of females within the study 

population (n=9) 

 

 

 

 

 

 

 

 

After 24-hour correction, a larger difference can be seen between elemental excretion in sweat 

between males and females within the healthy volunteer study (Table 4.4.7.2.3).  When considering 

Al excretion, the baseline Al concentration in sweat for males equated to 457.6µg/L, while for females, 

just more than half of this amount was recorded at 254.0µg/L. This ratio was consistent to the 

treatment protocol, as for males, an average sweat Al content was 1621.5 µg/L, while for females, this 

value equated to 600.8 µg/L, less than half of the amount calculated for males. 

 

 

 

 

ID [Al] Sweat control (µg/24hr) [Al] Sweat treatment (µg/24hr)

F1 336.5 852.3

F2 156.4 274.1

F3 194.3 778.5

F4 183.6 709.6

F5 134.9 445.8

F6 215.8 305.1

F7 191.2 307.4

F8 374.5 745.1

F9 421.1 715.9

F10 331.6 874.7

Mean (SD) 254.0 (101.6) 600.8 (240.4)

[Al] in 24 hr sweat excretion in females
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Table 4.4.7.2.3: 24-hour mean (SD) excretion of Si in the perspiration of healthy volunteers within the 

study population (n=19) 

 

 

 

 

 

 

Once corrected, weak positive correlation was noticed between Si and Al excretion in sweat during 

both control (r = 0.4) and treatment (r = 0.5) protocols (Figure 4.4.7.2.1). 

 

 

 

 

 

 

 

 

Figure 4.4.7.2.1: Corrected 24 hour sweat excretion concentrations of Al (µg/L) for the control (●) 

and treatment (●) periods against Si excretion (μg/L). 

[Al] in 24 hr sweat excretion in healthy volunteers

Gender
[Al] Sweat control (µg/24hr) [Al] Sweat treatment (µg/24hr)

Male

254.0 (101.6) 600.8 (240.4)Female

457.6 (241.1) 1621.5 (581.4)
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Pearson correlation analysis (Table 4.4.6.7) indicated that this weak positive correlation between Si 

and Al excretion in sweat was significant for both control and treatment protocols (P < 0.005). 

Table 4.4.6.7: Correlation analysis between the 24hr corrected excretion of Al (μg/24hr) with the 

excretion of Si (μg/24hr). 

 

 

 

 

All data analysis highlights that consuming the Si rich mineral water had a positive effect on the 

excretion of Si and Al in sweat, supporting the observation that levels of Si and Al in sweat 

approximately doubled after the incorporation of 1500mL of mineral water 1 hour before exercise. 

This is visually represented in Figure 4.4.6.2. 

 

 

 

 

 

 

 

Control

Treatment

0.4

0.5

<0.05

<0.05

Relationship with silicon

Aluminium

r-Value p-Value
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Figure 4.4.6.2: 24 hour corrected excretion of Al (μg/24hr) for the control (Si ● Al ●) and 

treatment period (Si ● Al ●) compared to Si excretion (μg/24hr) for the study group (n=19) 

4.4.7 Age and BMI comparisons within the study group 
 

After 24-hour correction, the elemental sweat excretions were compared with age. Healthy volunteers 

in this study ranged from 18-34 years and despite low significant correlation between age and Si 

excretion in sweat (P > 0.3), correlation between Al excretion in sweat and age were more significantly 

correlated ( P <0.05), using Pearson correlation analysis (Table 4.4.7.1). 

Table 4.4.7.1: Correlation analysis between age and excretion of Si and Al (µg/L) between the 

control and treatment periods 

 

 

 

p- value

Age v 24hr corrected sweat excretion

Silicon Aluminium

Control 0.4 0.007

Treatment 0.3 0.004
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Excretion of Si and Al were plotted against age in Figure 4.4.7.1. The mean age for the study was 24 

years and only one individual over 30 years of age took part in the study. Weak positive correlation 

can be seen for all relationships, although, the relationship between elemental excretion and age is 

stronger during the control period. 

 

 

 

 

 

 

 

Figure 4.4.7.1: 24 hour corrected excretion of Al (μg/24hr) against age for the control (Si ● Al ●) 

and treatment period (Si ● Al ●) compared to Si excretion (μg/24hr) against age for the study 

group (n=19) 

 

Pearson correlation analysis, shown in Table 4.4.7.2 confirms the relationship between age and 

elemental excretion in sweat. Stronger correlation and higher r – values were seen during the 

control protocol for both Si and Al, at 0.59 and 0.79 respectively. This correlation decreases 

during the treatment protocol, signifying a unique relationship between each individual and 

their handling of Si at high doses. 
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Table 4.4.7.2: 24-hour corrected comparison between elemental excretion in sweat and subject 

age (n=19) 

 

After 24-hour correction, the elemental sweat excretions were compared with BMI. Healthy 

volunteers in this study ranged BMI values from 20-41.5, although most of the healthy volunteers 

were of a normal BMI, ranging from 20-25. When analysed, the data followed a similar trend to age 

comparisons. The statistical significance between elemental excretion was larger for the control 

protocol than the treatment protocol, Pearson correlation analysis revealed a p- value of 0.022 and 

0.17 for these populations respectively. 

Despite low significant correlation between BMI and Si excretion in sweat (P > 0.2), correlation 

between Al excretion in sweat and BMI were significantly correlated ( P <0.05) in the control period, 

using Pearson correlation analysis (Table 4.4.7.3). 

 

 

 

 

 

Silicon Aluminium

Control

Treatment

Study
r - Value

Age v sweat elemental excretion (n=19)

0.59 0.79

0.44 0.26
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Table 4.4.7.3: Correlation analysis between BMI and excretion of Si and Al (µg/L) between the 

control and treatment periods  

 

 

 

 

Excretion of Si and Al were plotted against BMI in Figure 4.4.7.2. The mean BMI for the study was 

26.4 and only one individual with a BMI over 40 took part in the study. Weak positive correlation can 

be seen for all relationships, although, the relationship between elemental excretion and BMI is 

stronger during the control period. 

 

 

 

 

 

 

 

Figure 4.4.7.2: 24 hour corrected excretion of Al (μg/24hr) against BMI for the control (Si ● Al ●) 

and treatment period (Si ● Al ●) compared to Si excretion (μg/24hr) against age for the study 

group (n=19) 

BMI v 24hr corrected sweat excretion

Control

Treatment

Silicon Aluminium

p - value

0.022 0.018

0.17 0.13
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Pearson correlation analysis, shown in Table 4.4.7.4, confirms the relationship between BMI and 

elemental excretion in sweat. Stronger correlation and higher r – values were seen during the 

control protocol for both Si and Al, at 0.55 and 0.68 respectively. This correlation decreases 

during the treatment protocol, signifying a unique relationship between each individual and 

their handling of Si at high doses. 

 

Table 4.4.7.4: 24-hour corrected comparison between elemental excretion in sweat and subject 

BMI (n=19) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Silicon Aluminium

BMI v sweat elemental excretion (n=19)

Study
r - Value

Control 0.55 0.68

Treatment 0.31 0.18
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4.5 Summary of results for healthy individuals  
 

 

• Sweat volume collected was larger for males than females (Section 4.4.1.).  

• The amount of Si from the Si rich mineral water was determined to be only around 2% of that 

consumed (4.4.2) 

• Excretions of Si and Al in sweat are significantly increased following the consumption of the 

mineral water (Section 4.4.3).  

•Weak positive correlation was demonstrated between Si and Al excretion (Section 4.4.5) 

• Si and Al showed weak positive correlation with age during the control period (Section 4.4.7).  

• Weak positive correlation was noted between BMI and urinary excretion of Al and Si during 

the control protocol (Section 4.4.7) 

 

4.6 Discussion of results 
 

The mean aluminium content in the control period was higher in females (341 ± 245 µg/L) than males 

(353 ± 141 µg/L) though the data for each group were not found to be significantly different from one 

another (P > 0.05). Contrary to this the mean aluminium content in the treatment protocol was higher 

in males (1208 ± 433µg/L) than females (835 ± 334µg/L) and the data for each group were found to 

be significantly different from one another (P < 0.05). The volume of sweat collected ranged from 0.66 

to 1.55 mL and corresponded well with literature values for perspiration rates (Chen et al. 2012). The 

method blanks demonstrated a very low level of possible contamination by aluminium and were 

within the range of a previous study (Exley et al 2014).The latter demonstrated a high degree of 
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confidence in the concentrations of aluminium measured herein which were towards the higher end 

of previous literature values (House et al 2012).  

When the concentrations of aluminium in collected sweat were adjusted to take account of the 

volume of sweat produced by men (1342 mL/24 h) and women (712 mL/24 h) in this age range (Manz 

et al 2012) and undergoing mild exercise the amount of aluminium excreted over 24 h ranged from 

135 to 421 µg/24 h for women to 96–770 µg/24 h for men during the control and from 274 to 875 

µg/24 h for women to 857–2250 µg/24 h for men (Table 4.4.7.2.1 and Table 4.4.7.2.2) with men 

excreting significantly more aluminium than women (P < 0.05). These data are significantly higher than 

those that describe the daily excretion of aluminium in urine, up to 100 µg/24 h (Exley, 2013) and 

therefore they heavily implicate sweating as the major route of excretion of systemic aluminium in 

humans, especially after the consumption of a Si rich mineral water. In doing so it may be that men, 

through perspiration, excrete aluminium from the body more effectively than women and it can be 

suggested that regular exercise might be a way to increase the excretion of aluminium from the body. 

If sweating is the major route for the removal of systemic aluminium from the body then this 

observation puts into question the practice of disrupting or blocking perspiration using 

antiperspirants, specifically, aluminium-based antiperspirants. 
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Chapter 5 - Silicic acid-rich mineral water as a non-invasive method of 

reducing the aluminium body burden in individuals diagnosed with 

multiple sclerosis. 
 

5.1.0 Aims 
 

The aim of this chapter is to investigate if regular drinking of a silicon-rich mineral water can help in 

the removal of Al from the body of individuals with a diagnosis of MS. Secondary aims were to 

determine if drinking silicic acid-rich mineral water had any effect on mobility index scores and 

general patient wellbeing. 

5.2.0 Introduction 
 

The link between aluminium and multiple sclerosis has been one of tremendous dispute for several 

decades. Despite a number of studies suggesting a potential involvement, the link still remains 

controversial (see section 1.1). By highlighting the effect of silicic acid in the removal of aluminium 

from the human body, unequivocal data can be obtained to support this link (Exley et al 2006). 

Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous 

system of as yet unknown aetiology (see section 1.14). A consensus of opinion has suggested that the 

disorder is the result of an interplay between environmental factors and susceptibility genes. Exley et 

al (2006) used a battery of analytical techniques to determine if the urinary excretion of i) markers of 

oxidative damage and ii) the environmental toxin aluminium and its antagonist, silicon, were altered 

in secondary progressive MS (SPMS). Urinary concentrations of aluminium were significantly increased 

in SPMS (P<0.05) such that the levels of aluminium excretion in the former were similar to those 

observed in individuals undergoing metal chelation therapy. The excretion of silicon is lower in MS 

and significantly so in SPMS (P<0.05). Levels of urinary aluminium excretion were similar to those seen 
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in aluminium intoxication and suggested that aluminium may be a hitherto unrecognized 

environmental factor associated with the aetiology of MS. If aluminium is involved in MS then an 

increased dietary intake of its natural antagonist, silicon, might be a therapeutic option. 

 

 

In Chapter 3 of this thesis it was demonstrated that for healthy individuals (Chapter 3.0), silicic 

acid-rich mineral waters could be exploited as a non-invasive means of reducing burden of 

aluminium and long term treatment by regular consumption could maintain aluminium body 

burden at a reduced level. 

 

5.3.0 Methodology 
 

Fifteen multiple sclerosis patients were recruited through the University Hospital of North 

Staffordshire (UHNS, now Royal Stoke) through the MS department by a qualified clinician 

following the inclusion and exclusion criteria. Ethical approval was attained by myself, from the 

national research ethics committee (NREC reference 14/YH/1115). All volunteers provided 

written consent prior to participation, which was obtained by a qualified clinician. 

All SPMS patients attending the Neurology clinics were screened for possible inclusion in the 

study. Suitable and interested patients were posted a participant information pack, including the 

PIS and coversheet, explaining the outline of the study. This was followed up via telephone 

calls/postal letters by a study clinician to confirm their interest and participation. Those who were 

interested were asked to be come back to a research clinic where a screening assessment was 
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carried out by a study clinician and eligible patients were asked to sign the consent form. A 

standard time period of 24 hours was given between the receipt of the study information sheet 

and taking informed consent. 

The inclusion criteria included: All patients must have a confirmed diagnosis, by a study clinician, 

of secondary progressive multiple sclerosis (SPMS) according to the McDonald inclusion criteria. 

Patients must be willing and able to give informed consent in line with the Mental Capacity Act. 

Patients had a carer to help ensure that the protocol was followed accordingly. Carer was willing 

and able to give informed consent. Patient would not suffer any ill effects or practical difficulties 

on the consumption of up to 1.5L of mineral water and had no restriction on fluid ingestion. As 

well as any patients not satisfying the above inclusion criteria, a potential study participant would 

be excluded if those patients were on disease modification treatment, patients with current 

urinary infections and patients with a history of impaired renal function. The patient could be 

initiated onto the study once an infection free urine sample had been provided. During 

recruitment, a Kurtjze EDSS score (Kurtjze 1983) was given to each patient. This was followed up 

at the end of the study to look for improvements in mobility, as well as a questionnaire querying 

general wellness. 

One female patient (008) had to be withdrawn from the study due to a series of urine infections. 

The mean age of the remaining 15 MS patients who completed the study, was 72 (range 56 - 81) 

and 8 were female. 
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5.3.1 Protocol 
 

 

The project protocol was divided into two objectives; the primary objective was to measure the 

urinary excretions of Si and Al over a 24 week period during the second 12 week period of which 

patients consumed up to 1.5L of silicon-rich mineral water each day. The first 12 weeks of the 

study, referred to as the control, required each participant to provide urine samples following 

their normal diets, thus acting as their own control to determine individual changes. The 

secondary objective was to observe changes in mobility using EDSS scores at the beginning and 

end of the study. 

