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Abstract

Multivariate meta-analysis methods combine effect estimates for multiple correlated

outcomes (such as systolic and diastolic blood pressure) from independent studies,

utilising their between-study and within-study correlations. In contrast, a univariate

meta-analysis pools effect estimates for each outcome independently. By using the

multivariate over the univariate approach, there is a potential gain in information to-

ward summary meta-analysis results, quantified by the Borrowing of Strength (BoS)

statistic, a percentage reduction in the variance for the summary effect between the

two approaches. This thesis examines BoS and multivariate meta-analysis applications

in detail.

Firstly, multivariate meta-analysis is applied to an individual participant data meta-

analysis examining the effect of diet and exercise interventions during pregnancy. This

shows results from the univariate and multivariate meta-analyses are similar. However,

a review of 43 Cochrane reviews concludes that although results between the univariate

and multivariate are often similar, a few multivariate meta-analyses do give important

differences to results from univariate meta-analyses, and these are shown to have a

larger magnitude of BoS.

This motivates research to identify predictors of BoS and to develop a model to pre-

dict BoS (in advance of analysis) to flag when researchers should consider multivariate

meta-analysis. Additionally, an interactive tool is developed to investigate the relation-

ship between the various characteristics and the magnitude of BoS. The magnitude of

BoS is shown mathematically to be approximately bounded by the percentage of miss-

ing data for the outcome of interest.

A novel application of bivariate meta-analysis is then proposed for trials with con-

tinuous outcomes analysed with final score or ANCOVA models, with examination in
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real examples and a simulation study.

In conclusion, multivariate meta-analysis may provide important differences to univari-

ate meta-analysis when BoS is large, and so researchers should consider the approach

when BoS is expected to be large.
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Chapter 1

Introduction

1.1 Overview

Evidence-based medicine is an approach to practising medicine that combines two com-

ponents; individual clinical expertise and external evidence (Sackett 1997). With the

quantity of published evidence ever growing, it is impossible for doctors to evaluate

all of the available evidence. The aim of evidence-based medicine is to make decisions

based on the best currently available evidence (Masic et al. 2008). Evidence-based

medicine requires a clear clinical question, proposed using individual clinical expertise,

followed by a comprehensive systematic search of the literature and evaluation of the

external evidence (Rosenberg & Donald 1995). The findings from the evaluation of the

external evidence need to be implemented using clinical expertise. This requires results

from medical research studies to be identified and summarised, to quantify important

measures such as treatment effects, that conclude whether a treatment is effective or

not. This process usually requires the results from the multiple studies to be combined,

in a so-called meta-analysis.

This thesis evaluates novel ‘multivariate meta-analysis’ methods, which allow mul-

tiple treatment effects to be obtained for multiple outcomes, so that evidence-based

medical decisions can be made on a more complete set of evidence. In particular, this

thesis evaluates if and when multivariate meta-analyses are actually needed, and the

statistical benefits of the approach. In this chapter, the foundations and principles of

1



meta-analysis are introduced, and the rationale for subsequent chapters then described.

1.2 Systematic reviews

A systematic review is the process by which the available external evidence is collated

and evaluated (Cook et al. 1997, Akobeng 2005). It can be used to review medical

research papers on a specific topic to answer a pre-specified clinical question. It is a

formal process that involves searches of all available literature, using a predefined search

strategy and eligibility criteria, described in the systematic review’s protocol, which

should also be published (Moher et al. 2015). The aim of the systematic review is to

capture all available literature to answer the clinical question. Using systematic search

strategies, bias (from the decision of which papers to include) is minimised (Mulrow

1994). Systematic reviews can identify areas with a lack of evidence which can inform

future research (Egger et al. 2008).

1.2.1 Cochrane

The Cochrane library contains the Cochrane Database of Systematic Reviews made

up of Cochrane reviews and protocols (Higgins & Green 2008, Cochrane Collaboration

UK n.d., Egger et al. 2008). A Cochrane review is a systematic review that has been

undertaken by a Cochrane Review Group. Cochrane is an international organisation

that aims to provide accurate credible evidence based information to help support

decision making in the medical field.

1.2.2 Meta-analysis

The term ‘meta’ is Greek for ‘after’, ‘above’, or ‘transcending’. Meta-analysis is a

statistical method that combines results from multiple independent studies in order

to address the research question (Glass 1976, Borenstein et al. 2009). The multiple

independent studies must be relevant to the research question proposed in the meta-

analysis. For example, if the aim is to summarise the effect of a treatment, then the
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studies must have evaluated the treatment’s effect.

Meta-analysis is important in order to increase the power and improve the precision of

an answer to a research question (Higgins & Green 2008). Meta-analysis can be used to

draw conclusions from studies that provide contradictory results. While undertaking

a meta-analysis, there needs to be some caution around combining studies that are at

high risk of bias or studies that are clinically diverse, such that summary results may

not be meaningful or reliable (Higgins & Green 2008).

1.3 Univariate meta-analysis

Univariate meta-analysis synthesises a singular summary effect estimate from multiple

independent studies with one outcome, such as a treatment effect, for one particular

outcome. For a univariate meta-analysis, a decision regarding the assumption for

the effect estimates across all studies is required that determines which approach is

used, a fixed-effect meta-analysis or a random-effects meta-analysis (Riley et al. 2011,

Borenstein et al. 2009, Higgins & Green 2008). The details for both approaches are

provided below with examples.

1.3.1 Univariate fixed-effect meta-analysis

A fixed-effect meta-analysis assumes that all the studies in the meta-analysis share a

common true effect size (Riley et al. 2011, Borenstein et al. 2009, Higgins & Green

2008). Therefore, any variation observed in the effect sizes is only due to random

sampling errors. Mathematically this is expressed as (Borenstein et al. 2009):

Yi = θ + ei (1.1)

where θ is the true treatment effect for all studies, ei is the sampling error in study i

and Yi is the observed value in study i.
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The univariate fixed-effect meta-analysis can be modelled using a normal distribu-

tion with mean θ and variance s2i , the within study variance (Kulinskaya et al. 2008,

van Houwelingen et al. 2002).

Yi ∼ N(θ, s2i ) (1.2)

The studies included in a fixed-effect meta-analysis are assigned a weight which is

utilised during the modelling process (Borenstein et al. 2009). The magnitude of the

weight for a study is dependent upon the magnitude of the precision of the treatment

effect. The magnitude of the precision of the treatment effect for a study is determined

by the sample size and the design of the study. The weight for the inverse-variance

method is calculated using (Higgins & Green 2008, Borenstein et al. 2009):

Wi =
1

s2i
(1.3)

where s2i is the within study variance for study i, that is the variance of the effect es-

timate in study i. The relationship between the weight and the within study variance

can be described as the greater the within study variance, the smaller the weight as-

signed to the study. So generally larger studies have greater weight toward the pooled

(summary) effect estimate from the meta-analysis.

Using the study weights, the summary effect estimate from all the studies can be

calculated using:

θ̂ =

n∑
i=1

WiYi

n∑
i=1

Wi

(1.4)

The standard error of the summary effect estimate is calculated as:

s.e.(θ̂) =

√√√√√ 1
n∑
i=1

Wi

(1.5)

which is the square root of the reciprocal of the summation over all n studies of the

study weights, Equation (1.3).
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The 95% confidence interval for the summary effect for the fixed-effect meta-analysis

can be calculated as follows:

CIθ̂ = θ̂ ± 1.96× s.e.(θ̂) (1.6)

where s.e.(θ̂) is the standard error of the summary effect, Equation (1.5), and θ̂ is the

summary effect estimate, Equation (1.4).

Forest plots

The results from a univariate meta-analysis are displayed in graphical form using for-

est plots. In a forest plot, the results (effect estimate and confidence interval) from

each individual study are visually displayed using circles (effect estimate) and a line

(confidence interval). The weights for each study can be displayed using a square, the

size of the square represents the magnitude of the weight for that particular study.

The summary effect estimate and respective confidence interval is displayed using a

diamond (found at the bottom of the forest plot), where the centre of the diamond

represents the summary effect estimate and the width of the diamond represents the

summary confidence interval. Statistical packages, like metan (Bradburn et al. 1999,

Harris et al. 2008) and metaan (Kontopantelis & Reeves 2010) in Stata, will produce

forest plots upon request. In the examples following, the results are presented in forest

plots.

1.3.2 Continuous outcome example - Ten hypertension trials

A meta-analysis of 10 randomised control trials investigated the use of an anti-hypertensive

treatment to lower blood pressure (Riley et al. 2013, Wang et al. 2005). The randomised

control trials measured the systolic blood pressure, a continuous outcome, at baseline

and at follow-up. The treatment effect can be estimated in each study using three

different model approaches: a change score model, a final score model or an analysis
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of covariance (ANCOVA) model. The details for each model are now provided.

