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Abstract

There are well-established approaches of text mining collections of documents and

for understanding the network of citations between academic papers. Few studies

have examined the textual content of the papers that constitute a citation network. A

document corpus was obtained from the arXiv repository, selected from papers relating

to the subject of Dark Matter and a citation network was created from the data held

by NASA’s Astrophysics Data System on those papers, their citations and references.

I use the Louvain community-finding algorithm on the Dark Matter network to

identify groups of papers with a higher density of citations and compare the textual

similarity between papers in the Dark Matter corpus using the Vector Space Model of

document representation and the cosine similarity function.

It was found that pairs of papers within a citation community have a higher

similarity than they do with papers in other citation communities. This implies that

content is associated with structure in scientific citation networks, which opens avenues

for research on network communities for finding ground-truth using advanced Text

Mining techniques, such as Topic Modelling. It was found that using the titles of papers

in a citation network community was a good method for identifying the community.

The power law exponent of the degree distribution was found to be, γ = 2.3, lower

than results reported for other citation networks. The selection of papers based on a

single subject, rather than based on a journal or category, is suggested as the reason

for this lower value. It was also found that the degree pair correlation of the citation

network classifies it as a disassortative network with a cut-off value at degree kc = 30.

The textual similarity of documents decreases linearly with age over a 15 year time

span.
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1 Introduction

Academic papers use citations to other papers in order to provide support for their

arguments as well as to establish credit and provide historical context. The support is

usually in the form of factual assertions that are developed in depth and defended in

another publication [Weston, 2009]. The supporting papers also use citations leading

to a network of citations upon which the argument rests. Support can be indirect

(being several citations away) providing the evidence for assertions that is built on like

the foundation of a house. As support flows across the network, ideas likewise flow and

evolve in time. Progress can be impeded by a lack of support or new ideas available

to the researcher, a situation that may arise if a particular research community is

unaware of relevant work published elsewhere. It raises questions on the possibility

of determining if two communities are working on the same topic and whether the

similarity between two communities be measured.

First, a method for identifying communities is required. One method is by using

the citations in academic papers to group together those papers that share citations.

The authors are obviously aware of the papers they cite and feel it is necessary to include

these sources in support of their argument. Second, similarity between communities

can be expressed as the similarity between the content of the papers they publish. It

seems obvious to postulate that, with the exception of jargon, discussion on the same

topic should use some of the same words, although “false friends” and equivalence

cases from differing fields (e.g. validity and reliability in psychology with accuracy and

precision in physics) can be a confounding factor here. Thus, a method is required for

measuring the similarity between documents.

The Complex Networks community has studied citation networks and also has

algorithms for finding communities based on the links between individuals. The subject

of Text Mining has methods for extracting measurable quantities from documents. In

this thesis, I will use community finding algorithms on a citation network to identify

communities that are aware of each other and use text mining techniques to calculate
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the similarity between the documents in those communities and others as a proxy for

the distance between communities.

In the absence of a widely accepted taxonomy of areas of knowledge, the following

convention shall be used to refer to the scale of investigation. A topic is a single issue

or small coherent collection of inquiries, a subject is made up of topics, a branch has

many subjects and a field is made up of branches. This crude hierarchy breaks down

somewhat when facets come into play, such as breaking the subject of Dark Matter

into 4 groups which are collections of topics and yet referred to as topics themselves.

Table 1.1: A taxonomy of areas of study

field branch subject topic
physics astrophysics Dark Matter gravitational lensing
computer science computer security cryptography cryptographic algorithm

1.1 Networks

In the last 17 years, complex networks approaches have been used in a wide variety of

empirical studies, for example the collaboration networks of company directors, film

actors and scientists, the power grid, the neural network of the worm Caenorhabditis

elegans, epidemics and disease spreading networks, the World Wide Web and the net-

work of sexual contacts [Newman et al., 2001, Watts and Strogatz, 1998, Ball et al.,

1997, Liljeros et al., 2001]. While not the first, an important milestone for citation

networks is Redner [1998], placing them in the context of complex networks, in order

to benefit from the work of Girvan and Newman [2002] on the community structure of

social and biological networks. Rosvall and Bergstrom [2008] is an excellent example of
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using citation networks to map out the large-scale interdisciplinary structure of science.

This thesis examines the other end of that spectrum, the multi-discipline study of a

single subject.

1.2 Text Mining

“Big Data” is a boon to researchers who have developed tools for data mining, ex-

tracting patterns and learning rules buried in overwhelming swathes of numerical data

[Witten et al., 2011, Callan, 2003]. Text mining uses the same concepts on docu-

ments, which are less structured, for tasks such as document classification of news

articles, searching catalogues, information extraction and clustering [Manning et al.,

2008, Weiss et al., 2010b]. Fortunately, large documents can be reduced to small repre-

sentations for improved efficiency [Salton et al., 1975]. Information Retrieval has used

clustering algorithms to group together similar documents to speed up searching and

returning results from catalogues [Jardine and Rijsbergen, 1971].

1.3 The Relation to Knowledge

A broad community of researchers seek a better understanding of knowledge, how it is

acquired and disseminated [Blackman and Benson, 2012, Bellotti, 2011, Börner et al.,

2003, Rogers, 1962]. In contrast to the paradigm shift model introduced by Kuhn [1962]

which proposes that change in science is a revolutionary process, the counter-argument

by Toulmin [1972] that science is an evolutionary process is supported by recent studies

on the social dynamics of science and how topics evolve [Jo et al., 2011, Choi et al.,

2011, Sun et al., 2013]. There is considerable literature on Social Network Analysis

and Communities of Practice [Groh and Fuchs, 2011, Friedkin, 1982, Yang et al., 2013,

Lave, 1991, Wenger, 1999], but this thesis restricts itself to just the research outputs

and not to the people involved. The act of citation is not personality-based, affected
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by writing style, but is dependent on the textual content of the paper for its impact

[Guerini et al., 2012]. By analysing the text, the flow of knowledge across the network

can be quantified [Bhupatiraju et al., 2012]. Any overlap between fields can be traced

through citation as an indicator of the cross-fertilisation present in interdisciplinary

subjects [Chakraborty et al., 2014].

1.4 Research Questions

RQ 1: What is the relationship between the citation network and the textual content

of a scientific research subject in terms of textual similarity within and between network

communities found using the citations between scientific papers?

In their definition of Topical Community, Mei et al. [2008] proceed on the as-

sumption that the structure of the network corresponds to the textual similarity of

its members. Their objective is to improve the topic modelling as it applies to text

summarisation, topic mapping and topical community finding, but this has not yet

been shown. A positive answer to the research question provides support for their

assumption, while a negative answer undermines the validity of their argument.

RQ 2: What is available in the textual content of a citation network that can help

identify a scientific community?

Community-finding algorithms have had difficulty recovering the “ground-truth”

of the communities through the metadata associated with them [Hric et al., 2014].

They have relied on the metadata tags applied to nodes in the networks, but this has

proven unreliable. As the nodes in a citation network are documents, the similarities

in the textual content of those documents are perhaps a better source of information

about the true nature of the nodes than are externally chosen tags.

While the term scientific community could refer to research subjects or to the

groups of scientists themselves, here, scientific community refers to the groups of papers

authored by scientists and found on the citation network of a scientific research subject.



7

1.5 Summary

To undertake this study, it was decided to obtain a corpus of documents on a single

subject for text processing and to create the citation network from those documents,

their references and citations in order to examine and quantify the textual overlap of

scientific communities. The subject of Dark Matter in the field of astrophysics was

chosen as it has researchers from several different recognised disciplines studying the

problem who deposit a significant proportion of their papers in arXiv, a large repository

for physics and related fields described in Appendix A.2. The data collection process

is described in Chapter 2 and a brief description of the Dark Matter problem is given

in Appendix E.

As the approaches of complex networks and text mining are distinct, both disci-

plines have been given their own chapter. Chapter 3 starts with a brief history of com-

plex networks, introduces the significance of communities, outlines the data collection

method and presents preliminary results. Chapter 4 places text mining in the con-

text of the many fields that manipulate text for aiding knowledge, such as Information

Retrieval, Natural Language Processing and Artificial Intelligence. It then describes

the process for reducing the documents to the Vector Space Model representation and

presents preliminary results from k-means clustering, which was cross-validated. Chap-

ter 5 combines the techniques of both to examine the overlap of the communities. The

results of all three chapters are then discussed in Chapter 6 and suggestions made for

future investigations in Chapter 7.
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2 Data Acquisition and Curation

2.1 Motivation

To investigate the interrelations between communities in citation networks and the

vocabulary used to express their textual content, a corpus of text was required and

citation data for those documents obtained. Using background knowledge gained from

my undergraduate degree in astrophysics and discussions with astronomers and astro-

physicists, I chose the subject of Dark Matter to be the basis of the text corpus. The

initial discussions highlighted three or four possible large topics within the subject that

should provide sufficient differences in text for substantive analysis.

2.2 Text Corpus

One source of scholarly articles is the arXiv pre-print server for physics. Described in

Appendix A.2, it is a facility for researchers to upload pre-prints, which are scholarly

articles made available prior to publication. Many physicists use LATEX to prepare their

articles and arXiv allows them to upload the original sources of their articles, be that

LATEX PDF, PostScript, HTML, or Microsoft Word files.

There are disadvantages with using arXiv as a source. It only began in 1992,

limiting the subjects available for study to relatively recent ones, before growing in

popularity, meaning that coverage during the 1990s is less than what it is today. It

is missing published articles because arXiv relies on researchers to voluntarily upload

them to the service. Indeed, the service only exists because of its utility and has grown

in popularity as researchers recognise its value in promoting work and gaining early

access to current research.
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2.2.1 Selection Criteria

The corpus was collected in 2009 from the arXiv search page. Two searches were per-

formed using the search terms “dark matter” and “MOND”. Dark Matter is a popular

term and researchers have incentive to use it to communicate to their audience how

the paper relates to the subject. MOdified Newtonian Dynamics (MOND) (see Ap-

pendix E for a description), is a popular alternative to the Dark Matter hypothesis.

Its purpose in the search process was to select papers related to Dark Matter in oppo-

sition which may not have been identified using the term “dark matter”. It was not

expected that the search terms would necessarily recover all papers associated with the

study of Dark Matter, only that a sample size sufficient for textual analysis would be

obtained. In comparison with other sample sizes used for document clustering, while

some recent studies have chosen to work with a corpus of more than 8000 documents

[Huang et al., 2016, Tang et al., 2016], previous work has been satisfied with fewer than

2000 documents. Blei and Lafferty [2007] used 1452 documents and Steinbach et al.

[2000] used an average of 1885 documents among 8 collections ranging in size from 690

to 3204. It was expected that gaps in the coverage of the Dark Matter topic would be

filled through citation data, reducing the number of papers missing from the citation

network analysis.

The strength of this curation technique is that given the search terms, any re-

searcher can freely obtain the same papers used in the analysis. Without special access

to the commercial property of several publishers, complete coverage of the topic could

become very expensive, requiring subscriptions to journals beyond what the average

institution may be willing to pay. It would also be impractical to reproduce the study.

The original sources in a markup language such as LATEX offer possibilities for fur-

ther analysis of abstracts, equations, citations or other structural features found in the

document.

Figure 2.1 shows the number of papers in the Dark Matter corpus submitted to

arXiv each year. Its growth over time mirrors the rise in usage of the arXiv service as

well as the increase in research in Dark Matter. In 2017, the search was repeated on
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Figure 2.1: arXiv search results for Dark Matter in 2009 by year

both arXiv and Web of Science (WoS). Figure 2.2 shows the results of all 3 searches.

Using the WoS as an estimate of all possible significant documents, arXiv’s coverage

of the Dark Matter topic in both 2009 and 2017 are plotted in Figure 2.3 as a ratio

between the results found in arXiv and WoS by year. Currently arXiv holds more than

half of the topic papers published after 1997.

Thomson Reuters’ business model for WoS is to provide a comprehensive citation

index for its subscribers. Their coverage encompasses over 50 000 books, 12 000 journals

and 160 000 conference proceedings. Full coverage of a subject may never be obtained,

but it has a commercial incentive to capture all available work that has impact and

influence. It is for this reason that WoS has been used here as a proxy for full coverage.

To understand the size of the corpus in the context of the greater body of pub-

lished work on Dark Matter, results for the search terms using the Web of Science

[Falagas et al., 2008] were obtained, and are presented in Figure 2.2 broken down by
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year. It was found that for the years 1992–2008, Web of Science holds 16 508 pa-

pers corresponding to Dark Matter in the categories of Astronomy & Astrophysics,

Physics, Nuclear Physics and Instruments & Instrumentation. The breakdown

by year shows the sharp rise of Dark Matter papers lodged in arXiv against the back-

ground of increased publishing in Dark Matter from the inception of arXiv in 1991

to 1995 where it constitutes 10% of the WoS holdings and settles into a slow, steady

increase, almost doubling its share of WoS in the following 13 years. These compar-

isons based on comparing calendar years will not be exact because publication is not

necessarily the same year as submission to arXiv due to the time taken by the edito-

rial process. The total submission rate in the years 1991–2009 is found on the arXiv

website, arXiv.org [2010]

The first years of arXiv were dominated by submissions in High-Energy Physics

(hep), a result of its origin at the Los Alamos National Laboratory, a major centre
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in nuclear research in the United States. By 2005, hep was no longer receiving the

majority of submissions as the astrophysics and condensed matter research communi-

ties took advantage of this freely-available, government-supported service. The yearly

breakdown of the Dark Matter corpus in Figure 2.1 reflect the steady adoption of arXiv

by the astrophysics community.

The search results found 2671 which were downloaded from arXiv. As noted

in Table 2.1, 8 papers were removed because they were not involved in Dark Matter

and 2 papers were removed from the corpus because their content consists only of the

notice that the submission has been removed from arXiv. The remaining 2661 papers

selected from arXiv constitute what will be referred to here as the Dark Matter corpus.

Appendix F.2 contains a list of arXiv ids from 1992 to 2008 that make up the Dark

Matter corpus.

A researcher today will get a much larger sample of papers from the same search
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terms in arXiv. While it is possible that the search technology has drastically changed

in 8 years, more plausible explanations are that a push towards making more research

open access has led publishers to allow pre-prints to be uploaded or that as arXiv

becomes an integral part of the research culture, researchers see the value of uploading

older papers so that they, too, are freely accessible.

2.3 Citation Network

The citation network was built around the citations to and references from the 2661

papers of the Dark Matter corpus. It was found that the Astrophysical Data Service

(ADS) (described in Appendix A.1) had excellent excellent coverage of the citation data

for this subject and had an API for fetching the data. The arXiv IDs identifying the

papers of the corpus were translated into the “bibcode” identifiers used by ADS. The list

of bibcodes was placed in a queue stored in a database. A Perl script removed a bibcode

from the queue, made a query to fetch the paper’s metadata (title, authors, keywords,

journal, date published) and then made two more requests to fetch the list of references

the paper has and the list of papers identified as citing this one at that time. The

queries using the ADS API were made every 10 minutes to avoid overloading a stretched

resource for the astrophysical research community. Upon failure of a query, the script

would back off, and double its wait between requests. Whilst running continuously

unattended, this script needed to be able to handle service disruptions, network failures

and power outages. It would resume its regular schedule on a successful query. The

backing-off behaviour had the benefit of reducing the network traffic and log entries

during disruptions, while minimising the time between service being restored and the

data fetch resuming. The references and the citations were stored in separate database

tables in order to ensure that the direction of the citation relationship was preserved.

At the end of the data collection, the two database tables were consolidated into

one table (duplicate entries were removed) holding 7 606 982 links from which graph

representations could be produced for analysis.
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Figure 2.4: Shell 1 – Citations to and References from the Dark Matter core

The initial citation network was constructed after 24 371 web queries were made

in a little over 15 months from June 2011 to October 2012. After all citation and

reference bibcodes to the Dark Matter corpus had been collected, an initial analysis

showed a discrepancy in the degree distribution compared to other citation networks.

A decision was made to repeat the process for the newly added bibcodes to ascertain

the nature of this discrepancy. The second run was completed in just under 2 years,

making 139 321 web queries from October 2012 to September 2014.

The citation network can be subdivided into 3 regions according to their citation

relation to the Dark Matter corpus: the core network consists of all nodes representing

the Dark Matter corpus. The first shell surrounding the core network is made up of

the nodes that are either references from or citations to nodes in the core network, and

the second shell refers to the remaining nodes that are references from or citations to

nodes in the first shell.

In Figure 2.4, nodes A, B, C and D inside the inner ellipse represent papers in

the core network. An internal citation is shown between papers B and C in the Dark
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Matter corpus. External citations (nodes i, j and k) and references (nodes l, m, n and

o) are made to papers that will become the first shell of the network. In Figure 2.5,

citations internal to the first shell are made (nodes k to n), external citations (nodes

q, r, s, t and u) and references (nodes v, w, x, y and z) are made to papers now in

the second shell. There are no citations from the second shell to the core network,

otherwise they would have been discovered during the first phase of the data fetch and

hence been allocated to the first shell. As only minimal data regarding the second shell

has been retrieved, via their links to the first shell, they play the role of supporting

actors, or the scaffolding on which the citation network is built.

2.4 Document Processing

A compressed tar archive of the papers (colloquially referred to as a “tarball”) consist-

ing of the Dark Matter corpus was provided on request by the arXiv administrators.

The tarball was unpacked into a file structure where all the source files the author used

were contained within a separate directory for each arXiv submission. The submission

can be in several formats. Table 2.1 presents a breakdown of the file types (LATEX,

PDF, PostScript, HTML and Microsoft Word) found in the corpus. The files in the

directory were tested with both the Unix file command and by examining the file

extensions to determine how they should be processed to extract the text.

Because LATEX is an extremely popular markup language in science and academia

and the language emphasises a logical rather than visual layout, science articles tend

to have an abstract section which can be located and accessed separately with tools

such as LATEXML (described in Appendix B). This package of Perl modules was used

to extract all the passages of text identified by the XML tags <p> or <text> to be

processed as the textbody section, <abstract> to be processed as the abstract section

and <keywords> to be processed as the keywords section. This effectively removes

mathematical notations from the processing stream. pdftotext converts all text in a

PDF file to text, meaning that any equations will be included in the text. Filtering
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papers file type

2 510 .tex LATEX
73 .pdf PDF
73 .ps PostScript
3 .html HTML

2659 subtotal of papers processed
2 .docx Microsoft Word format

2661 subtotal of papers curated
2 removed (1 plagiarism/1 author removal)
8 math category removed because of author’s name

2671 total files received from arXiv

Table 2.1: File types of Papers in the Dark Matter corpus received from arXiv. 2671
papers received, 2659 papers processed.

out single letters from processing reduces the noise from this source. PostScript files

are first converted to PDF using ps2pdf and then processed as PDF files. HTML is

rendered to text using the parse method of Perl’s HTML::Strip module. It removes

all HTML markup and returns plain text. As programs such as latex2html render

mathematical markup as images which are removed by stripping, the noise introduced

by equations should be lessened.

To process the text into VSM files, the text is split into tokens on the non-word

character boundaries (non-letter and non-digit), meaning that any contiguous string

of alpha-numeric characters is considered a “token”. This strips out punctuation. To

remove the extraneous possessives created by ’s being converted into a single s, single

letters were removed. Tokens of less than 4 characters that include a lowercase letter

were removed. The number “3” is removed because of its short length. The word

“three” is retained. A quantity such as 1.6× 10
29
kg is rendered in LATEX’s math mode

which LATEXML encapsulates in a <Math> tag. These are excluded from text processing.

The rationale for the decision to remove numerical values is that they only contain

information when presented in context, something that is removed by the VSM model.

In order not to remove acronyms, tokens consisting entirely of uppercase characters
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were retained. Stopwords (described in Section 4.3.2 and tabulated in Tables F.1

and F.2) were removed from the list. Since the choice of stopwords is not critical to

the results, Perl’s standard stopword list, Lingua::EN::StopWords, was considered an

acceptable starting point. The list was augmented by 41 terms from the top 200 most

common words in the Dark Matter corpus. They were selected on the basis that their

inclusion adds little to the meaning, many being abbreviations such as et. al., fig. for

figure and eq. for equation. The rest are common to scientific articles, such as the use

of the past passive tense. Multiword tokens were not considered, a choice which may

increase the noise slightly. Normalisation was not undertaken for the same reason of

choosing simplicity over the small improvement provided by perfection. Reference lists

at the end of the documents are encapsulated by a <bibliography> tag and are not

included in the text processing. The remaining tokens were stemmed using Porter’s

algorithm (described in Section 4.3.4). As the tokens are extracted, the number of

occurrences of each token in the file are counted and are collected into a frequency file,

labelled as textbody, abstract or keyword, for future rendering as Vector Space Model

(VSM) representations. For faster loading and reduced computer memory consumption

during clustering, the frequency files were saved as Berkeley DB files, a database file

format that Perl can treat as an in-memory data structure.

A small number of files were packaged in a non-standard fashion, such as con-

founding file extensions (e.g. .bak and .ltx), or extra front-matter added by email

systems that mislead the file command into classifying the document as ASCII text

instead of its correct file type (LATEX, PDF or PostScript). They were identified manu-

ally and the script consulted a lookup table to determine which processing was required.

2.5 Summary

These steps are also partially described in the following chapters as the theory is

introduced to illustrate the purpose for choosing to collect and process the data as

outlined in this chapter.
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3 Citation Networks

3.1 Introduction to Networks

The popular awareness of the small world phenomenon, “Six Degrees of Separation”

is believed by many to have originated from Stanley Milgram’s experiments on the

small world problem in the late 1960s [Milgram, 1967, Travers and Milgram, 1969].

While Milgram found the average number of intermediates between two strangers to

be 5.2, he did not use the phrase “Six Degrees of Separation”. That entered the public

consciousness as the title for John Guare’s extremely successful Broadway play, later

made into a movie. The provenance of the phrase is light-heartedly investigated by

Albert-László Barabási in his 2002 book, Linked, [Barabási, 2002] where he makes

a compelling case that the concept is, like himself, Hungarian, tracing it to a 1929

short story by celebrated Hungarian author, Frigyes Karinthy, called “Láncszemek”

or “Chain-Links” where the protagonist proposed the likelihood of linking himself to

anyone in the world in 5 acquaintances. He has even included an English translation

of it in a 2006 collection of significant research papers on networks, co-edited by Mark

Newman and Duncan Watts, as a historical footnote [Newman et al., 2006]. Both

Linked and The Structure and Dynamics of Networks provide an excellent historical

overview of the development of complex networks and small worlds.

A short summary of the main historical events often found in the introduction

section of research papers on the topic frequently begin with Euler inventing graph

theory in 1736 to solve the Königsberg Bridge Problem, a mathematical puzzle popular

with the citizens of that Prussian city (now called Kaliningrad in Russia [Newman et al.,

2006, p. 1]), to discover a continuous path crossing each of seven bridges linking the

two sides of the river and two islands only once. Euler proved that, since a node in a

graph with an odd number of links must be a starting or ending point of a continuous

path, no such path across the bridges of Königsberg existed. This is the recognised

beginning of Graph Theory and the work that followed dealt with regular graphs, like
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Figure 3.1: A diagram of the Königsberg Bridge Problem

lattices and other repeating patterns.

Investigation into Random Graphs grew rapidly in the 1950s with the work by

Paul Erdős and Alfréd Rényi hailed as the seminal work. Although re-discovering

results obtained a decade earlier when Solomonoff and Rapoport examined what hap-

pened to a graph whose nodes were connected at random in trying to model a number

of biological scenarios, the 8 papers by Erdős and Rényi from 1959 to 1968 set out

many of the important features of random graphs. The main feature of the Erdős-

Rényi graph is its small world property, that despite a large number of nodes in the

graph, the number of links separating any two nodes is small on average.

In the same years, sociologists had also been trying to understand the world

through the social networks we create via friendships and acquaintances. Inspired by

Ithiel de Sola Pool and Harrison White, Milgram’s famous experiment sent a request

to individuals randomly selected from the phone-book of Omaha, Nebraska to pass

a letter onward to a named stockbroker over 2000 km away in Massachusetts only

via people they knew on a first-name basis. The mean number of 5.2 steps between

individuals was vastly lower than his colleague’s estimate of 100 steps and showed the

real world importance of the study of random graphs.

It was not called networking in the early 1970s when Mark Granovetter set out to

uncover the sociology of finding employment. Rejected for publication the first time,

the surprising result outlined in The Strength of Weak Ties was that people were more
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successful finding jobs through acquaintances than through close friends [Granovetter,

1973]. This early paper, grounded in empirical data, emphasised the significance of

community structure in the composition of the network, something absent in the ran-

dom graphs of Erdős and Rényi. The random nature of the links does not promote

clustering of the nodes.

Two decades later, mathematicians Duncan Watts and Steve Strogatz began

looking at the small-world problem including the studies by Milgram and, crucially,

Granovetter. Starting with a highly clustered, yet large-world network, they found that,

by randomly re-wiring less than 1% of the links, the distance between nodes dropped

dramatically. They published their findings in 1998, showing how a small world appears

out of mostly ordered networks using comparisons of the actors network, the electrical

power grid and the neural map of C. elegans to similar sized random graphs [Watts

and Strogatz, 1998].

A year later, Albert-László Barabási and Réka Albert published results from a

study of the structure of the World Wide Web, a network defined by the hyperlinks

between web-pages [Barabási and Albert, 1999]. They showed that this network as well

as the C. elegans neural map provided by Watts contained hubs (nodes with many more

links than average), a feature not consistent with either Erdős-Rényi and Watts and

Strogatz models. The number of links attached to a node is called its “degree”. In

plotting the distribution of degrees, they found it followed a power law relation and

suggested that power laws might be a generic feature of complex networks. They also

noted that the WWW is a growing network and proposed a model for the observed

distribution called “preferential attachment”.

It has since gone on to be a wildly popular technique and has been applied

to: physical infrastructure (the topology of the Internet), biology (protein-protein

metabolic networks and epidemic spreading), sociology (social network analysis and

criminology), finance (the World Trade Network) and transportation (the airline net-

work between airports).
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be used.

With respect to the process of authoring an academic paper, a responsible author
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The graph created by that citation has two nodes, rep-

resenting the author’s paper and the original work connected

by one link, with the citation going from the author’s paper

to the original work, as in Figure 3.2. There is no citation in

the original work to the author’s paper because it did not exist

at the time of the original work and having been published, it

cannot be changed. This is called a “directed” graph and each

node now has two types of degree. The in-degree is the number

of links directed to the node and the out-degree is the number

of links emerging from the node.

In graph theory, a “path” is a set of nodes traversed via

their links. Starting at a node on a graph, if it is possible

to follow one of its links to the next node (obeying the link

direction if that is defined) and continue following links until arriving back at the

starting node, then that path is called a “cycle”. Citation networks should never have

such a cycle due to the unchanging arrow of time and hence are called “acyclic”.
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Should another paper be written discussing results from both of the papers dis-

cussed above, it can in theory reference both papers. Now the simple graph appears as

in Figure 3.3 where node 1 has in-degree of 2, out-degree of 0 and node 2 has in-degree

of 1, out-degree of 1. Time has passed and the network has gotten bigger. This is a

“growing network” as new papers that cite earlier work are constantly being written,

so more nodes and links are being added all the time.

A smaller section of a graph is called a “sub-graph” and if all the nodes in that

sub-graph are connected to every other node in the sub-graph, it is called “complete”.

The smallest example of this is the three papers of Figure 3.3, which are all linked

together by citations. This complete sub-graph is called a “clique”, just one of the

many terms for this structure arising from the work on social networks and is used in

measuring the amount of clustering in a network.

Links, once added, are static and remain fixed in place in contrast to hyperlinks

on the WWW which can be changed or removed at any time according to their author’s

whims. This description overlooks the case where a pre-print is cited (the author has

had an advanced view of a yet-to-be-published paper) and the link is directed forward in

time and ignores e-publications which could conceivably be edited after its publication.

In summary, a citation network is a directed acyclic graph (DAG) of academic

papers linked by their citations which is a growing network and has static links that

are almost always directed at older papers.

While Erdős, Rényi and Milgram were working on small worlds, historian of

science, Derek de Solla Price, took advantage of the machine-handled citation data in

Eugene Garfield’s 1961 Index to extract the power law distribution from the citation

network. He later proposed that the power law could be generated from a “cumulative

advantage” distribution (called preferential attachment by Barabási and Albert) based

on work by Simon [Price, 1976, Simon, 1955]. The significance of these results was

not widely noted outside the Information Science community until after Barabási and

Albert’s work on the WWW produced similar features.

This is not to say that physicists were ignoring citation patterns and publication

trends. Jan Vlachý, editor of the Czechoslovakian Journal of Physics, who uses citations
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to look for paradigm changes had cited Price many times and was awarded the Derek

de Solla Price Medal in 1989 for outstanding contributions to the field of quantitative

studies of science. Conversely, Helmut Abt, astronomer and managing editor for the

Astrophysical Journal, reported regularly on such themes as the exponential growth

of the literature and the “half-life” of a paper, but never cited Price [Abt, 1981, 1984,

1987, 1992, 1996, 1998b, 2006]. It is not known if either of them examined the citation

distribution.

Independently in 1998, Steve Redner re-discovered the power law distribution

using data from the Institute for Scientific Information (ISI) and Physical Review D

[Redner, 1998]. It is not unusual for researchers to arrive at the same or similar con-

clusions unaware of previous or concurrent work in the same area, as was the case with

Erdős and Rényi and many others [Simkin and Roychowdhury, 2011]. Perhaps it is the

timing of his re-discovery that is so opportune, coming only a year before Barabási and

Albert used it in their mounting evidence for the importance of cumulative advantage

in complex networks.

3.1.1 Common Features of Complex Networks

The three significant characteristics of a complex network are the “small world” prop-

erty, clustering and a fat tail. As in the random graphs of Erdős and Rényi, it should

take few steps between any two nodes compared to the size of the network. The in-

crease in the mean path length should be proportional to the increase of the logarithm

of the network size (or less). Many networks in the real world display more cluster-

ing together of nodes than would be expected from random connections. This is the

beginning of the complexity of the network. The fat tail signals the presence of hubs

(nodes with a much higher number of connections) and is associated with power law

relations. These relations are also known as “scale-free” because similar structures

appear at all levels. There is no characteristic “scale” for the network as it looks the

same whether zoomed-in or zoomed-out. It is this that gives the network its complex

topology. Plotting the proportion of nodes with a given degree against the degree on
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a double-log scale usually leads to a straight line. The slope of this line yields the

exponent of a power law from which conclusions can be drawn about the nature of the

connection process.

Complex networks can be differentiated on attributes dependent on how links

are made. Is there a direction associated with the link, are some links stronger than

others, are new links being made or existing links being removed? These questions

help to find comparable networks, regardless of domain.

3.1.2 Clustering

One of the characteristic features of complex network is the tendency for the nodes

to cluster together in terms of an increased sharing of connections between nodes. To

measure the amount of localised clustering in a network, the clustering coefficient, Ci,

for a node i is defined as the ratio of the neighbours that are linked, e, to the maximum

number of possible interconnections [Caldarelli and Vespignani, 2007]. To derive the

maximum number of connections between k nodes, each node can be connected to the

remaining k − 1 nodes. Doing this k times gives us k(k − 1), but this product counts
each connection twice, once from i to j and a second time in the reverse direction from

j to i. In this way, we see that the maximum number of links is k(k − 1)/2 which

yields the relation

Ci =
2ei

ki(ki − 1) (3.1)

By definition, this statistic must always lie somewhere in the range [0, 1]. Although,

according to Dorogovtsev this definition is only well defined for undirected networks, it

can also be applied to directed networks by disregarding their directedness [Dorogovtsev

and Mendes, 2003].

With Erdős and Rényi considering that graphs were stochastic objects rather than

purely deterministic, the graphs were treated as probability distributions [Newman

et al., 2006, p. 4]. Certainly now, most characteristics for a network are described in

terms of distribution functions.
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Plotting the probability distribution for the clustering coefficients on the Dark

Matter citation network in Figure 3.4 and described in Section 3.2.3 shows a curve that

peaks around 0.14 for the core network, dropping to 0.10 for the larger full network and

slowly decays as C increases. While at first glance it looks like a Poisson distribution,

it has been difficult to fit such a curve to the data, nor does a Gaussian accurately

describe it. An exponential subtracted from a quadratic came closest to replicating the

curve but could not replicate the peak’s height while matching the fat tail. While the

distribution in the range [0.2, 0.8] is adequately described by a power law of the form

P (C) ∝ C
−γ
, most researchers only calculate the average value of C, written as C, to

describe the tendency for clustering over all nodes in the network.

One exception has been Colomer-de-Simón and Boguñá. In their modelling, they

plotted C for artificially wired networks with different characteristics. Those plots

show that, for lower average values of C, the value of C remains constant as degree

k increases, until it encounters a power-law decay that was common across all their

constructed networks [Colomer-de Simón and Boguñá, 2014]. As the Dark Matter

citation network exhibits higher clustering at low degrees than their simulations, the

power law behaviour of the plot of C vs k in Figure 3.6 extends across almost the whole

plot with only a barely perceptible flattening at the lowest degrees. This shows that

papers with fewer citations have a stronger tendency to share their citations, whereas

highly cited papers are less likely to be cited together. There is a small but noticeable

difference in the clustering coefficient for the network at different scales. The smaller

core network generally has higher values of C and the full network at the largest scale

(core plus shells 1 and 2) has the lower values, until the data blurs together around

k ≈ 70.

A deeper analysis of clustering on directed networks was done by Fagiolo [2007] in

order to better understand the effect of weights on the clustering coefficient. (Weighted

networks are not considered in this thesis.) He goes on to categorise the different types

of triangle possible between nodes. He also plots C vs k for his World Trade Network

which is highly clustered (C ≈ 0.8) in comparison to the Dark Matter network.
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3.1.3 Formal Definition of Complex Networks

As mentioned in Section 3.1.1, complex networks exhibit the small-world property

in common with the random graphs of Erdős and Rényi. The mean path length of

a complex network should be comparable to the mean path length of an equivalent

random graph containing the same number of nodes, such that

܂lr܂܂l܂ ∼ 1

where the mean path length of a random graph is given by

܂lr܂ = ln(N)
ln(܂k܂)

I shall consider a network with
܂lr܂܂l܂ < 2 to have the requisite small-world property.

