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1
ABSTRACT

Certain partitions ("vertex-decompositions") of the vertices 

of a graph have the property that we can associate with them 

graph-like quotient structures ("generalised graphs"),and that 

we can define the adjacency matrix of a quotient in such a way 

that its eigenvalues and eigenvectors are closely related to 

those of the original graph.Chapters 1 and 2 give the basic 

definitions and results necessary to the rest of the thesis, 

and in addition Chapter 2 surveys most of the previous work 

in this field.

Chapter 3 discusses vertex-decompositions of trees,and gives 

methods for finding the group and characteristic polynomial 

of a tree from its smallest quotient,

Chapter 4 discusses vertex-decompositions of regular graphs 

into two classes,relating the existence of such decompositions 

to the possession of integer eigenvalues,and to switching classes 

of graphs.

Chapter 5 considers graphs for which a quotient may possess 

all the eigenvalues of the graph from which it is derived,and 

demonstrates that for a particular class ("singleton-regular" 

graphs),which includes vertex-transitive graphs,it is possible 

to find not only the eigenvalues but also some of their multiplicities 

from the adjacency matrix of the quotient.

Using this result»Chapter 6 ,and Appendix 1 are devoted to 

the construction of all possible quotients (with certain properties) 

of certain types of singleton-regular graph,and in Chapter 7 we 

decide for each quotient whether or not there are any graphs 

with the desired properties»sometimes utilising arguments concerning 

the primitivity of the action of the automorphism group or the
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necessity for a graph to be a covering of a transitive graph. 

Exhaustive lists of graphs with the given properties are given, 

including a list of all symmetric trivalent graphs on ^40 vertices.

Appendix 2 consists of a single proof establishing the uniqueness 

of the (3,12)-cage by the use of a computer program,a result 

used in Chapter 7.
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1:BASIC DEFINITIONS AND NOTATION

1.1:Generalised Graphs

We begin by discussing informally the ideas which we shall 

develop in Chapter 2,"vertex-decompositions” and "quotient graphs", 

to provide motivation for our definition of a generalised graph.

We omit technical definitions at this stage for the sake of 

clarity of expression.

and the partition of its vertices P={P1,P2,P3,P4} with P^={l}, 

P2=Ì2,3>,P3={4},P4={5,6>. This partition has the property that 

if x and y are in the same class then for each P^ (j=1,2,3,4) 

the number of vertices in P^ adjacent to x is equal to the number 

of vertices in P^ adjacent to y. We shall call a partition with 

this property a vertex-decomposition of G (see Chapter 2).With 

this partition we may associate naturally the matrix 

M= 0 2 1 0

1 1 0 1

1 0 0 2

0 1 1 1

whose ij-th entry is the number of vertices in class P^ adjacent 

to a given vertex in class P^. We may also associate with this
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partition of G a "graph-like" structure G‘

where the number contained in each vertex indicates the size 

of the corresponding class of the partition,and a single edge 

between two vertices indicates the least possible number of 

edges between the two corresponding classes consistent with 

the partition being a vertex-decomposition of G.

It is desirable to extend the usual definitions of a graph 

to include such structures,which we shall call generalised graphs, 

and also to define their adjacency matrices in such a way that
pM is the adjacency matrix of G .

1.1.1:Definition.A generalised graph G is an ordered triple 

(V,s,w) where

i) V is a finite set of symbols called the vertices of G,

ii) the size function s:V-*N assigns to each vertex xeV 

a size s(x),

iii) the weight function w:VxV-*-Z+ assigns to the ordered 

pair (x,y) the weight w(x,y) when x,yeV.

The ordered pair (x,y) is called an edge if and only if w(x,y)/0. 

If (x,y) is an edge,then x is said to be adjacent to y, which 

we may write as "x adj y".

N(G,x)={yeV, x adj y} is called the neighbourhood of x in G 

and yeN(G,x) is called a neighbour of x. The total weight of 

edges beginning at x is the outdegree of x and the weight of 

edges ending at x is the indegree of x. If the outdegree and 

indegree of x are equal,their value is said to be the valency 

of x. N(x) will be written for N(G,x) when there is no doubt
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as to the graph in question.

The number of vertices,|v|,is the order of G. //

1.1.2{Definition.Let G=(V,s,w) be a generalised graph.

1.1.2,1:If w(x,y)=w(y,x) for all x,yeV then G is undirected. 

Otherwise it is directed.

1.1.2.2;If s(x)=l for all xeV then G is called a pseudograph. 

1.1.2,3;If s(x)=l for all xeV, w(x,y)=0 or 1 and w(x,x)=0 for 

all x,y£V, and G is undirected,then G is a simple graph. //

1.1.2 .4;Notat ion.In the text the term "graph” without any of 

the modifications above will refer to a connected.simple graph.
//

1.1.3{Diagrams.Let G=(V,s,w) be a generalised graph.

1.1.3.1:If G is not a pseudograph then vertex x is represented 

as a circle containing s(x) thus:

The vertices of a pseudograph are represented as points.

1.1.3.2:We indicate the weight of edge (x,y) by one of the following:0=6 °r (>**<!)
w(x,y) arrows

The omission of arrows from edges joining vertices x and y indicates 

that w(x,y)=w(y,x) //

1.1.4{Examples.The following are generalised graphs:

1.1.4.1: G^:

1.1.4.2: G2:

G2 is undirected.

1.1.4.3: G3 :

‘© M r ,



Gg is a directed pseudograph.
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1 2
1.1.4.4: G^: <' .

is an undirected pseudograph.

1 2  3
1.1.4.5: Gj.: g ^

G^ is a simple graph. //

1.1.5.1:Notation.The set (1.2.... n} is denoted by N . //— --------------- > > » n

1.1.5 .2iDefinition.Let G=(V,s,w) be a generalised graph of order 

n. If V=Nn , then G is said to be properly labelled. //

1.1.6:Definition.Let G=(V,s,w) be a properly labelled graph of 

order n for some neN. Then the adjacency matrix of G, A(G), is 

the nxn matrix (a^) with

a„=w(i,j )x[s(i) ,s( j)]/s(i)

where [a,b] denotes the lowest common multiple of positive integers 

a and b. //

1.1,7;Examples.

1.1.7,l:The adjacency matrix of G^ in 1.1.4.1 is r 0 6

L 2 0
1.1.7.2:The adjacency matrix of G^ in 1.1.4.5 is 0 1

1 0,  0 1
p1.1.7,3:The adjacency matrix of the generalised graph G 

given at the beginning of Section 1.1 is M.

0 .

1

0 /

//

The examples 1.1.7.2 and 1.1.7.3 together illustrate that we 

have defined the adjacency matrix in accordance with the aim 

stated at the beginning of this section without changing the
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common definition of the adjacency matrix of a pseudograph.

1.1.8:Notation.The characteristic polynomial of matrix A, |A—XI|, 

is denoted by 4>(A,X). <t>(G,X) may be written for <J>(A(G),X). //

1.1.9.1;Notat ion.An eigenvector of a matrix A is a right-eigenvector 

of A unless the contrary is specifically stated. //

1.1.9,2:Definition.The spectrum of a generalised graph G is the 

spectrum of A(G). Two graphs are cospectral if their adjacency 

matrices have the same spectrum. //

With the exception of the one following piece of notation,which is 

used by Schwenk (37), all our other graph-theoretical terms follow 

Biggs (*0 or Harary (21).

1.1.10:Definition.A rooted generalised graph,(G,r), is a generalised 

graph with one vertex, r, singled out.An isomorphism between 

rooted generalised graphs must take root to root. //

1.2:Families of Graphs

We shall refer repeatedly to certain well-known families of 

graphs,whose definitions we include here for convenience.We regard 

these graphs as essentially unlabelled,the labellings given being 

simply for ease of construction.

1.2.1:Notation.The complete and complete multipartite graphs

will be denoted by K and K , respectively,where n,a,b,...n ci }D} • • •
take positive integer values. //

1,2.2:Definition.A (k,g)-cage is a regular graph of valency k 

and girth g on the least known possible number of vertices. //

1.2.3.1 definition.The k-cube, Q^, is the graph defined as follows:-
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The vertices of are the 2 symbols ...,x^) where x^=0 or 1

for each ieN^, and two vertices are adjacent when their symbols 

differ in exactly one coordinate.The 3-cube is commonly simply 

called the cube. //

1.2.3.2:Example.The cube, Q„:O

//

1.2. ^,1:Definition.The generalised Petersen graph P(h.t) has 2h

vertices Xq .x .^ ... . x ^ .,. . y ^  and edges ^ . y ^ t x . ^ . ^ }  

and {y^.y^^} for Oii=h-l where the subscripts are reduced 

modulo h. //

1.2. ^.2:Example.Petersen*s graph is P(5,2):

//

1.2.5.1;Definition.The Mobius ladder M(h) has 2h vertices 

0,l,...,2h-l and vertex i is adjacent to vertices i-l,i+l and

i+h (modulo 2h) for 0=i|2h-l //
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1.2.5.2:Example. M(3):

which may also be drawn

illustrating the reason for the name of this family. //

1.2.6.1:Definition.Let G be a regular graph of valency k.Then 

the truncation of G , T(G), is obtained by replacing each vertex 

of G by a copy of K^, with one edge of G incident with each 

vertex of each copy of K^. //

1.2.6,2:Example.The truncation of K^, T( ) *
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1.2,7.1;Definition.The hexagonal tessellation of the torus {6,3}^ ^ 

is obtained as follows:- The Euclidean plane is tessellated with 

hexagons whose edges have unit length relative to oblique axes 

0X,0Y inclined at an angle of 120°, with (0,0),(1,0),(0,1) being 

vertices of a hexagon.Then opposite edges of the hexagon whose 

vertices are (b+c,c),(0,0),(-c,b),(b-c,2b+c),(2b,2b+2c),(2b+c,b+2c) 

are identified.The result is a trivalent graph on 2(b +bc+c ) 

vertices.Its properties are discussed in (11). //

1.2.7.2‘.Example. (6,3}3

1.3;Automorphisms of Generalised Graphs

We follow the convention of using Greek letters for automorphisms, 

upper case for groups,and lower case for their elements.

1.3.1;Notation. In denotes the group of all permutations of

n symbols. //
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1♦3.2:Definition.Let G=(V,s,w) be a generalised graph.Then the 

permutation y acting on V is an automorphism of G if

w(y(x),Y(y))=w(x,y) and s(y(x))=s(x) for all x,yeV.
//

1,3,3:Not at ion.The group of all automorphisms of a generalised 

graph G=(V,s,w) is denoted by T(G). The group of all automorphisms 

of G which fix xeV is designated T^CG) and is called the stabiliser 

of x in G . //

1 . 3 , Definition.Let 0 be a permutation group acting on a set A.

A block B i s  a subset of A such that B and 0(B) are either disjoint 

or identical for each 0e0. When 0 acts transitively on A we say 

that 0 is primitive if the only blocks are trivial,that is of 

cardinality 0,1 or |a |. If 0 is imprimitive, A is partitioned into 

a disjoint union of non-trivial blocks.which are permuted by 0.

This partition is called a block system or a system of imprimitivity.

A generalised graph G=(V,s,w) is said to be primitive or imprimitive 

if T(G) acting on V has the corresponding property. //

1.3.5:Definition.Let G=(V,s,w) be a generalised graph.

1.3.5.1:If T(G) acts transitively on V then we say G is transitive 

or vertex-transitive.

1.3.5.2:If r(G) acts transitively on vertices and 1-arcs of G then 

G is symmetric.

1.3.5,3:If T(G) acts transitively on t-arcs of G but not on 

t+l-arcs we say G is t-arc-transitive.

1.3.5.4:Let the distance d(x,y) be finite for all x,yeV and let 

the diameter of G be d. If G is transitive and Tx(G) acts transitively 

on vertices whose distance from x is i for each i with l^i£d, then 

we say that G is distance-transitive. //
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1.4:Partitions

1.4.1:Notation.Let P(A)={P.,ieN } be a partition of order m of--------------- i» m
pthe set A. If x,yeP^ for some ieN^ then we write x'vy, or just

x'vy when there is no likelihood of confusion .We also write P

for P(A) when there is no doubt concerning the set under consideration.
//

1.4,2:Definition.Let P , Q be partitions of orders p and q of the set 

A. If x^y implies x$y then we say that

i) P is a subpartition of Q and Q is a superpartition of P, 

and ii) P is finer than Q and Q is coarser than P. //

1.4,3.1:Definition. An n*n matrix has order n. //

1.4.3.2:Definition.Let P(N ) be a partition of order m and let -------------------  n
A be a matrix of order n. Then P induces a partition of A into

blocks A'1  ̂ ,(i,jeN ), which are submatrices of sizes |p .|x |p .| obtained 
by retaining in A only the rows corresponding to P. and tfie columns 
corresponding to P..We use the notation , . . 1 , ..x

] A=(A(l^ )  and A(l3 >*(aj£> }>.

We have already used the term "block" but there is no likelihbod

of confusion arising and unfortunately both uses appear to be

standard.

//

1.4.4definition.Let G=(V,s,w) be a generalised graph and let 

xeV have the property that d(x,y) is finite for all yeV, with 

the maximum value of d(x,y) over yeV being e, say.Then the distance 

partition of G with respect to vertex x , L(G,x), is the set

{P^, O^i^e} where yeP^ if yeV and d(x,y)=i //
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2:VERTEX-DECOMPOSITIONS - GENERAL RESULTS

2.1:Decompositions,Quotient Graphs and Automorphisms

In Section 1.1 we gave an example of a vertex-decomposition 

of a graph.We wish to frame our definitions in such a way as to 

give meaning to the notion of a vertex-decomposition of a generalised 

graph.

2,1.1.1:Definition.Let G=(V,s,w) be a generalised graph and let 

P={P;.,ieNm } be a partition of V.The out-adjacency vector of vertex 

x t aXx) t i s defined

a(x)i=^ w(x,y)*[s(x),s(y)] /s(x) for i e N .
yePi

where as before [a,bj denotes the lowest common multiple of positive 

integers a and b.The in-adjacency vector of vertex x .B(x).is given 

by

8(x).=J w(y,x)x[s(x),s(y)]/s(x) for ieN .
V Pi m //

2,1.1,2Proposition.Let G be a simple graph whose vertices are

partitioned by\P={P.,ieN }.Then for each vertex x and for all ieN J l* m m

a(x)i=8(x)^= jNixinP^ .

Proof.Trivial. //

2,1,1,3:Definition.Let G=(V,s,w) be a generalised graph whose

vertices are partitioned by P,and let P have the property that 
Px'vy implies that a(x)=a(y.) and 8_(x) = g(y).

Then P is said to be a vertex-decomposition of G.

We denote the constant values of a(x)j and Bix)^ for xeP^eP by 

s^j and t^,and designate the corresponding mxm matrices by
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S(G,P) = (sk{>) and T(G,P)*(tkn),for k.pel^.kp m //

2.1.1.4:Notation.As there is no likelihood of confusion with an 

edge-partition of a graph,we shall generally refer simply to a 

"decomposition” of a generalised graph. //

2.1,2:Examples.

2.1.2.ltConsider the directed pseudograph

Gl:

A(G1)= r 0 0 1 1 1 1 0 0 \0

0 0 1 1 1
1
( 0 0 0

— _ _  l_ - — l — —  _
1 0 , 0 0 1 1 1 1

0 1 1 0 0
1
1-I _

1 1
0

1 o1____
1 o1

0 1 01 0 1
0 0 1 0 0

1
11 0 0

, 0 0 1 0 1 0 1
1° 1 0 J

has the decomposition D:L={{1,2}, {3,4}

S(G1,01)= r 0 2 o '

1 0 3

k 0 0 1

and T(G ,0 )* 0 2 0 
1 0  2 

0 0 1
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2.1.2,2:Take the undirected generalised graph G2«
1 2 * + 7

r 0 * 1 2 1 0 0 0 0 \0

1 1

I o 0
—

2 0 0 0 0
1 i 0 0 0 1 1 0 0

1
0 1 1

1 o 0 0 0 1 1

0 1 1 0 1 0 0 0 2 0

0 I 0 1 0 0 0 0 2

0 0 2 1 0 0 0

1 ° ; 0 0 2 0 1 0 0 .

G2 has the decomposition Z?2={{l},{2,3}t{4, 5,6},{7,8}} with

and

s (g2,d2)=

t (g2 ,z>2)=

r 0 3 0 0

1 0 2 0

0 1 0 2

L 0 0 3 0

' 0 1 0 0

3 0 1 0

0 2 0 3

, o 0 2 0 //

There are several elementary results relating the adjacency matrix 

of a generalised graph to S and T.
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2.1.3:Propositions,Let G=(V,s,w) be a generalised graph with 

decomposition Z?={D^,ieNm }.Then:-

2.1.3.1:1? induces a partition of A(G) into blocks with the property

that the sum of the entries of each row of the ij-th block is s...i]
2.1.3.2: s.. £ s(x)=t.. ][ s(y)

1^xeD. 1^yeD.i 1
and if G is a pseudograph then

s. . ID. I =t. . I D . I1 i]1 ] 1 .

2.1.3.3:If G is a pseudograph then t ^  is the constant column sum 

of the ij-th block of A(G).

2.1,3.»4:If G is undirected then S(G,I?) is the transpose of T(G,Z?). 

Proofs

l:By definition.

2:Let xeD^.then

s.^s(x) = £ w(x,y)x[s(x),s(y)].

Hence

yeDj

s .. I s(x)= l  s..s(x)= l  l  w(x,y)[s(x),s(y)]
JxeD. xeD. ■’ xeD. yeD.l l i D

= I l w(x,y)[s(x),s(y)J
yED. xeD.
3 1 i

= l  t..s(y)=t £>.s(y).
yeD.. 3 DyeDj

And for a pseudograph ][ s(x)=|D.|.
x eD. 1

x

3:If G is a pseudograph then

t..= £ w(y,x) for any xeD..i] yeD.

Hence t.. is the sum of the entries of the x-th column over block 

of A(G),and t.. is independent of the choice of xeD. so that
< n >  i.

AUj>

the column sum of Av J is constant.

4:Let xeD^.Then

Sij= ^ w(x,y)[s(x),s(y)] /s(x>
y£Dj

= 1 w(y,x)[s(x),s(y)]/s(x)=t... 
yeDj l-1 //
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A generalised graph may have several decompositions. 

2,1,4:Examples.Consider the cube.

Amongst its decompositions are the following:

2.1. H.1:P1={{1.2.4.6}.{3.5.7.8)}.

2.1. H.2:P2={{1).{2.3.U).(5.6.7).{8})=£(Q3.1).
2 J U 4 13:Z?3={{1,8},{2,7},{3,6},{4,5}}. //

Note that every generalised graph has a decomposition into 

singleton classes,and that every regular simple graph has a 

decomposition of order one.

2.1.5:Definitions.

2.1.5,1:The decomposition of a generalised graph into singleton 

classes is said to be trivial.

2.1.5,2:The decomposition of order one of a regular simple graph 

is called the regular decomposition. //

At least one other vertex-partition of a graph has been studied, 

Weichsel (46) defines the "star-partition" thus:

2.1.6.1;Definition.Let the vertices of graph G be partitioned by 

P={P^,ieNm },a partition having the following properties:

i) x£y implies that the valencies of x and y are equal;

ii)Let xeP^ and yeP^ with x adj y.Then for each x'eP^ 

ere is a y'eP^ such that x'adj y';

Then P is a star-partition of G. //

It is immediately apparent that every decomposition of a simple
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graph is also a star-partition,though the converse is not true. 

Consider for example:

2.1.6,2:Example.
1 2  3

The partition {{1,2,3},{4,5,6,7,8}} is a star-partition but 

not a decomposition of this graph. //

Weichsel establishes the following propositions for star-partitions 

2.1.6.3:Proposition.Let G be a graph whose only star-partition is 

trivial.Then T(G) is trivial. //

2.1,6.4:Proposition.A tree has trivial automorphism group if and 

only if it has only the trivial star-partition. //

He also provides ah algorithm for the construction of the 

coarsest star-partition of a given graph.

Vie shall discuss analogues and refinements of these results 

using decompositions instead of star-partitions later in this 

chapter and in Chapter 3.

In the introduction to Section 1.1 we pointed out that a 

decomposition of a graph leads naturally to another generalised 

graph .We will call this the '’quotient” graph with respect to the 

decomposition.

2.1.7.1;Definition.Let G=(V,s,w) be a generalised graph with a 

decomposition D={D^,ieNm ).We define the quotient graph (or simply 

"quotient") of G with respect to decomposition DtG^,to be the 

ordered triple (N »s'^w') where
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i) s'(i)= £ s(x)
xeD.l

ii) w'(i,j)= ][ £ w(x,y)[s(x),s(y)]
xeD. yeD.-1, , 3

I s(x),£ s(y)
x eD. yeD.L i  ̂ J //

To show that this is a consistent definition we need the following 

proposition.

2.1.7.2:Proposition.If G^=(V,s',w') is the quotient of generalised 

graph G with respect to decomposition Z^ÎD^ieN^},then w'(i,j) is 

a non-negative integer for all i,jeN .m
Proof. I  I w(x,y)[s(x),s(y)]= £ s. .s(x)=s. . I s(x)

xeD. yeD. xeD.13 l3xeD.

which is divisible by £ s(x).
xeD.

And I  I  w(x,y)[s(x),s(y)]= I t..s(y)
yeD^yeD. xeD. J I i

which is divisible by £ s(y).
yeDj //

We have certain elementary results concerning quotient graphs.

2.1.8.1:Proposition.Let G=(V,s,W) be a generalised graph with 

decomposition D={D,.,ieNm > ,and let the quotient graph G^=(Nm ,s’,w') 

as above.Then A(G®)=S(G,£>).

Proof.An immediate consequence of the definition. ^

2.1.8.2:Proposition.If G is a quotient graph of an undirected 

generalised graph G,then GD is also undirected.

Proof.Trivial. //

2.1,8,3:Proposition.Every generalised graph is a quotient of 

a pseudograph,and every undirected generalised graph is a quotient 

of an undirected pseudograph.

Proof.Consider generalised graph G=(V,s,w).We construct a pseudograph

G'=(V',s',w') such that G is a quotient of G' thus:
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i) Replace each vertex xeV by a set V(x) of s(x) vertices 

of size one.

ii) For each veV(x) set w*(v,v)=w(x,x).

iii) For each pair x,yeV for which w(x,y)^0,divide each of 

V(x) and V(y) into h sets of equal size,V(x)^ and V(y)^ for ieN^, 

where h is the highest common factor of s(x) and s(y).Next construct

an edge of weight w(x,y) from every vertex of V(x)^ to every one of V(y)^

for all ieN, .(In the case where G is undirected construct an n
undirected edge of weight w(x,y)). //

2,1.8.4;Example.

is a quotient of

©— >— do

//

2.1.9:Examples.

2.1.9.1:Consider the graph and decomposition D in 2.1.2.1.Then 

the corresponding quotient graph is

2.1.9.2:The quotient of G^ with respect to D^ in 2.1.2.2 is

& ----- :0—— r0- --0
And the quotients of the cube with respect to the decompositions 

given in 2.1.4 are respectively

2.1.9.3:

2 Z
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__1 __2 _J3 _uO----0 = 0 ----©
2.1.9.5:

2.1.9.

2.1.10:Note.A decomposition is an unordered partition of the vertices

of a generalised graph,so the labelling of a quotient graph is

arbitrary and the quotient is strictly only defined up to isomorphism.
//

Quotients have been used as partial descriptions of graphs.For 

example Foster has constructed the following quotient of the 

Coxeter/Frucht graph on 110 vertices (10):

2.1.11:Example.

Harries (24) gives quotient graphs as part of his description of 

(3,10)-cages,and Neumann (32) uses a quotient graph to illustrate 

the"coloured graph" of a permutation group.

Decompositions are often closely related to automorphisms; 

indeed every group of automorphisms of a graph yields a decomposition
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as we see from the following result.

2.1,12,1;Proposition.Let G=(V,s,w) be a generalised graph and let 

H be a subgroup of T(G).Then the partition of V into the orbits 

of II,designated D(n)={D^,ieNm },is a decomposition of G,

Proof .Consider x,yeV such that x'vy.Then there is irell such that 

ir(x)=y.So for ieNm
a(y).= l  w(y,z) [s(y),s(z)]/s(y)

-1 zeD.3
= ][ w(ir(x) ,z) [s (tt(x ) ),s(z)]/s (tt(x )) .
zeD.3

Now u(D.)=D. since D. is an orbit of n.Hence 3 3 3
a(y).= 1 w(ir(x)tir(z)) [s(ir(x)) ,s(ir(z))]/s(ir(x))

] zeD.3
=a(x)j since tr is an automorphism of G.

Similarly jB(x) = B(y) and hence Dili) is a decomposition of G. //

2,1,12,2:Corollary.Let G be a generalised graph with only the 

trivial decomposition.Then T(G) is trivial. //

The corollary is of course implied by 2.1.6.3.Except in the 

case of trees (see Chapter 3),the converse of Proposition 2.1.12.1 

is false,which we may demonstrate by observing that there are regular 

graphs which are not transitive.

Proof.The complement of G consists of a copy of K and a copy of C ,3 / / *
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If a (connected simple) graph has an automorphism ir,the

orbits of <ir> give a decomposition,and the quotient provides a 

partial description of the graph.However when we know that such an 

automorphism exists,the quotient graph can be extended to 

give a complete description»which we call a "Frucht description" 

since his paper (17) proposed this method of describing graphs. 

Suppose rr has order k and orbits D, ,...,D with I D. I =r( i) for ieN 

where of course r(i) divides k for each i.We choose a vertex 

arbitrarily from each orbit and label it XQ(i).We give ^(x^ii)) 

the label x_.(i) (where j is reduced modulo r(i)).Then it is only 

necessary to specify the neighbours of Xg(i) for each ieN^ to 

describe the graph completely.This is generally done most 

conveniently by means of a diagram.Thus for example: 

2.1.13:Examples.

has Frucht description

2Sk
where "5jl" indicates that x.(l) adj x. .(1) and x.(l) adj x. (1)3 3 3 3*1
(since the graph is simple) with subscripts reduced modulo 5,and 

"5|2" indicates that x^(2) adj x.+2(2) and xj_2(2) with subscripts 

reduced modulo 5.The edge joining the orbits indicates that 

Xj(l) adj x .(2).
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2.1.13.2:The generalised Petersen graph P(h,t) has Frucht description

©---- <5̂
2.1,13,3:The Frucht description

& ------------------------------------&

describes this graph:

j+r
//

Similar descriptions of graphs have been used by other authors» 

for example Biggs and Smith (4,5),and have been employed fruitfully 

as an investigative tool by Evans and Wynn (14).By constructing 

all such descriptions obeying certain constraints up to a certain 

number of classes,the latter were able to identify four of the six

(3.9) -cages now known,specify their automorphism groups and also 

obtain some negative results on the structure of (3,9)- and

(3.10) -cages.
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Frucht descriptions are most useful,and have generally been 

employed,when the automorphism gives classes of equal

size.We will confine ourselves to such cases,when it is possible 

to derive some interesting spectral results (see Section 2.3),

2.2;Decompositions and Spectra of Graphs.

2.2.1.1:Definition(Haynsworth (25)).A partition P={P^,ieNm ) of

is said to be block-stochastic with respect to matrix A of

order n if each block A ^ ^  of the induced partition of A has

constant row sum,s,..We designate the mxm matrix (s..) by S(A,P).] 1] //
2,2,1.2:Notation.In the context of graphs we may use S(G,P) in 

place of S(A(G),P).bringing our new notation into line with 

Definition 2.1.1.3.When there is no likelihood of confusion we 

will simply use S for either of the above.

2.2.1.3:Proposition.Let G be a generalised graph with decomposition 

D.Then D is block-stochastic with respect to matrix A(G) and S(GID) 
=A(GZJ).

Proof;By Propositions 2.1.3.1 and 2.1.8.1. //

Examples.

2.2.1.<4:The partition P={{1},{2,3,4}} is block-stochastic with 

respect to

1 ^ ! ° i ; ° 1 o 1 ____■* and S ( A ,P ) = r 1 0 'oCMOCO . 3 2 .3 j 1 1 0OCO
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2.2.1.5:The decompositions D^ and of Examples 2.1.2 are 

block-stochastic with respect to ACG^ and A(G2) respectively.
//

2.2.2.1:Proposition(Haynsworth (25)).If P={P,,ieN_} is block-stochastic 1 *• • '• •" l m
with respect to matrix A of order n,then the zeros of <f>(A ,X) are:

i) the m zeros of <|>(S(A,P) ,X);

ii) the n-m zeros of <|>(C,A),where C is the partitioned matrix

(C(lj)) with with h=2,3,...,|P±| and

k=2,3,...,|p^|.(If either of |P^| or |P^| is one the block C^X^

is omitted,so i,j do not necessarily take all values from 1 to m).

