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ABSTRACT

The object of this thesis is to study topological prop-

~ erties of. correspondences, or set-valued mappings, and hy-

perspaces, i.e. spaces of subsets of given sets.

In chapter 1, we study correspondences under their
purely set- theoretical aspect We introduce canonical ex-
tensions and stress their usefulness in proving properties
of correspondences. ‘

Chapter 2 is devoted to topological structures on hy-
perspaces, including the finite topology and_qﬁasi-uniformi-
ties. Chapter 3 pursues that study. The unifying role of
quasi—ﬁniformities is discussed: not only do they often v
yield a common proof of dlfferent results, they also glve
A‘way to new ones.

- Finally, chapter 4 deals with so-called "covering topo-
logies", such as the locally finite topology. We study their
“ properties and compare them with the uniform and the finite
topologies. ' ‘
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INTRODUCTION

This thesis is a contribution to the theory of corre-
spondences (set-valued mappings) and hyperspaces (spaces of
subsets), with E. Michael's paper [8) and C. Berge's book.
[1] as general background.

We start with a study of the purely set-theoretical
properties of correspondences. Our aim here is to present a
detailed and unified treatment of a topic which has been
mostly neglected or dealt with in a rather unsatisfactory
manner in the literature available at present. Thus, we make
a careful distinction between correspondences and what we
call their canonical extensions. We try to define operations
on correspondences in the most natural way possible. Our
treatment of inverses, besides forming a common'background
i for upper and lower inverses, enables us to give a sound
presentation of results on the surjectivity and injectivity
of correspondences.

We then deal with the finite topology and continuous - -
correspondences, again underlining the role played by can-"
onical extensions. This leads us to the concept of continu-
ity at a set, rather than merely at a point, which in turn
enables us to spread new light on topological results con-
cerning correspondences, such as the continuity of compos-
ites. We also generalize one of the most useful properties
~of the finite topology, which states that "a compact union
of compact sets is compact".

In the same vein, we study the hyperspace of a quasi—_
uniform space (i.e. 2 uniform space in which the symmetry
axiom does not necessarily hold), and analyse’the relations
' between topologies and quasi-uniformities in hyperspaces.



In chapter 3, we study topological properties of corre-
spondences. One of the main thoughts here consists in trying
to see how quasi-uniformities can be used to give a more or
less unified picture of the properties considered. This in-
vestigation rests on the fact that every topological space
is quasi-uniformizable; indeed, quasi-uniformities can be
construeted which are compatible with the formation of qua-
si-uniformities in hyperspaces. |

In the same spirit, we also study results on the conti-
nuity of the supremum of a real-valued function. After
treating closed graphs, we prove two general supremum theo-
rems, which then jield corresponding results on continuous
selections.

In his review of E. Michael's paper [8] in Mathematical
'Reviews, vol. 13, 1952, p. 54, J.L. Kelley writes: "The fi-
nite topology (...) is used almost exclusively. (This may be
a serious shortcoming; for example, a topology based on lo-
cally finite coverings seems to offer advantages.)" The ob-
ject of our last chapter is to consider such "covering topo-
logies". Besides comparing them with the uniform and the fi-
nite topologies, we study their separation properties, in -
- particular from the point of view of bitopological spaces.

Each chapter is divided into sections. The theorems,
corollaries and lemmas which compose the text are numbered
serially in a single system that proceeds by chapters. For
example, 3.4 refers to the fourth numbered item in the third
chapter. |

Finally, many thanks are due to our superv1sors, Prof

A.P. Robertson and Mr. P. R. Baxandall for their advice and
their encouragement.



Chapter 1

SET THEORY

OF CORRESPONDENCES

This chapter deals with the set-theoretical prdperties
of correspondences. Its aim is to give an original presenta-
tion of general results, many of which will be used in later
chapters.

In the literature, correspondences are ‘also referred'fo
as set-valued or multi-valued mappings. A correspondence be-
tween a set X and a set Y is usually defined to be a (sin-
gle-valued) mapping of X into the set ¥(Y) of all subsets
of Y. '

Here, we prefer to adopt a slightly different point of
view. Following N. Bourbaki in [2], we define a correspond-
ence between X and Y to be a triple R = (G,X,Y), where G is
a subset of X*xY, called the graph of R. This has the formal
advantage that a function can then be viewed as a special
sort of correspondence. It also enables us to make a defini=
tion for the composite of two correspondences which is con-
31stent with that adopted for functions, whereas it does not
make sense to compose a mapping . f: X——>?(Y) with a mapping
g: Y—¥(z). | .y

0f course, there is a very natural way to associate a
mapping - ZK—%&(Y) to each correspondence R between X and'Y
But we shall always distinguish between that mapping and R
itself. From R, ‘we can also deduce a mapping, ‘which we de-

note by R, of .¥(X) into ¥(Y¥): for each" A‘G'?(X);‘we 1et‘ -



R(A) be the set of all elements of Y that correspond to ele-

ments. of A under R. The relation between R and R, on which
the whole development of this chapter rests, turns out to be
very useful in deducing properties of correspondences from
similar properties of functions (cf. chapter 3). For in-
stance, it enables us to prove véry easily a result on the
continuity of composites (2.6).

 Finally, let us note here that the axiom of choice is
assumed throughout. ‘

§1. THE CONCEPT OF A CORRESPONDENCE

A correspondence between a set X and a set Y 1is defined
to be a triple ‘R = (G,X,Y), where G is a subset of X*Y, ’
called the graph of R. |

1f (x,y) €G, we say that y corresponds to x under R.
We call X the source and Y the target of R. -Instead of say-
ing "let R be a correspondence between X and Y", we shall
often say "let R: X|Y %be a correspondence", or simply "1et
R: X|Y*.

We shall consider functions within this more genersl
concept of a correspondence. Thus, a correspondence R =
(¢6,X,Y) is a function iff, for each x¢X, there exists a u-
nique er which corresponds to x under R,

If G = ¢, we say that R = (¢ X Y) is the embtx cor-- _’
"respondence between X and Y. '

"If ACZX, the set of elements of Y which correspond to .
elements of A under R is called the image of A under R and
is denoted by R(A). If xeX, the set R({x}), which we also
denote by R(x) or simply Rx, is called the section of R a-
long x. Thus, R(x) = {y EY: (x,y)eG}v for each x €X. More-f
over, R(A) = UR(x) for each ACX, Clearly, R(¢) = Q)

‘ . The above definition and notation for the image of a
set under a correspondence are consistent with those usually'



adopted for functions. The notation R(x) for the section of
R along x, howevér, can lead to confusion if R happens to be -
a function. For then, R(x) usually designates the uniqué el-
ement of Y which corresponds to x under R, i.e. the value of
R at x. The section of R along x is then {R(x)}. Fortunate-
1y, this abuse of notation never leads to serious difficul-
ties, as the sequel will show.

The graph of a correspondence R: X|Y is a subset of
X xY. The set of 211 triples R = (G,X,Y) with G e PJ(XxY)
is thus the set of all correspondences between X and Y; we
denote it by M(X,Y). It is not empty, since it contains the
empty correspondence between X and Y. :

Clearly, the mapping G~ (G,X,Y) is a bijection (said
to be canonical) of B(XxY) onto M'(X,Y). The existence of
this bijection enables us, for instance, to translate'imme—
diately every proposition relating to the set Y(XxY) into
a proposition relating to ['(X,Y), and vice-versa. The situa-
tion is the same as with functions, where we have a canoni-

cal bijection G—»(6,X,Y) of the set YX of all graphs of

mappings of X into Y onto the set F(X,Y) of all mappings of

X into Y. | ‘ o
If X=¢ or Y =(¢, then XxY = ¢ and so

P(XxY) = {g), so that M'(X,Y) has exactly one element, the
empty correspondence between X and Y,

Before we go on to discuss canonical extensions, we
- find it desirable to introduce some terminology concerhing
functions between power sets. If X and Y are two sets and

: R(X)—>P(Y) 4is a mapping, the complement of ¥ is de-
fined to be the mapping AYNEL(XNA) of P(X) into P(Y),

and is denoted by £°. Clearly (£°)° = f. iftfollows that if
g: P(X)—>P(Y) is another mapping, then the relations

g=1° and f = g® are equivalent if they hOld; wecsay

that f and g are complementary. Finally, if f: 2P(X)->g(y) o

and g."?(Y)—?iy(Z) are mapvings, ‘then (g-f)C = g% f
- We say that f£: F(X)—>V(Y) preserves unions if §
f(\J.A ) = \E&f(Ai) for each famlly (A )leI pf subsets of X.

iel



Adopting an analogous definition for intersections, it is

clear that f preserves unions iff its complement € pre-
serves intersections. If f preserves unions (resp. intersec-~
tions), then f also preserves inclusions,vin the sense that
the relation ACB implies f(A)Cf(B) for each A and B in
ﬁ%x). If we want to prove that f preéerves unions, it suf-
fices to show that f(A) = \,’f({x}), for each subset A of X.

For then, given any family (A )iei of subsets of X we have,
putting A = k}A

i€l * - | |
) = Urtta) = U U £(1x)) = Uf(Ai).
xeA , ieI X€A4 ieI

Similerly, in order to prove that two union-preserving map-
pings f: B(X)—F(¥) and g: B(X)—K(T) are equal, it
is enough to show that f({x}) = g({x}) for each xeX.

Canonical extensions

-

The canonical extension of a}correspéndence R: X|Y +to
the power sets is defined to be the mepping A—R(A) of

' ﬁ%X) into f«Y), and is denoted by R. ‘The restricted canon-
ical extension of R is defined to be the mapping x—R(x)

of X into D(Y), and is denoted by R.

If X is a set, then we shall always denote the canoni-
cal injection x—{x} of X into §(X) by Jjy. Using this no-

tation, we see that R = Rejr for each R: X|Y.

The identity manping of a set X onto itself will'be‘de-.

- noted by Idy. Ve have IdX = Idg(x), i.e. the canonlcal ex~

tension of the identity mapoing of X is equal to the identi-
ty mapping of P(X).

If R: XI , then R: P(X)—P(¥). presérves unions‘,‘

since R(A) = \UR(x) for each AeP(X). Thus, not every
XeA :

mapping f: F(X)—P(Y) is fhe'cénohical‘exténSion”of a

[
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correspondence between X and Y (cf. 1.1).

We now consider an important example of the canonical
extension of a correspondence. Let X be a set, and define a
correspondence R = (G,X,P(X)) Dbetween X and P(X) by set-
ting G = {(X,E)GX*??(X): X C—E}. The star mapping of X is

defined to be the canonical extension R: W(X)—P(P(X)) of
R, and is denoted by JX' Thus, QX preserves unions. For

‘each AeP(X), the set zsz(A) (ox sunply J(A), when no con-

fusion can arise) is called the star of A in X. Since
R(x) = {EeP(x): x eE} for each x €X, we have
R(A) = UR(x) = {EeB(X): ENA # ¢} for each A€ P,

XeA
i.e. | JX(A) = {BeP(x): Ena # g}.

The power set mapving of X is defined to be the mapping
A—F(A) of P(X) into ¥ (P(X)), and is denoted by'-fx

since  P(X)NB(A) = {Be P (x): Bn(x\a) # 8} = d (x\4)
for each Ae'g(X), the mappings n?x and @X.are complementa-

ry (in particular, it follows that 'gx preserves intersec-—
~tions),

Finally, note that Q?X(x) = 9 o(X), the set of all

nonenpty subsets of X.

The following concept of refinement will help us in |
clarifying the relation between a correspondence and its
canonical extension. We shall also make use of it in the
next section, where we characterize surjectlve and injective
correspondences. R s

If R=(G,X,Y) and S = (H,X,Y) are two correspond-
ences between X and Y, we say that R refines S, and we write
R«S, if GCH. Here, we make use of the canonical biaection‘
of F(XxY) onto P(X ,Y) introduced above, z2nd simply carry
‘the order structure of the set B(X xY) (given by the rela- :
tion "GCH") over to [(X,Y), obtaining an order rela’cion
"R<4 3", If the mapping f: ¥—Y refines R, then we alco say
that f is a selection of R. This means that  £{x) ¢R(x)
each =x &X. Thus, there exists a bijection of the set of all

for
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selections of R onto the product NW%R(X)
X€

. Nore generally, we have R=S iff R(x)cC8(x) for
each xeX. This is also equivalent to the statement:
R(A)CS(A) for each ACX. It follows that

-~

R=8 iff R=8 iff R=8S. |
Thus, the mapping R—R of [(X,Y) into F(X,®Y)) is injec-
tive; similarly for the mapping R—R of [(X,Y) into
T (R(X),7(Y)).

But the mapping R—R is also surjective. Indeed, if
F: X—F(Y) is any member of $KX,$(Y)),Vthen F is clearly
the restricted canonical extension of the correspondence be-
tween X and Y whose graph is the set {(x,y)e XxY: yeF(x)} .

Thus, the mapping R—R is a bijection (said to be canoni-
cal) of [(X,Y) onto ¥ (X,%(Y)). Passing on to graphs, we ob-

tain a bijection of the set T (XxY) onto (ﬁ(Y))X.

In general, however, the mapping Rh»ﬁ_ of P(X,Y)“into
T(B(X),P(¥)) is not surjective. The following result gives
an easy, but useful characterization of those mappings

f: 9(X)—P(¥) which are canonlcal extensions of corre~
spondences between X and Y.

1.1 THEOREM.- In order that a mapping £ (x)—P (¥)
should be the canonical extension of a corre-

spondence between X and Y, it is necessary‘and_suffic1ent
that f preserves unions.

If such a correspondence exists, then it is unique.

Proof.- It is only left to show vsufficiency". So'sup-'
pose that f preserves unions, and consider the
mapping fojy of X into B(Y): we know that there exists a

correspondence R: X|Y such that R = fejgx. Then, we have
R({x}) = R(x) = £({x}) for each =x¢€X. Since R and f bo’ch

preserve unlons, it follows that R = f as required.

The canonical bijection R—R is very useful in defin~
ing correspondences. It means that, if we want to define. a
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correspondence R: X|Y, we only have to specify what R(x)
shall be for each xeX. Let us give an example.of this: the
restriction of R: X|Y +to VAA;X, denoted by RIA,'is defined
by the relation (R|A)(x) = R(x) for each x€A (in agree-
ment with the definition and notation usually adopted for

f:\ . —— ~
functions). Note that R|A = R|A and R|A = Rlﬂ(A).

§2. COMPOSITES AND INVERSES

Composites

Let R: XIY and S: Y|Z be two correspondences. We
call composite of R and 5, and we denote by SR, the corre~
spohdence between X and Z which is uniguely determined by
the relation (SeR)(x) = S(R(x)) for each xeX.

This definition agrees with the usual definition for
the composite of two functions. For the canonical extension
of composites, we have the following result:

1.2 THBOREH - Let R: X|Y and S: Y|Z. Then we have

S°R S-. R and S R = SeR.

-Proof.- if ACX then

(SeR)(4) = uSm(x)) U *sm

i

xX€A
orem. Us1ng this, we obtaln S°R °R°jX = §°§’JX = §'R, as
desired ' ‘ B

xeA yeR(x)
= U S(y) = s(r(a)),
- yeRr(4) . o |
since R(A) = \UR(x). This ‘shows the first part of the the-

Theorem 1.2 is useful in deducing other properties of
-composites. For 1nstance, let R: X|Y, 8: Y|Z and T: ZIW
then T°(S°R) = (T-S)*R (associativity). Indeed, putting
P= Te(S*R) and Q = (T-S)-R, we have

- _— e

_~ L, AN A N AL A e AN
P = T-8sR = T=(S*R) = (T-S)*R = TeS*R =.Q, hence P = Q.-

-
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Similarly, we have ReIdy = Idy*R =R for each R: X|Y

_ e P ~
(identity). For R-°Idy = Reldy R°Id?(x) = R "and

—~ A , ~ =
IdY"R IdY"R = Id»g(Y)"R = R,

i

il

hence the result.

The‘folldwing theorem, which relates refinement and
composites, will be found quite useful in characterizing

surjective'and injective correspondences, in the last part
of this section.

1.3 THEOREM.- Let R,R'e['(X,¥) and s,S5'e '(Y,Z).
If R<R' and S-<38', then S:R<2§'sR', .
Proof.- We show that S(R(x)) cS'(R'(x)) for each
"x €¢X, Now, since R=<R', we have R(x)CR'(x),
hence S(R(x))<CS(R'(x)). Using the fact that S<S8', we now
obtain S(R'(x))cS'(R'(x)), hence the result.

Inverses

-

Let R: X|IY %be a corresvondence. We call inverse cor-

respondence (or simply inverse) of R, and we denote by R",
the correspondence between Y and X which is uniquely deter—

mined by the relatlon R™ 1(y) {x e X yeR(x)} for each
vy ey, ‘

If BCY, we call R—1(B) the inverse image of B under R.

This definition agrees with the usual definition for
‘the inverse of a bijective function. Note however that the
inverse correspondence is always defined, although it need
‘not be a function. Also, the notation for the inverse image -
of a set under R agrees with the usuzl notation for the in—
verse image of a set under a function.

Clearly (R"1)'1 = R.

Closelv related W1th this concept are the followinm two
types of “inverses". o : L

Let R: XIY %bve a corres vondence. We call lower inverse
of R, and we denote by R., the mapping
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B—{xeX: R(x)nB # g} of B(¥) into B(X).

We call upper inverse of R, and we denote by R*, the mapping
' B—>{x eX: R(x)cB} of B(Y¥) into ¥(X).

It is interesting to note that this definition yields a
characterization of the concept of a funciion:

1.4 THEOREM.- In order that a correspohdence‘ R: XIY should
be a function, it is necessary and sufficient

that R, = R*.

Proof.- The condition is clearly necessary. Now suppose

R is not a function. Thus, there exists an ele-~

ment xeX _such'that R(x) does not have exactly one element.
If R(x) = @, then, considering the values of the func-

tions R, and R¥ at the point @eP(Y), we see that
R, (@) = ¥, whereas =x¢€ R*(g); hence R, # R*.

If on the other hand R(x) # ¢, then we choose two dis—
tinct elements y,z in R(x). Putting B = Y\{{z}, we have

x:eR*(B)\\R*(B). Thus, here again, R, # R*.
This shows that the conditidn stated is sufficient.

If R: X|Y and BCY then .

R1(8) = Ur'(y) = {xex: R(x)n3B # ¢} = R (B).
yeB

o ~
so that R, = R"1; in particular, R, preserves unions. More—‘

over, R and R* are clearly complementary mappings, hence R*

preserves intersections.

Also note that R = (R™))™! = (R~ )y

The following useful formulas relate the lower and up-

per inverses to the star and power set mapp*ngo introduced
in §1: |

1.5 THEOREM.~ Let R: X|Y be a correspondence. For each
‘ 'BCY, we have::

a) R(B) = &1(J)(B)) ena R*(B) = ﬁ“(ﬂ(ﬁ));
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3) J(R(E)) = RTW(E)) ena B(RA(2)) = RTUH®)).

Proof.- Indeed, we have ; :
R,(B) = {xeX: R(x)mB gt = Ix eX:_R(x)eJ(B)}

and R¥(B) = {xeX: R(x)cB] = {xeX: R(x)ez?(B)} , which
proves a) .
To prove b), let A be an arbitrary element of Q(X)

 Then we have

Aed(R,(B))e==> ANR, (B) 4 §E=R(A)NB # ¢<==>R(A)eJ(B)

and AeR(R*(B)) e ACR*(B)<=>R(A)CB ¢=)R(A) € 73(13).
hence the result

We finally have the FollOW1ng result concernlng the in—;,f

verse of a comp051te.

1.6 THEOREM.- Let R: X|Y =2nd S: Y|Z be correspondences.
‘Then we have: B
a) (ser)”! = rTes™t, .
b) (8°R), = R,*S,. e .

c) (S<R) = = R*. 8%,

Proof.- To prove b), let B be an arbitrary element of
B(Y). Then we have, for each - x.EX
x & (5°R), (B) = S(R(GXINB £
. =>R(x)N 5,(B) # ¢¢—_—_;xeR,,,(S (B)).
hence the result. Ve then ‘have

(SoR)“ = (SoR) = R,*S, = R’1 s~t = R"Joséj, which proves

a). Part ¢) also follows from b), using the fact that R'r and
R, are comnlementary. ‘ |

Surjectivity and injectivity

The following definition is a nafuraikgeheralizatioﬁ‘df  ;
the notions of surgectlvity, inaectiv1ty and blaectlvity of'e
- functions., : v ,

Let R XIY be 2 corresnondence. : o
R is said to be )urjeotlve, if the famlly (R(x)) X is . 1;
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covering of Y. , | o : T

R is said to be injective, if the sets of (R(X))xeX are mu-
tually disjoint. o S |
R is said to be bijective, if it is both surjective and in-
jective. . : ~ '

- We now give characterizations for surjectivity and in-
jectivity: o o ‘
1.7 THEOREM.- Let R: X|Y. Then the following statements are

equivalent: : S T ‘

- a) R is surjective.

b) The sections of R~ are nonempty.

c)I%4Rm”. |

Proof.- It is clear that a) and‘b) are equivaleﬁt;’Noﬁv
suppose that R is surjective. We claimythat,

- YGR(R-1(§)) for each yEY Indeed, for each ye€Y there

M exists an x €x such that ¥y € R(x); but then X €R™ 1(y)

and so we have y’GR(X)CZR(R'1(y)), as deSired It follows'
that c¢) holds.

Flnally, if Idy < Re R 1, then in particular
‘YCLR( (Y))CZR(X), hence R is surjective.o3~
1 8 THEOREh.- Let R' XIY

Then the following sfatements are .
equivalent: ’ ‘ '

a) R is 1n3ect1ve.

b)""1‘R(X) is a function.

-1,
¢c) R qux

Proof - Again, a) and b) are clearly equivalent Now,~~r(
suppose that R is 1njeot1ve. Ve claim that

-1(R(X))C{X} for each xeX. Indeed for eaCh“yeﬁ(X); .
,the set R 1(y) has eyactly one element° sinéé_‘xern“1(§); wepl
must havevA 1(y) {x}, so that J ;:w' 'ui’:uvp, i ;ip_
‘ 1(3(1)).. VE R-i(y)c;{y}, as desired. _li:"'

yeR(zx)
.It followo that c) holds.
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Finally, suppose that R_1°R<1Idx, ?nd let y eR(X): we

want to show that R_1(y) has exactly one-element.'Now there
exists an x €X such that ¥y e€R(x); hence |

xer" Ny)crR N (R(x)) cix},
showing that R_1(y) = {x}. Hence R is injective.

