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ABSTRACT
Convective boundary mixing is one of the major uncertainties in stellar evolution. In order
to study its dependence on boundary properties and turbulence strength in a controlled
way, we computed a series of 3D hydrodynamical simulations of stellar convection during
carbon burning with a varying boosting factor of the driving luminosity. Our 3D implicit
large eddy simulations were computed with the PROMPI code. We performed a mean field
analysis of the simulations within the Reynolds-averaged Navier–Stokes framework. Both the
vertical rms velocity within the convective region and the bulk Richardson number of the
boundaries are found to scale with the driving luminosity as expected from theory: v ∝ L1/3

and RiB ∝ L−2/3, respectively. The positions of the convective boundaries were estimated
through the composition profiles across them, and the strength of convective boundary mixing
was determined by analysing the boundaries within the framework of the entrainment law.
We find that the entrainment is approximately inversely proportional to the bulk Richardson
number, RiB (∝ Ri−α

B , α ∼ 0.75). Although the entrainment law does not encompass all the
processes occurring at boundaries, our results support the use of the entrainment law to describe
convective boundary mixing in 1D models, at least for the advanced phases. The next steps
and challenges ahead are also discussed.
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1 IN T RO D U C T I O N

One-dimensional (1D) stellar evolution models are currently the
only computational tool that can be used to simulate the structure
and evolution of a star from the zero-age main sequence (ZAMS)
up to their final stage. Such models are invaluable due to their
ability to provide estimates for stellar masses (Bersten et al. 2014),
nucleosynthesis yields (Pignatari et al. 2016), progenitor structures
(Arnett & Meakin 2011a), and evolutionary ages (Nieva & Przybilla
2014). Due to their limited dimensionality, 1D stellar models must
prescribe or approximate multidimensional phenomena. This often
leads to a loss of predictability as such parameterizations usually
contain free parameters which are tuned in order for the models to
match observations (e.g. the mixing length theory; Böhm-Vitense
1958). In order to model these highly complex, non-linear processes
such as convection, 3D hydrodynamic models can be computed

� E-mail: a.j.cristini@ou.edu (AC); r.hirschi@keele.ac.uk (RH)

which solve the equations of fluid motion (e.g. the Euler equations).
Such simulations can test the underlying physical assumptions in the
stellar models under semirealistic astrophysical, macroscopic, but
not necessarily microscopic conditions. These simulations resolve
the dynamical time-scales associated with the fluid flow, whereas
stellar models resolve the secular (thermal) time-scales. Previous
3D hydrodynamic models of the carbon and oxygen burning shells
in massive stars (Meakin & Arnett 2007; Viallet et al. 2013; Cristini
et al. 2017), have revealed enlightening results: the dynamic prop-
erties of the convective flow; the balance between turbulent driving
and kinetic energy dissipation (viscosity); convective boundary
mixing through turbulent entrainment;1 propagation of g-mode
waves throughout the stable regions; and some level of agreement
with the entrainment law (equation 3). Building upon our previous
work producing the first 3D hydrodynamic models of the carbon

1Turner (1973) defines entrainment as the transport of fluid across an
interface between two bodies of fluid by a shear-induced turbulent flux.
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shell (Cristini et al. 2017), we extend this by studying the effects
of varying the driving luminosity within the same initial set-up,
provided by the same stellar evolution model of a 15 M� star.

The structure of the paper is as follows. In Section 2, we briefly
describe the set-up of the initial conditions for the hydrodynamical
models. The results and their analyses are presented in Section 3.
We conclude our findings in Section 4. The Appendices include
more details about the computational tools used, various derivations
and supplementary analyses using the RANS framework, with a
particular emphasis on the turbulent kinetic energy.

2 IN I T I A L PH Y S I C A L M O D E L

The computational tools used to calculate the stellar model pro-
viding the initial conditions and hydrodynamic simulations are
described in Appendix A.

As in our previous study (Cristini et al. 2017, C17 hereinafter),
we follow the ‘box-in-star’ approach (e.g. Arnett et al. 2015),
use a Cartesian coordinate system, and a plane-parallel geometry.
Details of the stellar model initial conditions can be found in
Cristini et al. (2016) and in Appendix A. The computational domain
represents a convective region of thickness, t, bounded either side
by radiative regions of thickness, t/2. Initially, the computational
domain and convective region span 5.7 and 2.6 pressure scale
heights, respectively. By including parts of the surrounding radiative
regions, in general (the eps33kmodel is an exception) this ensures
that over several convective turnovers the convective boundaries
will not interact with the vertical domain boundaries. The aspect
ratio of the convective zone is 2:1 (width:height), and therefore the
plane-parallel approximation is not ideal. As in C17, this choice
was made to ease the difficult Courant time-scale condition at the
inner boundary of the grid, allowing longer run-times as well as
better resolution near convective boundaries. Direct comparison
with oxygen burning simulations (e.g. Meakin & Arnett 2007),
which use a spherical grid, suggest that no significant error results.

The computational domain uses reflective, stress-free boundary
conditions in the vertical direction, and periodic boundary condi-
tions in the two horizontal directions. Although the material in the
radiative regions is stable against convection, it has oscillatory g-
mode motions excited by the adjacent convection zone. Meakin &
Arnett (2006) showed that such waves in their 2D model of the
carbon and oxygen shell are well described by the linearized non-
radial wave equation. If left to propagate freely and due to the
reflective boundary conditions, standing waves will develop which
will affect the hydrostatic balance. Therefore, in order to mimic the
propagation of these waves out of the domain, a damping region is
employed which extends radially between a radius of 0.6 × 109 cm
and the lower domain boundary at 0.42 × 109 cm. The damping
region covers the full horizontal extent of the computational domain
between these radii. Within this region, all velocity components
are reduced by a common damping factor, f, resulting in damped
velocities over the damping region, vd = f v. The damping factor
is defined as

f = (1 + δt ωfd )−1 , (1)

where δt is the time step of the simulation, ω = 0.01 is the damping
frequency and is a free parameter chosen to correspond to a small
fraction of the convective turnover. fd = 0.5 (cos(πr/r0) + 1), where
r is the radial position in the vertical direction and r0 = 0.6 × 109 cm
is the edge of the damping region in the vertical direction. Using
this damping function, fd = 0 at r = r0, where the damping region

Figure 1. Radial profiles of the nuclear energy generation rate for each
model. Each profile is normalized to the maximum energy generation rate
in the nominal eps1 model, to allow an easier comparison between the
models.

starts. This ensures a smooth transition between the non-damped
and damped regions.

The energy generation rate is calculated using the same pre-
scription as described by equation (6) in C17, with the addition
of a constant boosting factor, εfac. This factor was set to 1000 in
C17. In this study, εfac varies between 1 (denoted model eps1)
and 3.3 × 104 (denoted model eps33k). Except for the energy
generation rate, all of the models in this study are identical in set-
up to the hrez model of C17. The radial profile of the nuclear
energy generation rate is plotted for all models in Fig. 1, and are
normalized to the maximum energy generation rate of the nominal
luminosity model. The energy generation rate due to neutrino losses
is unchanged for each model, as over such short (dynamical) time-
scales it is not expected that changes in the energy generation rate
due to neutrino losses will have any considerable effect on the
structure of the shell.

In order to be computationally efficient while maximizing the
resolution, a mesh size of 5123 was chosen for all models. This
resolution was shown to be sufficient to model the upper convective
boundary for the hrezmodel of C17. Their vhrezmodel (10243)
at εfac = 103 modelled the lower convective boundary more
accurately, but it is currently too computationally expensive to
compute many models at such a resolution. With a resolution of
5123, the effective Reynolds number of these simulations is Reeff ∼
4000, placing the convective shells within the turbulent regime. See
Appendix B for a description of the effective Reynolds number.

Eight models are computed and are named according to the value
used for εfac, see Table 1. The model eps1k is an extension of the
C17 hrez model up to 6000 s. All other models were computed
from the same initial conditions. This allows one to study the effect
that varying εfac has on the initial transient stage. In particular, the
time required to reach a quasi-steady state, where an equilibrium is
reached between the driving luminosity and numerical dissipation is
of interest. Fig. 2 shows the density (blue) and entropy (red) profiles
for the 3D hydrodynamic model initial output and the corresponding
1D stellar model initial conditions (black). The highest energy
model,eps33k, is difficult to evolve over long times as the energies
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Table 1. Summary of simulation properties. εfac: nuclear energy generation rate boosting factor, τ sim: simulated physical time, vrms: global
rms convective velocity, τ q: quasi-steady state time (total simulation time minus initial transient time), τ c: convective turnover time, RiB, u,
RiB, l: bulk Richardson number for the upper and lower convective boundary regions, respectively, Ma: Mach number.

eps1 eps33 eps100 eps333 eps1k eps3k eps10k eps33k

εfac 1 33 100 333 1000 3000 1 × 104 3.3 × 104

τsim 5000 5000 3600 1640 6000 3635 2000 1190
vrms 6.80 × 105 1.15 × 106 1.59 × 106 1.92 × 106 4.56 × 106 6.93 × 106 1.03 × 107 1.57 × 107

τq 3908 3900 2489 636 5003 2743 1498 592
τc 3257 1789 1317 1025 465 316 219 153
τq/τc 1.20 2.18 1.89 0.62 10.76 8.68 6.84 3.87
RiB, u 1876 559 310 200 42 19 7 4
RiB, l 2.93 × 104 8089 4203 3101 435 188 101 44
Ma 0.0028 0.0048 0.0070 0.0074 0.0209 0.0321 0.0481 0.0727

Figure 2. Initial radial log density (blue) and log entropy (red) profiles. 1D
stellar evolution profiles calculated using GENEC (black) are compared with
the same profiles integrated and mapped on to the Eulerian Cartesian grid
in PROMPI for the eps1k model.

are so extreme that the structure of the shell is disrupted, which
results in the shell becoming dynamically unstable. As such, the
physical simulation time for this model is relatively shorter than the
other models. The global properties of each model are summarized
in Table 1.