 

5.3.2 Urinary excretions 
 

This study examined the effects of long-term consumption of mineral water on the urinary 

excretion of Si and Al. The study duration was split up into two parts, the first 12 weeks (W1-

W12), known as the control period and the second 12 weeks (W13-W24) referred to as the 

treatment period. Participants collected all of their urine (24 hour samples) for the 5 days in W1, 

W12, W13 and W24 into 3L sterile containers. During the rest of the study weeks, the first morning 

sample of the day on the same day of each week was collected into sterile 50mL containers. These 

collections were made for the baseline (W1 to W12 - no mineral water consumption) and 

treatment periods (W13 to W24 - including consumption of up to 1.5L of mineral water each day).  

Differences in the urinary excretions of Si and Al between control and treatment weeks 1, 2, 13 

and 24 for each individual were determined using one-way ANOVA and Tukey’s paired 
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comparison tests. Differences for control and treatment data were measured using repeated 

measures ANOVA and Wilcoxon signed-rank tests. 

 

Results for the daily collections are presented as total amount excreted per 24 hours (µg/24 hr 

for Si and ng/24 hr for Al), however, these concentration are also displayed as creatinine-

corrected data in order to make comparisons with the spot samples, allowing for any deviations 

in urine volume. Volunteers were requested to consume as much as the 1.5L of the provided 

mineral water as they could comfortably manage. This volume is the same as the healthy 

individual urine study because the consumption of 1.5L every day for a period of 12 weeks seemed 

acceptable to the patients, although, unlike the loading treatment in the healthy volunteer study, 

participants in this study were able to make up their normal drinks with the water, essentially 

replacing other water consumed in their daily diets with the Si rich mineral water. 

It was thought to be inconvenient for the patients to provide record sheets as in the healthy 

volunteer study (see Chapter 3). Instead, the patients were provided with a tick sheet to record 

their water consumption and sample collection.  

 

As in the healthy volunteer study, results are recorded both before and following correction for 

creatinine concentrations, and 24 hour samples were expressed in both formats. 

 

The requirements for this study were maintained at a minimum so not to make participation too 

complexed for individuals suffering from MS. Therefore, dietary record sheets, as collected in the 

healthy individual, study were not required during this study. The length of the control period 
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satisfied this as it meant that a thorough indication of normal Si and Al excretion could be 

deduced. 

 

5.3.2.1 Treatment of urine samples 
 

Samples were collected and stored in pre acid-washed polypropylene containers (5% HCl), rinsed 

with UPW. Urine samples were collected directly into these pre-washed 3L containers for the 24 

hour trial. Pre-washed jugs were provided for the 24 hour-long term trials for the purpose of 

convenience. The 24 hour sample volumes were measured and a portion transferred to the 50mL 

container. The remaining sample was disposed of down the toilet and the jug rinsed with Decon. 

Samples were directly transferred to the trace element lab where there were stored in a clearly 

labelled refrigerator. Samples were vortexed to ensure uniformity and an aliquot of urine sample 

was taken and diluted to 10% with UPW for creatinine analysis using the Jaffe method (Toora, 

2002).The remaining urine was acidified using 15.8M HNO3 to 20% v/v and subjected to 

microwave digestion to prepare samples for measurement of total silicon and aluminium by 

THGFAAS.  

 

5.3.3 Statistics 
 

One-way ANOVA at ἀ = 0.05 was carried out on each individual data set to compare the means of 

Wk 1, Wk12, Wk 13 and Wk 24 (5 replicates per week per individual). Post-hoc Tukey’s paired 

comparisons were carried out to determine the significance between pairs of means, where tests 

for normality and equal variance showed a departure from either or both, log transformations 
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were carried out. Two-way ANOVA to compare patients, male and female was valid because of 

equal variance. The non-parametric Mann-Whitney U test was used to compare pairs of medians. 

Analyses were carried out using Minitab® 15. 

 

Differences in the urinary excretions between the control and treatment periods were 

determined using the paired t-test, and comparisons between males and females were performed 

using the 2-sample t-test. An aged matched healthy control group was not sought after for this 

study, but instead data available from other studies was used. 

 

5.3.4 EDSS Score 
 

The Kurtzke Expanded Disability Status Scale (EDSS) is a method of quantifying disability in multiple 

sclerosis and monitoring changes in the level of disability over time. It is widely used in clinical trials 

and in the assessment of people with MS. The scale has been developed by John F. Kurtzke, (1983) 

(See Appendix 5 for the scale).  

 

Each individual completed the EDSS test prior to and following the treatment of the mineral water, 

this was performed by the qualified clinician. Comparisons between the initial and final score were 

used to determine whether the consumption of the mineral water had any influence on their mobility. 

An increase in EDSS score would indicate that the level of disability is worsening whereas a reduction 

in score would highlight an improvement in mobility and reduction in disability.  

Overall scores of the EDSS tests were provided by the clinical nurse on the completion of the urinary 

analysis. Detailed reports of the performance of the tests (i.e. scores of each section) were not made 
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available for this thesis as these reports carry confidential patient information. Patient questionnaires 

were collected post study to determine any improvements in health, wellbeing and general feedback. 

 

5.4.0 Results 
 

This chapter includes the statistical comparisons to the baseline period (week 1 to week 12) and the 

study period (week 13 to week 24).  Comparisons were made for each participant using one-way 

ANOVA to echo individual responses to the mineral water. Repeated-measures ANOVA were then 

performed for each patient to provide a general depiction of the effect of the mineral water on the 

urinary excretions. 

All spot sample results shown in this chapter have been creatinine corrected. Data for the 24 hour 

collections in Wk 1, 12, 13 and 24 have been creatinine corrected and expressed as total amount 

excreted in this 24 hour period. Individuals collected one urine sample a week for weeks 2-11, then 

14-23.  

Fifteen individuals, diagnosed as SPMS patients completed the study and informal indices, such as 

conversations and completion of questionnaires, suggested that compliance with study protocols was 

excellent. Data are summarized according to treatment group, gender and analysed below as 

treatment groups and as individuals. 
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5.4.1 Creatinine measurements 
 

 

Creatinine concentrations were measured for each sample in order to correct for differences in renal 

functioning between individuals and to take any dilution effects of the urine into consideration. There 

was no significant difference between males and females in mean creatinine concentrations, for both 

the control (t = 2.87: P = 0.012), and treatment (t = 1.71: P = 0.424) period, 4.44mM and 4.45mM 

respectively.  

Table 5.4.1.1. Mean (SD) urine creatinine concentrations (mM) collected from the whole MS 

study population for both baseline and treatment periods (n=20) 

 

 

 

 

 

 

 

 

 

 

4.0 (1.9) 4.5 (1.9)

ẍ 4.44 4.45

Mean (SD) urinary creatinine concentration for each MS patient

5.9 (2.6) 7.4 (3.0)

3.4 (1.7) 2.3 (0.6)

4.0 (1.6) 4.4 (1.6)

6.7 (2.4) 7.5 (2.8)

2.5 (1.6) 3.0 (1.6)

8.2 (3.8) 4.8 (2.1)

3.4 (0.8) 3.5 (1.4)

4.2 (1.4) 4.1 (2.2)

2.4 (0.5) 2.9 (1.1)

3.8 (1.0) 4.4 (1.6)

Baseline (mmol) Treatment (mmol)

2.3 (1.0) 2.6 (1.1)

5.1 (1.8) 4.1 (2.1)

4.5 (2.0) 4.6 (3.4)

6.2 (2.8) 6.2 (3.0)

ID

F001

M002

F003

M004

M005

F006

M007

F009

M010

M011

F012

F013

M014

F015

F016
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Mean urinary creatinine concentration remained constant for gender comparisons, although 

remaining higher for males throughout the studies. Mean baseline creatinine concentration for males 

and females was 5.7mM and 3.2mM respectively and mean creatinine concentration during the 

treatment period was noted at 5.5mmol and 3.5mmol, decreasing for males and increasing for 

females, this however was not a significant change (t = 1.05, p = 0.71). 

5.4.2 Volume measurements 
 

 

Total volume for the 24 hour collections periods were measured to accurately quantify amounts 

of Si and Al excreted over this time. Total urine volume was larger during the treatment period 

than the baseline study for 11 out of 15 participants, although these differences were notably 

small (P = 0.028). Urine volume increased significantly for one patient, ID F015, who saw their 

urine increase from 1867mL/24 hr to 3033ml/24 hr (Table 5.4.2.1). 

 

Table 5.4.2.1. Mean urine volumes collected from the whole MS study population during the 24 

hour studies for both baseline and treatment periods (n=7) 

 1591 (392)ẍ 1858 (199) 267

Mean (SD) urinary volume for the baseline and treatment 24 hour collections

187

970

-182

371

1166

4891207 (821)

106

402

-28

241

-146

49

152

-12

2472403 (206)

1944 (423)

2568 (345)

1853 (653)

1461 (303)

3033 (63)1867 (984)

718 (139)

1931 (494)

1875 (643)

1133 (574)

1639 (352)

1056 (420)

1362 (307)

2391 (636)

2017 (321)2029 (390)

2156 (408)

1757 (272)

1598 (636)

2035 (521)

1090 (212)

Difference in Volume

1825 (466)

1473 (331)

1161 (199)

F013

M014

F015

F016

Baseline volume (mL) Treatment volume (mL) 

1398 (267)

1202 (200)

1313 (256)

2239 (597)

F006

M007

F009

M010

M011

F012

ID

F001

M002

F003

M004

M005
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There was no significant difference between males and females in the mean volumes excreted 

for the control (t = -3.61: P = 0.001) and treatment (t = -1.44: P = 0.29) period (Table 5.4.2.2). 

 

Table 5.4.2.2. Mean urine volumes compared by gender in MS study population during the 24 

hour studies for both baseline and treatment periods (n=7) 

 

 

The amount of urine increased for both genders between baseline Wk 1, giving a mean value for males 

and females of 1620mL and 1587mL respectively. This value increases in both genders in the initial 

treatment Wk 13 to 1857mL and 1918mL respectively. 

 

5.4.3 Individual data for urinary Si excretion from week 1 to week 24 in 

the MS study group 

 
Si excretion in Wk1 ranged from 26-198µmol/mmol Crt with a mean value of 102µmol/mmol Crt. Si 

excretion in Wk 13 ranged from 118-481 µmol/mmol Crt with a mean of 253 µmol/mmol Crt (Table 

5.4.4.1and figure 5.4.4.1) Data for Wk13 showed an increase in Si excretion compared to Wk1 for 15 

out of 15 individuals (P <0.001). Mean urinary excretion of Si remained statistically consistent between 

control Wk 1 to control Wk 12 (P = 0018).  Si excretion in Wk 12 ranged from 22-224µmol/mmol Crt 

with a mean value of 84µmol/mmol Crt, see Table 5.4.4.1. 

1587 (709) 1550 (620) 1918 (797) 1787 (762)

Gender comparisons between urine volume in 24 hour collection weeks (n=7)

Volume Wk 1 Volume Wk 12 Volume Wk 13 Volume Wk 24

1620 (559) 1612 (535) 1857 (679) 1690 (558)

Gender

Male

Female

(mL) (mL) (mL) (mL) 
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Mean urinary excretion of Si for the final treatment week, Wk 24, ranged between 92-552 µmol/mmol 

Crt with a mean value of 225 µmol/mmol Crt. These values remain similar between treatments Wk 13 

and Wk 24, although when considered individually, in five out of the fifteen patients, Si excretion 

reduced significantly (>50%). In a further five of the fifteen patients, the concentration of urinary Si 

excretion remained statistically consistent (P < 0.001)., for example, patient ID M002 ranging from 135 

µmol/mmol Crt to 127.7 µmol/mmol Crt between Wk 13 and Wk 24. The excretion of Si continued to 

increase between treatment Wk 13 and Wk 24 in three of the fifteen patients, to highlight an example, 

patient ID M011 presented an increase in Si excretion of 328 -552 µmol/mmol Crt between Wk 13 and 

Wk 24 (Table 5.4.4.1). 

 

5.4.4 Creatinine corrected individual data for urinary Al excretion from 

week 1 to week 24 in the MS study group 
 

Al excretion in Wk1 ranged from 46-340nmol/mmol Crt with a mean value of 165nmol/mmol Crt. Al 

excretion in Wk 13 ranged from 42-735 nmol/mmol Crt with a mean of 280 nmol/mmol Crt, see table 

5… Data for Wk13 showed an increase in Al excretion compared to Wk1 for 13 out of 15 individuals (P 

<0.001). For a single patient, ID M002, Al excretion between Wk 1 and Wk 13 did not significantly alter 

( P = 0.008).  

Two out of fifteen patients revealed a lower Al excretion post Si water consumption. Patient ID F006 

indicated a significant (P = 0.004) reduction of Al between Wk 1 and Wk 13 of 219 – 72 nmol/mmol 

Crt. This is also seen in the data collected from patient ID F009 who indicated a drop from 101 – 42 

nmol/mmol Crt between control Wk 1 and treatment Wk 13. 
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Mean urinary excretion of Al remained statistically consistent between control Wk 1 to control Wk 12 

(P = 0.029, Pearson Correlation).  Al excretion in Wk 12 ranged from 75-555nmol/mmol Crt with a 

mean value of 134nmol/mmol Crt (Table 5.4.4.1). 

Mean urinary excretion of Al for the final treatment week, Wk 24, ranged between 254-827 

nmol/mmol Crt with a mean value of 429 µmol/mmol Crt. This value shows significant difference 

between (p = 0.008, ANOVA) treatments Wk 13 and Wk 24.  When considered individually, nine out 

of the fifteen patients showed a significant increase in Al excretion over the treatment weeks and 

excretion was larger in Wk 24 then Wk 13. An example of this is shown when looking at patient ID 

M002; this patient displays an increase in urinary Al concentration from 52 to 427 nmol/mmol Crt 

between treatment Wks 12 and 24. 

In the remaining six of the fifteen patients, the concentration of urinary Al  reduced significantly (P = 

0.012, ANOVA), for example, patient ID M007 ranging from 358 nmol/mmol Crt to 295 nmol/mmol 

Crt between Wk 13 and Wk 24.  
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Table 5.4.4.1: Mean (SD) urinary excretion of Si (μmol/mmol Crt) and Al (nmol/mmol Crt) for the 

24 hour data collected in Wk 1, Wk 12, Wk 13 and Wk 24. 