Proof.We perform the following similarity operations on A:

i) Replace the first column in each block by the sum of 

the columns in that block,and subtract the first row of each 

block from each subsequent row in the block;

ii) Permute the rows and columns so that the first element 

of class P^ becomes the i-th row and column of the matrix for

each ieN ,and the order is otherwise unchanged, m
Then we see that A is similar to the partitioned matrixix f s X]

1° cj’
and the result follows immediately. //

The following simple extension of this result is important in 

Chapter 5.

2.2.2,2:Proposition.Let partition P of order m be block-stochastic 

with respect to matrix A of order n.If A is diagonalisable then 

so is S(A,P),

Proof.Using the notation of Proposition 2.2.2.1,A is similar to 

M=fs x].Now A is diagonalisable,that is Rn has a basis B of left
1° cl
eigenvectors of M.Let the projection tt:R -*R delete the last n-m 

coordinates of any n-tuple.Then:

i) it has rank m,so ir(B) is a spanning set of Rm ;
ii) if beS,then ir(b) is a left eigenvector of S.
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„mSo R is spanned by left eigenvectors of S and hence S is 

diagonalisable. //

2.2.2.3:Corollary.Let G be an undirected generalised graph.Then 

A(G) is diagonalisable.

Proof.G is a quotient of an undirected pseudograph by Proposition

2.1.8.3,and the adjacency matrix of an undirected pseudograph 

is real and symmetric and hence diagonalisable. ^

It is often important to know the relationship not only between 

the eigenvalues of a graph and its quotient but also between the 

eigenvectors.

2.2.3.1:Notation.In this section we will consider a generalised

graph G=(Nrt,§,w) which has decomposition ZJ={D^,ieNm},We let

A(G)=A and A(G^)=S,R(G,Z?)=R is the mxn matrix given by

r..=s(j)/( l  s(k)) if jcD.
1 keD. 1
=0 1 otherwise,with ieN ,jeN ,* m*J

and Q(G,Z?)=Q is the n m matrix given by
n 1

q. .=1 ID if ieDj

=0 otherwise,with ieN ,jeN .* n *J m //

2.2.3.2:Example.We will use the decomposition D^ of the cube, 

given in 2.1.4.2 as a source of examples.We will let A' denote 

A(Q3 ?̂2 ),S' denote S(Q3,Z?2),and so on,to distinguish the examples 

from the general case.

A'= 0 1 1 1 1 

0 0

1 j 0 0 0
l

1 I 0 0 0
- -  h  -  • 

0 I 1
I

0 | 1 
I

0 I 0. _ I

1 0 

0 1 

1 1
I 0

0 0 * 0

1 1 0  

1 0  1 

O i l

0 0 

0 0 

0 0

0

0

0

0

0

0

1

1

1
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f 0 300 '
10200201
00 30>

' 1* 0 1 0 0 000 1 1\0
0¡1/31/31/3o0o !0011 0 1 001/3 1/3 CO 0

. 01 000I 00o 11
’ 1 0 0 0 '

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

l 0 0 0 1 //

2.2.3.3:Lemma. RAQ=S,

Proof. AQ is the nxm matrix obtained by summing the columns in 

each block of A .RAQ is the matrix obtained from AQ by the deletion 

of the repeated rows in each class. //

2 . 2 . 3 , Example A'Q* = 0 3 0 0

1 0 2 0

1 0 2 0

1 0 2 0

0 2 0 1

0 2 0 1

0 2 0 1

0 0 3 0
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R'A'Q's r 0 3 0 0
1 0 2 0
0 2 0 1

L 0 0 3 0

- S '

2 .2 .3.5:Lemma. RQ=I .   m
Proof.Trivial.

2.2.3.6:Lemma. QR commutes with A.

Proof.Consider itD and i^D .Then -----  x y

=( J s(k))~* J s(k)a
keD keDx x

*( l  s(k))"1 l  w(k,j)[s(k),s(j)]
keD keDx x

=( l  s i k j T ^ j J t  .
keD xyx

Similarly (AQR)..=( £ s(k))-1s(j) s .
13 keD xyy

So by Proposition 2.1.3.2, (QRA)^ = (AQR) „  .

2.2.3.7 tExample. Q'R,= 0 0 0 ; ° 0 0
“ 1

0 1 1/3 1/3 1/3 1 0
1

0 0

o ! 1/3 1/3 1/31 0 0 0
t

o I 1/3 1/3 1/3
1

0
I_____

0 0
j

0 1 0 0 0 '1/3
1

1/3 1/3
1

° < 0 0 0 (1/3 1/3 1/3

0 1 1 0 0 0 ,'1/3 1/3 1/3

o ! 0 0 0 : o 0 0
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0 1 1 1 1 1 0 0 0 1 %
01-

1 1 0 1 0 0 2/3 2/3 2/3 1 0

1 1 0 0 0 j 2/3 2/3 2/3
1

1 0

1 1
1 0 0 0 ■2/3 2/3 2/3 0

+ - - — L 1_
0 1 2/3 2/3 2/3 1 0 0 0 1

1
1

0 | 2/3 2/3 2/3 1 0 0 0 1
1

1

0 1 2/3 1 2/3 2/3 j 0 0 0 1 1

. 0
ii 0 0 0 --

1
M 

1

1 1 Ti0 //

2.2.3.8:Pr6position (Petersdorf and Sachs (34)).Let u be an 

eigenvector of S with eigenvalue y.Then Q̂ i is an eigenvector of • 

A with eigenvalue y.

Proof. Qu^O.

S_u=y_u. That is RAQu=yu. So QRAQu=yQ_u.

Hence AQRQu=yQu, so that AQu=yQu. //

2,2,3,9:Proposition.Let w be an eigenvector of A with eigenvalue X. 

Then Rw=0 or Rw is an eigenvector of S with eigenvalue X.

Proof. Aw=Xw. So QRAw=XQRw and hence AQRw=XQRw.

Now S=RAQ so that SRv; = RAQRw=XRQRvf=XRw.

Thus we see that the relationship between the eigenvectors of 

a generalised graph and those of its quotients is completely 

determined.When G is a pseudograph it is clear that Rw=0 only 

if the entries of w over each class of D sum to zero.If in addition 

A is diagonalisable.which is certainly the case when G is undirected, 

we have the following corollary:

2.2.3.10:Corollary.Let G be a pseudograph and let A be diagonalisable, 

Then Rn has a basis consisting of n eigenvectors of G which fall 

into two sets:

i) m in which the entries over each class are constant and
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for which the corresponding eigenvalues are those of G .

ii) n-m in which the entries over each class sura to zero 

and for which the corresponding eigenvalues are those of matrix 

C in Proposition 2.2.2.1. //

An application of this result is very well known: 

2.2.3.11:Corollary.A regular graph of valency k has eigenvector 

(1,1,.,.,1)* with eigenvalue k, and n-1 other eigenvectors whose 

entries sum to zero,together giving a basis of Rn . //

2.2.3.12:Example.

Eigenvalues 

of A' and S'

3 

1

-1

-3

2.2.3.13:Counter-example.Not every block-stochastic partition 

of a matrix corresponds to a decomposition of a generalised graph, 

and while it is clear that Proposition 2.2.3.8 holds for any 

block-stochastic partition of a matrix,Proposition 2.2.3.9 does 

not.For consider partition P with respect to matrix A in Example 

2.2.1.4. The eigenvalue 1 of A has an eigenvector (0,0,0,1)*. 

Suppose G=(V,s,w) is a generalised graph with A(G)=A.Then 

whatever the sizes of vertices 2,3 and 4 this vector is not 

mapped onto £  or an eigenvector of S(A,P) with’ eigenvalue 1 

by the matrix R(G,P) so that P is not a decomposition of G.

Eigenvectors of S 1 Eigenvectors of A'

(1,1,1,1)*
1 -1 
* 3 * 31(1 i  “A  -1)*

(1 “A  “A  l)*v » 3» 3,J-;

(1,-1,1,-1)*

( 1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ) *

il . xt
'X *3’3*3* 3*' 3» 3*-i;
( 0 , 1 , 0 , - 1 , 1 , 0 , - 1 , 0 ) *  
( 0 , 1 , - 2 , 1 , - 1 , 2 , - 1 , 0 ) *

(i “A  _A  “A  “A  ~A ~A d "*-V-L» 3* 3» 3* 3* 3’ 3* ' 
( 0 , 1 , 0 , - 1 , - 1 , 0 , 1 , 0 ) *

( 0 ,1 , - 2 , 1 , 1 , - 2 , 1 , 0 ) *

( 1 , - 1 , - 1 , - 1 , 1 , 1 , 1 , - D * //

//
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However if we restrict ourselves to undirected generalised 

graphs and their adjacency matrices we have:

2.2.3.m:Proposition.Let G=(V,s,w) be an undirected generalised 

graph and let P be a block-stochastic partition of order m 

of A(G). Then P is a decomposition of G.

Proof.For xeV and ieN^, a(xK is simply the sum of the entries

of the i-th block of the x-th row of A(G), so that if x,yeV

and x£y then a(x)^=a(y). for all ieNm .

Since G is undirected a(x).=3(x). for all xeV and ieN . //i x  m
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Proposition 2.2.3.8 has been proved and used by several authors. 

Petersdorf and Sachs (34) are interested in the constraints the 

automorphism group of a directed pseudograph imposes on its 

spectrum and prove Proposition 2.2.3.8,noting that the orbits of 

the automorphism group form a decomposition.Gardiner (20) proves 

the same result and refers to its use in the practical problem 

of determining the spectra of specific graphs .Mowshowitz (31) 

adopts the opposite approach to that of Petersdorf and Sachs by 

studying the constraints imposed on the automorphism group by 

the characteristic polynomial.He too notes that the orbits determine 

a decomposition,and concludes that if k is the number of orbits 

then there is a polynomial of degree k dividing the characteristic 

polynomial.He deduces that if the characteristic polynomial is 

irreducible then the automorphism group is trivial,and if it 

factorises into two irreducible polynomials of degrees m and n, 

then the number of orbits is m,n, or m+n.

Schwenk (36,37) is the only author who has employed decompositions 

(which he calls "equitable partitions") at all extensively.He states 

Proposition 2.2.3.8 for simple graphs and establishes the next two 

propositions.

2,2.4.1:Definition.Let G be a properly labelled simple graph of 

order n and let be a simple graph for each ieN^.Then the 

generalised composition graph GiH^Hg,.. . »H^) is formed by taking 

the disjoint union of the graphs H^,...,Hn and then joining every 

vertex of to every vertex of whenever i adj j in G. //

The join and composition (21) of two graphs are special cases 

of the generalised composition,the join of G and H being l^iG.H) 

and the composition being G(H,H,...,H).
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2.2 »*4.2; Proposition (Schwenk (37)).Let G be a properly labelled

simple graph of order n and let H.=(V^,s^,w^) be a regular simple

graph of valency r^ for each ieN^.Then Z?={V^,ieNn > is a decomposition

of G(H,,...,H ) and l n
<KG(H1,...,Hn),A)=<KG(H1,...,Hn)D,X)inN<j)(Hi,X)/(X-ri). n

n

This result yields simple formulations for the characteristic 

polynomials of the composition and join of two graphs,the latter 

being extended to n-fold joins by Waller (43).

2.2.4.3:Definition.The coalescence of n rooted simple graphs 

^Gi ,ri^ w^th *eNn denoted by G^.G2...G t*ie SraPk formed by 
identifying the roots. j j

2.2.4,4:Example.Let R and S be rooted trees.

R: ---j--- •----•----•----*-

© ------ -
S: T

Then the coalescence of R and S, R.S, is 

R.S:

.___ -___ ____.___th___

'>
> //

2 .2 .4 .4 :D e fin it io n .Rooted graphs (G^,r^) and (G2 , r 2) are 
co sp e c tra lly  rooted i f  <i»(G1 ,X)=<|>(G2 ,X) and 4’(G1- r ;L,X) = (j»(G2- r 2,X ) .

2.2.4.5¡Example.R and S of the previous example are cospectrally 

rooted trees. //
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2.2.4.6:Notation.Given rooted graph (G,r),we let G*n denote the 

graph formed by adding n-1 new vertices adjacent to the neighbours 

of r. //

2.2.4,7:Example,RA2 is the graph

< ...• "—■« ■ « ■ %

//
2.2,4.8:Proposition (Schwenk (37)).If G ^ . . . ^  are n cospectrally 

rooted graphs,then

An"1<fr(G1.G2...Gn ,A)={<KG1-r1,x)}n"1<|>(G1ftn,X). //

This proposition is useful in the construction of families of 

cospectral graphs.

Schwenk (36) also discusses the "main part of the spectrum",M, 

of a graph,originally defined by Cvetkovic (12) in connection 

with the number of walks in a graph.Schwenk shows that M is 

the set of eigenvalues of G which have an eigenvector not 

orthogonal to (1,1,...,1)^ and conjectures that M consists simply 

of the eigenvalues of the quotient induced by the coarsest possible 

decomposition of. the graph.lt is certainly true that M is contained 

in the spectrum of any quotient of the graph,but the converse 

remains undecided.

2.2.4,9:Proposition.If a graph G has decomposition D then every 

eigenvalue X in the main part of the spectrum of G,M, is an 

eigenvalue of G^.

Proof.Corresponding to eigenvalue XeM there is an eigenvector w 

of G whose entries do not sum to zero.Since G is a pseudograph 

Proposition 2.2.3.9 demonstrates that R(G,Z?)w is an eigenvector 

of G with eigenvalue X. //
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2,3:Circulant Decompositions.

Another result given by Haynsworth (25) simplifies the problem 

of finding the spectrum of a graph when it is known that the 

graph has a non-trivial Frucht description with all the classes 

having the same size.

We take Definition 2.3.1.1 and Proposition 2.3.1,2 from Biggs (4). 

2.3.1,1:Definition.A txt matrix C is said to be circulant if its 

entries satisfy c^=c^ j where the subscripts are reduced 

modulo t and lie in . //

2.3,1,2;Proposition.Let W be the circulant matrix of order t 

whose first row is (0,1,0,...,0),let C be the circulant matrix 

whose first row is (c^Cj,... ,ct > and let u=exp(2iri/t) ,a t-th 

root of unity.Then the eigenvalues of C are 

A = r=0,l,... ,t-l.
j=l3

t / • . \
Proof (Biggs). C= £c.W^- , the eigenvalues of W are

j=l]

l.w.w2 ,...,«*1“1* and the result follows immediately. //

\

2.3,1.3;Proposition (Attributed by Haynsworth to Williamson (25)).

Let G be a generalised graph with a decomposition D of order 

m such that every block of the induced partition of A(G)=A is 

circulant of order t with A ^ ^  having first row ( a ^ ^  ,... , a ^ ^ )  

for i.jeN^.Then

<|>(A,A)=*gyKSr ,X)

where Sp is the matrix of order m defined by

<Sr>ir l  4 ljV k-1)r for i . j e v
r ^  k‘l k

Proof.Let p”'Sip=D be the diagonal matrix with diagonal entries 

l,u,io2 ,...,u/t”'1\  Consider the partitioned matrix Q where
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Q= (P 0 0 . .
0 P 0 . .t • • • •

with m copies of P down the leading diagonal.Then since every

block of A is a polynomial in W we have Q ^AQ=B a partitioned
/ • • \

matrix in which for all i,jeNm block B'1-^ is a diagonal matrix 

of order t with entries

r (ij) (k-l)r _n i . - 1  L ii) r-0,1,... ,t-l.
k=l

We simply permute the rows and columns of B so that the only 

non-zero elements occur as the matrices down the leading 

diagonal.

2,3.1.H;Example,

is similar to

' 0 1 1 1 1 
1

0 0 '

1 0 1 1 0 1 0

1 1 0 l 0 0 1
— i ---

1 0 0 1 0 1 1

0 1 0
1
1 1 0 1

, 0 0 1
1
1 1 1 0

r 2 0 0 1 1 0
\

0

0 - 1 0
1

. 0 1 0

0 0 -1 1 0
- l- -  

1 2

0 1

1 0 0 0 0

0 1 0 1 0 
1

- 1 0

. 0 0 1 1 0 0 - 1

//

which can be permuted to give 2 1 11 0 0 11 0 01 2 1 0 0  * 0 01 -------- 10 0 - 1 1 1 0 00 0 1 1 - i ! 0 010 0 11 0 0 , - 1 10 0 I 0 10 I 1 - 1 //
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Note that Sg=A(G^).

2.3,2,1:Proposition.The spectrum of the generalised Petersen graph 

P(h,t) is given by
*

cos( 27rr/h )+cos (2irrt/h)+/((cos (2irr/h )-cos (2irrt/h)) *1)

with r=0,l.... h-1.

Proof.For P(h.t) the matrices S are — ——  » r
S = r

r (h-l)r0) +U)
tr t(h-l)r0) +Ü) with w=exp(2ni/h)

- 2cos(2irr/h) 1

1 2cos(2nrt/h)

and hence the eigenvalues of are the solutions of 

(2cos(2irr/h)-X)(2cos(2irrt/h)-X)-l=Q //

The eigenvalues of are equal to those of ^ for keN^ 

in this case,so it is only necessary to evaluate eigenvalues 

for r=0,l,...,[h/2] where [a] denotes the integer part of a,and 

we have the following corollary:

2.3.2.2:Corollary.The number of distinct eigenvalues of P(h,t) 

is bounded above by h+1 if h is odd,or h+2 if h is even. //

The spectrum of any graph with an automorphism which

gives just two orbits,those orbits having equal size,may be 

found explicitly by the same method.As the number of orbits 

increases however the problem becomes more difficult to solve. 

Nonetheless in some cases a solution is fairly straightforward.

2.3.3.1;Example.The Tutte-Coxeter graph on 28 vertices has Frucht 

description (5):

©
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So the matrices S_ are r
S = r .  r . 6r1 0) +u

1 0 

1 0

1 

0
2r 5r(i) +CJ 

0

0 

0
3r 4r

1

where w=exp(2iri/7) and r=0,l,...,6.
6 .

Let s(r)= £ upr for r=0,l,...,6. Then
j=l

<Î>(S ,X)=X^-s(r)X3+(2s(r)-3)X2+(s(r)-2)X-2s(r). r
If r=0 then s(r)=6 and we have

<f>(S0 ,X)=X4-6X3+9X2+i*X-12=(X-3)(X+l)(X-2)2;

If reNg then s(r)=-l and we have
4.,3.5,2

So the spectrum is

<KSr ,X)=X>X -5XZ-3X+2=(X+l)(X-2)(X+l+/2)(X+l-/2),

3 2 - 1  -1+/2 -1-/2 '

1 8 7 6 6 //

We can extend this technique to a family of graphs.

2.3.3.2:Definition.The n-star-circuit graph is the graph with 

Frucht description

//
Note that the Tutte-Coxeter graph is the 3-star-circuit graph. 

2.3.3«3:Proposition.The n-star-circuit graph has at most 2n+2 

distinct eigenvalues.

Proof.Let u=exp(2ui/(2n+l)) and let s(r)= J oPr+u/2n+^“^ r
j=l

for r=0,l,... ,2n. <J>(Sr ,X) has coefficients which are functions
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of s(r).Now if r^O ,so that w ^ l  ,then

s(r)=a)(2n't'1)r-l -1= -1
u>r-l

and hence <f>(S ,X) = <|>(S, ,X) for a,beN„ , The matrix S has order n+1 a’ b 2nl r
so there are at most 2(n+1) distinct eigenvalues. //

2.h:Finding Decompositions - an Algorithm.

Decompositions also occur in a context superficially rather 

«different from those studied abovetthat of the study of algorithms 

to test whether two graphs are isomorphic ((9) is a survey of this 

subject).Any such algorithm is dependent in some way on the order 

n of the graphs in question.If the time taken by a computer,or 

the storage space it requires,to execute the algorithm increases 

exponentially with n,then it is clear that the algorithm will 

only be of practical use for relatively small values of n,and 

that future improvements in speed or storage capacity are unlikely 

to improve the situation greatly.lt is desirable therefore to find 

a "good" algorithm,that is one for which the time and space required 

are bounded above by polynomials in n (see (1) for technical 

definitions).This problem remains unsolved,but decompositions and 

quotient graphs have played an important part in attempts at its 

solution;indeed one paper,by Comeil and Gotlieb (8),gave a good 

algorithm based on the (unfortunately false) conjecture that a 

certain sequence of quotient graphs was sufficient for the 

reconstruction of the original graph,up to isomorphism.Several 

papers employ a "refinement algorithm",which is essentially an 

algorithm which finds a decomposition,as part of their approach.

The version we will present is an adaptation of that given by 

Parris and R§ad (33).
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2.4,1,1:Definition.A classification of Nn is an ordered partition

of V  //

2.4.1.2:Definition.Let v be an n-tuple of non-negative integers
kwith a common upper bound 10 for some natural number k.

A
Then the compacted integer v is 

^k(n-i)C= l  v.10* 
i=l 1 //

2.4.1.3: Algorithm.Let <?:=(, jeNr) be a classification of the 

vertices of a properly labelled general graph G=(V,s,w).

Step l.For each ieV construct the adjacency vectors,a(i) and g_(i), 

defined in 2.1.1.1. Sort the vertices within each class so that
A

i) the compacted integers a(i) are monotonically decreasing and
A A

ii) for vertices i,j in the same class with a(i)=ct(j)
A A

vertex i follows vertex j if g(i)<g(j).

Construct a new classification Z?=(D,,keN ) with vertices i,j inX s/"» A A A A
the same class if and only if i^jf a(i)=a(j) and g(i)=g(j), with 

classes labelled sequentially.
Step 2 .If s,the order of D,is equal to r,the order of C,stop. 

Otherwise set C=D, and return to Step 1. j j

2.4.1,4{Definition.The final classification of the vertices of 

a generalised graph G produced by Algorithm 2.4,1.3 is called a 

stable classification. //

2.4,1.5:Example.Consider the graph G with initial classification 

({1},{2,4,5},{3}), noting that for a simple graph ct(i)=JJ(i).
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V e r t e x , ! . C l a s s . a ( i ) . New c l a s s . New a ( i ) . New c l a s s .

1 1 010 1 0100 1
2 2 101 2 1001 2
3 3 020 4 0120 4
4 2 O i l 3 0110 3
5 2 O i l 3 0110 3

Stable classification ({1},{2},{4,5},{3}). //

2.4.2.1;Proposition.A classification of the vertices of a generalised 

graph G is stable if and only if it is an ordered decomposition of G. 

Proof.Trivial. //

2,4,2.2:Proposition.Let G=(V,s,w) be a generalised graph and let 

R be a classification of V.Then the stable classification P of 

order p given by the application of Algorithm 2.4.1.3 to R is 

the coarsest decomposition of G which is a subpartition of R.

Proof.Suppose the proposition to be false and let Q be a different 

decomposition of G having order q<p which is a subpartition of R.  
Then there are x,ytV such that x^y and x?y. Furthermore for every 

such pair x,y there is a classification stage i at which while 

not in the same class of the current classification C''1 ,they were 

in the same class at the previous stage,for since x$y then x^y. 

Choose x,y to minimise i so that if z,weV are in the same class 

of Q then they are in the same class at classification stage i-1. 

Now there must exist a class at this stage, ” say,such that 

a(x)^a(y)j or g(x)^g(y)^.But is a union of classes of Q

and hence,since Q is a decomposition,we have a contradiction.
//

2.4.2.3:Corollary.Given any partition R of a generalised graph G, 

there is a unique coarsest decomposition D which is a subpartition 

of if. i f

It is well known that Algorithm 2.4.1,3 is polynomially bounded
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in both its time and space requirementsjMathon (30) states that it 

can be executed in 0(n ) time and 0(n ) space.Thus we have a good 

algorithm for finding a decomposition from a given partition of the 

vertices of a generalised graph,and this can easily be extended to 

good algorithms for finding specific decompositions such as the 

coarsest possible for a given graph.

2.4.3,1; Proposition.There is a good algorithm for the construction 

of the coarsest decomposition of a generalised graph,and there 

is a canonical labelling for its classes.

Proof.We let the initial classification consist of a

single ..class containing -all. the vertices ,and then

apply Algorithm 2.4.1.3 to this initial classification. //

2.4,3.2:Proposition.Let G=(Nn ,s,w) be a generalised graph.There 

is a good algorithm for the construction of the coarsest 

decomposition of G having a specified singleton class,{i}, 

and the classes have a canonical labelling.

Proof.We apply Algorithm 2.4.1.3 to the initial classification 

({i},{l,2,...,i-l,i+l,...,n}). //

2.4.3.3:Definition.The coarsest decomposition of generalised graph 

G=(V,s,w) having singleton class {x} for a specified xeV is called 

the singleton-decomposition of G with respect to vertex x . £(G,x). 

The corresponding quotient graph is called the singleton-quotient 

with respect to vertex x .If the singleton-decomposition with 

respect to vertex x is trivial,then G is said to be irreducible 

with respect to x. //

2,4.3,4 : Propos it ion. Let (G^,r^) and be rooted generalised

graphs and let them be irreducible with respect to r^ and r2 

respectively.Then there is a good algorithm to test for isomorphism 

between them as rooted graphs.
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Proof.The canonical labelling of the singleton-quotient of a graph 

is for each of and (G^,^) a canonical relabelling of

the vertices,with the root being given label 1. To check for 

isomorphism between the rooted graphs it is therefore only necessary 

to compare the sizes of corresponding vertices and the adjacency 

matrices of the relabelled graphs. //



3:DECOMPOSITIONS OF TREES

As we remarked in Section 2.1.12, it is not in general true that 

every decomposition of a graph is a partition of its vertices into 

the orbits of a group of automorphisms.Trees however do have this 

desirable property,and in this chapter we shall prove this result 

and explore the consequently very close relationship between the 

coarsest decomposition of a tree,its automorphism group and its 

characteristic polynomial.Of course the automorphism group is 

already well known (35) and there is also a standard approach to 

the problem of finding its characteristic polynomial which employs 

the deletion of vertices one by one (see for example (37)).

3.1:Decompositions and Automorphisms of Trees.

A useful idea is that of the "centre" of a generalised graph 

which we take from Harary (21).

3.1.1.1:Definition.Let G=(V,s,w) be a generalised graph,The 

eccentricity e(v) of veV is the maximum value of d(u,v) over all 

ueV (setting d(u,v)=® if there is no path from u to v ).The radius 

r(G) of G is the minimum eccentricity of the vertices.A vertex v is 

a central point if e(v)=r(G) and the centre of G is the set of all 

central points. //

3.1.1.2:Lemma.Let T=(V,s,w) be a tree in which not all vertices

are endpoints and let D be a decomposition of T. Then the set of

all endpoints is a union of classes of D and the vertex-subtree T'

induced by the deletion of all the endpoints of T has an induced
D'  Ddecomposition D' with the property that if x ■v-y then x'fy.

Proof.veV is an endpoint of T if and only if it has valency 1.

Two vertices of a simple graph cannot be in the same decomposition



class if they have different valencies. //

3.1.1.3;Lemma (Harary (21)).Let T=(V,s,w) be a tree with vertices 

other than endpoints and let T ’̂ V ' j S ’w ’) be the vertex-subtree 

induced by the deletion of all endpoints of T. Then the eccentricity 

of v as a vertex of T' is exactly one less than its eccentricity 

as a vertex of T so that T and T' have the same centre.

Proof.The maximum of the distances from given veV to any ueV 
clearly occurs when u is an endpoint of T. //

We shall prove the next two propositions together.

3.l.l.U:Proposition (Attributed by Harary to Jordan (21)).The 

centre of a tree T consists of a single point or of two adjacent 

points.

3.1.1,5{Proposition.Let T be a tree with decomposition Z?.If vertex 

x is a central point:of T and x^y, then y is a central point of T. 