3 R ESULTS AND DISCUSSIONS

3.1 General flow properties

The models first pass through an initial transient phase (whereby
the turbulent velocity field is established) and the models eventually
reach a quasi-steady turbulent state, where the initial conditions no
longer influence the flow. The transition to the quasi-steady state for
each model can be seen most easily in Fig. 3, where the specific total
kinetic energy (KE; thick solid lines), KEtot = (v2

x + v2
y + v2

z )/2,
for each model are plotted against the simulation time. The initial
transient phase begins with a characteristic sharp rise in the KE up to
a local maximum, which is then followed by a steady decrease. This
marks the end of the initial transient, and the beginning of the quasi-
steady state. From Fig. 3 it can be seen that the local maximum in
KE during the transient phase increases with εfac, and that the overall
KE for each model increases as εfac is increased. This is intuitive as

an increase in energy generation results in a larger flux of KE at the
temperature peak near the bottom of the shell. The thin dotted lines
in Fig. 3 show the specific total KE, KEtot (thick solid lines) minus
the specific total turbulent KE, KEturb = (v′ 2

x + v′ 2
y + v′ 2

z )/2 (see
Appendix D for a description of the notation). These lines therefore
represent the KE that is not associated with turbulent convection,
i.e. KE due to waves propagating throughout the computational
domain.

Specific KE spectra for each model are presented in Appendix C.
The logarithm of the specific KE evolution over the radius of

the computational domain for the eps1k, eps3k, eps10k, and
eps33k models are shown as contour plots in Fig. 4. The colour
bars show values of log(KE) and are unique to each panel. Each
panel is labelled for the respective model. Each model passes
through an initial transient phase characterized by a strong pulse in
KE near the start of each simulation. The models show semiregular
pulses in KE over their evolution, a characteristic of convective
transport. Such strong turbulent motions also lead to turbulent
entrainment. This is best seen at the upper boundary by the gradual
migration of this boundary into the stable region above. In all
models, gravity waves (excited by the convective flows hitting the
boundary) can be seen in the upper stable region, identified by short,
horizontal yellow streaks.

The entropy evolution over the radius of the computational
domain for the eps1k, eps3k, eps10k, and eps33k models
are also shown as contour plots in Fig. 5. The colour bars show
values of the entropy in units of erg K−1 and are unique to each
panel. Each panel is labelled for the respective model. Turbulent
entrainment is visible via the increasing extent of the high-entropy
convective region.

The panels in Fig. 6 show contour plots for the final snapshot2 of
the eps1k, eps3k, eps10k, and eps33kmodels. Each contour
plot shows the variation in entropy from the mean entropy in the
convective region. This form of visualization was chosen as the
entropy in the convective region is nearly homogeneous. Entropy
variations from the mean are seen in the convective region and at
the boundaries, but are very small (∼10−4, cf. fig. 6 of Cristini
et al. 2017). The magnitude and direction of the arrows represent
the speed and direction of the vx and vy velocity fields within
the x–y plane. With an increase in boosting factor, it can be seen
that the variation in entropy is increasing within the convective
region, shown by darker red and blue hues. The comparative global
distortion of the convective boundaries, in particular the upper

2The eps33kmodel snapshot is taken at 842 s rather than the final snapshot
of the simulation, before the shell becomes disrupted.
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Figure 3. Specific kinetic energy (thick solid) integrated over the computational domain for each time-step of the models eps1k, eps3k, eps10k, and
eps33k. The initial transient is characterized by a sharp rise to a local maximum, followed by a shallow decrease. The roughly horizontal parts of each profile
that follow correspond to the quasi-steady turbulent phases of each model. Apart from the eps33k model, the end of each profile indicates the end of each
simulation. The thin dotted lines show the integrated kinetic energy over the computational domain minus the integrated turbulent kinetic energy over the
computational domain. These lines therefore represent the kinetic energy associated with energy transfer that is not a result of turbulent convection, i.e. kinetic
energy due to waves propagating throughout the computational domain.

Figure 4. Contour plots of the logarithm of the total KE evolution in the radial direction for the eps1k, eps3k, eps10k, and eps33k models. Each panel
has the same radial scale (vertical axis) but has individual scales for the colour bar representing the KE magnitude and thus each model should be compared
qualitatively and not quantitatively. Each model passes through an initial transient phase characterized by a strong pulse in KE near the start of the simulation.
The models, clearly show extended periods of turbulent entrainment, characterized by the migration of the upper boundary into the stable region above, which
can be seen from the radial extension of the relatively higher KE in the turbulent region (yellow region) compared with the upper stable region.
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Figure 5. Contour plots of the entropy in the radial direction for the eps1k, eps3k, eps10k, and eps33k models. Each panel has the same radial scale
(vertical axis) but has individual scales for the colour bar representing the entropy and thus each model should be compared qualitatively and not quantitatively.

Figure 6. Contour plots of the entropy variation from the mean entropy within the convective region. Models from left to right show the entropy variation of
the eps1k, eps3k, eps10k, and eps33k models at the final time-step of each model (the eps33k model is taken at 842 s, before the shell is disrupted).
The magnitude and direction of the arrows represent the speed and direction of the vx and vy velocity fields in the x–y plane.

boundary, clearly increases with an increasing boosting factor, as
would be expected. Smaller scale distortions along the boundaries,
such as Kelvin–Helmholtz instabilities, are also more abundant with
increasing boosting factor.

Using dimensional analysis of a turbulent system, it can be
shown that the energy dissipation rate is ε ∼ v3

rms/
, where 
 is
the integral length scale and vrms represents the velocity of the
largest energy-containing fluid elements (Kolmogorov 1941). As
the energy dissipation rate is set by the energy generation rate which
is proportional to the luminosity, it can be shown that

vx,rms ∝ L1/3, (2)

where vx, rms is the vertical rms velocity, assuming that the integral
scale is constant and that vx, rms ∼ vrms. Several other studies
(Porter & Woodward 2000; Arnett, Meakin & Young 2009; Arnett
et al. 2015; Jones et al. 2017) have also confirmed this proportion-
ality.

For the eight models in this study, the radial (vertical) velocity
does indeed have a positive correlation with the cube root of the
nuclear energy generation rate. This is shown by Fig. 7, where the
vertical rms velocity of each model is plotted against the boosting
factor, εfac. A linear regression on these values reveals a line of
best fit with a slope of 0.318 ± 0.034. This is in agreement with
equation (2).
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Figure 7. Radial (x-direction) rms velocity averaged over the convective
zone versus boosting factor of the nuclear energy generation rate, for all
models. This plot helps determine the scaling between these two quantities,
assuming vx, rms ∝ ε α . A linear regression on this data provides a line of
best fit with a slope of α = 0.318 ± 0.034, implying that the vertical flow
velocity is roughly proportional to the energy generation rate (or luminosity)
to the power one third, or vx, rms ∝ L1/3.

The time-scale of the transient phase and the time required to
establish the turbulent velocity field is approximately one convective
turnover time (Meakin & Arnett 2007, C17). The above scaling
implies that, as the energy generation rate is increased while the
initial structure is kept constant, the convective turnover time (given
in Table 1) will decrease. This is confirmed in Fig. 3 by the relatively
shorter initial transient times and shorter fluctuation3 periods during
the quasi-steady phase for the more energetic models.

From the above, assuming that the integral length scale is
constant, it can be shown that the Mach number scales with the
nuclear energy generation rate. So that, for constant sound speed,
the Mach number varies with the boosting factor as Ma ∝ ε

1/3
fac .

The temporal evolution of the Mach number over the radius of
the computational domain is plotted in Fig. 8 for models eps1k,
eps3k, eps10k, and eps33k. Again, each colour bar is unique
to each model and shows the dimensionless Mach number. Similarly
to Fig. 4, the episodic nature of turbulent convection and the
generation of gravity mode waves in the upper stable region is
well represented by the Mach number.