Change score model

The change score models the difference between the follow-up measurement and the

baseline measurement. The change score model for the treatment effect for an individ-

ual trial i can be written as:

yFij − yBij = φi + θCixij + eij eij ∼ N(0, σ2
i ) (1.7)

where F represents the final score, B the baseline and C the change score. The follow-

up and baseline values are yFij and yBij , respectively for participant j in study i and

xij is the indicator variable for the treatment/control group (where 0 is the control

group and 1 is the treatment group) a participant belongs to. The residual error, eij,

is assumed to be normally distributed with a residual variance, σ2
i . The intercept, φi,

represents the control group’s mean change score and θCi is the change score model’s

treatment effect in study i (the measure of interest).

Final score model

The final score models the follow-up measurements only and does not include the

baseline measurements. The final score model can be written as:

yFij = φi + θFixij + eij eij ∼ N(0, σ2
i ) (1.8)

where F represents the final score and yFij are the follow-up values for participant j

in study i. The treatment effect from the final score model for study i is θFi and the

intercept, φi, is the mean final score for the control group in study i. The residual

error, eij, and the treatment group indicator, xij, are the same as the change score

model.
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ANCOVA model

For the Analysis of Covariance (ANCOVA), the follow-up value is regressed and the

baseline score is adjusted for. The ANCOVA model can be written as:

yFij = φi + βiyBij + θAixij + eij eij ∼ N(0, σ2
i ) (1.9)

where F represents the final score, B the baseline and A the ANCOVA model. The

follow-up and baseline values are yFij and yBij , respectively, for participant j in study

i and βi is the effect of a one-unit increase in the baseline value on the follow-up value

for study i. The treatment effect from the ANCOVA model for study i is θAi and the

intercept is φi. The residual error, eij, and the treatment group indicator, xij, are

defined as in the previous models.

Fixed-effect meta-analysis

For each model estimating the treatment effect, a fixed-effect univariate meta-analysis

was applied to obtain summary treatment effects from the three different models. The

results for each meta-analysis are displayed in forest plots (Figure 1.1 and, Figures A.1

and A.2 in Appendix A.1) and summarised together in Table 1.1.
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Figure 1.1: Fixed-effect meta-analysis of treatment effect estimates from the ANCOVA

model

Table 1.1: Results from the fixed-effect univariate meta-analyses for the Hypertension

data

Model
Fixed-effect

Estimate 95% CI

Change -9.47 -9.91 to -9.04

Final -9.29 -9.71 to -8.87

ANCOVA -9.31 -9.71 to -8.92

The summary treatment effect estimates and confidence intervals from the three differ-

ent analytical models (change score, final score and ANCOVA models) are all negative

(Table 1.1 and Figure 1.1 and, Figures A.1 and A.2 in Appendix A.1). For example,

the summary treatment effect estimate from the ANCOVA model was -9.31 with a

confidence interval of -9.71 to -8.92. Therefore, from the summary treatment effect

estimates and confidence intervals, there is statistically significant evidence that the

anti-hypertensive treatment reduces the systolic blood pressure compared to control.

8



Due to the differences in the analytical models, the summary treatment effect estimates

and confidence intervals differ. It is recommended, where possible, that treatment ef-

fects are estimated using the ANCOVA model, since the ANCOVA model adjusts for

baseline values and thus accounts for the presence of baseline imbalance (Vickers &

Altman 2001).

1.3.3 Binary outcome example - Bolus thrombolytic therapy

An example with a binary outcome is a meta-analysis of nine phase II trials, by Eikel-

boom et al. (2001), that investigated the use of Bolus thrombolytic therapy with stan-

dard infusion therapy for acute myocardial infarction by studying the number of events

of death (Smalling et al. 1995, Bode et al. 1996, Kawai et al. 1997, Vanderschueren

et al. 1997, Bär et al. 1998, Bleich et al. 1998, den Heijer et al. 1998, Cannon et al.

1998, Park 1998).

From the 2x2 contingency table, odds ratios for mortality were calculated for each trial.

A univariate fixed-effect meta-analysis was used to analyse all nine trials together and

the results are displayed in a forest plot.
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Figure 1.2: Fixed-effect meta-analysis of mortality from the Bolus thrombolytic therapy

studies

From the fixed-effect univariate meta-analysis results, the odds of dying were 6% lower

for those on the Bolus thrombolytic therapy than those on the standard infusion ther-

apy (Figure 1.2). However, this was not statistically significant since the confidence

interval was 0.68 to 1.29, which gave odds of dying between 32% lower and 29% higher

for those given the Bolus thrombolytic therapy compared to those given the standard

infusion.

1.3.4 Statistical heterogeneity

Heterogeneity is an umbrella term for different types of variability that arises between

studies (Higgins & Green 2008). Statistical heterogeneity is the variation in the ob-

served effect estimates that is beyond chance (i.e. over and above sampling error).

Measures for quantifying statistical heterogeneity include Cochran’s Q statistic, the

between-study variance, τ 2, and the I2 statistic.
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Cochran’s Q Statistic

The Cochran’s Q Statistic is given as (Cochran 1954):

Q =
n∑
i=1

Wi(Yi − θ̂)2 (1.10)

where Wi is the study weight for study i, Yi is the study effect in study i, θ̂ is the sum-

mary effect from the univariate fixed-effect meta-analysis and n is the total number of

studies in the meta-analysis. Cochran’s Q Statistic is the weighted sum of squares, a

measure of variation (Higgins & Green 2008).

From the fixed-effect assumption that the true effect size is the same across all the

studies, the expected value of Q is given by the degrees of freedom (df = n − 1). To

calculate the excess variability among studies in the meta-analysis, the degrees of free-

dom is subtracted from Q. The Cochran’s Q statistic can be used as a statistical test

for heterogeneity where the null hypothesis is that all studies share the same true effect

size and therefore there is no between-study variation. To test this null hypothesis,

the Cochran’s Q statistic is compared against a chi-square distribution with degrees of

freedom df = n− 1.

I2 statistic

The I2 statistic provides a percentage of the total observed variation across studies

that is due to the between-study variation (Higgins & Thompson 2002, Higgins et al.

2003). The greater the percentage for I2, the stronger the evidence for heterogeneity

having an important impact on the meta-analysis. The I2 statistic is calculated using

the following equation:

I2 =

(
Q− df
Q

)
× 100% (1.11)

where Q is the Cochran’s Q statistic, calculated from Equation 1.10, and it’s degrees

of freedom is df .
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Between-study variance

The between-study variance, τ 2, is the actual variance of the true effect sizes across

studies (Borenstein et al. 2009). The between-study variance can be estimated using:

τ 2 =
Q− df
C

(1.12)

where

C =
n∑
i=1

Wi −

n∑
i=1

W 2
i

n∑
i=1

Wi

(1.13)

This is also known as the Dersimonian and Laird estimator for τ 2 (DerSimonian &

Laird 1986). The Cochran’s Q statistic (Equation 1.10) and it’s degrees of freedom are

denoted by Q and df , respectively, and C is calculated from the study weights, Wi,

as shown in Equation 1.13. The between-study variance is required to be estimated

(estimation methods are discussed in Section 1.3.9) to be included in a random-effects

meta-analysis (described in the next section, Section 1.3.5).

1.3.5 Random-effects meta-analysis

Recall from Section 1.3.1, for a fixed-effect meta-analysis, it is assumed that all the

studies are estimating the same true effect size and thus any difference in the estimated

effect size is assumed to be due to random sampling error. However, for a random-

effects meta-analysis, an alternative assumption is made that each study is estimating

its own true effect size (Borenstein et al. 2009, Riley et al. 2011). To be included in the

meta-analysis, the studies must be considered similar enough to be analysed together

in a meta-analysis.

The random-effects meta-analysis can be expressed mathematically as:

Yi = µ+ ηi︸ ︷︷ ︸
=θi

+εi (1.14)
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where Yi is the observed effect size in study i and µ is the mean effect size for all

studies, ηi is the true variation in effect size from the mean for study i, εi is the ran-

dom sampling error in study i and θi is the true effect size for study i, which is most

commonly modelled as normally distributed.

The random-effects meta-analysis model can alternatively be expressed using normal

distributions, as follows (Kulinskaya et al. 2008, van Houwelingen et al. 2002):

Yi ∼ N(θi, s
2
i ) (1.15)

θi ∼ N(θ, τ 2) (1.16)

where Yi is the observed effect size for study i which is modelled as normally distributed

with mean θi, the true effect size for study i (which is also normally distributed in a

random-effects meta-analysis model and this varies from study to study) and s2i is the

within study variance for study i. The true study effects are also normally distributed,

with θ, the mean effect size and τ 2 the between-study variance.

