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A B S T RAe T. 

In this thesis, X-ray crystal structure analyses of the 

desaurin from acetophenone, 3-phenyl-l-propene-l,3-dione l-(di­

methyl mercaptole) and the l,2,4-trithiacyclopentane from 

pinacolone, are described. 

The X-ray analysis of the desaurin from acetophenone 

confirms the desaurin structure and shows that the molecule is 

the trans isomer. The l,3-dithiete ring is planar, with carbon­

sulphur bond lengths of 1.766 and l.764A, and a carbon-sulphur­

carbon bond angle of 82.0°. 

The structure of )-phenyl-l-propene-l.3-dione l-(dimethyl 

mercaptole) was determined employing the symbolic addition proc­

edure. using one symbolic assignment. The sulphur-(~2-)carbon 

• bond lengths are 1.748 and l.745A, and the sulphur-carbon-sulphur 

bond angle is 115.10. 

The diffraction study of the 1.2.4-trithiacyclopentane 

from pinacolone confirms the thrithiacyclopentane structure and 

shows that the molecule is a cis isomer. The heterocyclic system 
o 

is non-planar; the sulphur-sulphur bond length is 2.l03A and 
• the mean carbon-sulphur bond length is l.740A. 

In each molecule, the a,~-unsaturated carbonyl systems 

adopt an !-cis conformation and this system and the sulphur atoms 
, 

are approximately coplanar. The "intramolecular sulphur-oxygen 

distances in the three molecules are considerably less than the 

sum of the van der Waals radii of sulphur and oxygen; similar 

observations in related systems have been taken as evidence of 

sulphur-oxygen interaction and this interpretation is discussed. 
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CHAPTER 1. 

INTRODUCTION. 
I 

The desaurins and 1,2,4-trithiacyclopentanes. 

Bergreen (1) found that when deoxybenzoin was treated with 

thiophosgene in the presence of sodium ethoxide, an insoluble 

yellow product was obtained, which he suggested was pheny1-

benzoyl thioketen I. However l\leyer· (2), after a molecular weight 

Ph· CO" 

C=C=S 

Ph/ 

I 

determination, proposed the dimeric structure IIa , and termed 

compounds of this type ftdesaurins" on account of their yellow 

II a, R - Rt - Ph. 

colour. Eleven other desaurins, including the desaurin from 

acetophenone III, were prepared by early German workers (3,4,5,6), 

(1) H. Bergreen, Berel ~J 337 (lSSS) • 
. (2) V. Meyer, ibid., ~J 1571 (lS90). 

(3) Idem., ~.L ~, 353 (lSSS). 
(4) P. PetrenkO-l\ri tschenko, ibid·~, ll, 2239 (lS92). 
(5) c. Kelber and A. Schwarz, ~., &i, 137 (1912). 
(6) C. Kelber, ibid., ll, 1252\1910). :', 
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whilst a number of other such compounds have more recently been 
,. 

prepared by Gompper and Top!l (7). The few original degradations 

/S" 
Ph - CO- CH= C C=CH -CO- Ph 

,/ 
S 

III 

or other studies on the desaurins (8) provide little proof for 

such a novel heterocyclic system and it was not until a more 

recent re-examination of these compounds by Yates and Moore (9) 

that ~leyer's structural proposal was shown to be correct. 

2 

It is evident that in the desaurins two geometrical isomers, 

cis and trans, are possible; thus for the desaurin from acetophenone 

III, the two isomers possible are IV and V. In the preparation 

IV 

Ph'CO" /s". /CO'Ph 

/C=O /C=O\ 
H "8 H 

v 

of each desaurin only one geometrical isomer has been isolated; 

the nature of the isomer formed in each case cannot be easily 

ascertained except from a crystal structure analysis. 

Kelber (6) and later Gompper (7) showed that oxidation 

(7) R. Gompper and W. Topfl, ibi1. ,.22., 2871 (1962). . 
(8) w. Wachter, ~., Z,i, 1727 1892). 
(9) P. Yates and D. R. Moore, J. Am. Ohern. Soc., ~, 5577 (1958). 



of benzoyldithioacetic acid with bromine or ammonium peroxy­

disulphate yields a yellow product, for which Gompper proposed 

the l,2,4-trithiacyclopentane structure VI. By using suitable 

alternative ketones, various l,2,4-trithiacyclopentanes, 

s-s 
/ " s-s 

3 

Ph· CO· CH = C C = CH . CO· Ph 

"s/ 
/ \ tBu· CO'CH=C C=CH' CO· tBu 

"'s/ 
VI VII 

including that from pinacolone VII, have been prepared utilising 

the method of Gompper. For each trithiacyclopentane, three 

geometrical isomers, (two cis and one trans), are possible; thus 

for the l,2,4-trithiacyclopentane trom pinacolone VII, the three 

isomers are VII , VlIb and VII • a c 

H s-s H 

\ 
H 

\ / \ I 
/C=SC"" /C=~ 

tBu·CO S CO·tBu 

V11b 

H S---S CO.tBu 
\ / \ I 
C=C C~C 

tBU'C~ "s/ ~ 

A recent ext-ensive examination of the desaurins and 1,2,4-

trithiacyclopentanes by Lynch (10); has shown that certain 

(10) T. R. Lynch, Ph.D. Thesis, University of Toronto, 1966. 



trithiacyclopentanes, notably those from acetophenone VI, p-methyl­

acetophenone, VIII and deoxybenzoin IX, when prepared using the 

s-s 
/ \ 

s-s 

4 

p-To1' CO·CH=C....... .-C=CHoCO·p-Tol - ~s~ -
/ \ 

Ph'COoC(Ph)=C,s""- C=C(Ph) 'CO'Ph 

VIII IX 

method of Goropper, yield t,.,.o isomeric fonns, separable by fractional 

crystallisation. However, the preparation of the trithiacyclo­

pentane from pinacolone yielded a single isomer, which was ident­

ified as one of the cis forms, VIla or Vllb , on the basis of its 

n.m.r. spectrum. 

Lynch (10) also noted that the desaurins and trithiacyclo­

pentanes exhibit unusually weak carbonyl absorption in their infra 

red spectra. It is evident that if the a,~-unsaturated carbonyl 

systems of these compounds exist in an ~-cis conformation, the 

possibility of sulphur~oxygen interaction arises which could account 

for the unusual spectral properties found. Examples of close intra- , 

molecular approach of oxygen and sulphur atoms have been previously 

reported. An X-ray diffraction study of 2,5-dimethyl-dithio­

furophthene, X (11), showed that in spite of a remarkably short 

o 5-S s 5--8 

M Me 

x , XI 

• sulphur-oxygen distance of 2.~lA, (the sum of the van der Waals 

(11) M. Mammi
J 

R. Bardi, G. Traverso and S. Bezzi, Nature, ~, 
1282 (1901). 



o 
radii of oxygen and sulphur is taken to be 3.05A), the molecular 

skeleton wa~ planar. Attention was also drawn (11) to the close 

structural similarity between X and dimethyl-thiothiophthene 

XI, (the structure analysis of which had been previously reported 

(12)), and the existence of a partial sulphur-oxygen bond was 

proposed. 

A study of the methyl ester of £-nitrobenzenesulfenic acid, 
• XII (13), showed a non-bonded sulphur-oxygen distance ~f 2.44A, 

Me 
I 
0" s 0 

I N, 
o 

XII 

which together with the planarity of the molecule, (except for 

the methyl group), was taken to indicate the existence of an 

attractive interaction between oxygen and sulphur. 

X-ray diffraction studies on two compounds having some 

structural similarity to the desaurins and trithiacyclopentanes 

have recently been pub1ished*. The structure analysis of the 

(12) S. Bezzi, }II. Mammi and C. Garbulio l Nature, 182'1 247 (19.58). 
(13) w. C. Hamilton and S. J. Laplaca, eJ. Am. Chem. '=ioc., liQ, . 

2289 (1964). 
~ These studies were published after the structure of the 

desaurin from acetophenone had been repo~ted in short note 
fona, and we are grateful to the authors for, supplying U's 
with structural details prior to publication. 
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2-methylene-l,3-dithiacyclobutane derivative,XIII (14), showed 

XIII 

the aJ~-unsaturated carbonyl system to adop~ the ~-cis conform­

ation. In addition this system and the sulphur atoms were found 

to be approximately coplanar, (the mean deviation from the plane 

being 0.041), which resulted in a short sulphur-oxygen distance 
II 

of 2.63A. An X-ray diffraction study of 2-desylidene-l,3-dithio-

lane,XIV (15,16), yielded a somewhat similar result. The 

5l-0=C-0=0 system is again planar and the sulphur-oxygen distance 
o 

is correspondingly short at 2.70A. In this molecule, however, the 

6 

• second sulphur atom, S2, is out of the least squares plane by 0.24A. 

The aims of the present work. 

This thesis describes the crystal structure determinations, 

by single crystal X-ray diffraction methods, of the desaurin from 

(14) J. A. Kapecki, J. E. Baldwin and I. C. Paul, Tetrahedron 
Letters, 5307 (1967). 

(15) A. Tulinsky, private communication. 
(16) W. H. Schmidt and A. Tulinsky, Tetrahedron Letters, 5311 

(1967) • 



acetophenone III, the 1,2,4-trithiacyclopentane from pinacolone 

VII and of 3-phenyl-l-propene-l,)-dione l-(dimethyl mercaptole) 

xv 

The main purpose of the work is to confirm the desaurin and 

l,2,4-trithiacyclopentane structures, to establish their stereo­

chemistry and obtain dimensional details of the heterocyclic 

systems. A secondary purpose is to determine whether sulphur­

oxygen interaction, which had been hypothesized from spectral 

data, is present. )-phenyl-l-propene-l,3-dione l-(dimethyl 

mercaptole) .bGars a structural similarity to 'half" of' the 

molecule of' the desaurin from acetophenone, and consequently it 

was hoped that the structure analysis would provide some inter­

esting comparisons to be made with the desaurin structure. 

7 



a 

QHAPTER 2. 

INTRODUCTION TO THE X-RAY CRYSTALLOG~P~IC WORK. 

Since a crystal can be considered as a continuous periodic 

electron density distribution in three-dimensions, this density 

can be represented by a three-dimensional Fourier series in which 

the structure factors, (Fhkl's), are the Fourier coefficients. 
':\' ' 

The electron density at a point (x,y,z) in the uD1t cell 1s given b1, 

- 00-

f(x,y,z) - l~ ~ ~ Fhkl " exp[ -2TTi (hx + ky + lz)], 
V h. ~ t 

_-co 

(2.1) 

where V is the volume of the unit cell. The structure factor is, 

howeve~ a complex quantity requiring both an amplitude and a phase 

to express it fully. Although the amplitude of each structure 

factor can be determined experimentally, the phase cannot, and 

therefore it is not possible to compute the electron density 

summation, (2.1) , solely from experimental data. 

The Patterson function. 

Perhaps the most widely-used method of overcoming the 

phase problem is by use of the Patterson function. Patterson 

(17,18) showed that it a Fourier summation is carried out using 

I Fhkll2. as coefficients J (which are phaseless), the resulting 

synthesis reveals information of the orientation and magnitudes 

(17) A. L. Patterson, Phys. Rev., ~f 372 (1934). 
(18) 1s!E., Z~ Krist., 2Q, 517 (19351. 
~ Where (x,y,z) are fractional coordinates. 



of interatomic vectors. The Patterson function, 
- CIO 

1-
p(U,V,W) = ~~~ \FhklLcos2tr(hu + kv + lw) (2.2) 

ta IC. «. 
- -00-

exhibits peaks at vector distances, [(u,v,wil, from the origin 

equal to vector distances between pairs of maxima in the electron 

density. Although it appears that the structure of any crystal 

can be easily solved from the Patterson function, the number of 

peaks in the vector map rises rapidly with the number ot atoms 

in the unit cell; with N atoms in the unit cell there are N(N-I) 

interatomic vectors, each ot which will contribute a peak in the 

vector map. The height of each Patterson peak is dependent upon 

the product of the scattering powers of the two atoms involved. 

In a multi light-atom problem, the Patterson function will 

theretore consist of a large number of vector peaks, each of 

approximately the same height. It the experimentally determined 

I Fhkl,2 are used as coefficients iIi (2.2), these peaks are diffuse 

and many will coalesce making it extremely difficult to identify 

individual interatomic vectors. It is possible, however, to 

transform, (or • sharpen '), the I Fhkll2. and thereby increase the 

resolving power of the Patterson synthesis. A simple sharpening 

technique (19) is to transform the experimental IFhk~~ to the 

theoretical values, . (l sFhkll~), they would have been if the 

crystal was composed of point atoms haVing no thermal motion, 

9 

IF hklrl. . (2.)) 

~ f~ • exp(-2Bov.sin~e~) ,-. 
(19) M. J. Buerger, "Vector Space", Wiley and Sons, New York, 

(1959), p. 64. 



where, £i = the scattering factor of the ith atom in a unit 

cell containing N atoms, 

Bov c the overall isotropic temperature factor. 

. 2 
By using the sharpened coefficients, \SFhkl ' , in the Patterson 

synthesis, the electrons of the normal peak are concentrated 

into a 'sharp' peak, which leads not only to better resolution 

but also makes th~ weaker peaks more prominent. One disadvantage 

of using sharpened coefficients in the Patterson synthesis is 

that the Fourier series ceases to be convergent, which can result 

10 

in spurious detail being produced in the background of the synthesis. 

Even with the superior resolution of a sharpened Patterson function, 

the solution of a multi light-atom problem from its Patterson 

is still extremely difficult. The problem can be simplified, 

however, if some features of the molecular structure are known. 

If the molecule contains a rigid group of atoms, and the dimensions 

of the rigid group are known, (for example a benzene ring), the 

complete structure analysis can be carried out by a systematic 

search in the Patterson function (20,21). 

Although many light atom structures have been solved 

in the past by either interpreting a suitable sharpened Patterson 

function, or by using both the Patterson and a search technique, 

at the present time many structures of this type are subjected 

to direct phase determination methods, (see later). 

(20) C. E. Nordman, Acta Cryst., 12, 18 (1962). 
(21) C. E. Nordman and K. Nakatsu; J. Am. Chern. '"80c. ,···lli, '53 (1963). 



The Patterson 'heavy-atom' method. 

Th~ greatest use of the Patterson synthesis is made 

when a small number of atoms in the unit cell are of relatively 

high atomic number, ('heavy'), compared with the majority. It 

is then possible to locate the heavy atoms easily from the 

Patterson function, since the vector peaks between different 

heavy atoms stand out predominently against the background of 

light atom interactions. 

Having located the positions of the heavy atoms in this 

manner, there are then two main courses that may be followed 

to locate the remaining light atoms in the structure. The choice 

between the two methods depends upon the size of the contribution 

made by the heavy atoms to the structure factors. With one heavy 

atom per unit cell, the structure factor can be sub-divided into 

heavy atom, (H), and light atom, (L) contributions, 

where fH and fLi are the scattering factor of the heavy and 

ith light atoms respectively. 

11 

If fH is very much greater than f L, the heavy atom contrib­

ution will tend to dominate the right hand side of equation (2.4), 

except in the relatively rare cases when all the light atoms of 

the residue scatter in phase to give a contribution greater than 

that of the heavy atom. In the case of a centrosymmetrical crystal, 

where all structure factors are real, the result is especially 

useful, . a s the signs of a high proportion of ., hkl are determined 



solely from the heavy atom contribution. Allocating the phases 

so determined to the observed structure amplitudes allows an 

initial electron density synthesis to be computed. Because 

the I Fhkll data contain a light atom contribution, this synthesis, 

in favourable cases, will reveal light atom locations in addition 

to returning the heavy atom positions. Lipson and Cochran (22) 

suggest that the heavy atom method is most powerful, (in a centro­

symmetrical structure), when the sum of the squares of the atomic 

numbers of the heavy and light atoms are equal. Under these 

conditions approximately" three quarters of the signs determined 

solely from the heavy atom contribution are correct; half the 

signs are correct, on average, because the two contributions will 

have the same sign, and half of the remainder, on average, will 

be correct because the contributions of the light atoms are 

opposite in sign to, but less than, the contribution from the 

heavy atoms. In any particular example the fraction of structure 

factors having the same sign as the heavy atom contribution can 

be assessed using the more exact relationships of S1m (23). 

The application of the heavy atom method to non-centro­

symmetrical structures is not as straightforward as in the 

centros~etr1cal case, but the basic principles outlined above 

remain the same. In this case each structure factor is complex, 

posessing a phase which can assume any value between 0 and 2~, 

and not merely 0 or rr as in the centrosymmetrical case. There 

(22) H. Lipson and W. Cochran, "The Determination of Crystal 
Structures", G. Bell and Sons Ltd.! London, (195), p.207. 

(23) G. A. 8im, Acta Cryst., 12, 177 (1~57)" 



is therefore a range of errors between the correct phases of the 

structure factors, and the phases calculated from the heavy atom 

positions. However for a proportion of the structure factors, 

13 

the 'heavy atom phases' so determined will be sufficiently close 

to their correct value that an initial electron density synthesis 

will show some, if not all, of the light atom locations. For any 

specific example, the fraction of the structure factors, N(6), 

for which the phase calculated from the heavy atom contribution 

is within ±6 of its true value has been calculated by Sim (24). 

When the heavy atom contribution does not greatly donlinate 

the right hand side of equation (2.4), a higher fraction of the 

structure factors will have a phase different from that determined 

solely from the heavy atom locations. An initial electron density 

synthesis, based on the heavy atom phases, will therefore contain 

much spurious detail and unambiguous identification of the light 

atoms may be impossible. When this 1s the case, information 

about the positions of the light atoms can often be found by 

reverting back to the sharpened Patterson function and using the 

vector convergence method (25), or computing the Buerger minimum 

function (26). 

The heavy atom method was employed in the structure 

analyses of the desaurin from acetophenone, (Chapter 5), and the 

l,2,4-trithiacyc1opentane from pinacolone, (Chapter 12). 

(24) G. A. Sim, ibid., lQ, 536 (1957). 
(25) C. A. Beevers and J. H. RObertson

i 
ibid., 1, 164 (1950). 

(26) M. J. Buerger, ibid., ~, 531 (195 ). 



Phase determiI)..a.tJon by direct methods. 

Direct methods are those in which an attempt is made to 

derive the phases of the structure factors without previously 

postulating any atomic positions. 

The first contribution in this field was made by Harker 

14 

and Kasper (27), who showed that relationships could be formulated 

between certain Fh and I Fhl! which imposed limitations on the 

phase of some structure factors. The relationships, in the form 

of inequalities which vary with the symmetry of the crystal under 

consideration, were applied in practice by Gillis (28), who 

succeeded in determining the signs of about forty structure factors 

for the oxalic acid dihydrate crystal, and by Kasper ~ Al. (29), 

who used them to solve the structure bf decaborane. Karle and 

Hauptman (30), using the criterion that the electron density 

must be everywhere non-negative, derived a set of inequality 

relationships which are valid for all the ,space groups, and 
\ 

showed that the introduction of specific symmetry elements to 

the set produced the Harker-Kasper inequalities which had been 

previously formulated. 

A major impetus to the development of direct methods was 

initiated by Sayre (31), who examined relationships between the 

Fh 's of a structure and those ot the same, structure in which 

the atoms were replaced by 'squared atoms'. If the structure 

(27) 
(28) 
( 29) 
()O) 
(31) 

D. Harker and J. S. Kasper. ibid., 1, 70 (1948). 
J. Gillis, i~i~., 1, 174 \1948) , 
J. S. Kasper, C. M. Lucht and D. Harker, ibid., 1, 436 (1950). 
J. Karle and H. Hauptman, 1bj4.., 1, ISl (1950). 
D. Sayre. ibid. J i, 60 (1952 • '~ 



consists of equal, resolved atoms, (so that the electron density 

and the squared density have an identical distribution of peaks 

and differ only in peak shape), Sayre showed, for a centro­

symmetrical crystal, that the sign relation, 

sF~ 
h lila s~ Fk • Fh_k 

10\ 

15 

could be formulated, ( s is an abbreviation for 'sign of'). Sayre 

illu~trated the value of (2.5) by solution of the centric Okl 

projection of hydroxyproline ()l), which he achieved by finding 

a consistent set of signs for some of the larger Fh which satisfied 

the equation. Relationship (2.5) is true when the summation 
.... 

extends over all k and the atoms are equal and resolved; however 

Sayre, by his work on hydroxyproline, and Zacharias en ()2), 

showed in practice that (2.5) remained valid when only structure 

factors of large magnitude are used in the summation and the 

atoms of the molecule are of more than one chemical type. 

Hauptman and Karle ())) derived, by mathematical analysis, 

a number of relationships between structure factors which led 

them to the conclusion that the phase problem was soluble if 

sufficient data were available. Since IFhldecrease as the 

Bragg angle increases, (because of the decline of scattering 

factor with increasing e). Hauptman and Karle in their work 

sharpened 'Fhl to normalised structure amplitudes fEhl , 

()2) VI. H.Zachar·iasen. ill5! •• i, 6g (1952). 
())) H. Hauptman and J. Karle, "Solution of the Phase Problem J 

I, The Centrosymme~ric C~ystallt! A. C. A. Monograph No. ), 
The Letter Shop, Wllmington. (1~5). 



16 

(2.6) • 

where, ItrFtl =: the observed structure amplitude, placed on an 

absolute s,cale and suitably corrected for atomic 

thermal motion, 

Eh = an integer which corrects for space group 

£'xtinctions. 

fi a the scattering factor of the ith atom in a 

unit cell containing N atoms. 

The 'probability equivalent' of the Sayre equation derived by 

Hauptman and Karle is, 

~2 : , 

.. ~ 

where the symbol kr implies that k ranges only over those vectors 

associated with large lEI values. Probability formulae for 

evaluating the reliability of a sign determined by application 

of ~2 were derived by Hauptman and Karle (33) and also by Cochran 

and Wo01fson (34,35). For ~2 the associated probability function, 
~ 

P+(h), which determines the probability that the sign of Eb be 

positive, is given by (34,35), 

P+(h) ICI 1/2 + 1/2tanh[:~IEhl~ Ek• ~_~ , (2.8) 
w n 0-;.)."" ~ 

where <S"il ... ~ Zi; Zi being the atomic number of the ith atom. 
'\= I 

(34) lvl. 1-1. Woolfson, Acta Cryst., 1, 61 (1954). 
OS) 1;/. Cochran and }wI. }wi. Woolfson, ibid., .a, 1 (1955). 



It is evident, for a centro symmetrical crystal, that the signs 

of normalised structure factors can be determined by using the 

2: 2 relationship (2.7), and that a probability assessment of 

each generated sign may be made by employing the probability 

function (2.8). Application of L2 is initialised employing 

certain large lEtt!' IS whose phases may be assigned arbitrarily to 

specify the origin, (c.f. Chapter 9), and is supplemented, in 

17 

the symbolic addition procedure (36,37), by additional larger 1Ekl's 

whose phases are denoted by symbols. After repeated ~2 applic­

ation the signs of numerous Eh are generated, (either absolutely 

or in terms of the assigned symbols), and the normalised structure 

factors are then used as Fourier coefficients to generate an 

'E-map' (38). Karle ~~. (37,38) have illustrated that in general 

the atomic positions are readily obtained from a three-dimensional 

E-map computed with about ten normalised structure factors, (of 

larger IEr), per atom of the asymmetric unit. If Eo symbols have 

been assigned, there will be theoretically 2P possible sign 

combinations to consider; however relationships amongst the 

symbols frequently occur as the phase determination proceeds 

and generally the number of E-maps it is necessary to compute 

1s considerably reduced. 

The symbolic addition procedure was employed in the 

structure analysis of )-phenyl-l-propene-l,)-dione 1-(dimethy1 

mercaptole), and the practical aspects of the procedure are 

described in Chapter 9. 

()6 ) 
07 ) 
()8) 

I. L. Karle and J. Karle, !Q!g., 12, 969. (196). 
I. L. Karle, K. Britts and P. Gum, ibid., 11, 496 (1964). 
I. L. Karle, H. Hauptman, J. Karle and A. B. Wing, ibid., 
il, 257 (1958). 



Least squares refinement of ~truct~re parameter~. 

The meth~d of least squares can be used in structure 

refinement (39) by minimising some function of the observed 

and calculated structure amplitudes with respect to the atomic 

parameters. The function most commonly minimised is, 

R' - t w(hkll UFo (hkll\- IF c(hkllD~ 

where 'Fo' and IFc' are the observed and calculated structure 

amplitudes, q is the total number of independent IFol data 

and w(hkl) is a weight applied to each term which depends upon 
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the reliability of the IFo(hkl)1 datum. Although strictly w(hkl) 

is proportional to l/(crIF 0 (hkl )1)\ (where cs-IF 01 is the standard 

deviation of the observed structure amplitude), frequently, in 

crystal structure refinement, only relative weights can be 

estimated and it is often assumed that ~\FJ depends only on 'FJ • 

The trial set of ~ atomic parameters, (Pl' P2 ••• Pn)' 

require corrections to be applied, (6Pi>' to adjust them to 

their 'most probable' values, (Pl+6Pl, ••• Pn+6Pn),whic~ will 

result in the required minimisation of (2.9). If the parameter 

shifts required are small, (so that Taylor's expansion to first 

order may be employed), (2.9) can be re-written as, 

R' 

where F' is the value calculated using the trial set of parameters. c 

(39) E. W. Hughes, J. Am. Chern. Soc., 21, 1737 (1941). 



Function (2.10) will be minimum when the partial derivatives 

with respect to each of the n parameters vanish, i.e., -
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~R'=Oj ~R·=O ••••••• 

~Pl ~.P2 
(2.11 ) 

.. 

Therefore the n cond.itions of type (2.11) may be l'Jritten as a 

series of n equations, (the "normal equations"), 

• • • • 

• • • • • • • • • • • • 

(~lf!l) AP~ + 
~Pn l~P2 . 

• • • • 

• 0 c. c - -1. w( IF 1 -1 F' J )(,)F ') 
CV ~Pn 

The normal equations represent 8 set of ~ simultaneous equations 

in nunknewn~ and may therefore be solved for 6Pl, 6Pa •• APn. 

Since (2.10) is an approximation, the required minimisation ot 

the function (2.9) is not normally achieved by a single cycle 

of least squares refinement. HO\<lcver, by applying the calculated 

APi and repeating the p~ocedureJ addition~l improvement in the 

parameters can be obtained. The standard deviation of each atomic 

parameter is calculable from the least squares residuals, and 
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in practice refinement is continued until the parameter shifts 

calculated represent only a fraction of their standard deviation. 

Computational work. 

All computations were carried out on the I.B.~1. 7094 

at the University of Toronto. 

The program used for structure factor calculations and 

full matrix least squares refinement was a modified version 

of OR-FLS (40,41). One modification, due to Shiono, was that 

reflection data were read into the program one at a time from 

magnetic tape; consequently ~here was no restriction on the 

number of observations. In the original version of OR-FLS the 

value of the atomic scattering factor for each reflection was 

obtained by linear interpolation from a stored table of 32 values 

for (sin9/~) from 0.0 to 1.55 in 0.05 intervals. Because of the 

coarse mesh of this table, values interpolated at low angles ' 

could be significantly in error, and a second Shiono modification 

was to replace the original If I table with the 51 scattering 

factor values for sinS from 0.0 to 1.0 in intervals of 0.02. 

The 51 unit table for sulphur, carbon and oxygen were prepared 

using the' Aitken polynomial method (42) on the scattering factor 

values listed in International Tables (43)*. To the scattering 

curve for sulphur 0.3 electrons were added over the whole sine 

(40) 

(41) 

(42) 

. (43) 

+ 

W. R. Busing l K. o. lrlartin and H. A Levy, 'Oak Ridge National 
Laboratory, oak Ridge, Tennessee,(1962). 
R. Shiono, Crystallography Laboratory, University of 
Pittsburgh, Pittsburgh,(1963). . 
$ee, for example, T. A. Bak and J. Lichtenberg, ~!athematic8 
for Scientists", Benjamin, (1966), p. 459 • 
International Tables for X-Ray Crystallogr~phy. Volume III, 
The Kynoch Press, Birmingham, (1902), p. 201, (a) p. 214. 
A listing of the interpolation program 1s given in Appendix V. 
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range to allow for the real part of the anomalous scattering (43a ). 

