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ABSTRACT

This thesis describes a study of the magnetic and optical 

properties of human haemoglobin and certain of its derivatives.

The techniques of electron spin resonance spectroscopy and 

optical spectrophotometry at low temperatures are used.

An introduction to the theory and techniques of electron 

spin resonance is given and the properties of transition metal

ions are discussed. The general properties of haemproteins are 

described; there is particular reference to optical and magnetic 

studies.

Hie preparation of solutions of various haemoglobin 

derivatives from fresh human red cells is described. Room temp­

erature studies of various derivatives are described; the results 

of cryogenic optical absorption measurements are reported.

Electron spin resonance studies of haemoglobin hydrate, 

fluoride and formate solutions are reported in Chapter 4; the

theoretical simulation of the spectra is described and values

of g , g , g and the linewidth are obtained. Reference is madex y z
to aspects of experimentation at 70 GHz microwave frequency. 

Consideration is given to the incorporation of an anisotropic

linewidth. The Hamiltonian parameters 2D and E are obtained from 

measurements at 35 GHz and JO GHz.

The angular variation in g value in the ab, ac, be planes 

at 70 GHz is presented in Chapter 5 for deoxyhaemoglobin single 

crystals treated with an oxidising agent giving ferric ions, and 

the G tensor is calculated. A negative result is noted for 

untreated deoxyhaemoglobin at 70 GHz. By obtaining gx and ĝ . from 

at) plane studies at 35 GHz, the Hamiltonian parameters 2D and E 

were calculated. The linewidth variation is discussed.

A part of the results presented in Chapter 3 bas been pub-



lished (with E.F. Slade) in Biochemical and Biophysical Research 

Communications and a reprint of this paper is bound with this 

thesis.



INTRODUCTION

1. This thesis is chiefly concerned with the application of 
electron spin resonance and optical absorption techniques to 
the study of certain derivatives of the protein haemoglobin,
which contains ferric ions. These ions are located centrally in 

four approximately planar parts of the protein molecule, known as 

haem groups. The biologically important mechanism of reversible 
oxygenation takes place at these four groups.

It is therefore of some interest to find out details of
the electronic orbitals involved in the chemical binding at
these haem iron atoms. Because there is some evidence that

oxygenation may be a cooperative mechanism between haems, it is

also important to determine the relative positions of the haem 
planes in the molecule.

2. The presence of an ion having some total angular momentum

vector J in an experimental magnetic field H gives rise to a

number of energy levels corresponding to different spatial

orientations of the angular momentum vector. These levels, which 

are known as Zeeman levels, have energies g/SMjH where Mj is

the magnetic quantum number. It is the function of electron

paramagnetic resonance spectroscopy to examine direct transitions 

o£ electrons between these Zeeman levels by making use of 

microwave or millimetre wave electromagnetic radiation. in practice, 

the frequency of this radiation is held constant and the magnetic

field permitted to vary; whenever the separation of energy levels 

is equal to the microwave quantum, a paramagnetic absorption line 
is observed.

However, the paramagnetic ion is not generally free but is
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in constant interaction with its containing lattice. These interactions 

modify the energy levels of the free ion. In certain cases large 
Zeemah splittings may be produced which call for the use of 
quanta of higher frequency to observe the absorption lines.

By studying the dependence of the absorption spectrum upon 
the magnetic field, information may be obtained about the electronic 
structure and lattice interactions of ions. Examination of the 

angular dependence of the EPR spectrum enables the orientation 

of the haem planes in the protein molecule to be found.

3. „Optical spectrophotometry is a technique which involves the 

measurement of optical absorption coefficients for protein solutions 
of known concentration and is complementary to electron paramagnetic 

resonance in this work. The latter method may generally only be 

used at cryogenic temperatures whereas optical absorption spectra 

may be studied at room temperatures as well as low temperatures.

Typical optical absorption lines occur for the various protein
derivatives studied. The spectra are not only associated principally 

with the metal ion (influenced by the presence of ligands) but
also with electronic transitions between metal and ligand ions, 
which are known as charge transfer spectra. The absorption
intensities of these spectral lines depend upon the spin state 

of the metal ion. For example, ferric ions may exist in the S * £ 

or S ■ 5/2 spin states. There is reason to suppose that some 

proteins exist as thermal equilibrium mixtures of these states} 

observation of the optical absorption spectra over a wide range 

of temperature yields interesting information to support this 

proposal. Certain derivatives give anomalous results. However, it 

may also be true that shifts in a chemical equilibrium between 
two species of ligand having differing spin states could yield
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a similar result.

4. In this thesis, electron paramagnetic resonance is introduced 
in Chapter One and the biological significance of haemoglobin is 
explained in the second chapter. Chapter Ihree is concerned with 
optical absorption studies. In Chapters Four and Five, EPR data 
are used to obtain information about the electronic state of 

the ionsa and the relative orientations of the haems in the 
protein molecules.



CHAPTER ONE

ELECTRON PARAMAGNETIC RESONANCE

1,1. Introduction.

Electron paramagnetic resonance absorption occurs when a suitable 
quantum of energy is used to ¿aise 'an electron from a lower to 
a higher Zeeman energy level» relaxation processes permit such 
electrons to lose energy and those return to a lower level. Unless

this occurred, no further energy absorption would take place after

a certain time. The conditions for resoaanee till be derived in 

outline for an isolated paramagnetic ion and related to the physical 
processes involved by reference to the Bloch classical theory. This 
account will be extended by means of the Crystal Pield theory

to transition metal ions in solids. Mention will be made of the

method of detecting the resonance.

1.2. The free paramagnetic ion.
Since the electron has both spin and charge it necessarily 

possesses a magnetic moment which is proportional to the

magnitude of the spin

/>. - - e f s  (1)

In a free ion where Russell-Saunders coupling is obeyed, then

f, ■ (2)

where J ■ L + S and g is the Lande splitting factor. If the

ion is situated in a steady magnetic field B then the magnetic

moment interacts with energy

or from (2)

E (3)

E - g B B . J (4)
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and iff the magnetic field is aligned along the z axis then this
becomes

E - g y Q B M j (5)

The allowed values of energy are eigenvalues of an operator H
such that

h Y E t (6)

where is a wave function. The required values of E are 

given by inserting M j - J ,  J - 1 ,  -J in (5).

This means that the (21 + l)-fold degeneracy of the magnetic 
interaction energy is lifted by the magnetic field} the splitting 
between the levels produced is field dependent and is referred 

to as the Zeeman effect. In the special case of a single free 
electron there are (2J + 1) - 2 possible orientations of the total 
angular momentum vector in the magnetic field i.e., parallel or 
antiparallel to the field.

Electron paramagnetic resonance is concerned with the inducing 

of transitions between Zeeman levels. For populations , Ng in 

upper and lower levels with identical statistical weights, at thermal 

equilibrium the ratio Nij/Ng is gi^en by Maxwell-Boltzman statistics as

l^/Ng - exp(-AE/kT) (7)

where k is Boltzman* s constant. It will be possible to induce 

transitions between these levels separated by the energy gap A  E 

if radiation of frequency-0 is applied, provided that the selection 
rule Mj ■ - 1  applies, then

hA> - A E  # g ^ B  (8)

It is necessary to observe the effect of applying an oscillating 
magnetic field to the spin system of the form

B* - Bq sinfrlt

It is a result of applying time dependent perturbation theory 

to a two level system that the transition probability is
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given by

where ^ 2lB'lf> is the matrix element which couples the two 
states. If W.J2 is set equal to (Eg - E ^ / h O  this becomes

for the transition probability to be non-zero two conditions 

must be simultaneously satisfied; the matrix element must be 
non-zero which is true only if the selection rule M T - M_ + 1 is 
obeyed and the applied radiation must have an angular frequency 

equal to ^ 21* this relationship yields an absorption line of 
the form of a Dirac delta function. The rate of absorption of

radiation depends upon the populations of the two levels involved.

1.2,2, The Phenomenological approach to Absorption.

The model proposed to explain early relaxation experiments 

relies upon a classical analogy between a spinning magnetic top 
and a spinning electron (Bloch, 1946). However, it has been shown 

to correlate well with quantum mechanical results.

If a spinning top is situated in a static magnetic field

then the torque on the top is given by

« m V , .  - W  )

( ^ 2 1 ’ l0 ) 2
21 (10)

L - d/dt( J 1h) (11)

where the top has a total angular momentum .

But the torque is also given by

L « B X f i .

where the magnetic moment is u - - if J 1h .
(12)
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and so
d/dt( jH ) - K b X ji (13)

Thus one may refer to the angular momentum vector J or 
the magnetic moment precessing in the magnetic field. A solution 
for the precessional motion is found by solving (13) to give

¿do - ^ B  (14)

However it is not enough to consider one isolated spin; one 
assumes that there exists a total magnetisation vector M for 
an assembly of spins where

K - (15)

and this leads to an« equation similar to (13)

dM/dt - B X M (16)

which has the same solution for angular frequency.
To describe the macroscopic behaviour of the assembly of

spins, Bloch introduced two relaxation times T.j and *2 by which

the assembly may reach thermodynamic equilibrium. T^ is referred
to as the spin lattice relaxation time and is a measure of the 
time taken by a paramagnetic ion to give up its energy to the

crystal lattice. It is thought that there are two significant 

interactions. First, thermal lattice vibrations modulate the electric 

fields due to the electrons and nuclei and these act on the

spins via the spin-orbit coupling (Kronig, 1939)» Second, in crystals 

where ions of large spin S are close to each other, modulation of

the dipole-dipole interaction by the lattice vibrations may provide 

a relaxation mechanism (Waller, 1932). The valdes of T-| arising 
from these two processes are rather different.
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\  is called the spin-spin relaxation time, in the case 

of the classical precessing top, one may imagine a collision 
to occur between tops such that the precession is momentarily 
interrupted; the top will then resume its precessional motion
with a new random phase with respect to the driving angular
frequency. No information about phase is communicated across
the collision. In the case of electron spins, coupling occurs 
because the magnetic fields of one spin are experienced by
another spin. Random activities of individual spins will be
communicated to other spins and these interactions may be

regarded as collisions. The spin-spin relaxation time may be
regarded as the average time interval between dephasings of
a precessing spin.

Bloch showed that the complex magnetic susceptibility %  (to) 

changes sharply at resonance in both its real and imaginary 
parts. It may be shown that only the imaginary part is 
responsible for power absorption from the microwave magnetic 

field. The real part of the susceptibility corresponds to a
change of phase, that is, dispersion.

The rate of energy absorption is given by

W « i t o X - B , 2 (17)

where the imaginary part of the susceptibility is given 
by

- w X 0f(^) (18)

where f(60) is a line width function and is the static

magnetic susceptibility (Abragam, 1970)

3
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1.2.3. Detecting the resonance.

The detection of the electron paramagnetic resonance is 

essentially the measurement of changes in the complex magnetic 

susceptibility of the sample; by making use of a suitable micro- 

wave circuit this may be reduced experimentally to observing 

changes in the power absorbed by the paramagnetic sample in 

a microwave cavity. Dispersion may also be observed.

The microwave spectrometer employed in these investigations 

was of the reflection type. The spectrometer is shown schemati­

cally in Fig. 1.1; power from the signal klystron is fed into 

one port of a microwave magic tee and is divided between the 

two side ports which are connected to the sample cavity and 

a matching circuit containing an attentuator and an adjustable 

short or a slide screw tuner.The microwave detector, which is 

connected to the fourth port of the tee, receives ideally no 

microwave power when there is no resonance. This is brought 

about by matching the two side ports so that the signal power 

is divided equally between them: no power is transmitted to the 

detector since the reflected waves are mixed in antiphase at 

the fourth port. TiVhen resonance occurs the reflection coefficient 

of the microwave cavity arm changes and an output appears at 

the fourth port of the tee which communicates with the crystal.

In practice, it is necessary to -unbalance the magic tee slightly 

in order to bias the crystal diode; this bias current through the 

diode should be adjusted to optimise the signal to noise ratio. 

(Torrey, 1948). The 70 Ghz spectrometer in use has been described 

elsewhere (Slade, 1968/9) and reference is made to experimental 

details in Chapter 4. In recent years considerable effort has 

been expended in devising suitable detectors for the millimetre 

wavelengths, both by extending conventional microwave detectors
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and by designing infrared detectors which will operate successfully 

far into the- far infrared. A table of useful millimetre wave

detectors is shown in Fig. 1.2.
The mean power absorbed by the paramagnetic sample per unit

volume is given by (17). The Q factor of the resonant cavity 

containing the sample is

Q, = ^ . Energy stored______
Average power dissipated

where p^ is the power dissipated in the cavity in the absence

of resonance, and V and V are the volumes of the cavity and ’ c s
sample respectively. If the paramagnetic losses are small in 

comparison with then (Poole, 1967)

Q - %  fl - i s B12x "dT3 QD j - e0 (-> - x "n Qo) (20)

{  B12 avcc

where Q is the Q factor of the cavity alone and n is a 
o

filling factor which depends upon the field distribution in 

the cavity and sample. The change in Q, factor brought about 

by resonance is thus

AQ - ^ 2 1

and this may be related to the change in microwave voltage 

at the crystal detector. Assuming a linear detection character­

istic of the form

dV/dl = r

the voltage change is given by (Feher, 1957, ftilmshurst, 1962)

A V * ' , x " n Q0 C$5 ) (22)



Fig. 1.1



Fig. 1.2

and millimetre wavelength---detectors.

Detector Operating
temperature
°K

NEP, 1 Hz, Responsivity
watts volts/watt

Response
time,
seconds.

Golay cell

ooK~\ 3 x 10 -10 105 0.015

Carbon
bolometer

2.1 10- 11 2 x 10~4 0.010

Ge bolometer 2.15 10-13 4.5 x 105 2 x 10“4

Superconducting
bolometer

3-7 3 x « T 12 1.25

Ideal photo-
conductive
detector

1.5 1.8 » -io- 14 (Wavelength 1 mm)

InSb wideband 1.5 5.0 x « T 12 io3 2 x 10'
detector with 
magnetic field 
(1 m  wavelength)

-7
InSh without mag- . (Wavelengths 0.5 3 x 10
netic field to 8 mm)

Ge cyclotron res- 4 
onance detector 
(mms wavelengths)

Pyroelectric detec- 300 
tors, BaTiO^,TGS

Point contact 300
diodes

Josephson junction 4*2 
In-In, wavelength 
2 mm.

2.0 x 10-12 5 x 10'9

3.0 x 10-9

2.5 x 10' 11 p-Si 
n-Ge 

n-Ga-As 
GaAs Schottky

5.0 x 10~15

^co75 GHz 
460 GHz 
1600 GHz 
350 GHz

N.B. U.E.P. represents the Noise Equivalent Pover in a hand-

width of 1 Hz.
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where Pq is the microwave power injected to the microwave 

bridge. The use of a three port circulator would improve the 

voltage change but it has been suggested that bridge balance 

is then more difficult to maintain over long periods 

(Buckmaster, 1967) and circulators are not readily available at 

millimetre wave frequencies.

In order to calculate the minimum detectable susceptibility 
it is necessary to compare the signal voltage at the amplifier 

input after the detector with the noise voltage. The r.m.s. 

noise voltage across the detector load resistor R is

Vn - (f k JT df R. (1 + t)) ^ (23)

where F is the receiver noise figure, df the pass band, and 

t includes the effect of 1/f crystal noise. If this is equated 
to the signal voltage, an expression may be obtained for the 

minimum detectable susceptibility 7C "roin

X min 1
Trn Q0

F k T df (1 +
 ̂ -~Po

(24)

II this is interpreted in terms of the minimum detectable
12number of spins, at 10 GHz microwave frequency, Rm^n * 10 spins 

Per unit milliTesla linewidth for practical values of parameters
in (24).

1«4. Paramagnetism in transition metal ions.

The paramagnetism arises from incomplete filling of inner
orbital shells of electrons. A free iron atom possesses 26 electrons;

18 occupy closed shells and the remainder are in the orbitals 

(3d) (4s) . The reason why electrons do not fill



10

the 3d shell before the 4s is because in the central field 

approximation both shells have approximately the same energy.

■When the iron atom is ionised, the incomplete shells are (3d)^ 

and (3d)6 in the ferric and ferrous ions respectively.

The electronic energy levels of the free ion depend upon
a number of interactions which form the terms of a general
Hamiltonian

H  - I (Pi2) ~ 
2m

(Zfi2) + r.l
L s l
Tij

.) + X . . 1.. s . +ij i j 1 'N

(25)

in the absence of an external magnetic field. The first term 

represents the total electron kinetic energy of the ion. The 

second and third terms represent the coulomb energies of the 

electrons in the electrostatic field of the nucleus and in 

each others fields. These first three terms are dominant in 

magnitude and result in the configurations of the free ion.

The expression X . .l.s. takes into account the spin-orbiti j i 0
coupling and is summed over all pairs of electrons; the spin- 

orbit effect is the magnetic coupling between electron spin si 

and orbital angular momentum lj. This term causes splitting into 

multiplets. The hyperfine interaction between the electron and the 

nucleus of the ion is shown in the fifth term; both the 

magnetic dipole moment and the nuclear quadrupole moment may 

participate.
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1.5» The paramagnetic ion in the crystal lattice.

When» as is usually the case, the paramagnetic ion is

situated at a normal lattice site in a crystal, surrounded by 

diamagnetic ions and widely separated from other paramagnetic 

ions, the energy levels of the free ion are modified. The 

assumption may he made that the effect of the surrounding ions 

is to set up an electrostatic field at the ion under consider­

ation. Unpaired electrons in the incomplete shells of the

paramagnetic ion experience this field and their usual orbital

motions are thereby modified. We represent this interaction by 

an additional term in the general Hamiltonian, ^ c e t an(̂  this 

method of estimating the modifying effect of the crystal on 

the properties of the ion is called the crystalline electric 

field approximation. In some cases the energy term due to

the crystalline electric field exceeds the spin-orbit term in 

the Hamiltonian and hence it is necessary to distinguish between 

three cases.

1.6. The Crystal Field.

When the crystal field term is smaller than the spin-orbit -

interaction, free ion calculations on the Hamiltonian are valid, 

to a first approximation, and the crystal field is classed as 

weak. Ions of the second and third transition series of elements 

satisfy' this criterion since their paramagnetic electrons are 

situated deep in the shell structure of the ion and are con­

sequently well screened from the crystal field by the outer 

diamagnetic shells.

When the crystal field energy is greater than the

electrostatic potential energy between pairs of electrons, the 
crystal field is referred to as strong. This means that the



12

torques exerted on the orbital motions of the electrons are 

determined by • the lattice site symmetry, rather than only by 

the correlative interactions of the electrons. However, the physic­

al picture in this case shows that ligands can no longer be

represented by point electrostatic charges and that covalency is

present: this means that the simple crystal field model is in­

adequate to describe the situation and it becomes necessary to

examine other models in this context.

In the iron transition series, the crystal field energy is 

usually greater than the spin-orbit interaction but less than 

the coulombic interaction of the electrons. The intermediate to stro g 

field is of most importance in considering the iron ion m  

haemoglobin and myoglobin.

If it is assumed that the crystalline electric field is 

due to a point charge approximation, where each ion contribut 

ing to the overall field is replaced by a single point charge, 

then Laplace's equation is satisfied

, 2 V . 0  l26)ce

and the electric potential can be expanded as a series sum

of spherical harmonics
oo k •*° k

Vcc - I I  B\(r)k y \ (  8, i ) - I I v \  <27>
k*0 q=-k k*0 q— k

where Yq, (0,0) is a function of angle in the crystal and of
IV

linear dimension. If this expression is used to calculate Ifce
for the model of simple octahedral symmetry

where single equal. point charges are located at x = _+a,

y « +a, z = _+a, orthogonality rules of the spherical harmonic 

functions and the symmetry rules of the site in question
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considerably simplify (27) to yield

Voct ■ |5  [ A  + (1i f  (y44 + Y ' V ]  (2e)

Because of the centre of symmetry in the octahedral arrangement 

of ions, only even powers of electron coordinates occur and 

hence only even spherical harmonics are present (k = 0,2,4...).

If the symmetry is lower, for example, tetrahedral, then odd 

values of k occur. Detailed accounts of computations of spherical 

harmonics may be found tabulated under different symmetries 

(Bleaney, 1953, Hutchings, 1964* Low, I960).

It is possible to express Vqc  ̂ in Cartesian coordinates 
as

Voct = ^ ¿ 2  ( x4 + y4 + z4 - l r4 ) (29)
4 a 5

Having found the crystalline potential it may be used in the
Hamiltonian, in a place appropriate to the field strength, to
find the energy levels of the paramagnetic ion. To do this it

is necessary to calculate the matrix elements of the potential;

^  especially- useful method has been found (Stevens, 1952). It

is possible to form operators from each term in the expansion

f°r Vce ^y rePlacing the coordinates x,y,z by the angular
momentum operators L , L , L ;  because the angular momentum operatorsx y z
are noncommutative it is essential to replace expressions of the

form (xy) by ¿(L L + L L ). It has been shown that the matrixx y y x'
elements formed by these operators are proportional to the matrix 

elements of the original potential functions. These equivalent oper­

ators have been extensively listed (Stevens, 1952, Low, 196O). In
in
ne example of the iron group in octahedral symmetry, an equiva­

lent operator is formed from (29) as



H oct " e^B< r4 > (0 .05(35Lz4-30L(L+1)Lz2 + 25Lz2 - 6L(L+1 )

+ 3L2(L+1)2) + 0.125(L+4 + L__4)) (30)

From the viewpoint of group theory, which provides a more 
powerful method of treating the crystal field, the addition of 
the non-spherically symmetric crystal field potential to the 
spherically symmetric Hamiltonian produces a new Hamiltonian
which is no longer invariant under three dimensional rotation

Consequently, the d orbitals of the free ion are no longer

eigenfunctions of the Hamiltonian. It is thus necessary to

construct combinations of the d orbitals which reflect the 
lowered symmetry of the ion in the lattice. This operation is 
achieved either by the operator equivalent method or, with 
identical results, from group theory.

