
This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation 
may be published without proper acknowledgement. For any other use, or to 

quote extensively from the work, permission must be obtained from the 
copyright holder/s. 



i 

 

Automated analysis of ultrasound imaging of 

muscle and tendon in the upper limb using 

artificial intelligence methods 

 

 

Shaima Ibraheem Jabbar 

 

 

This thesis is submitted in partial fulfilment of the requirements for the degree 

of 

 

Doctor of Philosophy in Biomedical Engineering 

 

 

October 2018 

 

 

Keele university 

 

 



ii 

 

ACKNOWLEDGEMENTS  

Though the following dissertation is an individual work, I could never have reached the heights or explore 

the depths without the help, support, guidance, and effort of many people in so many ways.  

Firstly, I owe my deepest gratitude to my lead supervisor Dr. Edward Chadwick, Senior Lecturer in 

Biomedical Engineering, Institute for Science and Technology in Medicine, Guy Hilton Research Centre. 

Without his continuous optimism concerning this work, enthusiasm, encouragement and support this study 

would hardly have been completed. 

I also express my warmest appreciation to my second supervisor Dr. Charles Day, a Lecturer in Computer 

Science and Mathematics at Keele University. His passion, guidance and comments were essential to complete 

this dissertation. 

I would like to thank my advisor Prof. Anand D Pandyan, Professor of Rehabilitation Technology & Head 

of Rehabilitation School at Keele University for his kind help and support. 

I would like to thank Mr. Nicholas Heinz for assistance in collection of the panoramic ultrasound images. 

I would like to express my deepest gratefulness to my homeland Iraq and to the Iraqi Government and to 

the Higher Minister of Education for granting the funding of this PhD study. Also, I would like to thank the 

Iraqi Cultural Attache, London, UK for their kind help and advice through-out the long journey of my study. 

Special deepest gratitude to Abathar Qahtan Aladi, my best friend and husband for his continuous love, 

passion, support, and for providing me with faith during the whole 12 years of our marriage. Without your 

encouragement the world would have seemed a lonely place. 

I would like to thank my lovely daughter Rafeef and my two sons Ahmad and Yasser. They have been a 

great inspiration to me and filled my life with joy and happiness. 

A special and tremendous gratitude to my father and mother who have walked alongside me during my life 

journey. They have guided me, placed opportunities in front of me and showed me the doors that might be 

useful to open. 

Special thanks should also go to my lovely sisters and brothers. Without your support and encouragement, 

this work could not see the light.  

Finally, I would like to express my sincere thanks to my colleague in the office, Mackay Building, Keele 

University for their support and help during this long journey. Also, a big special thank  should go the secretary 

department at Mackay Building, Keele University for all their support and kind help.   



iii 

 

Abstract 

Accurate estimation of geometric musculoskeletal parameters from medical imaging has a number of 

applications in healthcare analysis and modelling. In vivo measurement of key morphological parameters of 

an individual’s upper limb opens up a new era for the construction of subject-specific models of the shoulder 

and arm. These models could be used to aid diagnosis of musculoskeletal problems, predict the effects of 

interventions and assist in the design and development of medical devices. However, these parameters are 

difficult to evaluate in vivo due to the complicated and inaccessible nature of structures such as muscles and 

tendons. Ultrasound, as a non-invasive and low-cost imaging technique, has been used in the manual evaluation 

of parameters such as muscle fibre length, cross sectional area and tendon length. However, the evaluation of 

ultrasound images depends heavily on the expertise of the operator and is time-consuming. Basing parameter 

estimation on the properties of the image itself and reducing the reliance on the skill of the operator would 

allow for automation of the process, speeding up parameter estimation and reducing bias in the final outcome. 

Key barriers to automation are the presence of speckle noise in the images and low image contrast. This hinders 

the effectiveness of traditional edge detection and segmentation methods necessary for parameter estimation. 

Therefore, addressing these limitations is considered pivotal to progress in this area.  

The aims of this thesis were therefore to develop new methods for the automatic evaluation of these geometric 

parameters of the upper extremity, and to compare these with manual evaluations. This was done by addressing 

all stages of the image processing pipeline, and introducing new methods based on artificial intelligence. 

Speckle noise of musculoskeletal ultrasound images was reduced by successfully applying local adaptive 

median filtering and anisotropic diffusion filtering. Furthermore, low contrast of the ultrasound image and 

video was enhanced by developing a new method based on local fuzzy contrast enhancement. Both steps 

contributed to improving the quality of musculoskeletal ultrasound images to improve the effectiveness of edge 

detection methods. 

Subsequently, a new edge detection method based on the fuzzy inference system was developed to outline the 

necessary details of the musculoskeletal ultrasound images after image enhancement. This step allowed 

automated segmentation to be used to estimate the morphological parameters of muscles and tendons in the 

upper extremity. 
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Finally, the automatically estimated geometric parameters, including the thickness and pennation angle of 

triceps muscle and the cross-sectional area and circumference of the flexor pollicis longus tendon were 

compared with manually taken measurements from the same ultrasound images. 

The results show successful performance of the novel methods in the sample population for the muscles and 

tendons chosen. A larger  dataset would help to make the developed methods more robust and more widely 

applicable. 

Future work should concentrate on using the developed methods of this thesis to evaluate other geometric 

parameters of the upper and lower extremities such as automatic evaluation of the muscle fascicle length. 
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Chapter 1     Motivation and Research Aims 

1.1 Research motivation 

Disabilities occur in many forms and can be the result of injuries and several diseases, such 

as cardiovascular diseases, cerebral palsy, stroke, and spinal cord injury. This is more 

burdensome when upper limbs are affected because it negatively affects daily activities, such 

as writing, eating and working. Leaving people who have movement impairment without 

efficient treatment impacts adversely on mobility and the quality of life for both disabled 

people and those who live closely with them. Hence, there is an urgent need for engineers 

and designers to analyse this problem and help those in need to restore natural movement or 

at least support them to be more independent in the movement through the provision of 

assistive technologies. 

The application of movement analysis requires proper comprehension of internal muscle 

forces and joint reaction forces. Unfortunately, these measurements are impossible to collect 

directly from patients because they would need internal measurement. Musculoskeletal 

modelling is a well-established technique for estimation of these variables. Musculoskeletal 

modelling is a simulation of a biomechanical model that represents the musculoskeletal 

system. It consists of two main elements: rigid segment (bone) and muscle, muscles 

connected to bones by tendons, and bones attached to bones by joints. Musculoskeletal 

modelling has been used for movement analysis and estimation of the internal forces within 

the musculoskeletal system (Bolsterlee et al., 2013). 

The core of musculoskeletal modelling is derived from measurements of the geometric 

parameters of the musculoskeletal system such as length of the muscle fibre, muscle 

thickness and tendon length. These parameters describe the architecture of the muscles, and 
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tendons. Currently, parameters measurement is extracted successfully from cadavers 

because the cadaveric measurement is a useful tool to see and measure unknown 

musculoskeletal parameters at the same time. Although cadaveric measurements offer an 

opportunity for direct estimation of the musculoskeletal parameters, these measurements are 

unable to provide information about a living individual. Simple scaling of musculoskeletal 

parameters from cadaver data to fit an individual typically does not result in a suitably 

personalised model. Therefore, it is necessary to search for more sophisticated solutions (i.e. 

extracting fundamental information pertinent to musculoskeletal modelling from a living 

patient instead of a cadaver). 

Medical imaging is a powerful tool that has been utilized for visualization of the internal 

structure of the body, diagnosis and treatment. Over time, several modalities of medical 

imaging have emerged and developed, and these include Ultrasonography (US), Magnetic 

Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI) and Computer Tomography 

(CT) scanning. Each modality has fundamentally different functions and understandably is 

accompanied by its own set of advantages and disadvantages. For example, MRI and DTI 

require a strong magnetic field to create an image, whereas US uses ultrasound waves with 

a frequency greater than human hearing (>20 kHz), which penetrates and reflects through 

the body. Furthermore, CT scanning depends on radiation and is used for visualising bones 

rather than soft tissue. US machine is the most flexible medical imaging tool because it is 

portable, cheap and has a less negative impact on the body relative to other medical imaging 

approaches. Moreover, real-time static and dynamic scanning is not possible or somewhat 

tricky when using other medical imaging devices. Importantly, operator experience is critical 

to enable minimisation of noise and low contrast. Many types of research have been 

introduced recently to medical imaging modalities as tools to manually extract geometric 
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parameters of the musculoskeletal system. The primary purpose of this is to acquire the 

relevant information in vivo in real time from a patient and feed it to musculoskeletal 

modelling as a step to attain a specific-subject version. However, this approach is time-

consuming and depends on the expertise of the medical imaging system operator. 

Digital Image Processing (DIP) is a tool that allows the automated performance of a wide 

variety of image processing operations, such as image enhancement (increases quality of the 

image), image segmentation (separates the object from its background) and image analysis 

(extracts image features). The most striking impression gathered in this processing is the 

close link between all operations. More specifically, image enhancement should be carried 

out to the highest degree possible in order to achieve the best outcome from image 

segmentation, while image segmentation is a fundamental prerequisite in image analysis. In 

this context, digital image processing accelerates and improves extraction of the geometric 

parameters of the musculoskeletal system owing to its automated nature. Furthermore, DIP 

is simple in representation and performance. Although digital image processing techniques 

are efficiently used in medical applications, they are still inadequate for estimation of image 

features. This is because DIP requires a high execution time and does not have a creativity 

to address ambiguous data such as medical images. Combining more efficient and robust 

tools with DIP techniques could improve the level and quality of execution. One possibility 

is the use of artificial intelligence tools that could support this objective (e.g. fuzzy image 

processing techniques and convolutional neural network techniques). In this work, 

traditional DIP methods were combined with artificial intelligence tools to evaluate 

geometric parameters in the upper extremity automatically. Ultrasound imaging is chosen to 

visualise the selected internal structure in the upper limb. All automated measurements will 

be compared with manual measurements based on ultrasound image sample. 
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1.2 The aims of the thesis 

The main aims of the research presented in this thesis are as follows: 

1- Develop methods to enhance the quality of the ultrasound images of muscle-tendon 

architecture automatically. Ultrasound imaging acquires speckle noise due to the 

behaviour of the image acquisition system in the ultrasound device. Furthermore, 

many regions in the ultrasound images suffer from a low difference in the 

illumination. Therefore, decreasing speckle noise in the musculoskeletal ultrasound 

image and increasing the contrast at low contrast regions in the image will help to 

achieve this purpose. 

2- Develop methods for robust automated analysis, detection and extraction of relevant 

musculo-tendon parameters from musculoskeletal ultrasound image using digital 

image processing tools, convolutional neural network and fuzzy image processing 

techniques.  

3- Collect musculoskeletal ultrasound imaging from healthy volunteers (25 subjects) 

and apply proposed and developed methods to this data. The main purpose of this is 

the comparison between manual evaluations of the geometric parameters of the 

collected data with automated measurements. 

1.3 Thesis structure  

The structure of this thesis mirrors the key steps of the extraction of geometric 

musculoskeletal parameters and the objectives that were presented in this chapter. Chapter 

2 introduces the main steps of literature review journey, which includes a descriptive review 

of musculoskeletal modelling, upper limb movements, medical imaging, digital image 

processing tools and artificial intelligence tools, which are used in processing of the 
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musculoskeletal ultrasound images and finally main thesis objectives. The next four chapters 

illustrate the span of the image processing pipeline of this thesis (image acquisition, image 

enhancement, image segmentation and image analysis). So, the third chapter deals with 

acquisition of the musculoskeletal ultrasound image from ultrasound machines and 

illustrates the protocols of the manual analysis of collected images. Chapter 4 focuses on 

increasing the quality of the ultrasound image and this chapter introduces a solution to reduce 

speckle noise in ultrasound image and develop a new method to enhance low image contrast. 

New applications and novel methods are presented in Chapter 5 to perform detection of the 

musculoskeletal parameters such as muscle fascicles, muscle border and cross section of the 

tendon. Chapter 6 shows the last step of the methodology pipeline, the application of the 

developed methods to extract geometric parameters from the upper limb automatically and 

compare these measurements with manual evaluations. General discussion is reported in 

Chapter 7, while Chapter 8 deals with conclusions and future work.  
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Chapter 2     Literature review  

2.1 Introduction 

Musculoskeletal disorders could result from work-related injury or diseases such as spinal 

cord injury, stroke and cerebral palsy disease. It has an adverse impact on the quality of life 

and economy; particularly, in the case of impairment to the upper limb movement because 

most daily activities require using hands and shoulders. A recent report by the Health and 

Safety Executive in the UK stated that the overall number of work-related musculoskeletal 

injury in 2016/2017 was 507,000 (39%) out of 1,299,000 for all work-linked disorders. 

Upper limbs or neck disorders were the most common illnesses among these employees 

(45%). The total loss in working days was around 8.9 million days, with an average of 17.6 

days wasted for each worker (Health and Safety Executive, 2017). So, there is not only the 

impact on the activities of the individual’s daily life, but there is also an additional financial 

burden on the national economy. 

Analysis of the behaviour of the normal and impaired movement is a necessary step for the 

treatment and assistance of people who suffer from impairment to upper limb movement. 

Movement can be described by evaluation of the internal forces, understanding movement 

control and coordination, predicting functional ability and identifying disorders. However, 

it is difficult to measure it in-vivo. Modelling of upper limb segments is a non-invasive 

powerful tool to analyse movement by solving mechanical equations of motion and force 

prediction. In this analysis, musculoskeletal models use morphological parameters, which 

describe the musculoskeletal structure. Some of these parameters are muscle fibre length, 

tendon length and pennation angle. Therefore, morphological parameters of the 

musculoskeletal structure are the basic building blocks of musculoskeletal modelling. 
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Cadavers are the first source of these measurements, but it is time consuming, in-vitro and 

it is appropriate for designing a generic version of a musculoskeletal model. Such generic 

models may be useful for generalised predictions about musculoskeletal behaviour but are 

limited when it comes to making predictions about specific interventions in individual 

patients. Medical imaging tools can be used to extract these parameters in-vivo to create a 

personalised musculoskeletal model. However, using these modalities consumes time. 

Furthermore, it is somewhat subjective rather than objective, since medical imaging 

modalities such as ultrasonography need an expert to extract these measurements manually 

from ultrasound images. 

More objective evaluation of musculoskeletal parameters could be achieved by involving 

advanced methods such as digital image processing and artificial intelligence tools. 

Combining these methods could improve estimation of key parameters and achieves 

superiority in the efficiency and accuracy of the evaluation.  

In the next section, literature describing the necessary tools for the manual and automatic 

parameter evaluation, as well as key background information on human movement and 

biomechanics will be reviewed. These parameters describe morphological characteristics of 

the upper limb. 

2.2 Musculoskeletal Modelling in movement analysis 

Musculoskeletal modelling has received considerable attention by researchers because it 

plays an important role in movement analysis. Musculoskeletal modelling works as a non-

invasive tool not only for movement analysis and prediction of internal forces (reaction of 

muscles and bones), it also supports engineers in understanding the design of prosthetic 

devices. 



10 

 

Two main components describe the framework of musculoskeletal modelling: bones and 

muscles. Bones are represented in the model as rigid bodies which are connected by 

mechanical articulations (joints), while the representation of the muscles is as actuators. 

Muscles connect to bones by tendons, which transfer the force from the muscle to the bone 

to produce movement. Each of these components has a set of the morphological parameters, 

which describe different anatomical aspects of it, for example in the case of the muscle, some 

morphological parameters are the length of the muscle fibre, pennation angle and muscle 

thickness. These parameters affect the amount of force that can be produced by the muscle. 

The solid foundation of musculoskeletal modelling is derived from measurement of the 

morphological parameters of the musculoskeletal system. This data was typically collected 

from cadavers, then assumed to represent typical individuals; therefore, this version of 

modelling is called generic musculoskeletal modelling (Veeger et al., 1991; Veeger et al., 

1997; Arnold et al., 2010).  

Musculoskeletal modelling has been used in dynamic movement analysis of the upper and 

lower extremity. Some examples of the upper extremity modelling are (Amis et al., 1979); 

(Brand et al., 1981); (Lieber et al. 1992); (Veeger et al., 1991, 1997); (Wood et al., 1989), 

(Van der Helm, 1994), (Makhsous et al., 1999), (Holzbaur et al., 2005), (Charlton & 

Johnson, 2006) and (Ward et al., 2006). All the previous models are generic models, where 

the muscle parameters in particular have not been customised to an individual. Figure (2-1) 

shows one example of these models. 
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Figure (2-1) Anterior view of musculoskeletal model of the upper extremity (Holzbaur et al., 2005). 

 

The Delft Shoulder and Elbow Model (DSEM) is one example of the musculoskeletal 

models of the upper limb. An early introduction of DSEM was in 1994 (Van der Helm, 

1994). The development of this model has been carried out through alteration of model 

structure and anatomical data. The software of DSEM offers a potential tool to study and 

simulate musculoskeletal systems of the upper limb. Musculoskeletal models of the upper 

limb have been used in specific applications. Firstly, using the musculoskeletal model to 

understand the biomechanics of the muscle and joint loading on the upper extremity; where 

the musculoskeletal model was used in the examination of the joint coupling between the 

shoulder and the elbow (Yu et al.,2011). Also, it is used to assess the stabilising potential of 

the shoulder muscles (Ackland & Pandy, 2009). Secondly, some musculoskeletal models 

were used to study and compare shoulder function among different activities, for example, 

hand cycling (Arnet et al.,2012) and pushing a wheelchair (Veeger. et al.,2002). Another 

objective is analysing the impact of structural alteration on the shoulder function such as 

tendon transfer (Magermans et al.,2004) and shoulder implants; this has supported designers 

in improving shoulder prosthesis (Kontaxis and Johnson, 2009). Furthermore, recent 

musculoskeletal models were involved in developing the performance of the hand prosthesis 
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in real time (Blana et al.,2017), and mechanical estimation properties of the arm and shoulder 

in real time (Chadwick et al.,2014). 

As previously stated, generic musculoskeletal modelling is typically based on geometric 

parameters (muscle volume, tendon length, pennation angle) which are collected from 

cadavers (Veeger et al., 1991; Veeger et al., 1997; Arnold et al., 2009). The accuracy of 

cadaver data is restricted by several limitations such as preservation media, accurate 

dissection and in vitro; in vitro measurements are challenging due to the way of extrapolating 

and interpretation of the results (Scott 1993; Martin et al., 2001; LaScalza & Gallo, 2002). 

Therefore, this information is not customized to the geometric parameters of all subjects in 

the population. Designing musculoskeletal modelling based on the measurement of personal 

geometric parameters instead of a cadaver is the main target of many researchers nowadays 

(Blemker et al., 2007). There is much research that has emerged to evaluate these parameters 

using medical imaging because medical imaging offers a powerful tool for in vivo 

acquisition data from different subjects of the population (Holzbaur et al., 2007). 

2.3 Movement and biomechanics of the upper limb 

Movement is the action produced by contraction of groups of muscles (agonists and 

antagonist). Agonist muscles work as prime movers and contract in the same direction of 

movement, while the antagonist muscles are opposite muscles to agonists and work to return 

limb or musculoskeletal parts to the original or resting position. Rationally, it is better to 

analyse the factors influencing and leading to movement production (Seth et al. 2011). 

Muscle function and joint action are the two essential parameters, which control movement 

production. These parameters are affected significantly by the variation of the muscle 
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architecture, which is typically defined by muscle thickness, length of muscle fibre and 

pennation angle (Lieber et al., 2002). 

Regarding muscle architecture, skeletal muscle consists of bundles of fascicles, which in 

turn consist of bundles of muscle fibres. Muscle fibres terminate at bundles of myofibrils 

and a group of sarcomeres arranged on myofibrils. Contraction of skeletal muscle is based 

on a sliding filament mechanism between actin and myosin on sarcomeres; Figure (2-2) 

illustrates the organization of the internal structure of skeletal muscle. 

 

 

Figure (2-2) Interior structure of skeletal muscle, cited from Lieber (2002). 

 

This will have a considerable effect on the joint excursion or joint rotation (Lieber et al., 

2002). Furthermore, there are different arrangement patterns of the muscle fibre in the 

muscle: muscle fibres approximately extend as a parallel line to muscle aponeurosis between 
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origin and insertion, this is known as fusiform muscle. On the other hand, muscle with the 

oblique arrangement of its fibres is known as penniform muscle because it has a pennation 

angle (an angle between the axis of force generation and the orientation of muscle fibre). 

Penniform muscle is classified into three types: unipennate, bipennate and multipennate. In 

the unipennate muscle, the muscle fibres arranged in a diagonal line extending to the tendon, 

while bipennate muscle includes two diagonal rows similar to a feather shape, in their 

arrangement. In the case of multipennate muscle, a tendon in the centre has multiple rows of 

muscle fibres in a diagonal direction are arranged around it and branching out to insert in to 

more than one tendon. The physiological cross-section (PCS) is defined as the area that cuts 

all the muscle fibres; it is commonly involved in estimating the number of the fibre of the 

muscle. Hence pennate muscles have a large number of muscle fibres compared with 

fusiform muscle; force production is also high in this muscle. Figure (2-3), shows the 

different kinds of pennate muscle. 

 

 

Figure (2-3) Different patterns of muscle fibre arrangement in the muscle, cited from Hamill & Knutzen (1995). 

PCS is physiological cross section area, which can be defined as cross section area, which is perpendicular on 

the muscle fibre. A illustrates fusiform muscle, while B shows penniform muscle (unipennate, bipennate and 

multipennate). 

PCS 

PCS 

PCS 
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Planning of voluntary movements begins at motor cortex of the cerebral cortex whereas 

cerebellum work to coordinate these movements. Output signals from the motor cortex pass 

through the nervous system to stimulate the skeletal muscle to contract and produce force. 

Then force is transferred to the joint by tendons; a tendon behaves as a bridge between 

muscle and bone to transfer force. Considering the accurate measurements of the geometric 

parameters (cross-section area, tendon length and tendon excursion) is necessary to evaluate 

proper mechanical properties of the tendon. Variation in these mechanical parameters could 

affect its ability to deliver force to the bone or joint and achieve the movement. 

2.3.1 Upper limb movement 

The study of the upper limb movement is growing in parallel with the growth of the motives 

and goals. The primary motivator is the urgent need to help patients to live comfortably. 

Secondly, aspiring scientists who endorse the idea of robot development as a substitute or a 

support to humans in the implementation of restrictive and time-consuming tasks. More than 

one reason illustrates the difficulty of modelling the upper limb. Firstly, the movement 

system of the upper extremity can be described as complex because upper limb joints have 

many degrees-of-freedom (DOF) especially the shoulder joint (Rab et al., 2002; Nikooyan 

et al., 2011). Secondly, the path of the upper extremity muscles is likely to not be a straight 

line (Rankin & Neptune, 2012). Taking measurements of three-dimensional movement in 

the upper extremity could be an arduous task, particularly in the case of shoulder movement 

(Veeger et al., 1997). One of these applications is skin markers of the three-dimensional 

techniques; the idea was derived from lower limb then applied to analyse the movement of 

the upper limb. This method presented a promising approach for movement analysis using 

surface markers. However, to be more applicable and practical, it needs a standard criterion 

of collecting data to determine the accuracy of movement analysis of the upper extremity.  

https://en.wikipedia.org/wiki/Cerebral_cortex
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The upper extremity is typically a composite of four main parts (shoulder, arm, forearm and 

hand), a hand forms the lightest weight of the upper limb while a shoulder region is the 

heaviest and a forearm is lighter than an arm. These parts consist of different muscles, bones 

and joints to perform a variety of upper limb movements such as grabbing, eating, writing, 

raising weights and dancing. Briefly, bones, which participate in the movement of the upper 

limb, are clavicle, scapula, humeras, ulna, radius, carpal bones, metacarpal bones and 

phalanges bones. Joints could consist of combining two or three bones. The three main joints 

of the upper limb are glenohumeral joint (between the glenoid cavity of the scapula and head 

of the humerus), the elbow joint (between humerus, radius and ulna) and the wrist joint 

(between radius and carpus). The DOF in the upper extremity of humans excluding the hand 

is 7 DOF, which is distributed as follows: shoulder joint has 3 DOF, while each elbow joint 

and wrist joint has 2 DOF (Rosen et al., 2005; Gopura et al., 2010). 

2.4 Determining the musculoskeletal parameters 

Two kinds of measurements are involved in the evaluation of morphological parameters of 

the musculoskeletal system (muscle fibre length, tendon length and pennation angle). The 

first is a cadaveric measurement using an anthropometric method, while the second uses 

medical imaging as a tool to extract musculoskeletal parameters from cadavers or healthy 

volunteers. 

The first attempt at cadaveric measurement was in 1967, applied to lower limb specimens to 

study the mechanical properties of the tendon. The comparison between the human Achilles 

tendon and the horse tendon was achieved and illustrated the stress-strain curve for both 

tendons in vitro (Abrahams, 1967). Another comparison of mechanical properties of the 

Achilles tendon and other tendons was verified in humans (Wren et al., 2001). Studies have 
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illustrated the validation of the lower limb model to assess different movement parameters 

such as moment arm and tendon length. This model relied on cadaveric data, taken from 21 

specimens (Arnold et al., 2010). Another study also based on cadaveric measurement shows 

the decline in the cross section of the flexor digitorium in feet with claw toes compared with 

rectus toes (Locke et al., 2010). Estimation of geometric parameters to build an appropriate 

upper limb model was introduced (Veeger et al., 1997). These parameters have been 

evaluated based on anthropometric methods after dissecting specimens of the upper limb 

were taken from five cadavers.   

Medical imaging has revolutionized visualization of the internal structure of the body in real 

time and in vivo. It is worth using medical imaging because it is impossible to imagine in 

real time what is inside the body unless surgery is performed; it is possible to see internal 

structure through cadaver dissection, but not in vivo. There are several kinds of medical 

imaging tools, which have been used in musculoskeletal system analysis such as 

Ultrasonography (US), Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging 

(DTI) and Computer Tomography (CT) scans. Researchers have stepped up their efforts 

recently to focus on using these modalities in musculoskeletal applications. For example, 

using ultrasound imaging (Martin et al., 2001; Heinz, 2016). and MRI (Scott et al., 1993) in 

the identification of musculoskeletal parameters from a cadaver. Furthermore, combining 

the musculoskeletal model with MRI to determine moment arm and comparing it with 

experimental data (Arnold et al., 2000) is used. The result shows the difference between the 

two measurements was reduced to 10% when combing MRI with musculoskeletal model. 

On the other hand, accurate evaluation of these parameters from a cadaver whether they are 

collected using an anthropometric method or using medical imaging tools has some 

limitations. Examples of these limitations are: the impact of the preservation media on the 
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vitality of cadaver tissue, mobility of this tissue compared with the living tissue of a healthy 

volunteer and the accuracy of the dissection procedure (Scott 1993; Martin et al., 2001; 

LaScalza & Gallo, 2002). 

2.5 Medical Imaging tools for musculoskeletal parameters extraction 

Medical imaging consists of different imaging devices which are used in musculoskeletal 

visualisation system to help clinicians to make their decision on the diagnosis and support 

researchers in the investigation. The importance of medical imaging tools in developing 

musculoskeletal modelling links directly with an increase in the possibility of the 

musculoskeletal parameters evaluation based on using these tools. 

Medical imaging tools such as MRI, DTI and US are free from radiation and assist in the 

visualisation of the soft tissue rather than bone. Therefore, it is suitable for identifying the 

details of muscle and tendon. However, each modality has pros and cons in terms of the 

details recognition. For example, MRI is powerful enough tool to depict muscle and tendon 

borders, but it does not provide a good enough view to describe muscle details, while the US 

does have potential for identification of muscle details such as fibre orientation. DTI has a 

promising ability to recognise the direction of muscle fibre and could be a powerful 

modality, which will be used in the future for high-level visualisation of details in muscles 

and tendons. On the other hand, CT scans are a suitable choice for visualisation of bones 

rather than soft tissue, but it depends on radiation which has some restrictions on scanning. 

2.5.1 Ultrasonography (US) 

Principle  

Ultrasonography relies on transmissions of the ultrasound wave (frequency 1-20 MHz) 

through the body (Narouze, 2011). Some of these beams could be scattered as noise, while 
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other beams could be converted to heat, which is absorbed by the body. The reflected beams 

are detected by an ultrasound probe or transducer, which translates the reflected signal into 

an image. Linear and curvilinear transducers are two familiar probes, which are used in 

musculoskeletal applications. The selection of a suitable probe depends on where the scan, 

size, and the depth of the musculoskeletal components are. In the case of scanning a 

superficial muscle, a linear probe is a preferable choice because the linear probe works with 

high frequency (7-20MHz). The low frequency< 7 MHz of a curvilinear probe is used to 

visualize the deep structure of the body (Louis, 2008). 

There are three modes of the ultrasound machine scanning: A mode, B mode and M mode. 

A mode (amplitude mode) concerns with displaying the amplitude of an ultrasound signal, 

while B mode (brightness mode) displays the ultrasound echoes as bright dots to illustrate 

two-dimensional ultrasound image. Lastly, M mode is motion mode, which is used to 

analyse moving body parts such as cardiac and fetal cardiac imaging. The ultrasound mode 

most commonly used in the visualization of musculoskeletal structure is B-mode (Lin et al., 

2000; Ahmed & Nazarian, 2010) because this mode translates the ultrasound echo of the 

musculoskeletal structure to two-dimensional ultrasound image. 

Change in the angles of the ultrasound beam makes a massive difference on the fidelity of 

the image, for example, ultrasound images could be brighter than other images if the 

ultrasound beam was perpendicular to the tendon (Lew et al., 2007). Therefore, holding a 

probe in the wrong way and not using adequate pressure during scanning will lead to 

inaccurate information (Ihnatsenka & Boezaart, 2010). If an angle between a probe and a 

skin is not perpendicular, this leads to produce artifact called anisotropy. This kind of artifact 

is direction dependant and commonly occurs in tendons due to the structural nature of the 

tendon which contains multiple, parallel linear interfaces (Narouze, 2011). However, to 
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reduce the impact of the anisotropy, it is better to use a linear transducer because it has a 

higher possibility of being mostly perpendicular to the surface of the body.  

The measurement of ultrasound imaging has inter-observer and intra-observer variability; 

inter-observer due to the different views in the measurement of the same scan region between 

different experts. The same expert could give a different view when scanning the same 

region at a different time, this is intra-observer. It is possible to avoid this variability and get 

an acceptable agreement regarding views by getting more practice on measurement 

protocols. Acoustic impedance is different from one tissue to another; it indicates the amount 

of echo, which is reflected from tissue depending on the density, for example, the acoustic 

impedance of the bone is larger than a muscle (Chan & Perlas, 2011). Consequently, the 

expertise is the main requirement to get a meticulous image and avoid some of the expected 

errors. 

Development  

Ultrasonography has become a more popular imaging modality than ever, not only is it free 

from ionizing radiation and magnetic fields that restricted the patient who has a pacemaker, 

but also it is a cost-effective solution and portable as well. In addition, imaging via US 

machine is in real time, non-invasive and interestingly with dynamic and static scanning. 

Ultrasonography has been utilised in the medical applications for more than 70 years (Kane 

et al., 2004). Indeed, Ultrasonography has had several applications in the musculoskeletal 

system during four decades of the development. In the first two decades, researchers 

concentrated their efforts in trying to solve issues related to musculoskeletal diseases, and 

analysis of which has an impact on muscle architecture. The first article, published in 1980 

about the investigation of congenital dislocation in an infant hip joint (Graf, 1980). The US 

was used as a supportive tool in observation of shoulder dislocation (Gompels & Darlington, 



21 

 

1981). Furthermore, evaluation of the changes in the pennation angle of the brachialis muscle 

resulting from variation of the elbow joint angle and torque during a static and dynamic 

condition in vivo (Herbert & Gandevia, 1995). Perhaps, gravity has an impact on the 

measurement in the vertical or horizontal directions, Li &Tong. (2005) executed the same 

experiment and found different results from Herbert due to this reason. Changes in moment 

arm were estimated for the Achilles tendon in the joint contraction and relaxation (Maganaris 

et al., 1998).  