Proof.If every vertex of T is an endpoint then T is or

and the propositions are proved.Otherwise we consider T* defined 

as in the lemmas.We repeat the process until we are left with 

K! or K2. //

3.1,1.6{Corollary.Every decomposition of a singleton-centred tree 

has a singleton class consisting of the central point. //

The property of singleton-centred trees given in the corollary 

above is very useful.Fortunately every doubleton-centred tree 

is closely related to a tree with a singleton centre,so we can 

generally extend results obtained using 3.1.1.6 to trees with 

doubleton centres.

3,1,2.1{Definition.Let T=(V,s,w) be a doubleton-centred tree 

with central points a,b. We define the extension of T . ext(T),

to be the tree with vertex set Vuic} and with the same edges as
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T except for the replacement of the edge joining a and b by edgest
joining a and c, b and c. //

3.1.2.2iProposition.If T=(V,s,w) is a doubleton-centred tree 

then ext(T) is a singleton-centred tree with central point c.

Proof.The eccentricity of every veV is exactly one greater in 

ext(T) than it is in T, since the longest path in T from any 

veV clearly includes the edge joining the two central points. //

3,1,2.3:Proposition.If T is a doubleton-centréd tree with 

decomposition Z?,then C'=2?u{{c}} is a decomposition of ext(T).

Proof.Trivial. //

3.1.2.4:Proposition.Let T=(V,s,w) be a doubleton-centred tree.

Then T(T) is the restriction of T(ext(T)) to V.

Proof,T(T) clearly stabilises the centre of T setwise and T(ext(T)) 

clearly stabilises c, the additional vertex. //

3.1.3:Examples.

3.1.3.1:The eccentricities of the vertices of a tree.

ll*

The two vertices of eccentricity 4 are the central points of T^, 

labelled a and b.Thus exti^) with its eccentricities is:
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3.1.3.2:

We have established that a vertex can only be in the same 

decomposition class as a central point if it is also a central 

point.This result is easily extended.

3»1.4,1;Proposition.Let T=(V,s,w) be a singleton-centred tree 

with central point c and let T have decomposition D. Consider 

xeV. For all yeV, if y^x then d(c,y)=d(c,x).

Proof.By induction.

i) If x adj c and xr\/y then y adj c since {c} is a singleton 

class of D,

ii) Suppose the proposition true for all zeV with d(c,z)<k, 

let d(c,x)=k+l, and let jrvx. Then firstly d(c,y)>k since otherwise 

by hypothesis d(c,x)<k which is not the case.Secondly x adj x' for 

some x’eV with d(c,x’)=k and y adj y’ for some y ’eV with x'^y'.

So d(c,y')=k. Hence d(c,y)=k-l,k or k+1. But we have already seen 

that d(c,y)^k-l or k. Thus d(c,y)=k+l. //

3,1.4.2;Corollary.Let T=(V,s,w) be a tree with decomposition D.  
Consider x,yeV. If x^y then e(x)=e(y).

Proof.If T is singleton-centred the result follows immediately

from 3,1.4.1. If not consider the decomposition ZMfc}} of ext(T).
//

1.4;3:Corollary.Let T=(V,s,w) be a tree with decomposition D and
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J.et x,yeV. Then xr̂ y and x adj y implies that {x,y} is the centre of T. 

Proof.lt is clear that two adjacent vertices of a tree only have 

the same eccentricity if they are both central points. //

Given a tree T,consider any vertex x which is not a central point. 

Then clearly x is adjacent to one vertex whose eccentricity is 

e(x)-l, this being the vertex lying on the path from x to the centre, 

and every other neighbour of x has eccentricity e(x)+l,

3.1.5.l;Definition.Let T=(V,s,w) be a tree.For every xeV such that 

x is not a central point of T we define the father of x to be that 

neighbour of x whose eccentricity is e(x)-l, and any other neighbours 

to be the sons of x. //

3.1.5.2 Proposition .Let T=(V,s,w) be a tree with decomposition

D={D.,ieN }. Consider x,yeV such that xeD.,yeD. and x is the father l m l j
of y. Then ¡D^| divides |D^| and every vertex of is adjacent to

exactly one vertex of D^. 

Proof.Trivial. //

3,1.5,3:Example.A quotient of the tree T^ given in Example 3.1.3.1:0 Q0)—0 0—©
(a) {b}

The vertices corresponding to the central points of T^ are labelled 

{a} and {b}. //

3.1.6.1:Definition.Let G=(V,s,w) be a generalised graph with the 

following properties:

i) G is connected and undirected;

ii) the weight of every edge is 0 or 1;

iii) w(x,x)=0 for all xeV;
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Then G is said to be a generalised tree. ^

In other words we define a generalised tree to be a generalised 

graph with the property that if the size of every vertex were 

reduced to 1, then it would become a tree.

3.1.6.2:Proposition.Any quotient of a singleton-centred tree is 

a generalised tree,and any quotient of a doubleton-centred tree 

is a generalised tree with the possible addition of one loop.

Proof.Every quotient of a tree is connected and undirected.By 3,1.5.2 

the weight of an edge of a quotient cannot exceed 1, and by 3.1.4.3 

there is at most one loop,which can occur only when the tree has 

a doubleton centre.

Suppose we have a quotient with a circuit.Then there is a path 

of arbitrarily great length in the tree passing in turn through 

each of the classes corresponding to the vertices of the circuit.

But in any tree there is a path of maximum length and so we have 

a contradiction. //

The converse of this proposition is clearly false.Consider the 

following generalised tree:

3.1.6.3;Counter-example.

The next sections will relate the automorphisms and the 

decompositions of a tree.We shall use Harary's nomenclature for 

permutation groups.

3.1.7¡Definitions (Harary (21)).Let T be a permutation group of 

order m and degree d acting on the set X={x1,x2 ,..,,x^} and let

G:

G is not a quotient of any tree //
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II be a permutation group of order n and degree e acting on the set

Y={yl’y2 »,,*,ye }*
3.1.7.l;The sum,r+n, sometimes also called the product or direct 

product,is the permutation group which acts on XvY and whose elements 

are all the ordered pairs of permutations yeT and irelT, written y+ir. 

Any element zeX^Y is permuted by y+ir according to the rule 

(y+ir)(z)=y(z) if zeX

=ir(z) if zeY.

3.1.7.2; The composition, r[n], sometimes called the wreath product 

(29),acts on XxY. For each yeT and any sequence , ,ir̂ ) of

d (not necessarily distinct) permutations in H, there is a unique 

permutation in r[n] written ( y ; ^ , ^  ,... ,1^) such that for (x^,y^) 
in XxY

(y;ir;L,TT2,...,Trd)(xi,y^) = (Y(xi),iri(yj)).

A member of the composition may be thought of as first permuting 

each copy of Y within itself and then permuting the |x| copies 

of Y amongst themselves. //

The next step is to associate a permutation group with every 

quotient of a tree T, in such a way that the group produced 

is a group of automorphisms of T which stabilises the classes of D 
setwise and acts transitively on them,so that the classes are its 

orbits.

3.1.8.1:Lemma.A tree can be reconstructed up to isomorphism from 

any of its quotients.

Proof.Trivial. //

3.1.8.2:Algorithm.Let T=(V,s,w) be a singleton-centred tree with 

decomposition D={Dd,ieNm l and quotient T^=(N^,s',w'). We associate 

a permutation group with i P thus:
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Step 1.Calculate the eccentricity of every vertex of T, and assign 

a level i to each class of D according to the eccentricity of the 

vertices it contains,assigning the lowest level, 0, to the classes 

containing vertices of the greatest eccentricity.Then assign to 

vertex j of the level given to class D.. of D.

Step 2.Assign the group to every endpoint of except that 

on the highest level.Every vertex on level 0 is thus assigned a 

group.Set i to be 1.

Step 3.Every vertex on level i-1 has been assigned a group.For

each vertex x on level i which has not yet been given a group
*do the following:- let Y be the set of sons of x and for each 

yeY let be the group assigned to y. Then assign to vertex x

the permutation group

■ Ei+^ > y ) M x ) C rty)h

If there are any vertices on level i+l,set i to be i+1 and return 

to Step 2. Otherwise the group assigned to the vertex on level i 

is the group we associate with T^. //

3.1,8.3:Lemma.Let a graph G be constructed from k^ copies of the 

rooted graph (G^,r^) for ieN^ by making every root adjacent to a 

single additional vertex v. Let

M A  [fr (Gm > h1 1  m m

Then II is a subgroup of T(G), and n=T(G) if and only if i^j implies

that (G^,r^) and (G^.r^) are not isomorphic as rooted graphs.

Proof.Any permutation of the vertices of G consisting of an

automorphism of each copy of G^ fixing r^ followed by any permutation
»

of the copies of G^ amongst themselves is clearly an automorphism of 

G, for all ieN^, If ijij implies that (G^,r^)is not isomorphic to 

(Gj,rj) then every automorphism of G consists of permutations of

* itsons" - neighbours on level i-1.
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this form,since v is the unique central point of G and hence is 

stabilised by r(G). jj

3.1.8.U:Proposition.Let T be a singleton-scentred tree with a 

decomposition D. Then the permutation group associated with 

by Algorithm 3.1.8.2 is a group of automorphisms of T which stabilises 

the classes of D setwise and acts transitvely on them.If D is the 

coarsest decomposition of T then the group associated with 

is r ( T ) .

Proof.For each vertex x of T° we apply Lemma 3.1.8.3 noting that 

s(y)/s(x) is the number of copies of isomorphic rooted subtrees 

adjacent to each vertex of T in D^. When D is the coarsest decomposition 

of T there clearly cannot be two sons of x for which the 

corresponding rooted subtrees are isomorphic, ¡ j

3,1.8,5:Corollary.Let T=(V,s,w) be a doubleton-centred tree with 

coarsest decomposition C. Then T(T) is the group associated with

//(ext(T) restricted to V.

3.1.8,6:Note.The groups we have constructed act on certain specified 

sets of objects,so that we have only constructed the automorphism 

groups of particular graphs with respect to a certain labelling 

of the vertices.We call these groups the automorphism groups in 

the same sense as En is said to be the symmetric group on n 

objects. //

3.1.8.7:Example.Let T be the tree
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Then (ext(T))Ci;{ic}} and the groups assigned to its vertices are
Levels

Hence the automorphism group of T is
//

Thus we have shown that for a tree every decomposition 

corresponds to the orbits of a group of automorphisms.An analogy 

of Weichsel's proposition concerning star-partitions (2.1.6.H) 

follows iirmedlately.

3.1,8,8;Corollary.A tree has trivial automorphism group if and 

only if its only decomposition is trivial. //

Another simple corollary is the well-known result:

3.1.8.9:Corollary (Polya (35)).Let P denote the class of 

permutation groups constructed according to the following rules:

i) P contains all the symmetric groups;

ii) P is closed under the operations of taking sums and 

compositions.

Then T is a tree implies that T(T)eP. //
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3.2:The Characteristic Polynomial of a Tree.

We begin by considering the characteristic polynomial of a 

generalised graph of the form described in Lemma 3.1.8,3.

3.2.1.1:Proposition.Let a generalised graph G=(V,s,w) consist 

of copies of the rooted generalised graphs (G^,r.) for ieNm 

and a single additional vertex v joined to each root by an 

undirected edge of weight 1, Let E be the decomposition of G 

given thus:- Let x,yeV. Then x^y if and only if x and y are 

corresponding vertices in two copies of G^ for some jeN^,

Then ♦ ( G . X ^ K G ^ . X ) ^  <KGi,X)kr 1
m

Proof.The vertices of G can be labelled in such a way that A(G^) 

appears as a block k^ times down the leading diagonal of A(G) 

for each ieN^. So the result follows immediately from Proposition 

2.2.2.1 when we note that the matrix C of that proposition consists 

simply of A(G^) k^-1 times down the leading diagonal for each

ieN .m //

This result enables us to simplify the evaluation of the 

characteristic polynomial of a tree.

3.2,1.2:Example.Consider the tree T^:

16
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Vertices 6,8 and 10 are each joined to two isomorphic rooted 

subtrees consisting of a single vertex,so by repeated application 

of the proposition

<KT1#X)=<i>(T2,X){4.(T3,X)}3

Now $(T2,x) can be simplified since vertex 1 in T2 is joined 

to three isomorphic rooted subtrees.Thus

<Kt 2 ,x )=<Kt4,x ) U ( t 5,x )}2

2
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Hence 4>CT1,X)=<KTi+,X){(i>(T5,X)}2{<i>(T3,X)}3. //

Since a tree T can be reconstructed from any of its quotients 

it is a trivial remark that it must be possible to find the 

simplified formulation for <|>(T,X) directly from the quotient 

corresponding to its coarsest decomposition,If the coarsest 

decomposition has a singleton class we can base an algorithm 

on the method exemplified above without any modifications.

3,2.2,1;Definition.Let T=(V,s,w) be a generalised tree and 

let p:V-+Z+ assign a level to every vertex of T. Then yeV is a 

descendant of xeV if the path ( a ^ a ^ ... ,ak) from x to y in T 

with a^=x and a^=y has the property that if l<i<j<k then 

p(aj)<p(a^). The descendant subtree of vertex x,„Tv , is the 

vertex subtree of T induced by the descendants of vertex x. //

3.2.2.2;Algorithm.Let T=(V,s,w) be a tree whose coarsest decomposition
Q

C has a singleton class,and let T =(V,,s,,w’).
CStep 1.Assign levels to the vertices of T as in Algorithm

3.1.8.2.

Step 2 .For each vertex xeV' ,do the following:- Let Y be the
Qset of sons of x in T and assign to x the polynomial

rStep 3.The polynomial associated with T is

^T^^xgv.PCx,!) . //

3.2.2.3;Example.Consider the tree T^ with quotient T^ in 

Example 3.2.1.2. The polynomials assigned to its vertices are
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So the polynomial associated with is

<f>(T4,X){<f>(T7,X)}2{<KT6,X)}3.
Tg and T7 may be obtained from Tg and Tg by multiplying the 

sizes of their vertices by 6 and 3 respectively.So A(Tg)=A(Tg) 

and A(T7)=A(Tg). Thus the polynomial associated with is the 

characteristic polynomial of T^. //

It is clear that as long as the coarsest decomposition C

of a tree T has a singleton class,so that any vertex at the
Chighest level of T' has size 1, the polynomial associated 

Cwith T will be <(>(T,X). We shall now investigate the only 

remaining possibility.
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3.2.3.1:Example.Consider the following tree T.

The quotient of T corresponding to its coarsest decomposition C is

2 @

If we were to apply Algorithm 3.2.2.2 to T , the polynomial 

constructed would be

♦(TC,X)U((TCJi2)iX)}l\

a polynomial of degree 6, whereas the characteristic polynomial 

of T has degree 8. The method used in 3.2.1.2 requires that 

4>(T^,X) be replaced by iJ>(T̂ ,X) where T^ is

©--G
© 0

Then <KTZJ,X){^((TC’)i2),X)>4 is indeed *(T,X). //

Fortunately it is always possible to express <}>(T̂ ,X) very
csimply in terms of 4>(T ,X).

3.2.3.2;Proposition.Let T be a tree, D be its coarsest decomposition 

with a singleton class, C be its coarsest decomposition,the 

order of C be nr and C and D be distinct.Then 

<KTZ?,X)=<KTC ,XH(TC',-X)x(-l)m .
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Proof.Let E be the matrix of order m with

e ..=1 if i=j=l
13 J

=0 otherwise for i.jeN .

Since the coarsest decomposition must have both central points in one 

class there is an automorphism of T interchanging them.Hence consists

of two copies of a rooted generalised tree (T*,r) with the roots joined 

by an undirected edge of weight l.So with suitable labelling A(T^) can 

be written as the partitioned matrix

’ A(T') E which is similar to ’ A(T')+E E

. E A(T’). 0 A(T’)-E

Thus 4»(Ti,,X) = |A(T,)+E-Xl|x|A(T,)-E-Xl|

=<Î>CTC ,X)x |a (T* )-e-x i | .

Now T' is a generalised tree and thus bipartite.If m is even,then 

|A(T')-XI| consists of even powers of X only,so that |A(T')+E-Xl| and 

|a (T')-E-XI| differ only in that odd powers of X are of opposite sign. 

Thus I A( T * )—E— XII is <f>(T̂ ,-X). Similarly, if m is odd,then | A(T * )—E—XI | 

is -<|>(TC ,-X). //

As a consequence of this proposition it is only necessary to 

modify Algorithm 3.2.2.2 slightly to deal with trees whose coarsest 

decompositions have no singleton classes.

3.2.3.3:Algorithm.Let T=(V,s,w) be a tree with coarsest decomposition
CC and let C have no singleton classes.Let T =(V,,s,,w’).

Step l.As Algorithm 3.2.2.2.

Step 2 .As algorithm 3.2.2.2.
CStep 3.The polynomial associated with T is

( - l ) i V' U ( T C ,X)*(TC',-X)xnv ,P (x,X ).  //

Thus considering all the cases we have the proposition:

3.2.4.1Proposition.Let T=(V,s,w) be a tree,let C be its coarsest
Qdecomposition and let T =(V*,s',w’).THen the polynomial
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Cassociated with T by Algorithm 3.2.2,2 if C has a singleton 

class or by Algorithm 3.2.2.3 otherwise is the characteristic 

polynomial of T.

3.2.^.2:Example.Let T be the tree obtained by taking two

copies of K and adding an edge joining their centres thus: i ,x
T:

X X
The quotient corresponding to the coarsest decomposition of T 

Cis T and the polynomials associated with its vertices are

-X2(x-l)

©
$(TC,X) = 1-X x

1 -X

=X -X-x

with zeros I*/(l+4x)/2. Hence the zeros of <j>(T ,-X) are 

-l±/(l+4x)/2, and

Spec T= ±l±/(l+‘tx)/2 0

1 2(x-l)

Expressing the spectrum in this form (compare Schwenk (36,pl07)) 

enables us to answer a question raised in (22)- when are the 

eigenvalues of T integers? It is clear that Spec T is integral 

if and only if l+4x is a square,that is if and only if x=r(r+l) 

for some reN. //
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H : DECOMPOSITIONS OF ORDER TWO OF REGULAR SIMPLE GRAPHS

4.1:General Results.

4.1.1.1:Definition.Let G be a regular simple (but not necessarily 

connected) graph with a decomposition D of order 2. Let 

(A(G^))^2=a and (AiG^))^1̂ . Then we say that D is a decomposition 

of type a,b of G. //

4.1.1.2:Example.D in Example 2.1.4,1 is a decomposition of 

type 1,1 of the cube. //

4,1,2:Propositions.Let G be a regular simple graph of valency k 

with a decomposition of type a,b for some a,beZ+ . Then

4.1,2.1:The induced vertex-subgraphs <D^> and <D^> are reSular 

of valencies k-a and k-b respectively;

4.1.2.2;|P1|xa=|D |xb.

Proofs.Trivial. //

4.1,3.1;Proposition.Let G be a regular (connected) graph of 

valency k. G has an eigenvector with exactly two distinct entries 

if and only if G has a decomposition of order 2.

Proof.i) Suppose G has a decomposition D of type a,b for some

a,beN .(We cannot have a=b=0 since G is connected).A(G )=fk-a a
t l b k-b

an eigenvector (-a,b) with eigenvalue k-(a+b) and G has a
;hence G has

corresponding eigenvector with exactly two distinct entries,

-a and b, by Proposition 2.2.3.8.

ii) Conversely,suppose G has an eigenvector with two distinct 

entries,say (x,x,...,x,y,y,...,y)* where x occurs m times and y 

occurs n times with m,n^0, and let the corresponding eigenvalue 

be X. Then A(G) can be partitioned thus:
m n

A(G)= B C "

L D E

}m
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For any ieN we have J m m n
y b..+ y c. =k

j=i 13 P=i ip
m n

XZ hi A+y lj=l 13 P=1
c.ip=Xx.

since G is regular,and

m n
But x^y, so l  b.. and ][ c. are independent of the choice of 

j=l 1] p=l lp
ieN : in other words B and C have constant row sums.The same is m
true of D and E and thus G has a decomposition of order 2,by 
Proposition 2.2.3.14. //
4.1.3t2;Corollary.If a transitive graph G of valency k has a

simple eigenvalue X^k, then G has a decomposition of type a,a

for some aeN^.

Proof.lt is well known (see Biggs (4,pl09)) that the eigenvector 

of G corresponding to X is (±1,±1,...,±l)t with exactly half the 

entries negative. //

4.1,3,3:Definition.Let G be a properly labelled regular simple 

graph of valency k and order n with a decomposition 

of type a,b for some a,beN^, The eigenvector of G corresponding 

to P , d(G,P) or simply _d when there is no likelihood of confusion, 

is the n-tuple defined thus: 

d^=-a if ieD1

=b if ieD- for ieN .2 n
k-(a+b) is the eigenvalue of G corresponding to D . ^

Looking for decompositions of order 2 is often an easy way of 

locating integer eigenvalues of a graph.Having found an eigenvalue 

X of a graph G by this method,it is natural to enquire whether we 

can say anything about its multiplicity.If we know some or all 

of the automorphisms of G we can determine a lower bound for the 

multiplicity by calculating the dimension of the eigenspace 

spanned by the images of the associated eigenvector _d under the
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natural action of the automorphisms.An alternative method which is 

usually equivalent to the one just outlined is to search for 

other decompositions of G of the same type and then examine the 

space spanned by the corresponding eigenvectors.In this case there 

is a simple sufficiency condition for the linear independence 

of the eigenvectors produced.

U.l.h.l;Proposition.Let G=(V,s,w) be a properly labelled regular 

simple graph with decompositions D ' 1 ={D^1 / for i=l,2,...,r
(i) denote theall of type a,b for some a,b,reN and let d

/  •  \

eigenvector of G corresponding to . Suppose that
/ * \

i) there is a vertex xeV such that xeD, for all ieN ,1 r*
ii) for each ieN there is a vertex y(i)eV such that 

either y(i)eD^^ and y(i)tfD^ for j^i

or y(i)tfD^^ and y(i)eD^3  ̂ for j^i.

Then the set of vectors {d^^} is independent.
r (i)Proof.Suppose we have y.eR for i=l,2,...,r such that £ y.d =0.

r 1 = 1
Consider the x-th entry of this sum.Then £ -y.a=0.

i=l 1
Now for each ieN^ consider the y(i)-th entry of the sum.We have

-u.a+ l  y.b=0 
j*i

or l  -y.a+y,b=0. 
j*i 3 1

In either case y.=0.l //

It is possible to determine the spectra of some graphs completely 

using this proposition alone.

*+.!.**.2;Example.The octahedron, K* %*■

3
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First class of decomposition Corresponding eigenvalue

{1,2,3}

U.2,4}

{1,2,6}
{1,3,4,5}

{1,2,5,6}

4.1.h. 3: Definition. A regular graph of order n with n-1 decompositions 

of order 2 whose corresponding eigenvectors are independent is 

called determinable. ^

4.1.4.4:Proposition.A determinable graph has an integral spectrum. 

Proof.Trivial. ^

4.1.4.5;Example.Kn is determinable for all keN.

Proof.K^ is determinable by inspection,so we suppose that n>2.

Let K have vertex set V. Take a fixed vertex xeV and consider the n
decompositions of the form {{x,y},V\{x,y}} for yeV with y^x.

There are n-1 such,and the corresponding eigenvectors are 

independent by Proposition 4.1.4.1. //

If a graph G of valency k has a decomposition of

type a,b for some ajbeN^, then the ratio a:b must equal | | :| (.

In addition a,b are small if k is small so that for graphs of 

low valency it is very easy to decide the possible natures of 

decompositions of order 2.

4.1.5 :Example.Consider the truncated tetrahedron TiK^), which has

valency 3 and order 12.

4

0

-2

//
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Possible a and b Corresponding |D^| and |

i) 3 3 6 6

ii) 3 2 Not possible

iii) 3 1 3 9

iv) 2 2 6 6

v) 2 1 4 8

vi) 1 1 6 6.

We consider each possibility in turn.

i) can be discarded immediately since the graph is not bipartite.

ii) is impossible since the order,12, can not be split into two 

integers in the ratio 2:3.

iii) yields three decompositions satisfying Proposition 4.1,4.1 

so that the eigenvalue -1 has multiplicity at least 3 in G.

iv) also gives three decompositions satisfying the proposition

so that -1 again has multiplicity at least 3 in G, but we discover 

that the eigenspaces spanned in iii) and iv) are the same.

v) gives two decompositions satisfying the proposition so that 

0 has multiplicity at least 2 in G.

vi) is soon found to be impossible.

This is as far as decompositions of order 2 will take us for
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this graph.We may complete the calculation of Spec T(K^) as 

follows.We note the decomposition of order 4 

£={{1,2,3},{4,5,6},{7,9,11},{8,10,12}}

whose classes are the orbits of the obvious "rotation" automorphisms. 

The eigenvalues of the quotient are 3,-1,+2 and from the eigenvectors 

with eigenvalues ±2 we construct corresponding eigenvectors of T(K^) 

as in Proposition 2.2.3.8. Considering the action of the same 

automorphisms on these eigenvectors we find that the images of the 

eigenvectors span spaces of dimension 3 each.Thus

3 2 0 -1 -2

1 3 2 3 3 //

Spec T(K4) =

Note that in the above example it is immediately apparent that 

T(K4) is not a determinable graph.For suppose that there is a 

decomposition of type a,b for some a,b in whose corresponding 

eigenvalue is -2. Then a+b would be 5 and since 5 and 12, the 

order of the graph,are coprime,it is clear that we cannot choose 

a,b,D^jDj so that a:b equals |Dj|: | D.J .We end this section by 

proving a generalisation of this remark.

4.1.6.1;Proposition.Let G be a determinable graph of valency k 

and order n, and let X^k be an eigenvalue of G. Then k-X divides 

m  for some reN, .K
Proof.Suppose X is the eigenvalue corresponding to the decomposition 

D of type a,b. The ratio a:b can be reduced to its least integer 

form by the division of both terms by some reN^. If the least 

integer form is a'lb', then n is divisible by a ’+b', that is 

(k-X)/r. //

4.1.6.2iCorollary.Let G be a regular graph of prime order p>2 

and valency k<p/2. Then G is not determinable.

Proof.G has a negative eigenvalue since the zeros of the characteristic
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polynomial of G sum to 0 and G has a positive eigenvalue k.

Let X be such a negative eigenvalue and suppose that X corresponds 

to some decomposition of order 2. Then (k-X)/r>l for all reN^ 

and hence (k-X)/r=p for some reN^. k<p/2 by hypothesis,so -X>k. 

This is not possible and so we have a contradiction. //

This result cannot be extended to all k less than p since we 

know by Example 4.1.4,5 that is determinable.

4 . 2 : S w i t c h i n g  and D e c o m p o s i t i o n s .

U.2.1.1:Definition.Let G=(V,s,w) be a simple (but not necessarily 

connected) graph.We construct a new graph G'^VjSjW1) by switching 

G with respect to Bey thus:- For every pair x,yeV set 

w'(x,y)=w(x,y) if x,yeB or x,yeV\B,

=w(x,y)+l (modulo 2) otherwise.

We say that G and G ’ are in the same switching-class.they are 

equivalent under switching or they are switching-equivalent. //

2.1.2:Example.Consider C^:

V  1 --------

t

2

Then the graph obtained by switching with respect to vertex 

set {1,2} is:

//
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The concept of switching arose initially in the study of families 

of graphs whose parameters almost determine the graphs uniquely. 

Seidel (38) found that some of the exceptional graphs are 

switching-equivalent to graphs in the families.More recently 

switching has been studied in other contexts and for its own 

sake (see Harries (23) for example).Considering the definition, 

it is not surprising that there is a close connection between 

switching and decompositions of order 2.

2.2.1:Proposition.Let G=(V,s,w) be a regular simple graph of 

valency k. G is switching-equivalent to a regular simple graph 

G'siV.SjW') of valency k' if and only if G has a decomposition 

£={D^,D2 ) of type a,b for some a,beZ+ with |d^ | - | | = 2(b-a).

In this case D is a decomposition of G' of type | | —a ,| | —b » 

k'=k+|D2 |-2a=k+|D^|-2b, and k ,=k if and only if |D2 1 =2a. and

|D1i=2b.

Proof .Sufficiency: Suppose G has a decomposition of

type a,b for some a,beZ+ such that |D^|-|D2 |=2(b-a). Then let 

G' be the result of switching G with respect to D^. Every vertex 

in has valency k+|ü2|-2a as a vertex of G', every vertex in 

D2 has valency k+|D^|-2b as a vertex of G', and the result follows 

immediately.