One may see intuitively from the conventional three dim­

ensional representation of the d orbitals in Fig. 1.4 that the 

effects of each ligand charge will be different from orbital

orbital. The d 2 2 x - y orbital lies along the x and y axes;
electron in such an orbital will have a maximum probability

density along the Cartesian axes but an electron in a dxy
orbital has a maximum probability density along directions making
angles of 450 with the x and y axes. Consequently, an electron
in the d 2 2 orbital will experience a greater electrostatic x -y
repulsion from a negatively charged ligand on the axis than that
experienced *>y an electron in the d orbital. This is the same xy
as saying that the energy of the d orbital isxy reduced relative
to that of the d 2 2 orbital x -y . Parallel arguments may be applied
to the dxz and d orbitals, yz It is not at once obvious how
the energy of the d 2 orbital z is related to that of the other
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four orbital and how it reacts to the crystal field. It is,

in fact, degenerate with the d 2 2 orbital; with reservationsx -y
(Orgel, 1966) one may see that the d 2 orbital may be expressed

as the stum of the d 2 2 and the d 2 2 orbitals, the sum beingz -x z -y
equivalent to the d 2 2 orbital.x -y

The overall - result of the cubic field is to lift the

degeneracy of the free ion d orbitals in part ; the orbitals

are separated into a triply degenerate set of orbitals, referred 

to as the t„ orbitals - because they belong to the so-called

tg representation of the octahedral symmetry group- under which 

a cubic ligand field is invariant - and a doubly degenerate 

pair of orbitals called the e orbitals. In Fig. 2.6 it may
O

be observed that these two kinds of energy levels are separated 

By an energy difference A which is a measure of the potential

of the crystal field; clearly the value of the ligand field 

splitting is determined by the actual ligands for any given

paramagnetic ion.

Because the t n orbitals are lower in energy than the e 2 g g
orbitals, they are preferentially occupied by electrons. However,

two other effects tend to promote electrons to higher orbitals;

electrons which are occupying the same orbitals, for example,

electrons in the d and d orbitals, have a larger electro-xy yz *
static repulsion than electrons in dissimilar orbitals and electrons 

also possess an exchange energy which favours high spin states, 

lo achieve the high spin states, the exclusion principle requires 

electrons to be distributed in separate orbitals. The relative 

magnitudes of the interorbital splitting and the two pairing 

energies determine the electron distribution. between the t_ and2g
eg orbitals.

■When the ligand field splitting is very much less than the
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Fig. 1.5

Ferrous ion, Fe(++).

o«CO

S = 1

S * 2 ( V 4(e/
S * 2

S = 1 ^t2g^ ^®g 4̂

Ferric ion, Fe(+-f+).

S * i

S » 3/2 (‘2g)4(*g)1

S * 5/2 < V 3(e/
S - 5/2 (tJg)2(eg)3

s - i
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pairing energies, the electrons are distributed to give the maximum 

spin; in the converse case, the electrons fill the lower 

orbitals. The actual occupation of the orbitals for ferric and 

ferrous iron is detailed in the table in Pig. 1*5»

The equations for the term energies arising out of these 

possible configurations have been solved (Tanabe, 1954)» diagrams 

have also been produced which show how the term-f energies depend

upon the ligand field as it is gradually applied from zero in

the cas e of the free ion (Orgel, 1955)» In this latter case, the

individual energies are derived experimentally from the atomic spectra

of particular ions. The Orgel diagram for octahedral complexes of
w ++ 5"in , a d^ ion, is shown in Pig. 1.6 where it may be seen

that the ground state is .
1g

The abscissa is expressed usually as the ratio A/B, where 

B is a Racah parameter; Racah parameters express values of integrals 

of radial and angular functions used to compute interelectron 

energies (Racah,. 1942, 1952). However, in this diagram, B is assumed 

independent of the coordinated ligands and the energies are plotted 

as functions of the ligand field splitting only.

The diagram shows that as the ligand field strength increases, 

the symmetry and spin of the ground state changes. At lower values 

of ligand field, the ground state is with a total spin of

s ■ 5/2. At the mean pairing energy, ir , the Tg term becomes

lower in energy than the and the ground state assumes a

total spin S *

Using the free ion values of the Racah parameters, the 

energy where the changeover occurs has been calculated to be 

27900 cm“1 (Tanabe, 1954).

Strictly interpreted, the locality where the change
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of ground state occurs does not 1correspond to states in equili-

brium, that is, .there is no crossover point. If the total

molecular 1energy of the ligated ion is expressed as a

function of the metal-ligand bond length, for various ligands,

the actual change of ground state never corresponds to a situation

where the minima of the potential energy curves for V and

are coincident; the equating of the ligand field energy

with the mean pairing energy is thus an approximation (Ewald,19&3)• 

These diagrams and other results (Griffith, 1956, 19^4) led 

to the belief that S ■ 3/2 is never a stable ground state; 

in view of the values of magnetic susceptibility obtained for 

certain haemoglobin complexes (Pauling, 1940) which suggested an 

intermediate spin state, it was proposed that some haemoglobin 

complexes were equilibrium mixtures of spin states,(George, 1961).

This would mean that their particular values of ligand field 

energy were within kT of the change over in ground state.

In the case of a large axial component in the ligand 

field ^T^ (S * 3/2), which is never the ground term, is split

into two components. The latter of these, will always lie

°nly a little way above the ground term for some range of

the ligand field energy (Griffith, 1964)» If rhombic symmetry 

obtains then the is split into three (Kotani, 1964).

Although the crystal field theory is very useful, in certain 

cases it is inadequate. This is especially true for strong field 

complexes.

1.7. Molecular orbital and Ligand Field Theories.

The molecular orbital theory was initially developed to 
explain the electronic properties of covalent organic compounds. 
Orbitals are postulated in this model which fulfil the same
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functions for a molecule as do the s,p,d orbitals of an

atom; the electronic structure of the molecule is then described 

by filling these molecular orbitals with two electrons each in

order of ascending energy. The molecular orbitals are constructed 

linear combinations of the atomic orbitals. If two orbitals 

are able to form delocalised molecular orbitals, two such orbitals 

are always formed; one is always more stable and the other less 

stable than the original atomic orbitals. The former are called 

antibonding or v orbitals; the latter are bonding or a orbitals.

The degree of covalency is represented by the electrons situated

ln ^he bonding orbitals. Molecular orbital theory is quite

successful in classifying four different kinds of ferric haemo­

globin complex: these are

(a) essentially ionic complexes such as haemoglobin fluoride with

only six 0 bonds;

0 >) ionic complexes with a somewhat stronger bond perpendicular

to the haem plane. HbOH appears to lie in this group with a 

m bond to the OH- ion.

(c) complexes with strong bonding of the two perpendicular 

ligands; haemoglobin azide may be one of these.

U )  essentially covalent complexes such as haemoglobin cyanide,

with six a and twelve w bonds.

All haemoglobin complexes differ only in the number of

ir- bonds; admixture coefficients have been defined which control

the combination of ligand orbitals with the d orbitals of the 

metal ion (Van Vleck, 1935).

The Ligand Field Theory is a development of the crystal 

field theory; the latter is quantitatively inadequate because it

is not a good description to replace the ligands by point

charges. The charge distribution of the ligands and the magnetic 
electrons of the central- ion are often imprecisely known, the
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exact ligand position may be conjectural, and the wavefunctions of 

electrons on the central ion and the ligands often overlap.

Ligand field theory is a hybrid approach to the problem 

in which the ligand field splittings are recognised to result 

from a number of individual contributions, such as purely electr­

ostatic effects, and the bonding and antibonding orbitals. This 

has the advantage that the energies of the electronic levels 

of complexes may be calculated in terms of ligand field energy; 

they may then be adjusted to fit experimental results using 

appropriate values of the Racah parameters (Sutton, 1968).

,l-8. Orbital angular momentum in intermediate and strong 
crystal fields.

In intermediate and strong crystal fields with octahedral 

symmetty, the Russell-Saunders coupling is broken down, and the 

angular momentum vector L then precesses about the crystal 

field. There are (2L+1) allowed orientations but if the energy 

separations are large then only the lowest level will be pop­

ulated : this means L is never greater than unity. However,z
S state ions such as Mn*+ and Fe^ ( are a rather

special case in that the shell is exactly half filled

with electrons and there is thus no orbital angular momentum 

to be quenched.

Since there can be no spin-orbit coupling in the ground 
term Ŝ, spin-orbit coupling with excited states must be in­
voked in order to explain observed angular momentum contributions. 
The selection rules for this configurational interaction are 
A L - 0, +1 and
state

bluth,

to 5/2
1967)

A.J * 0 and they limit the choice of excited 

and it has been derived that (Judd, 1963» Weiss-
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l 6S> • -  l 6S> -  ( 5 ) h g l 4P>
7(B + C)

where C is the one electron spin-orbit coupling factor; in
-1this case the ground state is lowered by ¿3 cm .

In the case of ions with odd numbers of electrons - as 

is the case with Fe^+ - then Kramers' theorem states that 

two-fold degeneracy always remains unlifted by the crystalline 

electric field. Kramers' theorem depends upon the invariance of 

the Hamiltonian under time reversal, a symmetry operation which 

reverses the spins and momenta of all electrons. When eigenstates 

of an n electron, system are operated upon by this symmetry 

operator, degenerate states result if n is odd (Carrington, 1967)» 

^hen a magnetic field is applied, the Hamiltonian is no longer 

invariant and the degeneracy is lifted.

The Spin Hamiltonian.

The Zeeman energy levels and other important properties of 

a paramagnetic ion in a crystal are usually formalised into a

quantum mechanical spin Hamiltonian; the numerical constants in 

this expression summarise all the data of the experimentally 

observed EPR spectra. Previously we have noted that the energy 

levels of the paramagnetic ion in a crystalline electric field 

can be determined from the free ion Hamiltonian by incorporating 

the crystal field interaction energy. If the ground state is 

obtained from the total electron kinetic energy of the ion and

the electrostatic interactions of the electrons and the crystal

field energy, since in the iron transition series the latter is 

often greater than the spin-orbit interaction'r~ then ■'the ~-■ spin-orbit 

^ d  magnetic interactions in a magnetic field may be added as 

a perturbation on the degenerate spin state associated with the
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orbital ground state

- X (L.S) + £ B . ( L + 2S )

If the orbital states arising out of the

are labelled as \0> , , \2 >

ground state, then the first order energy

state is given by

crystal field splitting 

commencing from the 

shift in the ground

¿0 I XL . S + £ ( L + 2S ) . B \ 0> - 2 pS . B

since complete orbital quenching means <0 I L  ̂0> - 0.
However, experimental g value, inform u. that angular momentum

is reintroduced, in practice, the second order term in spin-orbit 

coupling may be as large as that in first order, fhe seco 

order contribution is given by

y  -fol >L . S * f  ( L + ) , b I n>if.
E - Eo

n / 0

The numerator in the latter sum term may be expanded to 

< 0  | X L  . S + £  ( L  + 2 S ) .B |  n X u | X L . S  + p ( L  + 2 S ) .B  j  0 >

Allowing the variables (1.31 *
the second order contribution in spin orbit coupling may then be

written

£  X 2<ol \  lnX.nl Lj |0> 5iSj + 3 ■"> +

i.3
2 j ^ p  \ Lj, l n X ^ t  ^  l 0 >  8 ^

i.J
where the terms in B ^  have been omitted as they lead to a 
displacement of all levels by an equal amount. Adding the first

&nd second order contributions in spin-orbit coupling we obtain
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H g  -  2 0 B . S -  J  a  ( 2 p  X B j. S j  + X 2 s . s p

where
A

i.j
as X  < 0 I Lj_ 1 n >< n 1 L .\ 0 >

n t  0 E - E' n o

By inserting a delta function such that

= 1 if i - j

6 a
- 0 if 1 / 3

the following is obtained

H s ■ I 4 13 - x A i3>
2

0 Bi*Sj + A A

Using tensors this may be written

H s - e B . g . S + S . D .' S

where gii *■ 2( 1 - A A u ).

ij V  ¡>

This Hamiltonian is clearly expressed in terms of spin operators 

°nly and the resulting energy levels are eigenstates of this 

Spin Hamiltonian operator» (Abragam, 195"0* The spin Hamiltonian 

always reflects the symmetry of the paramagnetic site. A suitable 

choice of axes, for example, x,y,z, to be the principal tensor 

axes, may reduce the complexity of the mathematics. The Zeeman

term 3 . B . g . s' may be written under the latter assumption
as

.(g B S +  g B S + g B S'1) x x x  y y y z z zy

since g is then diagonal so gx = gxx and g ^  * 0.

In the case of cubic symmetry there is no difference between 
x»y and z and so

, *  . -  - *  A
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thus

Hs - g P B . S + À 2 A (s 2 +v X
2 2 S + s y z

and no zero field splitting ob tains; there may however be

zero field shifts. Upon lowering the symmetry to the axial

case

A
X

= A
y ■

A . A . ,z 11

whence

H = gn  3 
S " V Sz + f t 6 " A  + Bj $

+ \ 2 ( A . S 2 v 11 z + A _t < S X 2 + S;r*»

Since s 2 + q 2s * 2 2 S - S thenX y z

*2 ( A s 2 +11 Z A-t + Sy2)) - D ( S, 2 - •£ S ( S ■ z s  \

Omitting the constant terms this becomes

Hs ■■ 6 V + gt p z Su. (B S + B S) + v x x y y
2

D V

In the presence of a rhombic distortion, A
* A y * A *

811 additional term mus t be added representing splittings by

crystal field components with symmetry lower than axial. A 

general form of the spin Hamiltonian for an axial field with 

rhombic distortion may be written as

H q  * B .(g B S + g B S  + g B S ) + D (S 2 - £S(S+1))153 v x x x  y y y  z z z' x z °
2

5
2+ E (S - S ) ' x y

Further terms■ may be added to take nuclear interactions into
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account. It may be seen-' that the spin Hamiltonian enables

description of the ground states of paramagnetic ions to be

achieved in terms of only a few parameters; the number of

Zeeman levels between which transitions are observed determines

a fictitious or effective spin angular momentum S', such that

(2S' + 1) equals the experimentally observed number of levels.

The effective spin angular momentum S' is associated with a

magnetic dipole moment.» -g ff B S'; this effective S  value will

generally be anistropic and have values in the principal direct-

ions g , g and g . Thus in any direction with direction cosinesX y z
1 » m, n with the principal directions,

/ ,2 2 ,2 2 2 2 ^
S = ( 1 gx + * g + n )

and in axial symmetry when g^ = g * g^ a^d S z * gjj

.2g* 2 2 . 2 , 2 „ gjj cos © + g^ sin ©

and the resulting energy levels are shown in Fig. 1 .8. Since the

matrix of 2 3B S is diagonal, each level is an eigenstate of z z
Sz only; this means that the eigenstates are not mixed by the 

magnetic field and the selection rule A Mg = +1 operates. This 

permits transitions between the substates of the lowest doublet

separated by 2 g B* z

whence g_ = 2'Z

In the caseaf ^aeniproteins^he allowed transitions between | -3/2 > 

and | > have not been observed.

Only off diagonal matrix elements occur if the magnetic 

Field ia directed in the x or y directions; to first order, 

the |+3/2> and |+5/2> doublets are unsplit and the energy 

splitting in |+Jf > is given by diagonalising

0 3$ Bv x0
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0 -3iPB
y

3i B B 0
y

6 S ? t and hence gTto give V  r~ CM1U  U 'iA iW O  O j r  W y

In the second order, the energies of the doublets are 

by mixing via B̂ . and B^ to be (Weissbluth, 1967)

ll O l +

ca1
2 D + 1 1 /4  .

9  0
e b _ / dJ l

6 d  + 5 /4  . 3 2 B jt2/D

2 2V

observed.

modified

The secular determinant may be solved to obtain the eigen-
2value energies of a given Hamiltonian. If the DSz term is

much larger than the magnetic field interaction, the latter can 

be treated as a perturbation on the zero field Hamiltonian. 

Using third order perturbation theory, the value of £ejrp ^or

lowest doublets may be found (Kirkpatrick, 19^4)• Otherwise, the 

diagonalisation may be achieved numerically using a computer. 

(Pontin, 1968). * *

1.10. The ferric ion,

The ferric ion will have an orbital singlet ground state

*ittch will, thus have only (2S + l)-fold spin degeneracy. A first 

order interaction with the crystal field will not lift this

degeneracy. A splitting can be obtained by assuming spin-orbit

coupling and going to a high order of perturbation theory (Van 

Vleck, 1934) but it has been shown that the experimentally 

observed splitting is too large to be explained on this basis. 

(Abragam, 1951). In the latter work, it has been assumed that the

spherical charge cloud of an S state ion is in fact slightly

distorted. The eigenvalue energies will then be dependent upon
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spin orientation because the inte'sdipole energies will be related 

to the axes of .symmetry of the distorted spherical cloud.

The observed EFR spectrum may usually be fitted to a 

spin Hamiltonian of the form

g 3 B.S + D(S^

+ 1/6 . a

£ s ( s + i) )  + )

+ s 4 ) +z ' cS 4
z

where the additional term involves a fifth order interaction 

(Watanabe, 1957, Pryce, 195°).

To calculate the g values observed during interaction with 

a magnetic field B it is necessary to compute the matrix 

elements of 23 B»'s within the substates of the ground state . 

Assuming a magnetic field applied along the z axis (the fourfold 

axis of symmetry perpendicular to the haem plane in haemoglobin)

the nonvanishing matrix elements are all along the diagonal, and 

the energies of the components of ^A^ are

E * 0 + 3 Bj,

= 2D + 3

- 6D + 5 3 Bf f

where B. t = B .II z

The fundamentals of electron spin resonance as required in 

this work have been outlined? some general experimental tech­

niques have been briefly discussed. In the next chapter, the 

properties of the haemproteins will be described and some 

results previously obtained by electron spin resonance in other 

work noted.
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CHAPTER TWO

PROPERTIES OP THE HAEMPROTEINS

2.1. Introduction.

Proteins form an important group of large molecules found 

in living systems; they perform many varied functions and exhibit 

different chemical activities. Some proteins are present in tissue 

3-S scaffolding but many are enzymes. An enzyme catalyses a physio 

logically important chemical reaction by participation in the reac 

tion; some enzymes display considerable specificity and may only 

enhance one reaction; others catalyse many reactions.

The respiratory proteins are usually of a globular shape 

and are constructed from amino acids linked by peptide bonds 

^o form long polypeptide chains. Apart from the end to end 

bonds, there may be crosslinkages which serve to stabilise the 

three dimensional shape of the protein, molecule. The protein 

amino acids are colourless, water soluble, and contain at least 

one free amino group and a free carboxyl group thus

H
IR - C - COOH 
INH2

where R is a hydrogen atom or organic radical. The synthesis of 

Peptides from amino acids involves the reaction of the amino 

group of one acid with the carboxyl group of another acid; this 

reaction is impossible to accomplish directly since these groups 

<lo not readily react. It is therefore essential to incorporate 

intermediate stages involving more reactive radicals and the sim­

ultaneous protection of other reactive groups where bonding is 

not desired. The overall result is the formation of a so-called
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peptide bond by the elimination of a water molecule, the bond 

being depicted thus.

H H H 0

0 I R'

The actual bond lengths and angles have been determined (Corey,1955) 

by x-ray diffraction studies of single crystals of amino acids. 

General rules have been formulated for the structure of certain 

synthetic polypeptides, resulting in a model known as the alpha 

helix (Pauling, 1951) which formed a most satisfactory basis for

the structures of amino acids and polypeptides. The sequential

ordering of amino acids is called the primary structure; the

three dimensional helix is referred to as the secondary structure.

As will be later remarked, the properties of a given protein

are heavily dependent upon the variety and sequence of the amino 

acids in its constituent polypeptide chains. Protein synthesis 

demands the assembly of amino acids in specific sequences. The 

materials necessary to this ordering process are found in the 

cells in which the process occurs. These are the nucleic acids 

and the ribosomes.

The nucleic acids are long chain molecules of two kinds:

in ribonucleic acid (RNA) the backbone of the chain is com­

prised of alternate sugar rings and phosphate rings. In deoxy­

ribonucleic acid (MA) there are alternate phosphate groups and

deoxygenated sugar rings. A double helical structure was proposed 

for DNA and it was pointed out that this structure provided

a mechanism for the replication of genetic material (Watson,

1953* Crick, 1953). The DNA helices present in the chromosomes of 

a cell might control the production of replicas of itself by
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separation of the two strands of DNA forming the double helix,

the separated strands facilitating in some way the formation of

complementary partners.

The ribosomes are aggregates of ribonucleoproteins present 

in the cytoplasm of the cell. The internal structure of these

aggregates is chiefly unknown since they have proved difficult 

to crystallize and thus are not readily amenable to study by

x-ray diffraction.

The precise manner in which the polypeptide chain of the 

protein is constructed is still to be determined in detail but 

the general principles are known. They involve the presentation

°f suitable amino acids by transfer RNA and the provision of

sequencing information by messenger RNA which is probably prep­

ared by DNA replication.

It is believed that the primary structure, that is, the

proper sequencing of amino acids, is sufficient to ensure 

that the helical chain folds into the most stable three dimen­

sional conformation: this latter is called the tertiary ■ structure 

(Berg, 1961, Anfinsen, 1961).

2.2, Respiratory proteins.

The proteins involved in the respiratory process of various 

animal species may be divided into two classes: haem and nonhaem 

proteins. The haem proteins contain a metal ion located in a 

planar ring system; in nonhaem proteins this is not the case.

The haem proteins include myoglobin, haemoglobin, chlorocruorin, 

and the cytochromes. Chlorophylls, which enable the absorption of 

light energy by plants, are magnesium haem complexes. Nonhaem 

Proteins include haemerythrin, haemovanadium and haemocyanin.
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,2.2.1. Nonhaem proteins.

Haemerythrin, a ferrous iron protein, is found in Brachiopoda. 

The ferrous ion is attached to the protein polypeptide chain; 

the molecular weight is species dependent and varies between 

66000 and 107000 (Ghiretti, 1962, Klotz, 1935).

Haemocyanin, which contains two univalent copper ions per 

molecule, is found in various forms of ocean life. This protein 

comprises the largest single biological molecular entity known:

the molecular weight is approximately 9 x 10^. It is known that

this protein can bind one molecule of oxygen reversibly and it 

is thought that an oxygen bridge is formed between the copper 

ions (Ghiretti, 1934). it is not known whether the copper ions 

are equivalently bound; it is suspected that during oxygenation 

there is no substitution for another ligand but that the coord­

ination number of the copper ions increases, although this number 

is unknown (Jorgensen, 1966).

Haemovanadium is found in the blood corpuscles of many 

members of the small marine species Rotifera. A labile oxygen 

adduct is formed by this protein but its physiological function 

is not clear (Burton, 1966, Kovalskii, 1964).

2.2.2. Haemproteins.

In order to discuss the haemproteins in detail it will be

first necessary to outline the chemistry of porphyrins and their 

attachment to the folded polypeptide chain.

2.2.2.1. Porphyrins.

The macrocyclic ring system, known as haem, is derived from 

Protoporphyrin IX which is itself a derivative of porphin which
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is shown in Fig. 2.1; the formula indicates that porphin is 

comprised of four pyrrole rings (1 - 4) and is planiar. Porphyrins 

occur naturally by substitution at the periphery of the molecule.