A complex network must demonstrate significant clustering, such that the clus-

tering coefficient of the network is greater than the clustering co-efficient of an equiv-

alent random graph [Watts and Strogatz, 1998]. The ratio of the two co-efficients are

much greater than unity.
C

Cr

Ȃ 1

where the clustering co-efficient for a random graph is given by

Cr =
܂k܂

N − 1

For the purposes of this thesis, a clustering ratio of C

Cr

> 10 shall indicate significant

clustering to satisfy the second requirement for a complex network.

The third characteristic of a complex network is a scale-free degree distribu-

tion, commonly fitted with a power law, P (k) ∝ k
−γ
, where typical values for γ lie

close to the values of 2 or 3. To establish what is not a complex network, the ration of

the degree distribution at different scales is used.

P (k) ∝ k
−γ

P (k) = Ak
−γ
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P (10k) = A(10k)−γ = 10
−γ
Ak

−γ

P (10k)
P (k) =

10
−γ
Ak

−γ

Ak−γ = 10
−γ

For the purposes of this thesis, I constrain the values for the power law exponent, γ,

to be between 1 and 4, such that

10
−4

<
P (10k)
P (k) < 10

−1

This simplifies the discussion of which networks possess a fat-tailed distribution by

calculating the ratio of the degree distributions at k = 100 and k = 10 and excluding

distributions with ratios outside the range indicated above.

3.2 Acquiring the Data

To study the community structure of a citation network, a topic undergoing intensive

study was chosen such that it should have at least 3 distinct communities of academics

researching the problem. The study of Dark Matter has increased steadily since it

was observed in 1969 by Vera Rubin and Kent Ford [Rubin and Ford, 1970]. It was

believed that Dark Matter researchers could be classified into 3 or more communities

as discussed in Section 3.3.1. A description of the research problem can be found in

Appendix E.

It was decided to use the open access repository for physics, arXiv (See Ap-

pendix A.2) in order to be independent from the ISI, which is a substantial source of

citation data, but also a commercial interest. In using the arXiv open access reposi-

tory, it was assured that the text of the publications could be obtained without concern

about restrictions from commercial publishers. It also places this study in a position

to note discrepancies between the two data sources, should any arise.
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3.2.1 Selection Criteria

The selection criterion for the papers was the search results returned by arXiv for the

keyword searches on dark matter and MOND. The list was reduced when it was noticed

that some of the MOND results were about lunar astronomy, rather than modified

Newtonian dynamics and were mixed in because “mond” is also the German word for

“moon”.

The administrators of arXiv were contacted for permission to download the 2671

papers corresponding to the search results. They kindly packaged them together as

one large download, rather than overloading their servers with the many requests to

their web servers. On unpacking the download, the few papers in the math category

were inspected and found that the author’s surname was Mond and has no academic

connection to Dark Matter. These papers were then excluded from the analysis of the

network.

While searching for stop-word lists specifically in astronomy, it was found that

NASA’s ADS (see Appendix A.1) collects and makes available both reference and cita-

tion data [Accomazzi et al., 2000] and has a Perl module [Allen, 2003] for downloading

data from the ADS. It was decided to seek permission to source citation data from

the ADS in order to expand the network and be able to more accurately assess the

in-degree of each paper, something that would not have been available solely through

the reference sections of the papers in arXiv.

After negotiating with the ADS manager, the process of downloading reference

and citation data from the ADS mirror in Nottingham was allowed at a rate of 1 request

every 10 minutes so that the server was still able to respond to queries from other users

of the service. This was permitted on the condition that the citation network itself was

not to be published, a restriction imposed on the ADS by publishers who had provided

them with their own proprietary data.
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3.2.2 Data Collection

To collect the data over many months, a script was written that was resilient to restart-

ing and stored the downloaded data in a MySQL database described in Appendix C.

In using the Astro::ADS module, two bugs were found in the code. The first was due

to the incorrect handling of publication identifiers, called “bibcodes”, being sent over

HTTP. The other bug was simply that the last reference returned by the ADS was

being discarded, meaning that some citations would be missing.

Both bugs were fixed and patches sent to the module author in order that he

could update the publicly available code repository known as CPAN (Comprehensive

Perl Archive Network) from which Astro::ADS is distributed. This process concluded

with me being given maintenance responsibility for the Astro::ADS module on CPAN.

The patches are included in Appendix C.

After all references and citations to the core Dark Matter papers were collected,

the degree distribution was plotted as described in Section 3.2.3 and the exponent

found to be less than 2. This was a large departure from the values found by Redner

[1998] and others for citation networks. A request was made to the ADS to download

more citation data to determine if the low value was an effect of the network size or

the data source.

When the data collection was finally finished, it was found that 23 of the core

papers still did not have references. Upon investigation, it was discovered that 36

papers in the collection were missing citation data in the ADS. The reference section

for each of the 36 papers was examined and references were located using the ADS

search engine. The experience of manually locating references was informative of the

difficulties in producing a clean and complete citation network. Many of these papers

had different referencing styles that makes automatic extraction problematic. Errors

and incomplete information in the paper at times prevented a secure identification of

the correct bibcode. For example in bibcode 2006gr.qc.....6058D, one reference to

a 1917 paper by Einstein included all the necessary information with the exception of

the page number or title. Usually that would be sufficient to identify the reference,
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but in this instance, Einstein had authored 2 articles in the same issue of the same

journal. Some references to books or literature outside of the normal realm of the ADS

did not have existing bibcodes. While there exists a form to submit new bibcodes for

these items, it was felt that this would not improve the citation network as most of the

references to these items would be missing from the data already collected. There is also

a form to submit the bibcodes of missing references. Of the 691 missing references, 561

bibcodes were located and submitted to the ADS, thereby improving the bibliometric

coverage of the ADS for future users as well as the completeness of the Dark Matter

network.

3.2.3 Methods

To facilitate the calculations, a Perl Graph object was built from the collected data

in the MySQL tables from which duplicated entries were removed. The Graph object

has methods for reporting the in-degree and out-degree for each node. It can also

implement Dijkstra’s algorithm for single-source shortest paths, but it was not used.

To find P (ki), the probability of a node having in-degree ki, the number of nodes

with in-degree ki was counted and the distribution normalised by dividing all counts

by the total number of nodes. P (ki) v ki was plotted on a log-log plot in Figure 3.8

and a power law of the form, k
−γ

i was fitted using gnuplot to the middle range of data

where the points lie roughly on a line. From this fit, the power law exponent, γi, was

estimated as described in Clauset et al. [2007].

The clustering distribution (Figure 3.4) was found by calculating the clustering

value of each node using equation 3.1 and repeating the same procedure as with the

degree distribution, P (ki), to find P (C).
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Figure 3.4: Distribution of clustering coefficient for different sizes of the Dark Matter
citation network. The core network, core + shell 1 and full network listed in the key
along with their average clustering coefficient, C̄, are described in Figure 2.5.

3.3 Community

It seems plausible that the term communities used in network analysis would originate

from the sociological studies of interpersonal relationships of neighbourhood residents

of towns and cities in the 1960s and 1970s [Scott, 2000]. Researchers investigating

the social organisation of selected populations found structures within their networks

at different scales. Local communities found at a mesoscopic level are groupings that

have a higher density of connections within the group than they do to external mem-

bers. This rather vague generalisation is perhaps due to the natural language usage
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Figure 3.5: Log-scale distribution of clustering coefficient for different sizes of the Dark
Matter citation network. The core network, core + shell 1 and full network listed in
the key along with their average clustering coefficient, C̄, are described in Figure 2.5.

of the term. Indeed, Danon et al. [2007] state that a consensus on a clear definition

for community has not been reached in spite of much study in the area. Adding to

the difficulty, communities may divide into smaller sub-communities. By extension,

some networks may exhibit a hierarchy of communities connected by the measure of

betweenness centrality of links connecting the nodes of the graph.

A smaller component of a community which in contrast has a simple yet rigorous

definition, the clique is a complete subgraph, a subset of nodes in the graph that are

fully connected with each other. The most basic clique is the triangle, as it is three

nodes connected all connected together, as demonstrated in the example in Figure 3.3.
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Cliques form in citation networks when pairs of papers are commonly cited together.

The meaning of what a community structure represents needs to be determined

by the researcher. In social networks, communities may constitute acquaintances or

colleagues that have frequent interactions. In a collaboration network, the structure of

the co-authorship graph can expose institutional ties or different topics being studied.

Communities in biological networks can identify metabolic pathways on the micro-

scopic scale or predator-prey interdependencies on the macroscopic. Due to the effi-

cient nature of being able to traverse across a complex network in relatively few hops,

technological networks such as the air transport network or the Internet routing net-

work reflect geographic closeness and population distributions. Trading blocs translate

into communities in economic networks. In information networks such as web-pages
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on the World Wide Web and citations of academic papers, communities can illuminate

which nodes share context and have sections of similar content.

While one of the defining qualities of a complex network is clustering and there is

a clustering coefficient (given in Equation 3.1), that usage refers more to the small-scale

or microscopic behaviour of linking and to avoid confusion in this thesis, clustering will

only be used to describe the groupings based on text similarity of documents in the

Dark Matter corpus (developed in Chapter 4 and combined with network methods in

Chapter 5) and community to describe the mesoscopic groups of nodes on a network.

Data Clustering is a similar concept to community finding and will help to clarify

the meaning of community by way of contrast. Clustering is a technique of unsupervised

learning that finds groups of objects that share similar properties. The document

clustering in Section 4.6 is an example of this. It creates clusters of documents that are

textually similar. The clustering process projects objects into an abstract dimensional

space representing their properties and groups together objects that are near to each

other in that space, given a distance metric. An object’s position in that dimensional

space is due only to the object’s properties in isolation. No interactions between objects

are considered.

In a network, community refers only to the nodes it contains as members, but it

is the links that make the community. Whether it is to associate with another person

in a social network, to activate a metabolic pathway in a biological network or to

utilise a fragment from another academic paper in an argument in a citation network,

community is defined by choice or activity. Links can represent many relationships.

In a social network, they can be links to family or friends, work or social connections.

People can belong to more than one community and the strength of their connections

is not strictly uniform. In contrast, the references in a citation network are binary and

although the purpose of the reference could colour the character of the reference, the

choice of making the reference is not arbitrary. There is a good chance that an academic

paper and the one that it references share at least one topic, however marginally.
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3.3.1 Properties

On the surface, the topic of Dark Matter is made of at least three or four disparate

communities: observational astronomy, theoretical astrophysics, high-energy particle

physics and the theoreticians studying the alternative model of gravity known as

MOND. Prior to collecting the data, it was expected that communities would form

around the differing facets of the topic. The act of citation is a flag indicating the

author’s awareness of other work as well as placing the author’s work in the context of

current research and acknowledging the relevant literature.

While links outside the community are by definition less common, in social net-

works at least, these bridges between communities are responsible for overall network

cohesion. Granovetter’s work showed that it is the acquaintances and not the close

friends that are the most important sources of information in the job search [Granovet-

ter, 1973]. Equally, bridges provide an efficient transport of information across the

whole network [Friedkin, 1982].

Looking at the reverse scenario, Karsai et al. [2014] recently studied a commu-

nication network of mobile phone call data using a rumour spreading model. Similar

to models of the transmission of infectious diseases, each node can be in one of three

states: Ignorant, Spreader or Stifler; with transitions between states being permitted.

Their study shows that strong ties actually constrain the dynamic process of informa-

tion flow across the network. How these ideas of information flow affect knowledge

transmission across a citation network remains to be seen.

A side effect of creating communities by assigning each node to a subset of the

network is that it may not entirely describe the true community structure of the net-

work. The concept of overlapping communities has been explored by Evans et al. [2011]

who re-examined two classic social networks, Zachary’s Karate Club and the American

College Football network [Zachary, 1977, Girvan and Newman, 2002] by creating a

weighted graph of the cliques found in those networks. This allowed the underlying

nodes to be assigned a fractional membership. No conclusions were drawn regarding

the meaning of the overlapping communities, only that this transformation was an ef-
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Figure 3.7: Distribution of Community Sizes found by the Louvain algorithm during its
first community finding pass. A fit of x
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was aligned with the data for comparison.

ficient method of finding them. Identifying community overlap was not attempted for

the Dark Matter network, as the preferred choice was to use a crisp set in comparing

the similarity of papers.

With respect to the distribution of community sizes, it was found that at the

lowest level of the hierarchy, the communities in the Dark Matter citation network

follow a power law relation, analogous to the degree distribution. Shown in Figure 3.7,

this result has been noted before, but unlike the degree distribution, no clear mechanism

for the distribution of community sizes has been devised [Battiston et al., 2007]. Danon

et al. [2007] have suggested that it may be caused by the algorithm used to separate

the nodes into communities and that it is a feature of the modularity function while

Clauset et al. [2004] speculate that it could also be due to the sociology of the network.
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3.4 Community Detection Algorithms

Fortunato [2010] published a review on communities in networks that provides an

extensive list of algorithms with detailed descriptions as well as commentary on various

aspects of communities. It is a comprehensive source and, despite work on algorithms

both new and modified being produced steadily [Steen et al., 2011, Schaub et al., 2012,

Yueping, 2011], his manuscript will be the definitive reference on the subject for many

years to come.

Broken down by approach, it covers:

Traditional methods i.e. the Graph Partitioning Problem, a classic of computer sci-

ence; and hierarchical clustering, an early technique for social network analysis

(SNA) [Scott, 2000].

Divisive methods break the network into smaller equal-sized pieces. The seminal

Girvan-Newman algorithm exploits the concept of betweenness centrality [Gir-

van and Newman, 2002], finding the link involved with the most connections

and removing it. When the network finally breaks in two, the process begins

again on the two sub-networks. The end result is a binary tree of communi-

ties. This has the advantage of being able to inspect the community structure

at any scale, but re-computing the betweenness centrality measure after every

link removal is computationally very costly.

Spectral algorithms use the algebraic properties of matrices to partition the net-

work. Rather than working with the adjacency matrix whose elements, eij,

represent the number of links between nodes i and j, spectral algorithms con-

struct the Laplacian matrix defined as the element, eij = −1, where there is

a link between nodes i and j and the diagonal elements, eii, are the degree of

node i, resulting in a row sum of 0. The Laplacian matrix has the property that

a connected network has only one eigenvector with eigenvalue 0. To partition

the network, spectral analysis searches for eigenvectors with eigenvalues close

to 0.
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Dynamic methods i.e. Potts or Ising model originally developed for dealing with

coupled spin states of atoms [Dorogovtsev and Mendes, 2003] and Random

walks as used by Rosvall and Bergstrom [2008] to map out the shape of science.

Within this comprehensive list, it is the topic of modularity that he devotes a signifi-

cant portion of his attention. The modularity function is the sum of weights of links

between communities, c, greater than that expected in a randomly-wired network. The

modularity, Q, (derived in Newman [2004]) is given by

Q =
1

2m
∑
ij

[Aij −
kikj

2m
] δ(ci, cj) (3.2)

where Aij represents the weight of the link between nodes i and j, ki = ∑j Aij, kj =

∑i Aij, m =
1

2
∑ij Aij and δ is a Kronecker delta function selecting only nodes in the

same community (1 when ci = cj, 0 otherwise where node i belongs to community ci).

Given that kikj/2m is the probability of a link existing between i and j, a non-zero

value for Q represents a departure from the random linkages of an equilibrium network.

The function is defined in such a way that Q has a maximum value of 1.

The Louvain algorithm developed at the Université Catholique de Louvain (based

on the Fast Greedy optimisation of modularity) was chosen for the task of finding

communities. It increases the value of Q by combining small communities into larger

ones. This makes it a very fast algorithm, and with over a half million nodes, speed

is of great concern when analysing the data. The Louvain algorithm iterates over two

phases to find the maximum value for Q. It starts with each node having been assigned

its own community and then calculates, for each neighbour j of node i, the gain in Q

by moving i into a community with j. Blondel et al. [2008] took advantage of the fact

the expression of the difference in modularity is quick to calculate, such that very large

networks (> 10
6
nodes) are only limited by the storage space required by the network,

not the computation involved. The difference is given by

∆Q = [∑in +ki,in

2m
− (∑tot +ki

2m
)2] − [∑in

2m
− (∑tot

2m
)2 − ( ki

2m
)2] (3.3)
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where ∑in is the sum of the weights inside the community, ∑tot is the sum of the

weights of links to the community, ki is the sum of the weights of the links to node i

and ki,in is the sum of the weights from i to nodes inside the community.

Using the Louvain algorithm to find communities implies that, throughout this

work, a community shall be defined not just as a subset of nodes that have a higher

density of links to nodes within the subset than to nodes outside the subset, but as

a subset of nodes where the density of links within the subset is higher than would

be expected from the random linkages (the kikj/2m term in Equation 3.2) found in a

network constructed without community structure.

An additional feature of this method is that it creates partitions of different

scales, a hierarchy which has 4 levels in the Dark Matter network. Comparisons with

other algorithms have found that only two of the algorithms they tested find better

partitions, but are costlier in terms of computation [Blondel et al., 2008]. While Lee

and Cunningham [2014] have found that Louvain has issues finding smaller scale com-

munities on large social networks, its performance has seemed adequate for the task.

Not insignificant in the decision to run an algorithm is the ease of compiling or in-

stalling the package. One researcher selected the Louvain algorithm on the basis that

its use was “convenient” [Evans et al., 2011].

Once a partition has been created, communities need to be assigned labels in

order for deeper analysis to continue. The act of giving meaning to these groups is

not straight forward. Chen and Redner [2010] identified their Physical Review citation

network using the Phys. Rev. family of five journals, named Phys. Rev. A through Phys.

Rev. E, which splits that once-consolidated publication along broad topics. They have

been fortunate that this avenue was available to them. Clauset mentions that using

metadata associated with the nodes to compare communities in order to check the

veracity of his algorithm [Clauset et al., 2004]. The metadata immediately available

originates from the ADS and consists of the keywords (if present in the database),

authors, publication date and journal. Radicchi et al. [2004] states that validation is

not trivial and that no criterion exists to assess their accuracy. The size of the data set

makes this even more uncertain and at the highest level of the hierarchy, the keywords
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are unsurprisingly quite disparate given the sizes of the communities.

3.5 Modelling Citation Networks

In Costa et al. [2011], it was shown that many types of networks have models, but

they reported that as of 2008 (a decade after Redner’s first study), there were none for

citation networks in the seven studies on citation networks that they examined.

In 2009, Karrer and Newman [2009] proposed a model based on a directed acyclic

graph that reproduced the basic features of citation networks, as the nature of the

network evolving through time means obviously that older papers cannot cite newer

papers. The KN model, however, assumed an infinitely large graph, so there is a

point at which the real world data diverges from the model. They assume that this

breakdown point is due to the finite size of the network.

Later that same year, Wu and Holme [2009] extend the KN model to better fit the

data using two parameters to control the ageing of papers. Their fit is an improvement

on the original KN model, showing a similar shape to their real world example (a set

of research papers on high-energy physics from the arXiv.org repository from 1992 to

2003). Unfortunately, their model still under-represents the data, meaning that there

are possibly more features to account for. They talk about analysing triangles where

paper A cites paper B and paper C, where paper B also cites paper C.

A more theoretical approach is taken by Wu et al. [2014], who have developed a

generalised model of Preferential Attachment that focuses on the rate of citation ac-

cumulation. While noting a “first-movers” advantage for early papers, the model also

provides a “forgetting” mechanism, suggesting that older papers eventually become

irrelevant. They validated their model against three domains in the Computer Science

literature. Factors in longevity and reasons a paper is remembered or forgotten are

discussed in Abt [1998b] as well as the variation between fields in their time-scales.

Golosovsky and Solomon [2013] have produced a model for citation networks of non-

linear autocatalytic growth which, if true, would replace the scale-free hypothesis for
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this type of network. Most papers are shown to have a lifetime of 6–10 years, but

the non-linearity of the growth models allows a few papers an almost infinite life-

time. Their model is based on data from the ISI and includes mechanisms at the level

of the individual such as citation copying [Golosovsky and Solomon, 2014]. Finally,

Jabr-Hamdan et al. [2014] considers the effect of varying the cap on the number of

connections allowed per node in the Krapivsky-Redner growth model with what they

call “super-joiners”.

3.6 Analysis of Dark Matter Citation Network

N total number of nodes 778 491
L total number of links 7 606 982
k̄in average in-degree 9.77
k̄out average out-degree 9.77
C̄ average clustering coefficient 0.216
γi in degree distribution exponent ܂l܂2.3 mean path length 8.30
δ diameter (longest shortest path) 11

Table 3.1: Network Statistics

The Dark Matter network from the ADS database consists of 778 491 papers and

7 606 982 citations. This and other statistics of the network are listed in Table 3.1 to

allow comparisons with other complex networks such as Redner’s citation data from

Physical Review D and the ISI database [Dorogovtsev and Mendes, 2003, p. 32]. The

Dark Matter network is close in size to the ISI database of papers from January 1981

to June 1997. While the average in-degree is similar (9.77 compared with k̄i = 8.57),

the exponent of the power law fitted to the degree distribution, P (ki) ∝ k
−γi
i , falls

outside the range of values of 2.5 – 3.0 estimated by Redner, Tsallis and Krapivsky

[Dorogovtsev and Mendes, 2003, 3 different analyses listed on p. 80]. The distribution

from which this exponent is derived was plotted on a double log scale in Figure 3.8 and
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Figure 3.8: In-degree distribution of the Dark Matter citation network, P(k), for the full
network and for a smaller network consisting of the core network and shell 1 (described
in Section 2.3). The two lines of best fit follow the power law P (k) ∝ k

−γ
where the

exponent γ is a descriptive statistic for power law relationships.

a fit to the data in the range k ∈ [80..300] of the form P (ki) = Ak
−γi
i was produced. For

ki less than 40, the distribution is less steep. Also included in the figure for comparison

is the in-degree distribution for the core nodes in the Dark Matter corpus and their

immediate neighbours. With only 49 565 nodes in Shell 1, this curve does not have the

“knee” of the full citation network and was fitted using a power law with an exponent

of 1.7.

In relation to the formal definition for a complex network as given in Section 3.1.3,

both distributions are clearly fat-tailed with power law exponents lying within the

required range for a complex network. The average clustering coefficient for a random

graph with the same number of nodes and links as the Dark Matter network is Cr =

1.3× 10
−5

meaning that there is significant clustering, the ratio of the two co-efficients
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Figure 3.9: CDF of the In-degree distribution—the Dark Matter core network + shell
1 (49 565 nodes) is contrasted with the full network (778 491 nodes)

C

Cr

= 1.7 × 10
4
, satisfying the clustering requirement for a complex network.

The expected mean path length of a random graph the same size as the Dark

Matter network is ܂lr܂ = ln(N)/ln(k) = 5.95, which is similar in magnitude to the

calculated mean path length ܂l܂ = 8.30 for the Dark Matter network. The ratio of the

two lengths is
܂lr܂܂l܂ = 1.39 < 2, which satisfies the small-world property requirement for

the complex network. In addition, the diameter, δ, of the network was found to be 11.

This statistic says that the shortest path between any two nodes is at most 11 links,

demonstrating the small-world property of complex networks.

To better understand how the degree distribution changes as the network ex-

pands, the Cumulative Distribution Function (CDF) of both distributions was plotted

in Figure 3.9. Defined as CDF = ∫ k

0
P (k)dk, the CDF shows how the degree distribu-

tion shifts in emphasis towards higher degrees with an order of magnitude increase in

the number of nodes.
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Figure 3.10: Average Pair correlation of citations for Dark Matter citation network,
plotting degree, k, against the average degree of its nearest neighbours, k̄nn, described
in Equation 3.4. An expanded view of the data structure for k < 100 is shown in
Figure 3.11

To avoid the poor statistics inherent in constructing the joint degree-degree dis-

tribution, P (k, k′), Pastor-Satorras et al. [2001] used the average degree of the nearest

neighbours, k̄nn, given by

k̄nn(k) = ∑
k′

k
′
P (k′Ȃk) (3.4)

for each node in an undirected network to study the pair correlations between nodes.

Figure 3.10 shows the plot of the average number of citations, k̄inn
, possessed by papers

of citing papers with ki citations. While the plot of the whole range (a) shows very little

correlation between the two, a close examination of k < 30, seen in (b), demonstrates

a clear correlation between ki and kinn
similar to the preferential attachment displayed

by the topology of the Internet.

Many different properties exist for complex networks and it is not necessary to
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Figure 3.11: Pair correlation at low degree from Figure 3.10 stretched vertically showing
linear feature in log-log plot. A fit of k̄nn ∝ k

−0.15
is plotted through the data stretching

over the range k = (7, 30).

find all of them in order to compare one network to another. The statistics and dis-

tributions presented here should give sufficient basis that the Dark Matter network

constructed from the ADS database can be placed in context with other citation net-

works past and future. Any large discrepancies between them will highlight areas for

further investigation.

3.7 Summary

Although the ADS citation database has been used to aid researchers by displaying

requested parts of the citation network and clustering keywords for knowledge discov-

ery, its network characteristics have not been analysed. Rivalling Redner’s network

constructed from the ISI database in size [Dorogovtsev and Mendes, 2003], the degree
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distribution was found to be less steep than Redner’s. The clustering coefficient was

found and its distribution plotted. The distribution of the community sizes found by

the Louvain algorithm is similar to other networks, but still lacks an explanation for its

behaviour. In the region of low degree, a clear correlation between the degrees of con-

nected nodes was found. This correlation disappeared as the node’s degree increased.

These findings were compared to previous citation and other complex networks.
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4 Text Mining

This chapter introduces Text Mining, a sub-field of Data Mining, and places it in con-

text with several fields that deal with extracting meaning from text. In pursuing their

own goals, distinct but related fields such as Information Retrieval, Natural Language

Processing and Artificial Intelligence have contributed tools and concepts to Text Min-

ing. Once the output is obtained, it can then be used as input for other tasks. A

section on Knowledge Representation is included to explain ontology, a tool used with

citations and argumentation, and introduce the concept of representing a document

in a form susceptible to manipulation. After outlining the generalised process of Text

Mining, the method used here is described and preliminary results reported.

4.1 Introduction

Data mining is the automated or semi-automated process of finding non-trivial and

meaningful patterns within a large volume of data. [Fayyad et al., 1996, Witten et al.,

2011]. It goes beyond statistical analysis and takes advantage of machine learning

techniques to handle large, noisy, messy datasets [Nisbet et al., 2009]. Data mining

tasks can consist one or more of the following: exploratory data analysis, descriptive

modelling, predictive modelling, pattern discovery or rule finding [Hand et al., 2001].

While Data Mining usually works with structured or numerical data, the related

area of Text Mining focuses on the extraction of new information from unstructured

textual data [Hearst, 1999, Aggarwal and Zhai, 2012a]. Like Data Mining, it is the

automated or semi-automated process of discovering meaningful patterns in text. Text

mining has its roots in the study of Information Retrieval (IR) in the 1950s and 1960s

[Weiss et al., 2010b, Baeza-Yates and Ribeiro-Neto, 2011], which has the goal of improv-

ing access to information. Search engines are a powerful application of IR research, but

only present existing documents to the user. Information Retrieval is not traditionally

focused on analysing text data for pattern discovery [Jones, 1997, Croft et al., 2010].
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Text Mining goes beyond IR in attempting to digest information to support decision

making. Information extraction is an important task and is the first step of many ap-

plications in Text Mining and other fields [Jiang, 2012]. Early work in the preliminary

processing was advanced by the field of Natural Language Processing (NLP), which

developed in the 1960s and 1970s. Of interest to both Linguistics and the Artificial

Intelligence (AI) community, NLP is concerned with the input and output of natural

language, as opposed to formal or artificial languages. Its goal is the understanding

of how we use language to communicate ideas and is studied on many levels [Jurafsky

and Martin, 2008]. Through AI, NLP attempts to make machines understand human

communication allowing for improved human-machine interactions, such as providing

natural language interfaces to databases [Androutsopoulos et al., 1995]. Natural lan-

guage has been used in application from classifying documents to filtering spam emails

[Segaran, 2007]. With AI researchers interested in NLP, it seems only natural that NLP

should borrow machine learning techniques from AI for language modelling [Daelemans

and Bosch, 2005], speech recognition, question answering, sentiment analysis and rep-

resentation of meaning [Abney, 2007]. Such high level understanding tasks proceed

through knowledge of linguistics and its structures [Jurafsky and Martin, 2008, Chap-

ter 5]. The hierarchy of linguistic structures from least to most complex would include:

phonemes, morphemes, lexemes, syntax, grammar, semantics and pragmatics.

Syntax concerns itself with linguistic expressions only. Semantics is the study

of meaning and connects statements to the objects they are expressing. Pragmatics

examines the context in which syntax and semantics occur and tries to resolve am-

biguities in semantically correct statements by applying knowledge of how the world

operates [Montague, 1974]. These linguistic structures are also described by Mary

Harris [1985] as she puts into context the developments in linguistics emerging from

the work of Franz Boas, Leonard Bloomfield, Zellig Harris, Noam Chomsky, Charlies

Filmore, Jerrold Katz and Jerry Fodor. Their research over decades strives for a com-

plete understanding of language, yet we can extract some of the concepts conveyed by

simplistic approaches that discard much of the sentence structure. Latent Semantic

Indexing (LSI), a high-dimensional linear associative model, derives an implicit rep-
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resentation of text semantics from the observed co-occurrence of words [Deerwester

et al., 1990, Landauer and Dumais, 1997, Bullinaria and Levy, 2007]. Information Re-

trieval has made use of the “unigram language model” which discards word order and

other contextual information to improve the speed of returning search results [Manning

et al., 2008, pp. 221-222]. The Vector Space Model (VSM), commonly used in compar-

ing similarity between documents, accepts the trade-off of less-than-complete meaning

in exchange for greatly increased ease of computation [Lee et al., 2005, Mikolov et al.,

2013] and is described in Section 4.1.2.

One of the goals of Artificial Intelligence is to create viable machine learning al-

gorithms so that computers can begin to teach themselves. Some applications include

assisting with medical diagnoses or image analysis [Ananiadou and McNaught, 2006,

Simpson and Demner-Fushman, 2012]. Strategies to achieve machine learning can be

divided into supervised and unsupervised algorithms. Supervised algorithms are told

what the expected response should be on a training data set while unsupervised algo-

rithms try to discern relevant patterns from the data without external input [Alpaydin,

2004, Nisbet et al., 2009]. It is through these algorithms that the connection between

AI and Text Mining is most relevant.

Text Mining tasks include Information Extraction, Text Summarisation as well

as supervised learning for Document Classification and unsupervised learning for areas

such as Latent Semantic Indexing and Topic Modelling [Aggarwal and Zhai, 2012a].

Classification of documents is usually achieved with a supervised algorithm combined

with domain knowledge of the expected topics for such tasks as creating systems that

can automatically categorise newly presented documents [Duda et al., 2001, Glover

et al., 2002, Aggarwal and Zhai, 2012c]. The clustering of documents is an unsupervised

gathering together of similar material into groups and the first step in Topic Modelling

[Kaufman and Rousseeuw, 2009, Muresan and Harper, 2004]. Clusters provide the

framework from which latent topics are manually identified. The topics serve as reduced

dimensions in semantic space. Terms are associated with topics in a probabilistic model

of topics in the corpus. Once produced, a topic model can be used to simplify the

classification of documents while trying to retain all the significant semantic features.
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Topic Modelling’s scalability as the corpus expands with new additions, its availability

to interpretation by experts and its richer document representation are the advantages

that it has over Latent Semantic Indexing. The validity of a topic model needs to

be evaluated and is usually undertaken with a specific application under consideration

[Wei and Croft, 2006, Wallach et al., 2009]. Some researchers, such as Chang and Blei

[2009], have incorporated structural data linking documents into their evaluation on

the assumption that topic distributions are similar for linked documents.

Because unsupervised learning can have ambiguous group boundaries, Zhang

et al. [2008] and Angelova and Siersdorfer [2006] have both found that links between

documents can enhance the quality of the resulting clusters in the face of ambiguity.

Zhong [2005] has developed techniques for clustering data streamed along a tempo-

ral dimension such as news feeds, and Popescul and Ungar [2000] have investigated

methods of automatically labelling clusters. Some researchers combine the two algo-

rithmic approaches in a semi-supervised system which begins with user input and then

continues unsupervised [Basu et al., 2004].

One method of providing useful labels for clusters is by identifying the topic or

topics that the documents have in common [Stein and Eissen, 2004]. Topic Modelling

uses word clusters to reduce the dimensionality of the documents in order to produce

document clusters [Hofmann, 1999, McFarland et al., 2013]. This technique has been

used on scholarly articles to classify them according to subject [Erosheva et al., 2004]

and as the basis for a scholarly recommender system [Wang and Blei, 2011].

The motivation for Text Mining is that with the rapid growth in the number of

academic publications calling for attention [Abt, 1998a, Price, 1965], researchers can

easily be overwhelmed with information. In the context of social relationships, there is a

notional maximum number of relations that the brain can keep track of, called Dunbar’s

number [Dunbar, 1992]. This maximum extends outside social relationships [Goncalves

et al., 2011] and is pertinent to the way researchers approach the literature. There is

a need for automated means to process and analyse research literature [Delen and

Crossland, 2008]. Text Mining can reduce vast amounts of information to manageable

quantities.
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4.1.1 Knowledge Representation

Artificial Intelligence is the pursuit of creating machines that can act more like humans

and in part through mimicry, seeks to understand aspects of human intelligence. A

machine-simulated intelligence requires a representation of the external world. How

to represent knowledge is one of AI’s major philosophical questions. An ontology is

used in AI for knowledge representation as the specification of a conceptualisation.

Not to be confused with the same term used in metaphysics to describe categories

of being, this usage refers to an agreed vocabulary enabling practitioners to describe

ideas with precision and to encode them in machine learning algorithms. Commonly

these take the form of hierarchies of classes of the concepts, showing the relationship

between instances and are used in rule-based expert systems and agent-based systems to

structure the domain knowledge [Callan, 2003]. Ontologies have been used to integrate

background knowledge into clustering tasks [Hotho et al., 2003].

