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ABSTRACT 

In view of their recently acquired technological importance, 

the structure and properties of carbon fibres are currently receiving 

considerable attention. Although the use of electron spin resonance 

(tSR) in the study of carbons and graphites has long been established, 

the application of this technique specifically to carbon fibres has not 

been previously reported. In this thesis the ESR characteristics of 

a number of high temperature fibres is investigated, in conjunction with 

other electronic properties such as the thermoelectric power (TEP). 

the magneto-resistance and the electrical resistivity. 

The discovery of an anisotropy in the g-value of the ESR 

absorption of carbon fibres has made it possible to confirm that the 

graphitic crystallites, which make up the fibre structure, are 

preferentially aligned with their basal planes parallel to the fibre 

axis. This anisotropy is shown to be insensitive to slight crystallite 

misalignments, but on the other hand it clearly affords a good measure 

of the deeree of graphitization in carbon fibres and indicates that 

crystallite development in these materials always remains inferior to 

perfect single crystal graphite. This is in line with their nominally 

non-graphitizing nature. 

Comparing the ESR information with the results obtained from 

the other electronic properties investigated, reveals that the heat 

treatment temperature (HTT) of l7S0
o

C is associated with a major 

electronic change in the structure of these materials. The processes 



occurring at this lITT are discussed in terms of the available 

structural and band models in the carbon field. It is suggested that 

the appearance of the g-shift in this region is controlled by a critical 

interlayer or c-spacing in the graphitic crystallites. Furthermore 

it appears that the stresses formed in the material during the process 

of heat treatment are annealed in this region and this possibly plays 

a more significant role in the appearance of negative magneto-resistance 

than hitherto suspected. 

It is found that hot stretching carbon fibres invariably 

produces a change in all the properties investigated, in the direction 

of increased graphitization. 

Finally it is shown that correlation between the properties 

of different fibres can be satisfactorily achieved when these are 

expressed in terms of the g-anisotropy. which it is suggested, affords 

a good practical measure of graphitization or 'graphitic order' in . 

these materials. 
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CHAPTER 1 

INTRODUCTION 

The importance of carbon fibres lies in the fact that they 

can be made stronger and stiffer than any other synthetic or natural 

material of the same weight except for single crystal 'whiskers', which 

can only be produced on a rr~croscopic scale. These fine filaments of 

carbon can then be used to reinforce a resin matrix producing a composite 

material which can be as stiff as steel but only one fifth as heavy. 

The resulting technological implications have lead to very considerable 

interest being devoted to these fibres in recent years. Although it 

would probably be fair to say that the ways in which these new materials 

can now be manufactured have been brought to a satisfactory level of 

reproducibility, there is still considerable lack of knowledge on their 

internal composition and structure, particularly at the atomic level. 

It has been known for some time that unpaired electrons are 

associated with various types of carbonaceous materials,·but although 

ESR techniques have been widely used to investigate the structure of a 

variety of these materials, they have not previously been specifically 

applied to carbon fibres. In this work the ESR parameters of carbon 

fibres are examined in conjunction with other electronic properties, 

such as the electrical resistivity, the thermo-electric power (TEP) 

and magneto-resistance. 
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The fibres investigated were all high temperature fibres having 

o been heat treated above approximately 1000 C. Two sets of fibres were 

considered. The first. consisted of a number of fibres subjected to a 

heat treatment temperature (HTT) ranging between 10000C and 2800oC. 

The second set of fibres had in addition been heat treated under stress 

(hot stretched) at various HTT between l8000 C and 30000 C. The study 

was undertaken in cooperation with the research establishment of Rolls­

Royce Ltd. at Old Hall, Derby, who kindly supplied the author with all· 

the carbon fibres investiBated in this thesis. 

Because the properties of carbon fibres are so intimately 

related to the graphitic crystallites making up the structure, attention 

has been given at various stages to the properties of single crystal 

graphite~ Some measurements on stress recrystallized pyrographite. which 

behaved as single crystal graphite, are presented whenever relevant to 

the discussion of the carbon fibre results. 

Since an important part of the study is concerned with 

investigating the ESR parameters of carbon fibres, a whole chapter 

(Chapter 2) is devoted to a summary of the basic phenomena and techniques 

of CSR. The emphasis is placed on those aspects of the techniques 

relevant to the ESR of carbons and the treatment is necessarily far from 

exhaustive. Since its advent immediately after World War II. ESR 

spectroscopy has become a well established discipline and a wealth of 

• (1)-(8) 
excellent books and review articles are available on the subJect • 
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At the outset of this work. the available ESR spectrometer was 

of the type employin~ a helix instead of a microwave cavity •. This 

arrangement was found to be unsuitable for examining carbon fibres and 

consequently it was reconstructed into a bridge system. using a micro-

wave reflection cavity. The changeover did not require major modifications 

in the detecting circuitry, but the building of an automatic frequency 

control (ArC) system was a necessity. The spectrometer set up is 

described in detail in Chapter 4. together with the various experimental 

techniques relating to ESR of carbon fibres. 

The background literature for the carbon field is introduced 

in Chapter 3, together with a discussion on the structure and electronic 

properties of graphite. Amorphous carbons are then considered in detail. 

Three dominant aspects of these materials which are subsequently of 

considerable importance to this work are developed. These are: 

(i) The ESR line results from the separable contributions of two 

spin species, namely localized and conduction electrons. 

(ii) The g-value for the conduction part will, as a result of 

motional averaging, represent the spatial average of the g­

values of the individual graphitic crystallites. 

(iii) The band th~ory proposed some years ago to explain the 

properties of carbons is examined in detail. 

In view of the importance of the manufact~procedures on the 

properties of carbon fibres, the latter part of this chapter is devoted 

to describing how these were developed. 
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The ESR and electronic data collected for the first series of 

fibres (i.e. not hot stretched) are presented and briefly discussed in 

Chapters 5 and 6 respectively. Chapter 6 is divided into four parts. 

The first three deal respectively with the electrical resistivity, 

thermo-electric power and magneto-resistance. The remaining fourth 

section is devoted to a detailed general discussion encompassing both 

the ECR and electronic information presented in Chapters 5 and 6. 

The effect of hot stretching upon all of these properties, 

are examined in Chapter 7. The second set of fibres was used for this 

purpose and the results obtained are combined with the results of the 

first set and an overall picture is discussed. 

The final conclusions are drawn in Chapter 8, which includes 

wherever possible suggestions for future work. 
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CHAPTER 2 

ESR BASIC PRINCIPLES AND TECHNIQUES 

2.1 The Phenomenon 

The phenomenon of paramagnetic resonance can be approached 

classically(l,2) by considering the magnetic moment ~ associated with a 

free spin. The application of a static magnetic field H will cause u to 

precess about ~ at the Larmour precession frequency. Resonance occurs 

when the frequency of an applied oscillating field is the same as the 

precession frequency. 

Paramagnetic resonance can also be viewed quantum mechanically(3) 

as the Zeeman splitting of the degenerate zero field level by the appli-

cation of the external magnetic field H. The magnetic moment u of an -
electron is given by 

l:!. = -gBS (2.1) 

where nS Is the spin angular momentum vector of the electron, g is a 

dimensionless constant called the 'g-factor' and 8 is the Bohr magneton. 

The interaction between the electronic magnetic moment and an 

applied magnetic field H is represented by the Hamiltonian 

= -l:!..!! (2.2) 

If the applied field is in the z direction this becomes 

= geHS . z (2.3) 
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For an isolated free electron in a magnetic field there are two allowed 

orientations of the spins, parallel or antiparallel to H. The former 
z 

being the low energy state and the latter the high energy state. 

Transitions between the levels, or 'spin flips' can be induced by the 

application of an oscillating magnetic field perpendicular to Hi 

provided the oscillation frequency v is such that it satisfies the 

resonance condition (see fig. 2.1) 

hv = geH (2.4) 

Generally for a spin system with spin number S, there will be (2S+1) 

sub-levels or Zeeman levels, each characterized by the magnetic quantum 

number MS which can have (2S+1) values. 

By computing the transition probabilities using first order 

time dependent perturbation theory it can be shown that only transitions 

with 6MS = il are allowed. Hieher order calculations however, allow 

otherwise forbidden transitions to occur under certain circumstances. 

2.1.1 The g-factor 

The 'g-factor' or 'spectroscopic splitting factor' is a measure 

of the admixture of the orbital motion of an electron with its spin 

momentum. An electron in a typical paramagnetic ion is affected not 

only by the applied magnetic field, but is also under the influence of 

its own orbital motion and thus 'spin-orbit coupling' occurs and can 

cause the g-value to deviate appreciably from the value of 2.0023 observed 

for a completely free electron. As a result of distortion of the orbits 
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of a paramagnetic ion in a crystal lattice by the crystal field, the 

g-value may show anisotropy with respect to the crystal axis. 

In aromatic free radicals, however, as a consequence of the 

delocalized nature of the unpaired electrons, there is very little 

coupling between spins and their orbital motion and hence the g-value 

falls very close to the free spin value of 2.0023. 

2.1.2 Saturation 

When a spin system is in thermal equilibrium with its 

surroundings there exists, according to Boltzmann's statistics, a Slight 

population excess in the lower energy state. The application of a 

resonant oscillating magnetic field to the spin system will cause tran-

sitions to occur. Time dependent perturbation theory shows that the 

probabilities for upward and downward transitions are equal. 

Furthermore it can be shown that the application of the resonant r.f. 

field results in the exponential decay of the population difference and 
(3) 

eventually the levels will be equally populated • This state of 

affairs is described as 'saturation' and will cause the ESR signal to 

decrease in intensity and ultimately to disappear, unless some non-

radiative process is available which allows the spins to 'relax' and 

transfer their energy to other degrees of freedom, and hence return to 

the ground state. 

2.1.3 Relaxation 

This process of non-radiative transitions, is called spin­

lattice relaxation; the term 'lattice' being used in a broad sense to 
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refer generally to other degrees of freedom not directly related to the 

spin system. Spin-lattice relaxation is possible because the spin 

system is coupled to the lattice via the spin-orbit coupling(9). 

The enargy of the spin system is in equilibrium with the thermal energy 

of the 'lattice', which means that the probabilities of spontaneous 

spin transitions up and down are no longer equal as they were for r.f. 

induced transitions. Application of the resonant r.f. field disturbs 

this equilibrium by increasing the energy of the spin system, which then 

'relaxes' exponentially, transferring its excess energy to the lattice, 

with a characteristic time constant Tl known as the spin-lattice 

relaxation time, or longitudinal relaxation time. 

Taking a macroscopic view and considering the bulk magnetic 

moment of a large assembly of spins to be M at a certain temperature, 

then the z component, Mz , of the magnetic moment decays to zero with a 

characteristic time Tl • 

In the absence of a magnetic field H , there is no physical o 

distinction between the z-direction and any other direction and in the 

absence of field M and M also decay to zero. 
x . y 

The introduction of a steady field H along the z axis alters o 

the situation, M no loneer vanishes but tends to approach a steady z 

state value M proportional to the static magnetic field susceptibility o 

x • o 

Furthermore, although the transverse components M and M still x y 

decay to zero, they do 60 with a time constant which is generally 

different from Tl and it is necessary to introduce another relaxation 

time, the 'transverse relaxation time', T2, 
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The longitudinal and transverse relaxation times Tl and T2 are 

different because they depend on different processes. Changes in Mx 

and My do not alter the total Zeeman energy of the spins, whereas 

changes of Mz need an exchange of Zeeman energy with the lattice. Tl 

is therefore identifiable with the spin-lattice relaxation time and is 

expected to be temperature dependent. It is found that T1 increases 

with decreasing temperature agreeing with the theoretical predictions 

of Van V1eck(10). 

The transverse-or spin-spin relaxation time T2 is related to 

the effect of dipole-dipole interaction and can be considered as a 

measure of the rate at which the spin system comes to equilibrium within 

itself rather than with the lattice. 

If the above macroscopic views are combined with the effect· 

of Larmour precession, a set of equations known as Bloch's phenomeno­

logical equations(11) can be arrived at, which describe the spin as 

performing 'a damped precession in which the rotating transverse 

components of M decay to zero with a characteristic time T2, while Mz 

relaxes towards its equilibrium value M with a decay time Tl '. 
. 0 

Bloch's equations show that the two relaxation times play 

quite distinct roles. The spin-lattice relaxation time determines the 

degree of saturation and the spin-spin relaxation time determines the 

unsaturated line width. 

2.1.4 Spin-lattice relaxation 

A useful concept to describe spin-lattice relaxation is that 

of a spin temperature distinct from the lattice temperature. The energy 
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dissipated inside the spin system by the r.f. field raises the spin 

temperature above the lattice temperature and this excess energy' is 

transferred to the lattice by a spin-lattice relaxation mechanism. 

A complete treatment of the concept of spin temperature can be found in 
(12) 

Abragam's book • However it can be noted that the assumptions of a 

spin temperature correctly describe the behaviour of Zeeman systems with 

one or more spin species. 

Bloembergen and Wang(13) pointed out that energy of spin 

orientation may first make its way to an intermediate thermal reservoir 

which is the so-called exchange system. This intermediate reservoir can 

in turn transfer energy to the lattice vibrations. They showed that in 

this two step process the transference of energy from the magnetic to 

the exchange system can be the slowest and therefore the rate controlling 

step, which determines the overall relaxation time Tl • This would make 

Tl independent of temperature. 

The first part of this two step relaxation process was calculated 

by Kubo and Tomita(l4,15); the second part was treated by Griffith(16) 

and a complete discussion on the two step spin-relaxation process via 

the intermediate exchange reservoir has been presented by Van Vleck(l7). 

2.1.5 Dipolar and exchange interactions 

The dipole moment of an unpaired electron will produce a static 

field in the region of its neighbours which will depend on the spatial 

orientation of the dipoles. This local variation produces slight changes 

in the resonance condition for each spin centre and a broadening of the' 

line will result. 
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It was soon noted however that magnetic resonance lines were 

usually sharper than one would suppose on the basis of the effect of 

d · 1 d· (18). 1 d· 19 8 b V Vl k(19) lpO ar broa enlng • ThlS problem was so ve 1n 4 y an ec • 

who not only provided a quantitative measure of dipolar broadening but 

also explained the anomalously narrow lines, which he showed to be caused 

by the exchange interactions between neighbouring paramagnetic ions. 

If the ions are similar the effect of exchange is to narrow 

the lines at the centre and broaden them in the wings, leaving the 

second moment unchanged but reducing the width at the half power points. 

On the other hand if the exchange is taking place between dissimilar ions, 

the interaction will tend to bring the two different transitions together 

and hence produce one wider line. The changes in line shape from Gaussian 

to Lorentzian can be taken as good evidence that exchange narrowing has 

taken place. Gaussian and Lorentzian lines are defined and discussed in 

section 4.3. 

Dipolar interactions can also exist between electronic moments 

and nuclear spins. This gives rise to further splitting of the Zeeman 

levels. In non-crystalline phases this splitting is smeared out due to 

the random orientation of the nuclear dipoles and leads to a further 

broadening resulting from the unresolved nuclear hyperfine interactions. 

2.1.6 Homogeneous and inhomogeneous broadening 

The experimental effects of the different dipolar interactions 

which cause broadening of the ESR line can now be analysed. When the 

interactions of the spins with themselves and their surroundings are so 

fast that the absorption of energy involves the spin system as a whole 
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the resulting broadening is often referred to as homogeneous broadening. 

Dipolar broadening, exchange narrowing and motional averaging (section 

3.2.2.) are included in this type of broadening. If one or more of the 

homogeneous interactions control the line width, the relaxation time T2 

can be related to the line width. 

On the other hand, when the interactions vary slowly with 

respect to the time required for a spin transition then energy will only 

be transferred to those spins whose local fields satisfy the resonance 

condition and the resulting broadening is referred to as inhomogeneous 

broadening. The overall response of the spin system will be a superposition 

of the individual responses, and here the resultant absorption line is 

a superposition of the individual absorption lines. When inhomogeneous 

broadening controls the line width, T2 cannot strictly be related to the 

width. Types of inhomogeneous broadening are: unresolved hyperfine 

interactions, g anisotropy broadening and broadening resulting from 

inhomogeneity of samples or magnetic field. 

Homogeneously and inhomogeneous1y broadened lines behave 

differently when under saturation conditions. For homogeneously 

broadened lines saturation will decrease the apparent absorption; 

but this decrease occurs first in the centre of the lines where the 

greatest power is absorbed before it affects the wings. This will alter 

the line shape, increasing the apparent line width. In the case of 

inhomoger.eous broadening saturation takes place for individual lines or 

components separately; and hence the overall line shape does not change. 
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This difference in behaviour between homogeneously and 

inhomogeneously broadened absorption lines under saturation conditions 

can be used to differentiate between them. 

2.2 Detection of the ESR Signal 

Basically an ESR spectrometer must be capable of detecting small 

changes in the magnetic susceptibility of the sample as it is taken 

through the resonant condition described by equation (2.4). From this 

equation one finds that for a field of 10,000 gauss, the resonance 

frequency of a free electron (with g = 2.00232) is 28,026 MHz. 

ESR spectrometers are therefore normally designed to operate in the 

microwave range of\ frequencies. Two commonly us(1d wavelengths are 

3.2 cm (X-band or Marine Radar Band) and 8 rom (Q-band or Airport Control 

Radar Band). 

2.2.1 Crystal video detection 

In the simplest type of spectrometer the sample under investi­

gation is placed in a microwave cavity inserted between the poles of an 

electromagnet. Such a cavity has the advantage that standing wave 

patterns, or cavity modes, are set up within it leading to very large 

values of the oscillating r.f. magnetic field. Generally the power 

concentrated, and thus the signal observed is increased by a Quality 

factor, or Q-factor, of the cavity refined as 

Q 
Energy stored at resonance 

= Energy dissipated per cycle 

where w is the resonant frequency. 

)(W 
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Most microwave components have a fairly narrow band performance, 

and it is usually easier to sweep through the resonance condition by 

varying the magnetic field and keeping the r.f. frequency constant rather 

than the reverse. 

The level of power in the case of a transmission cavity is 

monitored by feeding a fraction out to a crJstal detector (see Fig. 2.2a). 

Absorption of power at resonance by the sample will cause a drop in the 

level of pow~r detected by the crystal rectifier. If the magnetic field 

is a.c, modulated, the resonance absorption can be displayed directly on 

an oscilloscope. 

Besides the fact that a transmission cavity is, by theoretical 

considerations, shown to be only half as sensitive as a reflection 

cavity, the crystal video system of detection suffers from technical 

drawbacks associated with the properties of the detecting crystal. 

In order to obtain a reasonable absorption signal from the specimen, the 

microwave power of the cavity should be as large as possible. But increase 

of power on the detecting crystal will increase the excess noise produced 

by the crystal. Thecon~r5ion loss, on the other hand, decreases with 

increasing power. so that there exists an optimum operating point (or 

crystal bias or leakage current) for maximum sensitivity of detection. 

There are, in fact, two ways in which independent adjustment 

of the microwave power in the cavity and the microwave level at the 

detecting crystal can be made. These are now briefly examined. 
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2.2.2 Bridge systems 

The microwave cavity in these systems is placed in the arm 

of a microwave bridge, so that, when the bridge is balanced, the power 

from the klystron is fed to the microwave cavity and the third arm of 

the bridge, containing a matched load. and no power passes on to the 

detecting crystal in the fourth arm (see Fig. 2.2b). Resonance absorption 

changes the reflection coefficient of the cavity and the bridge then 

becomes unbalanced. A signal is then passed into the fourth arm which 

is detected by the crystal. The crystal can be adjusted to operate at 

its optimum conditions by slightly unbalancing the bridge at the onset. 

The principle disadvantage with this bridge system is that it 

does not permit the spectrometer to be operated at low microwave powers 

since there would not then be enough power available to bias the 

detector crystal. This can be overcome by the use of microwave bucking 

techniques. 

2.2.3 Bucking systems 

This consists basically of a simple transmission system, but 

withabY-pass arm which takes some of the microwave power from the wave 

guide before it enters the cavity, and then returns this power to the 

output waveguide, after the cavity and before the detecting crystal 

(see Fig. 2.2c). This by-pass, or bucking arm, contains both an 

attenuator and a phase-shifter, so that the amount of power fedback 

can be varied in both magnitude and phase to give the desired crystal 

bias. 
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A basic microwave component in the design of both microwave 

bridges and bucking systems is the directional coupler, or magic-T, 

which however suffers from the disadvantage that half the microwave 

power is lost each time it is employed. The advent of microwave 
, 

circulators has overcome this drawback, and greatly simplified the design 

of complex spectrometer systems. Microwave circulators are non reciprocal 

devices based on the rotation of the plane of pOlarization of the micro-

waves by suitably magnetized ferrite inserts. The device allows micro-

waves to pass only in one direction around the linking circle of wave 

guides. 

2.2.~ Display systems 

It has been shown that the employment of a balanced bridge, 

or buckine 'system, can ensure that the detecting crystal is operated at 

the optimum level of mean detectable current. The excess flicker noise 

produced by the detecting crystal varies inversely with frequency. 