REF W1 W12 W13 W24 W1 W12 W13 W24

93.8 223.8 376.5 331.9 167.0 180.9 361.3 376.1

(9.8) (25.0) (77.4) (23.8) (60.1) (85.8) (158.9) (112.1)

59.4 70.3 135 127.7 48 91.6 51.9 426.5

(14.5) (13.6) (43.2) (64.9) (25.4) (40.3) (44.7) (123.7)

197.8 91.8 326.7 120 105.4 125.6 164.3 354.5

(22.7) (20.8) (104) (61.9) (29.7) (37.2) (51.2) (146.6)

87.8 69.8 121.5 194.5 75.3 78.8 108.1 827

(34.8) (25.9) (16.8) (117.6) (10.6) (30.5) (67.6) (356.3)

25.7 26.5 283.5 92 46.2 226.2 123.2 347.6

(2.8) (17.2) (90.3) (18.4) (23.2) (254.8) (54.6) (112.6)

94.3 107.6 476.1 267 219.3 133.4 71.5 699.2

(11.8) (49.5) (99.3) (52.7) (89.0) (74.6) (67.2) (80.9)

43.1 45.5 302.7 166.5 114 124.5 358 295.2

(20.3) (8.9) (83.5) (31.3) (25.1) (49.4) (115.2) (88.7)

165.1 111.1 481.1 272 100.9 102.2 42.4 803.1

(46.9) (26.4) (73.2) (48) (42.1) (93.5) (37.3) (102.1)

139.3 136.3 273.7 299.9 248.6 127.9 363.6 276.6

(29.2) (37.6) (15.7) (42.5) (86.8) (106.7) (110.1) (69.2)

65.1 83.1 128.1 209 125.9 197.9 233.5 256.8

(17.1) (32.1) (29.0) (81.9) (42.9) (85.9) (77.1) (114.7)

84.2 77.4 328.3 552.4 283.7 554.8 649.9 510.2

(29.5) (35.8) (103.7) (168.6) (75.3) (76.5) (156.2) (403.6)

153.5 21.9 299.2 179.8 334.2 100.8 735.3 404.8

(141.7) (4.5) (69.2) (79.6) (86.0) (33.4) (309.2) (110.1)

44.1 15.3 130.3 131.7 195.2 75.1 456.3 253.7

(12.0) (5.8) (36.1) (31.5) (24.3) (20.8) (143.4) (134.2)

159.6 88.3 220.1 328.9 339.7 95.9 472.2 297.5

(22.6) (22.8) (25.1) (85.0) (53.1) (31.4) (42.3) (75.9)

89.6 94.2 118.4 127.5 166.5 157.7 420.5 468.1

(28.5) (23.7) (7.8) (35.6) (52.8) (45.7) (212.9) (317.1)

P13

P14

P15

Patient

Mean (SD) Concentrations excreted (n = 5)

P7

P8

P9

P10

P11

P12

P1

P2

P3

P4

P5

P6

Silicon                                                    

(μmol/mmol creatinine)

Aluminium                                                               

(nmol/mmol creatinine)
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5.4.5 Group data for urinary Si and Al excretion from week 1 to week 

24 in the MS study group 
 

 

When comparing the group data, excretion of Si is significantly higher in the treatment weeks 

than the control week (P <0.001, 2-way ANOVA). By collating the data, the mean Si excretion for 

the control period is calculated at 92.8 μmol/mmol Crt and Si excretion for the treatment weeks 

is calculated at 238.85 μmol/mmol Crt (Table 5.4.5.1), this value is over two fold more than the 

control value.     

Table 5.4.5.1: Mean (SD) and median urinary concentrations of Si (μmol/mmol Crt) and Al 

(nmol/mmol creatinine) for patients (n = 15) 

 

 

 

When comparing the group data, excretion of Al is significantly higher in the treatment Wks 13 

and 24 than the control Wks 1 and 12 (P <0.001, ANOVA). Considering the data as a whole, the 

mean Al excretion for the control period is calculated to lie between 165nmol/mmol Crt and 

126nmol/mmol Crt. The standard deviation between these values is quite large, further indicating 

that Al is handled differently between patient. Al excretion under the influence of a high influx of 

bio-available Si was more than doubled in the first treatment Wk 13 at 280.2nmol/mmol Crt, then 

W1 W12 W13 W24 W1 W12 W13 W24

101.6 84.0 253.2 224.5 165.3 126.3 280.2 429.1

(42.8) (52.7) (126.8) (142.8) (103.5) (134.1) (212.3) (265.2)
Patient

Mean (SD) urinary concentrations for W1, W12, W13 and W24

Silicon (μmol/mmol Cre) Aluminium (nmol/mmol Cre)
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almost quadrupled by the final treatment Wk 24, presenting a mean value of 429nmol/mmol Crt. 

This data was normally distributed and statistically significant (t = 3.86, P = 0.012, t test). 

5.4.6 One way ANOVA analysis for Si and Al excretion between control 

and treatment weeks 
 

One-way ANOVA (Table 5.4.6.1 ) indicated that the increase in Si excretion between the baseline 

weeks (Wk 1 and Wk 12) and the initial treatment week (Wk 13) was statistically significant (P < 

0.001) for all but one individual from the patient group. The One-way ANOVA statistical testing 

revealed that data was significant (P < 0.03) for 14 out of 15 patients for Si. One-way ANOVA was 

manipulated for two data sets to see where the main differences were. The control weeks (Wk 1 

and Wk13) were compared with the first treatment week (Wk 13) and the two treatment weeks 

(Wk 13 and Wk 24) were compared with the last control week.  
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Table 5.4.6.1 Summary of One-way ANOVA - differences in the urinary excretion of Si 

(μmol/mmol Crt), and Al (nmol/mmol creatinine) between Wk1, Wk12 and Wk13 for each 

individual in the study group 

 

 

The One-way ANOVA statistical testing revealed that data was significant (P < 0.04) for 13 out of 

15 patients for Si (Table 5.4.6.2). Si excretion was greater in W13 than in W24 for 8 of the patients, 

although in some cases this value simply wasn’t considered as a significant difference (P = 0.81), 

therefore values may remain similar during W13 and W24 and these discrepancies can be related 

to Si content in the diet. 

 

 

REF F Crit/F Significant P F Crit/F Significant P

P1 F Crit < F  P=0.028 W1<W12 W12<W13 F Crit < F  P<0.001 W1<W12 W12<W13

P2 F Crit > F  P=0.17 W1<W12 W12>W13 F Crit < F  P=0.002 W1<W12 W12<W13

P3 F Crit > F  P=0.104 W1<W12 W12<W13 F Crit < F  P<0.001 W1>W12 W12<W13

P4 F Crit > F  P=0.445 W1<W12 W12<W13 F Crit < F  P=0.03 W1>W12 W12<W13

P5 F Crit > F  P=0.2 W1<W12 W12>W13 F Crit < F  P<0.001 W1<W12 W12<W24

P6 F Crit < F  P=0.033 W1>W12 W12>W13 F Crit < F  P<0.001 W1<W12 W12<W13

P7 F Crit < F  P<0.001 W1<W12 W12<W13 F Crit < F  P<0.001 W1<W12 W12<W13

P8 F Crit > F  P=0.27 W1<W12 W1>W12 F Crit < F  P<0.001 W1>W12 W12<W13

P9 F Crit < F  P=0.011 W1>W12 W12<W13 F Crit < F  P<0.001 W1>W12 W12<W13

P10 F Crit > F  P=0.09 W1<W12 W12<W13 F Crit < F  P=0.009 W1<W12 W12<W13

P11 F Crit < F  P=0.005 W1<W12 W12<W13 F Crit < F  P<0.001 W1>W12 W12<W13

P12 F Crit < F  P<0.001 W1>W12 W12<W13 F Crit < F  P<0.001 W1>W12 W12<W13

P13 F Crit < F  P<0.001 W1<W12 W12<W13 F Crit < F  P<0.001 W1>W12 W12<W13

P14 F Crit < F  P<0.001 W1>W12 W12<W13 F Crit < F  P<0.001 W1<W12 W12<W13

P15 F Crit < F  P=0.011 W1>W12 W12<W13 F Crit > F  P=0.124 W1<W12 W12<W13

Tukeys Tukeys

Patient                                                                                                                                                                                                                                         

Difference in urinary excretion btween weeks 1, 12 and 13 (dF=14)
Aluminium Silicon
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Table 5.4.6.2 Summary of One-way ANOVA - differences in the urinary excretion of Si 

(μmol/mmol Crt), and Al (nmol/mmol Crt) between W12, W13 and W24 for each individual in 

the study group 

 

 

One-way ANOVA (Table 5.4.6.1 and Table 5.4.6.2) indicated that there was a significant difference 

in Si excretion between control Wks (Wk1 and Wk 12) and treatment Wks (Wk 13 and Wk 24) the 

patient (P < 0.001) group.  

. 

 

Wilcoxon signed-rank was used to determine where any differences within the data lie. Males 

generally excreted less silicon, this was statistically significant during the entire study duration (P 

= 0.001). An example of Wk 12 shows a mean excretory value of 56.19μmol/mmol creatinine in 

W12 was seen for males compared to 99.46μmol/mmol Crt in W12 for females. 

REF F Crit/F Significant P F Crit/F Significant P

P1 F Crit < F  P=0.049 W13>W12 W24>W13 F Crit < F  P=0.001 W13>W12 W24<W13

P2 F Crit < F  P<0.001 W13<W12 W24>W12 F Crit > F  P=0.087 W13>W12 W24<W13

P3 F Crit < F  P=0.004 W13>W12 W24>W13 F Crit < F  P<0.001 W13>W12 W24<W13

P4 F Crit < F  P<0.001 W13>W12 W24>W13 F Crit < F  P=0.047 W13>W12 W24>W13

P5 F Crit > F  P=0.14 W13<W12 W24>W12 F Crit < F  P<0.001 W13>W12 W24<W13

P6 F Crit < F  P=0.002 W13<W12 W24>W13 F Crit < F  P<0.001 W13>W12 W24<W13

P7 F Crit < F  P=0.004 W13>W12 W24<W13 F Crit < F  P<0.001 W13>W12 W24<W13

P8 F Crit < F  P<0.001 W13<W12 W24>W13 F Crit < F  P<0.001 W13>W12 W24<W13

P9 F Crit < F  P=0.007 W13>W12 W24<W13 F Crit < F  P<0.001 W13>W12 W24>W13

P10 F Crit > F  P=0.62 W13<W12 W24>W13 F Crit < F  P=0.9 W13>W12 W24>W13

P11 F Crit > F  P=0.68 W13<W13 W24<W13 F Crit < F  P<0.001 W13>W12 W24>W13

P12 F Crit < F  P<0.001 W13>W12 W24<W13 F Crit < F  P<0.001 W13>W12 W24<W13

P13 F Crit < F  P<0.001 W13>W12 W24<W13 F Crit < F  P<0.001 W13>W12 W24>W13

P14 F Crit < F  P<0.001 W13>W12 W24>W13 F Crit < F  P<0.001 W13>W12 W24>W13

P15 F Crit > F  P=0.098 W13>W12 W24>W13 F Crit > F  P=0.14 W13>W12 W24>W13

Aluminium Silicon

Tukeys Tukeys

Patient                                                                                                                                                                                                                                         

Difference in urinary excretion btween weeks 12, 13 and 24 (dF=14)
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5.4.7 Long term effect of consuming a silicon rich mineral water 
 

Data from each patient show statistically linear trends in that Si and Al concentration are 

increased after the addition of a Si rich mineral water to the diet (P < 0.001). A visual 

representation of this relationship is shown in figure 5.4.7.1. Patients 7 and P12 present a trend 

of Si and Al excretion, implying that Si concentration in the gut may be directly linked to excretion 

of Al in these individuals, the amount of Si excreted directly correlated with the amount of Al 

excreted (P = 0.005).  

Si data is presented in orange, while Al data is presented in blue and weekly data is presented for 

each MS study participant.  
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Visual representation of changes in mean urinary excretions 
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Fig. 5.4.7.1: Mean and SD (n=15) urinary excretion of Si (μmol/mmol Crt) and Al (nmol/mmol Crt) 

for weeks 1, 12, 13 and 24 for each patient. 

 

When comparing the data as a whole, the means between W1 and W12 remain at a comparable 

value. Al excretion during W24 is on average much larger (429.1 nmol/mmol creatinine) than that 

of the initial treatment week, W13 (280.2nmol/mmol creatinine), although as in all cases here, 

the larger the average, the larger the deviation present between the values. 

Si dependent t-stat values between control Wk 1 and Wk 12 were calculated to be 4.14 with a P 

value < 0.001 and Pearson Correlation of 0.96. Patient t-stat values between treatment Wk 13 

and Wk 13 were calculated to be 2.63 with a P – value < 0.02 and Pearson correlation of 0.96 

(Table 5.4.7.1). Values for the treatment period are less correlated due to Si handling alternating 

between individuals. 
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Table 5.4.7.1: Summary of t-Test for paired means - differences in the urinary excretion of Si 

between baseline period Wk1 and Wk12 then study period Wk13 and Wk24 for each study 

participant 

 

 

 

 

 

 

 

Al dependent t-stat values between control Wk 1 and Wk 12 were calculated to be 1.52 with a P 

value < 0.15 and Pearson Correlation of 0.68. Patient t-stat values between treatment Wk 13 and 

Wk 24 were calculated to be -5.54 with a P – value < 0.001 and Pearson correlation of 0.93 (Table 

5.4.7.2). Values for the control are less correlated due to naturally fluctuating levels of Al in body 

biochemistry, levels of Al in the treatment period are more statistically linear (p < 0.001, P = 0.93). 

 

 

 

 

 

Function

t Stat

P one-tail

t Crit one-tail 

P two-tail

t Crit two-tail

Pearson Correlation

0.0010 0.02

2.14 2.14

0.96 0.96

4.14 2.63

0.0005 0.01

1.76 1.76

t-Test: Paired Two Sample for Means                                    

Silicon (n=15)

Week 1- Week 12 Week 13-Week 24
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Table 5.4.7.2: Summary of t-Test for paired means - differences in the urinary excretion of Al 

between baseline period Wk1 and Wk12 then study period Wk13 and Wk24 for each study 

participant 

 

 

 

 

 

 

 

5.4.8 Gender comparisons 
 

 

When comparing male and female data, the values were significant for weeks W13 and W24 for 

silicon for both genders. The p-value between genders for these weeks are below 0.04 (0.038) 

which is consistent with the idea that all patients are consuming the same amount of silicon during 

this time. The excretion of Al is more sporadic and p-value between these treatment weeks shows 

insignificance for W13 (P = 0.83), showing a large variation between genders during this treatment 

period (Table 5.4.8.1). 