Perhaps, a comparison decade is a convenient term to describe the 2000’s decade because in 

this period researchers began to show the difference and similarities between different ways 

of measurements, different muscles and different sexes. Some of these applications are the 

comparison of morphological parameters of the muscles in the lower limb between cadavers 

and volunteers (Martin et al., 2001). Experiments combining US and Electromyography 

(EMG) measurements to extrapolate the influence on the muscle architecture during muscle 

contraction and rest have been done for the upper and lower limbs (Hodges et al., 2003). 

Appraisal of muscle size (Reeves et al., 2004) and muscle mass was performed by US 

(Sanada & Kearns, 2006) as an alternative method instead of MRI. Prediction of muscle 

volume of the cadaver was made before dissection (Infantolino et al., 2007). Furthermore, 

US estimation for morphological characteristics of extensor digitorium muscles to a group 

of male and female volunteers was performed, also force was measured to the same group 

and in the same time to illustrate the impact of the change of the muscle properties relative 

to the change of force (Brorsson et al., 2008).  

The fourth decade is a motion decade; researchers have been interested in estimating tendon 

excursion and analysis of the mechanical properties of the tendon and muscle. Excursion of 

the finger tendon evaluated manually for cadaveric specimens and in vivo (Korstanje et al., 
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2010), described the relationship between stress and strain of the tendon in the lower limb 

(Gerus & Berton, 2011). Moreover, determination of the thickness of the lower trapezius 

muscle (Han et al., 2013), and recognition of tendon and muscle tears is possible with 

dynamic imaging (imaging during movement) (Tandon et al., 2013). Estimating muscle 

morphological information using US of the rectus femoris and vastus lateral muscles in the 

lower limb before and after electrical stimulation was performed to observe the difference 

in the ultrasound images. (Chauhan et al., 2013).  

Recently, Sonoelastography has emerged as a development of US to measure mechanical 

properties of the tendon tissue. It has several applications in the musculoskeletal system, for 

example, the effect of the change in the mechanical tendon properties on B-mode ultrasound 

intensity has been demonstrated in vitro (Duenwald et al., 2011). A satisfactory estimation 

of the displacement and the strain of the tendon tissue has been achieved using two-

dimensional Sonoelastography in vivo (Slane & Thelen, 2014). Although Sonoelastography 

has offered a new way to understand mechanical properties of the tendon tissue through the 

movement or musculoskeletal myopathy, it is still an inactive method in clinical utility 

(Smajlovic et al., 2011; Bey & Derwin, 2012). Sonoelastography has several challenges, one 

of them is consuming time because it needs to measure a broad set of data; secondly, the 

results are nonlinear due to tendon tissue heterogeneity. Finally, the compression on the 

surface of the scanning might have a negative impact in focusing on the evaluation of the 

mechanical properties (Duenwald et al., 2011).  

Challenge and limitations  

The panoramic image added a new evolution in ultrasound imaging applications because it 

presented ultrasound images in a wide view. In the panoramic technique, the transducer 

collects the panoramic image as a sequence of frames, where it can keep the old frame and 
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continue to add newly scanned frames to the previous one. All scanned frames are parallel 

to the direction of scan plane to elongate the view of imaging (Kremkau, 2010). It is a 

powerful way for imaging a whole muscle in one long image (Pillen, 2010). It is approaching 

use in CT scans in the estimation of the cross-section of the quadriceps muscle (Nooroiv et 

al., 2010), and gastrocnemius size in the lower limb (Rosenberg et al., 2014), as is the 

similarity of panoramic US technique to MRI in evaluation of the cross-section area in the 

lower extremity (Scott et al., 2012). 

Although amenability of US has attracted patients and clinicians compared with other 

medical imaging devices, it still involves some challenges. Some of them have been 

addressed and others are still under research. US imaging has not had zero risks because the 

presence of thermal effect during visualisation, although this is very low. Furthermore, 

calibration is necessary because the data is not the same in all US machines; mapping 

equations have been designed to apply the calibration between US machines (Blum et al., 

2009). 

Consequently, ultrasound imaging is a powerful option to extract musculoskeletal 

parameters automatically. Since, it is portable, flexible, cheap and interestingly provides 

high-level of the muscle details such as orientation of muscle fascicles. 

2.5.2 Magnetic Resonance Imaging (MRI) 

Principle  

MRI is one of the medical imaging methods which produced a paradigm shift in medical 

diagnosis because it is powerful in discrimination between normal and abnormal soft tissues. 

There are five main components of MRI, contributing with each other to achieve the work. 

The first one is a magnet that produces a static magnetic field; while the second is the 
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magnetic gradient system (variant magnetic field). Radio frequency and coil system 

represent the third part; the resonance occurs between radio frequency and frequency of the 

selected region for imaging. Finally, the fourth and fifth parts are receiver and computer 

system respectively. The fundamental principle of MRI comes from the idea of polarization 

of hydrogen protons of water molecules; this means protons are arranged in parallel and 

antiparallel alignment under the effect of the magnetic field. Thus, the quality of the output 

image depends on the amount of water molecules in the body. Then, at resonance, protons 

are excited to store energy by moving it to antiparallel alignment instead of parallel 

alignment. In the relaxation stage, there are two essential parameters T1 (the time required 

for proton to go back into the previous position) and T2 (the lifetime of the echo signal), 

which have a huge impact on the image contrast. Proton Density (PD) is another contrast 

factor, which also has a clear imprint on the image contrast. The value of PD is varied based 

on the region of the body. In addition, selection of the thickness slice is critical because it 

has an enormous effect on the resolution (Westbrook, 2010; Hashemi et al., 2010). 

Development 

Many researchers are attracted to using MRI in the visualization of the musculoskeletal 

system, for it being renewed and an effective environment for research and development. 

The initial idea was introduced in 1971 (Damadian, 1971) and then applied on the rat to 

detect tumours in 1974 (Damadian et al., 1974). Visualization of all of the human body was 

done in 1980. The MRI became three- dimensional (3D) in 1981, but it needed a lot of time 

to complete the scanning process (Ai et al., 2012). After modification of 3D MRI by using 

parallel imaging, it was possible to use more flexible 3D MRI than previously. The first 

application of 3D MRI in the musculoskeletal system came after amendments in 1986, it was 

visualization a knee joint from volunteers and cadavers. The amendments focused on 
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production a high-resolution of the image compared with the previous one (Harm & 

Muschler, 1986). In the same year, the first article was published about visualization regions 

in the upper extremity (hand and wrist), by passing a patient through a high strength magnetic 

field of 1.5 T (Weiss et al., 1986). Highlighting the capabilities of the magnetic resonance in 

the description of the muscles, joints, ligaments and tendons anatomically. MRI is a potential 

modality because it is effective in being able to browse anatomical structure and observe 

abnormality.  

Regarding upper extremity, there are several applications; firstly, visualisation of the 

anatomical structure of the shoulder (Neumann, 1992) and the ability to differentiate 

between the normal shoulder and abnormal (Cook et al., 2011; Chaudhary & Aneja, 2012) 

were introduced. Secondly, illustrations of the anatomy of the elbow joint (Flower & Chung, 

2004) and appraisal of the joint status by investigating the function ligament injuries were 

applied based on MRI (Kaplan & Potter, 2004). Another application was a depiction of the 

muscles, ligaments and joints, which are related to wrist and hand (Yu, & Habib, 2004). 

Furthermore, MRI has a distinct role in recognition of the musculoskeletal diseases such as 

inflammation of the joints (Heron, 1992; Mcqueen, 2000). In addition, MRI is valid in the 

observation of  musculoskeletal diseases after treatment such as detection of Vitamin D 

deficiency because these diseases lead to changes in muscle architecture or muscle 

weakness, so it is possible to observe easily through imaging the cross section of the skeletal 

muscle (Bignotte et al., 2014). MRI is a powerful tool in the analysis of the morphological 

properties of the muscle and tendon. Evaluation of the tendon length and moment arm values 

were achieved for three lower limb cadavers using MRI and a musculoskeletal model 

(Arnold et al., 2000).  
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Challenge and limitation 

Clinicians and researchers have united to develop MRI for motion analysis; it is possible to 

scan musculoskeletal system in vivo and in real time by using dynamic MRI. The 

development of MRI device is going on firmly and the possibility of dynamic imaging using 

MRI is not just a dream, but it is reality. So far, there are three types of dynamic MRI: 

kinematic MRI (Shellock et al., 1991), real-time MRI (Quick et al., 2002) and cine phase-

contrast MRI (Asakawa et al., 2003). However, these types of MRI have introduced further 

problems and their development has some limitations. Kinematic MRI technique was 

developed to recognize certain pathologic conditions during active motion during a very 

limited time. In the case of cine phase-contrast MRI, there is a difficulty in capturing an 

image in all cycles because it is possible to depict the image in one cycle and miss other 

cycles. Repetition is required to achieve a sufficient resolution; but this adds another 

limitation to this type of MRI, which could exhaust the body especially in the case of 

disabled people. On the other hand, real-time MRI can perform visualisation in a single cycle 

without repetition. However, it has insufficient accuracy compared to cine phase-contrast 

MRI. The movement evaluation by dynamic MRI has remained restricted to just a few 

movements compared to dynamic applications of ultrasonography.  

The second limitation is related to low image contrast. However, it is now possible to 

improve image contrast by increasing the strength of the magnetic field, because the strength 

of the magnetic field has a significant impact on the replication of the protons in the parallel 

direction. Researchers have invested in the previous point to raise contrast properties, 

particularly in three dimensions MRI. Some of these amendments are from passing patients 

through the higher strength field instead of the low strength field, enhancement of the 

magnetic gradient performance and modification to the coils system of MRI into high-
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resolution multichannel coils (Naraghi & White, 2012), but at the same time this solution is 

costly. Other limitations are associated with patients that have an implanted cardiac 

prostheses (pacemaker). It is important to be aware of this fact because it has a harmful effect 

on the patient (Baikoussis et al., 2011). The most important limitations of using MRI in the 

musculoskeletal visualisation system are that it is time-consuming due to repetition; it might 

exhaust patients; especially elderly and disabled people and it is also expensive. 

2.5.3 Diffusion Tensor Imaging (DTI) 

The main idea of the image construction using DTI is based on the understanding of motion 

and distribution of the hydrogen atoms in water molecules within soft tissue. The collision 

of the water molecules leads to diffusion; the diffusion is anisotropic because it is non-

identical in all directions. If the image is constructed based on anisotropic diffusion, the 

contrast of the image will be increased; therefore, it is possible to tackle the contrast 

limitation of the MRI. There are three parameters to be considered in DTI structure. The first 

parameter is eigenvectors and eigenvalues, which describe the physical properties of the 

materials; for example, the largest eigenvector indicates the main diffusion direction, which 

corresponds to the fibre direction. The second one is Apparent Diffusion Coefficient (ADC) 

that illustrates the direction of the diffusion measurement; a bright image has high ADC. 

Lastly, FA (Fractional Anisotropy) describes the shape of the diffusion (Mori & Zhang, 

2006; Hagmanm et al., 2006).  

There are several applications of using DTI in the musculoskeletal system: examining the 

validity of DTI in tracking skeletal muscle fibres at three dimensions for the animal leg 

(Heemskerk et al., 2005) and human (Heemskerk et al., 2010). Tracking of muscle fibre 

illustrates a reasonable idea about fibres orientation, and this could be useful in observing 
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the progress in musculoskeletal diseases. However, DTI is still as time-consuming as MRI 

even in tracking muscle fibres and it is expensive. Table (2-1), illustrates the comparison 

between three main medical imaging tools (US, MRI and DTI). 

Table (2-1) Comparison of three medical imaging modalities (MRI, DTI and US). 

 MRI DTI US 

1 Expensive Expensive Cheap 

2 Non-portable  Non-portable Portable  

3 Static and very limited dynamic 

scanning 

Static and very limited 

dynamic scanning 

Static and dynamic scanning  

4 High image contrast Has higher image 

contrast than MRI 

Low image contrast and it has 

speckle noise 

5 Time consuming Time consuming Flexible and not time 

consuming 

6 Although it is free from radiation, it is 

very restricted to the people, who have 

metal inside a body such as a 

pacemaker. Furthermore, it is 

challenging to the people who, cannot 

cope with high level of magnetic field 

strength. 

The same case of MRI. Free from magnetic field and 

radiation. Furthermore, it is 

not restricted to any kind of 

implanted metal inside the 

body. 

7 It is possible to recognise muscles and 

tendons borders, but it is difficult to 

illustrate the details of the muscle 

architecture such as orientation of 

muscle fibres and pennation angles. 

It has been involved to 

reconstruct the 

orientation of muscle 

fibres, but it still in 

early stage yet. 

It is possible to present the 

borders of the muscles and 

tendons, also the details of the 

muscle architecture. 

8 It is not practical in case of the repetition 

because it is costly and may exhaust 

patients especially elderly and disable 

people. 

The same case of MRI. It is potential in the case of 

the repetition. However, an 

expert needs a considerable 

experience to avoid 

intraobserver variability. 

 

Based on conclusions of the table (2-1), US was selected in this thesis as a medical imaging 

tool for collecting data from the upper limb. Ultrasonography is flexible in use, portable, 

inexpensive and powerful in illustrating muscles and tendons details. Furthermore, US is 

available to researchers and clinicians at Keele University and is likely to be routinely 

available to clinicians in practice, thus making the findings of this thesis widely applicable. 
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2.6 Digital Image Processing to improve parameter determination 

Analysing the digital image by computer automatically using a set of processing actions is 

called Digital Image Processing (DIP). This processing is concerned with improving the 

appearance of the digital image, separation of the object from background inside the image 

and image analysis. DIP introduces a faster evaluation of the geometric parameters of the 

ultrasound image automatically rather than by manual evaluation. Manual measurement of 

the image parameters is the most common approach in the research. However, it includes a 

high level of variability because it depends mostly on the machine performance and the 

expertise of a user. Furthermore, it is time-consuming and perhaps gives a different result 

upon repeating measurements. Therefore, DIP could improve parameter determination of 

the musculoskeletal ultrasound image. 

There are two methods of digital image display, two-dimensional (2D) image and three-

dimensional (3D) image. An image measurement unit is a pixel when measuring a 2D image 

and a 3D image can be measured by a voxel. Image histogram is a tool that illustrates the 

distribution of the pixels in terms of the grey level intensities. There are three types of 

images; the first one is a binary image, which has an intensity value of either 1 or 0. 

Secondly, the grey level intensities image; the common storage capacity per pixel in this 

image is 8 bits, so intensity values range between 0 and 256 (Gonzalez & Woods, 2002). 

Finally, colour image has a specific model which consists of three bands, every band 

represents one colour such as Red Green Blue (RGB) colour model and Hue Saturation 

Lightness (HSL) colour model. The intensity value of the colour image is obtained from the 

union of three components. Mostly, RGB colour model is the dominant model because RGB 

colour model reflects the colours of the nature, a mixture of red, green and blue. (Wen & 

Chou, 2004), the Musculoskeletal ultrasound image can read it by Matlab software as a 
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colour image (RGB colour model), but red, green and blue components are the same grey 

level intensities. 

In fact, two considerable problems are detected in the ultrasound images: low image contrast 

and presence of speckle noise (Wagner, R.F. et al., 1983). It is difficult to analyse 

musculoskeletal ultrasound image and obtain required information directly without 

performing pre-processing steps such as image enhancement (reducing speckle noise and 

enhancing low image contrast) and image segmentation (detection important details of the 

image). Furthermore, sometimes post-processing is also necessary to get accurate 

evaluations. 

2.6.1 Image Enhancement 

The main objective of the image enhancement is getting a suitable and improved appearance 

of the image for applications such as edge detection of the image and musculoskeletal 

parameters determination. There are two considered approaches to achieve this objective: 

spatial domain approach using traditional methods and transform domain approach using 

artificial intelligence tools such as artificial neural network and fuzzy logic techniques. 

Speckle noise and low image contrast are two dilemmas that have a negative impact on the 

quality of the ultrasound image. 

2.6.1.1 Speckle Noise Reduction 

Noise reduction is one of the primary targets of  musculoskeletal ultrasound imaging because 

noise in the ultrasound image could add difficulty in interpretation of the image for clinicians 

and researchers. Speckle noise is multiplicative noise and it is the outcome of the coherence 

of the acquisition devices. This noise is the dominant noise in several kinds of images such 
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as Synthetic Aperture Radar (SAR) images and ultrasound images (Wagner, R.F. et al., 

1983.), (Dainty, J., 1970). The following equation illustrates the state of speckle noise 

𝐼(𝑥, 𝑦) = 𝐺(𝑥, 𝑦). 𝑆(𝑥, 𝑦)                                                                                                                (1) 

Where 𝑥 and 𝑦 are the dimensions of input image  𝐼(𝑥, 𝑦) and this image is observed image 

with speckle noise, 𝐺(𝑥, 𝑦) is pure image and 𝑆(𝑥, 𝑦) is speckle noise (multiplicative noise). 

Several techniques in DIP have been involved in suppressing speckle noise. Some of these 

techniques are linear filters such as Wiener filter, but in this type of filter there is a need to 

convert multiplicative noise into additive noise using the logarithmic function because the 

linear filter is more appropriate for additive noise. Non-linear filters are another approach of 

speckle noise suppression (Lee et al., 1994), (Schulze and Wu, 1997); for example: median 

filter, adaptive filter, anisotropic diffusion filter, local adaptive median filter and wavelet 

technique. These techniques have been applied to the ultrasound images of different organs 

in the human body. For instance, using an anisotropic diffusion filter to reduce speckle noise 

in kidney and heart ultrasound images (Abd-Elmoniem et al., 2002) and liver ultrasound 

image (Krissian, K. et al., 2007). Another example is using wavelet transform technique in 

the speckle noise reduction of the ultrasound image of women’s breasts (Zhang, J. et al., 

2016). The wavelet transform technique can decompose an image to a set of components, 

then perform particular processing and compose again to get the output image. 

2.6.1.2 Contrast Image Enhancement 

Contrast enhancement illustrates a significant indicator of the visual image quality 

enhancement because it shows the difference in the image luminance and brightness between 

pixels or image regions. There are many traditional techniques in DIP that were applied to 

improve the contrast of the image; firstly, the Histogram Equalization(HE) method has the 
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effect of increasing the contrast of image regions that would otherwise have low contrast 

(Cheng & Shi, 2004; Han et al., 2011; Kaur & Gupta, 2012). But a drawback is that it can 

increase contrast of noisy regions as well. Secondly, Non-Linear Unsharp Masking 

(NLUM), is a successful approach because it combines nonlinear filters and logical 

operations between input image and the image after filtering. It was used to enhance the 

contrast of the 2D image (Ramponi et al., 1996; Polesel et al., 2000; Deng, 2011) and 3D 

image (Tao et al., 2009). It is powerful technique in illustrating important information on the 

medical image, but one of its drawbacks is that it can intensify noise and increase image 

contrast in all regions even if some regions do not need contrast enhancement.  

Image restoration is a part of image enhancement; it has a significant role in retrieving the 

lost information especially in ultrasound images. Sometimes, image enhancement is carried 

out as a pre-processing step before image segmentation, this helps to obtain better results of 

the separation of the object from its background (Gupta et al.,2014). 

2.6.2 Image Segmentation 

Labelling homogenous pixels into groups to separate the object from the background, 

classifying an image into regions and highlighting the important details in the image are 

objectives of defined image segmentation. Computer vision and digital image processing 

offer many techniques to achieve these purposes. Some of them involve edge detection using 

image filters, active contour-based segmentation and thresholding. 

The main means of edge detection is identifying areas of considerable change in image 

intensity (1986). This means focusing on highlighting distinct details and ignoring 

homogeneous details (Joshi et al., 2013). Edge detection can be extracted by using derivative 

methods of the first order, such as Roberts, Sobel, Prewitt and Canny operators and second 
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derivative methods such as Laplacian or Gaussian operator (LOG) (Canny, 1986). These 

traditional methods can be implemented by the convolution between each pixel, and its 

neighbours in the image and kernel, this kernel may have a window size of 3x3, 5x5, 7x7 or 

larger window. 

Another familiar method in image processing is thresholding. This method can separate the 

image into regions based on selected image intensity (Gonzalez & Woods, 2002), see 

equation (2). 

𝑂𝑢𝑡𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒(𝑖, 𝑗) = {

  𝑟𝑒𝑔𝑖𝑜𝑛1                         𝑖𝑓 0 ≤ 𝐼(𝑖, 𝑗) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1

𝑟𝑒𝑔𝑖𝑜𝑛2    𝑖𝑓 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 ≤ 𝐼(𝑖, 𝑗) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2

… 
     𝑟𝑒𝑔𝑖𝑜𝑛𝑛     𝑖𝑓 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛−1 ≤ 𝐼(𝑖, 𝑗) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛

    (2)       

It is possible to extract several regions from input image based on the selected threshold. 

Several different methods for edge detection have been utilised on Musculoskeletal 

Ultrasound Imaging (MUI). One of the preliminary works in MUI segmentation was 

introduced by Gupta (Gupta et al., 2014). This technique addressed limitations related to 

MUI such as speckle noise reduction and contrast enhancement before detection of the edges 

of the image. Furthermore, subsequent steps were involved in morphological processing 

such as erosion and dilation to eliminate distorted pixels and facilitate extraction of the main 

features, which describes an object in the image. Extraction of image features (edges) was 

achieved by using a curvelet transform; this method is designed to represent an image in the 

high-level dimensions (large scale and different angles), so it is suitable to extract the edge. 

Then using the thresholding method to separate the object from its background. In this work, 

automatic segmentation was expected to support the analysis of the MUI, but the details of 

the muscle edges of the ultrasound images were not well preserved due to the impact of the 

dilation and erosion processing on changing some details of the image. 
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The active contour method was presented by Chan and Vese (Chan & Vese, 2001) as one of 

the powerful tools of separating an object from its background in the image. Active contour 

does not need to define the edge or remove noise when evaluating the contour of the object. 

It is commonly involved in snaking (Kass et al., 1988) and surface segmentation (Krueger 

et al., 2008). Some applications of ultrasound images used active contour to detect an object 

in different organs of the body; for example, the ultrasound image of a thyroid (Poudel et 

al., 2016), carotid artery (Chaudhry et al., 2013) and vein (Petroudi et al., 2012). From these 

applications active contour-based segmentation illustrates that is possible to successfully 

separate an object from its background without first defining edges. However, this is also 

depending on the properties of the image. For example, musculoskeletal ultrasound images 

have a complex texture patterns compared with other medical images. Therefore, it might be 

difficult to apply this method on MUI without performing pre-processing steps. 

2.6.3 Image Analysis 

Image analysis includes identifying the main parameters and properties of the image such as 

determining the colour properties of the different regions in the image, geometric evaluation 

of the properties of the object inside the image (area, diameter and length) and feature 

extraction of the image. Image analysis is the last stage in the image processing pipeline and 

could require pre-processing steps and tools particularly in the case of the analysis of medical 

images. For example, musculoskeletal ultrasound images need image enhancement to 

increase image quality by reducing speckle noise and raising the contrast of the regions, 

which have low contrast. Furthermore, sometimes segmentation or edge detection is a 

necessary step with image enhancement and works as a pre-processing step. Indeed, 

musculoskeletal ultrasound imaging analysis is more challenging compared with other 

medical images and other ultrasound images. This is due to the interaction between grey 
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level intensities of the image; it is possible to detect pixels that have the same grey level 

intensities in the tendon and the muscle as an example. Several types of research have 

recently analysed the ultrasound imaging of the muscle and bones using DIP techniques. 

This is for determining geometric parameters, which describe the behaviour of the muscles, 

tendons and movement system automatically without biasing. Some of this work is 

evaluation of the pennation angle of gastrocnemius muscles (Zhou & Zheng, 2015) and 

vastus-lateralis in real time (Jalborg, 2016); edge detection in this application was achieved 

as a pre-processing step using edge detection filters such as Canny edge detector, Sobel edge 

detector and Hough transform method. However, the superiority in the extraction of 

musculoskeletal parameters can be achieved by combining artificial intelligent tools with 

DIP techniques rather than only traditional DIP tools. Therefore, this would help to improve 

the performance of the automatic approach and offer an array of benefits in terms of accuracy 

and speeding up the algorithms. 

2.6.3.1 Hough transform 

The Hough transform is a technique that has been used to detect lines, circles and curves. 

This tool was originally introduced by Hough (1962) and developed by Duda and Hart 

(1972). This method requires a pre-processing step; applying edge detection method on the 

image to get a set of edge detector pixels. If the edge detection image plane has a straight 

line, each point in this straight line will have the possibility of passing lines through this 

point. This line can be represented by the equation (3):- 

x1cos(∅) + y1sin(∅) = r                                                                                                              (3) 
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where (x1,y1) is a point on the line. The line is determined using two parameters: radius (r) 

that is defined by the distance from the coordinate system center towards the line, and theta 

(∅),  the angle between the radius and one axis as shown in the figure below. 

 

 

Figure (2-4) The coordinates of the image plane, the blue line is the detected line by (r, ∅). 

The simple idea of Hough transform depends on accumulation of votes that tells us about 

the presence of a straight line in the edge detection image plane.This means detection with 

a high score of voting by finding local maximum in the accumulation matrix is enough to 

extract the line in the image.  

The main advantage of this approach in image analysis is identification of some features 

within the image such as lines or circle. The motivation for using this technique in the thesis 

is its ability of detection and separation of muscle fascicles in the ultrasound image. This is 

useful in the evaluation of the pennation angle in one snapshot. Recently, this technique has 

been used in the detection of pennation angle of the gastronomes muscle (Zhou et al, 2015). 

2.7 Artificial Intelligence tools to improve parameters extraction 

The ability to solve problems by computer using an intelligent manner and as close to human 

thinking is defined as artificial intelligence. Machine learning is a field, which lies within 

the border area of artificial intelligence; machine learning is concerned with training data 

sets to learn using either of two approaches supervised or unsupervised. The main distinction 

(x1, y1) 

r 

∅ 
x-axis 

y-axis 
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between supervised and unsupervised learning is the way of learning. In a supervised 

learning, the context of the training input is labelled with corresponding target output: but 

this target output does not necessarily have to come from a guiding human, it may also be 

under machine guidance. Unsupervised training in contrast does not rely on feedback by 

comparing outputs with target outputs. It instead searches for regularities in the entire dataset 

of inputs. Although unsupervised learning is more complex than supervised, it helps to figure 

out problems, which is normally difficult for humans to address. An example of 

unsupervised learning is clustering different data sets into groups of closely related features 

such as clustering a set of the pixels that have similar features into a group. While the 

example of supervised learning is data classification such as classification of the image 

pixels whether it is edge or non-edge pixel. 

Artificial intelligence has a plethora of applications in different fields of life: industrial, 

medical diagnosis, medical image processing, military applications, safety applications, the 

internet and development of other computer systems. However, application of artificial 

intelligence in medical image processing is the main concern in this thesis. 

2.7.1 Artificial Intelligence in image processing 

Different approaches using artificial intelligence have been used in medical image 

processing; due to the ability of artificial intelligence tools in problem analysis and the 

efficacy of the processing compared with traditional image processing tools. Some of these 

approaches are genetic algorithms, data mining techniques, support vector machine, fuzzy 

image processing techniques, artificial neural networks and deep learning techniques such 

as convolutional neural network.  
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Patterns of the musculoskeletal ultrasound images show ambiguity in the interpretation of 

the details of the image due to the overlap between grey level intensities. Fuzzy logic 

techniques have the potential to address complex musculoskeletal ultrasound image patterns 

that are often characterized by vagueness and uncertainty. Furthermore, characteristics of 

the CNN allow to extract local features from musculoskeletal ultrasound image; therefore, 

there is the possibility of training artificial neural networks such as training convolutional 

neural network on these patterns for detection of various musculoskeletal components. 

Recent examples of using an artificial neural network in medical image classification (Plis 

et al., 2014) and edge detection of ultrasound images (Jabbar et al., 2016) shows its potential. 

In this thesis, convolutional neural networks and fuzzy image processing techniques were 

selected in processing musculoskeletal ultrasound images.  

2.7.1.1 Convolutional Neural Network (CNN) 

The artificial neural network has been introduced in two revolutions in the machine learning. 

The first revolution occurred in 1986, when Backpropagation Neural Network (BNN) was 

introduced (Rumelhart et al., 1986). BNN is a learning method, which is usually concerned 

with updating weights across three layers: input layer, output layer and hidden layers. The 

supervised training algorithm tries to get minimum error between output and target. BNN 

has many applications in image processing such as pattern recognition (Mozer, 1989; 

Kosbatwar, 2012). However, increasing the number of layers in the network has a limitation 

in speed and effects the quality of the learning algorithm. The recent revolution involves 

Deep Learning Neural Network (DLNN), which emerged in 2006. DLNN addresses several 

problems with BNNs that have many layers (Hinton et al., 2006). Therefore, deep learning 

is a new trend in machine learning. The basic concept of deep architecture is derived from 

understanding brain function, how the brain interprets data and how it deals with processing 
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across multiple stages. The main purpose of DLNN is the construction of high-level features 

from low-level information to boost machine interpretation tasked in understanding image 

for recognition, segmentation and classification purposes (Bengio, 2009). For example, in 

the case of object recognition, the first layer can deal with selected samples of image edges. 

The second layer may focus on the construction of the object boundaries until recognition of 

the final shape of the object. 

DLNN uses several algorithms, which have been introduced in image processing; the deep 

architecture of these neural networks is different according to change in the building block. 

Deep Belief Net (DBN) is one of the DLNN techniques. The building block of this network 

is Restricted Boltzmann Machine (RBM), (Hinton et al., 2006; Hinton, 2007; Fisher and 

Igel, 2012), see figure (2-5). 

 

 

Figure (2-5) RBM structure, which is adapted from Fischer (2012). 

 

RBM has two undirected layers, the first layer consists of a set of hidden units which are not 

connected to each other, while the second one has a set of visible units. Each layer of RBM 

is pre-trained with an unsupervised learning algorithm. Simply, DBN is constructed by 

stacking RBMs. The hidden neurons in the first RBM can represent low-level features from 

an input image. In the next step, the output of the first hidden neurons will be input into 
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another RBM; this procedure is repeated until getting high level features. Stacked Denoising 

Auto-Encoder (SDAE) is the second member of the DLNN family. The main components 

of SDAE is a three-layer auto-encoder network with a smaller middle layer (Pascal et al., 

2010). These three layers of the network effectively consist of two stages: the first stage is 

concerned with encoding input data and the second stage performs decoding to reconstruct 

the output as similarly as possible to the input data. The training algorithm is implemented 

locally to extract relatively uncorrupted features. Denoising auto encoders are stacked and 

trained until obtaining acceptable image features. (CNN) is another member of DLNN 

family. The simple concept of CNN is inherited from the biological process at the visual 

cortex. CNN consists of several different layers including several convolutional layers, 

subsampling layers and a final fully connected classification layer (Cernazanu-glavan, & 

Holban, 2013). CNN effectively deals with transforming input image data to a group of 

feature maps across a convolutional layer by using a set of filter banks. Subsampling layer 

fosters CNN learning because it contributes to the reduction of input image data and at the 

same time maintains important data (invariant translation). This layer is quite useful in the 

convergence that means it contributes to reducing the time of the training (LeCun et al., 

1998). The fully connected classification layer comes after many layers of the convolutional 

and subsampling layers, see figure (2-6).  