It follows that video systems where detection involves low frequency 

modulation of the magnetic field, will be inherently very noisy. 

The fact that crystal noise decreases with higher frequency of 

detection, taken by itself, suggests that increasing sensitivities can 

be obtained by working at higher and higher modulating frequencies. 

This, however, is not the case since above 5011Hz amplifier noise 

becomes appreciable. 

It is found in practice that modulation of 100 KHz reduces crystal 

noise to very low values and spectrometers employing 100 KHz field 
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modulation are widely used. Usually the depth of modulation is kept 

small compared to the line width and the d.c. magnetic field is slowly 

swept through the resonance condition. The high frequency modulation 

scans the profile of the absorption line and in this way samples the 

gradient of the line. The 100 KHz signal detected by the crystal will 

t~en be proportional to the first derivative of the absorption line. 

This signal is fed via a narrow band amplifier into a phase sensitive 

detector, the output of which can be displayed on the screen of an 

oscilloscope or traced out on a pen recorder. This system has all the 

advantages of phase sensitive detection which eliminates the noise of 

previous amplifier stages. (See Chapter 4 for more detailed discussion.) 

2.2.5 Automatic frequency control (ArC) 

It is usually necessary to prevent the frequency of the 

klystron from drifting away from the resonance frequency of the cavity. 

There are two methods of ensuring this. One can either lock the 

klystron frequency to an absolute standard of frequency (harmonics of 

a quartz crystal or high Q-cavity) or one can lock the klystron frequency 

to the actual sample cavity. If the cavity frequency shifts slightly 

(as is the case in variable temperature experiments) the klystron 

frequency will adjust itself to remain at the cavity resonance frequency. 

In accurate g-value determinations, allowances must be made for this 

shift in frequency. 

The most common way of locking the klystron frequency to the 

cavity is by frequency modulation of the klystron output. The frequency 
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modulation is then converted into amplitude modulation, by the cavity 

resonance curve and this Cdn be used to produce a d.c. correcting 

voltage to be fed to the klystron reflector. (See Chapter 4 for more 

detailed discussion.) 

2.2.6 Spectrometers based on helices 

A helix is a broad band microwave device that can be used in 

place of cavity resonators in microwave bridges or bucking systems. 

Helices are relatively frequency insensitive devices and thus critical 

matching conditions associated with microwave cavities and frequency 

modulating noise can be avoided. Furthermore their open structure 

enables various double resonance techniques to be used. Such devices 

have been shown theoretically(20).not to diminish a spectrometer's 

sensitivity. 
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CHAPTER 3 

GRAPHITE AMORPHOUS CARBONS MID CARBON FIBRES 

3.1 Graphite 

A discussion of carbonaceous materials in general is best 

introduced by considering the properties and crystal structure of 

graphite. These in fact have been extensively reviewed(2l} and only a 

brief description will be given here. 

Graphite can occur naturally, in various parts of the world, 

in deposits from which fragments can be selected that behave as fairly 

perfect single crystals. Another source of graphite is Kish graphite 

which crystallizes out in the course of smelting iron. 

Graphite can also be synthesized by various processes of 

progressive dehydrogenation and polymerization of solid organic materials. 

Pyrolitic graphites are synthesized by heating a rod or plate of graphite 

in a chamber containing a hydrocarbon usually carried in an inert gas. 

The deposit of carbon formed on the substrate, is usually obtained with 

a high degree of preferred orientation of the layer planes. 

3.1.1 Structure 

The carbon atoms in graphite form a network of regular 

hexagons arranged in parallel layers or basal planes. In the hexagonal 

structure, the predominant form in which graphite is found, the layer 

planes are arranged in an abab •••• packing sequence, the carbon atoms 

in anyone layer lying over the mid points of the regular hexagons in 

the layer immediately below (see Fig. 3.l). 
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Each atom has four valence electrons; three a-electrons which 

establish tight covalent bonds with nearest neighbours in the planes, 

and a loosely bound n-electron. This state of affairs results in a 

lattice that is characterized by the close proximity (1.42A) of the 

atoms in a layer compared to the spacing (S.SSA) between thelayers. 

The anisotropy of graphite is a direct consequence of this structural 

feature. 

Graphite normally has the hexagonal structure, but a small 

amount of the rhombohedral modification can co-exist with it. In the 

rhombohedral lattice, the same layers of flat hexagon networks are formed, 

but the packing sequence with respect to the c-axis is abcabc. The fact 

that rhombohedral packing is almost absent in synthetic graphite and that 
" 

on heating to 20000 C - 30000 C any rhombohedral modification is transformed 

to the hexagonal form indicates the latter is more stable. 

Graphites, the hexagonal networks of which may be~substantially 

perfect but in which the layers though parallel show no ordered packing 

sequence, are termed "turbostratic". 

Ideal graphite has a unique n-electron band structure, which on 

a two-dimensional band model, i.e. ignoring the interlayer interaction, 

is characterized by touching n-bands at the corner of the hexagon which 

forms the first Brillouin zone*(22). On current three dimensional band 

models the n-bands actually overlap along the zone edge(23). 

--------------------------------------------------------------------------
* As there are two atoms per unit cell, there are eight bands in all 

arranged in order of increasing energy aaannaaa. The lower 3 a- and 

a single n-band are filled, while the upper four bands are unoccupied. 
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Furthermore, it has been shown that turbostraticity greatly affects 

the band structure(24). 

The positive and negative carriers in these band structures 

are balanced fairly closely in concentration and mobility(25), 

Moreover the number of free carriers is only a fraction of the number 

of atoms which leads.to typical semimetallic characteristics. 

A shift in the Fermi level, which in perfect single crystal graphite is 

located in the band overlap region, can be induced by relatively small 

amounts of defects or impurities and causes pronounced changes in the 

electronic properties, 

Graphitic materials exhibit a great variety of structural 

configurations. The most highly organized structures are those with 

crystallites of considerable size, well aligned with respect to each 

other, and consisting of well-ordered carbon layers. All the c-axes 

point in the same direction, and within each crystallite the structure-

is essentially that of 'ideal' graphite. The most disorganized structures 

are found in the so-called 'amorphous' carbons. Their crystallites are 

small, turbostratic and randomly oriented with respect to each other. 

Intermediate between these two extremes there exists a whole range of 

'transitional' structures. 

3.1.2 Electronic properties 

The layered structure of graphite is reflected in the marked 

anisotropy exhibited by all the electronic properties of graphite, 

The electrical resistance parallel to the c-axis (Pi) for example is 
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several orders of magnitude larger than the resistance along the 

graphitic planes (Pl). Crystallite imperfections, such as screw 

dislocations make the measurement of PI! difficult by short circuiting 

the high resistance path, consequently the values of Pl/PII quoted in 

the literature vary somewhat, the highest value quoted being 

p l' P II .. 101+ ( 26 ) • 

There seems to be agreement in indicating a positive temperature 

(25) 
coefficient of resistance, in the direction parallel to the layer planes • 

while both a positive(27) and a negative(26) coefficient have been 

reported in the c-direction. 

The resistance along the c-axis varies with the application 

of a magnetic field, a property known as the magneto-resistance effect 

(see section 6.4 ). This effect rises to very high positive values 

as the temperature is lowered and exhibits de Haas - Van Alphen 

periodicities at liquid helium temperatures from which the effective 

masses of carriers can be obtained(2S). Similar periodicities are 

observed at these low temperatures in the Hall effect yielding values 

of the effective masses which compare well with those obtained from the 

magneto-resistance, and cyclotron resonance studies(28). The results 

of these studies and others such as the thermo-electric power, show 

that both electron and holes are 'majority carriers' in approximately 

equal numbers as is expected for touching or overlapping bands. 
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3.1.3 ESR 

The first reported observation of ESR in graphite was that by 

Castle(29). He attributed the resonance to charge carriers and although 

doubt was later cast on this interpretation(30), the detailed work of 

wagoner(3l) on single crystal graphite firmly confirmed that the 

resonance arises from mobile charge carriers. 

Single crystals with dimensions greater than the skin depth 

result in an ESR line of the peculiar shape characteristic of the 

• (32) 
resonance of mobile charge carr~ers. pyson has treated this case 

theoretically for metals and has shown that the precise form of the 

resonance depends on the rate of diffusion of the charge carriers. 

(33) 
Feher and Kipp have verified experimentally Dyson's predictions by 

their work on the resonance of conduction electrons in sodium, potassium, 

lithium and beryllium. 

The conclusion from the Dysonian line shape that the spin 

resonance in graphite is due to charge carriers is strengthened by the 

fact that the intensity of the resonance agrees, both in absolute 

magnitude and in temperature dependence with the values calculated from 

. (34) 
the band model of graphite by McClure • The intensity is found to 

increase approximately linearly with temperature in distinct contrast 

to the Curie behaviour expected for impurity atoms or lattice imperfections 

possessing localized spin centres. 

The most remarkable feature of the spin resonance in graphite is 

the large g-value anisotropy. McClure and Yafet(3S) have shown 

.theoretically that the g-shift arises from interlayer interactions and 
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depends quite sensitively on the various band parameters. The g-value 

of craphite may be closely fitted by a cos2 function of the form . 

where e is the angle between the static magnetic field and the c-axis 

and A is the g-value anisotropy in pure graphite. 

A = = at room temperature 

The g-value perpendicular to the c-axis (gl) is independent of temperature 

and is approximately equal to the free electron g-value (g = 2.0026). 

whereas the g-value along the c-axis (g3) is strongly temperature 

dependent and increases with decreasing temperature (&3 = 2.0495 at 

3000 K and 2.1270 at 770 K). 

The astonishing dependence of the anisotropy A on small 

changes of the Fermilevel is clearly demonstrated by drastic reduction" 

of the anisotropy on addition of small amounts of electrically active 

impurity. 

The line width decreases with increasing temperature, the 

values being roughly five gauss at 770 K. four gauss at RT. and one gauss 

o 
at 600 C. This dependence strongly suggests spin-lattice relaxation 

through interaction with spin-orbit coupling of impurity atoms. The line 

width of the resonance is extremely narrow in comparison with the field 

shifts caused by the anisotropy and remains so even for polycrystalline 

samples. suggesting that a type of averaging similar to that which occurs 

.in motion and exchange narrowing may be present (see section 3.2.2). 
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3.2 Amorphous Carbons 

When an organic compound is 'heated to about 200
0

C in.a reducing 

or inert atmosphere, reeardless of whether the original organic is 

aliphatic or aromatic in nature, polymerization with the creation of large 

condensed ring molecules occurs during the process of charring. 

o At temperatures above 700 - 800 C these substances, having lost most of 

the atoms or groups, attached at the periphery of the molecules, form a 

class of materials collectively known as amorphous carbons. The 

structure of these materials, which is complex, can be regarded as 

containing small graphitic regions or crystallites bonded together by 

what can only be described as amorphous carbon. These crystallites 

consist of turbostratic graphite (or packs of parallel graphitic planes 

about 20 - 30A in diameter) having no directional relationship to each 

other. 

Providing the carbon is graphitizine (see section 3.3), 

increasing the HTT above -lOOOoC will cause the growth, ordering and 

perfection of the crystallites to improve, so that the structure and 

properties of the carbon gradually approach those of graphite. At HTT 

of 2500 - 30000 C synthetic graphite can be obtained. 

, 
3.2.1 Electronic properties 

A considerable number of studies have been carried out on the 

electrical, thermo-electric and galvano-magnetic properties of various 

carbons, mainly by Mrozowski's group(36,37.a8}. With the exception of 

the magneto-resistive behaviour, these properties were qualitatively 

explained in terms of an energy band model. On the basis of results 
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obtained from studies of the temperature coefficient of resistance and 

HTT it was shown that amorphous carbon behaved as a semiconductor with 

the energy gap between the conduction band and valence band gradually 

decreasing with increasing HTT and crystallite size, finally disappearing 

or even overlapping for large graphite crystals. 

A summary of the results and band model of Mrozowski's school is 

illustrated in Fig. 3.2. Below HTT of 6000 C the resistivity is very 

high (>10' ohm-em) because of the low concentration and mobility of the 

carriers. The large drop in resistivity between HTT 600 - lOOOoC is 

mainly ascribed to the increase in the number of carriers. This is 

believed to occur during the evolution of gases (hydrogen etc.) in the 

carbonization process which leaves free valence a-electrons in the 

periphery of crystallites and these trap n-electrons leaving a large 

excess of holes in the valence band. In line with these ideas the 

thermo-electric power rapidly decreases in this range since its magnitude 

is inversely proportional to the hole concentration. The fact that the 

TEP and Hall coefficient actually becomes negative in the range 1000 -

l7500C is taken to indicate that the Fermi level is depressed so low as to 

become located below the E vs K inflection surface of the valence band. 

o From 1400 C onwards the Fermi level is believed to be rising as the number 

of electron traps are reduced by coalescence of crystallites. The Hall 

coefficient and TEP become positive again and increase in magnitude as 

the number of hole carriers is reduced. Throughout this region (HTT 

lOOOoC - 2oo0oC) the resistivity remains approximately constant due to 

,the increasing mobility of the carriers <reduced scattering at crystallite 

boundaries), being offset by their d~creasing number. 
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Above HTT -20000 C the number of carriers is believed to increase 

again as a result of thermal excitation of electrons into the conduction 

band which has gradually approached the valence band until it is separated 

from it by only a very small energy gap (-O.OleV). The increase in 

carriers explains the decrease in Hall coefficient and TEP and also the 

knee in the resistivity curve. The change of the Hall coefficient from 

positive to negative values for well graphitized materials is believed 

to be due to the increasing contribution of more mobile negative carriers 

in the upper band. The TEP in this region is complicated by the phonon 

drag effect. 

On this model the position of tbe positive maximum in the Hall 

constant and TEP in the region of HTT 20000 C is determined by a balance 

between the decreasing number of holes and increasing number of electrons 

created by thermal excitation into the conduction band. The experimental 

observation of a shift in the maximum to higher HTT with decrease.in 

ambient temperature is consistent with this idea. 

No explanation of the magneto-resistive behaviour was given; 

however its close correlation with the Hall coefficient suggested an 

association between the sign of the macneto-~esistance and the sign of 

the current carriers. In particular the origin of the negative magneto­

resistance in poorly graphitized carbons has not been conclusively 

clarified.. It has been suggested that diffuse scattering at the 

crystallite boundaries is influenced by the magnetic field to such an 

extent it could cause a negative magneto~esistance of the observed 
• (39) 

,magnltude • It seems however that negative magneto-resistance is a 

fairly good measure of the degree of graphitization. 
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3.2.2 ESR properties 

The subject of ESR in carbonaceous materials has been critically 

and comprehensively reviewed by Singer(40) and only a brief outline will 

be given here. For the purpose of his review, Singer divided carbonaceous 

materials, primarily on the basis of their ESR properties, into four 

classes as shown in Fig. 3.3. The electron spin susceptibility curve 

is followed quite generally for most chars. 

In the initial charring region W, very little is known about 

the rate of appearance of spin paramagnetism. This is due mainly to the 

Tl » T2 property which requires superheterodyne detection for adequate 

sensitivity at low microwave powers. Some light has been shed, however, 

on the paramagnetism in this region by Singer and Lewis(4l,42,43)who 

carried out carbonizations in inert liquids •. Here the tumbling motion 

in the liquid averages out the nuclear hyperfine interactions and the 

resulting hyperfine spectra allows the identification of the free 

radicals produced in the early stages of carbonization. Interestingly, 

a tentative correlation between the planarity of the free radical inter-

mediate and the degree of order of the final graphite seems to have been 

estab1ished(43). 

The spin concentration rapidly increases and reaches a maximum 

in region X, where the line width becomes very narrow and T1 decreases 

and becomes independent of temperature, an indication that exchange 

effects are probably occurring. 

The origin of paramagnetism in low temperature chars has been 

.ascribed to a-electrons localized at carbon atoms(44). However, the 
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grinding experiments on which this conclusion was based(4S) are now 

subject to question because of skin depth complications. Another view 

on the origin of paramagnetism, in this region, is that hydrogen or 

edge groups are removed by homolytic bond scission during carbonization 

and unpaired spins become stabilized in the aromatic skeleton as 

~-electrons(46). Evidence in favour of this view comes from several 

sources: firstly it was observed that the presence of aromatic rings 

appear to be necessary for the stability of the spin centres(47). 

Secondly, exchange narrowing can apparently occur, even at comparatively 

low spin concentrations, and thirdly well resolved hyperfine spectra 

were observed in the charrin~ experiments of Lewis and singer(4l,42,43) 

suggesting a considerable degree of delocalization of the'electrons. 

The delocalization of electrons over the molecules gains further support 

from observations of their general stability and from double resonance 

studies on carbons(48). 

The suggestion that an odd carbon molecule resulting in an 

odd number of w-electrons might be responsible for part of the ESR(49) 

h 'd h d' 1 i 'f' d(4l) as galne some support when suc ra lca s were dentl le • 

The decrease in the spin susceptibility after the peak 

(HTT - 500oC) can then be ascribed to the gradual formation of large 

aromatic sheets resulting in the saturation of most of the broken edge 

bonds. 

The high temperature carbons of regions Y and Z (HTT > 600oC) 

are characterized by their good electrical conductance. The ESR of 

materials having resistivities less than -10 ohm.cm can be dominated 
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by their electrical rather than their magnetic properties and usually 

exhibit skin depths of the order of one millimeter or so at X-band. 

For samples large compared to the skin depth the line will be Dysonian 

and can be analysed by the method of Feher and Kipp(33). For powders, 

particles of a size less than the skin depth can be dispersed in an 

insulating matrix to avoid skin depth complications. 

Another feature of amorphous carbons is the coexistence of two 

carbon phases, one consisting of turbostratic crystallites of graphite 

and the other consisting of the amorphous carbon matrix cementing the 

crystallites with each other. The observed ESR signal is still found 

to be one narrow line. This is ascribed to the remarkable phenomenon 

of "crystallite averaging,,(50) which occurs in partly graphitizing 

carbons and polycrystalline graphite. Essentially this averaging is 

similar to motional averaging, the mobility of the charge carriers 

enabling them to 'sample' several crystallites before they relax. 

The result is that the g-valuc of the resonance due to the conduction 

electrons will correspond to the spatial average of the crystallites 

distributed through the carbon. 

S .' k' (51) h d ome years ago Urozows 1. s owe that the temperature 

behaviour of lightly irradiated polycrystalline graphite was inter-

mediate between that characteristic of charge carriers in pure graphite 

and that of localized spin centres. On the basis of a detailed study 

of the temperature dependence as a function of neutron irradiation and 

doping, he concluded that the experimental results could be readily 

. explained by assuming that the single absorption line is due to 



31 -

both charge carriers and localized spin centres, the single g-va1ue 

of the line being the result of the presence of an exchange mixing 

mechanism (named mixing or M-effect). Essentially the same conclusions 

were independently arrived at by Marchand and Delhaes(52). It is 

assumed that both types of centres contribute to the ESR intensity 

independently and that the individual contributions can be obtained by 

splitting the intensity (1) vs temperature (T) curves into two parts, 

a purely curve part with I « liT, characteristic of the localized 

centres and a part which is to a first approximation temperature 

independent due to conduction carriers. 

If X is the fraction of the total intensity due to charge 

carriers at a temperature T, then the ratio R of the intensities between 

T and another temperature T', can be written as 

= (3.1) 

The resonance intensity I is usually measured between room and 

liquid nitrogen temperatures so that T = 300
0

K and T' = 77
o

K. 

The coefficient of X(T) represents the temperature variation of the 

intensity of conduction e1ectrons(SO). The variation is in fact small 

so that this term is nearly equal to one. (Mrozowski(51) takes the 

value to be between 0.88 and 1 between 77 and 300oK). The coefficient 

of (1 - XT) is of course the Curie term responsible for the intensity 

variation of localized centres. The coefficient R between room and 

liquid nitrogen temperatures can then be written as 
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R = = (3.2) 

From a knowledge of R, obtained experimentally, it is then an easy 

matter, using equation (3.2) to compute X, the fraction of the total 

intensity due to charge carriers. 

The exchange mixing mechanism (M-effect) also governs the g-

value of the resonance line, ~/hose g-value will be intermediate between 

that for localized spin centres gt(which is isotropic and has a value 

gL = 2.0023) and that for conduction carriers gc. It is then possible 

to write 

= 

It should be noted that g t is the spatial average over all crystallites exp 

in the material. 

Mrozowski's school(S3,54,S5,56) has subsequently shown that 

the basis for the mixed character of the ESR line was firmly supported. 

by a mass of experimental evidence. 

3.3 Carbon Fibres 

Because of the high melting point of carbon and its insolubility 

in solvents carbon fibres cannot be manufactured by spinning and are 

obtained by carbonization and pyrolysis of organic materials. 