 

 

 

 

Function

t Stat

P one-tail

t Crit one-tail 

P two-tail

t Crit two-tail

Pearson Correlation 0.68

2.14

0.93

1.76 1.76

0.15 7.29359E-05

2.14

Week 1- Week 12 Week 13-Week 24

1.52 -5.54

0.08 3.6468E-05

t-Test: Paired Two Sample for Means                  

Aluminium (n=15)
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Table 5.4.8.1: Summary of Wilcoxon signed-rank - differences between pairs of means of 

excretion for male (n = 7) and female groups (n = 8). 

 

 

  

 

 

 

 

 

When comparing the differences in excretion of Si and Al between genders, females appear to 

consistently excrete more Si and Al than males in both the control and treatment periods. These 

values were compared using Mann-Whitney U-test analysis to determine the significance of these 

differences (Table 5.4.8.2). In the first baseline Wk 1, males excreted a mean Si amount of 

75.7µmol/mmol CrT while females excreted a mean Si amount of 124.2µmol/mmol CrT. This 

difference was consistent throughout the study and in Wk 24, the final treatment week, males 

presented a mean Si excretion of 156.8µmol/mmol CrT while this value was noted at 

206.1µmol/mmol Crt for females. 

 

 

 

 

 

W1

W12

W13

W24 0.432

Male v Female Patients

Silicon Aluminium

P-Value P-Value

0.175 0.134

0.1 0.175

0.038 0.83

0.038
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Table 5.4.8.2: Differences in the excretions of Si (μmol/mmol Crt) and Al (nmol/mmol Crt) between 

males and females for the patient group. 

(Mann-Whitney U test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relationship between Al and Si excretion is shown for females (Figure 5.4.8.1) and males 

(Figure 5.4.8.2).  In five out of the eight female MS patients (F1, F2, F4, F5, F8) and 4 out of 

the seven male MS patients (M1, M2, M3 and M4), a clear relationship can be seen between 

Si and Al excretion. The first half of the study, the baseline period, produces lower peaks in 

the data compared with the second half of the study, the treatment period, when the 

ΣW 120.7 206.1 0.09

W13 184.9 313 0.038

W24 156.8 283.7 0.038

W1 75.7 124.2 0.175

W12 65.3 103.3 0.1

Patient

Male                       

(n=7)

Female                            

(n=8) P-value

Silicon (μmol/mmol Cre)

ΣW 190.4 302.5 0.39

W13 248.6 307.8 0.83

W24 313.6 530.04 0.432

W1 118.6 206.2 0.134

W12 80.9 166 0.175

Aluminium (nmol/mmol Cre)

Patient

Male                       

(n=7)

Female                            

(n=8) P-value

Silicon (µmol/mmol Crt) 

Aluminium (nmol/mmol Crt) 
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incorporation of the Si rich mineral water in the diet commenced. Patient M5 would follow 

this trend but a sharp Si peak was noticed at 281µmol/mmol Crt during baseline Wk 7.  
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Figure 5.4.8.1: Creatinine corrected urinary excretion of Si (μmol/mmol Crt) and Al 

(nmol/mmol Crt) over the 24 week collection period – Female 
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Figure 5.4.8.2 Crt corrected urinary excretion of Si (μmol/mmol Crt) and Al (nmol/mmol Crt) over 

the 24 week collection period – Male 
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Excretions of Al and Si were compared with the urine volumes collected throughout the 24 hour 

baseline and treatment collection periods. Genders were considered individually, although there 

was no correlation between urine volume and amounts of Si and Al in either male (r = 0.24) (Figure 

5.4.8.4) or female (r = 0.18) (Figure 5.4.8.3) study populations. Patient F4 indicted the strongest 

positive correlation between urine volume and Si (r = 0.81) and Al (r = 0.75) excretion, although 

this is seen for the control period only. 
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Figure 5.4.8.3 Creatinine corrected elemental excretion comparisons to volume of urine excreted over 

the control and treatment period for each individual female. W1 and W12 24 hour collection 

data points are included for the control then W13 and W24 24 hour collection data are 

presented in the treatment study. Primary y-axis = Si (μmol/mmol Crt), secondary y-axis = Al 

(nmol/mmol Crt). 
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Figure 5.4.8.4 Crt corrected elemental excretion comparisons to volume of urine excreted over the control and 

treatment period for each individual male. W1 and W12 24 hour collection data points are included for the 

control then W13 and W24 24 hour collection data are presented in the treatment study. Primary y-axis = Si 

(μmol/mmol Crt), secondary y-axis = Al (nmol/mmol Crt). 
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5.4.9 Comparisons between creatinine corrected urinary excretions in 

the control and treatment periods – group data 
 

All study participants that excreted a larger concentration of silicon after consuming the Si rich 

mineral water correlated this with an increase in Al excretion (P < 0.001). The percentage 

difference between the control and treatment period of Si ranged from -0.2% to 158%. This figure 

is equivalent to the addition having no effect of Si excretion to it encouraging eight fold the 

excretion of Si compared to the normal expected value (Table 5.4.9.1). A single patient produced 

a minus percentage difference value of -0.2%. Patient F8 excreted less Si on average in their urine 

during the treatment period (Wks 13-Wk24) than the control period (Wks 1-Wks12). This value 

was not significant (P = 0.78). 

Table 5.4.9.1: Mean Crt corrected urinary excretions of Si (μmol/mmol Crt) and Al (nmol/mmol 

Crt) for the control and treatment groups and the percentage difference between the groups. 

 

Control Treatment % Difference Control Treatment % Difference

73.7 191 88.6 76.8 271.1 111.7

95.8 120.1 22.5 69.7 245.4 111.5

24.05 204.9 158.0 36.8 276.1 153.0

40.6 180 126.1 108.5 263.8 83.4

149.8 247.8 49.3 184.7 387.7 70.9

81 150.5 60.0 105.5 227.6 73.3

33.3 101.5 101.2 116.1 296.3 87.4

137.95 331.8 82.5 150.4 352.5 80.4

148.1 140.8 5.1 122.75 146.6 17.7

87.8 375.8 124.2 153.9 376.3 83.9

142.2 424 99.5 93 491.4 136.3

107.6 472.8 125.8 444.2 406.4 -8.9

55.3 221.2 120.0 198.5 547.1 93.5

104.7 295.2 95.3 208.1 401.4 63.4

125.5 125.3 -0.2 118 630.2 136.9F8

F3

F4

F5

F6

F7

M5

M6

M7

F1

F2

M1

M2

M3

M4

REF

Mean of the creatinine corrected urinary excretions over a 24-hour period

Silicon (μmol/mmol creatinine) Aluminium (nmol/mmol creatinine)
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All patients, excluding one, excreted more aluminium in the treatment period than the control 

period (P = 0.004). Patient F5 was the only member of the study to excrete less aluminium as a 

whole during the treatment period W13 to W24 compared to the control period, Wks 1 and Wk 

12, decreasing excretion by -9%. This value was not significant (P = 0.81). 

 

There is strong positive correlation between aluminium and silicon excretion for the treatment 

period (r = 0.96). Figure 5.4.9.1 highlights the relationship between aluminium and silicon, 

demonstrating the control period in dark grey (r = 0.51) and the treatment period in pale grey (r 

= 0.96). Correlation between the excretions of the elements is stronger during the treatment 

period (P < 0.005), although a higher quantity may encounter a lower error margin, resulting in a 

more linear relationship. R-values and p- values for these relationships are shown in table 5.4.9.2. 

 

 

 

 

 

 

 

 

 

Figure 5.4.9.1: Crt corrected excretion of Al (nmol/mmol Crt) for the control (●) and treatment 

(●) periods against Si excretion (μmol/mmol Crt). 
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Table 5.4.9.2: Correlation analysis between the Crt corrected excretion of Al (nmol/mmol Crt) 

with the excretion of Si (μmol/mmol Crt). 

 

 

 

 

 

5.4.10 Comparisons between total Al and Si excreted during 24 hour 

urinary collections in the control and treatment periods 
 

 

24-hour collections provide the most reliable information on urinary excretions and were 

collected for 5 consecutive days in two of the control weeks and two of the treatment weeks. 

Data from each individual is considered below and presented in concentrations of ng/24 hr for Al 

excretion and μg/24 hr for silicon excretion. When examined as a group, Al excretion shows strongly 

positive correlation with Si excretion (r = 0.965). This relationship indicates statistical significance for 

the MS treatment protocol for long term Si consumption as a method of removing bioavailable Al (P 

< 0.001). 

 

 

 

 

 

Relationship with Silicon

Aluminium

r-Value p-Value

Control

Treatment

0.51 <0.05

0.96 <0.05
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5.4.10.1 Individual data for 24 hour urinary Si excretion from week 1 to 

week 24 in the MS study group  
 

Si excretion in Wk1 (Baseline) ranged from 84-1153µg/24 hr with a mean value of 536 µg/24 hr 

(SD=317 µg/24 hr, n=15). Si excretion in Wk 13 (Treatment) ranged from 489-2391 µg/24 hr with a 

mean of 1710 µg/24 hr (SD=612 µg/24 hr, n=15), (Table 5.4.10.1). Data for Wk13 showed an increase 

in Si excretion compared to Wk1 for 15 out of 15 individuals (P <0.001). 

Mean urinary excretion of Si remained constant between control Wk 1 to control Wk 12, with means 

of 536 µg/24 hr and 432 µg/24 hr respectively (P = 0014).  Si excretion in Wk 12 ranged from 110-882 

µg/24 hr with a mean value of 432µg/24 hr (SD=254 µg/24 hr, n=15), see Table 5.4.10.2.1. 

Mean urinary excretion of Si for the final treatment week, Wk 24, ranged between 475-2465 µg/24 hr 

with a mean value of 1482 µg/24 hr (SD=682 µg/24 hr, n=15). This value remains consistent (Pearson 

correlation analysis, P = 0.018) between treatments Wk 13 and Wk 24, with a small distribution in the 

data (SD = 617 µg/24 hr in Wk13 -619 µg/24 hr in Wk 24) compared with differences in Si between the 

baseline weeks. Although, when considered individually, In seven out of the fifteen patients, Si 

excretion increased significantly between treatment Wk 13 and Wk 24, increasing from an average of 

1264 µg/24 hr to 1904 µg/24 hr. In a further seven of the fifteen patients, the concentration of urinary 

Si excretion dropped by a statistically significant amount during the treatment period (P < 0.001), from 

1878 µg/24 hr in Wk 13 to 934 µg/24 hr in Wk 24. Patient ID’s M002 and M004 gave the greatest 

reduction of Si excretion during this time. Patient M002 excreted an average of 2391 µg/24 hr Si in 

Week 13 compared to 831 µg/24 hr in Wk 24, and Patient M004 excreted an average of 2095 µg/24 

hr of Si in Wk 13 compared with 972 µg/24 hr in Wk 24.  

When considered as a group, the amount of silicon in the urine increased significantly during the entire 

treatment period (P < 0.001). 
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5.4.10.2 Individual data for 24 hour urinary Al excretion from week 1 

to week 24 in the MS study group  
 

 

Al excretion in Wk1 ranged from 204-2235 ng/24hr with a mean value of 939 ng/24 hr (SD=564ng/24 

hr, n=15). Al excretion in Wk 13 ranged from 275-2458 ng/24 hr with a mean of 2214 ng/24 hr (SD 

=1184ng/24hr, n=15), see table 5.4.10.2.1 Data for Wk13 showed an increase in Al excretion 

compared to Wk1 for 13 out of 15 individuals (P <0.001). For those patients of which Al decreased, 

the values altered from 859 to 275 ng/24 hr and 495 to 199 ng/24 hr between baseline Wk 1 and initial 

treatment Wk 13. Both of these patients were female and reductions of Al were significant between 

these weeks (P = 0.008 and P = 0.013 respectively). 

This is also seen in the data collected from patient ID F009 who indicated a drop from 101 – 42 ng/24 

hr between control Wk 1 and treatment Wk 13. Of the remaining individuals, ten out of the thirteen 

indicated a strong increase of Al after the addition of the Si rich mineral water, Al excretion more than 

doubled for these individuals, with an average increase of 898 to 2812 ng/24hr (P < 0.001). The last 

three participants, still presented a significant increase between this baseline and treatment week, 

with a mean increase of 1368 to 2203 ng/24 hr (P=0.014). 

Mean urinary excretion of Al remained statistically consistent between control Wk 1 to control Wk 12 

(P = 0.017).  Al excretion in Wk 12 ranged from 278-2300 ng/24 hr with a mean value of 862 ng/24 hr, 

see table 5.4.10.2.1. 

Mean urinary excretion of Al for the final treatment week, Wk 24, ranged between 1670 – 6252 ng/24 

hr with a mean value of 2505 nmol/24 hr. This mean value is consistent between treatments Wk 13 

and Wk 24 (Pearson correlation analysis, P = 0.002).  When considered individually, eight out of the 

fifteen patients showed a significant increase in Al excretion over the treatment weeks and excretion 

was larger in Wk 24 then Wk 13. Patient ID F009 displays an unusual increase in urinary Al 
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concentration from 199 ng/24 hr in treatment Wk 13 (compared to 508 ng/24 hr for their baseline 

average) to 6252 ng/24 hr in treatment Wk 24. Other patients showed a marked reduction in Al 

excretion over this time (P = 0.27) and patient ID F001 showed a very statistically similar excretion 

throughout this treatment period (P = 0.004) by excreting on average 2183 ng/24 hr in Wk 13 and 

2137 ng/24 hr in Wk 24. 

Deviation within this data was larger for the treatment period than the baseline study. Deviation 

ranged from 564-632 ng/24 hr between Wk 1 and Wk 12, whereas, between treatment Wk 13 and Wk 

24, deviation ranged from 1184-1440 ng/24 hr.  

Visual representation of this relationship throughout the study is shown in figure 5.4.10.2.1. 