Patterson, electron density, difference and the E-map syntheses 

were computed employing "A three-dimensional Fourier synthesis 

program" written by Shiono (41). 

, 



EXPERDIENTAL - PART I 

THE X-RAY STRUCTURE ANALYSIS OF THE 

DESAURIN FRCJ.1 ACETOPHENONE. 
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CHAPTER ,J. , :: 

PRELININARY X-RAY ~lORj{. -
The desaurin from acetophenone, prepared by the method 

of Kelber and Schwarz (5), crystallises from nitrobenzene as 

small plates (44). The major face exhibited is (OOl), using the 

axial description given below. 

X-ray eguiJ2ment. 
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This portion of the work was carried out using a Norelco 

X-ray generator, operated at 45 kV and approximately 14 mA; nickel 

filtered copper radiation was used throughout. The recording 

device used was a Stoe integrating Weissenberg goniometer. Ilford 

industrial Q X-ray film was used. being processed at 200 0 with 

Kodak D19B develop,er and Kodak F-5 acid-hardening fixer. 

Crystal;, density. 

The density of the crystals was determined by flotation 

in a benzene and carbon tetrachloride mixture at room temperature, 

the density of the liquid mixture in which the crystals remained 

suspended being found by use of a specific gravity bottl~. The 

average value of the crystal density was found to be 1.45 g.cc- 1 • 

Un1t,cell dim~~~ions fond space grouJa. 

Unit cell dimensions were originally estimated trom zero 

level Weissenbergphotographs and were later determined more 

accurately from new sets of zero level photographs calibrated 

," 
(44) We are grateful to Dr. T. R. Lynch tor providing crystals 

of the desaurin from acetophenone. 
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wi th aluminiu.ll pO\'/der lines. A least squares refinement procedure 

was used. 

System monoclinic (y axis unique) 
0 

a II: 5.470 A ( G" - 0.008) 

b -= 
0 

4.848 A (cr a 0.012) 
0 

( CS" - 0.00$) c 1:1 28.299 A 

r> III 96.9° (0-- 0.1 ) 
0 

V - 745.0 A3 

The following systematic absences were noted on zero level 

and equi-inclination \,ieissenberg photographs; 

hkl : no general absences, 

hOl : absent for 1 1:1 2N + 1 , 

OkO : absent for k 1:1 2N + 1 • 

The space group 15 therefore P2 , /c. 

The number of mo~cules per unit cell. 

The number of molecules per unit cell can be expressed 

. by the formula, 

where, 

n 1:1 ~eas • V 
1.66 • )1 

~eas - the crystal density, 
• V - the volume of the unit cell, (in A3), 

M - the molecular weight of the compound. 

Using ~eas - 1.45 g.cc-', M - 324 and V II: 745.0 A3, the calcul­

ated value of n is 2.01. Thus Z, the number of molecules per 

unit cell, 15 2. 



CHAPTER h • 

.QQ1I,ECTIO~ OF :rHREE-DJMEN.SJONAL INIENSITY DATA. 

Opt~ cr~stal sizS~ .• 

where, 

The linear absorption coefficient, ~, is defined by, 

~ COl dlpllm' 
d = the crystal density, 

f - the fractional weight of each element, 

Pm a the mass absorption coefficient for 

each element. 

Using the mass absorption coefficients listed in International 

Tables (45), the calculated value of ~ is 33.15 cm- 1 • Buerger (46) 

showed that the X-ray reflections with the longest path through 
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the crystal reach their maximum intensity when the crystal diameter 

is 2/~, and suggested that this value be taken as the optimum thick­

ness, ~, for crystals used in X-ray diffraction work. For the 

desaurin. ~ is 0.61 mms. The crystals from which intensity data 

were collected were much smaller than this optimum size, (the approx­

imate dimensions of the largest crystal used were 0.20 x 0.20 x 0.02 

mms), and no absorption corrections were applied. 

Collection of thre~-dimensiona~ intensity data. 

Three-dimensional intensity data were collected utilising 

(45) International Tables for X-ray Crystallography, Volume III, 
The Kynoch Press, Birmingham, (1902), p.162. 

(46) M. J. Buerger, "X-ray CrystallographyU, W11eyand Sons Inc., 
New York, N.Y., (1940), p.laO. 



the equi-inclination Weissenberg method. To ensure that the 

intensity data recorded came within the range where they could 
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be estimated easily by eye, the multi-film technique was employed 

(47); thus a pack of four films, interleaved with aluminium foil 

(0.001 inches thick), was used for each exposure. The intensity 

of each reflection was measured by visual comparison with an inten­

sity wedge consisting of twenty-eight 'spots' whose relative inten­

sities were known. This wedge was generated by allowing a reflect­

ion from the crystal to pass through its reflecting position for 

varying numbers of times, the translational motion of the film-

. holder being retained. The crystal used to prepare the wedge was 

that from which intensity data were collected, so that the shape 

of the spots on the wedge were typical of the shape of the reflect­

ions on the films to be measured. 

Initially, recrystallisation of the desaurin from nitro­

benzene produced crystals which were generally multiple, together 

with some very small crystals which were used for data collection. 

Crystals were mounted about the ~ and h axes and two series of - -
photographs were recorded, hOI through h3l, and Okl through 4kl. 

For each layer the intensity of each reflection was measured on 

all four films of the pack (48), an average film factor determined, 

and the average intensity for each plane calculated. The intensity 

data were corrected for Lorentz and polarisation factors employing 

the graphical method devised by Cochran (49). The Lp corrected 

(47) J. M. Robertson, J. Sci. Instr., lQ, 175 (1943). 
(48) We are grateful to Dr. T. R. Lynch for these initial measure-

ments. .. 
(49) W. Cochran, J. Sci. Instr., £i, 253 (1948). 



intensities, measured on different photographs, were placed on 

the ~ame arbitary scale by comparing 1Fhkll2. of common reflections, 

the Okl film being taken as the arbitary reference standard. The 

routes by which this inter-scaling was achieved is shown in Figure 

Absolute scaling and overall temperature factor. 

The intensity data for the crystal, (now on an arbitary 

scale), were placed on an approximately absolute scale by the 

method due to Wilson (50). The theory depends on the approximat­

ion that, 

, 
2. 

where < I FI >' is the average absolute intensity and 'f1 is the 

scattering factor of the ith atom. 
2.. 2-

Since IF 01 - K.I FI , 

then 

where IF 0 12. are the corrected observed intensities, on some 

arbitary scale, and K is a scaling factor with respect to the 

absolute data. Since under the conditions of observation the 

atoms possess thermal motion, a temperature factor, Bew • must be 

introduced to modify the theoretical scattering factors accord­

ingly, i.e., 

'fi - f1 exp(-Bov • ~HO), 

RHO.: (sineA,)2 . 
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where 

and fi = the scattering factor for a non-vibrating atom. 

(50) A. J. C. Wilson, Nature, 150, 152 (1942). 



Layer K' Layer Kt 

hOl 2.51 Ok1 1.00 

h~l 2.15 " kl 1.11 

h21 0.85 2kl 1.03 

h31 2.29 3kl 2.30 

4kl 1.0S 

The routes by which inter-film scaling was achieved and the 

.scaling factors determined (K'). 

Figure 4.1 
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Therefore, K. <.? f~ >. exp(-2Bov .RHO), 
,:1 

and -
The hal zone was divided into five ranges, each containing 

approximately an equal number of reflections, and the value of 

ln [~IFor>] 
<2f i) 

i 

was calculated and plotted against the average 

RHO for each range. The resultant plot is shown in Figure 4.2, 

and yielded values of 14.8 for the scale factor, (with respect 

to IFot'", [=l/K]), and 5.0A2 for the overall temperature factor, Bov. 

It was noted that almost all reflections for which 

29CCuKa) 800 had immeasurably small intensities; consequently -
it was decided to exclude these data for initial stages of the 

structure analysis. Data Set 1, (2&(CuKa) ~ 600 ) J comprising 

430 independent_reflections of which 334 had measurable intensities, 

were used for the identification of atomic locations using 

Patterson and electron density syntheses. Further recrystallisations 

of the desaurin, (from nitrobenzene), yielded a few larger crystals 

and at a later stage in the structure analysis layers hal through 

b41 were re-collected, (Data Set 2). Intensity data, measured 

on these photographs, were corrected for Lorentz and polarj.sation 

factors using a program written for the I.B.M. 7094·, and were 

elevated. to the absolute scale by comparing IFhk~2 common to Data 

Set 1. Of the 1493 independent reflections r.ecorded in Data Set 

2~ 1020 had measurable intensities • 

.. 
~ A listing of the Lp program is given in Appendix V. 
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CHAPT~R ~. 

THREE-DII-IENSIONAL PATTERSON AND FOURIER SYNTHESES. ----- -:. - - ---.......--.- ---
The three:.dAmen.~ional ,Patterson" function. 

The Patterson function was computed for a quarter of the 

unit cell defined by -0.5~ u ~ 0.5 t 0.0 ~ v ,0.5 and O.O~w 40.5, 
-. ~ 

in intervals of 0.05 in u and v, and 0.01 in w. The IFhk~ of 

Data Set 1 were used as the Fourier coefficients and the comp­

utation was carried out using the general Fourier program. 
. 2. 

IFoool was omitted from the calculation. 

As stated in Chapter 3, the desaurin from acetophenone 

crystallises in space group P2 1/c with two molecules, (four sul­

phur atoms), per unit cell. If one sulphur atom is situated at 

the general position (x,y,z) in the unit cell, the. remaining 

three sulphur atoms must be located at space group equivalent 

positions Ci,y,z), (x, 1-y, !+z) and (x, .1+'1, .l-z). Peaks 
2 2 2 2 

1n the Patterson function which represent sulphur-sulphur vectors 

will therefore be located at, 

1. ±(2x, 2y, 2z) I single 
:t(2x, 2y, 2z) 

fold weight. 
2. 

Table 5.1 
3. :!J 0, ! - 2y. ! ) I 2 2 two fold weight 
4. ±(2x, 1. , .1. + 2z) 

2 2 

In reported structures of six-membered sulphur-containing 

heterocyclics, where a divalent sulphur atpm is bonded to an 
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sp2-hybridised carbon atom, sulphur-carbon bond lengths in the 
o . 

order 1.76-1.7$A and sulphur-carbon-sulphur bond angles of 

approximately 1000 have been found (80,81). By applying these 

dimensions to the l,)-dithiete ring of the desaurin, it is 

therefore expected that the sulphur-sulphur inversion peaks, 
o 0 

(~s 1 and 2), will be of the order 2.4A to 2.8A distant from 

the origin. 

Inspection of the Patterson function revealed a prom-
~ 

30 

inent peak about 2.6A from the origin, which obviously represented 

the intramolecular sulphur-sulphur vector. This peak and the 

corresponding peaks on the Harker line, (0,v,l/2), and the 

Harker section, (u,1/2,w), which complete the sulphur-sulphur 

vector set, are listed below. The numbering of the peaks 

below is in keeping with the system used in Table 5.1; the 

peak heights listed were measured from the lowest negative 

trough in the computed function. 

Peak 
U V W height. 

1,(2) -0.380 0.000 0.046 )00 

). 0.000 0.500 0.500 650 

4. 0.)80 0.500 0.454 280 

By referring to Table 5.1 it is seen that these vector 

peaks correspond to an asymmetric sulphur atom situated at 

(-0.190, 0.000, 0.02) in the unit cell. Since the sulphur 

atom has a 'pseudo-special' location,(x,O,z), some of the sulphur­

sulphur vectors have a weight different from those given in 



Table 5.1. In this special case the two inversion peaks coalesce 

into a single peak' on the mirror plane at V = 0 having two 

fold weight, whilst the peak on the Harker line becomes four­

fold at (0,1/2,1/2). Thus it is evident that the vector set 

identified has relative peak heights which are consistent 

with the theoretical weights of the interactions. 

Structure factor calculations and three-dimensional electroJl 

density synthese~. 

For space group P2 1/c, the calculated structure factors, 

Fc' are given by, 

(k+l) = 2n 

(k+l) = 2n+1 

• 
J 

. , 

w 
F c = 4 ~ fi cos2rr(hXi + lZi). cos2lfkYi ' 

F c - -4 t f i sin21T( hXi + lZi)· sin2tT'kY i ' ,,:., 
where fi and (Xi,Yi,Zi) are the scattering factor and the fract­

ional coordinates pertaining to the ith atom of an asymmetric 

unit containing N atoms. 

Structure factors were calculated employing a modified 

version of OR-FLS and the general Fourier program was used to 

compute electron density syntheses. The two programs were 

run sequentially, the input data for the Fourier being prepared 
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by OR-FLS and stored out-of-core between programs. The reflection. 

data used in this portion of the work were those of Data Set 1 

and each electron density synthesis was computed within the 

, bounds -0.5' x" 0.5 J -0.5 6y" 0.5 and 0.0"- z ~ 0.5, in intervals 

of 0.025 in x and y and 0.005 in z. The synthesiS was calculated 

tor twice the asymmetric volume required by the space group as 
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this enabled an easier comparison to be made between 'true' 

and 'false' electron density peaks, (discussed below). Isotropic 

temperature factors used in the structure factor calculations 
c 0 

were 4.0A2 for the sulphur atom and 5.0A2 for the light atoms. 

The residual index, 

R = ~(IFol-\Fcl) 
rl~l 

, 

has reflections of zero measured intensity included with lFJ = 0.0. 

Structure factors were calculated using the positional 

parameters of the sulphur atom determined from the Patterson 

function, (R - 0.66). Since the sulphur atoms are located 

at ! - 0, (and y = 1/2), they make no contribution to structure 

factors having (k+e)=2n+1, (see equation (5.1», and the initial 

electron density synthesis, phased by the sulphur atom, has 

therefore (020) as a false mirror plane. From the distribution 

of peaks in thi~ synthesis and packing considerations, it was 

evident the n,p-unsaturated carbonyl system is in an !-£!! 
conformation, (with the plane of the benzene ring lying approx­

imately parallel to the long c axis). Attention was first 

focussed on seven peaks corresponding to atoms of the C(l)-C(2)­

C(3)-O~ system and the false symmetry related group, (C(3) lay 

on the mirror plane); however an unambiguous subdivision of 

the seven peaks intobuo unsaturated carbonyl syste~s related by 

the false mirror plane proved difficult. Since the sulphur 

~ The atomic numbering system employed is shown in Figure 5.1. 



1 
"2 

I .• I 0 

o 1A 

tem used • . c .numbering sys The atom1 . 

. Figure 5J.. 

. .. .. 



atoms are not confined to (020) by any space group requirements, 

the possibility arises that these atoms are located only 'c1ose­

to' these planes, (the Patterson function having insufficient 

resolution to show a small finite character in the y coordinate 
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of the atoms). The asyn~etric sulphur atom was allocated y = 0.01, 

hoping that this would sufficiently weight the phases of structure 

factors for which (k+e) = 2n+1, that one set of three peaks corres­

ponding to a molecular C(l), C(2) and 0 system would increase 

in density whilst the 'false symmetry' related set would show a 

reduction in peak density. However the only significant diff­

erence in the subsequent electron density synthesis was that the 

density at one oxygen location was noticeably greater than the 

density at the 'false symmetry' position. A third electron density 

synthesis, phased by the sulphur, (r = 0.01), and 'true' oxygen 

atoms, (R = 0.58), revealed unambiguously the C(l) and C(2) 

positions, which together with 0 and C(3), (still centred on 

1. =: 1/2), completed the conjugated carbonyl system of the molecule. 

A fourth structure factor calculation, using S, 0, C(l) and C(2), 

(R =: 0.51), and electron density synthesis revealed the locations 

of C(4) and C(7), and still showed C(3) centred on y a 1/2, (a . 
location which was now accepted). These three atoms were included 

in a fifth structure factor calculation, (R = 0.43), and the 

remaining four carbon atoms, which completed the asymmetric unit, 

were identified from the subsequent electron density synthesis. 

A final electron density synthesis, phased by all eleven atoms 

of the asymmetric unit, (R = 0.33), was devoid of spurious detail; 



the fractional coordinates of the atonlS estimated from this 

synthesis are listed in Table 5.2. At this stage all the gross 

features of the molecular structure had been established and 

* R was O.2S. Least squares refinement of the atomic parameters 

was now initiated. 

:f:. The IF 0' were rescaled by equating r.IF 01 and rtF c1. 
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Atom X/a y/b Z/c 

S -0.210 0.010 0.023 

0 -0.175 0.)45 0.097 

C(l) 0.085 0.168 0.027 

C(2 ) 0.245 0.332 0.0625 

C(3 ) 0.040 0.500 0.097 

C(4) 0.173 0.660 0.136 

C(5 ) 0.0175 0.707 0.169 

C(6) 0.110 0.875 0.205 

C(7) 0.315 1.000 0.205 

C(8) 0.465 0.992 0.162 

C(9) 0.)76 0.805 0.129 

Atomic coordinates estimated from the final three-dimensional 
electron density synthesis. 

Table 5.~ • . 
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CHAPTER 6. :-- ... 

~EFIN.&NENT. OJ THE STRUCTU1§ • . 

The program employed for least squares refinement was 

OR-FLS, which had previously been used for basic structure 

factor calculations and \..,hich had nOl-I been converted into Fortran 

IV language. Thio version of OR-FLS \'Ias able to handle up to 

45 atoms and a maximum of 450 parameters, of which 165 could be 

refined simultaneously. 
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The function minimised was L w ( 1 F 0' - \ F c \ ) 2 
• The weighting 

scheme used throughout the refinement was that due to Hughes (39), 

W 11:1 1/ tF 0 \ 2- if \F ot ) 4Fmin , 

w II: 1/(4Fmin ) 2-
if IFolL... 4Fmin , 

w = 0.0 if Fo ... 0.0 

For least squares cycles using isotropic temperature factors 

Fmin was set as 1.0, however it was found that with Fmin - 3.0 

R reduced to its lowest value and this latter allocation for 

F i was used for cycles in which anisotropic temperature factors m n 
were employed. 

Two residual indices are quoted throughout this part 

01 the work; R, is the index obtained using all experimentally 

recorded reflection data, (1493 for Data Set 2; the 478 reflect. 

ions too faint to be measured being included, (initially), with 

IFol= 0.0). R2 is the index obtained when only those reflections 



which had,measurable intensities are used in the summation. 

Refinement employing isotropic temperature factors. 

The initial positional parameters used in the refinenlent 

were those obtained from the final electron density sJ~thesis, 

(Table 5.2), with isotropic temperature factors specified as 

4.0A2 for the sulphur atom and 5.0A2 for oxygen and carbon atoms. 

Two cycles of refinement were performed using Data Set 1; in 

the first only positional parameters were allowed to vary. whilst 

in the second all 44 atomic parameters were refined. At this 

stage the more extensive Data Set 2 were introduced for the 

final phases of the refinement. Although these data had been 

adjusted to the absolute scale via Data Set 1, each layer hOl 

through h4l was assigned an individual scale factor, which were 

treated as varia~les in the least squares refinement. After 

a further four cycles of refinement of the 49 parameters, 

Rl and R2 had reduced to 0.193 and 0.153 respectively. The 

maximum shift calculated in the last cycle represented about 

half of the standard deviation of the parameter, and it was 

considered that convers~on to anisotropic temperature factors 

could now be safely made. The atomic parameters at this stage 

are listed in Table 6.1. 

Refinement emnloying anisotr9Pic temperature fac~~rs. 

The anisotropic temperature factor, T(hkl)i' applied 

to the contribution by atom i to Fc(hkl) is, 

exp-l/4( h2a*2B 11i + k2b*2B22i + 12c*2B33i 

+ 2hka*b*B12i + 2hla*c*B13i + 2klb*c~B23i) 
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X/a Y/b Z/c • Biso (A2). 

s -0.1965 0.0024 0.0236 3.598 

0 ,', -0.1502 0.3365 0.09$0 4.757 

C(1 ) 0.0950 0.1608 0.0263 3.460 

C(2) 0.1948 0.3391 0.0583 3,586 

C(3 ) 0.0549 0.4254 0.0959 3.371 

C(4) 0.1588 0.6310 0.1326 3.319 

C(5) 0.0367 0.6746 0.1727 4.320 

C(6) 0.1223 0.8591 0.2071 5.182 

C(7) 0.3330 1.0141 0.2020 4.964 

C(8) 0.4603 0.9754 0.1628 4.949 

C(9 )- 0.3709 0.7826 0.1283 4.161 

Atomic parameters at the conclusion of the refinement using 
iSQtropic' temperature factors. 

Table 6.1:, 
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where a*, b* and c~~ are reciprocal cell parameters. 

The Hughes weighting scheme was retained with Fmin reset 

to 3.0, and reflections of zero measured intensity were again 

included with rFoI= 0.0. On the initial cycle of refinement 

a singularity \-/as produced in the matrix due to correlation 

between the B22 thermal parameter of the sulphur atom and the 

scale factors; consequently these parameters were not allowed 

to refine simultaneously. After four cycles of refinement 

R, and R2 had improved to 0.164 and 0.125 respectively and the 

parameter shifts \'1ere insignificantly sOlall. Reflections of 
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zero observed intensity were now allocated the value Fun' suggested 

by Hamilton (51) as being the statistically probable value for 

an unobserved reflection in a centro symmetrical space group; 

where, 

J
~ • ..L • S 2-

LPhkl 

Imin= the minimum observed intensity on the film, 

LPhkl - the Lorentz-polaristion factor, 

S - the film scale factor. 

After a further two cycles of refinement R, and R2 improved to 

0.127 and 0.111 respectively; parameter shifts calculated in 

the last cycle were at most 25% of the standard deviation of 

the parameter and refinement was considered complete. The final 

positional and thermal parameters and their estimated standard 

(51) W. C. Hamilton, Acta Cryst., ~, 185 (1955). 



deviations, calculated from the least squares residuals, are 

given in Tables 6.2 and 6.3. 

The location of hydrogen atoms. 

The observed structure amplitudes possess a small contrib­

ution from the hydrogen atoms of the molecule. As the positional 

and thermal parameters of the non-hydrogen atoms were now known 

accurately, a Fourier synthesis using (Fo-Fc) coefficients, (the 

difference synthesiS), will show the residual electron density 

in the cell and should exhibit maxima at the locations of the 

hydrogen atoms. 

Peaks attributable to the six hydrogen atoms of the asymm­

etric half molecule were easily identified 1n the computed diff­

erence synthesis. Their fractional coordinates are listed in 

Table 6.4, together with the 'theoretical' hydrogen positions 

calculated from the carbon atom locations assuming a carbon-
o 

hydrogen bond length of 1.075A. 

A final structure factor calculation was computed with 

the Fe'S based on the parameters of all seventeen atoms of the 

asymmetric unit. In this calculation the hydrogen atoms, (loc­

ated from the difference synthesiS), were allocated the aniso­

tropic thermal motion of the carbon atoms to which they are 

bonded, and the hydrogen scattering curve used was that given 

by Mc\'leeny (52). The final values of R, and R2 were 0.124 and 

(52) R. Nc\'leeny, ibid., Ji, 513 (1951). 
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X/a 

s -0.1969 

0 -0.1506 

C(1 ) 0.0945 

C(2) 0.1970 

cO) 000545 

C(4) 0.1607 

C(5 ) 0.0357 

C(6) 0.1219 

C(7) 0.3314 

C(8) 0,4587 

C(9) 0.3714 

()(X/a) 

xl04 

2 

7 

9 

9 

10 

9 

11 

. 14 

13 

13 

11 

y/b 

0.0022 

0.3345 

0.1614 

0.3399 

0.4272 

0.6315 

0.6716 

0.8600 

1.0131 

0.9748 

0.7813 

o-(y/b) 

x104 

3 

11 

13 

13 

14 

12 

14 

16 

15 

15 

14 

Z/c 

0.02352 

0.09797 

0.02628 

0.05813 

0.09602 

0.13243 

0.17243 

0.20662 

0.20196 

0.16246 

0.12761 

C""(Z/c) 

x105 

5 

16 

19 

21 

20 

20 

22 

24 

26 

28 

24 

The final fractional coordinates and standard deviations of the 
non-hydrogen atoms. 

Table 6.2 
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Bll o-B 1 1 B22 (S'"B22 B33 cS"'B33 B12 cS"'B 12 B13 <1"B 13 B23 

S 2.$2 0.06 3.$3 0.07 4.20 0.07 -0.39 0.05 0.55 0.04 -0.53 

0 3.3S 0.17 5.73 0.2$ 5.$1 0.22 -1.45 0.17 1.11 0.14 -1.49 

C(l ) 2.41 0.1$ 3.$6 0.31 4.05 0.23 0.02 0.1$ 0024 0.15 0.12 

C(2 } 3.05 0.20 3.52 0.31 4.6$ 0.25 0.07 0.19 0.1$ 0.17 -0.11 

C(3 ) 3.04 0.20 3.65 0.31 4.16 0.24 0.06 0.19 0.21 0.16 -0.1$ 

C(4) 3.15 0.20 2.55 0.27 4.33 0.23 0.33 0.18 0.19 0.16 0.22 

C(5) 4.68 0.27 3.40 0.33 4.77 0.27 0.23 0.23 0.74 0.21 -0.30 

C(6) 6.02 0.34 3.89 0.36 4.71 0028 0.04 0.2$ 0.43 0.24 -0.28 

C(7) 5.13 0.31 3.55 0.35 5.5$ 0.32 0.54 0.24 -0.85 0.25 -0.28 

e(8) 4.37 0.27 3.66 0.35 6.49 0.36 0.14 0.23 -0.28 0.25 -0.13 

C(9) 4.08 0.24 3.03 0.31 5.31 0.28 -0.41 0.21 0.41 0.20 -0.02 

o 
The final anisotropic thermal parameters, (A2), and their standard deviations. 

Table 6.3 .. 

<:5"'B23 

0.05 

0.20 

0.21 

0.22 

0.21 

0.20 

0.24 

0.26 . 

0.25 

0 0 27 

0.24 

::"' 
I'.) 



Attached to 
Carbon 

H(l) C(2 ) 

H(2) C(5) 

H(3 ) C(6) 

H(4) C(7) 

H(5 ) C(8) 

H(6) C(9) 

X/a y/b Z/c 

0.372 0.421 0.055 

-0.085 0.529 0 0 175 

-0.058 0.914 0.221 

0.404 1.150 0.227 

0.614 1.081 0.159 

0.4$7 0.783 0.09$ 

The hydrogen positions obtained 
£rom the difference synthesis. 

Table 6.4-

X/a Y/b Z/c 

0.3793 0.4184 0.0561 

-':).1277 0.5546 0.1762 

0.0259 0.8$90 0.2372 

0.3963 1.1616 0.22$9 

0.6220 1.0925 0.1589 

0.4683 0.7496 0.0972 

The theoretical hydrogen 
positions calculated from 
the carbon locations. 

z:-. 
w 



0.110 respectively. The observed and calculated. structure 

factors are tabulated in Appendix I. Superulposed sections of 

a final three-dimensional electron density distribution, taken 

through the atomic centres parallel to (OlO), are shown in 

Figure 6.1, together with a drawing of the corresponding molec­

ular unit. 
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Composite electron density normal to [OlOJ. Contour intervals 
II 

at the carbon and oxygen atoms 1.0 eA-3, at the sulphur atom, 
2.~ el-3 , (the zero contour is omitted). 
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EXPERTIMENTAL - PART II ; = i PI 

THE X-RAY STRUCTURE ANALYSIS OF 3-PHENYL­

l-PROPENE-l,)-DIONE l-(DDIETHYL MERCAPTOLE). 

45 
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PHAPTER 7. 

PRELn4I~~RY X-RAY WORK AND INTENSITY DATA COLLECTION • 

. 3-phenyl-l-propene-l,3-dione l-(dimethyl mercaPtole)~, 
prepared by the method of Kelber (6), crystallises from an ethyl 

acetate and pentane mixture as yellow needles (53). The crystals 

were not sufficiently well formed to study the morphology, except 

to note that the needle axis is parallel to b. 

X-ray equipment. 