The initial organic, the precursor, is usually an organic 

polymer textile fibre consisting of a highly oriented array of huge 

molecules each comprising a backbone of carbon bearing branches of 

. nitrogen and hydrogen. The structure of the carbon produced depends 
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critically on the choice of the precursor. For example, taking two very 

similar vinyl polymers, Polyvinyl chloride (PVC) and Polyvinylidene 

chloride (PVDC) and pyrolizing them, PVC yields a carbon which graphitizes 

easily while PVDC yields a carbon which does not graphitize and forms 

an amorphous carbon devoid of any crystal structure so as to be almost 

glassy. 

Franklin(S7) appears to have been the first to discuss the 

nature of graphitizing and non-graphitizing carbons (Mrozowski(36) 

prefers the terms soft and hard carbons respectively) in any detail. 

In non-graphitizing carbons, extensive crystallite development is thought 

to be hindered by rigid cross-linking between neighbouring crystallites. 

This system of cross-linking is believed to be formed during the early 

stages of carbonization and is preserved upon heating to higher tempera­

tures. The cross-links hold neighbouring crystallites apart and in a 

random orientation with respect to each other and effectively hinders 

coalescence which is a necessary preliminary of complete graphitization. 

For a carbon to graphitize it appears that the crystallites must be in 

close proximity (few pores) and furthermore, they must be approximately 

parallel to each other. By carrying out detailed studies Franklin also 

showed that those materials which had an excess of hydrogen, or were 

poorer in oxygen or possessed a reasonable degree of parallelism in 

the starting molecular units, could usually produce graphitizing carbons. 

Those with the opposite characteristics lead to non-graphitizing carbons. 

In addition graphitizing carbons lose considerable weight during heat 

treatment so that the yield of carbon is poor. PVC for example loses 

90% of its carbon content, PVDC retains nearly all its carbon content(S8). 
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The advantageous mechanical properties associated ~,ith carbon 

fibres appear to be linked with the graphitization within the fib~e. 

Consequently the choice of the pr.ecursor becomes of primary importance. 

Precursors leading to graphitizing carbons coalesce or flow at low 

temperature causing the disruption of the ordered molecular array and 

the loss of the advantages of working with fine fibres. On the other 

hand fibres of the non-graphitizing type do not have this drawback but 

neither do they attain the desired degree of graphitization. 

3.3.1 Manufacture 
(59) . 

In his classical paper Shindo examined the possibility of 

producing high modulu~ carbon fibres from a polyacrylonitrilc (PAN) 

precursor fibre. He recognized the beneficial effect of oxidizing the 

fibre in the early stages of pyrolysis on the yield of carbon and on the 

mechanical properties of the fibre. The production technique developed 

by Shindo consisted in pre-oxidizing the PAN fibre at -300
o

C, then 

carbonizing it at -lOOOoC and graphitizing it at -3000oC. The term 

graphitization appears to be widely used in carbon fibre literature 

to refer to the high HTT process where considerable crystallite growth 

occurs (1000 - 3000oC). It should be emphasized, however, that these 

fibres are strictly non-graphitic carbons, whose crystallites do not 

attain the size nor achieve the perfection of typical eraphitizing 

materials. 

Graphitization leads to an increase in crystallite size from 

-lOA at 10000C to -lOOA at 3000oC. The fibres produced by ~indo however 
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did not possess the outstanding mechanical properties which distinguish 

carbon fibres now available. 

Three British scientists, Johnson, Phillips and Watt(60) 

produced a PAN based carbon fibre by carrying out essen~ially the same 

steps, namely pre-oxidation, carbonization and graphitization developed 

by Shindo but they discovered a way of improving the crystallite orientation. 

This they achieved by simply restraining the natural shrinkage of the 

PAN fibre during the initial pre-oxidation at quite low temperatures. 

The molecular chains are now less free to relax during the heat treatment 

and the final layers of graphitic hexagons become highly oriented 

parallel to the fibre axis. This step in the production process leads 

to the high modulus fibres now beine used in several important industrial 

applications. 

The American process of production of carbon fibres involves 

the pyrolysis of a cellulose precursor. ~he viscous thread is heated 

o 
to about 2000 C. and then stretched up to 52% while at this temperature. 

This pulls the graphite crystallites into orientation with sUbstantial 

gains in modulus. 

The properties of ordinary carbons either increase or decrease 

continuously with HTT. The tensile strengths of carbon fibres, however, 

o 
go through a maximum at about a liTT of 1500 C and then decrease, 

whereas their moduli continue to increase with liTT. This behaviour has 

given rise to two types of carbon fibres, one with high strength and low 

modulus and the other with high modulus and somewhat lower strength. 
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3.3.2 Structure 

Much of the literature concerning carbon fibres has been 

collected together by Fourdeux et al.(6l) in a paper summarizing the 

present knowledge on the structure of carbon fibres. The majority of 

papers have dealt with the structure of PAN based or rayon based fibre. 

The basic structural features however being similar for both types, the 

observation on either one can be considered as valid for both. 

Shindo's original findings that the carbon atoms form two 

dimensional hexagonal layers packed in small stacks or crystallites of 

varying sizes with the layer planes parallel to the fibre axis, has 

been generally substantiated by X-ray and electron diffraction 

studies(62,63). The absence of three dimensional reflections (hk1) in 

the X-ray diffraction patterns, even at the higher HTT. indicates that 

these fibres are essentially non-graphitizing. The main difference between 

the structure of carbon fibres and that of bulk non-graphitic (glassy) 

carbons is the preferred orientation of the carbon layers which is 

responsible for the anisotropy of various physical properties of carbon 

fibres. In general, the orientation of the carbon layers becomes more 

perfect with increasing heat treatment and stretching. The average 

deviation from the perfect 

but can be of the order of 

orientation is of the order of ±lOo (63) 

o (64) 
±4 for good quality fibres. 

X-ray diffraction has shown that the crystallites are turbostratic 

(c spacing -3.39A compared to 3.3SA for graphite) with L at least twelve c 

layer planes (50A) and L in the range of 60 - l20A(62). These 
a 

crystallites are stacked end to end to form chains along the fibre axis. 
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Sharp edged needle-like pores with cross-sections in the 10 - 20A range 

and length above 300A separate these crystallites and account for 5% to 

30% of the total volume(65). The pore axes are preferentially oriented 

parallel to the fibre axis and sharpness of the density transitions at 

the pore boundary suggests that the pore walls are predominantly formed 

by carbon planes. 

Electron diffraction studies confirm the X-ray estimate of 

crystallite size and show that the crystallites form long chains lying 

parallel to the fibre axis. These chains are bonded together to form 

a network of branched fibrils that appear to run through the full length 

of fibre. 

Bacon and Tang(66) have shown that a direct correspondence 

exists between the cellulose molecular orientation and preferred 

orientation of the carbon fibre and suggest that the "carbon chains" are 

formed alone the paths of the original cellulose chains preserving 

a "replica" of the original fibre structure. This "memory" carbon 

fibres retain of the original precursor structure seems to be generally 

substantiated by other workers, the size and degree of branching of the 

fibrils being derived from the fibril structure of the parent fibre. 

The modulus of the carbon fibre is determined by the orientation 

of the graphite crystallites within the carbon fibrils while the strength 

is a function of the inter-fibrilar bonding by cross-linking. 

Franklin(S7) proposed that the cross-linking was composed of strong 

covalent tetrahedral (sp3) bonds which were also responsible for the 

non-graphitizing characteristics of these solids. The presence of this 
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cross-linking would preclude the formation of lamellar compounds in such 

materials. But it was shown clearly that potassium and caesium Can be 

intercalated easily and in stoichiometric quantities, without disturbing 

the preferred orientation of the carbon layers(6S). These results 

indicate that there are essentially no cross-links perpendicular to the 

carbon layers. The favourable mechanical strength of carbon fibres must . ; 
then'be accounted for by a form of fibrilar branching or by some other 

form of cross-linking. 

A schematic presentation of this fibrilar structure of carbon 

fibres is presented in Fig. 3.4. The thickness of these fibrils which 

is equivalent to the c-axis dimension of a graphitic crystallite L , is 
" c 

of the order of 50A. They are believed, however, to have a length of 

up to several thousand angstrom units, the low X-ray value for this 

dimension (La • SOA) being a measure not so much of the fibrilar length 

but rather of the distance between successive discontinuities in it. 

An arrangement for the crystallites within a fibre has been 

described by Johnson and Tyson(67) and their model is shown in Fig. 3.5. 

These authors also report the existence of a perfectly stacked three-

dimensional graphite phase which although is only present in small 

amounts in normal conditions becomes the predominant ~hase when the 

fibres are recrystallized in the presence of nickel. 
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CHAPTER 4 

THE ESR SPECTRO!1ETER AND EXPERIMENTAL TECHNIQUES 

4.1 The ESR Spectrometer 

At the outset, the ESR spectrometer available was of the type 

employing a helix (see section 2.2.6) instead of a microwave cavity. In 

addition to complications due to electrical conductivity, frequent 

exchange and positioning of samples in the confined space enclosed in 

the helix, proved to be somewhat difficult. Furthermore, although 

operation at liquid nitrogen temperatures was possible, variable 

temperature facilities were not available. It was therefore found 

necessary to convert the helix based spectrometer into a bridge system 

employing a microwave reflection cavity. This entailed the construction 

of an AFC unit, which of course the helix, as a broad band device, did 

not necessitate. 

The X-band ESR spectrometer eventually assembled featured a 

microwave bridge system employing a bucking arm, and a microwave 

circulator. Phase sensitive detection at 100 ~Iz magnetic field 

modulation was employed and a 10 KHz AFC system used to lock the klystron 

frequency to that of the resonance cavity. The block diagram for this 

ESR spectrometer is shown in Fig. 4.1. 

4.1.1 The microwave bridge 

The 3 cm wavelength microwave radiation is provided by an E.M.I. 

klystron valve (E.M.I. R9696) inserted in an E.M.t. cavity (E.~'.I. 25157), 
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powered by a Hewlett Packard klystron power supply (HP7163). The klystron 

valve had a nominal output power of 100 mW and a tunable range of about 

30%. The microwave power feeds into a standard X-band wave guide run of 

internal dimensions 0.4 x 0.9 inches. 

The isolator is placed immediately after the klystron with the 

purpose of allowing oncoming power from the klystron to pass unattcnuated 

while absorbing any power reflected in the opposite direction, which if 

allowed to reach the klystron might affect its frequency stability. 

Some of the power is then extracted by means of a 10 db directional 

coupler and is suitably phased and attenuated to provide the operating 

bias for the crystal detectors, the remainder being fed to the microwave 

cavity via a calibrated attenuator. A circulator (Marconi FI046-32) is 

used to direct the incident power into the cavity and the reflected 

power to the crystal detectors A and B via a magic-T, the fourth arm of 

which is attached to the bucking arm supplying the crystal bias. 

4.1.2 The microwave cavity 

The resonance cavity employed throughout this study was a 

cylindrical (Hicrospin type W932) cavity, operating in the HOll mode. 

The cavity and its various accessories are shown in Fie. 4.2. 

The microwave power is transmitted to and from the cavity via a coaxial 

line (central column) which emerged on the inside of the upper cavity 

wall in a small bent 'hook' whose orientation could be varied, to 

critically couple the cavity to the coaxial line. The 100 KHz field 

modulation is fed (via two side columns) to two pairs of rods parallel 
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to the cavity axis and positioned so as not to interfere with the E-fields 

set up within the cavity. The direction of the modulating field could 

be shifted by 900 by switching from one pair of rods to the other, thus 

ensuring a modulation component along the static magnetic field for any 

position of the rotating magnet. 

For studies at 77°K, the sample was immersed in liquid 

nitrogen and positioned inside the cavity by means of the quartz finger 

dewar (Fig. 4.2). 

For variable temperature studies a gas flow system was used. 

Cold nitrogen gas, emerging from a heat exchanger immersed in liquid 

nitrogen cools the sample placed inside the cylincrical quartz dewar 

inserted inside the cavity. The temperature, monitored by a copper­

constantan thermo-couple, could be varied by altering the rate of flow 

of the nitrogen gas. 

At temperatures below oOe it is necessary to ensure against 

the condensation of water vapour inside the cavity, which would result 

in damping of the cavity Q. This is achieved by flushing the cavity with 

dry nitrogen gas. 

4.1.3 The magnetic field assembly 

The magnetic field was supplied by a Newport type E, 7 inch, 

air cooled electromagnet powered by a Newport D104 supply. Shims on the 

magnet pole pieces enabled improvement of the magnetic field homogeneity. 

A sweep unit (Newport SSU) allowed the resonances to be slowly swept 

through. The main d.c. magnetic field could also be modulated by a small 
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50 Hz field through subsidiary Helmholtz coils surrounding the poles 

of the mdgnet. The magnet as a whole is placed on a rotating mount which 

enables the magnetic field to be rotated about the cylindrical axis of 

the cavity. 

A proton resonance unit (Ne\'lPort PMK II) was used to measure 

the magnetic field. This consists of a coil containing some hydrogenous 

materials (waxes, oils or aqueous solutions) being placed in the macnetic 

field. The r.f. frequency in the coil can be varied by means of a 

variable air condenser to satisfy the N.M.R. resonance condition for 

protons. The resonance can be displayed on the C.R.O. The resonance· 

frequency ~p is then measured by means of an electronic counter (Marconi 

Instruments frequency converter TM5951 - counter 1417/2). 

The gyromagnetic ratio of the proton having been determined to 

a high degree of accuracy (t part in 105 at least) the value of the 

magnetic field can be calculated from 

H = 2.3487 x 10-~ ~p gauss 

where ~ is measured in Hz. 
p 

4.1.4 Detection 

Phase sensitive detection can be obtained by modulating the 

magnetic field with an a.c. (preferably 100 KHz, see section 2.2.4) field 

whose amplitude is small compared to the width of the resonance line one 

wishes to observe. An alternating magnetic field is thus superimposed 

on the constant magnetic field. The "constant" magnetic field is then 
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slowly and linearly swept through the resonances. The magnetic field 

modulation is transformed, by the shape of the resonance absorption curve, 

to microwave pOvTer modulation, according to the mechanism illustrated in 

Fig. 4.3. The amplitude of the resultant microwave modulation will 

correspond to the gradient of the absorption curve, its phase being 

reversed upon passage through the absorption maximum. Amplification and 

phase sensitive detection of the 100 KHz modulated microwave signal yields 

the first derivative of the absorption line which can then be readily 

traced out on a pen recorder. 

The first derivative of the absorption line can also be displayec 

on the screen of a C.R.O. by imposing a 50 Hz sweep on the magnetic field 

and feeding onto the Y-plates the output of the P.S.D. which takes as its 

reference signal a voltage from the original oscillator via a· suitable. 

phase shifter. Scope presentation hm'Tever is inherently less sensitive, 

as the band width of the amplifier is necessarily made large enough to 

include the lower frequency 50 Hz sweep, and tracing out the first 

derivative of the absorption curve on a pen recorder is the normal way 

of presentation. 

A 100 KHz home-made oscillator ~Ias available, the output of 

which was amplified by a power amplifier (Hicrospin FA2ll) to provide the 

modulating rods in the cavity with 100 KHz a.c. voltage. A separate 

output from this oscillator supplies the P.S.D. with the reference signal. 

The modulated 100 KHz microwave power is rectified and detected at the 

detecting crystals A and B. (A;AEI cs9-B 5G - B;AEI cslO-B) together 

with the 10 KHz AFC signal (see section 4.1.5). The 100 KHz frequency 
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containing the ESR information is extracted from the output of crystal A 

by means of a 100 KHz tuned filter circuit. This is then amplified by a 

low noise amplifier (Brookdeal LA350 - Uax. gain 100 db) and fed to the 

input of the P.S.D. (Brookdeal PP3l3A), the reference signal of which is 

taken directly from the 100 KHz oscillation via a phase shifter. 

The d.c. output of the P.S.D. is filtered by an R.C. circuit and traced 

out on a pen recorder (TOA EPR-2TB). 

The 10 KHz AFC frequency is picked up from crystal detector B 

and fed to the input of the AFC unit. 

4.1.5 A.F.C. 

Basically the function of an AF C system is to respond to any 

change in klystron frequency by supplying an error voltage, the polarity 

of which depends on whether the frequency has drifted above or below that 

of a standard frequency. This error voltage may then be applied to the 

klystron reflector in such a way as to lock the klystron frequency to 

that of the standard. If the standard frequency is taken to be that of 

the resonant cavity, as in our case, then the ArC system will have the 

added advantage of adjusting the klystron to compensate for any changes 

which might occur in the cavity resonance arising, for example, in 

variable temperature experiments. Caution must then be observed when 

accurate g-value determinations are required, since such shifts in 

frequency may result in erroneous determinations. 

The most common way of locking the klystron to the cavity is by 

frequency modulating the klystron output by voltage modulating the 
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reflector of the klystron valve. The frequency modulation is converted 

to an amplitude modulated error signal by the cavity resonance as 

illustrated in Fig. 4.4. When the klystron frequency f is equal to the 

resonant frequency of the cavity, f t the error signal produced is twice 
o 

the frequency of the modulatiLg signal. Drift in frequencies from f 
o 

will give rise to an error signal, the amplitude of which increases with 

the extent of drift. and the phase will depend on whether f ~ foe 

Amplification and phase sensitive detection will produce a d.c. voltage 

whose polarity will depend on f being greater or smaller than f and whose 
o 

amplitude will be zero at f = fo and increase with increasing difference 

between f and foe This voltage can then be applied to the klystron 

reflector to correct for any frequency drift. 

The 10 KHz Arc system constructed for this work (Fig. 4.5) is 

a modified and somewhat simplified version of the fully transistorized 

system described by Jung(68) which operated at 50 KHz. The main features 

of the circuit consist of a 10 KHz tuned collector oscillator, an amplifier 

and a PSD. The oscillator provides two independent outputs with two 

emitter followers. The first emitter follower (point X, Fig. 4.5) 

supplies the klystron reflector with a 10 KHz modulating voltage. 

The second emitter follower provides a reference signal which triggers 

the PSD via a phase shifter. The resulting error signal is amplified 

and fed through the PSD to provide the correcting voltage which is 

applied to the klystron reflector via a 1 Mn series resistance in the 

klystron power supply. 
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This simple transistorized AFC system was found to operate 

satisfactorily for our purpose and could lock the klystron frequency to 

that of the cavity over some 7 or 8 reflector volts. This in fact was 

sufficient to operate the spectrometer with a finger dewar containing 

liquid nitrogen inserted in the cavity, the system being able to lock 

to bubbling liquid nitrogen. 

The use of 10 KHz reflector modulation precludes observations 

on line widths narrower than about 200 milligauss, which were not 

encountered during the course of this study. 

4.1.6 Sensitivity 

The sensitivity of an ESR spectrometer is generally expressed 

in terms of a minimum number of detectable spins, N . • For the m1n 

classical analysis of ESR spectrometer sensitivities the reader is 

referred to Feher (69) and Ingram(70). 

Experimentally an estimate of the sensitivity of a spectrometer 

can easily be made by recording the trace of a sample containing a known 

number of spins Ns and extrapolating to a signal just distinguishable 

from the noise, i.e. extrapolating usually to a signal-to-noise 

ratio of unity (some workers prefer to use a signal-to-noise ratio of 

2:1). Since the number of spins present is equal to the area under the 

absorption curve, then clearly a narrow line will have a greater height 

than a broad line. The line width of the absorption curve, or the 

square of the line width of the first derivative curve, ~H2, must 

therefore be divided into the spin concentration N to give the sensitivity 
s 
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Furthermore the height of the line depends on the modulation amplitude, 

Hmod and also increases as the square root of the microwave power P 

(as long as it is not modulation broadened or power saturated). 

The sensitivity is therefore usually expressed for a modulation of 1 gauss 

and 1 mW power in the microwave cavity. 
it 

A suitable equation for calculating sensitivities will then be 

N . mln 
: 

N H dIP s mo 

where yt is the signal-to-noise ratio of the test sample. 
m 

To estimate the sensitivity of the spectrometer used in this 

work the signal from a standard sample of phosphorous doped silicon 

containing 2.5 x 1014 spins was traced out on the recorder chart and is 

shown in Fig. 4.6. The line had a width 6H = 19.6 gauss and a signal-to-

noise ratio yt - 10:1 and was recorded at a microwave power level 
m 

p - 100 m\l and a value of modulation amplitude H d = 2.5 gauss. . mo 

The sensitivity obtained, by substituting these values in 

equation 4.1, gives a minimum number of detectable spins N i - 1012 
m n 

6H spins at R.T. 

---------------------------------------------------------------------------. 
* This equation can be derived from equation 4.5 by obtaining the 

number of spins NA = N. of line width ~HA = 1 gauss which is 
mln 

just detectable from the noise ytA = 1:1 for an amplitude of modulation m 

H~d = 1 gauss detected at a microwave power level P = 1 mW at the 

cavity. 



CARBON FI BRE 
BUNDLE 

(a) 

(e) 

MOUNTI NG CARBON FIBRES 
FOR ESR 

(b) (c) 

(d) 

FIG. 4.7. 

---I -• --
I 

~ 
• . 