In the same way as the studies in a fixed-effect meta-analysis were assigned a weight,

so too are the studies in a random-effects meta-analysis (Borenstein et al. 2009). How-

ever, the calculation for the weight of a study in a random-effects meta-analysis is

different to a fixed-effect. The calculation for the weight of a study in a random-effects

meta-analysis is as follows:

W ∗
i =

1

s2i + τ 2
(1.17)

where s2i is the within-study variance and τ 2 is the between-study variance. The DerSi-

monian and Laird equation for estimating the between-study variance, τ 2, was provided

by Equation 1.12 in Section 1.3.4.
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The summary effect estimate from the random-effects meta-analysis is estimated by:

θ̂ =

n∑
i=1

W ∗
i Yi

n∑
i=1

W ∗
i

(1.18)

and the standard error of the summary effect estimate is calculated by:

s.e.(θ̂) =

√√√√√ 1
n∑
i=1

W ∗
i

(1.19)

A confidence interval for the summary effect estimate can be calculated, such that the

approximate 95% confidence interval for the summary effect from the random-effects

meta-analysis is given as:

CIθ̂ = θ̂ ± 1.96s.e.(θ̂) (1.20)

where θ̂ is the summary effect estimate, Equation 1.18 and s.e.(θ̂) is the standard error

of the summary effect estimate, Equation 1.19. Alternatives to this standard confi-

dence interval derivation have been proposed, such as the Hartung-Knapp correction,

provided in Section 1.3.10.

1.3.6 Prediction intervals

Following a random-effects meta-analysis, it is possible to calculate a prediction in-

terval (Higgins et al. 2009, Riley et al. 2011). From a summary effect estimate, a

researcher only has information concerning the average effect estimate and its respec-

tive confidence interval; this does not provide information for the potential effect size

in individual studies and their populations. Prediction intervals are used to quantify

what the potential treatment effect might be for an individual study. The prediction

interval can be calculated by:

θ̂ ± tn−2
√
τ̂ 2 + σ2 (1.21)
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where θ̂ is the estimate of the summary effect from the random-effects meta-analysis,

n is the total number of studies in the meta-analysis and tn−2 is the 100(1 − α/2)

percentile of the t-distribution with n − 2 degrees of freedom. τ̂ 2 is the estimate of

between-study variation and σ2 is the variance of the summary effect estimate.

The calculated prediction interval can be depicted on the forest plot for the random-

effects meta-analysis (Riley et al. 2011). It is represented by two horizontal lines that

extend out from the vertices of the diamond that represent the extremities of the con-

fidence interval of the summary effect estimate. The width of the line represents the

width of the prediction interval and extremities of the line are the prediction interval

upper and lower bounds.

A couple of examples of a random-effects meta-analysis and calculation of prediction

intervals are now provided.

1.3.7 Ten hypertension trials example revisited

Recall the continuous outcome example from 10 hypertension trials (Riley et al. 2013,

Wang et al. 2005). The systolic blood pressure was measured at baseline and follow-up

for those in the anti-hypertensive treatment group and those in the control group. The

treatment effect estimates are derived from the final score, change score or ANCOVA

models.

For the three different models, univariate random-effects meta-analyses were applied to

analyse the treatment effect estimates from 10 hypertension trials, with the DerSimo-

nian and Laird (DL) method used for estimation. The results from each meta-analysis

were displayed in forest plots (Figure 1.3 and, Figures A.3 and A.4 in Appendix A.2)

and the results from each meta-analysis (including the fixed-effect) were summarised

in Table 1.2. The forest plots for the random-effects include the prediction intervals

which are not included in forest plots from fixed-effect meta-analyses.
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Figure 1.3: Random-effects meta-analysis of treatment effect estimates from the AN-

COVA model

Table 1.2: Results from the fixed-effect and random-effects univariate meta-analyses

for the Hypertension example

Fixed-effecta Random-effects

Model Estimate 95% CI Estimate 95% CI
95% Prediction

Interval

Change -9.47 -9.91 to -9.04 -9.83 -11.15 to -8.52 -14.22 to -5.45

Final -9.29 -9.71 to -8.87 -9.81 -11.12 to -8.50 -14.20 to -5.42

ANCOVA -9.31 -9.71 to -8.92 -9.84 -11.13 to -8.56 -14.17 to -5.52

a Fixed-effect results as in Table 1.1

There is statistically significant evidence that, on average, the anti-hypertensive treat-

ment reduces the systolic blood pressure compared to control, from the random-effects

meta-analysis results from all models. From Table 1.2, the summary results from

the random-effects meta-analyses differ slightly from the fixed-effect meta-analyses,

with pooled estimates slightly larger. Additionally, the 95% confidence intervals are
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wider from the random-effects meta-analyses than the fixed-effect meta-analyses. This

reflects the additional between-study variance that is included in the weight and con-

sequently the variance of the summary treatment effect estimate.

1.3.8 Bolus thrombolytic therapy example revisited

The binary outcome example is the meta-analysis of nine phase II trials that inves-

tigated the number of deaths in patients who were treated with Bolus thrombolytic

therapy following an acute myocardial infarction compared to treated with standard

infusion therapy (Eikelboom et al. 2001, Smalling et al. 1995, Bode et al. 1996, Kawai

et al. 1997, Vanderschueren et al. 1997, Bär et al. 1998, Bleich et al. 1998, den Heijer

et al. 1998, Cannon et al. 1998, Park 1998). The odds ratios from each trial were

analysed in a random-effects meta-analysis via DL estimation method and the results

are presented in Figure 1.4 and Table 1.3 (with the fixed-effect meta-analysis results).

Figure 1.4: Random-effects meta-analysis of mortality from the Bolus thrombolytic

therapy studies
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Table 1.3: Results from the fixed-effect and random-effects univariate meta-analyses

for the Bolus example

Assumption Estimate 95% C.I. 95% Prediction Interval

Fixed-effect 0.94 0.64 to 1.29

Random-effects 0.95 0.61 to 1.48 0.33 to 2.72

The odds of dying for patients treated with Bolus thrombolytic therapy was 6% lower

(95% C.I.: 32% lower to 29% higher) than patients treated with standard infusion

therapy following an acute myocardial infarction, from the fixed-effect meta-analysis.

However, from the random-effects meta-analysis, the odds of dying were, on average,

5% lower (95% C.I.: 39% lower to 48% higher) for patients treated with Bolus throm-

bolytic therapy compared to standard infusion therapy following an acute myocardial

infarction. From the random-effects meta-analysis (only), the prediction interval was

0.33 to 2.72 , suggesting large uncertainty in the actual treatment effect across different

settings.

1.3.9 Estimation methods for random-effects meta-analyses

There are many different estimation methods that have been developed for the esti-

mation of the value of τ 2 in random-effects meta-analyses and there have been many

research papers that have compared estimation methods (Brockwell & Gordon 2001,

Jackson et al. 2010, Thompson & Sharp 1999, Kontopantelis & Reeves 2012a,b). This

section will provide details about some of the most common estimation methods:

Dersimonian-Laird (DL), maximum likelihood (ML) and restricted maximum likeli-

hood (REML) (DerSimonian & Laird 1986, Hardy & Thompson 1996, Normand 1999).

Dersimonian-Laird (DL)

The Dersimonian-Laird (DL) is a non-iterative method and therefore is less computa-

tionally intensive compared to some alternative methods (DerSimonian & Laird 1986,

Kontopantelis & Reeves 2012b). To estimate the value of the between-study variance,
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τ 2, the DL method uses a method of moments estimator, based on the Cochran’s Q

statistic (Kontopantelis & Reeves 2012b). The Cochran’s Q statistic is described in

Equation 1.12.

Maximum likelihood (ML)

The maximum likelihood (ML) method is an iterative, parametric method for estimat-

ing the between-study variance, τ 2 (Hardy & Thompson 1996, Kontopantelis & Reeves

2012b). The assumption for ML is that the random effects are normally distributed

(Kontopantelis & Reeves 2012b, Ma & Mazumdar 2011). Additionally, the ML method

is considered to be downwardly biased (Thompson & Sharp 1999).

Restricted maximum likelihood (REML)

Restricted maximum likelihood (REML) is an iterative and parametric method that

assumes that the random effects from the study are normally distributed (Kontopantelis

& Reeves 2012b,a). REML uses a penalised version of the likelihood to avoid the

downward bias in variance parameters issue from ML estimation (Brown & Kempton

1994, Higgins et al. 2001).