One relevant ontology is CiTO, the Citation Typing Ontology, created to describe

the actions and properties of academic citations.

Citations are described in terms of the factual and rhetorical relationships be-
tween citing publication and cited publication, the in-text and global citation
frequencies of each cited work, and the nature of the cited work itself, including
its publication and peer review status. [Shotton, 2010]

The standardisation of citation metadata was designed to bring the commentary

method of classical and biblical scholarship into biomedical research practice. By rep-

resenting knowledge in a machine-readable form, it becomes possible for software to

utilise the encoded information in applications from tools to aid researchers assess the

strength and nature of scholarly claims to taking its place in the “Semantic Web”

[Ceravolo et al., 2006].

The Virtual Observatory project being developed by the Harvard-Smithsonian

Institute for Astrophysics is using CiTO in conjunction with the “Provisioning, Au-

thoring and Versioning” ontology and others to describe the relationships between

Astronomical Objects, Observatories and Publications as it relates to the Research

Lifecycle in Astronomy [Accomazzi and Dave, 2011]. Both of these examples are writ-
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ten in OWL, the Ontology Web Language, which is defined in a formal language called

RDF (Resource Description Framework) concepts such as evidence, authority, credits

and critiques [McGuinness, 2004, Antoniou and Harmelen, 2009]. Tackling one facet

of Semantic Publishing, it has been integrated into the SWAN Discourse Relationships

Ontology and has been used to create a Supporting Claims tool-tip (a link that displays

its citation relationship when the mouse hovers over the Claim).

In contrast to textual descriptions, Skupin has visualised the relationships within

a set of knowledge domains by mapping them on to a 2-dimensional space [Skupin,

2009]. Using a Self-Organising Map (or SOM) and the abstracts from the Annual

Meeting of the Association of American Geographers, he created a landscape within

which authors could be located, demonstrating an inter-disciplinary tendency of some

who publish across domain boundaries.

4.1.2 The Vector Space Model for Documents

A representation is needed for documents in order to efficiently manipulate items in

the corpus. Any representation used in quantifying documents must have a method for

calculating a value for the similarity between two documents [Salton et al., 1975]. The

calculation should be quick and single-valued and the storage required should be small.

Given a corpus of N documents, there will be N(N − 1) calculations to determine

the distribution of the similarities and for unsupervised learning of the documents

into k clusters, the k-means algorithm, described in Section 4.6 and Appendix C,

calculates k ×N similarities for every iteration until it converges or stops. The use of

vectors achieves all of the above through a transformation from textual to numerical

representation.

In the most general sense, a vector is a mathematical object that can be added

and can be multiplied by a scalar (a number). A vector in this sense is an element of a

vector space, in which two vectors added together produce another vector in the set and

multiplication of a vector by a scalar also produces another vector in the set [Daintith

and Nelson, 1989]. By considering each term in a document as an individual dimension
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of a vector space, a document can be represented as a vector whose dimensions are

measured by the term frequency, which is the number of occurrences of each term

found in that document. The term bag-of-words originates from remarks by Zellig

Harris [1954] on how language consists of more than just unordered words. VSM is

sometimes referred to as a bag-of-words representation because the information coded

in the order of the words is lost in the process of calculating the similarity [Manning

et al., 2008, Ch. 6].

The Vector Space Model (VSM) cuts the Gordian knot of NLP, turning disad-

vantage to advantage. It side-steps the understanding of syntax and grammar and

with it, the associated difficulty in constructing such a system. It certainly loses the

relationships between actors, events and locations, but it is not troubled by ambiguity

in meaning. In fact, it treats lexical ambiguity as a composite meaning which has

the advantage of being consistent. As both classification and unsupervised learning

are concerned with grouping objects that are alike, precision is not essential because

our interest is in the group as a whole, not the detail of the individual. The model

is simple, easy to implement, quick to compute and compact to store. The return on

the effort to extract meaning computationally is similar to the Pareto principle in that

VSM retains a large portion of the meaning of a text with only a fraction of the effort

required to fully parse the text. A study shows that 80% of information comes from

word choice while 20% comes from word order [Landauer, 2002]. One inherent disad-

vantage that VSM shares with NLP is that it can only account for what is explicitly

written. Assumed knowledge is not represented.

4.2 Document Selection

Document Selection is the first step in a text mining process. In this application, it

reduces to the simple choice of an individual paper being the document unit (perhaps

with more than one source file which could be an issue for some papers). Because

the documents are transformed to XML, accented character sequences are converted
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to Unicode, providing uniform treatment across the collection. The other advantage

of using a parser that produces XML is the number of parsing options available. For

tokenising (see Section 4.3.1), a stream-based parser is faster, uses less memory and

is perfectly suited for identifying “chunks” of data. In attempting to identify sections

of text according to their nearby citations, it would be preferable to use a tree-based

XML parser to perform the backwards searching required as long as the entire document

representation could be held in memory.

4.3 Parsing

4.3.1 Tokenising

The first step in extracting text from a document is to break the text up into pieces

called tokens, which are character sequences passed along to the next stage in process-

ing. At this stage, it is convenient to remove unwanted characters, such as punctuation

marks, to ease the following processing steps. Initial options for converting LATEX to

plain text were dvi2tty, crudetype, catdvi and latex2text. A common problem

amongst them is the hyphenation that TEX inserts when typesetting at the line breaks.

These extra hyphens would have to be removed in order to recover the original words.

The program used is LATEXML which produces an XML representation of the

latex document which can have an abstract tag and a keywords tag if they have been

included in the original document. The abstract and keywords are subsets of the

vocabulary model. A related program, latexmlpost (see B.1), will produce MathML

for the equations. Post-processing also has the option to match the citations to their

position in the text, allowing for the possibility of testing claims against the references

provided, discussed briefly in Section 7.1.2.
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4.3.2 Stop Words

Another technique for improving the semantic impact of the document is by removing

words common to all documents [Lee et al., 2005]. These are called stop words and

they are the everyday words that glue parts of speech together, but are too general to

identify the subject of a document. Witten et al. [2011] calls this a feature selection

problem that can affect the calculation by including semantically non-selective terms.

The general strategy in Manning et al. [2008] is to sort all the terms by collection

frequency and make a judgement as to how many of the top terms to “stop”. Many

stop word lists exist, usually to speed up search engine queries, although in some

applications they have had a detrimental effect on performance [Bullinaria and Levy,

2007].

A deep inspection of stop words should consider capitalisation. When some words

are capitalised mid-sentence, their significance changes and so too does the decision

regarding their inclusion in the stop word list. The ADS has 4 stop lists; two of them

case-sensitive. The treatment in these two cases is that the words to be “stopped”

are removed before the text is converted to lowercase. An improved treatment would

identify capitalised instances that begin sentences and treat them as lowercase forms.

While care in refining the document representations should improve the similar-

ity calculations as well as reducing the number of dimensions on which to compute

document lengths and dot products, which according to Manning is not crucial to

success.

One final consideration is to never remove a keyword (an index term that has

significant meaning to the topic). These have been chosen as the words that best speak

to the meaning and intent of the document. As such, they are highly significant and

must be included in the analysis.



57

4.3.3 Normalisation

Normalisation is the process of equating superficially different word forms of the same

term, such as anti-hallucinatory and antihallucinatory. This process can be manually

extended to synonyms such as car and automobile [Pennell and Liu, 2014]. Initially sets

of rules for replacements, some work has gone into normalising non-standard words,

such as abbreviations, in an unsupervised manner [Sproat et al., 2001].

The approach used for finding similar word forms was to sort the tokens alpha-

betically and visually identify the word equivalences. To do this algorithmically, using

the edit distance between words to create a shortened list of candidates for verification

as equivalents. To find synonyms, one strategy would be to start with the most seman-

tically dense texts, the keywords, then the abstracts, looking for functional equivalents

that do not have similar forms.

To better understand the effect of an incomplete normalisation, I calculated the

error induced by one word having two forms, finding the distance between two hypo-

thetical document vectors which are identical except for one term. Consider the case

of a generalised vector representation of a document where one term has two semanti-

cally equivalent forms. Let the vector of the normalised document have n terms with

term-frequencies fi and take the un-normalised representation to be the nth term split

between two forms with frequencies, fn − g and g.

It is shown in Appendix D that the error is less than

g
2 ∑n

i=1 f
2
i(∑n

i=1 f
2
i − fng)2

For any sufficiently large document, the error is less than one percent.

4.3.4 Stemming

Similar to normalisation in Section 4.3.3, stemming addresses the near-equivalence of

words that differ by the ending of the word forms, such as the tense of the verb which

could end in -ing, -ed or -s or the number of a noun which can be singular or plural.
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The goal of both stemming and (its related process), lemmatisation, is to reduce
inflectional forms and sometimes derivationally related forms of a word to a
common form. [Manning et al., 2008, p. 30]

The meaning is retained even when small differences, which are significant only in ma-

chine representation, are removed. Porter’s stemming algorithm is a common method

used to remove the suffixes, leaving only the word stems [Porter, 1980].

Porter’s algorithm is very important in a postings or index based Information

Retrieval system, but is less critical in creating a VSM representation by the same

reasoning as with normalisation. Stemming improves the results somewhat by reducing

the noise compared to un-processed data and is sufficient for comparing documents.

The Perl module Lingua::Stem::En was used to perform the stemming [Richard-

son, 1999]. It implements Porter’s stemming algorithm and has been acknowledged by

Martin Porter on his web page.

Lemmatisation could be considered the rigorous implementation of stemming as

it identifies the morphological root of the word. Manning does discuss the limitations of

lemmatisation with respect to search, but as only the most common words in English

have convoluted expressions, they are the most likely to be removed with the stop

words and are unlikely to have a significant impact [Manning et al., 2008]. For this

reason, lemmatisation was not used.

4.3.5 Discussion on Parsing

It is possible to produce a VSM representation of a document without removing stop

words, stemming or normalising the tokens and compute similarities between docu-

ments. Failure to do so adds noise to the metric and makes some documents more

dissimilar than others. It can mislead the unsupervised learning algorithm by drawing

attention away from significant features.
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4.4 Computing Similarity using the Vector Space

Model

4.4.1 Using Cosine as a Measure of Similarity

A good distance function or metric can improve the performance of machine learning

tasks such as unsupervised learning [Chang et al., 2014]. In linear algebra, the dot

product of two vectors is equal to the product of their magnitudes (length) and the

cosine of the angle between the vectors, as

�a ⋅ �b =Ȃ �a ȂȂ �b Ȃ cos θ (4.1)

In this manner, the cosine similarity of the vector representations �V (d1) and

�V (d2) is the dot product divided by the magnitudes of the vectors.

sim(d1, d2) = �V (d1) ⋅ �V (d2)Ȃ �V (d1) ȂȂ �V (d2) Ȃ (4.2)

As each term in the VSM is considered a dimension, the method to calculate the

dot product of two document vectors is to sum the product of the number of occurrences

in each document for every term, t, given as �V1 ⋅ �V2 = ∑t tf1∗ tf2. This function serves

as a metric. It is the foundation of the metric space in which all the similarities have a

well-defined distance between all other similarities. As all components of the document

vectors take non-negative values in the VSM representation and the value of the cosine

has a maximum value of 1, all similarities calculated in this fashion must lie in the

range [0, 1].
4.4.2 Comparison of Vector Space Model variants

There are a number of weighting schemes to compensate for anomalies in how the VSM

is calculated. Manning gives a description of the SMART notation for recognised vari-

ants [Manning et al., 2008, Ch. 6.4]. The division by the magnitude of each document
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has the advantage of normalising documents to remove the effect of document length

from the similarity calculation [Aggarwal and Zhai, 2012b] (not to be confused with

Normalising the text, as in Section 4.3.3). The use of the Euclidean length (referred to

as cosine normalisation by Manning) to compare documents is sufficient in our case as

all documents are expected to be of the same order of magnitude, with the exception of

review articles which are few and rarely submitted to arXiv. In the current publishing

climate in science, it would be expected that articles that are too long will be broken

up by the author into two papers and those that are too short will not be accepted for

publication. Using this reasoning, few papers would be more than twice as long as any

other, no content is repeated and is devoted to single topics. All documents are equally

relevant and of similar content. For these reasons, a pivoted document length normali-

sation is unlikely to be needed. Manning describes a number of weighting schemes that

try to discern significant differences between documents, encapsulated by the SMART

notation. Based on the inverse document frequency (idf ), the weights are a variant on

dividing the term frequency (tf ) by the logarithm of the number of documents that a

term is found in. This weighting favours terms that are not common across the docu-

ment collection in a similar manner to the removal of stop words (Section 4.3.2). This

is a linear transformation of the vector space, stretching and squeezing the vectors, un-

dergoing change but still consistently measuring similarity. The tf-idf method requires

all documents to be processed before the similarity calculation can begin. Typically

defined as

tf-idf = fij log (Ndfi) (4.3)

where N is the number of documents and df is the number of documents that include

word i [Manning et al., 2008]. The CLAIR library (described in Appendix C) uses

tf-idf when it finds cosine similarities.

It is reasonable to dismiss any concerns over hapax legomena because the only

effect a singular occurrence of a word in the corpus has is to increase the length of the

document by 1, which decreases the similarity by a factor less than the inverse square

of the document length, which is a very small amount for these documents.
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The deficits of using VSM are covered by Oliva et al. [2011] in their description of

SyMSS, a system measuring semantic similarity. They are correct in saying that VSM

loses semantic information, such as treating positive and negative statements as the

same. This conflation is not a pitfall for unsupervised learning where groups speaking

about the same subject are desired, whether or not they agree on the matter. More

intricate investigations exploring topic models have used sophisticated techniques such

as Latent Dirichlet Allocation (LDA) and its derivatives [Ramage et al., 2011, Jardine

and Teufel, 2014]. Their power comes at the cost of computation and scalability can

be an issue. In contrast, VSM is fast and easy to compute.

Similar to the cosine similarity are the Jaccard similarity and the related Sørensen

similarity. These measures are binary in nature and only examine the existence of a

word in document, not its frequency.

Definition for the Jaccard similarity

J(X, Y ) = Ȃ X ∩ Y ȂȂ X ∪ Y Ȃ (4.4)

where the Jaccard distance is

1 − J(X, Y ) (4.5)

In contrast to the cosine similarity, the Jaccard similarity does not distinguish

between a document that focus heavily on a topic and one that only mentions it in

passing. Lee et al. [2005] shows that the cosine and Jaccard similarities are nearly

equivalent with the cosine similarity being marginally closer to human judgements of

similarity.

4.5 Method

The Dark Matter corpus was downloaded from arXiv as described in Section 3.2.1

and unpacked. Most files were LATEX source files, but there was a mixture of PDF,

PostScript, HTML, and MicroSoft Word files. A few needed manual intervention before

parsing could begin. Non-LATEX files were converted to text using the Linux utilities



62

pdftotext, ps2ascii and lynx. There were only 2 Word files (less than 0.1% of the

corpus), so they were excluded from the processing pipeline.

LATEX source files were converted using code from the LATEXML project, described

in Appendix B. The command latexml - -nocomments was used to process the LATEX

files into XML. The abstract, text and p elements of the resulting XML file were

extracted using XML::Parser. Text for each was split at the boundaries between

alphanumeric and non-alphanumeric characters and changed the resulting tokens to

all-lowercase. Each set of tokens from the abstract, keywords and text body was stored

in a Perl object created to contain the list of words and the properties to be associated

with each vector.

Stop words were removed from the word list using a list of 213 words provided

by the Perl module Lingua::EN::StopWords combined with 41 words selected from

the top 200 most common words found from the corpus. The stop lists as well as the

exceptions can be found in Appendix F. The words were then stemmed with the Perl

implementation of Porter’s algorithm, Lingua::Stem::En. The list of words excepted

from the stemmer was determined by inspection of the top 200 terms from the corpus.

The number of occurrences of each remaining word in the document was counted and

written to a word frequency file.

After each document was processed in this manner, each word frequency file

was read and the similarity between each document was calculated using the cosine

similarity (section 4.4.1) and recorded in a database. There were 2659 papers processed

(see Table 2.1). The resulting VSM files ranged in size from 12 to 2230 terms. The

mean number of terms was 511 with a standard deviation of 223. The percentiles of

the number of terms for files in the Dark Matter corpus are tabulated in Table 4.1 and

show a distribution skewed towards higher values with the largest vector being twice

as large as the 98th percentile.
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percentile number of terms
2 160
10 269
25 355 first quartile
50 475 median
75 643 third quartile
90 791
98 1071

Table 4.1: Percentile values of the number of unique terms in each document for the
Dark Matter corpus after processing into VSM files

4.6 Clustering

The goal of Text Mining is finding structure in unstructured data [Weiss et al., 2010a].

The purpose of unsupervised learning is to group together objects that share features.

This can be the sole reason for the activity or the first step in the Knowledge Discov-

ery procedure [Hashimi et al., 2015]. A good set of clusters are ones in which objects

within the same group are similar while objects in different groups are different [Jain

and Dubes, 1988, Steinbach et al., 2004]. In Text Mining, clustering is used for such

tasks as recommendation systems [Han and Kim, 2016, Kim and Chen, 2015], Infor-

mation Retrieval [Mishra et al., 2015], Topic Modelling [McFarland et al., 2013], Text

Summarisation [Choudhary et al., 2009, Nenkova and McKeown, 2012], forensic anal-

ysis of text [Nassif and Hruschka, 2013] and finding gaps and priorities in scientific

research [Rabiei et al., 2016]. The power of clustering is in the revelation of hidden

and interesting features within the dataset.

The k-means algorithm was conceived in 1955 and has become one of the standard

general-purpose clustering tools available to data analysts [Jain, 2010]. k-means has

become the baseline algorithm by which many researchers compare new algorithms they

have developed [Steinbach et al., 2000, Forsati et al., 2013, Jain and Grewal, 2016] and
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a starting point from which to add refinements [Nalawade et al., 2016, Gupta and

Srivastava, 2014, Wu et al., 2015, Kaur and Rashid, 2016, Curtin, 2016]. Measures for

validating clusters using k-means have been studied in depth [Wu et al., 2009]. Jain and

Grewal [2016] found that in comparisons based on outliers, k-means outperformed the

density-based approach of DBSCAN [Rehman et al., 2014] in terms of precision, recall,

F-measure and efficiency while being slightly poorer in terms of accuracy. In Text

Mining, k-means is usually applied to document collections using similarity metrics.

Both k-means and the related k-medoids are two of the most widely used distance-

based partitioning algorithms [Kaufman and Rousseeuw, 2009, Aggarwal and Zhai,

2012b]. k-means has enjoyed such longevity in part because it is a more efficient means

of clustering large document collections [Steinbach et al., 2000, Dhillon and Modha,

2001, Wu et al., 2007].

A drawback of using k-means with the Vector Space Model is the “curse of di-

mensionality”, in which algorithms that work well for low-dimensional objects perform

poorly on high-dimensional objects [Bellman, 1961]. The Scatter/Gather algorithm

[Cutting et al., 1992] uses a computationally-expensive hierarchical algorithm to find

good seed objects to feed into k-means. In a comparison of six algorithms, Nassif

and Hruschka [2013] found that k-means and k-medoids can find very good quality

clusters if the algorithms are well initialised. A more elegant alternative is to simply

truncate the cluster centroids to reduce the dimensionality of the similarity calcula-

tions. Schütze and Silverstein [1997] find that, for a modest truncation, this method

retains the efficiency of k-means without sacrificing cluster quality. k-means and related

methods of grouping individuals into clusters of similar characteristics are examples of

hard-clustering algorithms. This type of clustering allocates each member to only one

cluster.

tf-idf is a method of improving sensitivity to important features in a bag-of-

words model, such as VSM. By weighting the term frequency by the rarity of the

term in the corpus, as given in Equation 4.3, it suppresses more common, but less

relevant or significant terms. Removing stopwords immediately reduces the dimensional

space by eliminating terms common—and therefore less discriminatory—to many of the
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documents in the corpus. Both techniques increase the impact of the remaining data

and make clusters more distinct.

Inflexible groupings can be awkward in boundary cases where a member could

rightly be considered a member of two groups that it sits between. Soft-clustering al-

gorithms such as Expectation-Maximisation (EM) assign to each member probabilities

of belonging to a cluster and can handle multiple group memberships. It does this by

assuming that each cluster has a probability distribution (usually Gaussian), calculat-

ing the probability of each member belonging to those clusters and assigning members

to those clusters. It then re-calculates the parameters it has in order to maximise the

probabilities that these members belong to it. It iterates through the re-assignment

of members to clusters and the re-calculation of cluster parameters until cluster mem-

berships do not change. Like k-means, it is not guaranteed to converge to the global

maximum and should be repeated a number of times with different starting values

for the parameters. A survey of clustering methods can be found in Berkhin et al.

[2006] while Duda et al. [2001] details k-means and the EM algorithms with regards to

clustering in pattern recognition.

4.7 Results

There are a number of possibilities for measuring the quality of the clusters. F-measure

is a binary classification appropriate for assessing test outcomes in terms of true and

false positives and true and false negatives [Rijsbergen, 1979]. The Davies-Bouldin

Index measures the separation between clusters in terms of their centroids [Davies and

Bouldin, 1979]. The Dunn Index is a method for defining the size of the clusters [Dunn,

1974]. The two most appropriate methods are the Rand Index [Hubert and Arabie,

1985] and Mutual Information [Vinh et al., 2010] because they assess the quality of

cluster membership. The Rand Index calculates the ratio of the number of cluster

membership agreements to the total number of pairs of elements. Given two partitions

of a set S with s elements, X = {X1, . . . , XȂXȂ} and Y = {Y1, . . . , YȂY Ȃ}, a pair of
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elements (ei, ej) are in agreement if

(ei, ej) ∈ S Ȃ (ei, ej) ∈ Xk, (ei, ej) ∈ Yl (4.6)

or (ei, ej) ∈ S Ȃ ei ∈ Xk, ej ∈ Xm, ei ∈ Yl, ej ∈ Yn (4.7)

where k ≠ m and l ≠ n and 1 ≤ k, l,m, n ≤ s. The total number of pairs is given by

the binomial coefficient,

( s

2
) =

s!

2!(s − 2)!
The Rand Index, R, is given by

R =
a + b

a + b + c + d
(4.8)

where a is the number of elements in Equation 4.6, b is the number of elements in

Equation 4.7 and the denominator a+b+c+d is the binomial coefficient. Note that this

statistic is only appropriate for evaluating hard unsupervised learning algorithms such

as k-means. A soft clustering algorithm, such as Expectation-Maximisation, produces

partial memberships and would require a technique such as the fuzzy extension to the

Rand Index developed in Campello [2007].

4.7.1 Distributions

The distribution of cosine similarities between different text structures of the docu-

ments, the paper abstract, the keywords and the main text body were plotted together

in Figure 4.1 for comparison. These represent over 2 million measurements (157 000

for keywords) which have been placed in 100 bins, counted and expressed as a pro-

portion of the total number of measurements. The textbody and abstract similarities

are smooth curves skewed to the smaller values with peaks at 0.22 and 0.08. While

the average similarity is low there are a number of documents that share significant

amounts of vocabulary. The smoothness could be attributed to the wide spectrum of

terms used to express the ideas smearing out the distribution. The average similarity
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Figure 4.1: Cosine similarity distribution between all text documents in the Dark
Matter corpus by document internal structure (abstract, keywords and main textbody).

of the abstracts being roughly half of that for the full text of the paper is most likely

due to fewer opportunities in which to find similarities. The platykurtic nature of the

keyword distribution suggests the appropriate use of multiple keywords to describe a

paper’s content, although with only 5% of the measurements of the other document

features, the scattered distribution is difficult to interpret.

4.7.2 Similarity over Time

To understand how the passage of time affects document similarity, the similarity was

plotted against the difference in time between the published dates of the two documents
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Figure 4.2: Text Similarity over Time. Cosine similarity value of documents linked by
citation are plotted against the difference in years between the publication of the two
documents. A linear fit to the data was made to show the slow decay in text similarity
over time.

and a straight line was fitted to the over 2.6 million data points. A straight line fitted to

the data showed that, over a 10-year period, the average document similarity changed

by about 1%. The plot was further limited to only those pairs of documents which are

connected in the citation network. Here too is very little effect, as seen in Figure 4.2

in which there is only a slight decrease in similarity over time, at the level of 0.06 per

decade. A clearer representation of the data is presented as a boxplot in Figure 4.3,

in which the line of best fit shows that the median similarity for each year decreases

linearly while the statistics are good. To put these values into context, the formula for

incomplete normalisation was applied to five small files at the 10
th

percentile for size
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Figure 4.3: Text Similarity distributions over Time. Collected into one year bins and
the median values marked with a +, the boxes extend from the first quartile to the
third quartile and the lines mark the full range from lowest to highest values. The
line of best fit to the data is plotted showing a slope of decreasing similarity value of
-0.006/year.

of the Dark Matter corpus (269 unique terms each). Assuming an equal dissimilarity

in a term of frequency 4, (putting fn = 4, g = 2 into Equation 4.9), the average upper

bound on the error in the similarity value is 0.001, 8.5% of the annual change for the

average similarity in Figure 4.2. It would be tenuous to assert that this decrease is

due to the shift in research interest over time and could easily be the normal variation

in language. Further investigation with other collections of documents, specifically a

comparison with a corpus whose topic does not evolve, would be needed to support or

reject this claim.



70

4.7.3 Residual Sum of Squares
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Figure 4.4: Residual Sum of Squares R̂SSmin for k-means clustering of the textbody
section of documents in the Dark Matter corpus as a measurement of closeness of
cluster members to their k cluster centroids.

The k-means unsupervised learning algorithm was run 10 times for each cluster

size from 3 to 50 clusters and the smallest of the total Residual Sum of Squares (the

sum of the errors squared between the k cluster centroids and their cluster members,

denoted by R̂SSmin) was plotted versus the cluster number in Figure 4.4. In Manning

et al. [2008, 16.4.1], a “knee” in the line (a flattening of the curve) indicates a natural

partition of papers in vocabulary. Unfortunately, there is no clear cluster size indicated.

The first flattening of the curve near k = 20 in Figure 4.4 could be seen as just the first

signs of noise in an otherwise smooth curve. Zooming in at small k (number of text

clusters) in Figure 4.5 and plotting a straight line through two of the points suggest
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Figure 4.5: Curve of R̂SSmin at small k compared with a straight line, highlighting
the change in R̂SSmin at k = 4, 5 and 8 in Figure 4.4. Large deviation from a straight
line signals a value for k which produces good clusters.

that arguments could be made for cardinality of clusters at any of k = 4, 5, 8. Possible

reasons for this indiscernibility is that (a) the papers are inherently similar and are

difficult to separate via k-means, (b) the parsing routine requires a longer stop word

list, (c) different facets of the topic are gradually emerging at each new cluster size,

(d) each paper opens with an introduction which covers similar ground to every other

paper in the topic and (e) constant references to prior work, especially highly cited

work, add similarity.

To evaluate the quality of the clusters found, the formula for incomplete normal-

isation (see Appendix D) was used to estimate the size of the similarity between two

documents of which could be considered significant. The sizes of the VSM representa-

tions in the Dark Matter corpus were ranked and the 10
th

percentile was chosen as a
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representative “small” document. There were five documents at this size of 269 terms.

For all of these five documents, the median term frequency was equal to 1 and the

third quartile term frequency was equal to 2, a reasonable expectation given the power

law distribution of term frequencies described by Zipf’s law. Choosing a reasonably

frequent term fn = 4, g = 2 to maximise its effect and using the term frequencies, fi,

of the five selected small documents (n = 269) to calculate the term ∑n

i=1 f
2
i , the error

estimate

error estimate =
g
2∑n

i=1 f
2
i(∑n

i=1 f
2
i − fng)2 =

4∑269

i=1 f
2
i(∑269

i=1 f
2
i − 4 ⋅ 2)2 (4.9)

was calculated for each document. The average error estimate over the five documents

was found to be 0.001. This value has been used throughout the comparisons of

similarity within and between documents in the Dark Matter corpus to establish a

threshold of significance. Any difference in similarity below this threshold of 0.001 can

be reasonably set aside as being “small”.

Using the best text clusters found at k = 4 (the clusters with the lowest R̂SSmin

value), the centroid of each cluster was re-calculated and the similarity of each doc-

ument with each cluster centroid was found. Seven documents were found to have a

difference in the similarities between the two closest centroids of less than the error

estimate. No strong correlation between these documents seems to exist in either their

cluster membership or their topic, as inferred from their title. This set of clusters has

a fairly even distribution of papers, the four clusters containing 459, 527, 611 and 763

papers respectively.

In the debate between hard and soft clustering, that only 7 documents out of

2659 are sitting near a boundary provides a good cause for being satisfied with hard

clustering, depending on the characteristics being sought from the data. In this chapter,

only an indication that papers could be separated into distinct text clusters (regardless

of sharing characteristics with other clusters) and whether a natural number of clusters

could be deduced form the clustering process.
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4.8 Cross-validating Louvain Clustering with k-means
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Figure 4.6: Number of text clusters, K, found using the Louvain algorithm on a doc-
ument similarity network produced by adding a link between documents that have a
text cosine similarity greater than a threshold value, θ.

Transformation of a problem can make other tools available for analysis. If the

document similarity matrix is reframed as a graph then document clusters can be found

using network community finding algorithms used on graphs, such as the Louvain

algorithm used in Chapter 3. In a matrix of text similarity, the elements are the

similarity between the pair of documents represented by the row and column indices. As

the cosine similarity has been calculated between all pairs of documents (presented in

Section 4.7), all elements of this similarity matrix are in the range [0, 1]. To transform

the matrix into a graph, consider each document as a node with the link between
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Figure 4.7: Rand Index comparing text clusters found using Louvain on a thresholded
document similarity network (Figure 4.6) with those found using k-means clustering
(Figure 4.4) with the same number of clusters.

documents i and j, given by aij, connecting the two documents if the cosine similarity

between them, σij, meets or exceeds a chosen threshold, θ, such that

aij = { 1, σij ≥ θ

0, σij < θ

This representation produces what in network terminology is known as an adjacency

matrix. The similarity matrix is symmetrical (aij = aji) and is represented as an undi-

rected network. Because every document is identical to itself, the diagonal elements are

set to zero (aii = 0) to remove self-loops from the network which may adversely affect

the clustering algorithms. Documents which become disconnected from the network

by virtue of having no text similarity values greater than or equal to the threshold are

removed from the network.



75

Choice of the threshold is arbitrary. To understand the behaviour of this choice,

the maximum number of clusters found using the Louvain algorithm was plotted for

threshold values running from 0.35 to 0.96 in steps of 0.005. The result is a curve

which peaks in the vicinity of 0.755 ± 0.02. As the threshold increases, the number of

links decreases and from 0.8 upwards the number of nodes in the graph also decrease

because there are fewer documents sufficiently similar with which to link. To compare

the two methods, the Rand Index for measuring the amount of agreement between two

partitions was computed using the Perl module Set::Similarity. This algorithm

requires that the two sets are identical and that both sets contain the same elements.

Because the thresholding method can disconnect some documents from the network, an

extra subset in the thresholding partition was created from all the missing elements,

this being the union of both sets. Computing the Rand Index between thresholded

and k-means clustered partitions found spread around 0.5. As the Rand Index can be

described as the number of agreements between the two sets divided by the number of

agreements and disagreements, it was felt that the use of an extra set could be reducing

the measurement to 50% accuracy. These are shown in Figure 4.6.

To check what similarities could be expected if the methods were equivalent,

partitions were compared with other partitions created with the same method. The

results, shown in Figures 4.8 and 4.9, demonstrate that the methods are self-consistent,

producing high similarities even for large discrepancies in number of clusters between

partitions. A linear fit to the data was plotted to show the average trend of the data

in spite of the crowded plots.

The possibility of including similarities between partitions with different numbers

of clusters was explored in Figure 4.10. The previous calculations were repeated in-

cluding k-means partitions that had up to 5 clusters more or less than the thresholded

partition. These similarities were grouped by difference in number of clusters, ∆K, and

fitted with weighted cubic splines to show their trends. To reduce visual clutter, only

the data for ∆K = 0 and ∆K = 5 were plotted. It is possible to see that the fits for

∆K = 0 and ∆K = 1 are almost identical, whereas the fits for higher ∆K surprisingly

have higher similarities. The reason for this discrepancy has not been investigated.
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to produce the document networks. A linear fit to the data is plotted for comparison
of the trend.

To determine if this is an artefact of the increase in number of clusters, the

same plot was produced by shuffling the elements of the k-means clusters (a technique

sometimes known as a Monte Carlo simulation) when measuring the set similarity

with the Louvain partitions. It is clear from Figure 4.11 that indeed the intersection

of the sets performs better than random, but the upward trend and the comparison’s

improvement is a feature of the measurement technique on higher number of clusters

suggesting that lower values of K are more powerful indicators of similarity. The

strength of this effect above randomness was plotted in Figure 4.12 from the differences

between the values from the Monte Carlo simulation and the thresholded data values,
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Figure 4.9: Rand Index set similarity of two partitions of k-means clusters plotted
against the difference in the number of clusters found, K, for each partition. Because
of the large number of data points overlapping on the plot, a linear fit to the data is
plotted for comparison of the trend showing that most of the data lies near the top of
the plot.

then dividing by the simulated values to provide a ratio.

The result of these investigations is that similarity automatically improves for

higher K. Researchers should be aware of this behaviour in their evaluations. The sim-

ilarity of different numbers of clusters are acceptably close to similarity measurements

of equal number of clusters which may be of use in situations where more values are

required. The actual effect found from similarity measurements is more pronounced

at low K. Louvain clustering on thresholded similarity matrices and k-means unsuper-

vised learning methods produce similar but not equivalent results. The advantage of
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Figure 4.10: Rand Index set similarity (y-axis) between set partitions for a document
network of threshold, θ, (x-axis) and best text clusters found with k-means where ∆K
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munities found on the document network. Splines are fitted for all ∆K = [1, 2, 3, 4, 5],
but data points are only plotted for ∆K = [1, 5].

the Louvain clustering technique is the speed with which it provides answers as long as

it has the entire corpus to process, whereas the side effect of k-means clustering is the

production median vectors for each cluster which can be used to label and represent

the cluster in classifying new documents presented after the clustering process.
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Figure 4.11: Monte Carlo simulation in comparison with the Rand Index of set sim-
ilarity between set partitions found from Louvain communities found for a document
similarity network produced with a threshold value, θ, for θ from 0.35 to 0.69. Splines
were fit to the data to show the average trend of the data.