Preliminary photographic work was carried out using a 

Philips 1009 X-ray generator and a Stoe integrating Weissenberg 

goniometer. Three-dimensional intensity data were collected 

using a Picker automated four-circle diffractometer. Nickel· 

filtered copper radiation was used throughout the structure 

analysis. 

Crystal density. 

The density of the crystals, determined by flotation in a 

hexane and carbon tetrachloride mixture at room temperat~re, was 

found to be 1.265 g.cc- 1 • For P~I, therefore, the linear absorp-

** tion coefficient, ~, 1s 36.01 cm- 1 • 

Unit cell dimensions and sEace group. 

Cell dimensions were originally estimated from zero 

level Weissenberg photographs and were later refined using 

~ Abbreviated throughout the text as pa\. 
(53) We are grateful to Dr. P. Yates for supplyi,g crystals of PDM • 
• ~ ~ was calculated in the manner described in Chapter 4. 



measurements from the diffrac"tometer. A least squares refine­

ment procedure was used on observed theta angles for forty-two 

reflections. 

System monoclinic (y axis unique) 
o 

a = 5.972 A 
~ 

b = 10.382 A 

c - 19.536 A 
~ I: 109.420 

o 
V = 1142.3 A3 

(CS""= 0.007) 

(0- = 0.025) 

«($'''' 0.011) 

( (5'" a O. 02 ) 

The follo\dng systematic absences were found on zero 

level and equi-inclination Weissenberg photographs, 

hkl - no general absences, 

hOl - absent for 1 ... 2N + 1 , 

OkO - absent for k .. 2N + ... 

The space group is therefore identified as P2 1/c. 

1he number ot m2lecules per unit cell. 

6 1 °3 Using ~eas ... 1.2 5 g.cc- , V ... 1142.3 A , and molecular 

weight, M, of 224.3, 

n .. - ~eas • V . 
1.66 • M 

Thus there are four molecules of P~1 per unit cell. 

The Pi,cker _.tour cir:.cle difrra~Q!!t~. 

A diagramatic representation of the four angles of the 

diffractometer is shown in Figure 7.1, which also defines the 

senses of 2&, ~ and W. The zero position for ¢ is chosen 
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Schemat~c representation of a four-circle diffractometer. 

Figm:e 7.1. 



arbi trarily and the figure shol-/S the direction of rotation which 

increases this angle. The diffractometer with all angles set 

to zero is shown schematically in Figure 7.2, which also defines 

the laboratory orthogonal axes system employed. 

The intensity measurement for each reflection is carried 

out by moving the crystal through the Bragg reflecting position 

by motion about the w -axis. The detector rotates about the 2&­

axis, (which is coincident with the w-axis), its motion being 

restricted to the equatorial plane. This diffraction geonletry 

is the commonly used normal-beam equatorial set-up. 

The symmetrical-A setting, (w a e), was used in all data 

collection. How the angular settings bring a reciprocal lattice 

point to the reflecting position on the surface of the Ewald 

sphere is shown in Figure 7.3. Figure 7.31 shows the Ewald 

sphere and a smaller sphere drawn through the reciprocal lattice 

point P with its centre at the origin of the reciprocal lattice. 

A ¢ rotation brings P to position Q in the ~-plane, and a X 

rotation moves it to position R on the Y orthogonal axis. 

Figure 7.32 is a plan view on to the equatorial plane. The 

reciprocal lattice point, now at R, is brought to the surface 

of the Ewald sphere by rotating ~ through the angle e, the 

detector being positioned at 2& to receive the diffracted beam. 

With the Picker instrument in the symmetrical-A type mode, the 

~ and 2& movements are linked in a 1:2 ratio, and the position­

ing of the crystal and detector for measurement of intensity 

'\ 
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The diffractometer with all angles set to ~ero, showing the 
laboratory orthogonal axes system employed. 

Figure 7.~. 
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~ ------.. 

Ewald sphere 

Figure 7.3,: Normal-beam equatorial geometry • 

• 

Incident ------j~----.J.....---_:__---- x- axis 
bea~---- I 

Equatorial sect ion 
of the Ewald sphere 

Figure 7.32.: The symmetrical-A setting. 

beam 

I 
I 

~ 

~he sequence of angular m?vements which'bring .the 
reciprocal 'lattice point P to the reflecting position. 

, . 
Figure 7.3. 



datum for each reflection is achieved by three angular settings, 

x.. , ¢ and 2&. 

The detector used for intensity measurement was a Picker 

28llB scintillation counter, consisting of a thallium activated 

sodium iodide crystal and a photomultiplier tube, The diffracted 

X-radiation was filtered by a nickel slide, (0.001 inches 

thick), placed in front of the detector window. To guarantee 

that the scintillation counter was being used in the range 
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where quanta entering and counts recorded have a linear relation­

ship, a threshold point of 10,000 counts per second was used with 

the detector. If the count rate for any diffracted beam was 

greater than 10,000 c.p.s. attenuators were automatically intro­

duced into the beam to reduce the count rate to below the threshold 

level. These attenuators were prepared using aluminium foil of 

different thicknesses. The attenuator factor for each was deter­

mined by positioning the detector to receive a moderately strong 

diffracted beam from the crystal, and counting for a fixed time 

period with and without the attenuator in position, (the crystal 

and detector remaining stationary). The attenuator factors so 

determined are given in the following Table, (CuKa). -
Attenuator • Attenuator factor, (At) • 

1 1.35228 

2 1.82866 

.3 2.47286 

4- .3 • .34400 

5 4.5220,) 



CollectiQu-of intensity data. 

All intensity data were collected on the diffractometer 

employing the w-ZS scan mode, (moving-crystal, moving-counter). 

A variable scan range was used during the collection to allow 

for the increasing angular separation of the Kal and Ka2 compon­

ents of the diffracted X-ray spectrum. The scan range, 62&, 

for each reflection was calculated using the formulation of 

Alexander and Smith (54), 

62& - 1.80 + 0.s6tan&m' (Cu~), 

where &m is computed using the weighted mean wavelength of the Ka 

radiation. Thus the scan limits for each measurement are, 

2&m - 62&/2 

29m + 62&/2 

The scan rate used was one degree per minute and background 

counts were taken at both 2e1 and,2e2 for twenty seconds. The 

maximumw angle attainable with the diffractometer is about 670, 

above which the X-circle enters into collision with the X-ray 

tube housing; consequently the intensity data collection was 

limited to reflections with 2&m(Cu~)~1)00, (which allows about 

40 for scan completion). 
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The dimensions of the crystal used for intensity data 

collection were 0.) mm in length, (parallel to b), and 0.1 x 0.1 mm -
in cross section. The crystal was mounted with b* parallel to the 

-
(54) L. E. Alexander and G. S. Smith, Acta Cryst •• li, 1195 (1964). 



¢-axis of the goniostat, and c';c was labelled ¢ = O. Refined 

cell dimensions were obtained, (p.46), from which angular sett­

ings ~, ¢, 2&1 and 2e2 were calculated (55) for all independent 

reflections, (hkl and hkl), wi thin the range 0 ~2&m (CuKa:) ~ 1300 • 

The digital input-output unit to the diffractometer is an I.B .tJI. 

026 printing card punch, the input card for each reflection being 

pre-punched with indices and the required setting angles. The 

following output card, (initially blank), contains a duplication 

of this information and also records the attenuator number used, 

the total count over the scan range, (PK), and the twenty second 

background counts at 2e1 and 2&2, (B l and B2 respectively). The 

input cards were sorted by hand to keep the time required for 
-angular settings to a minimum. The hkl and hkl series were run 
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separately as the t,~ major groups, and within each group data 

were collected in hnl levels. The setting cards in each hnl level 

were further sorted so that the 1 index changed more rapidly 

than hand such that the sum of the differences between the indices 

of sucessive planes was a minimum. The average time taken for 

the complete angular settings and count measurements for each 

reflection was four minutes, of which twenty seconds, on average, 

represented the time taken to set the requi~ed angles. 

D.ata .. reducti.on. 

With a twenty second background count at each end of the 

scan, the average background signal is (B , +B2)/40 counts per 

• 
(55) We are grateful to Dr. J. Trotter, University of British 

Columbia, for the program used to calculate setting angles. 



second. By assuming that this background count rate is charact­

eristic for the total scan, the integrated intensity, PK, is 

background corrected and attenuator scaled by, 

I a rK - 60. l>2E14~ (B 1+B2 ) J · At , 

(where 60.629 represents the scan time, in seconds). As all 

intensity data ar~ measured in the equatorial plane, the Lorentz­

polarisation factor applicable is, 

Lp = 1 + cos2 26 
2sin2& 

• 

No absorption corrections were applied, thus, 

= I hkl • 1 

LPhkl 
• 

The standard deviation of each observed structure amplitude, 

S2 

~Fo' was calculated by employing the statistical treatment form­

ulated by Abrahams et ~. (;6,57,;8). With background measurements 

taken for a total of for~y seconds and a scan rate of one degree 

per minute, then, 

CS"'Fhkl -
where, 

(;6) B~ B. Cetlin and S. C. Abrahams, Acta Cryst., 1£, 943 (1963). 
(57) s. C'. Abrahams, !1?1.s!., il, 1327 (1964). 
(;8) s. C. Abrahams and J. L. Bernstein, ibid., 18 926,(196;). 



C incorporates many instumental features, such as the short or _ 
time X-ray supply and counter circuit instability, and in this 

work was assigned the value 0.002, (this being the average of 

the values found by Abrahams) 0 

Intensity data were reduced, in the manner described 
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above, to observed structure amplitudes, each with a corresponding 

standard deviation, employing a program written for the I.B.M. 

7094 (59). If the peak corrected for background, (I), was zero 

or -negative, the reflection was allocated a background corrected 

intensity value of two counts, reduced in the normal manner, 

and termed unobserved. In cases where the observed structure 

amplitude was finite, but had ~Fo~IFol , the calculated values 

of G'"F 0 and IF 0 1 _'Were retained, but the reflection was again 

termed unobserved. 

Intensity measurements were made on 1882 independent 

reflections withiil the range O~ 2&m(Cu~), 1.3.30. After data 

reduction .322 of these reflections, (177.), were classified as 

unobserved. Throughout the course of the work two residual 

index values are used. Rl is the residual index obtained using 

all 1882 reflections for which intensity ~easurements were made, 

(59) The d~ta reduction program was written by Mr. K. S. Dichmann, 
Chemistry Department, University of Toronto. 



reflections classified as unobserved being treated as described 

above; whilst R2 is the index obtained when reflections tenled 

unobserved are excluded from the summation. 
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CHAPTER $. 

THE GENERATION OF NOill<IALISED STRUCTURE AJl.1PLI'l'UDES • . 

(8.1 ) 

where, E.. hkl is a quantity which depends upon the systematic 

absences of the space group of the crystal; for 

. P2,/c E. has the value two for hOl and OkO sets. 

and is otherwise unity. 

f1 hkl is the scattering factor of the ith atom in a unit 

cell containing a total of N atoms. 

is the observed structure amplitude, 

K(Shkl) is a function of sine which places each rFhkll2. 

datum on the absolute scale. 

(60) J. Karle and H. Hauptman. Acta Cryst., 2; 473 (195). 
(61) H. G. Norment, U. S. Naval Research Laboratory Report 57)9, 

Washington, D. e., (1961). . 
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The theory of the method ~epends on the approximation <JEf2> == 1. 

Initially the reciprocal lattice, . (0 l.2ttnl ~ 1300),. was divided 
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into ten ranges of equal volume so that each sub-interval contained 

approximately the same number of reflections. Each of the ten 

ranges was characterised by a minimum and maximum sin9, (81 and S2 

The value of K(Sm) was calculated for each range, where, 

• 

The procedure was repeated using fifteen and twenty ranges. The 

calculated values of K(Sm) and Sm are listed in Table g.l, and 

the K-curve plot of K(Sm) against Sm is given in Figure 8.1, which 

also shows a monotonically increasing curve drawn through the 

experimental points. 

It is assumed that the curve through the experimental 

points can be formulated by an exponential function of the type, . 

CI AexpB(S )C m ,e 
(8.3 ) 

The 'best fit' values of A and B were calculated by a least squares 

method for the seven equations of type (e.) which had the exponent 

C specified from 1.0 to 4.0 in intervals of 0.5. Also computed 

for each equation was the sum of the squares of the deviations 

of the forty-five experimental points from the formulated curve, 
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10 Ranges 15 Ranges 20 Ranges 

Sm K(Sm) S K(Sm) Sm K(Sm) 
Tn 

0.3316 1.0475 0.2896 1.0433 0.2632 009543 

0.47$2 1.5979 0.4177 1.2318 0.3795 1.2713 

0.5670 2.1$31 0.4953 1.6330 00 4500 1.5552 

0.6343 2.141$ 0.5541 2.2017 0.5034 1.6500 

0.6897 3.3541 0.6025 2.0707 0.5474 2.2824 

0.7374 4.7696 0.6642 2.2253 0.5853 2.0813 

0.7796 6.0392 0.6811 3.4261 0.6188 1.7930 

0.8177 5.4467 007143 3.8616 0.6490 2.5529 

0.8525 6.1488 0.7448 4.7001 0.6767 3.2657 

0.8847 6.5652 0.7729 6.0601 0.7022 3.4617 

0.7991 4.9021 0.7260 4.9055 

0.8237 6.7563 0.7484 4.6289 

0.8469 6.2195 0.7695 5.3104 

0.$689 6.3475 0.7895 6.8578 

0.8$99 6.4606 0.8085 . 4.4094 

0.8267 7.4067 

0.8441 6.6556-

0.8608 5.6656 

0.8769 705611 

0.8924 5.7065 

The computed values of K(Sm) and' Sm. 

Table 8.1. 
7' 
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2.0 .. 
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1.0t ~~ -A~ + \. 
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Sm 

The K-curve plot. 

Table g.l 
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SUM. The coefficients of the seven curves and the corresponding 

values of §QM are listed in Table 8.2. A minimum occurs for SUM -
between the two curves formulated with C II:! 1.5 and C = 2.0, so 

that the exponential functions derived with these coefficients 

are most representative of the experimental point distribution. 

The K-curve method is essentially a modified Wilson 

function., if C is specified as two, then the relationships 

between the scaling quantities determined by this method and 

those of Wilson's original treatment are, 

A ... K' , 
B 11:1 2Bov - , 

~2 

where K' is the absolute scaling factor, (with respect to I Fol2.) J 

and Bov is the overall temperature factor of Wilson's method. 

~he generation of normalised structure amBlitudes. 

The magnitudes of the normalised structure factors, \ Ehklr, 

were computed using the expanded form of equation (a.l), 

I Ehkll .. [IFhkJ,I2.." AexpB (Sin&hkJ. )Cl~ 
£ hkl fr: f~ hkl 

(a.4) 

The program used to compute the normalised structure factor 

magnitudes was also coded to calculate the statistical averages, 

-< IEI2.) ,< IIEI2. -11> and <: lEI>; and the perce~tage distribution 

'of lEI. 

~ Wilson's method for obtaining the absolute scaling factor 
and overall temperature factor is discussed in Chapter 4. 



A- li Q(specified) StJ1.1 

0.305$ 3.5355 1.0 3.128 

0.5918 3.0369 1.5 2.777 

0.8320 2.8586 2.0 2.991 

1.0295 2.8081 2.5 3.729 

1.1947 2.8221 3.0 5.155 

1.3356 2.8741 3.5 7.635 

1.4580 2.9514 4.0 11.796 

The 'best fit' coefficients! and ~ computed for the seven 
curves. SUN is the sum of the squares of the deviation of the 
forty-five experimental points from the formulated curve. 

Table 8.2 . 
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Normalised structure factor magnitudes were computed 

using the two 'best-fitting' K-curves, (C = 1.5 and C D 2.0, 

Table 8.2). The statistical averages and the lEI distribution 

produced are shown in Table 8.3, together with the theoretical 

values of these quantities for both acentr.~and centric space 

groups. From Table 8.) it can be seen that the averages and 

fEI distribution are almost identical for the two K-curve fona­

ulations and a detailed inspection of the complete lEI listings 

showed that individual lEI's were, in general, insignificantly 

different in the two sets; the only major differences apparent 

occur at low sine when K(Sm) approximates to A. The symbolic 

addition procedure was, carried out using normalised structure 

factor magnitudes generated with the second K-curve, (C D 2.0), 

as this made the thermal correction factor analogous with the 

normally assumed Debye form. 

For application of the symbolic addition procedure, 
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the normalised structure factor magnitudes were listed in descend­

ing order and classified by their indices into the eight groups 

of type ggg, gug, ugg, ggu, uuu, uug, ugu and guu, (where g n 

even and u - odd). There are 91 planes with IEI)2.0 and 242 

with IEI~1.5. The fact that the distribution of the fEr's within 

the eight parity groups is reasonably uniform, (shown in Table 8.4), 

indicates that there is no specialisation in the location of 

the sulphur atoms, (as had been found in the desaurin from aceto­

phenone structure), and is a favourable indication for the success 



Experimental Theoretical , , , 
• K-curve K-curve Centric Acentric 

1. 2. 

! 0.591$ 0.8320 

!l 3.0369 2.8586 

Q 1.5 2.0 

<lEI> 0.835 0.835 0.798 0.886 

< IE2-ll> 0.922 0.922 0.968 0.736 

<E2 > 1.016 1.017 1.000 1.000 

%1 EI >3.0 0.2 0.2 0.3 0.0, 

%1 EI). 2.0 4.9 4.8 50 0 1.8 

%IEI~l.O 32.1 32.2 32.0 37.0 

The distribution of normalised structure factor magnitudes and 
statistical averages found together with the theoretical values. 

Table. g.3 
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h k 1 lEt )200 lEI>105 

g u g 9 40 

g u u 13 31 

g g g 13 26 

g g u lit 29 

u u g 8 25 

uuu 10 26 

u g g 11 32 

ugu 13 33 

l 
gU g
r g g u . 44- 127 uug 

ugu 

L g u U}-g g g 47 115 uuu 
u g g 

The distribution of norma.lised structure factor magnitudes 
throughout the eight sub-groups. 

?'able 8.4:, 
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of the symbolic addition procedure. 

The program used to generate the K-curve and compute 

normalised structure factor magnitudes was written in Fortran 

IV for the I.B.~I. 70941r. 

* A listing of this program is given in Appendix V. 
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CHAPTER 2. 

THE SYNBOLIC ADDITION PROCEDURE. 

The practical aspects of the symbolic addition procedure 

follow the method outlined by Karle and Karle (62). The only 

phase relationship used was 2: 2 , which for a centrosymmetrical 

. crystal is formulated as, 

. sEf) rv s L El( • Eil_k ' (where t s I means • sign of I ) • 

"k 
The hyperbolic tangent probability formula was used to evaluate 

the reliability of phases generated by application of the ~2 
.... 

relationship (34,35). The probability function, P+(h), which 

determines the probability that the sign of Eh be positive, 

is defined by, 

P+(h) a 1/2 + 1/2tanh[:~.IEsI.{Ek.Eh_kJ • 
tI n 

where ~n = ~Zi ; Zi being the atomic number of the·ith atom 
\a' . 

in a unit cell containing N atoms. For PJl.l cr'a - 4013 and 

c:r3 - 46,284. 

The ~2 listing and combinational count. 
~ ..lo.~ 

A ~2 listing (62) of all combinations of k and h-k 
~ 

for a given h was computed, considering only the 91 reflections 

with 'EI~ 2.0, (which were expanded to 364 'Eb' using symmetry 

related reflections). This listing facilitated a concise 

(62) J. Karle and I. L. Karle, Acta Cryst., ~t 849 (1966). 
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means of applying the 22 formula by hand for this group of 

reflections. Also computed were the number of times each of the 

reflections entered into a ~2 combination with other members 

of the set (63). 

Origin specification. 

Working in three-dimensions in the monoclinic system, 

(with a primitive unit cell), the origin is fixed by assigning 

phases arbitrarily to three linearly independent reflections 

(64,65) • The three Ek selected to specify the origin were, 

\El 
nwnber of 

h k 1 s combinations. 

2 2 -9 + 2.63 60 

5 1 -2 + 2.83 33 

2 3 1 + 2.90 )6 

These three linearly independent reflections were chosen on 

the basis that they have large lEI value, (hence any new phases 

ge~erated by 12 application will have a high associated prob­

abili ty), and that they form numerous ~ 2 combinations .amongst 

themselves and with other reflections of larger \E\. 

The symbolic addition procedure. 
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!2 generation with the three origin specifying reflections 

( 63) The program used to compute the L~ listing and combinational 
count was written by Mr. F. T. C. Leung, Chemistry Department, 
University of Toronto. 

(64) H. Hauptman and J. Karle, Acta Cryst., 12, 93 (1959). 
(6;) K. Lonsdale and H. J. Grenville-\~ells, Ibid., 2, 490 (1954). 
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yielded signs for five additional Eh on the first cycle. Although 

each of the generated signs was the result of a sin~le L2 

combination, the associated probability values were all greater 

than 0.99. These five normalised structure factors were added 

to the original three to form the input for the next cycle. 

After three cycles of !.2 application, in this manner, a total 

of thirteen reflections, (exclusive of those used to specify 

the origin), could be allocated an absolute phase, (+ or -). 

If the generated sign was the result of a single La combination, 

a probability minimum of 0.975 was imposed; single generations 

of lower probability were placed to one side in the hope that 

further ~a combinations would be formed at a later stage, which 

would produce a corresponding increase in the probability factor. 

One- and two-dimensiona~ data were treated with great care during 

the procedure, as it has been previously found that exceptions 

to the ~2 relationship are much more numerous with these type 

of reflections; 

Since no additional signs could be generated after these 

three cycles a symbolic assignment was necessary and by inspection 

of the I2 listing 2.10.2 was chosen and allocated the symbol A. 
. -

This reflection was chosen on the basis that it would enter into 

many !2 combinations with the sixteen reflections whose phases 

were already known, and that it had a large lEI of 2.64. After 

nine additional cycles of L2 all 91 reflections with \EI.). 2.0 

could be allocated phases of +, - or ±A. Since A must be plus 

or minus, phases determined as +A2 and _A2 were carried through 

as + and - respectively. In the final three cycles of the 

/ 



procedure it was noted that phases generated for a few of the 

reflections were o'f mixed absolute and symbol type, (either 

+A and - or -A and +), indicating that the relationship A = -
was probable. Karle and Karle (62) point out that symbols are 

often found to be definable in terms of others or in terms of 

absolute values, but suggest that any relationships indicated 

should not be assumed until the completion of the procedure. 

The relationship that A was negative was therefore not accepted 

at this stage, and reflections for which generated phases were 

of mixed absolute and symbolic type were placed aside and not 

used in l:2 generation when the list was extended. 

Now that phases could be allocated to all reflections 

with IEI~2.0, the list was extended by including the 151 planes 
. . 

for which 2.0) I E I ~ 1.5. The input for the extended cycle were 

g4 Ek for which phases had been generated in the first part of 

the procedure, (seven reflections being excluded because of 

low probability or because phases indicated were of a mixed 

absolute and symbol type). As the lE\ values in the new list 

were smaller, with the result that the triple product for a 

single ~2 combination. and hence the probability were lower, 
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a criterion was adopted that there must be at least five 

independent I2 combinations for any new reflection before the 

indicated phase would be accepted. On the first pass phases 

could be assigned to 107 Eh in the new list using this criterion 

(66). Numerous of the phases generated had both symbolic and 

(66) This final ~2 cycle was computed using a nrogram written 
by Mr. F. T. C. Leung. 



absolute contributors, indicating again that A was negative, 

and this assigmnent was now accepted. 

A summary of the 2; 2 cycles is given in Appendix II. 

The E map computation. 

The 198 signs determined for reflections with larger 

lEI were already in excess of the ten to twelve normalised 

structure factors per atom of the asymmetric unit generally 

accepted as being sufficient to produce a well resolved E-map 

(37,38). Using the 198 normalised structure factors as Fourier 

coefficients, the three-dimensional E-map was computed for a 

quarter of the unit cell defined by -O.5'x l-0.5, O.Ol:y,"0.5 

and 0.0 ~ z ~ 0.5, in intervals of 0.05 in x, 0.025 in y and 

68 

0.015 in z. The resultant synthesis clearly revealed the location 

of all the atoms of the molecule, with the exception of the 

two carbon atoms of the methyl groups. Around the sulphur atoms 
o 

there were subsiduary diffraction peaks, (in the region 1.7A 
o 

to 2.2A distant from the sulphur atoms), similar to those found 

in the E-map of allylthiourea (67), and unambiguous identification 

of the remaining carbon atoms was not possible. The fractional 

coordinates of the twelve atoms whose locations could be ident-

ified from the E-map are listed in Table 9.1. A composite 

drawing of the E-map, formed by superimposing sections taken 

through the peak centres normal to c*, is shown in Figure 9.1, 

where also is shO\m the atomic numbering system employed. The 

(67)K. S. Dragonette and I. L. Karle, Acta Cryst., 12, 978 (1965). 
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Atom X/a Y/b Z/c 

5 (1 ) 0.530 0.160 0.487 

5(2) 0.-728 0.412 00465 

0 0.073 0.153 0.393 

C(l ) 0.475 0.310 0.438 

C(2) 0.2$0 0.333 0.383 

C(3 ) 0.075 0.258 0.360 

C(4) -0.125 0.310 0.303 

C(5) -0.110 0.404 0.250 

C(6) -0.320 0.438 0.197 

C(7) -0.535 00383 0.184 

C(8) -0.540 0.265 0.230 

C(9) -0.370 0.237 0.275 

The atomic coordinates estimated from the E-map. 

~e 9.1 
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additional peaks around the sulphur atoms are sho\in in Figure 9.1 

with the label A. 

In the allylthiourea problem the subsiduary peaks close 
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to the sulphur atom were removed by increasing the number of 

coefficients in the E-map computation. However we decided that 

rather than generate more phases using I2J an electron density 

synthesis, using observed structure amplitudes phased by the 

twelve atoms whose positions were postulated, should unambiguously 

identify the carbon atoms of the methyl groups and at the same 

time confirm the atomic locations obtained from the E-map. 

Structure factors were computed using the atomic locations listed 

in Table 9.1 and allocating an overall temperature factor of 
o 

3.4A2, (calculated from the ~ coefficient of the K-curve). 

Reflections tagged unobserved were excluded from the calculation 

which yielded a residual index of 0.)8. The subs@quent electron 

* density synthesis clearly revealed the positions of the carbon 

atoms of the methyl groups. The fractional coordinates of all 

.foYr~en atoms of the molecule were assessed from the synthesis, 

and are listed in Table 9.2. Refinement of the atomic parameters 

by the method of least squares was now initiated. 

* The electron density synthesis was computed for the quarter 
of the unit cell and with mesh intervals previously defined 
for the E-map synthesis. 



Atom X/a y/b Z/c 

S(l) 00530 0.1575 0.483 

8(2) 00732 0.405 0.468 

0 0.065 0.1575 00390 

C(l) 00480 0.304 0.438 

C(2) 0.286 0.334 0.3825 

C(3 ) 0.070 0.261 0.3585 

C(4) -0.132 002975 0.2985 

C(5 ) -0.117 0.3985 0.253 

c(6) -0.313 0.446 0.1965 

C(7) -0.533 0.3825 0.182 

C(8) -0.555 0.2775 0.228 

C(9) -0.356 0.234 0.287 

Me(10) 0.835 0.149 0.5375 

~Ie(ll ) 0.630 0.550 0.401 

Atomic coordinates estimated from the three-dimensional 
electron density synthesis. 

Table 9.2 
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CHAPTER 10. 

REFINU'IENT OF THE STRUCTURE. 
--.: - ......... 

The least squares program used was the same version of 

OR-FLS which had previously been employed in the refinement of 

the desaurin from acetophenone structure. All recorded reflect-

ion data were used in the refinement except in the final two 
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cycles with anisotropic temperature factors when reflections 

classified as unobserved were excluded. Each observed structure 

amplitude was weighted using its standard deviation, (S"Fo ' calculated 

in the data reduction procedure, 

1 
• 

An overall scale factor was treated as a variable throughout 

the refinement; the function minimised was ~w( IFol-IFcl )2. 

Refinement with iso~ropic temperature factors. 