----II • ---



48 

4.2 Hounting Carbon fibres for ESR 

The detection of any g-shift which might arise from the 

preferential alignment of graphitic crystallites along the fibre axis, 

necessitates the mounting of paraliel bundles of fibres with their axes 

perpendicular to the axis of the cavity. The external magnetic field 

can then be rotated in a plane containing the fibre axis and the angular 

dependence of the g-shift can be obtained. 

The carbon fibres studied in this work are good conductors 

of electricity ( - 10- 3 ohm. em) and exhibit a skin depth at X-band of 

- 20~. It is therefore necessary if the cavity Q is to be preserved 

to contain the sample within a small cylinder of diameter not greater 

than 2 or 3 rom along the axis of the cavity. Since the fibres must be 

mounted with their axes perpendicular to that of the cavity their length 

must not exceed - 3 mm. Furthermore a sufficient quantity of parallel 

fibres must be introduced into the cavity to enable an ESR signal to be 

observed. 

These requirements were achieved as follows. Small bundles of 

fibres (Fig. 4.7a) wetted with acetone to bring individual fibres within 

a bundle into alignment, were gently stretched parallel to each other 

between two strips of ordinary cellotape (which was previously checked 

for the absence of an ESR signal) as shown in Fig. 4.7b. These were 

then cut up perpendicularly to the bundles into small ,strips 2 to 3 rom 

in breadth (Fig. 4.7c). The thin strips were then stacked on top of 

each other in a thin quartz tube(Fig. 4.7d) which could then be inserted 

in the cavity. 
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This method of mounting and aligning the fibres has the 

advantage of simplicity and although depending on orientation by eye, is 

sufficiently accurate for present purposes. This is especially true for 

the two orientations where II is parallel or perpendicular to the fibre 
o 

axis where because of the cos2 angular variation of the g-shift 

(see section 3.1.3) a misorientation of ±so would make a negligible 

change in the measured g-value and would not affect the conclusions. 

For a carefully prepared sample it was estimated that the degree of 

misorientation was well within ±So. 

The number of fibres within a bundle was kept as low as possible 

to minimize inter fibre electrical contacts and hence reduce microwave 

skin effect complications to a minimum. It will be seen later that a 

small asymmetry was often present in the resonance line and was attributed 

to this skin effect. 

When the g-anisotropy was not being investigated, for example 

during intensity measurements, a bundle of fibres was simply slotted 

through a thin capillary quartz tube of internal diameter Imrn, which 

was then inserted into the cavity (Fig. 4.7e). 

The ESR line consisted of a single fairly broad resonance line 

with a width of about 10 - 100 gauss, compared with the somewhat 

narrower width 2 - 20 gauss, encountered with carbon blacks. A typical 

carbon fibre resonance line, together with the six lines of a Manganese 

doped Magnesium oxide standard used as a reference, is shown in 

Fig. 4.0. In order to extract the maximum amount of reliable information 

from this line considerable attention was devoted to the detailed 

structure of the resonance. 
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H - H 
16 y~ i 6H 0 

I3 + (H - HO~2]2 
\ !6H ) 

Ly(H) 

(4.3b) 
= 

where Y = ¥9(6H)Y', 6H,/6H = 3!, for a Lorentzian shape. 
m m ~ 

The first derivative curves obtained from these equations are 

shown in Fig. 4.9b for a Gaussian and a Lorentzian shape. From these 

curves it is possible to obtain the widths at various fractional heights 

for both functions. A plot of these theoretical widths against the 

widths of an experimental curve measured for the same fractional height 

will yield a straight line with the function with which the experimental 

derivative curve conforms. Furthermore the slope of the resulting 

straight line will yield a very reliable value of !~H. :A typical line 

shape analysis is shown in Fig. 4.10. 

4.4 Spin Concentrations 

The number of spins in a paramagnetic sample is proportional 

to the area under the absorption curve (i.e. the second integral of the 

first derivative curve) and is usually determined by comparison with a 

standard sample with the same spin number. If the two line shapes 

under consideration are the same then the following equation can be used 

f 
.. (6) or compar1ng sp1ns 

NA 
spin (A0Y HB 

mod 
y,A . (:w:/ m = • • y,B N

B flHB HA 
spin mod m w 

Q B B V A 
L Tl s (4.4) 

QA • A B 
L Tl Vs 
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4.3 Line Shapes 

The shape of an ESR absorption curve can often be closely 

approximated to one of two mathematical functions, the Gaussian or 

Lorentzian function, depending on the interaction which is the principal 

source of broadening. The Gaussian and Lorentzian functions for an 

absorption curve can be written in the form(6) 

for a Gaussian shape and 

Iy(H) = 
y 

m 

for a Lorentzianshape. 

(4.2a) 

(4.2b) 

Where ~H~ is the width at half maximum of the absorption curve, 

Ho is the field at resonance and Ym is the maximum height of the absorption 

curve. The Gaussian and Lorentzian absorption curves normalized for a 

maximum absorption Y of unit are shown in Fig. 4.9a. the abscissa being m 

given in units of ~6H~. 

In ESR however one is dealing with the first derivative of 

the absorption curve and it is therefore necessary to differentiate 

equations 4.2a and 4.2b. The absorption functions then become: 

GyeH ) = 1.649 Y~ H~:HHo exp~{ :HH~2] (4.3a) 

where Ym = ei(y~~s) and 6H~/~H = (2tn2)!, for a Gaussian shape and 
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where y~ can be considered as the amplification, QL the loaded Q, n 

the filling factor and Vs the sample volume. 

To eliminate changes in QL which might occur on insertion 

of different carbon fibre samples into the cavity, the intensity of the 

ESR line was always referred to the lowest field line of the manganese 

reference (due care being taken not to saturate this line) mounted inside 

the cavity. To obtain similar filling factors n and sample volumes Vs ' 

the same length of weighed carbon fibre bundles was always slotted into 

the capillary tubes, and these were positioned in identical axial 

locations in the cavity. Equation 4.4 now reduces to: 

NA 
spin (~Y. HB y,A (i/ mod • m • = _. 

ND 6HB HA y,B 
spin mod m w 

In practice the comparison was usually carried out with the same power 

p in the cavity and the same modulation amplitude Hmod ' so that this 

equation is further reduced to 

= (4.6) 

This equation, which in fact requires that the intensities of the 

resonance lines be proportional to (6H)2 yt, is valid only for identical 
m 

line shapes and was used extensively in this work to compare the intensitie: 

of carbon fibres with each other; the ESR line shapes of these fibres 

being always Lorentzian to at least four line widths. Checks of the 

validity of this proportionality were carried out using numerical inte­

grations such as that of wyard(71). 
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To obtain an absolute value for the spin concentration use was 

made of a secondary standard consisting of powdered carbon dispersed in 

chalk. This secondary standard was calibrated against DPPH and also 

against a single CuS04.SH20 crystal. The integrated area under the 

absorption curve was used here for comparing intensities. The ESR 

intensity of the calibrated Carbon standard was then referred to the 

first Mn2+ line and compared to the fibre ESR intensity (care being 

taken as before to obtain a similar nand Vs>. 

4.5 g-value 

The g-value was taken as the mid-point of the derivative line. 

It was evaluated by reference to the central two lines of the Mn++ 

standard. The two Mn++ lines were calibrated against powdered poly­

crystalline DPPH which was taken to have a g-value of 2.0036. The 

calibration against DPPH was performed at the same microwave frequency 

as that used to observe the fibre resonance to eliminate possible 

small errors due to second order effects. 

4.6 Temperature Variation of Intensity 

The determination of the ratio R (I77oK/I300oK) involves the 

measurement of the resonance intensity both at room temperature and at 

liquid nitrogen temperatures. The measurement at 770 K was carried out 

using the cold finger arrangement (see section 4.l.2). Again, to 

eliminate the effect of possible changes in cavity Q. the intensity was 

always referred to the first line of the Mn++ standard, which was 
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positioned in the immediate vicinity of the sample. The temperature 

dependence of the Mn++ ~andard was required in order to calculate R. 

This was taken to follow a Curie law and because of the importance of 

this assumption with regards to the accuracy with which R could be 

determined, it was felt necessary to check its validity. 

On the assumption of a Curie type behaviour for the 11~++ 
o standard, a low temperature carbon (HTT - 400 C) was found to follow a 

Curie Law temperature dependence, as indeed one would expect from such 

a material with completely localized centres. Furthermore, DPPH was 

found to follow a Curie Wiess Law [I CIC l/(T .. ~ij with a Wiess constant· 

~ = -200 K, which agrees well with the value of ~ = -230 K which was 

obtained by a plot of I vs lIT (see Fig. 4.11) for DPPH over a small 

range of temperatures (so that Q changes could be neglected) and with the 

. 0 (72) 0 (73) values quoted by other authors, V1Z. -28 K ,-25 K • 
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CHAPTER 5 

ESR STUDIES OF CARBON FIBRES 

The X-ray and electron microscopy studies(62,63) on the 

strucnre ofcarbon fibres, generally substantiate Shindo's(59) initial 

findings that the ~olynuclear aromatic planar fragments become strongly 

oriented with their planes parallel to the fibre axis. Because of the 

high g-value anisotropy associated with graphite,such an alignment 

might be expected to confer anisotropic properties to the tSR of carbon 

fibres. Primarily with this in mind the ESR spectra of these materials 

were investigated. 

5.1 The Samples 

The PAN fibres examined in this chapter had been pre-oxidized 

at 3000 C in air under restraint before being 'carbonized' by controlled 

pyrolysis up to lOOOoC in an inert atmosphere. They had then been 

'graphitized' by further heat treatments at varying temperatures up to 

25000 C .fn an • h • ~nert atmosp ere. The fibres were then mounted for ESR as 

described in section 4.2. 

5.2 The Resonance Line 

The ESR signals consisted of a single broad line (see Fig. 4.8). 

which on analysis (see section 4.3) was invariably Lorentzian in shape 

out to at least five line widths. The shape did not change with either 

temperatur; or orientation in the magnetic field. Although great care 
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was taken to minimize skin effects while mounting the fibres for ESR 

work, there often remained a slight asymmetry in the line which was 

ascribed to these effects. The deviation from symmetry about the centre 

represented by the ratio AlB (see Fig. 4.8) varied between 1.0 and 1.5 

(see Table 5.1), and the effect of this on the ESR parameters will be 

discussed in section 5.4. 

5.3 g-Value Anisotropy 

The measurement of the g-value of the resonance line was 

carried out as outlinedin section 4.S for different orientations of the 

fibre's axis relative to the static magnetic field. This was achieved 

by rotating the magnetic field about an axis perpendicular to the fibre 

axis. A systematic variation of the g-value with orientation in the 

magnetic field was observed for a number of fibres. There occurs a 

maximum in the g-value when the static field is perpendicular to the 

fibre axis (defined as gl) and a minimum when the magnetic field is 

parallel to the fibre axis (defined as gil). 
A typical curve for a fibre treated to 2,700oC is illustrated 

in Fig. S.la. The g-value angular variation for a stress recrystallized 

pyrcgr.aphite (PG) is plotted out in Fig. 4.lb for comparison. 

The close agreement for the value of the anisotropy A = 0.046 with 

lvagoner's (31) value of 0.047 indicates that the pyrographi t e sample 

behaved in effect as a single crystal of graphite. The experimental 

points, for both the fibre and pyrographite are closely fitted by a 

cos 2 function (continuous line Fig. 5.1). Although at times the line 



l'ab1.e 5.1 

LH (Causs) A/B Correction Correction g HTT (OC) Tel':'lp (OK) Expt. 
(Gauss) g Corrected 

1000 300 40 2.0019 1.11±O2 1.24 0.0007 2.0026 

1000 77 50 2.0013 1.16!02 1.55 0.0009 2.0022 

1750 300 13 2.0027 1.23!O2 0.79 0.0005 2.0032 

1750 71 26 2.00:21 1. 23±O2 1.14 0.0007 2.0028 

2300(1) 300 23 2.0020 1.16±O2 0.71 0.0004 2.0024 

2300( 1) 77 28 2.0022 1. 19±02 1.04 O.OOOG 2.0029 

2300(2} 300 23 2.0021 1.38t02 1 52 0.0009 2.0030 
2300(2) 77 28 2.0017 1. 34±04 1.69 0.0010 2.0027 
21+00 3CO 19 2.0021 1.1S±02 0.67 0.0004 2.0025 

2400 77 16 2.C{)25 1.1S±02 0.56 0.0003 2.0028 

2500 300 80 1. 9996 1.33±O2 4.72 0.0028 2.0024 

2500 77 68 2.0001 l.33±O4 4.01 0.0024 2.0025 
2700 300 36 2.0018 1.16±O2 1.12 0.0007 2. C'X)2S 
2700 77 28 2.0022 1.23±O2 1.23 0.0007 2.0029 
280,) 300 63 2.0005 1. 24:t02 2.83 0.0017 2.0022 
2800 77 4a 2.0015 1.24±02 2.16 0.0013 2.0028 
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widths of the fibre resonances can be quite large the g-value variations 

are believed to be real and correct within an overall uncertainty of 

±0.0005. 

The significance of this result can be appraised by considering 

the nature of the ESR absorption observed in carbons and what is known 

of the structure of carbon fibres. 

Previously reported information (see sections 3.2.2 and 3.3.2) 

indicates that the solid can be considered, from some points of view, to 

be a two phase material, i.e. to consist of small 'crystallites' held 

together by a material exhibiting a much lower degree of order. Since 

one observes only a single line of characteristic Lorentzian shape, it 
(50) 

is assumed that the line is completely motionally averaged , that 

is to say, the crystallites are in good electrical contact and the charge 

carriers responsible for the resonance move through a large number of 

crystallites before flipping their spins. The observed g-value is then 

an average value for all crystallite orientations. 

Other ,evidence in support of motional averaging comes from 

several sources. Firstly there exists no correlation between the line 

width and the magnitude of the g-anisotropy (see section 5.9). Secondly, 

on the basis of some Q-band (35 GHz) measurements, the line width appears 

to a first approximation to be frequency independent. Thirdly a simple 

calculation of the mean free path of the charge carriers from conductivity 

data, leads to the result that the carriers travel a distance of -104A 

between spin flips and thus should sample a wide variety of crystallites 

in its relaxation time. 
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Bearing in mind therefore, that as a result of complete motional 

averaging, the g-value for carbon fibres is an average value for all 

crystallite orientations, the g-anisotropy in carbon fibres and the 

PG can be compared. For the PG (Fig. 5.lb) the maximum in g-value occurs 

when the field is parallel to the crystallographic c-axis. Thus the 

occurrence of a maximum in the g-value when the static magnetic field is 

perpendicular to the fibre axis (Fig. 4.la) leads to the conclusion that 

the crystallites are preferentially aligned with their basal planes lying 

parallel to the fibre axis. 

5.4 Effect of Asymmetry on g-value 

It was noticed that the value of gil decreased in a fairly 

uniform manner with increase in line width, suggesting some inter-

relationship. This can be seen from Fig. 5.2, where the values of 

gil for various fibres are plotted against the line width of the resonance. 

However at the same time it was noticed that the line, although Lorentzian 

in shape, exhibited a small asymmetry about the centre, expressed by 

the ratio of A/B (see Fig. 4.8) and which was ascribed to skin effects. 

Now Delhaes and Harchand(74) have examined the case of 

specimens which have dimensions of the same order as the skin depth, 

and which therefore applies to the present situation. They have assumed 

that in this case the resonance curve can be expressed by a mixture of 

the absorption curve X" and dispersion curve X', of the complex para-

magnetic susceptibility. The correction factor to be applied to the 

experimentally observed resonance is determined by the line width as well 



~ -G'l 
C 
::0 
f'T1 

U1 . 
W 

::I: .... 

8 o 

..... 
I.Jl 
o 
U 

.... N 
_0 

n 8 
'"'" 

N 
l11 

8 

o 

-

w 
o 
o 
• 
~ 

§~------------------~ 

< 
l> 
;0 -l> 
-4 -0 
z 
0 
~ 

\0 
I 

~< - l> 
OJ. 
;oC 
rTlrTl 

:I: > 
-4 Z 
-4 -(Jl 

0 
-4 
::0 
0 
""0 
< 

~ --4 
:::r: 



59 

as the asymmetry ratio A/B. This factor was duly calculated with the 

aid of Figure 2 of the citedreference(74). Upon applying this correction 

all the gil-values were raised to around the value 2.0026 expected for g1 

for graphitic crystallites and showed little or no systematic variation 

with line width. 

The details of the calculation of these correction factors for 

a number of fibres are given in Table 5.1. The ratio AlB varies approxi-

mately between 1.1 and 1.4 but shows little change with HTT. The ~wo 

entries given for HTT 2300
0

C represent two separate mountings of fibres 

with different degrees of packing. It was found that this asymmetry 

has only an effect upon the apparent g-value and in no way influences the 

validity of other measured parameters. It should be noted that the g­

anisotropy 6galso remains unaffected by the line asymmetry. This is 

because, to a first approximation, the line shape and line width do not 

vary. at the two orientations, so that the correction, which in any case 

is small, will be the same for both gil and gl and will disappear on 

subtraction. 

5.5 Variation of 6g with HTT 

The variation of 6g with HTT is shown in Fig. 5.3 for two 

o 0 0 temperatures, 300 K and 77 K. The anisotropy 6g at 77 K is observed to 

be lower than that at 300oK. The reason for this becomes apparent in 

section 5.6. No anisotropy is observed up to a HTT of 17500 C at which 

a value for 6g first begins to make its appearance and above which then 

proceeds to increase with increasing HTT. It appears that the g-anisotropy. 
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above l750oC, parallels the growth and perfection of the crystallites 

within the fibre and indeed would seem to be a good measure of their 

degree of development. This conclusion has been the subject of a short 

. . (75) communlcatlon • The absence of g-anisotropy below l7500 C will be 

given due consideration in later sections. 

5.6 Effect of Crystallite Hisorientation on g-Anisotropy 

All that is known about the structure of carbon fibres 

(see section 3.3.2) in addition to the g-anisotropy in these materials 

(see section 5.3), indicates that the crystallites in carbon fibres are 

highly oriented with their basal planes arranged approximately parallel 

to the fibre axis. The relative degree of orientation can be defined by 

an angle Z (in degrees) which is evaluated from flat plate transmission 

photographs by measuring, on an automatic rotating stage microdensitometer, 

the angular half width of the density profile round the (002) diffraction 

arc at half peak density(76); small Z values thus imply a high degree 

of alignment along the fibre axis. 

The situation is described schematically in Fig. 5.4a. 

The angle ~ between the basal planes of a crystallite and the fibre 

axis will represent the misali~lment of that crystallite. In addition 

to crystallite misalignments relative to the fibre axis, their c-axes 

are symmetrically distributed in a plane orthogonal to the axis. 

This is clearly shown by a wealth of X-ray and electron diffraction ,. 

studies(63,76). 
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Although the exa~t pattern of this distribution is unknown 

(Fig. 5. 4b and c are but two possibilities), this ,is responsible for 

halving the observed anisotropy. That is to say, when the static magnetic 

field is perpendicular to the fibre axis, Bl will result from crystallites 

presenting a variety of angles with the direction of the field (Fig. 

5.4b and c). This leads to the result that 

6g = gl - gil = (5.1) 

The effect of the crystallite misorientation with respect to 

the fibre axis on the overall g-value can be estimated simply by 

considering the g-value contributed by one crystallite at an angle ~ to 

the fibre axis. The gil-value of such a crystallite can be written as: 

By averaging this result over all values of $ one obtains 

= g + A sin2~ 
1 

where sin2~ is the average of all sin2~ values. 

(5.2) 

In a similar way when the static magnetic field is perpendicular to the 

fibre axis and bearing in mind equation 5.~gl may be written as 

Averaging this becomes 

= g + A _ A sin2~ 
122 

= g +! (1 - Sin2~) 
1 2 

(5.3) 
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The results expressed by equations 5.2 and 5.3 can be derived 

in a more formal manner by expressing the g-value of one crystallite in 

any direction a measured relative to a plane perpendicular to the 

fibre axis. In polar coordinates (90 - ~) and 6 completely specify in 

space the direction of the c-axis relative to the fibre axis (see Fig. 