3.1.1 Model eps33k

Looking at Fig. 4, at first glance, the eps33k model may appear
to still be transitioning through the transient phase, but actually this
transition is shown by the yellow region spanning the convective
region up to around 200 s, followed by strong entrainment at the
upper boundary. Towards the end of the model (> 700 s) a strong
increase (> 1014 erg g−1) in KE can be seen. At that time, the shell
becomes dynamically unstable, and at later times (> 1000 s) the

3Such fluctuations are associated with a phase lag between the buoyant
driving and dissipative damping (Arnett & Meakin 2011b).

shell is completely disrupted. This can also be seen in the time series
of the velocity magnitude snapshots for this model in Fig. 9, where
the velocity magnitude is plotted at 340 s, 840 s, 1020 s, and 1180 s.
Comparing the velocity magnitudes at 340 s and 840 s (top two
panels), it can be seen that the upper boundary has migrated, almost
entirely encompassing the stable region above. By 1020 s (lower
left panel), the upper boundary no longer exists and the entire
previously upper stable region is now turbulent. These turbulent
motions are no longer decelerated by approaching a stable region
above, but still over-turn (as if these motions were approaching a
boundary with an extremely high bulk Richardson number) due
to the reflective boundary condition at the edge of the simulation
domain. By 1180 s, the removal of the upper stable region, leads to
the turbulent velocities increasing dramatically (lower right panel)
as turbulence is still driven by a large nuclear energy generation
rate at the bottom of the shell, and the up-flowing radial velocities
produced from this turbulence are not reduced by a negative
buoyancy force due to the presence of an upper boundary. Instead,
the strong radial deceleration and turning of fluid elements at the
upper domain boundary results in a band of material (� 2 × 109 cm)
with visibly reduced velocities. Regardless, the removal of the
boundary results in an un-damped, runaway acceleration within
the convective region and the velocities become so high that the
fluid approaches the transonic regime (|v| ∼ 108 cm s−1) and the
shell becomes dynamically unstable. This is shown in the bottom
right panel of Fig. 8, where the Mach number can be seen to
exceed 0.25. Unsurprisingly, this demonstrates that for the given
background stratification there is an upper limit to the amount of
artificial boosting that can be applied to the model without complete
shell disruption. Despite such dynamic and violent behaviour, the
short time period between 450 s and 900 s of the eps33k model
still represents turbulent entrainment at a greatly boosted rate, this
time window is used in further boundary analysis for this model.

3.2 Temporal evolution

The importance of including several convective turnovers for tem-
poral averaging of quantities is demonstrated in Fig. 10, where the
rms radial velocity profile (normalized to the velocity in the centre
of the domain) is plotted using various temporal averaging windows
from one to ten convective turnovers. An instantaneous profile (no
time averaging) is also plotted as a black dashed line to illustrate the
variance in velocity over a single snapshot in time. From Fig. 10, it
can be seen that an averaging window of one convective turnover
smoothes out the stochasticity of the instantaneous profile, but is
qualitatively different from the remaining time windows.

The number of convective turnovers completed during the simu-
lation time of each model is shown in Fig. 11, where it can be seen
that the eps1, eps33, eps100, and eps333 models have
all completed two or less convective turnovers. In such models, the
turbulent velocity field may have developed but there is insufficient
time during the quasi-steady state to provide statistically reliable
results.

Therefore, the four models eps1, eps33, eps100, and
eps333 have not completed a sufficient amount of time in the
quasi-steady phase to warrant a full analysis. These models were
thus excluded from the boundary analysis involving turbulent
entrainment. It must be stressed that the poor temporal convergence
of these models is not a result of the models themselves, but due
to a lack of sufficient computational resources. We plan to evolve
these models out to much later times (>10 convective turnovers) in
the future.
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Figure 8. Contour plots of the Mach number in the radial direction for the eps1k, eps3k, eps10k, and eps33k models. Each panel has the same radial
scale (vertical axis) but has individual scales for the colour bar representing the Mach number and thus each model should be compared qualitatively and not
quantitatively. It should be noted that the entirety of the eps33k model has been included to show that towards the end of the model the fluid is approaching
the transonic regime, where the Mach number >0.25.

Figure 9. Sequential vertical cross-sections in the x–y plane of the velocity

magnitude
(
|v| =

√
v2
x + v2

y + v2
z

)
for the eps33k model. Snapshots are

taken at 340 s (upper left), 840 s (upper right), 1020 s (lower left), and
1180 s (lower right). The colour bar represents the values of the velocity
magnitude in units of cm s−1. The upper panels reveal the progressive
expansion of the upper boundary layer into the surrounding stable region.
The lower panels reveal that the upper boundary is then completely disrupted
and the entire previously upper stable region becomes turbulent by the end
of the simulations.

Figure 10. Radial profiles of the rms velocity normalized by the velocity
in the centre of the computational domain. The coloured profiles show the
velocity time averaged over different time windows of integer convective
turnovers; these are one, two, three, four, six, and 10 convective turnovers for
the eps1k model. The black dashed line shows the instantaneous velocity
which has not been time averaged.
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Figure 11. Approximate number of convective turnovers following the
initial transient for each model. Convective turnover times were calculated
as the time taken for a convective eddy with speed vrms, to traverse twice the
height of the convective region. The approximate time for entrainment to
occur over a statistically significant period following the establishment of the
turbulent velocity field is roughly between three and five convective turnover
times. Hence, models eps1, eps33, eps100, and eps333 have not
been evolved sufficiently, such that the turbulent region has been within a
quasi-steady state for a significant time. The models which have evolved
for one convective turnover or less are likely still adjusting to the initial
conditions. Hence, only models eps1k, eps3k, eps10k, and eps33k
are included in the detailed boundary analysis.

The longer time-scales of the remaining models (� 4 con-
vective turnovers), leads to better converged properties over the
longer quasi-steady states. An analysis of these models within the
Reynolds-averaged Navier–Stokes framework and the effect that
varying εfac has on the mean turbulent kinetic energy equation are
presented in Appendix D.

The convective boundaries of these models are also in a quasi-
equilibrated state, where the growth of the boundaries due to turbu-
lent entrainment occurs within an equilibrium regime. This regime
is known as the equilibrium entrainment regime (Fedorovich,
Conzemius & Mironov 2004; Garcia & Mellado 2014) and is
achieved when the time-scale for boundary growth exceeds the
convective turnover time-scale. In such conditions the boundary
evolution is quasi-equilibrated as the entrainment process samples
the entire spectrum of turbulent motions, rather than strong, indi-
vidual plumes. The definitions for the two time-scales mentioned
here and the respective values for the various models are discussed
in Appendix E.

3.3 Turbulent entrainment at convective boundaries

In order to determine the positions of the convective boundaries,
we adopt the method of C17, who calculate the positions based
on the difference in composition between the adjacent convective
and radiative regions. This provides a 2D boundary surface. The
estimated radial position of the boundary is then obtained through
a horizontal mean of the radial position over this surface. These
boundary positions over the simulated times of the eps1k, eps3k,
eps10k, and eps33kmodels are plotted in Fig. 12. The positions
of the upper (top panel) and lower (bottom panel) boundaries are
shown by solid lines, and the shaded envelopes represent twice the
standard deviation from the calculated means. The models show
clear entrainment from the evolution of the boundary position over
time.

The variance in the boundary positions increases as the driving
luminosity is increased. This agrees with the notion that the

boundaries become softer with an increased driving luminosity due
to a higher TKE flux at the boundaries, and that a larger distortion
in the boundary surface (relative to the mean) is characteristic of
more plume penetration.

The evolution of the convective boundary positions for the
eps1k (top left), eps3k (bottom left), eps10k (top right), and
eps33k (bottom right) models are also shown separately in Fig. 13.
These plots are very similar to Fig. 12, but allow an individual
assessment of the entrainment and boundary migration for each
model. The positions of the boundaries are shown by black solid
lines. The best-fit line from a linear regression of the boundary
positions during the quasi-steady state for each model is shown by
a solid coloured line. The corresponding best-fit slope and relative
error are shown in coloured text beside each fit. This slope is the
entrainment velocity, and is remarkably close to linear in each
case. The small errors in the best-fit slope show this. The largest is
1.5 per cent for the upper boundary of the eps33k model.

3.3.1 The entrainment law and boundary stiffness scaling

The time rate of change of the boundary position through turbulent
entrainment (the entrainment velocity), ve, is known to have a power
law dependence on the bulk Richardson number (equation F1; see
Appendix F for details). In this equation, the ratio of the entrainment
velocity to the velocity representing the large-scale fluid elements,
E = ve/vrms, is considered (e. g. Garcia & Mellado 2014). This
relationship between the relative entrainment rate and the bulk
Richardson number is referred to throughout the meteorological
and atmospheric science communities as the entrainment law, and
is typically written as:

E = ve

vrms
= A Ri−n

B , (3)

where A and n are constants. Simulations (e. g. Deardorff 1980)
and laboratory (e.g. Chemel, Staquet & Chollet 2010) studies have
found similar values for the coefficient, A, typically between 0.2
and 0.25. The exponent, n, is generally taken to be 1. On the other
hand, in a recent DNS study, Jonker et al. (2013) showed that A ≈
0.35 and n = 1/2.