During the control period, these values remain similar (Pearson correlation analysis, P = 0.011), 

although between treatment periods these values differ (P = 0.28). There is more variability 

between data collected during the treatment period. 

 

 

 

 

 

 

 

Figure 5.4.10.2.1: Twenty four hour excretion of Al (ng/24hr) for the control W1 and W12 and 

treatment W13 and W24 compared to Si excretion (μg/24hr) for the study group (n=15) 
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Table 5.4.10.2.1: Mean (SD) urinary excretion of Si (μg/24 hr) and Al (ng/24 hr) for the 24 hour 

data collected in Wk 1, Wk 12, Wk 13 and Wk 24. 

 

 

 

 

5.4.11 Silicon consumed compared to silicon excreted 
 

 

The amount of Si excreted can be directly related to that taken on in the form of Si rich mineral water. 

The amount of Si consumed per day in each study participant can be up to 24.19mg (864µmol), 

calculated from the average amount of Si in 1L of Spritzer mineral water, the amount being consumed 

by each patient per day of the treatment period. By calculating the difference in Si excretion between 

the control and treatment period, the difference in mineral water equating to that difference in Si can 

Al Si Al Si Al Si Al Si

F001 204 84 810 880 2183 495 2137 1951

M002 459 562 641 499 820 2391 2790 831

F003 300 573 707 513 918 1844 1674 590

M004 374 379 628 545 1855 2095 4454 972

M005 478 255 1548 224 649 1415 1670 475

F006 859 363 544 419 275 1892 3431 1321

M007 789 294 949 355 2769 2230 2481 1414

F009 495 854 516 561 199 2211 6252 2088

M010 1921 1086 836 882 3017 2263 2088 2289

M011 1247 648 1685 711 3362 1895 2616 2063

F012 1247 410 2300 284 4409 1264 2104 2426

F013 2235 1153 810 176 4458 1810 2828 1219

F014 1225 277 558 110 3654 1087 2639 1437

F015 1704 805 193 172 2944 1354 2199 2465

F016 551 299 278 157 1698 489 2505 696

Mean 939 (564) 536 (317) 862 (632) 432 (254) 2214 (1184) 1649 (612) 2791 (1440) 1482 (689)

Wk 1 Wk 12 Wk 13 Wk 24

Mean of the 24 hour urinary excretions over a 24-hour period (n=5)

Patient ID
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be calculated. This value ranged from 41-205% and there was no significant difference between 

genders (p = 0.79). Amounts were compared using measurements in µmol. Patient F5 saw the largest 

difference in Si, between the control and treatment period, Si increased by 1769µmol, allowing for a 

difference in Si of 204%. Patient M1 saw the smallest increase of 41% by silicon values increasing by 

352µmol between control and treatment periods. All patients saw an increase in Si excretion during 

the treatment period compared to the baseline study (Table 5.2.11.1). 

 

 

Table 5.2.11.1 Percentage of Si (µmol) consumed as mineral water which equates to the 

difference in Si excretion between the control and treatment period (n=15) 

 

 

 

 
Percentage difference of Si excreted varied between participants, there was very weak positive 

correlation between Si consumed and Si excreted (r = 0.71), when analysing these differences.  

 

M1

M2

M3

M4

M5

M6

M7

F1

F2

F3

F4

F5

F6

F7

F8 864 538.7 62.3

352.3

864 657.5 76.1

864 548.8 63.5

864 1233.6 142.8

864 1768.7 204.7

864 703.6 81.4

864 902.4 104.4

864 809.4 93.7

864 85.8

864 1176.7 136.2

864 1183.8 137.0

864 721.4 83.5

864 858.5 99.4

864

741.05

40.8

864 592.9 68.6

Amount of silicon consumed 

as mineral water (μmol)
REF

Difference in silicon excretion 

(Treatment – Control, μmol)

Percentage of mineral water which 

equates to the difference in silicon
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5.4.12 Secondary objective – measurement of disability 

 
A secondary outcome of the study was to measure the Kurtzke expanded disability status score for 

each participant before and after the study period. The results of this and other comparisons are made 

in this section.  

 

There is no significant relationship between disability level and excretion of Al and Si, as shown in 

figure 5.4.12.1 This was explored for both control and treatment periods. The r-value for the 

relationship between Si excretion and disability score for the control and treatment study was 

0.084 and 0.06 respectively. For Al, this relationship was weaker still, the corresponding r-value 

for the control period and treatment period was 0.04 and 0.001. At this point it was of interest to 

compare the creatinine levels in the urine to the disability scores. 

 

  

 

 

 

 

 

Figure 5.4.12.1 Correlation analysis between elemental excretion (n= 60) and EDSS scores of 

study participants (n=15) 

. 
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Figure 5.4.12.2 Correlation analysis between average elemental excretion (n= 60) and EDSS scores 

of study participants (n=15) for control Si ● and Al ● excretion and treatment Si ● and Al ● 

excretion. 

 

There is no significant relationship between disability level and urinary creatinine concentration 

(r = 0.012). Thirteen out of the fifteen patients had an EDSS score between 4 and 7. Two of the 

patients had an EDSS score of 1.5. The lower the score, the less the disability level. Although the 

CrT values of these patients were amongst the lowest (between 2.5 and 4.5mmol), patients with 

a more severe disability score of 6 presented with similar levels of CrT excretion in their urine. 

These values can be seen in table 5.4.12.1. 
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Table 5.4.12.1 Average creatinine content (n= 60) and EDSS scores of study participants (n=15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two out of the fifteen study participants showed marked improvements in their EDSS scores (>0.5 

point difference), while thirteen out of the fifteen patients showed no change during these 12 

weeks. No patients showed any decline in disability measure.  

 

 

 

 

 

 

 

P12

P13

P14

P15 7 4.2

ID EDSS Score Mean creatinine (mmol)

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

6.5 4.2

6 7.0

6 2.8

1.5 4.1

6 6.6

6 2.9

6.5 3.4

6 4.1

1.5 2.6

6.5 4.6

4 6.2

5 6.5

6 2.5

6 7.9

Correlation analysis between EDSS Score and Creatinine 

production (n=15)



218 | P a g e  

 

  

5.5 Summary of results for MS individuals  
 

 

• Creatinine concentration was negatively correlated with sample volume (Section 5.4.1.).  

• Males produced a larger urine volume during the control period while females produced a 

larger urine volume during the treatment period (Section 5.4.2). 

•Creatinine concentration was larger in males than females (Section 5.4.4) 

• Urinary excretions of Si and Al are significantly correlated during the treatment protocol 

(Section 5.4.9). 

• Urinary excretions of Si and Al are significantly increased following the consumption of the 

mineral water (Section 5.4.10).  

• The difference in Si excretion between the treatment and control periods corresponded to 99± 

42% of the amount of Si consumed as the mineral water. (Section 5.2.11). 

•Two out the fifteen participants indicated an improved EDSS score after the study period 

(Section 5.2.12) 

• No significant relationship was noted between EDSS score and urinary creatinine 

concentration (Section 5.4.12) 
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5.6 Discussion 
 

 

Comparing urinary volume and creatinine concentration 
 

24-hour collections provide the most reliable information on urinary excretions; however, 

creatinine corrected measurements were also documented. The negative correlation between 

creatinine concentration and sample volume verifies that creatinine concentration provides an 

acceptable indication of dilution effects. Creatinine concentration remained constant for males 

and females throughout the control and treatment protocol, at 4.44mM and 4.45mM 

respectively. A high level may mean that the kidneys are not working as they should. The amount 

of creatinine in the blood depends partly on the amount of muscle tissue present in the body. 

Men generally have higher creatinine levels than women. The measurements of volume and 

creatinine were comparable to literature values provided in Chapter 7.1, indicating that kidney 

function was normal for all study participants. 

 

EDSS scores 
 

There was no significant change in EDSS score for either the patient group. However, despite the 

relatively short treatment period, disability performance was improved (EDSS scores ≥ 0.5 points; 

Kujzke 1983) for 2 patients (F1 and F6), which highlights the potential use of silicic acid-rich mineral 

water in relieving the symptoms of multiple sclerosis. Longer term studies on larger populations are 

now needed to fully elucidate these findings and double blind studies should be used to determine 

any placebo effects. 
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The baseline Al excretion was variable between the individuals showing an improvement in EDSS 

score, there was also no pattern in the excretion of Al between these individuals. Participant F1 

showed a gradual decrease in Al over the treatment time after an initial sharp increase while 

participant F6 demonstrates a sporadic relationship with Al excretion, excreting high levels throughout 

the control and treatment, which fluctuate weekly. It may be suggested that this individual collected 

their spot samples at different periods of the day, leading to such fluctuations in elemental urine 

concentration. Urinary excretion of Al was higher in the treatment period than the baseline for both 

of these individuals. A linear relationship can be seen when looking at the excretion of Al and Si in 

participant F1, where a high urinary excretion for Si is noticed, a high urinary excretion is present also. 

Not one of the individuals in the study had a relapse during the entire study period, which over a 6 

month period is notable as individuals suffering with secondary progressive multiple sclerosis tend to 

suffer a relapse 1-2 times a year (Scalfari et al. 2010). 

 

Silicon handling was variable between individuals  
 

There is minimal data on the excretion of Si in urine, specifically concerning individuals suffering with 

MS. Urinary excretion of Si was variable between individuals, for example, the range of urinary Si at 

baseline was 84-1086µg/24hr (Table 5.4.10.2.1). As urinary Si is a good marker of absorbed Si, thus 

dietary differences between individuals may have contributed to these variations (Jugdaohsingh et al. 

2002; Sripanyakorn et al. 2009).  

Overall, an increase in urine volume was coupled with an increase in the excretion of Si. A mean 

increase in urine volume in the control period to the loading treatment period was twinned with 

an increase of Si in the urine. Si excretion decreased over the treatment period, in the initial 

treatment week, Si excretion was 1649µg/L (±612 µg/L) while by the final treatment week, Si 
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excretion had fallen to 1482µg/L (±619 µg/L). This may suggest that participants were not as 

enthusiastic when it came to drinking the mineral water as they initially were. This trend is not 

seen when looking at aluminium when considering the group as a whole. The urinary 

concentration of aluminium increases over the course of the treatment study, from 2214 µg/L 

(±1184 µg/L) in wk 13 to 2791 µg/L (±1440 µg/L) during Wk 24. There is however, large variation 

in this data. 

When looking at individual data, it is evident that aluminium follows silicon in the body of these 

individuals. When looking at Figure 5.4.8.1 and Figure 5.4.8.2, concurrent peaks can be seen for 

both aluminium and silicon throughout the study period. Participant F2 shows a very low plateau 

of silicon and aluminium urinary concentration up until Wk 12, then a sharp increase in silicon and 

aluminium excretion during initial treatment Wk 13. Over just a couple of weeks, this value 

returns to a level similar to the plateau we saw in the baseline period, suggesting that systemic 

aluminium had been ‘flushed out’ of stores during the spike. 

Consumption of the mineral water significantly increased the amount of Si excreted in the urine (P < 

0.001, Section 5.4.10), this was coincident with increased Al excretion (P < 0.001). This signifies that 

the consumption of silicic acid-rich mineral water successfully enhanced the urinary excretion of 

Al in people with multiple sclerosis. 
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Chapter 6 - Comparisons between the healthy volunteer and multiple 

sclerosis studies. 
 

 

This chapter compares the urinary excretions between the different study groups. 

 

The MS study (Chapter 5) was compared to the 24-hour protocol of the healthy volunteer study 

(Chapter 3). The Mann Whitney U test was used to determine whether there was any difference 

in the median urinary excretions between the groups before and following the treatment of the 

mineral water. 

 

It should be noted, as mentioned in the methods chapter, that the brand of mineral water 

provided is Spritzer. This brand of water was maintained for all investigations to ensure thorough 

consistency of data and controls. That the amount of Si taken in remained consistent between all 

volunteers. 

 

6.1 Creatinine  
 

Creatinine concentration was higher in MS patients (P = 0.003) and the younger age group of the 

healthy individual study (P = 0.007). Creatinine measurement wasn’t as crucial during the healthy 

volunteer study due to the fact that only 24 hour samples were collected, whereas spot samples 

were collected for the long term MS study. Creatinine values were collected for consistency.  
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6.2 Sample Volume 
 

Total 24-hour urine volume was larger in the MS study population than the healthy volunteers for 

females, healthy males excreted more urine than males with SPMS. On average, males excreted 

on average 1702mL/24 hr while females excreted on average 1710mL/24hr. In the healthy subject 

study, males excreted on average 1845mL/24hr while females excreted 1496ml/24hr. This 

difference remained consistent for both genders and in both sets of data, female urine volume 

was consistently larger for both control and treatment periods.  

In the healthy volunteer study, urine volume collected over the 24 hours was consistently larger 

for the dosing treatment than the loading treatment, for both males and female. 

6.3 Silicon  
 

Each study indicated an increase in the excretion of Si in the treatment period compared to the 

control. 

 

Urinary silicon concentration was significantly larger in the MS study population than in the 

healthy volunteers for the control and treatment periods. The median Si excretion for the MS 

patient control period was 484µg/24hr compared to 124µg/24hr for the HV group. This was 

consistent among genders. Men consistently excreted less Si than females (p = 0.002). Participants 

of the HV loading study were less likely to consume all of the total 1.5L volume of spritzer, leading 

to a lower Si excretion.  

The percentage of Si from the mineral water which equated to the difference in the urinary excretion 

between the control and treatment periods (i.e. treatment minus control) was 99 ± 42%, this was 
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statistically higher (P = 0.018) compared to the healthy volunteer study, 59 ± 31% for the loading 

treatment and 95± 25% for the dosing period. 

Silicon excretion in the healthy volunteer study was higher during the dosing treatment than the 

loading treatment (Table 6.4.1). 

 

The mean excretion of Si in the HV treatment period was significantly higher (t = -5.13, P < 0.001) than 

the control period; no individuals excreted more Si prior to drinking the mineral water. In the HV study, 

males excreted significantly more Si than females for the treatment period (t = 2.95, P = 0.008), but 

not for the control (t = 1.30, P = 0.208). 

 

There was a significant difference in the median Si excretion between males and females for the 

MS patient groups in both the control (t = 3.15, P = 0.008) and treatment (t = 2.98, P = 0.004) 

section of the investigation. Males generally excreted more silicon, in the control and treatment 

period. 