5.4d). The g-value can then be written as: 

= &1 + A (cos a Cos $ Sin IS + Sin ~ Sin a}2 (5.4) 

The values gil (6 = w/2) and glee = 0) can then be obtained by averaging 

over all possible orientations, as follows: 

and 

__ oI${gl + A sin2~} d~ 
gil ~ = &1 + A sin2~ 

o 
J d~ 

f
21T feb 

o 0 d6.d~ 

A A-2 = g + - - - sin ~ 122 

Clearly the equations 5.2 and 5.3 show that the effect of 

crystallite misorientation is to decrease gl and increase gil with a net 

decrease of 6g which is given by 
expt 

A 3 -2 
6gexpt = &1 - gil = 2' - '2 A sin ~ 

(5.5) 
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Putting $ = 100
, which in terms of crystallite misalignment is a large 

value (see section 3.3.2), in equation 5.5 one gets 

which in fact shows that crystallite misalignments of this order of 

magnitude do not appreciably affect the observed ~g. E.G. Cooper (this 

department, private communication), assuming a Gaussian distribution of 

crystallites, calculated the expectation value of g_, for various 

misalignments (see Fig. 5.5). Typical Z values of _10
0 

(N.B. Z = ~) 

produce a correction factor -0.94. Thus the g-anisotropy is insensitive 

to small misalignments of crystallites and its increase with HTT must 

be regarded as being linked with increased crystallite growth and 

perfection, rather than increased alignment. Further support for this 

view is the fact that gil is invariably close to 2.0026 (see Table 5.1) 

that is to say, the 8
1 

value for crystallites. This would not have been 

the case if ~g was sensitive to crystallite misalignment. 

5.7 Variation of '~g'with Ambient Temperature 

The variation of 6g with temperature (as described in section 

4.1.2) is shown in Fig. 5.6a for a fibre heat treated at 2,700oC. 

As the temperature is decreased below room temperature, ~g at first 

increases, goes through a flat maximum and then decreases. This reversal 

in the g-anisotropy variation with temperature is well understood in 

terms of Mrozowski's analysis of the ESR in carbonaceous materials, who 

also reported a similar g-va1ue behaviour in neutron irradiated carbon 

blacks(5l). 
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According to Mrozowski the g-value of the resonance results 

from a simple mixing of localized and conduction electrons, each spin 

centre contributing an amount proportional to its absorption intensity. 

If XT is the fraction of conduction electrons present at a temperature T, 

then the anisotropy purely for the conduction part can be written using 

equation S.la as 

= (5.5) 

The quantity X(T) can be obtained by carefully measuring the 

resonance intensity (section 4.6) at two temperatures and using equation 

3.2 (section 3.2.2). The two temperatures usually chosen are room 

temperature and liquid nitrogen which yields X3000 K from which X at any 

temperature can be easily computed. The variation of X and (1 - X) with 

o temperature for the sample at HTT 2700 C are shown in Fig. 5.6c. As the 

temperature decreases the localized contribution (1 - X), which follows 

Curie's law, increases and the contribution of conduction carriers, X, 

decreases correspondingly. The value of X can then be used to compute 

a 'crystallite' anisotropy A by means of equation 5.5 at various tempera-

tures from the values of 6g obtained from Fig. S.6a. The resulting 

temperature variation of A (Fig. 5.6b) is seen to increase with decreasing 

temperature as indeed is expected for graphitic crystallites. That the 

. (31) 
value of A is much lower than that for slngle crystal graphite merely 

indicates the lack of perfection and small size of these crystallites. 

The reversal in the g-anisotropy can now'be seen to result from 

the influence of two competing factors. The first factor tends to 
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increase hg as the temperature decreases and arises from the temperature 

dependence of A; and the second factor tends to decrease Ag as the 

temperature is lowered and arises from the increased effect of localized 

centres (decrease in X) which tends to pull the g-value towards the free 

electron g-value of 2.0023. 

The observation that hg at 770 K is lower than hg at 3000 K 

(Fig. 5.3, section 5.5) is thus explained as being due to this reversal 

in the hg vs T curve. 

5.8 Variation of 'A' with HTT 

The crystallite anisotropy at room temperature A
300

0
K 

is 

plotted against HTT in Fig. 5.7. The crystallite anisotropy for a soft 

carbon(55) is plotted in the same figure for comparison. 

The crystallite anisotropy for carbon fibres sets in at a 

lITT of about l750
0

C and increases with increasing HTT, remaining however 

well below the curve for soft carbons which begins to appear at a 

somewhat lower HTT (-l300oC). The crystallite anisotropy at higher 

HTT is still rising rapidly for the soft carbons but appears to be 

levelling off for the carbon fibres, suggesting that crystallite growth 

in these materials is somehow arrested. This point will be pursued in 

greater detail in section 5.11. 

5.9 Variation of ESR Intensity with HTT 

The measurements of spin susceptibility in carbon fibres were 

performed as outlined in section 4.4, and these are plotted in Fig. 5.8a 
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against HTT. When the spin concentrations for the fibres are compared 

with values obtained for carbon blacks(SS), remarkable agreement is' 

observed, which in fact could be fortuitous in view of the relative 

uncertainty associated with the determination of absolute spin 

concentrations. The ESR intensity is a measure of the density of states 

at the Fermi level and such a close agreement between the spin concen-

trations in two materials as different as carbon blacks which are 

graphitizing and carbon fibres which are nominally non-graphitizing 

is indeed somewhat surprising. 

The ESR intensity falls sharply at first but decreases much 

less rapidly above HTT 1700oC. The intensity is made up of two parts, 

a conduction part and a localized part (shaded in Fig. 5.8a), the 

proportion being determined by the ratio X, which is plotted in Fig. 5.8b. 

The proportion of conduction carriers X is fairly large (-SO - 90%) 

throughout the HTT range and appears to go through a maximum at HTT 

-1500
o

C. 

The rapid fall in ESR intensity below HTT -1700oC seems to be 

significant structurally and is taken to mean that the number of available 

holes for conduction (i.e. dangling abonds) is falling rapidly in this 

region as the HTT is increased (see section 3.2.1). This is in line 

with the knowledge that these bonds are being taken up to form carbon 

hexagon rings. In terms of the band structure for these materials, the 

suggestion that the Fermi level is rising from deep inside the valence 

band towards the band edge (section 3.2.1), seems to receive confirmation 

from these results. It should be emphasized, however, that the shape of 
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the density of state curve for these materials is not known nor is it 

known whether this shape varies with HTT and if so to what extent~ so 

that caution should be exercised when relating the position of the 

Fermi level with the density of states as observed by the ESR resonance. 

5.10 The Line Width 

The data obtained for the line width is summarized in Table 5.2. 

The line width both at room temperature and liquid nitrogen is very 

scattered. This apparently randon variation appears to be present in 

all types of carbon fibres and at times can be distressing as very broad 

lines can prevent the accurate measurement of the other ESR parameters. 

The line width exhibits very little angular dependence, on average the 

line width is 2% broader with the magnetic field perpendicular to the 

fibre axis and this increase lies within the experimental uncertainty. 

It can therefore be concluded that the ESR resonance, in these samples, 

is to a first approximation, symmetrical about the fibre axis. If this 

were not the case, with the magnetic field perpendicular to the fibre 

axis, one would observe a superposition of lines varying between gl and g3 

giving rise to a broader line than that observed with the magnetic field 

parallel to the fibre axis, where the fibre would have a value of gl. 

It seems that the line width of carbons is the least understood 

of all ESR parameters, even for the well studied graphitizing blacks. 

It is interesting to note that Mrozowski and co-workers(SS) observed 

that the line width seemed to be very susceptible'to conditions prevailing 

during heat treatment, and hence the scattering of values. They suggest 



Table 5.2 

HTT Line Width t.H 1't.HII t.H77oit./ t.H3OOOK (OC) t.H 
at 3000 K at 3000 C 

1000 50 1.00 0.94 

1250 143 - 0.84 

1400 133 - 0.35 

1600 11 1.07 0.87 

1750 18 1.01 1.45 

1800 21 1.00 1.03 

2300 23 1.02 1.22 

2300 24 1.00 1.1B 

2400 19 1.06 I 0.83 

2670 77 1.00 0.60 

2700 36 1.05 0.77 

2800 63 1.04 0.76 

uncertainty ±S% for all data 
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that relative changes in width with temperature are more regular. 

The ratio of the line widths at 770 K and 3000 K for carbon fibres, is 

given in Table 5.2, and the values are again somewhat scattered. 

At higher HTT (>2400o
C) the line appears to narrow on cooling, whereas 

between l7500 C and 23000
C the line broadens. 

The line width of polycrystalline graphite broadens with 

d · ., T- 1 ( 40 ) d d h' 1 ecreas1ng temperature, show1ng an approx1mate epen ence w 1 e 

carbon blacks have a width which is independent of temperature when heat 

treated below -l600oC and tends towards T-~ (55) dependence with 

increasing degree of graphitization. In general agreement with those 

results the width of single crystal graphite also broadens with decreasing 

temperature(3l) and furthermore this latter result is confirmed by the 

author's experience with pyrographite. The temperature dependence of 

carbon fibres particularly at high HTT is thus exactly the reverse of 

that observed in graphitic materials and must be assumed to result from 

some more complicated process or altogether from another mechanism (such 

as impurities). 

It should be noted in this context that for carbon blacks the 

width at room temperature seemed to depend on the amount of material 

heat treated and upon its state (powdered or solid), the larger amount 

and more condensed state leading to a sharper line. These observations 

would tend to support the idea of the line being controlled by impurities 

present during heat treatments. However the width also seemed to be very 

sensitive to the sample residence time in the region of 1000 - lSOOoC 

where nearly all graphitic materials apparently experience a line 

b d • (h • (BO) roa en1ng t e so-called Hennlg-Smaller Effect }. 
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5.11 Discussion of ESR Results 

In the preparation of graphitic carbons from high polymers, 

fusion must occur during the early stages of carbonization so that the 

d • , d l' . . t t' (77) ecompos~ng mater~al can un ergo a pre ~m~nary or~en a ~on • 

Polyacrylonitrile (PAN) undergoes pyrolysis without fusing and forms a 

non-graphitizing carbon(78). This fact is borne out by a great variety 

of data which goes to show that although the graphitic crystallites 

formed within the fibres are highly oriented with their basal planes 

parallel to the fibre axis, they do not attain the degree of perfection 

and size observed in graphitizing carbons. 

The ESR data (sections 5.5, 5.8) are consistent with the 

generally accepted view of very limited graphitic crystallite development 

within carbon fibres. The g-anisotropy values 6g and more significantly, 

the crystallite anisotropy A do not, even at the highest HTT, approach 

that of single crystal graphite. The interesting question of what causes 

one ~olymer to give rise to a graphitizing carbon while another gives 

rise to a non-graphitizing carbon remains somewhat obscure. Franklin(57). 

who first dealt with the problem, suggested that in non-graphitizing 

carbons the structure is stabilized at an early stage by criss-cross 

bonding between the carbon layers. Such interlayer bonding is believed 

to prohibit the formation of intercalation compounds which would cause 

the separation of the layers (s-effect) in order to accommodate the 

foreign atom. Nevertheless the intercalation of potassium and caesium 

. (65) 
in carbon fibres has been reported by Ruland and co-workers , who 

cite this as evidence that no such cross-linking exists(6l). 
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The favourable mechanical properties of carbon fibres, however, are 

difficult to explain in the absence of cross-linking but can be ascribed 

to some extent on fibrilar branching (see section 3.3.2). Furthermore 

in the absence of cross-linking, the causes that prevent graphitization 

remain to be explained. In fact because of their small size, intercalation 

of the potassium and caesium atoms possibly provides inconclusive 

evidence as to the lack of cross-linking in these materials. Bromine, 

which is a somewhat larger molecule, is known to readily intercalate in 

graphitized materials and in view of this an attempt was made to inter­

calate this molecule in carbon fibres. The ESR signal of these materials, 

which is extremely sensitive to bromine intercalation (72), remained 

unchanged after prolonged exposure of the fibres to bromine, indicating 

the absence of intercalation. This evidence somewhat weakens the 

arguments against the existence of cross-linking, but the question still 

remains unanswered. 

The applicability of ESR techniques to the study of carbon 

fibres can now be assessed in the light of the information presented in 

the previous sections of this chapter. 

In section 5.6 it was demonstrated that the anisotropy 6g 

is insensitive to slight crystallite misalignments with respect to the 

fibre axis. This stems basically from the cos2e variation of the aniso­

tropy which is not pronounced in the vicinity of e = 0 and e = n/2. 

This insensitivity of ~g to slight misalignments of the crystallites 

makes ESR techniques unsuitable for the study of this parameter. 

On the other hand had this not been the case, far greater experimental 
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precision would have been required in mounting the fibres with all their 

axes perfectly parallel. In this case it would have been necessary for 

the parallelism to be better than 40
, which, is the order of misalignment 

of crystallites in high quality carbon fibres. To achieve this for the 

several hundred fibres necessary to produce a measurable ESR signal, 

would have involved considerable experimental difficulties and the simple 

mounting techniques described in section 4.2, would have been quite 

inadequate. 

It was hoped that the value of gil might be used to extract 

information on crystallite misalignment. The argument was based on the 

fact that in single crystal graphite gl is temperature independent while 

g3 increases strongly with decrease in temperature so that the anisotropy 

A becomes fairly large. If this were also true for fibre crystallites 

the equation 5.2 shows that gil will increase in the presence of a 

misalignment ~ by an amount A sin2~ from the value gl which it would 

take in the absence of misalignment. Although the quantity sin2~ is 

small, the quantity A. it was thought, could have been made large enough 

by cooling to liquid nitrogen temperatures to produce a noticeable change 

in gil from which ~he misalignment could be estimated. 

However when the value of A for fibre crystallites was obtained 

it was found to be very much smaller than that for single crystal 

graphite and the increase in A on going from 3000 K to "OK was in no way 

comparable to that observed for single crystal graphite (see section 5.5). 

Furthermore the greatly increased contribution of'the localized centres 

to the ESR at low temperatures considerably reduces the effect of the 
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quantity A, as is demonstrated by the reversal of ~g with decreasing 

temperature (see section 5.5). 

In the light of these arguments it can therefore be safely 

concluded that measurement of the g-value of the ESR resonance does not 

provide information as to the degree of misalignment of the graphitic 

crystallites in carbon fibres. 

Onthe other hand the g-anisotropy definitely increases, after 

its appearance at HHT - l750oC, with increasing heat treatment. 

This suggests that the g-anisotropy is somehow related to the growth of 

crystallites within the fibres. The development of these crystallites 

can be followed by X-ray techniques, which yields the crystallite size 

in terms of its dimensions L (in the basal planes) and L (along the a c 

c-axis) together with the inter layer or c-spacine. Typical variations 

of these parameters with HTT for carbon fibres are shown in Fig. 5.9a 

and b*. In Fig. 5.9b the ~g variation with HTT is included for comparison. 

It is immediately apparent from Figs. 5.9 a and b that there 

exists a basic difference between the X-ray parameters and the behaviour 

of the g-anisotropy. The values of L , L , and c-spacing vary continuously c a 

as the heat treatment increases, whereas ~g remains undetected up to a 

HTT of about l7500 C after which it increases with increasing heat treat-

mente Structurally, there appears to be no reason to believe that the 

turbostratic graphitic crystallites present in fibres heat treated below 

l750
0

C should be any different from those occurring at higher heat 

------------------------~----------------~-------------------------~-----

* Data kindly provided by Marjoram, R.Rolls-Royce Ltd., Research 

Establishment at Old Hall, Derby. 
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treatments. The sudden appearance of the g-anisotropy at about l750
0
C 

therefore poses some interesting questions. The interest in the processes· 

occurring at a HTT of 17500 C gains in importance when it is realized 

that this is the approximate temperature at which the thermal energy of 

the carbon atoms becomes strong enough to break the carbon-carbon bonds, 

enabling them to take up more ordered and less strained positions. 

Indeed it is only above heat treatments of l750
0

C that hot stretching of 

fibres (section 3.3.1) is feasible without fibre breakage. 

Bearing in mind that inter1ayer interactions are responsible 

for the marked g-anisotropy present in graphite (see section 3.3.i). it 

would seem reasonable to suppose that the predominant factor responsible 

for the appearance of the g-shift in carbon fibres would be the interlayer 

or c-spacing of the graphitic crystallites present in the fibres. 

Indeed it would be difficult to see an increase in the La and Lc values 

o of about lOA between the HTT of 1500 and 2000 C producing such a marked 

effect. Using Mrozowski's M-effect the crystallite anisotropy A was 

calculated for room temperature and liquid nitrogen temperature and 

was plotted against the c-spacing obtained from X-ray diffraction as 

shown in Fig. 5.10. As would be expected for grossly turbostratic 

crystallites the magnitude of A at room temperature is well below that 

of single crystal graphite (A = 0.0461) and rises fairly steeply with 

decreasing c-spacing. Furthermore the change of the anisotropy A as 

the temperature is lowered to liquid nitrogen temperatures is far below 

that of single crystal graphite (which increases from 0.0461 to 0.1244). 
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The large anisotropy A and its dependence on temperature in 

single crystal graphite appears to be due to the degeneracy of the energy 

bands of graphite at the zone edge (see section 3.1.1) and the sensitivity' 

of the g-value to the position of the Fermi level relative to the band 

edge(79). 

The increase in A for carbon blacks with decreasing c-spacing 

has been discussed by Arnold(54) in similar terms. The increasing 

crystallite anisotropy is attributed to two effects; one is the 

result of the upward motion of the Fermi level into a region of larger 

spin-orbit interaction (F-effect) and the other is an increase in the 

spin-orbit interaction as a result of the change of the overall band 

structure from turbostratic (touching bands or even with an energy gap) 

to graphite (band overlap). From figure 4 of Arnold's paper (which is 

a similar plot to Fig.5.l0), the crystallite anisotropy for carbon blacks 

is seen to appear at a value of c-spacing almost exactly equal to 

3.49A which is the value at which A sets in for carbon fibres. That this 

should be so for two materials as widely different as the graphitizing 

carbon blacks and the non-graphitizing carbon fibres (Ag for the two 

materials in fact appears at different HTT, see Fig. 5.7) is indeed 

remarkable and would seem to suggest that the value of'3.49A is the 

c-spacing at which the g-shift first makes its appearance. and that this 

spacing is critical in terms of interlayer interactions independently of 

the type of carbon under consideration. 

One would be tempted at this point to suggest that, although 

the c-spacing varies gradually, it is only at the critical interlayer 
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separation of 3.49A that interlayer interactions become strong enough 

to introduce a g-shift. 

If this explanation is accepted the question of what role to 

assign to the Fermi level, to which the g-shift is known to be very 

sensitive, is bound to arise. Indeed the behaviour or the ESR intensity 

immediately prior to the appearance of the g-shift could be taken to 

indicate a rapidly rising Fermi level. The appearance of the g-anisotropy 

at 1750
0

C could then be viewed as the entrance of the Fermi level into 

the region of greater spin-orbit coupling which exists at the top of the 

band. 

Which of the two factors, critical interlayer separation or 

position of Fermi level, is preponderant in appearance of the g-shift, 

or whether a combination of the two is the determining factor, cannot 

on the available ESR information be answered. Correlation with other 

electronic properties (with which Chapter 6 is concerned) is thought 

to be of interest in this context. 

Before this discussion is brought to a close, there remains 

one aspect of the problem which requires attention. This is concerned 

with the existence of a perfectly graphitized phase in carbonaceous 

materials. This third phase (the other two being the amorphous carbon 

structure and the turbostratic crystallites) was first reported by 

F kl ' (57) .. h" b f' ran ~n ~n var~ous non-grap ~t~c car ons. In carbon ~bres the 

existence of small amounts of more perfect three dimensional graphite 

was reported by Johnson and TYSon(67) and Fourde~x etal.(8l). 

By observing the X-ray diffraction profiles under specified conditions 
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it was apparently discovered that high modulus fibres can have a 

considerable degree (-40%) of the graphitized phase, which remains under 

normal conditions undetected because the preferred orientation peculiar 

to these fibres makes the identification of this phase difficult(82). 

The question here is whether the g-anisotropy in carbon fibres 

is in fact due entirely to this perfectly graphitic phase. The fact that 

the crystallite anisotropy is much lower than that for single crystal 

graphite could be attributed to some mixing effect with the surrounding 

turbostratic and amorphous phases. If such is the case then, although 

the magnitude of A is expected to be relatively small, its temperature 

dependence must be the same as that for single crystal graphite, 

provided, and there appears to be no reason to doubt this, the mixing 

effect does not change with temperature. In fact this is not found to 

be so. The g-anisotropy between room temperature and liquid nitrogen 

temperature for single crystal graphite varies by a factor of -2.65 

whereas for carbon fibres the factor does not exceed -1.6. Upon this 

particular piece of experimental evidence the idea that the g-anisotropy 

arises from a small proportion of perfectly graphitized material does 

not appear to be well founded. However, should a closer correlation 

between the appearance of the graphite phase and the g-shift be 

established, then this idea would warrant further examination. 

Unfortunately detailed X-ray and electron diffraction data are not at 

present available. 
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CHAPTER 6 

ELECTRONIC PROPERTIES OF CARBON FIBRES 

6.1 Introduction 

Transport phenomena have been widely used to study the 

electronic structure of carbons and graphites. The band structure 

proposed by 11rozowski (outlined in section 3.2.1) has been able, 

qualitatively, to describe a large mass of data and the model has not 

been, so far, challenged by subsequent workers. It appears however 

that a quantitative treatment of transport phenomena is hampered by a 

number of considerable difficulties. These arise from the large degree 

of Fermi degeneracy in these materials where the Fermi level is believed 

to be inside the valence band and the inapplicability of conventional 

metal or semi-conductor models. This is because the amorphous structure 

of many carbons does not allow assumptions to be made as to the 

relationship between the energy of the electron and its momentum vector 

i.e. the shape of the E vs k surfaces. In crystalline materials these 

surfaces are approximately parabolic. However in amorphous materials 

the lack of knowledge as to the shape of these E vs ~ surfaces prohibits 

the prediction of the density of state curve and consequently the 

exact calculation of the density of states at the Fermi level, a para­

meter which is necessary for the computation of such transport phenomena 

as the Hall effect and the TEP. 