Example to compare different estimation methods

Using the continuous data example with the systolic blood pressure from the anti-

hypertensive treatment group and the control group, Section 1.3.2, the different esti-

mation methods were examined.
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Table 1.4: Examining the results from different estimation methods for the Hyperten-

sion data

Model
Estimation

Estimate 95% CI I2
Between-study

Method variance

Change

ML -10.01 -11.64 to -8.38 90.90 5.33

REML -10.08 -11.87 to -8.30 92.49 6.57

DL -9.83 -11.15 to -8.52 85.57 3.17

Final

ML -10.05 -11.73 to -8.37 92.14 5.77

REML -10.14 -11.98 to -8.30 93.53 7.11

DL -9.81 -11.12 to -8.50 86.58 3.17

ANCOVA

ML -10.09 -11.78 to -8.41 93.09 5.91

REML -10.17 -12.00 to -8.34 94.25 7.18

DL -9.84 -11.13 to -8.56 87.57 3.09

The I2 statistic from each method was large, over 85%, and the estimate of the between-

study variance, τ 2, was large, over 3 (Table 1.4). Therefore, the studies cannot be

assumed to estimate the same effect size. The DL method had the greatest summary

estimate and REML had the least summary effect for all the treatment effect estimation

models.

1.3.10 Hartung-Knapp correction for confidence intervals

The Hartung-Knapp Correction was developed to address the problem of underesti-

mating the true variance of the summary effect estimate (Hartung & Knapp 2001a,b).

The Hartung-Knapp correction inflates the variance of the summary effect estimate

and uses the t-distribution, with the number of degrees of freedom equal to the num-

ber of studies less one, to calculate the 95% confidence interval (Knapp & Hartung

2003).
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Example - Continuous Outcomes

The Hartung-Knapp correction was used on the Hypertension continuous data example

with the REML method to observe the difference the Hartung-Knapp correction has

upon the width of the confidence intervals:

θ̂ ± t× s.e.HK(θ̂) (1.22)

Table 1.5: The results for the Hypertension data using the estimation method REML,

with and without Hartung-Knapp (H-K) correction

Model Confidence interval derivation Estimate 95% CI

Change
With H-K -10.08 -12.32 to -7.85

Without H-K -10.08 -11.87 to -8.30

ANCOVA
With H-K -10.17 -12.45, -7.89

Without H-K -10.17 -12.00 to -8.34

Final
With H-K -10.14 -12.44 to -7.83

Without H-K -10.14 -11.98 to -8.30

The summary estimates remained the same between the use and absence of the Hartung-

Knapp correction, as expected (Table 1.5). The confidence intervals calculated using

the Hartung-Knapp correction are wider than those calculated without the Hartung-

Knapp correction. For example, for the summary treatment effect estimates from

the final score model, the confidence interval calculated with the Hartung-Knapp was

-12.44 to -7.83, compared to -11.98 to -8.30 without the Hartung-Knapp correction.

Example - Binary Outcomes

Similarly, the Hartung-Knapp correction was applied to the Bolus binary outcome

example. The Hartung-Knapp correction was used with the REML estimation method.
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Table 1.6: The results for the Bolus data using the estimation method REML, with

and without Hartung-Knapp (H-K) correction

Confidence interval derivation Estimate 95% CI

With H-K 0.937 0.549 to 1.598

Without H-K 0.937 0.616 to 1.425

The Hartung-Knapp corrected 95% confidence interval is wider than the 95% confidence

interval without the Hartung-Knapp correction (Table 1.6).

1.4 Multivariate meta-analysis methods

Multivariate meta-analysis is an extension of the univariate meta-analysis, described in

Section 1.3. Univariate meta-analysis considers one outcome in the analysis, whereas

multivariate meta-analysis considers two or more outcomes in a single analysis (Rau-

denbush et al. 1988, Becker 2000, van Houwelingen et al. 2002).

1.4.1 Bivariate models

A bivariate meta-analysis is an approach for two outcomes from studies that have been

identified to aid in answering the posed research question (Riley et al. 2007a,b). The

bivariate meta-analysis is the simplest multivariate meta-analysis, however this is still

more complicated than a univariate due to the inclusion of correlations in the model.

In the same way as the univariate meta-analysis, the bivariate meta-analysis can either

use a fixed-effect or a random-effects assumption.
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Bivariate fixed-effect meta-analysis

The bivariate fixed-effect meta-analysis is modelled using the normal distribution, as

follows (van Houwelingen et al. 2002, Riley et al. 2007b):

Yi1
Yi2

 ∼ N


θ1
θ2

 , δi

 , δi =

s2i1 λi

λi s2i2

 (1.23)

where Yi1 and Yi2 are the observed effect sizes from study i for outcomes 1 and 2,

respectively. θ1 and θ2 are the true effect sizes for outcome 1 and 2 in each study

in the meta-analysis. The within-study covariance, λi, is calculated for each study i

as λi = ρWi
si1si2, where ρWi

is the within-study correlation, and s2i1 and s2i2 are the

within-study variances for Yi1 and Yi2, respectively.

For meta-analyses with within-study correlations of zero, the bivariate fixed-effect

meta-analysis reduces down to a univariate fixed-effect meta-analysis:

Yi1
Yi2

 ∼ N


θ1
θ2

 , δi

 , δi =

s2i1 0

0 s2i2

 (1.24)

Bivariate random-effects meta-analysis

Recall that the random-effects meta-analysis does not assume that each study is esti-

mating the same true effect size, and the observed effect sizes from each study and the

true effect sizes for each study are assumed to be normally distributed. The bivariate

random-effects meta-analysis is written as:

Yi1
Yi2

 ∼ N


θi1
θi2

 , δi

 , δi =

s2i1 λi

λi s2i2

 (1.25)

θi1
θi2

 ∼ N


µ1

µ2

 ,Ω

 , Ω =

τ 21 τ12

τ12 τ 22

 (1.26)
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where Yi1 and Yi2 are the observed effect sizes from study i for outcomes 1 and 2,

respectively. θi1 and θi2 are the true effect sizes for study i for outcomes 1 and 2. The

within-study covariance, λi, is calculated by λi = ρWi
si1si2 where ρWi

is the within-

study correlation, and si1 and s2i2 are the within-study variances for outcome 1 and

2, respectively. The mean effect sizes across all studies is denoted by µ1 and µ2 for

outcome 1 and outcome 2, respectively. The between-study covariance, τ12, is calcu-

lated by τ12 = ρµτ1τ2 where ρµ is the between-study correlation, and τ 21 and τ 22 are the

between-study variances for outcome 1 and outcome 2, respectively.

In the same way as the bivariate fixed-effect meta-analysis, the bivariate random-

effects meta-analysis is reduced to a univariate random-effects meta-analysis, with zero

within-study correlations and zero between-study correlation (Riley et al. 2007b, van

Houwelingen et al. 2002).

Yi1
Yi2

 ∼ N


θi1
θi2

 , δi

 , δi =

s2i1 0

0 s2i2

 (1.27)

θi1
θi2

 ∼ N


µ1

µ2

 ,Ω

 , Ω =

τ 21 0

0 τ 22

 (1.28)

1.4.2 Multivariate meta-analysis

The bivariate meta-analysis method, Section 1.4.1, can be extended for the multivariate

meta-analysis method (Raudenbush et al. 1988, Becker 2000, van Houwelingen et al.

2002, Jackson et al. 2011). It can be extended to generalised matrices for both fixed-

effect and random-effects meta-analysis.
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Multivariate fixed-effect meta-analysis

The generalised model for the multivariate fixed-effect meta-analysis is written as:



Yi1

Yi2
...

Yin


∼ N





θ1

θ2
...

θn


, δi


, δi =



s2i1 λi(1,2) . . . λi(1,n−1) λi(1,n)

λi(1,2) s2i2 . . . λi(2,n−1) λi(2,n)

. . . . . .
. . . . . . . . .

λi(1,n) λi(2,n) . . . λi(n−1,n) s2in


(1.29)

where the vector of (Yi1, ..., Yin) contains the observed values for each variable from

study i and is normally distributed where the mean is the vector of true effect sizes,

(θ1, ..., θn), for each outcome, 1 to n, and the variance is the within-study covariance

matrix (a square matrix), δi. The elements of the lead diagonal of the within-study

covariance matrix, δi, are the within-study variances, s2ij, is the variance of variable j

in study i and λi(j1,j2) is the within-study covariance for outcomes j1 and j2 in study i.

Multivariate random-effects meta-analysis

For the random-effects meta-analysis, the generalised multivariate model is written as:



Yi1

Yi2
...

Yin


∼ N





θi1

θi2
...

θin


, δi


, δi =



s2i1 λi(1,2) . . . λi(1,n−1) λi(1,n)

λi(1,2) s2i2 . . . λi(2,n−1) λi(2,n)

. . . . . .
. . . . . . . . .

λi(1,n) λi(2,n) . . . λi(n−1,n) s2in


(1.30)



θi1

θi2
...

θin


∼ N





µ1

µ2

...