4.9 Cluster Labelling

The result of unsupervised learning is the ordering of information. The assignment

of labels gives greater insight into those clusters. Although a number of people have

reviewed many different clustering techniques [Steinbach et al., 2000, Berkhin et al.,

2006] prior to Manning et al. [2008], few have had much to say about the labelling

process. Weiss et al. [2010a] says that creating good labels can be expensive, referring

to the time taken by an expert to assess the usually large document collection and

derive meaningful labels. The ADS has chosen to invest that effort in developing an
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Figure 4.12: Magnitude of the effect in Figure 4.11 — Rand Index set similarity of
Louvain clusters with k-means compared to a Monte Carlo simulation of the k-means
partitions, as a ratio of ∆Similarity/Similarity.

ontology [Accomazzi and Dave, 2011]. Producing categories requires a priori knowledge

about most, if not all, of the collection. A more satisfying solution is to extract the

labels from the clusters themselves. Stein has described a framework for deriving label

information that they designate “weighted centroid covering” [Stein and Eissen, 2004].

Cattuto et al. [2007] outlines efforts to reduce the individual workload by engaging a

community in collaborative tagging.

With an increase in interest in labelling clusters and knowing that the interpre-

tation of clusters is cognitively demanding and not well supported, Chen et al. [2010]

developed tools to assist the data miner which are incorporated into the CiteSpace tool
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[Chen, 2006]. They delve deeper into NLP using noun phrases as labels and evaluating

nine different ranked lists constructed from the keywords and noun phrases extracted

from the titles and abstracts. By relying on noun phrases (the extraction process was

not described), they may be ignoring the effects of synonymy. They find that noun

phrases from the titles ranked by tf-idf is an effective method for labelling, but it is

dependant on the quality of the available terms. One source of quality terms would be

to use extracted topics if a topic model of the subject is available.

Hulpus et al. [2013] uses graph-based methods on text to identify topics assisted

by the external knowledge base, DBpedia, to provide word-sense disambiguation be-

tween concepts [Lehmann et al., 2015]. They highlight the many challenges facing

labelling with fully automated systems not being realised. One recent attempt at au-

tomated labelling uses the clusters from unsupervised learning to train an Artificial

Neural Network (a type of supervised learning) and deriving labels from the attributes

activated during the testing phase of the neural network [Lopes et al., 2016]. It is

an intriguing approach, but its use of a relatively small number of member attributes

(as appropriate in numerical Data Mining) to train the ANN presents a challenge to

adopting the method in the high-dimensional realm of Text Mining.

These endeavours are not surprising. The document collection was large enough

to warrant automated clustering. It follows that automated labelling would be pre-

ferred, if it were easy. One method is to simply take the most frequent terms in the

centroid, which are calculated during the k-means processing, as the cluster’s label,

yet the meaning of this label is uncertain. Just as the VSM loses semantic information

when word order is discarded, it is neither straightforward or unambiguous to construct

meaning from a list of words. Weiss suggests that weighting the terms in the label by

their utility to discriminate between documents may improve the quality of the labels,

in the same way that tf-idf was used to produce more contrasting document vectors.

Another method is to simply use the title of the document closest to the centroid as it

is assumed to be the document most representative of the cluster.

Attempts at labelling the clusters found using k-means demonstrated the diffi-

culty of obtaining clear, meaningful labels automatically. Each cluster was labelled with
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the 10 most frequent keywords assigned to those papers in the ADS after the four most

common keywords (dark matter, galaxies, astrophysics, cosmology) has been removed.

It was noted that while high energy physics was present somewhere at all values of

k, MOND was not encountered until k = 31. When the number of keywords per label

was doubled, MOND still only appears at k = 24. Although it is a radical approach to

the Dark Matter problem, its lack of prominence in keywords could be attributed to its

need to discuss the theory in comparison to the standard theory, whereas mainstream

discussion takes place with little or no mention of MOND.

4.10 Summary

This chapter has shown how Text Mining differs from Data Mining and how it relates

to the fields of Artificial Intelligence, Natural Language Processing and Information

Retrieval. The extraction of meaning from text was discussed within the context

of Linguistics and NLP. The connection was then followed from NLP to Artificial

Intelligence where the use of ontologies to effect knowledge representation can be a key

component in machine reasoning. Specifically the OWL ontology describes all possible

citation events. Supervised and unsupervised learning, two important foci of AI, when

applied to Text Mining are Classification and Clustering.

In order to cluster, a method for comparing documents is required. The Vector

Space Model was introduced as a tractable representation that has an accessible metric

of similarity using the definition of the dot product of two vectors. This was justified on

the basis that it retains 80% of the information. The LATEXML project was invaluable

for the creation of document vectors from primarily LATEX sources. The standard

processing from Information Retrieval was then described and included an upper bound

on the error due to incomplete Normalisation. Stemming and Stopping were discussed

and their implementation described.

The distribution of similarities was explored through different document sections

and how text changes over time. Two treatments for calculating the similarity, cosine
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distance with k-means and tf-idf using a threshold value on the similarity matrix, were

described and evaluated by comparing the clusters they both produced using the Rand

index. These clusters were labelled using their most frequent keywords, but were not

found to have the clarity of human-applied labels.

This chapter demonstrates how meaning can be extracted computationally from

the published research in an area of science and how its social dynamics may be studied

through how authors explain their ideas and findings. The papers they produce can

clustered by topic and even treated as graphs. The methods used to compare clusters

will be used again in the next chapter.
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5 Observations on Communities

While Complex Networks and Data Mining are mature fields attracting copious amounts

of serious study, the combination of techniques from both areas is a rare occurrence.

One reason for this lack is the depth of knowledge required for entry into each area.

Regardless, the space between two active fields is fertile ground for exploration using

well-honed tools in a new situation, provided that commonalities exist between the two.

An academic paper is obviously a document with which the text mining community is

very familiar and the citations between papers have been studied many times before

as a complex network. This chapter is a study in how cross-over approaches fare with

these fields.

5.1 Categorisation of the Dark Matter corpus

As noted in Section 3.3, communities can be defined as groups with more links within

the group than outside of them, but the nature of the communities formed required

some deliberation. Papers deposited in arXiv are assigned a category which is useful

for separating some of the papers based on topic. The fact that papers can overlap

two or more topics is revealed in more recent papers when arXiv began to allow mul-

tiple category assignments. While High-Energy Physics is conveniently divided into

experiment, phenomenology and theory, no such arXiv category divides observational

astronomy from theoretical astrophysics with the exception of cosmology in gr-qc.

The papers constituting the Dark Matter corpus are grouped according to their

arXiv category in Table 5.1 with the majority in astrophysics. The next largest category

is High Energy Physics with just over 10% of the papers.

The ADS search engine was used to identify which papers in the corpus corre-

spond to work on MOND. Of the 102 results, 95 correspond to astro-ph, 6 to gr-qc

and 1 to physics.gen-ph. A subset of 21 papers in the MOND section of astro-ph

also had subcategories: 47% in gr-qc, 30% in hep-ph and 23% in hep-th.
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category description number in corpus

astro-ph Astrophysics 2228
cond-mat.other Other Condensed Matter 1
gr-qc General Relativity and Quantum Cosmology 94
hep-ex High Energy Physics – Experiment 39
hep-ph High Energy Physics – Phenomenology 207
hep-th High Energy Physics – Theory 32
math-ph Mathematical Physics 1
nucl-ex Nuclear Experiment 6
nucl-th Nuclear Theory 3
physics.ao-ph Atmospheric and Oceanic Physics 1
physics.comp-ph Computational Physics 1
physics.flu-dyn Fluid Dynamics 1
physics.gen-ph General Physics 34
physics.ins-det Instrumentation and Detectors 12
quant-ph Quantum Physics 1

total 2661

Table 5.1: Categories of Papers in the Dark Matter corpus

The subcategories show interesting features as the least common examples lead

the way to interesting segues on the topic, including the involvement of “volcanogenic

dark matter” in extinction events in Earth’s geologic history which was filed under

physics.bio-ph and physics.geo-ph.

5.2 k-core visualisation

Networks of any significant size pose difficulties in their visualisation due to the cluster

produced by criss-crossing links between nodes with little space available for labels.

Node separation is an arbitrary choice but necessary in order to resolve details within

the network. Various algorithms for graph layout attach meaning to the distance

between nodes allowing the researcher to intuit understanding about the network from

its structure. k-core produces a low-complexity visual as an analytic tool for examining
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Figure 5.1: k-core visualisation of the Citation Network core papers. The grey legend
on the left represents the degree of the node, while the coloured legend on the right
represents the k-shell index.

the internal organisation of the network structure. Described in Alvarez-Hamelin et al.

[2005] and Beiró et al. [2008], k-core graphs were produced using LaNet-vi for the core

citation network and the k-means similarity graph to permit direct comparison. The

size of each node represents its degree. Hubs, therefore, are the larger spheres. The

colour scale separates the nodes according to their k-core shell index, where the index

or “coreness” is the connected maximally induced subgraph of all nodes that have a

degree of at least k. The diameter of each shell is related to the number of nodes in

the shell, with nodes moved closer to nodes with which they share more links.
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Figure 5.2: k-core visualisation of the document network produced from the VSM
model where documents sharing a similarity of 0.5 or more are linked in the network
as described in Section 4.8

The visualisation of the citation network, shown in Figure 5.1, identifies the range

of node sizes, seen previously in Figure 3.8, and shows that degree is strongly correlated

with k-core shell index: hubs are closer to the centre of the figure and there are no star-

like subgraphs. Since a node is moved closer in the diagram to the nodes to which it

is connected, thick shells show that this network has a wide range of nodes connected

to different higher shells. This is an indication of a disassortative network, such as

examples of Internet Routing networks. Section 3.6 briefly discusses the implications.

A closer examination of the labels reveals that papers on MOND are found in the lower
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half of the figure while papers on high-energy physics are spread through the upper

half with the centre dominated by papers in the astro-ph category.

In contrast, the similarity graph produced by linking all Dark Matter core papers

with a text similarity of 0.5 or more, shown in Figure 5.2, has little or no fluctuation in

degree, with clearer distinctions between shells and paper categories evenly distributed

over the diagram. The circular segmented structures in the centre of this figure are

separate entities of related papers, the smaller one hosting a number of high-energy

physics papers which is disconnected from the main similarity graph. The disparities

between these two visualisations suggest that a simple mapping from one domain to

another is unlikely to exist, a judgement that would be difficult to arrive at with

confidence through statistics alone.

5.3 Correlations

For each pair of papers, the cosine similarity between the two was computed and the

value averaged with all the other pairs belonging to the same two groups found by the

Louvain algorithm. When a pair both belong to the same group, they are said to be

within the community. When the pair are from different groups, they are outside the

community or external to it. The average similarity among groups is presented as a

heatmap in Figure 5.3 to highlight the differences between and within groups of over

450 values. This type of representation quickly identifies the relationships between the

groups which are laid out in Tables F.3 and F.4. The colour scale uses blue for less

similar (minimum value 0.09) and red for more similar (maximum value 0.77) with

white set at a value of 0.26, the mean of the average similarities among the groups.

Light colours represent groups of near-average similarity with darker colours being of

interest. Black is used for missing values. To present similar groups together, they are

ordered along the axis by similarity to their neighbours. Only groups with at least two

core papers are presented in order to judge the characteristics of a group rather than

an individual paper. They are labelled with an ad-hoc numeric identifier.
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Figure 5.3: Correlations of average text similarity between and within citation network
communities from the 31 communities containing at least 2 papers from the Dark
Matter corpus.

It can be seen that along the diagonal axis from lower left to upper right that

the papers within a group exhibit stronger similarity, whereas off-axis, there are few

departures from average similarity. This is confirmed by calculating the similarity of

all papers to papers outside their group to be 0.25 ± 0.10 and within their group, the

similarity is 0.34 ± 0.12 .

With a column of many shades of strictly blue, Group 4585 is markedly different

from all other groups. The 8 core papers that are included in this group are all from the

majority arXiv category astro-ph. The keywords galaxy, white dwarfs, halo, luminosity
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function are not particularly illuminating unless the involvement of white dwarfs in

Dark Matter is a self-contained sub-topic progressing independently from the rest of

the field. Similarly, Group 822 has only 2 papers with the keywords cosmology and

dark matter The reason for the distinctiveness of these two groups does not become

apparent until further exploration which is described in Section 5.6.

The two off-axis red squares indicate a strong textual similarity between Groups

263 and 587. Both groups, while in the astro-ph category, focus on the phenomenology

of high-energy physics. Although their average similarity is high, 0.605 ± 0.165, and

the link density is low (3 out of a maximum 6), it is not advisable to draw strong

conclusions from these values as the numbers are based on three papers from Group

263 and two papers from Group 587. After investigating the five papers, it was found

that one of the two papers from 587 had referenced all three of the papers in 263 in

comparison to six references that Group 263 has amongst its own members.

While making these remarks about similarity between groups, it is useful to

consider them in the context of the distribution between individual pairs, shown in

Figure 4.1, which is broad and skewed to lower values with a peak near 0.25 in textual

similarity. Further to explore the difference in textual similarity between the groups

of citation network communities, the distribution of similarity values of papers within

a community and between different communities was plotted in Figure 5.4 with the

average similarity value for both distributions indicated. The large number of values

available—373 294 pairs of papers within a community and 2 386 781 between different

communities—allow for smooth plots for the distribution and excellent statistics. Stu-

dent’s t-test is a statistic for measuring the significance of the difference of two mean

values. The null hypothesis is that the two means are drawn from the same distribu-

tion. Selecting a 99% confidence level, the calculated statistic of t(452479) = 458.9

rejects the null hypothesis. The distribution plots in Figure 5.4 overlap and share

the same skewed shape, but are distinctly different distributions, confirming what was

found with the Student’s t-test. On average, the textual similarity of a paper to papers

within the same citation network community is measurably higher than with papers

outside of that community.
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5.4 Adjusted Rand Index

Revisiting the technique of measuring the similarity of partitions from Chapter 4, the

Adjusted Rand Index was calculated for all four levels of clusters found in the citation

network via the Louvain algorithm against the k-means text clusters with the lowest

RSS values for each k ∈ [3..50]. These were then plotted together in Figure 5.5

where it exhibits the k-means clusters that use Lingua::EN::StopWords while the

text clusters in Figure 5.6 also removed the stopwords in Table F.2. Features that
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Figure 5.5: Adjusted Rand Index of partitions found from citation network communi-
ties (Levels 1–4 of the Louvain algorithm) against K text clusters (stopped using the
Lingua::EN::Stopwords list and clustered with k-means).

are common between the two figures are the peaking of all four levels of the network

hierarchy followed by a sharp drop and gradual, if erratic, rise as k increases. Also,

the lowest level of the hierarchy with the greatest number of groups, level 1, suffers a

much greater drop than any of the other levels. Other features are the peaks and dips

coinciding in levels 2–4, with peaks in (a) at k = 32, 36 and (b) at k = 10 while dips

are found at k = 9, 15, 18, 37 in (a) and k = 7, 12, 24, 35 in (b). These other features

are not shared between the two sets of k-means clusters, leading to an assumption that

they are artefacts of the unsupervised learning process, not indicative of the underlying

structure.
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Figure 5.6: Adjusted Rand Index of partitions found from citation network communi-
ties (Levels 1–4 of the Louvain algorithm) against K text clusters (stopped using the
Lingua::EN::Stopwords list plus extra stopwords chosen from tf-idf ranking of terms
from the corpus).

5.5 Vector Space Model as a network

Further exploring the structure of the k-means clusters, the document graph was cre-

ated by linking papers in the Dark Matter corpus with a similarity greater than or

equal to a threshold value, θ. This approach allows the use of concepts and tools

well-honed in the study of complex networks to attack text mining problems. The

degree distributions for the document graphs with θ ∈ [0.3, 0.4, 0.5, 0.6] were plotted

in Figure 5.7. At the lowest threshold of 0.3, the distribution is a broad dome with
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Figure 5.7: Degree distributions for document graphs created with thresholds, θ ∈[0.3, 0.4, 0.5, 0.6], examining how the degree distribution changes with θ and which
document graphs have power law degree distributions.

proportionally very many highly-connected papers. At the next lowest threshold, 0.4,

the distribution becomes skewed toward increased numbers of lesser-connected papers.

Only at the threshold of 0.5 does P(k) begin to develop the long tail and at 0.6 (shown

in Figure 5.8), it is somewhat like the power law distribution characteristic of many

complex networks. The increasing threshold, listed in Table 5.2, sees a dramatic drop

in the number of links, while the number of nodes gradually decreases until a larger

drop at 0.6.

In relation to the formal definition given in Section 3.1.3, all text graphs show

the small world property with
܂lr܂܂l܂ < 2, however, only the graphs at threshold θ = 0.5
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−γ

and above have significant clustering, C

Cr

> 10, and the long tail of a scale-free degree

distribution (as seen in Figures 5.7 and 5.8) to qualify as complex networks according

to the formal definition.

5.6 Community Identity

Figure 5.9 was produced using the Force Atlas algorithm in the Gephi software pack-

age for networks. Due to computational constraints, the network visualised consisted

only of the core and first shell of the Dark Matter network (47 187 nodes, 161 870
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θ N L ܂k܂ C̄ C̄r C/Cr ܂l܂ ܂lr܂ ܂lr܂/܂l܂
0.3 2353 858 339 730 0.70 0.31 2.3 1.71 1.18 1.4
0.4 2345 299 457 255 0.62 0.11 5.6 2.10 1.40 1.5
0.5 2300 81 176 70.6 0.57 0.031 18 2.83 1.82 1.6
0.6 2055 16 228 15.8 0.54 0.0077 70 4.41 2.76 1.6
0.7 1328 2 505 3.77 0.55 0.0028 196 8.51 5.42 1.6

Table 5.2: General network statistics for the document graph formed by adding links
between papers with similarity ≥ θ. As the threshold θ increases, the number N of
connected nodes in the document graph decreases, as do the number of links, L and the
clustering coefficient, C̄. The mean path length ܂l܂ increases. The clustering coefficient
for the document graph is much greater than for a random graph, C̄r, of the same size.

links). The nodes were coloured according to the largest seven communities found by

the Louvain algorithm with, in decreasing order of size, purple for traditional astro-

physics (Group 213), green for high-energy physics (Group 92), blue for cosmology

and gravitational lensing (Group 211), red for Dark Energy and alternate theories

(Group 739), black for detection of particles and high-energy physics (Group 5973),

orange for Dark Matter models and galaxy clusters (Group 914), and turquoise for

MOND (Group 691). The labels for these communities were arrived at by examina-

tion of the titles of the papers in the communities.

The links are not shown to reduce visual clutter. The Force Atlas algorithm is

a layout using physics equations for dynamics that considers all nodes to be protons

(repulsive) and links to be springs (attractive), meaning that all nodes spread out as

much as possible from each other while being pulled towards nodes to which they are

linked.

This visualisation shows that some communities overlap, sharing many links,

such as the green and black clusters of high-energy physics and particle physics. The

fringe community, Dark Energy, connects with Dark Matter via models (orange) and

MOND (turquoise). Concerned with using observations to evaluate models for both

Dark Matter and its alternatives, MOND is a long, thin community that touches many



97

Figure 5.9: Communities of the Dark Matter network (limited to shell 1) visualised
using the Force Atlas algorithm, nodes coloured to show overlap of communities, links
not shown

others. It bisects the largest community, astrophysics, and is perpendicular to the axis

from high-energy physics to cosmology. The overall impression is that a subject matter

citation network is condensed by the amount of interlinking between communities,

which blurs the distinction between communities.

Evaluation of community-finding algorithms has been assisted by networks where

there is an indicator for the ground-truth of the network [Yang and Leskovec, 2012].

It requires labels being defined for each node of the network, but there have been
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difficulties in equating it with the community structure [Hric et al., 2014].

In the Dark Matter network, there is no obvious label to apply. The arXiv

categories are not indicative with many papers concerning particle physics being lodged

in the astro category, instead of one of the hep categories as might be expected. This

may be the case in a subject with a large degree of cross-over between fields, but the

result is that it is not possible to externally identify communities on this network using

categories chosen by individual authors.

To describe the communities of the citation network, labels consisting of the top

seven keywords of the group members were applied to the communities and listed in

Table F.3. As mentioned in Section 5.3, this method of labelling is not particularly

enlightening. Missing keywords are one of the limitations of using this method. Of

148 092 papers with metadata, three-quarters of those (108 660) have keywords. The

number of papers with keywords that are definitive in their categorisation of a paper

drops to 50% (74 236) of the total. It is reassuring that at least 57 998 papers (40%) in-

clude a keyword (from one of the following: cosmology: theory, cosmology: observations,

particle-theory and field-theory models of the early universe, high energy physics - theory,

high energy physics - phenomenology, high energy physics - experiment or mond) that

matches a category of interest. If keywords were the only source of metadata available,

then maximising the utility of as many keywords as possible would be attempted. One

method would be to use a supervised learning technique, such as a Näıve Bayesian

classifier on the 57 998 papers with known labels to extend the number of keywords

that could categorise a paper [Nisbet et al., 2009]. Fortunately, the ADS provides other

sources of metadata.

In an effort to clarify the significance of the keyword labels, the titles for all papers

in a citation network community were examined as a group. Three to five communities

were initially selected from each of four ranges of community size. As the number of

titles increased, themes were tallied on a sheet to give an indication on the makeup of

the communities. Group names given here refer to the Group IDs found in Table F.3.

In the small communities with less than 9 titles, it is quite easy to consider all

title at a glance and extract the common themes. Even with two titles, there can be a
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range of similarities. Both papers in Group 587 deal with models in particle physics,

but focus on different types of particles, one on the Higgs boson and the other on

muons. Group 808 is concerned with Dark Matter and the Anthropic Principle, the

same topic by different authors. Group 683 consists of a pair of papers by the same

authors on the question Do Active Galactic Nuclei convert Dark Matter into visible

particles? and a follow-up paper with its resolution. Similarly, Group 822 consists

of 2 papers that both have black hole and dark matter wake (a curious term) in the

title, by the same authors in the same year. Slightly larger groups were examined and

found to also focus on a single topic. The three papers in Group 263 all refer to Dark

Matter and charged particles, although two of them use synonyms for particles. They

have one author in common and were published over an 18-month period. Mentioned

in Section 5.3, the question over the significance of the keyword white dwarfs in Group

4585 now becomes clear. The titles place the keyword in the context of Dark Matter

candidates (see Appendix E) with some titles answering questions raised by other titles.

Group 5960 has 5 papers with only the general concept of structure in common.

They are published over a 10 year period (1995–2005) by different authors, which

explains why they have a lower text similarity amongst themselves than, as shown in

Figure 5.3, groups 587 and 683 which both are smaller, tightly focused on particles

and are published within 15 months of each other (2008–2009).

Medium communities with 10–15 titles take longer to assess because there are

more possible themes to compare with each title.

Group 5955 contains Brane theory in most of the 11 titles, yet brane is only the 5th

most common keyword in the group. Brane cosmology is a model in theoretical

astrophysics involving higher dimensions.

Group 5940 is a more mixed group comprised of traditional cosmology topics with

half of the papers mentioning redshift.

Group 5967 is very well described by the particle physics term axions, regardless of

the other keywords in the label in Table F.3.
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Group 811 has more papers with the term weak lensing or weak shear in the title

than it has papers with keywords.

The complexity of assessing large communities consisting of 50–100 titles is im-

mediately apparent when the titles do not all fit onto one computer screen. Multiple

passes are required as the significance of terms is not immediately realised.

Group 544 is on particle physics and at least half of the papers have sterile neutrino

in the title followed by many others considering some form of Dark Matter

model (hot, warm or cold). It is noteworthy that 88% of these papers were

found in the astro-ph category, whereas only 12% were submitted in the

hep category, which would be expected by the topic expressed in their titles.

Despite featuring heavily in the titles, neutrino is only the seventh most common

keyword in this group.

Group 700 is concerned with galaxies and data-driven modelling of galaxies based on

observations. Mixed in with 53 mainstream papers are three papers on MOND.

In this case, the ranked keyword label is an accurate description of group as

well as the data in Table F.3 which estimated the membership to consist of 5%

MOND papers.

Group 914 concentrates on microlensing surveys and (mostly baryonic) Dark Matter

candidates.

Group 5973 consists of topics all in high-energy physics: cosmic rays, particle an-

nihilation and detecting signals of Dark Matter. This is another example of

the difficulty in using arXiv categories to identify communities. The papers

have been categorised as half astro-ph and half hep. The keywords are fairly

descriptive of the group. Without domain knowledge, it would be difficult to

spot that the titles in this group were related.

Very large communities consisting of more than 100 members start to generate

more topics than will fit into human working memory. A proper assessment could
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require several passes through the titles just to establish which topics are suitable

criteria for categorisation of the group during the final pass. Any papers that do not

fit an immediately recognisable theme begin to get lost in the cognitive noise.

Of the 109 members of Group 691, over 90% have titles that are MOND-related.

This is more than discernible from the keywords or arXiv categories. The remaining

papers propose tests of gravity, arguably related to a topic which proposes a new

understanding of gravity.

Group 739 has 255 members and represents mostly theoretical work (cosmology,

Dark Matter with Dark Energy), with about 5% on MOND and some work on particles.

The keywords quite representative and the arXiv categories are mixed (9% hep, 1%

MOND, 18% other). The large size of the community means that there are small sub-

clusters away from the main topic. Dark Energy was easy to spot, but was difficult to

keep track of the other topics and it required a concerted effort to deal with this many

members in one group.

Group 92 has 476 members dominated by High Energy Physics (hep), focusing

on Dark Matter searches (both astronomical and particle), detectors and projects, and

how the results affect models (both cosmological and supersymmetry) Some papers

contain suggestions for Dark Matter candidates (mostly non-baryonic) and host some

very imaginative Dark Matter scenarios, such as volcanogenesis. The keywords in this

community are accurate, but not very descriptive.

Group 213 has 642 members accurately described by keywords and arXiv cate-

gories. These papers represent the traditional astrophysics approach to Dark Matter,

and could be considered the main body of work on the subject. An even mix of obser-

vational evidence, simulation, theory and models, they mostly deal with galaxies and

large-scale structure and distribution of matter. Many papers concern galactic haloes

(an observed structure) or gravitational lensing (a detection technique).

While some journals, such as Monthly Notices of the Royal Astronomical Society,

(MNRAS) Astronomy & Astrophysics (A&A) and The Astrophysical Journal (ApJ)

require that authors select keywords from a controlled vocabulary (a list of pre-defined

terms), no such restriction is placed on authors submitting papers to arXiv.
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Coverage is another advantage of using titles over relying on keywords as almost

all papers have a title recorded in the ADS (148 031 out of 148 092 papers).

Group 811 provides an excellent example for the use of the community finding

algorithm where the titles indicate a more specific topic and with greater coverage

than the keywords. The most common keyword is gravitational lensing, of which weak

lensing is only one of several possible strands of inquiry. Here, keywords summarise

some of what might be encountered in this group of papers, but the titles confirm that

a very strong connection in the topic is shared by papers linked structurally in the

citation network. This finding of ground-truth matching network structure was not

evident in Hric et al. [2014] and represents an interesting new line of investigation.

5.7 Summary

There was some overlap found in the methods drawn from both complex networks and

text mining, despite the differing natures of the two aspects of academic papers. It was

found that citation communities have a higher textual similarity and can cluster papers

into similar groups as partitioned through textual means. The titles of papers were

found to be an effective method of identifying citation network communities. A natural

size of four text clusters was indicated by the network community finding algorithm.

The only effect of increasing the number of words in the stopword list was to lower the

average cosine similarity values, not to alter the text clustering. Finally, it was found

that the document graph (formed by linking together papers that exceeded a threshold

similarity value) does not begin to resemble a complex network in degree distribution

until most of the links are eliminated at a threshold of at least 0.6. These first steps

in combining techniques have offered insights previously only hinted at by assumption

and intuition.
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6 General Discussion

In addition to finding that the textual similarity within a community is greater than

it is outside it, I found the following results. The Dark Matter citation network has a

degree distribution, P (k), where fitting k
−γ

to large k yielded an exponent, γ = 2.3.

An examination of the degree-degree distribution, P (k, k′), via degree pair correlations

exposed two distinct behaviours for citations. While learning the intricacies of text

mining, an upper bound was placed on the error in creating a Vector Space Model due

to improper normalisation, the derivation of which is in Appendix D. After processing

the documents and computing their cosine similarity, it was found that over a decade

the similarity decreases by 10% of its value. Text clustering with k-means was found

to have four natural clusters.

Creating citation networks of this type can be extremely time-intensive, although

once available they can be used to evaluate newly proposed models of citation networks.

The incremental layering of citation shells upon the network has demonstrated a change

in the degree distribution. Communities found using the Louvain algorithm have a

higher textual similarity between papers within the community than to those external

to it. Labelling these communities using the titles of the papers in the communities was

found to provide more clarity than the keywords supplied with the papers. In treating

document similarities as a graph, a complex network was found in the document graph

for high threshold values for the similarities.

Given the document graph is a complex network, it can by analysed with network

techniques. Even though the document graph and the citation network are different,

as shown by the k-core diagrams of both networks, citation and text networks can

be combined in what is called a “bipartite graph”, an area that has recently been

receiving more attention. The change in degree distribution is a transition from a

stationary network to a growing network, one that adds links faster than linear in the

addition of nodes, indicating a phase change in the attachment model [Dorogovtsev

and Mendes, 2003, p. 13].
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The practical considerations arising during the text mining process are that com-

paring equal numbers of subsets in two partitions is not required for evaluating par-

tition similarity with the Rand Index, that labelling clusters requires care in order to

be meaningful and that using citation communities is a novel approach to uncover the

natural number of text clusters.

6.1 Networks

6.1.1 Citations and Graphs

The ideal description of citation networks is that they are directed acyclic graphs that

grow over time by adding links which are then static. There exist rare conditions in

which this ideal is violated in small sections of the network. Prior to online publish-

ing, once a paper was printed in a journal its position in the network was effectively

crystallised. Even then, papers could be withdrawn, retracted because of errors in

the method, hopefully before it garnered many citations. One of the papers selected

from arXiv was removed by a third party on discovery of plagiarism committed by the

author in another paper. It and any links to it were removed from the network before

any analysis was done.

An extreme example of the effect of pre-prints in deviating from the ideal is

Contacts and Influence by Pool and Kochen [1978], which was published 20 years

after it was first written. Citations to pre-prints can still propagate due to “citation

copying” from one list of references to the next, unaware of the paper’s change of status

[Simkin and Roychowdhury, 2005]. Incidences that can arise from the lag between

being made available and being published range from two identities for the same paper,

requiring care in resolution, to older papers citing younger papers, seemingly contrary

to causality. References can be added during the publishing phase which may then

lead to a cycle in an otherwise acyclic network.

At this fine resolution, the actual generation of the citation network is not atomic
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or single stepped, but selecting only published papers misses pre-prints and other

material that are never published, yet widely available online. One possible refinement

developed for graphs, but not yet used in citation networks, is the weighted graph,

which ascribes a quantity to a link. Drawing on the work of Teufel et al. [1999, 2006]

in argumentation would be a good starting point for extension as would examining the

impact factor of the journals used, but the sheer amount of data is a barrier to this

approach.

6.1.2 Technical Challenges

This citation network has been produced with considerable effort, but it has been

worthwhile to create a substantial example independent of the ISI, a rare commodity.

The activity of creating the network has informed the conceptualisation of how the

citation formation takes place and pitfalls hidden by the mass of data gathered. Two

bugs in Astro::ADS were found and rectified, benefiting future users of this publicly

available search interface. It is unfortunate that the network itself has not been allowed

to be publicly released as it requires anyone other than the ADS to duplicate the effort

to verify or extend this work. However, they would have the results available for

assessment on whether the outcome merits the required effort to produce it.

A few remarks should be made regarding the technical implementation of the

data collection and processing. The retrieval of the data over the Internet was planned

to take place over a couple of years. A MySQL database was used to store the data as it

was collected. This technique was robust over the long term in the face of network and

power outages and possessed the standard tools for manipulation, backup and retrieval,

but it was slow to extract the data for processing after 10
5
bibcodes had been collected.

A possible solution to the slow extraction is to store the data in a graph database which

seems naturally suited to the problem domain [Robinson et al., 2013]. Development

on graph databases is relatively recent in comparison to relational databases. Their

query languages search for patterns based on the relationships between data, which

promotes network exploration and allows advanced questions to be posed concisely. The
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effectiveness of this approach, although having had success in some business domains,

would still need to be evaluated for use with complex networks.

Algorithms for finding the shortest path between all nodes, such as Floyd’s and

Dijkstra’s, use matrices to hold their results meaning that the memory requirements

scale as the square of the number of nodes [Neapolitan, 2003]. As the Dark Matter

network approaches 10
6
nodes, these algorithms require up to 10

12
memory locations.

A trillion memory locations is more than is usually available in standard computers

and as a result, the algorithms run out of memory before they can complete. To avoid

this obstacle, either a very large memory-mapped file is required or a breadth-first

search–though the searches are inefficient in time.

Labels constructed using term-frequency ranking of the keywords in the text

cluster give an indication of the focus of the cluster, but lack clarity. It is simple to

understand what topics are covered by the cluster, but not to understand the central

direction of research activity in the cluster. As mentioned in Section 4.9, producing

good labels is intensive work. It is alike to the subject of Topic Modelling in its desire

to succinctly describe a group of documents [Crain et al., 2012].

Topic Modelling is a technique of dimension reduction which statistically anal-

yses document collections to discover the latent topics contained in the collection. It

depends on building a predictive model of terms that stand out in the text, usually

using LDA, a bag-of-words representation [Blei et al., 2003]. It requires care and effort

to develop such a model and methods for doing so are being improved as limitations

are being discovered and addressed [Blei and Lafferty, 2007]. Current work by Tang

et al. [2016] uses a random walk on the topic graph to achieve data summarisation.