Porphyrins form complexes with divalent metal- ions by sub­

stitution of the central hydrogen atoms attached to the four 

nitrogens; these new derivatives may be represented by a number 

of conventional formulae differing only in the number of saturated 

and unsaturated bonds. Protoporphyrin IX, whose structural formula 

is given in Fig. 2.2, forms a stable resonance hybrid with a 

divalent ferrous ion centrally coordinated.

Trivalent metal complexes may also be prepared; haemin, the 

ferric analogue of haem, appears on the oxidation of ferrous 

haem. Haemin possesses the same cyclic structure as haem but 

there is an unbalanced positive charge on the metal ion. This 

results in the ligation of another charged ion, commonly the 

chloride, which neutralizes this excess charge. Both haem and 

haemin contain sixfold coordinated metal ions; various small 

molecules coordinate along an axis perpendicular to the porphyrin 

Plane and these include water, carbon monoxide, and the cyanide 

radical (Walter, 1952, Gibson, 1963, Keilin, 1949).

The relationship of haem to its derivatives and the haem- 

Proteins is shown in Fig. 2.3.

2.2.2.2. Haemproteins.

With the exception of the chlorophylls, which contain magnes­

ium, the important haemproteins are compounds containing iron in 

the ferrous or ferric states. Cytochromes, of which about twenty 

three occur naturally, assist in the transfer of electrons to 

Molecular oxygen in physiological oxidation processes;- although 

they are closely related to haemoglobin, they do not form oxygen
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adducts even when containing ferrous iron.

2.2.2.3. Haemoglobin and myoglobin.

These two proteins are intimately concerned with the res­

piratory process in mammals; haemoglobin, which is the larger 

molecule, transports oxygen from the lungs to the tissues and 

myoglobin acts as an oxygen store in the tissues. At times of

exceptional and immediate oxygen demand, myoglobin liberates oxygen. 

Myoglobin contains one haem group per molecule and has a molec­

ular weight of about 16000; oxymyoglobin has a molecule of 

oxygen attached at the ferrous ion of the haem. Reduced myo­

globin (deoxyMb) has no ligand and is five-coordinated.- When 

the central metal ion is oxidised to the ferric valence state

it can no longer bind oxygen but is able to take up other

ligands, e.g. fluoride or azide; ferric myoglobin is frequently 

referred to as metmyoglobin.

The x-ray crystallographic studies of Kendrew and his co­

workers on sperm whale metmyoglobin have determined the spatial 

architecture to a resolution of 1.4 X. enabling the positions of 

individual atoms (except hydrogen) to be found. (Kendrew, 1958, 

I960, 1963). These investigations, facilitated by empirical modifi­

cations to the method of isomorphous replacement (Robertson, 1936, 

Green, 1954), showed that the polypeptide chain was folded to 

yield the tertiary globular structure called globin. Earlier 

results at 2 1 resolution indicated that the electron density 

along the folded polypeptide chain was consistent with the 

hypothesised alpha helical model; about 70$  of the chain is 

helical. The globin structure is very compact and contains 

almost no internal liquid; the molecule interior is largely

hydrophobic.
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The tertiary structure appears to be stabilised by hydrogen

bonds, ionic bonds and bonds between amino acid side chains.

The haem is bound to the globin moiety by bonds at the

periphery of the haem and on the peptide chain. Side chains of

certain amino acids also form hydrogen bonds with the propionic 

acid groups of the porphyrin. The haem is also attached via

the fifth coordination position of the ferrous ion to a

histidine residue, known as the proximal histidine, via a nitrogen 

atom. In metmyoglobin at acid pH a water molecule occupies the

sixth coordination position.

Haemoglobin is contained in the red cells of the blood

of vertebrates where it comprises about 9Vf° o f the solid matter 

and about 97% of the protein content. The molecular weight is 

about 65000 (almost four times that of myoglobin); the molecule

consists of four polypeptide chains, identical in pairs, and four 

haem prosthetic groups. The manner in which the four chains are

fitted together after the tertiary folding is called the quater­

nary structure and the assembled molecule occupies a space of

about 50 % by 55 X by 69 2.

Crystal growing problems led to Perutz and his associates 

making a 5.5 1 resolution study of horse haemoglobin; it can be 

seen from this study that the haem groups are located in four

Pockets on the surfaces of the four peptide subunits. The arrange­

ment of the haem groups is shown in Fig. 2.4 (Perutz, i960,

Cullis, 1961/2, Muirhead, 1963). The orientations of the haem groups 

were previously determined by EPR and assisted in the interpret­

ation of the x-ray results, (Ingram, 1956).

2.2.2.A. Oxygenation.

It would seem appropriate to note the remarkable oxygenation
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properties of haemoglobin and the recently proposed model which

relies heavily upon the x-ray Fourier difference spectra of the 

deoxy and ligated forms of haemoglobin. (Ferutz, 1970).

Haemoglobin is capable of reversibly binding four molecules 

of oxygen per protein molecule, each oxygen being attached at 

the metal ion of the porphyrin. It is enough to state that 

early researches demonstrated that the equilibrium curve between 

haemoglobin and oxygen was sigmoidal (Adair, 1936): this means 

that (in the words of Wyman, 1948) "the first oxygen enters the 

Protein molecule with more difficulty than the second owing to 

■the necessity of breaking up a pre-existing partnership between

the haems". The energy required by each oxygen molecule to enter 

decreases as more oxygen molecules are bound to the protein.

The sigmoidal equilibrium curve avoids the problem of low oxygen

Partial pressure at the tissues: if the co-operative effect were 

absent, then little oxygen would be surrendered at the tissues,

resulting in asphyxiation. The co-operation between the haems can­

not be due to a magnetic interaction because of their relatively 

large separations (Fig. 2.4).

This only leaves a stereochemical effect; it is suggested that 

the first oxygen molecule bonds and causes inter alia a change

In the radius of the ferrous ion in going from the high spin 

to the low spin state (deoxy to oxyHb) which is transformed by 

the geometry of the haem group into a relatively large movement

of the distal histidine. This movement is transmitted through the

tertiary structure and eventually results in breakage of the salt 

bridges which link the chain ends of the different subunits as 

further oxygen molecules are attached. The affinity for oxygen 

la thus increased as the constraints holding the protein molecule 

In the deoxyHb quaternary structure have been destroyed and the
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quaternary structure snaps over to that of oxyhaemoglobin, the 

remaining haems then quickly acquiring oxygen molecules. These 

proposals were only made possible by refining the Fourier syn­

theses of x-ray diffraction studies to give a resolution of 

2.8 % (Perutz, 1968).

,2.2.2.5. Abnormal haemoglobins.

Examination of human haemoglobin samples from many parts of 

the world has led to the discovery of over one hundred mutants 

of the protein (Perutz, 1968); these mutations do not directly 

involve the haem group but are corruptions of the peptide seq­

uence. Pathological mutation can be related to clinical symptoms

such as methaemoglobinaemia. It is thought that nearly all the

roughly sixty contacts between the haem and the globin are 

essential to the proper functioning of the protein. This expect­

ation is supported by the sensitivity of the molecule to small

stereochemical changes, in Hb Sydney the substitution of alanine 

for valine at E11 - 67 removes two methyl groups from contact 

with the haem: this results in detachment of the haem from the 

Protein.- The clinical result is called haemolytic anaemia and 

the protein is highly unstable at 5® 8. Other mutations may 

lead to permanent formation of the ferric derivative which cannot 

reversibly bind oxygen or to low solubility leading to precipit­

ation in the red cells ensuring their early destruction (Watson, 

1961, Pauling, 1949, Perutz, 1950, 1968, V.M. Ingram, 1958).

The major justification for research into human haemoglobin 

must be the alleviation of these distressing symptoms, either by

tampering with the DNA coding or by the use of nondegradable 

°f replacsble synthetic oxygen carriers.
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9.» 9 »9.6. Synthetic oxygen adducts.

Apart from the naturally occurring oxygen transport proteins, 

there exist various chelates which have the ability to take up 

and release molecular oxygen (Martell, 1952, Hearon, 1949* Drake, 1960). 

The reactions of these complexes are of interest for two prime

reasons.

First, they may illuminate the necessary conditions for revers­

ible oxygenation of the metal: ion in proteins, and, second, they

may form the bases of physiologically useful synthetic respiratory 

Proteins. The conditions for the formation of oxygen-chelate adducts 

are that the coordinating ion must be able to exist in two 

oxidation states at least and that the oxidation potential should

have a suitable value; if it is too low there is no donation of

electrons to the oxygen molecule enabling bonding to take place.

If it is too high, irreversible oxidation occurs. The oxidation 

Potential is adjusted by a suitable choice of chelating ligand;

"this is clearly part of the function of the globin in the

Protein.

Unfortunately, in the case of some synthetic oxygen carriers 

irreversible oxidation sets in after some hundred cycles of oxy­

genation and deoxygenation.

2_.2.2.J. Mossbauer studies of haemproteins.

57A number of ferrous and ferric complexes of Fe - enriched 

r&t haemoglobin and other proteins have been studied (Frauenfelder, 

1962), The nucleus of the haem iron is a sensitive probe into

Its immediate environment in the protein molecule; this is because 

It is bound to the other atoms present and engages in electric

magnetic hyperfine interactions arising out of the spatial
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structure. If the electronic ground state is magnetic then the

considerable dilution of the metal ions (see Fig. 2.4) inhibits

spin-spin interactions enabling hyperfine structure to be seen,

Two parameters are useful in describing Mossbauer spectra: these

are the Isomer Shift (i.S.) and the Quadrupole Splitting (Q.S.).

The I.S. is the offset of the centre of gravity of the spectra

from zero velocity in mm s 1 (Goldanskii, 1964)* The Q.S. is

the separation of the two lines of a Mossbauer spectrum in

units of velocity relative between source and absorber, ■  s \

The i.s. is due to a change in the electrostatic potential well

°T the nucleus when contracted in the excited state; the Q.S. is
57caused by the electric quadrupole moment of Fe in the 14«4 keV 

excited state which splits the state into two levels. The results 

of Mossbauer studies of haemoglobin are exhaustively listed by 

several authors (Lang, 1966, Gonser, 1965* K&nig, 1961, Williams, 1966).

It has been found that in model compounds such as metal 

carbonyls, phthalocyanines, and cyanide derivatives there is a strong 

correlation between I.S. and Q.S. (Williams, 1966). On the other 

hand no such correlation appears to exist for all haemoglobin 

derivatives which probably indicates that the geometry surrounding 

"the iron is more disturbed by the ligands. However, certain haemo­

globin derivatives appear to follow a pattern, namely CN ,0H , 02 

and H20. (see Fig. 3.19).

By analysis of the spin Hamiltonian the spin state of the 

metal ion has been found (although contradictions exist for certain 

derivatives) and the zero field splitting has been found for 

haemoglobin fluoride to be 2D * 14 cm“1 (Lang, 1966)•

2.2.2.8. Optical absorption studies of haemproteins.

Porphyrins and haemproteins are characterised by a number of 
°Ptical absorption bands.
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The most intense absorption band in free porphyrins is the 

Soret band which occurs in the region 400 nm to 420 run wavelength

^ d  has a molar extinction coefficient of about 130. It is thought

that the Soret band arises from a transition between two molec­

ular orbitals in a region remote from the central metal ion 

(Fig. 2.6)., Molecular orbital calculations for simplified porphyrins 

have been moderately successful in predicting the intensities and 

wavelengths of the Soret and other visible absorption bands (Weiss, 

“'963, Gouterman, 1963).

It is found experimentally that in high spin haem complexes

such as myoglobin and haemoglobin fluoride the Soret band is 

situated at 405 nm wavelength and that in low spin complexes 

such as the cyanide it . is shifted to 420 nm wavelength. A similar

Movement of the Soret band may be observed when a solution of

haemoglobin hydrate is progressively changed in pH so that OH 

ions replace water molecules at the sixth coordination position 

°i the haem; this movement may be interpreted as a change in 

the proportion of low spin haemoglobin present in solution: this 

Movement is shown in the experimental curves in Fig. 2.5.

The chief characteristics of the optical absorption spectra of 

iow spin ferric complexes of haemoglobin and myoglobin are two 

absorption bands, a and g , which occur at about 575 nm and

540 nm. They are certainly due to excitation from the t? orbitals

of the metal ion to the ligand orbitals (Fig. 2.6).

High spin haemproteins possess absorption bands at about 630nm

500 nm ( the D and E bands ) which are thought to be due

i° electron excitation from orbitals localized on the ligands to

°rbitals associated with the metal ion and vice versa. These

charge transfer bands tend to disappear as the degree of covalency

increases in the metal-ligand bond since the orbitals then undergo 
a certain degree of delocalization. The high spin complexes are
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believed to possess minor absorption bands »hioh are approrimately

coincident with the low spin alpha and beta bands, in the case
r. .. VQ_,,a viavp been theoretically predictedof ferrous haem, these bands have oeen

(Gouterman, 1963)*
The molecular orbital theory discussed in 1.6 and 1.7 gives 

rise to a series of energy levels resulting from the orbitals

of the metal and the ligand. A knowledge of the magnetic suscep­

tibility enables one to fill these levels with the available
electrons so as to give the requisite number of unpaired spins.

rv, . 0 rsTiPr ev level model with the It is then possible to compare this energy
. „ itp cornelex. Two significantexperimental absorption spectrum of th P

■cío. o c . those are transitions between transitions are shown m  Fig. 2.6, these

molecular orbitals originating in one set of 4 orbitals
r f fwvm the e orbitals, and transitions and molecular orbitals arising fr g

Involving the transfer of an electron from sc orbital associated 

with a ligand to an orbital associated with the metal ion or
the reverse, these two types of transition are called d d an

_. r xu..a nnqsible to see how thecharge transfer transitions. It is th P

various transitions originate in haemproteins.
The d-d transitions measure the ligand field splitting and

it is possible to write a series of ligands in order of in-
.. . <o -referred to as the ligand field orcreasing A * this is reierxea

spectrochemical series.

CH, CNI" Br~ s” Cl” OH” CO 2 HgU sum '■'“3

This order is approximately independent of the choice of the 

metal ion and it is to be noted that there is an increasing

degree of covalency in the latter half of the series. It has 

^ e n  suggested that the ligand field splitting for any regular 

octahedral complex could be written as the product of two fac-



44

■tors, the one characteristic of the metal and the other of the 

ligand (Jorgensen, 1962). The charge transfer absorptions are rel­

ated to the degree of electron delocalization; this delocalizat­

ion is thought to be due to the expansion of the charge cloud 

of the d electrons of the metal ion (which leads to a repulsion 

between the d electrons) and is believed to be caused by co­

valent interactions. The ligands can again be arranged in a 

farther series, known as the nephelauxetic series:

H20 OH" C02" Cl” CN” Br" i"

and this series is independent of the metal ion; it is observable 

that this series reflects the order of the ability with which 

ligands are able , to form complexes (Orgel, 1967* Ballhausen 1962).

Experimental results for the optical absorption spectra of 

c®rtain haemoglobin derivatives will be reported in Chapter 3*

¿ ii-»2.9. Electron paramagnetic resonance studies.

The details of the occupation of the orbitals for ferric 

^ d  ferrous ions indicate that certain haemoglobin derivatives 

wi U  exhibit paramagnetic properties (q.v. 1.6). The extent of 

the paramagnetism will depend upon whether the ion concerned 

in the low or high spin state.

Measurements of the magnetic susceptibility show that the 

ferrous derivatives oxyhaemoglobin and carbonmonoxidehaemoglobin 

are entirely diamagnetic (Pauling, 1936) and it is therefore 

n°t possible to observe EFR signals from these derivatives. 

Similarly, it is found that deoxyhaemoglobin has a spin S « 2

no EPR signals have been observed from samples of this 

derivative. This may be because of a short relaxation time or 

large splittings; experiments using 50GHz microwave quanta have
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keen attempted without positive result (Ingram, 1963). The spin 

lattice relaxation time of Fe++ has been measured using an 

MgO host lattice at 1.5°K to be 4 x 1 seconds, which is 

rouch shorter than that of other ions in the same host (Shiren,

1963).

The ferric haemoglobin derivatives are all paramagnetic, 

having S * £ or S * 5/2 states, and the temperature dependences 

the optical absorption spectrum has shown that thermal 

el'uilibrium mixtures of these states may exist; this effect 

gives rise to intermediate values of susceptibility which were 

formerly ascribed to an S = 3/2 state (George, 1961, Griffith, 1956).

signals have been observed from low and high spin haem- 

Proteins at various microwave frequencies up to 35 GHz in the 

ihe case of haemoglobin (Bennett, 1957) and 70 GHz for myoglobin 

(Bennett, 1961, Helcke, 1968, Slade, 1972). In particular the orientat­

ions of the haem planes in a range of haemproteins from

different species with respect to the crystal axes were found 

hy examining the g value angular variation; these results were 

°f considerable assistance in the interpretation of x-ray crystallo­

graphic data (Ingram, 1956). By making g value measurements on

concentrated solutions and single crystals it is possible to 

calculate the zero field splitting parameter and compare with 

estimates obtained by other experimental, techniques; using data 

from EPR at 35 GHz and 70 GHz, this has been accomplished for

myoglobin hydrate, fluoride and formate, but there exists some 

lack of agreement with other results (Farrow, 1971) and it is 

suspected that the history of the sample may affect the g 

value; for example, freeze drying is thought to produce small 

informational changes which may result in metal-ligand bond 

variations (Slade, 1968).
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The angular dependence of the EPR linewidth has also been 

Investigated at 55 GHz. In myoglobin and explained in terms of 
a small random misorientation of the haem groups within the 
crystal, for myoglobin hydrate a standard deviation of 1.6° was 

reported (Helcke, 1968). However, at 70 GHz this theory only gives 
an adequate fit to the experimental results at angles removed 

from the haem plane, near the plane agreement was poor and it 
wa3 observed that the minimum linewidth did not coincide with 

the maximum g value and, further, that the value of the minimum 
linewidth had increased in proportion to the frequency. (Slade. 1968) 

In measurements on myoglobin pastes it «as found that the EFH 
line could only be satisfactorily computed by using a lin.wldth

dependent upon frequency (Farrow, 197‘0*
This work has therefore attempted to extend the measurements

on haemoglobin derivatives using microwave frequencies up to 
70 GHz, deoxyhaemoglobin and ferric derivatives have been examined 

as pastes and single crystals. It »as thought important to study 

the angular variation of the g value at 70 GHz in single 

crystals and to calculate the appropriate spin Hamiltonian para- 
®ters. It was also intended to investigate the orientation 
dependence of the EFH linewidth at 70 GHz and compare this with 

the results reported for myoglobin.
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CHAPTER THREE

SPECTROSCOPIC STUDIES OF SOLUTIONS

¿«1.1. Preparation of haemoglobin solutions.

Blood samples were collected from various donors by veni­

puncture and sodium citrate and heparin were added as anti­

coagulants (Quick, 1948, Surgenor, 1953). The fresh blood was 
centrifuged in a swing-out rotor centrifuge for twenty minutes 

6000g; the supematent liquid was removed by suction and the 
remaining red cells successively mixed and washed three times 
*ith 0.9$ sodium chloride solution; this treatment is designed 

to remove stroma and any remaining plasma. It is also effective 
removing methaemalbumin; this may be shown by a photometric 

te®t (Bjerre, 1968).
The red cells were then haemolysed by the addition of an

aliquot part of distilled and deionised water and left for

fifteen minutes or more. Occasionally the mixture was left over- 
ni6ht at 4°C without adverse effect. The haemolysis procedure 

causes the cells to expand and consequently their walls burst,

liberating the cell contents into solution. A few drops of 35$

sodium chloride solution were added to bring the chloride con­

centration up to 2$ and the mixture was centrifuged for one 

k°Pr. The clear red supematent haemoglobin solution was pipetted 

°ii’5 a subsequent centrifugation sometimes yielded more haemoglobin 
8°lution.

The purpose of adding additional NaCl is to precipitate 
atroma; a roughly aliquot part of toluene has been recommended for 

this purpose (Drabkin, 1946) but this procedure was avoided for

tw° reasons. First, it has been found that the retention of
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toluene during any subsequent oxidation to ferric haemogl
results in spectrophotometrie abnormalities (Cameron, 1969) and, 

second, in this »orb it .as observed that there .as a tendency
•«a+on+inn and spreading of haemoglobin for the toluene to cause retention ana y

solutions on molecular sieves.
The resulting protein solution contains salt and this may

be removed by dialysis or .ith a molecular sieve, both methods 

have advantages. In the latter case the solution .as run through

a vertical glass column containing 025 Sephadex »hich had been

previously equilibrated .ith a 0.01 M solution of ammonium 
Phosphate adjusted to pH 7.0 (Perutz, 1968). Sephadex is a dextran 
cross linhed by epichlorhydrin .hich renders the dextran insoluble 

but enables it to retain its lyophillic qualities: the addition 

of .ater to the dry dextran causes the po.der to s»ell into
gel .hich is suitable for filtration. The degree of croeslinhage
determines the porosity of the gel. Molecules undergoing filtration 

through the gel are retained by it if sufficiently small to

enter and remain in the pores .hllst larger molecules pass 

through the gel, their size excluding them from
Consequently, the haemoglobin passes through the gel

■ex t + * a advantageous to adjust the gelquickly than the salt; it is advantage
„ ,, tends to exclude a proportion ofPH to 7.0 as an acid gel xenas
small molecules from the pores (Porah, 1959).

Dialysis of haemoglohih solutions .as also used to remove

Balt; a cellolose membrane »as seabed in »ater, boiled to remove 

Plasticisers and copper impurities, and filled .ith the protein 

and salt solution. The tied dialysis tubing »as placed in a 
‘»o litre beaker containg the dialysant (distilled and deionised 

»ater) stirred at 4°C. stirring ensures that the maximum possible 

concentration gradient exists acmes the membrane. Progress may bs



-  50

monitored by measuring the water conductivity with an ohmmeter; 

by regularly changing the dialysant, dialysis can be halted when 
no further change in conductivity occurs. Dialysis of haemoglobin 

solutions appears to take slightly longer than that of myoglobin; 

this may be caused by the larger haemoglobin molecules obscuring 

the membrane pores. Dialysis took about one week to complete and 

required frequent attention; the molecular sieve method took only 

about two hours. Further, dialysis of ferric haemoglobin solutions 
has been found to perturb the optical absorption spectrum by

about (Cameron, 1969). The molecular sieve does not appear to
affect the spectrum; dilution which occurs in the sieve method 
may be corrected by subsequent concentration. The actual con­

centration was determined by the procedures noted in 3.2.5.