µn


,Ω


, Ω =



τ 21 τ(1,2) . . . τ(1,n−1) τ(1,n)

τi(1,2) τ 22 . . . τ(2,n−1) τ(2,n)

. . . . . .
. . . . . . . . .

τ(1,n) τ(2,n) . . . τ(n−1,n) τ 2n


(1.31)

where the vector of (Yi1, ..., Yin) contains the observed values for each outcome from

study i. This vector is normally distributed where the mean is the vector (θi1, ..., θin),

that contains the true effect sizes for each outcome from study i, and the variance
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is the matrix δi, the within-study variance-covariance matrix. The elements of the

within-study variance-covariance matrix on the lead diagonal are s2ij, the variance of

outcome j in study i and the remaining elements are λi(j1,j2), the within-study co-

variance of outcome j1 and j2 in study i. For the random-effects meta-analysis the

vector (θi1, ..., θin) is normally distributed where the mean is the vector of (µ1, ..., µn),

the mean effect sizes across all studies for outcomes 1 to n and the variance is the

between-study variance-covariance matrix, Ω. The between-study variance-covariance

matrix contains on the lead diagonal the elements, τ 2j , the between-study variance for

outcome j and the remaining elements are the between-study covariances between the

outcomes j1 and j2 , denoted by τ(j1,j2).

1.4.3 Within-study and between-study correlations

Within-study correlations

The within-study correlation, ρWi
, is the association between the observed values for

the effect estimates for two outcomes, Yi1 and Yi2, within the same study (Riley et al.

2007b). It is assumed that the within-study correlation for each study is known, how-

ever, these are rarely reported in studies (Riley 2009, Jackson et al. 2011, Mavridis &

Salanti 2013, Riley et al. 2007b, Wei & Higgins 2013b).

Between-study correlations

The between-studies correlation, ρµ, is the association between the true values across

studies for two outcomes (Riley et al. 2007b, Riley 2009). Within a multivariate meta-

analysis the between-study correlation is not assumed to be known and it is required

that the between-study correlation is estimated (Riley et al. 2007b).

26



1.4.4 Within-study correlations using individual participant

data

In a multivariate meta-analysis, the within-study correlations are assumed to be known

(Riley 2009, Riley et al. 2007b). However, the within-study correlations are rarely re-

ported in study/trial publications (Riley 2009, Jackson et al. 2011, Mavridis & Salanti

2013, Riley et al. 2007b, Wei & Higgins 2013b). Without within-study correlations the

results from the meta-analysis are less accurate and the standard errors of the summary

effect estimates are increased (Riley 2009). However, with the individual participant

data (IPD) from the study/trial, the within-study correlation can be estimated (Riley

et al. 2014).

There are two methods for estimating the within-study correlations between outcomes

from IPD (Riley et al. 2014). The first method is joint linear regression and the

second method is bootstrapping. Joint linear regression is used for the estimation of

within-study correlations between continuous outcomes. For continuous outcomes with

a baseline measure and a follow-up measure, the following model can be used in each

trial to fit two regressions jointly:

yFijk = αik + βikyBijk + θikxij + eijk

eij1 ∼ N(0, σ2
i1) eij2 ∼ N(0, σ2

i2) (1.32)

cov(eij1, eij2) = σi12

where yFijk and yBijk are the follow-up and baseline observed values for outcome k

from participant j in trial i, respectively. βik denotes the mean increase in the follow-

up measure for a unit increase in the baseline measure in trial i for outcome k. θik is

the effect size for outcome k in trial i and xij is the indicator variable for the treatment

group. The residual error, eijk, is normally distributed with mean 0 and variance σ2
ik.

The inverse of Fisher’s Information matrix provides the variances and the within-study

correlation (Riley et al. 2014).
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The second method, bootstrapping, can be used for both discrete and continuous

outcomes (Riley et al. 2014). The method of bootstrapping randomly samples with

replacement participants from the original dataset until the generated dataset is the

same size as the original. The relevant model for each outcome is fitted to obtain the

effect estimates of interest. This process is repeated, say 1000 times, for 1000 bootstrap

samples and the analysis model is applied to each bootstrap dataset separately, to pro-

vide 1000 values of the effect estimates for each outcome. For each pair of outcome the

observed correlation provides the within-study correlation.

1.4.5 Estimation methods for multivariate meta-analysis

The estimation methods for multivariate meta-analysis are extended from the estima-

tion methods used for univariate random-effects meta-analysis, described in Section

1.3.9. The methods for multivariate meta-analysis described in this section are the

restricted maximum likelihood (REML), maximum likelihood (ML) and two methods

utilising the method of moments (MM) approach. This is not an exhaustive list as

further estimation methods have been developed however this section only covers the

most common methods (Ma & Mazumdar 2011).

Restricted maximum likelihood (REML) and maximum likelihood (ML)

Restricted maximum likelihood (REML) is a parametric, iterative method that can be

extended from the univariate meta-analysis approach to a multivariate meta-analysis

(van Houwelingen et al. 2002, Ma & Mazumdar 2011, Jackson et al. 2011, DerSimonian

& Laird 1986). REML’s multivariate random-effects model assumes a multivariate

normal distribution (Ma & Mazumdar 2011). An advantage of REML is that it corrects

downwardly biased variance estimates using a penalised version of the likelihood that

otherwise would arise from maximum likelihood (ML) estimation (Jackson et al. 2011).

The maximum likelihood (ML) can also be applied to multivariate meta-analyses (van

Houwelingen et al. 2002).
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Method of Moments (MM)

Jackson et al. (2010) suggested an extension of the Dersimonian-Laid (DL) method for

multivariate meta-analysis. The DL method is a non-iterative method that does not

require a normality assumption. Therefore, this method of moments approach is less

computationally intensive than the previous likelihood approaches.

Another method of moments method was proposed by Jackson et al. (2013) and re-

duces to the method proposed by Chen et al. (2012). The method of moments method

developed is non-iterative and it does not take into account the uncertainty in the

estimated between-study covariance matrix.

1.4.6 Confidence intervals and prediction intervals for multi-

variate meta-analysis

The confidence intervals and prediction intervals can be derived in a similar way to the

methods described for the univariate meta-analysis (Sections 1.3.1, 1.3.5 and 1.3.6). In

particular, Jackson & Riley (2014) suggest how the Hartung-Knapp correction might

be extended to the multivariate meta-analysis approach. The confidence intervals for

the refined method proposed by Jackson & Riley (2014) can be calculated using:

θ̂j ± t(N−p;1−α
2
)

√
H2Var(θ̂j (1.33)

where t(N−p;1−α/2) represents the univariate t distribution at the (1 − α/2) level with

(N − p) degrees of freedom , where N is the total number of estimates and p is the

number of outcomes included in the meta-analysis. The H2 statistic is a calculated

scaling factor. Jackson & Riley (2014) suggest that for meta-analyses with many studies

there are limited benefits. The scaling factor H2 can be constrained to be greater than

or equal to one, to ensure that narrower confidence intervals are not calculated.
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1.4.7 Joint inferences to describe relationships between mul-

tiple outcomes

Following estimation of a multivariate meta-analysis model, joint inferences can be per-

formed to inform about relationships between the effects of treatment on two or more

outcomes (Riley et al. 2015). Examples of this are confidence regions and prediction

regions. The confidence region is the area where there is, say, 95% confidence that the

true pooled effects for the outcomes lie. The prediction interval is the area where there

is, say, 95% confidence that for a new study the true pair of effects for the outcomes lie.

Joint inferences can be plotted on a graph using the paired treatment effects and

within-study correlations (Riley et al. 2015). The graphs can visually display the joint

probability statements that can be calculated using Bayesian statistics.

1.4.8 Borrowing of Strength (BoS)

Borrowing of strength in multivariate meta-analysis refers to using data from other

available correlated effect sizes to gain extra information on the main effect size of

interest (Jackson et al. 2017). For example, consider a meta-analysis with outcome

overall survival, in a multivariate meta-analysis, strength can be borrowed from an-

other outcome that is correlated with overall survival, such as disease-free survival.

Borrowing of strength requires a multivariate meta-analysis framework, as this allows

correlations between multiple effect sizes to be incorporated and used to inform the

summary effect estimates. In contrast, univariate meta-analysis does not utilise such

correlation and therefore cannot borrow strength between correlated effect sizes. An

advantage of borrowing strength is that through the utilisation of additional data via

the correlations, the summary effect estimates from a multivariate meta-analysis are

often more precise than their respective univariate summary effect estimates (Riley

et al. 2007b).