 

 

Figure (2-6) Simple diagram of CNN, this figure is updated from Cernazanu-glavan, & Holban (2013). 
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CNN has been applied successfully in image processing and has flourished in medical 

applications. For example, segmentation of the biopsy image (Silvoster, 2012), and an x-ray 

image of the chest (Cernazanu-glavan, & Holban, 2013) and bone (Yang et al., 2016). These 

applications have illustrated a high performance of CNN in edge detection. This thesis has 

application in musculoskeletal ultrasound images (Jabbar et al., 2016), see Chapter5-part1. 

CNN was recruited to perform image edge detection for panoramic ultrasound images of the 

shoulder region. CNNs are trained using two different ground truth interpretations. The first 

one uses an automatic Canny edge detector to provide the ground truth image and the second 

ground truth was obtained using the same image marked-up by an expert anatomist. In this 

initial study, the CNNs have been trained using half of the prepared data from one image, 

using the other half for testing. Validation was also carried out using three unseen ultrasound 

images. The results show that CNN performance when using an expert ground truth image 

is better than using the Canny ground truth image. Moreover, the results are promising in 

the image edge detection applications of musculoskeletal ultrasound images and this is an 

initial step, which helps to measure geometric properties based on using CNN. 

2.7.1.2 Fuzzy Image Processing techniques 

Fuzzy image processing techniques are one member of the artificial intelligence family. Lofti 

Zadeh introduced fuzzy logic in 1965. Fuzzy techniques permit a many-valued logic that 

ranges between [0, 1] rather than being solely restricted to just precisely 0 or 1, as is the case 

with Boolean logic. It has been used as a tool in image processing since the 1980’s 

(Rosenfeld & Haber, 1985). Fuzzy image processing concentrates on using different 

approaches in the image processing such as fuzzy inference techniques, fuzzy logic, 

modification of fuzzy membership function, using fuzzy filters, using the measure of 
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fuzziness and fuzzy entropy (Ibrahim, 2004). Fuzzy image processing techniques are based 

mainly on three main stages, which are illustrated in the figure (2-7). 

 

 

Figure (2-7) Pipeline of fuzzy image processing. 

 

Fuzzification means mapping grey level intensities of the input image, which ranges between 

the minimum and maximum grey level intensities (spatial domain) to the values between 0 

and 1 (fuzzy domain). This mapping depends on the selection of an appropriate membership 

function. In terms of the processing stage, different approaches describe this stage and are 

frequently used in the image processing. Some of this processing is based on fuzzy 

construction rules. These rules can be defined by expert domain to describe how the problem 

can be solved using fuzzy linguistic variables. The fuzzy technique which includes this kind 

of processing is known as fuzzy inference technique. Fuzzy rules are statements of linguistic 

variables and consist of two parts: antecedent and consequent. Antecedent represents the 

first part of the rule (if-condition or reason), while consequent illustrates the second part 

(conclusion). Fuzzy image filters are an example of this approach and they are commonly 

utilized in image processing techniques (Farbiz et al., 2000). The second approach is the 

modification of membership function after fuzzification; it is based to make some adjustment 

in the membership function to solve the problem. For example, fuzzy contrast image 

intensification (Tizhoosh et al., 1997) and Intuitionistic Fuzzy Sets (IFS) (Deng et al., 2016). 

Defuzzification is the last stage of fuzzy image processing pipeline, it transforms the results 

Processing FuzzificationInput 

image 
 

Defuzzification 
Output 

image 
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from the fuzzy domain back to the spatial domain after solving a problem and shows us the 

power of the fuzzy system on the image. 

Defuzzification has different strategies depending on the kind of processing stage. These 

strategies are mean of maximum method, centre of gravity method, using inverse 

membership function (Nachtegael et al, 2010), Takagi and Sugeno method (Takagi and 

Sugeno, 1985) and Mamdani method (Mamdani, 1974). In the case of fuzzy inference 

technique, Mamdani or Takagi and Sugeno methods are two common methods of 

defuzzification process. The main difference between Mamdani and the Takagi and Sugeno 

methods is the second part of the rule (consequence). In the Mamdani method, fuzzy set 

values are between 0 and 1, while in the Takagi and Sugeno method there is the crisp value 

(numerical value). In both methods, defuzzification used aggregation of the output of 

consequent (unification of the outputs of all rules) to get the final output (Runkler, 1997). In 

the case of the processing stage is the modification of the membership function, 

defuzzification can be determined using the inverse transformation 𝐺−1 (Tizhoosh et al., 

1997), see equation (4) and equation (5).  

𝐹𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝜇(𝐼(𝑖, 𝑗))                                                                                                          (4)   

𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐺−1 𝜇(𝐼(𝑖, 𝑗))                                                                                            (5)   

Where 𝜇(𝐼(𝑖, 𝑗)) represent membership function of input image and 𝐺−1 𝜇(𝐼(𝑖, 𝑗)) illustrates 

output image after defuzzification. There are several examples of fuzzy techniques in 

medical image processing such as using fuzzy filters in image enhancement and 

segmentation (Nachtegael et al., 2010). The implementation of the fuzzy filters relies on 

fuzzy logic and fuzzy rules. Another example is follicle identification of the ovaries on the 

ultrasound image using the fuzzy inference technique (Hiremath and Tegnoor, 2014). 
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Modification of membership functions is another application based on Intuitionistic Fuzzy 

Sets (IFS), which is employed in medical images such as mammograms (Deng et al., 2016) 

and MRI images (Deng et al., 2016). Another example is the implementation of contrast 

intensification method, which is based on the modification of the fuzzy membership 

function; it was performed on breast ultrasound images (Guo et al., 2016) and x-ray image 

(Krell, 1997). Based on different assessment metrics, these techniques give successful results 

in image enhancement; however, there are few examples of using fuzzy technique of 

musculoskeletal ultrasound imaging applications. 

2.8 Summary 

This chapter outlines the main objective of musculoskeletal modelling: movement analysis 

of human and skeletal loading and highlights the challenges that arise due to the difficulty 

of the evaluation of internal forces of the musculoskeletal system in vivo. Musculoskeletal 

models endow an opportunity to study the movement of the upper limb in vivo. Examples 

of shoulder and upper limb models have been reviewed in (Bolsterlee et al., 2013). This 

work shows the development of musculoskeletal modelling of the shoulder across many 

types of research. In addition, it reveals that the building of personalised musculoskeletal 

models is not trivial because it is hard to estimate musculoskeletal parameters in vivo. One 

of these models is the Delft Shoulder and Elbow Model, which was involved in several 

applications such as tendon transfers (Magermans et al.,2004) and wheelchair propulsion 

(Veeger. et al.,2002). 

The solid foundation of musculoskeletal model design is inherited from musculoskeletal 

parameters. Some of these parameters are tendon and muscle fibre length, pennation angle, 

and muscle volume. A review of the literature illustrates a wide variety of methods, which 
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were proposed to calculate these parameters manually. The first method depends on cadaver 

data (Veeger et al., 1997; Arnold et al., 2009). Medical imaging can be used to extract these 

parameters from healthy participants. For example, using MRI (Arnold et al., 2000; 

Heemskerk et al., 2009; Bignotte et al., 2014) and US (Graf, 1980; Gompels & Darlington, 

1981; Herbert & Gandevia, 1995; Maganaris et al., 1998; Martin et al., 2001; Infantolino et 

al., 2007; Scott et al., 2012; Han et al., 2013; Slane & Thelen, 2014). Interestingly, the third 

method is using medical imaging tools for scanning cadaver data as another way of 

extracting these parameters (Scott et al., 1993; Narici, 1999; Martin et al., 2001). However, 

the extraction of the musculoskeletal parameters from a cadaver has several restrictions such 

as preservation media, accurate dissection and in vitro (Scott 1993; Martin et al., 2001; 

LaScalza & Gallo, 2002). Furthermore, it is time-consuming when using medical imaging 

tools; they have limited ability to identify parameters automatically. Consequently, this data 

allows making a generic statement about the function of the musculoskeletal system, but this 

is not enough to get accurate data and timely for each patient. The work proposed aims to 

develop methods for the extraction of some of the musculoskeletal parameters of ultrasound 

imaging automatically. Digital image processing, convolutional neural network and fuzzy 

image processing techniques were used as tools to achieve this purpose. 
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Chapter 3 Collection of reference ultrasound image data from 

cadaver specimens and healthy volunteers 

3.1  Introduction 

The primary concern of collecting a set of the reference musculoskeletal ultrasound images 

is to compare traditional and novel image processing methods based on these images. This 

chapter includes protocols of collection of these image data from ultrasound machine. In this 

thesis, two sources of data are introduced, the first source is a cadaver, ultrasound machine 

was involved in the visualising of the shoulder region of the cadaver after dissection, this 

data was published (Heinz, 2016). The second source comes from healthy volunteers; 

ultrasound image data was collected from 25 healthy volunteers. 

3.2  Ethical approval 

All details of the institutional ethics approval (Ref No: ERP1290) from Keele university is 

shown in the APPENDIX I. 

3.3 Data collection 

Musculoskeletal ultrasound images were collected from cadaver and healthy volunteers. 

3.3.1 Reference ultrasound image from cadaver specimens 

Reference ultrasound images of the cadaver in this thesis were collected from the left and 

right shoulder region of the fresh-frozen cadaver (74 years old man) using advanced 

ultrasound machine (LOGIQ e Bt12). Ultrasound scanning of a cadaver can be helpful to 

define the internal structure of the musculoskeletal system after dissection. It is possible to 

dissect the specimen and take measurements to obtain the ground truth image. Figure (3-1) 
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presents one sample of these data, which was collected from left shoulder region. Initial 

dimensions of this image were 550 x 1024 pixels, but after cropping to select the region of 

interest, image dimensions became 178 x 783 pixels. Furthermore, it is panoramic ultrasound 

images that illustrates different muscles such as Infraspinatus muscle, Trapezius muscle and 

Deltoid muscle (Heinz, 2016). Panoramic ultrasound image can be beneficial to visualize a 

set of views in one ultrasound image. 

 

 

Figure (3-1) Panoramic ultrasound image of the left shoulder, which was collected from a cadaver. 

 

3.3.2 Reference ultrasound image from healthy volunteers 

In this work, musculoskeletal ultrasound images were acquired from 25 human volunteers 

(9 females and 16 males); age (39±15) years old. Those volunteers with no history of upper 

limb injuries were eligible for data collection. Non-invasive ultrasound scanning techniques 

(LOGIQ S7) with the linear probe were used. Collection of data was based on the ethics 

approval (Ref No: ERP1290), all details in APPENDIX I. 

The quality of the ultrasound image varies from one ultrasound device to another, according 

to the age of the machine and loaded software on it. For example, it is possible to get 

ultrasound image, which has a good quality and this image presents multiple views in one 

image (panoramic image) using a modern ultrasound machine. Furthermore, ultrasound 

machine has different parameters, which control the clarity of ultrasound image. Some of 

file:///C:/Users/rsf45/AppData/Roaming/Microsoft/Word/First%20Draft_Jabbar.docx%23APPENDIX_I
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these parameters are frequency, gain, depth and dynamic range. Adjustment of these 

parameters is not complicated, but expertise of the using ultrasound machine is required to 

illustrate a clear view of an ultrasound image. 

In this thesis, ultrasound image data were collected from different segments of upper limb 

(arm, forearm, wrist and hand) at transverse and longitudinal sections. For example, 

scanning the cross-section of the Flexor Policies Longus Tendon (FPLT), this section was 

pointed at the midpoint between carpometacarpal joint and metacarpophalangeal joint. The 

ultrasound images of FPLT were collected at different values of each parameter to assess the 

difference then get the most precise appearance, which has a high level of the ultrasound 

image details.  

The first parameter is frequency, selection of a suitable frequency depends on a needed depth 

of the penetration. High frequency is convenient for scanning small and superficial muscles 

(Lew et al., 2007). The possible range of frequency setting at linear probe of LOGIC S7 is 

(8, 12, 15) MHz. However, there is no observable change in image details and appearance 

at this frequency range. Hence, the median value (12 MHz) was chosen. 

The range of depth parameter of the LOGIC S7 is between (1.5-7) cm. Different depth 

demonstrates different levels of the musculoskeletal structure information and resolution. 

See the example in the figure (3-2)a, which shows ultrasound image at depth 1.5 cm, while 

in the image of the figure (3-2)b, depth =7cm. Ultrasound image of figure (3-2)a illustrates 

a few details of cross section of the tendon and around compared with the image of the figure 

(3-2)b, which shows cross section of tendon and underneath. However, ultrasound image of 

figure (3-2)a has higher resolution than ultrasound image in figure (3-2)b. Image depth 

equals 4.5cm was selected to give acceptable view in illustrating the details of the 

musculoskeletal structure.  
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Figure (3-2), this figure from left to right shows image visualization at depth 1.5cm and 7 cm respectively. 

Figure (b) shows a high level of the musculoskeletal structure information and less resolution, while figure (a) 

illustrates less musculoskeletal structure information and high resolution. 

 

The amount of black, white and grey could be altered on the screen by adjusting the gain 

parameter. (Ihnatsenka & Boezaart, 2010). The range of the gain in the LOGIC S7 is between 

(35-90). Figure (3-3)a shows the image with a low gain, while the image in figure (3-3)b 

illustrates the image with a high brightness. The problem of this option (gain) is that the 

increase of the brightness in all image regions even in the region, which has an acceptable 

brightness, this leads to difficulty in interpretation of the image contents correctly. The value 

of the gain equals 54 was selected after adjustment to get acceptable value. 

 

 

Figure (3-3), this figure from left to right shows collected images at low and high gain respectively. 

b  a  

Tendon 
Tendon 

a  b 
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In the term of changing dynamic range of the LOGIC S7, the range is between (36-96). 

When dynamic range in the ultrasound machine is low (36), this results in an image with 

high contrast. Figure (3-4)a illustrates a high contrast image in all image regions and 

histogram presents high difference between grey level intensities values. On the other hand, 

it is hard to recognise image components of the figure (3-4)b when dynamic range =96, 

histogram shows low difference between grey level intensities values. Dynamic range equal 

to 66 was selected after adjustment to get acceptable value. 

 

 

Figure (3-4), the first line of this figure presents ultrasound image at high contrast (dynamic range=36) and its 

histogram, while the second line illustrates ultrasound image at low contrast (dynamic range=96) and its 

histogram. 

In this thesis, parameters were changed and applied on the collected data (musculoskeletal 

ultrasound images) in the different upper limb regions. The acceptable view of the 

a  

b  
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musculoskeletal ultrasound images, which were collected using LOGIC S7 were at 

frequency=12 MHz, gain=54, depth=4.5 cm and dynamic range=66. Figure (3-5) shows 

ultrasound image of FPLT at these parameters. Histogram of this image presents a sensible 

difference between grey level intensities values. 

  

 

Figure (3-5), illustrated collected image and its histogram when frequency=12 MHz, gain=54, depth=4.5 cm 

and dynamic range=66. 

 

 Data collection protocols 

The primary goal of the data collection protocols is to yield accurate information based on 

standardised methods. Six protocols were introduced to collect ultrasound image from upper 

limb of 25 healthy volunteers; two protocols for the arm, and the same for forearm and hand 

regions.  

The following protocols were used to collect data from different regions in the upper 

extremity (arm, forearm and hand): 
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1-Arm: - two protocols were presented: 

The first protocol was the single snapshot of the ultrasound static scanning to identify the 

tendon of the triceps brachii muscle (triceps brachii is one of the superficial arm muscles) in 

a longitudinal plane. The registration point of the probe is the olecranon process of the ulnar 

and the position of the volunteer participant is opposite to the researcher who works on 

ultrasound machine; elbow joint of the volunteer flexed 90º with the palm resitting on the 

table (crab position), see figure (3-6)a. 

The second protocol was also the single snapshot of the ultrasound static scanning. The 

position of the participant is the same as in the previous protocol, but the probe is far 4.5cm 

from registration point (olecranon process of ulnar), also in a longitudinal plane (see figure 

(3-6)b). The primary purpose of this protocol is to measure the thickness and pennation angle 

of triceps muscle (single ultrasound image). 

 

 

Figure (3-6), the left hand of the figure illustrates scanning posterior aspect of the elbow joint at crab position, 

while the right-hand shows scanning one snapshot ultrasound image of the medial head of the triceps muscle 

at crab position. 

 

 

a  b  
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2-Forearm: - two protocols were introduced: 

The first protocol was ultrasound static scanning to identify the tendon of flexor carpi 

radialis muscle (flexor carpi radialis is one of superficial forearm muscles). It is one snapshot 

at a longitudinal plane and probe position was on the insertion of this muscle (midpoint 

between the second and the third metacarpal bone), see figure (3-7). 

 

 

Figure (3-7) Longitudinal section scanning of flexor carpi radials tendon. 

 

The second protocol was dynamic ultrasound scanning for tracking flexor carpi radialis 

muscle from insertion to origin (video recording). 

 

3-Hand: - two protocols were presented: 

The first protocol was static ultrasound scanning of flexor pollicis longus tendon (muscle 

of forearm and hand), the probe position at the midpoint between carpometacarpal joint and 

metacarpophalangeal joint. It is a single snapshot, but ultrasound scanning occurs at two 

planes. The first scanning at a longitudinal plane to view flexor pollicis longus tendon 

longitudinally, while the second scanning occurs at transverse plane to measure area and 

circumference at the cross-section of this tendon, see figure (3-8). 
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Figure (3-8), the left hand of the figure illustrates scanning one snapshot of flexor pollicis longus tendon 

(transverse plane), while the right-hand shows scanning of this tendon at longitudinal plane. 

 

The second protocol was dynamic ultrasound scanning of flexor pollicis longus tendon by 

moving the probe from the midpoint between carpometacarpal joint and 

metacarpophalangeal joint to the base of distal phalangeal joint (video recording). 

3.4 Summary: 

The primary purpose of collecting data in this thesis is to capture a material (musculoskeletal 

ultrasound images), which allows applying developed methods and answer thesis research 

questions. Ultrasound images were obtained from two sources and used for different 

purposes.  

The first source of the musculoskeletal ultrasound image is from a cadaver (scanning of the 

longitudinal section of the left and right shoulder region). It is panoramic images, which 

illustrated a variety of the muscles in one image. Panoramic ultrasound images were 

involved in testing and showing the performance of several developed methods such as 

ultrasound image enhancement methods in part1 (speckle noise reduction) and part2 

(contrast image enhancement) of chapter 4. Moreover, it was used in part 1 of chapter 5 to 

a  b  
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illustrate the performance of using convolutional neural network in pixel classification of 

musculoskeletal ultrasound image whether it is edge pixel or not.  

The second source of the musculoskeletal ultrasound imaging comes from healthy 

volunteers, static and dynamic ultrasound scanning at longitudinal and transverse sections 

of different parts of the upper limb: arm, forearm and hand. Six protocols were introduced 

and applied to upper limb segments for different purposes. Developed contrast image 

enhancement methods in part 2 of chapter 4 were employed on the video ultrasound of the 

hand region, see protocol 2 and ultrasound images of triceps tendon, see protocol 1 of arm 

region. Also, musculoskeletal ultrasound images collected using protocol 2 of arm region 

were utilised to evaluate thickness and pennation angle of triceps muscle, see Chapter 6. 

Ultrasound images, which were captured from hand region, protocol 1 was used in 

measuring the area and circumference of the cross-section of flexor pollicis longus tendon 

in the same chapter. Furthermore, the same images were involved in demonstrating the 

performance of fuzzy edge detection method in part 2 of chapter 5. 
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Chapter 4     Ultrasound image Enhancement 

4 Introduction 

One of the primary objectives of this dissertation was to enhance the quality of the 

musculoskeletal ultrasound images. In order to address this objective adequately, the major 

limitations of an ultrasound image are stated, and the successful solutions are proposed 

through this dissertation. To start with, an ultrasound image by its nature has two main 

limitations: the presence of the speckle noise and low image contrast. 

This thesis introduces two techniques as pre-processing steps to address these limitations. 

Firstly, a speckle noise reduction tool that would improve the evaluation of the cross-section 

area of the muscle tendon and the calculation of muscle thickness as it requires a 

homogenous region free from speckle noise. Secondly, a novel local contrast enhancement 

method was developed and employed to improve the determination of the musculoskeletal 

parameters such as pennation angle. Evaluation of the pennation angle needs to illustrate 

some details between muscle borders such as orientation of muscle fibre. Local contrast 

image enhancement technique helps to increase luminance difference between pixels and 

illustrate more details. Ultimately, it is necessary to consider the selection of image 

enhancement techniques, which are useful to support automated extraction of 

musculoskeletal parameters. 

This chapter consists of two parts; speckle noise reduction in the musculoskeletal ultrasound 

images methodology and implementation, the outcomes of which are all addressed in the 

first part. Whereas, a novel contrast enhancement method of the musculoskeletal ultrasound 

image is discussed in the second part. 
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4.1 Part 1: Speckle noise reduction in the ultrasound image 

4.1.1 Introduction  

Speckle noise during the recording of a musculoskeletal ultrasound image is the major 

confounder that was reported in the previous studies (Michailovich & Tannenbaum, 2006; 

Bama & Selvathi, 2014). It degrades the fine details of the ultrasound image and. affects on 

the image quality in a significant manner. The existence of speckle noise in an ultrasound 

images is mostly connected to the complex interactions of the coherent ultrasound signal, 

which can be captured as a part of the image acquisition process of an ultrasound machine.  

All in all, the detection and elimination of speckle noise in ultrasound images is still a great 

challenge to the researchers because it is multiplicative noise and difficult to eradicate 

completely. 

In part one of this chapter, speckle noise of the musculoskeletal ultrasound image was 

reduced by applying a non-linear filter such as local median adaptive filter and anisotropic 

diffusion filter. Imaging filters to reduce speckle noise were applied for the first time on 

musculoskeletal ultrasound images of the upper limb. The main purpose of using these filters is 

to get a more homogenous area, which aids segmentation for the evaluation of the cross-sectional 

area of the muscle and tendons. 

4.1.2 Presence of noise in medical images 

There are different kinds of noise in the medical images such as impulse noise, Gaussian 

noise and speckle noise (Sanches et al., 2008). Impulse and Gaussian noises are additive 

noise, while speckle noise is multiplicative noise. 
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The main distinction between additive and multiplicative noise is that additive noise does 

not vary with the intensity of the signal of interest, whereas multiplicative does increase in 

the case of increasing the intensity of the signal of interest. 

Speckle noise is the dominant noise in ultrasound images and Synthetic Aperture Radar 

(SAR) images. Speckle noise results from coherent acquisition imaging systems due to 

coherent reflection from different sources around the target. Impulse and Gaussian noises 

arise while acquiring a medical image from a medical device, transmission and storage. 

Based on the shape of the distribution of noise in the image, we can differentiate impulse 

and Gaussian noises. When corrupting collected image, impulse noise could add high or low 

values to the image (Gravel et al., 2004) whereas, the shape of the Gaussian noise similar to 

the form of the normal distribution (Deepa and Sumithra, 2015). A simple representation of 

additive noise is illustrated in equation (6), while equation (7) demonstrates the modulation 

of multiplicative noise. 

Ixy = Bxy+ Nxy                                                                                                                                                                                      (6) 

Ixy = Bxy Nxy                                                                                                                                                                                        (7) 

Where Ixy is corrupted image, Bxy is enhanced image and Nxy is a noise (Gallegos-Funes et 

al., 2011). It is possible to recognise the difference between the nature of impulse noise (such 

as salt and pepper noise), speckle noise and Gaussian noise visually by adding these noises 

to the original image using Matlab toolbox, see figure (4-1). 
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Figure (4-1) Input ultrasound image (longitudinal section of flexor pollicis longus tendon) is shown in figure 

(a) and figure (b) illustrates the same image after adding speckle noise. Figure (c) and (d) show input image 

after adding (salt and pepper) noise and gaussian noise respectively. 

 

Speckle noise is an unavoidable component of the ultrasound imaging technique. However, 

it is possible to transform image pixels corrupted by speckle noise to allow them to be dealt 

with using linear techniques and therefore be treated as additive noise, by using nonlinear 

logarithmic transformation (Biradar et al., 2014). 

4.1.3 Filtering to reduce speckle noise 

Sources of additive noise can usually be dealt with using linear filtering techniques, whereas 

multiplicative noise has complex structure compared with additive noise because grey level 

intensities of the noise interfere with grey level intensities of the original image (Binaee & 

Hasanzadeh, 2014). Using speckle noise reduction filters emerged firstly and applied to 

Synthetic Aperture Radar (SAR) images, then these filters are employed to reduce speckle 

noise in the ultrasound images (Insana et al., 1989). One of the common filters is Anisotropic 

Diffusion Filter (ADF). ADF is an adaptive technique, which was employed successfully in 

SAR image filtering (Perona & Malik,1990; Aja-Fernandez & Alberola-Lopez, 2006), then 

was applied to the ultrasound images (Krissian, K. et al., 2007). 

a b 

c 
d 
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Other spatial filters in image processing were introduced for despeckling purposes. For 

example, the adaptive filter (Lee, 1980; Frost et al., 1982; Kuan et al., 1987) and Local 

Adaptive Median Filter (LAMF) (Qiu et al., 2004) were introduced. LAMF attains a good 

outcome in improving image appearance because LAMF can not only diminish speckle 

noise, but also maintain image details such as image edges. It applied by the evaluation of 

the statistical properties of the image locally to detect speckle noise pixels. This is achieved 

by evaluation of local mean and standard deviation of sliding window image across original 

image. However, this method was performed on Synthetic Aperture Radar (SAR) image, not 

on the musculoskeletal ultrasound image. Despite SAR images and musculoskeletal 

ultrasound sharing the same noise, there is a difference in the texture information between 

the two images.  

4.1.4 No-reference assessment metrics of speckle noise reduction 

There are four metrics that were used in the performance assessment of speckle noise 

reduction in the resultant image. The reason for using these metrics is the difficulty of 

obtaining a reference image of musculoskeletal ultrasound that is entirely free from speckle 

noise. These metrics are employed without needing to the ground truth image; therefore, 

these metrics are the best choice for performance assessment after reducing speckle noise. 

The first metric is Speckle Suppressions Index (SSI), which can be calculated using equation 

(8): 

SSI =
√(var(R)

mean(R)
.
mean(I)

√var(I)
                                                                                                    (8) 

Where R is the resulting image after filtering, I is the input image with speckle noise, var 

represents the variance and mean the average of the grey level intensity of the image. The 
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variance of filtered image had to be less than input image due to speckle noise reduction; 

therefore, based on equation (8), small value of SSI indicates a high level of the speckle 

noise reduction in the image (Sheng and Xia, 1996). It is dependent on the ability to have a 

filter satisfying a mean-preservation property. Therefore, Shamsoddini addressed this 

problem by introducing a new metric, Speckle Suppression Mean Preservation Index 

(SMPI), which is evaluated using equation (9), (Shamsoddini and Trinder, 2010). 

SMPI = (1 + |mean(I) − mean(R)|).
√var(R)

√var(I)
                                                               (9) 

However, Dellepiane suggested another metric because SMPI has a limitation which relates 

to normalisation. It is the Mean Preservation Speckle Suppression Index (MPSSI) 

(Dellepiane and Angiati, 2014). 

MPSSI = |1 −
mean(R)

mean(I)
| .

√var(R)

√var(I)
                                                                                        (10) 

Low score of these three metrics (SSI, SMPI and MPSSI) indicates a high level of speckle 

noise reduction in the output image. The last metric in the assessment of speckle noise 

reduction package is Enhanced Edge Index (EEI) (Chunming et al., 2002). Equation (11) 

illustrates how can carry out this metric based on input and filtered image 

𝐸𝐸𝐼 =
∑ 𝑅(𝑖, 𝑗) − 𝑅(𝑖 − 1, 𝑖 + 1) 

∑ 𝐼(𝑖, 𝑗) − 𝐼(𝑖 − 1, 𝑖 + 1)
                                                                                          (11) 

The highest value of EEI is 1, and the best edge preservation occurs at a high score of this 

metric. 

4.1.5 Local Adaptive Median Filter (LAMF) 

Local Adaptive Median Filter (LAMF) was successfully applied to the SAR image by Qiu. 

(2004). LAMF detects speckle noise based on analysis of the statistical properties of the 
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candidate pixel at different window sizes (3x3, 5x5 and 7x7), then swap outlier pixel 

(speckle noise pixel) with the valid pixel. However, in this thesis LAMF was applied on the 

musculoskeletal ultrasound image with more expanded windows (3x3, 5x5, 7x7, 9x9 and 

11x11) to examine the impact of enlarging dimensions of sliding window on the speckle 

pixels detection. Evaluation of statistical properties within small window includes local 

mean and standard deviation determination, see figure (4-2). 

 

Figure (4-2) Processing steps of applying LAMF on 3x3 mask (central pixel and its neighbours around the 

image). 

 

Implementation of LAMF consists of two main steps: 

1- Detection of the speckle pixels of the input image 

Each pixel in the input image was examined whether it is speckle or valid pixel. Detection 

of the pixels was performed by evaluating the statistics (local mean and standard deviation) 

of the sliding window across input image. Equation (12) and (13) give lower and upper 

border detection of each pixel inside the image. 

 𝐿𝐵(𝑖, 𝑗) = 𝜇(𝑖, 𝑗) − 𝑓 ∗ 𝜎(𝑖, 𝑗)                                                                                                     (12) 

𝑈𝐵(𝑖, 𝑗) = 𝜇(𝑖, 𝑗) + 𝑓 ∗ 𝜎(𝑖, 𝑗)                                                                                                     (13) 

Extraction mean and standard 
deviation for each pixel in the 

image based on selected 

window(3x3). 
 

Moving selected 
window around image 

pixels. 
 

Detection speckle pixel 
based on condition. 
 

Keep valid pixel and replace 

outlier pixel based on local 
median filter. 
 

Padding pixel Local standard deviation of 

candidate pixel and its 

neighbours. 
Candidate pixel 

from original image 
 

Local mean of candidate pixel 

and its neighbours. 

Speckle noise 

pixel. 

Valid pixel after 

correction. 
. 
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where µ is local mean, σ =is local standard deviation of the selected window, dimensions of 

the central pixel are (i,j) and f is controlled factor. 

Speckle and valid pixels are labelled by moving the window (central pixel is c (i, j)) and 

detected pixel is d (i, j). Equation (14) illustrates the condition of detection the central pixel 

whether it is a valid pixel or speckle pixel. 

𝑑(𝑖, 𝑗) = 0          𝑖𝑓  𝑐(𝑖, 𝑗) < 𝐿𝐵(𝑖, 𝑗)      𝑜𝑟   𝑐(𝑖, 𝑗) > 𝑈𝐵(𝑖, 𝑗)                                        (14) 

   𝑑(𝑖, 𝑗) = 1          𝑖𝑓 𝐿𝐵(𝑖, 𝑗) ≤ 𝑐(𝑖, 𝑗) ≤ 𝑈𝐵(𝑖, 𝑗)  

2- Replace speckle pixel with valid pixel 

Applying local median filter on the selected window, which contains speckle pixel as the 

central pixel in the windows. This means, the replacement depends on the evaluation of the 

local median filter by swapping detected speckle pixel with median value of the window. 

The primary purpose of that is to reduce the impact of speckle noise on the image. However, 

reducing noise using a median filter is affected by two factors: the spatial content of the 

neighbourhood and the number of pixels which are utilised in the evaluations. 