 

6.4 Aluminium 
 

Each study indicated an increase in the excretion of Al in the treatment period compared to the 

control. Excretion of Al in the healthy volunteer group was mostly smaller for the treatment 

period (P < 0.001) than that of patients in the MS study. MS patient excreted more Al during the 

treatment period. 
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There was no significant difference in the median urinary excretion of Al between the MS group 

and the healthy individual group for the control period; however, healthy volunteers excreted 

significantly less (P < 0.001) Al in the treatment period compared to the MS group. 

 

It is most sensible to relate the dosing HV data to the MS study data, this is because the MS study 

population were consuming the water throughout the day in a similar manner. Therefore, direct 

comparisons are made between dosing treatment data for the HV population and the MS 

treatment period. Loading treatment data is included for consistency. 

 

However, the manner in which these groups handled Al following the treatment of the mineral 

water were different (Table 6.4.2); the healthy individual group demonstrated a large increase in 

Al excretion (P = 0.004) during the Si loading treatment, which was coincident with an increase in 

Si excretion (P = 0.001). This was not the case for the MS study, where a smaller change in Al (P = 

0.41) was witnessed at the beginning of the long term treatment study with an alternating 

increase in Si (P = 0.28). In general, Al excretion was larger for the last treatment week than the 

initial treatment week (P = 0.009), shown in Table 6.4.3, suggesting a long term treatment with Si 

is more beneficial for lowering body bioburden of Al.  
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Table 6.4.1: Mean urinary excretions of Si before and after consuming the mineral water in 

healthy individuals (HV) and individuals with multiple sclerosis (MS) 

 

 

 

 

 

 

 

Table 6.4.2: Mean urinary excretions of Al before and after consuming the mineral water in 

healthy individuals (HV) and individuals with multiple sclerosis (MS) 

  

 

 

 

 

 

 

 

 

 

 

 

 

HV Loading 126 614 Spritzer 1.5L

HV Dose 126 951 Spritzer 1.5L

MS Dose 484 1596 Spritzer 1.5L

Group Therapy Control Treatment
Brand of 

water

Maximum water 

consumed

Urinary excretion of silicon (μg/24hr)

HV Loading 967 2814 Spritzer 1.5L

HV Dose 967 2085 Spritzer 1.5L

MS Dose 903 2503 Spritzer 1.5L

Urinary excretion of Al (μg/24hr)

Group Therapy Control Treatment
Brand of 

water

Maximum water 

consumed

(ng/24hr) 
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Table 6.4.3 Differences in the median excretions of Si and Al during the control and treatment weeks 

between healthy individuals (n = 19) and patients with multiple sclerosis (n = 15) - Mann Whitney U 

test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HV MS P - value HV MS P - value

84 296 0.002 742 658 0.001

804 1224 0.096 1754 2206 0.004

Control

Treatment

Week

Silicon (μg/24hr)

Comparison of median excretions

Aluminium (μg/24hr)Aluminium (ng/24hr) 
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Chapter 7 – Discussion: Integrating silicic acid-rich mineral water into 

the diet is an effective, non-invasive method of reducing body burden 

of Al. 

 

 

This research was undertaken with the aim of illuminating the application of a commercial silicic acid-

rich mineral water as a non-invasive method of reducing Al body burden, when used as part of an 

individual’s normal diet. The primary objective was to investigate Si handling and the consequential 

effects on urinary Al excretion. 

 

Different protocols - healthy individuals 
 

 

Despite widespread evidence signifying a beneficial role of Si in biota, there is little reliable 

information on Si handling in humans, particularly regarding healthy individuals. In order to determine 

whether there is any change in Si handling in disease it is first important to explore Si handling in these 

‘normal’ individuals. Thorough investigations concerning healthy individuals were therefore 

performed, using two different protocols, exploring two different excretory mechanisms, sweat and 

urine. 

As Si is known to be rapidly absorbed and excreted (Popplewell et al. 1998), it was considered that a 

period of one week between each protocol would be sufficient to minimize any influence on Si 

excretion between each study. However, it could be thought that Al body burden would have been 

influenced, if not lowered, with each additional protocol. 
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Al intake in the diet is approximately 20 mg day-1 (Pennington & Jones, 1989); only 0.1% of this is 

absorbed (Day et al. 1991), leading to around 140 μg of Al possibly contributing to Al body burden 

from dietary exposure each week. As we bare this in mind, it is unlikely that the weekly time periods 

between each different protocol were sufficient to replenish the Al body burden removed from the 

elevated Si dose.  

However, as each protocol consisted of a control and treatment period in which the urinary excretions 

were compared, the overall effect on Al excretion could be explored. 

 

24-hour collections provide the most reliable information on urinary excretions; however, these 

were not sensible for the longer term studies, especially when these studies concern vulnerable 

individuals (i.e. MS patients). For this reason creatinine corrected measurements were also 

documented. The negative correlation between creatinine concentration and sample volume 

verifies that creatinine concentration provides an acceptable indication of dilution effects. The 

positive correlations between the urinary excretions of Si and Al when expressed as total amounts 

and when corrected for creatinine validate that both methods are appropriate for determining 

urinary excretions. 

 

The mean creatinine concentration at baseline (5.8 ± 1.7 mM) and volume of urine produced (1670 ± 

399 mL) correlates well with the literature values (Table 7.1), confirming that the healthy participants 

had normal kidney function. 
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Table 7.1: Comparisons of creatinine concentration and sample volume with other studies 

 

 

 

 

 

 

Consumption of total beverages was higher in the treatment period compared to the control (P < 

0.001) for the healthy volunteer population indicating that the participants consumed the mineral 

water in addition to, rather than in replacement of, their normal intake. This is likely to be due to 

the short time period over which the mineral water was consumed. From this, it could be argued 

that the increase in Si excretion is merely a reflection of the higher consumption of beverages, 

independent of their Si content.  However, a positive correlation was only witnessed between the 

excretion of Si with total beverages consumed during the treatment period, which verifies that 

the witnessed increase was due to the addition of the mineral water. 

 

Silicon handling was variable between individuals 
 

Urinary excretion of Si was variable between healthy individuals, the range of urinary Si at baseline 

was 61-231 μg/24h. As urinary Si is a good marker of Si absorbed, dietary differences between 

individuals would have contributed to these variations (Jugdaohsingh et al. 2002; Sripanyakorn et al. 

2009).  

Range Range

3.22-8.54 650-2350

2.6-11.5 550-1150

4.3-9.4 450-3250

9.1-15.8 1020-2740 (Powell et al. 1999a)

This study

(Rodriguez et al. 2004)

(Costa et al. 2007)

(Powell et al. 1999a)

Creatinine Concentration (mM) Sample Volume (mL)

Reference Reference

This study

(Morie et al. 1996)

(Rabinowitch 1933)
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Distinctions in Si handling between individuals were also highlighted. Assuming that the dietary 

intakes of Si, excluding the mineral water, were similar between the control and treatment 

periods for each individual, it would be expected that the difference in Si excretion equated to 

the amount of Si ingested as the mineral water. However, in the loading study only 59 ± 31% of Si 

ingested as the mineral water was excreted in the urine of health individuals; and this was highly 

variable between individuals. In the dosing study where a steady stream of Si was delivered 

throughout the day, this difference equated to 95 ± 25% of Si ingested as the mineral water 

excreted. This supports the variability between Si handling and suggests that a consistent dose of 

Si exposure throughout the day ensures more of this Si is bioavailable and becomes absorbed into 

the bloodstream. 

The changes in Si excretions (treatment minus control) between the 19 participants who 

consumed the full 1.5L of mineral water during the dosing protocol were considerably different. 

Two individuals (M1, F2) appear to have excreted less than 70% of the Si consumed as the mineral 

water (Table 3.1.3.2), suggesting that they have reduced Si handling. Seven individuals (M2, M3, 

M4, M6, M7, F8, F9) excreted more than the expected 100% Si following the consumption of the 

mineral water during the dosing protocol. It is possible that these individuals consumed other Si 

rich sources on this day.  

 

Effect that the mineral water had on urinary excretions 
 

 

The baseline urinary excretion of Si was 126 ± 55 μg/24 hours. This was significantly correlated (P = 

0.015) with Si excretion in both loading treatment period (614 ± 253 μg/24h) and dosing treatment 

period (951 ± 246 μg/24h), despite the single individual who excreted two fold more Si after 
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consuming the mineral water, fourteen out of the fifteen patients saw Si excretion increase by more 

than three-fold of the baseline concentration for the loading period, this value further increases when 

considering the dosing data. Positive correlations were also seen for Al (P < 0.001) which indicates that 

the amounts of Si and Al excreted in the treatment period were dependent on the baseline levels. 

Consumption of the mineral water significantly increased the amount of Si excreted in the urine of 

females (P < 0.001), although for males, this value increased only marginally (P = 0.41). Increases were 

coincident with increased Al excretion (P < 0.001). This signifies that the consumption of silicic acid-

rich mineral water successfully enhanced the urinary excretion of Al in healthy individuals. 

Males excreted more Si and Al than females. These differences were seen throughout the study, 

highlighting that both genders metabolise the elements similarly. Males excreted slightly more Si 

compared to females during the treatment periods, however, this was not surprising as males 

consumed, on average, more of the mineral water (P = 0.001) 

 

Co-excretion of Si and Al was apparent in the loading Si data; the relationship between Si and Al 

along with the rapid excretion of Si demonstrates that Al is excreted as a bolus following the 

consumption of the mineral water. In addition, regular consumption of the mineral water 

throughout the day was observed to promote lesser Al excretion, although may maintain this at 

a lower level; 17/19 healthy individuals showed a larger increase in Al excretion which was 

coincident with a loading effect of Si consumption. An increase in Al excretion was witnessed for 

2/19 individuals during the dosing treatment period, indicating that regular Si supplementation 

could prevent Al accumulation more efficiently in these individuals. It is anticipated that over a 

longer period of time Al excretion would be reduced in more individuals. 
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To summarise the healthy individual study; consumption of the mineral water significantly 

increased the urinary excretions of Si and Al. Al were rapidly excreted as a bolus during Si loading 

although Si excretion was at a higher level when a steady stream of Si was consumed throughout 

the day. Treatment over a long term period could result in reduced Al body burden. 

 

Baseline 24h urinary excretions of Si and Al were compared with literature values (Table 7.2). 

With the exceptions of the studies by Roberts et al. (1998) and Kazi et al. (2008), who used large 

populations, the group sizes presented in the other studies were much larger. These differences 

would have contributed to the higher fluctuations in urinary excretions between the literature 

sources. For instance, the urinary excretion of Al seems to be higher compared to other studies 

using a similar age range (Morie et al. 1996; Reffitt et al. 1999), however, these studies had 

population size of 6 and 5 respectively. In addition, the low excretion of Al in the study by Reffitt 

et al. (1999) may be attributed to the participants fasting. The higher excretion of Al within the 

healthy volunteer study could also be a reflection of a university student’s diet, which is typically 

high in processed foods and alcohol (Devine et al. 2006). Processed foods are generally high in Al 

(Pennington & Jones, 1989) and alcohol is known to increase gut permeability (Barchfeld & 

Deamer, 1988) which could augment Al uptake. Other dietary factors, such as citrate (Taylor et 

al. 1998) contributes to the absorption of Al, therefore, an individual who regularly consumes 

fruit juice may have an increased absorption of Al. 

 

The majority of individuals in the present study were also regular tea drinkers 13/19. Tea is a 

diuretic which contains high levels of Al (Forster et al. 1995). Despite the bioavailability of Al in 

tea being considered to be low (Powell et al. 1993; Gardner & Gunn, 1995), regular consumption 

is believed to contribute to enhanced absorption (Nieboer et al. 1995). However, it was 
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demonstrated that higher daily consumption of tea results in reduced Al excretion (see section 

3.1.10). A possible explanation of this is that Al is in too great an excess of Si to allow the complex 

to form and enable Al to be excreted. 

 

In the study by Reffitt et al. (1999), the participants fasted in order to investigate whether silicic 

acid promotes the urinary excretion of endogenous Al. Results of the study demonstrated no 

significant change in Al excretion (Table 7.2); however, in view of the young age of the group (and 

the small population size) it is unlikely that Al accumulation was unusually high and consequently, 

effect on eradicating Al from body stores would have been minimal. It would be of interest to 

carry out this study with a larger pool size of elderly participants, furthermore those with 

susceptibility to an increased bioburden of Al, like individuals with Alzheimer’s disease. 

 

Table 7.2: Comparisons in urinary excretion (mean ± SD) of silicon and aluminium with other 

studies. 

 

 

 

 

n = 19, 18-34y

n = 5, 24-31y

fasted

n = 115, 30-65y

healthy control

n = 19, 18-34y

n = 5, 24-31y fasted

n = 54, 30-65y

healthy control

22-23y, n = 6

69.2±4.4y, n = 6

667±222

2000±444

471±322

744± 589

950±820

967 ± 687

187±43

126 ± 55 

719±229

97±42

Notes

Summary of urinary excretions

Si (μg)

Al (ng)

This study

(Reffitt et al. 1999)

(Roberts et al. 1998)

This study

(Reffitt et al. 1999)

(Roberts et al. 1998)

(Morie et al. 1996)

(Morie et al. 1996)

Element Reference μg/ng/24h μg/ng/L
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Involvement of HAS  
 

The direct relationship highlighted between Si and Al supports the theory of HAS being involved in Al 

excretion. In the presence of free Si, Al is considered to exist as a low molecular weight HAS, giving 

the potential for reabsorption prevention and perhaps promoting its excretion. It is likely that this 

interaction predominantly occurs in the proximal convoluted tubule (Bellia et al. 1996), where Si 

becomes concentrated, at this point it may be allowed to exceed the critical level (0.1mM) required 

for the formation of HAS species (Birchall, 1992).  

The current literature has not yet demonstrated the formation of HAS in-vivo (Exley, 1998); however, 

a further study could potentially be measured using atomic force microscopy, which has been used to 

identify HAS in acidic solutions (Doucet et al. 2001). In order to fully uncover and add knowledge to 

the mechanisms behind the valuable effect of silicic acid-rich mineral waters, more research is needed, 

focusing on the biochemical interaction between Si and Al in-vivo.  