The initial positional parameters used in the 'refinement 

were those obtained from the electron density synthesis, (Table 

9.2), and each atom was allocated an isotropic temperature factor 
O

2 of J.4A. One cycle of refinement was computed with the thermal 

parameters of the atoms fixed and was followed by three cycles 

in which all fifty-six positional and thermal parameters were 

refined, Rl and R2 improving to 0.18 and 0.16 respective1y~ The 

maximum parameter shift calculated in the last cycle represented 

about a quarter of the standard deviation of the parameter and 



. conversion of the thermal parameters into anisotropic mode was 

now considered in order. The atomic parameters at this stage 

are listed in Table 10.1. 

Refinement w~th anisotropic temperature factors o 

Four cycles of least squares refinement, performed on 
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the one hundred twenty-seven variables using all recorded reflect­

ion data, proceeded normally. A further two cycles, computed 

with reflections tagged unobserved excluded, produced only small 

parameter shifts and illustrated that the weighting of these 

reflections was such that their inclusion or exclusion had little 

effect during the least squares refinement. The shifts calculated 
o . 

in the final cycle were at most 2570 of the standard deviation 

of the parameter, and refinement was considered complete. The 

residual index R2 was 0.112. The final positional and thermal 

parameters of the fourteen non-hydrogen atoms of the molecule, 

and their estima~ed standard deviations, calculated from the 

least squares residuals, are listed in Tables 10.2 and 10.3. 

Bij , in Table 10.3, are coefficients in the anisotropic temper­

ature expression, 

~ocation of the hydrogen atoms. 

The final atomic parameters, (Tables 10.2 and 10.3), Were 

used to set-up coefficients for a three-dimensional difference 

synthesis, from which peaks attributable to the twelve hydrogen 
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Atom X/a y/b Z/c Biso (12) 

S(l ). 0.5257 0.1589 0.4812 3.613 

S(2 ) 0.7298 0.4106 0.4651 3.906 

0 0.0653 0.1523 0.3892 4.114 

C(l ) 0.4831 0.3100 0.4377 3.167 

C(2) 0.2740 . 0.3428 0.3845 3.417 

C(3 } 0.0733 0.2600 0.3603 3.257 

C(4) .-0.1406 . 0.3020 0.2969 3.486 

C(5) -0.1225 0.3998 0.2512 4.359 

c(6) -0.3287 0.4342 0.1924 4.328 

C(7) -0.5451 0.3724 0.1846 4.371 

c(8) -0.5548 0.2730 0.2304 4.378 

C(9) -0.3560 0.2355 0.2879 3.487 

J.1e (10) 0.8455 0.1558 00 5351 4.470 

Me (11 ) 0.6412 0.5507 0.4042 4.1)1 
:. 

Atomic parameters at the completion of the isotropic least 
squares refinement. 

I?ble 10.1 
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crX/a fT'Y/b fT'Z/c 

Atom X/a X 104- y/b ,,104- Z/c )( 105 

S(1) 005264 5 0.1585 3 0.4812 15 

5(2) 0.7300 5 0.4107 3 0.4649 15 

0 0.0684 13 0.1511 7 0.3895 38 

C(l) 004843 17 0.3079 9 0.4378 55 

C(2 ) 0.2739 18 0.3433 10 0.3857 58 

C(3 ) 0.0729 18 0.2580 9 0.3610 56 

C(4) -0.1386 19 0.3024 10 0.2982 55 

C(5) -0.1223 20 0.3986 11 0.2509 59 

c(6) -003262 21 0.4356 11 001934 60 

C(7) -0.5435 22 003732 13 001840 62 

C(8) -0.5569 21 0.2729 11 0;2312 63. 

C(9) -0.3546 19 0.2363 11 002874 61 

Me(10) 0.8446 19 0.1558 12 0.5)55 64 

Me(11) 0.6406 20 0.5491 10 004045 60 

The final fractional coordinates and standard deviations of the 

non-hydrogen atoms •. 

-Table 10.2 

" 



Atom B11 cs-B" B22 oi322 B33 CTB33 B'2 O"B'2 B'3 cri3 '3 B23 cr'B23 

5(1) 3.34 0.15 3.03 0.12 4.03 0.14 0.06 0.11 0.15 0.11 0.96 0.11 

5(2 ) 3.53 0.15 3.2$ 0.13 4.36 0.15 -0.56 0.12 0.07 0.11 0.64 0.11 

0 3.56 0.39 2.$4 0.33 5.24 0.39 0.15 0.30 -0.13 0.32 2.04 0.31 

e(l ) 2.49 0.47 2.67 0.46 \ 2.97 0.49 -0.62 0.38 0.24 0.40 -0.51 0.39 

e(2 ) 3.29 0.51 2.60 0.44 4.37 0.57 0.32 0.42 1.15 0.45 0.44 0.45 

e(3 ) 3.74 0.55 2.10 0.44 3.48 0.50 0.19 0.40 0.72 0.42 -0.49 0.41 

C(4) 3.65 - 0.56 2.39 0.47 3.01 0.49 0.76 0.42 0.97 0.43 0.00 0040 

C(5) 3.93 0.62 4.96' 0.59 3.61 0.53 1.38 0.53 0.90 0049 1.45 0.50 

C(6) 3.71 0.62 4.28 0.64 4.25 0.57 0.30 0.54 0.09 0.48 -0.86 0.50 

C(7) 4.03 0.67 5.63 0.79 4.13 0060 1.32 0.58 0.39 0.51 -0.92 0.54 

C(g) 3.86 0.66 3.70 0.57 4.10 0.60 -0.05 0.49 -0.25 0.52 -0.94 0.49 

-~'C(9) 2.86 0.54 4.03 0.59 4.50 0.57 -1.48 0.47 1.11 0.47 -2.79 0.50 

Me(lO) 2.75 0.53 3.10 0.60 6.02 0.72 0.44- 0.49 -1.66 0050 0.44 0.57 

Me(11) 4.99 0.65 2.88 0.48 5.64 0.62 0.68 0.48 0.97 0.51 2.99 0.47 
• The ri~al ani~otropic thermal parameters, (A2), and their standard deviations. 

,...--.-

'.l'a bl_e~~ 0 .3~ .....:J 
0"1 



atoms of the molecule were identified o Their fractional coord­

inates are listed in Table 10.4, together with the theoretical 

values calculated from the carbon atom positions assuming a 
e 

carbon-hydrogen bond length of 1.075A. In this calculation one 

hydrogen atom of each methyl group was considered staggered with 

respect to the corresponding 8-C(1) direction. The numbering 

. system used for the hydrogen atoms is shown in Figure 10.1. 

Hydrogen atoms, located from the difference synthesis 

and assigned the anisotropic thermal motion of the carbon atom 

to which they are bonded, were included in a tinal structure 

factor calculation. The hydrogen atom scattering factor used 

was that listed in International Tables (43). The observed 

and calculated structure factors are tabulated in Appendix III, 
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and yield Rl and R2 of 0.119 and 0.101 respectively. Superimposed 

sections of a final three-dimensional electron density distribution, 

taken through the atomic centres normal to c*, are shown in 

Figure 10.2. 

Analysis of the Hhases generated by the SYmbolic addition procesurjt. 

The phases generated by the symbolic addition procedure 

for the 198 normalised structure factors which constituted the 

input of the E-map were compared with those calculated from the 

final atomic parameters. It was revealed that the phase of 254, 

(,EI= 1.58), was the only incorrect allocation made during the 

symbolic addition procedure. Since it cannot be considered that 

this single incorrect phase could have significantly atiected the 

Ie sul tant E-map, the additional diffraction maxima around the sulphur 

atoms apparent in the synthesis appear the result of a lack of 

coefficients in the computation. 



Attached 
Atom to carbon X/a y/b Z/c X/a y/b Z/c 

H(l) C(2) 0.245 0.422 0.351 0.2593 004382 0.3626 

H(2) C(5) 0.024 0.475 0.261 0.0451 0.4447 0.2581 

H (3) C(6) -0.390 0.483 0.149 -0.3159 0.5111 0.1569 
, 

H(4) C(7) -0.685 0.416 0.144 -0.7001 0.4021 0.1406 

H(5) C(8) -0.720 0.219 0.230 -0.7230 0.2250 0.2237 

H(6) C(9) -0.355 0.17S 00340 -0.3622 0.1580 0.3226 

H(7) Me (10-) 0.$52 0.068 0.533 0.8706 0.0639 0.5619 

H(S) Me(lO) 0.972 0.158 0.495 0.9520 0.1645 005011 

H(9) Ne(10) 0.8S5 0.217 0.570 0.S874 0.2325 0.5747 

H(lO) Me(ll) 0.805 00600 0.416 0.791S 0.6121 004211 

H(11) Me(ll) 0.600 0.490 0.354 006012 005203 0.3489 

H(12) Me(ll) 0.530 .0.618 00421 0.4878 0.5954 0.4109 

Hydrogen positions obtained Theoretical hydrogen positions 
from the difference synthesis. calculated from the carbon 

locations. 
....:J 

Table 10.4 Q) 
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EXPERIMENTAL - PART III 

THE STRUCTURE ANALYSIS OF THE 1,2,4-

TRITHIACYCLOPENTANE FROM PINACOLONE. 
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CHA,PTER 11,. 

PRELThUNARY X-RAY ''lORK AND INTENSITY DATA COLLECTION. - .. --..-.... 

The 1,2,4-trithiacyclopentane from pinacolone, prepared 

by the method of Gompper (7), crystallises from a chloroform and 

hexane mixture as yellow needles (68). The crystals have a as -
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the needle axis with (011) and (011) developed, (Figure 11.1, p.82). 

X-ray equipment. 

Preliminary photographic work was carried out using a 

Philips 1009 X-ray generator and a Stoe integrating Weissenberg 

goniometer. Three-dimensional intensity data were collected 

using a Picker automated four-circle diffractometer. Nickel 

filtered copper radiation was used throughout the structure analysis. 

Unit cell dimensions. 

Cell dimensions were originally obtained from zero level 

Weissenberg photographs and were later determined more accurately 

using measurements from the diffractometer. The crystal, (later 

used for intensity data collection), was mounted with b* parallel 

to the ¢ axis of the goniostat, and at ~= 0, P* was determined 

directly as the ¢ angular displacement between a* and c*. The 

axial lengths were calculated from average observed theta angles 

for two hOO, three OkO and four 001 reflections, 

(68) We are grateful to Dr. P. Yates for supplying crystals of 
the l,2,4-trithiacyclopentane from pinacolone. 



System monoclinic (y axis unique) 

a -= 5.936 A ( ~0.007 )* 
" 13.023 A ( ±O.Olo ) b = 

• c ... 22.732 A ( ~O.Ols ) 

108.02° (~0.02 ) 

• 1757.3 A3 v -= 

Because the cell dimensions were determined using relatively 

few measurements from the diffractometer, their accuracy were 

assessed by comparing observed and calculated values of 29 and 

¢ for twenty reflections of the hOI and Okl zones. The maximum 

deviation found was 0.020. 

Crystal density. 

The average density of the crystals, (~eas)' determined 

by flotation in an acetone and carbon tetrachloride mixture at 

room temperature, was found to be 1.22 g.cc-1 • Using this 

value for the crystal density the linear absorption coefficient, t. 
~, is 37.5 cm- 1 • 

Space group anq number of molecules per unit cell. 

The systematic absences found on zero level and equi-
, 

inclination \'leissenberg photographs were, 

hkl no general absences, 

h01 - absent for 1 = 2N + 1, 

OkO - absent for k ... 2N + 1 • 

* The errors quoted with the cell dimensions represent the 
the maximum deviation of the calculated quantities from 
the mean value. 

+t ~ was calculated in the manner described in Chapter 4. 
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The space group is therefore identified as P2 1/c. 
o 

Using ~eas = 1.22'g.cc- 1 , V ~ 1757.3 A3 and molecular weight, 

M, .. 316.5, 

n = drneas • V 

1.66 • IvI 

= 4.07. 

Thus there are four molecules of the l,2,4-trithiacyclopentane 

from pinacolone per unit cell. 

Collection of three-dimensional intensity data. 
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An acicular crystal was cut into a more symmetrical shape 

and used for intensity data collection. The approximate dimensions 

of the crystal were, 

JI O.;"mm 
t I'----v 

O.ls DlDl • .. I • 
O.ls rnm 

<all) 

(ali) 
Figure 11,1 

o 

Absorption is therefore fairly low, (~CuKa - 37.5 em-'), and 

no corrections were applied. 

Three dimensional intensity data were collected using 

a Picker automated four-circle difrractometer*. The crystal 

was mounted with b* paralle,l to the ¢ axis of the goniostat and 

a* was specified as ¢ - O. An data were collected employing the 

~-2e scan mode, (moving-crystal, moving-counter), using a scan 

rate of one degree per minute. The scan range for each reflection 

,f The Picker diffractometer and its mode of operation for 
intensity data collection are 'described 1n Chapter 7. p.47. 



was calculated using the standard equations of Alexander and 

Smith, (equations· 7.1), and background measurements were taken 

at both 2e1 and 262 for twenty seconds. As previously stated 

in Chapter 7, the maximum value ofw safely attainable with 

the Picker diffractometer is 670; consequently the intensity 
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data collection was restricted to reflections for which 2&m(CuKa) . 

6 1300 • The setting cards, which form the input to the diffract-
., 

ometer, were ordered by hand to minimise the time required for 
... 

angular slew between measurements. The hkl and hkl series were 

run separately as the two major groups and within each data were 

collected in hnl levels, with the 1 index changing more rapidly 

than h. Crystal orientation and system stability were checked 

during the automatic phases of the collection by taking intensity 

measurements for twelve 'test' reflections after each hnl level 

was completed. The maxim~ deviation of a test measuremen~, from 
• • its mean value over the total collect10n, was found to be 270 • 

~ 

The procedure whereby intensity data, measured using the 

dIffractometer, were reduced to observed structure amplitudes 

* was analogous to that employed in the structure analysis of PIli ; 

the statistical treatment due to Abrahams being retained to 

calculate the standard deviation, ~Fo' of each IFoidatum. The 

classification and treatment of unobserved reflections followed 

the same lines as that employed in the PU4 data reduction, (page 

53). Intensity measurements were made on 2778 independent 

Details of the data reduction are given in Chapter 7, p.5l. 



reflections wi thin the range 0 < 2Sm ~ 1)00 j after data reduction 

5)0 of these refl'ections, (19.li.), were classified as unobserved. 

Absolute SCaling and overall temperature factor. 
:t= The K-curve method was employed to place the observed 

structure amplitudes on the absolute scale and ascertain the 

average isotropic temperature factor. 

Initially the reciprocal lattice, (O<2em~1)OO), was 

divided into ten sub-intervals, (of equal volume), and the value 
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of K(Sm) calculated for each, ~K{Sm) is defined by equation (8.2)]. 

The procedure was repeated using fifteen and twenty ranges. The 

calculated values of K(Sm) and the corresponding values of Sm' 

(the mean sinS for the range), are listed in Table 11.1; the 

resultant K-curve plot, or K(Sm) against Smtis shown in Figure 11.2. 

Again it was assumed that the K-curve could be fitted by the 

exponential function (8.), viz. 

(11.1) 

Seven equations of type (11.1) were" formulated, having C specified 
, 

from 1.0 to 4.0 in intervals of 0.5. and for ~ach the best fit 

values of A and B were calculated using a least squares method. 

The coefficients of the seven curves and the correspo,nding 

values of StJlol, (the sum of the squares of the deviations of the 

45 experimental points from the formulated curve), are listed 

in Table 11.2. 

~ The K-curve method is discussed in Chapter 8, p.55. 
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10 R.ange!?, 15 Ranges 20 Ranges 

8m .K(Sm) 8m K(Sm) 8m K(8m) 

0.3316 1.1115 0.2897 1.1175 0.2632 1.1/~77 

00 4782 1.5665 0.4177 1.2829 0.3795 1.0509 

0~5670 1.8403 004953 1.5543 0.4500 1.4947 

0.6343 200667 005541 108439 0.5034 1.6626 

0.6897 3.5055 0.6025 1.8837 005474 1.8259 
- - -

0.7374 4.3026 0.6442 2.1470 0.5853 1.8568 

0.7796 4.5198 0.6811 3.5645 0.6188 2.0326 

0.8177 5.6951 007143 307734 0 0 6490 2.1028 

0.8525 608610 0.7448 4.2729 0.6767 3.3627 

0.8847 7.5412 0.7729 4.4546 0.7022 ).6781 

0.7991 4.7466 0.7260 4.5747 

0.8237 602379 0.7484 4.0572 

0.8469 7.0279 0.7695 4.9995 

0.8689 6.7931 0.7895 4.1570 
-

00 8899 708390 0.8085 5.2954 

0.8267 6.1872 

0.8441 6.7282 

0.8608 7.0533 

0.8769 7.1286 

0.8924 8.0494 

Computed values of K(Sm) and 8m used for the K-curve generation. 

Table 11.1 
• 
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A B C SUM 

002827 3.6127 1.0 30069 

0.5468 3.1293 1.5 2.028 

0 •. 7681 2.9687 2.0 1.669 

009498 2.9376 2.5 1.638 

1.1016 2.9725 3.0 1.840 

1.2311 3.0470 3.5· 20276 

1.3437 3.1482 4.0 3.013 

The 'best fit' coefficients A and R for the seven curves. 
S~1 1s the sum of the squares of the deviations of the forty­
five experimental points from the formulated curve. 

Table 11.2 :: == 
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Genera~ion of ~~malised structure amplitudes. 

Normalised structure factor magnitudes were computed:f= 

using the two 'best-fitting' K-curves, (C = 2.0 and C = 2.5; 

Table 11.2). The statistical averages and the percentage 

distribution of lEI produced are given in Table 11.3, together 

with the theoretical values of these quantities. As is evident 

from Table 11.3, the computed averages and lEI distribution for 

the two K-curve formulations are not significantly different 

and in all further work the curve with C = 2.0 was used. This 

K-curve therefore yields, 

.. J 0.7681 

1:1 ~t968Z.A.2 
2 

- 0.876, 
o 

.. 3.53 A2, 

87 

where Ktt is the scale factor required to place the observed 

structure amplitudes on the absolute scale and Bov is the average 

isotropic temp~rature factor. 

All reflections having [El~ 1.5 were classified by their 

indices into the eight parity groups and produced the distribution 

shown in Table 11.4. There are 129 reflections having IEI~ 2.0, 

but only 43 of these are contained in parity groups for which 

(k+1) is odd. vfuen reflections baving lEI) 1.5 are considered, 

this specialisation in lEI distribution is less severe but still 

apparent. For the purpose of comparison a similar distribution 

Normalised structure factor magnitudes were calculated 
using equation (8.4), p.58. 
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Experimental Theoretical. 
r I , , I 

I 
K-curve K-curve Centric Acentric 

1. 2. 

A 0.7681 0.949$ 

B 209687 2.9376 
,', 

C 2.0 2.5 

< I~I > 0.821 0.821 0.798 0.886 

< IE2 - 11) . 0.944 0.944 0.968 0.736 

<. E2) 1.010 1.010 1.000 1.000 

.,t lEI.). 3 .0 0.2 0.1 0.3 0.01 

~IEI ). 2.0 4.6 4.5 5.0 1.8 

%IEI ~ 1.0 31.9 31.9 32.0 37.0 

The distribution of normalised structure amplitudes and statistical 
averages found, and the theoretical values of these quantities. 

Table 110) 



h k 1 

g g g 

g g u 

gug 

g u u 

ugg 

u g u 

uug 

uuu 

1 g g g~ u g g 
g u u 
u u u 

L g g u~ u g u ~ 
g u g 
uug 

lEI ~ 2.0 lEI) 1.5 

26 52 

14 43 

9 38 

27 56 

16 52 

11 )8 

9 34-

17 51 

86 211 

43 153 

The distribution of I EI wi thin the eight sub-groups., for the 
trithiacyclopentanefrom pinacolone. 

Table 11.4 
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of the normalised structure factor magnitudes for the desaurin 

from acetophenone is shown in Table ll.5~. The effect of the 

specialised r coordinate of the sulphur atoms of the desaur~n 

is very apparent, in that of 73 reflections having lEI ~2.0 

and 210 reflections having rEI ~1.5, only 2 and 13 respectively 

are contained in parity groups for which (k+l) is odd. Although 

the rEI distribution amongst the eight parity groups is much 

less severely specialised for the l,2,4-trithiacyclopentane 

from pinacolone, it is sufficient to indicate that one or two 

sulphur atoms of the molecule are probably located 'close' to 

(020). 

~ The normalised structure factor magnitudes for the desaurin 
from acetophenone were computed after completion of the 
structure analysis. 

. .~ 
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h k 1 lEI) 2.0 lEI}' 1.5 

u u u 18 40 

u u g 1 1 

u g g 17 59 

u g u 0 5 

g g g 16 54 

g g u 1 5 

g u u 20 44 

g u g 0 2 

l U U g~ U g u 2 13 . g g u 
g u g 

lU U U~_ U g g 71 197 g g g 
g u u 

Tbe distribution or fEf within the eight sub-groups, for the 
desaurin from acetophenone. 
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CHAPTER 12. 

THREE~D~IF.NSIONAL PATTERSON AND ELECTRON DENSITY SYNTHESES. 

In Chapter 2 it was noted that resolution of peaks in 

the Patterson function is improved by employing sharpened 

coefficients, (ISFhklI1), formulated by equation (2.3), viz, 

II: , (12.1) 

where, 

m the observed structure amplitude, 

RHO - (sinSj)..)2 , 

Bov - the overall is~tropic temperature factor, 

t1 hkl - the scattering factor ot the ith atom in a unit 
cell containing N atoms. 

By using the K-curve coetficients, A and B, (with C 

specified as 2.0), equation (12.1) can be re-written as, 

.92 

ISFhk12 .. IFhk~2 • Aexp[B(sine)2.~ (12.2) 

~ri2 hkl i., 
and comparison with equation (8.4) therefore yields, 

- • 

A sharpened Patterson tunction can theretore be computed by 

employing EIE 12 coetficients in the summation. 
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The origin peak apparent in the Patterson function is removed (69) 

by employing in the synthesis coefficients of type, 

[" Fhkll2. - ~ rt hklJ (12.) ) 

where ttF hkl' is the observed structure amplitude adjusted to 

the same scale as fi hkl' (usually absolute for non-vibrating atoms). 

By expres,sing ItF hkll:t in the form 9 F hkl,l..AexpB (sine) CJ, and sharp­

ening the coefficients, (by dividing through by :tf~ hkl)' the 

origin-removed sharpened Patterson function can therefore be 

computed by employing [ehkll Ehkll2. - 1] terms in the summation. 

The program used to compute the K-curve and calculate 

normalised structure factor magnitudes, was also coded to produce 

a binary data tape of (E.1E1t. - 1) and £lEI2. coefficients. The prep­

ared data tape was utilised as input by a subsequent general 

Fourier program whence either the sharpened Patterson function 

or the origin-removed sharpened Patterson function was computed. 

The three-dimensional Patterson function. 

The origin-removed sharpened Patterson function was 

computed for the quarter of the unit cell defined by -0.5' u" 0.5, 

O.O~ v~ 0.5 and 0.0 'w ~0.5, in intervals of 0.05 in u, 0.02 in 

v and 0.01 in w. 

The equivalent positions of space group P2 1/c are 

±(x,y,z) and :t(x, ~-y, ~ +z). Peaks in the Patterson function 

which represent vectors between symmetry related atoms will 

(69) See, for example, M. J. Buerger, "Vector Space", Wiley and 
Sons, New York, \1959), p. 56. 

" 
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therefore be located at, 

±(2x, 2ZI} weight 
A. 2y, 

Inversion peaks lx 
B. ±(2x, 2y, 2z) 

c. ;!J2x, ! , ..!. + 2z) Harker section 2x 
2 2 

table ).2.1 

D. ±( 0, 1.. - 2y ..!. ) Harker line 2x 
2 "2 

The desaurin from acetophenone crystallises in space 

group P2 1/c with two molecules, (four sulphur atoms), per unit 

cell. Thus the only sulphur-sulphur peaks apparent in the 

Patterson function are those representing vectors between symm­

etry related atoms. and by using Table 5.1. (eTab1e 12.1). the 

real space coordinates of the sulphur atoms were eas11y determined. 

In the l,2,4-trithiacyclopentane from pinacolone there 

are three sulphur atoms per asymmetric molecule and interpretation 

of the Patterson function will therefore be made more difficult 

by sulphur 'cross-vector' peaks. (i.e. peaks representing the 

vectors between sulphur atoms unrelated by space group symmetry). 

The twelve sulphur atoms in the unit cell will give rise to one 

hundred and thirty-two sulphur-sulphur vector peaks in the complete 

Patterson function. From Table 12.1 it can be seen that of these 

. peaks, six will occur on both the Harker section and Harker line, 

(each of two-fold weight). and twelve inversion peaks will occur 

in the body of the unit cell. The remaining forty-eight peaks, 

of two-fold weight. represent the cross-vector sulphur-sulphur 

interactions. In the quarter of the unit cell tor which the 



Patterson function was computed, there will be, therefore, 

three peaks on both the Harker section and Harker line, three 

single weight inversion peaks and twelve double weight cross­

vector peaks. The most easily identified of the cross-vector 

peaks will be those representing intramolecular interactions. 

Although no structural details of the l,2,4-trithiacyclopentane 

syst~m were available, (at this time), it was possible to assess 

approximate dimensions by utilising bond distances and angles 

found in related sulphur-containing systems. In 1,2-dithiolane-

4-carboxylic acid (70) and 1,2-dithiane-),6-dicarboxylic acid 
o 

(71), disulphide bond lengths of 2.07 and 2.09A, (respectively), 

were found, with heterocyclic C-S-S angles in the order 92-990. 

The structure analyses of the desaurin from acetophenone and 
o 

PrM yield C(sp2)-S bond distances of 1.75-l.77A; in addition 

the S(II)-C( sp2)-S(II) bond angle found in PDM is 1150 f. -

95 

Structure analyses of six-membered sulphur-containing hetero­

cyclics (80,81), have yielded C( sp2)-S(II)-C(sp2) angles of N1OOo. - -
The atomic numbering system employed for the trithia­

cyc10pentane ring is, 

S2-81 
/ \ 

==C8 C1= 

'8)/ 

By applying the dimensions quoted above to this system, approximate 

sulphur-sulphur distances in the molecule will be, 

(70) o. Foss, A. "Hordvik and J. Sletten, Acta Chem. Scand., 
~J 1169 (1966) . 

(71) o. Foss, K. Johnson and T. Reistad, ibid.,U, 2)45 (1964). * Structural data for PUM and the desaurrn are given in 
Chapter 14. 



o 
51 - 52 AI 2.1A 

81 

52 
53} • 

IV 3 .OA 
53 

In the computed portion of the Patterson function, three 

prominent peaks, characteristic of intramolecular sulphur­

sulphur vectors, were found, (Table 12.2). 
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Peak DistanceofroDl Interpret-
f U W origin (A) V height ation. 

1 0.100 0.100 0.080 793 2.17 51-52 

18 0.525 0.000 0.055 1150 2.97 51-S3 

6 -0.425 0.090 0.025 631 2.99 52-53 

Peaks representing intramolecular s-s vectors. 

Table 1212 

Peaks 1 and .6 have the normal two-fold weighing associated with 

the interactio~, whereas peak 18, situated on the mirror plane 

at V co 0, will be of four-fold weight. The specialised location 

of peak 18 indicates that 51 and S3 must have approximately the 

same y coordinate. This set therefore fixes the orientation of 

the three sulp~ur atoms of the.heterocyclic ring. 

Three peaks were observed on. the Harker section having 

relative positions consistent with this orientation, (Table 12.3). 

Peak 
r/I u V· W height Interpretation. 

12 -0.60 0.50 0.21 607 81-S1 

15 -0.4° 0.50 0.37 695 82-52 

14 0.45 0.50 0.32 751 83-S3 
Peaks on the Harker section Cu, 1/2, w). 

Tabibe ~2·l 



Inspection of the Harker line showed only two prominent 

peaks, (Table 12.4). 

rr/I 

16 

17 

u 
o 
o 

V 

0.2g 

0047 

W 

1/2 

1/2 

Peak height 

6g2 

1052 

Interpretation. 