4.1.6 Anisotropic Diffusion Filter (ADF) 

One of the standard methods that have been utilised in reducing speckle noise in the 

ultrasound imaging is anisotropic diffusion filter. There are some applications such as in 

kidney and heart ultrasound images (Abd-Elmoniem, et al., 2002), the liver ultrasound image 

(Krissian, K. et al., 2007) and ultrasound image of the shoulder (Gupta et al., 2014). The key 

aspect of diffusion has been acquired from standard heat diffusion; if the diffusion expands 

in all directions, in this case, diffusion is called isotropic diffusion. Since this kind of 

diffusion has lack of clarity in defining an edge and spread in all directions without 

concerning on the edge preservation. Anisotropic diffusion is concerned with edge 
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preservation because it concentrates on the direction to maintain edges. It happens by adding 

gradients of grey level intensity to the diffusion equation, as illustrated in equation (15).  

𝑑(𝑋(𝑖, 𝑗, 𝑡))

𝑑𝑡
= 𝑑𝑖𝑣[𝑔(|∇𝑋(𝑖, 𝑗. 𝑡)|). ∇𝑋(𝑖, 𝑗, 𝑡)]                                                                   (15) 

Where 𝛻𝑋(𝑖, 𝑗, 𝑡) is the image gradient, t is time parameter and 𝑔(|∇𝑋(𝑖, 𝑗, 𝑡)| controls the 

edge direction, image gradients illustrate the directional change of the grey level intensities. 

This helps in the detection and preservation of the image edges. It means, it is likely to reduce 

speckle noise and preserve firm edges. Perona and Malik introduced two different functions 

of diffusion (Perona and Malik, 1990; Grieg et al.,1992); see equation (16) and equation 

(17). 

𝐹1(𝑝) = 𝑒
(−(

‖∇𝑋‖
𝑘

)
2

)
                                                                                                                      (16) 

𝐹2(𝑝) =
1

1 + (
‖∇𝑋‖

𝑘
)2

                                                                                                                  (17) 

Where k is controlled factor on the gradient of edge sensitivity. The first equation shows 

high contrast edges over low contrast edges, while the second equation illustrates a wider 

homogenous region over the small one. 

4.1.7 Implementation and Results 

First, before performing LAMF, the most appropriate window size was selected based on a 

high score of assessment metrics of speckle noise reduction. Implementation of LAMF was 

achieved using equation (12) and (13) and control parameter f was 1.5 (used in the speckle 

noise reduction of SAR image (Qiu, 2004), also it was used in the MUI). If the value of f is 

greater than 1, it is possible to detect many speckle pixels but, in other cases can keep many 

valid pixels in the output image. In this work, three different samples of MUI are used as the 
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input image in the implementation of LAMF and ADF. The first sample was collected from 

the right shoulder of the cadaver, all details in section 3.3.1. While the second sample were 

obtained from healthy volunteers from arm-region (protocol 2)and the third sample from 

hand region (protocol 1), all details in section 3.3.2.1. 

Cadaver image sample 

LAMF was carried out on the cadaver ultrasound image sample, shown in figure (4-3), using 

different window sizes (3x3, 5x5, 7x7, 9x9 and 11x11).  

 

 

Figure (4-3) Musculoskeletal ultrasound image, which was collected from cadaver (right shoulder region). 

 

The following table illustrates the evaluation of assessment metrics (SSI, SMPI, EEI and 

MPSSI) on the image in figure (4-3). This assessment was performed on different window 

sizes, see table (4-1). 

 

Table (4-1) Evaluation of assessment metrics of cadaver musculoskeletal ultrasound image sample 

Metrics 3x3 5x5 7x7 9x9 11x11 

SSI 0.972 0.978 0.968 0.953 0.914 

SMPI 1.052 1.105 1.147 1.188 1.564 

EEI 0.918 0.881 0.881 0.890 0.727 

MPSSI 0.0004 0.005 0.008 0.0106 0.027 

 

It is clear from the table (4-1), window 3x3 gives lower scores of SMPI and MPSSI and a 

high score of EEI compared with other window sizes. Therefore, LAMF was carried out at 
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window size 3x3 and compared with the performance of ADF at this window and the process 

was repeated five times (five iterations ). The purpose of iterations is to repeatedly apply  the 

same process to the output at each pass. This is so systematically increase the effect of the 

filter, rather than to evaluate the output. 

Figure (4-4), illustrates the comparison between two filters using four assessment metrics 

(ISS, SMPI, EEI and MPSSI). Whereas, figure (4-5) and figure (4-6) show the output image 

after applying ADF and LAMF on the image in figure (4-3) respectively. Figure (4-4) shows 

EEI metrics of LAMF with a higher score than EEI metrics of ADF. Furthermore, it is 

possible to observe in the figure (4-6), many of the edge pixels in the original image are 

retained in the filtered image compared with figure (4-5), which illustrates many 

homogenous regions in the filtered image and less preserving of the image edges.  

 

 

Figure (4-4) Comparison between performance of LAMF and ADF across five iterations when performing on 

cadaver musculoskeletal ultrasound image and window size is 3x3. 
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Figure (4-5) Cadaver musculoskeletal ultrasound image after applying ADF. 

 

 

Figure (4-6) Cadaver musculoskeletal ultrasound image after applying LAMF. 

 

This experiment helps to apply two different filters on the musculoskeletal cadaver image to 

reduce speckle noise and get an enhanced image, which is used in further applications. One 

of these applications is using enhanced musculoskeletal image in the measurement of the 

tendon length. 

Healthy image samples 

In the previous experiment, cadaver image sample is used to get evidence for illustration of 

the performance of ADF and LAMF filters. For more applications, healthy image samples 

were used, two different images as follows: 

The first image was collected from triceps muscle (longitudinal section) as shown in the 

figure (4-7).  
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Figure (4-7) Healthy musculoskeletal ultrasound image (triceps ultrasound image). 

 

Following the same steps of the cadaver sample to select window size, table (4-2) presents 

calculation of four metrics assessments of image in figure (4-7) after applying LAMF and at 

different window sizes (3x3, 5x5x, 7x7, 9x9 and 11x11). Also, from table (4-2) based on the 

assessment metrics, window 3x3 shows that it is the most suitable window, which is used in 

performing LAMF. Therefore, the performance of ADF compared with LAMF at this 

window is shown in the figure (4-8). Furthermore, figure (4-9)a and figure (4-9)b illustrate 

the output images after performing ADF and LAMF on the image in figure (4-7) 

respectively. Based on the figure (4-8) and through figure (4-9), the same conclusion of the 

previous experiment (using cadaver image sample) was obtained. 

 

Table (4-2) Evaluation of assessment metrics of arm musculoskeletal ultrasound image sample. 

Metrics 3x3 5x5 7x7 9x9 11x11 

SSI 0.990 0.993 0.953 0.901 1.448 

SMPI 1.05 1.228 1.722 2.108 11.35 

EEI 0.989 0.967 0.955 0.956 0.604 

MPSSI 0.0009 0.005 0.018 0.029 0.212 
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Figure (4-8) Comparison between performance of LAMF and ADF across (1-5) iterations when performing on 

the healthy sample of the musculoskeletal ultrasound image (triceps muscle) and the size of the window is 3x3. 

 

 

Figure (4-9) Healthy musculoskeletal ultrasound image (triceps ultrasound image after applying ADF is shown 

in figure (a), while figure (b) illustrates output image after applying LAMF. 

 

Image was collected from hand region (transverse section of Flexor Pollicics longus tendon) 

as shown in the figure (4-10).  

 

a  b  
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Figure (4-10) Healthy musculoskeletal ultrasound image (cross section of flexor pollicis longus tendon). 

 

The same results of the previous healthy sample (longitudinal section of triceps muscle): 

window 3x3 is the most suitable window, and ADF outperforms in the speckle noise 

reduction, while LAMF has more ability in the edge preservation, see table (4-3) and figures 

(4-11,4-12) below. 

 

Table (4-3) Evaluation of assessment metrics of hand musculoskeletal ultrasound image sample. 

 

 

Figure (4-11) Comparison between performance of LAMF and ADF across (1-5) iterations when performing 

on cadaver musculoskeletal ultrasound image. 

Metrics 3x3 5x5 7x7 9x9 11x11 

SSI 0.994 0.949 0.836 0.900 0.776 

SMPI 1.062 1.479 1.776 1.4521 1.954 

EEI 0.979 0.899 0.804 0.967 0.767 

MPSSI 0.001 0.012 0.022 0.013 0.028 
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Figure (4-12) Healthy musculoskeletal ultrasound image (cross section of flexor pollicis longus tendon) after 

applying ADF is shown in figure (a), while figure (b) illustrates output image after applying LAMF. 

 

Speckle noise was reduced in two different healthy image samples using ADF and LAMF. 

The enhanced musculoskeletal ultrasound images will support extraction of musculoskeletal 

parameters based on musculoskeletal ultrasound image of an individual. 

4.1.8 Discussion 

In this work, the Local Adaptive Median Filter (LAMF) was applied to three different 

samples of the musculoskeletal ultrasound images. Implementation steps of this filter were 

derived from Qiu, (2004), who applied this filter to SAR images and window sizes 3x3, 5x5 

and 7x7. In this work, this filter was applied on these window sizes and expanded to the 

window size 9x9 and 11x11 to see any differences through increasing image details across 

window size. The performance of LAMF in all musculoskeletal ultrasound images shows a 

tendency to increase when using window size 3x3 compared with other window sizes (5x5, 

7x7, 9x9 and 11x11) (see table (4-1), table (4-2) and table (4-3)). Therefore, 3x3 was chosen 

as a more suitable size for the performance of LAMF. The iterations are stopped when there 

is no significant change in the quality of speckle noise reduction. The performance of local 

adaptive median filter decreases when increasing the number of iterations; therefore, five 

iterations were chosen to show the behaviour of performance of this filter across several 

times of performing. One thing worth noticing from figure (4-5), figure (4-8) and figure (4-

a  b  
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11) is that the performance of the local adaptive median filter did not improve with 

increasing window size and number of iterations. Anisotropic Diffusion Filter (ADF) was 

utilized in this work to reduce the impact of the speckle noise on musculoskeletal ultrasound 

images to compare with LAMF on the same samples of these image at window size 3x3. 

In the case of 3x3 window size and using ADF, the ultrasound image samples, which were 

collected from a cadaver and healthy triceps muscle had a high level of performance 

regarding speckle noise reduction (see figure (4-4) and figure (4-8)). On the other hand, the 

edge preservation reported high scores in all three-different samples using LAMF, see figure 

(4-4), figure (4-8) and figure (4-11). These results indicate that performance of ADF is better 

in speckle noise reduction, while LAMF outperforms ADF in edge preservation. 

4.1.9 Conclusions 

The results obtained from this part 1 show a competitive performance between the two filters 

(LAMF and ADF) in despeckling musculoskeletal ultrasound images. ADF is better than 

LAMF in speckle noise reduction, but with less ability in the preservation of the image edge. 

This could cause a trade-off between noise suppression and delineation of features of the 

image. Therefore, in this thesis ADF was selected to reduce the speckle noise of MUI. In 

addition, ADF filter was chosen as a pre-processing step in further applications in this thesis 

due to ADF having superior ability in speckle noise reduction compared with LAMF filter. 

These applications are measurements of triceps muscle thickness and evaluation of 

geometric parameters of a cross-section in the flexor pollicis longus tendon (cross-section 

area and circumference), see chapter 6. 
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4.2  Part 2: Contrast enhancement in the ultrasound image 

4.2.1 Introduction 

Musculoskeletal ultrasound data can be recorded from ultrasound devices as single images, 

panoramic images and ultrasound videos. As previously discussed, there are two limitations 

of the ultrasound imaging data: presence of speckle noise and low image contrast. Low 

image contrast has a negative impact on the quality of the subsequent data interpretation. 

However, contrast enhancement could be carried out during ultrasound image processing to 

overcome the problem as it could restore image details and clarify different tissue regions. 

Furthermore, image contrast enhancement was used in this project as a pre-processing step 

for further applications such as pennation-angle estimation.  

Imaging systems in ultrasonography usually provide an option to adjust image contrast 

before acquiring the imaging data. While this adjustment is suitable for a single image, it is 

hard to control the movement of the ultrasound probe and the level of the contrast adjustment 

during an ultrasound video recording. In addition, adjustment of the ultrasound contrast 

enhancement depends mainly on the cumulative experiences of the operator rather than an 

objective analysis of imaging properties. Hence the performance of an ultrasound operator 

is variable among different directions and controlling any contrast adjustment of the 

ultrasound image remains difficult during video recording. Increasing image contrast by eye 

carries the risk that some data will be lost due to clipping of the histogram, reducing its 

suitability for further automated analysis. In this thesis, developing an objective method for 

ultrasound contrast enhancement was a successful solution to the above-mentioned problems 

and would provide support for the ultrasound applications.  
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In the previous published literature two approaches for image contrast enhancement were 

used: traditional and transformational approaches. Histogram Equalization (HE) and Non-

Linear Unsharp Masking (NLUM) methods are two examples of the traditional approach. 

The traditional approach often involves linear and nonlinear filters. Histogram Equalization 

(HE) is a frequently used method which helps in improving image contrast. It has been 

widely used to enhance the contrast of ultrasound images and videos in a number of studies 

(Kim, & Chung, 2008; Cheng &. Shi, 2004; Choudhury & Medioni,2012; Rao, & Chen, 

2012). Despite recent efforts to develop this method, it still suffers from some problems such 

as strengthening the contrast in all regions to the same level, including pixels which already 

have high contrast. Non-Linear Unsharp Masking (NLUM) (Ramponi et al., 1996; Panetta 

et al., 2011) is another traditional method that has been used to increase the quality of 

medical images (e.g. mammogram). It depends on nonlinear filters and logical operations 

between original images and resultant images after filtering. It is useful for illustrating 

important information on the medical image, but its drawbacks are that it can intensify noise 

and increase image contrast in all regions even if some regions do not need contrast 

enhancement. 

The alternative transformational approach to image contrast enhancement focuses on 

analysing image contrast according to uncertainty and fuzzy representation rather than 

simply applying a uniform contrast enhancement. Using fuzzy transformational techniques 

can improve poor image quality by optimizing the parameters of the fuzzy membership 

function according to the image properties. The intuitionistic fuzzy sets and modification of 

fuzzy membership function techniques are two examples of this approach. Intuitionistic 

fuzzy sets method needs a thresholding step as a pre-processing step before fuzzification. 

Obtaining a proper value for this threshold is challenging in musculoskeletal ultrasound 
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images due to overlapping grey level intensities of many important musculoskeletal 

components. In terms of image contrast enhancement using modification of the fuzzy 

membership function, this technique inhibits noise and intensifies contrast because it 

optimizes parameters of membership functions based on the highest value of fuzzy entropy 

in an image. 

The major constraint of these methods that it is fully dependent on the global assessment of 

the differences in image contrast and it is difficult to detect more specific ultrasound image 

details such as illumination differences between the edge and other image contents. An 

alternative is to adaptively transform the image according to the prevailing local image 

characteristics. Therefore, Local Fuzzy Contrast Enhancement (LFCE) was launched in this 

part as a new method for image contrast enhancement, which depends primarily on local 

rather than global evaluation of the image luminance. The LFCE technique handles the low 

contrast of the musculoskeletal ultrasound image, which depends on the local information 

between a pixel and its neighbours. The LFCE method relies on a fuzzy inference system 

and requires selected parameters to obtain high-level performance. Parameters are selected 

based on a contrast assessment metric, which gives a highest level of contrast at these 

parameters. 

4.2.2 Related image contrast enhancement techniques 

The modification of fuzzy membership function method is an alternative fuzzy technique, 

which has been applied previously to enhance image contrast, this technique involves the 

fuzzification and optimization of parameters of membership function of all grey level 

intensities of the image as the first stage. Then modification of the membership equation is 

performed in the second stage and the third stage is defuzzification. 



78 

 

In the fuzzification process, image data from spatial domain (grey level intensity of input 

image) is mapped to the fuzzy domain (grey level intensity between 0 and 1) using a 

membership function such as the one shown in equation (18) (Pal and R. A. King,1981).  

𝜇𝐴(𝐼𝑥𝑦) = (1 +
𝐼𝑚𝑎𝑥 − 𝐼𝑥𝑦

𝐹𝑑
)

(−𝐹𝑒)

                                                                                        (18) 

where the input image pixel is Ixy and Imax is a maximum grey level intensity of Ixy, x and 

y range over the image dimensions. Fd and Fe are parameters that determine the behaviour 

of the membership function. Tuning these parameters has an important influence on the 

performance of this technique. Optimization of Fd and Fe can be carried out using fuzzy 

entropy. The candidate values of Fd and Fe were chosen at maximum value of the fuzzy 

entropy (Agaian et al.,2000) because the largest value of fuzzy entropy means an image is 

heterogeneous, while low values denotes an image that has a large homogeneous region. 

Determining the best values for Fd and Fe can improve the membership function for the 

fuzzification. The calculation of the fuzzy entropy depends on the evaluation of Shannon’s 

entropy as follows: 

𝐻(µA (𝐼𝑥𝑦)) =
1

𝑠1 ∗ 𝑠2 ∗ ln(2)
× (∑ ∑ 𝑆(𝜇𝐴 

𝑋

𝑥

𝑌

𝑦

(𝐼𝑥𝑦)))                                             (19)  

Where s1 and s2 are the overall dimensions of the image or video frame and S(.) is Shannon's 

entropy function, given by: 

𝑆(µA (𝐼𝑥𝑦)) = −µ(𝐼𝑥𝑦 ) × ln (𝜇𝐴 (𝐼𝑥𝑦)  − 𝜇𝐴 ( 𝐼𝑥𝑦) × ln(1 − 𝜇𝐴(𝐼𝑥𝑦))                (20)    

The second step is the modification of the membership function using the following 

equation:  

 µA (𝐼𝑥𝑦)′′ = 2 × (𝜇𝐴(𝐼𝑥𝑦 )                                         0 ≤ 𝜇𝐴 (𝐼𝑥𝑦) ≤ 1                      (21)   

= 1 − 2 × (1 − ( 𝜇𝐴 (𝐼𝑥𝑦 ))2               0.5 ≤ 𝜇𝐴 (𝐼𝑥𝑦) ≤ 1           
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Using equation (21) achieves contrast intensification by increasing the contrast of the grey 

level intensities, which are above crossover point (0.5) and decreasing the contrast of the 

grey level intensities below 0.5. The last step is defuzzification to generate the output image 

(Bxy) using equation (22): - 

𝐵𝑥𝑦 = 𝐹𝑑 (1 − (𝜇𝐴(𝐼𝑥𝑦)" )
1

𝐹𝑒) + 𝐼𝑚𝑎𝑥                                                                                   (22) 

This technique has previously been used in several applications such as medical x-ray images 

(Tizhoosh et al., 1997), breast ultrasound images (Guo et al., 2006) and satellite images (Nair 

& Lakshmanan, 2011), but it has not so far been used on ultrasound videos and 

musculoskeletal ultrasound imaging. 

For a comparative analysis two conventional contrast enhancement approaches can be used: 

Histogram Equalization method and Non-Linear Unsharp Masking method. Performing 

Histogram Equalization method depends on the histogram modification operations such as 

image stretching and shrinking to adjust histogram information (Cheng and Shi, 2004). In 

the case of using Non-Linear Unsharp Masking method, nonlinear filter and arithmetic 

operations are combined together to enhance image contrast. Nonlinear filter was involved 

to adjust grey level intensities of the image, while arithmetic operations (such as 

multiplication, subtraction…) between filtered image and input image was used to increase 

the possibility of the edges preservation (Panetta et al., 2011). 

4.2.3 Assessment metrics of contrast image enhancement 

Several “no reference” image quality assessment metrics can be used to determine the extent 

to which enhancement procedures have improved an image’s quality: Measure of 

Enhancement (EME) (Agaian et al.,2000; Agaian et al.,2001) Logarithmic Michelson 

Contrast Measure (AME) (Agaian et al., 2007) and second-derivative-like measure of 
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enhancement (SDME) (Panetta et al., 2011). These metrics are useful for no reference 

assessment measures that can be applied to ultrasound imaging when no absolute ground 

truth comparator image is available. The equations that describe these metrics are given in 

the table (4-4), below. In the application of these quantitative metrics, the input image must 

be divided into square blocks with odd dimensions, so the input image will consist of the 

number of the blocks, which are arranged in rows and columns depending on the block size. 

In the table (4-4), r1 and r2 represent the number of the blocks in the rows and columns 

respectively. gmax and gmin are the maximum and minimum grey level intensities values in 

each block respectively, while gcenter is the centre pixel intensity in each block. 

 

Table (4-4) Equations of three metrics (EME, AME and SDME). 

 

The strength of using EME, AME and SDME is not having to use ground truth image in the 

applying of these metrics on the output image. However, using these metrics requires 

dividing output image into a set of blocks where the dimensions of these blocks are odd and 

square. Selection of the best dimensions of the blocks is challenging, particularly in the case 

of complex texture pattern such as musculoskeletal ultrasound images, However, this point 

was addressed in this thesis. The best dimensions of the block were selected based on the 
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evaluation of the maximum entropy of selected block. Image entropy gives indication about 

distribution the image details, more details would record a higher level of entropy. 

4.2.4 Local Fuzzy Contrast Enhancement Technique (LFCE) 

The implementation of LFCE is based on a fuzzy inference system, it involves the usual 

three main steps: fuzzification, generation of fuzzy rules and defuzzification. The input to 

the first step is musculoskeletal ultrasound imagery (image or video) and involves 

constructing a 3x3 window (consisting of a central pixel and its immediate neighbours). The 

window systematically moves with a step of one pixel at a time around the image and repeats 

LFCE steps, see figure (4-13), this figure briefly illustrates the steps, which are used in the 

implementation of the LFCE method. There are three different types of membership function 

and 6 fuzzy inference rules in this technique. The main reason of constructing three different 

membership functions is to represent different levels of the image luminance (dark, grey and 

bright). Furthermore, construction of fuzzy rules of this method aimed to increase  the 

difference of luminance between the central pixel of the window and its neighbours to 

enhance image contrast locally. In this method, if we supposed the central pixel is grey, 

neighbours are either dark or bright. Therefore, each level has two rules to improve the 

contrast between the central pixel and its neighbours. So, the total number of fuzzy rules of 

local fuzzy contrast enhancement method in this work is 6 fuzzy rules. Parameters (Sd and 

Se) control the behaviour of the fuzzy rules; estimation of these parameters depends on the 

evaluation of the quantitative SDME metric, see table (4-4). Prior to evaluation of SDME, a 

good block size is necessary in the evaluation of assessment metrics. The image is divided 

into a set of blocks (square and odd dimensions). The number of blocks in the image depends 

on the block dimensions. Evaluation of the entropy of each block was used as tool to detect 

which is the best block's dimensions. 
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Figure (4-13) Applying LFCE on 3x3 sub-image (central pixel and its neighbours) around the image. 

Connection between central pixel and its neighbours, which are illustrated in rule 1 and rule 6. In rule1, the 

central pixel was fed up from brightness membership function, while neighbours pixels are taking from 

darkness. In case of rule6, the central pixel was fed up from darkness and its neighbours pixels were fed up 

from grey level membership function. 

 

An algorithm is introduced to show the sequence of the instructions to implement LFCE 

technique. This algorithm consists of two parts; the first one presents the estimation of the 

block size and the parameters of the fuzzy rules (Sd and Se). The second part of the algorithm 

gives a review of the performing LFCE technique using these parameters. Sd and Se 

parameters control the behaviours of the fuzzy rules. Through the Sd parameter, we attempt 

to make the central pixel brighter than neighbours pixels to increase the difference of 

luminance between them. On the other hand, Se parameter tends to pull central pixel to the 

darkness region and make a difference between it and its neighbours. 

Algorithm: Part I, estimation parameters for local fuzzy contrast enhancement method 

1 Start. 

2 Input image let i=1 and j=1; 

3 Select a block-size from the set of block-sizes based on the evaluation of image entropy. 

4 Set up Sen values (n=1,2….40 values). 

5 Set up Sdn values (n=1,2….40 values). 

6 Input Sej. 

7 Input Sdi. 

Takagi-

Sugeno 

aggregation 

Output Image 
Brightnes

Grey 

Darkness  

Membership functions Rule1  

Rule2  

Rule3  

Rule5  

Rule4  

Rule6  

Input Image 

Defuzzification  
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8 Start with the first pixel and construct window 3x3. 

9 Fuzzification using three membership functions (dark, grey and bright). 

10 Apply 6 rules on this window. 

11 Defuzzification using Takagi-Sugeno method. 

12 Go to step 9 and move to next pixel and construct another window. 

13 Calculate SDME. 

14 Set i=i+1.  

15 While i ≤ 40, go to step 7 (choosing another value of Sd)  

16 Let i=1, j=j+1 

17 While j ≤ 40, go to step 6 (choosing another value of Se) 

18 Save the values of (Se,Sd) parameters at maximum value of SDME.  

19 Stop. 

 

Algorithm: Part II, implementation of local fuzzy contrast enhancement method using parameters 

1 Start. 

2 Input image, block size and values of Sd and Se parameters. 

3 Start with first pixel and construct window 3x3. 

4 Fuzzification using three membership functions (dark, grey and bright). 

5 Apply 6 rules on this window. 

6 Defuzzification using Takagi-Sugeno method. 

7 Go to step 4 and move to next pixel and construct another window. 

8 Display output image. 

9 Quantitative analysis between input image and output image using EME, AME and SDME. 

10 Stop  

 

Figure (4-14) below shows the selection of best values of the Sd and Se parameters-based 

evaluation on the maximum value of SDME as explained in the algorithm -part 1 above. 
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Figure 4-14), illustrates the selection of the best values of the Sd and Se parameters-based on evaluation the 

maximum value of the SDME. As example, the red square color represents the maximum value of the SDME 

at (Sd3,Se3), so it is possible to extract the figure of (Sd against SDME) when Sd=3 and set of Se (40 values), 

also extraction the figure of (Se against SDME) when Se=0.3 and set of Sd (40 values). 

 

4.2.4.1 Fuzzification 

There are three membership functions in the LFCE technique. These functions work to map 

grey level intensities from the spatial domain [Imin , Imax] to fuzzy domain values between 0 

and 1, where Imin and Imax are minimum and maximum grey level intensities in the input 

image. The first membership function gives a high membership degree for pixels, which 

have a low grey level intensity (darkness), while the second function, presents grey level 

membership as triangle function, which centred at middle grey level intensity in the image. 

The third function introduces high membership degree for pixels, which have a high grey 

level intensity (brightness). Figure (4-15), illustrates three membership functions. 
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Figure (4-15) illustrates three membership functions, function in blue color represents darkness membership 

function, while in red color represents brightness membership function and function in green shows grey 

membership. 

 

4.2.4.2 Generation of fuzzy rules 

Fuzzy rules are constructed from the combination of IF-THEN sentences and a set of logic 

connecters such as (AND, OR and NOT). The part of the sentence after IF is called 

antecedent (rule weight), while the second part after THEN is the consequence (output level). 

The six fuzzy rules used in the LFCE technique are applied on 3x3 pixel template (mask of 

central pixel and a given neighbourhood in the original image) as shown in the figure (4-16) 

below: 

 

 

Figure (4-16) Representation of central pixel (C5) and its neighbours (C1, C2, C3, C4, C6, C7, C8, C9), fuzzy rules 

will be applied on C5 and each neighbour’s pixel and then combining together to get the final decision. 

Some of fuzzy rules are shown below and the rest of these rules are in the appendix III : -  

 

C1 C2 C3 

C4 C5 C6 

C7 C9 C8 
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Rule 1: If (central pixel (C5) is brightness AND C1 is darkness) OR 

 (central pixel (C5) is brightness AND C2 is darkness) OR  

 (central pixel (C5) is brightness AND C3 is darkness) OR 

 (central pixel (C5) is brightness AND C4 is darkness) OR  

 (central pixel (C5) is brightness AND C6 is darkness) OR 

 (central pixel (C5) is brightness AND C7 is darkness) OR  

 (central pixel (C5) is brightness AND C8 is darkness) OR 

 (central pixel (C5) is brightness AND C9 is darkness) THEN  

Z= Sd × Y 

 

                      ... 

 

Rule 6: If (central pixel (C5) is darkness AND C1 is grey) OR  

(central pixel (C5) is darkness AND C2 is grey) OR  

(central pixel (C5) is darkness AND C3 is grey) OR 

(central pixel (C5) is darkness AND C4 is grey) OR  

(central pixel (C5) is darkness AND C6 is grey) OR 

(central pixel (C5) is darkness AND C7 is grey) OR  

(central pixel (C5) is darkness AND C8 is grey) OR 

(central pixel (C5) is darkness AND C9 is grey) THEN  

Z=Y- Se. 

 

The action of the consequents of the fuzzy rules are determined by two parameters (Sd and 

Se), which then deliver the final output Z for this pixel and Y represent central pixel. There 
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are three fuzzy rules that use the Sd parameter (rule1, rule3 and rule5) and the same number 

of rules that use the Se parameter (rule2, rule4 and rule6). Through the Sd parameter, we 

attempt to make the central pixel brighter in terms of neighbouring pixels i.e. the final output 

Z= Sd × Y. (The range of the Sd parameter is between 1 and 4 (40 values)). In the case of 

the Se parameter, the effect is to reduce the pixel intensity relative to its neighbouring pixels 

i.e. the final output Z=Y- Se. (Parameter Se also has a range between 1 and 40 (40 values)). 

The variation of both parameters (Sd and Se) are more sensitive to the range of 40 values. 

Tuning Sd and Se can be carried out by evaluating the SDME metric of the output image, see 

the algorithm:-part I. 

4.2.4.3 Defuzzification 

There are two types of defuzzification methods in the fuzzy inference system: Mamdani 

(Mamdani, 1974) and Takagi-Sugeno (Takagi & Sugeno, 1985). Takagi-Sugeno is more 

flexible than Mamdani because Mamdani needs fuzzy crisp output, while the output of 

Sugeno is only crisp value. Furthermore, Takagi-Sugeno has a better processing time than 

Mamdani; therefore Takagi-Sugeno was used to achieve defuzzification of the LFCE 

technique using following equation: - 

𝐹𝑖𝑛𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡 =
∑ 𝑊𝑖𝑍𝑖

𝑁
𝑖=1

∑ 𝑊𝑖
𝑁
𝑖=1

                                                                                                     (26)  

where N is number of rules, W is rule weight and Z is output level which depends on Sd and 

Se. For example, in the case of rule1, the rule weight (W1) is (central pixel (C5) is brightness 

and neighbour (C1) is darkness) or (central pixel (C5) is brightness and (C2) is darkness) 

or…or (central pixel (C5) is brightness and neighbour (C9) is darkness). While, output level 

file:///C:/Users/rsf45/AppData/Roaming/Microsoft/Word/First%20Draft_Jabbar.docx%23Algorithm_Part_I
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of this rule is Z= Sd× Y, where Y represents grey level intensity of particular pixel (central 

pixel of the mask in the original image). 

4.2.5 Experimental results 

This section describes performing of three experiments, which used different kinds of input 

data. The input data of the first experiment are five ultrasound image samples which were 

collected from the arm region (protocol 1) of the healthy volunteers; whereas, the second 

experiment used four ultrasound videos which were collected from hand region of the 

healthy volunteers (protocol 2), all details in section 3.3.2.1. Lastly, the input of the third 

experiment are five ultrasound image samples which, was collected from shoulder region of 

a cadaver in the form a panoramic ultrasound image, all details in section 3.3.1. All 

processing steps of the (LFCE) were applied on the data obtained from the three experiments. 

The main purpose of using different data is to assess the performance of LFCE method on 

these data and shed light on the sensitivity of the contrast detection using LFCE method 

compared with other methods. Comparison with results of other methods such as Unsharp 

Masking (UM), Histogram Equalization (HE) and Image contrast enhancement based on the 

fuzzy technique are presented below. Quantitative no-reference assessment metrics were 

employed to examine the performance of each of the contrast enhancements methods. 