The eps1k, eps3k, eps10k, and eps33k models have
been interpreted within the framework of the entrainment law
(equation 3). These models cover a significant period (� 4 con-
vective turnover times) in the quasi-steady state (see Fig. 11). The
entrainment speed (normalized by the rms turbulent velocity) is
plotted as a function of the bulk Richardson number for these models
in Fig. 14. The coloured circles and diamonds represent the values
for the upper and lower boundaries, respectively, for the eps1k
(yellow), eps3k (cyan), eps10k (orange), and eps33k (blue)
models.

The solid line is the best-fit line following a linear regression of
all the data points in (logarithmic) E − RiB space. The line of best
fit is then of the form y = mx + c, where m = −n and c = logA. The
slope (n) and intercept (A) along with the respective errors for this
best fit are noted to the left of the line as n = 0.74 ± 0.04 and A =
0.05 ± 0.06, respectively. The black points in Fig. 14 represent the
entrainment rate, E (as a function of the bulk Richardson number)
obtained in the oxygen shell burning study by Meakin & Arnett
(2007), and the dashed line is the best-fit curve following a linear
regression of their data points. The slope and intercept are also noted
beside this fit as n = 1.05 ± 0.21 and A = 1.06 ± 2.40, respectively.

Comparing the values obtained for the constants in this luminosity
study with those obtained in the resolution study by C17 (see their
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Dependence of convective boundary mixing 4653

Figure 12. Time evolution of the mean radial position of the upper (top panel) and lower (bottom panel) convective boundaries, averaged over the horizontal
plane for the eps1k, eps3k, eps10k, and eps33k models. Shaded envelopes are twice the standard deviation from the mean boundary position. Variance
in the mean boundary position generally increases with increasing driving luminosity, which can be associated with the occurrence of stronger and more
frequent plume penetration of the boundary region. Note the different vertical scale between the upper and lower boundaries.

Figure 13. Time evolution of the mean radial position of the upper (top panels) and lower (bottom panels) convective boundaries for the eps1k model (top
left), eps3k model (bottom left), eps10k model (top right), and eps33k (bottom right). Note the different vertical scale between the upper and lower
boundaries. Instantaneous boundary positions over the simulation times are shown by black lines, the coloured lines in each panel represent the best-fit line
following a linear regression of the boundary position over the quasi-steady state period. The corresponding entrainment velocity given by the best-fit slope
and respective error are given in each panel.

fig. 15), it can be seen that the values for n are in reasonable
agreement, and point towards a value in the range 1/2 ≤ n ≤ 1 for
fusion-driven (neutrino cooling dominated) turbulent convection in
the carbon burning shell of massive stars. The value of A is slightly
smaller than the values quoted in other laboratory and numerical
studies. The lower value of A as compared with that of the oxygen

shell burning simulation (black points) suggests that the efficiency
of the work done by turbulent eddies on the stable stratification at
the boundary of the carbon shell is less than that of the oxygen shell.
This being said, the error in the calculation of A for the oxygen shell
is large, it stands to reason then that both fits could lead to the same
value of A, within the error range of the simulations.
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Figure 14. Logarithm of the entrainment speed (normalized by the rms
turbulent velocity) versus the bulk Richardson number. Coloured points
represent data obtained in this luminosity study: eps1k (yellow); eps3k
(cyan); eps10k (orange); and eps33k (blue). Triangles represent the
values for the lower boundary and circles represent the values for the upper
boundary. The horizontal error bars in the bulk Richardson number are
the standard deviations from the mean over the quasi-steady state period.
The black points represent data obtained in the oxygen burning study by
Meakin & Arnett (2007). The solid and dashed lines show the best-fit
power laws to the respective data, obtained through linear regressions. The
corresponding best-fit slope and intercept along with the respective errors
are shown for the current data (solid line) as n = 0.74 ± 0.04 and A =
0.05 ± 0.06, respectively, and for the oxygen shell (dashed line) as n =
1.05 ± 0.21 and A = 1.06 ± 2.40, respectively.

It is not clear at this stage if a single set of parameters (A and n)
in the entrainment law would apply to all burning stages. In order
to reduce the errors in the calculation of both the bulk Richardson
number and the entrainment rate, models which span larger fractions
of the quasi-steady state are required. The variance of n between
the carbon and oxygen shells suggests that there may be additional
mixing processes occurring besides entrainment in the carbon shell.
Uncertainties in the ‘correct’ value of n for turbulent entrainment are
also present throughout terrestrial simulations, where n = 1/2 was
found by Jonker et al. (2013) while n = 1 was found by Fernando
(1991), for example.

Furthermore, an approximate scaling relation can be obtained
between the bulk Richardson number and the driving luminosity.
This can then allow the determination of the stiffness of convective
boundaries in 1D stellar models. This relation can be obtained
by starting with the formula for the bulk Richardson number
(equation F1) and substituting for vrms using equation (2) leading
to

RiB ∝ v−2
rms ∝ L−2/3, (4)

if the integral scale and buoyancy jump (�B) are assumed to
be constant (reasonable assumptions given an initial hydrostatic
stratification and short dynamical time-scales).

This scaling between the driving luminosity and bulk Richardson
number can easily be tested within the current luminosity study. As
previously mentioned, only the four models eps1k – eps33k are
used to test this relation, as the remaining models do not contain a
sufficient number of convective turnovers over which entrainment

Figure 15. Bulk Richardson number as a function of the nuclear energy
generation rate boosting factor. The upper points represent values for
the lower convective boundary and the lower points represent values for
the upper convective boundary for the eps1k, eps3k, eps10k, and
eps33k models. The grey lines are linear interpolations of each set of
points, with the best-fit slope noted next to each fit by β. In this form, the
scaling between the boundary stiffness and driving luminosity is given by,
RiB ∝ Lβ , where β = −2/3 (− 0.667) is the expected value.

can occur. The bulk Richardson numbers for the upper (bottom
line) and lower (top line) boundaries of these four models are
plotted in Fig. 15 as a function of the boosting factor, εfac. A linear
regression of the data points for each boundary is performed over
logarithmic space in order to determine a best-fit power law and
scaling exponent, β, assuming RiB ∝ Lβ . This best-fit power law
is shown by the grey line for each boundary and the corresponding
value of the scaling exponent is noted beside each one, β = −0.686
for the upper boundary and β = −0.648 for the lower boundary. For
both boundaries, the value obtained is close to the expected value
of β = −0.667. Unfortunately, due to such a sparse data set it is not
possible to obtain errors in the values of the slope. Nevertheless,
such an agreement between theory and simulation is encouraging
and with more data points and longer time sampling for each model
the confidence in these estimates can be improved.

From the best-fit power laws calculated in Fig. 15, the bulk
Richardson numbers can be extrapolated back to the original carbon
burning luminosities of the 1D input model. These are RiB, u =
4750 and RiB, l = 3.77 × 104 for the upper and lower boundaries,
respectively. These values are in agreement (to within a factor
of around 3) with the values calculated in the eps1 model (see
Table 1), although arguably, the eps1 model values are not well
constrained either due to the short number of convective turnovers
simulated (e.g. see Fig. 11). The above values also agree (also to
within a factor of around 3) with the values calculated from the
stellar model initial conditions (see table A1 of C17), which also
have inherent uncertainties, due to the difficulty of calculating the
bulk Richardson numbers over coarse stellar model grids.

The entrainment velocities for the eps1 model can also be
estimated using the above values for the bulk Richardson numbers.
Inserting the above values for the bulk Richardson numbers into
the entrainment law (equation 3) with the values for A and n
determined in Fig. 14 and the rms velocity from Table 1 yields
entrainment velocities of around 14 cm s−1 and 65 cm s−1 for the
lower and upper boundaries, respectively. The corresponding mass
entrainment rates can be estimated using, ṁe = 4πr2ρ ve, where
the density is that of the boundary region averaged over the
quasi-steady state. The mass entrainment rates for the lower and
upper boundaries of the eps1 model are 1.35 × 10−8 M� s−1 and
3.77 × 10−8 M� s−1, respectively. Such mass entrainment rates
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imply that the time required for a mass comparable to that of
the carbon shell (∼0.75 M�) to be entrained is roughly half a
year. This time-scale seems rather short though considering that the
evolutionary time-scale for the carbon shell used as input is roughly
30 years, suggesting that the inferred mass entrainment rate is too
large compared to what is expected from stellar evolution models.

It is very important at this point to remember that the initial 1D
model used in this study corresponds to the start of the carbon
shell burning phase, during which the convective region also grows
significantly in the 1D calculation. We do not expect the mass
entrainment rate derived in this study to apply for the entire carbon
burning stage nor to other burning stages. The Bulk Richardson
number is expected to evolve during a burning stage and between
burning stages. It is expected to increase significantly as the entropy
and mean molecular weight gradients at the convective boundaries
build up throughout the burning stage. At the very end of a burning
stage, the driving luminosity will decrease and entrainment is
expected to cease altogether. This is why a theoretical framework
such as the entrainment law is crucial in order to correctly apply
results of 3D hydrodynamic simulations back into 1D stellar
evolution models and to avoid unrealistic growths of convective
zones.