52-S2 

-{
Sl-Sl 
S3-S3 

Peaks on the Harker line (0, v, 1/2) 

Table l2.h: 

Peak 16 has the normal two-fold weight characteristic of the 

interaction, whilst peak 17 is formed by a superimposition of . 
two such peaks, (the analysis of intramolecular sulphur-sulphur 

vectors had already indicated that 51 and S3 have approximately 

the same y coordinate). 

By using Table 12 0 1, (C and D, in which the Harker peaks 

are expressed in terms' of general, real space, coordinates of 

the atoms), together with the intramolecular vector set, the 

, fractional coordinates of the sulphur atoms of the asymmetric 

molecule were taken as, 

51 

52 

53 

X/a 
-0.300 

-0.200 

0.225 

y/b Z/c 
0.010 -0.145 

0.110 -00065 Table 12.5 

0.020 -0.090 

Prominent peaks in the Patterson func~ion'corresponding 

to all sulphur-sulphur cross-vectors indicated that the sulphur 

atoms were correctly located in the unit cell. The coordinates 

or the highest twenty-two peaks in the computed portion of the 

97 
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Patterson function, and the sulphur-sulphur vectors to which 

they correspond,· are given in Table 12.6. The subscript applied 

to the sulphur atom, in Table 12.6, indicates the equivalent 

position occupied, and uses the key, 

51 • x, y, z (the coordinates listed in Table 12.5) , 
82 · -x, -y, -z • 

53 · x, 1 _ y !+z · i ' 2 

54 · -x, ! + y, ! - z , 
2 2 

From Table 12.6 it can be seen that the relative peak 

heights, (each measured from the lowest negative trough in the 

computed function), compare quite well with the theoretical 

weight. Peak 13 is 'non-Harker', and represents 8l-S3 vectors; 

the effective four-fold weighting is again due to the y coor--
dinates of these atoms being approximately the same. The 81 

inversion peak, (#19), has double weighting due to the atom 

lying close to the plane at y D O. Peak 11 is too near to the 
.- -o 

origin, (~O.7A), to represent any interatomic vector, and must 

result from slight errors in the origin removal procedure. 

Although the resolution in the Patterson function was 

remarkably good, and many peaks representing vectors between 

sulphur and light atoms were clearly evident, it was decided 

to compute electron density syntheses to locate the remaining 

sixteen light atoms in the molecule. 

Three-dimensional electron density sxptheses. 

In the desaurin from acetophenone, the sulphur atoms 

lie very close to (020), causing pseudosymmetry in the electron 
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density syntheses, which delayed the identification of the light 

atoms. Interpretation of the Patterson function of the 1,2,4-

trithiacyc10pentane from pinacolone reveals that 51 and 53 exhibit 

a si~ilar specialisation in position. Howeve~ the effect in this 

structure will be much less severe as both 51 and 53 have a greater 
o 0 D 

displacement from (020), (0.13A and 0.26A compared with O.OIA in 

the desaurin), and in addition 52 will make a 'normal- contribution 

to all structure factors. 

Structure factors were calculated using the sulphur posit­

ions determined from the Patterson function and assigning an 
o 

overall temperature factor of 3.5A2; reflection data classified 

as unobserved were excluded from the calculation which yielded 

R 1:11 0.41. The subse.quent electron density synthesis* was devoid 

of false symnletry and the light atom locations were clearly 

revealed as the sixteen highest, (non-sulphur), peaks on the 

sections. A calculation of interatomic distances and angles 

showed the molecular dimensions to be reasonable for this stage 

of the structure analysis. Structure factors were re-calculated 

from the positions of all nineteen atoms and yielded a residual 

index of 0.25. Inspection of the second electron density synthesis 

showed that all the light atoms included in the structure factor 

calculation had increased in peak density and that there were 

no spurious peaks on the sections. The atomic coordinates 

estimated from this second electron density synthesis are listed 

in Table 12.7. The atomic coordinates tabulated comprise an 

tI= The electron density syntheses were computed"for the quarter 
of the unit cell and with mesh intervals previously defined 
for the Patterson synthesis. 



(asymmetric) molecule, (the sulphur locations listed are the 

invertion equivalents of the positions determined from the 

Patterson function). The atomic numbering system employed is 

shown in Figure 12.1 

Refinement of the atomic parameters by the method of 

least squares was now initiated. 

r 

101 
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Atom . X/a y/b Z/c 

S(1) 0.302 -0.016 0.146, 

8(2) 0.202, -0.110 0.066, 

S(3 ) -0.230 -0.021 0.087 

0(1) 0.38; 0.093 0.242 

0(2) 0.067, -0.23" -0.0235 

C(l ) 0.025 0.021 0.148 

C(2 ) -0.012, 0.076 0.1995 

C(3) 0.190 0.113 0.247, 

0(4) 0.1;0 0.165 0.300 

Me(;) 0.39; 0.200 0.348 

Jvle(6) ·0.020 0.257 0.278 

Me(?) 0.044 0.092 0.338 

C(8) .- -0.115 -0.108 0.050 

C(9) -0.262, -0.168 0.006 

C(10) .0.160 -0.236 .0.0285 

C(ll) -0.310 -0.318 -0.071 

Me(12) .0.542, .0.263 -0.118 

Me(1) ) .0.410 .0.400 -0.0)45 

Me(14) -0.185 .0.)64 -0.112 

Atomic coordinates estimated from the second electron density 
synthesis. 

Table 12.2 



... 
Me(5) 

Me(6) 

~ 

_, Me(12) 
.... 

1he atomic numbering system used throughout . 
the structure analysis. 

Figure 12.1 



£HAP:rER la.. 

REFINENENT OF THE STRUCTUR~. 

The standard version of OR-FLS was employed for the 

initial stages of refinement, but was replaced, for cycles 

involving anisotropic temperature factors, by an extensively 

modified version ~ble to accommodate simultaneous refinement of 

172 parameters. Each observed structure amplitude was weighted 

using its standard deviation calculated in the data reduction 

procedure, 
.. 

An overall scale factor was treated as a variable throughout 
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the refinement; the fUnction minimised was. r w( 'F 01 -I F c \ ) 2. 

During the course of the refinement two residual indices are 

quoted; R1 is the residual index obtained using all 2778 reflect­

ions for which intensity measurements were made, whilst R2 is 

the index produced when reflections termed unobserved are excluded 

trom the summation. 

The initial positional parameters used in the refinement 

were those obtained from the second electron density synthesis, 

(Table 12.7), and each atom was allocated an isotropic temperature 
• factor of J.5A2 •. Two cycles of refinement were computed with 

. the thermal parameters of the atoms fixed, followed by four 

cycles in which all 76 positional and thermal parameters were 

refined, R1 and R2 improving to 0.188 and 0.168 respectively. 



The parameter shifts calculated in the last cycle were less 

than one half of the corresponding standard deviation and 

convertion of the temperature factors into anisotropic mode 

Was now considered in order, The atomic parameters at this 

stage are listed in Table.13.l. 
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It was noted that the observed and calculated structure 

amplitudes for 011, 023 and 024 were in extremely poor agreement 

for such low order reflections, 

IFol IFJ 

011 89.8 136.8 

02) 142.7 181.1 

024 88.2 10).2 

On re-checkingthe diffractometer output it was revealed that 

there had been insufficient attenuation available during the 

intensity data collection for these reflections; consequently 

they were excluded from all further refinement. 

The modified version of OR-FLS was introduced and refine­

ment continued employing anisotropic temperature factors. Two 

cycles were computed with the thermal parameters of the carbon 

atoms of the methyl groups fixed, followed by four cycles in 

which all 172 parameters were refined, Rl and R2 improving to 

0.094 and 0.074 respectively. The maximum shift calculated 

in the final cycle represented about 20% of the standard deviation 

of the parameter and refinement was considered complete. The 

final positional and thermal parameters and their estimated 

st~ndard deViations, calculated from the least squares residuals, 
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Atom X/a Y/b Z/c (' 2 Biso A ). 

S(l) 0.2938 -0.0140 0.1448 3.762 

5(2) 0.1952 -0.1089 0.0655 3.480 

SO) -0.2300 -0.0192 0.0880 3.229 

0(1 ) 0.3834 0.0925 0.2402 5.050 

0(2 ) 0.0541 -0.2321 -0.0223 5.087 

C(l) 0.0158 0.0220 0.1494 2.650 

C(2) -0.0181 0.0774- 0.1951 2.982 

cO) 0.1855 0.1113 0.2444 3.609 

C(4) 0.1486 0.1680 0.3000 3.892 

~le (5) 0.3885 0.1972 0.3447 6.874 

Me(6) -0.0108 0.2610 0.2777 6.561 

Me(7} 0.0282 0.0938 0.3328 7.678 

C(8) -0.1110 -0.1076 0.0477 2.553 
r 

C(9) -0.2571 -0.1659 0.0048 2.638 

C(10) -0.1593 -0.2355 -0.0298 3.114 

C(11) -0.3150 -0.316; -0.0732 3.752 

Me(12 ) -0.5390 -0.2663 -0.1186 6.868 

)le (13 ) -0.3897 -0.3933 -0.0309 9.014 . 

Me(14) -0.1857 -0.3670 -0.1138 9.271 

Atomic parameters at the conclusion of the refinement employing 
isotropic temperature factors. 

Table 13.1 



are listed in Tables 13.2 and 13.3. Bij , in Table 13.3, are 

coefficients in the anisotropic temperature factor expression, 

exp-l/4(h2a*2B 11 + k2b*2B22 + l2C*2B33 

+ 2hka*b*B 12 + 2hla~(c*B13 + 2klb*c,;ca23) 

From Table 13.3 it can be seen that the thennal vibrations of 

the atoms are 'non-isotropic '. in nature. Although the values 

of Bij produced from a least squares refinement must be treated 

with caution, since they will tend to encompass systematic . 

errors in the 1Fo' , those of the carbon atoms of the six methyl 

groups, (rC(lvIe)'), appear especially notable. The thermal 

parameters of the C(Me) atoms show a high degree of anisotropy 

and the magnitudes of the motion of these atoms contrast with 

those of t~e fourth carbon atom of the !-butyl groups, (C(4) 

and C(ll». A difference synthesis computed at this point 
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did not suggest any corrections to the C(Me) parameters. Although 

peaks attributable to the hydrogen atoms bonded to C(2) and C(9) 

were apparent in the synthesis, the regions where 't-butyl -
hydrogens' are theoretically expected were characterised by 

smears of low electron density and consequently their locations 

could not be fixed. 

The observed and calculated structure factors, (the 

latter from the atomic parameters listed in Tables 1).2 and 1).3), 

are tabulated in Appendix IV. Superimposed sections of a final 

electron density distribution, taken through the atomic centres 

parallel to (010), are shown in Figure 13.1, together with a 

drawing of the corresponding molecular unit. 

'. 



ct(X/a) cr(Y/b} cs-(Z/c) 

Atom X/a x 104 Y/b x lOS Z/c x lOs 

5(1 ) 0.2936 3 -0.0142 13 0.1446 8 

8(2 } 0.1956 3 -0.1087 13 0.0657 7 

5(3 ) -0.2295 3 -0.0192 12 0.08$2 7 

0(1 ) 0.3849 7 0.0944 37 0.2407 21 

0(2 ) 0.0562 g -0.2329 35 -0.0225 22 

C(l ) 0.0160 8 0.0203 40 0.1491 24 

C(2) -000177 10 0.0752 41 0.1950 25 

C(3 ) 0.1879 11 0.1109 45 0.2448 28 

C(4) 0.1512 11 0.1664 50 0.3002 27 

Me(5) 0.3902 13 0.1975 69 0.3450 36 

Me(6) -0.0125 15 0.2614 60 0.2770 35 

Me(7) 0.0291 15 0.0898 69 0.3328 36 

C(8) -001099 9 -0.1064 39 0.0481 23 
-

C(9) -0.2566 9 -0.1663 40 0.0047 24 

C(10) -001583 10 -0.2360 43 -0.0298 26 

C(ll ) -0.3129 11 -0.3167 45 -0.0725 27 

Me(12 ) -0.5363 14 -0.2656 63 -0.1171 37 

MeC13 ) -0.3882 19 .0.3921 65 -0.0301 40 

Me(14) -0.1847 16 -0.3674 80 -0.1121 48 

The final fractional coordinates and standard deviations of the 
non-hydrogen atoms. 

Table 13.2 
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Composite electron density normal to [010]. Contour intervals 
o . . 0 

at carbon and oxygen atoms, 1.0 eA-3, at sulphur atoms, 2.0 eA-3, 
(the zero contour is omitted). 

Figure 13.1 
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CHAPTER 11... 

DISCUSSIQ~. 

Structural data were computed using the 'X-ray 63 system' 

(72) and a general interatomic distances and angles program (73). 

The standard deviations in bond lengths and angles involving 

sulphur, carbon £nd oxygen atoms, calculated for each molecule, 

take into account both the standard deviation in atomic position, 

as estimated from the least squares residuals, and the standard 

deviations in the cell dimensions. . 

The desaurin from acetophenone, P~I and the l,2,4-tri­

thiacyclopentane from pinacolone have a comnlon chemical grouping 

of the ~-dithia-a,~-unsaturated carbonyl system, - -

The three structure analyses thus afford a means of comparing 

molecular dimensions for this group, and perhaps ascertaining 

the effect of the different substituents on the system. 

Cruickshank (74) has emphasised the importance of applying proper 

significance tests before drawing any conclusions from a compar­

ison of this type. If two independent experimental determinations 

( 72) 
( 73) 

( 74) 

J. M. Stewart, University of Washington, Seattle (1965). 
R. Shiono and S. S. c. ChU! X-Ray Crystallography Laboratory, 
University of Pittsburg, P ttsburg (1964). 
D. W. J. Cruickshank, Acta Cryst., &, 65 (1949). 



of a specific bond length yield values L, and L2 with standard 

deviations ~1 and ~2 respectively, Cruickshank suggests the 

adoption of the following significance levels; 

P) 57D 

5k> P) liD 

1%'> P '70.1% 

P< 0.1% 

lU.<1.65~ 

1.65~ <6L<2.33q 

2 .33c:rA < 6L < 3 .09~ 

Ill,) 3 .09~ 

not significant 

possibly significant 

significant 

highly significant 

where, p D the probability that the difference between the 

two bond lengths is due to experimental error, 

At cz (ILl - L21 ), 

( 2. 2.) 'I. 
\)A - CS1 + 6""2 2 

It is evident therefore that only differences of more than 

about three standard deviations may be taken as definitely 

significant. 

To analyse the packing of the molecules in the unit 
-

cell, all intermolecular interatomic distances of less than 
o 

4.0A were calculated for each structure. In general the inter-

atomic contact distances between molecules should not be less 

than the sum of the van der Waals radii, except in cases where 

hydrogen bonding is present'in the crystal. In this work the 

van der Waals radii of oxygen, carbo,n and the methyl group 

were taken as 1.4A, 1.7A and 1.95A respectively (75). The van 
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• der Waals radius of sulphur quoted by Pauling (75) is 1.85-1.95Aj 

however there have been suggestions that this value is excessively 

(75) L. Pauling "The Nature of the Chemical BOLd" 2nd Edit., ' 
Cornell University Press, Ithaca, N. Y., (1940), pp. 187-193. 



high. The sulphur-sulphur contact distances in rhombic sulphur 
o 

indicate a value of l.65:!:,O.OlA (76), whilst crystal structure 

analyses of other sulphur-containing organic compounds imply 
o 

values ranging from l.65-l.75A (77,78,79). A constant value 

for the van der \'laals radius cannot strictly be assumed for 

any atom, such factors as the state of hybridisation of the 

atom and the electronegativity of atoms attached to it will 

affect the value found in any specific case. In this work, 
6 

however, the minimum observed value of l.65A was assumed for 

the van der Waals radius of sulPhur*. 

Least squares planes were calculated for various atomic 

groups using the X-ray 63 system. All planes are formulated 

by an equation of type, 

Px + Qy + Rz - S, 

111 

where x, y and z are atomic fractional coordinates with respect 

to the crystallographic axes. In the tables of least squares 

plane data, the atomic deviations from the plane are shown 

as the distance~ , (in 1); an asterisk with this distance 

indicates that the atom so marked was not used to define the 

plane. 

(76) B. E. Warren and J. T. Burwell, J. Chern. Phys., 1, 6 (1935). 
(77) H. L. Yakel, In., and E. W. Hughes, Acta Cryst., 1, 291 

(1954) • 
(78) R. E. Marsh, lli.s!. J .a, 91 (1955). 
(79) J. Donohue J. Am. Chem. Soc., 1a, 2701 (1950). * The short intramolecular sulphur-oxygen distances found 

are therefore compared with a van der Waals contact 
distance of 3.051. 



14.1 Details of the molecular and crystal structure of the 

desaurin from acetophenone. 

Structural data were calculated from the final atomic 

coordinates, (and standard deviations), of the sulphur, oxygen 

and carbon atoms listed in Table 6.2, and the hydrogen atom 

locations obtained from the difference synthesis, (Table 6.4). 
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The analysis confirms the l,3-dithiete structure proposed 

by Meyer (2) and" supported by Yates and lrloore (9). The question 

ot the relative stereochemistry of the benzoyl substituents 

on the 0(2) and 0(2') carbons was resolved at an early stage 

in the diffraction study, since the space group and the presence 

of two molecules per unit cell require a centro symmetrical 

molecule; the desaurin is therefore the trans isomer. A further 

implication of a molecular centre of symmetry is that the 1,3-

dithiete ring is planar, in contrast to the situation found 

in the six-membered sulphur-containing heterocycles XVI, XVII and 
.-

XVIII, in which the molecules are folded about an axis through 

~sX)~ 
~s ~ o 

IVI XVII XVIII 

the heteroatoms (80,81,82). The structure analysis of the 

desaurin reveals that the a,~-unsaturated ca~bonyl system adopts -
-

(eo) H. Lynton and E. G. Cox, J. Chern .. Soc. 48S6 (1956). 
(81) P. A. Howell, R. M. Curtis and W. N. LIpscomb, Acta Cryet., 

1. 498 (1954 Ie 
(82) S. Hosoya, ibid" ,gQ, 429 (1966). 



an s-cis conformation, as illustrated in Figure 14.1 , • 

Bond lengths and angles, (involving non-hydrogen atoms), 

are shown in Figure 14.1
" 

and are listed, together with their 

estimated standard deviations, in Tables 14.1 , and 14.12. 

The two independent carbon-sulphur bond lengths in the 
f# • 

desaurin are remarkably similar, (1.766A and 1.764A), and are 

in the centre of the range of C( sp2)-S(II) distances found in .. ., 
XVI, XVII and XVIII, (1.78A, 1.76A and 1.75A respectively). 

As expected, in the dithiete ring, the C-S-C angles, (82.00 ), 

are smaller than the S-C-S angles, <98.00 ). In five- and six­

membered heterocycles containing divalent sulphur, the sulphur 

valence angles are usually in the range 90-105° (8J), so that 

the angle found in the 1,J-dithiete ring is significantly re­

duced from its normal value. However, the C-S-C angle in the 

desaurin is not the smallest observed; in the three-membered 

ring of ethylene sulphide, the angle sub tended at the sulphur - , 

atom 1s 48.)° (84,85*). 
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The bond distances and angles in the a,~-unsaturated 

carbonyl systenl are discussed in section 14.4, where a comparative 

study or the results of the three structure analyses is made. 
o 

The C(J)-C(4) bond length, 1.495A, is in accord with distances 

(8) ) 
(84) 
(85) 
.:1= 

s. C. Abrahams, Quart. Rev., A, 407 (1956). 
H. Dreizler and H. D. Rudolf, Z. Natur., !Zi, 712 (1962). 
R. Desiderato and R. L. Sass, Acta Cryst., &1, 4)0 (1967). 
Desiderato and Sass draw attention to an error in the 
original paper (84) where the sulphur valence angle is 
reported as 58.80. 



S' 

C(6) 

___ 2.640---+ 

S 

. . 

Desaurin from acetophenone: 

Bond lengths and angles. 



S - C(l) 

S I. - C(l) 

C(l) - C(2 ) 

C(2) 
o. 

c() ) -
C(3 ) - C(4) 

C(3 ) - 0 

C(4) C(5) 

C(5 ) - c(6) 

C(6 ) - C(7) 

C(7) - C(8) 

C(8) - C(9) 

C(9) C(4) 

S 0 

s - S' 

C(l) - C(l1) 

Desaurin from acetophenone: 

Distances 

1.764 

1.766 

1.324 

1.462 

1.495 

1.216 

1.404 

1.372 

1.385 

1.399 

1.404-

1.383 

2.640 

2.665 

2.315 

(A) 
0 

(rCA) 

0.006 

0.006 

0.008 

0.009 

0.008 

0.007 

0.009 

0.010 

0.011 

0.011 

0.010 

0.009 

0.006 

0.006 

0.009 
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Intramolecular interatomic distances and their standard devi~tions. 
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Angle (0) 0-(0 ) 

s C(l) - s· 98.0 0.4 

C(l ) s e(l ') 82.0 0.4 

S C(l) - C(2) 128.5 0.5 

s· C(l) - C(2) 133.4 0., 

C(l) - C(2) - C(3 ) 117.9 0.5 

C(2 ) - CO) - 0 120.2 0.6 

C(4) - C(3 ) - 0 119.8 0.5 

C(2) - C(3 ) - C(4) 120.0 0., 

C(3 ) - C(4) - C(5) 117.4 0.5 

C(3 ) - C(4) - C(9) 122.7 0.6 

C(9) - C(4) - C(5) 119.9 0.6 

C(4) - - C(5) - C(6) 120.1 0.6 

C(5 ) - C(6) - C(7) 120,,6 0.7 

c(6) - C(7) - 0(8) 120.1 0,,7 

C(7) - C(8) - C(9) 119.4 0.6 

C(8) - C(9) - C(4) 119.9 0,,6 

Desaurin from acetophenone: 

Bond angles and their standard deviations" 

Table 14.12 



fOWld in similarly conjugated systems (86). The bond distances 

and angles in the benzene ring, l.372-1.404A, (mean 1.391A), and 

119.4-120.6°, (mean 120.0°), are consistent with the accepted 

values. Deviations from the least squares plane for the benzene 

ring, (Table 14.13 , plane A), are small; the maximum deviation 
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D 

being +0.003A, (C(6) and C(7». Bond distances and angles involv-

ing hydrogen atoms are listed in Table 14.14 , (the numbering 

system employed for the hydrogen atoms is shown in Figure 5.1). 

The C-H bond lengths range from 0.96 to 1.141, (mean 1.051), and 

the C-C-H angles from 1000 to 1320 , (mean 1200 ). Little signif­

icance can be attached to individual deviations of these bond 

lengths and angles from the normally accepted values since the 

hydrogen atoms were not included in the least squares refinement. 

The most striking feature of the molecular structure 

of the desaurin, (also of P~I and the 1,2,4-trithiacyclopentane 

from pinacolone vide supra), is the close planarity of the 

(!-~) a,~-unsaturated carbonyl system and the sulphur atoms, 

which incurs a correspondingly short intramolecular sulphur­

oxygen distance. The least squares plane calculated for the 

central ten atoms of the molecule, 

0' 
~ 

C(3') /8' 
'C(2')=CO.') "C(l )=C(2) 

"8/ 'C(3) 0; 
summarised in Table 14.13 ,' (plane ~), shows the maximum.atomic 

(86) "Tables of Interatomic Distances and Configurations in 
Molecules and Ions", Chern. Soc. Special Publication, Nos 
11 and 18, London, 1958 and 1965. 



0 
(A) Atom II -

C(4) +0.0030 

C(5) +000001 

C(6) -000032 

C(7) +000032 

C(8) -000001 

C(9) -0.0029 

Plane A: 2.752x - 3.443y + 12.125z = -0.1237 

" Atom A (A) 

(S I) ,S 

(0 I) ,0 

(C(ll) ,C(l) 

(C(2 1 »,C(2) 

(C(3 '» ,C(3) 

(-), +0.0060 

(+), -0.0012 

(-), +0.0168 

(+), -0.0021 

(+)>> -0.0036 

Plane B: 1.796x - ).621y + 15.1J1z D 0.0 

Desaurin from acetophenone; 

Least squares plane data. 

Table 14.13 
: 
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0 
Distance (A) 

C(2) - H(l) . 1.05 C(l) - C(2) - H(l) 

C(5) - H(2) 0.96 C(3 ) - e(2) - H(l) 

C(6) - H(3 ) 1.14- C(4) - C(5) - H(2) 

C(7) - H(4) 1.01 C(6) - C(5) - H(2) 

C(8) - H(5) 1.01 C(5) - e(6) - H(3) 

C(9) - H(6) 1.11 C(7) - e(6) - H(3) 

e(6) - e(7) - H(4) 

C(8) - e(7) - H(4) 

C(7) - c(a) - H(5) 

C(9) - e(a) - H(5) 

C(8) - C(9) - H(6) 

C(4) - C(9) - H(6) 

Desaurin from acetophenone: 

Bond distances and angles involving hydrogen atoms. 

Table 14.14 

Angle (0) 

120. 

122. 

111. 

127. 

il00. 

132. 

123. 

117. 

122. 

119. 

111. 

130. 

...... ...... 
0) 



Unit translation 0 
Atom 'A' Atom 'B' on Atom tB'. Distance (A) • 

8 82 (-1, 0, 0) 3.42 
8 °1 ( 0,-1, 0) 3.85 
8 C(3h ( 0,-1, 0) 3.63 
S C(4h ( 0,-1, 0) 3 .• 89 

° C(2h (-1, 0, 0) 3.61 

° C(4h ( 0,-1, 0) 3.88 
0 C(sh (-1,-1, 0) 3.45 
0 C(9) 1 (-1, 0, 0) 3.57 
'C(l) C(1)2 ( 0, 1, 0) ).70 
C(l) C(2)2 ( 0, 1, 0) 3.63 
C(1) C(9h ( 0,-1, 0) 3.59 
C(2) C(8h ( 0,-1, 0) 3.59 
C(2 ) C(9h ( 0,-1, 0) 3.42 
C(3 ) C(8) 1 ( 0,-1, 0) 3.50 
C(3 ) C(9h ( 0,-1, 0) ).64 
C(4) C(7h ( 0,-1, 0) 3.65 
C(4) C(sh ( 0,-1, 0) ).63 

. C(5) C(7h ( 0,-1, 0) 3.63 
C(5) C(sh (-1, 0, 0) 3.46 
C(5 ) 0(9), (-1, 0, 0) 3.74 

Atom tBt is generated from the coordinates listed in Table 6.2 
using the symmetry operation ( )1 and unit translations shown. 
) 1: x, y, z 
)2 : -x, -y, -z 

Desaurin from acetophenone: 

Closest contacts of neighbouring molecules. 
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Desaurin from acetophenone: 

Projection of the structure along [lOOJ, illustrating 
the packing of the molecules. 

Figure 14.12 -
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deviation from the plane is +0.017A, (C(l) and C(Y», with a 
• 0 

mean atomic deviat~on of 0.006A. However, the molecule as a 

whole is not planar; the plane of the benzene ring is inclined 

at an angle of 11.40 to that of the central ten atom system. 

The intramolecular sulphur-oxygen distance is 2.640A, being O.4lA 

less than the sum of the van der Waals radii of sulphur and 

oxygen. The approximate planarity of the central portion of 

the molecule and the short intramolecular sulphur-oxygen dist­

ance are further discussed in section 14.4. 

Intermolecular interatomic distances of less than 3.9A 

are listed in Table 14.15, and the molecular packing is illustrated 

in Figure 14.12. The contact distances between molecules all 

appear reasonable; the only interatomic separation of note is 

the sulphur-sulphur contact of 3.42A , which provides additional 

support that the van der Waals radius of sulphur is somewhat less 

than the value suggested by Pauling. 

14.2 Details of the molecular and crystal structure of 3-phenyl­

l-propene-l.3-dione l-(dimethyl mercaptoleJ:f:. 