4.2.5.1 Experiment 1 

The LFCE method was applied to the 5 ultrasound image samples. All the processing steps 

of the LFCE are explained in detail below in the case of sample 1. Fuzzification is the first 

step of the LFCE method; three membership functions (darkness, grey and brightness) were 

used, see figure. (4-15). The next step is applying the fuzzy inference rules (as described in 

section 4.2.4.2), but before using these rules, and to get the best values obtained for Sd and 
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Se, the SDME metric was involved in the estimation of these parameters. The evaluation of 

SDME needs suitable dimensions for the block size to determine the values of r1 and r2 , see 

table (4-4). The size of the block should be square and odd, but within these constraints to 

objectively determine a good block-size image entropy can be used. By using entropy, the 

best values obtained for dimensions of block were selected according to the average content 

of information. For example: if a block covers a homogenous region, this means it has less 

details because it shows just a small change in the grey level intensity; while, in the case of 

a heterogeneous region, a high level of information could be observed at the specific block 

size. Therefore, it is possible to use entropy as a tool to measure, which block size is more 

informative than others. The suitable selection of block size has a significant impact on the 

assessment of the contrast improvement. Maximum entropy denotes a high level of 

information; so, the block size chosen was the one that delivered maximum entropy. The 

block size determines how many blocks are in a row and column, figure (4-17), demonstrates 

the selection of the block’s dimensions at maximum entropy in the case of sample 1. 

 

 

Figure (4-17) illustrates selection the best value of block size, the dimensions of the input image after cropping 

to select region of interest are [305,559], and the optimum block size is 151; this means image is divided into 

5 blocks and these blocks distributed across two rows (r1=2)  and three columns (r2 = 3). 

 

The SDME of the contrast enhanced output image was performed for every change in Sd 

value (40 values) at the first value of Se. Then the process is repeated at the second value of 
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Se until all Se values have been used. The best values obtained for Se and Sd were selected 

such that they maximize SDME (see the algorithm, part I). Figure (4-18) demonstrates the 

estimation of Sd and Se of sample1. After getting the best values obtained for Sd and Se, it is 

possible to carry out the fuzzy rules, which are used to perform local contrast enhancement 

of the musculoskeletal ultrasound image. The last step is defuzzification involving a Takagi 

and Sugeno aggregation method, see equation (26). Comparisons between input image, 

output of LFCE method and FCE (Fuzzy Contrast Enhancement) or GFCE (Global Fuzzy 

Contrast Enhancement), HE and NLUM methods are all shown in figure (4-19). Table (4-

5), illustrates the evaluation of three metrics EME, AME and SDME for all five samples 

used in experiment 1, also shown are the best values of Sd and Se for these samples and the 

number of rows and columns (r1 and r2) respectively. Good image contrast corresponds to 

having high scores of SDME and EME and a low score for AME. Image contrast was 

enhanced using LFCE method and the resultant image of LFCE gives the highest score of 

SDME and is approximately 34% greater than other GFCE, see table (4-5).  

 

 

Figure (4-18), the left hand side of this figure illustrates the estimation of Sd and Se and different colors depict 

the SDME values across different values of Sd and Se, while the right hand side represents illustration of the 

proper values of Sd and Se at maximum value of SDME in separated figure (Sd=1.4 and Se=25 of sample1).The 

evaluations of left and right side based on the figure (4-14). 

file:///C:/Users/rsf45/AppData/Roaming/Microsoft/Word/First%20Draft_Jabbar.docx%23Algorithm_Part_I
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Figure (4-19), the first line illustrates input image of sample 1 and this image after applying GFCE (Global 

Fuzzy Contrast Enhancement technique) and HE respectively, while the second line shows input image after 

applying NLUM and LFCE respectively. 

 

Table (4-5) The values of three metrics (EME, AME and SDME) of five samples of musculoskeletal ultrasound 

image’s samples. Image contrast was enhanced using LFCE method and the resultant image of LFCE gives the 

highest score of SDME and is approximately 34% greater than other GFCE. 

 

 

4.2.5.2 Experiment 2 

In this experiment, the source for the ultrasound imaging data is ultrasound video. The video 

consists of a set of frames that can be regarded as a set of ultrasound images. The same steps 

Samples Metrics Input GFCE HE NLUM LFCE Se Sd r1 r2 

Sample1 EME 289.81 291.05 295.03 293.35 295.03 25 1.4 2 3 

AME 0.00020 0.00019 0.00015 0.00017 0.00015   

SDME 31.07 24.72 17 24 43.44   

Sample2 EME 292.43 294.23 295.03 292.50 295.03 19 2.8 1 3 

AME 0.00019 0.00015 0.00015 0.00017 0.00015   

SDME 16.06 7.79 20.16 17 25.77   

Sample3 EME 252.74 289.36 255.78 254.26 291.25 10 2.6 2 3 

AME 0.069 0.00023 0.0785 0.0870 0.00021   

SDME 13.85 19.88 17.56 15.40 31.27   

Sample4 EME 291.92 293.09 295.03 109.83 295.03 4 3.15 1 3 

AME 0.00018 0.00017 0.00015 0.00016 0.00015   

SDME 13.46 25.84 18.2 14.99 26.43   

Sample5 EME 288.10 291.25 292.60 290.67 293.05 40 2.9 2 3 

AME 0.0002 0.00019 0.00018 0.00002 0.00017   

SDME 14.39 16.55 19.94 16.27 17.34   

Mean of SDME   17.7 19 18.5 17.5 28.85     

 Input  GFCE  HE  

NLUM  LFCE  
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described in the experiment 1, above, were employed on each single frame of video. 

However, selection block size was performed on just four randomly selected frames of video, 

figure (4-20) shows the mean of the entropy of four video frames at different block sizes. 

 

Figure (4-20) illustrates the selection of the block size, but in this figure the value of the entropy represents the 

mean value of the entropy of four frames (frames 5,50,75,90) in the case of sample 1. The dimensions of the 

input frame after cropping are [254,271], and the proper block size that was determined is 127; therefore, the 

number of the rows (r1) equals 2 and the number of the columns (r2) equals 2. 

 

Parameters (Sd and Se) were selected in all frames. Figure. (4-21) shows extraction set of Sd 

and Se parameters alongside 120 frames of video (sample1). 

 

 

Figure (4-21), the left-hand side of this figure presents the proper values of Sd alongside the video frames (120) 

of sample1, while the right-hand side illustrates the set of Se parameter after estimation of the same video 

sample. 

 

Figure (4-22) illustrates Sd and Se estimation in two frames (frame 46 and frame 88) which 

were selected randomly from samp1e (video) as examples. Figure (4-23) shows the 

comparison SDME evaluation for 120 frames after applying the LFCE method and the 

GFCE method on the video of sample 1 (120 frames). The figure shows the performance of 
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GFCE method is better than LFCE in most frames. On the other hand, figure (4-24) shows 

a comparison of SDME evaluations on input video (120 frames) and after applying (LFCE, 

HE and NLUM methods) on these input frames. As shown in figure (4-24), there is a 

significant difference in the performance between LFCE method based on the SDME 

evaluation and the input video, HE, and NLUM method. Therefore, the competition in the 

performance is mostly between LFCE and GFCE methods. In terms of mean values of 

SDEM in the table (4-6), it is only 5% of the GFCE’s performance that outperforms the 

LFCE’s performance.  

 

 

Figure (4-22) shows estimation of Sd and Se of two frames (46 and 88) of sample 1, different colors depict the 

SDME values across different values of Sd and Se. Furthermore, the separated figure shows Sd value of frame 

46 (Sd =1.2) and frame 88 (Sd= 2.7) at maximum value of SDME. In terms of evaluation of Se value in frame 

46 equals 27, while in frame 88 equals 3 at maximum value of SDME. The evaluations of left and right side 

based on the figure (4-14). 
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Figure (4-23) Evaluation of SDME for video using LFCE method and GFCE of sample 1. 

 

 

Figure (4-24) Evaluation of SDME for video of different methods of contrast image enhancement (Input, 

LFCE, HE and NLUM) of sample 1 in the experiment 2. 

 

One frame of sample 1 video was used as an example in figure (4-25). The resultant images 

of each of the contrast enhancement methods are illustrated in this figure. Table (4-6), 

presents the values of three metrics (EME, AME and SDME) and for four samples of 

musculoskeletal ultrasound video. these values represent the mean value of all frames in the 

video sample.  
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Figure (4-25) In the first line, figure (a, b, and c) from left to right illustrate frame 88 of input video, after 

applying GFCE, and HE methods on this frame, while the second line (d and e) shows this frame after applying 

NLUM and LFCE (block’s size=127, Se=3 and Sd=2.7)). 

 

Table (4-6) illustrates the mean values of three metrics (EME, AME and SDME) for all frames of four samples 

of musculoskeletal ultrasound video.  

 

4.2.5.3 Experiment 3 

The input image of this experiment was collected from an advanced ultrasound machine and 

the captured panoramic image is superior (in terms of minimum contamination by noise) 

than the input images from earlier experiments. Optimization of the block size is a necessary 

N Metric Input GFCE HE NLUM LFCE r1 r2 

1 EME 252.53 282.72 294.63 291.64 294.34   

 AME 0.0013 0.0678 0.00016 0.00018 0.00016 2 2 

 SDME 10.83 15.23 11.90 11.06 12   

2 EME 248.022 290.52 294.99 291.46 295.03   

AME 0.00017 0.00019 0.00015 0.00019 0.00015 2 2 

SDME 10.88 13.83 14.80 12 11.82   

3 EME 143.7 258.25 294.63 291.23 295.03   

AME 0.00001 0.3274 0.00016 0.00019 0.00015 2 2 

SDME 4.17 13.04 9.77 9.38 12.58   

4 EME 250.49 289.46 294.60 292.64 295.03   

AME 0.0014 0.00002 0.00016 0.00017 0.00015 2 2 

SDME 8.54 10.41 8.73 8.61 13.24   

Mean of 

SDME 8.6 13.12 11.3 10.47 12.41 

 

a b c 

d e 
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step before evaluating SDME. Entropy was used to get the optimum block size based on the 

input image. Figure (4-26) demonstrates evaluation of entropy at different block’s size. 

 

Figure (4-26) Selection of block size, the dimensions of input image after cropping are [170,772], and the 

optimum block size is 85; therefore, number of rows (r1) equals 2 and number of columns (r2) equals 9. 

 

After getting the proper dimensions of the block, we can divide the image into blocks which 

are arranged in the rows and columns. This is requisite step to evaluate SDME, see equation. 

(25) in table (4-4). The figure (4-27) shows estimation of Sd and Se respectively. 

 

 

Figure (4-27), the left-hand side of this figure illustrates the estimation of Sd and Se and different colors depict 

the SDME values across different values of Sd and Se, while the right hand side represents illustration of the 

proper values of Sd and Se at maximum value of SDME in separated figure. So, Sd=3.6 and Se=2 of sample 1. 

The evaluations of left and right side based on the figure (4-14). 

 



97 

 

The difference between the output images of (GFCE, HE, NLUM and LFCE) methods 

including input image are shown in figure (4-28) below. The performance of each contrast 

enhancement method can be seen in the output panoramic ultrasound images in this figure.  

 

Figure (4-28), from top to bottom: the input image from the cadaver is shown in figure (a), while figure (b) 

shows this image after applying GFCE method. The image in figure (c) shows the result after applying HE, 

while figure (d) is input image after applying NLUM method. Finally, figure (e) illustrates contrast image 

enhancement using LFCE method. 

 

In this experiment, the same procedure and steps were employed on each of the four 

remaining samples. Table (4-7), presents a quantitative evaluation of three assessment 

metrics (EME, AME and SDME) in all contrast enhancement methods.  

  

a b

c 

 e 

 d
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Table (4-7) The values of three metrics (EME, AME and SDME) of five samples of panoramic musculoskeletal 

ultrasound image. It is 31% of the LFCE’s performance outperforms GFCE’s performance. 

 

 

Although the output images of the GFCE, HE and NLUM methods improve the image 

contrast compared to the input image, based on the mean values of SDEM in the table (4-7) 

the performance of LFCE outperforms them approximately by 31%. 

4.2.6 Discussion 

The prevailing demand of the contrast enhancement process is to improve the appearance of 

the image for human visual perception and aid the automated interpretation of these images 

in the further processing. In this work, a novel method (LFCE) was introduced to enhance 

the contrast of the MUI locally. The LFCE method was employed on a number of different 

samples of data that used three separate experimental data acquisition modalities before 

enhancing the contrast of the MUI. The data from experiment 1 and experiment 2 were 

collected from healthy volunteers using the same ultrasound machine; a single ultrasound 

image was the input of expeiment 1 and a set of the ultrasound images (captured in the form 

of an ultrasound video) was the input of experiment 2. Comparing the results of these two 

Samples Metrics Input GFCE HE NLUM LFCE Se Sd r1 r2 

Sample1 EME 285.19 288.12 292.89 287.82 294.35 2 3.6 2 9 

AME 0.0002 0.0017 0.0002 0.0002 0.00016   

SDME 9.4876 15.64 13.9792 10.50 22.006   

Sample2 EME 288.59 290.34 294.81 291.34 294.88 11 2.7 2 9 

AME 0.0002 0.00019 0.00016 0.00018 0.00015   

SDME 29.43 32.05 37 32.67 33.65   

Sample3 EME 289 290 295 291.56 295 4 2.9 1 9 

AME 0.0002 0.00019 0.00016 0.00019 0.00015   

SDME 33.26 66.47 60.66 40 68.75   

Sample4 EME 288.76 289.38 295 291.37 295 2 3.6 1 4 

AME 0.0002 0.0002 0.00015 0.00018 0.00015   

SDME 21.2 30.6 24.89 23.02 54.7   

Sample5 EME 288.5 61.7 295.03 290.89 295.03 3 2.1 1 9 

AME 0.0002 1.8277 0.00015 0.0019 0.00015   

SDME 38.55 47.55 47.37 51.26 64.62   

Mean of SDME 26.38 38.44 36.77 31.49 48.74     
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experiments illustrates the importance of intra-scan variability during the ultrasonographer’s 

use of the video scanning modality. Hence, video data is more variable and challenging than 

a single image snapshot: due to the need to keep a probe perpendicular on the surface of the 

scan area. Adjusting contrast during recording could distract an ultrasonographer. Currently, 

there is no ultrasound machine option to adjust the ultrasound video after recording. In the 

third experiment, different input modality was presented from the first and the second 

experiments; it is a set of ultrasound images fused together to give an expanded view (i.e. a 

panoramic musculoskeletal image). 

The most important step in the LFCE approach is the construction of the fuzzy rules. The 

fuzzy rules are composed of fuzzy conditional statements, which in this case reflect the 

knowledge of how to address low luminance in localised regions of the image. The Sd and 

Se parameters steer the evaluation by influencing the output level of the fuzzy rules, and the 

best values for these parameters were chosen at maximum values of SDME.  

The evaluation of the image SDME’s requires a good block size for a sliding window to 

traverse the rows and columns (r1 and r2) of an input image. The entropy of the image was 

used to investigate which block size delivers the best variation in grey level intensity for an 

input image. Based on the nature of the musculoskeletal ultrasound images, a small size of 

the block is likely to consist of homogenous grey level intensities and it is hard to show the 

discrimination in the luminance of the image. Therefore, a large block size might be a more 

appropriate selection to better recognize the difference in image contrast. However, it is 

necessary to cover most of the image pixels when dividing images into a set of blocks for 

the sliding window. The best block size uses odd square dimensions for the evaluation of the 

SDME metric. In the three experiments, the block size was selected successfully. However, 

the number of blocks which were arranged in columns in the third experiment is greater than 
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in the experiment 1 and 2. This is due to the high quality and resolution of image acquisition 

in experiment 3 compared to experiments 1 and 2. Parameters (Sd and Se) in all three 

experiments were selected based on the SDME evaluation. These parameters were extracted 

in all frames of four samples of the experiment2. Despite detecting the proper set of these 

parameters in this experiment, it is time consuming; this is one limitation of using LFCE, 

which needs to be considered. 

The quantitative assessment of the image quality illustrates the difference in the performance 

between LFCE and GFCE, HE and NLUM. Three quantitative metrics were used for this 

purpose EME, AME and SDME. There is little variation in the values of EME and AME for 

all experiments and methods.  

The LFCE approach (local method) performed considerably better than GFCE method 

(global method) in experiment1 and experiment3. Based on the mean values of the SDME 

of the five samples for both GFCE and LFCE methods in the table (4-5) and table (4-7), the 

performance of LFCE outperforms the performance of  GFCE by 34% in the experiment 1, 

and in the experiment 3 by 12%. Whereas, in the experiment 2, LFCE method a high score 

of the mean values of the SDME was reported, compared with the mean values of the SDME 

of the GFCE method, but not in the all frames of the ultrasound video, see figure (4-23).and 

figure (4-24). The scenarios where LFCE works reasonably well are single and panoramic 

ultrasound images. This is due to the nature of the local interaction between grey level 

intensities between the image’s pixels and ultrasound video that has a higher level of 

variation compared with single and ultrasound panoramic images. Therefore, the LFCE 

method might lack the ability to avoid the high level of variabilty in the case of ultrasound 

video imaging. 
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The proposed method has some limitations: although LFCE was performed on all three 

experiments (14 samples in all), it is still a small sample number in terms of appraising 

LFCE. Moreover, choosing a large block size for the mask (central pixel and its neighbours) 

might have a different impact on MUI contrast enhancement compared with a small size. 

The second limitation is related to qualitative assessment. The assessment of image contrast 

of all methods in this work does not include any of the subjective metrics such as Mean 

Opinion Score (MOS) (Huynh-Thu et al., 2007). This metric is a descriptive tool which 

reflects the opinions of a group of experts in the same field of research. It is a potential 

subjective tool to show the acceptance of the results in terms of quality and applicability. 

4.2.7 Conclusions 

In this work, a novel method to increase the quality of MUI was introduced. It is an 

automated method and depends on local analysis of low-level luminance in the image and 

the principles of a fuzzy inference technique. In general, the performance of contrast image 

enhancement was improved by this technique when applied to three different input data of 

MUI (single image, video and panoramic image). Since it is difficult to adjust the contrast 

during video recording in MUI, contrast enhancement would provide a great help for 

clinicians, researchers and ultrasonographers during an ultrasound video recording as it is 

possible to enhance offline video recording. 

Ultimately, the contrast was enhanced to increase the quality of the musculoskeletal 

ultrasound images. Obtaining the best image quality helps to get a better estimate of the 

musculoskeletal parameters automatically. 
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Chapter Five 
Edge detection in 

Musculoskeletal Ultrasound 

Images 
 

 

The first part of this chapter was published as a peer-reviewed conference paper: 

Jabbar S I., Day C. R., Heinze, N. and Chadwick, E.K. (2016). Using Convolutional Neural 

Network for Edge Detection in Musculoskeletal Ultrasound Images. In IEEE International 

Joint Conference on Neural Networks(IJCNN). pp. 4619–4626. 

 

The second part of this chapter is submitted as journal publication and it is currently under 

review. 
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Chapter 5     Edge detection in musculoskeletal ultrasound 

images 

5 Introduction 

The determination of musculoskeletal geometric parameters is a solid foundation of 

musculoskeletal modelling. Some of these parameters are muscle thickness, muscle fibre 

length and pennation angle, which describe the morphology of the muscular system. The 

estimation of these parameters in vivo is highly desirable, especially when a Musculoskeletal 

Ultrasound Image (MUI) is captured, which could help in the construction of personalised 

musculoskeletal modelling. 

Image segmentation is an essential step in the identification of the geometric parameters as 

image segmentation can change an image contents representation to a simple form. This 

processing could help in differentiation between image sections and make it meaningful. 

Edge detection is a fundamental prerequisite for successful image segmentation. It outlines 

the important details of an object in the image and mark it as high brightness colour (255), 

while leaving the rest of the image with 0 intensity. In this thesis, edge detection technique 

was chosen to characterise objects in the musculoskeletal ultrasound image. The main 

challenge of performing this technique is the difficulty to get a clear image of muscles and 

tendons. This is due to the different texture patterns of the MUI and presence of speckle 

noise in this kind of image. Figure (5-1), illustrates a typical scenario of extraction of 

musculoskeletal parameters, which starts with scanning the upper limb segments by 

ultrasonography, to image processing which includes image enhancement, edge detection 

and extraction of information from the image. These steps facilitate determining the 

important parameters of the musculoskeletal model.  
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Figure (5-1) Pipeline, which explains how to get geometric parameters of musculoskeletal system then feed it 

to the musculoskeletal model. This pipeline includes ultrasound images, which have been recorded from 

healthy volunteers for image processing (image enhancement, edge detection and analysis). 

 

In this thesis, two approaches were compared to perform edge detection of the 

musculoskeletal ultrasound image. Convolutional Neural Network (CNN) was recruited as 

a first approach, while a new fuzzy inference technique was developed and applied as a 

second one to achieve this purpose. Fuzzy inference technique has the potential to represent 

complex texture patterns in musculoskeletal ultrasound images. Furthermore, it is possible 

to train CNN on this kind of images.  

Improved edge detection 

and segmentation 

techniques to give better 

estimates of important 

musculoskeletal model 

parameters. 

Scanning upper limb 

segments of a patient. 

Musculoskeletal Ultrasound Image(MUI) 

Musculoskeletal model 
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5.1 Part 1: Using Convolutional Neural Network for Edge Detection in 

Musculoskeletal Ultrasound Images. 

5.1.1 Introduction 

Convolutional Neural Network (CNN) is one member of the Deep Learning Neural Network 

(DLNN) family, where DLNN is a subset of artificial neural networks. The core form of 

CNN is driven by a biological process at the visual cortex. CNN is constructed from different 

types of layers (input layer, output layer and multiple hidden layers) and each hidden layer 

includes the following layers: convolutional layers and pooling layers. A fully connected 

classification layer is output layer (Krizhevsky & Hinton, 2012). CNNs have been used in 

different types of biomedical imaging applications such as pixel classification as a 

membrane or not in electron microscopy biopsy images by Ciresan (Ciresan et al., 2012). 

Ciresan’s work made extensive use of Graphics Processing Units (GPUs) in the training of 

their CNNs as GPU has a significant role in the acceleration of deep neural network training 

(Ciresan et al., 2013). Next, the scenario of pixel classification witnessed another turning 

point when it was used in biomedical image processing applications. For example, detection 

of mitosis in breast cancer images (Wang et al., 2014), recognition of bone tissue in the x-

ray image from other tissue (Cernazanu-glavan, & Holban, 2013) and differentiation of 

blood vessels from its background (Melinscak et al., 2015). 

Edge detection of MUI is not a trivial task due to the presence of the speckle noise, complex 

image texture and low image contrast. There is little doubt that despeckling ultrasound 

images would enhance the performance of image classifiers such as CNNs. However, in this 

study, it was used to assess how the noise toleration properties of CNNs can cope with this 

noise. In this work, CNN was applied to investigate its ability to classify whether MUI pixels 
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are an edge or non-edge pixel of muscles. Two different types of ground truth images are 

involved in the development of the CNN. One ground truth set was drawn by an expert and 

the other came from a commonly used automatic method of the edge detection (Canny 

operator). A comparison between the results was done to demonstrate the differences in 

CNN performance among the two cases. Additionally, CNN tolerance of low image contrast 

and speckle noise effect was also evaluated in this part of the chapter. So, there was no 

application of speckle noise reduction as a pre-processing step before CNN implementation. 

5.1.2 Methods 

This section is organised as follows: data preparation; CNN configuration, CNN training 

details; visualization of output images from training and testing processes. A quantitative 

assessment using the training and testing data; and further final validation with additional 

MUI that was not part of the training/testing process. 

5.1.2.1 Dataset preparation 

The details of the collection of data is found in the chapter 3, section 3.3.1. The image 

dimensions were initially (550x1024) pixels, but following simple cropping of the 

background, the dimensions became (178x783) pixels. Four sample images were collected, 

one of the four (sample 1) was used for CNN training and testing. While the rest of the 

ultrasound image samples (sample 2, sample 3 and sample 4) have been used in the final 

validation. Figures (5-2)a, (5-2)b, (5-2)c and (5-2)d show for sample 1: the original 

ultrasound image, the result of applying an automatic Canny edge-detector to sample1 to 

provide a Canny Ground Truth (CGT) image. A human expert-derived set of edges to be 

used as the Expert Ground Truth (EGT) image and manually segmented version of the EGT 

to more clearly delineate the interesting muscle groups, respectively. Using separate CNNs, 
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the same input image (sample1) was trained and tested on two different ground truth images 

as the target in each case.  

 

Figure (5-2) Input image of sample1 is illustrated in figure (a), while figure(b) shows CGT of sample1, it was 

extracted by using Matlab 8.6. Figure(c) shows EGT image, drawn by expert anatomist and figure (d) illustrates 

labeling of figure (c). by expert. 

 

Initially, each pixel in the original image in the figure (5-2)a is labelled as edge pixel or non-

edge pixel based on ground truth image and its x, y-coordinates are saved as well. The next 

step is making a random selection of the labelled pixels where it is possible to track any pixel 

in the training and testing. In our work, 6000 and 10000 pixels have been selected randomly 

as edge and non-edge pixels respectively, so that the total pixels involved are 16000. 

Training and testing datasets were chosen to have the same number of pixels (8000 pixels), 

a  

b 

c  

Skin 

Deltoid muscle 

Glenohumeral joint space & glenoid labrum 

Infraspinatus muscle  

Trapezius muscle d 
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and 8000 pixels of training data are disjoint from the testing pixels, so there is no overlap 

between the training and testing data, see Figure (5-3). 

 

   

Figure (5-3) process of data preparation for training and testing. This process depends on labelling input pixels, 

a random selection of pixels. We can track any pixel, which has been selected based on its saved x-y coordinates 

and distribute unique pixels between training and testing equally. 

 

5.1.2.2 CNN configuration 

Three main types of layers build the solid foundation of CNN processing. These layers are 

Convolutional Layers (CL), Max-pooling Layers (ML) and a final Fully Connected Layer 

(FCL). Convolutional layer performs linear operation to extract features using set of filters, 

where it can slide a kernel across input dimensions and the weights of the kernel are shared 

in every slide of this layer. While, the effect of the pooling layer is to reduce the spatial size 

of data representation. The reason is to extract a set of features that are 

compressed/summarised versions of the information from the previous layer. In this way the 

CNN extracts higher and higher-level features from the data in the original image. The last 

layer if fully connected layer, works as an ordinary neural network: detecting the last version 

Input image  

Ground truth 

image 

Labelling each pixel in the input 

image based on the ground truth 

image as edge and non-edge pixels 

and save their x-y coordinates. 

 

 

Random selection of these labelled 

pixels (6000 pixels from edge pixels and 

10000 pixels from non-edge pixels). 

Distribution edge and 

non-edge to prepare 

data for CNN 

Testing (3000 edge pixel 

5000 non-edge) 

Training (3000 edge pixel 

5000 non-edge) 

Training and testing pixels are disjoint sets 
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of features and combining them together to get the final output. Some critical problem-

specific CNN parameters that must be carefully chosen include kernel size to avoid pixel 

fractions, and the overall number and size of the convolutional and max-pooling layers. Each 

of these has a powerful impact on the quality of the final outputs. So, several kernel sizes 

and numbers of feature maps in successive CNN layers have been evaluated for overall 

classification accuracy, see below. The FCL layer is a standard neural network classification 

layer (Özkan, 2015); the type of activation function used is a sigmoid function. It can be 

bounded within the range [minimum, maximum], so allows simple thresholding to get the 

final output classifications (Doorn, 2014). 

The configuration of CNN depends on the window size and kernel size. The best value of 

window size will be selected based on the evaluation of the assessment metric, which gives 

a highest score. In the case of classification, a pixel whether it is an edge or not , the 

dimension of the window should be odd. Furthermore, the selection of the kernel size is 

necessary to decide the depth of CNN layers. 

5.1.2.3 Training 

All this work was implemented in MATLAB 8.6. The training of each CNN used the input 

image from the figure (5-2)a, but with separate ground truth images from the figure (5-2)b 

and Figure (5-2)c. The training was done on a computer with an Intel Core i5 processor (2.5 

GHz), 6GB RAM and without GPU support. The training dataset preparation will vary 

slightly according to the different window size and the CNN configurations. One of the 

important aspects of CNN training is weights sharing and how max-pooling layers can 

reduce the problem to higher and higher levels of important features from the input image. 

However, the time required to train CNN's increases when increasing the window size and 
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number of training epochs. CNN was trained and evaluated on range of different epochs (1, 

25, 50, 100, and 150) and different window sizes. 

5.1.2.4 Visualizing output images from training and testing 

The total number of pixels in the training and testing datasets is 16000. These pixels are 

randomly distributed concerning their x-y coordinates in the input image. The output image 

after passing the training and testing data through a CNN can be created from the x-y 

coordinates for each pixel, as described in figure (5-4) below: 

 

 

Figure (5-4), output image from training and testing dataset. 

 

5.1.2.5 Performance measure 

In addition to qualitatively observing the content of the output images derived using the 

process in the figure (5-4), it is possible to evaluate quantitatively the quality of each output 

image. Matthews Correlation Coefficient (MCC) was selected as a metric when tuning 

window size for the best CNN configuration. MCC is a useful metric for unbalanced 

classification datasets. The MCC takes values [-1, +1], where: 1 indicates the absolute 

correlation between output image and ground truth image; when MCC is 0 that means no 
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correlation and; when there is a perfect inverse correlation the MCC is -1. MCC can be 

calculated using the following equation: 

𝑀𝐶𝐶 =
𝑇𝑝 ∗ 𝑇𝑛 − 𝐹𝑝 ∗ 𝐹𝑛

√(𝑇𝑝 + 𝐹𝑝)(𝑇𝑝 + 𝐹𝑛)(𝑇𝑛 + 𝐹𝑝)(𝑇𝑛 + 𝐹𝑛)
                                                      (27) 

where Tp is True positive, Tn is True negative, Fp is False positive, and Fn is False negative. 

Tp defines appropriately detected edge pixels, Fp value gives the number of incorrect edge 

pixels, Tn pixels is the complement to the Tp and Fn is missing edge pixels. Each of these 

terms can be calculated by following equations: - 

Tp = |Iout ∩ IGT|                                                                                                            (28a) 

Fp = |Iout ∩ −IGT|                                                                                                                       (28b) 

Tn = |−Iout ∩ −IGT|                                                                                                                    (28c) 

Fn = |−Iout ∩ IGT|                                                                                                                        (28d) 

where Iout is output binary image, which has an edge or not-edge pixels, IGT is ground truth 

image, - Iout is the complement of Iout and - IGT is the complement of IGT. (Özkan, 2015; 

Matthews, 1975). Other valuable quantitative classification metrics are Specificity, 

Sensitivity and Accuracy (Lopez-Molina, 2013). Sensitivity is the ability of the identification 

of the edge pixel correctly while, specificity is the ability to identify incorrect edge pixels, 

see equations (29) and (30) respectively. The accuracy of applying edge detection method is 

its ability to differentiate the edge pixels from non-edge pixels correctly. To evaluate the 

accuracy of edge detection image, we need to calculate the proportion of true positive and 

true negative in all evaluated cases as shown in equation (31). 

Sensitivity =
Tp

Tp+Fn
                                                                                                           (29) 

Specificity =
Tn

Tn+Fp
                                                                                                                          (30) 
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Accuracy =
Tp+Tn

Tp+Fp+Tn+Fn
                                                                                                    (31) 

 

5.1.2.6 Final Validation using previously unseen MUI 

For each of the separate Canny ground truth images and expert ground truth image 

trained/tested CNNs use three samples of previously unseen ultrasound images for 

validation. Each CNN was evaluated using Canny ground truth image data expert ground 

truth image data respectively.  