For use in the EFR spectrometer it ia necessary to con­

centrate the solutions; several methods are possible. Four methods 

were tried with varying degrees of success. Boiling under reduced 

Pressure was very slow and can lead to frothing denaturation.

°ry Sephadex may be used to remove waters a weighed quantity 

*as added to the dilute protein solution, water is absorbed as 

the gel swells, and the remaining concentrated solution is removed 

V  filtration under reduced pressure, (Flodin, 1960). However, the 

recovery of haemoglobin was only 80?i and the method would be 

better employed for large quantities of dilute solution (Deutsch,
1963).

The concentration method used most often was the removal of
water by tablets of a commercial polyacrylamide hydrogel, Lyphogel. 

Each tablet absorbs a fixed weight of water but does not take

UP large molecules. The loss of protein is consequently small 

8114 the degree of concentration can be readily < estimated from 

tile weight of Lyphogel added; the tablets can be removed with
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the aid of forceps after about four hours at 4°C, when the 

concentration process is complete,
A further method which was tried at a late stage in the 

w°rk and found very adequate involved the use of an ultra- 

iiltrator (manufactured by the Amicon Corporation, Inc,); in this 
device pressures up to 40 p.s.i, were appliedd to the solution 

ĥ-ich dialyses through a specially strengthened and supported 

membrane. The rate of dialysis is considerably enhanced by the 

pressure. As in the case of normal dialysis, the protein molecules 

are too large to pass through the membrane pores and are retain- 
ed the gradually concentrating solution on the input side of 
I'he membrane.

Ligation of haemoglobin in solution.

The haemoglobin obtained in solution is mostly oxyhaemoglobin 

remains so provided that oxidising agents are absent from 
buffer solutions and the water used in the preparation. This

never quite the case and there is thus a slow oxidation to 

ferric haemoglobin (sometimes referred to as methaemoglobin),

¿jJL« 2«1. TienYyhaemoglobin.

Deoxyhaemoglobin solution was prepared by the chemical reduction 

oxyhaemoglobin. Freshly prepared ferrous citrate has been common­

ly used (Perutz, 1955) tint this is unsuitable for EPR work as 
bbe iron oxidises to the ferric form and is readily seen as 

^  impurity signal. The use of sodium dithionite, described in 

does not give rise to this problem. The resulting purple 

deoxyhaemoglobin solution is stored in a sterile specimen tube 

n 0- sealed Kilner jar, both containg nitrogen gas, at 4 C.



3.1.2.2. Haemoglobin hydrate (roethaemoglobin).

Haemoglobin hydrate may be prepared by oxidizing oxyhaemo- 
globin. It is important to add no more than a thrice molar 
excess of oxidising agent since excess over this level has been

found to perturb the optical spectrum (Cameron, 19^9) by about 

The use of potassium ferricyanide is to be avoided because 

°f the presence of iron. Sodium nitrite A.R. was used as an 
oxidizing agent and the solution dialysed at once against 0.1 M

phosphate buffer to remove excess nitrite; if this is not done

a Hb-NaNOg complex may form (Lemberg, 1949).

1*1.2.3. Ferric haemoglobin derivatives.

The fluoride was prepared by the addition of potassium

fluoride until the final molar concentration was 400 times 
that of the haem (Li, 1969) • Methaemoglobin azide was prepared 

ty the dialysis of a 5$ haemoglobin solution against 0.15 M

s°dium azide solution. The preparation of the organic monobasic 

a°id derivatives is described in 3.3*1.

■  52 ”
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3*2• Spectrophotometric studies of haemoglobin derivatives»

3 « 2.1. Introductory note.

The chief features of the optical absorption spectrum of 
haemoglobin have been described in 2.2.2.8. In this work 

experimental spectra have been obtained for derivatives not 

previously studied and an attempt is made to interpret these 
results.

3.2.2. Quantitative measurement of absorption.

The measurement of absorption is based on two fundamental 
laws relating the incident and transmitted radiation intensities.

Lambert's law states that for monochromatic light, each succ­

essive unit thickness of the absorbing medium absorbs an equal 

fraction of the light transmitted through it. This may be ex­
pressed as

I  -  I c .  10-kt
where 1/k is the path length reducing the incident intensity 

I0 to IQ/10 and k is the extinction coefficient.

Beer's law states that, if the solvent absorption is com­
pensated for, then the extinction coefficient is directly prop- 

°rtional to the concentration of the solution, thus

I -  I .10 o
-Ect

*here e « k/c is the extinction coefficient for unit concentration.
In cases where the molecular weight is not precisely known

ft is usual. to write the unit of concentration as a super-
script in per cent, and the unit of optical path length or
the wavelength of measurement as the subscript, i.e.

1JÉ
540 nm logio ( V 1) cm-1

^sre the value of the right hand side is the extinction
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coefficient for unit per cent concentration and one centimetre 
optical path length at the cited wavelength.

Beer’s law as stated above is obeyed by haemproteins in 

solution (Day, 1967).

3.2.5, Determination of solution concentrations.

The concentrations of the prepared haemoglobin solutions 

were determined optically by two methods.
A known quantity of the haemoglobin solution (the stock 

solution) was diluted to 1:100 with distilled water. One ml 
of this solution was added to 9 ml water buffered to pH 5.8
with a mixture of ammonium hydrogen phosphate and diammonium 

phosphate solutions. Using the value of E^Qnm * 5*97 cm for 

haemoglobin hydrate (Li, 1969). the concentration was obtained 

from the absorption at 540 nm.
One half ml of the stock solution was diluted with about

20 ml distilled water and made up to exactly 100 ml with 0.07 M
Potassium hydrogen phosphate solution} about 0.2 gm of sodium 
dithionite was added to reduce the haemoglobin and the solution 
was saturated with carbon monoxide from a bench cylinder. The 
optical absorption spectrum was determined at once and the

concentration calculated by dividing the optical density at 540nm 

wavelength by 8.03 (Perutz, 1968).

Both of these determinations gave the concentration of the 

stock solution as 6.06$; assuming a molecular weight of 65000 
■this is about 1 mM.

In general, various haemoglobin complexes were examined as 
follows. For transmission measurements, the stock solution was 

fluted 1:100 and 5 ml added to 5 ml of molar solutions of 

ihe deBired ligand buffered with concentrated phosphate solutions
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to the required value of pH. Absorption measurements were made 

on the stock solution . directly diluted with molar solutions 

of ligands. All absorption spectra were obtained using a 
Perkin-Elmer-Hitachi EPR3 spectrophotometer with appropriately 

buffered ligand solutions as reference samples.

3.5.1. Monobasic acid derivatives of haemoglobin.

Molar solutions of sodium formate, sodium acetate, sodium 

Propionate, and sodium n-butyrate were prepared from the 
BDH Analar range; An approximately 0*1 M solution of potassium 

iso-butyrate was prepared by titrating iso-butyric acid with 

potassium hydroxide.
Transmission and absorption spectra were obtained for all 

these derivatives; all the spectra exhibited the conventional 

shift- of the So ret band with pH and both the charge
transfer D and E bands and the alpha and beta bands were 
Present. The extinction coefficients of these derivatives are 
given in Table 3.1 for a pH value 8.0; the absorption spectra

are shown in Fig. 3.0 at the same pH.
Examination of the variation in transmission with pH 

reveals the following points:

(a) there is a Soret band movement to longer wavelengths with 

increasing pH; this indicates an increase ■ in the proportion of 
the low spin component present. A significant contribution may 

due to successful OH" competition with the desired ligand

at large pH values.
b̂) the absorption in the D charge transfer band at 635 rm 

shows a gradual decrease with rising pH except for the n- 

^ntyrate which shows an unusual minimum at pH 9*5: a gradual 

decrease of absorption in this band indicates an increasing
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Table 3.0.

Extinction coefficients,
— — -----------------------------------------------------------------------------------«— 1 cm

Derivative

Band

Formate Acetate Propionate iso-
butyrate

n-
butyrate

D 4.2 3.1 3.7 4.1 4.4

alpha 6.0 5.7 6.6 6.2 7.5

beta 6.8 7.0 8.0 8.3 9.1

E 7.0 7.5 8.2 8.8 9.4
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proportion of low spin state population (Fig. 3.1).

(°) changes in transmission in the alpha and beta bands were
smaller than in the I) and E bands and the data is not so
reliable but the 1 n-butyrate clearly displays different behaviour 
from the other haemoglobin derivatives, that is, a decrease in 

transmission with increasing pH indicating the formation of a 

low spin state or its increasing preponderance. Between pH 7*5

pH 9.5» the other derivatives show a decrease in transmission 

which takes an upward turn beyond pH 9*5» these trends are 

exhibited in both the alpha and beta bands. In the case of
the acetate, propionate and iso-butyrate, they may suggest the 

Presence of more low spin. The formate does not display this 

Behaviour to the same extent and this may indicate that it
has a greater propensity to remain in the high spin state (Fig.3.2). 
(d) a graph of the difference between transmissions in the D

311(1 alpha bands is shown in Fig. 3.3; the interpretation of 
Such difference spectra requires care since band movements may 
Blur the graph. All error bars were doubled for this graph.
^Bat is to be seen is a quite definite increase in differential 

transmission of D over alpha with rising pH. The increase in 

deferential transmission with pH starts between pH 7.5 and 8.5 

except for the n-butyrate when it starts at pH 9»5« The graph 

S11ggests an overall rise in low spin component for all deriva­
tives,

the intensity of the E band at about 480 nm is thought
X

0 depend on the Soret band intensity (about 410 nm) since 
mtxing may occur; a plot of the Soret band wavelength with 

transmission in the E band shows that E transmission increases 
aa the Soret band moves to longer wavelengths (with rising pH) 
al though this trend is strangely reversed for the n-butyrate.
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In considering what conclusions may be drawn from these 

Results one should bear in mind that the alpha and beta bands 

may coincide with minor high spin bands as noted in 

The movement of the ^oret band and the decrease in absorption 

*n 'the D band with rising pH indicate an increasing preponder- 

ance of low spin state component. In support of this, one notes

that the differential transmission in the D and alpha bands

increases with pH and that, omitting interpretation of the middle 

PH range, the alpha and beta bands show a decrease in transmission 

at large pH.

These remarks may be complicated by the following factors:

(a) competition between the' desired ligand and OH ions may 

occur at large pH.

( h ) the upswing in transmission in the alpha and beta bands at 

PH values greater than 9.5 for the acetate, propionate, and iso- 

hntyrate may suggest the formation of high spin haem complexes 

dissociated from the globin.

(c) it has been assumed that all bands occur at the same res­

pective wavelengths in all derivatives; this is not strictly the 

ca.se and a full lineshape analysis would be necessary for a 

complete appreciation.

U) most important of all, the general move to low spin , is not

8hared by the n-butyrate; in the beta and alpha bands, the n-

^aiyrate shows a pronounced move to low spin with increasing

PH but at pH 9.6 there is a repeatable peak in the transmission;

this is matched by a fall in transmission in the D band at

9.6. The E band may indicate a similar effect but this could

be a Soret band effect. The conclusion to be drawn is that as

^he pH increases, a high spin n-butyrate complex is formed. This 
is n°t at all similar to the other derivatives and is made 
m°re unusual by the succeeding move to low spin. This may be
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caused, by the formation of a denatured haemoglobin derivative 

ligated with n-butyrate which then rapidly changes to the low 

sPin hydroxide as the pH is further increased.

It is tentatively suggested that the reason for the different 

behaviour of the n-butyrate is due to steric hindrance; the sizes 

°F the monobasic acid ligands are shown below, together with the 

sizes of ethyl iso-cyanide- and tert-butyl-isocyanide. The sizes 

were determined by measurements on a space filling model to +0 *lX . 

(The size is defined as the distance from the oxygen ion of the 

carboxyl group to the furthest atom of the ligand.)

Formate H - COO“ 2.4 X

Acetate CHj - COCf 2.7 X

Propionate CH^ - CH2 - C00“ 3« 5 X

n-Butyrate CH^ - CH2 - CHg - COO" 3*9 £

iso-Butyrate CH* - CH - C00“ 3*3 ̂
y c h5

ethyl iso­

cyanide CH^ - ch2 - ch2 - COO“ 3*7 X

tert-butyl

isocyanide CHj - CH2 - NC 5.2.1

From the electron density maps of haemoglobin (Perutz, 1968) 

appears that the maximum linear molecule which can gain 

^mission to the haem pocket is about 4 X long. The difference 

the structural formulae of the two butyrate isomers would

mean that the n-butyrate - the longer ligand - would have 

greater difficulty entering the pocket to bind to the iron

bhan the smaller iso-butyrate. It is apparent from this that

511 attempt to ligate the anions of the next largest monobasic 

acid, valeric acid, would fail despite the existence of four
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isomers.

The unusual behaviour of the n-butyrate when compared with 

ihe other radicals in this series in its optical absorption

spectra suggests that it is not bound in the usual manner.

A similar effect has been observed in the case of ethyl

iso-cyanide and tert-butyl-iso-cyanide (Nobbs, 1966). It was found 

that ethyl isocyanide bincS to the iron of the haem but that 

tert-butyl-iso-cyanide does not (Nobbs, 1966b). That groups as 

large as ethyl-isocyanide and the iso-butyrate may be diffused 

into the protein molecule and occupy the sixth ligand site at 

"the haem is initially suprising but it is likely to be due to

the ability of the distal histidine residue to rotate, this being 

Permitted by the relatively large distances involved in its van 

der Waals bonding to other residues (4*9* 6.2 % ). A similar rot-

ation of the distal histidine to permit binding of the azide 

radical has been deduced to occur from the EPR spectrum (Helcke, 

1%8) .
It is therefore suggested that the iso-butyrate radical is 

similar to the ethyl isocyanide molecule in that it is sufficient­

ly compact to enter the haem pocket and bind but that the 

n~butyrate and tert-butyl-isocyanide are too large -to do this.

It has been suggested that the wavelength separation of the 

Alpha and beta bands is dependent upon the actual ligand in the 

sixth coordination position at the haem (Braterman, 1964)* One may 

compute the following wavelength differences for the monobasic acid 

derivatives at pH 8.5

Formate 40 nm

Acetate 35 nm

Propionate 40 nm

iso-Butyrate 30 nm

n-Butyrate 33 nm
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It has been suggested that, for ferrous haem complexes, the 

wavelength separation is greater for high spin than low spin

complexes. Supposing that this were the case for ferric 

complexes, one might tentatively bracket the formate and prop­

ionate as predominantly high spin and the iso-butyrate as low 

spin at room temperature. It has been reported that myoglobin 

formate comprises two high spin forms (Farrow, 1971)* Magnetic 

susceptibility results indicate that the formate and the acetate 

are essentially high spin at room temperature (Schoffa, 1964).

This means that the acetate is slightly anomalous since the

wavelength separation of the alpha and beta bands is not so 

great as for the formate. It might be possible that OH 

competition occurs more readily in the presence of the acetate 

ligand - this would lead to a smaller wavelength difference but

would not contradict the magnetic susceptibility result obtained 

at pH 6.84.
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3.3.2. Halide derivatives, P , Br , Cl .

Solutions of sodium fluoride and chloride and potassium bromide 

were made up in molar concentrations and buffered to desired pH 

values using phosphate buffer. They were added to the haemoglobin 

solution as described in 3•2.3 • and permitted to incubate at 

room temperature for about thirty minutes, after which the trans­

mission and absorption spectra were measured.

3.5.2.1. Fluoride.

The transmission spectrum of haemoglobin fluoride is reproduced 

in Fig. 3*5 over the pH range 5*8 to 10.5 where it may be 

noted that the Soret band occurs at 402 nm and 412 nm at the 

extremes of pH.
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It is well known that the fluoride is an almost solely

high spin state derivative so that changes in the optical

spectrum with pH must be presumed due to successful 0H~

competition with the F- in the bonding process. This is, in

Part, substantiated by the movement of the Soret band to 412 nm

at pH 10.5 which coincides with the wavelength obtained for 

the hydroxide at the same pH.

3«3.2,2, Bromide and Chloride.

The optical spectra of mixtures of haemoglobin and sodium 

chloride or potassium bromide solutions displayed the same prop­

erties as those of the haemoglobin alone as the pH was varied

and it is thus deduced that neither of these anions binds at

the haem. Construction of a simple space filling model of the 

haem plane indicated that the fluoride ion would sit quite

neatly into the sixth coordination position but that the

larger halide ions would be compelled to take up positions 

at greater distances from the iron ion.

3«4.1.1. Cyanate and thiocyanate.

Myoglobin cyanate has been prepared and the temperature

dependence of magnetic susceptibility determined down to 77°K 

(lizuka, 1969); it was found that this derivative was comprised

two components I and II. It was suggested that II is 

probably denatured and entirely in the low spin state and that 

MbOCN(l) is a thermal equilibrium mixture of spin states with 

a high spin ground state. Myoglobin thiocyanate was found to be 

almost completely insoluble. The magnetic susceptibilities of 

Myoglobin and haemoglobin (horse) cyanates and thiocyanates have 

teen determined (Schoffa, 1964)»
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Human haemoglobin cyanate and thiocyanate were prepared by

incubating haemoglobin solution with solutions of sodium cyanate

and thiocyanate, buffered to desired pH values. In each case the 

ligand was present in at least eight times molar excess. There 

was no evidence of precipitation in either case; both mixtures 

were centrifuged and no residue was seen. In the case of the

thiocyanate it was noted that the brown colour of the haemo­

globin became a wine red during the preparation.

The binding of the cyanate to haemoglobin is rather more 

complicated than to myoglobin. Haemoglobin, as noted in chapter 

two, contains terminal amino groups and sulphydryl groups. It has 

teen demonstrated that cyanate binds to both these groups accord­

ing to the equation (Stark, 1963* 1965* Smith, 1967)

It is not clear whether the thiocyanate binds in a similar

fashion; clearly, the cyanate will attache itself to the peptide 

chain at several places and also probably at the haem.

The optical absorption spectrum of haemoglobin cyanate for 

a range of pH between 5.8 and 10.5 is depicted in Pig. 3*6. 

It will be observed that the Soret band moves only 1 nm in

wavelength over the entire pH range whereas in haemoglobin 

hydrate the Soret shift is 8 nm between pH 6.5 and 10.5«

The extinction coefficients at'- pH 7 , 8 ares

R - KH.2 + HCNO R - NH.C0NH2

632 nm (d )

576 nm (alpha) 

542 nm (beta)
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No value is given for the E hahd because it was not readily

discernible. It seems very likely that the binding of the 

OCN ion changes the conformation of the entire molecule such 

that the binding of OH” ions at large pH is not possible;

further comment on this point is made in the following section.

3.4.1.5. Thiocyanate.

The thiocyanate ion (SCN~), like cyanide (CN ) and carbon 

monoxide (CO) is an ambidentate ligand (Alben, 1968). This means 

that it contains more than one potential sigma donor site ■, only

one of which is involved in coordination at a given time. The

thiocyanate of haemoglobin, of which there has been little study 

apart from the unpromising result that myoglobin thiocyanate is 

insoluble (lizuka, 1969), may bind at either the sulphur or 

nitrogen terminals; this has been the subject of much study in 

tetrahedrally and octahedrally coordinated iron complexes (Forster, 

1965) and in other transition metal ion complexes (Norbury, 1970),

The mode of coordination may often be discovered for a

Particular complex by using infrared spectrscopy, in particular, 

by examining the shifts of the CN and CS stretching frequencies

and the NCS flexing frequency from their values for the free

ion (Larsson, 1969). The actual mode of bonding of the thiocyanate

ion from metal to metal depends upon its rather equitable

electronic charge distribution (Ahrland, 1958) but the preferred 

mode in a given case will be determined by the nature of the 

acceptor site. The bonding mode may be correlated with the presence 

of a properly orientated pair of electrons on the acceptor atom.

The equity between the N and S terminals means that bonding is

very susceptible to small changes in the acceptor; in this con­

text, the thiocyanate ligand could be used as a sensitive probe
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into the electronic properties of the haem iron in the protein

environment.

The infrared transmission properties of haemproteins and 

similar compounds have been previously investigated with a view 

to obtaining information about the binding of small ligands 

(McCoy, 1969)» Because aqueous solutions are very strongly absorp­

tive in the infrared, it was initially necessary to use haemo­

globin thiocyanate in suspension in Nujol (liquid paraffin) 

between discs of sodium chloride and also pressed into discs 

of potassium bromide, using a hydraulic press at a pressure of 

about 30,000 p.s.i.

To enable measurements to be made of an aqueous solution, 

a cell of calcium fluoride was constructed. Discs of CaFg were 

sawn off a one inch diameter rod of the material and ground to 

a thickness of 1 mm. The discs were separated by an aluminium 

shimstock spacer of 0.025 mm thickness containing a one centi­

metre diameter hole into which the sample protein solution could 

Be introduced; the discs and spacer were clipped together to 

form the absorption cell. Calcium fluoride is possessed of good
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transmissive properties between 4OOO cm-  ̂ and 880 cm ^ and it was

thus possible to examine the CN frequency. A more suitable cell

could be constructed from silver bromide which has a cut-off at

400 cnT^ and is also insoluble in water. This would enable meas-

urements to be made on the NCS and CS frequencies although the 

water absorption bands may cause difficulty at the NCS band.

The band positions obtained from these measurements are 

tabulated in Table 3*2., together with the characteristics of the 

Berkin-Elmer 337 spectrophotometer used. The transmission of the 

thiocyanate in KBr is shown in Pig. 3*7.

It will be seen from the table that the frequencies of the 

CN, CS, and NCS stretchings and flexing oscillations are the same
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Table 3.1 .

Infrared absorption bands in haemoglobin thiocyanate.

Wavenumber» cm

CN CS___________NCS

Dispersed in KBr discs

Hb(SCN") 2065 740 465

NaSCN 207O 742 465

HbHgO 2055 - -

Suspended in Nu.iol between NaCl discs*

Hb(SCN”) 2065 720 —

NaSCN 2060 720 -

HbH20 2060- 720 -

In aqueous solution between CaF^ discs»*

Hb(SCN”) 2065 - -

NaSCN 2068 «

Notes.

* The absorption 

** The absorption 

Perkin-Elmer 337s

of NaCl is considerable beyond 500 cm

of CaPg increases sharply at about 1300 cm

Accuracy + 1,9 cm””'

Reproducibility +1.3 cm”1 
Resolution 5 cm”1
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in the NaSCN sample used and in the HbSCN. The spectral lines 

°f the haemoglobin hydrate sample are also tabulated and it is 

seen that there are lines at the CN and CS frequencies; this 

is to be expected since the haem plane contains CN bound to 

the iron and CS is present in the amino acid residues cysteine 

end methionine.

Within the limitations of the infrared spectrophotometer it

may be deduced that the SCN bound to haemoglobin is predomin­

antly bound in the same mode as in NaSCN, that is, via the 

sulphur terminal.