It therefore follows that the borrowing of strength can be quantified by comparing uni-
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variate and multivariate analyses, as follows. Consider a univariate meta-analysis with

one outcome, j, where the summary effect estimate from the univariate meta-analysis

is θ̂j. The precision of θ̂j from the univariate meta-analysis defines the information that

contributed to the summary effect estimate θ̂j from all the studies with outcome j. This

is also referred to as the direct information since the information is directly from out-

come j. Now consider a multivariate meta-analysis with multiple outcomes, where one

of these outcomes is outcome j (the same outcome in the univariate). The summary

effect estimate for outcome j from the multivariate meta-analysis is θ̂j,mv. The preci-

sion of θ̂j,mv defines the information that contributed to the summary effect estimate

θ̂j,mv from all studies with outcome j and all the studies in the meta-analysis without

outcome j, but with information from the other outcomes. This is referred to as the

total information that can be attributed to the summary effect estimate for outcome

j. Subsequently, the indirect information can be defined as the information gained in

the meta-analysis from the other outcomes and the relationships between the other

outcomes and outcome j, the outcome of interest. Note, indirect information would

not be included in the univariate meta-analysis but the multivariate meta-analysis in-

cludes the total information, both direct and indirect information. The BoS statistic

is defined mathematically as:

BoSj = 100%×
[
1− precdirect(θ̂j)

prectotal(θ̂j)

]
(1.34)

The precision is the reciprocal of the variance and in terms of the univariate and

multivariate meta-analysis, the BoS can be written as:

BoSj = 100%×
[
1− Varmv(θ̂j)

Varuv(θ̂j)

]
(1.35)

The definition of BoS is the percentage gain in information towards the summary

result for outcome j from utilising a multivariate meta-analysis over a univariate meta-

analysis.
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Alternatively, Copas et al. (2018) proposed the BoS statistic is written in terms of

E, the efficiency (Riley et al. 2017). The efficiency, E, is defined as the ratio between

the variance of the summary effect estimate from the direct and related information

and the variance of the summary estimate from the direct information only. The BoS

statistic is defined in terms of E, as:

BoS = 100%× (1− E) (1.36)

1.4.9 Study weights

The derivation of the borrowing of strength statistic leads to a definition of study

weights for multivariate meta-analysis (Jackson et al. 2017). The weight of study i

for outcome j is the ratio of the total information from study i for outcome j and

the total information for outcome j in the analysis. Therefore the study weights, Wij,

for outcome j and study i, can be described as the sum of the direct information for

outcome j from study i, DIij, and the borrowing of strength of outcome j from study

i, BoSij, as follows:

Wij = DIij + BoSij (1.37)

1.5 Benefits of multivariate meta-analysis over

univariate meta-analysis

In this section, the key advantages of multivariate meta-analysis over univariate meta-

analysis are described.

1.5.1 Single analysis for all outcomes

Multivariate meta-analysis allows for all the estimates to be obtained from one analysis

(Jackson et al. 2011). This is advantageous for researchers as all outcomes can be

investigated in a single analysis over multiple individual analyses.
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1.5.2 Describes the relationships between multiple outcomes

and joint inferences

The relationship between outcomes can be described by a multivariate meta-analysis

(Riley et al. 2007a,b, Jackson et al. 2011). In a random-effects multivariate meta-

analysis the between-study correlations (the correlation between the true effect sizes)

between outcomes is estimated, which may itself be of interest, for example in surro-

gate outcomes research.

An additional method to describe the relationships between multiple outcomes, that is

possible with multivariate meta-analysis, is the application of joint inferences, described

in further detail in Section 1.4.7 (Riley et al. 2015).

1.5.3 Better statistical properties

This benefit of using a multivariate meta-analysis over a univariate meta-analysis is

particularly relevant when there are studies with missing outcomes included (Riley

et al. 2007a,b, 2008, Jackson et al. 2011, 2017, Copas et al. 2018). A multivariate

meta-analysis can borrow strength across multiple outcomes to include further infor-

mation in the analysis that otherwise would be absent in a univariate meta-analysis,

as the studies without the outcome of interest would be excluded.

An example of a multivariate meta-analysis borrowing strength across multiple out-

comes will now be discussed, using data from The Fibrinogen Studies Collaboration

(The Fibrinogen Studies Collaboration 2009, Jackson et al. 2017). The data contained

31 observational studies and each study had available the Individual Participant Data

(IPD). In each observational study, Cox proportional hazards models were used to ob-

tain hazard ratios (Cox 1972). For each of the 31 observational studies, there were

different confounders recorded and the main confounders were used to adjust the re-

sults for all 31 observational studies, these are referred to as the partially adjusted

hazard ratios. For 14 of the observational studies, further confounders, in addition
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to the main confounders, were also used to fully adjust the results, referred to as the

fully adjusted hazard ratios. For these 14 studies, both the fully and partially adjusted

hazard ratios were obtained, along with their variances. For the remaining 17 stud-

ies, only the partially adjusted hazard ratios and variances were obtained. Therefore,

our two correlated outcomes are ‘fully’ and ‘partially’ adjusted estimates. Indeed, the

within-study and between-study correlations are expected to be very large.

The summary hazard ratios were the same from the univariate and multivariate meta-

analyses for the partially and fully adjusted hazard ratios, 1.41 and 1.31, respectively

(Table 1.7). For the partially adjusted hazard ratios (outcome with complete data)

the confidence intervals were similar between the univariate and multivariate results.

However, for the fully adjusted hazard ratios the confidence intervals were narrower,

and therefore more precise, from the multivariate results (95% C.I.: 1.25 to 1.38) than

the univariate results (95% C.I.: 1.22 to 1.42).

Table 1.7: Meta-analysis results and borrowing of strength for the partially and fully

adjusted results from the Fibrinogen studies

Meta-analysis
Adjusted Hazard Standard 95% Confidence BoS

Results Ratio Error Interval Statistic

Univariate
Partially 1.41 0.040 1.33 to 1.49

Fully 1.31 0.051 1.22 to 1.42

Multivariate
Partially 1.41 0.042 1.33 to 1.50 1.8%

Fully 1.31 0.035 1.25 to 1.38 53.3%

The borrowing of strength statistic was calculated as 53.3% for the fully adjusted results

and 1.8% for the partially adjusted results (Table 1.7). There were fewer studies for

the fully adjusted hazard ratios and consequently information from the relationship

between the fully and partially adjusted hazard ratios was borrowed to inform the

summary hazard ratio for the fully adjusted hazard ratio.
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1.5.4 Reducing bias due to partial reporting

Bias due to partial reporting can be reduced by analysing the data using a multivariate

meta-analysis (Jackson et al. 2011, Kirkham et al. 2012). An example of this is a

meta-analysis that investigated the prognostic ability of marker p53 for patients with

squamous cell carcinoma (Table 1.8) (Tandon et al. 2010, Jackson et al. 2011). There

were six studies that were included in the multivariate meta-analysis. The outcomes

were recorded as the log hazard ratio of disease-free survival and the log hazard ratio

for overall survival. All six studies recorded an effect size for the overall survival but

only three studies recorded an effect size for the disease-free survival.

Table 1.8: The data for the meta-analysis that investigated the prognostic ability of

marker p53 for patients with squamous cell carcinoma

Log hazard ratios Standard errors

Study
disease-free overall disease-free overall

survival survival survival survival

1 -0.58 -0.18 0.56 0.56

2 0.79 0.24

3 0.21 0.66

4 -1.02 -0.63 0.39 0.29

5 1.01 0.48

6 -0.69 -0.64 0.40 0.40

The studies that reported the disease-free survival log hazard ratios recorded negative

log hazard ratios for both the disease-free survival and the overall survival log hazard

ratios (Table 1.8). However, the overall log hazard ratios were positive for those studies

that did not report the disease-free survival. A univariate meta-analysis for disease-

free survival will assume that all the evidence provides only negative effect estimates

(i.e. log HRs< 0). However with the correlation between the outcomes expected to be

large, it is likely that the missing disease-free survival log hazard ratios are not negative

as those studies provide positive estimates for the reported overall survival outcome.
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Due to the partial reporting of the disease-free survival, the results from the univariate

meta-analysis are at risk of bias towards the negative log hazard ratios. The bias in

results can be reduced through the use of a multivariate meta-analysis.

From the example, the summary hazard ratio for the disease-free survival from the

multivariate meta-analysis was 0.72 (95% C.I.: 0.41 to 1.29) when the correlation was

assumed to be 0.7 and 0.84 (95% C.I.: 0.45 to 1.25) when the correlation was assumed

to be 0.95 (Table 1.9). Thus, there was no statistically significant evidence that there

was any difference in the survival between those with mutant p53 and normal p53.

However, from the univariate meta-analysis there was statistically significant evidence

that the patients with the mutant p53 were less likely to die or have a recurrence

than patients without the mutant p53 gene (HR: 0.45, 95% C.I.: 0.27 to 0.73). So

multivariate meta-analysis has changed our conclusions.