NecessityjSuppose that G' is obtained by switching G with respect

to Bcv and that G' is regular while <B> is not.Then B contains 
Avertices x,x such that 

|N(G,x)/>B| =c
1 , *. , A , *|N(G,x )nB|=c with c;*c .

1 1 *Now the valency of x in G* is 2c+|V\B|-k and the valency of x
ifin G 1 is 2c + | v \ B |- k ,  contradicting the regularity of G'.

Hence <B> is regular with |N(G,x)n<V\B>|=k-c=a, say,for all xeB,
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Similarly <V\B> is regular with |N(G,y)n<B>|=b, say,for all yeV\B. 

Finally |B|- |V\b |=2(b-a) since xeB and yeV\B have equal valencies 

as vertices of G'. //

*+.2.2,2:Note.As in Example *+.2,1,2 the switching-equivalent 

graphs may be isomorphic. //

We can apply Proposition *+.2.2.1 and the results of Section *+.l 

to the problem which originally motivated the study of switching. 

*+.2,2.3:Example.Hoffman and Ray-Chaudhuri (27) asked whether the 

distinct eigenvalues of the line graph of a symmetric balanced 

incomplete block-design were sufficient to determine the graph 

uniquely.They found that they were,with one exception.There are two 

graphs with the eigenvalues of L(lT(*+,3,2)):
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In order to decide whether these two graphs are equivalent 

under switching we consider the decompositions of order 2 of 

L(II(4,3,2)) which might correspond to a switched graph of equal 

valency.

a and b l”il and |D2 1•
4 4 6 6 Not possible- graph not biparti

4 3 Not possible •
4 2 4 8.

4 1 Not possible •
3 3 6 6.

3 2 Not possible •

3 1 3 9 Not possible- K l - | d2I ¿2(b-a).

2 2 6 6 Not possible- lDJ ¿2b.

2 1 4 8 Not possible- -l»2l¿2(b-a).

1 1 6 6 Not possible !Dil ¿2b.

We investigate the two remaining possibilities and find almost 

immediately that switching L(Il(4,3,2)) on the vertex set 

{1,4,6,9} gives a graph isomorphic to G. //

In general we can split the choices of a and b into two distinct 

classes:- those for which a=b, and others. The next proposition 

shows that if two switching-equivalent graphs have different 

valencies then the switch is of the first type.

4.2.2.4:Proposition.Let G=(V,s,w) be a regular simple graph of 

valency k and order" n with a decomposition of type a,b

for some a,beZ+ , and let G'=(V,s,w') be a regular simple graph 

of valency k* obtained by switching G with respect to D^. Then 

either |D1 |=n/2 or k=k'.

Proof. |D |-|D2|=2(b-a) by 4.2.2.1. (1)
|Di|*a=|°2 |*b by 4.1.2.2. (2)
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Suppose b=0. Then a=0 and | | = | | = n / 2 .

Otherwise substitute for | |  into (1) to give 

|D1 |(1-a/b)=2b(1-a/b).

Thus either a=b and | | = | | = n / 2

or |D1|=2b and k=k* by 4.2.2.1. //

A simple spectral result also follows.

4.2.2.5:Proposition.Let G and G' be switching-equivalent regular 

simple graphs of order n and valencies k and k' respectively.

Then G has an eigenvalue X=k'-n/2.

Proof.G has a decomposition 2?={D^,D2) of type a,b for some a,beZ+ 

with |D^|-|D^l=2(b-a), and hence has a corresponding eigenvalue 

X=k-(a+b). But k'=k+| D2 |-2a=k+| D.J-2b by 4.2.2.1, and so 

2k»=2k+|D1|+|D2|-2(a+b)=2X+n. That is X=k'-n/2. //

4.2.2.6:Corollary.A regular simple graph of odd order is not

switching-equivalent to any other regular simple graph.

Proof.Suppose the contrary.By Proposition 4.2.2.5 the graph

would have a rational but not integral eigenvalue,a contradiction.
//

This corollary is a special case of a general result concerning 

switching-classes proved by Harries (23) using different methods.

There is in fact a very close connection between the complete 

spectra of switching-equivalent regular simple graphs.

.2.3.l:Notation.Let G be a simple graph of order n and let J 

denote the matrix of order n whose every entry is 1. Then we 

define A (G) to be the matrix J-I-2A(G). //

*A (G) is the (l,0,-l)-adjacency matrix used by Seidel (38).

4.2.3,2:Example.Consider C^ in Example 4.2.1.2. Then the matrices 

A(C^) and A (C^) are
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> o -F II r 0 1 0 1

1 0 1 0

0 1 0 1

. 1 0 1 0

AA <C„)= ' 0 -1 1 -1

-1 0 -1 1

1 -1 0 -1

-1 1 -1 0

w X  v i  U C 1  1 1  j  V  Q X C l l v j f  J V  ^4.2.3.3:Lemma.Let G be a regular simple graph 

with c components and spectrum r k X^ with i=l,2,...,r for

m.l
some reN. Then the spectrum of A (G) is

Spec A (G)= n-l-2k -l-2k -l-2Xi

1 c—1 m.' l
(where n-l-2k may equal -1-2 X. for some ieN ).l r
Proof.Since G is regular A(G) commutes with J so that they are 

simultaneously diagonalisable.lt is well known that Spec J is
n 0 and clearly Spec I is ' 1 '

L 1 n-1 . n .
Corresponding to eigenvalue n of J there is an eigenvector (1,1,...,l)t 

which is also an eigenvector of A(G) with eigenvalue k. There is in 

addition an (n-l)-dimensional eigenspace of J corresponding to the 

eigenvalue 0 which is spanned by eigenvectors of A(G) with 

eigenvalues k and X^ for i=l,2,...,r. //

4,2,3.4:Lemma (Seidel (38)).Let G=(V,s,w) and G ’̂ V jSjW1) be
*properly labelled switching-equivalent simple graphs.Then A (G) *

*and A (Gf) are cospectral matrices.
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Proof.The process of switching with respect to BcV is equivalentif it itto a similarity operation on A (G), for A (G’)=MA (G)M where

m..=0 for i#j 13 J

=-l for ieB

=1 for itfB with i,jeV

and clearly M_^=M.

An immediate consequence of these two lemmas is the following 

proposition.

4.2.3.5:Proposition.Let the regular simple graphs G and G* of 

valencies k and k* and with c and c' components respectively 

be switching-equivalent.Let Spec G= k X^ with i=l,2,...,r

k c m^

for some reN and let Spec G'=

some seN. Then

r n-l-2k -l-2k -l-2Xi

X!
3

"j

with j=l,2,...,s for

c-1 m.

= n-l-2k' -l-2k’ -1-2X!
3

\ c'-l ] //

We can apply this result directly to the calculation of the 

spectra of graphs.

E x a m p le s .

4.2,3.6;N^ is switching-equivalent to C^.Now Spec N^= / N0

4
it  itso Spec A (N )= f 3 -1 =Spec A (C ). But the valency of C

1 3

is 2 and so Spec C^= 2 0 - 2  

1 2  1

4,2.3.7:Let G be the graph constructed by taking two labelled 

copies of and making corresponding vertices of the two copies
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adjacent.Then the complete r-partite graph K 0 . is2,2 , ,2
switching-equivalent to G.

Now Spec K
2,2 , . . . , 2

( 2r-2  0 -2

1 r r-1

(see Biggs (4,pl7))t

so Spec A (K )=I M
Hence Spec G=

- -2r+3 -1 3

1 r r-1

= Spec A* (G).

r r-2 0 -2

1 1 r-1 r-1 //

In addition we have the following corollaries.

4.2.3.8:Corollary.Switching-equivalent regular simple graphs 

are cospectral if and only if their valencies are the same. 

Otherwise their spectra differ in just two values. //

4.2.3.9:Corollary.Let G be a regular simple graph of order n with 

vertex set V and let G' be a regular simple graph obtained from 

G by switching with respect to Bcv where |B|^n/2• Then G and G' 

are cospectral. //

Considering’this cdrollary it is reasonable to ask whether it 

is possible to switch a regular graph with respect to half its 

vertex set and obtain a cospectral graph.We already have a trivial 

example of this in 4.2.1.2. Seidel (38) gives an example in the 

case of the L^-graphs,where the graphs are cospectral and not 

isomorphic.

We end this chapter with a brief investigation of the k-cubes 

(see Definition 1.2.3.1) and a family of graphs derived from the 

k-cubes by switching.lt is necessary to single out certain 

decompositions,which we do inductively.

4.2.5.ltDefinition.We label the k-cubes and define their special 

decompositions thus:
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i) Qi =K 2 defined on vertex set V^={(0),(1)} with special 

decomposition {{(0)},{(1)}}.

ii) Let e be an r-tuple for some reN. We use the notation 

(e_tx) to denote the (r+l)-tuple whose first r entries are those 

of e_ and whose last entry is x.

The vertex set Vk+1 of Q^+1 is {(e^,0),eeVk }*/{(£,1),£eVk>.

In Qk+1 (e_,i) adj (f,i) if e_ adj _f in for i=0,l, and (£,0) 

adj (£,1) for all £  in V^.

Let A(i) denote {(ie,i),eeA£V }, with i=0,l.

Let £>={D^,D2} be a partition of V^. We define the ff-extension 

of D to be E'={D1(0)wD1(l),D2(0)u D2(1)} and the F-extension of D 
to be F={D1(0)vD2(1),D2(0)«D1(1)}.

Suppose {z/^,ieN^ }for some reN is the set of special 

decompositions of Q^. Then the set of special decompositions of 

Qk+1 is defined to be

{F(l),ieN }u{FCl\ieN }u{{V, (0) , V,(l)}}.r r k K ,

*+.2.5^iExample.Qĵ  and Q2

Q,:
1 ( 0 ) ( 1 )

Special decomposition of Q^: £>={{(0)},{(1)}}.

Q2 * (0,1)

(0,0)

( 1,1)

(1,0)

Special decompositions of Q2 :

E ={{(0,0),(0,1)},{(1,0),(1,1))}, 

F ={{(0,0),(1,1)},{(1,0),(0,1)}}
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{ v ^ o .v ^ D M U o .o M i .O M i o .D .d . i ) } } .

4.2.5.3:Lemma »Let D be a decomposition of of type i,i for 

some ieN^. Then the F-extension and F-extension of D are 

decompositions of of types i,i and (i+l),(i+l) respectively.

Proof,<D^(0)yD^(l)> and are regular of valencies

k-i+1 and k-i respectively. //

**.2.5.U: Lemma.The special decompositions of are decompositions 
kof Q^. There are (^) special decompositions of type i,i for each

kieN^ and none of type a,b for any a^b. ( (^) denotes the binomial 

coefficient.)

Proof.By induction on k. //

U .2.5.5;Lemma.If the eigenvectors corresponding to the special 

decompositions of Q form a linearly independent set,then so doK
those cdrresponding to the special decompositions of Q^+^.

Proof .Let the set of special decompositions of be {Dv,] ,jeNr}

where r=2k-l and  ̂= {Dp and let the eigenvector

corresponding to be d ^  ̂ for jeN^, Then d ^ ^  can be written

(±1,±1,...,±1)* where the negative entries correspond to vertices 
/ • \

of , so we see that,using an obvious extension of the notation 

of Definition 4.2.5.1, the eigenvectors of Qk+j_ corresponding to 

F (j) and F(j) are ((d(j ) )* ,<d( j ) )t )X and ((d( j ) )t , (-d(;5 V  )t 

and the eigenvector corresponding to the decomposition 

iVk(°)*Vk(l)} i"1 »“1»***»”1 »1»1»***»1)1’» In what follows we
shall suppress t.

Consider any vij,Vj,iceR with j=l,2,...,r such that

Î „ . ( d ( 1>.d<1) )+ l v . ( d <i>, -d( î ) )
j = l J J = 1 3 ~

•••jl)-0
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Then

and

So

Also

^ (u.+v.)d(j)-K(l,l,...,l)=0 
j=l 3 3
r ,. *
1 (y.-v.)dl3;+ic(l,l,...,l)=0 . 

i=l 3 3

Y y.d^3^=0 and thus y.=0 for all jcN . 3“  ”  3 r

I v.d(3)=<(l,l,...,l) .
3=i 11

But the sum of the entries of each d^3  ̂ is zero and hence v.=0-  3
for all jeN^ and k =0.

4.2.5.6;Proposition. Qk is determinable with spectrum

//

k k-2i 

1 (*)

where i takes values l,2,...,k.

Proof.By induction on k, using the lemmas. //

y,2,6,l;Lemma.Consider two special decompositions }

and of of the same type i,i for some ieN^.

Let and be the simple graphs obtained by switching

Qk with respect to d ! ^  and respectively.Then G ^ ^  is
. (2) isomorphic to G .

Proof.Consider any special decomposition D={D^,D2 ) of type i,i 

of Q^, and choose some xeD^. Then D is determined by D^r»N(x).

For consider the vertex yeN(x) which differs from x only in 

its last entry.If yeD^then D is an F-extension of a special 

decomposition of If y^D^ then either Z?={Vk_1(0),Vk_1(l)}

or D is an F-extension of ^.'The neighbour of x which differs 

from x in its penultimate entry determines the nature of the 

special decomposition of ^ and so on.

Now rx(Qk ) acts as on N(x) and r(Qk ) is transitive so that 

there is an automorphism of Qk taking any special decomposition 

to any other of the same type. ^

* which is the case if every other neighbour of x is in
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(i)4.2.6.2;Definition.The i-switched k-cube, SQ^ ,with ieN^, is 

the graph constructed by switching Q with respect to aK
class of any special decomposition of type i,i of Q^. //

,(i)By Lemma *4.2.6.! SQ^ is well-defined up to isomorphism,

*4.2.6.3:Lemma.Spec SQ,(i). ,k-l k-2i k—2j

(*>-1 (J)

k+2 -2i k-2

1 1

with j=l,2,...,i-l,i+l,..,,k, and where the eigenvalues given are 

not necessarily all distinct.

Proof. is regular of valency k+2^ ^-2i. We apply Proposition

*4.2.3.5. Spec Q,= k k-2j

So Spec A (Q^)=

,(i)

1
.k ‘ï>

with 3**l,2,...,k.

2K-l-2k -l-2(k-2j)

1

= Spec A ^ S Q ^ )

and Spec SQ^ is as stated. I t

*4,2.6.*4:Proposition.Let keN and ieN^, and suppose that the pair 

(k,i) does not have any of the following values:(1,1),(2,1),(2,2), 

(3,2),(3,3),(*4,*4). Then

i) For any k'eH with k'^k there is no jeN^, such that SQ^ 
/ * \

and SQ^, are isomorphic.

ii) There is no jeN̂ . with j^i such that and SQ^  ̂

are isomorphic.
/  * \

iii) SQ^1 is connected.

iv) SQ^ is not isomorphic to Q^.

Proof.j) The two simple graphs have different orders.

ii) In this case they have different valencies.

iii) k-2j$k-2 for jeN^ and k+2^_^-2i>2^_1-k.

Then 2k ^ k ^ k ^  implies that k$3. Hence for k>3 k+2k_1-2i is
/ • \

a simple eigenvalue of SQ^ } which is therefore connected.
/ • \

iv) If SQ^1 ̂ were isomorphic to Qk then we would have

(i)
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k+2^~^~2i=k, that is 2^=4i. Since ieN^ the only solutions of this

equation for (k,i) are (2,1),(3,2) and (4,40.

By inspection we find that:

SQ^^ is not connected;

SQ^1  ̂ is isomorphic to Q2 ;
(2)SQ2 is not connected;
( 2)SQ3 is isomorphic to Q^;
( 3)SQ3 is not connected;
(4)SQ^ is isomorphic to Q^. //

So we have shown that the i-switched k-cubes constitute a 

"proper" family of graphs - with the exceptions given they are 

connected regular simple graphs isomorphic neither to each other 

nor to the graphs from which they are derived.

4.2.6,5:Example.The smallest connected i-switched k-cube not 

isomorphic to a k-cube is S Q ^ ^ .

//
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5;FAITHFULNESS AND INTEGRITY

5.1:Faithful Decompositions.

5.1.1;Definition.Let D be a decomposition of a generalised graph 

G with the property that every eigenvalue of G is an eigenvalue 

of G^. Then D is a faithful decomposition of G and (P is a 

faithful quotient of G . //

5.1.2.1;Definition.Let G=(V,s,w) be a generalised graph. G is

singleton-regular if its singleton-quotient with respect to

vertex xeV (Definition 2.4.3.3) is independent of the choice of

x. If G is singleton-regular we let G^ denote the common

singleton-quotient and adopt the convention (in line with Proposition
S2.4.3.2) that the vertex of G corresponding to {x} is labelled 

vertex 1. //

5.1.2.2;Proposition.A transitive generalised graph is singleton- 

regular.

Proof.Trivial. //

The converse of this proposition is not true.

5.1.2.3;Counter-example.Benson*s graph is singleton-regular 

with singleton-quotient

©—0 —©--©--©—©--©
but it is not transitive.In fact its automorphism group partitions 

the vertices into two orbits (7). //

Important classes of singleton-regular graphs are the distance-

transitive graphs (1.3.5.4) and the distance-regular graphs, 

which are defined as follows:
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5.1.2.4:Definition,A singleton-regular graph G=(V,s,w) is 

distance-regular if its singleton-decomposition with respect 

to vertex x coincides with its distance partition with respect 

to x (1.4.4.1) for every choice of x. If in addition the diameter 

of G is 2, then the graph is strongly-regular. //

Examples.

5.1,2.5:The k-cubes are distance-transitive.

5,1.2,6:The following triangular tessellation of the torus is 

transitive and strongly-regular but not distance-transitive:

5.1.2.7:Benson's graph is distance-regular but not transitive.
//

The next section gives a sufficient condition for a decomposition 

to be faithful,investigates the consequences and in particular 

shows that the singleton-decomposition of a singleton-regular 

graph satisfies this condition.

5.1.3.1:Notation.For any neN let e? with ieNn denote the n-tuple 

with entry 1 in the i-th position and 0 elsewhere. //

5.1.3.2Proposition.Let G=(V,s,w) be a graph of order n with

a series of r decompositions for some reN, D ^ \ d ^ \  ... ,z/r^

all of the same order m for some meN , with = , . . . }n I ’ m
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for i=l,2.... . such that
,(i)i) for any xeV there is an ieN and jeN with D. = {x),

DU )  r m 3ii) the quotient graphs G for i=l,2,...,r are isomorphic. 

Using G^ to denote the common quotient we have:- G^ is a

faithful quotient of G.

Proof.We shall show that for every xeV there is seN and a set
(k)A(x) = 0/ ,keNs) of eigenvectors of G with the properties that

i) if has eigenvalue X^k \  then X ^  an eigenvalue

of G ° y
s (k ) nii) there are p, eR for keN such that £ p, v =e^.K s k ” X

It will then follow that the union of the sets A(x) taken over 

all xeV spans Rn , so that every eigenvalue of G is an eigenvalue 

of GD .

•Let G^=(N ,s1,w') • Now since G^ is undirected, A(G^) ism
diagonalisable (Corollary 2.2.2.3).Hence for each jeN^ there

is seN, a set of eigenvectors of G^, B( j ) = {u^k \keN }, wheres
(k) (k)ii has eigenvalue Xv ', and p^eR for k=l,2,...,s such that
I (k) m 
l  =e .

k=l k 3 (i)
Take any xeV. We consider a decomposition Dv of G with

D^^ = {x} for some jeN , the matrix Q(G,Z^^) = Q (Notation 2.2.3.1), D m ’ ’
(k) (k)and the set B(j). Then Qu/ is an eigenvector v/ of G for

(k)each keN with eigenvalue X by Proposition 2.2.3.8. Thus s

V 00 f « (k) _ f (k) _ m n 

i k )so that (Qu ,keN } is the desired set A(x).*  * C //

5,1,3,3:Corollary.If G is a singleton-regular graph then G

is a faithful quotient and the number of distinct eigenvalues
Sof G is bounded above by the order of G . //

5 ,1.3 .M-tCorollary.If G is a transitive graph then the number
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of distinct eigenvalues of G is bounded above by the number 

of orbits of the group of automorphisms of G stabilising a 

vertex,x say, T (G). //X

5,1.3.5:Example.The Coxeter/Frucht graph (Example 2.1.11) is 

transitive.Hence it has at most 18 distinct eigenvalues.By 

evaluating the spectrum of the given quotient we find that its 

distinct eigenvalues are in fact ±3, ±2.5243, ±2.2361, ±1.6180 

±0.7923, ±0.6180, a total of 12 different values. //

5,1.3.6:Corollary.Let G=(V,s,w) be a graph with a decomposition 

i’=iDl»D2»**'»Dm} for some meN which has the following property:- 

For every xeV there is yer(G) and D^={y}eZ? for some yeV such 
that y(y)=x, Then D is a faithful decomposition of G.

Proof.We consider the decompositions of G induced by the natural 

action of T(G) on D. These decompositions satisfy the conditions 

of Proposition 5.1.3.2. //

5.1.3.7:Example.The generalised Petersen graph P(h,t) has a 

"reflection automorphism" y stabilising vertices x q »Yq (using 

the notation of Definition 1.2.4.1) and a "rotation automorphism" 

ir taking x^ to xi+1 and yi to yi+1 for i=0,l,...,h-l, subscripts 

reduced modulo h. Hence D{<y>) is a faithful decomposition of 

P(h,t) and the number of distinct eigenvalues of P(h,t) is bounded 

above by h+1 if h is odd or h+2 if h is even (a result already 

established in Corollary 2.3.2.2). //

5,1,3,8:Example.It is easily verified directly that a circulant 

graph of order n has at most [n/2]+l distinct eigenvalues (where 

[x] denotes the integer part of x).However it may also be demonstrated 

as follows:- Kagno (28) proves that a circulant graph of order 

n has D^, the dihedral group on n objects,as a group of automorphisms.
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So there is again a "reflection automorphism" generating a 

subgroup with [n/2] +1 orbits,whose associated decomposition 

is faithful. //

5.1,3.9:Note.Not every faithful decomposition has a singleton 

class.For example the decomposition {{1,5},(2,3},{4,8},{6,7}} 

of the cube (labelled as in Examples2.1.4) is faithful. //

5.2;Multiplicities.

In "Algebraic Graph Theory" Biggs (4) presents the following 

remarkable result.

Let G be a distance-regular graph of order n and let X be
San eigenvalue of G with left- and right-eigenvectors and v 

respectively, u and _v can be chosen so that u^=v^=l and in 

this case the multiplicity of X in G is n/(ji,v) where (ju,\j) 

denotes the inner product of u and v.

It is the purpose of this section to prove a similar proposition 

for all singleton-regular graphs and to discuss the consequences.

We follow the method of proof employed by Biggs in "Finite Groups 

of Automorphisms" (3).

5.2,1,1;Definition.Consider a graph G=(V,s,w) and let q(x,r) 

be the number of walks of length r beginning and ending at vertex 

xeV. We call G return-regular if for each reN, q(x,r) is independent 

of the choice of x. //

5.2.1.2:Lemma.Let G=(V,s,w) be a graph with a decomposition

Z?={D^,ieNm > of order m. Consider a vertex xeV and let xeD^ for

some ieN^. Then the number of walks of length r from x to vertices

of class D. is (A(Gi>)r ).. for all reN and jeN .j lj J m
Proof.By induction on r.
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i) Since G is simple (A(G^))^ is the number of walks

of length 1 from x to vertices in class D ̂ , that is the number 

of neighbours of x in D_..

ii) Suppose the proposition is true when r=s for some seN.

Then,for each keNm , the number of walks of length s+1 from x

to the vertices of D. isk
l  (A(GD)S)..(A(GD ))..=(A(GI,)S+1).lf . //j=l JK 1K

5.2.1.3;Proposition.A singleton-regular graph G=(V,s,w) is 

return-regular.

Proof. q(x,r)= (A(G^)r)11 for all xeV. //

5.2.2.1:Notation. ¿4(G) denotes the algebra of polynomials of 

the adjacency matrix A(G) of graph G. //

5.2.2,2:Lemma.Let G be a graph of order n with a decomposition 

D of order m for some meN^. Then the mapping X-*-R(G,Z?)XQ(G,£>)=X 

(Notation 2.2.3.1) of real matrices of order n into real matrices 

of order m is a homomorphism of ¿4(G) into ¿4(G^).

Proof.Let A(G)=A, R(G,D)=R, and Q(G,D)=Q.

i) Clearly X+Y=X+Y and aX=(aX) for all real matrices 

X,Y of order n and aeR.

ii) XY=XY for all X,Ye4(G) if and only if A ^ ^ A 3

for all i,jeN. But

A1A3=RA1QRA3Q=RA1A3QRQ (2.2.3.6)• •
=RA1A3QI (2.2.3.5) m
=A1A3 . //

5.2,2.3:Lemma.Let G be a graph with a faithful decomposition D.  
Then the mapping X-*-X defined as above is a monomorphism of j4(G). 

Proof. i4(G) and A(<P) have the same minimum polynomial and hence
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5.2.2.‘l; Not at ion. In 5.2.2.5-7 we shall consider a return-regular 

properly labelled graph G of order n for some neN with a faithful 

decomposition ....D^} for some meN^ with D^={l}. Let

A(G)=A and A(G^)=B. We suppose X to be a simple eigenvalue of 

G^ and an eigenvalue of G with multiplicity m(X), and let the 

corresponding eigenvector of B be _v. We define q(t) to be the 

common minimum polynomial of A(G) and set q(t)=(t-X)q(t)

and write Z=q(A). //

5.2.2.5:Lemma. m(X)tr(Z)=tr(Z), and tr(Z)/0.

Proof.For any polynomial f(t) we have tr(f(A))= \ m(y)f(y).
yeSpec G

q vanishes for y A ,  so tr(q(A))=m(X)q(X)^0 since m(X)jil and 

q(X)^0.

Now tr(q(B) )=q(X) so that tr(q(A))=m(X)tr(q(B)). But X-+-X 

is a homomorphism of A(G) into A(G^), so q(B)=Z, that is

tr(Z)=m(X)tr(Z)A). //

5.2.2.6:Lemma. A(G) has a basis {A^.feN } for some reN, with —  .... f * r
the property that A^=In and every other A^ has diagonal entries 

zero.

Proof.For each seN, (AS ) ^  is the number of walks of length 3 

beginning and ending at vertex i. Thus since G is return-regular 

every member of A(G) has constant diagonal entries. //

5.2.2.7:Proposition.Let the m-tuple n be defined by u£=lDJ vi
A

for ieNm . Then m(X)=nv*/(u,v) .where (u,\r) denotes the inner

product of _u and v.
r

Proof. Z— £ Z..A,. for some z^eR with j=l,2,...,r and hence
j=l 3 ’

tr(Z)=z1tr(A1)=nz1 where z ^ O  by 5.2.2.5.
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q(A)=0 and q(A)=(A-AI)Z, so that AZ=AZ. Since Zc^(G), Z 

commutes with A so that we also have ZA=AZ. Hence AZ=AZ 

and ZA=AZ. Thus every column of Z is a right-eigenvector of B 

and every row of Z is a left-eigenvector of B with eigenvalue A . 

Since the multiplicity of A in B is 1, the rows and columns 

are therefore determined to within a multiplicative constant. 

Every column is a multiple of v. Let K be the diagonal matrix 

of order m whose ii-th entry is |D^|. By Propositions 2.1.3.2 

and 2.1.3.4 KB is symmetrical,that is (KB)t=KB. So 

BtKv= ( KB)tv=KB_v=KA_v=AK_v,

Kv=u is a right-eigenvector of Bt and vf is a left-eigenvector

of B. Hence every row is a multiple of ut

Thus (Z). =a.u^=B_v. for some a.,8^eR for each j,feN , But j f j f f j  j * f m

Thus ot]_ui=®ivi=z]/®Z= £ z.A. and so,since |D 1=1» (Z) 11=z1. j=^ 3 D 1 11 ±
so that g =z./v.. And since u.=v., a.v =B,v. so that 1 1 1  1 1 *  j l l j

2 -  2 
<Xj=^iVj/,Vl=ZlVj^Vl* Hence iZ)jf=zlvjuf^vl‘ and

triZ^z^u.vJ/v^ .

So by Lemma 5.2.2.5 

m(A)=nv^/(ii,^) . //

We have established in passing that v^O, so _v can be chosen 

with v^=l. We usually adopt the convention that this has been 

done and give the above result as m( A)=n/(u,v_).