Despite the difficulties discussed above, the reliable estimation
of the bulk Richardson number is still best pursued through long
time-scale (ideally � 10 convective turnovers) 3D hydrodynamic
simulations of turbulent convection the results of which can populate
the entrainment law parameter space (E − RiB) and constrain the
free parameters A and n. The agreement with the scaling relation,
RiB ∝ L−2/3, for several models over a range of different driving
luminosities, demonstrates the applicability of this scaling relation
to stellar flows. The discrepancy between the extrapolated values of
the bulk Richardson number for natural carbon burning luminosities
and the stellar model initial conditions, could be used to fit free
parameters within the formulation of the bulk Richardson number
for stellar models, namely the integration length, �r, and the integral
scale, 
 (see Appendix F).

With better constrained values of A and n as well as more accurate
estimates of the bulk Richardson numbers within stellar models,
new mixing prescriptions can be incorporated into stellar models,
such as the one suggested by Meakin & Arnett (2007)

ṁe = ∂m

∂r
ve = 4πr2ρ vrms A Ri−n

B . (5)

3.4 Effects of driving luminosity on boundary widths

The composition profiles at both boundaries for the final time-step
of each of the four models (eps1k -- eps33k) are shown in
Fig. 16. Each composition profile has been shifted in radius such
that the boundary position coincides with that of the eps1k model
(for ease of comparison). Boundary region widths are calculated
through the adoption of the method used by C17 (see their Section
4.5.3). This method uses the jump in composition, Ā, between the
convective and stable regions. The boundary region is estimated to
include all but 1 per cent of the composition contained within the
convective region and surrounding stable region.

In Fig. 16, the boundary width is denoted for each model by the
distance between two filled squares at the edges of the boundary
region, and is shown by the, respectively, coloured shaded region.
These boundary widths and their fractions of the pressure scale
height are given in Table 2.

For the upper boundary (right-hand panel of Fig. 16), the
composition profiles are similar except for the eps33k model,

which has a shallower slope over the boundary region. In this model,
the upper boundary is much broader, and the increased driving leads
to a dramatic smoothing in the abundance slope; this is not seen in
the other models. As noted in Section 3.1.1, the strong increase in
driving luminosity, is likely leading to a structural readjustment of
the shell at this time-step and will eventually result in the complete
disruption of the shell.

At the lower boundary (left-hand panel), the abundance profiles
are very similar in slope between all of the different cases, with an
increase in driving luminosity leading to a clear increase in boundary
width. As entrainment becomes more effective with stronger driving
luminosity, the composition in the convective region near the
boundary also increases slightly. The increased amount of heavier
material is due to mixing of material from the stable region below
into the turbulent region.

The smoothing of the horizontally averaged abundance profile
due to the boundary deformation can be measured by the standard
deviation of the boundary position (Fig. 12). The deviation can
be associated with the vertical fluctuations in the boundary surface,
possibly due to plume penetration events. The extent of the boundary
region (its width) can be associated with the strength of shear
mixing (or Kelvin–Helmholtz instability) at the boundary caused
by the U-turning of turbulent fluid elements. The boundary widths
(Table 2) have a weaker dependence on the boosting factor, εfac,
than originally expected, but it can be said that the boundary width
generally increases with boosting factor, leading to a better spatial
sampling of the boundaries. The eps33k model with a boosting
factor of 3.3 × 104 is the only model where both convective
boundaries are spatially resolved at a resolution of 5123 (see the
bottom left-hand panel of Figs D1 and D2). This is encouraging
as it implies that there exists a resolution where the ILES method
adopted here can provide a spatially resolved model of the carbon
shell and its boundaries at nominal luminosity.

4 C O N C L U S I O N S

In this paper, we studied the dependence of convective boundaries on
their stiffness and the turbulence strength. To study this dependence
in a controlled way, we performed a series of simulations of the
carbon burning shell, in which the nuclear energy generation rate
was artificially boosted. The initial conditions were taken from the
15 M� stellar model described in C17. Each model was computed
within a Cartesian cube consisting of 5123 computational zones.
The nuclear energy generation rate was calculated using the same
prescription described in C17, with the addition of a boosting factor,
εfac, which we varied between 1 and 3 × 104. The results showed
that over the short dynamical time-scales, which these models
were run over (due to limited computational resources), the shell
structure was not adversely affected by the boosting (except in
the most extreme case) and served to accelerate the evolution of
the shell through increased rates of entrainment and mixing. As
the structure was unchanged between each model, the vigour of
turbulence was also increased for the same stable stratification and
so the representation of entrainment in the most energetic cases (εfac

≥ 104) was far from being physically realistic during the adopted
evolutionary state.

Such a luminosity study allowed us to populate the parameter
space (E − RiB) of the entrainment law (equation 3) and constrain
the values of A and n for high Péclet number, fusion driven convec-
tion. We found values of A = 0.05 ± 0.06 and n = 0.74 ± 0.04.
The central result of this study is the strikingly clear dependence
of the entrainment rate on the stiffness of the convective boundary.
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4656 A. Cristini et al.

Figure 16. Radial compositional (mean atomic mass) profiles at the lower (left) and upper (right) convective boundary regions for the last time step of
the: eps1k (yellow); eps3k (cyan); eps10k (orange); and eps33k (blue) models. The radius of each model is shifted such that the boundary position
coincides with that of the eps1k model. This makes it easier to compare the slope of the boundary at the final time-step for the different driving luminosities.
Individual mesh points are denoted by filled circles. Approximate boundary extent (width) is indicated by the distance between two filled squares for each
model, and is shown by the correspondingly coloured shaded regions. See Section 4.5.3 of C17 for details on the definition of the boundary width.

Table 2. 2σ r, l, and 2σ r, u are twice the standard deviations from the
horizontal means of the boundary surface positions (shaded envelopes in
Fig. 12). These measurements can be associated with boundary surface
height fluctuations, possibly due to plume penetration events. δrl and δru are
the approximate boundary widths determined from the composition profiles
of the lower and upper convective boundaries, respectively (see Fig. 16).
These measurements of the boundary represent the size of the boundary
region which is formed due to shear mixing at the boundaries. Hp, l and Hp, u

are the average pressure scale heights across the lower and upper convective
boundary regions, respectively.

eps1k eps3k eps10k eps33k

2σr,l(cm) 3.88 × 106 3.88 × 106 5.96 × 106 6.77 × 106

2σr,u(cm) 1.16 × 107 2.26 × 107 2.25 × 107 1.04 × 108

δrl (cm) 4.04 × 107 5.14 × 107 6.24 × 107 5.88 × 107

δru(cm) 1.18 × 108 1.29 × 108 1.40 × 108 2.02 × 108

δrl/Hp, l 0.141 0.181 0.218 0.201
δru/Hp, u 0.339 0.366 0.389 0.535

This result was found for both the top and bottom boundaries. The
bottom boundary being stiffer than the top one, entrainment at the
bottom boundary is slower. While this was already observed in our
previous study C17, the present luminosity study places this finding
on a firm footing.

Comparing to the values found in the resolution study by C17, a
similar value for n was found, and further points to a value of n for
fusion-driven (neutrino cooling dominated) turbulent convection in
the range 1/2 ≤ n ≤ 1. The variance of n between the carbon and
oxygen burning shells (Meakin & Arnett 2007) suggests that there
may be additional mixing processes occurring besides entrainment
in the carbon shell. Comparison to the simulations of Jonker et al.
(2013) suggests that these entrainment values may depend upon
the Péclet number. Further, the structure of the convective region
changes as evolution proceeds. While the entrainment law seems
valid for times of the order of the turnover time, it may not be
universal for evolutionary time scales and conditions.

Further simulations of stellar convection are needed to help
populate the entrainment law parameter space. Longer time-scale
simulations (> 10 τc) are also needed to provide better statistics
during the quasi-steady state and reduce the errors in the calcu-
lated values of A and n. As computing power increases, and the
porting of existing codes to GPU technologies is becoming more
common, more high-resolution, longer time-scale simulations will
be possible.

This luminosity study also confirmed the scaling relation between
the vertical rms velocity and the driving luminosity, vx, rms ∝ L1/3, as
found in previous studies. This study also confirmed the expected
scaling between the bulk Richardson number (stiffness) of the
boundary and the driving luminosity of the shell, RiB ∝ L−2/3. Such a
relation will prove useful in developing new CBM prescriptions for
entrainment in stellar evolution models. For example, it helps to ex-
trapolate values of the bulk Richardson number back to the nominal
carbon burning luminosities. Comparing these extrapolated values
to those from the initial 1D stellar evolution model calculations
in C17 reveals that they are similar to within a factor of around
3.