Using the last two theorems, together with the equalityl,

(""" =nr for a correspondence R: X|Y, we see that the

1

relation R°R™' = Idy is true iff R is surjective and R~

is injective; whenever this is the case, we shall say that R
is strongly surijective. '

1

Similarly, R~1eR = Idy iff R is injective and R~ is

surjective; here, we shall say that R is strongly,injective.‘

Note that, if R is bijective, it does not necessérily

follow that R'1 is bijective. Indeed, R-1 need bé neither
surjective nor injective, as the following example shows:
let X and Y each have at least two distinct elements. Choose
an element x €X, and let R be defined by R(x ) =Y and
R(x) = § for each xe X\ {x, } . Then R is clearly bijective,

but R™ -1 is neither surjective nor injective.

If a correspondence R is a function, then R™! is always
bijective. Indeed, ‘the sections of R are nonempty, hence ?R"1

is surjective. Also, RIR™ 1(Y) is a functlon, hence R~ is
injective. Thus, if R is a function, then R is (Str0381Y)

surjective iff ReR™ -1 IdY, and R is (strongly) ingective
; -1
iff R e =
R Idy.
As an application of the concept of strong surjectivity
(resp. strong injectivity), we have the following result:

1.9 THEORBM.- Let X 12,Y1,Y2 be four sets,fand let

17 e
S: X1|X , T Y1|Y be two correspondences.'

Flnally, let T be the mapping RheT R°S 1.
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of P(X1,Y ) into F(X )

If S and T are strongly surjective (resp.fstronvly in-
jective), then F is surjective (resp. injective).

Proof.~ Let G P(Xz,Y )—~>P(X1,Y ) be the mapplng
R+ T 1°R°S If S and T are strongly surgectlve,
then we have F(G(R)) = F(T™1eRe8) = (7-7"1)oro(5+57") = R
which shows that F is surjective. Similarly for injéetivity.
If R: X|Y and S: Y|Z are surjective, then so is

SeR. Indeed, we have 'IdYa'RoR“ and Idy 4 Ses™!, nence

1d,4 857! = 5oIay°87 <« 5o (Ro R“’)us‘1 (seR)«(S°R)™'. Simi-
larly for 1n3ectiv1ty.

We finish fhis section with SOme conéiderétioné on the.
surjectivity and 1n3ect1V1ty of canonical exten31ons. First

of all, it is clear that the surjectlvity of R 1mplies that
of R. But the corresponding result in the injective case is
not true in general, even if it is assumed fhat the sections
of R are nonempty. For example, let X = {1,2}, Y = {0,1,2],
and define R: X|Y by putting R(1) = {0, 1} and -

R(2) = {0,2). Then R is cledrly injective, but R is not.
If R is surjectlve, then ) is R. If R is inJective, :

then so is R. But the converses of these two assertions are
not true in general; Thus, :if X has at least two distinct

elements, and R = IdX, then R is cléarly surjective, sinoek
it is equal to Idgy). But R is not surjective, since it is
equal to jy. Again, lét X have at 1éast1two distinct eléQv

ments, choose an x, in X, and deflne R: XIY by putting

0 :
R(x,) = X and R(x) = {x} for each xeX\{x o+ Then R is

injective, but R is not, since R takes the same value, viz.:
X, at the two dlstlnct points [x § and X in ?(X)

Finally, we have tne following result°"

1.10 THEOREM.- Let R' XIY be a correspondence. If R is i




strongly surjective (resp. strongly injec-

tive), then R is surjective (resp. 1n3ect1ve)

Proof.- If R is strongly surjective, then ReR™ 1 = IdY'

.’“\
2. _ 2o

Hence we have R°R = Id?(Y), showing

that R is surjective., Similarly for injectivity.

§3. OPERATIONS ON FAMILIES OF CORRESPONDENCES

Unions and intersections -

Let (R ). 1eT be a family of correspondences between X

and Y. We call union (resp. nrtersectlon) of this family,
and we denote by ‘b}R (resp. f\.R ), the correOpondence

ieT i€T
R: X|Y which is unlquely determlned by the relatlon :
R(x) = UR (x) (resp. = (R, (x) ) for each x€X.

iel , jer 1

It Gi is the graph of R for each i.GI then the graph,
of UR (resp. mRi) is clearly equal to UGi (resp. :
iel v-_, iel _ - iel

(\Gi) Because of this, we can transpose to correspondences
iel , ‘

conventions and results relating to unions and intersectlons
of sets.

If ACX, then (UR )(A) = URl(A) and.
i€l ©del

((\ R, )(A)c:(ﬁ\R (A). The last ‘inclusion relatlon cannot in
iel >

general be replaced by an equality. For example, let X have‘
at least two distinct elements Xy1Xy, let ¥ # @, and define

correspondences R1,R2 between X end Y by setting~.Ri(xi) : ¥ ‘
and R,(x) = § for each xeXNlx} and each 4 5‘1 2.
Then R1(\R2 is seen to be the empty correspondence between V
X and Y, so that (R (\Rz)(x) = ¢ Dt R(X) = R (x) -1,

e
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so that R1(X)F\R2(X) =Y is not empty.

The following result, which follows directly from’the
relations above, relates unions (resp. intersections) and
composites: ’ '

1.11 THEOREM.- Let R, : X|¥ (ieI) and S, Y|Z (jed)

J
be two families of correspondences. Then we
have U (s, °Ry ) = (U 8.)( k)R ) and
(1,j)eIxg 3 jeg 37 Tier
M (s8R ) a(MNs)e(MEry).
(i,3)eIxg I jea 37 ier

Ve finally relate unions (resp. intersections) and in-
verses: S
1.12 THEOREM.- Let (R, )161 be a famlly of correspondences

‘between X and Y. Then we hdve'

a) (Ur)™' = Ur ™ ‘ana (\r,)"' = f\R".

1€ i€T iel 17 qer
(j?éRl)* B) = izéRl* and‘
(Nr),(B) < (\RH(B) for each BeR(Y).
1€I “ ‘ ~
¢) (URr)¥(B) = UR £(B) and
i€l i€l

M (B) > (\R *(B) for each ‘Be'?(Y).

(N &,
i€l « :
Proof.- Part a) follows directly from: the definltions.
~Part b) then follows by using the relation be-
tween inverses and lower inverses. The fact that the unner
and lower inverses of a corresoondence are complementary
mappings then yields a proof of c).

Products

Let Ry: X Y, be a correspondence for each 1€TI. :we""s

call product of the family (R, )161’ and we denote by T—TR
- iel

the corresoondence R between | 1X and T—TY which is unique— S

1€I i ieI



1y determined by the relation R(x) = T;ER (xy ) for each
1

= (x;) e [1x..
1€1 " jer

This definition agrees with the usual definition for
the product of a family of functions. Indeed, let

fi: X, —rY be a mapping for each ieI, and let

T—fX ——ex_NY be the usual product of the family (fl)lel’
iel iel

Then we have f(x) = (f (x ))lGI = I_~&f (x )k for each
ie

X = (Xi)IGIGET#‘Xl, which agrees with our deflnltlon above.
; 1eI

If R; = (Gy,X;,¥;) for each i €I, then the graph of
the product - Tv-R. is equal to the 1mage of the set | |G

ieT v . iel i
- under the canonical blgectlon of T”T(X x Y ) onto
iel (e
(T*‘X ) % (T—iY ). A useful consequence of this is the fol-
iel ' - L

lowing:'1f~also S, = (Hl,Xl,Y ) for each i€I, and ‘
.R.-<x S. for each 1GI then TR ﬂﬂSi. The converse is
- . deI 1 jer

also true, prov1ded W’-G # 0.
1€I

If X is the product of a famlly of sets (Xi)iel’ then
pry: X—+X denotes the progectlon of 1ndex. i€I., Ve some—~'
times use the notatlon er, to av01d confuelon. Concernlng

the image of a set under the produot of a famlly of corre—'
spondences, we have:

1.13 THEOREM - Let R Xi Yi be a correspondence for each

1.61 and let R = T-—Rl.»
iel

a) If A C:X for each' ieIl, then
R(TTA)= 1Tr, (A)
161 iel

b) If ACI;TIX , then R( )CTTR (pr (A))
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Proof.- Ad a): Putting A = —’IA , we have

iel
r(a) = UR(x) = Tr, (y ),
x€eA (x ) 784 i€l
whereas T—QR (4) = T" kj R; (x ); hencé the result.
iel v iel x, eA

Ad b): Since AC:Tj‘pr.(A), the result follows
. jer +
from part a).

Note also that, _using the notation of 1.13 and putting

T'—X and Y = llY , the following diagram comrmutes
iel iel

for each i eI, provided the sections of R are nonempty:
X—————aY

. X _ Y.
l lpr (i.e. Riopri = prj R for each 1ieI).

——-——>Y

Indeed, for each x = (XJ)JGIEEX and each 1ieI, we have

R, (pr (X)) = Ry(x;) and pr{ T(R(x)) = pr} (ﬁRj(x )) =R (xi),

since Rj(xj) # @ for each jeI.

If Ryt X |Y and R, X2|Y2 are correspondences, we

call product of R1 and R2, and we denoté by R1)<R2, the cor-

respondence R between X1)<X2.and.YH XY, which is uniquely

" determined by the relation R(x) = R, (x )XI{(XZ) for,each

X = (x1,x )eX1xX2.

Again, this deflnltion agrees with the usual deflnition‘

for the product of two functions. Indeed, let f1. X1 Y1

and f,: X,—>Y, be mappings, and let f: X1)<X2——+Y1X'Y2

be the usual product of f, and f,. Then we have

(=) = (£,(x)),£,(x,)) = if1(x1)}x§f2(x2)} for each

X = (X1:X )5=X1x X5, which agrees with our definition above.
If I= {1,2}, the product of the faan.lJ (R

1)161 is
nothing but the correspondence ga(R % R2)°f N where ‘

f: X, xX,~—11X, and g: Y,x7Y —+rY _are the canonical
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‘bijections. It follows from this that properties of'the
product of two correspondences can be deduced from proper-
ties of the product of a family of correspondences.

The concept of the'product of twaCOrrespondences ena~
bles us to obtain a useful way of describing the graph of
the comp031te of two correspondences"b

1.14 THEOREM.- Let R = (G, %,¥) and S = (HY 2) be two
correspondences. Then the graph of the com- -

posite SeR of R and S is equal to the set (R XIdz) 1(H)

Proof.- For each - (x, z)e:X><Z, we have‘ R
'z es(R(x))é——:» 3y eR(x) with z eS(y),
| i.e. (y,z)eII
= (R xId )(x z)N\H = |
| R ey <R(x)><&z‘s)ml f ¢, |
hence the result. o
For the relation betweeﬁ'products and cdmpbsites; ﬁe:‘
have the following result, which can be deduced from 1. 13

1. 115 THEOREM.- Let Ri.\xirri ana si. YilZ e corre-

| spondences for each 1 eI. Then ﬁ»e-,

W(s "RBy) = (ﬂsi> (Tzy).

,’\16I

As to inverses of products; we‘have,7. ;
1.1€ THECREM.- Let Riﬁ Xi{!i ‘be‘e’cefrespendepee.for each
el iel. Then we have: =~ o '

a) ([Tr)™t = TTr,~

iel it ieT

b) (TTn)(TTB)-T’R

for each (Bi iGIe r?(y ),

(( IR )*(TB ) = WRi‘*(Bi))U(TTRi)*(sJ)

1€I

- for: each (B )iGI T—ng(y )

'_’Proof.- Part a) follows d*rectlv from the definitions'efu
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part b) then follows, since
(1 lR -1)(-—TB ) = T_TR.—1(Bi) by 1.13a. The easiest way to
i€l jeI jer * ;
prove c¢) is to do it directly. We have, for each

(xl)le T_Txl,

iel

rR(x)cTTB «—=1 iel with R(x)—¢ or
ieT 161

R(x;) CBy for each i€I.

- The results we have accumulated so far enable us to
study surjectivity and injectivity of products.

1.17 THEOREM.- Let R 1|Y for each ie:I.
- a) In order that T—TR should be surJective, it is suf-
iel
ficient that Ri is surjective,for each iel.

b) This condition is also necessary, provided

1t s

Proof.- Put Y = Tj;Yl Since part a) is travial if
‘ : ie
.Y = @, ve suppose from now on that Y # ¢

Tnen, the graph of Id, is nonempty. Now I T_TI
b R A

whereas (T—\Rl) (T'-R )"1 ‘_T(R °R; 1), using 1. 15 ‘and
iel iel _ .

1.16. Using the characterization obtained in ., 7, we thus-

have T—TRi is surjective @izéldY < (! lR )e (1 \R -1
iel iel Ciel :
@-_—:)IdY < R °R 1‘ for each i€l

<==9R is gurjective for each iejI

1.18 THEOREM.- Let R,: X. ‘Y for each iel.

a) In order that I‘TR should ‘be inJective, it is su?—
‘ iel o

ficient that R is invgective for each i eI,

b) This condition is also npcescary, nrovided ‘rTRl 1D .
dex &~

not the empty corresnondence betveen T'“X and T—”Y

’ i€I : 1GI
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Proof.- Put X = | |%, and R= [[R;. Again, part a)
‘ iel iel

'is tr1v1al if R is the’ empty correspondence,.so
suppose from now on that this is not the case. The proof can .
be carried out exactly analogous to that of 1,17, using this
- time the characterization obtained in 1. 8, 1f we can only ’

-1

show that the graph of R™ °R is nonempty. ‘But thls graph is

equal to the set {(x,x')éXx X: x'eR 1(R(x))}
~ {(x x')eXxX: R(X)NR(x') # ¢}, and there-— ‘
fore has the p01nt (x,x) as element whenever the section of
R along x is not empty.

. Restricted products

If X and I are sets, -then the diagonal mapping

d: X—XT is defined to be that which is uniquely deter—-
mined by the relation pryed = Idy for each i eI, where
I

ﬂprit X*—X is the proaectlon of index i.for each iel.

If (A, )ieI is a family of subsets of X, we then have - -

a ' (TTay) = lxexs Mx)eTTAA._(\A.

iel iel 1eI .

Let Ry X‘Y be a correspondence for each iE-I We

'define the restrlcted product of the family (Ri)ieI to be H
the correspondence (| |R Jed between X and ]_‘Yl, vhere
iel L 1eI o
S d: X——»XI is:the dlagonal mapplng. R S
”;;T‘ We shall sometimes denote this restrlcted product by k
|

' Ri..Thus, we have (-rT'R )(x) = Tthi(X) for each XGEX.
i€l ‘ i€l i

One can also define* the restricted Droduct of two cor—
respondences R1 and R2. But we shall formulate our results

only for the restricted product of a. family of corre3pond—,7-
ences. ‘ ‘

For eech subset Ac:X, we nave (T-T 'R. )(A)CZ\ tR (A),hsl
, o oder — iEI :
since | (WR )(d(A))c(ﬁIR )(AI) = Tfn (A)

. P .
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1. 19 THEOREM.- Let X be a set, (Y, )leI a family of sets, and

R a correspondence between X'and Y = | ‘ Yi
i€TI

We have'
'a) RS T—'(pr °R)
b) If R is itself the restricted produc‘b of a

family - (R )iQI’ then, provided the sections of R
_ 5 S

are nonempty, R, = prioR for each 1ie I, so “that
' o | " mR=11¢ (pr oR)
iel

Proof - Ad a) For each x EX we have

_ R(x) cC TTpri(R(x)), hence the result.

Ad b): For each x eX. and each i€eI, we have
pr¥(R(x)) pri( TTR (x)) ‘Ri(x)", since

(x) % ¢ for each jeI.

-

‘ Every product can be regarded as a restricted product,
. in the following sense

1.20 THEOREM.- Let R;: X,|Y, for each 1€1I, and put

X = TT’(i. Then rR T"(R °PI‘1)

iel ' ’ jel & - iel

Proof.- For each x = (x )ieICX’ ve have

TTR )(x) = TR, (xi) = TTR (pr (x)), hence

_ eI l, N iel
the result.

As to inverses of restricted products, we have:

1.21 THEOREM.- Lot Ry: XlY be a ‘correspondence for each
. ielI. Puttlng Y = rYi’ we have'v N

i€l
a) (TDr)™t = ﬂ(R teprl).
i€l '
b) (T1'85), (Tha ) = (\ry,(3,)
iel jeI
for each (B )iele T—"Q(Y Yoo
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o) (ITr)%T1B,) = (\IRi*(Bi>)u(ﬂ'R.>*(¢>
ic

i€l i€eTx
for each (B) TTRer,).
ie1* 1e1
Proof.- Letting a: X—XL be the diagonal mapping, so

that —‘I'R (.rTRi)°d, we can use 1.6 and
iel iel —

1.16 to write
(| l'R)1(y)—d'1(WR 1(y)) mR 1(p (y)) for each
1eI :

= (y. )161 €Y, hence the proof of a) Similarly, we have
(T—T Ry), (T’TB ) = d"1(1——R L(By)) = {\\Ri (B,), which
iel . jer *¥
proves b). Agaln,_the easiest way to prove part c) is to do.
it directly.

We finally note the following: a necesééry condition

for 'rT R, to be surjective is that R is surgective for
iel

each i €I, provided ]~TY1 # @; a suff1c1ent condltlon for
jel

};E'Ri to be injective is the existence‘of an index iel

such that Ri is injective.

-
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Chapter 2

TOPOLOGICAL STRUCTURES

ON HYPERSPACES

§1. THE FINITE TOPOLOGY

This section is devoted mainly to continuous corre-
spondences as studied in [1]. Here again, as already noted
at the beginning of chapter 1, we try to underline the im-
portance of canonical extensions. In particular, this leads
us to the new concept of continuity at a set, rather than
~hmerely at a point.- :

.  For convenience, let us flrst review the main ideas
concerning continuous correSpondences and the finite topo-

logy.

Continuous correspondences

Let R be a correspondence between a topological sPace X
and a topologlcal space Y, and let x be a point of X.

R is said to be unber semi- contlnuous (abbr. usc) at X,

if, for each open subset G of Y with R(xo)c:G, there exists
" a neighbourhood U of xb in X such that the relation4 XeU
implies R(x)cCG. | R S
R is said to be lower semi-continuous (abbr. lsc) at'x
0

if, for each open subset G of ¥ with R(x )ING # ¢, there
existé a neighbourhood U-of x, in X such that the relation
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x €U implies R(x)NG # {. ,
R is gaid to be continuous at X, if it is both usc and

lsc at Xo‘

Expressed in terms of upper inverses, we see that R is
usc at X, iff, for each open subset G of Y,»the relation

'3 : . ¥ \ '
x €R (G) implies X, € R*(G). Passing over to the comple~.

ment mapoin , we obtain the'followiﬁg:equivalent statement:
for each closed subset C of Y, the relation x € R ( ) ime

plies x €R %(C)e o 7

Slmllarly, R is lse at Xy iff; for each opeh subseer
of Y, the relation x o€ Ry(G) implies x em, or, equi-
’valently: for each closed subset C of Y the relation f‘t
xoe-R*(C) implies xoe»R*(C)

If ACX, we say that R is continuous (resp.‘uso) (résp.f.:‘

lsc) on A if R is continuous (resp. usc) (résp. lsc) at eve-
ry point of A. If R is continuous on X, we also say simply
that R is continuous; similarly for usc and lsc. It is clear
that R is usc (resp. lsc) iff R*(G)'(resp. R,(G)) is an open
subset of X for each open GCY, or, equivalently, iff R +(C)
(resp. R*(C)) is & closed subset of X for each closed CC:Y

For a mapolng of X into Y, the above three notlons of
continuity are equlvalent to each other, and agree with the
usual definition. In order to avoid misunderstandinas, we

;shall agree to refer to the usual concept of upper (resp.»x
lower) Semi- contlnulty of é real-valued function as that of
numerical upper (resp. lower) semi-continuity, =

Let now (X,J) be a topologncal space (X is the under-
lying set and { is the set of open subsets) Ty
The upper semi-finite topology induced by T on ?(X)'is' i
defined to be that which is generated by the set of all'sets;lf
of the form P(G), with Ge§, and is denoted by T¥, e
_ The lower semi-finite topologx_inducedbby ?'onfﬁ(x),iglf
defined to be that which is generated by the set of a1} Séts"
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of the form J(G), with GeT, and is denoted by F,.

The finite topology induced by T on ?(X) is defined to
be the JOln of * and 3y, and is denoted by 7. In symbols,
we have T = §*vy Fy» using the "v" to denote the join of two

topologies.

We shall use the abbreviation usf (resp. 1lsf) for "up-
per semi-finite" (resp. "lower semi-finite"). The fact that
the mappings'ﬁx and JX are complementary shows that the usf

(resp. 1sf) topology of P(X) is the coarsest of all topolo-
gies on P(X) which have the property that, for each closed
subset C of X, the set 9(C) (resp. B(C)) is closed in 8(x).
If Q c¥(X), the finite topology of @ is defined to be
that which is induced on Q by the finite topology of ?(X),
and will also be denoted by J. Similarly for the usf and the

1sf topologies of €.

The three topologies introduced above are all_admissi;
ble, in the sense that the mapping =x—{x} is a homeomor-
phism of X onto a subspace of §(X). Indeed puttlng '
X' = { x} ¢ x € X}, we see that the image ‘under the bijection

X— X' of any open subset G of X is equal to .-
Te)nx' =Je)nx'.

It is useful to note the followinv simple result

2.1 THEOREM.-
a) The set of all sets of the form P(e), where G is an

open subset of X, 1s a baoe for the usf topology of
B(x).

b) If B is a base for the topology of X, then the set
of all sets of the form (G), where GeB, generates

the 1sf topology of B(X).