Upon adding sodium thiocyanate solution to haemoglobin at

PH 6.0, the colour changed from brown to a distinct red. This

latter colour could be either due to the presence of oxyhaemo- 

Slobln after reduction of the ferric ions to ferrous or to

the characteristic colour of ferric ions in combination with 

SCN ; the distinctive red colour of Fe^+(SCN )2 is often used 

as a sensitive - test for SCN~. The former possibility, is unlike­

ly since thiocyanates are not reducing agents; however, it may be 

Possible for the binding of the SCN ion to the peptide chain 

NH2 termini to result in a conformational change resulting in

a change of spin state of the iron.

Examination of the thiocyanate at 9 GHz and 35 GHz using 

EPR spectroscopy revealed no g « 6 signal (nor any other signal) 

although a g « 6 signal was clearly observed for an acid met 

haemoglobin solution of the same concentration. It could be argued 

that this means that the iron was in the ferrous low spin

state (S ■ 0) as Hb02 or that the hypothetical attachment of

SCN“ at the peptide chain brings about conformational changes 

resulting in a change in the spin lattice relation time.

Comparison of the optical absorption spectra for the OCN
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and SCN derivatives of haemoglobin shows that considerable 

similarity exists (Fig. 3*8)» It is interesting to note that

the ratios of absorptions in the beta and D bands for these

derivatives at pH 7*8 are

HbOCN 5.1

HbSCN" 2.5

8uggesting that at room temperature the ratio of high spin 

to low spin states in the cyanate is less than in the 

thiocyanate. The Soret band positions at pH 7*5 axe

HbOCN 409.5 nm 

HbSCN“ 410.5 nm 

HbH20 405.0 nm

indicating a substantial proportion of low spin population at 

room temperature.

The room temperature magnetic susceptibility of HbSCN has 

been measured as ^u^^, = 5*06 at pH 6.6 (compared with 4.66 for 

HbOH“ at pH 9.7 and 5.40 for HbOCN at pH 7*6). No measurements 

appear to have been made for human HbSCN: the above values refer 

to horse haemoglobin. tSchoffa, 1964). The value for HbSCN is inter­

mediate and suggests that HbSCN (like HbOCN and HbOH) may be 

a thermal mixture of spin states with a substantial low spin

component at room temperature. However, as has been stated, no

EFR signals were observed from HbSCN at 77°K; at the present 

time this may be ascribed to a short spin lattice relaxation

time brought about by conformational changes initiated by binding 

°f SCN~ ions to the peptide chains.

It is suggested that investigation might be made of the

SCN~ ligand using neutron diffraction; various cyanides have been 
investigated using this approach (Curry, 1968, Fenn, 1970). There
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are significant differences in the neutron scattering for 

nitrogen, carbon and sulphur atoms. A reduction in the incoher- 

ent scattering background radiation in the haemoglobin could be 

perhaps achieved using deuterium substitution (Hodgkin, 1970).
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3 « 4.2. Summary.

Solutions of various haemoglobin derivatives have been prep­

ared from fresh human red cells. The quantity of haemoglobin in 

the samples was determined spectrophotometrically.

Investigation of the monobasic organic acid derivatives of 

haemoglobin revealed that the n-butyrate possessed rather differ­

ent optical absorption properties from its isomer, iso-butyrate, 

and from the smaller preceding acid radicals in the series;

formate, acetate, propionate. It is suggested that the linear 

dimension of the n-butyrate radical is too large for it to 

fit into the haem pocket. This may be analogous to the inability

°f tert-butyl-isocyanide to bind at the haem.

The absorption spectra of the fluoride has been obtained 

over a range of pH. It is thought that neither Cl nor Br-

hind at the haem plane.

The cyanate and thiocyanate derivatives have been compared.

The optical absorption spectra are rather different. By the use 

of infrared spectrophotometry the mode of attachment of the 

SCN“ ion has been investigated; it is believed that this ion 

is bound via the sulphur atom. There exists also the possibility

that the SCN- ion may be bound to the peptide chains; it is 

suggested that there has been a change in the spin lattice 

relaxation time brought about by a conformational change.



3« 5. Temperature dependence studies of optical absorption spectra.

3 »5.1. Introduction.

As has been previously indicated, the ferric ion situated in 

a ligand field has either S * 5/2 or S = £ ground spin states.

This is, in its turn, determined by the actual ligand co-ordinated 

in the sixth co-ordination position. Measurements of the magnetic 

susceptibility of haemproteins at room temperature (Schoffa, 1964» 

Scheler, 1956a,b) show that, while there are derivatives which 

correspond to predominantly high and low spin states, there are 

also' complexes which possess intermediate values of magnetic moment; 

this led to an initial belief that there might exist protein 

complexes with intermediate spin state, S = 3/2. This idea has been 

substantially discounted by Griffith who showed that in axially 

distorted octahedral symmetry the state (S * 3/2) can never be

the ground state (Griffith, 1964). It has also been suggested that 

derivatives with intermediate values of magnetic susceptibility are 

either chemical mixtures or thermal equilibrium mixtures of high 

snd low spin complexes (Theorell, 1951» Taube, 1952). Clearly, if the 

energy difference between the ground state and the first excited 

state is comparable with kT at room temperature then the two 

spin states will coexist in thermal equilibrium (lizuka, 1969)»

As will be appreciated from section 3*2. the magnitude of the
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absorption . in the 0 and . g bands and the D and E bands is

delated to the! spin state of the haemprotein. This is made very

clear by the relationship known to exist for the intensity of

absorption in the g band and the magnetic susceptibility of a

derivative, and the wavelength of the Soret band (Smith, 1968,

Scheler, 1956b). Remarkably little work has been done on this aspect 

of the optical absorption spectra of the haemproteins (Conant, 1930)*



-  72 -
It has been reported that the absorption spectrum of alkaline 

ferrihaemoglobin changed to the same form as the acid met 

haemoglobin hydrate upon cooling to ''liquid air temperatures, 

a result obtained under dynamical temperature conditions (Keilin,

1949)• Cytochrome-c has been investigated under quasistatic temp­

erature conditions (Yonetani,1966) and three haemprotein derivatives 

have been studied optically down to 77°K (lizuka, 1969a).

Difference spectra between optical absorption in haemoglobin 

hydroxide samples at 5°C and 35°C demonstrated the presence of 

a spin state thermal mixture with a low spin ground state 

(George, 1961). Spectral variations with temperature should correlate 

with measurements of the magnetic susceptibility at the same 

temperatures; magnetic susceptibility measurements at low tempera­

tures have been used to typify spin states in various myoglobin 

derivatives (Iizuka, 1969h).

3*5.2. Experimental details.

The measurements of optical absorption were made in the EPR3

®pectrophotometer previously used; cylindrical glass cuvettes were 

supported in a 3” glass Dewar vessel which was closed with a 

Sastight rubber seal. Nitrogen gas was blown through the Dewar 

after being cooled in a copper heat exchanger immersed in liquid 

nitrogen. Cold helium gas was blown through the system by siphon­

ing liquid helium from a storage vessel. The sample compartment of 

the spectrophotometer was continuously flushed with gas to avoid 

condensation on the Dewar seal and on the optical windows of the 

sample chamber. The temperature of the sample was measured using 

a copper-constantin thermocouple and a Hewlett-Packard digital volt­

meter; the reference junction of the thermocouple was situated in 

melting ice and the device was previously calibrated in freezing
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mixtures and liquid nitrogen and liquid helium. In a subsidiary 

experiment it was found that the temperature difference between

the sample and reference cuvettes did not exceed 2°K under static 

conditions of temperature.

It was previously observed that freezing produced a consider- 

aW e  increase in absorptions this was thought due to optical path 

increases brought about by multiple internal reflections (Keilin, 

1950). In these experiments it was necessary to increase the

Photomultiplier voltages to provide additional detection sensitivity, 

resulting in a slightly noisier spectrum but with the desired

features quite distinct. The sensitivity was in fact increased by

a factor of about ten times.

The measurement of optical absorption at low temperatures is

attended by some degree of difficulty owing to problems peculiar

to frozen samples. Upon freezing a protein solution to very low

temperatures (77°K or below), the water freezes to ice 1^ which is

the normal hexagonal structured form of ice, and the phase diagram

°f ice-water shows that only ice 1^ is present below 2 kBar

pressure between 153°K and 273°K (Zeemansky, 1957)» A metastable

cubic ice I may form when water vapour is deposited onto a sur- 0
face below about 170°K in temperature and there is a slow transit­

ion to ice 1^ upon warming above this temperature (Dowell, 1960).

If there is any region where ice I is the stable polymorph itC
must be well below 170°K and the transformation from ice 1^ to ice

I would then be effectively prevented by the slow rate of the c
molecular processes involved at these low temperatures. Accordingly, 

Phase transitions are not expected to obtrude upon the measurements. 

However, the stresses imposed in the freezing processes cause 

comminution of the ice crystallites. Several cycles of temperature 

variation will probably result in a distribution of crystal sizes.
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It is also possible that small air bubbles will be trapped in 

the frozen liquid. Both of these will act as scattering centres. 

Rayleigh scattering intensity is proportional to the incident 

intensity, the square of the scattering centre volume, and to the 

inverse fourth power of the wavelength (Jenkins, 1957)» This kind 

scattering may be considered as due to the re-radiation of 

light energy by an electric dipole induced by the oscillating 

electric field of the incident electromagnetic radiation. If the 

size of the scattering centre is comparable with the wavelength, 

the re-radiation field is no longer similar to that due to a 

simple dipole because, as the size of the scattering centre in­

creases, interference effects occur. This form of scattering is 

called Mie scattering (Mie, 1908) and the overall result is to 

increase the path.. length traversed by some relatively large factor 

related to the density of scattering centres; this lead to a 

substantial reduction in transmitted intensity. The total light 

intensity scattered per unit cross sectional area per second is 

given by

1 - ¿lln-i < 2n * 1 >( I"/ + I*/ >
Tor a transparent scattering site, where the functions afi and 

are complex functions of r/X , where r is the radius of the 

scattering site, and of the refractive index. The above sum has 

teen tabulated by many authors (Johnson, 1947)»

The intensity of the scattered light at some angle to the 

direction of incidence is given by

I ** x2 .«i + i2)/8ir2R2

*here the angular distribution functions i1 and i2 are functions

of r/X , refractive index, and orientation; R is the distance .to

the scattering site.

Clearly, the efficiency of the scattering is wavelength depend­
ent and the transmitted intensities at longer wavelengths will
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differ markedly from those at shorter wavelengths. In Fig. 3»9 

is shown the ratio of scattering at wavelengths of 63O nm and 

524 nm as a function of the radius of the scattering site 

(Sratton, 1949)* it is clear that a distribution of scattering 

site radii (in this case, a distribution of ice crystallite sizes)

would yield a mean value of this ratio. Lack of data on the

intensity distribution around frozen ice samples at various temp­

eratures prevents one from investigating the form of this distribu­

tion, It may however be argued that in difference spectrophotometry 

the scattering effect will be of only minor consequence since it 

should occur to an equal extent in both the sample and reference 

cuvettes. Although this may be broadly correct it must be admitted 

that the presence of the protein solute in the sample cuvette

may influence the distribution of the ice crystallite size achieved 

by temperature cycling; this difference might result in a shift in 

the peak of the distribution function and also a change in its 

width, both effects having an effect on the scattering ratio of 

Fig. 3.9. The contribution of Rayleigh scattering from protein 

molecules is negligible.

A further problem arises from the deliberate choice of cylind­

rical cuvettes? because of the high risk of fracture of ordinary

rectangular cuvettes on cooling to very low temperatures owing to

the stresses imposed by the freezing samples these latter cuvettes 

*ere not used. Instead cylindrical glass specimen tubes were matched 

by trial and error using the spectrophotometer and pairs of tubes

selected with transmissions differing by ¿2$ or less. However, the 

shape of the tubes means that there is a lens action; path lengths

followed by light rays in different parts of the incident beam

cross-section are not equal because the light is refracted in the

liquid or solid contents. If it is assumed that refraction in the
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walls of the tubes is negligible and that the incident beam is 

restricted in aperture then numerical integration leads to the

following tabulation of the apparent absorption coefficient:

■^actual 0«1 1*0 2*0

■^apparent 0*0976 0.975 1.950

for a refractive index of 1•33. This shows that the value of

the absorptivity is somewhat reduced and that the error is almost

independent of sample concentration (Meehan, 1964)» Small differences 

in refractive index between the contents of sample and reference 

cuvette will cause small absorption differences.

The cylindrical shape of the cuvettes and the solid nature of 

the samples may also produce photometric errors. The lens action

leads to a spread of light across the window of the detecting 

Photomultiplier tube. Further, unless the opposing faces of the 

frozen sample are symmetrical and free from strains, the light 

beam will deviate on passing through the sample and its position

on the detecting surface of the photocathode will shift. These 

effects will vary somewhat from sample to sample but will largely 

depend for their effect upon the manner in which the photomultipli­

er responds to off-axis illumination.

3.5.3. Results of low temperature studies.

Using the experimental technique detailed in the previous section, 

the optical absorption spectra of various derivatives of haemoglobin 

were obtained over a range of temperature below 273°K; the samples

were cycled between room temperatures and low temperatures by con­

trolling the flow of cold gas and various sets of measurements

Were made as the sample warmed. Generally, it took about ten minutes

to cool the sample and about two hours to make measurements on 
warming.
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3«5.3.1. Haemoglobin hydrate.

The results for this derivative are reproduced in Fig. 3»10 as

a series of absorption spectra at various temperatures in the range 

131°K to 261°K.

It is at once observable that the absorption increases in the 

beta band as the temperature falls. There appears to be an iso- 

bestic point at 595 nm wavelength and the absorption in the D 

charge transfer band is increased at higher temperatures. The ratio 

absorptions in the beta and D bands is plotted in Fig. 3 »11 

*here it may be seen that this ratio falls with increasing temp­

erature. Measurements with the spectrophotometer in the transmission

Node (i.e., without the use of the electrical analogue circuits 

Required to obtain absorption scales) showed that the ratio of 

■transmissions in the beta and D bands increased in a regular

banner as the temperature increased over the range 88°K to 240°K; 

since absorption and transmission are defined to be in an inverse

logarithmic relationship, this demonstrates that the absorption ratio 

between the beta and D bands decreases with rising temperature.

Previous measurements of magnetic susceptibility have indicated 

"that haemoglobin hydrate is a thermal mixture of two spin states 

*ith a high spin ground state (lizuka, 1969b), subsequent optical 

studies at low temperatures seemed to contradict this conclusion 

find support the hypothesis that the hydrate is a mixture of two

chemical components, I being in the high spin state over the

entire temperature range studied and the other, II, being a thermal

e<iuilibriuin mixture with a low spin ground state. Thus the high

spin EPR signal of haemoglobin hydrate would be attributable to 

component I. Furthermore, a reassessment of the Mossbauer spectra 

(lang, 1966) might lead to a reinterprdation in terms of a two 

component model; previous attempts to reconcile the fluoride and

-  77 -
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hydrate Mossbauer spectra have depended upon the assumption that 

there exists considerable eovalency which would distort the spatial 

distribution of the five d electrons, giving rise to the large 

observed quadrupole splitting.

This is an important problem since it casts a serious doubt 

°n the ability of magnetic susceptibility measurements at low 

temperatures to determine spin states correctly, or suggests that 

the usefulness of cryogenic optical absorption studies is destroyed 

hy some unknown mechanism. For this reason particularly it was 

felt that it was important to repeat the hydrate measurements 

nnd rextend them to other derivatives.

The experimental results indicate that absorption in the beta 

hand at 540 nm wavelength increases with falling temperature and 

that the converse is true for the D charge transfer band. These 

Movements imply that there is more low spin and less high spin

Population at lower temperatures; this is in conflict with the 

Published description based - on magnetic susceptibility measurements 

^ d  supports the optical results of Iizuka (1969a). This trend 

from low spin to high spin as the temperature is increased is

shown more clearly in the graph of the absorption ratio in Fig.

3.11, where it is seen that the ratio falls with rising temperature

This trend is confirmed hy a graph of the transmission. ratio for

the beta and D bands which rises with rising temperature.

Unfortunately, it is not possible to use the absorption ratio 

a® an index to, the low spin/high spin population ratio. This arises 

because of several factors: the presence of minor high spin bands 

at about the same wavelength as the beta band prevents the use

°f the absorption ratio in this manner (Brill, 1961). As a hypo­

thesis it is worth remarking that the behaviour of the beta band

alone could be brought about by increasing intensity in these
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minor bands as the temperature falls but this cannot be a large 

effect since it is not noticeable in other high spin derivatives 

and also the behaviour of the D band leads to the same general 

conclusions as the behaviour of the beta band. It should also be

*x>rn in mind that the ratio of absorptions is dependant upon 

line widths and the wavelengths of the bands; somewhat different 

line shapes may be observed for the same bands in different deriv­

atives at room temperature and the wavelength of occurrence is not

fixed. It is therefore possible that the hypothetical componerents 

1 and II may possess such spectral differences and that such

effects might obscure any trend in the absorption spectra due to

temperature changes.

In an attempt to relate the optical and magnetic behaviour 

at low temperatures, the absorption ratio is plotted against the 

thermal equilibrium constant K over a- range * of temperature; K is 

the ratio of low spin to high spin populations obtained from the

magnetic susceptibility measurements and in the same Fig. 3.12 is

graphed the molar susceptibility against absorption in the beta

hand over a range of temperature. (It should be noted that these 

curves are not functions and therefore end at the initial and

final points plotted).

Consideration of these curves shows that as the temperature 

falls, the molar susceptibility rises sharply to its maximum value 

at the curve end indicating a high spin ground state; however, the 

absorption in the beta band is increasing, suggesting a low spin 

ground state. It is most unlikely lhat this result could be 

brought about by chemical action; the detachment of a water molecule 

and the attachment of a hydroxyl ion would indeed bring about a

low spin ground Batata but- would also^ reverse -the trend of the

magnetic susceptibility with temperature and we must also query
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the possibility on three other grounds. First, the general shapes 

°f absorption bands in haemoglobin hydrate are different from 

those in the hydroxide (q.v.); second, the pH is too low for 

such an event to occur in solution at room temperature; third, 

ionic mobilities become smaller at reduced temperatures: no data 

aPpears to be available for ionic mobilities in haemoglobin sol­

utions but in ionic crystals mobility is facilitated by an in­

crease in available thermal energy (Etzel, 1950).

The curve correlating the absorption ratio of the beta and D 

kands with the equilibrium constant K cannot be readily extended 

below 200°K on a linear scale because K becomes rather small

sud errors increase.

Overall, we observe that the optical and magnetic results do 

hot support each other and some feasible explanation must be 

found. It is tentatively suggested that the explanation might lie 

fu one of the following: the freezing process, the minor high spin

bands, or inadequacy of the two spin state model.

Problems arising from the freezing process have been discussed 

fu the previous section; these were related to possible phase 

changes in the ice and to the size and size distribution of the

ice crystals. However, it is not impossible that the stresses imposed 

iu freezing might be communicated to the protein molecule and give

rise to small conformational changes. These conformational changes 

could reflect back as electronic changes at the haem ion; there is 

n° evidence for this effect and it is suggested that microphoto-

metric studies should be made of single crystals of haemoglobin

hydrate at low temperatures. The results could be compared with

measurements and room temperature optical absorption results for 

®ingle crystals (lay, 1967). Furthermore, careful examination should be

made of Mie scattering from ice at 540 nm and 630 nm over several 
cycles of temperature between 77°K and 273°K and the effect of
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different buffers and other solutes determined.

That the presence of minor high spin absorption bands might 

Neatly influence the results is possible but if a minor high 

8Pin band located under the beta band at 540 nm wavelength were 

growing as the beta band was declining in absorption, then one 

would expect to observe a crossover where the total absorption of

the two bands would reach a turning point. It is strong evidence 

against this hypothesis that no such minimum has been observed

°ver the Tange of temperature employed.

It has been suggested that the hypothesis that the hydrate

ts comprised of a thermal equilibrium mixture of spin 5/2 and

spin ^ state populations is too simple to adequately explain the 

results and a "two component" chemical hypothesis has been proposed, 

^he results reported here are in general support of this hypo­

thesis (Gray, 1972). It is, however, curious that the ratio of 

statistical weights of the high and low spin states - which is

a function of the degeneracy of the two spin states involved

of contributions from other degrees of freedom within the 

molecule - varies considerably from one derivative to another; these 

ratios have been obtained from magnetic susceptibility studies and 

tabulated (lizuka, 1969a,b). They vary between 4.12 x 10~^ for myo­

globin imidazole to 2.58 x 10^ for cytochrome-c hydroxide; this 

rather large variation is important since it may relate to changes 

tu the conformation of the protein molecule.

¿-•5.3.2. Haemoglobin hydrate with Inositolhexaphosphate.

Various organic phosphates including 2,3-diphospho-D-glyceric acid 

(PPG) and Inositolhexaphosphate (iHP) complex with haemoglobin and 

shift the oxygen dissociation curve (Benesch, 1967» Chanutin, 1967);

It is believed that IHP causes ferric haemoglobin to assume a
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completely high spin form at room temperature (Perutz, 1972).

Spectrophotometric measurements were made between 91°K and 

246 K on a sample of haemoglobin (ferric) hydrate to which had 

keen attached IHP. (This sample was kindly supplied by Dr.

Perutz.) It was found that the ratio of the absorptions 

4*1 the bands at 540 nm and 63O nm remained constant within the 

Sperimentai error between the temperatures quoted. This ratio is 

shown as a function of temperature in Fig. 3.13»

It is considered that the invariance of this ratio implies

that the haemoglobin hydrate + IHP complex is entirely in one 

sPin state at room temperature since reducing the temperature does

n°t change the optical spectrum; if there were a mixture of spin

8tates then one would expect that lowering the temperature would 

cause the ground spin state to predominate in the population.

^t remains possible that the high spin state observed is the

Sftound state in a thermal mixture and that if one were( to raise
the temperature well above room temperatures an increase in low

spin content might be observed: however, such a process would be

°F limited value since a substantial rise in temperature would 

denature the protein.

^.3« Haemoglobin Fluoride.

Examination of the optical absorption . spectrum of the fluoride 

4ft Fig. 3.13 shows that there is little variation between 100°K 

and 205°K and that the ratio of- absorptions in the beta and D 

kands is flat as a function of temperature within the experimental 

error. Some possible fine structure was observed in the beta band 

kut this may have been an instrumental artifact, possibly noise or 

Feft response effects; further measurements to determine this point 

could be made using greater wavelength resolution and lower noise
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detection.