Silicic acid is a small, neutral molecule, composed of a single Si atom, a single O atom and four 

hydrogen atoms. Silicic acid is freely diffusible within the body and is rapidly absorbed and excreted 

(Popplewell et al. 1998); the desirable level of Si, to create its protective effect, is 0.1mM and may 

therefore not be withstanding in the body. Considering this, and also taking into account the effects 

of consuming Si in different doses in the HV study, in order to remove systemic Al, it may be necessary 

to regularly consume large quantities of mineral water over short time periods, rather than drinking 

small quantities throughout the day. 

The 24-hour loading study where the mineral water was consumed soon after waking, would have 

allowed surplus Si for this interaction to occur. Exact amounts consumed (quantities at specified times) 

for the dosing study were not available, so it was difficult to judge how often this critical level would 

have been reached, despite the entire volume of water being consumed by participants in the 24 
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hours, and a suggestion of 150mL per hour was made. This may explain some of the suggestions 

that Al absorption across the gut may actually be enhanced at lower Si concentrations (Birchall et 

al. 1996). 

It would have been interesting to analyse the relationships between Al excretion with the 

consumption of orange juice, beer and wine, however, the amount of data on these beverages was 

not sufficient to obtain a reliable outcome. 

 

Sweat 
 

It is interesting to note that in all sets of data, sweat production was slightly higher in the treatment 

set of data than the control, there is no current literature to suggest that fluid consumption would 

influence sweat volume production, only that, an appropriate amount of liquid needs to be taken on 

board to account for fluid loss in sweat.  

The volume of sweat collected during the study was consistently larger for males than females, 

indicating that men produce more sweat than women, although differences in thermoeffector 

function were largely determined morphologically, rather than being sex dependent (Notley et al. 

2017). The volume of sweat collected ranged from 0.66 to 1.55 mL and corresponded well with 

literature values for perspiration rates (Chen et al. 2012). 

The mean aluminium content in the control period was higher in females (341 ± 245 µg/L) than males 

(353 ± 141 µg/L) though the data for each group were not found to be significantly different from one 

another (P > 0.05). Contrary to this, the mean aluminium content in the treatment protocol was higher 

in males (1208 ± 433µg/L) than females (835 ± 334µg/L) and the data for each group were found to 

be significantly different from one another (P < 0.05).  
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The method blanks demonstrated a very low level of possible contamination by aluminium and were 

within the range of a previous study (Exley et al 2014).The latter demonstrated a high degree of 

confidence in the concentrations of aluminium measured herein which were towards the higher end 

of previous literature values (House et al 2012).  

When the concentrations of aluminium in collected sweat were adjusted to take account of the 

volume of sweat produced by men (1342 mL/24 h) and women (712 mL/24 h) in this age range (Manz 

et al 2012) and undergoing mild exercise the amount of aluminium excreted over 24 h ranged from 

135 to 421 µg/24 h for women to 96–770 µg/24 h for men during the control and from 274 to 875 

µg/24 h for women to 857–2250 µg/24 h for men (Table 4.4.7.2.1 and Table 4.4.7.2.2) with men 

excreting significantly more aluminium than women (P < 0.05). These data are significantly higher than 

those that describe the daily excretion of aluminium in urine, up to 100 µg/24 h (Exley, 2013) and 

therefore they heavily implicate sweating as the major route of excretion of systemic aluminium in 

humans, especially after the consumption of a Si rich mineral water. In doing so it may be that men, 

through perspiration, excrete aluminium from the body more effectively than women and it can be 

suggested that regular exercise might be a way to increase the excretion of aluminium from the body. 

If sweating is the major route for the removal of systemic aluminium from the body then this 

observation puts into question the practice of disrupting or blocking perspiration using antiperspirants 

and aluminium-based antiperspirants specifically. 
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Multiple sclerosis 
 

The project protocol was divided into two objectives; the primary objective was to measure the 

urinary excretions of Si and Al over a 24 week period during which patients consumed up to 1.5L 

of silicon-rich mineral water each day. The first 12 weeks of the study, referred to as the control, 

required each participant to provide urine samples following their normal diets, thus acting as 

their own control to determine individual changes. The secondary objective was to observe 

changes in mobility using EDSS scores at the beginning and end of the study. 

Consumption of total beverages was similar in the treatment period compared to the control (P 

< 0.001; Table 5.4.2.2) for the MS patient population indicating that the participants consumed 

the mineral water in replacement of their usual beverages. Urine volume was similar for the 

control and treatment period in this study population. 

 

The absorption of Si in the MS patient database is relatable to that of the dosing HV study. In this 

study, Si was incorporated into the diet of MS patients, replacing all normal water sources with 

the Si rich mineral water, therefore ensuring this constant stream of Si exposure throughout the 

day. The difference from the control and treatment period equated to a percentage difference of 

99 ± 42% of Si ingested as the mineral water was excreted in the urine of the MS patients. Despite 

this, eight out of the fifteen patients (M1, M2, M3, F1, F2, F6, F7, F8) excreted less than 90% of 

the additional Si consumed. Si handling may not be sufficient in these individuals, and therefore 

they may be more susceptible to Al toxicity. 

Of course, an individual’s dietary Si intake can fluctuate (Widner et al. 1998), therefore, this 

assumption may not be totally reliable. Nevertheless, the amount of bioavailable Si in mineral 

water is much higher compared to other dietary sources; intake from silicic acid-rich mineral 
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water significantly increased Si excretion compared to Si excreted from dietary sources, it is 

therefore reasonable to assume that the change in Si excretion is mainly due to the mineral water 

(Sripanyakorn et al. 2009. 

 

It is apparent that the interactions between Si and Al witnessed within the healthy volunteer study 

are also viable for patients with multiple sclerosis. 

Creatinine concentration was significantly lower (P = 0.003) in MS patients compared to young healthy 

individuals (Table: 6.1). However, it has been established that creatinine concentration decreases with 

age (Rodriguez et al. 2004) and the MS study population were also older than those taking part in the 

HV study.  

Regular consumption of silicic acid-rich mineral water successfully enhanced the urinary excretion 

of Al in individuals with MS. 

For two individuals (F006 and F009), an increase in Si excretion in W13 resulted in a decreased 

excretion of Al. This is comparable to the results seen in the preliminary study conducted by the 

silicon and aluminium research group at Keele (Exley et al. 2006a); where a significant increase in 

Si excretion (34.3 ± 15.2 to 55.7 ± 14.2 μmol/mmol creatinine) concomitantly reduced the urinary 

excretion of Al (86.0 ± 24.3 to 62.2 ± 23.2 nmol/mmol creatinine). 

The concentration of Al excreted in the final week (W13) of the treatment period was lower than the 

concentration at baseline (W1) for 8/15 patients (Figure 4.1); indicating a reduced body burden of Al. 

This is comparable to the preliminary study performed by this research group (Exley et al. 2006a), 

which showed that increased Si excretion (34.3 ± 15.2 to 55.7 ± 14.2 μmol/mmol creatinine) was 

concomitant with reduced Al excretion (86.0 ± 24.3 to 62.2 ± 23.2 nmol/mmol creatinine). However, 
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an enhancement in Al excretion was witnessed for 15/15 patients by the final treatment Wk 24; an 

observation not seen in the preliminary study. 

Multiple sclerosis patients are expected to have a greater Al body burden compared to controls, 

however, there was no overall difference (P = 0.844) in Al excretion between patients and control 

groups at baseline. Excretion of Al was higher for the MS patient group during the equivalent 

dosing treatment period, which may suggest that the mechanism to reduce body Al by enhanced 

excretion are less effective than in healthy individuals. After 12 weeks of drinking the Si rich mineral 

water, it may be suggested that some patients had become non-compliant with the protocol, 

explaining the decrease in Si excretion during this final treatment week. Despite this, all patients were 

said to be very compliant with following the protocol and consuming the 1.5L of mineral water 

provided for each day. The average percentage difference was 98.7%, suggesting that the increase in 

Si consumption through Si rich mineral water was mainly due to the Si rich mineral water added to 

the diet. 

 

As with many neurological conditions, gender plays a role in occurrence of the disease. In the case of 

MS, it is women that are more likely to develop the disease. The data surrounding disease severity 

and link to gender is sparse, but it may prove useful to determine whether those with a higher body 

bioburden of Al are further along with the progression of the disease. Females showed a significant 

difference in the overall excretions of Si and Al. Females excreted significantly more Si (P = 0.005) 

and Al (P = 0.012). This confirms the preliminary study (Exley et al. 2006a), where females 

excreted significantly more Si (P = 0.008) and Al (P = 0.007) compared to males. However, female 

healthy volunteers excrete less Al than male controls (P <0.001), and male healthy volunteers 
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excrete more Al (P = 0.058) compared to female healthy volunteers. The higher excretion of Al in 

female patients may be responsible for the higher incidence of MS in females compared to males.  

 

There was no significant change in EDSS score for either the patient group. However, despite the 

relatively short treatment period, disability level was improved (EDSS scores ≥0.5 points; Schrag 

& Schott, 2012) for 2 patients (F1 and F6), which highlights the potential use of silicic acid-rich 

mineral water in slowing the rate of decline in aged individuals and also suggests the possibility 

of relieving the symptoms of secondary progressive multiple sclerosis. Longer term studies on 

larger populations are now needed to fully elucidate these findings and double blind studies 

should be used to determine any placebo effects. 

 

The baseline Al excretion was variable between these individuals showing a marked improvement 

in mobility performance, there was also no pattern in the excretion of Al between these 

individuals. F8 demonstrated an initial increase in Al excretion in Wk 13 then a gradual decrease 

up until Wk 24 when Al excretion had reduced to a similar value (P < 0.001) to the initial baseline 

period. For patient F001, a large increase in Al excretion was seen during the initial treatment Wk 

and by Wk 24, this level had decreased to once similar to that of the initial treatment week.  

 

Suitability of Si-rich mineral water as a treatment against Al toxicity 
 

In young, healthy volunteers the application of a silicic acid-rich mineral water would be most 

effective as a prophylactic measure to prevent the accumulation of Al over time, which could 
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potentially slow the rate and progression of Al-related disorders. However, in aged individuals, 

where Al has presumably already accumulated, silicic acid-rich mineral water could be utilised as 

an Al chelator, removing systemic Al from body stores, which could potentially reduce the 

symptoms of Al toxicity. 

In comparison to other potential ‘treatments’ for Al toxicity, silicic acid is inexpensive, readily 

available, non-invasive and does not have any associated side effects (DFO has been connected 

with several side effects and its clinical application has been questioned in terms of its poor 

absorption and rapid degradation (reviewed in Liu et al. 2005).  

A large daily dose of silicic acid, as opposed to a steady dose, is the most effective way to remove 

systemic Al from the body. 

 

Could silicon remove brain aluminium?  
 

The improvements in cognitive function following the treatment of the mineral water could be 

attributed to reduced brain Al. The presence of aluminosilicates in senile plaques (Candy et al. 

1986) indicates that Si is able to cross the blood brain barrier and enter cerebral circulation. 

However, it is not certain whether the products of interaction, presumably HAS, will also be able 

to cross the blood brain barrier, to enable the removal of Al from the brain. Presently, 

confirmation of this would require brain biopsies both before and following the treatment of the 

water. Another possibility is that the Si-Al complex remains dormant in the brain, preventing Al 

from interfering with important biological molecules. This could also provide an explanation as to 

why aluminosilicates are also found within the brains of aged ‘normal’ individuals. 
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Conclusions 
 

This research brings new and exciting evidence to support the highly debated link between Si, Al 

and neurological disorders. Not only does it consolidate the application of bioavailable Si 

supplementation as a long-term chelation therapy against Al related neurodegenerative 

disorders, but it also suggests that reduced Si handling could be another risk factor, resulting in 

Al toxicity. 

As lower Si levels may increase susceptibility to Al toxicity, supplementing Si into the diet, by 

means of a silicic acid-rich mineral water, may be particularly beneficial for individuals with 

impaired Si handling, aging individuals (Si intake is estimated to reduce by 0.1mg with each year 

of a person’s age (Jugdaohsingh et al. 2002)) and to those residing in areas with geographically 

low Si (Taylor et al. 1995). 

Epidemiological studies have suggested that municipal waters containing silicic acid at 

concentrations above 0.2mM can protect against neurodegenerative disease (Rondeau et al. 

2009). Given the evidence, within the present study, that promoting Al excretion is most effective 

following a bolus of silicic acid-rich mineral water, the protective effects would be greater with Si 

concentrations above 0.5mM, such as those used within the present studies. 

Silicic acid-rich mineral water offers an inexpensive, easily available and non-invasive therapy 

against Al toxicity. Longer term studies are now warranted to determine whether incorporating 

silicic acid rich mineral water into a regular diet has any influence on the progression and 

symptoms of neurological disease. It would be of interest to explore the benefits of the loading 

dose of Si in SPMS patients as a method of promoting an increase in Al excretion in the urine. 

 



244 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



245 | P a g e  

 

Appendix 1 
 

Quality assurance - Replicates 

 
Concentration of analyte measured in repeated analytical runs of the same sample. Ref denotes the 

analysed sample, R denotes analytical run and % Diff denotes the percentage difference of the 

concentrations determined in each analytical run. Concentration (μg L-1) 

 
 

 

Silicon  Aluminium  

  

Ref  R1  R2  % Diff  Ref  R1  R2  % Diff  
        

24M5  150.2  153.5  -2.17  24M3  7.795  7.558  3.09  

        

24M9 98.68  95.42  3.36  24M4  13.36  12.96  3.04  

        

24F6  93.34  95.33  -2.11  24F7  7.334  7.183  2.08  

        

24M8 135.8  129.2  4.98  24F9  11.95  12.42  -3.86  

        

24M2  82.7  79.58  3.85  24M1  11.99  12.57  -4.72  

        

24F10 191.8  193.6  -0.93  24M7  6.229  6.118  1.80  

        

24F2 66.09  66.98  -1.34  24F5  5.104  5.063  0.81  
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Appendix 2 

Quality Assurance - Duplicates  

 
 

Concentration of analyte measured in replicated urine samples (i.e. urine sample was prepared 

twice). Ref denotes the sample which was duplicated, D denotes the number of duplicate 

samples and % Diff denotes the percentage difference in concentrations determined in the 

duplicate samples. Concentration (μg L-1). 