Such summarisation applied to a document cluster should satisfy the requirement for

labelling the clusters, provided the researcher has the time and expertise to build a

Topic Model for the corpus. Huang et al. [2016] has tried to find topics without the

requirement of prior knowledge of the anchor words in the subject by finding the most

selective topic words from the corpus, but some expert knowledge is still needed to

validate the topics found.
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6.1.3 Selection Criteria

The selection process for the papers included in a citation network is normally based

on all papers published in a selected journal or a broad category within a journal or

database. Networks that include all papers in a journal encompass all topics catered

to by that journal. Likewise, many topics are included within a category. Selecting

many topics can have an averaging influence on the nature of the network. Even

the Dark Matter network, based on a single topic, draws in communities with very

different publishing cultures, from lone theoreticians to large-scale high-energy particle

experiments with a multitude of authors.

It is suspected that the differences in degree distribution is more likely due to

the selection process than the choice of database, but either reason, if verified, would

be illuminating. A discrepancy between the data sources would be of extreme interest

to the database owners.

6.1.4 Network Clustering

Clustering is an integral part of a complex network. The Dark Matter network has a

clustering coefficient of 0.216, much greater than the value expected from a random

graphs of this size, where C̄r =
2L

N2
= 2.51×10

−5
. There is a strong relationship between

clustering and node degree. As shown in Figure 3.6, this relation holds at all sizes of

the network. The drop in clustering as degree increases is perhaps due to the nature of

attracting citations from many different threads, which dilute the number of clusters

realised in the network due to the increased number of nodes available, although there

is a natural connection between the average degree of nearest neighbours and the

formation of cliques. Another argument is that papers with few citations, when cited,

are cited together as the core of a sub-topic, a list of results that naturally group

together or self-citations for historical context.



108

6.1.5 Pair Correlation

The degree-degree distribution of Equation 3.4 was investigated via pair correlations.

Pair correlations are a feature of real networks and the results shown in Figure 3.10

display a dual nature. At low degree, the plot shows a clear correlation between the

in-degree of a node and the in-degree of their nearest neighbours as is also seen in

the topology of the Internet. Unlike the Internet, the correlation vanishes for ki > 30.

The disappearance of the correlation at k = 30 is called the cutoff degree (kc) for the

pair correlations and, according to Boguñá et al. [2003], is due to the finiteness of the

network. Could this also be a result of the split between normal papers and very highly

cited papers? If so, this value is a good candidate for a parameter to be included in

models of citation networks that take account of “super-joiners” as the transition in

Figure 3.10(b) makes a clear distinction between the two ranges.

Pair correlation is another facet of clustering in the network, describing the link-

ing behaviour in local neighbourhoods. The monotonically-decreasing section of the

degree-degree distribution below k = 30 in Figure 3.10(b) is typical of disassortative

correlations in growing networks and indicates a hierarchical organisation of the net-

work [Serrano et al., 2007]. Disassortative correlations indicate that highly-connected

nodes are preferentially connected to sparsely-connected nodes. This result is corrobo-

rated by the k-core visualisation in Section 5.2. It would not be unexpected if citation

networks were to be considered in the same category of network as technological or bi-

ological networks as opposed to social networks which are assortative by nature (highly

connected nodes are preferentially connected to other highly connected nodes). While

citation networks are fairly well understood in terms of their clustering statistics, it has

not been explicitly stated that they are disassortative in their degree-degree correlation

[Velden et al., 2017, Šubelj et al., 2016].

A contrary result is reported by Xie et al. [2016] who examined the DBLP cita-

tion network of Computer Science papers from 1936–2013 and found that the average

nearest-neighbour degree to be an assortative correlation. There are clearly substantial

differences between the DBLP and Dark Matter citation networks such as the field,
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range of subjects and time span covered. They calculate a clustering coefficient of

0.070 for the DBLP citation network for papers up to 2013-09-29 whereas the Dark

Matter clustering coefficient is 0.216. They also claim to see the assortativity in cita-

tion networks in the arXiv categories hep-th and hep-ph (clustering coefficients 0.165

and 0.148 respectively). Assuming that both results are valid, that the DBLP citation

network—with clustering coefficient 0.070—is assortative and the Dark Matter citation

network—with clustering coefficient 0.216—is disassortative, it might be reasonable to

expect a turn-around point to lie between the two clustering coefficients for citation

networks. If true, it would be disastrous for their 2016 model which produced an

assortative citation network with a clustering coefficient of 0.390.

Models that neglect degree pair correlations fail to recreate real networks [Serrano

et al., 2007]. If a case is to be made that there are two classes of citation networks, as-

sortative and disassortative, then the defining characteristics that change the dynamic

from hierarchical to social need to be identified. Possible factors for examination are

the degree distribution, growth rate, modularity, average degree or multi-disciplinarity

of the network. Ravasz and Barabási [2003] argue that a scaling law in the clustering

distribution of

C(k) ∼ k
−1

(6.1)

quantifies the coexistence of a hierarchy of nodes and as such should be observed as the

clustering coefficient changes. The prominence and location of the phase transition will

be useful in evaluating and improving on generative citation models such as Golosovsky

and Solomon [2013] and the follow up work by Golosovsky and Solomon [2017] which,

while not referring to phase transitions, continues to incorporate two categories of

paper with different ageing patterns. These models are applied to the question of

how researchers choose their citations. The cause of the discrepancy in assortativity

between the two citation networks merits further investigation to improve models and

understanding of the dynamics of the act of citation.
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6.1.6 Growth of Networks

The growth of the citation network is not uniform across the degree distribution. Com-

parisons of citation networks of different sizes have always come from different sources,

not from the same network as their selection criteria has been journal boundaries, for

the most part, which precludes outward growth. Starting from the core Dark Matter

network of the Dark Matter corpus and all of their references and citations and com-

paring it to the whole network consisting of all of the references and citations to the

core network, it is shown in Figure 3.8 that, not only does the power law exponent

increase to a value closer to Redner’s citation network statistics, but also develops a

hump also seen in other citation networks. The position of this hump near k = 45 adds

a scale length to what was previously a scale-free network. Golosovsky and Solomon

[2013] labels this a dynamical phase transition in terms of microscopic growth models,

separating papers that have a citation lifetime of 6–10 years from those that have a

much extended lifetime. The increase in N by a factor of 10 has pushed the distribution

towards higher degree nodes as demonstrated in Figure 3.9 with the shear of the curve

to the right. The implications of the embryonic network are not clear.

6.1.7 Significance

How does the lower value for the power law exponent fit into the context of research on

citation networks as well as its significance to Dark Matter communities? The exponent

γ needs to be used in conjunction with the clustering coefficient and the degree-degree

distribution (discussed in Section 6.1.5) to produce improved citation network models.

These statistics are the building blocks used to construct generative models which are

then tested against real citation networks. Validation of models requires data, meaning

that more citation networks need to be collected and their statistics measured in order

to improve the models. It is an iterative process.

The significance of the Dark Matter citation network is that it is a rare specimen

of a citation network not defined by the boundaries of a journal or subject, but built
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around a topic. It is potentially useful in examining the citation dynamics of a more

homogeneous research community by controlling for localised variations in citation

practice. With a good network model for a single topic, the networks based on journals

can be modelled as a superposition of parameterised single-topic models according to

identified topics.

The power-law exponent, γ, was found to be 2.3. That this is lower than values

found by Redner [1998] raises several questions. A lower value signifies a larger ratio

of papers with more citations to papers with fewer citations. Is this an artefact of

the construction method? The overlap of communities studying Dark Matter as seen

in Figure 5.9 is one influence on the low value for γ. The distinctness of topics in a

journal-defined network implies fewer connections across unrelated papers although the

clustering coefficient is comparable [Šubelj et al., 2016]. Is this a deficit of heterogeneity

in the citation conventions of distinct research communities? Only by constructing

more single topic citation networks can this question be answered. In gathering these

data sets, the common features among them hold the promise of a citation network

model for single topics which could be used as building blocks for more complex citation

networks.

6.2 Text Mining

While a soft clustering technique such as Expectation-Maximisation is a natural choice

for clustering documents that have overlapping content across communities and, at

times, belong to two or more different categories in arXiv, an algorithm for comparing

soft clusters was only published seven years ago and no implementation was available

at the time of the investigation [Campello, 2007]. Had it been available, it would have

been interesting to examine the relation between textual overlap as measured by the

soft clustering and the numbers of citations between communities.

The Dark Matter corpus is a narrow range of documents. To understand its

character the distribution of the similarities between the documents were plotted and
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Figure 4.1 shows them to be skewed to lower values. It demonstrates that abstracts

are less similar than the text body. They are much shorter than the main body of text

and fewer words have fewer opportunities to overlap. The distribution of keywords is

flatter. They are specifically chosen to represent their document and while not exactly

drawn from a controlled vocabulary, the limited number of keywords in use degrade

the statistics of the distribution. PACS numbers are used for standardising keywords

for common topics but they are not universally used and are not immediately apparent

to the reader, even though they solve the normalisation problem (see Section 4.3.3) for

keywords. The effect of increasing the stopword list is to reduce the overall similarity,

a small reduction of noise in the clustering algorithm.

While based on a wide spread of measurements, the fit in Figure 4.2 indicates

a decrease in similarity of 0.01/decade. The small change over time is reasonably the

result of movement in the topic. The linear fit is only the general trend of the data and

not yet an accurate model of the affect of age on document similarity. The size of the

decay in similarity is small compared with the spread of similarity values. The number

of measurements is the reason that any statement can be made about the ensemble

with any confidence. To substantiate the claim for a real effect, the data was cast as a

box and whisker plot (Figure 4.3), showing the median and interquartile range plotted

with the line of best fit to the data. It is clearly seen that the medians lie close to

the line, falling evenly to either side, demonstrating a strong linear tendency over a 15

year period.

Given the error estimate from the derivation of incomplete normalisation, it is

possible to arrive at an order of magnitude for the change in vocabulary over time in

the Dark Matter corpus. With a change in the average similarity (0.514) of 0.006/year,

the relative change in similarity is 0.0117. If the relative change due to a single term

change in a small document is estimated at 0.001, than the trend of the change in the

Dark Matter corpus is the order of 10 terms/year. This value for the vocabulary change

over time could be used in comparison with other diachronic studies (discussed in the

next section) to estimate the speed of scientific innovation against the background of

the general evolution of vocabulary.
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6.2.1 Text Clustering

It might have been unfortunate that the k-means clustering did not provide a clear

indication of a natural number of clusters, but that lack may have prevented a strong

claim for a number of fixed communities offered weakly by other algorithms that do try

to determine k. A contradiction of that point is raised by the partition similarity plot

in Figure 5.5 which reveals a strong peak at k = 4 when compared to the communities

in the network found by the Louvain algorithm. It confirms that a broad breakdown of

Dark Matter into the four groups of observational astronomy, theoretical astrophysics,

high-energy physics and MOND are valid, as well as how there are finer distinctions

that can also be made.

Of the possible cluster sizes inferred from the R̂SSmin graph in Figures 4.4 and

4.5, k = 4 was only marginally more distinct than the other values. The gradual rise

seen in all Rand plots is assumed to be because it is easier to be more similar when

more clusters are available.

Error estimates in similarity measurements (as derived in Appendix D) are not

often considered; heuristic approaches being the preferred method of validating results.

The calculation of incomplete normalisation of the VSM representation of a document

holds more utility than just reassuring the user that small errors can be disregarded.

It is an estimate on the granularity of the similarity values, setting the threshold of

significance below which two similarity values can be considered equal. Using a derived

estimate based in theory provides direct accountability, a value open to inspection and

discussion. It is portable between data sets and simple to apply consistently.

A side-effect of determining the scale of similarity-space is considering the ap-

propriateness of hard or soft clustering. Section 4.7.3 shows an example of using this

scale to count the number of documents that lie close to the boundaries of the k-means

clustering of the Dark Matter corpus. Having found that only 7 out of 2659 papers lay

close to a boundary, the assumption that papers can reasonably be assigned to a main

cluster or category is claimed to be valid in the context of hard clustering. This claim

does not rule out secondary characteristics or multi-cluster membership for the papers,
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only that a primary cluster could be found for almost all of them. If more papers, say

10% of the corpus, were near the cluster boundaries, a case for hard clustering becomes

more difficult to make and the multi-membership model of soft clustering is called for.

A deterministic establishment of a scale for clustering will inform algorithms that make

use of granularity in the clustering process, such as rough k-means [Peters and Weber,

2016, Huang et al., 2014].

A possible avenue for investigation of the scale of similarity measurements is in

the analysis of the change in vocabulary usage over time, also known as diachronic

linguistics [Bybee, 2010]. Rather than tracking the evolution of individual words, the

error estimate generalises the magnitude of change in language in a large ensemble of

documents. This captures the motion of the language and the progression of a topic.

To better isolate topic progression, it is necessary to subtract the change in language

usage over time. Hamilton et al. [2016] has quantified the polysemy of words over

time to study the semantic change of innovation and conformity in language. The

knowledge of the natural change in language over time combined with the scale of

similarity change effected by individual terms should make it possible to quantify the

speed of progression in the topic. The progression speed characterises the research

activity, highlighting interest and focus, a recurring theme for recommender systems

[Kim and Chen, 2015].

Exploration into the deeper significance of the incomplete normalisation deriva-

tion is merited both mathematically and experimentally. For a single term, the error es-

timate varies as the square of the term frequency of the unnormalised term (err ∝ g
2
).

How many more terms can vary before higher order effects must be considered? Con-

sider the effect on the derivation of the general case of the similarity between two

documents rather than a two slightly different copies of the same document and how

the error varies with similarity. At what point does a mathematical derivation become

intractable? Experimental modelling using Monte Carlo simulations of virtual docu-

ment collections constructed according to Zipf’s law and the statistical laws of semantic

change [Hamilton et al., 2016] could reveal the effects of the number of terms that vary

over a document collection.
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While suggestions have been made regarding possible lines of enquiry stemming

from these results, the feasibility of extending these suggestions to other application

has not been determined. Any claims to utility should first determine that they have

not duplicated previous results and that they demonstrably improve understanding of

the problem space to which they they are applied.

6.3 Communities

Given the selection criteria, using arXiv categories is not a viable method to specify

distinct communities, as 85% of papers belong to the astro-ph category. Instead,

these communities have been found using only the citation data and yet there is a

textual overlap amongst the documents that is quantifiable. The results presented in

Section 5.3 are evidence that there is a small but statistically significant increase in

the textual similarity between papers within the citation community compared with

papers outside the community, answering the first research question. The difference

in the distributions is highlighted in Figure 5.4, showing how much the average tex-

tual similarity (as calculated by Equation 4.2) increases for documents within citation

communities. The significance of the difference between the two distributions is that it

confirms that on average, citation communities share a higher textual similarity than

they do with other papers in the same subject. It is an assurance that continuing

research in this direction (such as Mei et al. [2008] in Topic Modelling) merits the

time and effort required. The result is not a given because of the narrow focus of the

subject. Unlike a corpus of news articles encompassing many different areas, some sim-

ilarity in content and style is expected. Also, the demands of academic writing dictate

that articles cannot be too similar. Taken together, the range of similarities contracts,

effectively pushing papers outside the community closer in similarity to papers inside

the community. The heat map visualisation of the data quickly identifies the cases of

interest which may be obscured by the large numbers of comparisons to be made. It is

immediately apparent that one group is different from all other groups. No group or
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pair of groups has a very high similarity averaged over all documents, although indi-

vidual pairs can exhibit such high similarity. This spectrum of overlap is an indication

of heterogeneity, not a monoculture. In Figure 5.3, the mean of the average similarity

between groups is 0.25±0.11 and a similarity of 0.6 is seen only between five papers in

two citation groups, a rare occurrence. The highest threshold in Table 5.2 corresponds

to the number of links comparable to a citation network, whereas the lower thresholds

have more links than other comparable sizes of networks. [Dorogovtsev and Mendes,

2003, p80]

Understanding the groups is not as simple. Labels can be applied to groups (see

Table F.3), but many of the keywords are the same and only differ in how prominent

they are in the label. It is difficult to extract deep meaning using an automated process.

Part of the difficulty is that keywords were found mostly to signal secondary topics of

the paper and, in some cases, fail to cover the main topic indicated by the paper’s title.

Some authors may be using title in conjunction with the keywords to make their paper

searchable by the interested reader. As a result, the keywords can be an incomplete

description of the topic of the paper.

Identifying communities through the titles of their papers (described in Sec-

tion 5.6) is a more powerful method, though it comes with its own challenges. Some

domain knowledge is required to resolve synonyms or to identify proper nouns, such as

project names. Examples of tacit knowledge in the domain include notational short-

hand for redshift is denoted with a z, where a high redshift is z Ȃ 2 and that brane

theory is a high-dimensional model of space-time which involves 10–12 dimensions.

Given a small degree of domain knowledge, no small community in the Dark Matter

citation network was unclear in its topic nor did it include off-topic papers. The labels

derived from titles that were attached to the seven largest communities found on the

citation network were used to identify the communities in Figure 5.9. The figure shows

the ties and overlap between the different communities and how they can be interpreted

on different scales.

This method requires more cognitive effort as the size of community increases.

Identifying the different topics within a community by inspection is a related task to
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the knowledge elicitation technique of card sorts. Rugg and McGeorge [2005] find

that 20 or 30 is the maximum number of entities for a conveniently manageable card

sort. This effect was observed in increases of task difficulty as the size of the inspected

community progressed to large groups (50 members) and again with extra-large groups

(100 members). As an aside, the range in sizes of citation communities found by the

Louvain algorithm provide a stable dataset with which to explore sample size viability

for card sorts.

Recent results by Hric et al. [2014] show that 11 different community finding

algorithms, including Louvain, do not necessarily recover the ground-truth extracted

independently from many large networks. Despite this, there is a higher average textual

similarity between papers inside a citation network community than between papers

in different communities. The average similarity inside communities is 0.34 ± 0.12

while the average similarity between communities is 0.25 ± 0.10. Student’s t-test

for significantly different averages indicates that there is a 99% probability that the

difference between the two distributions is significant (the null hypothesis is rejected,

t(452479) = 458.87, p = 0.01 ).

Fortunato and Hric [2016] explain the reasons why ground truth from metadata

may not map well onto structural communities. The application of Text Mining on

the Dark Matter network shows one possible way of establishing a better ground truth

by using much more information about the nodes on the network. Knowing now that

textual similarity is associated with citation communities, more advanced Text Mining

techniques can be sensibly pursued. Topic Modelling involves identifying topics and

calculating the distribution of terms for those topics across the corpus. The distilla-

tion and measurement of a document via Topic Modelling has the potential to capture

a more complete representation of the document than the currently available meta-

data about it. Evaluating whether a topic model provides a better ground-truth than

metadata is a risky proposition without the assurance of textual similarity with the

communities.

A possible use of these values of similarity within a community is to highlight

papers which are textually very similar (explicitly above the average similarity within
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a community) that are not structurally related. These papers are of interest because

they are working in isolation (through ignorance or choice). If the authors are unaware

of each other, could they progress further or faster working together?

Use of the Louvain algorithm has been very instructive in analysing the field of

Dark Matter. By finding communities of different sizes from small to very large, the

investigation of those communities has revealed the major themes, some of the topics

of interest and some specific questions. This “top-down” view of the field is both

informative and provocative, providing enough background for a researcher to start

speculating on how these communities relate.

A desired outcome of identifying the network communities is a simple and mean-

ingful label to describe in some way the majority of the members of the community.

Without a clear and natural separation between communities, this task can be non-

trivial. After all, the basis for the construction of any connected network is that each

member has a relationship with at least one other member of the network. Common-

ality is inherent.

Because many of the papers in the Dark Matter network have keywords associated

with them by their authors and made available by the ADS, keywords are a natural

approach to labelling communities. By ranking all keywords in a community from the

most frequently found to the least, a descriptive label can be applied to the community.

This method is simple, consistent and requires no expertise, but may lead to labels

which are opaque and lack the clarity of meaning. Keywords are used by authors to

quickly advertise the main themes of their paper. The paper itself explains how the

keywords are related; the connection between them is not immediately apparent. As

a result, the general idea of the community can be conveyed by keywords but it lacks

coherent meaning. This is compounded by the all or nothing nature of keywords for

a paper. No indication is given of how relevant each keyword is to each paper, except

perhaps by the order in which they are listed. Minor topics may be over-represented

in each paper, but a large number of papers in a community should minimise the

over-large influence of minor topics.

Another technique for assigning labels is to examine all the titles for the papers
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in a community. This requires some expertise to identify the significance of terms, but

as a whole, the title communicates a complete idea and the main topic of the paper.

Keywords are also used to flag ideas that are not included in the title. It was found to

be easier to summarise a list of titles and find the common themes than to construct

a label full of meaning from the ranked list of keywords. The disadvantages are that

it is both labour- and knowledge-intensive to undertake this task and as the number

of titles in a community exceed a single computer screen height, the cognitive burden

of summarising the titles becomes heavy. Section 5.6 discusses the specific difficulties

involved.

During the community labelling process, some insight was gained into the topics

within Dark Matter through their titles. By no means a comprehensive list, any at-

tempt at Topic Modelling should consider the following terms in conjunction with the

keyword labels for communities in Table F.3:

keywords listed in Table F.3 clusters, cosmology, gravitational lensing, haloes, mod-

eling, particles, structures, SUSY (supersymmetry), wavelengths (X-rays, gamma

rays, radio waves, etc.)

keywords listed once or twice axions, branes, dark energy, detection, distribution,

MOND, planets

not appearing in Table F.3 CDM (cold dark matter), WDM (warm dark mat-

ter), gravitational waves, terms related to dark energy (cosmological constant,

Lambda (Λ) and quintessence), Dark Matter searches and projects

Identifying terms belonging to the categories searches or projects will require domain

knowledge, although some heuristics (names in all uppercase, such as PAMELA) are

available. The application of this to the scientific publishing industry is as a method to

find new keywords as they emerge in a constantly evolving research environment or to

assign missing keywords to papers with minimal human intervention. As a method of

keyword discovery, it is much easier to present experts with a collection of titles from a

small citation network community and ask the question, “What do these papers have
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in common?”, than it is to ask experts to generate new keywords. It is a cognitively

easier to spot differences and similarities in something presented to an audience than

for them to imagine instances without priming [Kahneman et al., 1982].

Finally, the results are mostly consistent with the initial assessment of there being

at least three or four large communities within the subject of Dark Matter, consisting

of astrophysics, high-energy physics and MOND (mentioned as the motivation in Sec-

tion 2.1 with a description of the problem in Appendix E). It was not known if the

communities on the citation network would recover any of those or if new ones would be

found. At the largest scale of the Louvain community finding, four communities were

found split roughly into observational astronomy, theoretical modelling, high-energy

physics and MOND. No unexpectedly new communities were found. Louvain’s first

pass finds a distribution of community sizes that reflect tighter focus on topics within

the four overarching communities. Four for the number of communities is also sup-

ported by the k-means clustering in Section 4.7.3. Some of the topics revealed a focus

on the various experiments in high-energy physics to confirm or refute the existence

of sub-atomic particles predicted from theory. Louvain has exposed areas of interest,

topics large and small that could be confirmed by experts by requiring effort to com-

pile, risking the omission of topics due to the number of communities. In this way,

it is certainly a useful tool for review authors, chosen for their broad knowledge of

the subject, but still liable to missing small topics outside their experience. Louvain

collects topics in a community and its sizes provides a scale for judging the effort to

allot to reviewing it.

6.3.1 Document Graph

Having already treated document similarity as a graph created by linking documents

which have a similarity above a given threshold, it seemed natural to investigate

whether the document graph has the characteristics of a complex network. The re-

sults of various thresholds, presented in Table 5.2, show that the average clustering

coefficient exceeds that expected in a classical random graph of that size as well as
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that of the citation network and the average path length, ,܂l܂ is always less than 10

even when the number of available links to traverse is reduced by several orders of mag-

nitude. The third component of a complex network is a fat-tailed degree distribution

which is certainly present at all thresholds (Figure 5.7), but only the thresholds at 0.5

and above show any similarity to a power law relation. The exponent fitted to the 0.6

threshold is 1.20 ± 0.06, lower than required for a growing network.

6.4 Summary

The studies described above show that there is more textual similarity between pa-

pers in a citation community than with papers outside the community. There were

differences in the degree distribution between the Dark Matter network and previous

work, which changed as the Dark Matter network grew in size. A dual character in

the degree-pair correlations was noted with implications for constructing models for

citation networks. Also with the degree-pair correlations, the network was identified

as being disassortative, not previously reported in the literature. Using two clustering

methods indicated that the natural size is four groups for text clustering with k-means

in the Dark Matter corpus. This finding is supported by the identification of four

subjects in the Dark Matter citation network, observational cosmology, theoretical as-

trophysics, high-energy physics and work on alternative non-Dark Matter models, such

as MOND. Using titles of the papers in the citation network communities was found

to be an effective method of identifying the communities.
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7 Conclusion

The approaches of complex networks on citations and text mining on documents are

both well established. What is novel is in combining the two approaches to better

understand the nature of a scientific community. This thesis shows that there is a

stronger textual similarity within citation communities researching the Dark Matter

problem than there is between those communities, as explained in Section 5.3. The

relationship is that network connectivity implies textual similarity above the baseline

similarity between random papers in the subject. Given a highly interconnected cita-

tion network, it follows that a high degree of textual similarity between any two papers

is not unexpected. It would be easy for any relationship to be buried in the noise

of so many connections and similarities, but the positive correlation between citation

network structure and textual similarity stands out because of the numbers measure-

ments available. This thesis also shows that in identifying citation communities, the

examination of titles of the papers in a community provides more clarity than does the

aggregation of the metadata (keywords) assigned to the papers. Both of these answers

illustrate the potential of combining techniques from both complex networks and text

mining.

A number of unexpected findings were uncovered. The power law exponent of the

degree distribution, γ = 2.3, is lower than expected from other studies. It was suggested

that the selection criteria for a citation network may be responsible. The degree pair

correlation shows that the network is disassortative placing them in the same category

as technological and biological networks and the behaviour of the correlation changes

as the degree exceeds 30, a threshold value that needs to be considered in building

future models of citation networks. The document graph acts like a complex network

when only high similarity papers are linked. Document similarity in the Dark Matter

corpus decreases by approximately 1% of its value per year on average. It was found

that comparing the partitions of unsupervised learning across two facets revealed that

four clusters are most likely a natural grouping in the Dark Matter corpus, where
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individually no preferred size was indicated. Finally, it was noted that the degree

distribution evolves from a static to a growing network as more citations are added.

7.1 Further Work

The importance of this thesis lies in the future progress that can build on these re-

sults. Five potential directions are described, but the most intriguing is that of Topic

Modelling (Section 7.1.5). It has the potential to solve the issue of ground truth in

network communities, but without knowing that citation networks exhibit significant

textual similarities, demonstrated here in Section 6.3, the work required to develop a

Topic Model is at risk of being wasted.

7.1.1 Testing Models

Having gone to the time and effort of building a large citation network which is unlikely

to be re-created, a useful endeavour would be to assess the various models currently

available and report how well they describe the Dark Matter network. Most models

have been empirically tested, but not against the same dataset, presenting difficulties

with comparison. Unfortunately, not all descriptions of models are expressed in the

same mathematical terms and care is needed in correctly applying disparate approaches

to determine equivalencies. In general, these types of reviews are a boon to progress

in any field, but rare because of the effort required to complete them.

7.1.2 Document Analysis

Downloading the documents from arXiv provides access to the source material which

produces the documents. In the field of physics, the source of most research papers is

written in LATEX which yields more information about the structure of the document

allowing finer control over parsing choices, such as extracting abstracts or equations.
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An extension of the themes presented here would be to use LATEXML to locate cita-

tions in their surrounding text to quickly characterise the type of citation in CiTO, the

ontology described in Section 4.1.1. After many learning examples, a supervised ma-

chine learning technique could try to extract the basic principles in order to automate

the process. This procedure is a way of managing the volume of data for large scale

argumentation analysis. Subsequent work in this direction should try to augment the

work of Teufel et al. [2006] with their annotation scheme for the rhetorical function

of citations with regard to supporting or refuting prior work. Current attempts at

automating citation identification has been undertaken by Di Iorio et al. [2013] using

Semantic Web and NLP techniques.

7.1.3 Terminological Distance

Trying to find how much work needs to be done to successfully enter a new topic as

a researcher requires text from outside this topic to measure the conceptual distance

between the two topics. Extending from this work, a suitable start point would be to

select the papers that are on the edge of the topic identifiable by unique keywords or

categories such as physics.bio-ph and physics.geo-ph in the Dark Matter corpus

and extend the citation network in the direction of the references outside the topic until

there exist several citation communities found on the other side of that bridge. Using as

much text as possible from the communities directly connected by the bridge, remove

all common words to mark a baseline and collect terms shared across the bridge. Terms

unique to the citing bridge paper will consist of author style, contribution to knowledge

and, most interestingly, embedded implicature of the foreign topic. In bringing to

the table concepts developed in another topic, new ideas need to be explained to be

accepted as argument. Hence, statements which would be implied in ongoing discourse

must now be explicitly laid out to the new audience [Grice, 1989]. Thus, the concepts

necessary to cross topics are enumerated and described by bridges. It is unlikely that

a sufficient number of concepts for a general reading of another unrelated topic will be

made available in one such bridge, nor is there a guarantee that the new concepts have
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been correctly communicated, for surface features can be misleading to the uninitiated.

In today’s research climate, the fostering of multi-disciplinarity would be facilitated

by a primer of terms compiled from all relevant bridging papers across the fields in

question. Future explorations on this theme should attempt to discern the effect of

soft unsupervised learning on the comparisons between citation network and document

clustering. An implementation of the Fuzzy Rand Index will be required.

7.1.4 Bipartite Graphs

As described by the CiTO ontology, there are three main features that can tie a collec-

tion of academic papers together like three sides of a triangle: the authors, the citations

and the content [Shotton, 2010]. While the citation network and the co-authorship net-

work have been examined together as a bipartite graph, the same comparisons have

not been made with the content for several reasons. Relying on the curation of publica-

tions performed and made available by the ADS, citation and author data are relatively

uncomplicated to collect and process with clear methods tested against a multitude of

networks that routinely deal with up to a million nodes. To collect and process the

same number of documents requires an order of magnitude more investment, akin to

the activities of commercial search engines. Text comes in many disparate formats

which have individual parsing requirements. Because the size of the representation is

much bigger, the time to process the document and manipulate the representations

impact the ability to match citation or co-author networks. Those two networks have

their differences, one being a directed graph and the other undirected, but are both

familiar to the complex networks community. The skills required to produce the doc-

ument graph are distinct, doubling the work required to examine the subject and for

uncertain gain. Finally, publisher’s restrictions make accessing large numbers of doc-

uments problematic at best with no guarantee of reaching all journals of interest or

whether the text is available in an electronic format. While Section 29A of the UK

Copyright Act 1988 (and its 2014 amendment No. 1372, Copyright exceptions for re-

search, education, libraries, museums and archives) permits usage for non-commercial
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research, one must first obtain lawful access which the publisher is not compelled to

provide.

7.1.5 Topic Modelling and Citation Communities

Attempts to reconcile network communities with ground-truth labels have not met

with great success previously in large data sets [Yang and Leskovec, 2012, Hric et al.,

2014, Yang and Leskovec, 2014]. In these cases, the labels represented individual’s

membership to different communities expressed by one facet of their existence. These

are the labels that were available and readily accessible. They look at where an in-

dividual happens to be in a particular classification, not what attributes community

members have in common. There may be some subtle interactions missing because of

the bias of availability. Given the relative surety with which the Dark Matter citation

network communities were characterised using only the titles of the papers within the

communities, perhaps the question needs to be turned around. What labels should be

inferred from the communities found in a network and how well do those labels reflect

their communities?

Topic Modelling has been done with citation networks, but no attempt was made

to examine the communities within the citation network [Lim and Buntine, 2014].

A novel approach to the assessment of community detection algorithms on citation

networks would be to use a Topic Model (developing it for the corpus, if a suitable

one is not available) to label the communities found by the algorithm and evaluate

its performance against random clusters of the same size distribution. As discussed in

Section 6.1.2, could a more interesting ground-truth be discovered by Topic Modelling,

in so far as relates to the structural connections between members? Topic Modelling

without citation communities is just looking at what terms are associated with each

other and how their evolution over time. Topic Modelling with citation communities

adds the structural dimension and explores how research proceeds, perhaps expanding

on the question of what is required in order for research to progress. Any progress

should be illuminating.
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If this method is found to be productive, future work should extend it to other

complex networks (such as protein-interaction networks) where community detection

is used to identify functional groups [Rosen and Louzoun, 2016]. Rather than infer

function of unknown members from what is known about other members of their com-

munities, use the techniques developed in anchor-free Topic Modelling [Huang et al.,

2016] to expose new connections for study. Even if the method does not provide imme-

diate applications, the investigation should add to the understanding of the different

facets of community detection, a question recently raised by a few of the prominent

researchers in community detection on complex networks [Schaub et al., 2016].
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A Repositories

In the early nineties, researchers started to expand on the idea of pre-print servers

creating the beginnings of today’s digital research repositories. The power of these

repositories is in their ability to search a very large selection of articles and deliver

them quickly through a web-browser anywhere in the world. ADS has even produced

an API for software such as Astro::ADS (see Appendix C) to automate downloads, but

these downloads have restrictions in order to maintain the level of service for everyone.

In order to download the large numbers of files required for bibliometric research,

permission must be sought from the data controllers.

A.1 ADS - the SAO/NASA Astrophysics Data Sys-

tem

The ADS is a Digital Library for Astronomy and Physics, funded by NASA [Accomazzi

et al., 1994, Eichhorn et al., 2002]. They collect publication data from all astronomical

and related physics journals made available for the use of all researchers via their web

interface. As publishers consider citation data as a part of their intellectual property,

the ADS has had to agree to restrict large-scale access to the data. An agreement was

reached with the ADS Program Manager, Alberto Accomazzi, to download citation

data using the Astro::ADS interface.