The results indicate a very similar case to that of haemo­

globin hydrate with I HP attached. It has long been considered that 

haemoglobin fluoride is almost entirely in the high spin state 

(Beetlestone, 1961); there is alleged to be about 3% of the low 

sPin state present at room temperature.

Because of the well known nature of the fluoride, it is

gratifying to observe that the results reinforce the belief that 

the absorption ratio A540nn/A630nm is a useful indication of spin 

8tate changes.

Haemoglobin hydroxide.

The optical absorption spectrum of the hydroxide is shown in

3.14 where it may be seen that absorption at 540 nm wavelength

decreases as the temperature increases; a graph of transmission in 

the same band as a function of temperature shows an increase with 

temperature. It is thereby deduced that there is an increasing

Proportion of high spin state at higher temperatures.

At large values of pH the OH radical attaches to the haemo­

globin in place of the water molecule (see Fig. 2.5). Various workers 

have estimated the proportion of low spin component present at

^om temperature to lie between 3*1% and 3 6$ on the basis of

magnetic susceptibility and optical absorption measurements (Smith, 196$ 

Seetlestone, 1964, Farrow, 1971). The results reported here indicate 

that HbOH is a derivative with a low spin ground state and this

result ia in agreement with measurements of the magnetic susceptibil­

ity. it is not possible in this case to calculate the absorption

r&tio owing to the small value of A/-,,-. If the value of Ac .-630nm 540nm
*8 plotted as a function of temperature, a small change in slope

°i‘ the curve occurs at about 175°K; this is matched by a similar
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effect on the graph of n|;ff. against temperature (lizuka, 1969a). 

These optical results are in accord with those previously reported 

tut variations at 602 nm and 636 nm were not observed, possibly

because of lack of sensitivity.

3«5.3.5. Haemoglobin Azide.

The general trend exhibited by the absorption spectrum of the

azide derivative, HbN~, is a reduction in absorption as the temp-3
erature rises and a small gradual increase in ^£jonm: ^tis can be 

seen in Fig. 3.13. The behaviour of the absorption bands becomes 

somewhat unusual above 195°K but the absorption ratio ^540nu/^630nm 

Undergoes a gradual decrease with increasing temperature.

It is thought that the peculiar behaviour at 195°K and above 

is caused by small macroscopic sample movements which would have 

the effects discussed in 3•5* 2• The consistent progress of the

absorption ratio, however, indicates that there is an increasing 

proportion of high spin state population with rising temperature. 

This supports the hypothesis that haemoglobin azide possesses a 

low spin ground state.

3.5.3.6. Haemoglobin Formate.

The variation of the optical absorption spectrum shown in

Fig. 3.15 is that of haemoglobin formate (HbH.COO ) as a function 

of temperature. It was found that this spectrum fluctuated very 

little between 90°K and 185°K and hence only the 90° curve has 

been reproduced; above about 190°K the spectrum began to change

substantially and measurements were made up to a temperature of 

244°K and are given in Fig. 3*15. The absorption at 54O nm is 

plotted as a function of temperature in Fig. 3»16 and may be 

seen to be almost invariant below about 200°K. The ratio
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/A,_ is plotted as a function of temperature up to540nnr bJOnra
200°K and is seen to be a gradually falling function of 

temperature. Note that the error bars change gradually in size 

"because of the gradually decreasing magnitude of the denominator

6̂30nm*
The reduction in the absorption ratio as the temperature 

rises suggests that the high spin component is increasing in 

Magnitude. This is not in agreement with the high spin EPR 

signal obtained from myoglobin formate (Farrow, 1971) but is in 

accord with the high spin value of magnetic susceptibility obtain­

ed at room temperature (Schoffa, 1964). Variation of theb magnetic 

susceptibility with temperature has apparently not been published.

The high spin EPR signal obtained from Mb.COO strongly

suggests the presence of two kinds of formate? a rotation of 

the principal axes of two g tensors has been found and this 

may indicate that the ligand is bound in two different orientations 

at the haem plane. This is markedly similar to the hypothesis

that the ligands may be bound in two different fashions in

myoglobin and haemoglobin azide (McCoy, 1970)? it was suggested in

this latter study that there were two kinds of azide (possibly 

low and high spin forms) but x-ray diffraction measurements do

hot confirm this (Stryer, 1964).

It may be the case that haemoglobin formate contains two

®quilibrium systems? first, two different modes of binding at the

Haem with different spin states? second, that one binding mode would

He a thermal equilibrium mixture with a low spin ground state.

It is possible that the local steric arrangements near the haem

Plane favour two orientations of the same radical? this would 

Probably be determined largely by the proximal histidine residue.
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3.5*3.7. Haemoglobin cyanate.

Only fragmentary results were obtained for the cyanate and 

a full spectrum was not examined. The magnitude of the absorption 

at 540 nm wavelength was found generally to decrease with rising 

temperature between 100°K and 215°K but with an anomalous region 

between 80°K and 100°K where absorption increased with rising 

temperature; this curious result was repeated several times. One 

obvious explanation is that some local liquifaction of the cold 

nitrogen gas may have occurred in the reference beam of the 

spectrophotometer and have obscured the beam.

3«5.5.8, Oxyhaemoglobin.

The optical absorption spectrum of oxyhaemoglobin was found 

to behave in the manner shown in Fig. 3*17 where it may be

8een that the absorption bands at 540 nm and 575 nm increase
in magnitude as the temperature rises. The dependence of absorption 
in the beta band at 540 nm is shown in Fig. 3.18 as a function 
of temperature. Hbi^ does not possess any charge transfer bands 

at 630 nm or 480 nm (Li, 1969).
Little related information is available on the magnetic 

properties of this derivative except for the room temperature 

magnetic susceptibility; the room temperature optical absorption 

spectrum has been obtained and the Mossbauer spectrum of the 

haem iron has been obtained over a range of temperature.

The room temperature magnetic susceptibility indicates that 

oxyhaemoglobin is diamagnetic at room temperature (S - 0). The 
results of Mossbauer spectroscopy are curious. It will be noted 
from Fig. 3.19 that oxyhaemoglobin lies in the group of haem

complexes with small I.S. and large Q.S. (q.v, 2.2.2.7.) and 
this has led spectroscopists to suggest that the ground state
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is S « i (Maling, 1969); this apparent contradiction may be partially

resolved if electron transfer is assumed to take place between the 

iron and the oxygen molecule. This effect would not be discerned

by the magnetic susceptibility measurements since the magnetic

moment of the molecule as a whole is determined. Further, it is 

»ell known that the ground state of the oxygen molecule is S - 1; 

if the oxygen molécule is assumed to lie parallel to the haem

Plane, the consequent reduction in symmetry about the oxygen-oxygen

axis may lead to S * 1 not being the state with lowest energy 

and thus tentatively explains why oxyhaemoglobin has no paramagnetic 

Properties (Griffith, 1956).

Also, temperature dependence of the Q.S. has been observed 

(lang, 1966); it has been proposed that this is due to the presence 

of low lying excited states having appreciable occupation at 195 K 

(Lang, 1962). This suggestion is unlikely to be the case since 

these states would give rise to paramagnetism observable at room 

temperature? it may be that the reduction in the Q.S. is due to

improved rotation of the oxygen molecule as the temperature rises.

No EPR signals have been observed from oxyhaemoglobin samples

at low temperatures up to microwave frequencies of 70 GHz.

Assuming that no spin mixing occurs (Harris, 1968) three 

Possibilities present themselves?

(a) that Hb02 has an S - i  ground state. This would be supported

by the Mossbauer data but refuted by measurements of the magnetic

susceptibility and lack of EPR signals (Maling, 1969).

(b) that the spin state is always S - 0 irrespective of the 

temperature; this is in accord with the diamagnetic properties at 

room temperature and the lack of EPR signals but in this case one 

would not expect to observe any changes in the optical absorption 

spectrum as the temperature varies.
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(c) that the ground state is S * 2 and that thermal equilibrium 

of spin states exists to yield an S * 0 population growing with 

temperature. It is thought that the ground state cannot be S « 1
if S * 0 and S * 2 occur (Griffith, 1956, 1964)» This hypothesis 
would be in agreement with the change in optical absorption with 

temperature. However, it would also imply a detectable magnetic 

moment at room temperature unless the statistical weight of the

S » 2 state were particularly low. (Iizuka, 1969)» Some support for 

this hypothesis is lent by the Mossbauer results; the temperature 
dependence of the Q.S. suggests a paramagnetic species. The unlikely 
suggestion of low-lying excited states could be replaced by the 
existence of an S - 2 ground state. An S « 2 ground state would 

not necessarily conflict with the lack of EPR signal since no 

signalB have been observed from samples of deoxyhaemoglobin which 

has an S * 2 spin state (at 50 GHz microwave frequency by Ingram, 

1963» or in this work at 70 GHz);; this lack of signal could be
due to an inadequate size of microwave quantum or a rapid spin 

lattice relaxation effect.
An S ■ 2 ion in a low symmetry crystalline electric field 

has the degeneracy of the five m spin states completely removed.

Since there is no Kramers' degeneracy for an S * 2 ion, EPR signals 

may be absent if the microwave quanta are smaller than the zero 

field splitting. We must however take care in extrapolating from 

deoxyhaemoglobin to HbOg since the crystal field symmetry in deoxy­

haemoglobin is lower since the iron is only pentacoordinated.
There is the further possibility that in oxyhaemoglobin S is 

no longer a good quantum number and that spin mixing occurs 

(Harris, 1968) as it may for certain porphyrin complexes but no 

calculations appear to have been attempted for ferrous porphyrin 

complexes investigating possible spin mixing.
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3«5.4« Further remarks and suggestions.

The measurement of optical absorption at cryogenic temperatures 

appears to he in need of some development. A comprehensive study 
of light scattering from water frozen to low temperatures would 
enable conclusions to be drawn about the effects of possible

transitions between different polymorphs of ice. Furthermore, by 

examining the light scattered azimuthally around the sample, the 
distribution of sizes of ice crystals could be obtained} the 
effects of cycling the temperature of the sample and the rate 
of temperature change upon the distribution could be studied.

This knowledge about the distribution is important because the 
ratio of light scattered in the forward direction at two 

different wavelengths is dependent upon the ice crystal sizes; 

in double beam spectrophotometry this effect is probably far less 

important than when using a single beam, but it should be con­

firmed that both sample and reference cuvettes contain the same 

ice crystal distribution if they have undergone the same temperature

cycles.
It would also be advantageous to modify the low temperature 

sample holder so that the cold gases were not in contact with 

the sample, probably by the use of a copper post between sample 

and liquid gas. This would obviate the possibility that locally

liquified gas could obscure a light beam.

It has been shown that the magnetic susceptibility of a haem

protein derivative is related to the optical absorption in the

540 nm band (Smith, 1968). It is not possible to demonstrate this

relationship for haemoglobin hydrate because of the anomalous

behaviour of this derivative} however, in the case of the hydroxide
2this relationship can be demonstrated. In Fig.3.20 is graphed n^^.

against absorption in the 540 nm band over the temperature range
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95°K to 245°K. It may be observed that a smooth curve may be
drawn through the points and that, as the paramagnetism of the 

hydroxide diminishes the absorption in the 540 nm band increases; 
the azide which also has a low spin ground state, shows indicat­
ions of following the same pattern but most of the change in

susceptibility is between 220°K and room temperature, in which 

range macroscopic sample movements obscured the optical measure­
ments. It is not possible to draw a similar graph for the 

formate because no low temperature magnetic susceptibility data 

was available.
 ̂ The optical absorption studies of haernproteins and their 

investigation by electron spin resonance serve to complement 
each other; generally, EPR has been used at low temperatures 

with frozen samples whereas optical absorption has commonly 

been used at room temperature. In this way a great deal 

of useful data has been obtained. However, by using optical 

techniques at low temperatures, the two techniques may support

each other,
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CHAPTER POUR

EPR STUDIES CF HAEMOGLOBIN SOLUTIONS.

4.1. Experimental procedure.

Concentrated solutions and pastes of haemoglobin hydrate, 

fluoride, formate and cyanate were studied by EPR at 35 GHz 

and JO GHz. At Q band the sample was placed in a P.T.P.E. 

tubular sample holder situated axially in the microwave cavity; 

low loss ceramic sample containers machined from Stykast Lo-K 
were also used. At 70 GHz it is not possible to introduce a 

relatively bulky sample holder into the microwave cavity and 

consequently the paste sample was placed carefully on the 

cavity endplate.

Much of the techniques of EFR spectroscopy at JO GHz are 

modified or improved methods used at lower frequencies. In part­

icular, microwave components are correspondingly smaller and an 

improved surface finish is required on the internal surfaces of 

tapers and microwave cavities.

At JO GIIz (4 mm) the millimetre waves were generated by 

a reflex klystron YK1010 giving an output of 100 mW; after 

passing through an isolator and a 10 dB coupler, the waves 

arrived at a magic tee. A wavemeter was provided after the 

coupler for approximate wavelength measurements. Retween the 

magic tee and the microwave cavity the waveguide is oversized 

from 4 mm standard guide to 35 GHz waveguide in order to reduce 

attenuation; tapers are used to achieve this which are long 

in comparison with the wavelength. The microwave cavity operates 

in the TEq i2 mo^e 810 ̂ *s turned out of nonmagnetic brass, bored 

and reamed to the correct dimensions. The cylindrical bore and



cavity endplates are diamond polished to give the cavity a 

high Q factor; the cavity was thoroughly washed with water and 

acetone and diamond polished after use to preserve the Q factor. 

The signal is detected by a Philips crystal detector which may 

be optimised using a shorting plunger. The details of this 

spectrometer have been described elsewhere (Slade, 1968/9).

In the course of this work it was necessary to incorporate 

a superconducting magnet into the spectrometer; a split coil magnet 

was supplied by the Oxford Instrument Co. Ltd. The magnet was 

mounted on a three inch diameter stainless steel tube at the 

bottom of an eight inch diameter helium cryostat. It was possible 

to rotate the magnet by means of a worm and wheel through a

gas tight seal thereby permitting angular orientation studies to 

be made. The mounting of the magnet was so contructed that the
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magnet could be mounted also with the two inch bore vertical.

This admitted a demountable three piece re-entrant cryostat tail

not supplied by the manufacturers which was used in calibrating

the magnet. In normal use with this re-entrant tail fitted to
the cryostat the loss of liquid helium was about 500 ml per

hour; without the tail the boiling off of helium was reduced to

some 500 ml per hour.

Owing to difficulties experienced by the manufacturers, the

two coils of the magnet did not possess equal numbers of turns

on their respective windings; a centre tap was therefore provided

through which a small balancing current could be passed to one
-1coil. The calibration data reported was 0.16548 Tesla ampere

Upon installation in the laboratory the magnet was again

calibrated using an NWl probe with both proton and deuterium

samples and also at one value of the magnetic field using 

35 GHz microwave radiation; the latter frequency was determined
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Fig. 4.1
AXIAL VARIATION OF MAGNETIC FIELD AT 50KG

AXIAL DISTANCE mm
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from the EPR signal of a small sample of d.p.p.h. in the

field of a previously . calibrated electromagnet. In the NMR 
calibrations a solid state marginal oscillator using the high 

input impedance of an FET across the r.f. resonant circuit was

used; noise proportional to 1/f is also reduced by this tech­

nique (Idoine, 1971). The data obtained were as follows:

KMR (1H and 2Il) 0.1648(6) + 0.0007 T Amp~1

EPR (d.p.p.h.) 0.1648(8) + 0.0C01 T Amp-1

This result agrees with that of the manufacturer within the
<" _1 experimental error of 0.0007 T Amp . The axial variation of

the magnetic field was measured at 1 T and 5 T; the result

for 5 T is shown in Fig. 4.1 in terms of T Amp against

axial dimension. At 5 T the optimum centre tap current was

280 + 20 mA and the axial homogeneity of the field was 1.4 parts 
7in 10 over the NMR sample size. The limits of homogeneity

are indicated in Fig. 4.1.

At 35 8Hz the magnetic field was provided by a Newport 

Instruments Ltd. electromagnet. Measurements of the magnetic field 

were made using an NMR marginal oscillator. V.'hen a liquid helium 

cryostat was inserted between the pole pieces of the magnet

there was insufficient space available to insert the NMR probe.

Accordingly a flat Hall probe was cemented to the centre of 

a pole piece and the Hall voltage measured with a Pye pdentio-

meter when a constant current was passed through the Hall plate. 

The magnetic field strength at the centre of the magnetic field

was related to the Hall voltage using the NMR probe in the 

absence of the cryostat.
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4.2. Experimental results at 55 GHz and 70 GHz.

The samples of haemoglobin hydrate, fluoride, formate and 

cyanate were prepared as described from fresh human red cells

(q.v. 3.1).

EPR signals were observed from samples of the hydrate, 

fluoride and formate but not from the cyanate. It was found

that it was essential to make use of distilled and deionised

water and several times recrystillized ammonium sulphate in the 

preparation of samples for use in the 70 GHz spectrometer other­

wise impurity signals were present. Measurements at 35 GHz were

made at 77°Kj in the JO GHz spectrometer the sample was contained

in the microwave cavity immersed in liquid helium at 4.2°K. No 

signal was observed from haemoglobin cyanate at 35 GHz at a 

temperature of 4• 2°K; nor was any signal seen from a cyanate

8ample at J J ° K  in a 9 GHz spectrometer. It is interesting to 

note that no signals have been observed in this case; there may 

be some similarity to myoglobin cyanide (Farrow, 1971) fob which 

difficulties have been encountered by many workers in trying to 

measure the g values. In the case of HbOCN all that may be

said Is that substantial distortion may be present at the haem

Plane, reinforced by bonding of the OCN to the peptide chain ends,

and this may have led to an unsuitable ' spin-lattice relaxation 

time.

The signals observed from the hydrate, fluoride and formate

are reproduced in Figs. 4»2,3*4» The signals seen at 35 GHz and

70 GHz are shown side by side for comparison purposes; although

the experimentally observed peak to peak linewidths and the g

values of the peaks of the first derivative absorption lines are

useful in describing the experimental spectrum, it is far more valuable

to determine g , g , g , and the paramagnetic linewidth AB. The x y z
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manner in which this is done is described in the next section.

It is of interest to note from the experimental spectra 

that all show an anisotropic lineshape with larger linewidths 

at the higher frequency. Also a small inflexion is to be seen

on the formate spectrum at 70 GHz which may reflect large g value

anisotropy not present in the other two derivatives.

4.3. Computation of g„, g , and g_.x y z

The simulation of polycrystalline or paste spectra requires 

a spatial averaging process since the absorption lineshape is 

a function of the orientations of the crystalline electric field

symmetry axes of individual paramagnetic molecules in the static 

magnetic field. It Is necessary to incorporate the variation of

the transition probability with the relative orientation of the

static and microwave magnetic fields and to make \xse of two 

premises:

(a) that the distribution of molecular orientations is random.

In haemoglobin, where there are four paramagnetic centres in one

molecule, it is assumed that one centre in each molecule is 

randomly orientated. To a high degree of approximation, the other 

three paramagnetic centres will then also be randomly orientated

since they are rigidly orientated with respect to the first; in 

fact this is not strictly true because' small thermal movements 

of parts of the molecule are reported (Watson, 1963).

(b) that there is a lineshape which may be assumed; a Lcrentzian

lineshape function . has been used throughout.

The simplest treatment is that of axial anisotropy in g 

without fine or hyperfine interaction terms so that the system 

may be defined by the Hamiltonian

H  - 3 • B . g . S
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Assuming a delta lineshape function, the spectrum may be 

integrated in terms of , BT as a function of magnetic

field (Eleaney, 1950» Sands, 1955) and a lineshape function may 

also be incorporated (ibers, 196?, Slade, 1968). In the case of 

lower symmetry when gx / gy / g2 then no closed form expression 

is available but such spectra may be computed numerically (Swalen, 

1964, Kneubuehl, i960, Burns, 1961).

In spherical? polar coordinates the Hamiltonian becomes

H  - e( M  ) e,,BSX

where

/ j  \ / 2 ¿h 2 , ?A 2 > 2 , 2« , 2 /g( 0,0 ; = (, g cos 0 + g s m  0 cos 0 + g s m  0 s m  0 )**z x y

and since only the Zeeman term is present

hu = g ( ©,0 ) 3 B

a line shape function may be inserted in terms of

u ( B, 0, 0, ) = B - h u / g  g(0,fO

Assuming random orientation in the paste, the fraction of para­

magnetic centres with magnetic axes in the angular increment

0 ”-- > 0 + A0
© ---> 0 + 4Q

is directly proportional to A0sin©A0 which becomes d0sin0d© 

as d0, d0 tend to zero.

Averaging the line shape function L over all possible orientations 

gives ir/2 tt/2

1(B) L ( 0,0 ) sin© d© d0

0=0 0=0
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for the intensity which may he transformed, ty a choice of

parametric variable x = cos© to
it/2 r

l(P) = L ( ) dX ̂
$-0 x=0

It has been suggested that the dependence of transition prob­

ability upon relative orientation of static and dynamic magnetic 

fields should be incorporated (Bleaney, i960, Kneubuehl, 1961) and 

a suitable function has been derived as (Filbrow, 1969)

- ̂  ,n ,x 2 2.2. 2 2 , . 2, 2- 2, sP (©,f*j = £v g,r s m  © + g g  (sin ¡25 + cos ©ccs f )x y y e
2 2, 2 . 2- , 2 ,v+ g  g (cos p + cos ©sin p)Z  X

The lineshape function is thus

LLorentzian P ( M )  / (u 2 + f W2)

where W is the line width at maximum slope; introducing the

line shape function into the 
7T /2 1

-s s

integral gives

F ( 0,0 ) dx d^
(j 2 + fw2)

0-0 x=0

Similar integrals have been transformed into functions of elliptic

integrals in closed fo±m (Bloembergen, 1953, Kohin, 1956» Foole, 1967)

but taking account of F(©,j0 prevents this and numerical integra

tion is necessary. A computer program in Fortran IV was written

for an I.C.L. 4130 for this purpose; the parameters required are

g , g , g , microwave frequency and paramagnetic linewidth. x y z
Attempts have been made to determine anisotropic g tensors 

using automatic fitting subroutines (Johnson, 1965, Bowsing, 1969) 

based upon least squares estimations (i'arquardt, 1963) but they
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suffer from the heavy .disadvantage that the form of the actual

function to be minimise d is often s;vch that at points near the

desired minimum the steepest descent is not directed to that

minimum and so convergenee may not occur (Bowsing, 1970) . The

use of a grid search technique might overcome this problem.

Because of these difficulties a visual comparison method 

was adopted. Experimental spectra were transformed into pairs of 

coordinates using a B-Kac digitising table which corresponded to 

the intensity of the first derivative EFR spectrum at a given 

value of magnetic field.