From the experimental point of view, the situation is further 

complicated by the fact that most studies dealing with the electronic 
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properties of carbons have been performed on compressed powders or baked 

rods which possess the disadvantage of either numerous interparticle 

contacts or of mixed composition. In this respect it was felt that 

carbon fibres, as small single wire-like strands, which can be compara­

tively easily mounted and studied, would be an ideal experimental material. 

Furthermore the detailed correlation between the electronic properties and 

the ESR data of the same sample, something not previously attempted, was 

felt to be of interest in providing a deeper understanding of the under­

lying electronic phenomena and in clarifying the ESR data presented in 

Chapter 5. 

To this end the electrical resistivity and its temperature 

dependence, the Seebeck thermoelectric effect and the magneto resistance 

is investigated in this chapter. 

6.2 The Electrical Resistance 

The electrical resistance of carbon and its temperature 

dependence varies greatly according to the degree of carbonization and 

graphitization of the material. For single crystal graphite the 

resistivity in the c-direction is much greater than in the direction 

of layer planes (see section 3.1.2), along which the current preferentially 

flows. This feature is common to all carbonaceous materials where the 

low resistance path will always be along the carbon hexagon rings. 

It is fairly evident that in amorphous carbons the predominant part 

of the resistivity will be taken up by the scattering of carriers at 

the discontinuities arisine at the crystallite edges. The thermal lattice 
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scattering which can become predominant in the basal plane conductivity 

of very large graphitic crystallites can be safely disregarded when 

dealing with amorphous carbons. The resistance in these materials 

has been suggested by Mrozowski(36) to be made up of two contributions, 

namely, scattering of crystallite boundaries 'B' and intercrystalline 

contacts 'C', both of which increase greatly in effect with diminishing 

crystallite size. 

The increase in basal plane resistivity with temperature in 

single crystal graphite is clearly due to the predominance of thermal 

lattice scattering which must be proportional to the temperature. It is 

difficult to see, on the other hand, how effects 'B' and 'e' can account 

for the negative temperature variation observed in carbons. 

(Mrozowski in fact suggested that 'C' might be some decreasing function 

of temperature, but offered no justification for this assumption 

The factor 'B' of course must be temperature independent.) Klein 

suggested that the negative resistivity variations with temperature in 

the polycrystalline graphites he investigated, resulted primarily from 

carrier-density variations. This suggestion will be examined further 

when the results of the resistivity of carbon fibres are discussed. 

6.2.1 Measurement of longitudinal resistivity 

A single carbon fibre was stretched under light tension on 

a microscope slide. By means of a colloidal silver preparation 

(Polaron Instruments) four contacts were painted on the fibre and 

extended to the edges of the slide where electrical leads could easily 
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be clipped on. The resistance of fibre between the two central contacts 

was then measured by means of a standard four probe technique employing 

a sensitive potentiometer (Tinsley & Co. Ltd., Type 1384D). The advantage 

of this method of resistance measurement lies in the elimination of 

contact resistances at the silver-fibre junction. The current flowing 

through the fibre could be varied to enable verification of Ohm's Law 

and the absence of Joule heating. 

The fibre dimensions were then measured by means of a 

travelling microscope with a calibrated eyepiece. The diameter of the 

fibre was measured at several points along the length of the fibre and 

an average value used to calculate the resistivity (p). 

The uncertainties in the resistivities obtained in this way 

are of the order of 10% which is almost exclusively derived from the 

uncertainty in estimating fibre diameters. The diameters, in fact, 

varied from fibre to fibre even in one particular batch, within a 

range of 7 to 10 microns; however resistivity values for one batch 

reproducible to within ±10% were always obtained. 

To determine the resistivity at ?7oK the fibre was immersed 

in liquid nitrogen. The ratio P77oK/P300oK' not being subject to 

diameter measurements, is reproducible to within 1%. 

Variation of resistivity with temperature could also be 

followed from liquid nitrogen up to some 2000 C by means of simple 

experimental arrangement. This consisted of a quartz tube well 

insulated by means of asbestos. The tube and asbestos lagging were made 
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to fit into a double quartz dewar. The sample mounted in a similar 

fashion to that described above was then inserted into the quartz tube 

at the end of a long asbestos plug~ , The whole arrangement could then 

be cooled to liquid nitrogen temperatures and left to slowiy rise to 

room temperature, above which the temperature could be further raised by 

using heating coils wound around the quartz tube. The temperature, 

which was monitored by means of a copper-constantan thermocouple, varied 

sufficiently slowly to enable accurate measurements of resistance to be 

made. 

6.2.2 Room temperature resistivity results 

Fig. 6.lashows the variation of the electrical resistivity 

with HTT. The resistivity of the carbon fibres is lower than that for 

soft carbons (included in the figure for comparisoclat moderate HTT and 

very similar in magnitude to the results reported by Shindo(S9) and 

Yamaguchi(83) who performed resistivity measurements on PAN based 

carbon fibres. The lower resistivity of carbon fibres compared to soft 

carbons, which for the same HTT are far more graphitized, can only be 

ascribed to the preferential alignment of the graphitic crystallites 

along the fibre axis. Basal plane conductivity will provide a lower 

resistance path along the fibre axis. Furthermore the crystallites being 

stacked end to end,so to speak, probably offer lower intercrystalline 

contact resistances than the corresponding polycrystalline materials. 

At higher HTT however the crystallites in the Soft carbons become larger 

and larger until excitation of electrons across the greatly reduced band 

gap causes the resistivity for these materials to decrease rapidly 
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(above HTT - 2000oe) and to fall below that of carbon fibres, the 

crystallite growth of which is known to be somewhat arrested. 

It is interesting to note that although a fair amount of scatter 

exists in the experimental points there appears to be no sign of the 

resistivity plateau, which occurs for the soft carbon and to some extent 

is also present in hard carbons(37). The presence of the plateau was 

ascribed to two counterbalancing effects, namely the growth of crystallites 

d h d • f . ( 36 ) On • b ·1· an t e ecrease 1n the number 0 excess carr1ers • e POSS1 1 1ty 

for the absence of the plateau in carbon fibres could be that,because 

of the preferred orientation, crystallite growth although limited would 

cause intercrystalline resistances to fall more rapidly than they other-

wise would in polycrystalline materials. The decrease in carrier 

concentration which is about the same for soft and hard carbons, as is 

indicated by the similarity of their spin susceptibility (see section 5.9), 

would not then be sufficient to provide the compensation necessary for 

the formation of the plateau. 

6.2.3 Variation of resistance with temperature 

Fig. 6.lb shows the variation of resistance PT with temperature, 

expressed as a ratio PT/P LN for four fibres, treated at low (alOoe). 

moderate (lOOOoe) and high (2500oe) temperatures. A highly graphitized 

fibre hot stretched at 2600
0

e to 24% of its length is also included for 

comparison. A near linear decrease of the resistivity is observed for 

the fibres above lOOOoC. The low temperature fibre (alOoe) is in fact 

an exception in this respect. Its temperature dependence. which is very 
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large and nearly exponentially falls with increasing temperature, suggests 

that this sample is still in the region where the conductivity is 

governed by thermally excited carriers as in the case of conventional 

semi-conductors (see section 3.2.1). 

Leaving this sample aside for the time being, examination of 

Fig. 6.lb immediately reveals that the slope of resistivity vs temperature 

curves become more pronounce~ with increasing graphitization, suggesting 

a relationship between these two parameters. Because of the near 

linearity of the resistivity variation with temperature, the 'ratio for 

PLN/PRT will be a fair approximation of the temperature dependence of 

these materials. This ratio is plotted against HTT in Fig. 6.lc. 

As one goes to lower HTT this ratio increases because the resistivity 

becomes more and more dependent on thermally activated carriers. 

The increase in the ratio PU1/PRT for higher HTT after metallic 

behaviour sets in, is indeed very peculiar and can only be viewed as 

somehow associated with increased graphitization. The minimum in the 

curve results from these two opposing tendencies. 

o Examining the situation for high HTT (i.e. >1000 C) fibres, 

the two questions requiring attention are firstly the decrease of 

resistivity with temperature and secondly the increase in the magnitude 

of this decrease with increasing graphitization. 

It has been suggested that the first of these effects might 

be linked with increased scattering at lower temperatures(36). It has 

also been suggested that the increase in resistance observed in poly­

crystalline graphites when the temperature is lowered is due to a 
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decrease in an effective number of carriers, the decrease being determined 

(38) . (84) 
by the number of excess holes present • Kle~n treated transport 

processes in the layer planes of pyrolytic graphites theoretically and 

was able to show that when the temperature is lowered, the resistance 

of a polycrystalline graphite sample increases owing to the decreasing 

carrier concentration and not to enhanced scattering. The temperature 

dependence of the resistivity in a material such as carbon fibres tends 

to be insensitive to macroscopic factors such as porosity and therefore 

processes along the fibre axis, in view of the high degree of crystallite 

orientation, might well behave in the same way as those occurring in 

the layer planes of pyrolytic graphites. 

Klein has observed similar increases in the magnitude of the 

temperature dependence with increased graphitization in those pyrographites. 

This he attributed to be caused by shifts in the Fermi level, This seems 

to be supported by neutron bornbardment(8S) and bromination(86) studies 

which show that depressing the Fermi level decreases the magnitude of 

the temperature dependence of the resistivity. In carbon fibres 

evidence exists to the effect that Fermi level from about HTT lSOOoC 

is slowly rising with increasing graphitization towards the band edge. 

Such an explanation could therefore account for the increase in the 

PLN/PRT ratio with graphitization. 

6.3 Thermoelectric Power (TEP) 

The most straightforward way of obtaining information on the 

processes of conduction in materials is by studying the Hall effect. 
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The magnitude of the Hall constant R for a single carrier type process 

is inversely re~ated to the effective number of carriers and coupled 

with conductivity measurements will also yield their mobiiity. The sign 

of R will in addition be indicative of the type of conduction present. 

Because of obvious experimental reasons, Hall measurements 

cannot be conducted on carbon fibres. The Seebeck effect on the other 
, 

hand is easily measured, and although its relation to the number of 

carriers is not as str.aightforward as that of the Hall coefficient, it 

provides essentially the same information. Basically the effect arises 

when the two contacts to a conducting material are maintained at 

different temperatures. The carriers at the hot junction diffuse towards 

the cold junction so that a potential having the same sign as the 

diffusing majority carrier is developed. In defining this effect it is 

necessary to separate the contributions of the two materials so that 

the TEP of the reference material needs to be known. The TEP depends 

on the location of the Fermi level and can therefore be expressed in 

terms of the density of states, and thus a close relationship exists 

between the thermoelectric power and the Hall effect. 

The TEP of soft and hard carbons has been studied in detail 

by Loebner(37). (For an account of the historical background for TEP 

measurements in carbons, the reader is referred to the introduction of 

his paper.) When his results are compared with the Hall effect studies 

conducted by Mrozowski and Chabersky(3B), it becomes clear that the two 

parameters are closely related and largely substantiate the qualitative 

. band model proposed by Mrozowski, discussed in detail in section 3.2.1. 
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According to the model proposed by Mrozowski and his associates, 

the dependence of the TEP and Hall coefficient on HTT is explained by 

three effects: 

(i) The initial drop at low HTT results from an increasing number 

of excess holes which are created by n-electrons being trapped 

in the free valence a-orbitals on the periphery of crystalline 

planes. 

(ii) o 0 The increase in the range 1400 C - 2000 C results from a 

decrease in the number of peripheral sites occurring with 

crystal growth. 

(iii) The decrease above 26000 C results from an increase of carriers 

(holes and electrons) as electrons are thermally excited into 

the conduction band. 

The TEP results on carbon fibres will be discussed on the basis of these 

three effects. 

6.3.1 Measurement of TEP 

The TEP of carbon fibres was measured by a thermocouple type 

of arrangement composed of a bundle of carbon fibres and a gold wire 

reference, junctions being made with the aid of colloidal silver paint. 

The cold junction was painted onto the flat surface of a small brass 

solid cylinder which acted as a heat sink and remained at room tempera-

ture, while the hot junction was painted on a similar brass cylinder 

around which an electric heater was wound. The temperature of the cold 

and hot junctions could be monitored by means of two calibrated copper-

constantan thermocouples soldered onto the surfaces of the two brass 
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cylinders. This arrangement was mounted into a flat perspex base so 

that the fibre bundles could be conveniently stretched across the two 

junctions. The thermal e.m.f. was measured across a circuit break in 

the fibre bundle rather than in the gold wire since this enabled several 

fibre-gold thermocouples to be set up using the same gold wire, and 

measurements on all of them to be made during one run (see Fig. 6.2). 

The linearity of the effect was checked by plotting the thermal e.m.f. 

against the temperature difference between the cold junction (kept at 

room temperature) and the hot junction (which was raised from RT to 

not more than 40oC). A number of representative plots of thermal e.m.f. 

* against 6T are shown in Fig. 6.3. The TEP relative gold is then given 

by the slope of the straight lines, and this is easily converted to 

the absolute scale by adding the value of 1.95 ~V/OC which is 

quoted by Cusack and Kendall(87) as being the absolute T~P for gold, 

a value which agrees closely with the more recent value given by 

Huebener(88). This quantity was further checked by the author against 

that of thermocouple grade copper wire. 

6.3.2 TEP results 

The variation of TEP for a series of fibres heat treated from 

9lOOC to 28000 C is shown in Fig. 6.4. The curve for a soft carbon(37) 

is also included for comparison. At low BTT the TEP is positive but 

rapidly decreases because of the large increases in the number of holes 

occurring in this region. The fact that the TEP actually becomes 
-----------------------------------------------~----------------------------
* The sign of the thermal e.m.f. is taken as positive when-the current 

tends to flow from the carbon fibre to the gold wire ~t the cold junction 
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negative in the range of HTT from 900
0

C to l600
0
C is somewhat baffling 

since one is almost certainly in the presence of an excess hole process 

of conduction. Loebner's explanation, which he admits to be somewhat 

unorthodox, is that the Fermi level is in fact depressed so low into 

the valence band that it crosses the E vs k inflection point, so that 

the effective masses of carriers changes sign. The number of excess holes 

subsequently decreases with HTT as crystallite growth sets in (HTT> lOOOoC) 

causing a rise in the Fermi level, which again crosses the inflection " ' 

point, at a HTT 17000 C, where the TEP becomes positive. 

When it is recalled that the appearance of the g-shift occurs 

o 
between 1700 - 1750 C (see section 5.5), it becomes increasingly evident 

that this HTT is likely to be associated with a fundamental change of 

electronic structure in these materials. 

The TEP for these carbon fibres continued to increase with 

increasing HTT but appears to level off at 12.0 lJ,V/oC. This behaviour 

contrasts with that of soft carbons who reach a maximum of lB.5 lJ,V/oC 

and then decrease due to the excitation of electrons from the valence 

to the conduction band (see section 3.2.1). 

The fact that the TEP for carbon fibres does not become as 

large as that for soft carbons could be taken to indicate that the 

removal of holes during crystallite growth does not go beyond a certain 

limit which is lower than that for soft carbons. The absence of the 

decrease in TEP at higher HTT suggests that there still exists a 

considerable energy gap between the valence and conduction bands preventing 

the creation of carriers by thermal excitation across the band. 
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6.4 The Magneto-Resistance 

~fuen a magnetic field is applied transversely to a conductor 

carrying current, the trajectories of electrons between collisions will. 

acquire a curvature. This means that the component of motion in the 

direction of the applied electric field will be reduced by the presence 

of the magnetic field, and therefore the resistance will be higher. 

The change in the resistance due to the application of a magnetic field 

(usually expressed as 6P/Po in %) is known as the magneto~esistance, 

and will therefore be expected to be positive and to disappear when the 

magnetic field is applied longitudinally, i.e. in the direction of the 

velocity of electrons. However the longitudinal magneto-resistance 

is often found to be of the same order of magnitude as the transverse 

magneto-resistance. In fact, in crystalline materials, the magneto-

resistance reflects the anisotropy of the energy bands occupied by the 

electrons. Single crystal graphite is a good example of this. The 

transverse magneto-resistance for a basal plane current, varies with 

the angle between the magnetic field H and the c-axis, rising to large 

positive values when H is parallel to the c-axis and going to zero when 

H is perpendicular to the c-axis(89). The effect becomes increasingly 

large at low temperatures and at high magnetic fields exhibits de Haas 

Al h ' d' " (25) van p en perlo lCltles • 

Bearing in mind the positive magneto-resistance of single 

crystal graphite and indeed of all conducting pure single crystals, the 

negative magneto-resistance, discovered by Mrozowski and Chaberski(38) 

in 1956 in polycrystalline graphite, is a striking galvanomagnetic 
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effect. Negative magneto-resistance has subsequently been observed in 

a wide range of carbons and under a variety of experimental conditions. 

Since carbons which exhibit negative magneto-resistance are composed 

of crystallites of size 300A or less, it can be safely inferred that 

the origin of the effect lies in the particular characteristics of its 

polycrystalline state. Although other electronic properties of carbons 

can be understood in a qualitative manner on the basis of Mrozowski's 

band model, the origin of the negative magnete-resistance remains a 

puzzling problem. 

Tentative suggestions that the negative magneto-resistance was 

associated with hole conduction because it was observed with materials 

exhibiting positive Hall coefficients, have been made(38), but this 

has not been supported by more recent work(90,9l). Fujita(39) has shown 

that the diffuse scattering at crystallite boundaries can be influenced 

to such an extent that it could be the cause of a negative magneto-

resistance of the observed order of magnitude. (92) 
Toyoda and Mrozowski 

suggest that themagneto-resistance is composed of two parts which 

appear to be additive. The regular positive magneto-resistance present 

in graphitized materials, decreases when the graphitic layers are 

spread apart and when the Fermi level moves out from the overlap region. 

The negative part appears only when the crystallites become sufficiently 

small, and is independent of the position of the Fermi level or c-spacing, 

and is found to become increasingly large in magnitude with decreasing 

temperature and increasing magnetic fields. At very high magnetic 

fields the magneto-resistance goes through a maximum negative value after 
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which it tends towards positive values. This has been taken to indicate 

that while the positive component increases strongly with magnetic 

field, the negative part saturates at higher fields, so that the former 

• (92) eventually predom~nates • The origin of the negative component has 

also been ascribed to imperfections of the atomic arrangements in the 

graphitic crystals(93). 

It appears that at the present time a thorough understanding is 

generally accepted to be lacking. The magneto-resistance of carbon 

fibres for which several other electronic properties are available was 

therefore thought to be of interest. 

6.4.1 Measurement of magneto-resistance 

The four-probe method of measuring the resistance described 

in section 6.2.1 was used throughout to measure the magneto-resistance. 

Measurements were carried out on single fibres as well as bundles. 

The results for the same batch were always reproducible and for systematic 

studies bundles of fibres were usually used because of the greater 

care with which these could be handled and mounted. The fibres were 

positioned inside a cryostat which was placed between the poles of a 

large electromagnet (maximum field about 13 KG) which could rotate 

in the horizontal plane. The fibre axes were also horizontal so ~hat 

rotating the magnet enabled the variation of the magneto-resistance with 

the angle e between the magnetic field H and the fibre axis (which is 

also the direction of flow of current) to be investigated. The cryostat 

could then be filled with. liquid nitrogen or liquid. helium. It was 
" ,- , ' ,. . 

t found impractical to measure one,fibre at a time and in view of the large 
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number of fibres investigated a sample holder enabling seven fibres to 

be mounted and investigated in one run was constructed (see Fig. 6.5). 

On the back face of the sample holder a specimen of pyrographite 

is fixed (shown in Fig. 6.Sb) and was used to orientate the fibres in 

the ~agnetic field when a full angular rotation for fibres was not desired. 

This made use of the strong angular variation of the magneto-resistance 

of pyrographite, as can be seen from Fig. 6.6. 

6.4.2 Results 

The field dependence of the transverse magneto-resistance was 

o 
investigated for the fibres at three fixed temperatures namely 4.2 K, 

o 0 77 K and 300 K. Fig. 6.7 shows a typical 6p/p vs H curves for two 
o 

fibres heat treated at 23000 C and 28000 C measured at 77oK. By suitable 

log-log plots (see Fig. 6.B) it can be shown that the magneto-resistance 

follows a relationship 6p/p ~ HX, the exponent X being determined by. o 

the slope of this graph. This relationship was obeyed at all field 

values and temperatures investigated, however the exponent X varied 

with temperature and also depended upon the size of the magneto-resistance. 