This study represents a few steps along the very long road of
integrating the results of 3D hydrodynamics simulations into a
theoretical framework that can be used in 1D stellar evolution
models; framework coined ‘321D’ by John Lattanzio and others.
Our simulations give a plausible representation for the physics of
turbulent stellar convection, but only for a few turnover times.
Longer term behaviour, which is crucial for stellar evolution
properties such as the size of mixing regions, remains a challenge.
The evolution of the convective region may modify the entrainment
law, which would depend upon the properties of the convection
zone (e.g. luminosity, entropy jumps, composition jumps, etc.).
The problem may be a coupled one, so that there might not be
a universal entrainment law as suggested by the different values
derived for A and n between carbon and oxygen burning. Despite
this potential non-universality, 3D simulations at various points
throughout the evolution of stars may still be able to constrain
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the values of A and n to be used with the entrainment law in 1D
models.

Including entrainment (or the penetrative overshoot commonly
used in GENEC and other 1D models) moves the convective
boundaries but does not change their shape. As shown in Fig. 16,
abundance profiles at convective boundaries in 3D simulations are
smooth, sigmoid-like functions rather than the step-like functions
found in GENEC and other 1D codes. These smoother shapes
are due to convection-induced shear mixing (probably Kelvin–
Helmholtz instability) occurring at the boundary as the fast upward
convective flow U-turns. Note that rotation-induced shear mixing
(Edelmann et al. 2017) plays a similar role as the convection-
induced shear and both lead to smoother profiles at boundaries.
Using a diffusion coefficient, which is exponentially decaying from
the convective boundary in 1D codes following multi-D simulations
of outer convective regions (Freytag, Ludwig & Steffen 1996;
Herwig 2000) commonly used in MESA (Paxton et al. 2011),
enables the reproduction of asteroseismic constraints and leads to
abundance profiles at boundaries, which are comparable to those
of 3D simulations (Arnett & Moravveji 2017). This exponentially-
decaying mixing leads to larger convective cores like penetrative
overshoot or entrainment but at a rate/extent which may not be
correct. We may thus have to include the growth rate of convective
regions (e.g. via entrainment) and the process that determines the
shape of their boundaries (e.g. shear mixing) as separate processes
in 1D codes in order to reproduce all the properties of convective
boundaries found in 3D hydrodynamic simulations. Further steps
along the 321D road include replacing the mixing-length theory
(Böhm-Vitense 1958) with a theory able to predict convective
properties such as velocities in the entrained region (see Discussion
in Arnett et al. 2015).
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SUPPORTING INFORMATION

Supplementary data are available at MNRAS online.

Table A1. Truncated table of the re-zoned stellar model initial
conditions used in the PROMPI simulations. From left to right,
the following variables are listed: zone number, radius, entropy,
12C abundance, mean atomic mass, mean atomic number, density,
temperature, and pressure. Values are shown for zones within the
bottom of the computational domain (top rows), lower convective
boundary (middle rows), and the top of the computational domain
(bottom rows).

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

A P P E N D I X A : C O M P U TAT I O NA L TO O L S

Initial conditions for the 3D hydrodynamic simulations are provided
by a stellar evolution model of a 15 M� star evolved up to the point
of carbon shell burning. This model was calculated using the Geneva
stellar evolution code (GENEC). The 3D hydrodynamic simulations
presented here were calculated using the Prometheus MPI (PROMPI;
where MPI is an acronym for message passing interface) code. Both
codes are described below.

The 1D stellar model structure and composition were mapped
on to a finer grid for use in the PROMPI code. These finely zoned
stellar model data can be found in full in machine-readable format
as supplementary online material. Several zones from these initial
conditions are also shown in Table A1.

A1 The Geneva stellar evolution code

GENEC (Eggenberger et al. 2008; Ekström et al. 2012) solves
the stellar evolution equations (see e.g. equation (10.1–10.5) of
Kippenhahn, Weigert & Weiss 2013) using a finite difference, time
implicit method within a Lagrangian framework.

The chemical composition is homogeneously mixed in convective
regions up to oxygen burning. The structure equations are de-
coupled from the abundance equations; changes in abundances due
to nuclear burning and diffusive mixing are calculated separately.

Reaction rates are calculated for a nuclear reaction network of 23
isotopes. Energy losses due to the production and loss of neutrinos
is included. A perfect gas equation of state including radiation and
partial degeneracy is used. Opacities are interpolated from tables
provided by the OPAL group (Alexander & Ferguson 1994; Rogers,

Swenson & Iglesias 1996). Mass loss estimates are a function of
metallicity, and calculated according to the prescriptions by Vink,
de Koter & Lamers (2001) and de Jager, Nieuwenhuijzen & van der
Hucht (1988). Energy transport due to convection is assumed to be
adiabatic for deep internal convection, and for convective envelopes,
energy transport is modelled using the mixing length theory with
αml = 1.6 (Schaller et al. 1992). The extent of convectively unstable
regions, is determined by the Schwarzschild criterion, along with
penetrative convection of up to 10 per cent of the local pressure
scale height (for core hydrogen and helium burning phases), where
the pressure scale height is Hp = −dr/d ln p = p/gρ.

A2 The Prometheus MPI code

PROMPI (Meakin & Arnett 2007) is a finite-volume, time explicit,
Eulerian code which uses the piecewise-parabolic method of
Colella & Woodward (1984).

A2.1 Piecewise-Parabolic Method

The piecewise-parabolic method (PPM) is a higher order extension
of Godunov’s method (Godunov 1959; Godunov, Zabrodin &
Prokopov 1962), which utilizes a forward Euler method for time
integration.4 In multiple dimensions, PPM is second-order accurate
in space and time (Colella 1990). PPM provides a Kolmogorov
description of the turbulent cascade down to the dissipation level at
the sub-grid level. It was developed with shock capturing in mind,
and relates the change in turbulent kinetic energy and traversal time
across a shock to the specific entropy production rate (Kolmogorov
1962; Grinstein, Margolin & Rider 2007), or

∂EK

∂t
= −∂s

∂t
= 5

4

�v3

�r
. (A1)

This is the definition for the energy dissipation rate along a turbulent
cascade (in a statistically steady state, see also Appendix B).
Without the use of an explicitly defined viscosity, PPM matches
motions on the turbulent cascade to those at the grid scale. In the
ILES paradigm then, the physical scale at which dissipation occurs
is replaced by the grid scale. The conservation laws are enforced to
machine accuracy, and so the turbulent cascade is well represented
(see Fig. C1 and fig. 8 of Cristini et al. 2017), providing that the
inertial range is sufficiently sampled on the grid.

A2.2 PROMPI design

PROMPI is derived from the legacy astrophysics code PROMETHEUS

(Fryxell, Müller & Arnett 1989). PROMPI utilizes domain de-
composition in order to be parallelised over multiple processors.
Communication between computational nodes is handled by MPI.

The Euler equations for fluid motion (inviscid approximation)
are solved within the ILES paradigm (e.g. Grinstein et al. 2007),

∂ρ

∂t
+ ∇ · (ρ v) = 0; (A2)

ρ
∂v

∂t
+ ρ v · ∇v = −∇p + ρ g; (A3)

4Note that, PPM is a special method in the sense that it has a higher effective
resolution than other differencing schemes, e.g. DNS (see e.g. Sytine et al.
2000, for a discussion).
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Table A1. Truncated table of the re-zoned stellar model initial conditions used in the PROMPI simulations. From left to right,
the following variables are listed: zone number, radius, entropy, 12C abundance, mean atomic mass, mean atomic number,
density, temperature, and pressure. Values are shown for zones within the bottom of the computational domain (top rows),
lower convective boundary (middle rows), and the top of the computational domain (bottom rows). The full table of values is
available in machine-readable form as supplementary online material.

i r [cm] s [ergK−1] X12C Ā Z̄ ρ [gcm−3] T [K] P [bar]

0001 4.161 × 108 1.649 × 108 6.099 × 10−3 18.17 9.072 1.737 × 106 8.642 × 108 9.594 × 1022

0002 4.165 × 108 1.650 × 108 6.099 × 10−3 18.17 9.072 1.733 × 106 8.643 × 108 9.570 × 1022

0003 4.169 × 108 1.651 × 108 6.099 × 10−3 18.17 9.072 1.729 × 106 8.644 × 108 9.546 × 1022

...
1249 8.987 × 108 2.979 × 108 5.056 × 10−2 17.63 8.807 1.870 × 105 9.043 × 108 9.805 × 1021

1250 8.990 × 108 3.046 × 108 6.852 × 10−2 17.42 8.699 1.826 × 105 9.201 × 108 9.868 × 1021

1251 8.994 × 108 3.123 × 108 8.877 × 10−2 17.18 8.578 1.773 × 105 9.361 × 108 9.895 × 1021

...
4998 2.348 × 109 3.947 × 108 3.571 × 10−1 14.38 7.183 8.171 × 103 3.472 × 108 1.717 × 1020

4999 2.349 × 109 3.948 × 108 3.571 × 10−1 14.38 7.183 8.163 × 103 3.471 × 108 1.715 × 1020

5000 2.349 × 109 3.948 × 108 3.571 × 10−1 14.38 7.183 8.155 × 103 3.471 × 108 1.713 × 1020

ρ
∂Et

∂t
+ ρ v · ∇Et + ∇ · (p v) = ρ v · g + ρ(εnuc + εν); (A4)

ρ
∂Xi

∂t
+ ρ v · ∇Xi = Ri, (A5)

where p is the pressure, g the gravitational acceleration, Et the total
energy, Xi the mass fraction of nuclear species i, and Ri the rate of
change of nuclear species i.