Proof.- Part a) follows from the fact that the mapping
”XX preserves intersections, part b) from the

fact that J& preserves unions.
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The continuity of canonical extensions

Let R: X|Y ©be a correspondence between topological

spaces. The relations R, (G) = 2~1(4(¢)) ana
R*(¢) = &~ 1(®(¢)) 4in 1.5a show that R is continuous (resp.
usc) (resp. lsc) iff the restricted canonical extension
R: X—%(Y) of R is continuous, when §(Y) is endowed with
its finite (resp. usf) (resp. lsf) topology.r

We now wish to investigate the continuity of
R: %( X)—»?(Y). First of 211, it is clear that»R is continu_
ous (resp. usc) (resp. lsc) at a point x  in X iff R is con-
tinuous at {xo}e’y(x), vhen ?(X)_and 3(Y) are endowed‘with

‘their respective finite (resp. usf) (resp. lsf) topologies;'
since the mapping x+~>{x} 1is a homeomorphism of X onto 2

subspace of $(X). We also have:
2.2 THEOREM.- Let A cCX. If R is continuouu (resp. usc)
(resp. lsc) at every point of A, then R is
continuous at the point A e‘ﬂ(X); when ?(X)iand R(Y) are

endowed with their respectlve finite (resp. usf) (resp. lsf)
topologies. .
Proof.- It sufflces to consider the "usc" and the nlsc"

cases.
The "usc"‘case:'Let G be any open subset Of,Y with

R(A))eP(6), i.e. R(A )cG. Then, for each x €A, we have
R(x) c@, hence there ‘exists an Open neighbtourhood U¥°of X *in

X such that. R(U};)CG. Putting U = % U y we have R(U)CG,'
' xé€ ‘

so that R(g( (U))cP(G). Since ?(U) is a neighbourhood of A,
in ?(X), the result follows. |

| ‘The "lsc" case: Let G be any open subset of Y with
ﬁ(A Je J(G), i.e. R(A )NG # ¢, and chooue a point X, G.A
with R(x )f\G £ ¢ Now there exists an open neighbourhood U
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of.xo in X such that R(x)NG % @ for each xeU, It fol-
lows that R(A)NG # ¢ for each AeB(X) with ANU # ¢,
so that R (U))CJ(G). Since J(U) is a neighbourhood of ‘Ao

in ¥(X), the result follows.
Summarizing our results, we obtain the following: »
2.3 THEORnM — The following statements are equlvalent

a) R is ‘continuous (resp. usc) (resp. lsc)

b) R is contlnuous, when R(Y) is endowed with its fi—
nite (resp. usf) (resp. 1sf) topology.

c) R is continuous,‘when T(X) and ?(Y) are endowed with

their respectlve finite (resp. usf) (resp. lsf) to-

pologies.
Note that the implication c)=>a)  remains valid if,

in ¢), we replace R by R|Q, where QJ:%(X) contains all
singletons in X. '

-

-Considering the continuity of ﬁ, we naturally come to:
the following concept of oontinuity at a set, rather_than at
a point: we shall say that a correspondence R‘wXIY betwéen
topological spaces is continuous (resp. uso) (resp. 1sc) at

a subset A  of X if the canonical extension >R.rﬂ(X)—JP(Y)

of R to the‘pover'sets is'continuous'at the point A of R(X),

when $(X) and ﬁ(Y) are endowed with their respective finite

(reSp. usf) (rebp. 1sf) ‘topologies. L

’ . The statement of 2.2 can thus be rephrased as follows.o
if R is continuous (resp. usc) (resp. 1lsc) at every point of
Ag, then R is continuous. (resp.,uoc) (resp.‘lsc) at the set

AO"
more general result to be found in chapter 4 (of 4 10b)

2. 2:4 TH“OREH.— For each subset A of X,‘we ‘have:
| a) ‘f?(A) .."B(A), the 1nterior of the set 25’(A) beinb o

In order to characterize this new. cohoépt of continuity;'
Ve need the following theorem, which is a special case of a .
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taken with respect to the finite (resp. usf) topo-
logy of P(X). ‘ ‘

b) ;§(A) J(4), the interior of the set J(A) belng |
" taken with respect to the finite (resp.‘lsf) topo-

logy of ?(X)
We obtain:

2.5 THEOREM.- Let A cX. Then we have: |
a) R is usc at A, iff, for each open subset G of Y the
/"""'\ .
relation Ay CR*(G) implles A, CR*G).,
b) R is 1lsc at A 1ff, for each open subset G of Y the
relatlon A r\R (G) # ¢ 1mplies A r\R (G) % ¢
Proof.- We only prove a), the proof of b) being very
similar. Now, by deflnltlon, R is usc at A
1ff for each open subset G of Y with R(A YeBR(G), the set‘
A'1(®(G))‘1s a neighbourhood~of»Ab*in ®(X), -when ?(X) is en-
dowed‘with its usf topology. Now, the relation ﬁ(Ad)ejﬁ(G)
is equivalent to R(A‘)C:G nence to A t:R*(G) On the oth-~
er hand, we have "‘1(?(G)) 'P(R*(G)) by 1.5b, so that
0\._ /_—-—'_‘
1("B(G)) is a nelghbourhood of A 1ff A, e P(R*(G)). By
2.4a,kthls is equivalent to vAOC;R*(G),,hence the result.

Clearly, we can obtain corresponding results for closed

sets: for part a), the impllcation reads A, F\R (C) # ¢ ===>" :

ANR.(C) # ¢, and for b), A cR*(c)=—-—_.—>A C.R"(C) Also

note that, because of 2. 1b, in order to show that R’ is lsc
at A, it suffices to show that the 1mpllcation
A(\R(G)¢¢==>Ar\R(G)-r‘¢

holds for each member G of a base % for the topology of Y.

If R is both usc and lsc at A ’ then 1t is also contin~f,o

uous at A » It is natural to ask vhether the converse hOldSQ’

Thi a
his Question is not as triv1al as it may first sound- if
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R"R(X)*a?(Y) is continuous at the point A, vhen R(X) ana
P(Y) carry their respective finite topologies, there is,

a priori, no reason why R should remain continuous at that
" point when B(X) and (Y) are endowed with coarser topologies.
Nevertheless, the question can be answered in the affirma-
tive. Indeed, suppose that R is continuous at. As and let

.?(X)'aﬁd B(Y) carry their respective flnlte top010gies. Let

- G be'ény oponfsubset of.Y;with A C:R*(G), we want to show |
‘chaf A, Cm Now we have R(AO)CG, and so0 -R(Ao)e)j’(g),'
Since ?(G) is open in‘?(Y), and R is continuocus, it followow‘
that R 1(?(3)) _gp(R#(G)) is a neighbourhood of A, in‘?(x) |

Thus, A € ?(R*(G —“8( (G)), usmng 2.4a, and hence

A C-R*(G), as desired. In’ the ame way, we can show that R

1s‘1sc~at Ao.

| 'Oﬁryconsideratioﬁs on continultv at 2 set enable us o
_ givé a meaningful."local" result on the cont*nuity of .com~
posites: ' | |
~.2 2.6 THEOREM.- Let R: X[Y and S: Y|Z be correspondenceo
between tOpolovical ‘spaces. IT R is continuousl
at”aﬁsubsef A of X, and S is continuous 2t R(A 9y, then Se R

‘is continuous at A .-Simllarly for "usc" and nlge,

Proof: Endow ﬂ«X), i«Y) and ¥(2) Wlth their respective~

finite topologies. Then R is continuous at the

_‘point A e-@(x), and S is cont*nuoua\at ﬁ(A )e‘ﬁ(Y), hence

S°R j_s ContanOuS at A . Since S’R = S R, the result fol-

lows. Similarly with the usf and lsf‘tOPOlOgies.-

Using 2.2, we then obtain the following resgit dealing
with points: : ' - SRR
2.7 COROLLARY .- If R is continuous at a point X, of X, and §

s continuous‘.at'everY"-POint of R(x_), then
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SR is continuous at Xqe Similarly for "usc" and "lsc',.

Compact unions

One of the most useful properties of the finite topo- . .
- logy is that a compact union of compactgsets is oompact.
More precisely, if (Qc¥ (X) is compact (with respect to its
finite topology) and if each set of @ is compact, then the
union of the sets of @ is also compact. We now wish to ex--
tend this result, which also holds: for the usf topology, to_
other compactness concepts.

Whenever we refer to a compactness conoept, we’ shall
not assume any separation axiom. Thus, a t0pological ‘space X
.. will be called compact (resp. Lindel$f) if every open cov~
ering of X has a finite (resp. oountable) subcovering; we .
also say that X is® ;- (resp.221—).compact; More generally,

if ¥ is any cardinal number, we say that X is ®-compact if -
every open covering of X has a subcovering o0f cardinality
less than . It is clear that R®-compactness is preserved
;‘under continuous mappings. ' o

- We say that X is paracompact (resp. para-Lindelof) if
every open covering of X has a locally finite (resp. locally
countable) open refinement. The terms metacompact and meta- N
Lindelsf are deflned in the same way, replacing "locally"
by "point". ’

"Finally, 1if we replace "every open covering of X" by -

. "every countable open covering of X" in the above defini-
tions. of compactness, paracompactness and metacompactness,;,
we obtain the corresponding concepts: X is countably compact
countablv paracompaCu, or countably metacomnact.

, If, to’ every topological space X, there is associated
- a set o((X)c:X(?(X)) such that each member of. o((X) is a set
of open subseus of X, then we shall say that d is a carrier.i
We shall denote by o, (X) the set of all sets of open subsets
of X, by Af(x) (resp.<xc(X)) the set of all f;nlte (resp.

‘countable) sets of open subsets of X. Similarly foz'dlf(x)'
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(locally finite), ’o(‘ (X) (locaily counta'ble), dpf(X) (point
Vfinite)'.ando( (%) (point countable) B

If o(,ﬂ are carriers, then a subset ACX will be said
to be an (¥, 6)—subset of X if every coverlng /He o((X) of A~
- has a refinement Weﬁ(x) If X is an (0({5) subset of itself
we also .say that X is an (o(,/S) -space.
Clearly, A is an (), o( )- (resp. (0( 0( ) ) (resp.“' 3

,(°(c,o(f) ) subse‘b of X iff it is compact (resp. Lindelof)

(I‘esp.Acountably compact) s o
Also, if A is an (o(- lf)-'- (resp. (o( yo f) ) subset of

X, then it is paracomoact (resp. metacompact) Conversely,

if X is paracompact (resp.Ametacompact) and ACX is closed,

then A'is an , Klf)- (resp. (o(o,txpf) -) subset of X. Simi- :

lar results hold for (o( ) (para-Llndelof), (0( )

. pc
(me’ca-—Lindelof), (o< -4 f)-- (countably pa,racompact) and

)- (countably metacompact) subsets of X.

,( c'xpf u
In the following results, we shall suppose that we areffe 

glven a cardlnal number X and two carriers x,and ﬁ Further,;h

we shall assume that for each topolovlcal space X, the: set

' /5(X) is closed under the formation of unions of families of

cardinallty less than R, i.e. that })I,g éﬁ(X) whenever‘
» €

the 1ndex set I has cardlnallty 1ess than # and @' € ‘6(}()
for each i¢I. This condition is satisfled in the followingﬂ .
sPecial cases: = : . SR . 4
a) ﬁl &)0’ ﬂ ngr 'p(l'f’ fv (ch
b) ﬁZ "‘}?1,ﬂ AC’ dpc ‘

2 8 THEORE“I - Let X be a topological space, and Suppose thatl‘rl
@_C}E(X) is ¢ ~compact with respect to its up~

per semi flnite topoloa-y. If each A€ Q "is an (x'ﬁ)-subset L

Of X, then U A is also an (ol,ﬂ )—sub°e‘t of X. :
peq S

Proof.-— Let ,&60{ ) be a covering Of U A, Then :8 is i

2 coverlng of each set AGQ ,' since A is an
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(X,8 )-subset of X, there exists a refinement 'HAe ﬁ (x) -

/ﬁ, for each Ac—_GL. ,Pﬁtting' HA U H, then HA is an open'l
, He}
A

subset of X with ACHA, and . hence ?(HA) is an open subset. -
of B(X) with Ae‘B(H ) '
Thus, (P(H ))AGQ is an open covering of Q in ’X(X)

Since @ is ®-compact, there exists a subset B of a, of car
dinality less than ®, such-that (} (HA))AGS st111 covers Q.

Then we have UAC. UHA = U U H, so0 that
Ae®@ - AeBd T . AeB HeHy .

')4 U n € Ig(X)
, Ae}
is a covering of U A which clearly ‘refines /H

AG(L

‘ - We now- glve a- ’cable Wh.LCh enumerates spe01al cages of
this general result: '

TR

?;?2%; 320 0(0 ‘o<f com,pf upions of éomp; sets are comp.'
L
meia R0 | %o | pe] comp- " v closea v v Eetas
il L) PH VY PSS ‘m o oot |
sommt | | %l comp. v i " peran
comp. | / : ' _ _ : “cqmp_.
;‘gl‘égf’. §‘go R 0<pf ’Comp. B - closed ,.; 3 -1“  'xig%gf‘
compe. S e S comp, |
%11:2;; By 4 | A, || Lind. " Lind, o ’..  ﬂLindj.: E
AT o | o [ | como. % cosea v w prre-
Bina |1 | % | dpof| Tna. v " ceiosea e e

If we now coas:.dc'r corrmspondences, we ootain the fol-

lowinxr resu.l't' ’ , "
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2.9 THEOREM.- Let X and Y be two topological spaces, with X
{-compact, and let R: X|Y ’be an upper semi-
continuous correspondence.
, If the sections of R are ( ﬂ) subsets of Y, then R(X)»
is also an (o(lé) -subset of Y.

Proof.— Since R(X) U r(x), it suffices, by 2 8 to
xeX :

_ show that the set (@ = {R(x): X € X} is f?-com- -
“pact with respect to its upper semi-finite topology. But

this is the case, since Q is the image of the @-compact

space X under the continuous mapping R.

Finally,-if ve further: assnme that.etéry closed'subset‘
of an-(x ﬁ) space is an (df@) -subset of that space (which is
the case in each of the examples considered above), we have:

2.10 COROLLAPY.—-Let X and Y be two tonological spaces, . w1th
Y an (d ﬁ)-space. If R: X|Y 4is upper semi-

continuous and with closed sections, then the image under R

- of every W-compact subset of X is an (d ﬂ) éubset of Y.. .

We finish this section With some results involvin re-
latively compact sets. A subset A of a topological space X ‘
is said to be relatively comvact if A is contained in a com- -
_ pact subset of X. If X is Hausdorff, this is equivalent to.
"requiring that A be compact. The easiest vay to obtain a re-
sult in this direction is to make direct use of 2.9: .

2.11 COROLLARY.— Let R be an unper semi~ continuous corre-
spondence between a. topological space X and
a topological space Y. If the sections of R are compact,
then the image under R of every relatively compact subset A of
X is a relatively compadt subset of Y. “

Proof.~ Indeed, A is contained in some compact set K,
and R(K) is comoact. :

In order to obtain a result where the sections of R are
only assumed to be relatively’compact, we use theorem 5.3 of
[8], which asserts that the mapoing AwZX of B(X) into it-
self is continuous with respect to the finite topology,. pro-
vided X is normal. = R : - :



- 39 -

2.12 THEOREM.-~ Let X be a normal T1-space, and suppose that

'QE:?(X)' 1s‘compact with respect t0 its fi- -
nite topology. If each AeQ is relatlvely compact then
U A is also relatively compact.

Proof.~ Since X is normal, it_follows, by - the above
mentioned theorem, that the set {ZA: AeQ} is
also compact. Now A is compact for each Ae(Q and so, by

2.8, it follows that UZT is a compact set. Since it con-
AeqQ

tains U A, the result follows.
Ae(

Again, we can deduce a result on correspondences, which
can be proved exactly like 2.9: ‘ ‘

2.1§'T{EOREM.- Let R be a contlnuous corraspondence between
' : . a compact space X and a normal T1—space Y. If

the sections of R are relatively compact subsets of Y, then
‘ R(X) is relaulvelJ compact in Y. L

2.14 COROLLARY .~ Let R be a continuous4correspondenceube—
' tween a tovological space X and a normal
T,~-space Y. If the sections of R are relatively compact in

Y, then the image under R of every relatively compact subset.A
of X is a relatively compact subset of Y.

 Proof.- This can now be proved like 2.11: A is con-
tained in some compact set K, and R(K) is rela-

tively compact by 2.13, hence R(A) is also relatively com—-
pact,

§2. QUASI-UNIFORMITIES ON HYPERSPACES

In the apnendix to his basickpaper [8], E. Michael epolé
ogizes to the reader for originally not having been aware
that the finite (Vietoris) topology on F(X) is the join of
the usf and the 1sf topologies. He also mentions that, if
‘ (X{%) is a uniform space, then the (Bourbaki)'ﬁniformity .
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induced on %(X) by U can also be viewed as the join of two
other uniformities on ¥(X). In fact, as noted by N. Levine
and W.J. Stager in [7], these two structures are only quasi--
uniformities, since they do not satisfy the symmetry axiom. .
In this section, we intend to stﬁdy the hyperspace of a
quasi-uniform space. Besides having an interest of their
own, quasi-uniformities will be found guite useful, in chap-
ter 3, in proving results about continuous correspondences.

As mentioned above, a cvasi-uniformity is defined with

the same axioms as for a uniformity, except that it is no

more required that U_1 be an entoﬁrage for each entourage U.
Most of the concepts and elementary results concerning
base, unlformity generated by a set, relative uniformity,
Vunlform continuity (whlch is now referred to as guasi—uni-
form continuity), and topology induced by a uniformity, can
be treated in the same Way, as they do not ‘involve the sym-
metry axiom. Perhaps the first notable exception is the for--

mula A _—.nU'.'1(A) for the closure of a set.in a quasi-uni-
v v

form space (X,U), where U runs through the set 7 of entou-

rages of X. Indeed, x€A iff U(x)(\A £ ¢ for each ved,

i.e. ;er-1(A) for each U’,

If % is a quas:.-—u_niformlty on a set X, the conjugate
ggasi-—uniformltl Z{ is defined to 'be that which.has the

v

sets U"'1 as entourages, where U runs through A

If A and U are quasi-uniformities on X, we denote by
UvY the join of % and V. If T(U) denotes the topology in-
duced by Y, we have X (AvV) =T (W v"g’(‘([),’i.e. S V) - is
the join of F(A) and ¥(7). ” |

If U is a unlformity, we also say that 7/( is svmmetric.

Thus, the quasi—unlformlty UvU™ -1 is symmetric for each
quasi-uniformity U; it is the smallest’ uniformity con‘taining .
U. It (X,Y) and (Y,V) are quas:.—uniform spaces, and f: X—Y

is (,¥)-quasi-uniformly ’continuous,» it is also wm- ,’)f’1)...

quasi-uniformly continuous, hence U U~ ,Wflf"”-—uniforrhly--
continuous. '



For a more detailed discussion of quasi-uniform spaces,
we refer to [9].
Let (X,%) be a guasi-uniform space.»For each UGZ(, we

shall denote‘by U*, U, and ¥ the following subsets of
T(X) » B(X): - LU o

uv* = {(4,B) ew?(x) »B(x): B cu(a)l,
Uy = {(4,B) ¢B(X) xB(X): Ac U"(B)}
¥ = {(4,8) ¢3(X) xB(X): Bcu(a) and acUT (B).
Clearly, (U*)™' = (U") (U*)"1 = (U“)* and

T =u*Nn U, for each U. Also, the relation UCV implies
U*c V%, U, CV, end FeF. |

2.15 THEOREM.- The sets U¥ ‘(resp. U' ) (resp. T) form a base

for a quasi-uniformity Y* (resp. ) (resp.
K) on (X), as U runs through X. Furthermore, we have
(uh)" = (%‘1)*, (Y)™! (u“m " and %:wv m.

Proof.- Let '(B be the set of all sets U¥*. Ve have:

a) The 1ntersection of two sets of B contains a set of B:
If U,V are entourages, then (UAV)*cC U¥AV*

b) Every set of B contains the diagonal in P(X):

 Indeed, ACU(A) for each entourage U and each A€ H(X).
c) Every set of 4 contains the square of a set of ’K "

If U is an entourage, 'then (U"’)2 < (U Y- Indeed if -
(4, B)e (13’“)2 there exists a set Ce'IP(X) with (A C)E—U" o
and (C, B) e U*, Hence CCU(A) and BCU(C), and so‘
BCU(C)CU2(A),V showing that (A B) e (U )*.’ Since every
entourage of ¥ contains some square U2, the result follows.,

This proves our claim concerning '0{*. The result con-

cerning 7, then follows immediately. Finally, note that the

sets U nv, forn a base for the cuasi-uniformity Zx(" v 7/(
P(X), as U and V independently run through #. Since

TAV € TNV cu* N 7V,, the result concerning . follows’.‘.‘rm

on
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Note that, if % is symmetric, then A* and A, are conju-
' gate quasi-uniformities, and so A is also symmetric. '

With the notation just introduced, we call A* (resp. /W
the u uvper (resp. lower) quasi4uniformity induced by’K'on j’X)

We call w(the Bourbaki quas1—uniformity induced by A on f(X)

Since ( = U* v ‘){,‘, we have 7 (Z() = ’3’(2{*) ~NT (K;)

If @cP(X), the Bourbaki quasi-uniformity of @ is de-
fined to be that which is induced on @ by the Bourbaki quasi-

~ . r~
uniformity of P(X), and will also be denoted by'u. This will
not lead to confus:.on, for ZLA %?(A) i‘or each ACX 7(

denotes- here the quasi-uniformity induced by‘% on A

Similar remarks hold concerning U* and .. ‘

he three gquasi-uniformities introduced aboﬁekare all .
admissible, in the sense that the mapping x—{x] is an iso~
morphism of X onto a subspace of B(X). Indeed, putting

X' = {{x}: xeX} and denoting by f the bijéction X—X', e

see that the image under the bijection £ x f: X><X——+X’x X'
of any entourage U of X is equal to ‘

TN (X x X)) = U*(\(X'xX')—Uﬂ(X'xX')

Quasi-uniformly continuous correspondences

Let R: XIY be a correspondence between quasi-uniform
spaces. :
'R'is said to be quasi-uniformly upper semi-continuous if,
for each entourage V of Y, there exists an entourage Uof X =
such that the relation (x,y)€U implies R(y)cV(R(x)).
R is said to be guasi-uniformly lower semi-continuous if,
for each entourage V of Y, there exists an entourage‘U of X

such that the relation (x,y)eU implies 'R(X)CZV-1(R(y))
R is said to be cuasi-uniformly continuous if it is both

Quasi—uniformly usc. and quasi-uniformly 1S°“i

16 THEOREN.— The following statements are equivalept. -
a) R is quasi-uniformly continuous (resp.vqudsi~uni_
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formly usc) (resp. quasi-uniformly lsc).

b) R is guasi-uniformly continuous, when $(Y) is en-
dowed with its Bourbaki (resp. upper) (resp. lower)
quasi-uniformity.

¢c) R is quasi-uniformly continuous, when ¥(X) and B(Y)
are endowed with their respective Bourbaki (resp.
upper) (resp. lower) quasi-uniformities.