 ̂ The simulated and experimental first derivative EFR spectra

were plotted by the computer to the same scale on the same

axes and the input parameters varied until the best approach

to coincidence was obtained. The effect ' of doing this may

seen in Fig. 4.2,3,4.

The values of the g tensor and the paramagnetic linewidth 

obtained are given with the appropriate spectrum.

4.3. Simulation of anisotropic linewidths.

It has been assumed that the linewidth 0.f a paramagnetic

centre is isotropic; this may not necessarily be the case and

the transition probability may be modified to take account of

linewidth anisotropy. It is initially assumed that the coordinate 

transformation diagonalising the g tensor also diagonalises a 

width tensor. This technique has been applied but the transition 

probability used was later found to be in error (Johnson, 1965, 

Filbrow, 1969)« Following the same method but incorporating the 

correct expression for transition probability, we define the 

principal values of the linewidth tensor in relation to the 

corresponding linewidth at maximum slope as
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and the appropriate linewidth function is

R(x,*i) - wz2 + (wy2 - w z2)(1 - x2) + (wx2 - wy2)(l - x2)cos2j>

which reduces to
R(x,fi )  = |-W.2

when ¥. * W * W » W in the isotropic case,i x y z *

To simplify the choice of initial linewidth parameters, synthes 

es were first performed with isotropic linewidths and then develop 

ed with anisotropic values. In this case the expression for the 

intensity becomes
?r/2 1

■ S S
¿ m0 x«0

P(x, 6 ) dx d^ 
•0 2 + R(x,)0

It was found that many iterative adjustments were necessary to

obtain a good fit to the experimental curves; this resulted in

substantial increase in computing time and, for this reason, the

procedure has only been followed through for the hydrate at

70 GHz. .

It was found that the parameters giving the best fit were 

Wx " 12*° mT * wy * 11.6 mT : Wz * 1J.2 mT. However, these values are 

within the experimental error in measuring the linewidth} a more 

accurate linewidth determination to -0.1 mT is essential for such 

an anisotropy analysis. (Helcke, 1968).
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4»4 Hamiltonian parameters for haemoglobin hydrate.

By making the assumption that the rhombic term in the

spin Hamiltonian is small so that the prevailing symmetry is

axial, it has been possible to find an expression for the

zero field splitting parameter 2D (Kirkpatrick, 1964). By meas-

uring g at two widely differing microwave frequencies, that L
is, at two widely differing values of the resonance magnetic 

field, the zero field splitting may be obtained from

2D - gL 3 2 ( Bg2 - B ^  ) *

a ~ 1

where gT - gTe^ (  1) . 1_ ,ot
L 3 a 1-6

and gLeff is set equal to £ (gx + gy) since it is defined as

the average g value in the haem plane.
effInserting the values of gL and the magnetic field for

the two microwave frequencies as below

35 GHz: eff
eL

5.91 B1 - 397.8 mT

70 GHz: eff
«L 5.89 B2 * 835*7 mT

gives

% 1.97(2)

2D 16.5 + 2.5 cnT1

The accuracy of this measurement is dependent upon the accuracy 

of the magnetic field measurements (which also determines the g 

value accuracy in this case.)

“ * SL'££(l)/gLeff(2)

5 - (v v 2
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Fig» 4.6.

Comparison of values of 2D.

Derivative Method 2D cm”^ Reference

HbF Par IR 12.6 + »24 Brackett, 1970

MbH20 Par IR 1 9 + 3 Brackett, 1970

MbF Par IR 11.88 + »16 Brackett, 1970

MbH20 Susceptibility 24 Morimoto, 1965

MbF Susceptibility 14 Tasaki, 1968

" KbH20 EPR 8*76 + »12 Eisenberger, 1966

HbP Mossbauer 14 Lang, 1966

MbF Susceptibility 28 George, 1964

MbNj Susceptibility 5»8 Kotani, 1963

HbP EPR 5 Kotani, 1964

Heme Cl Par IR 13.9 Peher, 1966

HbH20 Far IR 21 • 5 Brackett, 1970*

HlbHgO EPR 8.4 +_ 0.6 Slade, 1968

KbHgO Spin-lattice 18.28 £  »36 Scholes, 1971 
relaxation

*Note» reported as a preliminary result only.

Where an experimental error is not estimated in the

reference it is not conjectured in this table.
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This value of the ■ zero field splitting may te compared 

with values determined . hy other methods and for myoglobin. These 

results are tabulated in Fig. 4.6. The general pattern which 

emerges from this table is that (a) for myoglobin hydrate,

2D = 21.5 +. 3 cm tut with various EFR measurements agreeing at 

about 8.5 cm and (b) the value for MbF is around 13 cm"

but with an exceptionally high value of 28 cm  ̂ obtained by 

a rather direct method and (c) that there are very few results 

for haemoglobin hydrate or fluoride which are

HbF~ 12.6 + 0.24 cm (Far Infrared)

HbF" 14 -1cm (h'ossbauer)

IlbHgO 21 -1cm (Far Infrared)

. HbHgO;'. 16 .5 _+ 2.5 cm  ̂ (This work)

In interpreting the results 0f other workers it is crucially

important to bear in mind the limitations of the methods used

Although Mossbauer spectroscopy is a very informative technique 

in respect of certain of their properties, it indicates that

haemoglobin hydrate and fluoride are rather different whereas this 

is not shown up in the EFR spectra (Lang, 1966). It is not 

clear from the published Mcssbauer results what accuracy may be 

attached to the zero field splitting; doubts have been expressed 

in respect of conclusions about spin states drawn from Mossbauer

spectra (Williams, 1966). Much useful information has been obtained 

from studies of the magnetic susceptibility of proteins but the 

technique examines the molecule as a whole. Unfortunately it is 

necessary to fit the magnetic susceptibility to a rather flat 

curve of naver.agP against D/kT (Kotani, 1961) and this may result 

in a substantial error on the parameter D/kT. Far Infrared

spectroscopy is an extremely direct method of measuring the 
zero field splitting and considerable reliance must be placed on
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its results.

From a knowledge , of the value of FT) it is possible to 

calculate the smaller rhombic parameter E.

In the plane xy the angular variation of effective g

value is given ty •

£eff
7 T ( I^o u /E cos ?$) 

D

where •<f> is an angle in the plane xy measured from g ,

rr icbo ° the true g value in the spin Hamiltonian (g t  2)
the xy plane the effective g value will vary between

,r = 3 e0 (1 + 4e/d )

From the values of g and g obtained°x uy
it is possible to calculate E for the

E = 0.016 - 0.003

The ratio of E/D is 0.002; this value is about the same as

that for myoglobin fluoride (Farrow, 1971) and hyrdrate (Slade,

1972). Ho estimates of E appear to have been made for haemo

globin hydrate.

experimentally at 700IIz 

hydrate.

cm
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4»5 Hamiltonian parameters for Haemoglobin Fluoride.

effBy measuring g^ at 35 GHz and 70 GHz microwave frequ­

ency for paste samples of the fluoride, it was possible to 

calculate the spin Hamiltonian parameters D and E as in the

previously described case of the hydrate. Using the average
effvalue of g^ and z  for g^ gives the following values:

70 GHz: eff
eL 5.866 B « 840.9 mT

. 35 GHz: eff 5.904 B - 397.8 mT

Inserting these experimental values into the expression for 

the zero field splitting yields

gL - 1.97(2)

2D - 11.7 + 2.5 cm“1

The rhombic parameter E may be obtained from g and g and**■ y
was found to be

E » 0.012 + 0.005 cm”1

Comparison of these results for 2D and E shows quite good 

agreement with the values of 2D obtained by Kossbauer and Far 

Infrared spectroscopy (q.v. Fig. 4.6)} agreement with the EPR 

result of 2D » 5 cm”1 is poor. It is possible that this

particular result has been reported as the value for D and not

2D (Farrow, 1971). Doubling this low result would bring it into

general agreement with other results. No estimate of E for HbF”

seems available; E/D for MbF~ is 0.0027 (Farrow, 1971).
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4»6. Summary

The electron spin resonance spectra of haemoglobin hydrate, 

fluoride and formate pastes have been obtained at 35 GHz and 

70 GHz; no E?R signal was observed from samples of haemo­

globin cyanate.

From these measurements at two widely different microwave 

frequencies, Hamiltonian parameters were obtained for the hydrate

fluoride. These values weres

Hydrates 2D = 16.5 cm 1 E - 0.016 cm""̂

Fluorides 2D - 11.7 cm-1 E ». 0.012 cm”^

These results have been compared with similar reported

values
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CHAPTER FIVE

E-PR STUDIES OF SINGLE__CRYSTALS

5»1. Introductory note.

Other workers have undertaken extensive studies of myoglobin

and its derivatives at microwave frequencies up to 70 GHz

using electron paramagnetic resonance techniques (q.v. 2.2.2.9).

In this chapter an account is given of the extension of this 

work to single crystal studies of oxidised deoxyhaemoglobin.

The preparation of single crystals is described and the angular

variation of the g value in the principal planes of the 

crystal discussed. Using measurements of the g value in the 

ab plane at 35 GHz the zero field splitting and rhombic para­

meters in the spin Hamiltonian are calculated.

5.2 Preparation of single crystals.

In order to grow good single crystals of deoxyhaemoglobin

it i8 essential to use blood taken within the previous hour

from the donor and to extract the haemoglobin from the red

cells expeditiously. Accordingly, the haemoglobin solution was

prepared by cell haemolysis after washing the cells with 

saline as previously described (q.v. 3»'0» The remaining 2°/0 

sodium chloride was removed using a Sephadex G25 gel column 

which resulted in loss of concentration. The concentration was 

restored by using the polyacrylamide Lyphogel to remove water.

Protein crystals grow from solution when the solubility of 

the protein has been suitably adjusted to render the protein 

almost insoluble. The solubility of proteins is a complicated
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function of the pH, molarity, and the temperature. Some workers

have referred to a factor known as the "state of the protein":

this usually refers to possible damage in the peptide side

chains (such as may occur in the freeze drying procèss), and

to the presence of nonhaem proteins which may interfere in the

crystallisation process. Protein damage usually results in a

drastic size limitation on the crystals.

The method used to instigate crystallization is called 

"salting out"; if the concentration of an electrolyte in a 

protein solution is gradually increased, there is first an, increase 

in solubility followed by a decrease as the ionic strength of

the electrolyte becomes greater in the solution. The latter

portion of the curve of solubility against ionic strength can 

be expressed by

leg (S) = B - K. 1/2

where S is the protein solubility in gm cm  ̂ and 1/2 is the
— 7ionic strength in moles cm J. K, the gradient, is dependent upon 

the actual protein and salt used but is not a function of pH

or temperature. B, the projected intersept, depends on pH, the 

protein and temperature but is less affected by the actual 

salt used (Green, 193“! )•

Values of B and K may be obtained from the solubility 

curves of the various haemoglobin solubility curves (Jope, 1949).

These data indicate that the rate of change of solubility of 

deoxyhaerr.oglobin is not so great as in other derivatives when 

.more salt is added. This lack of critical dependence may be 

a" contributory factor to the relative ease with, which deoxyllb 

crystals may be grown.

By consideration of the salting out curves it has been 

demonstrated that the percentage of protein salted out at a
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given salt concentration depends heavily upon the initial 

protein concentration; in the case of HbCO, for an initial 

protein concentration of 50 gm cm- ,̂ the greater proportion of 

protein would he salted out between 5 8$ and 65$ saturation 

with ammonium sulphate, whereas for an original protein con­

centration of 3 gm cm"”̂  precipitation would only commence at 

66$ (Dixon, 1961). The solubility of most adult haemoglobin 

derivatives experiences a broad minimum at 20°C; the solubility 

of deoxyhaemoglobin is unusual in that it appears substantially 

constant between 9°C and 35°C (Jope, 1949)»

Crystallization of deoxyhaemoglobin was effected by the 

following procedure. A six per cent solution of fresh oxy- 

haemoglobin was converted to deoxyhaemoglobin by the addition 

of a small quantity of sodium dithionite in a nitrogen filled 

glove box. A distinct colour change from red to purple was 

observed. Distilled water was deionised and shaken several times 

under nitrogen to remove oxygen. Nitrogen was bubbled through 

a saturated solution of ammonium sulphate which had been twice 

re-crystallized. The buffer solutions of ammonium phosphate were 

similarly treated to., remove oxygen. One ml portions of the 

protein solution were placed in sterile specimen tubes; ammonium 

sulphate, buffered to pH 6.5* was added drop by drop until a 

slight turbidity was observed. The tubes were closed and stored 

in jars containing nitrogen gas. Good crystals appeared after 

about a month and grew to about 3 or 4 mm in size.

Deoxyhaemoglobin crystals contain ferrous ions and are of 

space group P2 ; human deoxyhaemoglobin is known to crystallize 

in three different forms. In this case, crystals were of type I 

which has the planes (001), (100), and (010) as faces.

It was decided to try converting the ferrous ions in
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deoxyhaemoglobin crystals to the ferric valence state using 

an oxidizing agent; the use of potassium ferricyanide was 

avoided because there was a possibility of ferric ions 

from the ferricyanide interfering with the intended EPR 

measurements and because it is known to perturb the optical

absorption spectrum (Cameron, 1969)« The crystals were placed 

in specimen tubes containing saturated ammonium sulphate buffered 

to a series of pH values beginning at pH 6.5 an^ ending at 

pH 5.8; at this pH value, the crystals were transfered to a 

specimen tube containing saturated ammonium sulphate mixed with
r "

sodium nitrite (analytical grade) to give a 1 ni solution of

the latter, with sufficient buffer present to give a pH 5.8.

The crystals were left in this tube for several days at room

temperature; it is important to note that these operations were

performed in a nitrogen-filled glove box to avoid oxygenation 

of the haemoglobin. The excellence of sodium nitrite in this 

preparation is that it does not interfere with the EPR spectro­

scopy and does not appear to crack the crystals.

5.5 Angular variation of the g— value.

The EPR spectrometer and cavities used in these studies 

were the same as those briefly described in Chapter Four. 

Measurements of the magnetic field were made by the same 

techniques. Values of the magnetic field of the superconducting

magnet were obtained by measuring the magnet current and using

the calibration data.

Single crystals of the protein were mounted in the micro- 

wave cavities upon sample supports machined from the ceramic

Stykast Lo-K, the well-developed face of the deoxyhaemoglobin
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crystal corresponds to the ab plane (001)} for ab plane 

studies crystals were mounted horizontally on the sample holder 

using a tiny dab of silicone grease. For studies in either

of the other two principal crystal planes (ac or be), the

crystal was mounted on a wedge support using grease so that 

either of these planes was horizontal} this method was desirable

because only the ab face of the crystal was fully developed

so as to be suitable for mounting. It is estimated that the

crystals can be mounted to within 2° on most occasions. A small

quantity of d.p.p.h. was added to the sample support for
K

measurement purposes.

The angular dependence of the g value in the ab plane

is shown in Fig. 5» 15 near the larger g values, the curves 

coalesce to form two pairs. At low g values the curves sep­

arate. This indicates that the different haem groups repre®nted 

in the EFR spectrum are probably inclined at different angles

to the ab plane} two curves reach g values close to 2 and

it is likely that the haem normals associated with these curves

lie in, or close to, the ab plane if one assumes that g isz
directed along a direction near a haem normal.

The angular variation in the ac plane is given in Fig.5.2

where it may be seen that the E?R spectrum comprises almost 

two lines exactly} these lines perform almost identical variations 

between g * 6 and g * 3» 5* It is apparent that these lines arise 

because the haem planes project symmetrically upon the ac plane.

The experimental results for the be plane studies are given 

in Fig. 5.3, Because there are four lines it is evident that 

the four haem planes contributing to the spectrum are arranged 

on one side of the be plane.

The variation of g value in these measurements will enable
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determination of the g tensor and its direction cosines with 

respect to the principal axes of the crystal.

Similar measurements made upon horse haemoglobin enabled the 

orientation of the haem planes in the protein molecule to be 

deduced (Ingram, 1956).

In the measurements made in this work, it was noted th4t 

although eight EPR lines should have been present, only four 

were actually observed* some possible reasons why this may be 

sp are given below but none is entirely satisfactory. If only 

half,, of the ionic centres in a protein molecule were converted 

to the ferric state, we might expect to observe only four EPR 

lines* however, the cooperative nature of the bonding mechanism 

in haemoglobin strongly indicates that this will not be the 

case, and if only partial conversions were made, we would 

anticipate that they would affect whole molecules.

Another possibility is that the actual directions of the 

present and absent g tensors are such that, coupled with their 

magnitudes, small internal molecular movements associated with 

bonding bring them into approximate coincidence* we have no 

data for this hypothesis but it would seem to be of only 

marginal importance.

The space group of the haemoglobin crystals actually used 

was considered to be ? 0 because the crystals closely resembled 

normal Type I deoxyhaemoglobin crystals* attempts to check this 

conclBSion by x-ray techniques were unsuccessful.

The EPR observations were made at a sample temperature of 

4.2°K* we must ask whether certain haems may have had a 

relaxation time too short for signals to be observed at this 

temperature. This question leads to a consideration of whether 

the ligands binds not only at the haem but also to the peptide
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chaini. It is known that the cyanate 0CN~ and the thiocyanate

SCN may act in this way (q.v. Sections 3.4.1,2). If the nitrite 

radical NOg of the sodium nitrite molecule were to be attached

to a particular side chain in a similar manner then it might 

be expected that this could affect the relaxation time of the 

associated haem. Furthermore, this hypothesis might suggest that 

two haems in a molecule are converted to ferric ions and two 

are not converted to the S - 5/2 state but that a side chain 

attachment brings about the small molecular movements necessary 

to cooperative bonding. Unfortunately, we have no data to support 

this idea and the situation thus remains unresolved.

5.4« Theoretical derivation of the principal g values.

The relationship between the magnetic and crystallographic 

axes of deoxyhaemoglobin treated with sodium nitrite is by 

no means apparent.

In order to the find the principal g values and their 

angular relationship to the crystallographic axes it was essential 

to measure the angular variation of the g value in three 

mutually perpendicular planes» in this case, the planes are 

the ab, ac and be planes, which correspond to the (001), (010) 

and (100) planes.

it has been previously shown that the spin Hamiltonian 

which is appropriate to a high spin haem protein is given by

H  - S . g . B + D (Sz2 - £S(S+1)) + E (Sx2 - Sy2)



-  119

However, it would be necessary to transform from the prin-

cipal axes to the crystallographic axes to find values for g,

35 and E. This transformation is unknown.

If the simplifying assumption that D is large is made, 

then the EPR spectra of the lowest Kramers' doublets may be 

described by a spin Hamiltonian (Zeldes, 1961)

|-| - 3 S . g , B

where an effective g value is defined by g ^  ~ ^ u / g E.

The assumption that D is 1 arge is justified by the value obtained 

Trom the studies on pastes.

If the magnetic field has direction cosines 1., 1.-L 0
crystal axes then the g value is given by

3
2

geff y  g . . 1 .1 .ij 1 j

The symmetric tensor depends on the actual reference axes

chosen; the expression may be expanded using the dii’ecticn cosines 

1„, 1^, 1 of the magnetic field with respect to the crystal 

axes selected.

2
geff = 2G 1 aa a

„ , 2
+ Gbb \ + G 1 2 cc c

+ 2 G .ab 11, + 2a b C.cc 1.1 +b c 2 G 11,ca c a

where Gmn are components of the symmetric tensor G -  2* g .

Clearly, in any one plane
2

■defined by the crystal axes, g ^  is

a function of only one angle and three expressions may be

obtained - one <•> ■*% j. w _L each plane. It is comparatively straight-

forward to perform, a least squares fit to these - expressions 

using the experimental data from the three orthogonal planes.

the values cf G
ifiXlIt is desired to find such that the sum
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of the squares of the residuals r^ is minimised

2 W M  O
r. = /  ( G cos © + i X- ' mm G sin^ônn + 2 G sin© mn

2The sum of r. will be 1 minimised when all the

ives with respect to G ,aa’
n n
"tb’ 'Jcc are zero. Thi

three simultaneous equations for each plane

AGaa
1 nn
+ "~bb +.2CG ,3.D D = C

EGaa + EGtb 4 - .+ V b H = 0

CGaa + PGbb + 2EG , ab K = 0

and similarly for the ac and be planes; the 1

K are sums of trigonometric functions. The solutions of these 

nine simultaneous equations are •. the elements of the g tensor G.

Alternatively, if full use . of the experimental data is not 

desired, the tensor elements may be determined from selected points 

on the curves of g variation in the three planes (Schonland, 1959

The principal g valueis and the magnetic principal axes are found

by diagonalising the matrix G. The principal values are the

square roots of the roots A^, ^2» . A of the secular equation

det (A - A I) = 0

where I is the unit matrix; the equation

G. . 1, . « A .1, .kj k ki

is satisfied by the direction cosines k ^  (j = 1 ,2,3) corresponding 

to the solution A^. Consequently, in diagor.alising the matrix of 

thè G tensor to give the principal values, the 'transforming 

matrix contains the direction cosines of the principal axes with 

the crystallographic axes, thus
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Fi*. 5-5* G tensor components and directions of principal axes

for the four paramagnetic sites observed in deoxyhaemofflobin

after treatment; with sodium nitrite.

Site A GX X = 12.75 G * yy 26.76 Gzz » 39.63

Gxy * - 11.51 G » yz • O.I3 Gxz - 10.62

Directions of principal axes.

a b c

PX 88 115 28

n 61 34 64

PZ 52 121 78

Site B GX X - 12.20 Gyy = 26.42 Gzz - 38.58

Gxy - 11.44 Gyz * —0 • 60 Gxz = -9.73

Directions of princinal axes.

a b c

PX 87 63 27

PY 121 33 116

PZ 31 58 79

Site C X X - 9.40 Gyy
26.82 Gzz * 35.87

Gxy « -10.89 Gzx * -3.17 Gyz 3.15

Directions of principal axe 8.

a b c

PX 91 120 27

PY 62 34 65

PZ 33 122 89
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Fig. 5.5? continued.

Site D GXX * 9.55 G «
yy 27.49 G * zz 36.64

G
xy

» 10.99 Gyz -1.90 G *xz -1.76

Directions of principal axes.

a b c

FX 92 64 29

FY 120 35 114

PZ 32 57 90

The diagonalisation of these matrices, where G « G , G * G ,*y yx xz zx
Gyz ■ GZyf yields the following average values of the principal 

g values. The estimated error in obtaining g values is +0.005.

ex « 5 .8 22

gv - 5.954

g - 2.004z
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R g2 R 2
Sx 0 0

0
O

0

C 0 g

where R is the transpose of R and

R cos 9ax cos eay
cos 9.bx cos 9,

cos 9cx cos 9cy

cos 9cl Z
cos ©.tz
cos 9cz

The same

whence

transform diagonalises g since

R g 2 R - R g R R f i

R g R = gx 0 0

0 sy 0

0 0

Tiie values of the G tensor, the direction cosines, and the 

principal values are given in Fig. 5« 5 for each paramagnetic 

centre.