Structural data were calculated from the final atomic 

coordinates, (and standard deviations), of the sulphur, oxygen 

and carbon atoms, listed in Table 10.2, and the hydrogen locat­

ions obtained from the difference synthesis, (Table 10.4) • . 
The structure analysis reveals that the a,~-unsaturated 

--• The abbreviation PDM for this molecule is retained through-
out this chapter. 



carbonyl system adopts an ~-cis conformation, analogous to the 

situation foa~d in the desaurin. Bond distances and angles. 

(involving non-hydrogen atoms), are shown in Figure 14. 21. and 

are listed, together with their estimated standard deviations, 

in Tables 14.21 and 14.22 • . .. 
The C(l).S bond distances in PDtv1. l.745A and 1.748A, are 

identical within experimental error, but are shorter than the 
~ ... 

corresponding lengths in the desaurin, (1.766A and l.764A)j 

however the differences in these bond iengths between the two 

molecules are not significant, representing about 1.4~. The 

major differences between the molecular structures of PDM and 

the desaurin ·lie in the valence angles at the sulphur atoms and 

in the S.C(l)-S angle; 

S-C(1)-S 
.~ 

Pll4 

115.1° 

-1 104.4° l 
104.30 r 

Desaurin 

98.0°, 

82.0°. 

These angles in the 1,3-dithiete ring of the desaurin are, as 

expected, significantly smaller than the corresponding angles 

in pn~. Consequently the intramolecular sulphur-sulphur distance 
• 1n PBi, (2.948A), is appreciably longer than in the desaurin, 

(2.665A). The S-C( sp3) bond lengths, 1.823A and 1.8431. are . -
not significantly different and are consistent with the accepted 

• carbon-sulphur single bond length ot 1.82A (8). 

Bond distances and angles in the a,~-unsaturated carbonyl 

system show little difference from the values found in similarly 
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I 
i 

2.727 

S(1) 

M 
~ 
(X) . ..... 

I 

I 

~ 
1:745 

" ", 

Me(10) 

PIJ.1: 

<-&<1, 
CJ, 
'~ 

, . 

• 

~(6) 
1'1 

1.823 Me(11) 

Bond lengths and angles. 

Figure 14.2, 

1oA.3 
---



sell 

S(l) 

S(2} 

S(2) 

0 

C(l) 

C(2 ) 

C() 

C(4) 

0(4) 

C(5) 

C(6) 

C(7) 

0(8) 

PrM: 

C(l) 

Me(lO) 

C(l) 

Me(ll) 

C(3 ) 

C(2) 

C(J) 

C(4) 

C(5) 

C(9) 

C(6) 

C(7) 

C(8) 

C(9) 

8(2) 

o 

Distance 

1.745 

1e843 

le748 

1.823 

1.246 

1e)78 

1.440 

1.511 

1.386 

1.414-

1.408 

1.407 

1.411 

1.)88 

2.948 

2.727 

(A) 
0 

o-(A) 

0.011 

OeOll 

OeOlO 

0.011 

0.013 

0.01) 

0.014 

0.013 

0.016 

0.016 

0.014 

0.018 

0.018 

0.014 

0.007 

0.010 

122 

Intramolecular interatomic distances and their standard deviations •. 

Table 14.2, 



123 

Angle (0) cs-(O) 

. C{l) - S(l) - Me(10) 104 • .3 0., 

C(l) - 5(2 ) - Me(11 ) 104.4 00' 

5(1) - C(l) - 5(2 ) 11,.1 0., 

5(1) - C(l) - C(2) 12.3 00 008 

5(2) - C{l) - C(2) 121.9 0.8 

C{l) - C(2) - CO) 122., 0.9 

0 C(.3 ) C(2) 122., 0.8 

0 '- C (.3 ) - C(4) 119.9 0.9 

C(2 ) - C(.3 ) - C(4) 117.6 0.9 

C(.3 ) - C(4) - C{,) 122.4 1.0 

C(.3 ) - C(4) - C(9) 116.6 1.0 

C(,) - C(4) - C(9) 120 8 9 0.9 

C(4) - - C(,) - C(6) 119.7 1.1 

C(,) - C(6) - C(7) 119.6 1.1 

C(6) - C(7) - C(8) 120 • .3 1.0 

C(7) - C(8) - C(9) 119.7 1.1 

C(4) - C(9) - C(8) 119.8 1.1 

pm: 

Bond angles and their standard deviations. 



conjugated atomic groups; the dimensions of this system are 

discussed in det'ail, and compared with the analogous dimensions 

in the desaurin and trithiacyclopentane from pinacolone, in 
(1 

section 14.4. The C(3)-C(4) bond length, 1.5l1A, is comparable 

with the analogous distance in the desaurin of 1.495A, and the 
• bond distances and angles in the benzene ring, 1.386-l.4l4A, 

(mean 1.402A), and 119.6-120.90, (mean 120.00 ) are consistent 

with the accepted values. Deviations from the least squares 

plane of the benzene ring, summarised in Table 14.23 , (plane A), 
are smallj the maximum atomic displacement from the plane is 

0.019A, [C(4)], and the mean atomic deviation is O.OlOA. 
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Bond lengths and angles involving hydrogen atoms are 

listed in Table 14.24 , (the numbering system used for the hydrogen 

atoms is shown in Figure 10.1). As in the desaurin, little 

significance can be attached to any individual deviation of 

these distances and angles from the accepted values since the 

hydrogen atoms were not included in the least squares refine­

ment. The mean values of the bond lengths and angles involving 
o • 

hydrogen atoms are, 1.OeA for C(sp2)-H; 1.06A for C(sp3)-H; 
.. - -

1190 for C-C(sp2)-H; 1050 for S-CCsp3)-H and 1140 for H-C(sp3)-H. '- -
The coplanarity of the aJ~-unsaturated carbonyl system 

and the sulphur atoms is still much in evidence in P~l, though 

to a lesser degree than found in the desaurin structure. Various 

least squares planes were calculated, and are summarised in 

Table 14.23 , (planes~, Q and Q). Least squares plane ~J cal­

culated for the sell, S(2), C(l) and C(2) system, illustrates 
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·Plane A Plane It Plane Q Plane Q 
0 

~(A) ~(A ) idA) ~(A) 

S{l} 000004 0.0136 0.0149 

. S(2} 0.0004 -000127* -000043 

0 -0.0,308* -000275 -0.0,305 

C(l) -000013 -000076 -0.00,35 

C(2) 0.0005 -0.0152 -0.0123 

C(3 } 000468* 0.0366 000358 

C(4) -000194 

C(5) 0.0095 

C(6} 0.0050 

C(7) -000094 

C(8) -0.0006 

C(9) 0.0148 

Me(10) 0.2125* 0.2,325* 0.2,366* 

Me(ll) 0.16.35* 0.1302* 0.1407* 

p -2.6616 -.3.5265 -.3.5295 -,3 .5396 

Q 6.9544 .3.9428 4.0432 4.02,31 

R 1.3 .8,36 16.955 16.854- 16.858 

5 6.5785 6.9277 6.9067 6.9016 

PIM; 

Least squares plane data. . 
j--:l 

Table 14.23 ; 



• Distance (A) Angle (0) 

C(2) - H(1) 1.04 C(l) - C(2) - Hel) 127. S(l) ~ Me(lO) - H(?) 

C(5) - H(2) 1.15 C(3) - C(2) - HCl) 109. 5(1) - Me(lO) - H(S) 

C(6) - H(3) 0.96 C(4) - O(S) - H(2) 127. S(l) - Me(10) - H(9) 

C(7) - H(l,.) 1.04 C(6) - C(5) -H(2) 111. H(7) - Me(10) - H(S) 

C(S) - H(S) 1.12 C(S) - C(6) - H() 147. H(7) - Me(lO) - H(9) 

C(9) - H(6) 1.19 C(7) - C(6) - H(3) 93. H(S) - Me (10) - H (9) 

Me(lO) - H(7) 0.92 C(6) - C(7) -H(4) 112. 5(2') -Me(11) - H(10) 

Me(lO) - H(S) 1.27 C(8) - C(7) - H(4) 127. S(2 ) -Me(11) - H(ll) 

Me(10) - H(9) 0.90 C(7) - C(8) -R(S) 126. 5(2) -Me(11) - H(12) 

MeC1I) - H(lO) 1.07 C(9) - C(8) - H(S) 114. H(10) -Me(11) - H(ll) 

MeCll) - H(ll) 1.12 C(8) - C(9) - H(6) 12S. H(10) -Me(11) - H(12) 

Me(ll) - H(12) 1.09 C(4) - C(9) - H(6) 112. H(ll) -MeCII) - H(12) 
T 

PIX: 

Bond distances and angles involving hydrogen atoms. 

Table 14.24 

Angle (0) 

930 

111. 

113. 

87. 

13S. 

113. 

102. 

94. 

114. 

112. 

10). 

130. 

~ 

N 
en 



that C(l) shows no significant deviation from the formal sp2_ 

hybrid state and acts as a base-line for the other calculated 

planes; atoms C (J) and 0 are displaced on either side of plane 

li by 0.047A and 0.031X respectively. The X-ray diffraction 

study of 2-desy1idene-l,3-dithiolane, XIV, by Tu1insky (15,16), 

o 
I Ph-C Sl--CH2 
'C=C/ j 

plf' "52-CHa 

XIV* 

127 

showed that the 51-C=C-C=0 system is approximately coplanar (the 
o 

mean atomic deviation being 0.034A), but that 52, which is not 

involved in any sulphur-oxygen interaction, 1s si&nificantly 

displaced from the plane by 0.24%. Consequently least squares 

plane Q was calculated for the analogous S(l)-C{1)=C(2)-C(J)=O 

system of PeM. The out-of-plane distances for plane Q show 

a direct contrast to the findings of Tulinskyj S(2) is.displaced 
o 

O.OlJA from the plane and is, in fact, closer to the plane than 

four of the defining atoms. Least squares plane Q, calculated 

for the 5(1), 5(2), C(l), C(2), C(3) and 0 syst~a, is the closest 

comparison available to the ten atom plane of the desaurin. 

The maximum atomic deviation from plane ~ and the mean atomic 

deviation are O.036A, [C()], and 0.017! respectively, (compared 

with 0.017A and 0.006A respectively for plane R of the desaurin). 
o 

The intramolecular 5(1)-0 distance inPI)I, 2.727A, 1s greater 

-* Reproduced from chapter 1. 
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Unit translation ~ 

Atom fA' Atom 'B' on Atom 'B'. Distance (A) • 

S(l) S(1)2 ( 1, 0, 1) 3.41 
S(l) Me(10)2 ( 1, 0, 1) 3.89 
8(2 ) S(2)2 ( 2, 1, 1) 3.57 
S(2 ) 0(2)2 ( 1, 1, 1) 3.8S 
8(2) 0(3) 1 ( 1, 0, 0) 3.69 
5(2) 0(4), ( "1, 0, 0) 3.77 
S(2 ) C(9) 1 ( 1, 0, 0) 3.79 
S(2) lvIe (11) 2 ( 2, 1, 1) 3.S0 
0 0(5)4 ( O,~.l, 0) 3.88 
0 0(6)4 ( 0,-1, 0) 3.41 
0 Me(10l, (-1, 0, 0) 3.53 
0 Me(lQ)2 ( 1, 0, 1) 3.47 
0(1 ). 0(9), ( 1, 0, 0) 3.46 
0(1) Me(11)2 ( 1, 1, 1) ).71 
0(2 ) 0(8), ( 1, 0, 0) ).56 
e(2) 0(9), ( 1, 0, 0) 3.56 
0(3 ) e(s), ( 1, 0, 0) 3.88 
0(4) Me(ll), (~1, 0, 0) ).80 
0(6) 0(9)4 (-1, 0, 0) ).74 
C(6) Me(10)3 (-1, 0,-1) ).68 
C(7) C(9)4 (-1, 0, 0) ).69 
C(7) Me(11)4 ( 0,-1, 0) ).74 
C(8) Me(11)4 ( 1,-1, 0) ).45 

Atom 'B' is generated trom the coordinates listed in Table 10.2 
using the symmetry operation ( )1 and unit translation shown. 
), • x, y, z. )3 • X, '2 - Y, '2 + z. · • 
)2 • -x, -1, -z. )4 : -x, '2 + y, '2 - z. • 

PI14: 
Closest contacts ot neighbouring molecules. 

Table 14.25 
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P~l: 

· C • A ----z-\ ~slnt' 
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Projection or the structure along [160]", illustrating 
the packing ot the molecules. 

Figure 14.22e 
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o 

than the corresponding length in the desaurin, (2'. 64,OA ), but is 

still appreciab~y less than the sum of the van der Waals radii 

of sulphur and oxygen. The approximate coplanarity of the a,~­

unsaturated carbonyl system and the sulphur atoms, and the short 

sulphur-oxygen distance, are further discussed in section 14.4. 

As in the desaurin, the plane of the benzene ring is inclined to 

that of the sub-system, and in this molecule is rotated 19.3° 

.from plane Q. 
• Intermolecular interatomic distances of less than ).9A 

are listed in Table 14.25 , and the molecular packing is illust­

rated in Figure 14.22 , The contact distances between molecules 
• range upwards from ).41A, (C(6)-Oj S(l)-S(l», and appear reason-

able, with the exception of the C(a)-Me(ll) separation of 3.451. 

This distance is less than the theoretical carbon-methyl group 
• contact distance of 3.65A, although it is greater than twice the 

van der Waals radius of a carbon atom. Examination of a three­

dimensional difference synthesis in the region of 5(2) revealed 

no density which might suggest an alternative position for Me(ll) • 
• The sulphur-sulphur separation, 3.41A, across a space group 

inversion centre, is very similar to the situation found in 

the desaurin. 

14.3 The molecular and crystal structure of the l,2.4-trithia-

cyclopentane from pinacolone. 

Structural data were calculated from the final 'atomic 

coordinates, (and standard deviations 1, listed in Table 13.·2. 

Bond lengths and angles are shown in Figure 14.3" and are 



~ 

Me(7) 

Me(14) 

Me(12) 

.-

Trithiacyclopentane from pinacolone: 

Bond lengths and angles. 

Figure 14.3, 



listed, together with their estimated standard deviations, in 

Tables 14.31 and 14.32. The structure analysis confirms the 

l,2,4-trithiacyclopentane structure forwarded by Gompper (7) 

and supported by Lynch (10), and reveals that the molecule is 

the cis isomer VIla' with both a,~-unsaturated carbonyl systems 

adopting an ~-cis confonnation, as illustrated in Figure 14.31. 
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Hordvik (87) conducted an extensive survey of structural 

data for molecules containing an 5(II)-S(II) bond which showed 

that the dihedral angle· between the valences of the sulphur 

atoms is correlated to the disulphide bond length. The variation 

in disulphide bond length with dihedral angle was assumed to 

be in part due to lone pair repulsion, which is most pronounced 

when the dihedral angle is QO, (cis), and in part due to pi bond­

ing, which is most pronounced at dihedral angle 900 • A plot of 

the dihedral angle against the 5(I1)-S(I1) b9nd length, tor a 

number of linear and unsaturated heterocyclic disulphides, resulted 
-

in a smooth curve from which Hordvik estimates the length of a 

single bond between two divalent sulphur atoms at dihedral angle 
o 

zero is 2.l0A. 

Least squares plane data for various groups of atoms in 

the trithiacyclopentane from pinacolone molecule are listed in 

Table 14.33. Plane A, calculated tor the C(1)-5(1)-5(2)-C(8) 

system, shows this grouping is approximately planar, (the mean 
• atomic deviation is O.013A), but that S(3) is significantly 

(87) A. Hordvik, Acta Chem. Scand. gQ, 1885 (1966). 
• In the disulphide system -C l -5 1-52 - C2- , the angle between 
. the C, 5152 and 5152C2 planes is termed the "dihedral angle". 
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I> 

Distance CA) 
D 

cr(A) 

5(1) 5(2) 2.103 0.003 

S(l ) C(l) 1.741 0.006 

5(2) C(8) 1.732 0.006 

5(3 ) C(l) 1.748 0.005 

s (3) C(8) 1.739 0.006 

0(1) C(3 ) 1.221 0.008 

0(2 ) C(10) 1.233 0.008 

C(l) C(2) 1.330 0.008 

C(2) C(3 ) 1.l,.60 0.007 

C(3 ) C(4) 1.525 0.010 

C(8) C(9) 1.345 0.007 

C(9) C(10) 1.436 0.009 

C(10) - C(ll) 1.529 0.008 

C(4L - Me(5) 1.523 0.009 

C(4) Me(6) 1.561 0.010 

C(4) Me(7) 1.550 0.012 

C(11) - Me (12) 1.548 0.009 

. C(ll) - Me(1) ) 1.536 0.012 

C(11) - Me(14) 1.500 0.014 

5(1) .- 0(1) 2.517 0.005 

5(2) 0(2 ) 2.509 0.005 

Trithiacyc10pentane from pinacolone: 

Intramolecular interatomic distances and their standard deviations. 

Table 14.3L 
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Angle (0) cr(O) 

8(2) - 5(1) - e(l ) 100.6 0.2 
5(1) - 5(2) - e(8) 100.4 0.2 
C(l) - 5 (3 ) - C(8) 103.4 0.3 
5(1) - e(l) - S{J) 116.7 0.3 
8(1) - e(l) - C(2 ) 124.0 0.4 
8(3 ) - C(l) - C(2) 119.3 0.4 
C(l) - C(2 ) - C(3 ) 119.1 0.6 
0(1 ) - C(3 ) - C(2 ) 11804 0.6 
0(1 ) - C(3 ) - C(4) 122.1 0.5 
C(2) - c{J) - c(4) 119.5 0.6 
C(3 ) - C(4) - file (5) 109.7 0.6 
C(3 ) C(4) Me(6) 109.3 0.5 
C(3 ) - C(4) - }lie (7) 107.3 006 
Me(5) - C(4) - Me(6) 111.7 0.6 
Me(S) - C(4) - Me(7) 109.2 0.6 
Me(6) - C(4) - Me(7) 109.7 0.7 
8(2') - C(8) - 5(3 ) 117.3 0.3 
8(2) - e(8) - C(9) 123.6 0.5 
8(3 ) - C(8) - e(9) 119.1 0.4-
C(8) - C(9) - C(10) 119.1 0.5 
0(2 ) - C(10) - e(9) 118.9 0.5 
0(2 ) - C(10) - e(ll) 120.0 0.6 
C(9) - C(10) - C(11) 121.0 0.5 
C(10) - C(ll) - file (12 ) 110.2 0.5 
C(10) - C(ll) - Me(13 ) 106.0 0.5 
C(lO) - C(ll) - Me(l4-) 111.6 0.6 
Me(12) - C(ll) ~ file (13 ) 109.2 0.6 
Me(12) - C(ll) - Me(14) 106.7 0.6 
Me(13) - C(11) - Me(14) 113.3 0.7 

Trithiacyc10pentane trom pinacolone: 

Bond angles and their standard deviations. 

Table 14.32 
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'P1ane A. Plane Ii Plane Q Plane 11 
I) 

6(A) 0 

6(A) 6(1) 
eo 

6(A) 

S(l) -0.0145 0.)170* -0.0218 -0.2672~ 

5(2) 0.0145 0.)61l~ -0.1474~ -0.0268 

SO) 0.2145* 0.0 0.1180* 0.1)95* 

0(1) -Q.1438* 0.0329 

0(2) -0.1729* 0.0417 

C(l) 0.0111 0.0 0.0206 

C(2 ) -0.0938* 0.0031 

C(3 ) -0.2204~ -0.0349 

C(8) -0.0112 0.0 0.0238 

C(9) -0.1661* 0.0070 

C(10) -0.)098* -0.0457 

p -0.9624 -2.1053 -0.9892 -0.7946 
-

Q -10.299 -9.6764 -10.834 -9.5099 

R 1).898 14.763 12.613 15.424 

S 1.8589 1.9710 1.6655 1.8649 

Trithiacyc10pentane from pinacolone: 

"Least squares plane data. 

Table 14.33 
:: 



o 
displaced from the plane by 0.2151\. Consequently the hetero-

cycle is most easily defined by plane A and a second plane 

through the C(1)-S(3)-C(S) system, (plane ~), which intersect 

at an angle of 11.5°. The sulphur-sulphur bond length found . * . 0 

in this cis, effectivly-planar disulphide system.is 2.l03A, 

which according to Hordvik' s work ($7) mus.t be considered as 

an example of a S(II)-S(II) single bond with nc pi character. 
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It is evident, however, that if the short intramolecular sulphur­

oxygen distances found in this molecule, PDM and the desaur~n 

trom acetophenone are interpreted as partial bonding between 

these atoms, the net observed effect in this molecule could be 

a lengthening of the disulphide bond. This point is further 

discussed in section 14.4. 

The four independent C(~2)-S bond lengths in the molecule, 
o D • I> 

(1.741A, l.748A. 1.739A and 1.732A), are not significantly 

different and the mean value of 1.740A is consistent with the 

corresponding ~ean distance in P~1 of 1.747A. The valence 

angle~ at S(l) and S(2), 100.60 and 100.4°, are identical within 

experimental error, but are smaller than the angle .subtended 

at S (3) J (103.40 ). The endocyclic angles at e(l) and e(S), 

116.7° and 117.3°, are comparable with the analogous 5-0(l)-S 

bond angle of 115.10 in PU~. 

The molecular dimensions of the two a,~-unsaturated -
carbonyl systems in the molecule are not significantly different, 

(Figure 14.3,). The maximum deviation between 'equivalent' 

bond lengths and angles in the two systems is between the 

t The strict dihedral angle between the C(l)5(1)S(2) and 
S(1)S{2)C(8) planes is 2.00 • 
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" 0 C(2)-C{J).and C(9)-C(lO) distances, (l.460A and l.4J6A respect-

ively),. representing about 2~. The dimensions of the conjugated 

carbonyl systems are discussed in section 14.4. The C(J)-C(4) 

" " and C(lO)-C(ll) bond lengths, 1.525A and l.529A respectively, 

are not significantly different and are consistent with the 

distance normally associated with a C( sp3)-CO bond (86). Fortun­

ately the dimensions of the t-butyl groups were of minimal 

interest in this study; the high thermal motion of the methyl 

groups is reflected in the large individual deviation in bond 

lengths and angles from the accepted values. However the mean 

C-Me distance and Me-C-Me angle, 1.5451 and 109.50 at C{4), 
«> . 

1.528A and 109.50 at C(ll), are reasonably consistent with 
'" 

the normal values. 

Least squares· planes were calculated for, 

and 

0(2) S(2)-

~ . I 
/C(lO) hoeS) 

", .............. C(9)~ " 

Plane Q Plane 1! 

which showed, (Table 14.,33), that each atomic grouping is 

approximately coplanar. The maximum atomic displacement from 
Ii 0 

the plane and the mean atomic deviation are 0.OJ5A, O.023A for 

" " plane Q; O.046A, O.029A for plane Q. However the central portion 

of th~ molecule is strictly non-planar; planes Q and R intersect 

·at an angle of 10.10 , and 5(3) is significantly displaced from 
• • • each plane, (O.llSA from plane Q and O.140A from plane R). The 
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Unit translation 
0 

Atom 'A' Atom 'B' on Atom 'B' Distance (A) 

5(1) 5(3), ( 1, 0, O) 3.45 
S(2) S(3h· ( 1, 0, 0) 3.49 
S (2) 5(3 h~ ( 0, 0, O) 3.93 
S(3 ) 0(2)2 ( 0, 0, O) 3.SS 
5(2) ')le (5} ... ( 1,-1, O) 3.67 
5(2) C(S)2 ( 0, 0, 0) 3.74 
5(2) C(9h ( 1, 0, O) 3.98 
5(2) C(9}2 ( 0, 0, O) 3.98 
SO) C(9}2 (-1, 0, 0) 3.95 
0(1 ) C(2h ( 1, 0, 0) 3.99 
0(1 ) Me(7) 1 ( 1, 0, 0) 3.75 
0(1) Me(12)2 ( 0, 0, 0) 3.90 
0(2) C(1)2 ... ( 0, 0, 0) 3.93 
0(2 ) Me(12)1 ( 1, 0, 0) 3.72 
0(2 ) Me(13), ( 1, 0, 0) 3.94 
C(l) Me(6) ... ( 0,-1, 0) 3,77 
Me(6) Me(12)2 (-1, 0, 0) 3.79 
Me(7) Me(14)3 ( 0,-1, 0) 3.54 
C(8) C(8)2 ( 0, 0, 0) 3.99 

Atom IBI is generated from the coordinates listed in Table 13.2 
using the symmetry operation ( )i' and unit translations shown. 
)1 • X, y, Z • 

)2 · -x, -y, -z • 

)3 • x, 1;2 - y, ~+z • 

)It • -x, 1;2 +y, Y2 - z • 

Trithiacyclopentane from pinacolone: 

Closest contact of neighbouring molecules. 

Table 14.34 
,., 
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intramolecular sulphur-oxygen distances of 2.509A and 2.5l7A 

are the smallest observed in the three structure analyses; the 

mean 5--0 distance of 2.5l3A being O.54A less than the sum of 

the van der Waals radii of sulphur and oxygen. The approximate 

coplanarity of the a,~-unsaturated carbonyl and sulphur sub­

system, and the short sulphur-oxygen distances, are discussed 

in the following section. 

Intermol&cular interatomic distances of less than 4.0A 

are listed in Table 14.34, and the molecular packing is illust­

rated in Figure 14.32. Two unusual contact distances are the 

Me(7)-Ne(l4) and Me(6)-Me(12) separations of 3.54A and 3.79A 

respectively. Each of these distances is shorter than the 
o 

separation of J.90A often found between methyl groups (75), but 
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they are greater than twice the van der Waals radius of a carbon 

atqm. Similar observations or unusually short contact distances 

between two methyl groups have been reported in other crystal 

structures (88,89) and a careful study did not suggest any altern­

ative positions for the C(methyl) atoms in this analysis. 

14.4 A comparison of molecular structures. 

The dimensions of the ~-dithia-a,~-unsaturated carbonyl - -
systems in the three molecules are shown collectively in Figure 

14.41. Since the dimensions of the two a,~-unsaturated carbonyl -
systems of the 1,2,4-trithiacyclopentane from pinacolone are 

not significantly different, (section l4.J),the values shown 

(88) A. C. Macdonald and J. Trotter, J. Chern. Soc •• 1!J 1966, 929. 
(89) H. Luth and J. Trotter, Acta Cryst., 12, 614 \19bS). 
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in Figure 14.41 are the mean dimensions of the two systems. 

The C(~p2)-S(II) bond lengths in the three molecules are, 

o 0 " 41 

Desaurin • 1.?66A, 1.?64A (:to.OO6A) · mean 1.?65A, • , 
6 ,:) • (+0.0111) PDM • 1.?45A, 1.?48A mean 1.747A, • -
" 1.732A (+0.0061) 1.740A. Trithiacyclopentane 1.741A. · mean · • from pinacolone • 1.748A, 1.?J9A 

Data so far accumulated indicate that the length of a carbon-
o 

sulphur single bond is 1.82A, whilst bond-order, bond-length 
• relationships suggest a value of 1.61A for a pure double bond 

(8),90). The carbon-sulphur distances found are significantly 

less than the single bond length, indicating that there is 

some interaction between the electron in the p-pi orbital of 

C(l) and the lone-pair electrons of the sulphur atonl. The mean 

C(1)-5 bond length in the desaurin is greater than the corres­

ponding mean lengths in P~l and the trithiacy~lopentane from 

pinacolone. Although the difference is not highly significant, 

(~2OX)' it appears possible that the C(l)-S bonds in the desaurin 

are lengthened to relieve some steric strain in the 1,3-dithiete 

ring in an analogous manner to the lengthening of carbon-carbon 

bonds in cyc10butane systems (91,92). 

The bond lengths of the conjugated carbonyl systems in 

the three molecules are: 

(90) E. G. Cox and G. A. Jeffrey, Proc. Roy. Soc., A, 202, 110 
(1951) • 

(91) J. D. Dunitz, Acta Cryst., ~, 1 (1949). 
(92) N. Camerman and 5. C. Nyburg, Tetrahedron Letters, 4127 (1967). 