Proof.~ The equivalence of a) and b) is obvious. Also,
because of the relation R = ﬁ'jx, we see that

b) follows from c). We now show that a) implies ¢). First
consider the "usc" case. S0 let V be any entourage of Y.
Then there is an»gntoufage‘U'of X such that R(y)c:V(R(x))
for each (x,y)e U. Hence, if A,Be®(X) are such that
BcU(A), we easily see that R(B)<V(R(A)), so that

(R(A),R(B)) € V* for each .(4,B) e U*,
The "lsc" case can be treated in the same manner. Finally,
the "Bourbakl" case follows from the other %wo. '

The following result on the quasi-uniform continuity of
composites is a direct consequence of the last theorem;. the
proof goes exactly like that of 2.6. '

~

2.17 THEOREM.- Let R: X|Y and S: Y|Z be correspondences
between quasi-uniform spaces. If R and S are
both quasi-uniformly continuous, then so is S°R. '
Similarly for "quasi—unlformly use" and "quasi—uniform—
ly 1sc". :

At this stage, it might be interesting to consider two
other natural concepts of quasi~uniform continuity for cor-
respondences, and to study their relationship to those we
have introduced above. :

S0 let R: XIY be a correspondence between quasi-uni-~
form spaces. We shall say that R is strongly (resp. weakly)
Quasi-uniformly continuous if, for each entourage V of Y,
~there exists an entourage U of X such that the relation
(x,y) €U implies R(x)=x R(y)e Vv (resp. (R(x)xR(y))ﬂV#Qf)

Putting S = RX R, we see that R is strongly (resp.
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weakly) quasi-uniformly continuous iff S¥(V) (resp. 5,(V))
is an entourage of X for each entourage V of Y. '

2.18 THEOREM.- Suppose that the sections of R are nonempty.

a) If R is strongly quasi-uniformly continuous, then it -

is also quasi-unlformly continuous. -

v_ b) If R is quasi-unlformly upper (resp. lower) semi-
continuous, then it is also weakly quasiduniformly
‘continuous. . ’ ‘ : “

Proof.— Putting S = RxR, it suffices to show that
s*(V) < (Rx R)7N(V)

and that (ﬁxfi)"”V*)CS,(V) (reshp;', -(f{Xf{v)f‘I(V*)VkéS*(V) ) |

for each entourage Vof Y,

Suppose first that R(x)xR(y)cV. Since R(x) ;4 ¢, we

can choose a point z € R(x). Then, for each W'eR(y), we
have | (z,w) €V, hence weV(z)CV(R(x)), S0 ‘that ' '
R(y)< V(R(x)). :

Similarly, R(x)c V- HR(y)). , =

Next, suppose that R(y)c V(R(x)). Since R(y) # ¢,kvwe( |

‘can choose a point weR(y) Hence weV(R(x)), so there ex-
“ists a polnt z € R(x) ' such that w-eV(z). It follows that
(Z'w)e (R(x) x R(y))r\V. ' o :

Slmilarly, the relation R(X)CV (R(Y)) iniplies T

(R(x) xR(y))nV # ¢

F:Lnally, le’c us note the follow.mg reqult on composites'\

219 THEOREM - Let R: \’lY 'and S: Y|Z be correspondences

between quasi-uniform spaces. If R and S are - -

both utronrrly (resp. weakly) qua.ai—unlforrnly contlnuous,
then so is S*R. ' : ‘ |

Proof.- It suffices to use the relatlon '
(s *R) X (S°R) = . (Sx8)s(RXR) "

~°f‘1-15. Thus, in the case of strong quasi-uniform continui~’ :

t¥, we have ((S°R)«x (Se R\)*(w) (RVKIR)*((SX s)*(‘_w)) for

"each entourage Wof 2.
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Comnact, precompact and bounded unions

- We now deal with results that go along the same llnes
as theorem 2.8 on compact unions. We start with a generali-
zation to quasi-uniform spaces of the statement that compact
unions of closed sets are closed in a uniform space. :

2.20 THEOREM.- Let (X,U) be a quasi-uniform space, and sup-
pose that @ c¥(X) is compact with ‘respect
to its quasi-—uniformlty (A~ 1)”". If each Ae(l is’ closed, v
then A = \UA is also closed. :
AeQ
Proof.- Sup’bosé’thaf X, € X\A ; we show that x éf;
Now, for: each Ae Q, X, ¢ A and so there exis‘ts.

an entourage UA of X such that X ¢UA 1(A) Then, there X~

tists an entourage- VA of X " with VA?CUA‘ Now, the set

‘(VA"1 Y () is a neighbourhood of the point A inf(X), for
eac;h Ae(Q. Since @ is compact, ‘chere 'exists‘_a‘ finite ‘subsef
"% of Q such that @< U (v, '1)*(A).'If follows that

AG‘B L ' ' »
A C A\GJBVA”(A) "Putting. V = ﬁ », we see that V€7/(“ and |
that v (s, ye v Y v "‘(A)) ~U V"(VA”(A))cU U "1(A)

'hence, x fV"j(A ), and the resul‘t follows.

The following theorem, which constitutes a new ”résult
even for uniform spaces, deals with precompact (resp. bound-
ed) sets. A quasi-uniform space (X,U) is said to be nreéom-—f ‘ .
. pact if, for each Ue¢Y,. there exists a finite set I‘CX ; ‘
with X = U(F). It is said to be bounded if, for each UGT/(
there exist a flnl'te set FCX and an in’ceger n)O with

X = Un(F) Precompactness and boundedness are preserved wn~
der qua81—uniformly continuous mappings. o

21 PHEOREM.~ Let X be a quasi-—unlf'orm space, and supnose
- that @ c¥(X) is precompact (resp. bounded) _
with respect to its upper quasi-uniformltj. If each AEQ is‘,

) precompact (resp. ‘bounded) then so is 'Ao‘ UA.
- Ac—Q -
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-Proof.~
The precompact case: Let U be any entourage of X. There

exists an entourage V such t‘hat V?C U. ’Since Ais precom=-
pact, there exists a finite subset B of @ such that

A<evV¥(B). Now each set Bef is precompact, and so there
exists a finite subset Fp of B such that BCV(Fp). Then,

the set F= U FB is a finite subset of Aye Moreover, we
Beg
claim that A oG U(F). Indeed, for each Ae(l, there exists

a set BG’E with Aev*(B) But then
Ac.V(B)C.V(V(F ))CV2(F)CU(F).

The -bounded case: Let U be any entourage of A - Since Q,
is bounded, there exist a finite subset B of Q and an inte-

ger N> 0 such that QC(U*)N(’Q) Now each set Be® 4g .
bounded and S0 there cxist a finite subset FB of B and an

integer ng> 0 such that BCU B(F ). Then, the set

= Urs F is a flnlte subset of A . Put -
BEB o '

N+max{n ‘ Be‘@} F

we claim that A CUn(F) Indeed, for each Aea there exm
ists a set BG‘@ with A.E(U*)N(B) But then, since ‘k\

: (U*)NC:(UN)*} we have ‘ Co

| N N,. B eng

AcCU (B)cuN(u (F ))CU (F)CU (F).

Using restricted canonical exten81ons, as in the proof

of 2, 9, we can deduce'

2.22 THEOREM.— Let R: X|Y ‘be a quasi-uniformly upper semi-—_

4 , continuoas correspondence between guasi-uni-
form spaces. If ACX . is precompact (resp. bounded) ang |
R(x) is precompact (resp. bounded) for each - X €4, then R(A)

is Precompact (resn. bounded)

Bélations'between tonologies and quasiéuniformitieg'

Let (X,n) be a quasi-uniform space. Our aim will now



- AT -

consist in finding out when the finite topology 5(7{) induced
by the topology 7(U) of X coincides with the topology ¥(H)

induced by the Bourbaki quas:.—unlformi’cy.
We first have the following two theorems:

2.23 THEOREM.~
a) T(A,) is finer than. (5(%))
b) T(U*) is coarser than (TU))*.

Proof.- _ '
a) We show that the set J(G) js open in P(X) with re-

 spect to the topology F(A,) for each S(%)-open sub-
set @ of X. For this, let &j e J(G), and choose a point

X e AN ¢. Since G is T(U)-open, there exists an entourage
Ue%( with U(x Yo G. Now U, (4 ) is a J(Z(*)—nelghbourhood of
A in B(X). ‘Je claim that Ug(A )cd(6). Indeed, if
AeU,(A)), then A,CU -1(A) and so, in particular, there
exists a.p01nt xed with X, e U”H(x). Thu%,' xeAnu(xo),
showing that AGJ(U (x, ))cH(E). |

b) We show that, for each A e3(X) . and each entourage

ves, the set UF(A ) is a (FOOF —nelghbourhood of

A, in P(x). Indeed, the set U(A, ) is a S(K)—nelghbourhood of
A_in X, and 80 ’S(U(A )) is a (s(u))*-neighbourhood of A, in

o
‘?(X). Since U*(Ao) = ’B(U(A )), the result follows.

2.24 THEOREM.- Let A e'z?(x)
a) In order that every ((u)) —neighbourhood of & in

?(X) contains a s(u*)—nelghbourhood of Ao, i’c suf-
fices that the sets U(A ) form a base of neigthurhoods of. |
A, in X, as U runs through d.

‘b) In order that every (A )-neighbourhood of A in.
R(x) contains a (Y(4)), -qelghbourhood of Ao’ it suf-

fices that A, be 7,('1-precompact.- .
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Proof.~
a) We show that the set ¥(G) contains a J({*)~neighbour-

hood of A  in ¥(X) for each \S’(Z()-.-open subset G of X
with Ae ¥(G). Now, since A, <G, by hypothesis there ex-
ists an entourage U<¢W such that U(A )CG. But then,
U*(Ao) is a F(”¥)-neighbourhood of A  in Y(X). Also,
U*(AO)C‘Q(G), since the relation AEU*(AO') implies

Acu(a,)cé.

b) We show that, for each entourage Ue 7/(., the set
'U,,,(Ao) contains a (3(U)), ~neighbourhood of A, in

B(x). Now, there exists an entourage- vel with Ve U.
Since A, is U V-precompact, there exists a finite family

(a;)

V(a ) is a T(A)-neighbourhood of ay for each i GI and so

the set O = ﬂIJ(V(a )) is a (s(')/()) -neighbourhood of A
ie

in P(X). We now show that Oc Uy (A ). So let Ael. For each

’ of elements of A such that A C UV 1(3 ). Now :
1%ieI ieT

xoer, i:here exisfs an index i€I with X, € V"1_(ai), and
- then (xo,ai) € V. Now AGE?(V(ai)), and so we can choose g
point xe A(\V(a ). It follows that (ai’x) €V, and hence
(xo,x)e V2c U, showing that x, €U 1(X)CU 1(A) ‘We have
thus shown that AOCiU 1(A), i.e. AE?U*(AO), a8 required.

\__2 COROLIARY .-
a) Let @ be the set of all subsets A of X which have

the property that the sets U(A) form a base of nelgh-.
bourhoods of Ain X, as U runs through %. Then the top010gies_
(s(u) ) and’ T (U*) coincide on a. '

b) Let 4 be the set of all AU~ 1-—p1‘800mpact subsets of X.
Then the topologies (S(ﬂ))_k and 5(7/(_,) COincide on (.

It follows that, on the set @ of part a) above (Which
includes the g(%)-compact subsets of X), the topology _g(pu
is coarser than 5(1(). ‘Indeed, (5(7{)) is coarser than )
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by 2.23a, and so §(K) = (F))*v (L)), is coarser than
¥ (U*) YOI, = %) on Q. Similarly, it follows that §(y)

is finer than §(X) on the set of Z("1—precompactvsubsets of X.

In the next two theorems, we obtain converses of 2.24.

2.26 THEOREM.- Let A e ¥(X). In order that every (ﬁ‘(u))*;
| neighbourhood of A  in ¥(X) contains a ?’(’"7(.)-

neighbourhood of A , it is necessary that the sets U(A))

form a base of neighbourhoods of A  in X, as U runs through

I,

' Proof.- Let G be any '}(%)-—open subset of X containing
A . Then ¥(G) is a (¥(h))*-neighbourhood of A,

in 75’()() By hypothesis, there exists an entourage Ue A such
that U(AO)C ¥(G). We now claim that U(A )CG. Indeed, sup-

pose, to get a contradiction, thgt U(Ao)¢ G, and choosé a
point x e U(A )\G. Letting A = A U {x},.we see that
AcU(s)) and AC vT(a,)cuT(4), so that Aefr’(Ao).' It
follows that Ae ¥(G), i.e. ACG, contradicting the fact
that x_¢ G. -

2.27 COROLLARY .- In order that every (£(10) )¥ - (resp. ) - )
neighbourhood of A, in 'B(X) COntains a

() - (resp.’ 5(7() ) neighbourhood of A, it is necessary
and sufficient that the sets U(A ) form a base of neighbour—

hoods of A, in X, as U runs uhrough A.
2.28 THEOREN.~- Let ,ﬁ be the discrete topology on X, and let
A€ B(X). In order that every (% )-neigh-
bourhood of A, in F(X) contains a 9—neighbourhood of A, it.
is necessary that A be 1{ —precompact. |

Proof - Let U be any entourage in Y. Then U, (A ) is a
T(U, )-nelghbourhood of A, in @(X) By hYPOthe-
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sis, there exist a subset G, of X and a finite family (Gi)ieI

of subsets of X such that, putting 0 = (G )N ﬂé’(Gi), we
iel

have Ac;e @'CU*(AO). For eacﬁ.‘ ile1I, choose a point ii in .

AN Gy, and let C = {xi: iGII}. Theﬁ clearly Ce¢ T, and

hence Ce U, (A ). Thus, AGCZU"1(C), showing that A is?L—1— |

preéompact.

2.29 COROLLARY,- In order that everyv?Ku*)e (resp. 3(&3—)
neighbourhood of A  in ) contains a

(f(u))*- (resp. ?Tﬁb—) neighbourhood of A,, it is necessary

and sufficient that A, is Z(”—precompact.

The results 2.26 - 2.29 could also have been formulated
and proved for the space 5(X) of all closed subsets of X in-
stead of the whole space 3(X), provided it is further as-
sumed that X is a T1—space. Indeed, if Ao' is assumed to be ,

closed in 2.26, then the set A constructed in the proof will
also be closed. Similarly, the set C constructed in the pvroof :

of 2,28 will be closed. g

We conclude with a result which compares the topologiesl

TR, ana (F(U))¥.

2.30 THEOREM.- Let (X,)) be a quasi-uniform T,-space with at

o least two distinct points. Then the topology
5(4,) or T(X) is not coarser than the topology (F(U))*.

Proof,- It suffices to show that there is a point A,
: in B(X) and an entourage U in X such that, for
®ach open subset G of X with A ¢ B(G), the set U,(A ) does

not contain the sef %(G). We claim that we can take A = X.

o
Indeed, since every open subset of X containing X must be e-

qual to x itself, and since

e (XY = {ae BOX): xcuH(a)} = {ae Bx): vT(A) = X}
t;r ®ach entourage UeU, what we have to show reduces to
© Tollowing: there exists an entourage Ue¢W such that

:‘.".;'_.the set {ae Bx): vl(a) = X} is different from 'X(X).."
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For this, let ko,x1 be two distinct points of X.
‘Since X is a T1-space, there exists an entourage U'EWL such
that x_¢ U(x,). Then, x 1¢U "(x, ), so that U"1(x Y £ X
Hence the result.

Again, this result is valid for the space &(X) instead

of ?(X), since X is clearly a closed subset of itself and
since the one-point set {xo} constructed in the proof above

is also:cloeed, X being assumed a T1—space.

Pseudometrizability

| Having split up the Bourbaki uniformity into two other
structures, it seems natural to attempt something similar
with the Hausdorff pseudometric.

A qua51epseudometric on a set X is defined with the

same axioms as for a pseudometrlc, except that we no longer S
require symmetry. Thus, if d is a quasi-pseudometric on X, -
the relation d(x,y) = d(y,x) does not necessarlly hold forv'a
each x,yeX. . : ' : SR
Just’as for a pseudometrlc, the sets

Ve =7 , = {(x,y)e Xx-X. d(x,y)< €} form a

base for a qua81—uniformity‘u(d) on X. We also use the nota-‘ff

C
The conjuga+e a~ ' of d is defined by the relation

tion W= {(x,y)eﬁx. a(x,y)< e}

1(x,y) d(y,x) for each (x,y)e X;cx.,«

We have (‘2((d))"1 _‘u(d—1), i.e. quasi-uniformlties induced .
by Conjugate quas1-pseudometr1cs are themselves conjugate. -
If d1,d2 are two quasi-pseudometrics on a set X, then
theMdvdZ, of &, “
(4 v dy)(x,y) = sup {3,(x,¥), ¢, (x,y)}

for each (x,y) €Xx X. Ve have U(dyv d,) = %(4, )VM(d ).

and’ d2 is defined by’ the relation .

e If 2 quasi-pseudometric. déis a pseudometric, we,say that:~
itkislsxmmetric;iThus,,the'quasiépseudometriojd-fd*1qis sym;; f
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metric for each quasi-pseudometric d.

In what follows, (X,d) will denote an arbitrary quasi;
pseudometric space.

2,31 THEOREM.- The function da%: B(X)x B(x)—[0,°0], de-
| 0, if B= ¢

sup d(A,y), it B£@

fined by d%(A,B) = {
yeB .

is a quasi-pseudometric on B(X).

N.B.: We use the convention inf @ =5, so that
a(@,y) = inf d(x,y) oa - for each. ye 3B,
o xed ' -
Proof.- It is clear that d*(A,4) = 0 for each AeB(X).
We now show that the triangle 1nequality holds.
For this, let A,B, ¢ eV(X); we want to show that .
a*(a,c)< a*(a,B) + a¥(3B,c). |
Suppose first that C = @. Then we have d%(4,C) = 0, so
that inequality trivially holds. Suppose now that C # d. If
also B = @, then d*(B,C) ==+, s0 that inéquality trivial-
ly holds. If on the other hand B # @, then we can show that
a(A,c) ¢da¥*(a,B) + d*(B,C) for each ceC. Indeed,,letlt > 0.
Then there exists a point b€B such that I R
d(b,c)=< d(B,c) + ¢.
Since d(x,c)< d(x,b) + d(b,c) for each xeA, it follows
that d(A,c)< d(A,b) + d(b,c)<d(A,b) + d(B,c) + &
T €d*(4,B) + a%(B,C) + ¢,
hence the result. '

It follows immediately from this theorem that the func-
tion dg: B(X) xB(X)—>10,2), defined by -
0, it A=¢
sup d4{x,B), if A # & !
xXeh
is a guasi-pseudometric on B(X), and that the relations -

(@)t = (a7), ana (a7 = (a")* noia.

d*(A,B) =

Finally, the function ‘d: Q(X)x 2(x)—[0,7], definea

~ 0, if A=3B=¢g
by d(A,B) =]

sup {sup a(aA,y), sup d(x, B)} , otherwise
yeB XEA ' .
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is a quasi-pseudometric on ¥(X). Furthermore, T = ary .
Note that, if d is symmetric, then d4¥ and d, are conju-

gate, h'enceﬁ is also symmetric.

With the notation introduced above, we call d* (resp.
d,) the upper (resp. lower) quasi~pseudometric induced by d
on ?(X). We call 4 the Hausdorff quasi-~pseudometric induced
by d on P(X).

The three quasi-pseudometrics introduced above are ad-
missible, in the sense that the mapping x—{x} 1is an iso-
morphism of ‘X onto a subspace of B(X). Indeed, it is clear

that a*({x},{y}) = d (KX} {y}) d({x},{y}) = d(x,y) for
each (x,y)e¢XxX, |

We now show that the quasi-unlformlty induced by 4 is
precisely Zz((d) But first:

4
2,32 LEMMA.~ For each € > 0, we have Vfc (VS)*CWS .

Proof.~ : -
Ad vf*c (v3)*: suppose (4,B)¢ vf*, i.e. d%(A,B)< €.
We have to show that (A,B) G'(Vg)*,_i.e.
BC VE(A). This is obvious if B =@, If B # @, then

d*(A,B) = sup a(A,y)< €, and so d(4,y)<e for each ye3B.
yeB
Thus, for each ye B, there exists a point X € A such that

a(x,y)<e, i.e. er (x)CV (A), as required.
aa (vd)*e wf : Suppose (4,B) e (VA)*, i.e. Bch(A)
We have to show that (4, B)e w y iee.

d*(A,B)< £, This is obvious if B = ¢g. If B # @, then we

have to show that a*(A,B) = sup d(A,y) &. Now, since
yeB .

4d
BCV.(A), for each yeB there exists a point xeA with
3 '
yeV(x), 1.e. d(x,y)<&; hence d(4,y)<e for each yeB,
and the result follows. | |

2.33 THEOREM.- We have (uta))* = Y(ax), (m(d)), = U(dy)
| and m) = (). 4 '
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Proof.- The relation (U(a) ) =U(a*) £ollows directly
from the lemma. Indeed, the sets (W?)* form a
base for (i((d))*, whereas the sets VS*
base for #U(d*).
Then, we have ((?'{(d))"1 ¥ = (Z{(d_1))* =7{((d—_1)*)

n(a)™ = @™,

%
(resp. WEd ) form a

Chence  (A(a)), - A(a,). Finally,
D) = @@ v (), = U@ vH(dy = K@%y ) = U@).

2.34 THEOREM.-
a) If 4 is finite, then a* , 4 and d are all finite on

the set of nonempty bounded subsets of X,
b) For each 4, Be P(X), we have :

a*(a,B) = 0 iff BCA, where closure is taken with

Il

' respect to d~ 1 '
0 iff AcC3B, where closure is taken with
' respect to d.

and d,(A,B)

I

c) If d is finite and symmetric, then d is a metric"on'
the set of nonempty closed bounded subsets of X.

Proof.— Part a) is clear. To prove 'part b), it suffices
: to show the first equality only. Now
a*(a,B) = 0 iff d(A,y) = 0 for each ye€B . v
' iff for each ye€B and each £y 0, there ex-
ists a point =xeA with d(x,y)<&, i.e.

erd(X)
iff y e () for each yeB and each €50
iff BC(\V(A) Q(V )’(A)

t>o
Finally, part c) is clear, since

q(A,B) = - 0 == d*(4,B) = 4, (4,B) =
—>BcA and AcB by part b).
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Chapter 3

TOPOLOGICAL PROPERTTIES

OF CORRESPONDENCES

§1. PROPERTIES OF UNIONS AND PRODUCTS

Pervin's gquasi-uniformity

As mentioned at the beginning of chapter 2, we intend
to show how quasi-uniformities on hyperspaces can be used %o
prove results about topologies on hyperspaces and about con-
tinuous correspondences.

The first step in this direction is to note that every
topological space is quasi-uniformizable. In [10), W.J. Per-
vin shows how a topology 5 on a set X induces a quasi-uni-
formity X(J') on X with the property that the topology in-
duced by X(J) is equal to T itself. We shall refer to Y (F)
as Pervin's quasi-uniformity induced by ¥ on X. ,

 For convenience, we recall how H(J) is constructed. If
X is a set, we write Uy(A) = (AxA) U ((XN\A)xX) for each

subset AcX. If J is a topology on X, then the sets UX(G),

"with G running through T, form a subbase for‘K(J) If we on-
1y let G run through a subbase of ¥, the sets UX(G) still

generate AT
The following is a useful property of Pervin's quasi--‘~

uniformity: if {,JF' are two topologies on X, then
KIFT) = A(F) v LY")



Indeed, the set TU?' is a subbase for ¢, 7'. Hence, the
sets UX(G)’ with G runnihg through Tu¥', generate et
But the sets Uy(G) also generate > v A5 ).