3.5« Hamiltonian Parameters 17, E.

In a similar fashion to that described in Chapter Four, it 

is possible to calculate the zero field splitting parameter 2D 

by making measurements at two well separated microwave frequencies. 

Use has been made of the JO GHz measurements previously noted 

and a further experimental study was made of g value variation 

in the ab plane at 35 GHz.
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In this case some 'difficulty was experienced in 

crystal and the data obtained from the ah plane is used

find the principal g values. ( TP̂s-v - a.

In polar coordinates the eff.

2
geff

2 2 , . 2 gx cos / sin 9 +
oc

gy

where /, 9 are the polar angles <

runting til!

s used •f r\ U'J

given *y

respect to the principal axes. It is necessary to assume that

g = 2 and that it is directed along the haem normal: this assump- z
r

tion is justified by the 70 GHz measurements. In the haem plane

(the xy plane) the g value is then

2
gxy

n
g c cos °x

o
‘ / 2 . 2+ Sy s m  f

The directions of g , g in°x' °y the haem piane are unknown but let

e be . the angle between the g vectors and the projection of the

a axis onto the haem plane then

2
gxy =

2£x cos2 a X 2+ e) + gy . 2sin (/ + e)

which may be expanded (Slade , 1972) as

2
Sxy

If a least

before, the

2prxy

By equating'

G1’ G0, and. Gc.

may be used

2 . 2 x 2,  / 2 . 2  2 2 x . 2,e + g sin ejcos / + (g s m  e + g r cos e)sm /y x y
( 2 2 K  cos

? 2+ 2(g_ - g ) sine cose sin/ cos/x y

If a least squares fit is undertaken in the same manner as
2ues of g can be fitted to an equation xy

= G„ sin^/ + G^ sin/

and g y may be
- effvalue of gL

may be used with the 70 CHz result to find 2D.



-  125 -

From the EPR measurements on single crystals of deoxy- 

haemoglobin treated with sodium nitrite at 35 GHz and 70 GHz, 

these Hamiltonian parameters were calculated as detailed in 

Chapter Four and are:

2D - 13.5 ±  2.5 cm"1

E - 0.02 + 0.004 cm“1

We must note that there may be a further error in calculating

2D introduced when obtaining gv and g by assuming g .x y z
The values of E from the hydrate paste and deoxyHb/NaNOg 

single crystals are similar in value; the value of 2D is 

somewhat reduced in the latter case. However, it is gratifying 

to observe that the g values and Hamiltonian parameters found 

for ferric ions in hydrate pastes and treated deoxyhaemoglobin 

crystals do not differ too widely and this, in part, supports 

the discovery that the protein structure of haemoglobin in 

aqueous solution inferred from x-ray and small angle neutron 

scattering experiments (Conrad, 1969* Schneider, 1969) agrees well 

with the atomic coordinates found by x-ray diffraction analysis

of hydrate single crystals (Perutz, 1968).

We may make use of the Hamiltonian parameters obtained 

from the hydrate pastes and also from the treated deoxyHb

crystals to extend the calculations of the energies of the 

components of the first excited state.

It has been shown that when the symmetry of the crystall-

ine electric field is sufficiently low then the first excited

state 4m
T1 is split into three components (because of its

three-•fold orbital degeneracy) labelled 4m 4m 4m
I1x’ iy’ X1z and

their energies above the ground state are related to 2D
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and E by (Kotani, 1963)

D = A ? 2 - 1
10 Ez E,

E - X 2 1 - 1
10 EX E3

where X = 435 cm is the spin-orbit coupling coefficient; the

value quoted is for the free ion and the actual value in the

protein will probably be reduced (Kotani, 1961). Defining dE' m

E - E and x z dE" - E - E , y z’ we may obtain

1 . - 0.2 X2 1
dE' E 2(D-E)Z « -

Ez

1 » 0.2 X2 1
dE" E22(D-E) Ez

By assuming that the values of dE' and dE" are the same in

the low spin and high spin derivatives of haemoglobin, Kotani 

was able to predict that 2D * 3.8 cm  ̂ in high spin derivat­

ives using data from the azide derivative; the rather low 

estimate of 2D is probably due to this being a poor assump­

tion. tising the same assumption that Ez * 2000 cm-  ̂ (Kotani, 

1963)» the experimentally obtained values of 2D and E may be

used to calculate E and E .x y
For the hydrate, the paste spectra indicate that ^T1x lies 

3539 cm~^ above and that lies 3553 cm“"* above

The results from the single crystal studies of deoxyhaemoglobin 

treated with sodium nitrite suggest that ^T-jx lies 3103 cm 1 

above ^A^ and that lies 3117 cm  ̂ above ^A^. Despite

the assumption that Ez * 2000 cm”\  it is evident in both cases
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that T̂-|x and ^ 1 y  are very close together in 

are well separated from ^T^.

energy but

5.6. Deoxy(ferrous)haemoglobin.

Single crystals of deoxyhaemoglobin, which contains ferrous 

ions, were mounted in the 70 GHz microwave cavity on the end- 

plate in a nitrogen-filled cabinet; the nitrogen was subsequently 

displaced from the waveguide and cavity by helium gas.

Observations were made at 4»2°K using each crystal face in

turn; the magnetic field was varied up to 5 Tesla.

No electron spin resonance signals were seen from these 

samples. This result agrees with the negative result from

the paste samples. It is possible that the spin-lattice

relaxation time is too short for the signals to be observed 

at 4.2°K or that the zero field splitting is larger than

the microwave quantum; this latter suggestion would put an 

approximate lower limit on the splitting of 2.5 cm \  Since 

deoxyhaemoglobin has a total spin S * 2, it has non-Kramers'

ions and there can be no Zeeman splittings of the lowest

energy level.

Second order perturbation theory has been used to calculate 

the energy levels for an S * 2 ion in a weak crystal field

with a strong axial component and a rhombic contribution 

(Abragam, 1970). Although the transition for the Sz ■ +1 doublet 

is allowed, the low population of these levels would imply a 

considerably reduced signal intensity and the use of a signal 

averaging technique might be of assistance (Klein, 1963» Allen,

1965).
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5.7 Angular variation of the EPR llnewldth.

The linewidths of the first derivative EPR signals observed 

from samples of ITaEOg- deoxyHb crystals at 70 GHz are shown
in Pigs. 5»6 and 5*7) it will be noted that in the ab plane 

the width fluctuates between 23 mT and 180 mT and that in the 

ac plane the width fluctuates between 20 mT and 110 mT. These 

measurements of peak to peak width are subject to an error of
approximately 10$. The variation in linewidth is fairly smooth and 
the smaller widths occur at orientations giving rise to larger 
g values. Furthermore, the curves of linewidth variation cross over 

at orientations corresponding to the crystallographic axes of the 
hydrate.

There are three aspects of the width of the EPR signal which 

require comment. These are* the minimum linewidth observed in certain 

directions, the orientation dependence of the linewidth, and the
correlation between microwave frequency and the linewidth.

The common sources of line broadening do not provide adequate 

contributions to make up the exceptionally broad resonance lines 

found in haemoglobin. It has been estimated that the maximum con­
tribution from spin-spin interactions cannot1 exceed 1.4 mT (Helcke,
1968). It is assumed that spin-lattice broadening is absent because

the linewidth is unchanged on cooling from 77°K to liquid helium
temperatures. Unresolved hyperfine structure due to the ligand or 

the nitrogen nuclei in the haem plane has been shown to be absent 

by measurements at 9 GHz on myoglobin hydrate and azide) it is 
likely that the hyperfine structure is concealed by the line

broadening (Ohne, 1962). Exchange interactions will be negligible

in haemoglobin since the paramagnetio ions are approximately 35 £ 

apart (q.v. Pig. 2.4)«



a



oo0
01

'l

VARIATION IN L I N E W I D T H  IN TH E  AC P L A N E  (70 GHz)
Fig. 5.7

~~I
3.600



129 "

The effect of inhomogeneous broadening mechanisms other than 

the hyperfine interaction should also be considered} an inhomo­
geneous magnetic field may give rise to broadening of the absorption 
line. If the magnetic field is not uniform over the sample volume, 
then resonance will occur at different values of the field in 

different parts of the sample} each ion may give a sharp absorption 

but the overall linewidth will be determined by the field homo­

geneity. However, it has already been noted that the magnetic field 
is homogeneous to at least one part in 10^ so the linewidth

contribution due to this mechanism must be small.
r Crystalline imperfections would produce inhomogeneous broadening} 

these imperfections are of two kinds, a mosaic structure and defects 
or impurities which introduce strains.

A mosaic structure may arise from the combination of many 
small crystallites to form a larger, apparently single, crystal.

Because of small misorientations of the crystallites, the conditions 
for resonance in each crystallite would be identical but since 
the occurrence of transitions depends on the angle made by the
crystallite axes and the magnetic field, the line is the sum of
many lines and the line is thereby inhomogeneously broadened.

Along the principal axes, the dependence of the Resonance line 

position in the EPR spectrum upon the small angle enclosed becomes 

negligible and so the broadening is then minimal.

At 35 GHz microwave frequency, scatter in the azimuthal angle 

and a small variation in g^ was used to explain the linewidth 

variation in myoglobin hydrate and azide very successfully (Helcke, 

1968» Slade, 1968)} however, at a microwave frequency of 70 GHz, it 
was found that the misorientation effect could not satisfactorily 

explain the linewidth variation in the ab plane unless angular 

variations of some 50° between crystallites were assumed} the mis­
orientation required at 35 0Hz was only about 1.5 (Slade, 1968).
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It was further noted that the minimum linewidth did not coincide

with the maximum g value and that the residual linewidth appeared 

to have increased in direct proportion to the microwave frequency. 

It is evident that the misorientation effect is able to account 

for the linewidths observed at 35 GHz but does not account for 

the residual linewidth of approximately 20 mT at 70 GHz in the 

ab plane, nor does it explain the apparent frequency dependence.

Impurities and defects in a single crystal may introduce 

strains which alter the symmetry at the paramagnetic site and 

this may lead to changes in the spin Hamiltonian parameters.
r

It has been observed that lattice defects commonly occur in

haemoglobin crystals (Perutz, 1968)} in pastes frozen to low temp­

eratures, it might be expected that some modification of the 

Hamiltonian parameters would result from cooling-induced strains.

It has been suggested that strain could introduce an additional 

terra into the spin Hamiltonian of the form (Wenzel, 1965)

H  ' “ I  DiJ Si Sj “ X  X Gijlm elm Si Sj
1*3  1 » ®

where G ^ lm is a magnetoelastic tensor and elm the strain} if

a distribution of the tensor elements is represented by d ^  then 

the strain broadening would be

L B 2 - £  dij2 ( <a, 1 |b > - < b | S iSJ |b>)2
1,3

where | a > ■ J -J- > and _} b > - | +£.>

Unfortunately, in the case of | the matrix elements vanish} 

but if the ligand field has a rhombic component (E 4 0) then the 

three doublets of the ^  ground state will no longer be pure 

eigenstates of Sz (Weissbluth, 1967). In this case there may be 

a strain contribution to the linewidth which will depend upon
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the degree of rhombic symmetry, the spread in the values of D^j 

and the magnetoelastic- tensor. Since changes in D due to strain 
reflect variations in the crystal field splitting, it is possible 

that changes in the optical absorption spectrum of haemoglobin

crystals might ensue if they were stressed; this might prove a
suitable test of the strain broadening hypothesis.

Apart from the hypothesised strain induced fluctuations in D, 
there may be a statistical fluctuation in the crystal field at 
individual paramagnetic centres; it has been suggested that previous 

processing of haemproteins may damage the peptide chain (Slade,1968). 
This may lead to small conformational changes which would be 

likely to modify the geometry at the haem plane. It is possible 
to estimate the fluctuation in D giving rise to a linewidth 

contribution; assuming that the contribution due to this effect 

were 10 mT and that the microwave frequency were 70 GHz, the range
Offof g ^  corresponding to this linewidth is 0.078.
It has been shown that (Eisenberger, 1966)

gT - 2.002 - k D2

where k depends on the separation between the ground state and

the first excited state and the spin-orbit coupling. Differentiation 

yields

dg_ ■ — 2 k D dDL

Using the values of 2D and g^ obtained from the paste spectrum 
for the hydrate, the value of k may be found. Differentiation of 

the expression for 2D (q.v. 4»4) gives

dgL - 3 dgL

where terms which are small if 2D ~ 15 cm  ̂ and 1T have been
neglected.
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The value of dD may be thus be found; the hydrate paste 

results yield dD » 2.9 cm 1. A similar calculation for the 

treated deoxyhaemoglobin crystals gives dD = 3*08 cm-1.

It is concluded that a variation of 3 cm""1 is necessary 

to explain a residual linewidth of 10 mT at 70 GHz; this is 

equivalent to a 30^ fluctuation in the value of 2D between 

different paramagnetic centres in a given derivative. It is 

difficult to believe that such a large fluctuation could arise. 

Furthermore, fluctuations in D or E do not give rise to 

frequency dependence of the linewidth (Abragam, 1970).

A satisfactory explanation of the frequency dependence of 

the residual linewidth is yet to be found; it is tentatively 

suggested that the magnetoelastic tensor has a magnetic field 

dependent component which becomes significant at the higher 

fields employed at 70 GHz to observe resonance. This would 

yield a greater D^j contribution thus increasing the linewidth 

through the strain broadening mechanism.
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CHAPTER SIX

CONCLUSIONS

6.1 Optical absorption measurements at room temperature.

The preparation of solutions of various haemoglobin derivatives 

and measurements of their optical absorption spectra have been 

described in 3*1 and 3*2} the movement of the Soret band in 

hydrate/hydroxide mixtures is shown in Fig. 2.5 and a similar effect 

has been observed for fluoride samples (q.v. Fig. 3.5). It is thought
r

that neither the chloride nor bromide ions attach to the protein

at the haem plane since their absorption spectra were identical 

with those of the hydrate.

Although the use of a lyophillic material was satisfactory in

concentrating the protein solutions, it is suggested that attention

should be paid to the use of dialysis under pressure because the 

latter process is quicker and the risk of chemical reaction is

substantially reduced.

The extinction coefficients of the organic monobasic acid 

derivatives, haemoglobin formate, acetate, propionate, n-butyrate, and 

iso-butyrate are given in Table 3.0» it is suggested that the

n-butyrate ion is too large to be bound in the haem pocket 

but that the isomeric ion, iso-butyrate, is able to bond to the 

haem iron. It is thought that this effect may be caused by

steric hindrance, possibly due to the proximity of the histidine 

residue and that this comparison parallels the case of tert-butyl—

iso-cyanide and ethyl iso-cyanide» in this latter example, the larger 

tert—butyl—iso-cyanide is unable to bond in the haem pocket. It

is suggested that the monobasic acid derivatives be studied by 

EPR to determine the spin state of the iron and to find out
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whether small conformational changes result as radicals later in

the series are bound.

Both haemoglobin cyanate and thiocyanate have been studied} 

their absorption spectra are reported (q.v. Fig. 3.8). It is to be 

noted that haemoglobin thiocyanate is soluble, unlike myoglobin thio­

cyanate, and efforts were made to detect precipitation but none 

was observed. No EPR signals were observed from either derivative 

at 9 GHz and 35 GHz; at the latter frequency, the samples were at 

a temperature of 4.2°K. This result may indicate a rapid spin 

lattice relaxation; it is known that OCN~ ions may attach at the

peptide chain termini but no such knowledge is available in respect 

of the SON” ion. Bonding of the OCN to the peptide chains may

bring about small conformational changes and this might explain 

an unfavourable spin lattice relaxation.

It was known that the SCN- ion is ambidentate and infrared

studies were made to determine its mode of bonding at the haem. 

Measurement of the stretching and flexing frequencies of the ion 

indicate that it is likely to bond through the sulphur terminal 

(q.v. Table 3»1)»

It is possible that the use of neutron diffraction techniques 

could confirm the bonding mode in SCN and HbSCN should be 

examined using EPR spectroscopy at temperatures below 4.2°K.

6.2 Cryogenic optical absorption studies.

Measurements of optical absorption at low temperatures were 

undertaken to gain more understanding of the magnetic properties 

of. certain derivatives of haemoglobin, especially those thought to 

be thermal equilibrium mixtures of spin states.

The construction of the sample Dewar and cell has been 

described and the problems of macroscopic sample movements, Mie
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scattering, cylindrical cuvettes, and the shifting of the light 

beam on the detector photocathode have been discussed. The abs­

orption spectra of haemoglobin hydrate, hydroxide, formate, azide, 

and fluoride have been reported in 3»5»3*1» «t seq; a specimen of

haemoglobin hydrate with isonitolhexaphosphate attached was also 

studied. The optical absorption at low temperatures of oxy(ferrous) 

haemoglobin is discussed.

It was found that the hydrate was anomalous and that it

may comprise two components, one always in the high spin state 

and the other being a thermal equilibrium mixture with a low

spin ground state. The hydroxide was found to display a good 

correlation between absorption in the 540 nm band and magnetic 

susceptibility (q.v. Fig. 3»20). Examination of the fluoride and 

the hydrate-IHP complex showed that they were in only one spin

state. The absorption spectrum of the azide suggests that it has

a low spin ground state and that there is an increasing propo­

tion of the high spin state as the temperature is increased.

It is tentatively suggested that the formate derivative may 

comprise two parallel equilibria» first, two different modes of

ligation of the formate radical at the haem plane and second, 

that one mode has a solely high spin character and the other is 

a thermal equilibrium mixture with a low spin ground state.

The observed temperature dependence of the optical absorption 

of oxyhaemoglobin has been discussed in 3»5»3»8»

This work at low temperatures could be extended to single 

crystals and studies could also be made of deoxyhaemoglobin in

solution
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6 .3 - EPR measurements on haemoglobin solutions.

Using a superconducting magnet calibrated in the laboratory,

ERR spectra were obtained for samples of haemoglobin hydrate,

fluoride and formate at 4.2°K using 70 GHz radiation; EPR

spectra were also obtained for these derivatives at 35 GHz.

ho spectra were observed from samples of haemoglobin

cyanate or deoxyhaemoglobin at either frequency.

The hydrate and fluoride spectra were analysed to obtain

values for g , g , g and the linewidth. The formate was notx y z
analysed because of the small splitting observed; it is possible 

that this is due to the formate having two bonding modes

and hence two g tensors for each similar paramagnetic site.

An attempt was made to fit an anisotropic linewidth tensor

to the hydrate spectrum at 70 GHz.

Using the g values obtained, the Hamiltonian parameters 2D 

and E were calculated; for the hydrate these were

2D - 16.5 ±  2.5cm"1

E - 0.016 + 0.003 cm"1

The only result available for direct comparison is 2D » 21 cm 

from Ear Infra-Red measurements; results for similar complexes

are given in 4*4 but no other estimate of E is available.

However, the value of E/D is comparable with that for myo-

globon hydrate.

6.4. ERR measurements on single crystals.

The preparation of single crystals of human deoxyhaemoglobin 

and their treatment with sodium nitrite to give ferric ions

has been described; angular variation studies were made at 70 GHz
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and 4«2°K in three mutually perpendicular planes and in the 

ab plane at 35 GHz.

The accuracy of mounting crystals in the microwave cavity

was approximately 2°. The G tensor obtained from the measure­

ments at 70 GHz is given in Fig. 5.5 and 5.8.

Ey assuming g * 2 it was possible to find g„ and g z x y
from the results in the ab plane at 35 GHz.

The values of the Hamiltonian parameters 2D and E were 

thus obtained from measurements on single crystals of deoxy- 

haemoglobin treated with sodium nitrite and ares

2D - 13.5 ±  2.5 cm”1

E - 0.02 + 0.004 cm”1

It may be noted that this is a similar result to that found

from the paste spectra of haemoglobin hydrate; further, the

values of g and g are not widely different between thex y
hydrate pastes and the converted deoxyhaemoglobin crystals. We

therefore conclude that the EPR spectra of the deoxyhaemoglobin

crystals treated with NaN02 arise from ferric ions to which

water molecules have become attached.

No signals were obtained from crystals of deoxyhaemoglobin

at 4»2°K at 70 GHz frequency and magnetic fields up to 5 ^esla.

fbis suggests that the microwave quantum is too small to .excite

a transition, being about 2.5 cm 1, or that there is a rapid

spin-lattice relaxation, an effect common in ferrous compounds.

It is suggested that signal averaging could be employed to

observe the S « +1 transition, z —
It is suggested that single crystal EPH studies should be 

made of the hydrate and fluoride; this work could then be 

extended to further derivatives such as the formate and azide.
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Further, it would he worthwhile to examine deoxyhaemoglobin at 

70 GHz at lower temperatures - a method successful with other 

ferrous compounds - or to perform EPR experiments at higher 

microwave frequencies.

6.5« EPR linewidths.

The linewidth variation in the single crystal spectra in 

the ab and ac planes is shown in Fig. 5.6,7. The minimum line­

width in the ab plane is 25 mT and in the ac plane is 20 mT.

This residual linewidth does not relate well to the usual

line broadening mechanisms. The misorientation of crystallites is 

inadequate to explain the angular variation at 70 GHz and it 

does not provide an explanation of the frequency dependence 

observed in the paste linewidths.

Statistical fluctuations in 2D would have to be approx-

imately 5*$ "to account for a residual linewidth of 10 mT ;

70 GHz. Such a large variation must be regarded with suspicion.

In rhombic crystalline fields, strain broadening may contribute 

to the linewidth but the contribution would only increase at 

higher microwave frequencies if the magnetoelastic tensor contained 

field dependent terms.

Further information might be obtained by observing the 

optical absorption spectra of single crystals (treated deoxyKb, 

hydrate, or other derivative) under stress since the ligand field 

splitting might thereby be altered; however, the fragility of 

protein crystals makes this very difficult.

6.6. Summary.

'This thesis is an account of spectroscopic research carried
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out with various samples of human haemoglobin derivatives. 

Particular attention has been paid to optical spectroscopy 

at low temperatures and to electron paramagnetic resonance

at 70 GHz. It is hoped that both aspects of this work will 

be extended} in particular, cryogenic optical absorption in 

proteins should be put on a sound theoretical footing to 

take account of Mie scattering and EPR studies should be 

made of other haemoglobin derivatives.


	etheses coversheet 2017.pdf
	753969.pdf