Bibcodes are a 19 character string that encode aspects of the article metadata

into a unique identifier for each article indexed by the ADS. They take the form

YYYYJJJJJVVVVMPPPPA

where the fields are broken down as:

• YYYY is the year the article was published

• JJJJJ is the journal title abbreviation
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• VVVV is the journal volume

• M is a journal type identifier

• PPPP is the start page of the article

• A is the first letter of the first author’s last name

The fields are padded with full stops to prevent empty spaces and the & is a legal

character in the journal title abbreviation.

The citation data is not guaranteed to be complete as there are issues with

automating the extraction of references as described in Section 3.2.2. There is a form

for users who find missing or incorrect references in the data to update the ADS

database.

An overview of the project is given by Kurtz et al. [2000]. The architecture is

described by Accomazzi et al. [2000], the search engine by Eichhorn et al. [2000] and

the data holdings Grant et al. [2000].

A.2 arXiv

arXiv is the most widely used pre-print server, at one point with mirrors in seven

countries around the world [arXiv.org, 2014]. It started service in August, 1991 as

xxx.lanl.gov hosted by the Los Alamos National Laboratory and its initial submis-

sions reflect that origin in High-Energy Physics. It now accepts submissions in physics,

mathematics, computer science quantitative biology, quantitative finance and statis-

tics. The articles submitted to it are not peer reviewed, although moderators ensure

that papers are relevant to the available categories. Indiscriminant downloads are pro-

hibited because the repository is hosted on a small server which cannot handle large

network traffic. To keep the service available to everyone, scripts downloading many

articles in a short period of time are banned.

They offer access to PDF and PostScript files, which they generate from the

original sources on the server before sending them out. They will also provide a DVI
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file or the original source, which depends on the submission format. The original source

files are frequently in a more structured format (LATEX) than the published version.

After discussions with Jake Weiskoff, an arXiv administrator, I was given a tar

file of 2671 papers to download which resulted from a search for the term Dark Matter

at the arXiv site on 20 November 2008. They provided the source files, mostly LATEX,

with a few PostScript files, PDF, HTML and Microsoft Word documents.
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B LATEXML

LATEXML is a package that converts LATEXfiles to XML, assisted with bindings to

customise the rendering of different style files. Bruce Miller created LATEXML to

support the Digital Library of Mathematical Functions for creating web pages from

mathematics papers written in LATEX source files Miller [2014]. It is located at

http://dlmf.nist.gov/LaTeXML/. Another large contributor to the project is the

KWARC (Knowledge Adaptation and Reasoning for Content) group for bringing math-

ematics to the influence of the Semantic Web.

Usage: latexml options –destination=doc.xml doc

Bindings

LATEXML bindings handle the translation of LATEX style files into instructions that

latexml can render into XML. Many bindings have already been written for the style

files in wider use. If the binding hasn’t been created for a paper which requires it,

the --includestyles directive tells latexml to read any style files in its path and

to proceed accordingly. In cases where latexml still fails to process the LATEX file,

a binding needs to be created. As we are dealing with LATEX files crafted by over

1000 authors who are not always proficient in LATEX (usually modifying someone else’s

document to fit their purpose), the quality of LATEX varies from document to document.

Rather than find the source of an error in LATEX, authors can be tempted to add in

any LATEX command that will silence the warnings. Unfortunately, errors that the

LATEX processor will ignore can halt LATEXML. One example is arXiv:hep-ex/0311034

where the author has used the \abstract{} command to start the paper which has

a \begin{indent} directive, but not used a maketitlepage directive that calls the

\end{indent} to close the abstract. To make LATEX successfully parse the file, the

author has added a \end{indent} at the end of the document. While this technique

is efficient in author time, it leaves me in the position of having to correct the source
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file if a suitable binding cannot be created.

XML

As mentioned in Section 4.2, the advantage of converting the document into an XML

representation is the different parsing options available. Stream or event-based parsers

are fast and memory efficient because they only examine one chunk of data at a time,

process it and move on. This is fine if working with individual objects within the

document is desired. When dealing with the document structure is preferred, a tree-

based parser will examine the whole document and produce a hierarchical structure

held in memory with which the document can be traversed very quickly. Generating

that hierarchical structure is very costly in processor time, so it is not ideal for simple

parsing tasks.

B.1 LATEXML and Equations

LATEXML can produce three XML representations of equations marked up in LATEX

format. The command latexmlpost can produce output in MathImages, MathML

and OpenMath formats. These representations capture the mathematical semantics,

easing the job of handling equations programatically.
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C Algorithms and Software

This appendix contains a pseudocode description of the k-means and Louvain algo-

rithms and issues relating to the software and database schema used to download and

process the data.

k-means Algorithm

The k-means algorithm was first published in 1955 and is still widely used [Jain, 2010,

Jain and Grewal, 2016]. It can be sensitive to the choice of initial centroid seeds,

getting stuck in a local minimum and not finding the global minimum that produces

the most optimal clusters. To avoid sub-optimal clusters, the algorithm should choose

initial cluster centroids at random and be repeated several times to find the best set

of clusters, as measured by the residual sum of squares of cluster members from their

closest centroid.

Input: a list of documents , @Corpus

Output: the residual sum of squares (a measure of quality),

a set of k clusters , @Clusters , each containing a document list

set initial cluster centroids , @Centroids = {C1 .. Ck},

from k randomly selected documents from Corpus

while ($Residual_Sum_of_Squares > termination_condition) {

# find closest centroid to paper

foreach paper (@Corpus) {

$max_similarity = 0;

for ($i = 1; $i <= k; $i++) {

$dot = dot_product(paper , $Centroid[i]);

if ($dot > $max_similarity) {

$max_similarity = $dot;

$best_cluster = $i;

}

}

push $Clusters[best_cluster], paper;

}

# re -calculate cluster centroids
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for ($i = 1; $i <= k; $i++) {

foreach paper ( $Clusters[$i] ) {

cluster_terms += paper_terms;

}

centroid = sort_by_term_frequency (cluster_terms );

truncate_to_first_1000_terms (centroid );

$Centroids[$i] = centroid;

}

# calculate the Residual Sum of Squares

for ($i = 1; $i <= k; $i++) {

foreach paper ( $Clusters[$i] ) {

$Residual_Sum_of_Squares += distance(paper , $Centroids[$i]);

}

}

}

return $Residual_Sum_of_Squares , @Clusters;

Louvain Community Detection Algorithm

Given a network of nodes, the algorithm finds the partition that maximises the mod-

ularity parameter, Q, given in Equation 3.2. The algorithm is not exact. It takes

advantage of a property of the change in modularity, dQ given in Equation 3.3, to

make the algorithm more efficient. It starts by assigning each node to its own commu-

nity and then building larger communities by evaluating which communities to merge

to increase modularity.

Input: a graph of nodes and links

Output: a file containing a list of nodes with their communities

for each pass

foreach node i {

place node i in community i

}

PASS: do {

if (first iteration)

Q_old = 0

else
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Q_old = Q

foreach node i {

foreach neighbour j of node i {

calculate dQ of removing i from its community

and putting it with j

}

select community k with highest value of dQ

if ( dQ > 0 )

place node i in community k

}

calculate Q

} while ( Q > Q_old )

if (number of communities > 1) {

store list of nodes with their communities

foreach community j {

new_link jk = sum (links from nodes in community j

to nodes in community k)

}

foreach community i {

new_node i = community i

}

# network now consists of new_nodes connected by new_links

do PASS

}

Astro::ADS

Astro::ADS is a suite of four Perl modules written by Alastair Allen in 2002 as a part

of the eSTAR project at University of Exeter. This bundle of modules is available via

CPAN, the Comprehensive Perl Archive Network [Tregar, 2002].

Issues Raised by the Ampersand in Bibcodes

Because the ampersand, &, is an allowed character in ADS bibcodes, a conflict can

arise with encoding the bibcode in the URL used to fetch a paper from the ADS
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webservice.

The bibcode is constructed using codes derived from the year of publication,

the journal in which is was published, its page and first author. There are a small

number of journals in bibcode format that contain an ampersand, such as Astronomy

& Astrophysics (A&A) and Annual Reviews of Astronomy & Astrophysics (ARA&A).

When passed to a webserver unencoded, an ampersand is interpreted as the start of

a new key-value pair to be handled by the server. This results in the server seeing a

truncated bibcode and returning results from a different publication. In a large data

gathering exercise, such erroneous results could introduce hard to explain features.

Missing References

When reporting the references received from the ADS, the loop stopped at the penul-

timate reference and exited leaving the last reference unreported. With the average

paper having 20 references or more, this translates to a less than 5% error in the number

of references reported.

Patches

The two patches submitted to the Astro::ADS author to rectify the ampersand bug

and the missing references are listed below.

@@ -730,7 +732 ,10 @@

# loop round all the options keys and build the query

foreach my $key ( keys %{$self ->{OPTIONS }} ) {

- $options = $options . "&$key=${$self ->{OPTIONS }}{ $key}";

+ # some bibcodes have & and needs to be made "web safe"

+ my $websafe_option = ${$self ->{OPTIONS }}{ $key};

+ $websafe_option =~ s/&/%26/g;

+ $options = $options . "&$key=$websafe_option";

}

# build final query URL

@@ -903,8 +908,8 @@



137

# LOOP THROUGH PAPER

my ( @title , @authors , @affil , @journal , @pubdate , @keywords ,

@origin , @links , @url , @object , @abstract , @score );

- while ( substr( $buffer[$counter], 0, 2 ) ne "%R" &&

- $counter < $#buffer ) {

+ while ( $counter <= $#buffer &&

+ substr( $buffer[$counter], 0, 2 ) ne "%R" ) {

# grab the tags

if( substr( $buffer[$counter], 0, 1 ) eq "%" ) {

MySQL Database Schema

The following statements are the commands to create the MySQL tables which describe

the schema of the database used to store the collected data from the ADS.

create table ads_references ( paper_bib VARCHAR (19),

reference_bib VARCHAR (19) );

create table ads_citations ( paper_bib VARCHAR (19),

citation_bib VARCHAR (19) );

create table ads_data ( paper_bib VARCHAR (19) primary key ,

title VARCHAR (120), authors VARCHAR (350),

keywords VARCHAR (256), journal VARCHAR (100),

published VARCHAR (7) );

create table bibcodes_wanted ( bibcode varchar (19) );

create table bibcodes_fetched ( bibcode varchar (19) );

create table arxiv2bibcode ( arxiv_id VARCHAR (30),

bibcode VARCHAR (19),

category VARCHAR (18) );

create table bad_papers ( bibcode varchar (19),

reason varchar (40) );

create table citations_removed ( paper_bib VARCHAR (19),

citation_bib VARCHAR (19),

reason varchar (40) );

create table references_removed ( paper_bib VARCHAR (19),

reference_bib VARCHAR (19),

reason varchar (40) );
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CLAIRLIB

The University of Michigan Computational Linguistics and Information Retrieval

group, under the direction of Dragomir Radev, has produced the Clair Library suite of

Perl modules to aid tasks in Natural Language Processing, Information Retrieval and

Network Analysis [Radev et al., 2007]. Its most recent version, 1.08, was last updated

September 2009.
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D Mathematical Notes

This section contains the mathematical derivation of the error estimation due to in-

complete normalisation of documents during document parsing that is presented in

Section 4.3.3.

Incomplete Normalisation

To estimate the difference in cosine similarity as a result of the incomplete normalisation

of a document, begin by calculating the error induced by one word having two forms,

i.e. the distance between the two vectors that differ by the final term being reduced to

create a new term.

Let us take the case of a generalised vector representation of a document where

one term has two semantically equivalent forms.

Let the normalised vector have n terms with term-frequencies fi and take the un-

normalised representation to be the nth term split between two forms with frequencies,

fn − g and g.

The cosine similarity between two documents is defined as the dot product of

the vector representation of each document divided by the magnitudes of the vector

representations.

sim(d1, d′1) =
�V (d1) ⋅ �V (d′1)Ȃ �V (d1) ȂȂ �V (d′1) Ȃ

where �V (d1) is the vector representation of the normalised document, d1, and

�V (d′1) is the vector representation of the un-normalised document, d
′

1.

Therefore, the cosine similarity between the normalised and un-normalised vec-

tors is given by:
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sim(d1, d′1) =

n−1

∑
i=1

f
2
i + fn(fn − g) + 0 ⋅ g√√√√√√⎷n−1

∑
i=1

f 2
i + f 2

n

√√√√√√⎷n−1
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f 2
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n
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f
2
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( n

∑
i=1

f
2
i − fng)2

( n

∑
i=1

f
2
i )2

+ 2g
2

n

∑
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2
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2
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2
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Two identical documents produce a maximum similarity of 1, therefore when we

subtract this expression from 1, we can then produce a Maclaurin series (a power series

expansion about the 0 point) to estimate the error produced by a single un-normalised
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term. The form of the equation is

f(x) = 1 −
1√

1 + x

for which the Maclaurin series [Boas, 1983]

f(x) = f(0) + xf
′(0) + 1

2!
x
2
f
′′(0) +Ȃ+

1

n!
x
n
f
(n)(0) +Ȃ

is

f(x) = 0 + x ⋅
1

2
(1 + x)−3/2 + x

2

2
⋅
−3

4
(1 + x)−5/2 + . . .

f(x) = 1

2

√
x2

(1 + x)3 −
3

8

√
x4

(1 + x)5 + . . .

where x =
2g

2 ∑n

i=1
f
2

i −g
2
f
2

n(∑n

i=1
f2

i
−fng)2

Ignoring the higher order terms which converge to zero because this is an alter-

nating series with each higher term smaller than the preceding one, we see that

f(x) ≈ x ⋅
1

2
(1 + x)−3/2 < x

2

as (1 + x)−3/2 < 1 with x positive.

Therefore, the error induced by a single un-normalised term is less than the

following term.

error <
2g

2∑n

i=1 f
2
i − g

2
f
2
n

2(∑n

i=1 f
2
i − fng)2 <

g
2 ∑n

i=1 f
2
i(∑n

i=1 f
2
i − fng)2

To give a simple example of that, let us take a small document with 50 terms

found four times each in the document. Split one of the terms equally in two in order

to produce the greatest effect. This gives us n = 50, fi = 4 for all i and g = 2. For this

small document, the error is less than 0.51%.

For future work to improve the utility of this calculation for estimating the effect

of polysemy in Text Mining, consider the case of n unnormalised terms on the cosine

similarity function and observe at what point the error overwhelms the similarity.
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E The Dark Matter Problem

This appendix outlines an extremely short introduction to the Dark Matter problem

to assist in understanding the keywords and labels encountered. A selected list for

further reading on the topic can be found at the end.

Initial Observations

In astronomy, the information collected about the universe comes to us almost exclu-

sively in the form of electronic radiation—light at all wavelengths. Estimates of mass

are derived either from measuring the luminosity of an object and using empirical re-

lationships between mass and luminosity, Υ, for different types of object or from its

gravitational effects on nearby objects [Binney and Tremaine, 2008]. The motion of

an object can be determined from its redshift, where a known wavelength of light is

shifted towards longer wavelengths (a reddening) for motion away from us and shorter

wavelengths for motion towards us (the equivalent of the Doppler shift for light).

The first evidence of Dark Matter was reported in Zwicky [1933] where the grav-

itational pull of several galaxies on other members of their galaxy cluster was found to

exceed the mass determined by the mass derived from their visible light. The study

of Dark Matter has increased exponentially since a clear example of this discrepancy

was observed in 1969 by Vera Rubin and Kent Ford [Rubin and Ford, 1970]. They

measured the rotation curves of spiral galaxies and found that the outer arms of the

spirals were orbiting the galactic core faster than indicated by the luminosity profile.

Methods of Detection

Methods of detecting Dark Matter observationally range from measuring rotation

curves of spiral galaxies to “gravitational lensing”, using the bending of light by mass as
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explained by Einstein’s Theory of General Relativity [Blandford and Narayan, 1992].

COBE was a satellite experiment to measure fluctuations in the Cosmic Microwave

Background, the afterglow of the Big Bang, and its observations were used to indicate

which of the many models of the universe, frequently incorporating some type of Dark

Matter such as Cold Dark Matter were more plausible than others [Ostriker, 1993].

Candidates

Candidates for the physical manifestation of Dark Matter are split into two classes,

baryonic and non-baryonic [Feng, 2010].

Baryonic candidates are made of normal matter and include high mass objects

(e.g. black holes, neutron stars and white dwarfs) and lower mass objects (e.g. brown

dwarfs, planets, interstellar gas and dust) [Carr, 1994].

Non-Baryonic candidates are of interest to High Energy and Particle Physics

community who are eager to try to explain the phenomena with exotic particles or

new forms of matter and seek out the existence and character of particles such as the

neutrino, ν, the gravitino, Ḡ and others in the class called Weakly Interacting Massive

Particles (WIMP). One theoretical particle of great interest is the sterile neutrino which

only interacts via gravity and not the weak force. Evidence (or the lack of it) for these

particles is found in neutrino detectors (such as the Sudbury Neutrino Observatory)

and particle colliders (such as the Large Hadron Collider).

Alternative Theories

Until Dark Matter is detected directly, there will always be some researchers exploring

the hypothesis that Dark Matter does not exist and that our understanding of gravity at

large scales requires re-evaluation [Sanders and McGaugh, 2002]. Very much a minority

position, MOND (MOdified Newtonian Dynamics) theorists propose a model of new
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physics that alters the equations of Newton and Einstein at distances greater than

10
18
m to account for discrepancies between observations and standard gravitational

theory.

Other alternatives include Brane cosmology. Related to string theory, it pro-

poses that dark matter is a manifestation of matter existing in higher dimensions than

our normal three dimensions of space. Attempting to explain the Standard Model of

physics, it bridges the fields of cosmology and particle physics.

The Bullet Cluster - a Test of Two Theories

A test of the two competing theories, Dark Matter and MOND, was found in the Bullet

Cluster (X-ray catalogue identifier 1E 0657-558), a pair of galaxies which have collided

and were discovered in 2006. Observations seemed to favour the Dark Matter models

over MOND, but the interpretation is still disputed.

References

An excellent introduction to cosmology is Big Bang by Silk [2001]. It uses no math-

ematics in the main portion of the text, yet manages to explain the phenomena at a

deep level. General introductions to Dark Matter range from Structure of the Universe

by Gribbin [1990] to Quintessence by Krauss [2001], but the only mention of MOND is

a few pages in Origins by Tyson [2004]. Galactic Dynamics by Binney and Tremaine

[2008] is an advanced undergraduate textbook also used in post-graduate studies. Re-

searchers seeking an introduction to the topic are directed to several reviews in the

Annual Reviews of Astronomy & Astrophysics by the following: Trimble [1987], Carr

[1994], Sanders and McGaugh [2002], Ostriker [1993], Porter et al. [2011], Blandford

and Narayan [1992] and Feng [2010].
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F Stop Words and Group Data

Lingua::EN::StopWords

This list of stopwords is used by the Perl module Lingua::EN::StopWords to assist in

removing words before processing.
Table F.1: Lingua::EN::StopWords

these forth which both another nobody many
far if himself him own always also
deep selves each what although them inward
your somebody but again too and several
over of kept still is all being
she will nor have much neither when
said it nowhere every either can besides
where instead gets within often were next
yourself a would almost off no thus
etc might got in quite upon very
somewhat ours only toward anything by myself
mine they whose after doing am his
get i anyone under thoroughly across well
through there while adj as anywhere themselves
please everybody nothing everyone because itself however
around others along cannot has that not
whatever on our who shall mostly its
out whenever theirs ought seem some hardly
with apart behind here must none aside

Continued on next page
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did do into to herself indeed from
towards really her below during any pp
plus alone then downwards more an the
against done onto yet since self or
could does anybody few down about whom
this before so enough for how v
per outside else among near those rather
their other be whether such away thorough
ever even most therefore young up beyond
are having been above should at together
except had maybe between without than until
p was just

corpus tf pruned

These words were found in top 200 most common words in the corpus and are included

in the extended Stop List.
Table F.2: Extended stopword list derived from the Dark Matter Corpus

we one s two al et e given
results see fig value number may section using
high values low eq g first figure range
same non used due present form shown larger
found show find use possible lower expected smaller
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Group Data

Table F.3: Constituent Data for Group Membership in the citation network clustering.
The Group id is an arbitrary number assigned by the Louvain clustering program. N is
the number of members in the group. Columns a, h, m and o refer to the percentage
of N members which belong to categories astro-ph, hep, mond and other. Label is
made from the top seven keywords given to the members of the group.

Group id N a h m o Label
92 476 72 28 0 1 high energy physics; phenomenology; supersymmetric models;

galaxy; theory; experiment; supersymmetry
211 45 100 0 0 0 gravitational lensing; theory; halos; quasars; general; formation;

large-scale structure of universe
213 642 99 0 0 0 theory; methods; clusters; formation; large-scale structure of uni-

verse; general; halos
263 3 100 0 0 0 phenomenology; high energy physics
377 2 0 0 0 100 general physics
424 10 100 0 0 0 black hole physics; nuclei; population iii stars; spatial distribution

of galaxies; galactic halo; structure; evolution
486 24 83 17 0 0 high energy physics; phenomenology; extensions of electroweak

gauge sector; gamma-ray sources; other gauge bosons; unidentified
sources of radiation outside the solar system; radio

544 52 88 12 0 0 x-rays; individual; neutrinos; particle-theory and field-theory mod-
els of the early universe; black hole physics; elementary particles;
galaxy

587 2 100 0 0 0 technicolor models; phenomenology; high energy physics; particle-
theory and field-theory models of the early universe

683 2 0 0 0 100 particle-theory and field-theory models of the early universe; cosmic
rays

691 109 24 1 67 8 gravitation; kinematics and dynamics; clusters; theory; general;
high energy physics; general relativity and quantum cosmology

700 56 93 0 5 2 kinematics and dynamics; structure; individual; halos; ism; evolu-
tion; spiral

719 2 100 0 0 0 dwarf; irregular; evolution; abundances
726 2 100 0 0 0 galaxy; clouds; submillimetre; evolution; halo; starburst; large-scale

structure of universe
739 255 72 9 1 18 theory; high energy physics; dark energy; general relativity and

quantum cosmology; particle-theory and field-theory models of the
early universe; phenomenology; observational cosmology

808 2 0 100 0 0 high energy physics; phenomenology; theory
811 13 100 0 0 0 gravitational lensing; large-scale structure of universe; methods; im-

age processing; theory; numerical; astronomical techniques
900 5 100 0 0 0 neutrinos; phenomenology; muons; neutrino oscillations; neutrino

mass; nonluminous matter; supernovae
914 73 99 0 0 1 galaxy; gravitational lensing; halo; stars; gravitational microlens-

ing; ism; brown dwarfs
949 7 100 0 0 0 phenomenology; high energy physics; galaxy; black hole physics;

center; hypothetical particles; stellar evolution
1034 2 50 0 0 50 hubble law; carmeli cosmology; anomalous acceleration; mond
1078 25 96 0 4 0 cosmic microwave background; clusters; general; theory; large-scale

structure of universe; intergalactic medium; gravitational lensing
1082 20 95 0 0 5 cosmic rays; hypothetical particles; phenomenology; early universe;

superheavy dark matter; neutrino; active and peculiar galaxies and
related systems

Continued on next page
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Group id N a h m o Label

1125 63 94 0 6 0 kinematics and dynamics; galaxy; methods; dwarf; local group;
structure; evolution

1165 2 100 0 0 0 phenomenology; high energy physics
1281 2 100 0 0 0 supersymmetry; gamma-ray sources; gamma-ray bursts
1391 3 100 0 0 0 protoplanetary disks; planetary systems; instabilities; stars; mag-

netic fields; mhd; magnetohydrodynamics
1400 5 100 0 0 0 theory; bursts; high energy physics; gamma rays; galaxy; phe-

nomenology; early universe
1552 6 83 0 17 0 star clusters; individual; clusters; general; messier number; stellar

dynamics; stellar content
1705 22 73 14 0 14 theory; cosmic strings; high energy physics; particle-theory and

field-theory models of the early universe; phenomenology; large-
scale structure of universe; spatial distribution of galaxies

1814 44 98 0 2 0 elliptical and lenticular; kinematics and dynamics; cd; individual;
halos; haloes; structure

1848 2 100 0 0 0 high energy physics; theory; phenomenology; general relativity and
quantum cosmology

4585 8 100 0 0 0 galaxy; stars; white dwarfs; stellar content; structure; halo; lumi-
nosity function

4850 55 100 0 0 0 theory; formation; stars; early universe; evolution; intergalactic
medium; quasars

4910 11 9 91 0 0 neutrino mass and mixing; neutrino mass; baryogenesis; phe-
nomenology; quark and lepton masses and mixing; black holes;
primordial galaxies

5881 6 100 0 0 0 baryogenesis; composition; detection; neutrinos; nucleosynthesis
5930 15 87 13 0 0 phenomenology; high energy physics; cosmic microwave back-

ground; big bang nucleosynthesis; large scale structure; elementary
particle processes; galaxy c

5931 40 42 55 0 2 high energy physics; phenomenology; particle-theory and field-
theory models of the early universe; supersymmetric models; early
universe; physics; experiment

5940 13 100 0 0 0 formation; theory; large-scale structure of universe; evolution; stel-
lar content; methods; halos

5955 11 27 45 0 27 theory; high energy physics; general relativity and quantum cosmol-
ogy; extensions of electroweak gauge sector; brane; models beyond
the standard model; field theories in dimensions other than four

5960 5 100 0 0 0 ism; clouds; large-scale structure of universe; molecules
5966 5 100 0 0 0 galaxy; ism; structure; gamma rays; bubbles; local group; clouds
5967 13 85 15 0 0 axions and other nambu-goldstone bosons; galaxy; dwarf; instru-

mentation; radio, microwave; particle emission; solar neutrinos
5969 3 100 0 0 0 shock waves; instabilities; radio; x-ray; microwave; gamma-ray; ac-

celeration of particles
5973 77 52 48 0 0 cosmic rays; high energy physics; phenomenology; supersymmetric

partners of known particles; supersymmetric models; galactic halo;
gamma-ray
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Group Similarity measurements

Table F.4: Group comparisons of Similarity, Group Size and Link Saturation for 31
citation network communities presented in Figure 5.3 (2 column layout).

Group ids Similarity σ N1 N2 Links Group ids Similarity σ N1 N2 Links

92 92 0.315 0.128 476 476 5182 92 211 0.212 0.080 476 45 13
92 213 0.233 0.097 476 642 621 92 263 0.277 0.083 476 3 11
92 321 0.215 0.081 476 2 0 92 377 0.252 0.080 476 2 0
92 486 0.325 0.113 476 24 100 92 544 0.261 0.098 476 52 53
92 587 0.356 0.097 476 2 9 92 683 0.271 0.092 476 2 0
92 700 0.220 0.092 476 56 18 92 719 0.203 0.077 476 2 0
92 726 0.179 0.063 476 2 0 92 739 0.254 0.092 476 255 78
92 808 0.272 0.094 476 2 1 92 822 0.196 0.075 476 2 2
92 900 0.253 0.111 476 5 3 92 914 0.218 0.085 476 73 22
92 949 0.257 0.089 476 7 6 92 957 0.197 0.079 476 2 0
92 4585 0.145 0.055 476 8 0 92 4850 0.241 0.101 476 55 83
92 4903 0.233 0.084 476 2 3 92 5092 0.241 0.090 476 3 5
92 5881 0.266 0.122 476 6 0 92 5931 0.250 0.107 476 40 54
92 5957 0.222 0.067 476 2 1 92 5960 0.207 0.089 476 5 0
92 5966 0.243 0.095 476 5 3 92 5969 0.254 0.107 476 3 9
92 5973 0.308 0.110 476 77 383 211 211 0.401 0.120 45 45 94

211 213 0.299 0.100 45 642 116 211 263 0.190 0.044 45 3 0
211 321 0.210 0.050 45 2 0 211 377 0.259 0.055 45 2 0
211 486 0.227 0.072 45 24 0 211 544 0.227 0.080 45 52 9
211 587 0.236 0.048 45 2 0 211 683 0.161 0.048 45 2 0
211 700 0.292 0.097 45 56 4 211 719 0.261 0.072 45 2 0
211 726 0.273 0.072 45 2 0 211 739 0.236 0.081 45 255 8
211 808 0.292 0.061 45 2 0 211 822 0.174 0.052 45 2 0
211 900 0.191 0.080 45 5 0 211 914 0.276 0.089 45 73 9
211 949 0.227 0.066 45 7 0 211 957 0.254 0.081 45 2 1
211 4585 0.184 0.056 45 8 0 211 4850 0.223 0.086 45 55 1
211 4903 0.163 0.044 45 2 0 211 5092 0.178 0.073 45 3 0
211 5881 0.307 0.085 45 6 0 211 5931 0.193 0.080 45 40 0
211 5957 0.148 0.034 45 2 0 211 5960 0.204 0.051 45 5 0
211 5966 0.300 0.085 45 5 0 211 5969 0.198 0.052 45 3 0
211 5973 0.214 0.068 45 77 2 213 213 0.349 0.116 642 642 7232
213 263 0.214 0.074 642 3 3 213 321 0.259 0.071 642 2 0
213 377 0.275 0.072 642 2 0 213 486 0.245 0.096 642 24 22
213 544 0.255 0.099 642 52 214 213 587 0.267 0.080 642 2 1
213 683 0.216 0.092 642 2 0 213 700 0.311 0.110 642 56 178
213 719 0.260 0.079 642 2 0 213 726 0.257 0.091 642 2 2
213 739 0.260 0.096 642 255 205 213 808 0.302 0.089 642 2 1
213 822 0.232 0.074 642 2 0 213 900 0.202 0.099 642 5 7
213 914 0.236 0.095 642 73 19 213 949 0.239 0.083 642 7 1
213 957 0.266 0.070 642 2 0 213 4585 0.180 0.053 642 8 1
213 4850 0.254 0.098 642 55 94 213 4903 0.201 0.078 642 2 10
213 5092 0.196 0.081 642 3 0 213 5881 0.313 0.127 642 6 0
213 5931 0.211 0.096 642 40 50 213 5957 0.179 0.058 642 2 0
213 5960 0.223 0.072 642 5 0 213 5966 0.293 0.083 642 5 2
213 5969 0.241 0.077 642 3 0 213 5973 0.230 0.083 642 77 83
263 263 0.773 0.090 3 3 6 263 321 0.244 0.081 3 2 0
263 377 0.292 0.031 3 2 0 263 486 0.330 0.069 3 24 0
263 544 0.271 0.060 3 52 0 263 587 0.605 0.165 3 2 3
263 683 0.419 0.064 3 2 0 263 700 0.198 0.061 3 56 0
Continued on next page
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Group ids Similarity σ N1 N2 Links Group ids Similarity σ N1 N2 Links