For negative magneto-resistance (HTT > -1750oC) the exponent X was 

000 
1.2 at 4.2 K, 1.8 at 77 K and 2.0 at 300 K. In the region of positive 

magneto-resistance (only detected at 4.2oK) the exponent appeared to be 

greater than these values. 

The variation of the magneto-resistance with HTT for the three 

At low HTT 

(below about l750oC) 6p/p is positive for the curve at 4.2oK and o 

becomes negative at about l750oC, after which it increases in magnitude 
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with increasing HTT. The effect is greatly reduced as one goes to 

higher arr~ient temperatures. Althcugh at 770 K and 3000 K Ap/p is too 
o 

o small to be measured, at heat treatment temperatures lower than 1750 C 

it is believed that the effect of raising the ambient temperature merely 

decreases the magnitude of the magneto-resistance without altering its 

sign, so that all three curves would cross over into the negative region 

at l750oC. The impression gained, from the g-anisotropy and the TEP 

studies, that the HTT in the vicinity of l7500 C is associated with a 

major electronic change is thus further reinforced. 

The observation of negative magneto-resistance above a HTT of 

l7500 C poses an interesting problem. Of the available explanations for 

the effect(38,90), Fujita's diffuse scattering at crystallite boundaries(39) 

appears to be the most attractive. In view of the use made of Fujita's 

ideas in the arguments developed in the next section, the essence of his 

ideas will now be considered. 

The zero-field resistivity is given approximately by 

1 * . . i Wlere e, M , n <v> and tare respect1vely, charge, effect1ve mass dens ty, 

average speed, and mean free path of carriers. Except for t these para-

meters are unlikely to change appreciably when a weak magnetic field is 

applied. The change in mean free path t should then roughly determine 

the behaviour of the magneto-resistance at low fields. 

If, as is the case for most conducting materials, the carriers 

are diffusely scattered at the crystaltiteboundaries (i.e. electrons 
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arriving at the crystallite boundary'may leave the'surface in all possible . . , ,. ",." .. 

directions within the crystallite with equal probability), then for 

small crystallites, Fujita shows that the application of a magnetic field 

will tend to lengthen the mean free path and hence cause negative 

magneto-resistance. This can be seen from Fig. 6.10 (Figure 1, reference 

39). 

Consider an electron starting from the point A on the crystallite 

boundary, proceeding on a straight line AC (inside the crystallite), in 

the absence of a magnetic field and hitting the wall at C. The length EC 

may be defined as the free path of the electrons with respect to the 

charge transport in the upward direction. The application of the 

magnetic field B will induce a curvature in AC so that the free path is 

shortened to EC'. By symmetry an electron starting at A' will have its 

free path lengthened from FD to rD'. It is clear from the diagram that 

DD' > CC' so that a net increase in the free path occurs on the application 

of B. These arguments hold quite generally and Fujita's computations 

have shown that the resulting magneto-resistance is negative, increases 

with crystallite size so long as boundary scattering is predominant, and 

is of the correct magnitude. 

The negative magneto-resistance for carbon fibres increases with 

increasing HTT in agreement with Fujita's arguments. However, it is 

worth noting that the field dependence of the negative magneto-resistance 

shows no sign of saturating with increasing magnetic field up to 14 Kg. 
"I. 't.. • 

Clearly this is because the high degree of crystallite development 
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* responsible for the positive component is absent in these fibres. 

This is in line with all previous results. 

At the other extreme (HTT < l750oC), the appearance of the 

positive magneto-resistance is surprising in view of the fact that X-ray 

data indicates the presence of small crystallites in the fibres. 

A likely explanation for this could be that boundary scattering ceases 

to predominate. This point is examined further in the next section. 

6.5 General Discussion 

In Chapter 5 it was shown that the g-anisotropy for carbon fibres 

sets in at a HTT of 1750oC. Confronting this with the remarkable char.ge 

of sign of both the TEP and magneto-resistance at precisely that HTT, 

it becomes evident that these changes cannot be merely the result of 

some coincidence and must be ascribed to a fundamental change in the 

electronic structure of these materials. The conclusions reached on 

the basis of the ESR data (section 5.11), that the appearance of the 

g-shift is associated with two factors, namely a critical layer separation 

at which inter layer interactions occur or the entrance of the Fermi 

--------------------------------~---------------------------~~~-----------
The positive component, for large graphite crystallites. clearly arises 

when, extending Fujita's arguments, the diameter of the electron orbits 

become smaller than the crystallite size. The resuhwill be that 

scattering at the boundaries will no longer be the predominant factor 

and conventional mechanisms will then be responsible for positive 

magneto-resistance. 
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level into a region of greater spin-orbit coupling must be reappraised 

in the light of the information obtained from the other electronic 

properties. The procedure which it is proposed to adopt in this discussion 

is to begin by examining the changes occurring at a HTT of l750
0

C on the 

basis of the available band model for carbons which was put forward 

mainly by l~ozowski's School. It will then emerge from this analysis 

that the model adequately accounts for a number of observations but is 

unable to explain the change of sign of the magneto-resistance which 

o 
occurs at 1750 C and generally breaks down below that HTT. Finally on 

the basis of the available information it is suggested that although the 

band model proposed by Mrozowski is probably valid above a HTT of 

l7500 C the' processes occurring below that HTT are dominated by the 

stresses and defects created in the material during the heat treatment 

o process. The removal of these stresses at 1750 C due to the ability of 

the carbon-carbon band to be thermally broken at this temperature is 

shown tOPBY a more significant role than hitherto suspected in the 

properties of these materials. 

6.5.1 Band overlap model 

Generally speaking, the ESR intensity is the most direct way of 

obtaining the density of states n(Er ) at the Fermi level and must therefore 

reflect the shape of the n(E) vs E curve. Now the presence of a minimum 

in the ESR intensity at high heat treatments has been ascribed to the 

existence of band overlap(94,55). The minimum in the ESR intensity can 

then be ascribed to the Fermi level traversing the region of overlap at 

high heat treatments. This apparent overlap has been suggested to occur 
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even in the case of a model with a gap in an "average band structure", 

as a result of the statistical fluctuations in the distribution of traps 

between crystallites in conjunction with the requirement of matching 

. (56) the Fermi level of all crystal11tes • This is shown schematically in 

Fig, 6.11 (Figure 9, reference 56). 

Evidence for such a band picture is available from several 

sources. \Jith the aid of ESR intensity measurements, this model has 

been generally substantiated, by folloHing the movement of the Fermi 

level upon doping partially graphitized carbon black with sodium and 

'. (56) PQtass1um • Furthermore examination of the temperature variation of 

the Hall effect at various positions of the Fermi level in similar 

doping experiments yields interesting results(92). The Hall coefficient 
", 

w~ich is temperature independent in both single carrier regions (above ., 

and below the overlap), decreases linearly at the top of the overlap 

and increases linearly at the bottom of the overlap with decreasing 

temperature. These different behaviours can be induced in soft carbons 

by suitable doping down to a HTT of about l600oC. However it should be 

emphasized that no temperature dependence is observed irrespective of 

the amount of doping for a carbon black heat treated at and below l6000 C. 

Clearly the band model described in Fig. 6.11 does not apply at this liTT. 

6.5.2 The ESR intensity 

Whether a model with overlapping bands or with an energy gap is 

assumed to exist at lower heat treatment temperatures a decrease in the 

ESR intensity can be taken to be associated with a rising Fermi level. 

The decrease in the ESR intensity proceeds rapidly at low HTTs, but 
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this decrease is less pronounced at high HTTs (see Fig. 5.B). 

This could be taken to indicate that above about l800
0

C the Fermi level 

is near the top of the valence band (or if overlapping bands are considered 

near the density minimum). Clearly the highest heat treatments (2800oC) 

do not produce a subsequent increase in the ESR intensity showing that 

the Fermi level does not traverse this density minimum as indeed is 

expected for these nominally non-graphitizing carbons. 

It is noted in passing that both the localized and the de~ 

localized components of the intensity also decrease with HTT. The latter 

part, being proportional to the number of carriers taking part in the 

conduction process, indicates, when coupled with the decreasing resistivity 

(see Fig. 6.la) that the mobility must be increasing with increasing HTT. 

This is consistent with the diminishing intercrystalline contacts 

associated with crystal growth as discussed in section 6.2.2. 

6.5.3 The TEP 

The TEP above 17500 C rises with increasing heat treatment. 

This is consistent with the decrease in the number of carriers occurring 

in this region as indeed can also be inferred from the decreasing ESR 

intensity. The maximum in the TEP observed for soft carbons is not 

passed in these fibres, suggesting that the Fermi level, which is already 

close to the density minimum from about l8000 C (as is inferred for the 

ESR intensity) does not even at the highest heat treatments enter the 

band overlap region, and the carriers retain their positive hole 

character. It will be seen in the next chapter that hot stretChing can 
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cause sufficient graphitization for the Fermi level to become placed in 

the overlap region so that some n-type character is introduced in the 

conduction process, causing the TEP to go through the maximum. 

Clearly the change of sign of the TEP at a HTT of l7S0oC 

is significant. This has been suggested to be associated with the Fermi 

level crossing the E vs k inflection point. If this explanation is 

accepted, it now appears that this inflection point must be present fairly 

near the top of the valence band. This conclusion was also reached by 

Toyoda and Mrozowski(92) who elegantly estimated the amount of sodium 

needed to raise the Fermi level from the inflection point (monitored by 

change of sign of the Hall effect) to the centre of the band overlap 

(monitored by the minimum in the ESR intensity). This of course 

should not be taken as confirming the existence of such an inflection 

point but merely as indicating that whatever is the cause for the change 

of sign, this occurs fairly near the top of the band edge. It should be 

emphasized, however, that doping material heat treated below l7000 C 

behaved in an exceptional manner causing these authors to wonder if such 

materials possessed an inflection point at all. 

6.5.4 The magneto-resistance 

The implications of the change of sign of the magneto-resistance 

precisely at a HTT of l7500 C will now be considered. Although a complete 

theoretical explanation for negative magneto-resistance is yet to be 

formulated, there seems to be general agreement that the effect is 

observed only in the presence of small crystallites and that it is 

independent of Fermi level variations. There is also evidence to the 
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effect that a positive magneto-resistance appears when graphitic order 

is established and increases in absolute value with increase in the 

degree of graphitization, i.e. decrease in layer spacing. This positive 

component which is sensitive to the position of the Fermi level, is 

identified with the conventional positive magneto-resistance of single 

crystal graphite. The positive and negative components appear to be 

additive. 

The X-ray data clearly indicates the presence of small 

crystallites in the region below 17500 C so that the positive magneto-

resistance observed in this region presents a problem which cannot be 

resolved on the current models. Careful consideration of the available 

data suggests that the behaviour can be explained on one simple assumption, 

namely that the boundary scattering only becomes predominant at a HTT 
o of 1750 C and above. This is believed to be due to the crystallites 

finding themselves in a situation of considerable stress so that the 

crystallite boundary fields, responsible for the scattering giving rise 

to the negative magneto-resistance, are swamped by the random fields 

created by the presence of the stress and defects. This in effect leads 

to random scattering as that prevailing in amorphous materials and leads 

to positive magneto-resistance. The stresses are believed to be removed 

at a HTT of l7500 C where the negative magneto-resistance makes its 

appearance. Evidence for this contention will now be discussed. 
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6.5.5 Origin of stresses 

In soft carbons the HTT of approximately l7500 C is associated 

with a major structural change which can be clearly followed by X-ray 

techniques. It is only above that HTT that distinct evidence of three 

dimensional order appears as well as a distinct change in the interlayer 

spacing and a marked increase in the rate of the growth of crystallites. 

This occurs because l7500 C is the approximate temperature at which the 

thermal energy of the atoms becomes strong enough to break the carbon-

carbon bonds, with the result that the carbon atoms can now take up more 

• (58) ordered and less strained posit1ons • 

In contrast, for non-graphitizing carbons, these changes are 

less evident. This of course is because 'graphitization is hindered in 

these materials. Nevertheless the fact remains that the HTT of 

approximately 17500 C corresponds to the temperature at which the carbon­

carbon bonds can be broken. In fact Johnson and Tyson(9S) have recently 

reported marked discontinuities in the changes of the low-angle X-ray 

diffraction parameters in the vicinity of l800oC. These discontinuities 

are attributed to increased perfection of the crystallites. It is 

significant to recall in this context that hot stretching carbon fibres 

is only possible without fibre breakage o above 1750 C. Furthermore it 

is also interesting to note that diamond transforms rapidly into graphite 

o 
at about 1750 C (reference 21, p.62). Thus strong evidence exists to 

the effect that rearrangement of carbon atoms can only occur above 

this HTT. 
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It is contended that prior to the HTT of 17500 C the stresses 

created in the material by the heat treatment are not able to anneal. 

The presence of these stresses cause the normal electric fields associated 

with the boundaries of crystallites to become insignificant when compared 

to stress fields which predominate the structure. 

responsible for the positive magneto-resistance. 

This is taken to be 

o Above 1750 C the 

stresses are annealed so that the crystallite boundary fields become 

the predominant scattering mechanism and negative magneto-resistance 

makes its appearance. 

It is believed that these arguments in no way interfere with 

the interpretation of the ESR intensity and TEP data presented in the 

previous sections. their effect on the appearance of the g-anisotropy 

at the HTT of 17500 C will now be examined. 

6.5.6 The g-anisotropy 

The appearance of the g-anisotropy is associated with the 

reversal of sign for the TEP and magneto-resistance. The TEP is known 

to be strongly dependent on the position of the Fermi level and the change 

of sign of the magneto-resistance is believed to be closely related to 

the removal of stresses in the material. It is therefore tempting to 

suggest that the appearance of the g-shift is critically related to these 

two parameters. Bearing in mind that the band overlap proposed by 

Mrozowski occurs for additive contributions to the density of state by 

individual crystallites (section 6.5.1, Fig. 6.11) and that the minimum 

in the density of states occurs in the region of the band overlap of 

individual crystallites, one could argue that in the presence of stresses 
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(below l750oC) the crystallite contributions are absent because of 

deformation of their fields. Or alternatively that the band overlap 

for the crystallites does not exist. Both these suppositions would 

presumably result in a model where the valence and conduction bands 

are separated by an energy gap. Such a model would have the virtue of 

explaining the behaviour of carbon blacks heat treated below about l750oC, 

a behaviour which was shown by doping experiments not to conform to that 

of carbons heat treated at higher temperatures. Clearly in such a band 

model no g-shift can be expected. 

Immediately on attaining the HTT of 17500 C the stresses in the 

material are annealed and the model as proposed by Mrozowski is created. 

The g-shift then appears as a result of the presence of the Fermi level 

near the density minimum and the region of crystallite overlap. 

It must be recalled at this point that in section 5.11 it was 

demonstrated that although for soft carbons the g-shift appears at a 

somewhat lower HTT (-1,250oC) than for the nominally non-graphitizing 

carbons, the shift occurs at an identical layer separation (of 3.49A) 

for both these materials. According to the arguments developed above, 

this can only be explained if the model as proposed by Mrozowski appears 

in soft carbons far earlier than in hard carbons. That is to say that 

the stresses created during heat treatment are more readily annealed in 

the case of soft carbons. This leads to the conclusion that these 

stresses in hard carbons are likely to be associated with interlayer 

cross linking, the removal of which necessitates temperatures in excess 

of l750
o

C, at which thermal breakage of the carbon-carbon bond can occur. 
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There remains a discrepancy which requires attention; this is 

concerned with the change of sign of the TEP which occurs for both soft 

and hard carbons at l7S00 C. That this should be so is not in itself 

taken to be extraordinary, but the implication is that at -l2S00 C for 

soft carbon the Fermi level would be located below the inflection point 

and somewhat removed from the band overlap region. The appearance of 

the g-shift in such a situation can only be explained if the interlayer 

interactions (i.e. the c-spacing) by far outweighs any variation in 

the position of the Fermi lev~l (a conclusion also reached by Mrozowski(Sl»! 

or alternatively that the interpretation of the negative TEP as being 

the result of a Fermi level being depressed below the inflection point 

is erroneous. 

In view of the great sensitivity of single crystal graphite 

to the position of the Fermi level, it is felt that even below the 

inflection point, if such exists, the Fermi level must still be in the 

vicinity of the band overlap and that the c-spacing must indeed be 

the dominant factor via the interlayer interactions mainly 

responsible for the appearance of the g-shift. 

Finally the conclusions arrived at from the available information 

can be summarized as follows: 

(a) The ESR of carbon fibres does not differ in any basic way from the 

ESR of carbons and graphites and is amenable to analysis by methods 

developed for these materials. 

(b) The HTT of l7500 C appears to be associated with an important 

structural change as is indicated by the changes which occur in all the 

major properties investigated for these materials. 
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(c) The appearance of the g-shift is believed to occur at a critical 

interlayer or c-spacing of 3.49A, where the interlayer interactions 

abruptly become large enough to produce the g-anisotropy. The position-

of the Fermi level is thought to be fairly close to the top of the 

valence band and is not believed to play an overriding role in the 

appearance of the g-anisotropy. 

(d) It is believed that the negative magneto-resistance only appears 

above a HTT of l7500 C because of the distortion in the crystallite 

fields caused by the stresses present in the material prior to that 

HTT. 

(e) The band model proposed by Mrozowski clearly fails below heat 

o treatment temperatures of about 1750 C. 

(f) The change of sign of the TEP at a HTT of about 17500 C is 

ascribed, in the absence of any other explanation, to the Fermi level 

crossing the E vs k inflection point. 
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CHAPTER 7 

EFFECT OF HOT STRETCHING 

7.1 Introduction 

The series of fibres considered in Chapters 5 and 6 (henceforth 

referred to as series I) do not exhibit the outstanding mechanical 

properties which characterise the very best carbon fibres at present 

available. In general the strength of carbon fibres is thought to be 

controlled by cross-linking present in the polycrystalline material. 

Young's modulus on the other hand has been shown to be governed by the 

orientation of the basal planes of the~phitic crystallites relative 

to the fibre axis(60). The greater the degree of preferred basal plane 

orientation along this axis, the greater the value of Young's modulus 

for the fibre. Consequently, from a technological point of view, 

techniques which enhance crystallite alignment are of primary importance. 

It will be recalled (section 3.3.1) that two methods of 

producing high modulus carbon fibres are available. The first of these 

consists in restraining the natural shrinkage of the fibre during 

the initial carbonization stage and the second, known as hot stretching, 

involves stretching the fibres at high enough temperatures for plastic 
(96 97) 

flow to take place ' • Both techniques result in improved crystallite 

alignment. The first method presumably involves the preservation of the 

original polymer array, whereas the second is associated with some form 

of stress recrystallization. Clearly the importance of hot stretching 

in the manufacture of carbon fibres cannot be overestimated. 
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In this chapter the effect of hot stretching on the electronfc 

and ESR properties of carbon fibres are investigated. The samples used 

for this purpose (referred to as series II) consisted of pairs of fibre 

batches with each pair possessing an identical thermal history. One 

fibre in each pair was subjected to hot stretching while the other 

remained unstretched and was used for control purposes. Because of the 

restriction imposed by the inability to hot stretch carbon fibres below 

a HTT of about l750oC, all the specimens of series II were treated above 

that HTT. 

Generally the effect of hot stretching on the properties of 

these fibres is similar to the increase in graphitization produced on 

raising the HTT. However it will be seen that the properties of the 

fibres of series II do not correlate well with each other or with the 

properties of the fibres of series I, when these are expressed in terms 

of the HTT. However all the data fall nicely in line when related to 

a parameter associated with the degree of graphitization, which will be 

referred to as the 'graphitic order'. The relatively hieh graphitic 

order obtained on hot stretching allows observations previously made 

on fibres of series I to be supplemented and confirmed. 

The various theoretical considerations and experimental techniques 

associated with the parameters with which this chapter is concerned, 

have been given considerable attention in previous sections of this 

thesis. In this chapter, therefore, the emphasis is placed on presenting 

the experimental results, and suggesting practical applications where 

these might be of value. 
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7.2 The g-Anisotropy 

The effect of hot stretching upon the g-anisotropy is shown 

in Fig. 7.1. The g-anisotropy for the fibres of series I is also 

included for comparison. It is immediately apparent that the control 

fibres of series II, not only do not fallon the g-anisotropy vs HTT 

curve of the first series but also they do not even form a continuous 

line amongst themselves. In general the control fibres of series II 

have a higher anisotropy than the fibres of series I for a given HTT. 

While the reasons for these anomalies are not fully understood, they 

are presumably due to variations in the detailed thermal history of the 

samples and also perhaps to differences in the structure of the original 

organic fibre precursor. These results clearly indicate that the HTT 

alone cannot be taken as a criterion for the degree of graphitization 

in these fibres, unless great care is taken in controlling the conditions 

under which the fibres are manufactured. This was the case for the fibres 

of series I. However in the absence of X-ray data, the need for a 

parameter, generally representative of the 'graphitic order', is felt. 