A2.3 Model set-up

Kolmogorov (1941) showed that the rate of TKE dissipation at all
scales does not depend on the details of the dissipative process. This
implies that it may be unnecessary to resolve the dissipation sub-
range of the cascade, meaning that the sub-grid dissipation becomes
the effective Kolmogorov length, through its implied viscosity. In
a turbulent flow, the momentum diffusion (viscosity) is negligible
in comparison to the advection of KE at all scales except near the
Kolmogorov scale and below it. In ILES, the minimum amount of
dissipation required in order to maintain monotonicity and energy
conservation is adopted.

The implicit sub-grid scale model used in ILES is the leading
order term in the truncation error, which is a result of discretizing
the Euler equations through the use of PPM, and is therefore of
second-order accuracy.5 The qualitative effects of dissipation at the
grid scale are implemented in ILES. Energy conservation is built
into the ILES scheme; KE that cascades down to the sub-grid scales
from the resolved scales is damped as the velocity fluctuations are
dissipated. The internal energy of the fluid is suitably increased in
such a way that it mimics viscosity at the Kolmogorov scale, which
would dissipate the structures at this scale into heat.

The specific form of this numerical diffusion is the same as the
simplest case described in the appendix of Colella & Woodward
(1984). That is the interpolation functions are flattened based on the
steepness of the pressure jump across a zone and an extra explicit
diffusive flux is also added. In multiple dimensions, this method is

5Unlike other LES methods, ILES does not require the use of an explicit
sub-grid model.

valid providing that the same flattening is applied to the derivatives
in each direction (Colella 1990).

A Cartesian geometry is used, and the boundary conditions are
reflective in the vertical direction and periodic in the horizontal
directions. Velocities are also damped near the domain boundary
in the vertical direction using a sinusoidal function. Explicit time-
stepping is used to ensure that all structural and acoustic changes
within cells are temporally resolved.

The time-step, �t, is restricted such that it is in accordance with
the CFL condition (Courant, Friedrichs & Lewy 1928), specifically

�t = Cmax
�x

cs

, (A6)

where �x is the cell width, cs is the local sound speed, and Cmax

is the Courant factor set to be 0.8.
The Helmholtz EOS (Timmes & Arnett 1999; Timmes & Swesty

2000) is used to describe the thermodynamic state of the plasma.
Convective heat transport is initiated in the model through small,
random, and equal perturbations in temperature and density. Energy
generation from nuclear fusion is parameterized as a function of
composition, density, and temperature, using a slightly modified
version of the parametrization given by Audouze, Chiosi & Woosley
(1986), Maeder (2009):

ε12C ∼ 4.8 × 1018 Y 2
12 ρ λ12,12, (A7)

where Y12 = X12C/12, X12C is the mass fraction of 12C, λ12,12 =
5.2 × 10−11 T9

30, and T9 = T/109. The loss of energy due to escaping
neutrinos is parameterized using the analytical formula provided by
Beaudet, Petrosian & Salpeter (1967),

εν = 1.590 × 1014λ8

2(1 + 25.22λ)

+ 21.6ρ2λ2

ρ + 8.6 × 105
(1 + 2.215 × 10−6ξ 2)e−4.5855×10−3ξ

+4.772 × 102λ2ρ e−2.5817×10−5ρ2/3λ−1
,

where λ = kBT/mc2 and ξ = ρ1/3λ−1.

APPENDI X B: EFFECTI VE R EYNOLDS
N U M B E R D E R I VAT I O N

A useful dimensionless number for determining the extent of
turbulence in a simulation is the effective Reynolds number. This is
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the discrete analogue of the Reynolds number, Re = v 
/ν, where
v and 
 are the velocity and length scales and ν is the viscosity.
The effective Reynolds number is defined using the following
arguments. The rate of energy dissipation at a length scale λ is
ε ∼ v3/λ (Kolmogorov 1941). One can then approximate the rates
of energy dissipation at the extreme scales of the simulation, i.e. at
the integral scale and the grid scale. These energy dissipation rates
are

ε
 = v3
rms



and ε�x = �v3

� x
, respectively, (B1)

where �v is the flow velocity across a grid cell; this velocity can
also be used to define an effective numerical viscosity at the grid
scale

νeff = �v�x. (B2)

For a turbulent system within a statistically steady state, Kol-
mogorov (1962) showed that the rate of energy dissipation is equal
at all scales; applying this equality to equation (B1) yields (with the
use of equation B2)

νeff = vrms


(
�x




)4/3

. (B3)

Assuming the integral scale is the size of the convective region,

cz, then the effective Reynolds number can be expressed as (to
within a factor of 2)

Reeff =
(




�x

)4/3

∼ N 4/3
x , (B4)

where Nx is the number of grid points in the vertical direction.
In these simulations this is a slight over-estimate as in the vertical
direction only half of the grid points represent the convective region.
Therefore, for these models which have a vertical resolution of Nx =
512 zones (256 in the convective zone), the effective Reynolds
number is, Reeff ∼ 1625 − 4000, which is comfortably within the
turbulent regime.

APPENDIX C : SPECIFIC K INETIC ENERGY
SPECTRA

The properties of the inertial sub-range of scales within the turbulent
cascade are explored by comparing velocity spectra for each model
at different luminosities. This is achieved by performing a horizontal
2D fast Fourier transform6 (FFT) of the vertical velocity at a constant
height, within the centre of the convection zone. The results of this
transform are presented in Fig. C1, where the transform squared,
V̂ (k)2, is plotted as a function of the wave-number. These spectra
are time-averaged over several convective turnover times, where
the convective turnover time is given by, τ c = 2
cz/vrms, with 
cz

being the height of the convective region (see Table 1 for values
of τ c). The 1D profile is obtained by binning the 2D transform
within the ky − kz plane, where ky and kz are the wavenumbers
in the y and z directions, respectively (ky, kz = 0, 2π , 4π , ...,
2π (N/2), where N is the number of grid points in one dimension,
i.e. the resolution). A scaling of (1/NyNz) is applied, where Ny and
Nz are the two horizontal resolutions. The spectra have also been
normalized by k5/3 in order to depict the regions of the spectra
that follow Kolmogorov’s k−5/3 power law (Kolmogorov 1941) as
roughly horizontal. This region is roughly located between the

6Using the Python package NUMPY.FFT.FFT2.

Figure C1. Specific kinetic energy spectrum for the eps1k, eps3k,
eps10k, and eps33k models in the luminosity study. Spectra were
obtained from the squared 2D Fourier transform (in the centre of the
convective region) of the vertical velocity. The vertical axis consists of
the Fourier transform, scaled by a constant. The horizontal axis is the nor-

malized wavenumber, k =
√

k2
y + k2

z . The vertical dashed lines represent

the approximate wavenumber range of three different regions, the integral
range (left), inertial range (centre), and dissipation range (right).

two vertical dashed lines at approximate wavenumbers of k =
20 and k = 250. This wavenumber range represents the scales of
the models that are no longer affected by the initial or boundary
conditions, driving force or dissipation. We also attribute the
leftmost region as the integral range and the rightmost region as
the dissipation range. The magnitude of the specific kinetic energy
(velocity squared) increases with driving luminosity, as would be
expected.

Velocity power spectra at various resolutions up to 10243 are
calculated by Sytine et al. (2000) for both PPM simulations solving
the Euler equations and up to 5123 solving the Navier–Stokes
(NS) equations with explicit viscosity terms. They showed that
by comparing the kinetic energy time dependence that the PPM
solutions required around four times less resolution than the NS
solutions to model the same system.

APPENDI X D : R EYNOLDS-AV ERAG ED
NAV I E R – S TO K E S FR A M E WO R K

It is common, when studying turbulent flows, to average the
governing equations both spatially, to obtain a mean turbulent state
over two dimensions, and temporally, to smooth out the stochastic
nature of turbulence, and provide a statistical average. When taking
a Reynolds average of the Euler equations, a new ‘mean evolution’
of the fluid flow can be represented by averaging the horizontal
components into a radial one.

Reynolds decomposition by construction separates the mean flow
component from the fluctuating component. One can then construct
physically relevant terms, which represent competing processes for
a given conservation law (Ch. 5 of Chassaing 2002). The mean
field is calculated by averaging over the horizontal plane, i.e. for a
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quantity ω

〈ω〉 = 1

�A

∫
�A

ω dA, (D1)

where dA = dy dz and �A = �y �z is the area of the computa-
tional domain perpendicular to the radial axis. The original quantity
can then be expressed as the sum of the mean and fluctuating
components

ω = 〈ω〉 + ω′, (D2)

where the Reynolds average of the fluctuation is by definition zero,
i.e. 〈ω′〉 = 0. The overbar notation denotes a temporal average over
the quasi-steady state. This provides a better, statistically more
meaningful representation of the flow. It also smooths out many
of the instantaneous fluctuations provided the number of convective
turnovers simulated is large enough (� 4). This temporal averaging
is defined as:

ω = 1

�t

∫ t2

t1

ω(t)dt (D3)

for an averaging window �t = t2 − t1.