5.2.2.8:Corollary.Let G be a singleton-regular graph of order n, 

and let A be a simple eigenvalue of G with associated eigenvector 

v chosen so that v^=l. Then the multiplicity of A in G is n/(u,_v) 

where u is defined as above. //

5.2.2.9;Corollary (Biggs).Let G be a distance-regular graph and
clet A be any eigenvalue of G . Then using the notation above
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m(X)=n/(u,v) .

Proof.If G has diameter d, then S has order d+1, and every graph 

has at least d+1 distinct eigenvalues (4,pl3), so that every
seigenvalue of G is simple. //

5 .2,2.lOtExample.The truncated tetrahedron TiK^) of Example H.1.5 

is transitive and thus singleton-regular with

S(l)={{l},{2,3},{U} »(5,6},(7, 8} ,{9 ,12},{10,11}}, n=12 and

a ((t (k4))S)= ’ 0 2 1 0 0 oo

1 1 0 1 0 0 0

1 0 0 0 2 0 0

0 1 0 0 0 1 1

0 0 1 0 1 1 0

0 0 0 1 1 0 1

, 0 0 0 1 0 1 1

Eigenvalues Multiplicities Eigenvect ors

X in T(K4), m(X) in (T(K4))S (TU^))5 , V

3 1 1 (1,1. 1,1.1.1,1)
, - 1 1 - 12 3 2 (1»2»!•» 2 *2 » 2*

(1,1,
0 2 1 (1 "i ! -1 - I  -

-1 3 2 (1,1, -3,—3,1,1,

-2

(1,0,-1,-1,0,1,0)*

( 1  - 1  —  — o)*
2 » »2*2* 2* '

1

24
2

4
11

2

3
//

The main value of Corollary 5.2.2.8 is that it provides a 

strong necessary condition which must be satisfied if a generalised 

graph is to be the singleton-quotient of a singleton-regular 

graph.

5.2.3.1:Definition.Let H=(V,s,w) be a properly labelled generalised
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graph of order m with s(l)=l. For any m-tuple v we define

_u(_v,H)=u by vu=s(i)v^ for i=l,2,...,m.

Suppose that for every simple eigenvalue X of H with corresponding 
meigenvector jv, (v^ £ s ( i ) l ( u t v) ) is a positive integer.Then H
1=1

satisfies the integrity condition. //

Of course if H is to be the singleton-quotient of a singleton- 

regular graph then it must satisfy other more obvious conditions.

For example the row-sum of A(H) must be constant.

5.2.3.2;Definition.Let C be a class of singleton-regular graphs.

Then any condition other than integrity which must be satisfied 

by a generalised graph H if it is to be the singleton-quotient 

of a member of C is called a simple feasibility condition with 

respect to C . If H satisfies all known simple feasibility conditions 

with respect to C then H is said to be simply feasible with 

respect to C . If in addition it satisfies the integrity condition 

H is strictly feasible with respect to C . If there is a graph GeC 
such that H is the singleton-quotient of G, then H is said to 

be realisable with respect to C . I I

In practice the simple feasibility conditions are often most 

easily expressed as conditions on the adjacency matrix of the 

generalised graph.

5.2.4:Proposition.Let H=(V,s,w) be a properly labelled generalised 

graph of order m and let A(H)=A. The following are simple feasibility 

conditions on H with respect to all singleton-regular graphs.

5.2.4.1: s(l)=l, and H is irreducible (Definition 2.4.3.3) with 

respect to vertex 1.

5.2 .4.2: H is connected.

5 .2.4.3: H is undirected,so that a^s(i) = aj ,s( j ).

5.2.4.4:The row-sum of A is a constant k independent of the
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row chosen.
m

5.2.4.5: k £ s(l) is even. 
i=l

5.2.*+,6: a..s(i) is even for all ieN .-------  n  m
5.2.6.7: a..<s(i) for all ieN .-------  n  m
5.2.6.8: a..=s(i) for all i.ieN .-------  lj m
Proofs.

1. By definition.

2,3,4. Trivial.

5,6. A regular simple graph or subgraph of order r and

valency s has rs even since rs/2 is the number of edges.

7,8. A simple graph does not have loops or multiple edges.
//

It follows from 5.2.4.1-3 that

5.2,4.9:Corollary.Let H be a simply feasible properly labelled 

generalised graph with respect to singleton-regular graphs, 

with H=(V,s,w) and A(H)=H as above.Then a^=0, a^ = 0  or s(j)* 

and every s(j) may be determined from A(H). //

In other words if we are given that the size of vertex 1 is 1, 

then it is only necessary to examine the adjacency matrix of 

a generalised graph to determine whether or not it is strictly 

feasible with respect to a class of singleton-regular graphs.

5.2.5.1;Definition.We define the decomposition rank of a

singleton-regular graph to be the order of its singleton-quotient.
//

5.2.5.2;Proposition.The only graphs of decomposition rank 2 

are the complete graphs for neN.

Proof.If H is to be simply feasible with respect to singleton- 

regular graphs of decomposition rank 2 then A(H) must have the 

form 0 x . Since the row sums are equal y=x-l and H

. 1 y
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is trivially the singleton-quotient of K^. //

5,2.5.3:Proposition.Every graph of decomposition rank 3 is 

s t r on gly- re gul ar.

Proof.If H is simply feasible with respect to singleton-regular 

graphs of decomposition rank 3, then for a suitable labelling 

of H, A(H) has first row 

i) ( 0 x 0 ) 

or ii) ( 0  x y ) .

In case i) A(H) has form 0 X 0

1 y z
0 w u

and the graph is singleton-regular.In case ii) A(H) has the form

0 x y

1 x— 1 y 

1 x y-1

and H is the singleton-quotient of , which has decomposition 

rank 2. //

5.2,5.4:Definition.Let G be a transitive graph.The rank of G 

is the rank of its automorphism group,that is the number of 

orbits of the group of automorphisms stabilising a vertex. //

5 .2.5.5;Corollary (Hestenes (26)).Every transitive graph of 

rank 3 is strongly-regular.

Proof.If G is a transitive graph its decomposition rank is less

than or equal to its rank.So the decomposition rank of a graph

of rank 3 is ^3. But the only graphs; with decomposition rank

<3 are K whose ranks are 2. //n

In the next chapter we shall investigate the problem of 

feasibility conditions and the determination of all strictly
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feasible generalised graphs with respect to certain classes 

of trivalent graphs.We end this chapter with a brief survey 

of the feasibility conditions applicable to classes of distance- 

regular graphs.

5 .2.6:Proposition.The following are simple feasibility conditions 

on a generalised graph H=(V,s,w) with respect to distance- 

regularity.

5.2.6,1; H has a labelling with respect to which A(H) is 

tridiagonal,with s(l)=l.

5.2.6.2:(Biggs (4)),When H is labelled so that A(H) is tridiagonal 

the above-diagonal entries are monotonically decreasing and the 

below-diagonal entries are monotonically increasing.

Proofs.

1.Trivial.

5.2.6,3:Example.The following generalised graph H is realisable 

with respect to trivalent distance-regular graphs (it is the 

singleton-quotient of the cube).

2.See Biggs (4,pl35). //

H:

A(H)= 0 3 0 0 \

1 0  2 0

0 2 0 1

k 0 0 3 0 //

In the case of distance-transitive graphs of given valency

it is sometimes possible to put a bound on the diameter of the 

graph and thus on the order of its singleton-quotient.Biggs 

and Smith (5) demonstrate that a trivalent distance-transitive
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graph has diameter at most 15. This and a similar resùlt on

distance-transitive graphs of valency 4 enable Smith to find

all strictly feasible generalised graphs with respect to

trivalent and tetravalent distance-transitive graphs,and

hence to construct all such graphs (40). In (41) Smith shows that

it is possible to bound the diameter of bipartite distance-transitive

graphd of valency p+1 , where p is a prime.

It is noteworthy that while it is easy to construct a simply 

feasible and not realisable generalised graph with respect to 

distance-regularity,it is rare for a strictly feasible generalised 

graph not to be realisable.

5.2,7:Example (Biggs (3)).

O---©— s— ©O 5

is strictly feasible but not realisable with respect to distance- 

regularity. //

Feasibility conditions are a very powerful tool in the study 

of distance-regular and in particular strongly-regular graphs.

Among their applications are the study of

i) cages (see Biggs (4)),

ii) simple groups (for example Biggs (3) and Hestenes (26)),

iii) designs and partial geometries (for example Bose (6 ) 

and Seidel (38)).
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6 :THE CONSTRUCTION OF FEASIBLE GENERALISED GRAPHS

In this chapter we shall concern ourselves with the problem 

of constructing all strictly feasible generalised graphs with 

respect to three classes of trivalent singleton-regular graphs:

i) transitive graphs of fixed decomposition rank;

ii) t-arc-transitive graphs of fixed decomposition 

rank and arc-transitivity;

iii) symmetric graphs on a fixed number of vertices.

6.1:Necessary and Forbidden Subgraphs.

If a generalised graph H is simply feasible with respect 

to trivalent singleton-regular graphs,the value of k in 5.2.4.4, 

the row sum of A(H), is 3. This fact enables us to make some 

simple observations on the sizes of the vertices of H,

6 .1.1 Proposition.Let H=(V,s,w) be a simply feasible generalised 

graph with respect to trivalent singleton-regular graphs,and 

suppose that vertex 1 is not adjacent to a vertex of size 3.

6 .1,1.1:Each vertex of H has size 21 for some ieZ .

6 ,1,1.2:If there is a vertex of size 2 with keN, then there 

is a vertex of size 2^”^.

Proof.Consider xeV and a path from vertex 1 to x on vertices

1 *yl *y2 * " ' * y r>*x> Then 3 ^ ) 5 2 , ^s(yi_1 )^s(yi)|2s(yi_1) for

i=2,3,...,r and ss(y )*s(x)*2s(y ). //r r

6 .1,2Proposition.Let H be as above,but suppose that vertex 1 

is adjacent to a vertex of size 3.

6,1,2.l:Each vertex has size 3^x2X for j=0 or 1 and for some ieZ+ .

6.1.2,2:Every vertex of size 2^ with ieZ+ has valency 1 and



95

is adjacent to a vertex of size 3X21 or 3x2X \

6.1.2.3:If there is a vertex of size 3x2 with keN, then
k- 1there is a vertex of size 3x2 .

Proof.As in 6.1.1 consider a path from 1 to xeV on vertices

i=2,3,...,r and s(yr)/3*s(x)*2s(yr). If s(x)=s(yr)/3 or 2s(yr)/3

Consider a properly labelled transitive trivalent graph G.

If N(G,l)e5(l) (as is the case when G is symmetric),then certain 

edge-subgraphs can be excluded in general,so that further simple 

feasibility conditions can be stated in addition to those of 

Proposition 6.1.2.

6 .1,3,1;Notation.In Section 6.1.3 we shall consider a properly labelled 

trivalent transitive graph G=(V,s,w) with N(l)eS(l). //

6 .1,3,2:Proposition.Suppose that G contains a triangle as an 

edge-subgraph.Then G is K^.

Proof. G may be taken to have edge-subgraph

4

But {2,3,4}eS(l), so that the vertex-subgraph <{2,3,4}> is regular.

then x has valency 1 . //

2

1 3

It must have valency 2 and hence G=K^. //

6.1.3.3:Proposition.Suppose that G contains a square as an 

edge-subgraph.Then G is 3 °r the cube $3 *

Proof. contains a square.If G is not then it may be taken 

to have the edge-subgraph
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2

Then since {2,3,*+}e£(l)f G has (up to isomorphism) one of the 

edge-subgraphs

i)

or ii)

1

In case i) vertex 2 is adjacent to another vertex,say 6 . Suppose 

neither 3 nor 4 is adjacent to 6 ,Then G has edge-subgraph

2 6

Vertex 1 is on three squares whereas vertex.'2 is only on two, 

so that G cannot be transitive and we have a contradiction,So 

we may suppose without loss of generality that vertex 3 is adjacent

2

to 6 .
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Consider the class of 5(1) containing vertex 6 . Every member 

is adjacent to at least two of 2,3,4 and since G is trivalent 

the class contains no new vertices .Hence 6 adj 4 arid G=K .

In case ii) every 2-arc beginning at vertex 1 can be extended 

to become a square in exactly one way.Since G is transitive 

this is true of every 2-arc in G. Consider the 2-arc (5,2,6). 

Then 5 and 6 must have a common neighbour other than 2, say 

vertex 8 .

Similarly vertices 6 and 7 share a neighbour other than 4. But

since 6 is already adjacent to three vertices this common neighbour

must be 8 and G is Q . //3
6 .1.3.4;Proposition.Suppose G contains the edge-subgraph

Then G is Q 3 or P(8,3) or Heawood's graph (21,pl73).

Proof. ,G has at least 8 vertices so that it is not K or K,” *1 3*3
Q3 contains the subgraph.Hence we need not consider graphs
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containing triangles or squares.The possibilities are these 

(up to isomorphism):

i)
3 9 12

and ii)

Consider in case i) the 2-arcs beginning at vertex 3, Since 

G is transitive there is ae{6,12}, be{4,5} and ce{2,10} such 

that a,b and c have a common neighbour and no two of a,b and c 

are adjacent. 6 and 4 do not share a neighbour and 6 adj 5,

So a=12. 2 and 12 have no common neighbour so c=10. But 10 adj *+ 

and 1 0 does not share a neighbour with 5, giving a contradiction. 

Hence G cannot have the edge-subgraph given in i).

In case ii) we must consider six distinct further possible 

developments:
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8 lu



100



101

We consider the possibilities in turn.

a) The construction is complete and G is Heawood's graph.

b) The ends of the 2-arcs beginning at vertex 1 may be 

partitioned into two sets of three vertices {6,7,8} and {9,10,11} 

such that the three vertices in each set have a common neighbour. 

Hence so may the ends of those originating at vertex 2. Thus 

12,13 and 14 have a common neighbour, 16 say.We have constructed 

P(8,3).

c) Consider 2-arcs beginning at vertex 3. There must be 

ae{12,15}, be{2,14} and c e{4,5} such that a,b,c have a common 

neighbour and no two are adjacent.By inspection a=12, b=2, c=5 

and their shared neighbour is 6 . Now consider the vertices whose 

distance from 3 is two and which do not have a common neighbour, 

4,14 and 15, and those whose distance from 6 is two which are 

not adjacent to vertex 3, that is 7,11 and x where x>14. Then 

since G is transitive each of 7,11 and x must be adjacent to 

just one of 4,14 and 15. But 11 is not adjacent to any of them,

we have a contradiction and G cannot contain the edge-subgraph c).

d) As in case b) 12,13 and 14 must have a common neighbour,

19 say, and similarly so must 16,17 and 18, say 20. So we have

3 9 16
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Every 2-arc originating at vertex 1 extends into a hexagon 

and since G is transitive,every 2-arc in G must do so.The shortest 

circuit through vertex 1 is a hexagon.Thus since G is transitive, 

its girth is six,and vertex 18 is not adjacent to vertex 1 2 .

If 18 adj 13 or 14, then the arc (12,6,5) does not extend into 

a hexagon.Hence 16,17 and 18 are not adjacent to any of 12,13 and 14, 

and so they are adjacent to three new vertices 21,22,23 say, 

which again must have a common neighbour,24 say.

Finally in order that 2-arcs (12,6,5),(13,7,4) and (14,8,3) 

may be extended into hexagons,we must have 18 adj 21, 17 adj 22 

and 16 adj 23. The resulting graph is

3 9 16

Considering vertices whose distance from vertex 3 is two we find 

that they do not form two sets of three vertices,each set being 

the neighbourhood of some vertex of G. So G is not transitive 

and we have a contradiction.

e) Using a similar argument to that in case b) we may assert 

that vertices 12,13 and 14 are adjacent to three vertices in 

such a way that any two of 12,13 and 14 share a neighbour.Since 

the graph is trivalent these vertices must be new.Take them to 

be 18,19 and 20 with 18 adjacent to 12 and 13, 19 adjacent to
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13 and 14, and 20 adjacent to 12 and 14. We have

3 9 15

16

17

18

19

20

As in c) we consider the ends of 2-arcs beginning at vertex 3. 

Then there must be ae{4,5}, be{15,17), ce{2,14} such that a,b and c 

have a common neighbour.Now neither 15 nor 17 shares a neighbour 

with 2. Hence c=14. But neither <4 nor 5 shares a neighbour with 

14 and we have a contradiction.

f) Again considering the ends of 2-arcs beginning at vertex 3 

we find that there must be ae{4,5}, be{2,14}, ce{15,16) such 

that a,b and c have a common neighbour.But neither 15 nor 16 

shares a neighbour with 4 or 5 and so we have a contradiction.
//

As a result of these propositions we can specify some forbidden 

subgraphs of simply feasible generalised graphs.

6 ,1.4;Proposition.Let H be a simply feasible properly labelled 

generalised graph with respect to transitive trivalent graphs.

H does not contain the following edge-subgraphs:

6 .1.4.1:

for ieN;
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unless one of the vertices of size 1 is vertex 1 ;

6 .1.4.3:

Q8
unless H is

0 --<¡8
the singleton-•quotient of k4;
6 .1.4.4:

£X
JD

6 .1.4.5:

0-~0
unless H is

0-- 0 - 0
the singleton-quotient °f K3,3*
6 .1.4.6 :

©--0 = 0
unless H is

0- 0 - 0
the singleton'-quotient of Q3;
6 .1.4.7:

0-- 0 - 0 - 0
unless H is

0--0 = 0 - 0
6 .1.4.8 :

unless H is
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the singleton-quotient of P(8,3).

Proof.If vertex 1 of H is not adjacent to a vertex of size 3, 

none of the subgraphs occur by 6 .1.1.1. Otherwise the proofs 

are as follows:

1,2. H is irreducible with respect to vertex 1;

3. By 6 .1.3.2;

4,5,6. By 6 .1.3.3;

7,8. By 6 .1.3.4. //

If H is to be simply feasible with respect to symmetric trivalent

graphs,then it is a trivial observation that vertex 1 must be

adjacent to a vertex of size 3. A symmetric graph is at least 
1-arc transitive.For t-arc-transitive graphs with t>l we 
can go further.Note that it is well known that for trivalent

graphs ts5 (see for example Biggs (4)) so we need only deal

with 2its5.

6.1.5:Proposition.Let H be a simply feasible properly labelled 

generalised graph with respect to trivalent t-arc-transitive 

graphs for some t, 2<ts5. Then H contains the edge-subgraph

© —G>.. -(0 )
or H is one of the following:

0 — 0 — ©
the singleton-quotient of

0 — 0 — 0 — ©
the singleton-quotient of Heawood's graph,

or Q ---- 0 — 0 ------Q -----Q

the singleton-quotient of Tutte's graph (42).

Proof.Let G=(V,s,w) be a properly labelled trivalent t-arc-transitive 

graph of diameter d for some deN and 2*t*5, let L S V  denote the 

set {x, d(l,x)=i} for Oli^d and let min(a,b) with a,beR denote
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the lesser of a and b.
Clearly L^eS(l) for i=min(d,t). Suppose that there is a j with

2 *j|min(d,t) and | L̂. 1 < 2 1 J  and choose the least such.Then

every vertex of has at least two neighbours in and every

vertex in L. 1 has at least two neighbours in L .. So there exist 
3 1 3

(j+2 )-arcs of the forms

i)
1

and ii)

V i L.3^
- r  " * ~ ~ X \

V.

L:-i L.3

Hence t<j+2, that is j=t~l.
Suppose j=t-l. Then every vertex of has three neighbours

in L. . so that d=t-l and G is a cage of even girth g where
 ̂ / 2  

the number of vertices attains the lower bound 2 ( 2  -1 ).

These graphs are well-known to exist for t=3,4,5, being

Heawood's graph and Tutte's graph respectively (Tutte (42)).

Otherwise,if j=t then the singleton-quotient of G has the

required subgraph,If there is no j then the singleton-quotient

of G has the required subgraph and indeed has the subgraph

//
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6 .2:Algorithms for the Construction of Strictly Feasible 

Generalised Graphs.

We wish to construct every strictly feasible generalised graph 

with respect to the classes given at the beginning of this chapter, 

and since the construction will have to be carried out on a 

computer we must use a suitable representation of the generalised 

graphs in question.As we are dealing only with quotients of 

trivalent graphs we may represent a singleton-quotient of order 

m by two arrays,a vector of order m, SIZE,containing the sizes 

of the vertices (whose first entry is of course always l),and 

an m*3 matrix,GRM,from which the adjacency matrix of the quotient 

may be constructed:-

6.2.1.1:Definition.Let H be a properly labelled simply feasible 

generalised graph of order m with respect to trivalent singleton- 

regular graphs.A graph representation matrix.GRM,of H is a 

matrix of size mx3 with the property that the number of entries 

of value j in row i Is equal to the ij-th entry of A(H) for 

i,jeNm< //

6 ,2 .1 .2 :Example.For the quotient

Q - Q = Q — © .
the arrays may be

SIZE GRM

’ 1 ' ' 2  2 2 ’

C
O 1 3  3

3 2 2 4

1 1 ,

C
O

C
OC
O

___—'

Notes.

6.2.1.3:If we further impose the condition that the entries

of GRM must be in ascending order in each row then GRM is uniquely
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defined.However this would introduce practical complications 

into the construction of the graph representation matrices.

6.2.1.4:If we are given GRM the array SIZE is strictly unnecessary 

by the arguments put forward in Corollary 5.2.4.9. However it 

saves considerable computation to store the sizes of the vertices 

as well as GRM,and we shall see later that in the case of symmetric 

graphs of fixed order,SIZE will be determined completely before 

the application of the construction algorithm for GRM. //

The algorithm used is essentially the same for all the classes 

of graphs that we investigate.We shall give an outline applicable 

to all these classes and then deal with the necessary specialisations. 

An example of the computer program used in one case is given in 

Appendix 1 .

6 .2 .2 .1 :Notation.A stack is a list with the property that items 

may only be added to or removed from its end.Items are pushed 

onto or popped from the stack (see for example (1 ) for a fuller 

description).

In the construction algorithm we shall use a series of stacks, 

one for each value of a non-negative integer variable STEP called 

STACK(STEP),and the items in the stacks will be mx4 arrays holding 

the entries of GRM and SIZE so far determined at each step,which 

we shall call GRM/SIZE. //

6 ,2 ,2 .2 :Algorithm.

Stage l .Set the order of the generalised graph to be constructed, 

the initial value of GRM/SIZE according to the class of graph 

being considered,set STEP=1 and push GRM/SIZE onto STACK(STEP).

Stage 2 .If STEP=0 then stop.If there are no entries in STACK(STEP) 

reduce STEP by 1 and restart Stage 2. Otherwise pop GRM/SIZE
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from STACK(STEP).

Stage 3.If there is no vertex with the properties that

i) it is already incident with an edge 

and ii) another edge may be added incident with it, 

then either the construction of a graph representation matrix 

is complete in which case go to Stage or the generalised 

graph being constructed cannot be connected in which case return 

to Stage 2. Otherwise choose the first such vertex and go to 
Stage 5.

Stage 4,Check for forbidden subgraphs.If there are any go to 

Stage 2. Otherwise apply Algorithm 2 .4.1.3 to find the singleton- 

quotient S(l) of the generalised graph constructed,If it is 

reducible go to Stage 2. If not,the canonical labelling of the 

classes of S(l) is a canonical labelling of the generalised graph 

and from it we may derive a canonical form of GRM.Check whether 

this canonical form of GRM has already been stored.If so return 

to Stage 2. Otherwise store it and test the adjacency matrix 

of the generalised graph for the integrity condition.If this 

is satisfied output GRM/SIZE.Return to Stage 2.

Stage 5.Increase STEP by 1 and construct all possible GRM/SIZE 

arrays corresponding to the addition of one edge incident with 

the vertex chosen (avoiding obvious isomorphisms and reducible 

constructions) - this operation may involve assigning a size 

to a vertex whose size was previously undetermined.Store these 

arrays in STACK(STEP).Return to Stage 2. //

We first apply this algorithm for the class of transitive 

trivalent graphs.

6.2.3:Algorithm.To construct all strictly feasible generalised

graphs with respect to all transitive trivalent graphs of fixed
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decomposition rank,m.

Apply Algorithm 6 .2.2.2 in three cases.

i) Set the initial value of GRM/SIZE thus:-The first row 

of GRM has entries 2,3,4, the next three rows have first entry 1 

and all the other entries of GRM are undetermined.The first four 

entries of SIZE are 1 and the other entries are undetermined.

ii) Set the initial value thus:-The first row of GRM has 

entries 2,2,3, the next two rows have first entry 1 and the 

other entries are undetermined.The first three entries of SIZE 

are 1 ,2 ,1 ; the rest are undetermined.

iii) Set the initial values thus:-The first row of GRM

is 2 ,2 ,2 , the next row has first entry 1 and the other entries 

are undetermined.The first two entries of SIZE are 1 and 3; the 

remainder are again undetermined.Exclude forbidden subgraphs 

given in 6.1.3.2-4. I t

The application of this algorithm for mi9 gives the next 

proposition.

6 .2,4Proposition.The only strictly feasible generalised graphs 

with respect to transitive trivalent graphs of decomposition 

rank|9 are the following:

m=2 :

6.2 .4.1; f l ) --

6 .2 .4.2 : ( ? ) — - 0 ------ 0

6 .2 .4.3: 

m=4:
0 “ - 0 ------------

6 .2 .4.4: ( l ) — — C 2 ]

1 2
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6.2.4.43:

6.2.4.44:

© 0 )— 0 0 — 0 = © — 0 — 0 — ©

Secondly we consider t-are-transitive trivalent graphs for 

given t (l£t£5) and given decomposition rank m. With the exceptions 

given their singleton-quotients have the edge-subgraphs specified 

in Proposition 6.1.5 and the forbidden subgraphs given by 

Propositions 6 .1.3.2-4 are excluded.Note that a generalised graph 

which is strictly feasible with respect to t-arc-transitive graphs 

with t=i is also strictly feasible for graphs with t=j when j<i.

The application of Algorithm 6 .2.2.2 with the above constraints 

yields the next proposition.

6.2.5:Proposition.The o n l y strictly feasible generalised graphs 

with respect to t-arc-transitive trivalent graphs of decomposition 

rank m for l=t=5 and l=m$t+8 are the following:

i) Generalised graphs strictly feasible for t=5: 

m=5: 6.2.4.10. m=7: 6.2.4.21. m=9: 6.2.4.44.

//

6 .2 .5.1:

ii) Generalised graphs strictly feasible for t=4 but

not for t=5:
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m=ll:

6 .2 .5.2 :

not for t=4:

m=3: 6 .2.4.2,3. m=5: 6 .2 .4.8 ,9. m=6 : 6.2.4.15. m=8 : 6.2.4.30. 

m=9: 6.2.4.39,41,42.

m=1 0 :

(?)—(?)—(?)—(gw— -(?)—(?) (?)

6 .2.5.4:

6 .2 .5.6 :

0- 0— © — 0— 0— 0— 0—0
M 0 —

iv) Generalised graphs strictly feasible for t=2 but 

not for t=3:

m=2: 6 .2.4.1. m=4: 6 .2.4.5. m=6 : 6.2.4.13,14. m=7: 6.2.4.19.

m=9: 6.2.4.38,40.
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m=10:
6 .2 .5.7:

©— (ï y = ( ù = = 0)
v) Generalised graphs strictly feasible for t=l but not

t=2 :

None for m=9. //

Finally we turn our attention to symmetric trivalent graphs 

of fixed order.The first step is to calculate all possible values 

of SIZE for singleton-quotients of members of this class when 

the order is given.Clearly the results of 6 .1 . 2  are applicable 

in this case.

6 .2.6.1:Notation.Let G=(V,s,w) be a generalised graph.Then n(a) 

denotes the number of vertices xeV such that s(x)=a, //

Proposition.Let H be a simply feasible generalised graph 

with respect to symmetric trivalent graphs,Then the following 

conditions hold on H:

6 .2.6,2: n(6)»n(2) unless H is

© —0 ----©
6 .2.6.3: n(3)>n(l).

6.2«6 ,H:Unless H is

©— ©>=©---------©
the following holds

3n(3)+n(6 )+l|hn(1) and if H has vertices of

sizes 1 and 3 only then 3n(3)^n(l) .