5.1.3 Experiments and results 

Our work has been inspired by the recent work of Ciresan et al. where CNNs were used to 

analyse images obtained from electron microscopy (Ciresan et al., 2012), but our work uses 

another biomedical image source: Musculoskeletal Ultrasound Images. In this work, datasets 

have been prepared for training a CNN and testing, see figure (5-3). We used different input 

window sizes from 5 to 95 pixels, different CNN configurations and a suitable epoch number 

to illustrate which one of these properties supports CNN to get the highest level of 

performance.  

The selection of the best window size in this work for both ground truth images used the 

maximum value of MCC as the optimisation criterion. In the case of using CGT image, the 

best window size was 13, while the best window size was 27 when training CNN on EGT 

image, see figure (5-5) below. The EGT image described ultrasound image edges relatively 

simply, while CGT discovered very complicated and potentially spurious edges. So, it did 

not expect to get the agreement in the optimisation of the window size for the two CNNs. 
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Figure (5-5), the left-hand side of this figure shows optimization of window size for CGT image, while the 

right hand side illustrates optimization of window size for EGT image. 

Regarding CNN configurations, kernel sizes were selected based on selected window size 

for both different ground truth images and in the same time avoid any fraction of kernel size. 

Table (5-1) and table (5-2) illustrate CNN configurations used for both above optimal 

window sizes. 

Table (5-1) CNN configuration (13x13) in the case of using CGT, window size =13x13. 

Layer  Type FM &Neuron Kernel size 

1 Input layer 1 Map of 13x13 neurons - 

4x4 

2x2 

4x4 

2x2 

- 

2 Convolutional 6 Maps of 10x10 neurons 

3 Max-pooling 6 Maps of 5x5 neurons 

4 Convolutional 12 Maps of 2x2 neurons 

5 Max-pooling 12 Maps of 1x1 neurons 

6 Fully connected 1 neuron 

 
Table (5-2) CNN configuration (27x27) in the case of using CGT, window size =27x27. 

Layer Type FM &Neuron Kernel size 

1 Input layer 1 Map of 27x27 neurons - 

2 Convolutional 6 Maps of 24x24 neurons 4x4 

3 Max-pooling 6 Maps of 12x12 neurons 2x2 

4 Convolutional 12 Maps of 8x8 neurons 5x5 

5 Max-pooling 12 Maps of 4x4 neurons 2x2 

6 Convolutional 12 Maps of 2x2 neurons 3x3 

7 Max-pooling 12 Maps of 1x1 neurons 2x2 

8 Fully connected 1 neuron - 

  

After identification of the optimal CNN properties (window size, CNN configuration) and 

training with these properties, CNN is ready for testing. It is possible to visualise the output 

image of CNN from the training and testing processes combined, in the case of using EGT 
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image as the example. Figure (5-6) illustrates an output image synthesised from training and 

testing data shown in different colours.  

 

 

Figure (5-6) Composite output image produced using the output of the trained and tested CNN, showing the 

training pixels (in green) and the testing pixels (in red) using the data derived from the EGT image. 

Of course, in figure (5-6) one can see an incomplete image due to the selection of just 8000 

pixels for training and 8000 pixels for testing, so not all pixels from the original input image 

are shown in the figure (5-2)a. The evaluation of the two CNN approaches (one using Canny 

ground truth image and the other using expert ground truth image) can be succinctly 

described in the form of two experiments: Experiment 1 and Experiment 2. 

5.1.3.1 Experiment 1 

In Experiment 1, Canny ground truth data was obtained by applying a Canny edge-detection 

operator on the raw input ultrasound image (Canny, 1986). The Canny operator is a 

traditional method for image edge detection and is automatic since it does not rely on the 

opinion of an expert in the analysis of MUI. However, it is not expected to produce the ideal 

set of edges for our purposes; it is susceptible to noise and can create some spurious edges: 

sometimes extra edges and sometimes missing some important edges. The main purpose of 

this experiment is to investigate the sensitivity of CNN among the image of Canny operator, 

which is considered in this experiment as ground truth image. Figure (5-7) represents the 

output image, which is obtained from the Canny ground truth image -trained CNN when 

(window size=13, epochs =100). 
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Figure (5-7) Output image derived by the Canny ground truth image -CNN using sample1 as the input image. 

 

The CGT-CNN output image above shows us just a full foreground object and its 

background, but it is impossible to discriminate any boundaries that separate the three most 

important muscles. The Tp, Fp, Tn and Fn versions of this output image are shown in figure 

(5-8). It is clear in the Fp image; there are a lot of error pixels beside real edge pixels, so it 

is easy to see why all three muscles seem as one full object in figure (5-7).  
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Figure (5-8), from top to bottom, Tp, Fp, Tn and Fn of input MUI (sample1). 

 

 

Experiment 1 Validation: -  

Three unseen MUI images are involved in the validation of this experiment. Figures (5-9) 

and (5-10) below, show the input image (i.e. samples 2, 3 and 4), the CGT for each of the 

input images and the CGT-CNN derived output images respectively. 

 

Tp 

Fp 

Tn 

Fn 



117 

 

 
Figure (5-9), the left column from top to bottom illustrates input ultrasound image (sample2), CGT and output 

image, while the right column shows, input ultrasound image (sample3), CGT and output image. 

 

 

Figure (5-10), from top to bottom, input ultrasound image (sample4), CGT and output image. 

 

5.1.3.2 Experiment 2 

The EGT images used for this experiment reflect the expertise of a person who can match 

anatomical structures with ultrasound imaging. Using the panoramic ultrasound images, it is 

possible to see whole muscles, bones, and tendons. However, using the panoramic technique 

drawing for all of the necessary ground truth images is costly. Furthermore, when gathering 

EGT data, it is difficult to trace the important information of the succession of images and 

at the same time maintain the necessary alignment between the ground truth image and the 

Sample 2  Sample 3  
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original MUI image. However, training an EGT-CNN using this EGT image gives us a 

clearer set of edges with which to reliably differentiate each of the three muscles. 

Additionally, if we can train the EGT-CNN on a relatively modest number of images, and 

have it identified the outlines of muscles with good accuracy; the potential benefits are huge. 

Figure (5-11) shows the EGT-CNN output image derived using sample 1, see figure (5-2)a 

when window size=27 and epochs =100. 

 

 

Figure (5-11) Output image derived by the EGT-CNN using sample1 as the input image. 

 

To contrast, the experiment 1, figure (5-12) provides us with the idea about Tp, Fp, Tn and 

Fn of the output image in figure (5-11), Fp image below tells us there is a statistically 

significant difference between Fp of this image and Fp in figure (5-8). That leads to the clear 

interpretation of image details in the case of training CNN by using EGT image. 

 

 

 

Figure (5-12), from top to bottom, Tp, Fp, Tn and Fn of input MUI (sample1). 

Tp 

Tn Fn 

Fp 
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Experiment 2 Validation 

Again, three previously unseen MUI images are involved in this validation. Figures (5-13) 

and (5-14) include input images of the samples (2, 3, and 4), the equivalent EGT images and 

the relevant EGT-CNN derived output images, respectively. 

 

 

Figure (5-13), the left column from top to bottom, illustrates input ultrasound image (sample2), EGT and output 

image, while the right column shows, input ultrasound image (sample3), EGT and output ultrasound image. 

 

 

Figure (5-14), from top to bottom, input ultrasound image (sample4), EGT and output ultrasound image. 

 

Sample2  Sample3  
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A quantitative assessment of three previously unseen validation MUI samples obtained 

from each of the two experiments (including data for the first MUI sample) is shown in 

table (5-3), below. 

 

Table (5-3) Quantitative assessment of output of MUI). 

Experiment1 (CGT image) 

Samples Accuracy Specificity Sensitivity 

Sample1 0.72 0.706 0.976 

Sample2 0.67 0.65 0.99 

Sample3 0.69 0.68 0.97 

Sample4 0.69 0.67 0.97 

Mean 0.69 0.676 0.976 

Standard deviation 0.0179 0.0202 0.0082 

Experiment2 (EGT image) 

Sample1 0.80 0.796 0.896 

Sample2 0.815 0.823 0.638 

Sample3 0.786 0.787 0.766 

Sample4 0.812 0.817 0.694 

Mean 0.803 0.81 0.75 

Standard deviation 0.0132 0.0170 0.1114 

 

5.1.4 Discussion 

In this work, CNN was applied on the MUI to identify pixels of the musculoskeletal 

ultrasound image and to see whether it is edge or not. The performance of CNN was 

illustrated on two types of ground truth images through two experiments. The first one used 

a traditional method (Canny operator), and it is considered in this work as ground truth 

image. The second ground truth image was drawn by an expert. In addition, this work has 

not used any kind of pre-processing like foveation (Ciresan et al., 2012), contrast 

enhancement or any active denoising to reduce the effects of speckle noise (Gupta et al., 

2014). If carried out, this kind of processing is likely to boost CNN performance, but at the 

expense of extra pre-processing computation.  
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From the figures above, (from Experiment 2), one can observe the boundaries of three 

muscles in the Expert Ground Truth (EGT) image. Whereas, in Experiment 1 the Canny 

Ground Truth (CGT) acquired images make it impossible to see muscle boundaries and 

instead just a solid foreground object can be separated from the background pixels. This 

means that qualitatively the output images of CNN by EGT allow better identification of 

individual muscle than CGT-CNN output images. 

In addition, table (5-3) gives a quantitative assessment of musculoskeletal image samples 

for the output from Experiment 1 and Experiment 2. In Experiment 1, our method achieved 

a lower accuracy value of mean = 0.69, while in Experiment 2 the mean = 0.8: showing that 

the EGT-CNN is more able to identify muscle boundaries. Table (5-3) also shows a 

noticeable difference in specificity values between the two experiments. The specificity in 

Experiment 2 is higher than in Experiment 1 because the Experiment 2 output images deliver 

fewer spurious edge pixels, see figure (5-8) and figure (5-12) as the example. This indicates 

that the performance of CNNs trained on EGT image data outperforms CNNs trained on 

CGT images. 

According to equation (29), the number of Fn pixels has a significant impact on the value of 

sensitivity. In Experiment 1, the average sensitivity value is high because Fn is perversely 

very low: and this is due to the output image in this experiment having all of the edge pixels 

detected in the CGT image, making the resulting sensitivity value approximately equal to 

Tp/Tp. However, overall better-quality pixel classification is achieved in Experiment 2. 

Experiment 2’s output images give us an acceptable way to determine the muscle boundary 

details of the input. Whereas, the output images of Experiment 1 only allow us to separate 

foreground objects from the background. The standard deviation of quantitative values in 

the table (5-3) shows us there is little difference between values of all samples.  
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The results are promising, but it needs some refinements to raise the CNN performance. 

Some of these refinements are to increase the size of the CNN training datasets to get better 

results and using GPU to help accelerate training and reduce implementation time. 

5.1.5 Conclusions 

In this part of the thesis, a very promising result was achieved when CNN was applied on 

MUI as it is the first use of state-of-the-art CNNs that focused on MUI edge detection. 

Moreover, CNN is likely to be a scalable solution, which improves the usefulness of 

important approaches in MUI such as the panoramic technique. 

CNN has the potential to do pixel-based edge-detection on MUI in ways that are akin to a 

human anatomist with expertise in the analysis of this kind of image. 
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5.2 Part 2: Using fuzzy edge detection image technique in Musculoskeletal 

Ultrasound Images. 

5.2.1 Introduction 

In this thesis and in the first part of this chapter, a promising CNN experiment that is involved 

in classifying whether a pixel is an edge or not was presented. However, a successful CNN 

technique requires an extensive training and large training dataset to obtain a satisfactory 

edge detection output image. In this work, the CNN experiment has a small training dataset 

because the collection of a large dataset of MUI requires a long time to gather and needs an 

expert to recognize a complex features pattern of the images. Furthermore, the details of 

many edges in a resultant image of the CNN technique were highly interconnected. So, CNN 

technique allows to visualise an image's edges of the muscle boundaries, tendon, bone and 

other details altogether in one image. However, when the aim is to measure muscle borders 

alone automatically, then it is desirable to exclude other MUI details to minimise artifacts. 

This manoeuvre would help to optimise of edge detection for the structures of interest and 

reject those that are not needed.  

Therefore, Fuzzy Edge Detection Method (FEDM) was developed in the second part of this 

chapter as a novel method to accomplish edge detection, which is based mainly on a fuzzy 

technique. It is conducted through fuzzification plus optimization of the fuzzy membership 

functions to achieve the best output, construction of fuzzy rules for edge detection in the 

fuzzy domain and defuzzification. Selection of parameters for the membership functions 

depends on the analysis of the standard deviation curve of a set of thresholded images as this 

curve depicts the variation of grey level intensities. These membership functions show 
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different levels of information. Furthermore, fuzzy rules reflect the knowledge of 

representation and detection of the enhanced image’s edges. 

In using fuzzy edge detection method (FEDM), it is possible to exclude the unnecessary 

information such as texture or speckle information and keep the most appropriate edge 

detection information. FEDM is relatively easy, completely automatic and its 

implementation is not time-consuming. The advantage of this technique is a robust edge 

detection method, which gives a clear description of the object’s properties inside the MUI, 

without needing to collect too much data from MUI for training CNN as an example. In 

addition, there is no requirement for a large training dataset and it is not as time-consuming 

as CNN technique. 

5.2.2 Metrics of Edge Measurement based on Reference image  

Measurement of the FEDM’s performance gives evidence about the technique’s 

effectiveness and helps in improving edge detection method to get a high level of accuracy 

when describing geometric parameters of the object. The edge map can be assessed using 

subjective and objective evaluations. Subjective evaluation can be carried out based on 

human opinions and rating scales such as Mean Opinion Score (MOS) (Huynh-Thu et al, 

2010), while objective evaluation is determined based on comparing the resultant edge image 

to a reference image. Often, a reference-based, objective measurement is recommended 

because MOS might be biased in the visual interpretation and it is difficult to measure the 

quality of edge performance without using a reference image (Panetta et al, 2016). Reference 

image reflects the expertise of the expert in demonstrating the most important details in the 

image to create this image. Different statistical methods have been used in reference 

objective assessment; for example, F-measure and Matthews Correlation Coefficient. These 
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methods include extraction of True positive (Tp), False positive (Fp), True negative (Tn) 

and False negative (Fn) by matching pixels of detected edge image and reference image 

(Lopez-Molina et al, 2013). Although an expert has the experience to trace the important 

details of the input image, it is not possible to say that reference image is faultless in 

assigning the precise location of the pixel; because the expert will draw it manually. 

Therefore, comparison between the detected image and ground truth image based on a pixel-

by-pixel assessment may not give us an accurate evaluation. However, if the match between 

edge maps of detected and ground truth images is tested by analysis of higher-level features 

dependent on accurate assessment of the edge, it might avoid the pitfalls of a pixel by pixel 

comparison. Analysis of edge characteristics might include evaluations such as distance 

between actual edge and ideal edge pixel, thick edge occurrence and edge pixel presence. 

The first standard method, which was used in this matching, was Pratt’s Figure of Merit 

(FOM) method; it is shown in equation (32). 

𝐹𝑂𝑀𝑃𝑟𝑎𝑡𝑡 =
1

𝑚𝑎𝑥{𝑁𝑔, 𝑁𝑎}
∑

1

1 +∝ 𝑑2
                                                                              (32)

𝑁𝑎

𝑖=1
 

where Ng is number of edge pixel in ground truth image, Na is number of actual edge pixel, 

d is distance between actual edge pixel and the nearest ideal edge pixel and α equals 1/9 (at 

this value, a reasonable edge position is detected, suggested by Pratt, (1978). Moreover, the 

improved version of this method was achieved by Pinho for giving more effective accounting 

of false edges, as shown in equation (33). 

𝑃𝑖𝑛ℎ𝑜 = [
1

𝑁𝑔
∑

1

1 +∝ 𝑑2

𝑁𝑔

𝑘=0

] [
1

1 + 𝛽
𝑁𝐹𝑃

𝑁𝑔

]                                                                                (33) 

where NFP is number of false positive pixels and the value of β is 1, but in the case of NFP=Ng, 

the value of this parameter will be 0.5 (Pinho and Almeida, 1995). Recently, Reference-
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Based Edge Measure (RBEM) has been introduced and applied to simple geometric shape 

image and natural images such as animal’s image in the jungle (Panetta et al, 2016). In this 

metric, four edge characteristics are fused together: evaluation of edge connectivity, thick 

edge occurrence, edge localization and edge corner presence, to get an improved level of the 

quality assessment. This method demonstrated a high agreement with subjective assessment, 

which has been estimated by collecting opinions of experts (MOS). Equation (34) presents 

the main components of RBEM. 

𝑅𝐵𝐸𝑀 = 𝜓𝐿(1 − 𝐷𝐿) + 𝜓𝐶𝑂(1 − 𝐷𝐶𝑂) + 𝜓𝑇𝐻(1 − 𝐷𝑇𝐻) + 𝜓𝑆(1 − 𝐷𝑆)                         (34) 

where DL is measurement of the edge pixels localization, DCO is to measure edge corner 

presence, DTH demonstrates the thick edge occurrence measurement and DS is measurement 

of isolated pixels in output edge detection image. ΨL, ΨCO, ΨTH and ΨS are parameters for 

edge pixel, edge corner, thickness of edge and isolated pixels respectively. The values of 

these parameters used in the natural images were ΨL =0.63, ΨCO = -0.02, ΨTH =1.35 and ΨS 

=-1.28. All details of determination of DL, DCO, DTH and DS are as suggested in (Nercessian 

et al, 2009; Panetta et al, 2016). The results reported in Chapter 5 part 1 were published in 

early of 2016, when I used MCC for analysis. The RBEM metric was adopted for my 

research in late of 2016. 

5.2.3 Fuzzy Edge Detection Method (FEDM) 

This technique is based on fuzzy inference system and composed of the following steps: 

recruiting three membership functions are defined by a selection of the appropriate 

parameters in the first step. Selection parameters of the membership functions depends on 

the analysis of the standard deviation curve of input image. The second step is the 

construction of fuzzy rules that reflect acknowledge to represent the probabilities of the edge 
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pixels at a 3x3 window. The last step is defuzzification using Takagi and Sugeno method to 

obtain the output MUI (edge detection image), see figure (5-15) below. 

 

 

Figure (5-15) Pipeline of FEDM structure. 

5.2.3.1 Fuzzification 

The purpose of fuzzification is to map the grey level intensities of the image from the spatial 

domain to the fuzzy domain. Fuzzification can be done by choosing a suitable membership 

function (Tizhoosh et al, 1997). The two most important aspects of the membership function 

are its form and the parameters that describe the behaviour of these functions. In this work, 

three membership functions were established for three different levels of edge detection 

information. Parameters of these functions were selected according to the analysis of image 

properties. Assuming (i, j) are the spatial coordinates of each pixel in the input image I of 

size NxM, gmax is the maximum grey level intensity in the input image and gmin is the 

minimum, I(i,j) [gmin, gmax]. The intensity of the input image (spatial domain) is mapped 

to the interval [0,1] (fuzzy domain), equation (35) gives us a general aspect of these 

functions. 

𝜇𝑎,𝐶𝑝𝑎−1,𝐶𝑝𝑎
(𝑖, 𝑗) = 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝐼(𝑖, 𝑗))                                                                                        (35) 

where multi membership functions are 𝜇𝑎,𝐶𝑝𝑎−1,𝐶𝑝𝑎
(𝑖, 𝑗) [0,1], a=1,3, and (Cpa-1,Cpa) are 

parameters of 𝜇𝑎(𝑖, 𝑗). Figure (5-16), shows the form of the three membership functions in 

0 Z =1 

Crisp Output 

Edge detection image 

Defuzzification Applied fuzzy rules 
Fuzzification  Input image 
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different colors; for three different levels of edge detection information. High membership 

values in all three different levels are greater or equal 0.5, while low values are under 0.5. 

 

 

Figure (5-16) illustrates three membership functions (  ji,1 ,  ji,2 and  ji,3 ) in different colors, blue 

color for first membership function in the case of level 1, red color for level 2 and green color for representation 

membership function of level 3, where, (Cp0, Cp1, Cp2, and Cp3) are parameters of these membership functions. 

 

The important question is, how can a good set of membership functions be constructed for 

musculoskeletal ultrasound image domain using parameters (Cp0, Cp1, Cp2, and Cp3)? In 

this work, a new method for the selection of these parameters was developed. This method 

relies on an analysis of the standard deviation of grey level intensities instead of looking at 

the grey level intensities themselves, or analysis of the shape of the image histogram. Most 

medical images, particularly musculoskeletal US images, have heterogeneous regions of 

grey level intensities; this leads to difficulties in interpreting the shape of the histogram due 

to its many peaks and valleys (Sonka et al, 1993). Standard Deviation (SD) of grey level 

intensity provides a simple summary measure of the amount of data variability in the image. 

Before the standard deviation of the intensities is evaluated the original image is thresholded 

several times across a range of thresholds using equation (36):  

𝐵ℎ(𝑖, 𝑗) = {
𝐼(𝑖, 𝑗)       𝑖𝑓  𝐼(𝑖, 𝑗) ≥ 𝑇ℎ

0                𝑒𝑙𝑠𝑒               
                                                                                            (36) 

0.5 

1 
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where I(i,j) is the original input image with dimension i and j, h=1,2,3, h denotes to the cut-

off point and n to the number of cut-off points. Th is the threshold used to generate output 

image Bh(i,j) and Th takes integer values over the range [gmin, gmax]. Based on the SD 

values, which are calculated for each Bh(i,j) images an SD curve can be plotted against cut-

off intensity. The SD curve gives us an indication of the variation of grey level intensities. 

If the cut-off point = gmin, this means the SD will be calculated for the original image, and 

if the image has low SD value, there are fewer pixels having different grey level intensities 

as compared to high level of SD, in which there is a greater variety of image grey level 

intensities. Furthermore, the complexity and amount of computation will be increased as the 

size of the i and j increase. A novel aspect of our proposed fuzzy edge detection method is 

to exploit the characteristic shape of this SD curve for thresholded musculoskeletal US 

images which rises to SDmax before decreasing again, see figure (5-17) below. 

 

 

Figure (5-17) illustrated plot of SD curve which is calculated from a set of SD values. In this curve the value 

of SDk is calculated at mk =0.5 as example. 

 

By collecting together SD values for each thresholded image they can be used to determine 

four parameters of the fuzzy membership functions, as follows:  

 Intersection between SDk and SD curve 

 Cp0                     Cp1                                                                     Cp2                                              Cp3           

  

 SDmax  

 SDk 

 SD1 
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1-Extract a set of the thresholded images based on a set of cut-off points with the range 

[gmin, gmax] by using equation (36), to get a set of thresholded images Bh(i,j), h=1,2,…n, 

where n is number of cut off points. For example, if gmin =10 and gmax =200, so number 

of cut-off points=190, the first cut-off point is 10, the second is 11 …and the last cut-off 

point is 200. 

2-For each thresholded image Bh(i,j), calculate and save the standard deviation of pixel 

intensities, in order to get SD1(B1(i,j)), SD2(B2(i,j)), SD3(B3(i,j))… SDn(Bn(i,j)). 

3-Assign (SD1) as the value of SD at initial state (at first cut-off point) and find SDmax, which 

represents the maximum value of the SD set. 

4-Calculate SDk using equation (37): 𝑆𝐷𝑘 = 𝑚𝑘(𝑆𝐷𝑚𝑎𝑥 − 𝑆𝐷1) + 𝑆𝐷1                           (37) 

where mk is control parameter, k =1, 2, ...10 and m1=0.1, m2=0.2… m10=1. 

5-This step consists of three parts as follows: - 

a. Calculate the difference between SDk and the array of SD values and save the result. 

b. Detect the minimum differences which belong to cut-off points and save these cut-off 

points. Where, minimum difference points represent the intersection between SDk and 

the SD array, as illustrated by figure (5-17). 

c. Translate these cut-off points to the grey level intensities to get Cp1 and Cp2. 

6-Add one row to a matrix recording these membership parameters (Cp0, Cp1, Cp2 and Cp3), 

these parameters defining fuzzy membership function in figure (5-16). Where, (Cp1, Cp2) 

are obtained from the previous step and (Cp0, Cp3) represents gmin and gmax respectively. 

The changing parameters on each row of the matrix depend on the changing the mk value, 

go back to the step 4. 

7-For each row of this matrix calculate RBEMk to find the best value of mk. 
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where (Cp0, Cp1) are parameters of the fuzzy membership function of Level 1, (Cp1, Cp2) 

are parameters of the fuzzy membership function of Level 2 and (Cp2, Cp3) are parameters 

of the fuzzy membership function of Level 3. 

5.2.3.2 Application of the fuzzy rules and defuzzification 

As shown in figure (5-18), where C5 is the particular pixel in µk(i,j) and (C1, C2, C3, C4, C6, 

C7, C8, C9) are neighbour pixels of the C5 pixel. The black color in 3x3 window represent 

high probabilities of darkness grey level intensities, while the white color reflects high 

probabilities of brightness grey level intensities. 

 

Figure (5-18) Mask configuration for detection of image’s edges. 

 

Twelve fuzzy rules were introduced to represent twelve properties of edge pixel in a 3x3 

mask as are shown in the figure (5-18). If the weights of central pixel and two neighbour 

pixels are high degree of membership (fuzzy set is greater than or equal to 0.5) and the 

weights of remaining five neighbour pixels are low degree (fuzzy set is less than 0.5), then 

the central pixel represents an edge, see figure (5-17). All details of rules in the Appendix 

III, but some of rules are demonstrated as follows:  
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Rule 1: If (C1, C3, & C5) are high & (C2, C4, C6, C7, C8, & C9) are low then central pixel is 

edge. 

Rule 2: If (C5, C7, & C9) are high & (C1, C2, C3, C4, C6, & C8) are low then central pixel is 

edge. 

… 

Rule 12: If (C1, C5, & C9) are high & (C2, C3, C4, C6, C7, & C8) are low then central pixel is 

edge. 

 

In this work, the Takagi and Sugeno method (Takagi and Sugeno, 1985) was selected to 

detect output edges, each rule has a crisp output, and the final output is evaluated by 

weighting the average of rules using equation (38): 

 


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1_                                                                                                                  (38) 

 

where, Wd is rule weight (antecedent), the part of the sentence after IF in the rule and weight 

is determined by performing the first part of each rule, while Zd represents output level 

(consequent or conclusion in the rule) and d=1…R, R is number of rules and equal 12. This 

method was designed to get an edge detection image with two colors (black and white) and 

is not time consuming. Ultimately, different levels of edge detection images were extracted. 

It is possible to choose the most appropriate level of information and exclude unnecessary 

regions to get a powerful final edge detection image. However, it is useful to additionally 
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remove some individual pixels or thin double layers of edges from the final edge detection 

image using morphological operations (Haralick and Sternberg, 1987). 

5.2.4 Experiments and Results 

5.2.4.1 Experiment 1 

Data was collected from 25 healthy volunteers (9 females and 16 males) and from the hand 

region (protocol 1), all details in section 3.3.2.1. The collected images show the cross section 

of flexor pollicis longus tendon and 25 ground truth images for these samples were drawn 

by an expert, who concentrated on identifying the boundaries of the cross section of the 

flexor pollicis longus tendon in the ground truth images. 

Pre-processing steps (denoising): 

In this section, an anisotropic diffusion filter was applied to 25 samples of the healthy image 

to reduce speckle noise. The details of the image in sample 1 elucidate all processing steps 

for one example image. The first step is reducing speckle noise of the musculoskeletal 

ultrasound image using an anisotropic diffusion filter using equation (17) in Chapter 4. 

Figure (5-19), illustrates the image before and after using an anisotropic filter on FPLT (at 

cross section).  

 

 

Figure (5-19) Speckle noise reduction on FPLT (sample1), figure (a) and figure (b) represent image before and 

after enhancement respectively. 

 

b a 

Anisotropic Diffusion 

Filter 
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The second step is implementation of fuzzy edge detection method on the enhanced image 

in figure (5-19)b, this step consists of three stages. The first one is fuzzification and selection 

of appropriate parameters for membership functions (Cp0, Cp1, Cp2, and Cp3). These 

parameters were selected according to the SD curve. Figure (5-20), shows the SD curve of 

sample 1 after image enhancement. The SD curve is formed by determining SD of a set of 

thresholded images, the range of cut-off points between minimum and maximum values of 

the image.  

 

 

Figure (5-20), illustrates the plot of the SD curve, where the first cut-off point is 1, which represents the 

minimum grey level intensity in the input image of the sample 1, the last cut-off is 146, this value represents 

the maximum grey level intensity in the input image, so we have 145 cut-off points. 

 

Extraction of SD1 and SDmax from SD curve was achieved (as described in section 5.2.3.1). 

SDK was calculated using equation (37) at different values of mk; a set of parameters (Cp0, 

Cp1, Cp2, and Cp3) were extracted at every change of mk value, so we can generate a matrix, 

which includes this information. Each row of this matrix illustrates different parameters of 

the membership function. Selection of the best value of mk depends on the evaluation of 

RBEMk, RBEMk is calculated using equation (34), the best value of mk  will be chosen at 

high score of RBEM.  

T1=1 

SD=33.06 

T1=2 

SD=33.07 

T1=60 

SD=44.3 

T1=100 

SD= 36.45 

T1=130 
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Twelve fuzzy rules in the section 5.2.3.2 were applied to the image of sample 1 (see figure 

(5-19)b after implementing the fuzzification stage and construction of three membership 

functions. Three levels of edge detection information were obtained after defuzzification 

using equation (38); an edge detection image, which includes necessary information will be 

kept, and pixel information from other levels such as texture or sporadic pixels will be 

rejected. Sometimes it is necessary to utilize post-processing such as morphological 

operations (thinning) (Haralick and Sternberg, 1987). This is used as a post-processing step 

to remove isolated pixels or to get single pixel thickness in the final edge detection image. 

RBEM was employed to do assessment between the final edge detection image and ground 

truth image. The value of SDK controls the decision of all levels of information because the 

intersection between SDk and SD curve determined the parameter values (Cp1, Cp2). Figure 

(5-21), shows selection of the best value of mk based on RBEM evaluation to calculate SDK 

and then get the best obtained parameters (Cp1, Cp2) of the membership functions in the case 

of sample 1. The best value of mk is 0.1 at RBEMk = 0.621. 

 

 

Figure (5-21) Steps of obtaining proper parameters of membership functions at different levels (level 1, level 

2 and level 3). Step 1 was optimization of mk, step 2 was evaluation of SDk and third step was extraction 

parameters (Cp0, Cp1, Cp2, and Cp3). 
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Figure (5-22), demonstrates three levels of edge detection information, level 2 describes 

shape configuration of FPLT (at cross-section). Morphological operation (thinning) helps to 

get a single layer of pixel’s edge instead of double layer, see figure (5-23). Sometimes, this 

step is useful to avoid inclusion of thick edges and isolated pixels in the measurements. In 

the case of practical application, it is not necessary to perform all measurements of RBEM, 

if this can be avoided (Pratt, 1978). 

 

 

Figure (5-22) shows input image (sample 1), edge detection images at three different levels of information by 

using fuzzy edge detection method. Level 1 shows background information, and level 3 illustrates the 

information inside the object (texture information), while level 2 outlines the object shape. 

 

 

Figure (5-23) Edge detection image before and after thinning. 

 

The same procedure was done on the rest of the 25 healthy image samples. To evaluate fuzzy 

edge detection method’s performance, Pratt’s FOM, Pinho and RBEM were employed. 

Furthermore, the fuzzy edge detector was replaced with a Canny edge detector (Canny, 

1986); the same metrics were employed on it to see performance difference between the two 
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methods. Table (5-4) demonstrates the quantitative assessment of all healthy samples (25 

images) using fuzzy and Canny edge detector. High scores in these metrics denote high 

performance for the method. 