It also follows from the relation just proved, in par-
ticular, that § is finer than ' iff W(F) is finer than
M(%'). Indeed, if 7 is finer than §', then T %' = ¥ and
so W(F)vu(s') = R(TeF") = A(F), showing that W) is
finer than A(¥').

As far as hyperspaces are concerned, the most useful
result is that Pervin's quasi-uniformity is compatible with
the formation of quaSi-pniformities in hyperspaces. Indeed,
N. Levine and W.J. Stager have shown in [7], theorems 2.1.2

and 2.1.3, that the sets (U (G)) (resp. (U (G)) ) generate
(UR))* (resp. O%(?))*), as G runs through J, and that
(UX(G))* = U?(X)(?(G)) (resp. (U (d)) =-UP(X)(J(G)) ).

This proves parts a) and b) of the follow1ng theorem. Using
thls, we then have

TR = Gy @), = WD HA) =35, 5) = AP,
" proving part c). o . '
3.1 THEOREM.- Let (X,}) be a topological spacé.AThen-we havé:

a) (T = UEF*).
B) (X)), = A(%,).

e) UF) = wF).

3.2 COROLLARY - The topology induced by (4(3))* (resp.
(%(%)),) (resp. A(F)) is -equal o ¥ (resp.‘

NS
'3'*) (resp. 7).
We now give an example of the use of 3.2, and show how
the following two known results can be deduced from a single -
result about quasi-uniform spaces:

3. 2 THEOREM.— Let (X,¥) be a topological space. Then the to—'
pologlcal space (¥(X), J;) is al —space. :
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3.4 THEOREM.-~ Let (X,1) be a uniform space. Then the uniform
space (§KX),M) is Hausdorff. |
In order to do this, we use the fact that, in quasi-
uniform spaces, the To separation axiom can be characterized

in terms of entourages only: a quasi-uniform space (x,20)
with base T for its set of entourages ) is a T -space iff

the set /AEU is anti—symmetric (cf. [9], theorem 3.1). Ve
Ue

now prove:

3¢5 THEOREH.— Let (X,4) be a quasi-uniform Space. Then the
quasi-uniform space (@KX),}(%) is a T -space.

Proof.- Ve show that the set Q = (-\ U*r\('jf(x)x ?,'(X))
1 a Uen " :

is anti-symmetric. Now, ﬁsiﬁg the relation

(v, )-1 = (u™1)*, we obtain 4 (\ <U">*m@'<x>x?(x)>.

Thus, if (A,B)e ana~!, we have ac (VU N(B) = F and

Uet
B c:éfL?"1(A) A. Since A and B are closed, it follows that
e
A—_-B.

Proof of 3.3%3.- By 3.5, the quasi-uniform space
(F(X), (WT)), ) is a T -space. Since the

topology induced by (W(¥)), is equal to J}, the result fol-
lows.
Proof of 3.4.- Since U, is coarser than %, the conclu-
sion in 3.5 holds with ¥ in place of A,.
Thus, the uniform space (?(X),ﬁ).is‘a To—spaCe, hence it is
Hausdorff,

- Pervin's quasi-uniformity enables us to'consider topo-
logical spaces as a special sort of quasi-uniform space. As
the following result shows, it does much more than that: it
_transforms the morphisms of topological spaces into those of
the associated quasi~uniform spaces. More precisely:
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3.6 THEOREM.- Let (X,%’) and (X',7') be two topological
spaces. Then a mapping £: X—X' is (¥,7')--
continuous iff it is (W), (¥’ ))=quasi-uniformly continuous.

Proof.— If f is quasi-uniformly continuous, then it is
~ continuous, since the topology induced by U(Y{)
(resp. A(5')) is equal to J (resp. T'). Now suppose f is
continuous. To show that it is quasi~uniformly continuous,

it suffices to show that (fx f)'1(UX.(G)) is an entourage in
X for each open subset G of X'. Now, since f is continuous,
f"1(G) is an open subset of X. Thus, the‘resul’c will follow
if we can show that (£x£)71(Up,(6)) = Ug(£7'(6)). Now,
since UX,(G) = (Gre)y ({(X'\G) XX'), we have

(£x2)71(Uy,(6)) (£1(@) x £ (6) U (XN (@) A )
UX(f—1(G)), ‘as desired.

il

H

3.7 COROLLARY .~ If the quasi-uniformity M(Y) is the inverse
image of 7((7') under the mapping f, then the
topology @’ is the inverse image of \; .

As an example of the usefulness of that result, we con-
sider the mapping Ar>A of B(X) into itself. In what follows
(3.8 - 3.10), we let f: B(X)->¥(X) ve any mépping such that

Acf(A)ck for each AeT(X).

j§ THEOREM.~ Let (X,4) be a au'asi-uniform-s'pace.' Then the

, quasi-uniformity %, of ¥(X) is the. inverse im-,
age of itself under the mapping f. ‘ :

Proof.-— It suffices to show fhat U*c(fxf)-1((Ueu)*)
 and (.fxf)f'1(U*)c (UsU), for each entourage U; ,
‘i.e. that the relation ACU-1(B) implies | '
£(a) c(wow) 7 (£(B))
and that the relation £(A))cU~!(£(B)) implies
| - ac(uen)T(B).
Now, if AcU”'(B), then
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£(a) cEcu ) eu T B v o (2(3)),
vhile if f(A)c:U‘1(f(B)), then |
rcea)eulg(B)) cv (B cv v (B)).

Hence the result.

3.9 COROLLARY 1.- Let (X,5) be a topological space. Then the
topology Jy of B(X) is the inverse image’
of itself under the mapving f.

Proof.- By 3.8, the quasi-uniformity Cu(?))* is the in-

: verse imagé of itself under f. Since
(u&ﬁﬁ)¥ = N(¥,), the result follows by using 3.7. .

3.10 COROLLARY 2.- Let (X ) be a uniform space. Then each
' of the quasi-uniformities ¥, U, and K,of
B(X) is the inverse image of 1t°elf under the mapping f.

Proof.- Since the result holds for ﬂ*, and since n* and
ﬁ* are conjugate, the result also holds for uf

"It is clear from the proof of 3.8 that the result holds for Aa

Let us finally note that 3.6 also extends to correspond-
ences, in the follow1ng sense:

3,11 THEOREM.- Let (X,;) and (x" 7') be two topological
spaces, and let R be a correspondence between
X and X'. Then R is (7,3 )-continuous (resp. usc) (resp._lSc)
iff it is (U(F),u(F"'))=-quasi-uniformly continuous (resp. - qua—
si-uniformly usc) (resp. quasi-uniformly lsc). :

Proof.- We have.
R is (¢,%')~-continuous
A ns N N
iff R is (¥,7')-continuous
122 R is (w(%) %léw))-quasi—uniformly cont.,.
vhile R is (u(s) u17')) qua51—uniform1y continuous
1ff R is @&( ) ?K 1))~ quasi—un:formly conts.

Since Y(F) = Mi?) and 'ujg') = uﬁ; ), the result follows.
Similarly for the *"usc" and the "lsc" cases.
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In the remaining parts of this section, we study the
continuity of unions and products, trying to use the ideas
developed so far.

Continuity of unions

3.12 THEOREM.- Let (X,) be a quasi-uniform space. et §7x)
be endowed with its quasi-uniformity %(resp.
U') (resp. ), and let ?(?(X)) be endowed with 1‘ts quasi-
uniformity %(resp. U**) (resp. 7(**) - | ,’ 
Then, the mapping f: Q.H;JQA of ¥(B(X)) into P(X) is
quasi-uniformly continuous. k ‘ _ T
Proof.- For each A€ P(X), we have Z£({A}) = A, so that
' fej = Id . Hence f(Q) Ua = KJ f( AY)
2(x) = T%(x)° ' = %o i

for each QEQ(X(X)), so that £ preserves unions. Hence, .
there exists a (unlque) correspondence R between"&(x) and X~

‘with R = f. Also, R= Reipx) = To3g(x) = Tp(x) 1is quasi-

i

uniformly continuous. It follows that f=R is also quasi--

unlformly continuous. ‘ : : S
We candeduCe a corresponding result for topological

spaces: k ' .

2 13 COROLLARY.-— Let (x, ’j’) be a topological space. Let 'E(X)
. be endowed with its topology &’ (resp ’3"*)

no

(resp. \g*), and let ’8('5(}()) be endowed with its ‘topolorry 3\'

(resp. g""") (resp. 3’,*) Then the mapping f: Q‘“—’U A of -
Aem :
PRy ) into ¥(x) is continuous. e

' Proof.-— By 3.12, f is (u(@‘) K(J)) quasi-uniformly con~
: tinuous, hence continuous. Now the ’copology in~

duced by AEF) is equal $0 g and the topology induced by }
~7
1{(,r) —'l('(;) is equal to 5. Hence the resul't.

Similarly for J* and ‘fx' ‘
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We now consider unions of families of correspondences.

Z.14 THEOREM.- Let R be the union of a finite family (R,);.r

of correspondences between a quasi-uniform
space X and a quasi-uniform space Y. If R, is quasi-uniform-~
ly upper (resp. lower) semi-continuous for eaoh'yi,eI; then -
so is R. ’ ' SRR o ;
Proof.- Ve consider the "uppér" casé; the "lower" case
. can be dealt with in the same way.
So let V be any entourage of Y. Then, for each ieI there ’
exists an entourage Ui of X such that the rélation (x,¥y) eU
implies Ri(y)c:V(Ri(x)) Then, puttlng U= f\II, U is an
N = ; o R L :
~ entourage of X, and the relation (x,y) EU implies
R(y)CIV( (x)) Hence the“result. AR

- 3.15 COROLLARY - Let (X K) be a qua81—un1form space, I a 7
flnite index set, and let F be the mapping

(A);er™ \gIA of (R(X))T into P(X). If PX) is endowed

, i

with its qua31—un1form1ty %,(resn.‘uﬁ (reso. *), and

Cﬂ(X))I with the induced product qua31—uniformity, then F is
qua31—uniformly continuous.

Proof.- For each je€I, define a correspondence RJ be-
tween CW(X))I and X by settlng R (A) = Aj nforv

each A = (A )1GI€ (S(X))I. Denoting by prj the proaectlon

(P( X))I-—>§(x) of index 3,,we have RJ Py

81—un1formly contlnuous, show1ng that RJ is qua81-uniformly

continuous’ (resn. cuasi—unlformly usc) (resp. quasi—ﬁniform—'

ly 1sc). Pu‘t‘tlng R= U Ry» ve thus have that R is quasi-
' S jel

uniformly contlnuous (resp. quasi-unlformlj usc) (resp. qua-f :
si-uniformly lsc). : i

Nov RF%)V ;z&Al for'eoch A= (Ai)ieI‘ﬁ(&KX)) f:so;that_“i;‘
R = F. Hence the result. | - |

’ Whlch is qua-

of course, Pervin's quasi-uniformity can be used, in.
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conjunction with 3.11, to deduce from 3.14 and 3.15 corre-
sponding results for topological spaces. But this would
yield only global results. Also, one might expect stronger
results when dealing with topological spaces, since the lat-
ter can be considered as included among the quasi-uniform
spaces., It happens to be sB in this case, where the finite-
" ness of the index set I is no longer necessary in the case
of lower semi—confinuity. Finaily, we are able to formulate
the following result in terms of continuity at a set, rather
than merely at a point. - |

3.16 THEOREM.~ Let R be the union of a family~(Ri)ieI of
| correspondences.befween s topolsvical space X |
and a topological space Y, and let A be a subset of X.
a) If Ry is usc at A  for each i GI then R is usc at
Ao, provided I is finite.
b) If R; is lsc at A for each 1ieI, then R is lsc at
Ao’ for arbitrary I. .

Proof.- Ad a): Let G be any open subset of Y with
A C:R*(G) Since R*(G) = !:ERi (¢), we’
have A C Ry "‘(G), hence A CR/’T(—G\), for each iel. Tnus,
A CJ_QIm m = E?‘(Lé‘), since I is finite.
Ad b) Let G be any open subset of Y with
' A,NR,(G) # §. Since R, (G) = URi*(G),

there exists an index i,€ I such that ANRy *(G) # @,

T —
Hence A f\R ((G) # ¢, and s0

g4 A m URi¥(e)>cA nUR (4(G) = A r\m

hence the result.

Note that 3.162 is not true in general if I is not as-
sumed to be finite. For example, let X =Y = [O 1] aﬁd,
for each n)»1, define a continuous function f X—Y vy

‘ - nx, if x € D,1 : S
Setting fn(x) ~i 1; if x e B/n/?% for each x ¢X. Then
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the union R of (i‘n) is not upper semi-continuous at the

nl ‘ .
point O €X, since R(0) = {0} and 1€ R(x) for each
x€]0,1]. : ' ' v

5.17 COROLLARY - Let (X,J) be a topological space, I an in— A

dex set, and let F be the mapplng
(A — U, of (’E(X))I into ‘g(x)

i ;e jer * ‘ ; S R
a) If ¥(X) is endowed with its topology J* (fesp.-%/),

and (%«X))I with the induced product topology, then
F is contlnuous, prov1ded I is finite.

b) If F(X) is endowed with its topology 3;, and (ﬁ(X))IY

with the induced produot topology, then F is contin—
wous, for arbitrary I.

‘Proof.- This follows from 3. 16, in the same way that.
3.15 followed from 3.14.

Continuity Of products

We start with the main result from Whlch all the ‘re-
malnlng results of this section Wlll be deduced.

2.18 THEOREM. -~ Let (X )iGI be a family of quas:.-—unlform

- spaces, and let F be the mapping

(Ai)ieIh~oT__A of I—T?(X ) into %YT‘TX ).
: ieI iel iel.

’ Endow hyperspaces with their respective Bourbaki (fesp;
upper) (resp. lower) quasi-uniformities, and endow product
' spaces with their respective product qu351—uniformities.v
Then the mapplng F induces an iuomorphism of TT‘E (X )

onto a subspace of XO(I"k )
- iel

Proof.- Flrst of all, 1% is clear that F T—IX (X ) is

| injectlve and that F( Thy (x ))c:‘g (Tl’x )

We only consider the case of upper quasi—uniformities- the |
other two cases can be dealt with in a similar. way.
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Put G = FXF. For each j €I, let pr.: ||X, 1%y
J jer

and Prj: rr’g(Xi)—-Qg(Xj) be the projections, and put
iel ' :

. = . . . = . )( s e
gJ prJ )<prJ and G'J Pr"_j PrJ

For each 1 €I, the sets Ui* form a base for the upper
quasi—liniformity of %(Xi), as U, ruhs fhrough the set of
entourages of Xi' Let @ be the set of all sets of the form
Gi-1(Uik)" where i€I and U; is an entourage of X;. Then
the set of all finite intersections

) =6, SRR 6, " (v, M

WU, ,...,0,
11’ ’ in 14 in in

of sets of 4 is a base for the product quasi—uniforml‘cy of -

TTR(x,).

i€l '
-On the other hand, let B ve the set of all sets of the o

form gi (U ), where 1€I and Ui is an entourage of X

Then the set of all finite intersections -
WU, ,.e.,U )—g“(Ui )r\...(\g "(U )
1 1 n n

of sets of. 15 is a ‘base for the produc’c quasi-unlformi’cy of

iT;fIxi. It follovs that the sets (W(Ul1,...,Ui ))* form a base

for the upper quasi-uniformity of ¥( TTX ).
iGI

Putting .Y = TTR (x ), the result will follow if we
can show tha‘b‘ -
SRR AL JO(EXT) = *(ui1,.,..,ui‘m(m),
Now, for each ((A. )161’( )lel)GYXY we have

((a4)5e1,(B;) .eI)eG"1((w(U.1,...,Ui N

n
iff (UA T8 )e(w(Ui ,...,Ul y)¥
i1€eT ieI - n. :
iff ﬁB cw(U, ,...,U. T'TA ), whereas
i i
el 1 n ieI

By epa (By)gep) € WHU, ,.el,U, )
1 n .

Ciff (A, ,B, )eU,* for each k= 1,.0..n
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iff B, C U, (A. } for each k =1,.c.,n.
o x x, ,

Now, using the fact that the sets A.'and B, ere"nonempty,qwe;
have []3B,CW(U; ,...,U; J(TTA,) |
iel 1 11 1n' iex

aff Y(y,) iGIGT—B 3(x;)qer® LA _such that

(Xik’yik)erUikk for each  k = 1,..5fn

iff B; cU; (A; ) for each K= 1,e00,n,
AT i iy RIS

and we are done.

‘§ 2 COROLLARY 1.~ Let X be a qua31—un1form space, (Y )ieI

' L a famlly of quasi-uniform spaces and for
each 1i€1I, Ri a correspondence between X and Yi with non-

empty'sectlons; Let R be the restricted product of theufami-
ly (R ) jeI* Then R is quas1—un1form1y upper (resp. lower) "

semi- contlnuous iff each R is.
Proof;— With Y 'F—Yl, ve have R, ='§f¥°R for‘each
S - ieI L o

~ieI, and so the ouas1-un1form upper (resp.
lower) seml—continulty of R 1no11es that of each R .

. Conversely, suppose-that'each Ri 1s quasi-uniformly up-

per (resp. lower) semi-contiruous, and 1et h be the mapping

(A )ieIt—eI-rA of T—T? (1) into ﬂ(T;EY ). Endowing hyper- B
iel i

spaces with their respectlve upper (resp. 1ower) quasi-uni-
formltles, and product spaces with their respective product .
quasi-unlformities, we see by 3. 18 that h is quaSl—uniformlylu
continuous. On the other hand, the function & X—aT7f?(Y )y

deflned by g(x) = (R (x)) for each XE?X, is qu381—uni-‘.;‘

formly contlnuous. Since’

R(x) = E{R (x) = n((x, (?))iel) = h(g(X))

for each xeiX, it follows that R = hog is quasi—uniformly
continuous. Hence the result. ‘ :

2+20 COROLLARY 2e= Let‘(xi)ieI’ (Y )iEI be two families of
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quasi-uniform speces indexed by the same
set I. For each ie€I, let Ri be a correspondence between Xi

and Y. with nonempty sections, and let R be the product of

the fam:n_ly (R, )1€I

If each R is qua31—un1formly upper (resp. lower) semi-

continuous, then so is R. The converse also holds, prov1ded
the X, are nonempty. ' '

Proof.~ Put X = \ \X and Y = T*_Yi. Since R is the
iel o i€l

restricted product of the family (Ri prl)leI,

1t follows by 3.19 that the quasi-unlform upper (resp. 1ower)
semi- contlnulty of each R imnlies that of R.

Conversely, assume the X ~are nonempty, and Suppose

that R is quas1—uniformly upper (resp. lower) semi-continu—

ous. Choose a point (aﬁ)iEIe'\ \Xi. For each jeTI, let &;
* i€l S

be the mapping of X, into X such that, fdr‘eachv'xje X5,
prj(gj(xj)) = Xy and pri(gj(xj)) = a; whenever 1 # j;
_ then gJ is quasi-uniformly continuous. Also, the relation

R (x ) = pr: (R(gj(x 1)) holds for each xJe Xj so4that 

e rg

Rj = pr 'R'gj is quasi—unlformly upper (resp. lower)'sémie

continuous.

We now consider tonologlcal spaces. Let us first make
some notational remarks. If X is a tonological space,’ then
A(X) will denote the set of all compact subsets of X, and -
K (X) = K(x)\{g}. SR

Also, if (X;,T)j.1 is a family of topOlogical SPaces, )
we denote the product tonology on T—FXl by T~T$ . Similarlyf

i€l ieT ~ :
for product quas1—uniform1ties. If (Xl,ﬂ )ieI is a family of \

quasi-uniform spaces, then, with the notation Just intro—

duced, we have FTTU) = T_r$(%i

eI i
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spaces, and let F be the mapping

(A ) h—»T—YA
1€l yeI

of T—Tﬁ’(X ) 1nto‘X (]—YX ). Endow1ng products with their
iel jeI

respective product topologies, we have:
a) The mapping F induces a homeomorphism of T_TX (X )

onto a subspace of K (]—TX ), when hyperspaces are
: iel

endowed with their respective usf topologies.

b) F is continuous at every (A ) with Ai,compacthi

ieI
(resp. arbitrary)’for each ie€l, when hyperspaces
are endowed with their respective usf (resp. 1lsf) topologies.

Proof.— By 3 18, the mapping F induces an isomorphism,
and hence a homeomorphism, of the space
(T_[ﬂ (X; ), ‘—TCK(@ ))*) onto a subspace of
- iel Y
(? (T_TX ),(Tjnﬂ(?i))* . Now the topology induced by

TW;(%(%i>)* is equal to the product of the topologies in-
ie

duced by the (%(ji))*, i.e. it is equal to T—.Si . On the
iel o
other hand, by 2.25a the topology'T((T_r%jyi))*) coincides
» ier - R
Cwith (S(TTURIN = (TTF)* on the set X (TTX so
fer 17T qer'd Ko ieI i)’,

that part a) is proved.
To prove b), note that the‘topolovy (T—_%(gi)) ) is

finer than the topology (S(T_Tu(si))) = (_—T{i on the

set X (T—TX ), by 2 23a. Similarly,: if. T_TA is compact

ieT .
then every (T—Qgi)*-neighbourhood of ‘—TA in ﬁ’(]_TX ) con-'
ie iel
tains a J(( _73KJ1 )*)-neighbourhood of 1—FA by 2.24a.
. - der *

The following local results, which are similar to-the

~ 8lobal results of 3. 19 and 3. 20, can now be deduced from
3. 21: :
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3.22 COROLLARY 1.- Let X be a topological space, (Y )iEI a

- family of topological spaces and for -
each’ i€1, Ri,a correspondence between X and Yi with non-

empty sections. Let R be the restricted product of the fami-
1y (R;)jeys and let x eX. ’

a) If each R; is usc at x , then so is R, provided
i(x ) is compact for each iel.
b) If each R is 1sc at x_, then so is R.

¢) If R is usc (resp. 1sc) at x_, then so is each Ri

3.23 COROLLARY 2.- Let (X;)jers (Y 1)jer be two families of

 topological spaces indexed by the same
set I. For each 1€I, let R; be a correspondence between

Xi and Yi with nonempty sections. Let R be the product of

the family (Ry)jeqs ond let (x;); EIG:IQ;X

a) If R, is usc at x; for each i€I, then R is usc at
(xi)iEI’ provided Ri(xi) is compact for each iﬁiI.
b) If R; is lsc at x; for each 1€1I, then R is lsc at
(x3)je1e | N . -
¢) If R is usc (resp. 1lsc) at (xi)i€I' ﬁhen Ry is‘usc.