6.2.6.5:If H has no vertices of size 12 then n( *0+n(2 )|n( 6 ) .
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Proof

2. By 6 .1.2.2 a vertex of size 2 is adjacent to a vertex 

of size 3 or 6 . But by 6 .1.3.3 no vertex of size 2 is adjacent 

to a vertex of size 3 unless H is the singleton-quotient of 

Further by 6 .1.4.1 only one vertex of size 2 may be adjacent 

to any given vertex of size 6 .

3. This result follows from 6 .1.2.2 and 6 .1.4.4.

4. Every vertex of size 1 is adjacent to a vertex of size 

3, and so is part of a vertex-subgraph of the form

Unless H is the singleton-quotient of K 3 for which the

proposition is true,the vertex of size 3 is adjacent to a vertex 

of size 3 or 6 , If H has the edge-subgraph

then by 6 .1.3.4 H is the singleton-quotient of the cube,so that 

except in this case subgraphs isomorphic to J cannot be attached 

to each other.There are at most three copies of J attached to 

a vertex of size 3 and at most one attached to a vertex of size 

6 unless one of the vertices of size 1 is vertex 1 in which 

case there may be two,by 6 .1.4.2. Hence

3(n(3)-n(l))+n(6)+l=n(l) and if there are vertices 

of sizes 1 and 3 only then 3(n(3)-n(1))=n(l) .

5. This follows from 6 .1.2,2 and 6 .1.4,1. //

Using this proposition and Proposition 6.1.2 it is relatively 

easy to work out the possible values of SIZE corresponding to 

a given order.

6.2.7.lrExample.For order 20 the possible values of SIZE are

J

as follows:
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(1,3,6 ,6 ,H)

(1.3.6 .6 .3.1)

(1.3.6 .6 .2 .2 )

( 1. 3.6. 4. 3. 3) 

(1,3,6 ,3,3,3,1)

(1,3,3,3,3,3,3,1)

- We begin with the largest possible sizes

- and reduce from the right.

- (1 ,3 ,6 ,6 ,2 ,1 ,1 ) is excluded by 6 .2 .6 .3.

- n(4)=n(6) by 6 .2.6 .5.

- (1 ,3 ,6 ,4 ,3 ,2 ,1 ) and (1,3,6 ,4,3,1 ,1 ,1 ) 

are excluded by 6 .2 .6 .5 and 6 .2 .6 .3 

respectively.

- (1 ,3 ,6 ,3 ,3 ,2 ,2 ) is excluded by 6 .2 .6 .2 , 

(1 ,3 ,6 ,3 ,3 ,2 ,1 ,1 ) and so on are excluded 

by 6 .2 .6 .3.

- (1,3,3,3,3,3,2 ,2 ),(1,3,3,3,3,3,1 ,1 ,1 ,1 ) 

and so on are excluded by 6 .2 .6 . 2  and

6 .2 .6 .4. //

6 ,2.7,2:Note.In the algorithm which follows,the ordering of 

the entries of SIZE is immaterial except in that the first two 

must be 1 and 3 respectively. //

6 ,2 ,8 ;Algorithm.To construct all strictly feasible generalised 

graphs with respect to symmetric trivalent graphs on a fixed 

number, n, of vertices.

Firstly construct all possible values of SIZE for the given

n. Then for each value of SIZE apply Algorithm 6 .2.2.2 with the

forbidden subgraphs specified in 6 .1,3.2-4 and the following

initial value of GRM:- The first row has entries 2,2,2, the

second has first entry 1 and all other entries are undetermined.
//

This algorithm has been executed for n^40 with the results 

given in the next proposition.

6 .2,9;Proposition.The only strictly feasible generalised graphs

with respect to symmetric trivalent graphs are the following:
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n=4: 6 .2.4.1. n=6 : 6 .2.4.2. n=8 : 6 .2.4.5. n=10: 6 .2.4.3. 

n=14: 6 .2.4.6 . n=16: 6.2.4.13. n=18: 6.2.4.8. n=20: 6.2.4.14,15.

n=24: 6.2.4.19.

n=26:

6 .2 .9.1:

O— © — 0= = = = =0— 0= = 0-̂ 0

N d
n=38 :

6 .2 .9.3:
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Clearly the next step is to decide for each of the strictly 

feasible generalised graphs whether or not it is realisable 

and if so which graphs in the given class have it as their 

singleton-quotient.This is the problem to which we shall 

address ourselves in the next chapter.
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7¡EXISTENCE AND UNIQUENESS

7.1:Covering Graphs.

Consider a decomposition D of a graph G. Unless D is trivial 

the quotient is not a simple graph.However in some cases G^ 

is very closely related to a simple graph,and the connections 

between the properties of G and those of G^ can aid us greatly 

in determining whether there is a unique transitive graph whose 

singleton-quotient is a particular one of the generalised graphs 

constructed in Chapter 6 .

7.1.1.1¡Definition.Let G=(V,s,w) be a generalised graph with 

the property that the size of every vertex is divisible by r 

for some reN, Then the reduced generalised graph G/r is the 

generalised graph (V,s',w) where s'(x)=s(x)/r for all xeV. //

7.1.1,2¡Definition.Let G=(V,s,w) be a simple graph with a decomposition

D of order m where Z)={D..ieN }. D is said to be a (O.l)-decompositionl m
of G if

i) |n (x )a D^|=0 or 1 

and ii) if xeD^ then |N(x)nD^|=0

for all xeV and ieN . //

7.1.1.3¡Proposition.Let G=(V,s,w) be a graph with a (0,1)- 

decomposition of order m, D={D^,ieNm >. Then all the decomposition 

classes are of the same size and G^/|D^| is also a simple connected 

graph.

Proof .Consider xeV and D^D^eO such that x eD^ and |N(x )aD^|^0.

Then every vertex in is adjacent to exactly one vertex of 

Dj and vice versa,so that | | =|D^|. Since G is connected, 

every decomposition class has the same size. G^ has no loops



or multiple edges by definition. //

7 , 1 , 1 , Definition.Let D be a (O,l)-decomposition of a 

graph G and let the size of every decomposition class be r 

for some reN. Then G is called an r-fold covering of G^/r, the 

graph covered by G. //

The mapping of G onto G^/r is a graph homomorphism in the sense 

defined by Harary (21), and covering graphs have been studied 

extensively by (among others) Waller (44,45), Farzan (15,16), 

Gardiner (20), Biggs (4), Smith (39), and Djokovic (13). Covering 

graphs in which the classes of the (0 ,l)-decomposition consist 

of "antipodal" vertices have been particularly thoroughly studied. 

7,1,2.1:Definition.Let G=(V,s,w) be a graph of diameter d. Vertices 

u,veV are antipodal if d(u,v)=d. If d(u,v)=d(u,w)=d for u,v,weV 

implies that v=w or d(v,w)=d, then G is an antipodal graph. //

7.1.2.2;Example.Consider the decomposition 
£={{1,8},{2,7},{3,6),{4,5}} of the cube

2 5

This is a .(O,l)-decomposition where the classes consist of 

antipodal pairs of vertices and G^ / 2  is K^, so that the cube 

is an "antipodal double-covering of K^". //

7.1.2.3:Proposition.If a transitive graph is antipodal then

the classes of antipodal vertices form a system of imprimitivity. 

Proof.Trivial. //
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We take the following straight-forward propositions concerning 

the properties of covering graphs from (16),(20) and (4).

7.1,3,1:Proposition.If G is a regular covering graph of H then 

H is regular with the same valency as G. //

7.1.3.2:Proposition.Let G be a t-arc-transitive covering of H 

for some teZ+ with the property that the classes of the (0,1)- 

decomposition form a system of imprimitivity of G. Then H is 

at least t-arc-transitive. //

7,1.3.3:Definition.Consider graphs G1 =(V1 ,s^,w1) and G2=(V2 ,s2 ,w2). 

The Kronecker product G^\G2 is a simple graph with vertex set 

V^xv2 and adjacency defined by (v^,v2 ) aĉ j ŵ i»w2  ̂ vl ,wle^l
and v2 ,w2eV2 , if and only if v^ adj w^ in G^ and v2 adj w2 in

g 2. //

7.1.3,4;Proposition.Suppose a graph G is not bipartite.Then

GaK2 is a bipartite double-covering of G and if G is t-arc-transitive

for some teZ+ then Ga K2 is also at least t-arc-transitive. //

7,1.4:Remarks.Covering graphs have in general been used in existence 

and uniqueness proofs in the context of distance-transitive 

graphs,so it is worth noting two properties of distance-transitive 

covering graphs which fail to hold for symmetric covering graphs.

7.1.4.1;Suppose a distance-transitive graph is imprimitive.Then 

any block system is either a bipartition or an antipodal system 

and in the latter case the graph is an antipodal covering graph (4). 

Now consider the quotient of the Coxeter/Frucht graph illustrated 

in 2.1.11. It is clear that every vertex of this graph has a 

unique "opposite" vertex,though the graph is not antipodal, 

and so the graph has a block system which is neither of the 

types given above.Further it is not a covering graph with respect 

to this system since if it were,the covered graph would have
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55 vertices and valency 3, a contradiction. //

7.1.4.g : Gardiner,(20).establishes that a distance-transitive 

r-fold covering G of a graph H where the classes of the (0,1)- 

decomposition are a block system may exist only for certain 

values of r not exceeding the valency of H. Consider the 

dodecahedron P(10,2):

P(10,2):

This graph is an antipodal double-covering of Petersen's graph 

(and they are both distance-transitive).It is not bipartite 

and so it in turn has a symmetric double-covering P(1 0 ,2 )a K2 .

This latter graph is a 4— covering of Petersen's graph and the 

(0,l)-decomposition is a block system.Note however that it is 

not an antipodal system. //

7.2;Superdecompositions and Imprimitivity.

In this section our aim is to establish results which will 

under certain circumstances enable us to decide whether a given 

generalised graph is necessarily a quotient of a covering graph, 

and if it is to identify the covered graph.To do this we must 

relate the decompositions of a graph to those of its quotients.
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7.2.1.1:Definition.Let G=(V,s,w) be a generalised graph with vertex- 

partitions P and Q. P is a superdecomposition of Q if P is a 

decomposition of G and P is a superpartition of Qt that is for 

all x,yeV if x$y then x£y. I l

7.2.1.2:Proposition.Consider an undirected generalised graph G with

decompositions Z>={D.,iEN } and F={E.,jeN } such that E is al n ] ’ m
superdecomposition of D. Then there is a decomposition E ' of G®

D E 1 Ewith (G ) isomorphic to G .

Proof.Define E ' t a partition of N -thus:- For all i,jeN i^j if and 

only if D^ and D^CE^ for some keN^. The proposition follows 

immediately,for the row sums of the F-blocks of A(G) are equal to the 

row sums of the E '-blocks of A(G^), the sizes of the corresponding 

vertices of (G ) and G are clearly equal, and E ’ _is_ a decomposition 

of GD by Proposition 2.2.3.14. //

7.2.2.l:Definition.Suppose E and F are decompositions of a generalised 

graph G. Then D t the closure of E and P, is the finest decomposition 

of G which is a superdecomposition of both E and F . //

7.2.2.2Proposition.Let G=(V,s,w) be a generalised graph,let E and F

be decompositions of G, and let Z?={D^,ieNm) be the partition of V

defined thus:- x^y if and only if there is an rcN and a finite chain

of vertices of G vQ(=x) . u ^ v ^ u  ,... ,vn( =y), not necessarily all

distinct,such that u.^v. , and v.̂ -u. for all ieN .Then D is thel l-l i i  r
closure of E and F .

Proof. D is clearly a superpartition of E and F, for any D^ is a union

of members of E and also a union of members of F. Suppose x^y for

some x,yeV. Then there is a chain of vertices vQ(=x),u1,v1,u2 ,...,vr(=y)

such that u.€v. . and v.^u. for all ieN . But since the members of D l l-l l i  r
are unions of members of F, and E is a decomposition of G,
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Definition 2.1.1.1).Similarly since F is a decomposition of G,

and £(x) = J3(y) and D is a decomposition of G.

Furthermore every superdecomposition of both E and F must have the 

property that any such chain of vertices is contained in a single 

class,since a class of a superdecomposition is a union of members of 

each of E and F. Thus D is the finest superdecomposition of E and F.

Thus if D is the closure of E and F, both of which are decompositions 

of an undirected generalised graph G, we have the following diagram:

I I

G

7.2.2,3:Example.Let G be the cube,labelled as in 7.1.2.2. 

Consider the decompositions

i) F={{1,8},{2,7},{3,6},{4,5}} 
with G^:

and A(GE )= f o i l ! \

1 0  1 1

1 1 0  1

[ 1 1 1 o
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with GF :
ii) F={{1},{2,3,4},{5,6,7},{8}}

0— 0=0
and A(GF )= 0

1

0

0

3

0

2

0

0

2

0

3

0

0

1

0

iii) D - { {1,8},{2,3,Ut5,6,7}}, the closure of E and F,
with GF

and

D 0 E FG is clearly a quotient of both G and G . //

7,2.3.1:Lemma.Let G be an imprimitive graph and let B be 

a member of the block system.Then G has a decomposition B 
with BeB.

Proof .By definition T(G) has a subgroup II which stabilises

B setwise and acts transitively on the members of B. B(n)

is the required decomposition B. //

7.2.3.2:Proposition.Let G be a properly labelled imprimitive 

graph.Consider B(r^(G)), the decomposition of G into the 

orbits of the stabiliser of vertex 1, which contains a 

class {1}. Then q^T^(G)) ^as a non_-trivial decomposition E * 
of order >1 with the property that {1}^F'.

Proof.Let vertex 1 be contained in a block B of a block system 

of G. Then G has a decomposition B with BeB, by the lemma.Let 

E be the closure of B(T^(G)) and B. |b |^1, so that {!}#?
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and the order of E is strictly less than that of D(r^(G)).

Further vertex leB so T^(G) stabilises B setwise and hence B 

is a union of classes of ZXr^(G)), and since BeB, BeE. Thus 

the order of E is strictly greater than 1. The required decomposition 

E 1 o f  G lv is that corresponding to the decomposition E of 

G as in Proposition 7.2.1.2. //

7.2.3.3 : Corollary.Let G be a properly labelled imprimitive graph 

with a (O,l)-decomposition of order m, BstB^jB^,.•.»B^J^which 

is also a block system, so that G is a |B,J-fold covering of 

a graph H, say.Then G lv has a non-trivial decomposition 

E '  with the property that ( G ^ ^ l ^ ^ ) ^  /|b |̂ is a quotient 

of H with a vertex of size 1 corresponding to block B^eB. //

7.2.3,4;Example.Consider Example 7.2.2.4 with H=GE/2 and

G^/2 the singleton-quotient of H. //

We have shown that if a graph is imprimitive then the quotient 

corresponding:to a vertex-stabiliser has a non-trivial decomposition 

of order greater than 1 and it follows that if a quotient has 

no such decomposition then it may only be the quotient corresponding 

to a vertex-stabiliser of a graph if that graph is primitive.

It would be very convenient if this result held for singleton- 

quotients , that is if we could make the following statement:-

If a strictly feasible generalised graph with respect to 

transitive graphs has no non-trivial decomposition of order 

greater than 1, then any transitive graph of which it is the 

singleton-quotient is primitive.

However this assertion is unfortunately not true.

7.2,3,5 : Counter-example.The triangular tessellation of the torus 

given in 5.1.2.6 has singleton-quotient
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which has no non-trivial decomposition of order greater than 1, 

and it has a block system {{1,3,9,11},{2,10,12},{5,7,13,15}, 

{6,8,14,16}}. //

7.3:Construction.

We shall use three techniques in identifying transitive trivalent 

graphs whose singleton-quotients are among those strictly feasible 

generalised graphs constructed in Chapter 6. The first is to 

employ the elementary consequences of the transitivity of the 

graph we are seeking.These consequences fall into three categories 

which we shall illustrate by means of the following example:

7.3.1.1¡Example.Consider the generalised graph 6.2.4.14:

6.2.4.14:

0------& i)------P
Suppose it is the singleton-quotient of a properly labelled 

transitive graph G, with singleton-decomposition {Sa,Sj3,... ,S^} 

as indicated,with S ={l}.
3

i) The shortest circuit in G containing vertex 1 must 

pass from 1 to sb »sc»sc again,S^, and back to 1, and so has 

length 5. Since the graph is transitive,the girth of G is 5.

ii) Every 2-arc beginning at vertex 1 in G can be extended 

to become two 3-arcs with the property that one can be extended 

into a circuit of length 5 while the other cannot.Since G is 

transitive,this is true of every 2-arc in G.

iii) Every vertex of distance 3 from vertex 1 is adjacent 

to exactly one other vertex which is the same distance from

vertex 1 and is distance 2 (via Sg ) from exactly one other vertex
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of distance 3 from 1, This configuration must exist for the

set of vertices whose distance is 3 from any given vertex of

G. //

The second technique is to show that any transitive graph

with a particular singleton-quotient must have a (O,l)-decomposition

which is also a block system,and to demonstrate that the closure

of the (O,l)-decomposition with the singleton-decomposition

has order greater than 1. We then identify the covered graph

from the quotient corresponding to the closure.

7,3,l,2:Example.Consider again the generalised graph given in

6.2.4.14, labelled as above, and again suppose it to be the

singleton-quotient of a properly labelled transitive graph G.

G is clearly antipodal, and an antipodal system is a block system.

To show that this system is a (O,l)-decomposition we consider

the vertex 2' antipodal to vertex 2eS^. It is easily established

that any vertex of distance 5 from 2 lies in S . Thus vertexe
1', antipodal to vertex 1, is adjacent to vertex 2'. Thus the 

vertex antipodal to each neighbour of 1 is adjacent to 1’.

Since the graph is transitive,this is true for every vertex, 

the antipodal system is a (O,l)-decomposition and G is a 

double-covering.Further it is clear that the closure of the 

antipodal system with the singleton-quotient of G is 

{S^S^^i/S^S^yS^} and hence the corresponding quotient of 

G, H say, is

H:

then H/2 is

which must be the singleton-quotient of the covered graph by
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7.2.2.3. Since G is transitive and the (0,1)-decomposition is 

a block system,the covered graph is also transitive.Thus the 

problem of identifying G is reduced to that of identifying 

transitive graphs with the smaller singleton-quotient and then

The third technique is to demonstrate that any transitive 

graph with the given singleton-quotient is primitive,subject 

to a restriction on its rank.All primitive trivalent graphs 

may be easily constructed from the list of primitive permutation 

groups, with a suborbit of length three given by Wong (47). 

7.3.1.3;Example.Consider the generalised graph 6.2.4.9: 
e - -

Any transitive graph G of rank less than or equal to 9 with 

this singleton-quotient is primitive.For

i) Suppose the rank is 8. Then the singleton-quotient 

corresponds to the stabiliser of a vertex.But it has no non-trivial 

decomposition of order greater than 1. Hence G is primitive

by 7.2.3.2.

ii) Suppose the rank is 9. Then one of the classes 

corresponds to two orbits of the stabiliser of a vertex.But

it is easily seen that if one class consists of two orbits,then 

so does one of the neighbouring classes,a contradiction. //

The last of these three techniques is the least satisfactory 

in that it forces us to impose a stricter condition on the 

classes of graphs we are concerned with.We must replace the 

decomposition rank by the rank in Propositions 6.2.4 and

6.2.5. Of course the lists of strictly feasible generalised graphs

constructing their transitive double-coverings. //
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produced are unchanged.

7.3.1,4:Notation.We shall label the vertices of the strictly 

feasible generalised graphs with lower case letters.If such a 

generalised graph H is the singleton-quotient of a properly 

labelled transitive trivalent graph G we shall take the singleton- 

decomposition of G to be indexed with the same letters,so that 

for example vertex x of H corresponds to class Sx of the 

singleton-decomposition of G. In addition we shall take S toa
be {1} and we shall denote an unspecified member of a class,

*
say by x, so that the circuit given in Example 7,3.1.1 could

A A A A
be written <l,b,c,c,b>. //

7.3.2;Proposition.The following strictly feasible generalised 

graphs have these realisations with respect to transitive trivalent 

graphs and no others:

Generalised graph. Realisation Order,rank,arc-transitivity.

6.2.4.1 K4 4 2 2

6.2.4.2 K3,3 6 3 3

6.2.4.3 P(5,2) 10 3 3

6.2.4.4 P(3,1) 6 4 0

6.2.4.5 ^3 8 4 2

6.2.4.6 Heawood' s graph,H 14 4 4

6.2.4.7 M( 4) 8 5 0

6.2.4.8 The Pappus graph,P 18 5 3

6.2.4.10 Tutte's graph,T 30 5 5

6.2.4.11 P(5,l) 10 6 0

6.2.4.12 M(5 ) 10 6 0

6.2.4.13 P(8,3) 16 6 2

6.2.4.14 P(10,2) 20 6 2

6.2.4.15 P(10,3) 20 6 3
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Generalised graph Realisation Order,rank ,arc-transitivity

6.2.4.16 T(\) 12 7 0

6.2.4.17 M(6) 12 7 0

6.2.4.18 None

6.2.4.22 P(6,l) 12 8 0

6.2.4.23 None

6.2.4.24 R 12 8 0

R:

6.2.4.25 None

6.2.4.26 P(7,1) 14 8 0

6.2.4.27 M(7) 14 8 0

6.2.4.28 T(K3,3> 18 8 0

6.2.4.29 None

6.2.4.30 None

6.2.4.33 None

6.2.4.34 None

6.2.4.35 M(8) 16 9 0

6.2.4.36 None

6.2.4.37 None

6.2.4.38 None

6.2.4.42 None

6.2.5.4 None
6.2.5.5 None
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Generalised graph Realisation

6 .2 .5.6 None

6 .2 .9.2 None

6.2 .9.3 None

Proof.In each of the cases above the non-existence or uniqueness 

of a realisation is established without difficulty using

We shall consider the remaining strictly feasible generalised 

graphs in turn.The proofs in some cases will only involve 

elementary techniques but if so they will be less straightforward 

than in the proposition just given.

7.3.3 : Proposition.The only transitive graph whose singleton-

quotient is 5.2.*+,9 is the Tutte-Coxeter graph,TC, on 28 

vertices,whose rank is 5 and which is 3-arc-transitive.

Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 7 and every 3-arc extends to exactly one heptagon 

and one octagon. G may be constructed so far without loss of 

generality:

elementary methods (as in Example 7.3.1.1). //

6.2.4.9:
a

n
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Vertex 16 is adjacent to 20 or 22.

i) Suppose 16 adj 20. Then 18 adj 22. Consider vertices 

whose distance is 4 from vertex 2. These are 16,18,20,22,27,28. 

16 adj 20, 18 adj 22, and so 27 adj 28. Hence 23,24,25 and 26 

are adjacent in pairs.Now consider the 3-arc (2,5,11,15). It 

must extend to an octagon via Sg so that without loss of 

generality 15 adj 27 and 27 is adjacent to one of 17,19 and 21. 

But 27 not adj 17 or 19 by girth so 27 adj 21. Considering the 

extensions of (2,5,12,19),(3,7,15,11,23),(3,8,17,13,25) and 

(4,9,19,12,24) we find that 19 adj 28, 28 adj 17, 23 adj 22,

25 adj 20, 24 adj 18 and 26 adj 16. Finally 23 not adj 24 or

26 by girth,so 23 adj 25 and 24 adj 26. Thus we have

u

ii) Suppose 16 adj 22. Then 18 adj'20. As above 27 adj 28 

and 23,24,25 and 26 are adjacent in pairs.Also as above 15 adj 27, 

27 adj 21, 17 adj 28, 28 adj 19, 23 adj 20, 25 adj 22, 24 adj 16 

and 26 adj 18. Thus we have
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Now vertex 9 is distance 3 from vertex 5, and is adjacent to 

two other vertices, 20 and 4, whose distance from 5 is 3, This 

is a contradiction and hence the construction of i) is the only 

one possible. TC is well known to have the correct singleton- 

quotient. //

7.3.4 Proposition.The only transitive graph whose singleton-

quotient is 6.2.4.19 is P(12,5) which has order 24, rank 7, 

and is 2-arc-transitive.

6.2.4.19:

©—©—a
Proof.The girth of any transitive graph with this singleton- 

quotient is 6. Hence the graph may be constructed so far 

without loss of generality:
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Every 2-arc beginning at vertex 1 extends to exactly one hexagon, 

so this is true of every 2-arc in the graph.By consideration of 

girth we see that 20 is adjacent to neither 14 nor 16, 21 adj 

neither 15 nor 18, and 22 adj neither 17 nor 19. (2,6,12) extends 

to a hexagon <2,6,12,9,4,1>. Hence 21 not adj 14, since if it 

were, (2,6,12) would also extend to the hexagon <2,6,12,21,14,5>. 

Similarly 21 not adj 19, 20 adj neither 15 nor 17, 22 adj neither 

16 nor 18. Hence 21 adj 16 and 17, 20 adj 18 and 19, 22 adj 14 

and 15.
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23 not adj 15 since the girth is 6. Hence 24 adj 15# Again 

considering girth 23 is adjacent to exactly one of 18 and 19.

Thus (23,14,5) extends to a hexagon <23,14,5,11,20,18 or 19>. 

Suppose 16 adj 23. Then (23,14,5) also extends to the hexagon 

<23,14,5,11,7,16>. So 16 not adj 23, and hence 16 adj 24, and 

17 adj 23. Similarly 19 not adj 23 so 18 adj 23 and 19 adj 24.

Thus the construction is unique.

Now P(12,5) is known to be a transitive trivalent graph on 

24 vertices,and it is easily shown that it has the desired 

singleton-quotient. //

7.3.5 :Proposition.There is no transitive graph whose singleton- 

quotient is 6.2.4.20.

6 , 2.4 20 :

0 --- (7)--- (7)----0 = 0 ---0)---0
Proof.Any transitive graph with this singleton-quotient would 

be distance-regular.But the above diagonal entries in the 

tridiagonal form of the adjacency matrix of this quotient would 

not decrease monotonically,contradicting Proposition 5,2.6.2. //

7.3.6 :Proposition.There is no transitive graph whose singleton- 

quotient is 6.2.4.21.

6.2.4.21:
0 ---0)---0 —0 ---0 ---0)---0
Proof.Any transitive graph with this singleton-quotient would

be a (3,12)-cage.But there is only one (3,12)-cage,Benson's

graph (see Appendix 2 for a proof of uniqueness) and this

graph is known not to be transitive (7). //

7.3.7,l:Lemma.Any transitive graph whose singleton-quotient 

is 6.2.4.31 is a 5-covering of Heawood's graph.
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6.2.4.31:

Proof.The diameter of any transitive graph with this singleton-

quotient is 6. Consider any two vertices in S^. Then the

shortest path from one to the other is via S, or S and hasa g
length 6. Since the graph is transitive it is antipodal.

Consider a vertex ,2 say,in S^. Now the vertices antipodal

to 2 clearly do not lie in Sa ,Sj3,Sc,S(j,Se , or S^. The girth of

the graph is 10 and so every vertex in S must be adjacent tog
two vertices whose distance from 2 is 5 and to one vertex whose 

distance from 2 is 3. Hence the vertices antipodal to 2 do not 

lie in S . So they lie in S,.. No vertex of S, is adjacent to 

two vertices antipodal to vertex 2 since the graph is antipodal 

and has diameter 6. Hence every vertex antipodal to vertex 1 

is adjacent to exactly one vertex antipodal to each neighbour 

of 1 and since the graph is transitive the antipodal system 

is a (0,l)-decomposition.The antipodal system is,of course, 

a block system.Thus any transitive graph with this singleton- 

quotient is a 5-covering of a transitive graph.The reduced 

quotient corresponding to the closure of the singleton-decomposition 

and the antipodal system is easily seen to be

©—0---0---- ©
and the only transitive graph with this singleton-quotient is 

Heawood's graph by Proposition 7.3.2. //

7.3.7.2 : Proposition.There is no transitive graph whose singleton-

quotient is 6.2.4.31
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Proof,By the lemma any such graph is a transitive 5-covering 

of Heawood's graph, H,

11

12

13

14

We assume there is such a covering and attempt to construct 

it,denoting the antipodal blocks by the integers 1 to 14, their 

members by the upper case letters A to E, and as before the 

classes of the singleton-decomposition by the lower case 

letters a to h.

The edges joining classes Sa,S^,Sc ,S^,and Sg and those 

joining classes Sf and may be constructed without loss of 

generality as follows:
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14C



In Heawood's graph 11 adj 5,7 and 9. It follows that in the 

graph we wish to construct each of 11D and H E  is adjacent to 

three of 7C,9C,9E,5C,7E and 5E, with no common adjacencies. 