 

Table (5-4) Quantitative assessment of the 25 healthy samples (Experiment 1). 

N FEDM Canny 

RBEM FOM Pinho 

 

RBEM FOM Pinho 

 

1 0.621 0.653 0.500 0.600 0.192 0.245 

2 0.618 0.540 0.418 0.600 0.400 0.300 

3 0.604 0.500 0.407 0.600 0.401 0.370 

4 0.616 0.540 0.402 0.615 0.273 0.300 

5 0.615 0.51 0.402 0.609 0.390 0.333 

6 0.606 0.47 0.360 0.600 0.233 0.265 

7 0.620 0.609 0.447 0.604 0.290 0.296 

8 0.620 0.613 0.440 0.612 0.217 0.254 

9 0.620 0.55 0.407 0.611 0.264 0.301 

10 0.600 0.234 0.250 0.615 0.132 0.190 

11 0.612 0.560 0.436 0.605 0.347 0.334 

12 0.611 0.433 0.401 0.600 0.333 0.313 

13 0.614 0.345 0.328 0.604 0.192 0.242 

14 0.625 0.509 0.400 0.616 0.166 0.221 

15 0.612 0.536 0.403 0.596 0.196 0.237 

16 0.617 0.408 0.374 0.617 0.216 0.265 

17 0.622 0.255 0.300 0.614 0.123 0.176 

18 0.612 0.533 0.433 0.600 0.206 0.258 

19 0.619 0.408 0.333 0.610 0.316 0.324 

20 0.605 0.345 0.290 0.588 0.224 0.255 

21 0.618 0.408 0.370 0.61 0.267 0.304 

22 0.623 0.500 0.411 0.610 0.176 0.230 

23 0.623 0.430 0.420 0.611 0.200 0.242 

24 0.613 0.600 0.430 0.586 0.256 0.265 

25 0.611 0.602 0.430 0.586 0.391 0.320 

Mean 0.615 0.501 0.400 0.600 0.256 0.273 

SD 0.006 0.108 0.055 0.009 0.083 0.046 

 

Summary of statistical comparison of three metrics (RBEM, FOM and Pinho) for both 

methods (FEDM and Canny) of the 25 samples is in the figure (5-24). Figure (5-24)a 

illustrates the means values of three different metrics. Based on the evaluation of T-test, the 

p values were 0.000028 for RBEM, 0.00003 for FOM and 0.00015 for Pinho. As the p values 

were under 0.05, so there is statistically significant difference between FEDM and Canny 

methods. Moreover, the right side of the figure, figure (5-24)b shows the evaluation of 
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standard deviation of three metrics of all samples. The p values using F-test were reported 

as 0.1046 for RBEM, 0.1890 for FOM and 0.402 for Pinho. These values provide sufficient 

evidence to conclude that there are no significant differences between the variances of two 

methods because p values are over 0.05. 

 

 

Figure 5-24), illustrates the statistically comparison of FEDM and Canny method of experiment 1. 

 

5.2.4.2 Experiment 2  

The same previous steps in experiment 1 were applied on experiment 2, which includes: data 

collection, denoising as pre-processing step, implementation of fuzzy edge detection method 

(FEDM). However, in this experiment, FEDM was applied on the grey level and binary 

image, while FEDM was carried out in experiment 1 only on the grey level intensities image.  

Regarding data collection, data were collected from 25 healthy volunteers (9 females and 16 

males) and from arm region (protocol 2), all details in section 3.3.2.1. The collected images 

illustrate one snapshot of the triceps muscle in a longitudinal section. However, only 20 

image samples were used in this experiment due to some limitations such as presence fat 

layer and subcutaneous tissue on the upper aponeurosis of the muscle. These limitations have 

a b 
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an impact shown on the orientation of the upper and lower aponeurosis (it has curve shape 

instead of straight line) as shown in the figure below: - 

 

 

Figure (5-25) Example of ultrasound imaging (one snapshot of triceps muscle), which shows fat and 

subcutaneous tissue layer above the upper aponeurosis. 

 

Moreover, 20 ground truth images for these samples were drawn by an expert, who 

concentrated on identifying the upper and lower aponeurosis of triceps muscle in the ground 

truth images. 

Following steps in figure (5-26) which present the pipeline of detection upper and lower 

aponeurosis from an ultrasound image of the triceps muscle. These aponeuroses appeared in 

the top and the bottom of the image respectively, as thicker and brighter lines compared with 

muscle fascicle. 

 

Figure (5-26) Steps of extraction of upper aponeurosis and lower aponeurosis from ultrasound image. 

 

Figure (5-27) introduced some results of sample 1 (ultrasound image of the triceps muscle) 

after following the steps in the figure (5-26).  

Speckle noise 

reduction 

Fuzzy Edge 

detection 
technique 

 Active contour 

Edge detection image (extracted upper and lower aponeurosis) 

Input 

ultrasound 

 image 

 



140 

 

 

Figure (5-27) illustrates the pipeline of performing processing steps of experiment 2, starting from input 

ultrasound image and denoising as the pre-processing step. Following this step by implementing fuzzy edge 

detection technique on the image, this step includes plotting SD curve, selecting the best value of mk, getting 

parameters (Cp0, Cp1, Cp2 and Cp3) then extraction of three edge detection images. Applying active contour 

on level 2 to get the binary image then getting the final edge detection image using fuzzy edge detection 

technique on the binary image. 

In the case of performing fuzzy edge detection technique on the binary image, only one level 

of edge detection image can be extracted because it is the binary image which has only two 

cut-off points, see figure (5-28) below. 

 

 

Figure (5-28) illustrates SD curve, the value of SDk = SDmax. 
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The same steps were applied to the rest of the 20 samples and compared with images after 

using Canny edge detection technique. The quantitative assessment of the 20 healthy 

samples in the (Experiment 2) are shown in the table (5-5). 

 

Table (5-5) Quantitative assessment of the 20 healthy samples (Experiment 2). 

N FEDM Canny 

RBEM FOM PINO RBEM FOM PINO 

1 0.6092 0.5423 0.3902 0.6086 0.0672 0.1091 

2 0.6251 0.3343 0.2461 0.614 0.0991 0.1458 

3 0.6140 0.4120 0.3050 0.6244 0.0959 0.1373 

4 0.6079 0.4596 0.3440 0.6141 0.0894 0.1358 

5 0.6133 0.3385 0.2537 0.6176 0.0872 0.1344 

6 0.6202 0.3235 0.2375 0.6121 0.1028 0.1462 

7 0.6200 0.2706 0.2257 0.6185 0.0862 0.1297 

8 0.6247 0.2730 0.2166 0.6131 0.0644 0.1031 

9 0.6271 0.2588 0.2098 0.6227 0.0598 0.0843 

10 0.6187 0.3187 0.2446 0.6167 0.0703 0.1074 

11 0.6222 0.2272 0.1767 0.5982 0.0863 0.1276 

12 0.6122 0.3593 0.2753 0.6252 0.0770 0.1123 

13 0.6200 0.2591 0.2067 0.6262 0.0630 0.0932 

14 0.6254 0.3543 0.2548 0.5841 0.0978 0.1514 

15 0.6238 0.3915 0.3142 0.6237 0.0389 0.0642 

16 0.6202 0.3179 0.2175 0.6064 0.1106 0.1596 

17 0.6257 0.3292 0.2336 0.6055 0.1215 0.1721 

18 0.6000 0.3369 0.2608 0.6000 0.1041 0.1541 

19 0.6161 0.2568 0.2139 0.6215 0.0728 0.1101 

20 0.6266 0.2713 0.2072 0.6259 0.0571 0.0899 

Mean 0.6186 0.3317 0.2517 0.6139 0.0826 0.1234 

SD  0.0073 0.0762 0.0521 0.0110 0.0208 0.0283 

 

Figure (5-29) illustrates statistical comparison between FEDM and Canny based on 

evaluation of  three different metrics (RBEM, FOM and Pinho). The p values of RBEM 

using T-test was 0.1217 and 0.0805 using F-test; therefore, there is no significant difference 

between FEDM and Canny methods. Whereas, in the case of FOM and Pinho metrics, a 

significant difference between the two methods was found (p value < 0.05) by using T-test 

and F-test. The p values of FOM were 0.00012 and 0.00054 using T-test and F test 

respectively, while the p values of Pinho were 0.00001 and 0.01 using T-test and F-test 

respectively. 
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Figure (5-29), illustrates the statistically comparison of FEDM and Canny method of experiment 2. 

 

In terms of noise affecting the results, fuzzy edge detector was applied on the ultrasound 

image without addressing speckle noise to investigate the superiority of the performance of 

fuzzy edge detector technique; figure (5-30) illustrates some artifacts which have a negative 

impact on the evaluation of geometric information of FPLT.  

 

 

Figure (5-30) Input ultrasound image (sample1) without doing denoising processing is shown in figure (a), 

while figure (b) and (c) represent the result of image after applying fuzzy edge detector and thinning 

respectively. In figure (c), some artifacts were noticed due to the impact of the noise on the image (see red 

circles in figure (c)). 

 

Furthermore, some metrics of edge measurements (Pratt’s FOM, Pinho) of the sample 1 

without denoising receded more than 50% compared with the previous values in the case of 

performing speckle noise reduction before employing fuzzy edge detector on this sample. 

Where Pratt’s FOM =0.157, Pinho = 0.215 and RBEM =0.607 compared with these values 

which employed with denoising, see table (5-4). 

a b 

b a c 
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For further applications such as evaluation of cross-section area of tendon or muscle 

thickness, it is difficult to get accurate evaluations based on the resulting image from Canny 

edge detector, see figure (5-31)b. The main reason is the unnecessary information and 

artifacts inside in the image, in contrast with the figure (5-31)c which includes a clear 

boundary of cross-section tendon without extra information on it. 

 

 

Figure (5-31), figure (a) represent image after denoising. The result of image after applying Canny edge 

detector on the image is shown in figure (b), while figure (c), shows using active contour on the image in figure 

(b) to extract binary object. Figure (d) demonstrates the difficulty in isolating the boundaries of the tendon at 

cross-section from its background due to unnecessary information inside the object. 

 

Another example in the figure (5-32)b, it is impossible to calculate triceps muscle thickness 

due to extra edge information in the image, while muscle thickness of image in figure (5-

32)c can be calculated at different points. 

 

 

Figure (5-32), where figure (a) represents the result of image after denoising and figure (b) presents the image 

after applying Canny edge detector on the image in figure (a), while figure (c) illustrates image after following 

steps in the figure (5-26). 

 

 

 

 b  a  c  d 

 a  b  c 
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5.2.5 Discussion 

Grey level intensities of MUI are noisy and highly variable due to the nature of the ultrasound 

image and the musculoskeletal structure, so a fuzzy technique is an appropriate choice to 

represent it. The main contribution of this work is to identify necessary information in the 

ultrasound image for these evaluations using fuzzy edge detection method. This approach 

offers a successful way of isolating the edge of the musculoskeletal ultrasound image into 

three different levels of edge information. The basic idea of this approach is derived from a 

fuzzy inference method with carefully selected fuzzy parameters of membership function 

based on standard deviation (see figure (5-20) in experiment 1 and figure (5-27)). 

Experiment 2 shows an example of the SD curve of the image after speckle noise reduction. 

According to this curve, parameters (Cp0, Cp1, Cp2, and Cp3) were extracted and detection 

of these parameters helped in the construction of three membership functions. This is a new 

way of identification of the parameters which control the behaviour of membership 

functions. Edge detection was carried out using 12 fuzzy rules. This produces three levels of 

edge detection information. In all image samples, the images resulting from the 2nd level 

showed more details because this level contained the highest value of SD, while the images 

of levels 1 and 3 contained unnecessary image details (as shown in figure (5-22)). At times, 

if edge detection of the ultrasound image included all details of image information, it was 

more challenging to perform the necessary calculations, see figure (5-31)b and figure (5-

32)b. Also, another example, in the case of measuring the length of the muscle fascicle, if 

the edge detection image has all detail levels in one image, it is hard to evaluate the length 

of the muscle fascicle automatically; unnecessary information in the form of artifacts can 

mask the true edges.  
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Fuzzy edge detection method was applied successfully on the grey level ultrasound images 

as experiment 1, and experiment 2 to extract three levels of edge detection images. Also, it 

is possible to extract edges from the binary image using this method as in experiment 2.  

To assess the fuzzy edge detection method performance, Pratt’s FOM, Pinho and RBEM 

were utilised for this purpose. In experiment 1, the mean value of the recent assessment 

metric (RBEM) scores for all samples reported over 0.6 and for Pratt’s FOM and Pinho were 

0.5 and 0.4 respectively. In addition, there is a tiny difference in the RBEM score between 

all samples, the standard deviation was approximately 0.006, see table (5-4). In contrast with 

the traditional method (Canny edge detector), Pratt’s FOM and Pinho metrics were reported 

around 0.25, while the standard deviation of RBEM was 0.009. Regarding experiment 2, the 

performance of FEDT outperforms the performance of the traditional edge detection method 

using Canny operator technique, based on the evaluation of three assessment metrics (Pratt’s 

FOM, Pinho and RBEM), see table (5-5).  

5.2.6 Conclusions 

The presented work in this part of the thesis represents a successful approach for the 

extraction of image edges from grey level intensity ultrasound and binary image. 

Furthermore, the parameters of fuzzy membership functions were set up depending on the 

analysis of a Standard Deviation curve that built-up from a set of thresholding images.  

Fuzzy edge detection method is more powerful than another method (Canny edge detector) 

because it can specify different levels of edge detection information with a good score of 

quantitative assessment in all samples. In addition, it is an efficacious way for edge detection 

of MUI as it preserved time compared to other machine learning techniques such as training 
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CNNs. The CNN approach depends on extensive training datasets and it can detect image 

edges based on what they are trained. 

In this thesis, fuzzy edge detection method was introduced as a novel method to achieve 

edge detection of musculoskeletal ultrasound images and used in further applications in 

Chapter 6. 
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Chapter 6     Analysis of the musculoskeletal ultrasound image 

6.1 Introduction 

The main purpose of this chapter is the analysis of musculoskeletal ultrasound images of the 

upper limb to estimate some musculoskeletal parameters such as muscle thickness, tendon 

thickness and pennation angle. This process can be performed manually based on the skills 

of an expert and using measurement options of the ultrasound machine. However, the manual 

method is inherently prone to over or underestimation of the measurement and it is time 

consuming (Giot et al, 2016). Furthermore, due to the complex texture features of the 

musculoskeletal ultrasound images, it is difficult to give accurate measurements. Therefore, 

in this thesis, an automated method was developed to achieve this analysis, which depends 

on an underlying analysis of the properties of the musculoskeletal ultrasound image. 

The implementation of the automated analysis requires pre-processing steps such as image 

enhancement and segmentation to make musculoskeletal ultrasound image more readable 

and suitable for automatic measurements. 

Comparison between manual and automatic measurements was proposed to assess the 

agreement between these methods during the evaluation process of the morphological 

parameters of upper limb. 

6.2 Manual measurement 

Manual measurement is the most popular method, which has been used in the clinical 

diagnosis and research. Manual measurement in the ultrasound machine depends on the 

quality of the operator and experience who works on the ultrasound machine. After 

ultrasound scanning, musculoskeletal ultrasound images were saved in the ultrasound 

machine as DICOM (Digital Imaging and Communications in Medicine) format, then 
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analysed offline manually. In the case of using it in the external computer, these images are 

saved as JPEG (Joint Photographic Experts Group) format to analyse it automatically. 

6.3 Automatic measurement 

The primary purpose of the automation measurements is improving productivity, raising the 

accuracy and consistency of measurements compared to the manual measurements. 

Automatic analysis can help to overcome two previously mentioned limitations: speckle 

noise and low image contrast in the domain of MUI. Furthermore, it is possible to highlight 

the main details, which describe the configuration of the object inside the image using edge 

detection method. Image analysis is the last step to achieve automatic measurements, and it 

evaluates the same geometric parameters which were determined by manual measurements. 

In this thesis, these parameters are the thickness and pennation angle of the medial head of 

triceps muscle, also cross-sectional area and circumference of flexor pollicis longuis tendon. 

In the automatic measurement, figure (6-1) illustrates the diagram of musculoskeletal 

ultrasound analysis using automatic measurements.  

 

Figure (6-1), illustrates the framework of automatic method to evaluate some of morphological parameters of 

musculoskeletal system in the upper limb. 
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From the figure (6-1) above, image analysis requires pre-processing steps such as image 

enhancement (speckle noise reduction and image contrast enhancement) and image 

segmentation (edge detection). Selection of pre-processing steps depends on the objective of 

the evaluations. For instance, if the objective is thickness evaluation of muscle or tendon, 

speckle noise reduction and edge detection steps are selected to extract only necessary 

information. On the other hand, if we proposed to determine the pennation angle, using 

contrast image enhancement step is likely to illustrate key features such as fibre orientation. 

6.4 Comparison between manual and automatic measurements. 

Differences between the automatic and manual measurement results were investigated using 

Bland–Altman plots (Bland and Altman, 1986). In this graphical method, the average of 

manual and automatic measurements is plotted against the difference between them, see 

figure (6-2). 

 

 

Figure (6-2) Brief description of Bland Altman plot. 

 

From figure (6-2), bias represents the mean of the difference between two measurements. 

Moreover, the upper and lower limit of the agreement can be calculated using (mean 
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difference + 1.96 SD and mean difference - 1.96 SD) respectively, giving a 95% confidence 

limit. SD is standard deviation SD of the difference between two measurements (Bland and 

Altman,1986). It is necessary to make sure and check that the distribution of the 

measurements values follows normal distributions. 

6.5 Experiments and results 

6.5.1 Experiment 1 

The objective of this experiment is the evaluation the circumference and cross-sectional 

area of the flexor pollicis longus tendon using manual and automatic measurement tools. 

The data, which is used in experiment 1 is collected from 25 recruited volunteers (9 

females and 16 males) and from hand region (protocol 1), all details in section 3.3.2.1. 

 Manual measurement 

The cross-sectional area was determined by tracing the border of the tendon and calculating 

the endorsed area, given in cm2 using ultrasound machine software, see figure (6-3). 
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Figure (6-3) Evaluation of cross section area of flexor pollicis longus tendon at transverse plane and one 

ultrasound image snapshot manually. This area was evaluated in cm2 by tracing the border of tendon at cross 

section, so the cross-sectional area is 0.19 cm2 . 

 

Since the cross-section of flexor pollicis longus tendon is an irregular shape, the 

circumference was determined by accumulating small straight distances around the cross-

section of the tendon. The number of the small straight lines depends on how straight line 

can cover small distance around cross-section of the tendon; therefore, this evaluation is 

mostly subjective, see figure (6-4). 
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Figure (6-4) The circumference determination of the flexor pollicis longus tendon at transverse plane (one 

ultrasound image snapshot) is shown manually. This circumference was evaluated in cm by gathering small 

straight distances around the cross section of the tendon. The circumference in this evaluation was 1.69 cm  

 

 Automatic measurement 

The strategy of the automatic evaluation of the circumference and cross-sectional area of 

FPLT is presented by several steps as in the figure (6-5). 

 

 

Figure (6-5) Steps of the evaluation area and circumference of the FPLT at cross-section. 

 

Starting with step1 in the figure (6-5), speckle noise reduction was carried out using the 

anisotropic filter, which was described in chapter 4 -part 1, using equation (17). Fuzzy edge 

detection was carried out according to the methods described in Chapter 5-part 2, section 

 

Speckle noise 

reduction 

 

Fuzzy Edge 

detection method 

Using active 

contour method to 

enclose the area 

inside the object. 

Input 

ultrasound 

 image 

 

Circumference 

measurement  

 

Area 

measurement  

 

file:///C:/Users/rsf45/AppData/Roaming/Microsoft/Word/First%20Draft_Jabbar.docx%23equation_14
file:///C:/Users/rsf45/AppData/Roaming/Microsoft/Word/First%20Draft_Jabbar.docx%23Part2_using_fuzzy_edge_detection_image_t


154 

 

5.2.3. The result of the edge detection image is the fundamental step in the evaluation of 

geometric parameters of the musculoskeletal ultrasound image because it can convert an 

image from the high level (grey level intensities) to the low level (white and black colour). 

Therefore, in the automated measurement, circumference was measured based on resultant 

edge detection image by counting white pixels at the borders of FPLT (at cross section), then 

converted to millimetres (mm). Active contour-based segmentation (Krueger et al., 2008) is 

a powerful way to isolate an object from its background. After isolation, it is possible to get 

an object with white pixels and background with black pixels. The area can be determined 

by counting white pixels of the isolated objected and then converting the pixel area to 

physical units of area (mm2).  

However, a successful active contour method depends on the homogeneity of the image 

intensity and placement of the initial contour. For example, some musculoskeletal US 

images had heterogeneous regions even if the image had been enhanced by speckle noise 

reduction. If an object consists of a high-intensity heterogenous region, more than one initial 

contour could be produced, and different objects will be segmented, see figure (6-6). Active 

contour based on segmentation method was performed using Matlab tools (version 8.6). The 

Matlab code of active contours-based segmentation was performed, started firstly with 

defining the initial contour position and growing until all the area of the object was included. 

To get the best separation of an object from its background, the position of the initial contour 

should be close to the object boundaries. 

 

file:///C:/Users/rsf45/AppData/Roaming/Microsoft/Word/First%20Draft_Jabbar.docx%23Part2_using_fuzzy_edge_detection_image_t
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Figure (6-6), a, b and c represent the ultrasound image of sample 17, after applying active contour on this 

image and extracting binary object. Figure d illustrates the image after speckle noise reduction, while figure e 

illustrates isolated objects by active contour to achieve binary image in figure f. 

 

Therefore, sometimes it is hard to gather all the pixels of the object in one contour and 

calculate its area precisely. Employing active contour method-based segmentation on a 

region, which is enclosed by edges helps to cover the cross-sectional area of the tendon 

(irregular shape), see figure (6-7). In this case, initial contour is growing until it includes all 

the homogenous area (black pixels) and stops at the edges (white pixels). 

 

 

Figure (6-7), a represents the ultrasound image of sample 17 after speckle noise reduction. The image in figure 

b shows employing active contour on the edge detection image (resultant image after using FEDM), while 

figure c depicts the binary object. 

 

Figure (6-8) presents some successful examples of the evaluation of cross-sectional area of 

the FPLT by using active contour method. 
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Figure (6-8), the first line illustrates calculation of cross section area of sample 1 and sample 5 using active 

contour-based segmentation method, while the second line shows the area calculation of the sample 13. 

 

Concerning noise affecting the results, fuzzy edge detector was applied on the ultrasound 

image without addressing speckle noise to investigate the superiority of the performance of 

fuzzy edge detector technique; figure (6-9) illustrated some artifacts which have a negative 

impact on the reality of evaluation of geometric information of FPLT. 

 

 

Figure (6-9), a shows input image (sample1) without doing denoising processing. Figure b and figure c 

represent the result of image after applying fuzzy edge detector and thinning respectively. Active contour was 

applied on the image in figure c to get the result as shows in figure d and extracted binary object as shown in 

figure e. In figure e, some artifacts were noticed due to the impact of the noise on the image (see red circles in 

figure e). 

 

 Comparing between manual and automatic measurements  

Bland-Altman plot was constructed to measure the agreement between manual and 

automatic measurements of the circumference and cross-sectional area of the FPLT as are 

shown in figure (6-10) and figure (6-11) and this data is normally distributed. From figure 

(6-10) we can observe some values decrease as the other increase (negative correlation). In 
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this case, the negative slope indicates that the size of the error increases in proportion to the 

size of the measurement, as the (negative) difference increases with increasing average. 

On the other hand, figure (6-11) illustrates scattering values around the bias line get 

randomly smaller and larger as the average gets higher. In the case of cross-sectional area 

measurements, the difference between the two methods was 1.07 mm2. The plot shows a 

good agreement in most of the samples between manual and automatic determination of the 

tendon cross-sectional area. In the case of the circumference estimation, the difference was 

more significant, as one would expect with this type of estimating, where errors in both 

directions are cumulative. For our application in estimating musculotendon parameters for 

biomechanical modelling, the calculation of the area is of far greater importance. Evaluation 

of cross-sectional area of a tendon is one of the important parameters to be studied in the 

musculoskeletal modelling design (Horsman et al., 2007). 

 

Figure (6-10) Bland-Altman plot of circumference measurements of FPLT in mm. 
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Figure (6-11) Bland-Altman plot of cross-sectional area measurement in mm2. 

6.5.2 Experiment 2 

The main purpose of experiment 2 is determining the thickness of the triceps muscle at 

longitudinal section (one snapshot of ultrasound image). Data was acquired from 25 

volunteers (9 females and 16 males) and from arm region (protocol 2 all details in section 

3.3.2.1). However, some samples suffered from the presence of the subcutaneous tissue layer 

on the upper aponeurosis of the muscle as in the figure (6-12). 

 

 

Figure (6-12) presents two different samples, which include subcutaneous tissue layer above the upper 

aponeurosis of the muscle. 
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The fundamental question is: did this limitation influence the manual and automatic 

evaluations? Manual method should not be affected with this limitation because one can 

easily spot aponeurosis of the muscle and measure the distance between them despite some 

changing in the direction and shape of muscle aponeuroses, see figure (6-13) below. 

 

 

Figure (6-13) illustrates a sample of the evaluation of the triceps muscle thickness in one ultrasound image 

snapshot manually. This sample includes layer of the subcutaneous tissue on the upper aponeurosis. 

 

On the other hand, in the case of automatic evaluation it was possible to evaluate the 

thickness in only 20 volunteers due to this limitation because it is hard to extract a full 

aponeuroses configuration using the proposed method and following the steps of extraction 

of the upper and lower aponeuroses in the figure (5-26).  

Figure (6-14) gives the example of edge detection image after performing fuzzy edge 

detection method on the image in the figure (6-12)b. We can observe the figure (6-14) did 

not define a full aponeuroses profile. 
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Figure (6-14), shows resulted image after applying fuzzy edge detection method on the image in figure (6-

12)b, this image was restricted with subcutaneous tissue layer on the upper aponeurosis of triceps muscle. 

 

6.5.2.1 Manual measurement 

The thickness of triceps muscle was evaluated at three different places (proximal, middle 

and distal) by measuring the distance between the upper and lower aponeuroses. Figure (6-

15), illustrates the sample of the thickness evaluation manually. 

 

 

Figure (6-15) Sample of evaluation of triceps muscle thickness in one ultrasound image snapshot manually. 

Thickness was evaluated in cm, it is the average of three values: proximal, middle and distal measurement 
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6.5.2.2 Automatic measurement 

In the figure (6-16), the same steps in experiment 1 are followed to get edge detection image. 

However, this image included both aponeuroses with extra information. Therefore, active 

contour-based segmentation method was applied to enclose the area between upper and 

lower aponeuroses; then fuzzy edge detection method was employed on the binary image to 

extract only upper and lower aponeuroses, see figure (5-27). The thickness of triceps muscle 

was calculated by measuring the distance between both aponeuroses by pixel and converted 

to mm automatically. 

 

 

Figure (6-16) illustrates the steps of the thickness evaluation of triceps muscle in one snapshot of the ultrasound 

imaging. 

 

The figure below shows the thickness evaluation of the sample 1 passing across different 

stages (speckle noise reduction, edge detection, using active contour and then muscle 

thickness evaluation at three different points). 
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Figure (6-17) illustrates the results at different steps, which ended at thickness evaluation of triceps muscle at 

three different points (proximal, middle and distal). 

 

6.5.2.3 Comparing between manual and automatic measurements 

Again, in this experiment, Bland-Altman method was used to highlight the difference 

between manual and automatic measurements in the case of triceps thickness evaluation and 

this data is normally distributed. The most interesting aspect of this graph is that bias =0.115 

mm. which represents the average discrepancy between two measures. It is a minimal value; 

this means the manual and automated measurement of the triceps muscle thickness have 

close results, see figure (6-18). From this figure we observe values are distributed randomly 

around the bias line as the average gets higher. 

 

Proximal thickness =12.26 mm 

Middle thickness    = 12.891mm 

Distal thickness      = 12.891 mm 
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Figure (6-18) Bland-Altman plot of thickness measurement in mm for 20 volunteers. 

 

6.5.3 Experiment 3 

Experiment 3 is set out to calculate the pennation angle of the triceps muscle, the data of this 

experiment are the same data of experiment 2, which were collected from arm region 

(protocol 2, all details in section 3.3.2.1). This data has suffered from considerable 

limitations. The first one is the same limitation in experiment 2 (presence of subcutaneous 

tissue on the upper aponeurosis, see figure (6-12); this limitation affected the manual and 

automatic measurements of pennation angle. Another potential limitation is lack of clarity 

in the definition of the muscle fascicle orientation; therefore, it is hard to trace muscle 

fascicle even manually, see figure (6-19). As a result, the number of samples in the manual 

and automatic measurements is 10 samples that were not compromised by these problems. 
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Figure (6-19) illustrates the difficulty of defining muscle fascicles orientation. 

 

6.5.3.1 Manual measurement 

The figure (6-20) shows the sample of evaluation of the pennation angle manually. Due to 

the nature of the triceps muscle architecture, and the use of just one snapshot, it is challenging 

to track the orientation of the muscle fibre from lower aponeurosis to upper aponeurosis to 

evaluate pennation angle. It is possible to reduce the impact of this problem by finding the 

straight line, which cuts the lower aponeurosis and goes up to cut the orientation of the 

muscle fascicle. This line is perpendicular on the lower aponeurosis, see figure (6-20), 

ultrasound machine has an option to measure angle based on the length of the lower 

aponeurosis and defining muscle fascicle length. 
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Figure (6-20) demonstrates the manual evaluation of the pennation angle of triceps muscle in one snapshot. 

 

6.5.3.2 Automatic measurement  

In this experiment, pre-processing steps were performed using local contrast enhancement 

method, see Chapter 4-part 2, section 4.2.4 and fuzzy edge detection method, see Chapter 5-

part 2, section 5.2.3. After obtaining edge detection images, Hough transform method (Duda 

and Hart 1971) was used to detect muscle fascicle and lower aponeurosis, after cropping the 

image into the region of interest. The Hough transform is a detection technique that can be 

used to identify the features of particular shapes such as lines and circles, which best fits a 

set of given edge image pixels. The Hough Transform involves polar coordinates to show 

the parametric representation of a line. In this thesis, Hough transform was used to detect of 

the muscle fibre orientation and muscle aponeuroses. It was applied on musculoskeletal 

ultrasound images after applying fuzzy edge detection method on these images. After this 

detection, the length of the lower aponeurosis and muscle fascicle can be measured. The 

pennation angle is taken as the angle between the aponeurosis and the fibre direction. 

Again, we faced the same difficulties in the evaluation of pennation angle manually. Figure 

(6-21) shows the pipeline of the determination of pennation angle automatically. 

 

 90º 
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Figure (6-21) illustrates the steps of pennation angle evaluation of the triceps muscle in one snapshot of 

ultrasound imaging. 

 

The result of the pennation angle evaluation of the sample 1 in the figure (6-22), this includes 

all steps in detail. 
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Figure (6-22) presents the steps of the pennation angle evaluation of the triceps muscle in one snapshot 

ultrasound image, the pennation angle is taken as the angle between the aponeurosis and the fibre direction. 

 

From the above figure we can conclude that it is possible to evaluate the pennation angle of 

triceps muscle successfully by following the steps of the figure (6-21). However, due to 

limitations, which were mentioned previously in figure (6-12), it is difficult to measure 

pennation angle automatically, figure (6-23) and figure (6-24) below show that. 