(resp. 1lsc) at x; for each iel.

Note that the last two results-represent an advance
over previous results, where the proof rests heavily on the
finiteness of the index set I. Also note that, for arbitrary
(resp. finite) I, ;3.22a (resp. 3.22b) remains true without
the assumption that the sections of the Ri are nonempty.

§2. SUPREMUM THEOREMS

This section deals mainly with results concerning real~ .
valueq functions. We first show that the numerical semi-con-.
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tinuity of a real-valued function is equivalent to the semi-
continuity of an associated correspondence. This is dealt
with in the quasi-uniform (3.24) as well as in the topologi-
cal case (3.26). 7 A

We then study the'continuity of the supremum of a
real-valued function as well as closed graphs, obtaining.re-
sults which are then used to prove two supremum theorems
(3.41 and %.42). These, in turn, yield a general result on
continuous selections (3.43).

Numerically semi-continuous functions

The additive uniformity Z{IR of the real line R has as a
xy)eRxR: [x —y] < a}

as a runs through the set of real numbers > O.

base of entourages the sets Va

The sets V; = {(x,y)e RxR: y<x + a} form, as a runs

through the set of real numbers >0, a base for a quasi-

uniformity 7(& on R, which we shall call the upver zdditive

quasi-uniformity of the real line. Similarly for the lower

additive quasi—uniformitxlhﬁ of the real line, defined by
the sets = {(X,Y)GIRX R: y>x - a} o

Clearly V = (V )" =1 for each a>0 henceW{[R and}(
are conjugate, with #p = M+“IMB, since V, V+(\V for
each a>0.

Now let (X,A) be any quasi-uniform space. A function
f: X—~R will be said to be (numerically) guasi-uniformly
upper (resp. lower) semi-continuous if it is quasi-—uniformly‘
continuous when R is endowed with its upper (resp. lower)
additive quasi—uniformlty.

Clearly, f is quasi-uniformly continuous (when R is en-
dowed with its zdditive uniformity) iff it is both numeri- =
cally quasi-uniformly usc and numerically quasi-uniformly
lsc. Also, f is numerically quasi-uniformly use, when X is
endowed with %, iff it is numerically quasi-uniformly lsc,

vhen X is endowed with 7 ~1.
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3.24 THEOREM.- Let (X,Y) be a quasi-uniform space, and let
f:' X—R be 2 numerical function on X. Define
a correspondence R bej;ween X and R by setting ' k
R(x) = J-0,£(x)]
for each x e¢X. Then the following are equivalent:
a) f is numerically quasi-uniformly usc (resp. lsc)
b) R is quasi-uniformly usc (resp. lsc), when R is en-~
dowed with its addltlve uniform:\_tyl{la.

c) R is quasi-uniformly usc (resp. lsc), when R is en-
dowed with its upper (reép. lower) additive quasi-
uniformity Z-([.E‘_{ (resp. ). ‘
Proof.~ We first consider the,"upper"' case. Forthis,‘;
it suffices to show that the following three.
- statements are equivalent, for each .a>0 and each x,yé¢€ZX: ‘

(1) f(y) <£(x) + a.
(11) R(y) cV (R(x)).

(111) R(y) C V(R(x)).

(1) =>(ii): Suppose weR(y). If weR(x), then clearly
weV, (R(x)). If on the other hand w¢R(x),

-

then we have f£(x)<w<f(y)<f(x) + a, hence |£(x) - WI% a,: |
iee. weV, (£(x))CV,(R(x)). Thus, R(y)cV,(R(x)).

(11) =»(iii): This is clear, since V_ CV . , ‘
(11ii) =>(i): Since f(y) eR(y)CV+(R(x)), there ex1sts a
' po:c.nt z eR(x) such that (z,f(y)) eva, i.e.

f(Y)<z + a. But z<f(x), and so f£(y)<f(x) + a, as de-
sired. '

By going over to}('1 and by using the relations ‘L
7/(& = (;2(&'%)"1 and %’&1 = MLR’ ve can deduce the result for
ﬁthe "lower" case. S | o

We now consider topologies.- The intervals of the form
[~ ,a[ (resp. ]a,w]), with ace€ [R, together w1th the set

R (‘bhe extended real line), can be taken as open sets for a AN

topology on R, which we shall deno‘ce by TlR (resp ?’ﬁ), and

Whl(:h we shall call the uover (resp. lower) topolorrv of the g



extended real line BR. Denoting the natural topology of R by

+~-

If (X,%) is any topological space, then a function
f: X»>R is (numerically) upver (resp. lower) semi-continu-
ous at a point xoe X iff it is continuous at Xy vhen R is

endowed with its upper (resp. lower) topology.

We shall denote the restriction of T— to R by Tp; simi-
larly for ?’E{ and G"IR. We have SlR g(?(R) =T (7(,&;) and
Sg = TWR). |

3.25 LEMMA.- Let X be a set and f: X—»R a real-valued
function defined on X. Define a correspondence

R between X and R by setting R(x) = [-o,f(x)] for each

x €X. Let G be any subset of R, and let a = inf(R\G),

b = inf G. Then we have: ' '

a) £~ ([-,a[)CR*(G).
b) £71(1b, 0] ) CR,(6).

¢) If G is open and G # R, then equality holds in a)
d) If G is open and -0 ¢ G,.then equality holds in b).

Proof.- ‘ ‘ : A
'Ad a): Suppose f(x)<a. Then, for each y €R(x), we |
have y &<f(x)< a, hence y€G, showing that
R(x)CG.
Ad b): Suppose f(x)>b. Then there exists an element
y€G with y<£f(x). Hence yeR(x)NG, showingv
that R(zx)NGC £ ¢&. |

Ad c): By a), we have 1([-ao a[)CR* @). On the oth--
er hand, using b) we have 1(]a eo])CR ([R\ G),
taking complements, we obtain RF(G)C £~ ([-%°,al). So it

suffices to show that R*(G)ﬂf—1(a) = @. Now suppése'

. £(x) = a. Then clearly a€R(x). On the other hand, R\ G is
a nonempty closed set, and so it contains its infimum a.
Thus, aeR(x)\G, so that R(x)th, as desired.



- 72 -

Ad d): By b), we have £ '(1b,=1)CR,(G). On the other
hand, using a) we have —1([-w,b[)CR*(7ﬁ\ G);
taking complements, we obtain R*(G)Cf_1([b ]). So it
suffices to show that R*(G)ﬂfﬂ(b),z @#. Now suppose

f(x) = b. Since G is open and -oofG, we must have b’¢ G,
and so y>b for each y€G. On the other hand, clearly
y< f(x) = b for each yeR(x), and so R(x)NG = d.

3,26 THEOREM.- Let X be a topological space, and let
: f: X—-R Dbe a real-valued function defined on

X. Define a correspondence R between X and R by setting -
R(x) = [-,f(x)] for each x€X, and let x €X. Then the

following are equivalent:

a) £ is numerically usc (resp. lsc) at Xo.

b) R is usc (resp. lsc) at x, ‘when B is endowed with
its topology /fﬁ. | ’
¢) R is use (resp. 1lsc) at X when & fs endowed with |
 its ‘topolo‘gy ’5\'% (résp. ’3‘&:1) | o
Proof.- We first consider upper semi—continu;ty.
a) =>b): Let G be any open subset of [R with x| e R* (@);
' we have to'show that x, em Now this is
trivial if G = R. If G # R, then we can put a = inf([R\G)

and use 3.250 to obtain R*(G): f-1([- ,a[) Hence,

/1""“&\ —
~ X e f (C"‘ 73[-) R*(G)
b)::)c)' This is clear, since S[R is finer than S{R'
¢) =>a): Iet ac¢R be such that xge? 1([—w,at)
Since [~e,a[ # R is open, and since
inf(R\ [—w,a[) = inf [a,») = a, we see by 3.25¢ that ‘
1(["°°:a[) R¥([~0,al), hence

xo€ BH([-0,a0) = £ ([~ o, a0).
We now turn to lower semi-continuity. ; S T T
A 8-)==>b) Let ¢ be any open subset of [R with x € R, (G),'
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/:"'\ .
we have to show that =x e R,(G). Now, this is
Ctrivial if ~~ eG., If - ¢ G, then we can put a = inf G

and use 3.25d to obtain R, (G) = f'1(3a,ooj). Hence,

x € m) SE;?G'\), as desired.
b) =>c): This is clear, since 'S“-ﬁ is finer than ’f—m?
c) ==a): Let aeR be such that X, € f-1(]a,°<>]). |
Since Ja,) is open, and since -c0¢ la, =]}
and inf Ja,=] = a, we see by 3.25d that ‘
171 (1a,00)) = R, (Ja,)),

[

hence xoe R;‘(]a,bo]) = £ (]a,oc,]).

Continuity of the supremum of a real-valued function

In the following, we denote by ﬂ: (resp. ﬁ;) the set o_ﬁ

all nonempty subsets of R which are bounded above (resp._ be-

low).
3.27 THEOBEM.-— Let f:'&:—ﬁ[R ‘be the mapping A»-;,. sup 4, "and
g:tBZ—-» R the mapping Aw—sinf A.

a) f is quasi-uniformly usc (resp. lsc), when 1;: is en-

dowed with the upper (resp. lower) quasi~uniformity
"induced by the upper (resp. lower) additive quasi-
wniformity of R.

b) g is quasi—uniformly'lsc (resp. usc), when B, is en~

dowed with the upper (resp. lower) quasi-uniformity '
induced by the lower (resp. upper) additive quasi-
uniformity of R. '

Proof.~ a) We first consider the "upper" case. Le‘t £>0;
we shall show that f(B)g<f(A) + € for each

A,Be ﬁ'g with BCVS'(A). Indeed, suppose. BCV:(A). _The'n, for -

each ye B there exists an element‘ xe A with y< x‘+ £; .
i‘b‘follovtrs that y<f(A) + ¢ for each yeB, hence A
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f(B)< f(A) + €.
By considering conjugates, and using the fact that %E-;

and?ﬂﬁ are conjugate, we obtain the corresponding result for

the "lower" case.
b) This can be proved like a). Alternatively,
this can be deduced from a), since

g(A) = inf A = - sup(-A) = -£(-A) for each Ae B

We now consider topologies. Note that Pervin's quasi-
uniformity only yields the first half of the following theo-
rem. But first, we state a simple lemma which will be found
useful in the sequel.

. 3,28 LEMMA.— Let X be a topological space and f£:X—R a
real-valued function on X. Suppose that f at-
tains its minimum at a point aeX, and let fo be the re-

striction of £ to X\ {a}.

If {a] is open (resp. closed), then the upper (resp.
lower) semi-continuity of fo implies that of f.

Proof.- Put A = X\ {al. _
{al open: It is clear that f is usc at a, since a is
isolated. The upper semi-continuity of f at a
point xeA follows from that of fo‘at x and from the mini~
mality of f at a. |
' {a)} closed: The lower semi-continuity of f at a follows
from the minimality of f at a. Also, f is
lsc at every x eA,_since f is lsc at x and A is open.,

In conjunctlon with the above lemma, note that if (X,;)

is a topological space, then {¢} is open in (¥(X),Y*), since
= 3(#), while it is closed in (§(X),T,), since

A =BENJE).

2;22 THEOREM.~ Let f: B(R)~—>R bve the mapping Awssup A,
‘ and g: 2(R)—R the mapping A\-—-—iinf A,

a) £ is usc (resp. 1lsc), when B(R) is endowed with the

usf (resp. 1lsf) topology 1nduced by the upper (resp.
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lower) topology of R.
b) g is lsc (resp. usc), when 8(R) is endowed with the
usf (resp. lsf) topology induced by the lower (resp.
upper) topology of R.

Proof.-
a) We first consider the mapping F: B(To, 1])-—+[0 1],_
defined by F(@g) = 0 and F(A) = sup A for each -
AeB([0,1])), and prove a similar result for F. Denote by F,

the restriction of F to 7P (Lo,11). |
The "upper" case: Ve endow ﬂ%[o 1)) with the topology
(SB)* and show that F is usc (strictly speaking,.fm_refers

to the topology induced on [O 1] by the upper topology of
the real line). By 3.28, it suffices to show that F, is usc.

Now, by 3.27a, F, is quasi-uniformly usec, whenﬁ;([0,1]) is
endowed with (Kg)*, hence it is usc. Since ?((K&)*) is
coarser than (?(Xa))* = ﬁf&)*, the result follows.

The "lower" case: We endow B(10,1]) with the topology
({g), end show that F is 1$c. By 3.28, it suffices to show M
‘that F_ is lsc. So let A € B ([0,1]) and &} 0. Then the:‘re‘
exists an element X, €1A such that X, )-F (A ) - (g/2). _
shall ehow that F (A)>F (A)) —¢g for each AeQ?[o 1 (¢),
where {xe[o 1] : XSX, = (6/2)}. Since Q[O n (6) is an
open‘nelghbourhood of A, in ¥ _(L0,1]), the result will fol-
low. So suppose Aeqy(o 1](G). Then there exists an element

x€A with x%x, - (&£/2); hence, we have
F(a)yx>x, - (5/2)>(F (4,) - (€/2)) -—(6/2) = F, (A ) -
as desired.

We now consider the mapping £ itself. There exists an
increasing mapping 9 which is a homeomorphism of R onto |
[0,1] with respect to the natural topologies of those sets..
In particular, we have %9(sup A) = sup P(A) for each ,
A< R(R). Also, ¥ is a homeomorphism with respect to the up-
per (resp. lower) topologies of R and [0,1). Thus, in order
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to show that f is usc (resp. 1lsc), it suffices to show that
the mapping 4+f is usc (resp. l1sc). On the other hand, it

also follows that & is continuous, when D([0,1]) is endowed
with the usf (resp. 1lsf) topology induced by the upper (resp.
lower) topology of {0,1]. Since §(f(A)) = F(4(4)) for each

Ae P(R), it follows that %+f = Fe?‘ is usc (resp. lsc).
Hence the result.
b) This can be deduced from a), as in the proof of 3. 27.'

The following theorem constitutes the main result on .
the continuity of the supremum of a real-valued function.

3.30 THEOREM.- Let X be a topological space, and h:X—R a
real-valued function defined on X.

Let F,G:%(X)—»R be defined by F(A) = sup h(A), »

G(A) = inf h(A) for each Ae J(X), and let A e B(X).

a) If h is usc (resp. lsc) af every point of Ao, then F
is usc (resp. lsc) at the point A of B(x), when’?(X)

is endowed wvith its usf (resp. 1lsf) topology. v
b) If h is lsc (resp. usc) at every point of A, then G

is 1lsc (resp. usg) at the point A, of f1X), when P (x)
is endowed with its usf (resp.’lsf) topology..
Proof.- We only prove part a), the proof of part b)

being very similar,
Let T(R) be endowed with the usf (resp. 1lsf) topology

induced by the upper (resp. lower) topology of R. Then B is
continuous at the point A . But the mapping f£: P(R)—>R, de-

fined by £(B) = sup B for each Be B(R), is usc,(resp. lsc)’i
by 3.29a, Since  F(A) = sup h(A) = £(h(A)) for each

Ae B(x), it follows that F = foh  is usc (resp. 1lsc) at the
point Aoe‘ﬁ(X). :

3. § COROLLARY 1.- Let R:X|Y be a correspondence between
topological spaces, and h: Y-R a real-
»valued functlon defined on Y. Let f£,g: X—-R Ybe deflned by

£(x) = sup h(R(x)), &(x) = inf h(R(x)) for each =x€X, and
let xoeX. ' C
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a) If R is usc (resp. 1lsc) at x,» and h is usc (respo.
1sc) at every point of R(xb), then f is use (resp.

lsc) at Xqe

b) If R is usc (resp. 1lsc) at Xy and h is lsc (resp.
usc) at every point of R(xo), then g is lsc (resp.

use) at X

Proof.- To prove a), let F:B(Y)-»R be defined by
F(A) = sup h(A) for each A€ B(X).
Then f£(x) = sup h(R(x)) = F(R(x)) for each xeX, i.e.
f = F*R. The result thus follows from 3.30a.
Similarly for part b).

3.32 COROLLARY 2.~ Let R:X|Y ©bve a correspondence between
v topological spaces, and h:XxY—R a
real-valued function defined on XxY. Let f,g:X—R be de-
fined by £f(x) = sup {h(x,y): yeR(x)},
g(x) = inf {h(x,y): ¥ eR(x)}

for each x¢€¢X, and let xoe X.

a) If R is usc (resp. 1lsc) at X,» With R(xo) compact |

gresp. arbitrary), and h is usc (résp. lsc) at every
point (xo,y) with yeeR(xo), then £ is usc (resp.
1sc) at Xye ‘
b) If R is usc (resp. lsc) at X,» with R(xo) compact

(resp. arbitrary), and h is 1lsc (resp. usc) at every
point (xo,y) with y'eR(xo), then g is lsc (resp.

usc) at x

(o]

Proof.- Again, we only prove part a). Let S be thé re-
stricted product of IdX and R; thus, we have

S(x) = {x}x R(x) = {(x,y)eXxrY: y e R(x)} for each =xe X.
By 3.22a (resp. 3.22b), 'S is usc (resp. lsc) at xo.iMore-‘f

over, h is usc (resp. lsc) at each point of the set S(x;).
By.3.31a, it follows that the mapping f£,:X-R, defined by

f,(x) = sup h(8(x)) for each x€X, is usc (resp. lsc) at
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xy. Now f£,(x) = sup {h(x,y): y eR(x)} = £(x) for each

xeX, i,e., f = :E1. Hence the result.

Closed graphs

If f, g are two continuous mappings of a topological
space X into a Hausdorff space Y, then the set
{xe X: £(x) = g(x)}
is known to be closed in X. .
We now generalize this result 1o correspondences.

. 3.33 THEOREM.- Let R, S be two correspondences between a

‘ topological space X and a Hausdorff (resp.

regular) space Y, and let ‘X’(X’) be endowed with its finite

topology. Let & = {Ae R(X): R(A)cs(a)}. |
Suppose that R is lsc and S usc at a subset A, of X,.

and that S(Ao) is compact (resp. closed).
Then the relation A ¢ § implies re M.

Proof.- Suppose that AO¢/:]7. Thus, R(Ao)gtS(Ao) and
hence there exists an element ye R(Ao)\_S(Ao).
Then, since 3y ﬁS(AO), there exist open subsets V, W of Y
with yeV, S(A))CW and VNV = g. Now R is lsc at Al
since yeR(A, )NV, we have A NR, (V) # @, and hence
ANR (V) # $. Since 5 is usc at Aj and A CS*(W), we have
A C *(W5. Hence, .
/____2___\ T T
Ae 79(8*(W))n,J(R*(V)) B(sx(W))In (R (V)),
'S0 that O’: B (st (W))HJ(R*(V)) is a neighbourhood of the
point A in P(X). Moreover, for each A€ we have

R(A)NV # ¢ and S(A)CW, so that, since VNV = @, o
R(A)¢ S(A), i.e. A¢Y. Thus, OnY = ¢, showing that Aoéﬁ. '

In the above theorem, as well as in what follows, a
_.Eﬂllﬁag space 1is not assumed to satisfy the T1 separation

axion, An analogous remark holds for normal spaces,
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A regular (resp. normal) T,-space will also be referred

to as a T3-— (resp. T4-) space.

3.34 COROLLARY .- Let G = {xeX: R(x)<s(z)}.
_ Suppose that R is lsc and S usc at a point
x, € X, and that S(x,) is compact (resp. closed).

Then the relation xOE-E implies x € G.

Proof.- Let ﬁ(X) be endowed with its finite topology;
then JX is continuous.
Let § = {AePX): R(A)eS(A)}; then o = 3371 (H).
Now suppose xb e G. Since g‘;jX(G)C)d,'we then have
ix} = Ixlx )€ ;jX(G)C)J. By 3.33, it follows that
ix(x,) = {xo‘ge);l, hence x € ;jx-'1 () = G, as desired.

Let R = (G X,Y) be a correspondence between topologi-—
cal spaces. We call closure of R, and we denote by R, the
correspondence (G,X,Y) between X and Y. -

If X, € X, we say that the graph of R is closed at Xy

1f R(x,) = R(x,).

Here, G denotes the closure of G in the product space
XxY., Clearly, G is closed at e iff the relation (xo,y)GE

implies (xo,y)e(} for each yeY.

‘As an example of the use of 3.34, we deduce the follow-
ing result.

3.35 THEOREM.- Let R = (G,X,Y) be a correspondence between
a topological space X and a Hausdorff (resp.’

regular) space Y.. Suppose that R is usec zt a point X, of X -

and that R(xo) is compact (resp. closed).
Then G 1s closed at Koo
Proof_.— Define a mapping f:XX Y—Y and a correspond-

ence S between XxY and Y by setting f(x,y) =7y |
and S(x,y) = R(x) for each (x,y)€XxY. Then, for each
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yeY, f is continuous af (xo,y) and S is usc at (xo,y); in-
deed, if pry: XxY¥—»X and Dpry Xk'Y—eY are the pfojeq-
tions, then £ = pr, and S = Repry. Moreover,

S(Xo,y) = R(xo) is compact (resp. closed) for each yeY..

Now G = i(x,y) eEXxY: yeR(x)}
= {(z,y)eXx¥: £(x,y) €S( (x,¥)} . _
By 3.3%4, it follows that the relation (xo,y) €G dimplies

(xo,y) €G for each yeY. Hence G is closed at x,.

The following two results on closed graphs will-be used
later (for proofs, cf. [1], theorems 7 and 2' of chapter 6):

" 3.36 THEOREM.- Let R, S be two correspondences between a
topological space X and a Hausdorff space Y.
Suppose that the graph of R is closed at a point X, of X,

that S is usc at X,» and that S(xo) is compact.

Then T = RNS is usc at X, and T(xo)_is compact.

3. §7 THEOREM.- Let R be the intersection of a family of cor-
' respondences (R ). ieT between a topological

space X and a T,~ (resp. 3-) space Y. Let x_ €¢X and sup-
pose that, for each ielI, Ri is usc at Xy with Ri(xo) com;f

pact (resp. closed, and that at least one set of the family
(R, (x o))ie1 is compact).

Then R is use at x, and, unless I = ¢, R(xo) is‘com-
pact. ' t

We conclude with a result on composites:

3.38 THEOREM.~- Let R = (G,X,Y) and S = (H,Y,Z) be corre-
spondences between topological spaces. If R
1s usc at a point x € X and R(x) is compact, and if H is

closed at every 001nt of R(x ), then the graph of S*R is

closed at xo.