Without loss of generality let 11D adj 5C. Then 11E adj 5E, 

and since the girth is 10,11D not adj 9E, so that 11D adj 9C. 

Similarly 11D not adj 7C so that 11D adj 7E.

In the same way,choosing 12D adj 6C, 13D adj 6B and 14D adj 5B 

without loss of generality,the edges between classes Sg and 

are uniquely determined:

Vertex Neighbours

11D 5C,9C,7E

11E 5E,9E,7C

12 D 6C,10B,7D

12E 6D,10E,7B

13D 6B,8E,9B

13E 6E,8B,9D

14D 5B,8D,10C
14E 5D,8C,10D

(See diagram overleaf).

Now in Heawood's graph 2 adj 1,5 and 6, Without loss of generality 

let 2B adj 5B. Then 2B not adj 6B by girth (<2B,5B,11B,7A,12B,6B>), 

2B not adj 6C by girth (<2B,5B,11B,7A,3A,8A,13B,6C>), 2B not 

adj 6D by girth (<2B,5B,14D,8D,13C,6D>) and 2B not adj 6E by 

girth (<2B,6E,13E,9D,11B,5B>). So we have a contradiction and 

the proposition is proven. //

It is worth noting that a graph of order 70 and girth 10,having 

the correct singleton-quotient with respect to some vertices does 

exist;the discovery of this graph is due to Harries (24).
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7.3.8.1;Lemma.Any transitive graph of rank r£12 whose singleton- 

quotient is 6.2.4.32 is primitive.

6.2.4.32:

Proof.Suppose G is a transitive graph with this singleton-quotient. 

The generalised graph has no decomposition of order greater than 

1» so if it is the quotient corresponding to the stabiliser of 

a vertex of G,then G is primitive.If not,at least one class 

consists of at least two orbits of T^(G), and the rank r is 

easily seen to be at least 12. Now if any class consists of 

more than two orbits then r>12 clearly.Further if any class 

consists of two orbits of unequal size it is clear that must 

consist of two orbits and r>12. r may only be 12 if S ^ S ^ S  ,S^ 

consist of one orbit each and S ,S-,S ,S, each consists of two 

orbits of equal size.We suppose this to be the case,and further 

suppose that the graph is imprimitive with block B containing 

vertex 1.

i) Suppose B contains S^. Then every neighbour of vertex 1 

is a member of B, and so,since the graph is symmetric,every 

neighbour of every vertex in is a member of B, and so on,

so that B contains every vertex of G, a contradiction.

ii) Suppose B contains Then every vertex of distance 

2 from vertex 1 is in B, so every vertex of distance 2 from a 

vertex of Sc is in B, so S^B. But then adjacent vertices are 

members of B so that B contains S^ and we again have a contradiction.

iii) If B contains S , then it also contains S and wed g
have the same contradiction as above.

iv) Suppose half or all of Sg is contained in B. There 

are paths of length 3 containing three members of Se , and since
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unless adjacent vertices are members of B every vertex in Sg

not contained in B is adjacent to a member of B,there are such paths

containing two members of B, Hence B contains S, ,S or S,,b e d
a contradiction.

v) Suppose half or all of S^ is contained in B. Then in

the same way as in iv) there are paths of length 4 containing

two members of B so that B contains members of S, ,S ,S, or S ,b e d  e ’
a contradiction.

vi) A similar argument applies to S .s
vii) Finally neither 5 nor 9 divides 102, the order of 

G, so B cannot consist solely of vertex 1 and half or all of

Sh*
Our assumption of imprimitivity is contradicted, and thus 

any transitive graph with this singleton-quotient is either 

primitive or has rank greater than 12. //

7.3.8.2.‘Proposition.The only transitive graph with rank less 

than or equal to 12 whose singleton-quotient is 6.2.4.32 is 

the graph with Frucht description

Proof.Smith (39) establishes that there is only one primitive 

graph with this singleton-quotient, and this graph is identified 

by Biggs and Smith (5) as having the description given. //

7.3,9.1;Lemma.Any transitive graph whose singleton-quotient

is 6,2.4.39 is a double-covering of the Desargùe graph P(10,3),
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6.2.4.39:

Then the girth of G is 8, and G is clearly antipodal with diameter

6. We may construct part of G without loss of generality as 

follows:

We consider vertex 2 in S^. Suppose vertex 29 is antipodal

to 2, that is d(2,29)=6. Then each of 23,24,25 is adjacent to

two of the vertices 15-22. Now the vertices 26,27,28 are each

adjacent to two vertices of S^. Trivially therefore one of them

is adjacent to two of the vertices 11-14, so that the girth of

G is 6, a contradiction.Similarly vertex 30 is not antipodal

to vertex 2, and hence the vertex antipodal to vertex 2 lies

in S . g
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Using the same arguments as in Lemma 7.3.7.1 we see that any

transitive graph with the desired singleton-quotient must be

a double-covering of a transitive graph whose singleton-quotient

is 6.2.4.15. But there is only one such graph and that is P(10,3).
//

7.3.9,2:Proposition.The only transitive graph whose singleton- 

quotient is 6.2.4.39 is the Kronecker product P(10,2)a K , which 

has order 40, rank 9 and is 3-arc-transitive.

Proof.By the lemma any such graph is a double-covering of P(10,3).

Let G be such a double-covering.Then we may construct it so far 

without loss of generality (labelling the vertices of each pair 

A and B, with the upper labelled A):
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Now in P(10,3) 5 adj 13. Since the girth of G is 8, 5A adj 13B 

and 5B adj 13A. Similarly considering the girth 13A adj 9A,

9A adj 15B, 15A adj 7A, 7A adj 11B, 6A adj 12B, 12A adj 8A,

8A adj 16B, 16A adj 10A, 10A adj 14B, 14A adj 6A and the construction 

is unique.

Now P(10,2)a K^ is known to be a symmetric graph on 40 vertices.

With the labelling of 7.1.4.2 the adjacencies of this double­

covering of P(10,2) are indicated by the following diagram:

may be shown that there is an automorphism stabilising 1A and 

exchanging 5-10B with 11-16B so that the rank and arc-transitivity 

are as stated. //

7.3.9,3:Note.In the double-covering of P(10,2) the (0,l)-decomposition 

is not a block system. //

7.3,9.4;Note.The graph constructed is interesting in that it 

is simultaneously a double-covering of P(10,2), a double-covering 

of P(10,3) and a 4-covering of P(5,2). //

7.3.10:Proposition.There is no transitive graph whose singleton-

quotient is 6.2.4.40.
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Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 8 and thus may be constructed so far without 

loss of generality:
Sd Sf

girth considerations and so without loss of generality we may 

set 11 adjacent to 34. It follows that 15 adj 32 and 13 adj 36.

Consider 2-arcs beginning at vertex 1, for example (1,2,5). 

The two extensions to 3-arcs behave differently.One,of type 

A say,extends to exactly one octagon.In the example (1,2,5,11) 

extends to <1,2,5,11,34,20,8,3>. The other,in the example
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(1,2,5,17), extends to one 4-arc of type B which extends to 

two octagons,(here (1,2,5,17,23) extends to <1,2,5,17,23,19,7,3> 

and <1,2,5,17,23,21,9,4>) and to another 4-arc,of type C,which 

extends to one octagon,(here (1,2,5,17,31) extends to
A A A<l,2,5,17,31,d,c,b >)• Every 2-arc in the graph may be extended

in these ways.

Consider the 2-arc (2,5,11). Then (2,5,11,34,20) extends to 

two octagons <2,5,11,34,20,24,18,6> and <2,5,11,34,20,8,3,1> . 

Hence (2,5,11,34,40) is of type C, and so 40 adj 26. Similarly 

38 adj 30 and 42 adj 28. Thus we have

They split into two sets of three, {5,7,9},{6,8,10}, each of 

which has a common vertex at distance 2 other than vertex 1, 

vertices 23 and 24 respectively.So the same must be true 

of those vertices whose distance from vertex 23 is 2. Vertices 

5,7 and 9 clearly form one set,since each of them is distance
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2 from vertex 1. The other set must therefore consist of 

vertices 31,33 and 35 and their common vertex, x say,clearly
A

lies in S^. Now there must be two arcs of the form (x,i,y)
A

for some ye{31,33,35},and one arc of the form (x,d,y) for

some ye{31,33,35}. But for the first two arcs to exist x

must be one of 25,27 and 29, and for the third to exist x

must be one of 26,28 and 30, a contradiction. //

7.3.11.1:Lemma.Any transitive graph whose singleton-quotient 

is 6.2.4.41 is a 3-covering of the Pappus graph.

6.2.4.41:

Proof.Let G be a transitive graph with this singleton-quotient. 

Then the girth of G is 8 and the diameter is 6. A path from

one vertex in to the other is of the form (i,g,e,h,e,g,i)

if it is to be as short as possible,so that the vertices of

S. have distance 6 from each other and the graph is antipodal.

Consider a vertex, 2 say,in S^. There are four vertices of

distance 3 from vertex 2 in S and so at most four of distancee
4 from vertex 2 in S . The others must have distance 6 from 2.g
Thus the vertices antipodal to vertex 2 lie in S , and theo
antipodal system is a (0,l)-decomposition.The reduced quotient 

corresponding to the closure of the singleton-decomposition 

and the antipodal system of G is easily seen to be

©—©-----©=©------0
and the only transitive graph with this singleton-quotient is 

the Pappus graph by Proposition 7.3.2. //



153

7.3.11.2¡Proposition.There is no transitive graph whose singleton- 

quotient is 6.2.4,41.

Proof.Suppose G is such a graph.Then by the lemma G is a 3-covering 

of the Pappus graph,P.

Let S ={1A}, S, consist of 2-4A, S of 5-10A, S. of 11-16B and C, a ’ b ’ c ' a
S of 2-4B and C, and S. of IB and C. Then 2B and 20 lie in S g ’ i g
and are adjacent to 5B,5C,6B and 6C. Thus 5B,5C,6B,6C lie in

Sg, and similarly so do 7-10B and C. In the same way Sf consists

of 17 and 18A-C and consists of 11-16A. Thus without loss ofn
generality we may construct G so far as follows:



154

15C
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In P, 7 adj 3,11,15. So 7C adj 15A and so on,determining all

the edges between S and S, .e n
Suppose 17A adj 13B. Then <13B,17A,11A,7B,15C,10A> is a 

hexagon,which is a contradiction.Hence 17A adj 13C and so on, 

determining all the edges between S^ and Sf. At this stage we have:
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Without loss of generality 2B adj 5B. Then 2B not adj 6C by 

girth considerations (there would otherwise be a hexagon 

<2B,6C,13B,17C,11C,5B>), and so 2B adj 6B, and 2C is adjacent 

to 5C and 6C. 3C not adj 7B (to avoid the hexagon <3C,7B,11A, 

5C,2C,1C>). So 3C adj 7C and so on,and the rest of the edges 

are determined.So the construction is unique up to isomorphism.
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The graph constructed is not transitive.For suppose it is.

Then the antipodal system is a block system,so that if an 

automorphism y of G takes 1A to 2A, then IB and 1C are taken 

by y to 2B and 2C in some order.Vie consider the images of 

17 and 18A-C under the action of y .  These are the vertices 

whose distance from 2A is 4 and which lie on octagons containing 

2A, that is to say 15B,12B,12C,15C,4B,3C. Now 2B has distance 

2 from 4B, and since y is an automorphism, IB or 1C must 

have distance 2 from one of 17 and 18A-C. But this is not the 

case and we have a contradiction. //

7.3.11,3:Note.The graph constructed above is not even singleton- 

regular. //

7.3.12;Proposition.There is no transitive graph whose singleton- 

quotient is 6.2.4.43,

6.2.4.43;

Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 8 and any 4-arc in G extends to exactly one 

octagon.The graph may be constructed so far without loss of 

generality;
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Since G is transitive,it may be redrawn (in part) without 

loss of generality:

23

Now 23,24 and 25 are each adjacent to two vertices of Sd ,whereas 

51,52 and 53 are each adjacent to two vertices of Further 

the distance between a vertex of and a vertex of is 

greater than 2, Hence.returning to the original diagram,we



159

see that the vertices of may be partitioned into two sets 

A={11,12,15,16,19,20} and B={13,14,17,18,21,22} without loss 

of generality so that if aeA and beB, then d(a,b)>2.

Now there may be no vertex of Sg adjacent to both 11 and 12 

by consideration of the girth of G, so without less of generality 

the distance between vertices 11 and 15 is 2. Considering the 

4-arc (7,3,1,2,5) we see that 12 cannot have distance 2 from 

vertex 15 or 16, so the distance of 12 from say 19 is 2.

Similarly 16 shares a neighbour with one of 19 and 20. Now 

vertex 20 has at least one other neighbour in Sg , say vertex 

x. But x is adjacent to neither 15 nor 16 by consideration of 

the 4-arc (9,4,1,3,7), and similarly x is adjacent to neither 

of 11 and 12 by consideration of (9,4,1,2,5). Thus we have a 

contradiction. I I

7.3.13;Proposition.The only transitive graph whose singleton- 

quotient is 6 . 2 . 4 . is the 3-covering of Tutte’s graph constructed 

by Smith (39).

Proof.Any such graph is easily shown to be a 3-covering of 

Tutte's graph by the method of Example 7,3.1.2. The existence 

and uniqueness of a transitive covering graph is established 

by Smith (39). I I

Proposition 6.2.4 and Propositions 7.3.2-13 give us all 

transitive trivalent graphs whose rank is 9 or less.

7.3.14:Proposition.The only transitive trivalent graphs of 

rank =9 are the following:

Graph Rank,order,arc-transitivity

K.

K3,3
P(5,2)

2 4

3 6

2

3

3 10 3
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Graph Rank,order, arc--trar

P(3,l) 4 6 0

Q3 4 8 2

H 4 14 4

M(5 ) 5 8 0

P 5 18 3

TC 5 28 3

T 5 30 5

P(5,1) 6 10 0

M(5 ) 6 10 0

P( 8,3) 6 16 2

P(10,2) 6 20 2

P(10,3) 6 20 3

T(K4) 7 12 0

M(6) 7 12 0

P(12,5) 7 24 2

P(6,l) 8 12 0

R (see 7.3.2) 8 12 0

P(7,l) 8 14 0

M(7) 8 14 0

T(K3,3) 8 18 0

Graph given in 7.3.8.2 8 102 4

M(8) 9 16 0

P(10,2)a K2 9 40 3

3-covering of T 9 90 5 //

We now consider the remaining generalised graphs constructed 

in 6.2.5.

7.3.15¡Proposition.There is only one t-arc-transitive graph

with rank r5t+8 and singleton-quotient 6.2.5.1
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This graph is constructed as follows:- The vertices correspond 

to the 234 triangles in PG(2,3) and two vertices are adjacent 

whenever the corresponding triangles have one common point and 

their remaining four points are distinct and collinear.The graph 

is primitive with order 234, rank 12 and is 5-arc-transitive, 

Proof. 6,2,5.1 has no non-trivial decomposition of order greater 

than 1. Suppose G is a transitive graph with this singleton- 

quotient and suppose that a class of the singleton-decomposition 

consists of more than one orbit of the stabiliser of vertex 

1. Then it is clear that at least two classes consist of more 

than one orbit and so the rank r>13. Now t£5, so that if rit+8 

then every class consists of a single orbit.Hence by 7.2.3.2 

G is primitive.

There is exactly one primitive trivalent graph of the desired 

order,since there is only one primitive permutation group of 

degree 234 where the stabiliser of one symbol has an orbit of 

length 3, and this stabiliser has only one orbit of length 3 

(Wong (47)).

The construction of this graph is given by Biggs (4,pl25) 

and it may be verified directly that it has the desired singleton 

quotient. //

7.3.16:Proposition.There is no transitive graph whose singleton-

quotient is 6.2.5.2.
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6.2.5.2:

Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 10 and every 4-arc can be extended to exactly

one decagon.We may construct G so far without loss of generality:

10
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Without loss of generality 27 adj 48. But then the 4-arc 

(2,5,11,23,47) can be extended to two decagons,<2,5,11,23,

a contradiction. //

7,3,17:Proposition.The only transitive graph whose singleton- 

quotient is 6.2,5,3 is the double-covering of the Tutte-Coxeter 

graphjTCa K^, which has order 56, rank 10 and is 3-arc-transitive.

Proof.Let G be a transitive graph with this singleton-quotient. 

Then it is easily established using the methods of Example 7.3.1.2 

that G is a double-covering of TC. We consider TC to be labelled 

as in Proposition 7.3.3 and label the vertices of G 1-28A and B 

as in Propositions 7.3.7.2 ,7.3.9.2 and 7,3.11.2. We may say 

that the vertices of sa »Sb»sc»Sd are 1“22A» Now the girth of G 
is 8 so 11-22A are adjacent to 11-22B. Without loss of generality 

11-22A are adjacent to 23-28A and then 23-28A are adjacent to 

23-28B and 23-28B are adjacent to 11-22B in order that G has 

the desired singleton-quotient.So the construction is unique:

1A 2-4A 5-10A 11-22A 11-22B 5-10B 2-4B IB

23-28A 23-28B

There is known to be a 3 -arc-transitive double-covering of 

TC, that is TCaK^ and it is easily shown that this graph has

6.2.5.3:

0- { T>-0 (D- (E)- ©

the desired singleton-quotient //
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7.3.18:Proposition.The only transitive graph whose singleton- 

quotient is 6.2.5.7 is the hexagonal tessellation {6,3}^ ^ which 

has order 32, rank 10 and is 2-arc-transitive.

6.2.5.7:

Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 6 and every 2-arc extends to exactly one hexagon. 

We may construct G so far without loss of generality:

f
20

S.l

In order that (17,5,11) may extend to a hexagon,11 not adj 23, 

and similarly 13 not adj 23, 24 adj neither 12 nor 15, and 25 

adj neither 14 nor 16.

In order that (5,17,7) should not extend to two hexagons,

11 and 13 do not have a common neighbour.Similarly 12 and 15
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do not share a neighbour, and neither do 14 and 16.

Consider the neighbours of vertex 20. We know that 20 not adj

13. Suppose that 20 adj 14. Then so that (2,5,11) extends to

a hexagon, 11 and 12 have a common neighbour in S , which mustS
be 25. By similar arguments 13 and 14 adj 24, and 15 and 16 

adj 23.

Without loss of generality 21 adj 12, and then by girth and 

since 12 and 15 do not have a common neighbour, 21 adj 16, and 

22 adj 13 and 15. So we have:

f
20

S.l

It is easily seen that the graph so constructed is not transitive, 

since if we consider the vertices of distance 5 from vertex 2, 

that is 22,23,24 and 28, we find that each of them has distance 

2 from two of the others,which is not the case for vertices of 

distance 5 from vertex 1. So 20 not adj 14. In exactly the same 

way 20 adj neither 15 nor 16.

Thus 20 adj 12, and it follows that 13 and 14 must have a 

common neighbour in Ŝ ., so without loss of generality 21 adj
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13 and 14, and 15 and 16 adj 22. Now we note that the vertices 

whose distance from vertex 2 is 5 are 21,22,28 and one of S . 

d(21,22)=2 and both d(21,28) and d(22,28) are at least 4.

Hence they must each have distance 2 from the member of Sg
wanted,which must in turn have distance at least 4 from 28.

Thus the vertex in S is 25. Hence 25 adj 13 and 15. Then byg
girth 12 adj 23, and 11 adj 24. Finally considering vertices

of distance 5 from vertex 3, 20,22,27 and a member of S ,thisg
member of S must be 24. Hence 24 not adj 14 (whose distances
from vertex 3 is 2), so 24 adj 16 and23 adj 14. Thus the 

construction is unique.

Now there is known to be a 2-arc-transitive graph on 32 vertices 

and of valency 3, that is the tessellation {6,3} n.(Coxeter 

and Moser (11)). Referring to 6.2.9 we see that any symmetric 

graph on 32 vertices must have singleton-quotient 6.2.4.38,

6.2.5.7 or 6.2.9.2. But 6.2.4.38 and 6.2.9.2 have no transitive 

realisations by 7.3.2, thus the tessellation is a realisation
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of 6.2.5.7. By inspection the rank is 10. //

To summarise the results of these propositions we have:

7.3.19:Proposition.The only t-arc-transitive trivalent graphs 

of rank r with rit+8 not included in 7.3.14 are

i) the primitive trivalent graph on 234 vertices whose 

rank is 12 and which is 5-arc-transitive,

ii) TCa Kj which has order 56, rank 10 and is 3-arc-transitive,

iii) the hexagonal tessellation {6,3}^ ^ which has

order 32, rank 10 and is 2-arc-transitive. //

Finally we consider the remaining generalised graphs which 

appear in 6.2.9.

7.3.20Proposition.The only transitive graph whose singleton-

quotient is 6.2.9.1 is the hexagonal tessellation {6,3},, .o,l
which has order 26, rank 10 and is 1-arc-transitive.

6.2 .9.1:

Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 6 and every 2-arc extends to exactly one hexagon. 

G may be cdnstructed so far without loss of generality:



168

26

By consideration of the girth 14 not adj 24. So that (2,5,14) 

does not extend to two hexagons, 14 not adj 23. Hence 14 adj 

25, 15 adj 23 and 16 adj 24.

Consider the arc (5,14,25). It can only be extended to a 

hexagon via S^. Hence 22 adj 11, and similarly 20 adj 12 and 

21 adj 13.

Suppose that 11 adj 21, from which it follows that 12 adj 22 

and 13 adj 20. Then the arc (2,5,11) does not extend to a 

hexagon.Hence 11 adj 20, 12 adj 21 and 13 adj 22, so that 

the construction is unique:
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Considering 6.2.9, no other graph can be a symmetric trivalent

graph on 26 vertices.But {6,3} is known to be symmetric and3,1
to have the desired order,and hence is the graph we have 

constructed.Its rank is 10 by inspection. //

7.3.21:Proposition.The only transitive graph whose singleton- 

quotient is 6.2.9.4 is the hexagonal tessellation {6,3} *
which has order 38, rank 14 and is 1-arc-transitive.

6 .2 .9 .4 :

Proof.Let G be a transitive graph with this singleton-quotient. 

Then G has girth 6 and every 2-arc extends to exactly one 

hexagon. G may be constructed so far without loss of generality:
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There are 9 vertices whose distance from vertex 1 is 3.

We already have 9 vertices of distance 3 from vertex 2, and

17 is adjacent to a vertex of S^. Hence 17 adj 23, Similarly

18 adj 24, and 19 adj 25.

Consider the arc (5,11,20). If it is to extend to a hexagon 

20 and 27 must have a common neighbour in S^, and similarly 

so must the pairs 21,28 and 22,26.

By consideration of girth 20 not adj 33, 21 not adj 34 and 

22 not adj 35, so that also 27 not adj 33, 28 not adj 34 and 

26 not adj 35,
A

Consider the 2-arcs (17,29,n). Both must extend to a hexagon,
A

one via vertices 28,16 and 8, so that for this arc n=38, and
A

one via vertices j,33 and 23. But 27 not adj 33 so that in this
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case n=36 and j=26. Thus 29 adj 36 and 38, and 26 adj 33. 

Similarly 30 adj 36 and 37, 31 adj 37 and 38, 21 adj 34, and 

28 adj 35. And from above 20 adj 34, 21 adj 35, and 22 adj 33. 

So the construction is unique:

Considering 6.2.9, there can be no other symmetric trivalent 

graph on 38 vertices.But as before {6,3}^  ̂ is known to be 

symmetric and to have the desired order,and hence is the graph 

we have constructed.Its rank is 14 by inspection. //

To summarise our results on symmetric trivalent graphs whose 

order is $40, we have the following proposition:

7.3.22 Proposition .The only symmetric trivalent graphs on £40

vertices are the following:
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Graph Order ,rank,arc-■transitivity

K4 4 2 2

K3,3 6 3 3

% 8 3 2

P(5 ,2) 10 3 3

H 14 4 4

P(8,3) 16 6 2

P 18 5 3

P(10,2) 20 6 2

P(10,3) 20 6 3

P(12,5) 24 7 2

i6»3}3,l 26 10 1

TC 28 5 3

T 30 5 5

{ 6 ’ 3 } 4 , o
32 10 2

{6,3}3,2 38 14 1

P ( 1 0 ,2 ) a K 40 9 3

It is worth noting that the list given above agrees exactly, 

so far as it goes,with the non-exhaustive list prepared by 

Foster (19) to whom my gratitude is due for identifying some 

of the graphs constructed as hexagonal tessellations.

■i- ' *
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APPENDIX 1:A FORTRAN PROGRAM FOR ALGORITHM 6.2.3.

We give a program for the implementation of Algorithm 6.2.3, 

case iii),since this program is the most complex and those for 

the other related algorithms can easily be constructed by simple 

deletions or substitutions.The program was written in extended 

FORTRAN for the University of Manchester Regional Computer 

Centre ICL1906/CDC7600. Non-ANSI FORTRAN and special instructions 

are marked with a Nearly all such involve the use of an

expression as an array subscript,an extension of FORTRAN 

implemented on most modem machines.

* PROGRAM SYMM(INPUT,OUTPUT,TAPE7=INPUT,TAPE2=0UTPUT, 

1DEBUG=0UTPUT)

* IMPLICIT INTEGER(A-Z)

DIMENSION SIZE(30),GRM(30,3),DIST(3,3),GR0(20,20,60) 

DIMENSION CAN(30),NCPM(20),TREE(2500,22),TIP(20)

COMMON GR0,TREE,TREEN0

* LEVEL 2,GR0,TREE,TREEN0

The first step is to read the number of different orders 

for which we wish to construct all strictly feasible generalised 

graphs.In the modified version for Algorithm 6.2.8, we read 

instead the number of different values of SIZE to be investigated.

READ(7,105) NUMBER 

105 FORMAT(12)

DO 400 NREP=1,NUMBER

For each case we must read the order and set the initial values.

STEP=1
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IFLAG=0 

DO 10 1=1,20 

TIP(I)=0 

NCPM(I)=0

DO 10 J=l,20

DO 10 K=l,60 

10 GRO(I,J,K)=0

READ(7,105) ORDER 

DO 25 1=1,2500 

DO 25 J=l,22 

25 TFEE(I,J)=0 

TREEN0=1

Next we set the first member of the first stack. 

is represented by SIZE GRM

1 2 2 2

3 1 0  0

0 0 0 0

GR0(1,1,1)=1

GR0(1,1,2)=2

GR0(1,1,3)=2

GR0(l,l,t+)=2

GRO(l,l,5)=3

GR0(1,1,6)=1

TIP(1)=1

If there are entries in the stack for the current value of 

STEP we move onto the next stage (label 35). If there are none, 

we reduce STEP by 1. If STEP is zero we have constructed every
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strictly feasible generalised graph for the current value of 

ORDER and we move on to its next value,If STEP is not zero we 

again check whether there are any entries in the current stack 

and repeat the procedure.

30 IF(TIP(STEP).NE.O) GO TO 35 

STEP=STEP-1

IF(STEP.EQ.O) GO TO 400 

GO TO 30

Given that the current stack has an entry we now pop the stack 

to give us the current values of SIZE and GRM.

35 DO 50 1=1,ORDER

* SIZE(I)=GR0(STEP,TIP(STEP)',4*I-3)

DO 50 J=l,3

* 50 GRM( I', J ) =GR0 (STEP,TIP(STEP),4*I-3+J )

TIP(STEP)=TIP(STEP)-1

We look for the first vertex which is connected to at least 

one other vertex but which still has neighbours to be determined. 

If we find one we move on to the stage beginning at label 140.

If there is no such vertex then there are two possibilities.

The first is that the generalised graph we are constructing 

has to be disconnected,so we reject it by returning to label 30. 

The second is that we have completed the construction of a so 

far satisfactory generalised graph.We test it thus:- 

i) It must not contain subgraphs

ii).It must be irreducible and it must not be isomorphic 

to any (rooted) generalised graph already constructed.Subroutine

or
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CODE checks these points.

iii) It must satisfy the integrity condition,which is 

tested by subroutine FEAS.

If the generalised graph passes all these tests it is strictly 

feasible and we output GRM/SIZE and other pertinent information 

(this is accomplished as part of FEAS). Anyway having made the 

tests we return to label 30 to look for the next GRM/SIZE in 

the current stack.