263 719 0.202 0.073 3 2 0 263 726 0.143 0.033 3 2 0
263 739 0.290 0.068 3 255 0 263 808 0.322 0.040 3 2 0
263 822 0.155 0.027 3 2 0 263 900 0.259 0.073 3 5 0
263 914 0.198 0.077 3 73 0 263 949 0.254 0.044 3 7 0
263 957 0.214 0.030 3 2 0 263 4585 0.122 0.035 3 8 0
263 4850 0.232 0.067 3 55 2 263 4903 0.344 0.071 3 2 0
263 5092 0.292 0.036 3 3 0 263 5881 0.241 0.101 3 6 0
263 5931 0.318 0.123 3 40 3 263 5957 0.262 0.021 3 2 0
263 5960 0.218 0.090 3 5 0 263 5966 0.218 0.055 3 5 0
263 5969 0.237 0.030 3 3 0 263 5973 0.310 0.071 3 77 1
321 377 0.435 0.039 2 2 0 321 486 0.227 0.067 2 24 0
321 544 0.218 0.064 2 52 0 321 587 0.290 0.070 2 2 0
321 683 0.264 0.083 2 2 0 321 700 0.284 0.083 2 56 0
321 719 0.195 0.014 2 2 0 321 726 0.175 0.052 2 2 0
321 739 0.332 0.097 2 255 0 321 808 0.263 0.062 2 2 0
321 822 0.243 0.046 2 2 0 321 900 0.151 0.060 2 5 0
321 914 0.204 0.067 2 73 0 321 949 0.262 0.088 2 7 0
321 957 0.263 0.062 2 2 0 321 4585 0.152 0.044 2 8 0
321 4850 0.202 0.065 2 55 0 321 4903 0.219 0.080 2 2 0
321 5092 0.204 0.063 2 3 0 321 5881 0.247 0.080 2 6 0
321 5931 0.202 0.075 2 40 0 321 5957 0.200 0.048 2 2 0
321 5960 0.266 0.106 2 5 0 321 5966 0.248 0.054 2 5 0
321 5969 0.221 0.046 2 3 0 321 5973 0.210 0.058 2 77 0
377 486 0.267 0.066 2 24 0 377 544 0.255 0.067 2 52 0
377 587 0.372 0.040 2 2 0 377 683 0.269 0.023 2 2 0
377 700 0.305 0.073 2 56 2 377 719 0.239 0.024 2 2 0
377 726 0.229 0.016 2 2 0 377 739 0.347 0.092 2 255 0
377 808 0.369 0.044 2 2 0 377 822 0.254 0.049 2 2 0
377 900 0.237 0.086 2 5 0 377 914 0.263 0.078 2 73 0
377 949 0.283 0.053 2 7 0 377 957 0.359 0.029 2 2 0
377 4585 0.173 0.047 2 8 0 377 4850 0.210 0.067 2 55 0
377 4903 0.255 0.052 2 2 0 377 5092 0.232 0.027 2 3 0
377 5881 0.333 0.084 2 6 0 377 5931 0.232 0.086 2 40 0
377 5957 0.213 0.021 2 2 0 377 5960 0.271 0.065 2 5 0
377 5966 0.293 0.054 2 5 0 377 5969 0.225 0.032 2 3 0
377 5973 0.236 0.058 2 77 0 486 486 0.482 0.120 24 24 154
486 544 0.280 0.087 24 52 7 486 587 0.397 0.082 24 2 0
486 683 0.360 0.088 24 2 0 486 700 0.237 0.081 24 56 0
486 719 0.239 0.081 24 2 0 486 726 0.201 0.067 24 2 0
486 739 0.275 0.086 24 255 4 486 808 0.314 0.084 24 2 0
486 822 0.205 0.063 24 2 0 486 900 0.239 0.086 24 5 0
486 914 0.234 0.083 24 73 0 486 949 0.292 0.074 24 7 0
486 957 0.206 0.052 24 2 0 486 4585 0.161 0.062 24 8 0
486 4850 0.271 0.108 24 55 17 486 4903 0.262 0.084 24 2 1
486 5092 0.249 0.072 24 3 0 486 5881 0.286 0.105 24 6 0
486 5931 0.268 0.103 24 40 2 486 5957 0.253 0.051 24 2 0
486 5960 0.215 0.081 24 5 0 486 5966 0.276 0.092 24 5 0
486 5969 0.302 0.118 24 3 0 486 5973 0.382 0.109 24 77 22
544 544 0.443 0.154 52 52 902 544 587 0.361 0.092 52 2 0
544 683 0.279 0.078 52 2 0 544 700 0.231 0.086 52 56 1
544 719 0.218 0.078 52 2 0 544 726 0.202 0.074 52 2 0
544 739 0.266 0.087 52 255 17 544 808 0.300 0.073 52 2 0
544 822 0.182 0.057 52 2 0 544 900 0.420 0.154 52 5 0
544 914 0.214 0.085 52 73 1 544 949 0.307 0.107 52 7 6
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544 957 0.237 0.072 52 2 0 544 4585 0.154 0.058 52 8 0
544 4850 0.254 0.102 52 55 55 544 4903 0.218 0.068 52 2 0
544 5092 0.229 0.073 52 3 0 544 5881 0.284 0.120 52 6 0
544 5931 0.269 0.105 52 40 24 544 5957 0.227 0.059 52 2 0
544 5960 0.235 0.102 52 5 0 544 5966 0.244 0.077 52 5 0
544 5969 0.238 0.087 52 3 0 544 5973 0.281 0.087 52 77 15
587 683 0.406 0.017 2 2 0 587 700 0.243 0.067 2 56 0
587 719 0.234 0.086 2 2 0 587 726 0.179 0.043 2 2 0
587 739 0.342 0.076 2 255 0 587 808 0.390 0.091 2 2 0
587 822 0.224 0.024 2 2 0 587 900 0.388 0.123 2 5 0
587 914 0.240 0.086 2 73 0 587 949 0.306 0.053 2 7 0
587 957 0.257 0.039 2 2 0 587 4585 0.157 0.038 2 8 0
587 4850 0.294 0.092 2 55 0 587 4903 0.357 0.089 2 2 0
587 5092 0.328 0.055 2 3 0 587 5881 0.308 0.132 2 6 0
587 5931 0.349 0.110 2 40 1 587 5957 0.318 0.023 2 2 0
587 5960 0.263 0.099 2 5 0 587 5966 0.278 0.058 2 5 0
587 5969 0.283 0.064 2 3 0 587 5973 0.379 0.081 2 77 0
683 700 0.201 0.072 2 56 0 683 719 0.174 0.055 2 2 0
683 726 0.131 0.020 2 2 0 683 739 0.279 0.091 2 255 0
683 808 0.314 0.045 2 2 0 683 822 0.177 0.025 2 2 0
683 900 0.199 0.068 2 5 0 683 914 0.181 0.081 2 73 0
683 949 0.303 0.076 2 7 0 683 957 0.194 0.014 2 2 0
683 4585 0.094 0.028 2 8 0 683 4850 0.215 0.089 2 55 0
683 4903 0.300 0.116 2 2 0 683 5092 0.256 0.016 2 3 0
683 5881 0.229 0.090 2 6 0 683 5931 0.286 0.108 2 40 0
683 5957 0.296 0.019 2 2 0 683 5960 0.211 0.111 2 5 0
683 5966 0.205 0.039 2 5 0 683 5969 0.262 0.013 2 3 0
683 5973 0.296 0.070 2 77 0 700 700 0.394 0.140 56 56 152
700 719 0.326 0.084 56 2 1 700 726 0.268 0.079 56 2 0
700 739 0.249 0.096 56 255 26 700 808 0.287 0.079 56 2 0
700 822 0.225 0.072 56 2 0 700 900 0.181 0.081 56 5 0
700 914 0.252 0.099 56 73 6 700 949 0.245 0.077 56 7 2
700 957 0.262 0.066 56 2 0 700 4585 0.193 0.063 56 8 0
700 4850 0.225 0.092 56 55 2 700 4903 0.181 0.059 56 2 0
700 5092 0.176 0.070 56 3 0 700 5881 0.353 0.134 56 6 4
700 5931 0.192 0.087 56 40 0 700 5957 0.161 0.048 56 2 0
700 5960 0.229 0.071 56 5 0 700 5966 0.333 0.104 56 5 4
700 5969 0.217 0.062 56 3 0 700 5973 0.219 0.077 56 77 0
719 726 0.276 0.054 2 2 0 719 739 0.229 0.088 2 255 0
719 808 0.278 0.079 2 2 0 719 822 0.166 0.019 2 2 0
719 900 0.186 0.080 2 5 0 719 914 0.246 0.087 2 73 0
719 949 0.233 0.057 2 7 0 719 957 0.206 0.024 2 2 0
719 4585 0.256 0.049 2 8 0 719 4850 0.228 0.083 2 55 0
719 4903 0.180 0.046 2 2 0 719 5092 0.161 0.081 2 3 0
719 5881 0.303 0.074 2 6 0 719 5931 0.187 0.088 2 40 0
719 5957 0.154 0.065 2 2 0 719 5960 0.205 0.055 2 5 0
719 5966 0.297 0.043 2 5 0 719 5969 0.209 0.058 2 3 0
719 5973 0.219 0.074 2 77 0 726 739 0.195 0.062 2 255 0
726 808 0.234 0.068 2 2 0 726 822 0.153 0.044 2 2 0
726 900 0.160 0.052 2 5 0 726 914 0.265 0.099 2 73 5
726 949 0.237 0.084 2 7 0 726 957 0.236 0.042 2 2 0
726 4585 0.224 0.068 2 8 0 726 4850 0.216 0.083 2 55 0
726 4903 0.157 0.035 2 2 0 726 5092 0.130 0.045 2 3 0
726 5881 0.259 0.085 2 6 0 726 5931 0.159 0.067 2 40 0
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726 5957 0.131 0.036 2 2 0 726 5960 0.228 0.114 2 5 0
726 5966 0.324 0.090 2 5 0 726 5969 0.213 0.087 2 3 0
726 5973 0.182 0.059 2 77 0 739 739 0.374 0.123 255 255 1260
739 808 0.349 0.086 255 2 0 739 822 0.186 0.051 255 2 0
739 900 0.238 0.099 255 5 0 739 914 0.218 0.090 255 73 16
739 949 0.247 0.072 255 7 0 739 957 0.275 0.071 255 2 0
739 4585 0.145 0.051 255 8 0 739 4850 0.237 0.090 255 55 4
739 4903 0.258 0.080 255 2 1 739 5092 0.271 0.084 255 3 0
739 5881 0.276 0.108 255 6 0 739 5931 0.258 0.098 255 40 4
739 5957 0.257 0.065 255 2 0 739 5960 0.256 0.093 255 5 0
739 5966 0.252 0.083 255 5 0 739 5969 0.249 0.064 255 3 0
739 5973 0.273 0.083 255 77 8 808 822 0.225 0.022 2 2 0
808 900 0.261 0.116 2 5 0 808 914 0.285 0.102 2 73 0
808 949 0.271 0.039 2 7 0 808 957 0.375 0.065 2 2 0
808 4585 0.180 0.054 2 8 0 808 4850 0.285 0.091 2 55 0
808 4903 0.336 0.020 2 2 0 808 5092 0.267 0.083 2 3 0
808 5881 0.389 0.137 2 6 0 808 5931 0.321 0.110 2 40 0
808 5957 0.268 0.020 2 2 0 808 5960 0.289 0.101 2 5 0
808 5966 0.321 0.044 2 5 0 808 5969 0.216 0.076 2 3 0
808 5973 0.279 0.071 2 77 0 822 900 0.122 0.042 2 5 0
822 914 0.162 0.059 2 73 0 822 949 0.218 0.047 2 7 0
822 957 0.234 0.035 2 2 0 822 4585 0.136 0.048 2 8 0
822 4850 0.211 0.058 2 55 0 822 4903 0.171 0.045 2 2 0
822 5092 0.118 0.043 2 3 0 822 5881 0.230 0.096 2 6 0
822 5931 0.156 0.054 2 40 0 822 5957 0.141 0.015 2 2 0
822 5960 0.155 0.032 2 5 0 822 5966 0.230 0.032 2 5 0
822 5969 0.180 0.040 2 3 0 822 5973 0.177 0.050 2 77 0
900 900 0.593 0.184 5 5 2 900 914 0.194 0.082 5 73 0
900 949 0.278 0.143 5 7 0 900 957 0.197 0.089 5 2 0
900 4585 0.122 0.047 5 8 0 900 4850 0.196 0.086 5 55 0
900 4903 0.191 0.066 5 2 0 900 5092 0.194 0.084 5 3 0
900 5881 0.259 0.160 5 6 0 900 5931 0.226 0.104 5 40 0
900 5957 0.182 0.053 5 2 0 900 5960 0.216 0.134 5 5 0
900 5966 0.201 0.085 5 5 0 900 5969 0.186 0.058 5 3 0
900 5973 0.249 0.084 5 77 0 914 914 0.358 0.145 73 73 186
914 949 0.241 0.076 73 7 0 914 957 0.259 0.103 73 2 1
914 4585 0.264 0.125 73 8 11 914 4850 0.209 0.085 73 55 2
914 4903 0.196 0.077 73 2 0 914 5092 0.162 0.075 73 3 0
914 5881 0.306 0.114 73 6 1 914 5931 0.195 0.100 73 40 1
914 5957 0.152 0.055 73 2 0 914 5960 0.219 0.097 73 5 2
914 5966 0.291 0.105 73 5 0 914 5969 0.188 0.076 73 3 0
914 5973 0.207 0.075 73 77 1 949 949 0.407 0.175 7 7 0
949 957 0.255 0.066 7 2 0 949 4585 0.179 0.061 7 8 0
949 4850 0.236 0.089 7 55 0 949 4903 0.225 0.051 7 2 0
949 5092 0.184 0.049 7 3 0 949 5881 0.276 0.075 7 6 0
949 5931 0.220 0.083 7 40 1 949 5957 0.189 0.040 7 2 0
949 5960 0.230 0.085 7 5 0 949 5966 0.267 0.079 7 5 0
949 5969 0.241 0.100 7 3 0 949 5973 0.259 0.068 7 77 0
957 4585 0.169 0.044 2 8 0 957 4850 0.235 0.077 2 55 0
957 4903 0.237 0.033 2 2 0 957 5092 0.196 0.027 2 3 0
957 5881 0.305 0.071 2 6 0 957 5931 0.220 0.084 2 40 0
957 5957 0.204 0.038 2 2 0 957 5960 0.272 0.050 2 5 0
957 5966 0.277 0.049 2 5 0 957 5969 0.207 0.039 2 3 0
957 5973 0.186 0.052 2 77 0 4585 4585 0.594 0.172 8 8 16
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4585 4850 0.163 0.058 8 55 0 4585 4903 0.121 0.028 8 2 0
4585 5092 0.099 0.042 8 3 0 4585 5881 0.194 0.056 8 6 0
4585 5931 0.130 0.063 8 40 0 4585 5957 0.100 0.024 8 2 0
4585 5960 0.145 0.044 8 5 0 4585 5966 0.212 0.057 8 5 0
4585 5969 0.122 0.040 8 3 0 4585 5973 0.141 0.045 8 77 0
4850 4850 0.333 0.150 55 55 256 4850 4903 0.201 0.068 55 2 0
4850 5092 0.182 0.073 55 3 0 4850 5881 0.250 0.096 55 6 0
4850 5931 0.225 0.093 55 40 3 4850 5957 0.203 0.062 55 2 0
4850 5960 0.219 0.087 55 5 0 4850 5966 0.236 0.080 55 5 0
4850 5969 0.248 0.107 55 3 0 4850 5973 0.256 0.103 55 77 11
4903 5092 0.229 0.066 2 3 0 4903 5881 0.243 0.101 2 6 0
4903 5931 0.242 0.093 2 40 1 4903 5957 0.230 0.052 2 2 0
4903 5960 0.203 0.072 2 5 0 4903 5966 0.209 0.047 2 5 0
4903 5969 0.187 0.056 2 3 0 4903 5973 0.231 0.076 2 77 1
5092 5092 0.526 0.172 3 3 0 5092 5881 0.215 0.098 3 6 0
5092 5931 0.261 0.084 3 40 0 5092 5957 0.253 0.037 3 2 0
5092 5960 0.180 0.068 3 5 0 5092 5966 0.204 0.089 3 5 0
5092 5969 0.181 0.049 3 3 0 5092 5973 0.267 0.084 3 77 0
5881 5881 0.377 0.189 6 6 0 5881 5931 0.236 0.123 6 40 0
5881 5957 0.190 0.065 6 2 0 5881 5960 0.248 0.101 6 5 0
5881 5966 0.351 0.111 6 5 0 5881 5969 0.229 0.096 6 3 0
5881 5973 0.258 0.096 6 77 0 5931 5931 0.352 0.150 40 40 70
5931 5957 0.277 0.096 40 2 0 5931 5960 0.204 0.097 40 5 0
5931 5966 0.209 0.090 40 5 0 5931 5969 0.206 0.075 40 3 0
5931 5973 0.279 0.107 40 77 23 5957 5960 0.178 0.050 2 5 0
5957 5966 0.184 0.042 2 5 0 5957 5969 0.187 0.025 2 3 0
5957 5973 0.260 0.065 2 77 4 5960 5960 0.265 0.179 5 5 2
5960 5966 0.250 0.070 5 5 0 5960 5969 0.219 0.079 5 3 0
5960 5973 0.210 0.079 5 77 0 5966 5966 0.395 0.112 5 5 0
5966 5969 0.203 0.067 5 3 0 5966 5973 0.245 0.086 5 77 3
5969 5969 0.334 0.109 3 3 0 5969 5973 0.284 0.112 3 77 3
5973 5973 0.372 0.121 77 77 422 Ensemble 0.259 0.109
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Text corpus from arXiv

The following are the 2661 arXiv identifiers that were used to construct the Dark

Matter corpus.
Table F.5: arXiv ids constituting the Dark Matter corpus

physics/9911007 physics/9910044 physics/9908015 physics/9812021 physics/9808051 physics/0702132
physics/0702019 physics/0612072 physics/0611273 physics/0610136 physics/0610135 physics/0508098
physics/0506042 physics/0506002 physics/0504151 physics/0503079 physics/0408126 physics/0406159
physics/0405147 physics/0402075 physics/0401047 physics/0006040 nucl-th/9509026 nucl-th/0610120
nucl-th/0411021 nucl-ex/0702031 nucl-ex/0512012 nucl-ex/0410025 nucl-ex/0409014 nucl-ex/0202014
nucl-ex/0110003 hep-th/9610210 hep-th/0703070 hep-th/0702212 hep-th/0610240 hep-th/0602136
hep-th/0508161 hep-th/0507199 hep-th/0507182 hep-th/0505042 hep-th/0503062 hep-th/0411158
hep-th/0411025 hep-th/0404170 hep-th/0404099 hep-th/0403054 hep-th/0309150 hep-th/0307028
hep-th/0205207 hep-th/0205055 hep-th/0112036 hep-th/0110208 hep-th/0107259 hep-th/0103234
hep-th/0005033 hep-ph/0703310 hep-ph/0703181 hep-ph/0703130 hep-ph/0703097 hep-ph/0703056
hep-ph/0703024 hep-ph/0703014 hep-ph/0702223 hep-ph/0702184 hep-ph/0702143 hep-ph/0702080
hep-ph/0702051 hep-ph/0702041 hep-ph/0701271 hep-ph/0701266 hep-ph/0701233 hep-ph/0701229
hep-ph/0701197 hep-ex/9905042 hep-ex/9904034 hep-ex/9904005 hep-ex/9901021 hep-ex/9812020
hep-ex/9811040 hep-ex/9811022 hep-ex/9804007 hep-ex/9802007 hep-ex/9709019 hep-ex/9612014
hep-ex/0701025 hep-ex/0509004 hep-ex/0507086 hep-ex/0505053 hep-ex/0504031 hep-ex/0504022
hep-ex/0404042 hep-ex/0404025 hep-ex/0401032 hep-ex/0312049 hep-ex/0311034 hep-ex/0306001
hep-ex/0302022 hep-ex/0301039 hep-ex/0212055 hep-ex/0111073 hep-ex/0109013 hep-ex/0106015
hep-ex/0102013 hep-ex/0006015 hep-ex/0005031 hep-ex/0005003 gr-qc/9910048 gr-qc/9905101
gr-qc/9810028 gr-qc/9802054 gr-qc/9705024 gr-qc/9612019 gr-qc/9608035 gr-qc/9606039
gr-qc/9412053 gr-qc/9212005 gr-qc/0701100 gr-qc/0701087 gr-qc/0701040 ‡ gr-qc/0701012
gr-qc/0612163 gr-qc/0612159 gr-qc/0612053 gr-qc/0610104 gr-qc/0610083 gr-qc/0610029
gr-qc/0609038 gr-qc/0608054 gr-qc/0607125 gr-qc/0606058 gr-qc/0605046 gr-qc/0603134
gr-qc/9911007 gr-qc/0603128 gr-qc/0602095 gr-qc/0512120 gr-qc/0512109 gr-qc/0511082
gr-qc/0509093 gr-qc/0507104 gr-qc/0507090 gr-qc/0506108 gr-qc/0505035 gr-qc/0505031
gr-qc/0412096 gr-qc/0411062 gr-qc/0410026 gr-qc/0409059 gr-qc/0409023 gr-qc/0408026
gr-qc/0407083 gr-qc/0308054 gr-qc/0305086 gr-qc/0304017 gr-qc/0303047 gr-qc/0303031
gr-qc/0302108 ‡ gr-qc/0212037 gr-qc/0211015 gr-qc/0210079 gr-qc/0206043 gr-qc/0205106
gr-qc/0205087 gr-qc/0112065 gr-qc/0112044 gr-qc/0111107 gr-qc/0111070 gr-qc/0110102
gr-qc/0106050 gr-qc/0106049 gr-qc/0103013 gr-qc/0103009 gr-qc/0009008 gr-qc/0008005
gr-qc/0006051 gr-qc/0006048 astro-ph/9912558 astro-ph/9912554 astro-ph/9912549 astro-ph/9912548
astro-ph/9912424 astro-ph/9912343 astro-ph/9912211 astro-ph/9912166 astro-ph/9912140 astro-ph/9912139
astro-ph/9911518 astro-ph/9911372 astro-ph/9911260 astro-ph/9911246 astro-ph/9910566 astro-ph/9910545
astro-ph/9910459 astro-ph/9910396 astro-ph/9910359 astro-ph/9910350 astro-ph/9910315 astro-ph/9910266
astro-ph/9910265 astro-ph/9910207 astro-ph/9910187 astro-ph/9910182 astro-ph/9910166 astro-ph/9910097
astro-ph/9910031 astro-ph/9910004 astro-ph/9909478 astro-ph/9909437 astro-ph/9909389 astro-ph/9909386
astro-ph/9909321 astro-ph/9909280 astro-ph/9909279 astro-ph/9909252 astro-ph/9909226 astro-ph/9909124
astro-ph/9909087 astro-ph/9909068 astro-ph/9909064 astro-ph/9909012 astro-ph/9908335 astro-ph/9908332
astro-ph/9908305 astro-ph/9908213 astro-ph/9908152 astro-ph/9908114 astro-ph/9908047 astro-ph/9907409
astro-ph/9907337 astro-ph/9907326 astro-ph/9907292 astro-ph/9907260 astro-ph/9907165 astro-ph/9907140
astro-ph/9906481 astro-ph/9906391 astro-ph/9906379 astro-ph/9906375 astro-ph/9906286 astro-ph/9906277
astro-ph/9906261 astro-ph/9906260 astro-ph/9906224 astro-ph/9906204 astro-ph/9906160 astro-ph/9906159
astro-ph/9906093 astro-ph/9906049 astro-ph/9906034 astro-ph/9906033 astro-ph/9905281 astro-ph/9905280
astro-ph/9905135 astro-ph/9905024 astro-ph/9904401 astro-ph/9904396 astro-ph/9904366 astro-ph/9904365
astro-ph/9904317 astro-ph/9904291 astro-ph/9904284 astro-ph/9904283 astro-ph/9904263 astro-ph/9904251
astro-ph/9904159 astro-ph/9904064 astro-ph/9904001 astro-ph/9903465 astro-ph/9903420 astro-ph/9903182
astro-ph/9903003 astro-ph/9903002 astro-ph/9902210 astro-ph/9902172 astro-ph/9902014 astro-ph/9901358
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astro-ph/9901340 astro-ph/9901313 astro-ph/9901242 astro-ph/9901213 astro-ph/9901185 astro-ph/9901178
astro-ph/9901145 astro-ph/9901143 astro-ph/9901138 astro-ph/9901122 astro-ph/9901109 astro-ph/9901058
astro-ph/9812328 astro-ph/9812290 astro-ph/9812277 astro-ph/9812242 astro-ph/9812241 astro-ph/9812211
astro-ph/9812117 astro-ph/9812026 astro-ph/9812022 astro-ph/9812015 astro-ph/9812013 astro-ph/9811477
astro-ph/9811454 astro-ph/9811434 astro-ph/9811324 astro-ph/9811312 astro-ph/9811290 astro-ph/9811143
astro-ph/9811095 astro-ph/9811019 astro-ph/9811010 astro-ph/9810403 astro-ph/9810389 astro-ph/9810341
astro-ph/9810277 astro-ph/9810204 astro-ph/9810130 astro-ph/9810092 astro-ph/9810076 astro-ph/9809397
astro-ph/9809366 astro-ph/9809023 astro-ph/9808220 astro-ph/9808204 astro-ph/9808138 astro-ph/9808072
astro-ph/9808052 astro-ph/9808032 astro-ph/9807347 astro-ph/9807236 astro-ph/9807177 astro-ph/9807146
astro-ph/9807122 astro-ph/9807091 astro-ph/9807034 astro-ph/9806362 astro-ph/9806304 astro-ph/9806289
astro-ph/9806261 astro-ph/9806257 astro-ph/9806198 astro-ph/9806196 astro-ph/9806195 astro-ph/9806165
astro-ph/9806072 astro-ph/9806071 astro-ph/9805346 astro-ph/9805319 astro-ph/9805317 astro-ph/9805277
astro-ph/9805273 astro-ph/9805142 astro-ph/9805120 astro-ph/9804295 astro-ph/9804255 astro-ph/9804250
astro-ph/9804057 astro-ph/9804053 astro-ph/9804050 astro-ph/9803328 astro-ph/9803281 astro-ph/9803082
astro-ph/9803061 astro-ph/9802215 astro-ph/9802142 astro-ph/9802111 astro-ph/9802005 astro-ph/9801314
astro-ph/9801290 astro-ph/9801234 astro-ph/9801192 astro-ph/9801131 astro-ph/9801123 astro-ph/9801116
astro-ph/9801107 astro-ph/9801073 astro-ph/9801072 astro-ph/9801047 astro-ph/9712323 astro-ph/9712318
astro-ph/9712222 astro-ph/9712179 astro-ph/9712114 astro-ph/9712080 astro-ph/9711350 astro-ph/9711288
astro-ph/9711259 astro-ph/9711180 astro-ph/9711139 astro-ph/9711105 astro-ph/9711081 astro-ph/9711039
astro-ph/9710335 astro-ph/9710252 astro-ph/9710125 astro-ph/9710090 astro-ph/9710078 astro-ph/9710061
astro-ph/9710039 astro-ph/9709221 astro-ph/9709220 astro-ph/9709051 astro-ph/9709010 astro-ph/9708235
astro-ph/9708222 astro-ph/9708191 astro-ph/9708176 astro-ph/9708136 astro-ph/9708067 astro-ph/9708009
astro-ph/9707294 astro-ph/9707285 astro-ph/9707240 astro-ph/9707212 astro-ph/9706262 astro-ph/9706087
astro-ph/9706085 astro-ph/9705210 astro-ph/9705145 astro-ph/9705038 astro-ph/9705029 astro-ph/9704226
astro-ph/9704115 astro-ph/9704088 astro-ph/9704033 astro-ph/9703112 astro-ph/9703078 astro-ph/9703057
astro-ph/9703027 astro-ph/9702236 astro-ph/9702165 astro-ph/9702082 astro-ph/9702081 astro-ph/9702038
astro-ph/9701239 astro-ph/9701215 astro-ph/9701208 astro-ph/9612214 astro-ph/9612156 astro-ph/9612122
astro-ph/9612099 astro-ph/9612018 astro-ph/9611232 astro-ph/9611185 astro-ph/9611137 astro-ph/9611080
astro-ph/9611078 astro-ph/9611065 astro-ph/9611059 astro-ph/9611053 astro-ph/9611040 astro-ph/9610263
astro-ph/9610249 astro-ph/9610216 astro-ph/9610215 astro-ph/9610206 astro-ph/9610192 astro-ph/9610078
astro-ph/9610070 astro-ph/9610059 astro-ph/9610053 astro-ph/9610031 astro-ph/9610010 astro-ph/9610005
astro-ph/9610003 astro-ph/9609194 astro-ph/9609115 astro-ph/9609081 astro-ph/9609068 astro-ph/9609040
astro-ph/9609022 astro-ph/9609016 astro-ph/9608069 astro-ph/9608051 astro-ph/9608043 astro-ph/9608035
astro-ph/9607150 astro-ph/9607143 astro-ph/9607142 astro-ph/9607062 astro-ph/9607061 astro-ph/9607055
astro-ph/9607040 astro-ph/9607037 astro-ph/9607022 astro-ph/9606151 astro-ph/9606134 astro-ph/9606132
astro-ph/9606100 astro-ph/9606094 astro-ph/9606024 astro-ph/9606012 astro-ph/9605198 astro-ph/9605174
astro-ph/9605111 astro-ph/9605068 astro-ph/9605057 astro-ph/9605001 astro-ph/9604176 astro-ph/9604138
astro-ph/9603156 astro-ph/9603150 astro-ph/9603132 astro-ph/9603081 astro-ph/9603074 astro-ph/9603035
astro-ph/9603026 astro-ph/9602145 astro-ph/9602105 astro-ph/9601188 astro-ph/9601145 astro-ph/9601134
astro-ph/9601122 astro-ph/9512130 astro-ph/9512127 astro-ph/9512102 astro-ph/9512054 astro-ph/9511147
astro-ph/9511115 astro-ph/9511087 astro-ph/9511066 astro-ph/9511055 astro-ph/9511041 astro-ph/9511036
astro-ph/9511022 astro-ph/9510147 astro-ph/9510104 astro-ph/9510099 astro-ph/9510098 astro-ph/9510089
astro-ph/9510023 astro-ph/9510016 astro-ph/9509149 astro-ph/9509147 astro-ph/9509106 astro-ph/9509105
astro-ph/9509075 astro-ph/9509064 astro-ph/9509010 astro-ph/9508107 astro-ph/9508025 astro-ph/9508020
astro-ph/9508013 astro-ph/9508009 astro-ph/9507074 astro-ph/9507051 astro-ph/9507008 astro-ph/9507006
astro-ph/9506110 astro-ph/9506091 astro-ph/9506088 astro-ph/9506059 astro-ph/9506051 astro-ph/9506041
astro-ph/9506016 astro-ph/9506004 astro-ph/9506003 astro-ph/9505143 astro-ph/9505124 astro-ph/9505076
astro-ph/9505058 astro-ph/9505055 astro-ph/9505050 astro-ph/9505031 astro-ph/9505029 astro-ph/9505014
astro-ph/9505002 astro-ph/9504082 astro-ph/9504081 astro-ph/9504061 astro-ph/9504052 astro-ph/9504041
astro-ph/9504014 astro-ph/9503088 astro-ph/9503056 astro-ph/9503051 astro-ph/9502100 astro-ph/9502062
astro-ph/9502060 astro-ph/9502052 astro-ph/9502033 astro-ph/9502019 astro-ph/9502018 astro-ph/9501091
astro-ph/9501066 astro-ph/9501046 astro-ph/9412088 astro-ph/9412054 astro-ph/9412049 astro-ph/9412011
astro-ph/9412009 astro-ph/9412007 astro-ph/9411082 astro-ph/9411079 astro-ph/9411073 astro-ph/9411038
astro-ph/9411020 astro-ph/9410059 astro-ph/9410022 astro-ph/9409091 astro-ph/9409074 astro-ph/9409034
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astro-ph/9409030 astro-ph/9408102 astro-ph/9408094 astro-ph/9408029 astro-ph/9408028 astro-ph/9408018
astro-ph/9408002 astro-ph/9407085 astro-ph/9407072 astro-ph/9407071 astro-ph/9407069 astro-ph/9407068
astro-ph/9407013 astro-ph/9407012 astro-ph/9407011 astro-ph/9407004 astro-ph/9405010 astro-ph/9405003
astro-ph/9404011 astro-ph/9403065 astro-ph/9403012 astro-ph/9402028 astro-ph/9402027 astro-ph/9402017
astro-ph/9312037 astro-ph/9312020 astro-ph/9312011 astro-ph/9312008 astro-ph/9311077 astro-ph/9311073
astro-ph/9311049 astro-ph/9311046 astro-ph/9311044 astro-ph/9311043 astro-ph/9311018 astro-ph/9310014
astro-ph/9309039 astro-ph/9309007 astro-ph/9308022 astro-ph/9308021 astro-ph/9308006 astro-ph/9306004
astro-ph/9305011 astro-ph/9305010 astro-ph/9304017 astro-ph/9304004 astro-ph/9303019 astro-ph/0703783
astro-ph/0703778 astro-ph/0703757 astro-ph/0703704 astro-ph/0703673 astro-ph/0703624 astro-ph/0703590
astro-ph/0703512 astro-ph/0703471 astro-ph/0703466 astro-ph/0703462 astro-ph/0703430 astro-ph/0703416
astro-ph/0703370 astro-ph/0703365 astro-ph/0703362 astro-ph/0703352 astro-ph/0703348 astro-ph/0703342
astro-ph/0703337 astro-ph/0703308 astro-ph/0703262 astro-ph/0703259 astro-ph/0703195 astro-ph/0703183
astro-ph/0703115 astro-ph/0703004 astro-ph/0702654 astro-ph/0702587 astro-ph/0702586 astro-ph/0702575
astro-ph/0702568 astro-ph/0702546 astro-ph/0702501 astro-ph/0702495 astro-ph/0702478 astro-ph/0702470
astro-ph/0702443 astro-ph/0702373 astro-ph/0702368 astro-ph/0702360 astro-ph/0702333 astro-ph/0702328
astro-ph/0702275 astro-ph/0702260 astro-ph/0702241 astro-ph/0702173 astro-ph/0702167 astro-ph/0702164
astro-ph/0702010 astro-ph/0701884 astro-ph/0701848 astro-ph/0701826 astro-ph/0701792 astro-ph/0701780
astro-ph/0701673 astro-ph/0701672 astro-ph/0701624 astro-ph/0701598 astro-ph/0701594 astro-ph/0701542
astro-ph/0701446 astro-ph/0701426 astro-ph/0701418 astro-ph/0701365 astro-ph/0701358 astro-ph/0701331
astro-ph/0701292 astro-ph/0701286 astro-ph/0701088 astro-ph/0701086 astro-ph/0612786 astro-ph/0612750
astro-ph/0612733 astro-ph/0612732 astro-ph/0612616 astro-ph/0612565 astro-ph/0612473 astro-ph/0612467
astro-ph/0612462 astro-ph/0612410 astro-ph/0612387 astro-ph/0612327 astro-ph/0612253 astro-ph/0612239
astro-ph/0612219 astro-ph/0612130 astro-ph/0611948 astro-ph/0611925 astro-ph/0611921 astro-ph/0611913
astro-ph/0611887 astro-ph/0611872 astro-ph/0611864 astro-ph/0611783 astro-ph/0611684 astro-ph/0611664
astro-ph/0611582 astro-ph/0611506 astro-ph/0611496 astro-ph/0611494 astro-ph/0611370 astro-ph/0611353
astro-ph/0611303 astro-ph/0611221 astro-ph/0611205 astro-ph/0611168 astro-ph/0611144 astro-ph/0611129
astro-ph/0611124 astro-ph/0611113 astro-ph/0610961 astro-ph/0610922 astro-ph/0610821 astro-ph/0610806
astro-ph/0610731 astro-ph/0610727 astro-ph/0610682 astro-ph/0610674 astro-ph/0610618 astro-ph/0610428
astro-ph/0610425 astro-ph/0610336 astro-ph/0610280 astro-ph/0610269 astro-ph/0610249 astro-ph/0610134
astro-ph/0610056 astro-ph/0610038 astro-ph/0610034 astro-ph/0609782 astro-ph/0609777 astro-ph/0609714
astro-ph/0609713 astro-ph/0609687 astro-ph/0609652 astro-ph/0609640 astro-ph/0609629 astro-ph/0609572
astro-ph/0609510 astro-ph/0609500 astro-ph/0609425 astro-ph/0609413 astro-ph/0609388 astro-ph/0609375
astro-ph/0609361 astro-ph/0609326 astro-ph/0609126 astro-ph/0609125 astro-ph/0609072 astro-ph/0608706
astro-ph/0608690 astro-ph/0608661 astro-ph/0608637 astro-ph/0608634 astro-ph/0608614 astro-ph/0608613
astro-ph/0608607 astro-ph/0608602 astro-ph/0608562 astro-ph/0608535 astro-ph/0608528 astro-ph/0608526
astro-ph/0608523 astro-ph/0608407 astro-ph/0608390 astro-ph/0608385 astro-ph/0608304 astro-ph/0608276
astro-ph/0608228 astro-ph/0608175 astro-ph/0608151 astro-ph/0607639 astro-ph/0607621 astro-ph/0607555
astro-ph/0607437 astro-ph/0607411 astro-ph/0607394 astro-ph/0607391 astro-ph/0607374 astro-ph/0607341
astro-ph/0607327 astro-ph/0607319 astro-ph/0607142 astro-ph/0607131 astro-ph/0607126 astro-ph/0607121
astro-ph/0607100 astro-ph/0607073 astro-ph/0607042 astro-ph/0606699 astro-ph/0606654 astro-ph/0606566
astro-ph/0606483 astro-ph/0606482 astro-ph/0606447 astro-ph/0606435 astro-ph/0606429 astro-ph/0606415
astro-ph/0606360 astro-ph/0606350 astro-ph/0606315 astro-ph/0606281 astro-ph/0606208 astro-ph/0606197
astro-ph/0606190 astro-ph/0606073 astro-ph/0606028 astro-ph/0606015 astro-ph/0606010 astro-ph/0605724
astro-ph/0605719 astro-ph/0605706 astro-ph/0605697 astro-ph/0605688 astro-ph/0605637 astro-ph/0605630
astro-ph/0605500 astro-ph/0605424 astro-ph/0605322 astro-ph/0605271 astro-ph/0605254 astro-ph/0605249
astro-ph/0605205 astro-ph/0605102 astro-ph/0604587 astro-ph/0604518 astro-ph/0604506 astro-ph/0604418
astro-ph/0604393 astro-ph/0604311 astro-ph/0604307 astro-ph/0604126 astro-ph/0604024 astro-ph/0603796
astro-ph/0603775 astro-ph/0603704 astro-ph/0603661 astro-ph/0603660 astro-ph/0603602 astro-ph/0603541
astro-ph/0603387 astro-ph/0603368 astro-ph/0602632 astro-ph/0602584 astro-ph/0602440 astro-ph/0602400
astro-ph/0602394 astro-ph/0602349 astro-ph/0602325 astro-ph/0602266 astro-ph/0602161 astro-ph/0601669
astro-ph/0601602 astro-ph/0601581 astro-ph/0601489 astro-ph/0601431 astro-ph/0601422 astro-ph/0601404
astro-ph/0601344 astro-ph/0601301 astro-ph/0601298 astro-ph/0601274 astro-ph/0601266 astro-ph/0601249
astro-ph/0601248 astro-ph/0601233 astro-ph/0512631 astro-ph/0512569 astro-ph/0512509 astro-ph/0512507
astro-ph/0512494 astro-ph/0512482 astro-ph/0512454 astro-ph/0512425 astro-ph/0512405 astro-ph/0512386
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astro-ph/0512381 astro-ph/0512309 astro-ph/0512281 astro-ph/0512217 astro-ph/0512156 astro-ph/0512106
astro-ph/0512067 astro-ph/0512056 astro-ph/0511805 astro-ph/0511796 astro-ph/0511789 astro-ph/0511768
astro-ph/0511713 astro-ph/0511692 astro-ph/0511687 astro-ph/0511675 astro-ph/0511530 astro-ph/0511494
astro-ph/0511357 astro-ph/0511262 astro-ph/0511164 astro-ph/0511143 astro-ph/0511085 astro-ph/0511043
astro-ph/0510839 astro-ph/0510743 astro-ph/0510722 astro-ph/0510714 astro-ph/0510656 astro-ph/0510632
astro-ph/0510628 astro-ph/0510592 astro-ph/0510583 astro-ph/0510576 astro-ph/0510575 astro-ph/0510557
astro-ph/0510490 astro-ph/0510439 astro-ph/0510123 astro-ph/0510117 astro-ph/0510088 astro-ph/0510031
astro-ph/0510024 astro-ph/0509897 astro-ph/0509858 astro-ph/0509856 astro-ph/0509810 astro-ph/0509799
astro-ph/0509755 astro-ph/0509680 astro-ph/0509592 astro-ph/0509590 astro-ph/0509565 astro-ph/0509532
astro-ph/0509519 astro-ph/0509512 astro-ph/0509417 astro-ph/0509382 astro-ph/0509320 astro-ph/0509318
astro-ph/0509269 astro-ph/0509259 astro-ph/0509196 astro-ph/0509072 astro-ph/0508668 astro-ph/0508666
astro-ph/0508639 astro-ph/0508635 astro-ph/0508624 astro-ph/0508617 astro-ph/0508572 astro-ph/0508553
astro-ph/0508531 astro-ph/0508508 astro-ph/0508497 astro-ph/0508488 astro-ph/0508419 astro-ph/0508413
astro-ph/0508367 astro-ph/0508349 astro-ph/0508279 astro-ph/0508272 astro-ph/0508263 astro-ph/0508226
astro-ph/0508215 astro-ph/0508160 astro-ph/0508159 astro-ph/0508153 astro-ph/0508141 astro-ph/0508053
astro-ph/0508049 astro-ph/0508048 astro-ph/0507707 astro-ph/0507589 astro-ph/0507575 astro-ph/0507399
astro-ph/0507300 astro-ph/0507222 astro-ph/0507197 astro-ph/0507142 astro-ph/0507108 astro-ph/0506740
astro-ph/0506732 astro-ph/0506676 astro-ph/0506627 astro-ph/0506623 astro-ph/0506571 astro-ph/0506538
astro-ph/0506520 astro-ph/0506447 astro-ph/0506432 astro-ph/0506395 astro-ph/0506389 astro-ph/0506345
astro-ph/0506219 astro-ph/0506103 astro-ph/0506070 astro-ph/0506061 astro-ph/0506009 astro-ph/0505626
astro-ph/0505619 astro-ph/0505605 astro-ph/0505602 astro-ph/0505579 astro-ph/0505497 astro-ph/0505414
astro-ph/0505369 astro-ph/0505356 astro-ph/0505313 astro-ph/0505290 astro-ph/0505266 astro-ph/0505237
astro-ph/0505179 astro-ph/0505142 astro-ph/0505131 astro-ph/0505095 astro-ph/0505058 astro-ph/0505017
astro-ph/0504631 astro-ph/0504629 astro-ph/0504623 astro-ph/0504581 astro-ph/0504571 astro-ph/0504557
astro-ph/0504512 astro-ph/0504466 astro-ph/0504465 astro-ph/0504422 astro-ph/0504334 astro-ph/0504275
astro-ph/0504241 astro-ph/0504239 astro-ph/0504224 astro-ph/0504223 astro-ph/0504130 astro-ph/0504121
astro-ph/0504112 astro-ph/0504097 astro-ph/0504096 astro-ph/0504094 astro-ph/0504051 astro-ph/0503712
astro-ph/0503622 astro-ph/0503609 astro-ph/0503583 astro-ph/0503535 astro-ph/0503486 astro-ph/0503436
astro-ph/0503391 astro-ph/0503380 astro-ph/0503323 astro-ph/0503265 astro-ph/0503146 astro-ph/0503104
astro-ph/0503036 astro-ph/0503006 astro-ph/0502572 astro-ph/0502466 astro-ph/0502279 astro-ph/0502215
astro-ph/0502208 astro-ph/0502166 astro-ph/0502119 astro-ph/0502118 astro-ph/0502049 astro-ph/0502037
astro-ph/0501622 astro-ph/0501584 astro-ph/0501571 astro-ph/0501562 astro-ph/0501555 astro-ph/0501442
astro-ph/0501423 astro-ph/0501412 astro-ph/0501378 astro-ph/0501366 astro-ph/0501318 astro-ph/0501273
astro-ph/0501055 astro-ph/0501050 astro-ph/0412652 astro-ph/0412630 astro-ph/0412624 astro-ph/0412615
astro-ph/0412614 astro-ph/0412586 astro-ph/0412442 astro-ph/0412441 astro-ph/0412419 astro-ph/0412413
astro-ph/0412322 astro-ph/0412273 astro-ph/0412208 astro-ph/0412170 astro-ph/0412169 astro-ph/0412139
astro-ph/0412123 astro-ph/0412103 astro-ph/0412089 astro-ph/0412087 astro-ph/0412061 astro-ph/0412059
astro-ph/0412035 astro-ph/0412018 astro-ph/0411795 astro-ph/0411694 astro-ph/0411629 astro-ph/0411586
astro-ph/0411548 astro-ph/0411529 astro-ph/0411515 astro-ph/0411503 astro-ph/0411491 astro-ph/0411454
astro-ph/0411452 astro-ph/0411409 astro-ph/0411396 astro-ph/0411344 astro-ph/0411292 astro-ph/0411262
astro-ph/0411244 astro-ph/0411215 astro-ph/0411039 astro-ph/0410621 astro-ph/0410591 astro-ph/0410573
astro-ph/0410470 astro-ph/0410359 astro-ph/0410338 astro-ph/0410114 astro-ph/0410029 astro-ph/0410028
astro-ph/0409740 astro-ph/0409633 astro-ph/0409630 astro-ph/0409629 astro-ph/0409606 astro-ph/0409605
astro-ph/0409565 astro-ph/0409563 astro-ph/0409549 astro-ph/0409530 astro-ph/0409403 astro-ph/0409353
astro-ph/0409320 astro-ph/0409305 astro-ph/0409237 astro-ph/0409201 astro-ph/0409162 astro-ph/0409145
astro-ph/0409121 astro-ph/0409064 astro-ph/0409027 astro-ph/0408577 astro-ph/0408573 astro-ph/0408478
astro-ph/0408346 astro-ph/0408341 astro-ph/0408272 astro-ph/0408204 astro-ph/0408192 astro-ph/0408184
astro-ph/0408146 astro-ph/0408006 astro-ph/0407646 astro-ph/0407623 astro-ph/0407575 astro-ph/0407532
astro-ph/0407522 astro-ph/0407428 astro-ph/0407418 astro-ph/0407321 astro-ph/0407288 astro-ph/0407245
astro-ph/0407239 astro-ph/0407207 astro-ph/0407117 astro-ph/0407111 astro-ph/0406673 astro-ph/0406585
astro-ph/0406541 astro-ph/0406537 astro-ph/0406533 astro-ph/0406531 astro-ph/0406514 astro-ph/0406491
astro-ph/0406487 astro-ph/0406417 astro-ph/0406297 astro-ph/0406285 astro-ph/0406282 astro-ph/0406247
astro-ph/0406241 astro-ph/0406204 astro-ph/0406194 astro-ph/0406174 astro-ph/0406152 astro-ph/0406139
astro-ph/0406126 astro-ph/0406114 astro-ph/0406079 astro-ph/0406034 astro-ph/0405625 astro-ph/0405623
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astro-ph/0405598 astro-ph/0405572 astro-ph/0405508 astro-ph/0405496 astro-ph/0405491 astro-ph/0405479
astro-ph/0405466 astro-ph/0405456 astro-ph/0405455 astro-ph/0405442 astro-ph/0405371 astro-ph/0405363
astro-ph/0405342 astro-ph/0405266 astro-ph/0405242 astro-ph/0405235 astro-ph/0405231 astro-ph/0405216
astro-ph/0405189 astro-ph/0405033 astro-ph/0404600 astro-ph/0404568 astro-ph/0404499 astro-ph/0404490
astro-ph/0404483 astro-ph/0404465 astro-ph/0404311 astro-ph/0404205 astro-ph/0404117 astro-ph/0404086
astro-ph/0404033 astro-ph/0403698 astro-ph/0403694 astro-ph/0403619 astro-ph/0403614 astro-ph/0403596
astro-ph/0403571 astro-ph/0403528 astro-ph/0403514 astro-ph/0403417 astro-ph/0403384 astro-ph/0403372
astro-ph/0403352 astro-ph/0403324 astro-ph/0403322 astro-ph/0403294 astro-ph/0403229 astro-ph/0403206
astro-ph/0403164 astro-ph/0403154 astro-ph/0403102 astro-ph/0403077 astro-ph/0403064 astro-ph/0403048
astro-ph/0402634 astro-ph/0402588 astro-ph/0402525 astro-ph/0402516 astro-ph/0402504 astro-ph/0402479
astro-ph/0402405 astro-ph/0402390 astro-ph/0402366 astro-ph/0402346 astro-ph/0402316 astro-ph/0402210
astro-ph/0402157 astro-ph/0402095 astro-ph/0402055 astro-ph/0402045 astro-ph/0402033 astro-ph/0401609
astro-ph/0401591 astro-ph/0401575 astro-ph/0401565 astro-ph/0401512 astro-ph/0401511 astro-ph/0401378
astro-ph/0401341 astro-ph/0401185 astro-ph/0401162 astro-ph/0401140 astro-ph/0401097 astro-ph/0401088
astro-ph/0312651 astro-ph/0312645 astro-ph/0312606 astro-ph/0312605 astro-ph/0312570 astro-ph/0312547
astro-ph/0312544 astro-ph/0312358 astro-ph/0312243 astro-ph/0312221 astro-ph/0312194 astro-ph/0312109
astro-ph/0312086 astro-ph/0312072 astro-ph/0312002 astro-ph/0311631 astro-ph/0311614 astro-ph/0311594
astro-ph/0311522 astro-ph/0311361 astro-ph/0311348 astro-ph/0311259 astro-ph/0311240 astro-ph/0311185
astro-ph/0311150 astro-ph/0311145 astro-ph/0311100 astro-ph/0311083 astro-ph/0311052 astro-ph/0311049
astro-ph/0311020 astro-ph/0310908 astro-ph/0310897 astro-ph/0310798 astro-ph/0310756 astro-ph/0310707
astro-ph/0310703 astro-ph/0310666 astro-ph/0310638 astro-ph/0310579 astro-ph/0310572 astro-ph/0310534
astro-ph/0310531 astro-ph/0310528 astro-ph/0310439 astro-ph/0310376 astro-ph/0310334 astro-ph/0310294
astro-ph/0310219 astro-ph/0310193 astro-ph/0310192 astro-ph/0310005 astro-ph/0309812 astro-ph/0309762
astro-ph/0309755 astro-ph/0309738 astro-ph/0309735 astro-ph/0309686 astro-ph/0309652 astro-ph/0309617
astro-ph/0309611 astro-ph/0309517 astro-ph/0309490 astro-ph/0309465 astro-ph/0309412 astro-ph/0309405
astro-ph/0309343 astro-ph/0309330 astro-ph/0309329 astro-ph/0309303 astro-ph/0309273 astro-ph/0309163
astro-ph/0309020 astro-ph/0308518 astro-ph/0308515 astro-ph/0308472 astro-ph/0308385 astro-ph/0308348
astro-ph/0308183 astro-ph/0308092 astro-ph/0308054 astro-ph/0308007 astro-ph/0307524 astro-ph/0307465
astro-ph/0307437 astro-ph/0307403 astro-ph/0307358 astro-ph/0307350 astro-ph/0307316 astro-ph/0307270
astro-ph/0307214 astro-ph/0307209 astro-ph/0307206 astro-ph/0307190 astro-ph/0307184 astro-ph/0307154
astro-ph/0307141 astro-ph/0307115 astro-ph/0307082 astro-ph/0307042 astro-ph/0307026 astro-ph/0306561
astro-ph/0306520 astro-ph/0306515 astro-ph/0306493 astro-ph/0306490 astro-ph/0306445 astro-ph/0306437
astro-ph/0306413 astro-ph/0306402 astro-ph/0306385 astro-ph/0306374 astro-ph/0306365 astro-ph/0306327
astro-ph/0306286 astro-ph/0306282 astro-ph/0306233 astro-ph/0306205 astro-ph/0306203 astro-ph/0306134
astro-ph/0306124 astro-ph/0306102 astro-ph/0306081 astro-ph/0306020 astro-ph/0305584 astro-ph/0305547
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arxiv/0709.2486 arxiv/0709.2369 arxiv/0709.2301 arxiv/0709.2299 arxiv/0709.2297 arxiv/0709.2098
arxiv/0709.2078 arxiv/0709.1966 arxiv/0709.1862 arxiv/0709.1636 arxiv/0709.1632 arxiv/0709.1571
arxiv/0709.1510 arxiv/0709.1485 arxiv/0709.1218 arxiv/0709.1128 arxiv/0709.1106 arxiv/0709.0858
arxiv/0709.0745 arxiv/0709.0691 arxiv/0709.0462 arxiv/0709.0434 arxiv/0709.0327 arxiv/0709.0297
arxiv/0709.0174 arxiv/0709.0166 arxiv/0709.0131 arxiv/0709.0108 arxiv/0709.0046 arxiv/0709.0043
arxiv/0708.4363 arxiv/0708.4003 arxiv/0708.3983 arxiv/0708.3970 arxiv/0708.3790 arxiv/0708.3600
arxiv/0708.3371 arxiv/0708.3342 arxiv/0708.3179 arxiv/0708.2797 arxiv/0708.2768 arxiv/0708.2621
arxiv/0708.2618 arxiv/0708.2579 arxiv/0708.2370 arxiv/0708.2348 arxiv/0708.2166 arxiv/0708.2151
arxiv/0708.2030 arxiv/0708.1949 arxiv/0708.1891 arxiv/0708.1784 arxiv/0708.1492 arxiv/0708.1382
arxiv/0708.1376 arxiv/0708.1206 arxiv/0708.0762 arxiv/0708.0753 arxiv/0708.0247 arxiv/0707.4423
arxiv/0707.4375 arxiv/0707.4374 arxiv/0707.4247 arxiv/0707.4126 arxiv/0707.3813 arxiv/0707.3524
arxiv/0707.3334 arxiv/0707.3260 arxiv/0707.3049 arxiv/0707.2968 arxiv/0707.2960 arxiv/0707.2959
arxiv/0707.2470 arxiv/0707.2463 arxiv/0707.2377 arxiv/0707.2089 arxiv/0707.1949 arxiv/0707.1937
arxiv/0707.1758 arxiv/0707.1698 arxiv/0707.1536 arxiv/0707.1495 arxiv/0707.1488 arxiv/0707.1479