 

Image after edge detection 

Input image 

Selected region of interest 

Image after contrast enhancement 

Image after applying Hough transform to detect 

lines 

 

Selection detected lines, which form angle 

Pennation angle 

 

Illustrating detected lines on the 

 ultrasound image 

 



168 

 

 

Figure (6-23) Detection lines in the image, which suffered from subcutaneous tissue layer on the upper 

aponeurosis of triceps muscle is shown in this figure. 

 

 

Figure (6-24) Detection lines in the image, which suffered from difficulties in defining the orientation of muscle 

fascicles is illustrated in this figure. 

 

6.5.3.3 Comparing between manual and automatic measurements 

Figure (6-25) shows the difference between manual and automatic estimation of pennation 

angle and this data is normally distributed. Through this depiction, the average of the 

difference between the two measurements was reported approximately at 1 degree; this is a 

good agreement between two the measurements. Furthermore, this figure illustrates a 

negative correlation as some values decrease and the other increases. However, only 10 

Image after cropping and applying all 

steps in the figure (93). 

 

Input image  

Input image  

Image after cropping and applying all steps in the  

figure (93). 
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samples were involved in this comparison. Therefore, in the future work, it is possible to 

increase the number of samples to get a sophisticated assessment of comparability.  

 

 

Figure (6-25) Bland-Altman plot of pennation angle measurement in degrees for 10 volunteers. 

 

6.6 Discussion 

Currently, the construction of musculoskeletal models depends on geometric 

musculoskeletal information, which has been collected from a cadaver, and this information 

is therefore not patient-specific and time-consuming to obtain (Asadi Nikooyan et al., 2011). 

The evaluation of the morphological parameters from volunteers based on the ultrasound 

imaging can support the development of a personal musculoskeletal model design. In this 

thesis, three experiments were proposed to evaluate some of these parameters of the upper 

extremity manually and automatically.  

In the first experiment, 25 samples were involved in the manual and automated 

calculations (circumference and area of FPLT in cross-section). Regarding experiment 2, 

25 samples were utilised in the manual measures, while 20 samples were used in the 
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automated measurement, due to the limitation, which was mentioned previously (presence 

of subcutaneous tissue). In the case of the experiment 3, the limitations are the poorly 

defined muscle fascicle orientation and the presence of subcutaneous tissue; therefore, only 

10 samples were utilised in the manual and automatic measurements to evaluate pennation 

angle of the triceps muscle. There is this a certain minimum level of ultrasound image 

quality required before this method can be applied. 

In three experiments, different pre-processing steps were employed to prepare image 

samples for the automatic evaluation stage. Experiment 1 and experiment 2 used the same 

steps (speckle noise reduction and image edge detection). The primary purpose of both 

experiments is detection of necessary information for evaluations; so, these steps are 

required to achieve this aim. In the case of experiment 3, there is a need to present and restore 

most details of the image, hence the pre-processing steps were: contrast enhancement and 

image edge detection. Since the determination of the pennation angle requires a precise 

definition of muscle fascicle orientation; therefore, these steps support the succinct objective 

of experiment 3. 

The Bland-Altman plot demonstrated a good agreement between manual and automated 

methods in the three experiments except measuring circumference in experiment 1, which 

was larger than other measures. The scenarios of the circumference estimation in both 

directions has cumulative errors. Furthermore, estimation using manual methods was 

inherently prone to overestimation of the length. This is the reason for the significant 

difference between the two measurements. 
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6.7 Conclusions 

The automatic evaluation for the morphological parameters of the upper extremities used in 

this chapter has satisfactory outcomes, which could open a new era for utilizing this 

technique in vivo. However, a larger sample-population is required to draw a realistic 

conclusion regarding the advantages and disadvantages of this procedure. In addition, it is 

possible to invest the proposed methods of three experiments in the lower extremity such as 

measurement of the cross-sectional area of the Achilles tendon and thickness and pennation 

angle of the gastrocnemius muscle. 

Although developed methods in this thesis were used successfully to evaluate muscle 

thickness and pennation angle in the upper limb, it is still a limited number of ultrasound 

image samples. This is due to some limitations such as an anatomical variation, muscle status 

and the presence of subcutaneous adipose layer above upper aponeurosis of the muscle. 

However, a question would be raised: is it possible to design a more sophisticated artificial 

intelligent approach to learn to discriminate and detect  adipose tissue then can evaluate these 

geometric parameters?  

Artificial intelligence has an ability to solve problems. So, artificial intelligence could add  

new possibilities to evaluate these parameters by developing new methods to detect the 

complex structure of the musculoskeletal tissue. Examples of these methods are training 

convolutional neural networks to differentiate adipose tissue from other tissue and fuzzy 

image processing techniques which can be used to represent and analyse a complex pattern 

texture of musculoskeletal ultrasound images. 
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Chapter 7     General discussion 

7.1 Summary of the main findings 

The initial aim of this project was to develop new methods to automate the estimation of 

morphological parameters of the muscles and tendons of the upper extremity in vivo using 

ultrasound imaging. However, the presence of speckle noise and low image contrast are the 

main limitations of ultrasound images and affect quality in a negative way. Therefore, 

improving the quality of the musculoskeletal ultrasound image is a prerequisite. 

Identification of the required muscles or tendons details is fundamental to evaluate the 

geometric parameters. This can be extracted using edge detection method for 

musculoskeletal ultrasound imaging. Therefore, in this thesis, a new method for edge 

detection has been developed and tested on musculoskeletal ultrasound images and is a pre-

processing step before musculoskeletal ultrasound image analysis. Finally, in this thesis, 

automated evaluation based on our new developed methods showed a good agreement with 

manual measurements. 

The results of the speckle noise reduction methods showed the superiority of the anisotropic 

diffusion filter over local adaptive median filter in minimising speckle noise in the MUI. 

Therefore, anisotropic diffusion filter was selected to employ speckle noise reduction in this 

thesis. 

The thesis developed local fuzzy contrast image enhancement as a new method to enhance 

the contrast of the musculoskeletal ultrasound image. Local fuzzy contrast enhancement 

method performed well when applied to a single image such as traditional one snapshot 

image and panoramic image. However, the contrast was not improved in all frames of an 

ultrasound video scan compared with a global fuzzy contrast enhancement method. The 
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reasons behind this is related to the nature of video recording as it could impose several 

obstacles such as the operator’s ability to control the moving probe over the skin surface 

within a scanned surface. The other major outcome in this study was related to the findings 

of fuzzy edge detection method of the musculoskeletal ultrasound images. The novelty of 

this technique was linked to the ability of minimising the picture’s artifacts by selection of 

the substantial edge details and reject unnecessary other details. The net result was a 

successful mapping of all the boundaries of an ultrasound picture. 

An alternative CNN approach to edge detection of the MUI was explored and applied for 

edge detection of the musculoskeletal ultrasound image and two kinds of ground truth 

images (expert ground truth and Canny ground truth images) were used in the edge detection 

application. The results emphasised that a preferable visualisation of the ultrasound picture’s 

boundaries was achieved when using an expert ground truth image compared to that of 

Canny ground truth image.  

The results of this thesis indicated the ability to identify some of the geometric parameters 

automatically, and the automated methods were compared to the manual measurements.  

The cross-sectional area and circumference of flexor pollicis longuis tendon, thickness and 

pennation angle of triceps muscle are the primary assessed parameters. Furthermore, Bland-

Altman plot method demonstrated a substantial agreement between the manual and 

automated methods during measurement of the cross-sectional area of flexor pollicis longuis 

tendon, thickness and pennation angle of triceps muscle except measuring the circumference 

of flexor pollicis longuis tendon. The significant difference between the two measurements 

during circumference estimation was related to the recorded accumulative errors during the 
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procedures. This is because the manual measurement of the circumference was evaluated by 

gathering small straight distances around the cross section of the tendon. 

All in all, the outcomes of this thesis answered research questions of this dissertation, which 

are the following: 

1- How can the quality of the ultrasound image be improved? 

2- How can musculoskeletal parameters be extracted automatically? 

3- How well do automatic measurements of musculoskeletal parameters compare to 

manual measurements? 

These research questions were being addressed when carrying out novel methods, which 

were developed in this work. Moreover, the outcomes of this thesis had important 

implication in supporting future design of personalised musculoskeletal models and further 

research in this field. 

7.2 Discussion of the dissertation results in relation to current articles 

The source of the results of this thesis comes from different stages: enhancement (speckle 

noise reduction and enhancement of image contrast), image edge detection (using CNN, 

Fuzzy edge detection method) and analysis (such as measurement of thickness and pennation 

angle of triceps muscle). Moreover,  ultrasound image data was collected from the same 

ultrasound machine without any further calibration to avoid any bias in the samples’ results.  

Regarding speckle noise reduction of musculoskeletal ultrasound images, two filters were 

used. The first filter was the local adaptive median filter that was performed on the SAR 

image at a different window size (3x3, 5x5 and 7x7) (Qiu, 2004). In this thesis, the local 

adaptive median filter was applied to reduce speckle noise in the musculoskeletal ultrasound 

images and with expanding window size (9x9 and 11x11). In both applications (SAR image 
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and musculoskeletal ultrasound images), the window size (3x3) illustrated a higher quality 

of speckle noise reduction compared with other window sizes. This result agrees with Qiu, 

(2004). The second filter was an anisotropic diffusion filter, the relative advantages of this 

filter resides in reducing speckle noise while at the same time working to keep the important 

parts of the image such as edges and texture. Therefore, this filter is a suitable choice for 

medical image applications. Anisotropic diffusion filter was applied successfully in several 

ultrasound applications such as kidney and heart ultrasound images (Abd-Elmoniem et al., 

2002) and liver ultrasound image (Krissian et al., 2007). Recent application of the 

musculoskeletal ultrasound image (collected from shoulder region) was introduced by Gupta 

et al. (2014). In this thesis, anisotropic diffusion filter and local adaptive median filter were 

applied to the musculoskeletal ultrasound images, which were collected from the shoulder 

region of a cadaver and the arm region of healthy participants. The performance of 

anisotropic diffusion filter outperforms local adaptive median filter performance in speckle 

noise reduction of the MUI. Therefore, anisotropic diffusion filter was selected in the thesis 

as pre-processing step in some applications such as evaluation of muscle thickness. 

Concerning the contrast enhancement of the musculoskeletal ultrasound images, a novel 

method was developed and tested in this thesis. This method is based on fuzzy inference 

system and addresses the low contrast of the image locally. However, more than one method 

was introduced to improve the contrast quality in the image and depending primarily on 

fuzzy techniques. The first method involving fuzzy technique, which modified the fuzzy 

membership function to improve the image contrast in the fuzzy domain. This method was 

applied in other biomedical applications such as medical x-ray images (Tizhoosh et al., 1997) 

and breast ultrasound images (Guo et al., 2006), but it has not been applied to the 

musculoskeletal ultrasound images. The second method is Intuitionistic Fuzzy Sets (IFS), 
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which was implemented on a mammogram images (Deng et al., 2016) and MRI images 

(Deng et al., 2016), but it has not been recruited to enhance musculoskeletal ultrasound 

images. Due to complex texture patterns of MUI, it is difficult to define the significant details 

of the ultrasound images and make a threshold. The IFS method requires a pre-processing 

step such as a thresholding process, so this adds a challenge in performing intuitionistic fuzzy 

method on MUI, whereas local fuzzy contrast method does not require this step. 

Furthermore, both methods : Intuitionistic Fuzzy Sets and modification technique of fuzzy 

membership function were performed globally. Hence, a local method with prior knowledge 

of contrast enhancement analysis has been presented to overcome the effects of low contrast 

at the selected region.  

The concept of edge detection method was carried out in this thesis using Convolutional 

Neural Network (CNN) and fuzzy edge detection methods. The idea of using CNN in this 

thesis is derived from (Ciresan et al. 2012), which was one of the pioneers of using CNN in 

medical image applications. In this study, CNN was used to detect biopsy pixels within the 

membrane or not. Ciresan’s work made extensive use of graphics processing units (GPUs) 

in the training of their CNNs. GPU has a significant role in the acceleration of deep neural 

network training (Ciresan et al. 2013), but no special GPU architecture is required once the 

CNNs have been trained. In 2013, this scenario of pixel classification was also applied to 

detect mitosis in breast cancer images; features that were fed to the classifier came from a 

fusion of CNN features and handcrafted features (Wang et al. 2014). CNNs have also been 

applied to X-ray image processing applications. Here, CNNs have been used to detect bone 

(Yang et al., 2016). Recently, segmentation of musculoskeletal ultrasound images has been 

introduced as another application of using CNNs (Cunningham et al.,2017). This shows that 

CNNs are finding increasing use in biomedical image processing applications. CNN in this 
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thesis was recruited to identify whether the pixel of musculoskeletal ultrasound images is 

edge or non-edge. This image was a panoramic ultrasound image, which was collected from 

a cadaver (shoulder region). Ultrasound scanning of cadaveric material is beneficial in 

understanding the internal structure of the musculoskeletal system and drawing ground truth 

images, as estimates can be checked by dissection. However, there are several limitations 

experienced during the procedure of CNN implementation compared with other articles in 

the literature. Firstly, a limited set of training data involved only one image for training and 

selected 8000 pixels (3000 edge pixels and 5000 non-edge pixels). The main reason for using 

only one image is the lack of available data and the rate of superiority of CNN performance 

with limited training data sets. Compared with other work for example, Ciresan et al. (2012), 

who used 30 biopsy images with dimensions (512x512) in the training dataset. Another 

application recruited 404 cases (404 x-ray images) for training CNN (Yang et al., 2016). The 

recent implementation of the musculoskeletal ultrasound image was introduced by 

Cunningham et al. (2017), which involved 9,187,904 trainable weights for detecting the 

orientation of muscle fibres of the medial gastrocnemius muscle. Secondly, it is possible that 

the results might have been affected by the difference in the pattern of the texture 

characteristic between medical images and a musculoskeletal ultrasound image. 

Furthermore, CNN did not apply to the healthy samples due to insufficient time to increase 

the number of collected data and expand a set of training data.  

A novel fuzzy edge detection technique was introduced to perform edge detection of the 

musculoskeletal ultrasound image. It was applied to the ultrasound image, which describes 

the cross-section of flexor pollicis longus tendons in one snapshot. Furthermore, it was used 

in single view of the ultrasound image of the triceps muscle to isolate upper and lower 

aponeuroses. This method is based on a fuzzy inference system that relies on the construction 
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membership function and fuzzy rules. Fuzzy membership function parameters were selected 

according to a standard deviation analysis, which was a newly introduced during this thesis. 

The essential part of this technique was fuzzy rules, which detect the edge pixel of the image 

from the surrounding pixels. 

Moreover, evaluating geometric parameters concentrated on details such as muscle thickness 

evaluation which requires focus on the extraction of upper and lower muscle aponeuroses 

and rejection of extraneous information. Referring to other related literature studies, 

traditional methods (Canny operator, Sobel operator and Prewitt operator) (Canny, 1986), 

fuzzy image techniques (Gonzalez et al., 2014; Gonz et al., 2016) and CNN illustrate all the 

details of edge pixels in one image. However, the main limitation of these studies as 

mentioned above was the possibility of inheriting a bias during the result’s evaluation due 

to the presence of artifacts, see figure (5-31). Example of this artifact is speckle information 

due to complex feature texture of MUI. However, fuzzy edge detection method was 

developed in this thesis to separate MUI into different levels of information, so is it possible 

to get important details in one level such as object’s boundaries and reject other details such 

as speckle information in other level. 

There is a relatively small body of literature dealing with the automatic evaluation of the 

muscle thickness. This was applied to an extensive data set of ultrasound images, which were 

collected from the lower limb muscle (Han et al., 2013; Caresio et al., 2016). While the 

proposed method in this thesis was employed on a smaller data population (20 image 

samples). With the same aim, Han et al. (2013) used Hough transform method after 

enhancement to extract the deep and superficial aponeuroses of the medial gastrocnemius 

muscle. However, the resulting images would include aponeuroses details and other details 

such as muscle fascicles. Therefore, this would raise the mean difference between manual 
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and automatic measurements; the mean difference was approximately 1.45 mm. Whereas 

Caresio et al. (2016), followed the same steps of Han et al. (2013), but unnecessary 

information (muscle fascicles) was avoided using a binary mask, and the mean difference of 

the medial gastrocnemius muscle was 0.45 mm.  On the other hand, in this thesis, fuzzy 

image edge detection and active contour-based segmentation were utilised to extract upper 

and lower aponeuroses without additional information (muscle fascicle). The mean 

differences between the automatic and manual measurements were smaller than the previous 

studies and were reported at 0.115 mm. 

In the last decade, much of the published studies have been concerned with the determination 

of the muscle pennation angle. One of these studies was introduced by Zhou et al. (2015) 

and was carried out on the gastrocnemius muscle in the lower limb. The employed method 

in this thesis followed the same steps of Zhou, but the traditional method of the image edge 

detection (Canny operator) was replaced by fuzzy edge detection method. Moreover, the 

proposed local contrast enhancement method was added to the steps of the pennation angle 

evaluation to strengthen the results. Another study was presented by Jalborg (2016). This 

study used a random transform method to detect the orientation of muscle fibres and lower 

aponeurosis instead of the Hough transform method. The researcher measured the pennation 

angle of the gastrocnemius muscle but did not compare manual and automatic 

measurements. The performance of Hough and random transform are very close, except the 

Hough transform method needs a pre-processing step (edge detection). Furthermore, the 

Hough transform method is quicker and less complicated than random transform methods. 

However, in this thesis, we introduced a novel method of edge detection using fuzzy 

inference system. Therefore, it is possible to avoid the limitation of the Hough transform 

method and use it for line detection. 
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There is a relative lack of studies focusing specifically on the evaluation of the cross-section 

area of tendons and muscles. Recently, Toktas et al. (2016), presented a manual method for 

evaluation of the cross-sectional area of flexor policies longus tendon based on the 

ultrasound images of healthy patients and those with Parkinson’s disease patients. 

Furthermore, another experiment was presented (Baño-aledo et al., 2017) to measure 

thickness of different tendons in the lower limb (Achilles and patellar tendons). In this 

experiment, tendons were measured by the same expert several times and by different 

experts to evaluate the agreement of these measurements. These evaluations were achieved 

manually. If these measurements were evaluated automatically based on analysis of image 

properties, it could illustrate the difference in the reality more clearly. Automatic evaluation 

of the cross-section area presented in this thesis is one of the first investigations to try to 

automate this process. The results demonstrate a small mean difference between the 

automatic and manual measurements; it is approximately 1 mm2. 

All in all, the proposed techniques that are presented and described in this thesis could pave 

the way for future study of automatic measurement of the other skeletal muscles and other 

geometric parameters such as length of muscle fascicle, tendon length and muscle length. 

7.3 Limitations 

Since the primary aim of this thesis is the development of new methods across the whole 

image processing pipeline to allow automatic evaluation of musculoskeletal parameters. 

Therefore, all available time was spent on this purpose and it was extremely challenging to 

collect a large set of data in limited time. Moreover, the complex structure of musculoskeletal 

system requires an expert to interpret patterns of MUI and differentiate between 

musculoskeletal components. The large set of data is necessary to train CNN and get good 
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results, but absence of large set of data adds additional constraints of using CNN in the edge 

detection method of musculoskeletal ultrasound images. As CNN is craving to have a 

massive set of training data, using CNN technique would have been more useful if it had 

more trained data. Therefore, the small set of musculoskeletal ultrasound images which were 

acquired from healthy subjects are insufficient to realise the potential of a CNN. 

Furthermore, increasing the number of the image samples works to raise the statistical power 

of the results from all proposal approaches and makes the analysis more representative. 

Sufficient sample data could also support manual and automatic comparison. 

The second limitation is related to the facility of equipment such as the ultrasound machine. 

Data was acquired with one snapshot; this view only showed limited information because 

this machine did not include the advanced technique (panoramic technique), but, it is 

possible to exploit technology in the clinic to collect data, if it is readily available. This is 

useful to use panoramic technique when measuring a whole muscle fascicle or whole tendon 

length, because a panoramic technique through a set of frames offers better clarification of 

musculoskeletal system details in one image. In this thesis, it is possible to collect a set of 

ultrasound image frames to visualise a whole muscle using ultrasound video scanning. 

Ultrasound video has more variation than panoramic image because it is difficult to control 

on the probe through video scanning. However, more practice courses of using ultrasound 

machine helps to reduce this variation and get a proper scanned ultrasound video. 

Presence of a subcutaneous tissue layer above upper aponeurosis of the overweight 

participants can change the shape and size of the muscle, see figure (6-12). This add another 

limitation for the manual and automatic measurements, see experiment 2, section 6.5.2 and 

experiment 3, section 6.5.3.  
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Chapter 8     Conclusions and Future work 

8.1 Conclusions 

The outcome of this dissertation highlighted the ability of measuring the geometric 

parameters of the upper extremities in healthy volunteers using ultrasound imaging and 

developed automated techniques.  

New methods were developed to assist in the analysis of the musculoskeletal ultrasound 

imaging such as the local fuzzy contrast image enhancement and fuzzy edge detection 

method. The algorithm for both methods depends on the fuzzy inference technique, which 

includes constructing a set of fuzzy rules, which reflect the knowledge of problem 

representation and solution. On the other hand, local adaptive median filter and the CNN 

method were applied for the first time on the musculoskeletal ultrasound images. 

Furthermore, Hough transform method and active contour-based segmentation were utilised 

to assist the final steps of the musculoskeletal ultrasound analysis to extract musculoskeletal 

parameters. These developed and applied methods were tested successfully on 

musculoskeletal ultrasound images that were collected from cadaver and healthy 

participants. 

The main results of the thesis can be summarized as follows: this project compared the 

efficacy of two filters in reducing speckle noise of the musculoskeletal ultrasound images 

and concluded that an ADF filter offered a high-quality performance over the LAMF in 

speckle noise reduction. Minimizing the impact of the speckle noise in the musculoskeletal 

ultrasound images was involved as the pre-processing step in some applications during this 

dissertation. The study stated the capability to enhance the contrast of offline 

musculoskeletal ultrasound video using the local fuzzy contrast enhancement method. 
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However, not all the video frames were enhanced due to the high level of variation which 

could occur through ultrasound video scanning of muscle and tendons. The findings of this 

dissertation highlighted the significant advantage of using fuzzy edge detection to get 

different levels of edge details of musculoskeletal ultrasound images. It is therefore possible 

to choose the level of information, which is necessary for musculoskeletal parameters 

extraction. In addition, the use of this edge detection application in CNN is promising, but a 

large sample-population is required to train CNN in contrast with the fuzzy edge detection 

method. 

To sum up, the results of these methods are novel and could open a new era to evaluate other 

morphological parameters of the upper extremity in vivo automatically. This will support 

the design of subject-specific models and prosthetic design. In addition, it would work as 

preliminary step for further research in the evaluation of the muscle fibre length and the 

automated construction of the 3D musculoskeletal ultrasound images. 

8.2 Future work 

Further data collection will help in raising the applicability of the developed methods in this 

thesis; therefore, it would be desirable to expand the range of data collection as future work. 

Further proposals include collecting ultrasound images using different protocols from other 

parts of the upper and lower extremities. Moreover, it is beneficial to collect musculoskeletal 

ultrasound images using a panoramic technique from healthy volunteers not only from 

cadaver and apply these methods on it. Obtaining a large data set of the ultrasound images 

offers abundant room for further progress of using CNN in edge detection application of the 

musculoskeletal ultrasound images, because it will expand the data set of the training. 
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To obtain a full picture of the developed methods in this thesis (local fuzzy contrast 

enhancement and fuzzy edge detection method), they need to be applied on the other 

biomedical images such as biopsy image, MRI and CT scanning images because these 

images have different properties. In addition, it is useful, if they are applied on the other 

musculoskeletal ultrasound images, which will be collected from lower limb for example, 

ultrasound image of Achilles tendons and gastrocnemius muscles.   

Also, this thesis has thrown up some questions in need of further investigation: 

Q1: Is it possible to evaluate a long muscle fascicle length automatically? 

It is difficult to scan a whole tendon whether is short or long in one snapshot or one 

view, this means, in one view can scan a part of the tendon. Therefore, as future 

proposal, there are two ways to answer this question and this depends on the way of 

collecting musculoskeletal ultrasound imaging: 

1-If collected data is musculoskeletal ultrasound video, the muscle fascicle length could be 

evaluated by combining two techniques: fuzzy entropy and optical flow method. Fuzzy 

entropy is involved in detecting the candidate pixel in each frame, while optical flow 

method is utilized for tracking muscle fascicle and measuring the length. 

2-In the case of collecting data using a panoramic technique, can use methods that have been 

developed in this thesis to determine the length of the muscle fascicles. Achieving this 

purpose involves the following steps (image contrast enhancement, fuzzy edge detection 

of the image and using Hough transform method for detection muscle fascicle and 

measuring its length). 

Q2: Can the performance of speckle noise reduction in the musculoskeletal ultrasound 

imaging be improved? 
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In this thesis, there is a competitive performance between Local Adaptive Median Filter 

(LAMF) and Anisotropic Diffusion Filter (ADF). ADF outperforms LAMF in speckle noise 

reduction, while LAMF has a high score in preserving edges of the ultrasound images. A 

future work is to improve the performance of speckle noise reduction, it is possible to 

combine both filters. This will help in raising the score of speckle noise reduction and at the 

same time keep the important details of the image content. 
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APPENDIX II 

A list of presentations and posters that have resulted from the work 

A. Conference oral presentation: 

1- IEEE (WCCI) Congress Vancouver Canada, June 24-29, 2016. The title of paper is’’ Using 

convolutional neural network for Edge Detection in Musculoskeletal Ultrasound Images’’. I attended 

and presented 20 minutes. 

2- MEIbioeng Conference 2016 in Oxford university, September 5-6, 2016. The title of paper is “Speckle 

Noise Reduction in Musculoskeletal Ultrasound Panoramic Imaging’’. I attended and presented 15 

minutes. 

3- 7th Computing and Mathematics Postgraduate Research Day (Keele university), April 5, 2017, I 

attended and presented 20 minutes. 

4- 2nd Crossing path conference 2017, (Keele university), April 16, 2017, I attended and presented three 

minutes. 

5- 8th Computing and Mathematics Postgraduate Research Day (Keele university), April 11, 2018, I 

attended and presented 10 minutes. 

 

B. Conference Poster presentation: 

 Keele Postgraduate Conference 2016, (Keele university), April 18, 2016, I attended and presented a 

poster. 

 Health Research conference 2016, (Keele university), October 14, 2016, I attended and presented a 

poster. 

 

C. Journal Publications: 

 Journal article is submitted to the Medical engineering and Physics journal and currently it is under 

review. This article is “Automated Analysis of Ultrasound Image of the Flexor Pollicis Longus 

Tendon”. 
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APPENDIX III 

Rules of local fuzzy contrast enhancement method 

Rule1: If (central pixel (C5) is brightness AND C1 is darkness) OR  

(central pixel (C5) is brightness AND C2 is darkness) OR  

(central pixel (C5) is brightness AND C3 is darkness) OR  

(central pixel (C5) is brightness AND C4 is darkness) OR  

(central pixel (C5) is brightness AND C6 is darkness) OR  

(central pixel (C5) is brightness AND C7 is darkness) OR  

(central pixel (C5) is brightness AND C8 is darkness) OR  

(central pixel (C5) is brightness AND C9 is darkness) THEN  

Z=Sd.*Y 

Rule2: If (central pixel (C5) is grey AND C1 is darkness) OR  

(central pixel (C5) is grey AND C2 is darkness) OR  

(central pixel (C5) is grey AND C3 is darkness) OR  

(central pixel (C5) is grey AND C4 is darkness) OR  

(central pixel (C5) is grey AND C6 is darkness) OR  

(central pixel (C5) is grey AND C7 is darkness) OR  

(central pixel (C5) is grey AND C8 is darkness) OR  

(central pixel (C5) is grey AND C9 is darkness) THEN  

Z=Sd.*Y. 

Rule3: If (central pixel (C5) is brightness AND C1 is grey) OR  

(central pixel (C5) is brightness AND C2 is grey) OR  

(central pixel (C5) is brightness AND C3 is grey) OR  

(central pixel (C5) is brightness AND C4 is grey) OR  

(central pixel (C5) is brightness AND C6 is grey) OR  

(central pixel (C5) is brightness AND C7 is grey) OR  

(central pixel (C5) is brightness AND C8 is grey) OR  

(central pixel (C5) is brightness AND C9 is grey) THEN  

Z=Sd.*Y. 

Rule4: If (central pixel (C5) is darkness AND C1 is grey) OR  

(central pixel (C5) is darkness AND C2 is grey) OR  

(central pixel (C5) is darkness AND C3 is grey) OR  

(central pixel (C5) is darkness AND C4 is grey) OR  

(central pixel (C5) is darkness AND C6 is grey) OR  

(central pixel (C5) is darkness AND C7 is grey) OR  

(central pixel (C5) is darkness AND C8 is grey) OR  

(central pixel (C5) is darkness AND C9 is grey) THEN  

Z=Y- Se. 

Rule5: If (central pixel (C5) is darkness AND C1 is brightness) OR  

(central pixel (C5) is darkness AND C2 is brightness) OR  

(central pixel (C5) is darkness AND C3 is brightness) OR  

(central pixel (C5) is darkness AND C4 is brightness) OR  

(central pixel (C5) is darkness AND C6 is brightness) OR  

(central pixel (C5) is darkness AND C7 is brightness) OR  

(central pixel (C5) is darkness AND C8 is brightness) OR  
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(central pixel (C5) is darkness AND C9 is brightness) THEN  

Z=Y- Se. 

Rule6: If (central pixel (C5) is grey AND C1 is brightness) OR  

(central pixel (C5) is grey AND C2 is brightness) OR  

(central pixel (C5) is grey AND C3 is brightness) OR  

(central pixel (C5) is grey AND C4 is brightness) OR  

(central pixel (C5) is grey AND C6 is brightness) OR  

(central pixel (C5) is grey AND C7 is brightness) OR  

(central pixel (C5) is grey AND C8 is brightness) OR  

(central pixel (C5) is grey AND C9 is brightness) THEN  

Z=Y- Se. 

 

Rules of fuzzy edge detection method  

Rule 1: If (C1, C3, & C5) are high & (C2, C4, C6, C7, C8, & C9) are low then central pixel is 

edge.  

Rule 2: If (C5, C7, & C9) are high & (C1, C2, C3, C4, C6, & C8) are low then central pixel is 

edge.  

Rule 3: If (C1, C5, & C7) are high & (C2, C3, C4, C6, C8, & C9) are low then central pixel is 

edge.  

Rule 4: If (C3, C5, & C9) are high & (C1, C2, C4, C6, C7, & C8) are low then central pixel is  

edge.  

Rule 5: If (C2, C5, & C6) are high & (C1, C3, C4, C7, C8, & C9) are low then central pixel is  

edge.  

Rule 6: If (C2, C4, & C5) are high & (C1, C3, C6, C7, C8, & C9) are low then central pixel is  

edge.  

Rule 7: If (C4, C5, & C8) are high & (C1, C2, C3, C6, C7, & C9) are low then central pixel is 

edge.  

Rule 8: If (C5, C6, & C8) are high & (C1, C2, C3, C4, C7, & C9) are low then central pixel is 

edge.  

Rule 9: If (C4, C5, & C6) are high & (C1, C2, C3, C7, C8, & C9) are low then central pixel is 

edge.  

Rule 10: If (C2, C5, & C8) are high & (C1, C3, C4, C6, C7, & C9) are low then central pixel is 

edge.  

Rule 11: If (C3, C5, & C7) are high & (C1, C2, C4, C6, C8, & C9) are low then central pixel is 

edge.  

Rule 12: If (C1, C5, & C9) are high & (C2, C3, C4, C6, C7, & C8) are low then central pixel is 

edge. 
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