Proof.~ By 1.14, the graph F of SeR is given by
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F = (RxId,),(H).

So suppose (xo,z)e? = (Rx Idz)* (H). Now Rx Id, is usc at
(Xo,z), hence (xo,z)e-(R xIdZ)*(ﬁ), and so there exists a
point yeR(xo) with (y,z)eﬁ; But H is closed at y, and
so (y,z)€ H, showing that (jco,z) e (R x Idz)*(H) = F, as
desired. |

Continuous selections

Ve prove two supremum theorems, 3.41 and 3.42. These
will be derived‘from more general results, to which we now
proceed.

3.39 THEOREM.- Let X, Y be topological spaces, Z a Hausdorff
(resp. regular) space, and let Ry» R, be-two

correspondences between XxY and Z.
Let x,€X, and suppose that R, is lsc and R, usc at

each point (x,,y)€XXY, and that R,(x,,¥) is compact (resp. -

closed). ‘
‘ a) We have: the graph of the correspondence SO:XIY,
defined by So(x) = {ye¥: R1(x,y)CR2(x,y)} for
each x€X, is closed at Xy S
b) Let further R:X|Y be usc at x,, with R(xo) compact.,

Then, provided Y is Hausdorff, the correspondence
S:X|Y, defined by S(x) = {y¢R(x): Ry(x,y)CR,(x,y)] for

each x€X, is usc at x,, and S(x,) is compact.

Proof.-— To prove a), let G be the graph of S, thus,
= {(x,y)e Xx¥: R,(x,¥)CR,(x,¥)}. *By 3.34,

the relation (xo,y)EG implies (xo,y) €G, for each yeY,

Hence G is closed at Xge

Since RnSo, part b) then :f‘ollows by using 3.36.

2-_4_ THEOREM. - Let X, Y, Z be topological spaces, let
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. R1:X|Z, R2:Y|Z, and let x € X.
Suppose that (i) R, is usc at EN and R, (x ) is compact.
(ii) For each z eR.(x ), B «1 is usc at z and
Ré—1(z) is compact. »
a) We have: the correspondence SO:XIY, defined by
8, (x) = {er: R, (x)(‘\R (y) # ¢} for each xeX, is
o» 2nd S (x, ) is compact.
b) Let further R:X|Y be usc at x,, with R(x ) compact

usc at x

(resp. closed). Then, provided Y is a T2- (resp. 3--)

space, the correspondence S:X|Y, defined by ’
S(x) = {y € R(x): Ry(x)NR,(y) # g}
for each x€X, is usc at x,, and S(xo) is compact.
Proof.- We have §(x) = R2—1(R1(x)) for each xe€X, so
' 2-1-R1 is usc at x . Fﬁrther,
_ -1 : s
qjxo) = R, (R1(x0)) is compact by 2.9.

that §,=R

Since § = RNS , part b) follows by using 3.37.

Z_i_ THEOREM.- Let X Y be two topological spaces, with Y
Hausdorff, and let R: X|Y and h: Y—R.

- Let f£:X—>R be defined by f£(x) = sup h(R(x)) for
each x ¢X, and define S:X|Y by setting |

'8(x) = {yeR(x): h(y) = £(x))
for each x €X.
Suppose that R is continuous at a point x, of X, with:

R(Xo)'compact; and that h is continuous. Then f is continu- -
ous at x_, and S is usc at xo, with S(x ) compact. If fur-
ther R(x ). # ¢, then also S(x ) £ ¢.

The same result is true if "sup" is replaced by "inf"'k
" in the definition of f.

‘ Proof.- This follows from 3.31 and 3.%9.
3.42 THEOREM.— Let X, Y be topological spaces, with Y a Tz":’
(resp. T3-) space, let 'R:XIY ‘and” h:Y-R.



- 83 -

Iet f:X—»R be defined by f£(x) = sup h(R(x)) for
each x <X, and define S:X|Y by setting
S(x) = {y eR(x): h(y) f(X)}
for each xeX. "

Suppose that R is continuous at a point x  of X, with

R(xo) compact (resp. closed), that h is continuous at every
point of R(xo), and that h~' is usc at the point f(xo) of R,
with h'1(f(xo)) coﬁpact. Then f is continuous at x_, and S
is usc at x,, with S(xo) compact.

The same result is true if "sup" is replaced by "inf"
in the definition of f. '

Proofs- This follows from 3.7%1 and 3 40.

" Note that 3 41 is a local version of the corresponding
theorem on p. 116 of [1}. 3.42, however, yields a supremum
theorem concerning closed sets, rather than merely compact
sets. This will now enable us to give a new proof of lemma 6
‘of [3] on continuous selections. Filippov's proof depends
heavily on geometric considerations, whereas ours follows
from a purely topological result. '

Let (X,d) be a metric space, and d a set of subsets of
X. We say that X has the nearest point proverty with respect
to Q@ if, for each (x,A) ¢ X x@, there exists exactly one
point aeA such that d(x,a2) = d(x,A). For example, the

Euclidean space R™ .has the nearest point property with res-

pect to the set of all closed, convex, nonempty subsets of R™,
A finite dimensional normed vector space is called a
Minkowski space.

3.43 THEOREN.— Let Q ve 2 set of compact (resp. closed) sub-

sets of a metrlc (resp. Minkowski) space X,
endowed with its finite topology. Suppose that X has the
nearest point property with respect to Q.

Then, for each AOGCI and xoe.Ao,_there exists a con-

tinuous mapping F:@—X such that 'F(Ao) = x, and 'F(A) € A

for each A€ Q.
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Proof.— Let "d" denote the metric of X (resp. the met-
ric induced by the norm of X). Then, for each
Ae®@ there exists a unique point x€A with
a(x,,x) = alx,,A);

we set F(A) = x. We now show that F is continuous. o
Let h, be the mapping xh>d(x ,X) of X into R. Define

a correspondence R between @ and X by setting R(A) = A for
each A€(@, Then R is continuous, since R = Id‘B(x)la’ which

is clearly continuous, when B(X) is endowed with its finite
topology. )

Finally, let f:@—R be defined by

£(4) = d(x ,A) = inf {a(x,x): x € Al

for each A€ @, and define a correspondence S between Q and
X by setting . : o
S(a) = {xeR(A): hy(x) = £(A)} = {xea: a(x,,x) = a(x,,4)}
for each A€Q, Since S(A) = {F(A)}  for each A€Q&, the
result will follow if we can show that S is usc.

Case 1: X metric, @ a set of compact subsets of X.
Since ho is continuous, the upper semi-continuity of S fol-

lows from 3.41.
Case 2: X Minkowski, @ a set of closed subsets of X.
Here, we clalm that h 1s a proper mapplng, i e. that h is

a continuous, closed mapping and that h -1 has compact sec~
tions. Now ho is continuous and the space R is 1ocally com-
pact, hence it suffices to show that h0'1(B) is compact for

each compact subset B of R. Now, if BCR is compact, there
exists a finite real number M such that |yl<M for each

¥y €B. Then, |x - x \¢<M for each element xeho'"(B), 50
that ho'1(B) is bounded. Moreover, ho"1(B) is closed, since
B is closed and h, is continuous. It follows that ho"1(B) is

compact. ‘ ~
We now show that the requirements set on h in 3.42 are
satisfied by the mapping h:xh,ho(x) of X into R. Indeed, -

Since ho is continuous, so is h. Moreover,»ho"1 has compact
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sections, in particular h—1(f(Ao)) = ho'1(f(Ao)) is com-
pact. Finally, ho is a closed mapping and so
-1 y=-1 _
(8,"1)71(a) = ny(a)

is closed for each closed subset A of X, showing that ho"1

is usc; since R is an open subset of R, it follows that h-1
is usc at f(AO). Hence we can apply 3.42 and the result fol-

lows. R

3,44 COROLLARY.- Let X be 2 topological space, Y a metric
(resp. Mlnkowski) space, and @ a set of
compact (resp. closed) subsets of Y. Let R be a correspond-
ence between X and Y with sections in Q.
. Suppose that R is continuous, and that Y has the near-
est point property with respect to Q. Then, for each x'e X

and ¥, <5R(x ), there exists a continuous selection f of R

witn f(x ) = Y4

Proof.- Let ( be endowed with its fini%e.topology. By -
3.43, there exists a continuous mapping F:Q—Y

~such that F(R(x,)) =y, and F(A)G.A for each A<Q. Let

£ be the mapping x—F(R(x)) of X into Y. Then f-is continu-

ous, f(xo) = F(R(Xo)) =Yy, and f(X) F(R(x))E.R(x) _for -

each xeX.
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Chapter 4
COVERING TOPOLOGIES

'§1. DEFINITIONS AND FUNDAMENTAL PROPERTIES

Defining topologies with carriers

If X is a topological space, then the set of all finite
intersections of sets of the form J(G), with G open in X, is
a base for the 1sf topology of B(X). It is natural to ask
what happens if one considers, for instance, locally finite
families of open subsets of X, rather than merely finite
. ones. In this way, one can define "covering topologies " on

¥(x).

More precisely, we shall consider carriers of (in the
sense of chapter 2, §1) which satisfy the following axioms,,
for each topological space X:

(C1) The union of a finite family of elements of d(X)

~ belongs to A(X).
(c2) If 6cX is open, then {G}e d(X).
(c3) If Y e £(X) and H, is an open subset of G for
- each Gel, then fH.: Ge e A(X).
(c4) If He x(X) and ¥}, then FE€ A(X).
A carrier X satisfying those four axioms for each topo-

logical space X will be called a covering carrier. The
choice of these axioms will be made clear in the sequel, as

we develop the properties of topologlies defined by carriers,
We first give some immediate consequences of these axioms:
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4.1 THEOREM.- For each topological space X, we have:
a) If Ye «(X) and G,cX is open, then

Hu {6 e R(X).
b) If X is a finite set of open subsets of X, then

N e (x).
c) If )ie A(X) and G, CX is oven, then

‘ fenc,: celdle«(X).
a) 1£ He «(x), then M \{g}e <(X).
Proof.- Parts a) and b) follow from (C2) and (C1), part
¢) follows from (C3) and part d) from (04)

Note that the statement of 4.1d implies (04), if (03)
is assumed. Indeed, let zgde A(X) and 75C)d , a.nd define HG

G, if GeH
for each GeM by HG {¢, £ oty Then {Hy: Ge/a}e o((x)
HG: GG)Q} if geff# M8 or K= jj
But ?)/ =
(He: GebIN{gl, 12 piH 4L .

The two most important examples of covering carriers
which we shall consider are the finite carrier p(f and the-

locally finité carrier °(lf’ In order ‘toy simplify the no‘ba—

tion of this chapter, we shall use the symbol Y in place of |
Ap and A in place of Ay,. Thus, for each topological space X,

Y(X) is the set of all finite sets of open subsets of X, and
A(X) is the se’c of 2l1l locally flnite subsets of open subsets
of X.

We define an order relation between carriers by set-
ting o(<ﬂ 1ff L(X)c p(X) for each topological space X.
It is clear from 4.1b that < & for each covering carrier
A, i.e. ) is the smallest covering carrier.

In the following, we denote by (4> the set
A = g\g}(@) fae D(x): anc #§ for each Ge)i}
G/

for each HC V(x).
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Let (X,T) be a topological space. The topology T () of

”l?(X)‘ is defined to be that which is generated by the set of
all sets of the form<A), where MHeX(X): '
If Q< B(X), the topology Tp(«) of @ is defined to be

that which is induced on Q vy ~{:he topology ’t’*(a() of @(X)
The topology F(X) of @ is defined to be the join of the
topologies T¥ and ¥, (A) of .
Generally speaking, we sHall refer to the topologies
(0() and S(o() as covering topologies.

The topology T (¥Y) (resp. 5(}7)) is nothing but the
lower semi-finite (resp. finite) topology 3/» (resp. ¥ 5 ). Ve
shall refer to the- topology %,(R) (resp."?( A)) as the lower
semi-locally finite (resp. locally finite) topology.

It is clear that the topology g)‘ (resp ’3’) is coarser
than ¥ J(A) (resp. 3(0()) for each covering carrier .

In the rest of this section, we study some'of'the basic
properties of covering topologies. In §2, we study‘covering
topologies with respect to separation, and in §3 we compare
them with other topologles considered in chapter 2.

If GOCX and Mc B(X), we denote by <Go,}d> the set
Ple)n(> = {AeP(X): AcG, and ANG # ¢ for each Gell.
We also set ()&> =dHnd and (Go-)@% = <Go,}i>f\®‘ for
each Q c P(x).

& THEOREM.- Let (X,7) be a topologiéal space.

a) The sets (2, with)ﬁ running through «(X), form a
base for the topology g*(‘() of (X).

b) The sets (Go,):)>, vhere G CX 1is open, }J% K(X) and
U/iCGé, form a base for the topology 3‘(«’() of P(X).

Proof.- ; :
a)’Let ().Qi)ieI be a finite family of elements of A(X).
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Then (WY = (Uﬂ> Since UZJ Eo((x) vy (C1),
eI

‘ i iel
the result follows .

b) A base for the topology T(<) of ¥(X) is formed by
the sets R(G ) N<HD> = ¢, ,4), where G, is open and

Hex(x). Putting H' = {ena: GeN}, we have M'e«(X) by
4.1c and U }'CG . Moreover, €6, X0 = {6, ,8'>; for if A is
any member of (G , M) then AN(GNG,) = ANG # § for each

GeM.

From now on, when we refer to a basic oven set (Go,,b>,

we shall always assume that UNc@,.

M THEOREM,- For each basic open set (Go,y:D for the topo-
logy F(Rr) of PX), there exists an element
Be«(X) such that (G, AYNF,(X) = LUH, W)
Proof.- Put # = Hu e }. Then Heo(X) by 4.1a, and
(Go,)j>n?o(x) =<U7’$,71>; for if A is any member
of {6, AD0F (X), then ANG, = A # 4.

“Thus, if @ # A CZX, then for each basic open set
(Go,,h> with A€ (Go,}J), there exists an element Hew(X)
with A e{UW,%Yc(e ). Ve also have: '

___4,_ COROLLARY.- The sets (U}J b> X)’ where /%i runs through

X(X), form a base for the topology fg“(a() of
T (X).

We now try to determine under what conditions covering
topologies are admissidble.

_§ THEOREM.- Let X be a topological space and let h be the _

bijection xm—{x} of X onto Q = {‘Lx}. x € X}.
If. @ is endowed with its topology *(A) (resp. ("());‘ then
we have: -
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-

a) h is open.
b) A necessary and sufficient condition for h to be
continuous is that ﬂ,& be open for each Me «(X).

Proof.- Since the topology ¥ of ¥(X) is admissible, it
is sufficient to consider only the topology

Te()e
a) For each open subset G of X, we have
n(G) = {{x}: x€G} = ({GDa,
which is an open subset of &, since fal e(X) by (C2).
b) h is continuous iff b~ 1((/;j>m) is an open subset of
X for each M €&A(X). Since
| n~ (A, = {x e X: {x’xe-()d)} (\}d
the resuit follows. ‘
4.6 COROLLARY .~ The following statements are equivalent:
a) The topology 5 () of ZQ(X) is admissible.
b) The topology S(o() of P(X) is admissible.
c) NY is an open subset of X for each De A(x).
We shall say that a covering carrier A is admissible if,.

for each topological space X, the topology %/(o() of M(X) is
admissible. Thus, the finite carrier Y and the locally fi-
nite carrier A are both admissible (if /ﬁe NX), then
(\71 g ir M is infinite). |

Interiors and closures

4.7 THEOREM.- Let X be a set, let @,Bc®X) and A ,B,cX.

Then we have:
a) A sufficient condition for (A, ,A>C{B,,B) is that

A CB_ and that every set of ¥ contains a set of (.
"If UQCAO and @ ¢d, then this condition is also né-

cessary.
b) A necessary condition for (AO,Q>(\<BO,’B)9£ ¢ is

that A NB# ¢ YBeB® and ANB, # # YaeQ.
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1f U@c4a, ana OBc B, then this condition is also
sufficient.

Proof.- .
a) The condition is obv1ously sufflcz.ent. We now show
necessity. Suppose first that Aotho, and choose a

point x_ €A N\ B, . Since gé @, we can also choose a point
x) €A for each A€C@. Let C = {x \u {xA: AECQ}. Since
x, ¢ B,, we have C€ CIRR AN (Bo,’&, contrary to the hypo-

thesis.

Suppose next that there exists a set Bef which does
not contain any set of Q. Thus, we can choose a point
.Ae ANB - for each A€Q Again, let C = ng: Ae@} Since

CNB = ¢, we have C€{A_,Q)\¢B,,B>, contrary to the hypo-
thesis. , : | ‘
b) The condition is obviously necessary. We now show
sufficiency. By hypothesis, we can choose a point .
X, € A(\Bo for each Ae (@ and a point Y3 G“Aor\B for each
Bef. Putting C = {x,: AeQYy{yg: Bed}, we see that

Ce (Ao , Q>(\(ZBO B

4.8 COROLLARY.- Let X be a T1-space, let @ %m?(x) end
AO,B CX., Then we have ; :
a) If UQca, #¢Q and Q is locally finite, then
(AO,Q>@;(X)C.<BO,’K> (X) iff AOCBO andi evevxfy;set
of B contains a set of Q. L -
b) If VA <A, UhcB,, and (,B are locally finite,

then <A s >~(X)f\ <Bo’ﬁ>ﬂ(x) % ¢ iff A f\B % ¢
VBeB and ANB, # ¢ YAed. ‘
Proof.-~ Indeed, the two sets C constructed in the préof"

of 4.7 are then closed.

" Let X be a topologlcal space, ‘It follows 1mmediately

from the definitions that g (A)=J(R) for each su’bseﬁ A of :

X, where the closure of ;P(A) is taken with respect to the



- 92 -

topology Tt of ‘P(X). Passing over to complements, we obtain
i ) ° /E\ . » -

the relation F(A)CB(A). Similarly, we have the relations

P(a)cP(E) ana L(A)c](A) in the space (B(X),T,).

4.9 THEOREM.- For each Q< P(X) and each subset A, of X, we
have: ' '

2) JQHC@y in BX),TY.

b) (é)c@ in (®(x),7T,), provided & is finite.

e) {4, Q}C(A , @ in (’[P(X) ).

d) (A ,Q)Cﬂ in (’K’(X),g), provided QU is finite.
Here Q. = - {&: AeQ} and Q = {_A AeQ}.

Proof.~ We 'only consider cloSures; the results concern- g
ing interiors can be proved in the same wvay.

a) @) = ﬂju)c(\McﬁJm = @).
c) <Ao.a> m m<&>czYA )n((l)c:ﬁ’( )n@ <AO,Q)

4,10 THEOREM.- Let (X,T) be a topological space, Q< F(X)
and A  a subset of X with UQCAO.

Then we have:
a) <&,,apclA,, Q> with respect to the topology ().
P . o . : [ .
b) (AO,Q> C.<A0’Q> with respect to the topology X(A).
“Proof.~ ‘ . ‘
a) Let B €{A ,®). To show that B € (A, @), ‘we have
to show that (GO,Zf)(\(AO,Q) # ¢§ for each basic
open Set(G ﬂ) with B € (G b) But for this, it is 'suf:fi-~
cient, by 4 7b, ‘to show that G f] A# g for each Ae@_, and
GCNA # 8 for each GeM. Now BNEK#4 for each AeQ;
since B,SG,, we also have G, NEL # @, hence G, N A ;é #. On
the other hapd, BOC 7\.-0;, since B NG #£ ¢ for each GG}J ve
also have vG-{\’K'O»;é @, hence GNA 7£ ¢, as de ired.
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b) Let B, € QAO,Q>. Then there exists a basic open set
(o, by with B e (o, 8)ClAy, Q). Clearly $¢N, and
so, by 4.7a, G ,CA, and every set of Q@ contains a set ef,ﬂ.
But then B,CG,CA,, i.e. BC K . On the other hand, if
AeQ@, there exists a eet Ged with GCA, so that GCA;
since B NG # @, it follows that BOP\A £ ¢. Thus, we have
shown that Bye (A, D). <

In the same way, we obtain, using 4.8:

4.11 THEOREM.- Let (X,§) be a T,-space, Q< H(X) and 4 a
subset of X with UQC A . Then we have:
a) (A Q>~(X)CI<K_TEsz;3 ‘with respect to the topology
S(1J of 4(X), provided 4 is locally finite.
b) ZK;:&;;?&)CLQAO,Q>N(Y) with respect to the topology
§n) ot ’g“(X)

§2. SEPARATION

In this section, we study separation properties of cov-
‘ering topologies. Besides being generalizations of the re-
sults in [8)], some of our results vwill be new even for the
case'of the finite topology, for we shall consider hyper-
spaces as bitopological spaces as well as topological spaces.'

A bitopological space (X 7,Q) is a set X together with :
two topologies‘f and Q on X. Thus, for ‘example, if (X,?) is

a topological space, then (P(X),T*, T*) is a bitopological
sSpace. ' o -
Bltopological spaces were 1ntroduced by J.C. Kelly in

[5]. Ve refer to that paper for definitions concerning sepa-
ration properties of bitopological spaces. Nevertheless, we

shall repeat here, for convenlence, definitions of terms wve
need '
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Separation by open sets

A bitopological space (X,P,Q) is called semi-pairwise .
Hausdorff 'if, given any 41:1‘-70 distinct elements of X, there
exist a P-open set U and a @-open set V such that U contains
one of the two points, V contains the other and UNV = §,

4.12 THEOREM.- If (X,%) is regular, then (@’(X),?',’K‘.,) is
k seni-~-pairwise Hausdorff. -

Proof.~ Let A, B be two distinct elements of g(X). Ve
may assume that’ A\B £ @ say. Choose a point o
X € AN\ B. Since X is regular,‘there exist open sets G and H ‘/

wrchxeo BCH and Gr\H—¢ , : ~ S
Then, A€ Q(G). Be B(H) and ,S(G)mP(H) = ¢, hence the

result.