C(1)-C(2) C (2) -C(3 ) C(3)-0 
0 

1.462 0.009A 1.216 0.007~ Desaurin 1.324 0.008A 
0 

1.440 0.014A 1.246 0.013K PLM 1.378 O".013A 

Trithiacyclopentane 1.330 0.0081 1.460 O.OO?A 1.221 o.oosl 
from pinacolone :t 1.345 O.OO?$. 1.436 0.009A 1.233 O.OOS 

Application of Cruickshank's significance tests to each 'set' 

of bond lengths for the system, reveals that the only possibly 

significant difference is in the C(1)-C(2) distance. This bond 
o 

in PUM is 0.054A longer than 1n the desaurin, (~3.7~), and 
o 

O.040A longer than the mean in the trithiacyclopentane from 

pinacolone J " ("\.2. 7~). Simp~e ca:~bon-carbon double bond lengths 
o 

are normally in the range 1.31-1.34A, being lengthened in a 
" " 
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• CaC-C=O system by conjugation to around l.36A (S6). The C(1)-C(2) 

bond lengths found therefore suggest that the electrons are 

more localised in this bond Df the desaurin and l,2,4-trithia­

cyclopentane from pinacolone molecules. The C(2)-C(3) bond 

lengths in the three molecules are not significantly different 
o 

and are consistent with the distance of l.44A normally associated 

with this conjugated system (86). Values ranging from 1.17A to 

1.20A are suggested for the length of a carbon-oxygen double 

bond (83), whilst in ketones and conjugated systems the carbonyl 

bond length normally lies in the range 1.22-1.24A (86). The 

C(3)-0 distance~ found 1n the three structure analyses are not 

significantly different, the maximum difference is 0.0301 between 

* Bond lengths in the analogous C(8)aC(9)-C(10)aO(2) system. 



140 

the values in PD}'.:I and the desaurin, (N2~). When the three bond 

lengths are considered overall, the distances found in pal 

suggest.a greater delocalisation of electrons in the system 

than in the desaurin and the 1,2,4-trithiacyclopentane from 

pinacolone. 

The valence angles at C(2) and C(;) in the three molecules, 

(Figure 14.41), are reasonably consistent with the value of 1200 

normally associated with an sp2-hybridised carbon atom. The 

magnitudes of the exocyclic angles~ at C(l) are, of course, 

governed by the 8-C(1)-S angle. In the desaurin this latter 

angle is considerably reduced from the normal value to 98.00 

in the l,;-dithiete ring and consequently the exocyclic angles 

in this molecule are significantly greater than those in PBi 

and the trithiacyclopentane from pinacolone. 

~he 2-methylene-l,;-dithiacyclobutane derivative, XIII 

(14), and 2-desylidene-l,3-dithiolane, XIV (15,16), have some 

similarity to the structures reported in this thesis. Dimensional 

details of the comparative portions of XIII and XIV are sho\~ 

in Figure 14.42' 

The 2-methylene-l,;-dithiacyclobutane system in XIII is 

reported to be approximately planar and is therefore comparable 

with the planar l,;-dithiete ring of the desaurin. Two notable 

features of XIII are the 'non-equivalence'of the C(~2)_S bond 

lengths, 1.aOA and 1.72A, (contrasting with 1.766A and 1.764X 

in the desaurin), and the extremely long S2-C(Sp3) length of 

• 

-
~ Exocyclic is used loosely to indicate the S(~)-0(1)-0(2) 

and S (2 )-C(l )-0(2) angles in PIli. 
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l.90A. The endocyclic valence angles in the desaurin, 98.00 

at C(sp2) and $2.00 at S(II), are not significantly different 

from the analogous angles in XIII, 100.60 and the mean value 

of 8).50 respectively; the slightly larger values of these 

angles in XIII are coupled \'1ith the small valence angle of 

92.30 at the ~3-hybridised carbon atom C(4). 
o 0 

The C(sp2)-S bond lengths in XIV, 1.72A and 1.76A, are -- ,", 
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• consistent with the corresponding dis~ances in P~1J (mean 1.747A), 
o 

and the trithiacyclopentane from pinacolone, (mean 1.740A). 

Th~ 5(1)-C(1)-5(2) angles in XIV and PDM, (115.50 and 115.10 

respectively), are comparable, although the valence angles at 

the sulphur atoms in XIV, 94.60 and 96.7°, reflect the severe 

puckering in the 1,3-dithiolane system and are significantly 

smaller than the analogous angles in PDM of 104.)0 and 104.4°. 

The C(~3)-S bond lengths in XIV, 1.8)! and 1.80A, and PIJ.l, 

1.8431 and 1.82)A, are in quite good agreement. 

Bond lengths in the O=O-C=O systems of XIII and XIV 

indicate pronounced conjugation and overall appear more consist­

ent with the distances found in P~l than those in the desaurin 

and trithiacyclopentane from pinacolone molecules. 

Attention has already been drawn in the foregoing sections 

to 'the approximate planarity of the (s-cis) a,~-unsaturated - - -
carbonyl and sulphUr atom sub-systems, in the desaurin, pm1 and 

the l,2,4-trithiacyclopentane from pinacolone molecules, which 

incur short intramolecular sulphur-oxygen distances. Similar 

observations in other molecules have been described in Chapter 1, 



for which partial sulphur-oxygen bonding has been proposed (11, 

12,13) • 

In the 2-methylene-l,J-dithiacyclobutane derivative XIII, 

(Figure 14.42), it is reported that the four-membered sulphur­

containing ring and the a,~-unsaturated carbonyl system are 
o 

approximately coplanar, (with a mean deviation of O.04A), .as 

is found for the central ten atom system of the desaurin from 
• acetophenone, (mean deviation O.006A). It is interesting to 

note that the distortions of the exocyclic angles at C(l) found 

in the desaurin, (Figure 14.41), are apparent to some extent 

in XIII, (Figure 14.42). The intramolecular sulphur-oxygen 
o .• 

distances, 2.640A in the desaurin and 2.63A in XIII, are some 

0.41A less than the sum of the van der Waals radii of sulphur 

and oxygen. Comparison of the dimensions of the ~-dithia-a,~-- -
unsaturated carbonyl systems in the desaurin and XIII, suggest 

that the extre~e1y close similarity in sulphur-oxygen distance 

is probably fortuitous. 

Least squares plane data tor the a,~-unsaturated carbonyl - . 
and sulphur sUb-system in PDM, 

has been given in section 14.2, (Table 14.23 , plane Q), and 

showed that this group of six atoms is approximately coplanar, 

(with a mean atomic deviation of 0.0171). As previously stated, 
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in 2-desylidene-l,J-dithiolane XIV (16), (Figure 14.42), it is 

reported that although the analogous 5(1)-C(1)=C(2)-C(3)=0 
o 

grouping is approximately coplanar, (mean deviation 0.034A), 

5(2) is significantly out-or-plane by O.24t. The findings in 

the P~1 molecule are in direct contrast to those in XIV on this 

point; S(2) in P~l is closely coplanar with the five atom 

system, (Table 14.~3' plane Q). The distortions in exocyclic 

angles at C(l~ found in the desaurin, are not apparent in the 

P1J.{ molecule, (Figure 14.4, ); hOl"ever in XIV a severe 'reverse I 

distortion is evident, (Figure 14.42). The intramolecular 
• D 

sulphur-oxygen distances in P~1, (2.727A), and XIV, (2.70A), 

are c10se1ysim11ar, but it is unwise to take a distance of 
• around 2.7A as characteristic for the grouping on the basis 

of two determinations. 
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In the 1,2,4-trithiacyclopentane from pinacolone molecule, 

least squares planes were calculated for, 

-5(1) 0(1) 
I II 

/C(l) /8(3) 

.", '-C(2) "" 

and 

0(2) 8(2)----
I I 

~C(lO) ,&C(8) 

'C(9)'7 '" 

Plane Q Plane D -
which showed, (Table 14.33>, that each atomic grouping is 

approximately coplanar. Although the mean atomic deviations, 
o •. 

(O.023A for plane Q and O.029A for plane R), are greater than 

those found in the desaurin and PI)l, the intramolecular sulphur­

oxygen distances found are the shortest in the three analyses. 



The unusually short S--O distances found in this molecule, 

which involve the sulphur atoms of a five-membered heterocyclic 

disulphide system, are similar to those found in 2,5-dimethyl­

dithiofurophthene, X (11), and 3,5-diacetamido-l,2-dithiolium 

bromide, XIX (93). 

o S--8 

Me Me 

XIX 
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The molecular skeleton of 2,5-dimethyl-dithioturophthene 

1s reported to be essentially planar, (with a maximum atomic 
I) 

deviation of O.04A), in curing an extremely short intramolecular 
. 0 

sulphur-oxygen distance of 2.44A, with a disulph1de bond length 
o 

of 2.12A. J.lammi eta ~. (11), after comparing the molecular 

dimensions of X with those ot the previously reported isologue 

2,5-dimethyl-thiothiophthene XI (12), interpreted the short 

S--O distance as evidence of partial bonding between these atoms. 

In 3,5-diacetamido-l,2-dithiolium bromide, the.l,2-

dithiolium ring is found to be planar within experimental error. 

Although the nitrogen atoms lie close .to t~ls plane, the exo­

cyclic carbon atoms, C4 and C6 , and the carbonyl oxy~en atoms, 

0, and O2 , are out-of-plane by +O.Q9lA, +O.094A, +O.048A and 

+O.130A respectively. Least squares planes through the 5 , -C, -:, 

N1-C~-O, and S2-C2-N2-C6-02 systems of XIX would therefore 

appear to be akin to the 'butterfly-wing' disposition of planes 

(93) A. Hordvik and H. 1-'1. Kjoge, Acta Chem., Scand.,~, 1923 (1966)." 
• Reproduced from Chapter 1. 



Q and D about the heterocycle in the l,2,4-trithiacyclopentane 

from pinacolone molecule. The intramolecular sulphur-oxygen 
o 0 

distances in XIX, 2.57lA for S,--01, and 2.5l5A for 82--°2, 
are comparable with those found in trithiacyclopentane from 

o 0 

pinacolone, (2.5l7A and 2.509A). Hordvik (93) suggests that 

the slight asymmetry of the sulphur-oxygen distances in XIX 

is due to the oxygen atom 0, entering into a weaker contact, 
• (3.ll3A), with a 'second 8 1 atom of a symmetry related ion, 

and concludes that the short 8--0 distances are indicative of 

partial bonding between these atoms. By taking the sum of the 
o 

covalent radii of sulphur and oxygen as 1.7lA, the sum of the 

van der Waals radii as 3.25A*, and assuming a linear bond­

order, bond-length relationship, the sulphur-oxygen contacts 
o 0 

of 2.57lA and 2.5l5A were taken as corresponding to sigma 

bond-orders of 0.47 and 0.44 respectively. By comparing the 
• disulphide bond length in XIX, (2.080A), with those found in 

• thiuret hydrooromide, 2.08lA (94), and thiuret hydrochloride 
o 

hemihydrate, 2.071A (95,96),. Hordvik concludes. that the partial 

bonding between the sulphur and oxygen atoms does not apprec­

iably affect the disulphide bond length. Whether the close 

8--0 contacts in the trithiacyclopentane from pinacolone 

effectively lengthen the disulphide bond is not at all easy 

to detect without further structural data on l,2,4-trithia­

cyc10pentane derivatives. In this context a' structure analysis 
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. *. (94 ) 
• Hordvik assumes the van der Waals radius of sulphur is 1.85A • 

A. Hordvik and S. Joys, ibid., 12, 1539 (1965). 
(95 ) 
(96) 

A. Hordvik and J. Sletten! ibid.,l2, 7S3 (1965). 
Idem., ibid., ,gQ, 1907 (1~6~ 



of the second cis isomer type, 

RI S S /RI " . / \ 
/C=C" ./C=C 

R-CO S......... "CO-R 

would unequivocally test this point. 

14.5 ponclusion. 

The structures of the desaurin and l,2,4-trithiacyclo­

pentane are confirmed and dimensional details of these novel 

heterocyclic systems are·now established. The structure analyses 

reveal that in each molecule the a,~-unsaturated carbonyl systems 

adopt an s-cis conformation and the S-C=C-O=O systems are approx-- -
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imately planar, incuring intramolecular sulphur-oxygen distances 

which are considerably less than the sum of the van der Waals 

radii of sulphur and oxygen. In the light of similar observations 

in related systems, and the conclusions drawn therefrom, the 

short sulphur-oxygen distances found in this work could perhaps 

be considered as evidence for partial bonding between the sulphur 

and oxygen atoms, or a strong charge interaction. 

In 2,5-dimethyl-thiothiophthene XI, Giacometti and 

Rigatti (97) considered that the sulphur atoms use only their 

Jp orbitals for bonding, and viewed the sulphur-sulphur bonds 

as having both sigma and pi contributions. Mammi et ale (11) 

considered the partial bonding between the sulphur and oxygen 

atoms in the related 2,5-dimethy1-dithiofurophthene X to be of 

(97) G. Giacometti and G. Rigatti, J. Chern. Phys., lQ, 1633 (1959). 



the srune general nature, as did Hordvik in 3,5-diacetamido-l,2-

dithiolium bromide, XIX (93). A reasonable mechanism by which 

partial bonding between sulphur and oxygen could occur in the 

three molecules studied in this work, is through overlap of a 

2p orbital on oxygen with a suitably orientated 3d orbital on 

sulphur. If the 2px and 2pz orbitals of oxygen are involved 

in bonding to carbon, the 2py orbital remains for bonding to 

the sulphur. This orbital lies in the plane of the a,~-unsat-....... 
urated carbonyl system and is directed towards the sulphur atom. 

Consequently overlap between this orbital and a 3d orbital on 

the sulphur may give rise to a sigma type bond. An alternative 

formulation involves p-pi-d-pi bonding between the oxygen 2pz 

orbital and a sulphur 3d orbital. 
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APPENDIX I • 
The desaurin from acetophenone. 

Observed and calculated structure factors. 

Unobserved reflections are marked • 
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APPENDIX II. 

3-Phenyl-l-propene-l,3-dione l-(dimethyl mercaptole). 

A summary of the symbolic addition procedure. 

* denotes reflections for which the phase generated 
had both absolute and symbolic contributors, indic­
ating A m - • 

*~ deno~es reflections which were not used as input 
for cycle 13. 

*** denotes the initial symbolic assignment A. 

For cycles 1 through 12, IEI)2.0. 

For cycle 1), 2.0>IEI)1.5. 

· IV 



v 
cycle h k 1 r I E s cycle h k 1 lEI s 
no. no. 

2 2 -9 2.63 + 5 3 7 2.0$ +A 
5 1 -2 2.83 + 5 0 6 2.21 -
2 3 1 2.90 + 1 4 15 2.54 +A 

1. 4 1 -8 2.38 - 3 2 15 2.34 + 
0 1 10 2.37 + 0 10 10 ~".06 +A 
3 1 7 2.57 + 3 4 -13 2.20 -A , 
3 3 7 2.39 - 7. 2" 9 10 2.15 -A 
3 2 -3 2.33 - 4 1 " 11 2.25 -

2. 2 1 1 2.04 - 2 5 11 2.10 +A 
1 1 -4 2.71 + 0 4 2 2.41 -
1 1 -5 2.41 + 2 6 -2 2.27 -A 
1 3 -5 2.13 - 0 $ 13 2.30 +A 

. 5 0 8 2.06 - 1 3 14 2.00 -
1 4 6 2.50 + 3 3 . .5 2.03 -

3. 4 0 2 2.50 + 1 2 -4 2.56 -A 
-4 2 3 2.57 + 3 6 4 2049 +A 

**,;~ 2 10 2 2.64 +A 1 6 16 2.03 +A 

4. 4 8 -7 2.50 _.11. 1 g J.3 3.04 -A 
1 11 5 2.20 +A 5 g -5 2.43 ·+A 
0 7 1 3.32 +A 8. 0 5 12 2.13 -

5. 2 6 0 ·2.19 -A 2 9 9 2.29 -A . 
2 6 2 2.11 -A .- 0 9 3 2.13 -A 
0 8 . 9 .2.75 +A 0 7 3 2.07 +A 
3 9 -4 2.03 -A 2· 6 4 2.14 -A 
3 6 6 2.50 +A 0 2 19 . 2.41 -
1 10 -.4 2.05 -A 4 4 -11 2.01 -f:A 
4 8 -9 2.20 -A 3 7 -6 2.01 -A 
5 8 -3 2.01. +A 3 10 4 2.62 -A 

6. 2 7 11 ·2.11 +A 3 10 2 2.10 -A 
0 11 1 2.04 -A 3 6 2 2.]1 +A 
0 9 ·1 2.04 -A 9. 0 5 3 2.15 +A 
0 6 10 2.12 -A 0 12 2 2.98 + . 
2 ~ -11 2.64 + ·0 4 13. 2.04 -A 
0 4 9 2.27 -A 1 5 9 2.29 -A 
1 5 5 2.05 -A 1 4 11 2.70 +A 

( 

'. 



. 
VI 

cyole· h k 1 lEI s h k 1 lEI 5 

no. 
9. 1 4 -7 2.15 -A 4 5 0 1.70 -A 
cont. 1 8 1 2.04 +A * 0 1 2 1.69 + 

1 8. 11 2.10 -A 4 9 0 1.64 +A 
• :e..--_ 

10. 2 7 6 2.04 -A 2 7 .-4 1.64 +A 
0 2 15 2.56 - 2 7 -12 1.63 . +A 
0 8 5 2.32 +A 4 5 -10 . 1.61 + 

1 3 10 2.41 - 2 5 -~2 1.60 -A 
3 2 11 . 2.26 + 2 5 -8 1.58 -A 

11. 2 1 16 2.11 + 2 5 4 1.58 -A 
2 . 2 3 2.25 - 6 3 0 1.56 -
3 2 '9 2.12 + 4 ,I 13 1.94 
0 5 15 Z.28 -A ~c 4 :3 5. 1.78 + 
1 '11 -6 2.03 2" :3 11 1.76 -A 

12. 4 1 4 2.48 + 2 9 __ 7 1.75 + 
* 4 3 6 2.12 + 2 5 -9 1.72 +A 

* 0 .9 6 2.09 - 0 3 1 1.71 -A 

* 0 4 14 3.04 + * 4. 9 .3 1.67 + 
*~~ 0 12 0 2.40 + * 2 1 15 1.59 + 
*~; 0 10 8 2.26 +A 2 7 9 1.58 +A 

* 1 1 g 2.18 - * 2 9 .3 1.51 + 
*. 3 9 2 2.01 + 2 4 12 1.97 -

13. l(c 2 5· 14 1.94 - 2 10 0 1.84 +A 
0 :3 - 10 1.94 + * 4 4 -12 1.80 + 
'2 9 -10 1.90 +A 2 0 14 1.75 + 
2 5 6 1.89 +A 4 6 . g 1.74 '-A 
0 3 4 1.88 + 2 2 0 1.67 +A 

4 9, 2 1.85 -4-A 4 4 0 1~60 -
2' 9 -8 1.84 +A 0 8 l.l 1.99 +A 

2 .3 -8 1.84 -A 4 g -5 1.97 -A 
2 7 -6 1.81 +A 2 2 11 1.93 -
6 1 2 1.78 - 0 8 .7 1.86 +A 
2. 5 -10 1.75 _A 6 2 -9 1.83 + 

* 0 :3 '8 '1.74 + 0 4 11 1.7.3 -A 

" 
., 

" J 



.. 
, . VII 

h k 1 lEI s h k 1 lEI s 

0 4 7 1.71 -A 5 4 6 1.95 + 
6 4 1 1.67 +A 1 6 -2 1.93 +A 
2 10 -11 1.64 - I' 0 6 1.92 -

* 0 2 1 1.56 + 3 6 0 1.91 +A 
'2 2 13 1.52 3 6 -8 1.91 -A ' 

:«( 2 4 13 1.51 + :(c 1 6 10 : 1.90 + 

4 4 -7 1.51 +A 5 0 0 1.90 -
1 9 -14 1.92 -A 3 6 8 1.83 ,+A 

1 1 16 1.92 - 3 6 10 1.79 +A 

* 1 5 10 1.91 + 1 6' -6 1.75 +A 

3 7 -2 1.81 -A 1 0, 20 1.59 + 

~ 3 3 8 1.79 + 3 2 6 1.56 -A 
, 1 5 16 1.75 + 1 2 -15 1.95 -

1 9 -12 1.74 + 3 g -13 1.79 +A 

* 1 9 0 1.70 - 5 g -1 1.79 +A 
3' 5 14 1.6$ -A * 5 4 -1 1.75 + 
1 q 8 1.59 +A * 1 g 7 1.73 + 
1 1 -6 1.58 + 1 4 3 1.73 + 
1 5 -14 1.58 +A 5 g -7 1.69 +A 
1 1 18 1.58 - 1 8 -5 1.65 +A 
5 1 -4 1.55 + * 1 2 -9 1.65 

* 3 5 -8 1.52 - 5 2 -15 1.62 
1 1~ 14 1.51 - 5 4 -5 1.58 -A 
I, 7 3 1·98 -A 1 8 -3 1.58 +A 
5 5 J 1.96 -A 1 S' -1' 1.-57 TA 

1 9 .3 1.93 +A 1 4 ,13 1.57 ~A 

* 3 5. --7 1.82 + 1 2 -13 1.57 -
* 1 1 -19 1.79 - *3 2 3 1.56 -

1 11 7 1.79 +A 1 2 5 1.54 + 

* 3 9 -3 1.79 - 1 8 -7 1.52 +A 
1 9 5 1.70 +A 
1 7 7 1.68 -A 

," 

5 5 5 1.56 -A 
1 6 -4 1.99 +A 

3 0 -4 ' 1.96 -
(~ c' 

0" 

" ;l .' ., 
t; 
# 
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APPENDIX III. 

)-Phenyl-l-propene-l,)-dione l-(dimethyl mercaptole). 

Observed and calculated structure factors. 

Reflections classified as unobserved are marked * . 
• 
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APPENDIX IV. 

The l,2,4-trithiacyclopentane from pinacolone. 

Observed and calculated structure factors. 

Reflections classified as unobserved are marked * 
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APPENDIX y.. 

Crystallographic programs. 

(a) Interpolation program for scattering factor 
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(b) Lorentz-polarisation correction program for 
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factor magnitudes. 

.. 
XVII 

xviii. 

xix. 

xxi. 



r 

C 
C 
C 
C 
C 
C 
C 
C 

103 
102 
112 
111 
100 

'" XVIII 

INTERPOLATION PROGRAM. INPUT IS F VALUES AT SIN THETA/LAM. 0.0 
TO 1.10 IN STEPS OF 0.05 (23 OF , ••• OUTPUT IS F VALUES FOR SIN 
THETA FROM 0.02 TO 1.00 IN STEPS /F 0.02 e 50 OF) •• 
DATA IS l~ SINTHETA/LAM. FVALUE •• 23 OF IN FORMAT F6.4,F5.2 •• 
SINTHETA/LAM RUNS FROM 0.00 TO 1.10 •• 
DATA2. M~(FORMATI3). MM IS THE NO. OF VALUES OF SINTHETA 
TO BE INTERPOLATED •• 
DATA 3 •• MM VALUES OF SINTHETA IN FORMAT F6.4 •• 
FORMATCIX.2BH SINT RHO SCATT) 
FORMAT(13) 
FORMATCF6.4) 
FORMATC1X,F7.4,3X.F7.4,3X,F8.4) 
FORMAT(F6.4,F5.2) 
DIMENSION SN(23),FC23),B(4',C(3"D(2) 
00 1 1=1.23 

1 READ(5,lOO) SN(I),F(I) 
READe5,102, MM 
WRITEe6,103) 

420 

421 

150 
200 

301 

302 

303 
304 

201 

KK=O 
KK=KK+l 
IF(KK-MM)421,421,422 
READ(5,112) X 
SX=eX/l.541B) 
A=O.0500 
A=A+0.0500 
IFeA-SX)200,201,202 
B1·= (A/0.050e )+1.0000 
I=Bl 
J=I-3 
00 300 K=l,4 
J=J+l 
BCK)=(F(J)*(SNeJ+l)-SX)-FeJ+l)*CSNCJ)-SX),/eSNeJ+l,-SN(J» 
J=I-3 
K=O 
DO 301 L=1.3 
J=J+l 
K=K+l 
Cel)=eBCK)*(SNeJ+2)-SX)-BCKt1)*eSNeJ)-SX)/(SNeJ+2)-SN(J)' 
J=I-3 
leO 
00 302 M=1.2 
leL+l 
JeJ+l 
DeM)=(C(L)*eSNeJ+3)-SX)-C(L+l)*(SN(J)-SX»/CSN(J+3)-SN(J» 
J=I-2 
FCAL=euel)*eSNeJ+4)-SX)-Oe2)*CSNCJ)-SX»/(SN(J+4)-SNCJ), 
WRITE(6,lll) X,SX,FCAL 
GO TO 420 
BI=(A/O.0500)+1.0000 
leSI 
WRITEe6,111) X.SX,FCI) 
GO TO 420 
RETURN 
END 



. 
XIX 

$IBFTC 
C 

LP}03 DECK 

C 
C 
C 
C 
C 

L.P. CORRECTION FOR EQUI-INCLINATION WEISSENBERGs 
IF ITEST IS 0 PRINT. IF = 1 THEN PUNCH, IF = 2 THEN PRINT AND PUNC 

1 fORMAT(3F7.3,4F7.4) 
2 FORMAT(A5,4F8.4) 

******************** 
** VERSIO~ 103 ** 
******************** 

3 fORMAT(3I3.F9.2,f5.3,I3) 
4 FORMAT(I3) 
5 fORMAT(1H$,319,F9.2,9X,F9.0,IS) 
6 FORMAT(lX,6H ,F7.4,F7.2,314,F9.2,F8.3,F9.2) 
7 FORMAT(lHO,58H SINT FOBS H K L 

1 1*0) ,', 
OBSl DLP 

8 FORMAT(lH1,15H LAYER CODE IS A5.7H,MU IS F8.4,8H OEGREES,17H,SCALE 
1 FACTOR IS F8.4' 

9 FORMAT(lX'31H MINIMUM INTENSITY MEASURED IS F8.4,9H.ZETA IS F8.4) 
10 FORMAT(lX,6H **** ,F7.4,F7.2,3I4,F9.2.F8.3,F9.2) 
11 fORMAT(lHO,12H REFLECTION 3I3,32H HAS SIN(THETA' GREATER THAN 1.0' 

DIMENSION RCP(6),PRCP(6) 
READ(5,4'ITEST 
READ(5'l', A,B,C,CAA.CBB,CCC,WAVE 
D=SQRT(1·+2·*CAA*C8S*CCC-CAA*CAA-CBS*C98-CCC*CCC, 
O=l./(D*A*B*C' 
SAA=SQRTC1.-CAA*CAA' 
SBB=SQRTCl.-CBB*CB9, 
SCC=SQRTC1.-CCC*CCC, 
RCPC1J=D*B*C*SAA 
RCPC2'=D*A*C*S6B 
RCPC3'=D*A*B*SCC 
RCPC4'=(CBB*CCC-CAA'/(SBB*SCC' 
RCPC5'=(CAA*CCC-CBS)/CSAA*SCC' 
RCP(6)=CCAA*CBB-CCC,/CSAA*SBB' 
PRCP(l'=RCP(1)*RCP(1'*O.25 
PRCPC2'=RCP(2'*RCP(2'*0.25 
PRCP(3'=RCP(3'*RCPC3'*O.25 
PRCPC4'=RCPCl)*RCP(2'*RCPC6'*0.25 
PRCP(5J=RCPCl'*RCP(3'*RCP(5'*0.25 
PftCP(6'=RCP(2'*RCP(3'*RCPC4'*0.25 

100 CO~TINUE ' 
REAO(S.2' ICODE.AMU,SCALE,ZMINI.ETA 
WRITE(6,8) ICODE,AMU.SCALE 
W~ITEC6.9' ZMINI,ETA 
IFCITEST-l) 120.121,120 

120 CONTINUE 
WR.ITE(6,7) 

121 CONTINUE 
112 CONTINUE 

REAO(5,3) IH,IK,IL,OBSI,Q,IO 
IFCIH-999' 102,103.102 

103 IfCIK-999) 100,104.100 

. ' 

102 FH=IH 
FK=IK 

I 
.. - I 

! 