D1 Turbulent Kinetic Energy Equation

The Eulerian equation of turbulent kinetic energy can be written as
(eq. (A12) of Meakin & Arnett 2007):

∂t (ρEk) + ∇ · (ρEkv) = −v · ∇p + ρ v · g, (D4)

where v is the velocity and Ek = 1
2 (v · v) is the specific kinetic

energy.
Applying horizontal and temporal averaging to the above equa-

tion yields the mean turbulent kinetic energy equation, which can
be written as,

〈ρDtEk〉 = −∇ · 〈Fp + Fk
〉 + 〈

Wp
〉 + 〈Wb〉 − εk ; (D5)

where Dt = ∂t + v · ∇ is the material derivative;
Fp = p′v′ is the turbulent pressure flux;
Fk = ρEkv

′ is the TKE flux;
Wp = p′∇ · v′ is the pressure dilatation;
Wb = ρ ′g · v′ is the work due to buoyancy; and
εk is the implied numerical dissipation of KE.

D2 Effects of driving luminosity on the turbulent kinetic
energy budget

The turbulent kinetic energy (TKE) budget of the models in this
driving luminosity study are interpreted within the Reynolds-
averaged Navier–Stokes (RANS) framework. All of the terms in
equation (D1) were calculated for theeps1k -eps33kmodels and
are shown in Fig. D1. The radial profiles of each term are presented
in the left panels of this figure, with the inferred viscous dissipation
shown by a dashed line. This numerical dissipation is calculated
from the residual TKE (εk in equation (D1)). For a well-resolved
turbulent system, it should be a smooth profile. Each profile is time
averaged over multiple convective turnover times and normalized by
the surface area of the domain. The right panels show bar charts of
the radial integration of each term shown in the left panel. It can be
seen that all profiles increase in magnitude as the driving luminosity
is increased, simply because more nuclear energy is being put into
the system.

The main driving term for the TKE is the buoyancy work, Wb,
which for the eps1k, eps3k, and eps10k models is balanced
by the numerical dissipation at the grid scale, εk. Due to such a
balance, the shell is in a statistically steady state, as shown by
the very small values of the material time derivative of the TKE,
ρDtEk . For the eps33k model, the driving term is so large that
while most of the TKE is dissipated, some of the energy affects
the shell dynamically. Towards the end of the simulation, it is no
longer in a statistically steady state and the shell itself is eventually
completely disrupted.

The peak in the residual TKE (dashed curve in Fig. D1) at
the bottom of the convective shell decreases in amplitude with
increased driving luminosity, and the profile also broadens with
increased driving luminosity. This is mainly due to the broadening
of the boundary itself as the boundary is more easily overwhelmed
by turbulent motions with an increased driving luminosity. For
the most energetic model, eps33k, the lower boundary is broad
enough that the spatial resolution is sufficient to model this boundary
physically and without any adverse numerical effects due to poor
resolution.

To investigate this in more detail, the residual TKE is compared
between these four models for the upper and lower boundary in
Fig. D2. In this figure, the numerical dissipation is normalized by
a value at a common position within the convective region close to
the boundary. This normalization value is numerically converged
at these spatial resolutions (5123) and so poor spatial resolution
at the boundary is revealed by peaks in the dissipation curves.
For the upper boundary (right-hand panel in Fig. D2), the absence
of any peaks suggests that the adopted resolution is adequate to
resolve this boundary of these four models. With the exception
of the eps33k model, all of the models steadily decrease in
relative dissipation towards the boundary, followed by a steeper
slope beyond the boundary, and eventually plateauing to a very
small value within the stable upper region. For the eps33k model,
however, the TKE is so great that the reduction in dissipation
across the boundary region occurs at an almost constant slope.
A possible explanation for such a behaviour is that the TKE of this
model is so great that it destroys the boundary layer altogether (see
Fig. 9).

The lower boundary is much narrower than the upper boundary
(see e.g. Table 2). This is also apparent in Fig. D2 from the
appearance of spurious peaks in the relative dissipation curves
in all models except eps33k. The increase in driving lumi-
nosity broadens the lower boundary, resulting in an increase
in the effective resolution for the higher energy models. This
broadening reduces the amplitude of the dissipation peaks. In
the eps10k model, the dissipation peak is small and in the
eps33k it is almost non-existent. As expected, a lower spatial
resolution is needed to resolve a broader boundary. We see that
an increase in the luminosity at a fixed resolution explored in
this study has the same positive effect on resolving the boundary
as an increase in resolution at a fixed luminosity (as done in
C17).
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4662 A. Cristini et al.

Figure D1. Left: Decomposed terms of the mean kinetic energy equation (equation D1), which have been horizontally averaged, normalized by the domain
surface area, and time averaged over the quasi-steady state period. Time-averaging windows are 5000 s, 2750 s, 1500 s, and 600 s for the eps1k (top panels),
eps3k (upper middle), eps10k (lower middle), and eps33k (bottom) models, respectively. Right: Bar charts representing the radial integration of the
profiles shown in the left-hand panel. This plot is analogous to fig. 8 of Viallet et al. (2013).
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Figure D2. Turbulent kinetic energy residual dissipation curves of the lower (left) and upper (right) convective boundary regions for the: eps1k (yellow);
eps3k (cyan); eps10k (orange); and eps33k (blue) models. The numerical dissipation for each boundary has been normalized by a value at a common
position within the convective region near to the boundary (∼1.0 × 109 cm and ∼1.9 × 109 cm). Therefore, any sensitivity to the spatial resolution should be
revealed by sharp peaks in the dissipation profiles, of which there are none at the upper boundary, but all models except the eps33k model possess sharp
peaks at the lower boundary.

Table E1. Convective turnover times, boundary migra-
tion time scales, and the ratio of these two time scales
for each boundary of the eps1k, eps3k, eps10k, and
eps33k models.

eps1k eps3k eps10k eps33k

τb,u(s) 7066 3377 1346 662
τb,l (s) 15843 7649 3391 975
τc(s) 465 316 219 153
τb, u/τc 15.2 10.7 6.1 4.3
τb, l/τc 34.1 24.2 15.5 6.4

APPENDIX E: EQU ILIBRIUM ENTRAINMENT
R E G I M E

Turbulent mixing is considered to occur within the equilibrium
entrainment regime if the time scale for the boundary migration due
to entrainment, τ b, is comparable to or larger than the convective
turnover time scale, τ c (Fedorovich et al. 2004; Garcia & Mellado
2014). These time scales are defined as

τc = 2
cz

vrms
, (E1)

τb = δr

|ve| , (E2)

where δr is the boundary width (see Table 2) and ve is the en-
trainment velocity (see Fig. 13). The time scales for each boundary
and the ratio τ b/τ c are given for the eps1k, eps3k, eps10k, and
eps33k models in Table E1. This ratio is moderately larger than
one for all of these boundaries suggesting that turbulent entrainment
occurs within the equilibrium entrainment regime.

A P P E N D I X F: BU L K R I C H A R D S O N N U M B E R

The bulk Richardson number is a useful diagnostic for the sus-
ceptibility of a boundary region to the entrainment of material
through turbulent motions (more broadly categorized as convective
boundary mixing). We refer to this susceptibility as the stiffness
of the boundary, i.e. a stiffer boundary is less susceptible to
convective boundary mixing. The bulk Richardson number is
defined as the ratio of the specific stabilization potential (analogous
to the work done against convective motions by the boundary)
to the specific TKE within the convective region. It is written
as

RiB = �B


v2
rms

, (F1)

where �B is the buoyancy jump across the boundary. Based on
the results of Meakin & Arnett (2007), we take the integral length
scale, 
, to be half of the local pressure scale height at the boundary.
The buoyancy jump is estimated by integrating the square of the
buoyancy (Brunt–Väisälä) frequency, N, over a suitable distance
(�r) either side of the boundary centre, rc,

�B =
rc+�r∫

rc−�r

N2dr. (F2)

The integration distance �r is not well defined theoretically but it
should be large enough to capture the dynamics of the boundary
region and the distance over which fluid elements are decelerated.
In these simulations, we take the integration distance, �r, to be a
quarter of the local pressure scale height at the boundary.
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The buoyancy frequency is the frequency with which a perturbed
fluid element will oscillate at if it is surrounded by a stably stratified
medium. This frequency is imaginary for a convectively unstable
fluid element and is defined as:

N2 = g

ρ

(
∂ρ

∂s

ds

dr
+ ∂ρ

∂Ā

dĀ

dr
+ ∂ρ

∂Z̄

dZ̄

dr

)
. (F3)

Bulk Richardson numbers less than 10 are associated with relatively
soft convective boundaries, whereas bulk Richardson numbers
greater than 100 are associated with relatively stiff convective
boundaries.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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