4.13 THEOREM.- Let (X,¥) be a T,-space. If ( ) (w)) is

v Hausdorff, then ( ,5) is regular. ]

Proof.- Let A € '}f(X) and x eX\A ."Then A and '

A u{x} are two distlnct elements of j(X)
 Since %(X) is Hausdorff, there exist two basic open sets  ;
(G, A) and (H , ¥) such that Aj€ <G, M), Ajuixie (Ho,}j>
~and <Go,)j>~(x)ﬂ<Ho.ﬂ> (x) = g. Since ALV {xo)! 94 ¢, we may’

assume that H_ = UN. ' ; o '

Now x, €H, and so the set ¥' = {Heﬂ; xo'e H}

nonempty. We now.claim that there exists a member H of ' .
with G f'\H = ¢ Indeed, suppos‘e, to get a contradiction“,
that there exists a point Xy € G NH  for each H€)1', and
let C = {x;: He%'}. Since A' is Jocally finite, the set C -
is closed, hence' A= A U C €3’(X) Moreover,‘ one easily sees‘
- that Ae(Go,ﬂj)n<Ho,?;'), a contradiction. Thus, there exists i
2 member H ofH' with G NH = ¢ But then, X, eH and -

AOCGO, hence the reoult. '

S If a bitopologic'al space (X,?,9) 1syfse’mi-pairwisey.f,
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Hausdorff, then it remains so if P and/or § are replaced by
finer topologies; also, clearly (X,#¢) is Hausdorff. Using
this, together with 4.12 and 4. 13, we obtain:

.14 COROLLARY .- If (X,?) is a T j-space end &< z, then the

following statements are equivalent. '
a) (X,¥) is regular.

b) (5(X),'§"”,'}'*(o()) is semi—pai_.rﬁise Hausdorff.
¢) (F(X),F(A)) is Hausdorff. | o

If P and § are two topologies on a set X, then P is said
to be regular with respect to @ if, for.each x€X and each
P-closed set PcX with x¢P, there exist a P-open set U
and a (-open set V such that x€U, P€V and UNV = g.

A bitopological space (X,7,0) is pairwise resular if P
is regular with respect to G, and @ is regular with respect

to’f

4 15 THEOREM.- If (X,F) is regular, then the topology g*(o()'

of B(X) is regular with respect to its topo-
logy §'*

Proof.- Let A€ ?(X). We show that, for each ,%!eo((x)
with A € (/h), there exists_a member M€ «(X)

such that A € ) and {(¥> C();!) where the closure of the

set (¥} 1s taken with respect to the topology t¥. ;
So let A e(ﬂ) , ahd choose a point XgEeA NG for 3

each Ge,H Since (X,7) is regular, for each Ge,@ there -
exists an open set Hy with x, e,HG ~and ,HGCG. Putting

N = {HG G e),ﬂ " so that He £(X), we have "Ao€<?z)’).and ;
o TS <. | 3

4.16 THEOREM.- If (X,J) is normal, then the topology 5% of .
F(X) is regular Wlth respect to its topology _c*,

Proof.~ Let A€ %(X). We show that, for each open sub-
set G of X with Aoe'z?((}), there exists an open



subset H of X such that A eB(H) anda PE)CF(G), where

the closure of the set ﬂ H) is taken with respect to the to-

pology Cy. _
So let A, e P(a), i.e. A CG. Since X is normal, there

exists an open set H such that A CH and HeG, But then,
A eP(H) and 7S’(H)<=1S’(H)C He). |

If P, § are two topologies on a set X, and P is regular
with respect to §, then it is clear from the definition that
P is regular with respect to every topology on X which is
finer than @. Thus, the following result is a consequence of
4.15 and 4.16:

4.17 COROLLARY .- If (X,§) is a T,-space, then (§(X),3*,%,(A))
is pairwise regular. ' B

4.18 THEOREM.- Let (X,¥) be = T,-space, and suppose that

Aeh. If (F(X),¥(R)) 1 regular, then (X,?)
is normal.

Proof.- Let A€ %(X) and G any open subset of X with
A,CG. Thus, A € B(G)n¥(x) = <@, P> w(x)r an o-

pen subset of §(X). Since ¥(X) is regular, there exists a
basic open set {H_ ,%D> such that : ‘ _

A€ CH ,B) and (H ,kO (X)C:<G ¢>g(x)

Then, A CHj. Also, {H,,%gx) = {HorWdy(x)< <8, ¢>"‘(X)’ 50
that H cG. |

| If a bitopological space (X,P,Q) is pairwise regular;
then it is clear that the topological space (X, fv©) is regu-
lar. Using this, together with 4.17 and 4.18, we obtain. «

.19 COROLLARY.-— It (X,’f’) is a T,-space, end o<s'/L , then’ the

following statements are equivalent:
a) (X,??Zis>normal. *

b) (F(X),T* T R)) is pairwise reguiar.‘ j
¢) (F(X),F(4)) is regular. A N : v";
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Sevaration by continuous functions

A topological space X is said to be a Stone svace if,
given any two distinct points xo,‘x1 of X, there exists a

continuous function f: X—{0,1] such that f(xo) = 0 and

f(x1) = 1, It is said to be completéll regular if, for each

x,€X and each closed set A>CX with xo¢ A, there exists

a continuous function f£: X—[0, 1] such that £(x,) = 0 and
f(x) = for each xeA . ' '

A bitopological space (X,®?,Q) is said to be semi-pair-
wise Stone if, given any two distinct points of X, there ex-
ists a P-usc and §-lsc function f: X—[0,1] which takes
the value 0 at one of the two points and the value 1 at the
other. We put % (X) = %(X)\{g} for each topological space X.

4.20 THEOREM.- If (X,7) is completely regular, then

(7(x),7%%,) is semi-pairw1se Stone.-

Proof.e Let A, B be two distinct elements of &(X). Then
A\ B # @, say. Choose a point x,€ ANB. Since

(X,7) is completely regular, there exists a continuous real-
. valued function f: X—[0,1] such that £(x,) = 1 and

" f(x) = 0 for each x¢&B. Define F: ?(X)-»[O,i] by sefting
F(E) = sup {f(x): xeB} for each E€ §,(X) and F(g) =o0. .

By %.30a and 3.28, F is T*-usc and F,-lsc. Also, F(A) =
and F(B) = ’ :
4.21 THEOREM.- Let (X;?) be a T1—space and sﬁpndse that « is .

admissible. If (5(x), 5(4)) is a Stone space,
then (X,7) 1s completely regular. ‘ : )
Proof.- Let A e %(X) and X, € X\\Ao. Then A, and
AOL}{xo} are distinct elements of, 5(X). Since

“4(X) is a Stone space, there exists a continuous function
F:. (x)—[0,11 such that F(4)) =1 and F(AOU{XO}) = 0.

Now define a function f: X—[0,1] by setting
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f(x) = F(AOU {x}) for each x eX.
Then, f(xo) = F(Aou{xo}) = O‘ and f£(x) = F(Ao) =1 for
each xer.

We now claim that f is continuous. Since T is continu-
ous, it suffices to show that the mapping h: x—A U {x} of

(X,%) into (ﬁ(X),’?(o()) is continuous. So let x eX, and sup-
pose (Go,)d> is a basic open set with h(x) G(Go,}d); thus,

AU {X}CGO and (AOU {x} )f\G.# @ for each GeM. Now let

={celd: A NG = #l. Then XHeA(X). and so, since 4 is ad-
missible, OH is an open subset of X. Also, xe' Gé(\ ((\)1), so
that H = Goﬂ ({\')9’) is an open neighbourhood ,Of X ih X, Fi-
nally, h(H)C(Go,}ﬂ>, which completes the prv'oo‘f that h is
continuous. | ‘ ‘

 If a bitopological spaee ‘(X,‘P,Q) is semi-pairwise Stone,

then it remains so if 1> and/or @ are replaced by finer topo-

logies; also, clearly (X,TPv{) is a Stone space. Using this,
together with 4.20 and 4.21, we obtain: '

4.22 COROLLARY.- If (X,T) is a T -space and 4 is admissible,

then the following are equivalent.
a) (X,%) is completely regular.

) (§(X),T% % () is semi-pairwise Stone.
c) ('5’(X),§v(o<)) is Stone.

If P, § are two topologies on a set X, P is said to be
completely resular with respect to § if, for each x€X and -
each P-closed set PcX with x ¢ P, there exists a P-usc
and (]-lsc function f: X—{0,1) ' such that f(x) =0 and
f(y) = for each yeP. ' BRI

A bitopologlcal space (X,P,{) is vairwise comnletely ‘

regular if P is completely regular with respect to § and 0

is completely regular with respect to . (Cf. [6], defini-
tlon 2.3)

4.2% THEOREM.~ If (X,5) is completely reg'ular, then the 't‘o-"
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‘pology X, of ¥(X) is completely regular with
respect to its topology T* .
" Proof.~ Suppose Aoex?(G), vhere G is an open subset of
X, and choose a point =x € A NG. Then there

exists a continuous function f: X—[0,1] such tha‘t
f(xo) =1 and f(x) = 0 for each xe€X\G.

Define TF: §(X)—[0,1] by setting
F(E) = sup {£(x): xeE} for each. Ee{ (X),

and F(@) = 0. Then F is §*-usc and §-lsc, with F(4)) = 1.

Also, if EeB(X)\J(e) = B(x\a), then_ f(X) = 0 for each
x€E and so F(E) = 0.

Since the sets J(G), with G open ‘in X, generate 'n, the
result follows. ‘

4.24 THEOREM.- If (X,¥) is normal, then the topology T* of
%(X) is completely regular W:Lth respect to
its topology 3*. -
Proof.- Suppose A € B(E)YNF(X), where G is an open

‘subset of X. Then there exists a continuous
real-valued function f: X—{0,1] such that f(x) =0 for
each x €A  and f(x) = 1 for each x€¢X\ G, Define

F: ?(X)—»[O 1 'by setting F(E) = sup {f(x)ﬁ x € E} for
each Ee’f< (X), and F(¢) = 0,

Then F is J*-usc and ¥,-1sc, with F(A ) = 0, Also, if

EeF(X)\ D) = J(XNG)NF(X), then there exists a point
Xx€eE with f(x) =1, and so F(E) = 1.

As a consequence of the last two theorems, we have:

.25 COROLLARY - If (X,¥) is a T,-space, then (g\(X) T* iT*)

is pairwise completely regular.

Separation in H(X)

If (X,ﬁ') is a Hausdorff space, “then points and compact
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sets in X can be separated by open sets, and S0 the proof of
4.12 shows that (K(X),¥*T,) is semi-pairwise Hausdorff. In

the same way, if (X,T) is regular, then closed sets and com-
pact sets in X can be separated by open sets, and so the

proof of 4.16 shows that the topology T of K(X) is regular
with respect to its topology Ty. Similar considerations ap-
ply to 4.20 and 4.24. We thus obtain the following result:

4.26 THEOREM.- Let (X,J) be a'topological space. If o is ad-
missible, we have:
a) (X,%) is Hausdorff

iff (K(X),T% 5, (R)) is semi—pairwise Hausdorff

iff (K(X),N(o()) is Hausdorff.
b) (X,7) is regular

iff (X(X), ?*"“(K)) is pairwise regular

iff (K(X) J(v()) is regular.
c) (X,%) is Stone

-

iff (R(X),¥57,(X)) is semi-pairwise Stone

g (K(X),%(4)) is Stone. |
d) (X,T) is completely regular

Ciff (K(x),3%<,) is pairwise completely regular,,
iff (R(X), 3) is completely regular. -

§3. COMPARISON WITH OTHER TOPOLOGIES

Comparison with the uniform tovrology

It was shown in 2.23a that, if (X,X) is a quasi-uniform‘
space, then the topology g(% ) is finer than (?K%)) . We now °
show:

4.27 THEOREM.- Let (X,1) be a'uniformbopace. It (X, S(K)) is
: paracompact, then the topology %(%,) (resp. ?XK))

of ?(X) is coarser than its tépology (g(u)) (A) (resp. (%)(l))
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Proof.- To show that ¥(3(,) is coarser than (5 )*(;L),
let Ao'e'i?(x), and let U be any entourage of X.
- We show that the set U*(AO) contains a neig}_;bourhood of A
in the topology (S§(W)),(R). .
Now there exists an open symmetric entourage V of X
with V2C U. Since X is paracompaét, the open covering

(V(x)) ex °F X has a locally finite open refinement HA. Since

each set V(x) is VZ-, and hence U-small, each set of )6( is
also U-small. Let now % be the set of those members of N
which meet A, so that A € {¥>. The result will follow if

we can show that () c U (4)).

So suppose A€ {H). To show that AOCU-1(A), let
x,€ A . Since H is a covering of A , there exists a set
He%d such that x € H. But ANH £ @, so ve can choose g
point x€ ANH. Thus, (x,,x)€HxHcU, so that

x, € U 1(x)CU 1(A), as requlred -

Finally, since T(A*) is coarser than (_s(%))"r it fol~

lows that ¥(H) is coarser than ’3’(%)(2-)

In what follows, we describe a case in which the topo~

logies T(#y) and (¥(U)), (L) actually coincide. But first, we
need some preliminaries.

A topological space X will be called even if every open'
covering }.) of X is even, i.e. there exists a neighbourhood U
of the diagonal in Xx X such that (U(X)) X refines A.

A regular space is paracompact iff it is even (cf.. [4]9 -
p. 156, theorem 28). Closely related to this result is the
following lemma. '

4.28 LEMMIA 1.- Let X be a topological space, (G )ieI a local-

1y finite family of open subsets of X and
(A )1eI a family of closed sets such that Ajcay for each

1 €I, Then there exists a neighbourhood U of the diagonal in
XXX such that U(A )CG ~for each 1ielI.
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Proof.- For each i €I, tﬁe set . ;
U; = (6% 6Gy) U ((XN4) x (INA)) | |
is an open neighbourhood of the diagonal in Xx X. Since '
U,(x) = G; for each x€A;, we have U.(A.)CG.. Putting ' ,
nU , the result will follow if we can show 'that Uis a |
iel ‘
neighbourhood of the diagonal. ,
For this, let x €X. There exists a neighbourhood G of
x in X such that ‘_GﬂAi ¢ for all but finitely many indi-

ceg ielI. Now, if GﬂAi = ¢, then G.CX\Ai and so
G xGCU,. It follows that U contains the set
(exe)n(Niv,: 1€I and GNA # #)),
which is itself a neighbourhood of ’che point (x,x).
If X is even, then, by [4], p. 157, lemma 30, for every
neighbourhood U of the diagonal in X x X there exists a sym-

etric neighbourhood V of the diagonal such that V-V cU.
This proves part a) of the following lemma: -

z_x_.__z_g LEMMA 2.- Let (X,§) be a paracompact regular SPace.
a) The set-of all neighbourhoods of the diagonal in |
XxX is a uniformity A on X. ‘
b) The topology ' induced by X is equal to ¥ itself.

Proof.- To prove part b), let X, € X, If U is a neigh-

bourhood of the diagonal (with respect to §),
then U(x ) is a {-neighbourhood of x, in X. This shows that |

~

' is coarser than §. To show that { is coarser than 3, let

G be any ¥ -open neighbourhood of a point x_ in X. Since X is

o)
regular, there exists a §F-open set H with X, € H and Hca,-

Since X is even, there exists a neighbourhood U of the diég~ .
onal such that (U(X))x refines the open covering {G X\ H}

But then, we must have U(x )CG and the result follows.

If (Gi)iGI iks a locally finite family of'subsets of X,
we write (&;);.r = {A€B(X): ANG, # ¢ for each ie1}.
Thus, putting § = §a¢.: 1 ¢ ' ‘ '
| ’ ¥ { i I}, we have <Gi>1€I =<)j>,
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___3__ THEOREM.— Let X be a paracompact regular space, and let
2 be the uniformity on X for which the entou-

rages are all the neighbourhoods of the diagonal in X« X. '
Then the topology (s(u)) (1) of P(X) coincides with its

topology 7§ (7‘(*

Proof.-— First note that T(W) is-equal to the original
topology of X, by 4.29. Also, by 4.27 it suf-
fices to show that (T())), (L) is coarser than T(U,). So let

(Gi)ieI be a locally finite family of open sets in (X,5()),

and suppose that. A € (Gi) C’hoose a point x; €A NGy

jeI”
for each ie€I. Since (X,5(%)) is regular, there is an open
set H; with x; €H; and TfiCGi, for each 1i€I. By 4.28,

there exists a symmetric entourage U of. (X,?&)v such that

U(Hi)CGi for each 1€I. We claim that U*(AO)C<G5) 1eI°

Indeed, if ASU*(AO), then A cU(A) and so, in particu-
lar, for each 1 €I +there exists a point yieA ‘such that
xieU(yi). Because of the symmetry of U, we thus have

eU(xi)C_Gi for each i€I, hence A€{G

¥y 1 ieI*

Note. that 4.29 and 4.30 still hold if X is assumed to
be an even T1-space, using the fact that singleto'nskare then

closed. Also, 4.30 should be put in connection with [8],
theorem 3.4, which states that if X is normal, and if X is
the uniformi"‘y induced on X by the °tone-—§ech compactifica~-

tion, then S(%) and g(u) agree on 3(X).

Comparison with the finite topology

e

In the following, the concept of pseudocomnactness will
play an important role. We therefore review some of the rele-
vant facts. _

A topological space X is said to be pseudocomvact if

every continuous (flnlte) real-valued function defined on X
is bounded. Ve note.
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4.%1 THEOREM.- A sufficient condition for X to be pseudocom-
pact is that every locally finite family of
nonempty open subsets of X is finite.
If X is completely regular, then this condition is also
necessary.

Proof.- Suppose X is not pseudocompact. Then there ex-
‘ ists an unbounded continuous real-~valued func-
tion f defined on X. Let G = {xe€X: \f(x)\:>n} for each

natural number n. Then each Gn is nonempty and open. lore-
over, (Gn)n is locally finite. Indeed, if xOEEX,‘we‘can
choose a natural number n  with |£(x )| <n,. Since £ is

continuous at x there exists a neighbourhood U of x_ such

o’ 0
that |£(x)| <n, for each xeU. It follows that U does not .
meet any of the sets G, with n)n.,.

Suppose X is completely regular, and that there exists
a locally finite family (Gi)iel of nonempty open‘subsets of

X which is infinite. We show that X is not pseudocompact.
Now, since I is infinite, there exists an injective mapping
k of the set of natural numbers into I. Choose a point X, in

Gk(n) for each n. Since X is completely regular, there exist

" continuous real-valued functions fn>>0 on X’such that
fn(_xn) =n and fn(x) = 0 for each xeX\Gk(n). Since the
sequence (Gk(n))n is locally finite, the sum f = Z:fn is
a well-defined continuous function. But f(xn)>,fn(xﬁ) = n,

so that £ 4s not bounded.

We can now prove:

4,32 THEOREM.- Let (X,§) be a topological space, and A &

completely regular pseudocompact subset of X
Then the systems of neighbourhoods of A in the topolooies

(resp. g) and T,(*) (resp 5(?)) coincide. E

Proof.~ Let (G )i€I be a locally finlte family of open -
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subsets of X with Ao€'<Gi>i€I‘ We shall show
that (Gi)iEI is finite, so.fhat the result will trivially
follow. Indeed, (Ao(\Gi)iel'is a locally finite family of
nonempty open subsets of Ao, hence it must be finite, i.e. I
is finite, és required.

It is clear from the proof that the same result holds,
for each compact subset AO of X.

We now wish to prove a converse of 4.32. Bﬁt first, we
"need a lemma: '

4.33 LEMMA.- Let X be an even space, A a closed subset of X
and (Gi)iGI a locally finite family of open sub-

sets of A. Then there exists a locally finite family of open

subsets (H;);.; of X such that G, = ANH; for each 1€1I,

Proof.- By [4], p. 158, lemms 31, there exists an open

neighbourhood U of the diagonal in X xX such
that (U(G ))i€I is "locally finite. Put H, = G, ()(U(G )\ 4)
_for each i €I; clearly ANH, Gi for each. ieI, and the
family (H1)1€I is locally flnlte, since H, c:U(G ) for each
ieI. It only remains to show that each set Hi is open in X,
So let ie€I. Since G is open in A, there exists an open
set L in X with G = ANL, hence

- (AﬂL)u(U(Gi)\ A) = (U(6;) ALY (U(G;)\ 4)

is open in X, as rgquired.

4,34 THEOREM.- Let (X,5§) be even, and let A be a closed

subset of X. In order that every neighbour-
hood of A in the topology (ﬂ) of B(X) contains a neigh~

bourhood of Ao in the topology S, it is necessary that Ao be -
pseudocompact. » ‘ |
Pron;- Let (Gi)iGI be a locally finite family of non-

empty open subsets of Ao; we have to show that
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it is finite. By 4.33, there exists a locally finite family
(H, )1EI of open subsets of X such that G; = H;AL, for
each 1ieI. Then, Aj € (H, >1eI -By hypothesis, there exists a
basic open set <W,W)in (B(X),F) with A e (W, WHeHy) er-
It follows that every set H; contains a set of W. Since Wis
finite, the family (H ). jer must also be finite; for other-.

wise there would be a set of W, and hence a point of X,
which would be contained in the set Hi for infinitely many

indices i €I, contradicting the local finiteness of the
family (Hi)iEI.-Thus I is finite, i.e. the family (Gi)iEI is

finite.
This result could also have been formulated and proved

for the space F(X) instead of ¥(X), provided it is further
assumed that X is a T1—space.

£.35 COROLLARY.- Let (X,¥) be a paracompact Hausdorff space
and A a closed subset of X

A necessary and sufficient condition for the gsystems of .

neighbourhoods of A  in the topologies 'S\; (resp. ;j\:) and

T*(%) (resp. %%%)) to coincide is that A, be compact,
‘Similarly for the space F(X).

Proof.- In order that the condition stated holds, it is
necessary that AO be pseudocompact. Since Ao}

being closed in X, is normal, it is also countably compact,
and hence compact.

We conclude with a result which stresses the differ-
ences between the finite and the locally finite topologies.
If (X,¥) is separable, then (?(X),?) is also separable. We
now show that this is not the case for %kﬂ).

§ LEMMA.- Let (X,J) be a topological space, and suppose

, ,560((}() is such that the sets of )} are nonemp-.
ty and disjoint. » |
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Then every dense subset of (F(X) :’1\*”(1,-()) has cardinality

at least anrd(ﬂ) (here, card(}) denotes the cardlnali‘by o:t‘
the set 4).

Proof.- We show that the sets VW, 77} vhere ¥ runs
through the set of all subsets ofﬁ, are non-

empty and pairwise disjoint. The result will then follow.

To show that (UHA,H># @, it suffices to choose a
point xz€H for each HeA and to let A = {XH:'HGW};
for then, A€{U7%d,M). o :
' Next, suppose 4, Y' are two distinct subsets of,&
Then there exists a set Heﬂ\#', say. Thus, HEnU%"' = 4,
whence it follows that U%, ﬁ)ﬂ(U?)"»W'> = @. '

4.37 7 THEOREM.- If (X, ¥) is an infinite discrete space, then

(?(X),_y(?»)) is not senarable. L

Proof.- Let }i {{x}: xeX} Then ﬁél(X) clearly
satisfies the condltions of the lemma. Thus,

every dense subset of 'P(X) has cardinality 2card(X) Hence
the result. ~ "
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