FL=ll 
t"._ ... ~ -_I 



-- - 401 

C 
C 

C 

400 

201 

200 
202 

402 

206 
20a 

209 
250 
207 
220 
221 

104 

:SDATA 

xx 

RHO=FH*FH*PRCP(1)+FK*FK*PRCPC2)+FL*FL*PRCP(3'+2.*FH*FK*PRCP(4'+2.* 
IFK*FL*PRCP(6)+2.*FL*FH*PRCPCS) 

SQSINT=RHO*WAVE*WAVE 
SINT=SQRTCSOSINT) 
IFCSINT-1.' 400,400,401 
CONTINUE 
W~ITE(6,11) IH,IK,IL 
GO TO 112 
CONTINUE 
CENT=SQRT(l.-(SINT*SINT» 
XISQ=C4.*SOSINT'-CETA*ETA) 
XI = SQR T( X I SO , 
USING THE EQUATION GIVEN IN COCHRAN. 
D=CXI *CENT)/(I+COSSQ(TWOTHETA» 
CTWTH=Cl.-(SINT*SINT*2.)' 
CSQTW=CTWTH*CTWTH 
DLP=CXI *CENT)/C1.+CSOTW) 
IF(OSSI) 200.201.200 
CALCID=ZMINI*OLP*SCALE 
10=1 
GO TO 202 
CALCIO=OBSI*DLP*SCALE· 
IH=FH 
IK=FK 
JL=FL 
FOBS=SQRT(CALCIO) 
CONTINUE 
IF(ITEST-l) 206.207,206 
P({INT OUT 
IF(ID)209,20a,209 
WRITE(6,6) SINT,FOBS,IH,IK,IL,OBSI,DLP,CALCID 
GO TO 250 
WRITE(6,10L SINT,F08S, IH,IK,tL,OBSI ,DLP,CALCID 
IF(ITEST-l) 112,112,207 
IF(ID) 220,221.220 
FOBS=O. 
CONTINUE 
W~ITE(6,5' IH,IK,IL,FOBS,Q,ID 
GO TO 112 
RETURN 
END 

,. 

. '. 
;. 



C A PROGRAM TO GERERATE NORMALISED STRUCTU~E FACTORS 
C SUBROUTINE SYSTAB S~TS UP THE CORRECT EPSILON VALUES 
C 

1 FORMATC3F7.3,4F7.4) 
2 FORMAT(7FIO.4) 
3 FORMATCIHO,32H RECIPROCAL CELL PARAMETERS ARE) 
4 FORMATCIX.6FIO.5) 
5 FORI-1A T ( 13) 
6 FORMATC F9.6) 
7 FORMATC319,2F9.2.F9.0,I5) 
8 FORMATCIX,315.F9.4,F9.3.5F7.3,2F9.3,F9.4) 
9 FORMAT(lHS,3I4,F9.4) 

· XXI 

10 FORMATCIHO,95H H K L SINT OBSI Fl F2 F3 

C 

1 F4 F5 SIG2 EP*SIG2 E**2) 
12 FORMATCIHO,17H SCALE FACTOR = F9.4///) 
13 FORMAT(lX,6H Z IS F9.4,53H ,NO OF ATOMS OF THIS TyPE IN THE 

lUNIT CELL IS 13//) 
14 FORMATCIHo,60H A* B* C* COSCAL*) COS(8E*) 

lCOSCGA*» 
15 FORMATClOI3) 
16 FORMATCIHO.25X.23H NUMBER OF F CURVES IS IS) 
17 FORMATCIHO,25X.27H DATA SET uP IS ON LOGICAL 15) 
18 FORMATCIHO,25x,34H NO INITIAL PRINT OUT IS REQUESTED) 
19 FORMATCIHO,25x,34H INITIAL PRINT OUT IS REQUESTED) 

220 fORMAT(lHO,25X.29H A K GENE~ATION IS REQUIRED) 
221 FORMAT(lHO,25X,29H AN E GENERATION IS REQUIRED) 

DIMENsION RCP(6),PRCP(6),AFMCll,SI),FM(lS),NOATClO).CONTClO) 

C TAPE ALLOCATIONS. 
C NN IS BINY TAPE FOR EXPANDED DATA AND MM IS TAPE USED IN KGEN 
C FOR STORAGE AND LSQFIT PICK-UP. 
C 

NFOUR=2 
NN=l 
MM=4 
READ(5,l) A,B,C,CAA,CBB,CCC,WAVE 
D=SQRTCl.+2.*CAA*CB8*CCC-CAA*CAA-C88*CaS-Ccc*CCC) 
D=l./CD*A*B*C) 
SAA=SQRTCl.-CAA*CAA' 
SBB=SQRTCl.-CBB*CBS' 
SCC=SQRTCl.-CCC*CCC, 
RCP(1)=D*B*C*SAA 
RCP(2'=O*A*C*SBB 
RCP(3)=D*A*B*SCC 
RCP(4)=CCBB*CCC-CAA)/CSBB*SCC) 
RCP(5)=CCAA*CCC-CBB)/CSAA*SCC) 
RCP(6)=(CAA*CBS-CCC)/CSAA*S88) 
PRCPCl)=RCPCl)*RCPCl)*O.25 
PRCP(2)=RCPC2,*RCPC2)*O.25 
PRCP(3)=RCP(3)*RCPC3,*O.2S 
PRCPC4,=RCPCl)*RCPC2)*RCP(6'*O.2S 
PRCP(5)=RCPCl)*RCP C3)*RCP(SJ*O.25 
PRCP(6)=RCP C2J*RCPC 3)*RCP(4)*O.25 
WRITEC6,3) 
WRITEC6,14, 

..--~~-- ... ---......------ . .--.. -, ->-----...~_~ __ ~ __ ... ______ . ____________ . __ w_.--.-



C 

C 

WRITE(6,4) ( RCP(I),I=1,6) 
CALL FOURl (NFOUR,RCP) 
READ IN SCATTERING FACTORS 
READ(5,15) NNl,NF.NOWR,KCURv,NN2 
WR I TE (6,16) NF 
WRITE(6,1?) NN 
IFCNOWR.EQ.O) GO TO 230 
WRITE(6,19) 
GO TO 231 

230 WRITE(6,18) 
231 CONTINUE 

IFCKCURV .EO.O) GO TO 232 
WRITEC6,220) 
GO TO 233 

232 \&/RITE(6,22U 
233 CONTINUE 

REWIND NN 
00 31 1=1,11 
00 31 J=I.S1 

31 AFMCI,J)=O. 
,1=0 

20 1=1+1 
REAOCS,2) CAFMCI,J),J=1,7) 
IF CAFMCI',1»21,21,22 

22 REAOCS,2) CAFMCI,J),J=8,51) 
NATSC=I 
GO TO 20 

21 CONTINUE 

XXII 

READ IN THE NO. OF ATOMS OF EACH CHEM.' TYPE IN THE ASSYMETRIC UNIT, 
00 101 L=l,NF 
REAOC5,S) NOAT(L) 

101 CONTINUE 
REAO(S,6) SCALE 
WRITEC6,12) SCALE 
00 500 L=l,NF 
WRITE(6,13' AFMCL,1),NOATCL) 

500 CONTINUE 
WRITE(6,lO) 

102 REAOCS,7' IH,tK,IL,FOBS,StG,Q,ID 
FH=IH 
FK=IK 
FL=lL 
IF( IH) 25,23,25 

23 IF(tK' 25,24,25 
24 IF(IL) 25,5C,25 

"'~ ---:\ 

25 RHO=FH*FH*PRCP(1)+FK*FK*PRCP(2)+FL*FL*PRCPC3'+2.*FH*FK*PRCPC4'+2.* 
IFK*FL*PRCP(6'+2.*FL*FH*PRCPCS'- -

saSINT=RHO*wAvE*wAVE 
SINT=SQRTCsaSINT) " 
OBSI=SCALE*FOBS*FOBS 
IFCStNT-l.) 26,102,102 

26 BRAG=SINT 
DO 27 1=2.51 
BRAG=BRAG-O.02 

- -, 



IF(BRAG)28,28,27 
27 CONTINUE 
28 1=1-1 

FRAC=(BRAG+O.02)*50. 
DO 29 K=l,lO 

29 FM(K)=O. 
DO 30 K=lt~ATSC 

30 FM(K)=AFM(K,I)+(AFM(K,I+l)-AFM(K,I»*FRAC 
C IF(IO.EO.O) GO TO 999 
C OBSI = 0.56 

999 CONTINUE 
TOT=O. 
DO 104 L=1,NF 
FNOAT=NOAT(L) 

CONT=FNOAT*FM(L)*FM(L) 
TOT=TOT+CONT 

104 CONTINUE 
SIG2 = TOT 
CALL SYSTAB (JH,IK,IL,EPSI) 
ESIG2 = SIG2 * EPSI 
ESQ = (OBSI/ESIG2) 
WRITE(NN) IH,IK,IL,ESIG2,ESO,OSSI,FOBs,SINT,ID,EPSJ 
IF(NOWR.EQ.O) GO TO 444 
WRITE(6,8) IH,IK,IL,SINT,OSSI,CFM(I),I=1,S),SIG2,ESIG2,ESQ 

444 CONTINUE 
GO TO 102 

50 IH = 999 
WRITE(NN) IH,IK,IL,ESIG2,ESQ,09SI,FOSS,SJNT,JD,EPSI 
END FILE NN 
REWIND NN 
IF (KCURV - 1) 111,666,666 

666 CALL KGEN (NN,MM) 
CONTINUE 
GO TO 995 ~ 

111 CALL EGEN (NN,NFOUR) 
CONTINUE 

995 RETURN 
END 

SI8FTC KKK 

C 
'C 
C 

,C 
C 

SUBROUTINE KGEN(NN,MM) 

THIS IS USED TO CALCULATE SUMS FOR GENERATING K CURVE, SO THAT 
AN EXPONENTIAL FIT OF THE FORM K = A*EXPCS*SINT**C) 
CAN BE OBTAINED AND THIS USED TO PLACE 
THE INTENSITIES ON THE TRUE SCALE 
DIMENSION S(30),TSIG(30),TIN(30),ZN(30),SM(30),CCK(30, 

1 FORMAT(3I3,F9.6) 
2 FORMAT(2F9.6) 
3 FORMAT(lHO,66H RANGE' TOT(SlG2) TOT(INT' K 

IJN(TH)M NOI') , 
4 FORMAT(lH ,15,3F15.4,F10.6,F6.1) , 

xxiii 

'1 
\ 

I 

I 



· XXIV 

5 ~ORMAT(lX,3I5.2F15.4~I5,F9.6,F6.l) 
6 FORMATClHl,50H H K L E*SIG2 OBSI RANGE) 

C 

C 

c 

7 FORMATCl8HlKCURVE GENERATION/I) 
8 FORMATC6HO ) 
9 FORMATC20H K CURVE SET NUMBER 13) 

10 FORMATCl2H REFLECTION 3I3,36H IS OUTSIDE THE MAXIMUM SINCTHETA), 
11SH AND IS IGNORED) 
RE~II ND t-1M 

11 CONTINUE 

100 

102 

103 

150 

104 

REWIND NN 
READCS,l) N,III,NSET,SINMAX 
WRITECMM) N,NSET 
JFCIII.EQ.O) GO TO 100 
WRITE(6,6) 
CONTINUE 
DO 101 } = l.N 
TSIGC I) = 0.0 
T)N() = 0.0 
ZNCI) =.0.0 
CCK(I) = 0.0 
CONTINUE 
CALL RANSET(N,SINMAX.S 
CONTINUE 

) 

READ (NN) IH,IK,IL,ESIG2,ESQ,OBSI,FOBS,SINT,ID,EPSI 
IFCIH.EQ.999) GO TO 999 . 
IFCSINT.LE.SCN» GO TO 103 
WRITEC6,10) IH.IK.IL 
GO TO 102 
CONTINUE 
00 104 I = I,N 
IFCSINT.GE.SCI» GO TO 104 
TSJGCI) = TSIGCI) + ESIG2 
TINCI) = TINCI) + OBS} 
ZNCI) = ZNCI) + 1.0 
IF. (III.EQ.O) GO TO 150 
WRITE(6.5) IH.IK,Il,ESIG2,OaSI,I,SINT,EPSI 
CONTINUE 
GO TO 102' 
CONTINUE 

Ie - REACHES '999 AT THE END OF ALL DATA 
999 CONTINUE 

REWIND NN 
C 
C PUT OUT THE REQUIRED SUMS 

WRITE(6,3) 
DO 110 I = 1,N 
CCKCI) = CTSIGCI)/TINCI» 
WRITE(6,4) I,TSIGCI),TINCI),CCKCI),SMCI).ZNCI) 

.. WFtI T E (MM ) I, T S I G ( I ) , TIN ( I ) ,C CK ( I ) ,SM C I ) ,ZN ( I ) ,5 C I ) -
110 CONTINUE . 

IFCNSET.NE.O) GO TO 11 



c 
C FINAL SET OF K CURVE 

RE\oJ I ND MM 
WRITE(6,7, 
WRITE(6,3) 
JK = 0 

12 CONTINUE 
JK = JK + 1 
WRITE(6,9) JK 
WRITEC6,8) 
READn-1M) N,NSET 
00 14 I = 1,N 
READ CMM ) I,TSIGCI"TINCI),CCKCI),SMCI),ZNeJ),SeI' 
WR J TE C 6,4, I, T S I G C I ) ,T INC I ) ,CCK C J, t SM C I ) ,ZN e J ) 

14 CONTINUE 
IF(NSET.NE.O) GO TO 12 
CALL LSQFIT(MM" 
RETURN 
END 

xxv 

SIBFTC ECALC 

c 
C 
C 
C 
C 
C 
C 
C 
C 

'C 
C 
C 
C 
C 
C 
C 
C -

SUBROUTINE EGEN (NN,NFOUR) 
DIMENSION FM(20) 

.j 

THIS SUB READS BACK FROM BINy TAPE NN, AND SEtS uP AVERAGES REQUiR~' 

THE SIX QUANTITES REQUIRED ARE 

E DESIG 
TOTE AVERAGE E 

AVERAGECE**2 - I) 
AVERAGE (E**2) 

-- . TESQM1 

PERCENT 
PERCENT 
PERCENT 

WITH 
WITH 
WITH 

E • GT. 3.0 
E • GT. 2.0 
E • GT. 1.0 

TOTESQ 

THIS SUB ROUTINE ALSO OUTPUTS CARDS 
FUNCTIONS ON. N.B. DATA IS SCALED 

GENERATED FROM KGEN 

NUMBER TOTAL 
NUM 
NUM 
NUM 

N3 
N2 

... _ .N1 ... ___ ... 

WI TH THE . ~f'GI,,\I1tE.D. 
US I NG THE £)( p. FUNC. TroN 

1 FORMATe1Hl,17HTOTAL lEI 
115.23H ***AVERAGE lEI = 

= F12.4,26H NUMBER OF OBSERVATIONS. 
F12.4' 

. 2 FORMATC1HO.17HTOTAL IE**2-11 
1 F12.4) 

= F12.4,31X,23H ***AVERAGE IE**2-11 • 

3 FORMATCIHO.17HTOTAL IE**21 = F12.4,31X,23H ***AVERAGE IE**2 I • 
1 F12.4) 

4 FORMATCIHO.6H , 
5 FORMATCIHo,26H NUMBER WITH lEI GT 3.0 = 
. 1.4) 
6 FORMATCIHO,26H NUMBER WITH lEI GT 2.0 = 
1.4) 

7 FORMATClHO,26H NUMBER WITH lEI GT 1.0 = 
C/' 1.4) 

I5,I8H PERCENT GT 3.0 • Fa 

I5.18H PERCENT GT 2.0 = Fa 

I5,~8H PERCENT GT 1.0 • F8 
, ) 



C 

C 
C 

C 

C 

8 F6RMAT(lX,3I5,3F9.3) 
9 FORMAT(lHl,42H H 

10 FORMAT C3FIO.5,II0) 
11 FORMATCIH$,3I4,5F9.4) 
12 FORMATClX,3I4.6F9.4) 
13 FORMAT(lHl,57H H 

lCALC ) 

K 

K L 

XXVI 

L E (E**2-1,) 

E E**2-1 SINT K 

14 FORMAT(lHQ,50H THE AVERAGE E**2 IS OUTSIDE THE PERMISSABLE RANGEII 
l,35H AND CONSEQUENTLY THE J08 IS HALTEDII.47H IF THE A COEFFICIENT 
2 IS REPLACED BY THE VALUE FIO.4,28H AN AVERAGE E**2 WILL RESULTII. 
326H OR RE-ANALYSE THE K CURVE) 

15 FORMAT(lHO,5lH THE K CURVE USED IS OF THE FORM K = A*(B(SINT'**C)I 
1111,32H THE COEFFICIENTS USED HERE ARE III. 5H A = FlO.411.5H B = 
2FlO.41,,5H C = FI0.411) 

16 FOR~ATCr3) . 
17 FORMATCIHO.45H ONLY THE AVERAGES ARE REQUIRED NO INDIVIDUALIII. 

1 40H LISTING FOR EACH PLANE WILL BE GIVEN , 
READ IN PARAMETERS OF THE EXPONENTIAL FUNCTION 

778 READ (5,10, A,B,C,NAVER 
IF(A.GT.IOO.) GO TO 800 
IF(NAVER.EQ. ) GO TO 240 
WRITE(6,17) 
WRITE(6,13) 

240 CONTINUE 

400 

201 

SET SCK AND NPUN TO 1 FOR INITIAL RUN 
SCK = 1.0 
NPUN = 1 
lEND = 0 

CONTINUE 
Nl = 0 
N2 = 0 
N3 = 0 . 
NU"., = 0 
TOTE = 0.0 
TOTESQ = 0.0 
TESQMl = 0.0 
REWIND NN 
CONTINUE 
READ (NN) IH,IK,IL.ESIG2,ESQ,OBSI,FOBS.SINT,ID,EPSI 
IFCIH.EQ.999) GO TO 200 
IF(SINT.GT.0.75) GO TO 201 
CONK = A*ExPCB*SINT**C) 
E2 = ESO * CONK * SCK 
E2M1 = E2 - 1.0 
E = SQRTCE2' 
NUM = NUM + 1 

I 
• ! 

I 

t 

, 
i 
I 

! 
i: 
'. : 

TOTE = TOTE + E 
IFCE2Ml.GE.0.O, 
EEMI = -E2Ml 

GO TO 301 - -
, 
I 

-- I 

GO TO 300 
301 EEMl = E2Ml 



----:300 TESar-n = TESQMl + EEMl 

C 
C 

C 

.. 

c 

TOTESO = TOTESQ + E2 

PRCENTAGE TOTALS 
IF(E.LT.:3.0, GO TO 22Q 
Nl = Nl + 1 
N2 = N2 + 1 
N:3 = N3 + 1 
GO TO 555 

220 IFCE.LT.2.0) GO TO 210 
Nl = Nl + 1 
N2 = N2 + 1 
GO TO 555 

210 IFCE.LT.l.O) GO TO 555 
Nl = Nl + 1 

555 CONTINUE 
IF(NPUN.NE.O, _ GO TO 302 
IF(NAVER.N~.C) GO TO 302 
CALL CARD (IH,IK,IL,E,E2,E2Ml.SINT,CONK) 
CONTINUE 

302· CONTINUE 

200 

IF (IEND.NE.l) GO TO 201 

CALL FOUR2 (IH,IK,IL,E,E2Ml,SINT,ID.FOBS.NFOUR.EPSl) 
IFCNAVER.NE.O) GO TO 201 
WRITE(6,12) IH.IK,IL,E,E2,E2MI,SINT.CONK,ESQ 
GO TO 201 
CONTINUE 
ZNUM = NUM 
ZNl = N1 
ZN2 = N2 
lN3 = N3 
AVE =_ TOTE/lNUM 
AVESMI = TESQMl I lNUM 
AVESQ = TOTESQllNU~ 
PERE3 = (ZN3/ZNUM) * 100.0 
PERE2 = (ZN2/ZNUMt * 100.0 
PEREI = (ZNI/ZNU~) * 100.0 
WRITE(6,l) TOTE,NUM.AVE 
WRITE(6,2) TESQMl, AVESMI 
WRITE(6,3) TOTESQ.AVESQ 
WRITE(6.4) 
WRITE(6,5) N3, PERE3 
WRITE(6,6) N2, PERE2 
WRITE(6,7) Nl, PEREI 
WRITE(6,15) A,B.C 
IF(IEND.EO.l) GO 
IF(AVESQ.LT.0~98) 

IFCAVESa.GT.l.02, 
lEND = 1 
NPUN = 0 
GO TO 400 

TO 311 
GO TO 500 
GO TO 500 

500 lEND = 0 

· . XXVII 

! . 
; 'i 
i I 

I 
., 



SCK = (1.0/AVESQ) 
D = SCK * A 
WR I T E ( 6, 14) D 

311 CONTINUE· 
CALL FOUR2 (IH,IK,IL,E,E2Ml,SINT,ID,FOBS,NFOUR) 
REWIND NN 
GO TO 778 

800 RETURN 
END 

xxviii 

518FTC KFIT 

C 
C 

c 
C 
:c 
I 
C 
I 

SUBROUTINE LSQFIT (MM) 
DIMENSION Y(lCO"X(100'2),AC2),WCIOO),Z(100),ZZ(lOO) 
DIMENSION TSIGCIOo"TINClOO),eeK(lOO),SM(lOO),lNClOO),S(lOO) 
REWIND MM 

READS BACK SINTHETA (SM) AND K (eCK) FROM TAPE MM READY TO GO TO 
THE LIBRARY SUBROUTINE FOR THE LEAST SQUARES FIT. 

Jl = 1 
J2 = 0 

101 CONTINUE 
READ(MM) N,NSET 
J2 = J2 + N 
DO 104 I = Jl,J2 
REA D ( M,..1 ) I , T S I G ( I ) , TIN C I ) ,C C K ( I ) ,S M ( I ) ,Z N ( I ) ,S ( I ) 

104 CONTINUE 
Jl = Jl + N 
IF(NSET.NE.O) GO TO 101 
NTOT = J2 
WRITE(6,111) NTOT 

111 FORMAT(lHl.43H LEAST SQUARES FITTING .SUBROUTINE IS CALLED,1136H TH 
IE TOTAL NUMBER OF POINTS. UsED IS 15) 

ENTER INTO THE L.S. SUBROUTINE. 
THIS PROGRAM USES LEAST SQUARES LIBRARy SUBROUTINE 

TO FIT NTOT POINTS (W,Z) TO A CURVE 
00 106 I = 1,NTOT 
II ( t, = SM ( I , 
WeI) = CCKel) 

106 CONTINUE 
ON c 1. 

100 DO 1 I = I,NTOT 
YC]) = ALOG(W(I» 
l(]) = ZZ(I)**XN 

1 CONTINUE 
00 2 I = 1,NTOT 
DO 2 J = 1,2 

2 X(I,J) = Z(I,**(J-l' 
'CALL LSTSQ (Y,X,100,NTOT,2,A,SJ 
WRITE (6,12) XN 

12 FORMAT (IX, 5HXN c , FIO.511' 
WRITE (6,20) S, (J, A(J), J = },2) 

.. 

20 FORMAT (IX, 17HSUM.Of SQUAR~S.=: , .. El.3_.6/.'-_( . ..!1C,I3'.,E_20.~~ . .tL 



AA = EXP ( A ( 1) ) 

SS = EXP(S) 
B = A(2), 
WRITE (6,44) AA,B,SS 

44 FORMAT (4HOA= ,FIO.5,5X,4H3 = ,FI0.5,17HSUM OF SQUARES = 
DO 4 K = 1,5 

4 WRITE (6,30) 
30 FORMAT (4H 

XN = XN + 0.5 
IF lXN.GT.IO.O) GO TO 110 
GO TO 100 

110 RETURN 
END 

xxix 

_ ........ . 

,E13.6//1 

$IBFTC PUNCH 
~, SUBROUTINE CARD lIH,IK,IL,E,E2,E2Ml,SINT,CONK) 

IF lE.LT.l.4) GO TO 10 
W-ITE (6,11) IH,IK,IL,E,E2,E2M1,SINT,CONK 

11,FOR~AT CIH$.3I4,5F9.4) 
10 RETURN 

END 

$IBFTC -ANGES 

C 
C 

SUBROUTINE RANSET (N,SINMAX,S ,SM ) 
DIMENSION S(30),SM(30),S3(30),S3MEAN(30) 

SINMAX IS THE MAXIMUM SINlTHETA) • THIS SET UP IS FOR 3-D ONLY : 
1 FORMAT(lHO,25H THE NUMBER OF RANGES IS 151/,27H THE MAXIMUM SINlTH: 

lETA) IS F9.411/1) , 
2 FORMAT(lHO.5X,5HRANGE,8X,7HSINT**3,6X,8HMEANS**3.9X.4HSlNT.9X.9H~E 

IAN SIN.TII) 
3 FORMATllH ,IIO,4(5X,FIO.5» 

- - 4 FORMATlIHl,48H RANSET HAS BEEN CALLED FOR GENERATION OF RANGES,­
WRITE(6,4) 
ZN = N 
S3MAX = (SINMAXI**3 
S3INl = (S3MAX)/ZN 
S31N2 = S3INl/2.0 
SMIN = 0.0 
DO 100 I = 1.N 
Z I =' I 
53(1, = SMIN + CS3IN1*ZI, 
S(I) = (S3(1»)**0.333333 
S3MEANlI) = 53(1' - S31N2 
SM(I) = (S3MEANlI"**O.333333 

'100 CONT I NUE 
WRITE(6,1) N,SINMAX 
WRITE(6,2) 
DO 101 I = l,N 
~RITE(6,3) I,S3(I),S3MEAN(I),sct)',SM(J) .. -... '.. i 



101 CONTINUE 
RETURN 
END 

xxx 

$ISFTC SETUP 1 
SUBROUTINE FOURl (NFOUR.RCP) , 

C 
C THIS SETS UP REC. DATA ON NFOUR -- REQUIRED FOR SHARPENED PATTERSON 
C 

DIMENSION RCP(6) 
RE\</ I NO NFOUR 
WRITE(NFOUR) (RCP(I),I=1.6) 
WRITE(6,1) NFOUR 

1 FORMAT(lHO,47H*** RECIPROCAL CELL DATA IS WRITTEN ON LOGICAL 15' 
RETURN 
END 

$IBFTC SETUP2 

C 
C 
C 
( 

100 

SUBROUTINE FOUR2 (IH,IK,IL.E,E2Ml,SINT,ID,FOBS,NFOUR,EPSI) 
DIMENSION F~1(20) 

, ; 

THIS SET UP IS THE MAIN ONE FOR DATA FOR A SUBSIQUENT SHARPENED 
AND ORIGIN REMOVED SHARPENED PATTERSON 

FH=IH 
FK=IK 
FL=IL 
YC=O.O 
AC=O.O 
80=0.0 
8(=0.0 
SIGYO=O.O 
".~.v 
RHO=U.o 
DO 100 1-1,10 
FMCI'=O.O 
CONTINUE 
QE2 = EPSI * E * E 
o II: SORT( QE2' 
Q2Ml = QE2 - 1.U 
W-ITECNFOURJ ~H.~K'fL,~'YC,QlMl,AC.80,8C,SJGYO,Q'ID,RHO, 

1 SINT,(FMCI),I=l,lO, 
IF(IH.NE.999' GO TO 10l 
WRITE(6,1021 I 

FORMAT(lHO,49HIH=999 IS ReACHeD AND T~ANS~e~ lOMPLET~ TO FOURZ '1 
END FILE NFOUR 1 
REWIND NFOU~ 
~~~UHN _ _ _ ___ __ _ _ _______ ~ 



xxxi 

:$IBFTC SYST 
suBROUTINE SYSTAH (IH,IK,lL.~P~l' 

c 
C P21/C 
C 

IF(IK.~Q.O) ('0 TO lUl 
IF(IH.N~.U) (,U IU !Ul 
IF(Il.NE.O, tiO 10 lUl 

101 EPS I. = 2.0 
GO TO 100 

102 EPSI = 1.0 
100 RETURN 

END 

560*CARDS 
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