K=0

DO 120 1=1,ORDER 

IF(GRM(I,1).EQ.0) GO TO 120 

K=K+1

DO 130 J=2,3

IF(GRM(I,J).EQ.O) GO TO 140 

130 CONTINUE 

120 CONTINUE

IFCK.EQ.ORDER) GO TO 160 

GO TO 30 

160 CONTINUE

DO 560 1=1,ORDER 

IF(SIZECI).NE.I) GO TO 560 

DO 550 J=l,3 

DO 550 K=l,3

DIST(J,K)=GRM(GRM(I,J),K)

DO 550 L=1,3

IF(SIZE(GRM(DIST(J,K),L)).EQ.l) GO TO 30 

IF(SIZE(GRM(DIST(J,K),L)).EQ.2) GO TO 30 

550 CONTINUE

560 CONTINUE
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CALL CODE(GRM,CAN,ORDER)

IF(CAN(l).EQ.O) GO TO 30 

CALL FEAS(GRM,SIZE,ORDER)

GO TO 30

When there is a vertex which is connected to at least one 

other vertex but which still has neighbours to be determined 

we choose the first such,and the purpose of the rest of the 

main program is to store in the stack for the next value of 

STEP all possible GRM/SIZE resulting from the addition of one 

edge incident with this vertex to the generalised graph so far 

constructed.

The vertex in question is relabelled NCP (or "next connection 

point") and the number of zeros in the NCP-th row of GRM is 

labelled NOC (or "number of connections").

140 NCP=I 

N0C=4-J.

NCP0LD=NCPM(STEP)

STEP=STEP+1 

NCPM(STEP)=NCP 

IF(STEP.EQ.21) WRITE(2,290)

290 F0RMAT(1X,16H0VERFL0W IN STEP)

TIP(STEP)=0

NUM=2

IF(NCPOLD.EQ.NCP) NUM=GRM(NCP,2)

The next DO-loop,from 200 to 211 finds all the possible additions 

of one edge which will remove one zero from the NCP-th row of 

GRM. However there are several sorts of repetition to be avoided: 

i) If the stack for STEP-1 results from the addition of
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edges beginning at the same vertex NCP then we need not consider 

the possibility of edges to vertices with lower labels than that 

to which the edge was joined at the previous step.This is dealt 

with by NCPM(STEP) and NCPOLD;

ii) We only wish to consider one vertex whose size is as 

yet undetermined.This is dealt with by IFLAG;

iii) If two vertices have identical adjacencies we need 

only choose one of them.This is dealt with by the DO-loop "DO 

215".

200 DO 211 I=NUM,ORDER

IF(IFLAG.EQ.l) GO TO 212

If the vertex to which we are considering joining NCP has 

undetermined size we give it its three possible sizes,SIZE(NCP) 

divided by 1,2 and 3 in turn.If any of these is not an integer 

it is rejected.

KK=1

IF(SIZEQ).NE.O) GO TO 505

IFLAG=1

KK=3

505 DO 210 JJ=1,KK

IF(KK.EQ.l) GO TO 500

IF(SIZE(NCP)/JJ*JJ.NE.,SIZE(NCP)) GO TO 210 

SIZE(I)=SIZE(NCP)/JJ

500 CONTINUE

As implied above we cannot join NCP to any vertex whose size 

is not compatible with that of NCP, nor to any vertex which 

does not have enough zeros in the corresponding row of GRM.
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IF(SIZE(NCP)/SIZE(I)*SIZE(I).NE.SIZE(NCP)) GO TO 210 

MULT=1 .

DO 220 J=l,3 

MULT=MULT*GRM(I,J)

IF(MULT.NE.O) GO TO 220 

EDGES=(4-J)*SIZE(I)

GO TO 230 

220 CONTINUE 

GO TO 210

230 IF(EDGES.LT.SIZE(NCP)) GO TO 210

The next DO-loop excludes the consideration of vertices whose 

adjacencies are identical to those of a previous choice.

M=I-1

DO 245 L=1,M

IF(L.EQ.NCP) GO TO 245

IF(SIZE(L),NE.SIZE(I)) GO TO 245

IDIFF=0

DO 255 K=l,3

IDIFF=IDIFF+IABS(GRM(I,K)-GRM(L,K))

255 CONTINUE

IF(IDIFF.EQ.O) GO TO 210 

245 CONTINUE

We exclude simple forbidden subgraphs,that is loops on vertices 

of size 1 or 3 and the subgraphs
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IF(SIZE(NCP).EQ.l) GO TO 251 

IF(SIZE(NCP).NE.3) GO TO 247 

251 IF(I.EQ.NCP) GO TO 210

IF(SIZE(NCP).NE.3) GO TO 247 

IF(SIZE(I).NE.l) GO TO 247 

DO 249 L=l,2

IF(GRM(NCP,L).EQ.O) GO TO 249

* IF(SIZE(GRM(NCP,L)).EQ.l) GO TO 210 

249 CONTINUE

247 IF(SIZE(NCP).NE.6) GO TO 253 

IF(SIZE(I).NE.2) GO TO 253 

DO 257 L=l,2

IF(GRM(NCP,L).EQ.O) GO TO 257

* IF(SIZE(GRM(NCP,L)).EQ.2) GO TO 210 

257 CONTINUE

253 CONTINUE

Having found that it is possible to add an edge from NCP to 

I we do so and store the resulting GRM/SIZE in the stack for 

the current value of STEP.

TIP(STEP)=TIP(STEP)+l 

DO 235 M=l,ORDER

* GR0(STEP,TIP(STEP),4*M-3)=SIZE(M)

DO 235 L=l,3

* GRO(STEP,TIP(STEP),4*M-3+L)=GRM(M,L)

235 CONTINUE

K=3

IF(GRM(NCP,2).EQ.O) K=2

* GROC STEP,TIP(STEP),4*NCP-3+K)=I 

NN=J+SIZE(NCP)/SIZE(I)-1
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DO 240 LL=J,NN

* GRO(STEP,TIP(STEP),4*I-3+LL)=NCP 

240 CONTINUE

IF(TIP(STEP).EQ.21) WRITE(2,280)

280 FORMAT(IX,17H0VERFL0W IN STACK)

210 CONTINUE

IF(IFLAG.EQ.l) SIZE(I)=0

211 CONTINUE

212 CONTINUE 

IFLAG=0

If N0C=2 we must consider the addition of an edge which removes 

both zeros from the NCP-th row of GRM, that is an edge joining 

NCP to a vertex whose size is two-thirds or twice that of NCP. 

This is the purpose of the DO-loop "DO 311" which is generally 

similar to "DO 211".

IF(NOC.EQ.l) GO TO 30 

300 DO 311 1=2,ORDER

IF(IFLAG.EQ.l) GO TO 312 

KK=1

IF(SIZE(I).NE.O) GO TO 605

IFLAG=1

KK=3

605 DO 310 JJ=1,KK,2

IF(KK.EQ.l) GO TO 600

IF(SIZE(NCP)*2/JJ*JJ.NE.SIZE(NCP)*2) GO TO 310 

SIZE(I)=SIZE(NCP)*2/JJ 

600 CONTINUE

IF(SIZE(NCP)*2/SIZE(I)*SIZE(I).NE.SIZE(NCP)*2) GO TO 310 

IF(SIZE(NCP)/SIZE(I)*SIZE(I).EQ.SIZE(NCP)) GO TO 310
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MULT=1

DO 320 J=l,3 

MULT=MULT*GRM(I,J)

IF(MULT.NE.O) GO TO 320 

EDGES=(4-J)*SIZE(I)

GO TO 330 

320 CONTINUE 

GO TO 310

330 IF(EDGES.LT.SIZE(NCP)*2) GO TO 310 

M=I-1

DO 345 L=1,M

IF(L.EQ.NCP) GO TO 345

IF(SIZE(L).NE.SIZE(I)) GO TO 345

IDIFF=0

DO 355 K=l,3

IDIFF=IDIFF+IABS(GRM(I,K)-GRM(L,K)) 

355 CONTINUE

IF(IDIFF.EQ.O) GO TO 310 

345 CONTINUE

The only subgraph we exclude here is

IF(SIZE(NCP).NE.3) GO TO 347 

IF(SIZE(I).EQ.2) GO TO 310 

347 TIP(STEP)=TIP(STEP)+1 

DO 335 M=l,ORDER

GRO(STEP,TIP(STEP),4*M-3)=SIZE(M)

DO 335 L=l,3

GRO(STEP,TIP(STEP),4*M-3+L)=GRM(M,L) 

335 CONTINUE

GR0(STEP,TIP(STEP),4*NCP-1)=I
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* GR0(STEP,TIP(STEP),4*NCP)=I 

NN=J+2*SIZE(NCP)/SIZE(I)-l

■ DO 340 LL=J,NN

* GRO(STEP,TIP(STEP),4*I-3+LL)=NCP 

340 CONTINUE

IF(TIP(STEP).EQ.21) WRITE(2,280)

310 CONTINUE

IF(IFLAG.EQ.l) SIZE(I)=0

311 CONTINUE

312 CONTINUE 

IFLAG=0 

GO TO 30

400 CONTINUE 

STOP 

END

Once we have constructed a simply feasible generalised graph 

we much check whether it is irreducible with respect to vertex 

1, and whether a rooted generalised graph isomorphic to the 

present one has already been constructed.These tests are accomplished 

by subroutine CODE.

SUBROUTINE CODE(GRM,CAN,ORDER)

IMPLICIT INTEGER(A-Z)

DIMENSION GRM(30,3),PC(30),IN(30),NC(30),CAN(30)

DIMENSION GRO(20,20,60),TREE(2500,22),C0M(32)

COMMON GRO,TREE,TREENO

* LEVEL 2,GRO,TREE,TREENO

The first stage is to find the singleton-decomposition of 

the generalised graph constructed,with its canonical labelling,

I
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as in Proposition 2.4.3.2. The function COMP arranges three 

integers between 0 and 99 in ascending order and compacts them 

into a single 6-digit integer.

PC(1)=1

DO 10 I=2,ORDER 

10 PC(I)=2 

90 DO 20 J=l,ORDER

* 20 IN(J)=C0MP(PC(GRM(J,1)),PC(GRM(J,2)),PC(GRM(J,3)))

1+PC(J)*1000000 

C0UNT=0 

30 LEAST=IN(1)

DO 40 1=2,ORDER

40 IF(IN(I).LT.LEAST) LEAST=IN(I)

IF(LEAST.EQ.100000000) GO TO 50 

C0UNT=C0UNT+1 

DO 60 1=1,ORDER 

IF(IN(I),NE.LEAST) GO TO 60 

NC(I)=C0UNT 

IN(I)>?100000000 

60 CONTINUE 

GO TO 30 

50 IDIFF=0

DO 80 1=1,ORDER 

IDIFF=IDIFF+IABS(NC(I)-PC(I))

80 PC(I)=NC(I)

IF(IDIFF'.NE.O) GO TO 90

If the constructed generalised graph is not irreducible we 

reject it.
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IF(COUNT.EQ.ORDER) GO TO 100 

110 DO 150 1*1,ORDER 

150 CAN(I)=0 

RETURN

If the generalised graph is irreducible,the algorithm has 

found a canonical labelling of its vertices and,putting the 

entries of each row in ascending order,a canonical form of 

GRM, which we call CAN, representing each row by a single compacted 

integer.We compare CAN with the entries on a binary tree to 

check whether or not the current generalised graph is isomorphic 

as a rooted graph to any earlier construction.If so it is rejected. 

If not it is stored on the tree and we return to the main program. 

It should be noted that this stage is so written that the tree 

can overflow without affecting the correct execution of the 

rest of the program.

100 DO 120 J=l,ORDER

* 120 CAN(PC(J))=COMP(PC(GRM(J,l)),PC(GRM(J,2)),PC(GRM(J,3))) 

NP0INT=1 

WIDTH=ORDE R+ 2 

200 P0INT=NP0INT

DO 210 1=1»WIDTH 

210 C0M(I)=TREE(POINT,I)

DO 220 1=1,ORDER 

IF(CAN(I)-COM(I)) 230,220,240 

220 CONTINUE

DO 250 1=1,ORDER 

250 CAN(I)=0

RETURN
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230 NP0INT=C0M(ORDER+2)

IF(NPOINT.NE.O) GO TO 200 

IF(TREENO.GT.2500) GO TO 280 

TREE(POINT,ORDER+2)=TREEN0 

GO TO 260

240 NP0INT=C0M(0RDER+1)

IF(NPOINT.NE.O) GO TO 200 

IF(TREENO.GT,2500) GO TO 280 

TREE ( POINT',’ ORDER+1) =TREENO 

260 DO 270 1=1,ORDER 

270 TREE(TREENO,I)=CAN(I)

TREE(TREENO,ORDER+1)=0 

TREE(TREENO,ORDER+2)=0 

280 TREEN0=TREEN0+1

IF(TREEN0.EQ.250O) WRITE(2,135) 

135 FORMAT(IX,16H0VERFL0W IN TREE) 

RETURN .

END

Subroutine FEAS decides whether the generalised graph we have 

constructed satisfies the integrity condition.If so the subroutine 

outputs SIZE,GRM, the adjacency matrix,its eigenvalues,and the 

multiplicities of the eigenvalues in any singleton-regular graph 

of which we have the singleton-quotient (where determinable).

SUBROUTINE FEAS(GRM,SIZE,ORDER)

INTEGER INTGER(30),ORDER,SIZE(30),GRM(30,3),B(30,30),T0T 

REAL A(30,30),RR(30),RI(30),VR(30,30),VI(30,30)

REAL SUM(30),RM(30),SM(30)

DO 10 J=l,ORDER 

DO 10 K=l,ORDER

■ i *
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10 B(J,K)=0

We construct the adjacency matrix of the generalised graph.

DO 15 J=l,ORDER 

DO 15 L=l,3

* 15 B(J,GRM(J,L))=B(J,GRM(J,L))+1

The order of any graph of which we have constructed the singleton- 

quotient is called TOT.

T0T=0

DO 19 1=1.ORDER

19 T0T=T0T+SIZE(I)

To find the eigenvalues and eigenvectors of the generalised 

graph we use a Nottingham Algorithms Group (NAG) routine.This 

program, F02AGF, reduces the adjacency matrix to upper triangular 

form by means of elementary row and column operations,and finds 

simple eigenvalues (we are not concerned with multiple eigenvalues) 

and the entries of the corresponding eigenvectors correct to 

approximately 9 decimal places.The eigenvalues are held in RR 

and the eigenvectors are the columns of VR.

DO 20 1=1,ORDER 

DO 20 J=l,ORDER

20 A(I,J)=B(I,J)

IFAIL=1

IA=30

IVR=30

IVI=30

CALL F02AGF(A,IA,ORDER,RR,RI,VR,IVR,VI,IVI,INTGER,IFAIL)
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WRITE(2,99996)
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99996 FORMAT(IX,23HERROR IN F02AGF IFAIL=1)

DO 24 1=1,ORDER

WRITE(2,99987) (B(I,J),J=1,ORDER)

24 CONTINUE 

GO TO 500

Finally we test the eigenvectors for the integrity condition.

If they fail we reject the generalised graph constructed.Otherwise 

we output the relevant information.

25 DO 40 J=l,ORDER 

SUM(J)=0

DO 30 1=1,ORDER

* 30 SUM(J)=SUM(J)+SIZE(I)*VR(I,J)*VR(I,J)

* 40 RM(J)=VR(1,J)*VR(1,J)*T0T/SUM(J)

NN=ORDER-1 

DO 41 1=1,NN 

KK=I+1

DO 41 J=KK,ORDER *•

IF(ABS(RR(I)-RR(J)).5T.lE-6) GO TO 41 

RM(I)=0 

RM(J)=0 

41 CONTINUE 

DIFF=0

DO 50 J=l,ORDER 

TM=RM(J)-FLOAT(INT(RM(J)))

IFCTM.EQ.O.) GO TO 43 

SM(J)=FL0AT(INT(RM(J)+0.5))

GO TO 44
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43 SM(J)=RM(J)
44 DIFF=DIFF+ABS(RM(J)-SM(J))

IF(DIFF.GT.lE-3) GO TO 500
50 CONTINUE

WRITEC2.110) (SIZE(I),1=1,ORDER)
DO 180 J=l,3

180 W RITE(2,1 1 0 )  ( G R M (K ,J) ,K = 1 ,O R D E R )

WRITE(2,110) (I,1=1,ORDER)
110 FORMAT(IX,4012)

WRITE(2,190)
190 F0RMAT(1X,//)

DO 60 1=1,ORDER
WRITE(2,99987) (B(I,J),J=1,0RDER)

60 CONTINUE 
99987 FO R M A T (IX,3014)

WRITE(2,99990) TOT
99990 FORMAT(IX,14H0RDER OF GRAPH,16)

W R IT E (2 ,99995)

99995 FORMAT(IX,11HEIGENVALUES)
W R IT E (2 ,99994) ( R R ( I ) , 1 = 1 , ORDER)

99994 FORMAT(IX,12F10.6)
WRITE(2,99989)

99989 F0RMAT(1X,14HMULTIPLICITIES)
WRITE(2,99994) (RM(J),J=1,ORDER)
W RITE(2,1 9 0 )

500 RETURN 
END

Function COMP is used in subroutine CODE to order and compact 
three integers between 0 and 99.
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INTEGER FUNCTION C O M P ( I X , I Y , I Z )  
L = IX

M=IY

IU = I Z

I F ( I Y . G E . L )  GO TO 10

L = IY

M=IX

10 I F ( I Z . G E i M )  GO TO 20

IU=M

M=IZ

I F ( L . L E . M )  GO TO 20 
K=M

M=L

L=K

20 C0MP=L*10000+M*100+IU  
RETURN

END
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APPENDIX 2:THE UNIQUENESS OF THE (3.12)-CAGE

Certain trivalent cages of even girth g achieve the minimum 

possible order,that is 2(2®^-l). It is well known (see for 

example (4,pl59)) that this can only occur if g=4,6,8 or 12.

The existence and uniqueness of the (3,4)-,(3,6)- and (3,8)- 

cages with this property is easily settled (42), and the existence 

of a (3,12)-cage on 126 vertices was demonstrated by Benson (2). 

Benson’s graph was shown to have the interesting property of 

being locally 7-arc-transitive but not vertex-transitive by 

Bouwer and Djokovic (7). However the uniqueness of the (3,12)- 

cage does not appear to have been established.We set out to 

find all the (3,12)-cages by an extension of the method normally 

used for the other cases.

Example.There is a unique (3,6)-cage on 14 vertices.

Proof.If there is a (3,6)-cage on 14 vertices it must consist 

of two disjoint edge-subgraphs.firstly a spanning tree

2 3

and secondly a divalent graph on vertices 1 to 8.

Vertex 1 is not adjacent to 2,7 or 8 by consideration of the 

girth,and it is clear that an edge from 1 to 3 would be equivalent 

to an edge from 1 to 4, from 1 to 5 or from 1 to 6. So without
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loss of generality 1 adj 3. Now vertex 3 is adjacent to none

of 2,4,5,6 by girth so without loss of generality 3 adj 7. Similarly

7 adj 5, 5 adj 2, 2 adj 4, 4 adj 8, 8 adj 6, and 6 adj 1.

Now any circuit of length less than 6 must involve at least 

one of the edges of the divalent edge-subgraph,and it is clear 

that we would have to join two vertices whose distance apart is 

less than 5 if there is to be such a circuit.Since we have only 

joined vertices whose distance apart is 5, the graph constructed 

is a (3,6)-cage,and the construction is clearly unique. //

The construction of the (3,8)-cage is equally straightforward, 

but for g>8 we find that it is not always possible to choose 

just one vertex without loss of generality.Consider the tree 

given below for a (3,12)-cage on 126 vertices.Without loss of 

generality 1 adj 33, 33 adj 17, 17 adj 49, 49 adj 9, 9 adj 41,

41 adj 25, and 25 adj 57. However,at this stage we must make 

a choice,for it is clear that while 57 may be adjacent to 3,

4,5,6,7,. or 8, an edge joining 57 and 3 is not equivalent to 

an edge joining 57 and 5.
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The spanning tree of a (3,12)-cage:
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Thus if we wish to find all (3,12)-eages we must construct 

a back-tracking algorithm to pursue all non-isomorphic choices 

of vertex.A flow-chart for such an algorithm follows:

Stop
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In order to locate vertices whose distance from VERTEX(STEP) 

is 11 we construct a 64x64 matrix DIST giving the distance of 

every endpoint of the spanning tree from every other after the 

edges so far of the divalent graph have been added.

We decide that two choices,say x and y, are not distinct if 

the following occurs:-There is no endpoint z of the spanning 

tree such that

i) z is incident with an edge of the divalent graph so 

far constructed

and ii) d(x,z)*d(x,y), where the distances are measured within 

the spanning tree only,that is before any edges of the divalent 

graph are added.

Thus in the case of the (3,12)-cage when we wish to add an 

edge incident with 57, the distinct choices in the range 1 to 8 

may be taken to be 1,2,3 and 5.

The program used was,as in Appendix 1, written in extended 

FORTRAN for the UMRCC 1906/7600.

* PROGRAM CAGE(INPUT,OUTPUT,TAPE7=INPUT,TAPE2=0UTPUT,DEBUG 

1=0UTPUT)

* IMPLICIT INTEGER(A-Z)

DIMENSION 0DIST(64,64),DIST(64,64),VERTEX(64)

DIMENSION ALTVER(64),CH0ICE(64,16),TIP(64)

We begin by constructing ODIST, the original distances of the 

endpoints of the tree from one another,and setting the initial 

values of the other variables.

100 DO 150 1=1,64 

K=I+1

DO 145 J=K,64
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120 IF((I-1)/2**N.NE.(J-1)/2**N) GO TO 110 

N=N-1 

GO TO 120

110 0DIST(I,J)=2*N+2

IF(N.EQ.5) 0DIST(I,J)=11 

ODIST(J,I)=ODIST(I,J)

D I S T ( I , J ) = O D I S T ( I , J )

145 DIST(J,I)=ODIST(J,I)

150 CONTINUE

DO 130 1=1,64 

0DIST(I,I)=0 

130 DIST(I,I)=0 

STEP=1 

VERTEX(1)=1 

DO 160 1=1,64 

DO 160 J=l,16 

160 CHOICE(I,J)=0 

FLAG=0

The next section finds the distinct choices of vertex to which 

VERTEX(STEP) may be joined.lt is necessary

i) to find the vertices whose distance from VERTEX(STEP)

is 11,

ii) to check that each such vertex is not already adjacent 

to two other endpoints of the spanning tree

and iii) to check that each such vertex is not equivalent 

as a choice to one already chosen.

200 DO 210 J=l,64

* IF(DIST(VERTEX(STEP),J).NE.ll) GO TO 210

N=5

4 - ‘
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DO 215 L=l,64 

0NES=0

IF(DIST(J,L).EQ.l) ONES=ONES+l 

IF(ONES.EQ.2) GO TO 210 

215 CONTINUE

IF(TIP(STEP).EQ.O) GO TO 260 

N=5

* 240 IDIV=(CH0ICE(STEP,TIP(STEP))-1)/2**N

JDIV=(J-1)/2**N

IF(IDIV.NE.JDIV) GO TO 230

N=N-1

GO TO 240

230 PAR1=IDIV*2**N+1 

PAR2=(JDIV+1)*2**N 

DO 250 11=1,64

IF(VERTEX(II).EQ.O) GO TO 210 

IF(VERTEX(II).LT.PAR1) GO TO 250 

IF(VERTEX(II).GT.PAR2) GO TO 250 

GO TO 260 

250 CONTINUE

260 TIP(STEP)=TIP(STEP)+1

* CHOICE(STEP,TIP(STEP))=J 

210 CONTINUE

If we are currently starting a new circuit at vertex a, say, 

and there are only two distinct choices, b and c say»available, 

then time can be saved by eliminating one of the choices.For 

the second and last of the vertices of a circuit can only be 

equivalent when STEP=VERTEX(STEP)=1 and here there is only one 

distinct choice of second vertex.Thus a circuit whose second

4
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vertex is b must return to a via a vertex equivalent to c and 

vice versa.

IF(ALTVER(STEP).EQ.O) GO TO 300 

IF(TIP(STEP).NE.2) GO TO 300 

CH0ICE(STEP,2)=O 

TIP(STEP)=1

If there are no choices in the current stack we must step 

backwards.If STEP becomes 1 we have considered all the possibilities 

and the program stops.Otherwise we must enquire again whether 

the current stack contains any choices.

300 IF(TIP(STEP).NE.0) GO TO 600 

320 VERTEX(STEP)=0 

ALTVER(STEP)=0 

STEP=STEP-1 

FLAG=1

IF(STEP.EQ.l) STOP 

GO TO 300

When the current stack is not empty we pop the stack for the 

next vertex and increase STEP by 1. If STEP is 6*+ we have constructed 

a (3,12)-cage and we output VERTEX and ALTVER, from which the 

divalent edge-subgraph is easily constructed,and then step backwards. 

Otherwise we carry on to the next section.

* 600 VERTEX(STEP+1)=CH0ICE(STEP,TIP(STEP))

* CH0ICE(STEP,TIP(STEP))=0 

TIP(STEP)=TIP(STEP)-l 

STEP=STEP+1

IF(STEP.NE.64) GO TO 500
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W RITEC2.610) ( V E R T E X ( K ) ,K = 1 ,6 4 )

610 FORMAT(IX,19H12-CAGE VERTEX LIST,/,IX,6412)

W R IT E (2 ,6 2 0 ) (A L T V E R ( K ),K = 1 ,6 4 )

620 FORMAT(IX,17HCIRCUIT CLOSED AT,/,IX,6412,//)

GO TO 320

In the next stage we must construct DIST for the current value 

of STEP. If we have not stepped backwards since DIST was last 

constructed (indicated by FLAG=0) we may construct the new DIST 

simply from its previous value.If however we have stepped backwards 

(when FLAG=1) we must construct DIST from scratch»beginning with 

ODIST and adding the edges indicated by the vertices held in 

VERTEX and ALTVER, from 1 to STEP.

500 S=STEP-1

IF(FLAG.EQ.O) GO TO 510 
DO 530 1=1,64 

DO 530 J=l,64 

530 DIST(I,J)=0DIST(I,J)

DO 540 K=2,S 

U=VERTEX(K-1)

V=VERTEX(K)

IF(ALTVER(K).NE.O) V=ALTVER(K)

DO 540 1=1,63 

11=1+1
DO 535 J=II,64

DIST(I,J)=MIN0(DIST(I,J),DIST(I,U)+DIST(V,J)+1,

1DIST(I,V)+DIST(U,J)+l)

535 DIST(J,I)=DIST(I,J)

540 CONTINUE

FLAG=0



510 DO 520 1=1,63 

11=1+1

200

DO 525 J=II,64

* DIST(I,J)=MIN0(DIST(I,J),DIST(I,VERTEX(STEP-1))

1+DIST(VERTEX(STEP),J)+1,DIST(I,VERTEX(STEP))

2+DIST(VERTEX(STEP-1),J)+1)

525 DIST(J,I)=DIST(I,J)

520 CONTINUE

Now it is necessary to decide whether VERTEX(STEP) completes 

a circuit and if so which is the next "free" vertex from which 

we can start the next.Once this has been done we return to 200,

550 DO 560 C=1,S

IF(VERTEX(C).EQ.VERTEX(STEP)) GO TO 570 

560 CONTINUE 

GO TO 200

570 ALTVER(STEP)=VERTEX(STEP)

590 IF(VERTEX(STEP).EQ.ÊH) VERTEX(STEP)=0 

VERTEX(STEP)=VERTEX(STEP)+l 

DO 580 J=1,S

IF(VERTEX(J).EQ.VERTEX(STEP)) GO TO 590 

580 CONTINUE 

GO TO 200 

END

When the program is run it generates twelve divalent edge- 

subgraphs ,each consisting of four 16-circuits.The twelve 

corresponding cages are easily seen to be isomorphic so we 

have the following proposition:

Proposition.There is exactly one (3,12)-cage on 126 vertices. ff

t
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For one of the divalent graphs generated the four circuits 

are:

<1,33,17,i+9,9, hi, 25,57,3,37,19,53,11,45,27,61>

<2,43,29,59,12,35,21,51,4,47,31,63,10,39,23,55>

<3,36,26,56,13,48,18,60,7,40,28,52,15,44,20,64>

<6,46,24,58,16,34,32,54,8,42,22,62,14,38,30,50> .
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