Table 1.9: The results for the disease-free survival for the p53 marker using REML

Meta-analysis Correlation
Hazard Standard 95% Confidence

Ratio Error Interval

Univariate 0.45 0.11 0.27 to 0.73

Multivariate
0.7 0.72 0.21 0.41 to 1.29

0.95 0.75 0.20 0.45 to 1.25

1.6 Limitations of multivariate meta-analysis

In this section, the key limitations of multivariate meta-analysis are described.

1.6.1 Complexity of multivariate meta-analysis

Multivariate meta-analysis is more complicated for researchers to understand and im-

plement than univariate meta-analysis. This is partly due to the further assumptions

that are required for multivariate meta-analysis. Similarly to the univariate, the multi-
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variate approach assumes that the random-effects are normally distributed. However,

this assumption is more difficult to verify in multivariate meta-analyses than univari-

ate meta-analyses for small number of studies. Additionally, the multivariate meta-

analysis assumes a linear relationship between pairs of outcomes effects across studies,

since there is usually not enough studies for the effects to model a non-linear relation-

ship. In addition to the further assumptions, additional information is required for a

multivariate meta-analysis; within-study correlations are required to be known and for

the between-study correlations to be estimable.

1.6.2 Estimation problems

Another limitation of applying multivariate meta-analysis is difficulties can arise during

the estimation of the between-study variances and correlations. There can be estima-

tion problems particularly for the correlations which can be estimated as either 1 or

−1 (the extreme boundaries for the correlation). Additionally, the estimation of the

between-study correlation varies depending on the estimation methods used to estimate

the correlation. An example of this is the meta-analysis example that investigated the

prognostic ability of marker p53 for patients with squamous cell carcinoma in Table 1.8

(Tandon et al. 2010, Jackson et al. 2011). The data was analysed using the estimation

methods REML and MM. The results are provided in Table 1.10. The between-study

correlation was estimated using the REML estimation method as 1 and using the MM

estimation method as -1.
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1.6.3 Publication bias

Multivariate meta-analysis does not correct for publication bias in the meta-analysis;

the results from the multivariate meta-analysis may still be biased if studies are un-

available because they are not reported at all. This might arise in cases where the

missing data in the meta-analysis is missing not at random.

1.6.4 Benefits may be limited

It was previously discussed in Section 1.5.3 that the results from a multivariate meta-

analysis had better statistical properties than the results from a univariate meta-

analysis (Jackson et al. 2011). However, the statistical properties for the multivari-

ate meta-analysis may only be marginally improved from the univariate meta-analysis

(Trikalinos et al. 2013, 2014). That is, the gain in precision of summary results may

only be small and may not change the clinical conclusions.

1.7 Aims of the thesis

The key aim for this thesis is to ascertain the benefits of multivariate meta-analysis

over univariate meta-analysis through empirical reviews, statistical theory and simu-

lation studies. To achieve this broad objective, I aim to facilitate the application of

multivariate meta-analysis through the exploration and further understanding of the

BoS statistic. In particular, to understand what settings lead to large BoS statistics,

such that multivariate meta-analysis results may differ importantly from univariate

meta-analysis results. Additionally, I aim to apply multivariate meta-analysis to novel

applications in medical research and compare the results to current commonly used

univariate methods.
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1.8 Thesis outline

The benefits of multivariate meta-analysis have been discussed here and in published

papers (Riley et al. 2007a,b, Hamza et al. 2009, Jones et al. 2009, Jackson et al. 2011,

Kirkham et al. 2012, Riley et al. 2015, Frosi et al. 2015). A Health Technology As-

sessment (HTA) report that studied maternal and foetal outcomes following exercise

and diet interventions during pregnancy is a meta-analysis study that may benefit

from multivariate methods (Rogozińska et al. 2017). In Chapter 2, multivariate meta-

analysis methods are applied to the HTA report data. The benefits of multivariate

meta-analysis are discussed in the context of the HTA report, and compared to sepa-

rate univariate meta-analysis and composite outcome meta-analyses.

In Chapter 3, the borrowing of strength (BoS) statistic is compared to the multi-

variate and univariate results from 43 Cochrane reviews (Trikalinos et al. 2014). This

chapter investigates whether BoS can be used to identify situations when a multivariate

approach is most beneficial. The meta-analysis level characteristics are investigated for

their relationship with the magnitude of BoS. Chapter 4 follows with the development of

prediction models for the magnitude of the BoS statistic given particular meta-analysis

characteristics. The prediction models are applied to examples to demonstrate how ac-

curately the predicted BoS statistic agrees with the observed BoS statistic. This work,

comparing the univariate and multivariate meta-analysis results with the magnitude of

BoS was presented at ISCB (International Society for Clinical Biostatistics) 2016 and

the development of the prediction models was presented at YSM (Young Statisticians’

Meeting) 2017 (Appendix A.3).

The BoS statistic is further investigated in Chapter 5 using interactive graphical tools

developed in R shiny. The prediction models developed in Chapter 4 are embedded

in the interactive graphs in Chapter 5. Additionally, in Chapter 5, the mathematical

equation for the calculation of the BoS statistic is embedded in an interactive graphi-

cal tool. It is observed through the interactive tool for the equation of BoS that there
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may exist a relationship between the magnitude of BoS and the percentage of missing

data for the outcome of interest. Through mathematical reasoning, the relationship is

proved for both fixed-effect and random-effects settings (Chapter 6). This work was

presented at RSS (The Royal Statistical Society) conference 2018 (Appendix A.3).

In Chapter 7, there is an investigation as to whether the benefits of multivariate meta-

analysis can be extended to a novel application in medical research. In randomised

control trials with a continuous outcome, there are three different models to obtain the

treatment effects: ANCOVA, change score and final score, as was illustrated earlier in

this chapter. This leads to complexities for a meta-analysis, since randomised control

trials (RCTs) may use different models to estimate the treatment effect. In Chapter

7 a multivariate meta-analysis approach is proposed to overcome this problem. An

example individual participant data (IPD) meta-analysis of 10 hypertension trials is

used to investigate the multivariate meta-analysis method against current univariate

meta-analysis methods. Chapter 8 follows with a simulation study to assess the perfor-

mance of the multivariate method against the performances of the univariate methods.

Finally, in Chapter 9 the key findings and recommendations are discussed. The prac-

tical implications of this thesis, as well as the needs for further research are presented.
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Chapter 2

Multivariate meta-analysis for the
effect of diet and exercise
interventions on maternal and
foetal outcomes

This chapter involves the re-analysis of an individual participant data (IPD) meta-

analysis from a recent Health Technology Assessment (HTA) report on the effect of

diet and exercise interventions during pregnancy on maternal and foetal outcomes

(Rogozińska et al. 2017). The analysis in the HTA report included separate univariate

meta-analyses of composite outcomes for maternal and foetal measures, as well as sep-

arate univariate meta-analysis for each individual outcome in the composite outcomes.

This chapter seeks to extend the HTA work using novel multivariate meta-analysis

methods; a joint model that analyses all outcomes together whilst accounting for their

correlation. The intention is to produce meta-analysis results for each of the out-

comes contributing toward the composite outcome, which are more clinically relevant

than their respective composite meta-analysis results. The impact of missing data for

individual outcomes is also reduced, which is an issue with separate univariate meta-

analyses. This chapter starts by introducing the HTA report with a brief background,

followed by the methods used. The alternative multivariate meta-analysis approach is

then discussed and the multivariate meta-analysis results compared to the respective

findings from the HTA report, which only used univariate meta-analysis of a composite

outcome.

43



2.1 Summary of the HTA report

2.1.1 Background of the HTA report

Maternal obesity has been shown to increase the risk of adverse outcomes for the foetus

as well as the mother (Cantwell et al. 2011, Thangaratinam & Jolly 2010, Rogozińska

et al. 2017). Women who gain weight in excess during pregnancy are at risk of re-

taining excess weight and carrying this into subsequent pregnancies (Rogozińska et al.

2017). Diet and exercise interventions have been investigated as a means to address

excessive weight gain. A Health Technology Assessment (HTA) report, conducted by

the International Weight Management in Pregnancy (iWiP) collaborative group, syn-

thesised existing evidence from independent studies to investigate the effect of diet and

exercise interventions on maternal and foetal outcomes during pregnancy (Rogozińska

et al. 2017).

The HTA report aimed to investigate the effect of diet and exercise interventions on

gestational weight gain, maternal composite and foetal composite outcomes. A com-

posite outcome is a combination of multiple individual outcomes that might happen,

where any one of the events could count as part of the composite outcome. For the ma-

ternal composite outcome, the individual outcomes were pre-eclampsia or pregnancy

induced hypertension, gestational diabetes, preterm delivery and any caesarean section.

Similarly for the foetal composite outcome, the individual outcomes were intrauterine

death, small for gestational age, large for gestational age and admission to a neonatal

intensive care unit (NICU).