Continued on next page
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arxiv/0707.1081 arxiv/0707.0737 arxiv/0707.0633 arxiv/0707.0628 arxiv/0707.0622 arxiv/0707.0618
arxiv/0707.0488 arxiv/0707.0472 arxiv/0707.0209 arxiv/0707.0196 arxiv/0706.4349 arxiv/0706.4198
arxiv/0706.4084 arxiv/0706.4071 arxiv/0706.3909 arxiv/0706.3895 arxiv/0706.3773 arxiv/0706.3703
arxiv/0706.3409 arxiv/0706.3357 arxiv/0706.3196 arxiv/0706.3149 arxiv/0706.3050 arxiv/0706.3019
arxiv/0706.2986 arxiv/0706.2775 arxiv/0706.2694 arxiv/0706.2558 arxiv/0706.2401 arxiv/0706.2237
arxiv/0706.2101 arxiv/0706.1976 arxiv/0706.1586 arxiv/0706.1357 arxiv/0706.1279 arxiv/0706.0974
arxiv/0706.0948 arxiv/0706.0918 arxiv/0706.0896 arxiv/0706.0875 arxiv/0706.0856 arxiv/0706.0852
arxiv/0706.0526 arxiv/0706.0208 arxiv/0706.0186 arxiv/0706.0039 arxiv/0706.0031 arxiv/0706.0006
arxiv/0705.4680 arxiv/0705.4633 arxiv/0705.4493 arxiv/0705.4477 arxiv/0705.4298 arxiv/0705.4219
arxiv/0705.4158 arxiv/0705.4056 arxiv/0705.4043 arxiv/0705.4027 arxiv/0705.3843 arxiv/0705.3655
arxiv/0705.3345 arxiv/0705.3017 arxiv/0705.2924 arxiv/0705.2908 arxiv/0705.2881 arxiv/0705.2846
arxiv/0705.2760 arxiv/0705.2695 arxiv/0705.2610 arxiv/0705.2556 arxiv/0705.2496 arxiv/0705.2406
arxiv/0705.2258 arxiv/0705.2226 arxiv/0705.2171 arxiv/0705.2037 arxiv/0705.1920 arxiv/0705.1756
arxiv/0705.1720 arxiv/0705.1109 arxiv/0705.0934 arxiv/0705.0921 arxiv/0705.0579 arxiv/0705.0542
arxiv/0705.0521 arxiv/0705.0478 arxiv/0705.0153 arxiv/0705.0001 arxiv/0704.3925 arxiv/0704.3629
arxiv/0704.3543 arxiv/0704.3518 arxiv/0704.3285 arxiv/0704.3078 arxiv/0704.3064 arxiv/0704.2909
arxiv/0704.2816 arxiv/0704.2738 arxiv/0704.2595 arxiv/0704.2558 arxiv/0704.2543 arxiv/0704.2405
arxiv/0704.2276 arxiv/0704.2037 arxiv/0704.1999 arxiv/0704.1658 arxiv/0704.1590 arxiv/0704.1324
arxiv/0704.1044 arxiv/0704.0944 arxiv/0704.0794 arxiv/0704.0740 arxiv/0704.0674 arxiv/0704.0510
arxiv/0704.0371 arxiv/0704.0261 arxiv/0704.0222 arxiv/0704.0003

† This is a docx file and was not processed.

‡ This paper was included in the search results, but was withdrawn and is not included

in the Dark Matter corpus for lack of text. gr-qc/0701040 was withdrawn for

plagiarism.
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Glossary

acyclic A network that does not contain cycles. 22, 104

adjacency matrix An N × N matrix representation of a network where N is the

number of nodes in the network and the element aij = 1 if there is a link from

node i to node j meaning that the nodes are adjacent in the network. 38, 74,

165

ADS Astrophysical Data Service. 13, 29, 30, 40, 56, 79, 82, 84, 98, 102, 118, 125, 128,

135–137, 163, 165, 167

betweenness centrality The number of shortest paths between all connected nodes

that go through a link or node. 33, 38

bibcode Name for the identifiers used by ADS and described in Appendix A.1. 13,

30, 105

branch one of many subfields that make up a field. e.g. astrophysics is a branch of

physics, computer security is a branch of computer science. 169

brane cosmology Related to string theory, it proposes that dark matter is a manifes-

tation of matter existing in higher dimensions than our normal three dimensions

of space. 99, 144

citation a citation is a reference in a scientific article to the source of the assertion,

data or argument. They can be published in a scholarly journal, online on a

pre-print server or indicate an unpublished source. In the terms of this thesis, a

citation indicates a reference from another article and a reference is a reference

to another article. 22

clique a subset of nodes that have links to each other node in the subset. The induced

subgraph is complete . 23

clustering coefficient Defined in Equation 3.1, the clustering coefficient, Ci, is the

measure of the number of neighbouring nodes which share links compared to

the maximum possible number of nodes. The average clustering coefficient, C̄,
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is the average value of the clustering coefficient across all nodes in the network

(C̄ =
1

N
∑N

i Ci). 25, 27

community While no standard definition exists, for the purposes of this thesis a com-

munity shall refer to a subset of nodes in a network that have a higher density

of links from nodes in the subset to other nodes in the subset than to nodes

not in the subset. See also the description of modularity, Section 3.4. When

referring to scientific or research communities which indicate groups of people

that are involved in research on related subjects, the relevant adjective will

always be used. In contrast to unsupervised learning which produces clusters

of objects that share similar properties, communities are formed by their struc-

tural connections. It is the links that tie communities together. 21, 33, 36, 38,

39, 88, 98, 115, 117, 119

complete In graph theory, a network in which every node is connected by a unique

link. 33, 163

complex network As described in Section 3.1.1, the three characteristics that define

a complex network are the small-world properties of random graphs, the ten-

dency for links to cluster together (the clustering coefficient, C is much higher

than the clustering coefficient of a random graph of similar size, C Ȃ Crg) and

is scale-free (the degree distribution has the fat tail typical of P (k) ∼ k
−γ

for

γ > 0). It has non-trivial topological features, not seen in lattices or random

graphs. The difference between complex and merely complicated is that it pos-

sesses structural features on all scales as the result of spontaneous interaction

among many individuals and is representative of the emergent behaviour of

self-organising systems. 21, 24, 25, 27, 34, 42, 93, 103, 120

crisp set A set in which the members do not belong to other sets (the boundary is

crisp or sharp), as opposed to a fuzzy set in which the set boundary is fuzzy

and members near the boundary can belong to more than one set. 37

cycle In network theory, a path of links and nodes that ends up at the node it started

from. Some types of cycle specify that no repetitions of links or nodes shall be

used other than the starting node. 163, 165
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Dark Matter corpus Depending on the stage of processing, it refers to the 2671

papers received from arXiv, the 2661 papers curated into the corpus having

removed 8 papers from the math category and 2 papers removed from arXiv

(listed in Table F.5) and the 2659 papers processed into VSM representation

for text mining. 9, 12, 14, 16, 61, 63, 69, 71, 84, 93, 154, 165

Dark Matter network consists of the 778 491 nodes and 7 606 982 links that make

up the core network and shells 1 and 2. It is built from the citation data found

in the ADS. Diagrams of the structure of the network are found in Figures 2.4

and 2.5.

core network consists of 2663 nodes representing the 2671 papers of the Dark

Matter corpus with the 8 papers in the math category removed. 14, 26

full network is the term used when contrasting the entire Dark Matter network

with the core network or shells surrounding it. 26

shell A shell consists of the citations and references found in the first or second

pass of ADS queries. Shell 1 contains the 46 904 nodes that are references or

citations to the core network and shell 2 contains the 728 926 nodes that are

references or citations to shell 1. 14, 26

data mining The automated or semi-automated process of finding non-trivial and

meaningful patterns in data. 48

degree (k) The number of links attached to a node.

in-degree (kin) The number of links arriving at a node in a directed network. ix,

22, 23, 31, 42–44

out-degree (kout) The number of links leaving a node in a directed network. 22,

23, 31, 42

diachronic Concerning the analysis of linguistic features as they change over time.

112, 114

directed acyclic graph (DAG) A directed network which does not contain cycles.

23, 41, 104

directed network A network in which the links retain the direction of travel from

node i to node j. In the adjacency matrix, eij does not necessarily equal eji.
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25, 26, 165

false friend Words that look or sound alike in two languages, but have significantly

different meanings. 3

fat-tailed A probability distribution that exhibits larger values away from the central

peak than would be expected in a gaussian or exponential distribution. Some-

times used interchangeably with long-tailed distribution by virtue of both being

sub-classes of the heavy-tailed distributions in cases where the precise rate of

decay is not under discussion. Unlike the gaussian distribution, the average

value of the system is not typical. 24, 26, 28, 121

field An academic discipline which works within a commonly accepted methodology.

e.g. physics and computer science are academic fields of study. 163

graph In mathematics, graph is a topological expression of relationships (called links)

between entities (called nodes). In this thesis, a graph is equivalent to a net-

work. It can have a simple structure like a lattice or grid, no coherent structure

as in random graphs or non-trivial structures such as complex networks. 19

ground-truth Refers to information provided by direct observation as opposed to

information provided by inference. 97, 102, 117

hapax legomenon A term that only appears once in a corpus or text document. 60

hub A highly-connected node. A node with significantly more links than the average

node.. 21

interquartile range The range of numerical values stretching from the first quartile

to the third quartile, where a quartile is one quarter of the data points. The

interquartile range encompasses half of the measurements either side of the

median value. 112

ISI Institute for Scientific Information. 24, 105, 170

jargon Terms used by professionals in a field that are inaccessible to non-experts. 3
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keyword As used in Information Retrieval, a keyword is an index term that has signif-

icant meaning to the topic. Although used in the singular, it is not necessarily

restricted to single words. Sometimes longer phrases may be called key-phrases .

56, 62, 67, 82, 89, 98, 112, 118

kurtosis From statistics, describes the higher-order, symmetrical deviation from the

normal distribution. It is the fourth moment abut the mean, µ4

σ2
, where µ4 =

1

n
∑n

i (xi−µ)4. A platykurtic curve is broader and flatter, whereas a leptokurtic

curve is sharper and pointy. 67

Latent Semantic Indexing A technique in Text Mining of dimension reduction,

based on singular value decomposition, represents documents in a conceptual

space, overcoming issues of polysemy and synonymy. 49–51

LDA Latent Dirichlet Allocation. 61, 106

link Also called an edge or an arc, a link in a network is the topological representation of

the relationship between entities. An example of a link is the citation between

scientific articles. 19

Modified Newtonian Dynamics A model of new physics that alters the equations

of Newton and Einstein at distances > 10
18
m. 9, 167

MOND MOdified Newtonian Dynamics. 9, 29, 36, 82, 84, 87, 96, 100, 113, 120, 143,

144, Glossary: Modified Newtonian Dynamics

network A network is equivalent to a graph in this thesis. Two examples of networks

are presented here, the Dark Matter citation network built from citation data

from ADS and a document network created from applying a threshold to the

text cosine similarity values (described in Section 4.8). In formal notation,

given a set of nodes, N, and a set of links, L, a network G is the ordered pair,

G = (N, L). 22

neutrino (ν) Almost massless uncharged particle which only interacts via the weak

force. 143

NLP Natural Language Processing. 49, 81, 124



168

node Also called a vertex, a node in a network is the topological representation of an

entity. In this thesis, most nodes refer to documents. 19

PACS The Physics and Astronomy Classification Scheme is used by the journal Phys-

ical Review to identify topics in physics in the place of keywords yielding a

standardised hierarchical description of the field. In the future, it may be

replaced by a new scheme called Physics Subject Headings or PhySH. 112

path a sequence of links between connected nodes that describe a route traversed by

an individual through a network from one node to another. In a directed graph,

a path follows the direction of the links. 19, 22

polysemy The property of a word having multiple meanings. 114, 141

power law A term that describes a distribution that follows the form y ∝ x
n
over at

least five orders of magnitude. Its linear slope on a log-log plot is a defining

feature, but is not unique to the distribution. Zipf’s law is an example of this

long-tailed distribution. It has no typical value and is one of the characteristics

of scale-free networks. 21, 23, 24, 26, 31, 94, 110, 121, 122

pre-print A version of a scholarly article prior to the officially published article. These

are used in fast-moving fields where quickly sharing experimental results is

desired with the understanding that the editorial process of a peer-reviewed

journal can take many months. 8, 13, 23, 104, 105, 128, 129

preferential attachment A process by which nodes with many links have a higher

probability of attracting new links than nodes with fewer links. Known as

cumulative advantage by Garfield. An example would be a model that chooses

to add a new link to node i in a network with N links with probability P (i) ∝
ki/N . 21, 23, 45

random graph Also known as the Erdős-Rényi model, it is a graph or network gener-

ated by randomly linking nodes in the graph with equal probability. It has the

small-world property that the mean shortest path length between two nodes

of the graph grows in proportion to the logarithm of the number of nodes,܂l܂ ∝ log(N). 20, 24, 27, 96, 107
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redshift see Appendix E. 99

residual sum of squares (R̂SSmin) The sum of the square of differences between the

data y and the model f(x) given by ∑n

i=1(yi − f(xi))2. 70, 71
scale-free A property that is independent of scale. There is no characteristic scale for

the system which similar whether zoomed-in or zoomed-out. 24, 27, 41, 168

SMART notation In Information Retrieval, a scheme for describing the tf-idf vari-

ants for scoring VSM similarity between a document and a query. It compactly

lists the weighting strategies for term frequency, document frequency and nor-

malisation functions. See [Manning et al., 2008, Section 6.4]. 59

social network analysis The use of network concepts to study social interactions.

Using people as nodes and their interactions as the links, sociologists have stud-

ied friendship networks, collaboration networks, communities on social media,

disease transmission and sexual relationships. 21, 38

Standard Model The current best understanding of particle physics with relation to

the strong and weak nuclear forces and the electromagnetic force. The Large

Hadron Collider was built to test the Standard Model against newer theories.

144

sterile neutrino A neutrino which only interacts via the gravitational force. 143

subgraph A subset of nodes and links in a network. The subset of nodes must include

all nodes on both ends of all the links included in the subset of links. In formal

notation, a subgraph, S, of the graph, G = (N,L), is the graph S = (Ns,Ls),
where Ns is a subset of the nodes N (or Ns ⊂ N) and Ns is a subset of the

nodes N (or Ls ⊂ L). 33, 163
subject The general content under discussion. Can contain a number of topics. Not

to be confused with the grammatical or linguistic sense where it refers to the

subject of a sentence. In this thesis it can refer to the inquiry into the nature

of Dark Matter in the branch of astrophysics or developments in cryptography

in the branch of computer security. 4

supervised learning Algorithms for machine learning that operate with predefined
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labels. This method is trained to apply labels to items with a given set of

attributes on a dataset for which the labels are known. It is then tested for

accuracy against a second known dataset. When the classifier has been trained,

it can then be used to apply labels to previously unseen items. 81, 98

synonymy The property of two words having the same or similar meanings. 81

text mining The automated or semi-automated process of finding non-trivial and

meaningful patterns in text. As text is generally unstructured, it usually re-

quires pre-processing before the ‘mining’ can take place. 48

token A character sequence considered a meaningful element for analysis and passed on

to future processing, loosely correlated to a “word”. The process of tokenisation

is described in Section 4.3.1. 17, 55, 57

Topic Modelling A technique in Text Mining of dimension reduction which statisti-

cally analyses document collections to discover the latent topics contained in

the collection, described in Section 6.1.2. 50, 51, 106, 126

unsupervised learning Algorithms for machine learning that operate without pre-

defined labels. This method attempts to cluster similar items together. It can

be used to discover unanticipated patterns in the data. 35, 51, 53, 54, 58, 59,

61, 63, 66, 70, 77, 79, 81, 92, 122, 125, 164

Vector Space Model A representation of text that counts frequencies of terms in a

document or document fragment without regard to their order or position in

the text. 18, 50, 103, 170

VSM Vector Space Model. 18, 50, 58, 59, 62–64, 71, 91, 103, 113, Glossary: Vector

Space Model

Web of Science Owned by Thomson Reuters, previously known as the ISI. 10, 170

WoS Web of Science. 10, 11, Glossary: Web of Science

Zipf’s law describes the frequencies of terms in a collection of documents noting that

the frequency is inversely proportional to its rank, cfi ∝
1

i
where t1 is the
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most common term in the collection, t2 the second most common, and so on

[Manning et al., 2008, p 82]. 72, 114
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