Hot stretching carbon fibres invariably produces an increase 

in the g-anisotropy (Fig. 7.1). The increase in Young's modulus 

associated with hot stretching, has been ascribed to increased alignment 

of the graphitic crystallites(60). However it has been shown that the 

g-anisotropy is little affected by small cnanges in misalignment 

(section 5.6). In fact the Z-values available for these fibres were 

smaller than 100 and the changes in this parameter upon hot stretching 

clearly could not account for the observed increase in g-anisotropy. 
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The conclusion can therefore be drawn, that hot stretching must be 

accompanied not only by increased alignment of crystallites but also by 

an improvement in their perfection; that is to say. a decrease in the 

interlayer or c-spacing to whichit is believed the g-shift is particularly 

sensitive (section 6.6). 

Unfortunately the samples available, in addition to differences 

in thermal histories, had not been stretched by equal amounts, so that 

a quantitative discussion of the effect of hot stretching could not be 

attempted. It is felt, however, that for an equal percentage stretch a 

small change in 6g is produced at lower and higher heat treatments 

than is produced at moderate heat treatments. This could well arise 

from graphitization being hindered at lower heat treatments by diminished 

ease of plastic flow. At higher heat treatments the material, being 

already highly 'graphitized', does not on hot stretching produce a marked 

increase in g-anisotropy. 

The increased graphitization of series II enables the reversal 

of the g-anisotropy with temperature, discussed in section 5.7, to be 

followed with greater ease. Fig. 7.2 shows this reversal of the g-shift 

for two pairs of fibres from series II together with the fibre heat 

treated at 27000 C of series I (Fig. S.6a) which is included for 

comparison. 

The crystallite anisotropy for the fibre with the greatest 

degree of graphitization, i.e. largest g-anisotropy, was computed for 

various temperatures and this is shown in Fig. 7.3. The figure also 

includes the variation of the g-anisotropy with temperature determined 
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Table 7.1 

Line Width Ratio flH r' flH II 

IDENTIFICATION CONTROL STRETCHED 

HTT °c % Stretch 3000 K 770 K 3000 K 770 K 

2290 14 1.15 1.18 1.29 1.30 

2140 30 1.02 1.07 1.07 1.14 

2600 24 1.10 1.36 1.18 1.44 

2150 20 1.03 1.08 1.13 1.16 

SERIES I l.02± 03 . l.03±.03 AVERAGE 
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experimentally for a sample of pyrographite. The observed anisotropy 

for the pyrographite agrees well with \lagoner's data obtained for single 

crystal graphite(3l). Clearly the crystallite anisotropy even in very 

highly 'graphitized' carbon fibres remains inferior to that of single 

crystal graphite, indicating that the crystallites in carbon fibres never 

attain the perfection of single crystal graphite. 

7.3 Line \Hdth Anisotropy 

The line width, it will be remembered, was very scattered and 

showed no correlation with the HTT or g-anisotropy (section 5.10). 

This again was found to be true for the fibres of series II. In Table 

5.2 it was seen that the line width with the magnetic field perpendicular 

to the fibre axis ~Hl was on the average 2% broader than the line width 

with the magnetic field parallel to the fibre axis ~HII' Since this was 

within the experimental uncertainty of the measurement, no conclusions 

were drawn from this observation. However in the highly graphitized fibres 

of series II, it becomes clear that the line width shows a definite 

anisotropy. Investigation of this anisotropy, in a parameter which is 

difficult to measure with a high degree of precision, required the line 

width to be computed from the slope of a line shape analysis (section 4.3). 

The resulting angular variation of the line width is shown in Fig. 7.4a*. 

--------------------------------------------------------------------------
The choice of the sample for this angular variation was dictated by 

the necessity for a narrow line width, to enable greater precision of 

measurement. Furthermore the measurements were carried out at 770 K 

as the anisotropy is generally enhanced at lower temperatures. 
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The variation of the line width with the direction of the magnetic field 

could be fairly well fitted by a cos2 function which was a maximum for 

the magnetic field perpendicular to the fibre axis. The line width for 

a pyrographite sample 6H!, was also examined for comparison and a similar 

variation was observed with the width going through a maximum when the 

maenetic field is parallel to the c-axis. This observation confirms data 

previously reported by Delhaes and Marchand(74) , who showed that the 

results were consistent with an anisotropy in the spin-spin relaxation 
(98) 

time T2 arising from the band structure of these materials • 

Bearing in mind that the crystallites in carbon fibres are 

aligned with their c-axis symmetrically distributed in a plane perpendi-

cular to the fibre axis (section 5.6) and that the ESR line in these 

materials is a result of motional averaging (section 3.2.2), it seems 

reasonable to suggest that the observed line width anisotropy results 

from the inherent anisotropy in the graphitic crystallites within the 

fibres. Clearly when the magnetic field is perpendicular to fibre axis 

a broader line width is contributed by the crystallites to the overall 

line width than when the field is pointing along the fibre, that is to 

say, along the crystallite basal planes. It should be emphasized however 

that the contribution of the crystallites to the line width represents 

only a fraction of the total line width, the remaining part of which 

has so far eluded all attempts made to explain its origin. This part 

is believed to be responsible for the lack of correlation of the line 

width with any of the parameters associated with carbon fibres. 



EFFECT OF HOT ST RETC HI NG UPON 
THE E L E C T RIC A L RES I ST A NC E 

P77e K 

f300~ 22 
~ 

(b) 

'·4 

20 
18 

1· 3 ~ 

2'1 ()I 1 j) 

17 (30 

'·2 20 I I ( ) 

, . , 21 e 

9 

! 

( (a) 

1000 ~ 

I , 
f3OO 'K 

po. em 
C) 

~ C) 21 , I 20 C 

800 ~ 
~ 

23 
~ 

24 1 9 

" 3~1 C) 
17 18 

ro 
600 I- No. = ", Stretch 

o Hot Stretched 
o Control 

~ 
1 

22 

400 
I I I I 

2000 2200 2400 
H TTC'C) 

FIGURE 7·5· 



112 -

Table 7.1 gives the ratio of 6Hr'6HII for a number of fibres 

o both at 77 and.300 K. The table shows that this ratio is always greater 
.. "~ .,' 

than unity and increases both with decreasing temperature and on hot 

stretching. This is not unexpected since 6H1"6HII for the pyrographite 

sample was seen to increase with decreasing temperature and that hot 

stretching would clearly enhance graphitization and hence the line 

width anisotropy. 

7.4 The Electrical Resistivity 

The effect of hot stretching on the electrical resistivity of 

carbon fibres. is summarized in Fig. 7.5. The room temperature 

resistivity (Fig. 7.5a) invariably decreased on hot stretching, which 

indeed is not unexpected as on hot stretching both crystalline growth 

and increased crystallite alignment is bound to enhance basal plane 

conductivity and reduce intercrystallite contact resistances. 

The temperature variation of the resistance, expressed as 

the ratio P770 K/P3000 K (Fig. 7.5b),on the other hand, increases with hot 

stretching and when it is recalled that this ratio was found to increase 

with increasing HTT (section 6.2.3), this result falls in line with 

the increased graphitization expected upon hot stretching. 

7.5 The TEP 

The effect of hot stretching upon the TEP of carbon fibres 

differs from the behaviour observed with the other properties of these 

materials. On hot stretching the g-anisotropy, the resistivity, the 
, 
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resistivity ratio p 0 /p 0 and the magneto-resistance (section 7.6) 
77 K 300 K 

each changes in one direction. The TEP, on the other hand, exhibits 

(Fig. 7.6) two types of behaviour, showing in some instances an increase 

in magnitude and in others a decrease on hot stretching. This behaviour 

seemed at first to be somewhat extraordinary; however it was noticed that 

the fibres whose TEP tended to increase with hot stretching appeared to 

lie in the lower region of the HTT range, while those whose TEP decreased 

were in the higher HTT range. It will be recalled that the TEP for soft 

carbons goes through a maximum with increasing HTT, i.e. graphitization, 

Clearly then, if the control sample is situated past the TEP maximum, 

further graphitization on hot stretching will produce a decrease in TEP. 

If, on the other hand, the control is present before the maximum, then 

either an increase or °a decrease in the TEP will be observed according 

to whether the increase in graphitization places the stretched fibre 

before or after the TEP maximum. That this is indeed the explanation 

for the observed behaviour of the TEP upon hot stretching will be 

clearly demonstrated in section 7.7. 

7.6 The Magneto-resistance 

The magneto-resistanc~which is always negative, increases in 

magnitude in all cases upon hot stretching (Fig. 7.7). This result 

agrees well with Fujita's(39) mechanism which predicts an increase in 

the magnitude of 6p/p with increasing crystallite size as long as o 

boundary scattering remains predominant. 
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Table 7.2 

Ratio of Longitudinal to Transverse Magneto-Resistance 

IDENTIFICATION 
STRETCHED I CONTROL 

I HTT % Stretch 

2420 9 13.5 9.0 

1990 20 14.0 7.0 

2140 30 10.6 6.4 

2230 22 5.9 5.2 

2800 - 8.0 -
2700 - 8.7 -
2670 - 9.7 -
2300 - 13.1 -
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Consideration of the angular variation of the magneto-resistance 

for these highly 'graphitized' fibres leads to an interesting result. 

A typical angular variation plot for a pair of fibres of series II is 

shown in Fig. 7.8. Clearly on hot stretching the transverse magneto-

resistance increased, but surprisingly the longitudinal magneto-

resistance does not vanish for either fibre. Furthermore, although 

the transverse magneto-resistance for the stretched fibre is greater than 

that of the control, its longitudinal magneto-resistance falls below that 

of the control. Since hot stretching increases both the crystallite 

size and crystallite orientation, this result suggests that whereas the 

increase in the transverse magneto-resistance is due to the increase 

in crystallite size, the decrease in the longitudinal magneto-resistance 

on hot stretching is due to the increased preferential alignment of 

crystallites. It follows that if the crystallites are all perfectly 

aligned along the fibre axis, the longitudinal effect would vanish as. 

indeed occurs in the case of perfect graphite (Fig. 6.6). Consequently 

it appears that the departure of the longitudinal magneto-resistance 

from zero could afford an alternate method, to the usual X-ray techniques, 

of obtaining the degree of misalignment of graphitic crystallites in 

carbon fibres provided however that a suitable mathematical treatment 

is developed. 

It is encouraging to note that the ratio of the longitudinal 

magneto-resistance to the transverse magneto-resistance (6p/p )L/(bp/p ) 
o 0 T 

decreases on hot stretching for four pairs of fibres investigated, 

indicating an increase in preferred orientation upon hot stretching as 
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indeed is confirmed by X-ray data(99) (Table 7.2). Increased heat 

treatment on the basis of this parameter also appears to favour increased 

crystallite alignment. 

7.7 Conclusion 

All the parameters directly associated with the degree of 

graphitization of carbon fibres, namely the g-anisotropy, the~7oK/p3000K 

ratio, the electrical resistivity, and the magneto-resistance 

unambiguously change on hot stretching in a direction indicating 

increased graphitization. It is believed that the absence of correlation 

between the control fibres of series II with each other and with the 

fibres of series I is due to differences in thermal history or other 

factors,which in effect invalidates the use of the HTT as a parameter 

to which the degree of graphitization can be referred. The need for 

such a parameter becomes particularly felt when hot stretching is 

applied, as the degree of graphitization is then also dependent on the 

amount of stretch. It is felt that the g-anisotropy which is so 

critically dependent on crystallite perfection could well play the role 

of just such a parameter. To test the validity of the g-anisotropy as 

a monitor of the 'graphitic order' cross plots of all the available 

data for the fibres of both series I and II were performed and this is 

shown in Fig. 7.9. 

The TEP (Fig. 7.5b) definitely appears to go through a 

., maximum value with increasing graphitic order, ,thus confirming the 

explanation put forward in section 7.5 for the observed changes in this 

parameter upon hot stretching. 
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Both the magneto-resistance (Fig. 7.9c) and the P77oK/P300oK 

ratio (Fig. 7.9a), appear to increase regularly with the g-anisotropy. 

It is therefore concluded that any of these three properties, namely 

~p/po' P770K/P3000K' and ~g can on a practical basis be used as a 

parameter to monitor the 'graphitic order' of carbon fibres as an 

alternative method to the usual X-ray techniques employed. The TEP 

however is not suitable for this purpose because of its passage through 

a maximum as the graphitic order is increased. 

The fact that the experimental points from both series I and 

series II now fall into line with each other, greatly strengthens the 

idea that all these properties define a unique parameter, the graphitic 

order. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FUTURe WORK 

Probably the most significant result that has emerged from 

this work is the discovery of the g-anisotropy in the ESR absorption line 

of the carbon fibres. The angular variation of this anisotropy clearly 

confirms that the graphitic crystallites, making up the structure of 

carbon fibres, are preferentially aligned with their basal planes parallel 

to the fibre axis. The g-anisotropy is intimately related to the degree 

of growth and perfection of the graphitic crystallites, to which carbon 

fibres owe their particular mechanical properties and their technological 

importance. Its magnitude provides, therefore, a practical alternative 

to the established X-ray diffraction, electron microscopy and electron 

diffraction techniques, for the study of the graphitization of carbon 

fibres. 

Indeed the g-anisotropy is found to be a good measure of the 

stage of crystallite development or 'graphitic order' in these fibres. 

Thus the properties of widely different fibres fall into line when cross 

plotted against this parameter. 

The fundamental features of the ESR spectra from carbon fibres 

do not differ in any basic way from the ESR of carbonaceous materials 

in general, and are therefore amenable to analysis by the techniques 

developed by Mrozowski and co-workers for carbon blacks. Such analysis 

enables the true crystallite g-value anisotropy, after allowance has 

been made for the depressing effect of the localized component, to be 
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made. This has revealed that even for the fibres with the greatest 

graphitization, the crystallite development is inferior to that of 

single crystal graphite. This result is in line with what is known 

of the non-graphitizing nature of these materials. 

Unfortunately the g-anisotropy is inherently insensitive to 

small crystallite misalignments, but the longitudinal magneto-resistance, 

on the other hand, is believed to be a promising parameter in this 

respect. From the experimental point of view the magnitude of this 

latter effect could be greatly increased by going to lower temperatures 

and higher fields. Furthermore the accuracy of measurement could be 

improved by more sophisticated techniques than were used for this work. 

Should this be coupled with a suitable theoretical treatment~he 

problem could no doubt lead to the development of an interesting method 

of monitoring crystallite misalignments in carbon fibres. 

It is noted in passing that hot stretching carbon fibres 

invariably produces in all of the properties investigated a change in 

the direction of increased graphitization. 

It was also noted that the g-anisotropy in carbon fibres could 

only be observed at heat treatment temperatures above about l750oC. 

This HTT also coincides with changes in the sign of two other important 

properties of these materials, the thermoelectric power (TEP) and the 

magneto-resistance, and furthermore is known to correspond to the 

temperature at which plastic flow can occur within the fibres through 

the thermal disruption of the carbon-carbon bond. Thus it becomes clear 

that the IITT of 17500 C is associated with a major change in the electronic 

structure of these materials. 
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It was noted that whereas for graphitizing carbon blacks 

changes in the sign of both the Hall effect and the TEP also occurred 

at this HTT (viz 17500 C), the g-anisotropy appeared earlier on in 

the heat treatment, thus making it unlikely that the abrupt appearance 

of the Fermi level in a region of greater spin-orbit coupling could be 

responsible for the sudden emergence of the anisotropy. However the 

anisotropy for both the carbon blacks and carbon fibres appeared at 

virtually an identical interlayer spacing (viz 3.49A), and this was 

taken as strong evidence to the effect that a critical interlayer 

spacing must exist above which the layer separation is too large to 

produce the interlayer interactions responsible for the g-anisotropy. 

While the unique band structure of single crystal graphite 

has been given considerable theoretical considerations, no calculations, 

to the best of the author's knowledge, are available to indicate whether 

there exists a critical c-spacing at which interlayer interactions become 

sufficiently significant to start introducing the markedly anisotropic 

properties characteristic of single crystal graphite. It is therefore 

suggested that this point is worthy of future attention, mainly from 

a theoretical point of view. 

This critical interlayer spacing occurs earlier in carbon 

blacks since these graphitize readily, whereas in carbon fibres 

sufficient crystallite order only occurs at l7500 C where cross-linking 

bonds hindering graphitization can be thermally broken. The rearrange­

ment of carbon atoms which ensues also liberates the material from 

some of the stresses developed within it during the process of heat 
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treatment. The crystallite boundary fields, hitherto distorted by 

these stresses make their appearance thus giving rise to the negative 

magneto-resistance. That such a rearrangement of carbon atoms is 

indeed taking place at a HTT of 17500 C is supported by recent low angle 

X-ray diffraction data just published at the time of writing(9S). 

It is believed that the available evidence clearly suggests 

that the band overlap model,proposed by Mrozowski for these materials, 

o 
breaks down below a HTT of about 1750 C. 

It is fairly reasonable to suppose that a rearrangement of 

carbon atoms, such as is occurring at a HTT of l7500 C, be accompanied 

by a decrease in the number of 'dangling' a-bonds, i.e. holes. 

This is believed to be associated with the change of sign of the TEP at 

that HTT •. According to the available model this is caused by a rising 

Fermi level crossing the E vs ~. inflection point. This proposition, 

although somewhat tenuous, has so far been accepted in the absence of 

an alternative explanation. 

During the final stages of this work, the author became aware 

of the existence of a.model, originally developed for amorphous materials 

by N.F. Mott(104), which could possibly provide such an alternative 

explanation for the change of sign of the TEP and which indeed could 

possibly introduce an altogether new approach to the band structure of 

carbonaceous materials in general. It should be emphasised that an 

attempt to adapt this model to carbons is not actually carried out here. 

However it is felt that an outline of the model and its potentialities 

is of interest, if only to illustrate the attention which these ideas 

will deserve in future work. 
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8.1 Electrons in Amorphous Materials 

The band theory of solids has been developed on the basis of 

the existence of translational symmetry, i.e. long range order throughout 

a crystalline solid. The band structure of disordered lattices has 

however only been studied theoretically over the last few years, mainly 

by Mott(104). The theoretical concepts employed in these analyses 

apparently still contain some speculative features. However they form 
" 

a good basis for a discussion of the transport properties of amorphous 

mater,ials giving results which are not inconsistent with experimental 

data~-, 

The theoretical analysis shows that as long as the short 

range order is maintained the essential features of the crystallite 
. , 

band,structure are retained apart from several significant modifications. 

Due to fluctuations in the value of the distance between neighbouring 

atoms, the periodic potential shows fluctuations resulting in a tailing 
~":; 

(smearing) of band edges (see Fig. B.l). Some band states which are 

represented by wave functions extending throughout the lattice became 

localized in the disordered lattice. Localization is taken to indicate 

that the wave function has a probability amplitude decreasing exponentially 

with distance from the centre of localization. Conductivity is zero at 

T = 0 in localized states. 

It is difficult to calculate the exact degree of tailing; 

however it appears that it may extend deep into the forbidden (Fig. 8.la) 

zone and may even result in the overlapping of the conduction and 

valence bands (Fig. 8.lb). 
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Mott has discussed the criteria of localization and concluded 

that localized and non-localized states are separated by a critical 

electron energy at which the mean free path and the electron wavelength 

are comparable. 

An electron in the localized state is effectively trapped and 

can move from one localized state to another only by hopping. This 

hopping process of conduction thus effectively produces an energy gap 

in a disordered lattice in which the mobility is negligible and the 

d.c. conductivity is zero at low temperatures. This leads to the 

description of the energy gap as a mobility gap in contrast with the 

conventional crystalline semiconductor band gap in which the density 

of states is zero. 

At first glance it appears that the attractions of the 

application of such a model to carbons and graphites is threefold. 

Firstly - The changes in the TEP of amorphous germanium. a situation 

in some respects very similar to that of carbons, can be explained purely 

in terms of changes in the population of the localized states(lOO) , 

without resorting to the postulate of the Fermi level crossing the 

inflection point of the E vs ~ curve. 

Secondly - Inherent in the theory is the association of localized 

states with amorphous structures. Clearly this could be linked with the 

localized component of the ESR observed in carbonaceous materials, the 

origin of which still remains somewhat uncertain. 

Thirdly - The theory could perhaps be extended below the lITT of 
o 

1750 C where Mrozowski's band overlap model seems to fail. It is noted 
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in passing that the two models do in fact show some similarities with 

both postulating some degree of band overlap (Fig. 8.lb and Fig. 6.11). 

The extension of Mott's ideas all the way down to very low temperature 

materials seems, indeed, to follow quite naturally as conduction in 

th . 1 i b 1· d h h h· h· (101,102) ese mater1a sse 1eve to occur t roug opp1ng mec an1sms • 

It should be fair to say that the idea of the application of 

Mott's model to vitreous carbons and pyrolytic graphites has previously 

been examined by Young(103). This author merely concludes that localized 

states are intrinsic in these materials but, however, does not proceed 

to examine the implication of these ideas on the interpretation of the 

various properties of carbonaceous materials. 

It is believed that this area of study is of considerable 

interest. 
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