 

 

 
Silicon  Aluminium  

  

Ref  D1  D2  % Diff  Ref  D1  D2  % Diff  
        

24F1  162.5  167.1  -2.79  24M3  7.795  7.767  0.360  
        

24M1  212.3  218.4  -2.83  24F3  11.11  11.18  -0.628  
        

24M3  179.4  182.6  -1.77  24M5  6.650  6.587  0.952  
        

24F6  74.30  71.98  3.17  24M9  5.073  5.126  -1.039  
        

24M7  157.5  155.7  1.15  24M8  13.75  13.99  -1.730  
        

24F8  171.1  168.4  1.59  24F4 6.801  6.823  -0.323  
        

24M2  154.7  161.0  -3.99  24F10 6.676  6.742  -0.984  
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Appendix 3 
 

List of healthy individual questionnaires, sweat and urinary excretions (Template shown below) 
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Appendix 4 
 

 

Method blank data for aluminium (n=114) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

44 71 62 45 85 91

39 86 43 39 92 89

57 58 17 26 98 75

54 95 92 74 86 34

50 45 99 73 51 10

50 66 66 36 49 12

97 91 56 90 74 158

87 80 46 79 54 132

65 64 74 33 35 117

34 38 58 41 73 80

56 81 83 42 38 66

45 108 45 56 55 56

74 100 51 102 75 75

59 66 66 124 94 59

35 46 67 149 45 73

47 59 57 36 25 56

56 54 82 58 37 62

38 90 99 50 66 90

53 106 90 46 65 118

Amount of Al in digest (ng)

Mean Al in MD digest = 57ng
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Appendix 5 
 

 

EDSS Score Scale: 
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Annex 1 
 

NREC Ref: 14/YH/1115 Approval letter 
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Annex 2 
 

Supporting documents – MS Study 
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Annex 3 -  
 

Patient diary template 
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Annex 4 
 

Research passport 
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Annex 5 
 

Ethical Approval documents – Healthy Volunteer Study  
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Ethical Application Document 

 

 

 

 

 

 

Project Title: Renal Handling of Silicon 

 

Project Leader: Krista Louise Jones 

 

07006754 

 

Project Supervisor: Professor Christopher Exley 
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Information for participants  

Outlined below is the relevant information about the study and the details of your involvement. 

 

Title of research: Renal Handling of Silicon in Humans. 

 

Overview of research: This PhD research project will investigate the renal handling of silicon in 

humans.  The primary aim of the study is to understand the absorption, retention and urinary 

excretion of silicon consumed as silicic acid rich mineral waters.  The secondary aim is to understand 

how drinking silicic acid rich mineral water influences the urinary excretion of aluminium and the 

essential metals, iron, copper and zinc.  

 

Invitation 

You are being invited to consider taking part in the research study, Renal Handling of Silicon in 

Humans.  This project is being undertaken by Miss Krista Jones, a PhD student of Professor Chris 

Exley. 

 

Before you decide whether or not you wish to take part, it is important for you to understand why 

this research is being done and what it will involve. Please take time to read this information 

carefully and discuss it with friends and relatives if you wish. Ask us if there is anything that is 

unclear or if you would like more information.  

 

Why have I been chosen? 

You have been chosen because you have shown enthusiasm towards the project through our emails 

and posters. You pass our inclusion criteria, as shown below, and are able to give your time to take 

part in the study. There will be around 20 others taking part. 

 

Inclusion/ Exclusion Criteria: 

 The inclusion criteria are as follows: 

- Individuals who are capable of giving informed consent. 
- Individuals who are capable of ingesting up to 1.5L of mineral water in a time period of up 

to 1.5 hours (time between primary and secondary urinary excretion) without causing any 
practical difficulties.  
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- Individuals within the age range of 18 – 35 years. 
The exclusion criteria are as follows: 

 -     Individuals who are not capable of giving informed consent. 

- Individuals who are not capable of ingesting up to 1.5L of mineral water in a time period of 
up to 1.5 hours (time between primary and secondary urinary excretion) without causing 
any practical difficulties. 

- Individuals outside the age range of 18 – 35 years. 
 

Do I have to take part? 

You are free to decide whether you wish to take part or not.  If you do decide to take part you will be 

asked to sign two consent forms, one is for you to keep and the other is for our records. You are free 

to withdraw from this study at any time and without giving reasons.  

 

Recruitment: Healthy volunteers (see inclusion criteria above) will be recruited by emails and 

posters, as seen in Appendix 2. The interested individuals will then converse with Miss Jones by 

email or in person, and given more information about the study. Once the health screening and 

consent form are completed the individuals will be given the questionnaire to complete. The 

recruited participants will then come to the Birchall centre to collect their water, labelled sample 

collection tubes, biohazard bags and food/drink consumption diary sheets 

 

What will happen if I take part? 

You will be given a questionnaire to complete and upon completion of this you will receive all of the 

components required to carry out the study. 

 

If I take part, what do I have to do? 

The first 24 hours of urine collection will be following your regular diet; for the second 24 hours of 

urine collection you will be required to incorporate up to 1.5L of the mineral water provided 

between your first and second urinary excretion.   

 

For the first 24 hours, collect all urine into the 3L container provided, ultrapure water will be 

provided to rinse the jug between excretions.  

 

Once you have woken on the second day, flush away your first urinary excretion, then begin to 

consume up to 1.5L of the silicon rich mineral water provided, in the time between your first and 

second urinary excretion, up to 1.5 hours.  Then continue to collect all subsequent urinations 

throughout the day into the second 3L container. The provided food diary and time of urination 

must be maintained throughout each day. 
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Duration of participation: Total of 2 days.   

 

Amount to be consumed: Up to 1.5L of Silicon rich mineral water provided by Mis Jones, in a time 

period of up to 1.5 hours (time between primary and secondary urinary excretion), allowing for 

1L/hour filtration rate. The bottle with any remaining water should be returned with the samples in 

order for the amount, which is actually consumed, to be measured. 

 

Retrieval: Samples will be collected at the end of the 48 hour period.  Volunteers are required to 

liaise with Miss Jones to arrange a time for collection that suits both the participant and Miss Jones. 

This can be at any time point over the week. 

 

Storage/ Disposal of samples: Each volunteer will be responsible for their samples. Samples are to 

be kept within the biohazard bags, provided by Miss Krista Jones, and retained in the participant’s 

fridge until collection. It is crucial to ensure that any individuals sharing amenities with the 

participant are aware of the use of their fridge for this purpose; this is to ensure that the sample 

isn’t accidentally ingested and that no offence is caused by its presence in the fridge.  Upon receipt 

at the Birchall Centre samples will be acidified to ca 20% v/v 15.8M HNO3 to render them acellular 

for longer-term keeping prior to analyses of Si and metals. Samples will then be kept in a designated 

fridge until use, after which, they will be disposed of appropriately. Since all samples will be 

converted to acid digests upon receipt then no samples of urine will be stored. Volunteers are 

advised to wash their hands after each urinary collection. 

 

Access to data and samples: Only Krista Jones and supervisor Prof. Chris Exley will have access to 

data and samples.  All data will be kept confidential and anonymous.  

 

Benefits/Risks: There are no known risk to the individual taking part of this study, the consumption 

of up to 1.5L water in a time period of up to 1.5 hours (time between primary and secondary urinary 

excretion) poses no risk to a healthy individual. Aprevious investigation, using the same protocol, by 

Samantha Ward saw no negative effects on participants. The standard clinical test, the water loading 

test, used by the NHS is a consistent method and apart from feeling slightly bloated, there are no 

risks reported with this test, which involves a considerable amount more than is being asked to be 

consumed in this study. Benefits of drinking a silicon rich mineral water have been seen in many 

scientific investigations. Silicon, as well as playing a vital role in bone growth, is believed to influence 

the excretion of aluminium, the lower the bioburden of aluminium on the body the lower the risk of 

developing aluminium related diseases (Exley, 2006). 

 

Funding: The study is being funded by Keele Acorn and additional support from Spritzer. 
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What if there is a problem?  It has been reported that in rare cases some people experience some 

dizziness under water loading, so if you begin to feel unwell then stop drinking the water. 

 

Contact the below for any queries: 

 

 

Nicola Leighton 

Research Governance Officer 

Research & Enterprise Services 

Dorothy Hodgkin Building 

Keele University  

ST5 5BG 

E-mail: n.leighton@uso.keele.ac.uk 

Tel: 01782 733306 

 

 

Krista Jones     

Email:  k.l.jones@keele.ac.uk                                                                

    

 

 Prof. Chris Exley 

Email:  c.exley@chem.keele.ac.uk 

 

 

 

 

 

 

 

mailto:n.leighton@uso.keele.ac.uk
mailto:c.exley@chem.keele.ac.uk


282 | P a g e  

 

 

 

 

 

 

 

 

 

CONSENT FORM 

 

Title of Project:  Renal Handling of Silicon 

Name and contact details of Principal Investigator: Krista Jones, k.l.jones@keele.ac.uk, 

 

 

Please tick box if you  

agree with the statement 

 

1 I confirm that I have read and understand the information sheet for the above study and have 

had the opportunity to ask questions. 

 

□ 

2 I understand that my participation is voluntary and that I am free to withdraw at any time. □ 

3 I agree to take part in this study. □ 

4 I understand that data collected about me during this study will be anonymised before it is 

submitted for publication. 

 

□ 

 

_______________________ 

Name of participant 

 

___________________ 

Date 

 

_____________________ 

Signature 

mailto:k.l.jones@keele.ac.uk
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________________________  

Researcher 

___________________ 

Date 

_____________________ 

Signature 

 

 

 

 

 

 

Healthy Volunteer Questionnaire 

 

Gender: Male □ Female □ 

Age:  …….. 

Height:  …….. 

Weight: …….. 

 

For the following questions, please indicate the most suitable answer. 

 In an average week how often do you eat the following types of food? 

          Never Once a week A few times a week Every day  

Fresh foods   □           □                           □       □ 

Processed foods  □           □            □       □ 

Ready meals  □          □            □       □ 

Take Outs   □                     □            □       □ 

Other (please state)  □           □             □        □ 

………………………………………………………………………………………. 
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 In an average week how often do you consume the following soft beverages?   

        Never Once a week  A few times a week Every day 

Water (Tap)   □            □         □       □ 

Water (Bottle)                □            □         □       □ 

Milk/Milkshake               □            □         □       □ 

Fresh fruit Juice               □            □         □       □ 

Long life juice  □            □         □       □ 

Cordial                □            □         □       □ 

Fizzy drinks (Cans) □            □         □       □ 

Fizzy drinks (bottles)       □            □         □       □ 

Tea   □            □         □       □ 

Coffee   □            □         □       □ 

Other (please state)  □            □                  □        □ 

………………………………………………………………………………………. 

 If you consume bottle water, which brand do you prefer? 

………………………………………………………………………………………. 

 

 In an average week how often do you consume the following alcoholic beverages?   

        Never      Once a week  A few times a week Every day 

Beer (can)  □            □         □       □ 

Beer (bottle/draft) □            □         □       □ 

Cider (can)  □            □         □       □ 

Cider (bottle/draft) □            □         □       □ 

Wine   □            □         □       □ 



285 | P a g e  

 

Spirits   □            □         □       □  

Other (please state)  □            □   □        □ 

………………………………………………………………………………………. 

 

 How often a week do you use the following products? 

        Never      Once a week  A few times a week Every day 

Deodorant  □            □   □        □ 

Hairspray  □            □   □        □ 

Cosmetics  □            □   □        □ 

Soap/Shower gel □            □   □        □  

 

 Which best describes your smoking habits? 

Regular Smoker  □ 

Social Smoker                □ 

Ex-smoker  □ 

Non-smoker  □ 

 

 

 

 How often do you exercise in an average week? 

Every day  □ 

5-6 days  □ 

3-4 days  □ 

1-2 days  □ 

Never   □ 
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 How would you best describe your activity level? 

Strenuous  □ 

Moderate  □ 

Gentle   □ 

N/A   □ 

 

 

 Do you suffer from any medical conditions:  Yes □     No □ 

If yes, please specify……………………………………………………………….. 

 

 Are you currently taking any pharmaceuticals:  Yes□       No □ 

If yes, please select which type: 

Paracetemols  □ 

Aspirins                □ 

Ibuprofen  □ 

Antacids  □ 

Other   □ (please specify…………………………………………..) 

 

 How often are you taking pharmaceuticals? 

Daily     □ 

A few times a week   □  

Once a week    □ 

Less than once a week     □ 
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 Are you currently taking any vitamin supplements:     Yes □     No 

□ 

If yes, please specify……………………………………………………………….. 

 

 

 How often are you taking vitamin supplements? 

Daily     □ 

A few times a week   □  

Once a week    □ 

Less than once a week     □ 

 

Thank you for your time and participation.   

 

 

 

 

 

Record Card - 24hour sample Day 1 

 

Start Date: Start Time: 

Finish Date: Finish Time: 

 

Amount of Exercise (m): Level of Exercise: Gentle Moderate Strenuous 

 

Consumption of beverages: 

Beverages Consumed Time Consumed Amount Consumed 
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Record Card - 24hour sample Day 2 (addition of Spritzer) 

 

Start Date: Start Time: 

Finish Date: Finish Time: 

 

Amount of Exercise (m): Level of Exercise: Gentle Moderate Strenuous 

 

Consumption of beverages: 

Beverages Consumed Time Consumed Amount Consumed 
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 Poster for advertisement of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participants Needed 
 

I am looking for volunteers, aged 18-35, to 

participate within a PhD research project on the 

renal handling of silicon.  As a participant you will 

be asked to consume up to 1.5L silicic acid rich 

mineral water during in a time period of up to 1.5 

hours (time between primary and secondary 

urinary excretion).  You will also be required to fill 

out a lifestyle questionnaire and to maintain 

dietary records.  All information collected will 

remain anonymous. 
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Annex 6 
 

Sweat poster presentation given at the 11th Keele Meeting on Aluminium on 3th March 2015 at the 

Le Couvent Des Minimes Hotel & Spa in Lille, France. 
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Annex 7 
 

MS Patient feedback 
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Annex 8 
 

Urinary Excretion of Aluminium and Silicon in Secondary Progressive Multiple Sclerosis 
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