2.1.2 Methods from the HTA report

Inclusion and exclusion criteria

The HTA report identified randomised control trials (RCT) from a literature search

that investigated the effects of diet and/or exercise interventions against no inter-

vention. Cluster randomised control trials were included, as well as RCTs without
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clustering. The RCTs were required to include an intervention of diet, exercise or a

mixture of diet and exercise compared to a control of either no intervention or routine

antenatal care. Additionally, the trials should have analysed gestational weight gain

as well as other clinical outcomes relating to the mother and/or the foetus. Studies

were excluded if the study was published before 1990, the study was in animals, the

study only considered non-clinical outcomes (e.g. behaviour change) or the study was

aiming to increase gestational weight gain.

Collection and checking individual participant data

The researchers from the HTA report contacted the authors of the RCTs to request the

individual participant data (IPD). IPD was sought for 58 studies and was provided for

36 of these. Participants from the IPD were excluded from the analysis if the women

were underweight (identified by a BMI of less than 18.5kg/m2) or if the women had a

multiple pregnancy.

Summary of IPD

There were 36 RCTs that provided IPD, 34 of which were randomised using individual

participant allocation and two which were cluster RCTs. The 36 RCTs were conducted

in six different continents; 22 in Europe, four in North America (three in USA and one

in Canada), four in South America (Brazil), four in Australia, one in Africa (Egypt)

and one in Asia (Iran). Four trials investigated diet as the intervention, 16 trials

investigated exercise and 15 trials assessed an intervention of both diet and exercise.

In the remaining trial, an exercise intervention arm was compared to a diet and exercise

intervention arm. The number of women in each study ranged from 12 to 2212.

Analysis approach in the HTA report: Univariate meta-analysis of compos-

ite outcomes

To obtain summary effect estimates and 95% confidence intervals for the maternal

composite and the foetal composite outcomes, the HTA report analysed the IPD us-
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ing a two-stage IPD meta-analysis. A two-stage IPD meta-analysis analyses the IPD

and obtains summary treatment effect estimates from the meta-analysis model in two

stages. In the first stage, the IPD for each study is analysed to obtain the treatment

effect estimates and within-study variances. In the second stage of the IPD meta-

analysis, the univariate meta-analysis models described in Chapter 1 are applied to the

aggregate data from the first stage.

In the first stage of the IPD meta-analysis from the HTA report, the composite out-

comes were generated (Rogozińska et al. 2016) and their treatment effect estimates and

standard errors for each study were obtained. Each of the composite outcomes were

binary outcomes. For each study, logistic regression was applied to each outcome to

obtain the log odds effect estimate (Cox 1958):

logit(p) = b0 + b1x (2.1)

where x is the intervention group. For a rare binary outcome with zero events in one

treatment group, the Sweeting continuity correction (Sweeting et al. 2004) was applied

to obtain the effect estimate. The Sweeting correction adds the reciprocal of the alter-

native treatment group sample size to each value in the 2x2 contingency table.

In the second-stage of the IPD meta-analysis, the treatment effect estimates for the

composite outcome of interest were pooled using a univariate random-effects meta-

analysis using REML (restricted maximum likelihood) estimation as described in Chap-

ter 1. Additionally, a Hartung-Knapp correction (Knapp & Hartung 2003) was applied

to the confidence intervals to account for the uncertainty in the estimate of the between-

study variance (Section 1.3.10).

As well as a meta-analysis for each composite outcome, the association between the

interventions and each individual outcome was investigated using separate univariate

meta-analyses, using the same method as described for the composite outcomes.
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2.2 Alternative approach: multivariate meta-

analysis of individual outcomes

Rather than performing separate univariate meta-analyses or a univariate meta-analysis

of a composite outcome, in this chapter a multivariate meta-analysis is considered. As

described in the introduction chapter, multivariate meta-analysis jointly synthesises

summary estimates for each outcome of interest in one analysis (Raudenbush et al.

1988, Becker 2000, van Houwelingen et al. 2002, Jackson et al. 2011). It utilises the

within-study correlations and between-study correlations to provide more precise esti-

mates and allows for the inclusion of studies that do not provide information for all

the outcomes (Riley et al. 2007a,b), as explained in Chapter 1.

There were four maternal outcomes: pre-eclampsia or pregnancy induced hyperten-

sion (PE or PIH), gestational diabetes, preterm birth and caesarean section. Not all

outcomes were reported in each trial and therefore, in this setting a multivariate meta-

analysis will be beneficial; utilising the correlations between the outcomes, strength

might be borrowed across outcomes. Additionally, there were four foetal outcomes:

intrauterine death, small for gestational age, large for gestational age and admission to

Neonatal Intensive Care Unit (NICU). Similarly, for the four foetal outcomes a mul-

tivariate meta-analysis will be beneficial. Hence, in the remainder of this chapter, a

multivariate meta-analysis approach is outlined and applied to the HTA report.

2.3 Methods for the re-analysis of the HTA report

2.3.1 Obtaining relevant data for meta-analysis

The data for the application of a multivariate meta-analysis was requested from the

iWiP collaborative group. It was requested that the within-study correlations between

each pair of treatment effect estimates for the maternal and foetal outcomes be es-

timated using bootstrapping (Section 1.4.4). The iWiP collaborative group kindly
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provided the relevant estimates for each outcome, that is, aggregate data in the form

of treatment effect estimates, standard errors and the within-study correlations for

each pair of maternal and foetal outcomes estimated using bootstrapping. The iWiP

collaborative group indicated in the data which outcomes were calculated using the

Sweeting correction and for these outcomes within-study correlations were unavailable.

Thus the re-analysis in this chapter will be two-stage meta-analyses, with multivariate

meta-analysis applied in the second stage.

2.3.2 Analysis 1: replicating HTA report results

For each of the maternal and foetal outcomes, a univariate meta-analysis model (Equa-

tion 1.15) was applied and estimated using REML. The confidence intervals were cal-

culated using a Hartung-Knapp correction (Knapp & Hartung 2003). The results from

the univariate meta-analyses for the data provided by the iWiP collaborators were

compared to the univariate results from the HTA report for each outcome.

2.3.3 Analysis 2: application of multivariate meta-analysis

model

In addition to the univariate meta-analyses for each outcome, the four maternal out-

comes were analysed jointly and the four foetal outcomes were analysed jointly using

multivariate meta-analysis models (Equation 1.30). For the outcomes that were cal-

culated using the Sweeting correction, the within-study correlations for these studies

were imputed using the mean within-study correlation for the two corresponding out-

comes (Riley 2009). Following, the covariance for each pair of outcomes was calcu-

lated from the within-study correlation and the standard errors for the outcomes using

σi(j1,j2) = σij1σij2ρWi(j1,j2)
where σi(j1,j2) is the covariance and ρWi(j1,j2)

is the within-

study correlation between outcome j1 and j2 in study i. The standard errors in study

i for outcomes j1 and j2 are σij1 and σij2 , respectively.

The multivariate meta-analyses were estimated using REML. Their respective confi-
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dence intervals for the summary treatment effects were calculated using a multivariate

refined method similar to the Hartung-Knapp method in univariate meta-analysis, de-

scribed in Section 1.4.6 (Jackson et al. 2013, Knapp & Hartung 2003). The calculated

scaling factor, H2 was restrained to one, to ensure the confidence intervals were not

narrower. The Borrowing of Strength (BoS) was also calculated for each outcome.

2.3.4 Analysis 3: sensitivity analysis

Sensitivity analyses were conducted following the analysis to explore the effect the

imputed within-study correlations may have had upon the meta-analyses’ results. Ex-

treme values for the within-study correlations were imputed for the within-study corre-

lations which were originally missing. The extreme values were selected based upon the

maximum/minimum correlation that did not provide estimation problems and a cor-

relation of zero (Riley 2009). The within-study correlations for the sensitivity analysis

for the foetal multivariate meta-analysis were zero, 0.55 and -0.39 and for the maternal

multivariate meta-analysis were zero, 0.69 and -0.69.

2.4 Results of re-analysis

2.4.1 Summary of data

The number of studies that provided each outcome varied for each outcome (Table

2.1). The foetal outcome, intrauterine death was the outcome with the lowest number

of studies. It also was the outcome with the largest number of treatment effects that

were calculated using the Sweeting correction (Sweeting et al. 2004), since intrauterine

death is a rare outcome.
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Table 2.1: Number of studies reporting each outcome for the foetal and maternal

outcomes

Number of Studies

Outcome Aggregate data provided HTA report

Maternal

PEa or PIHb 22 22

Gestational diabetes 27 27

Preterm birth 33 32

Caesarean section 32 32

Foetal

Intrauterine death 12 NAc

Small for gestational age 34 33

Large for gestational age 35 34

Admission to NICUd 16 16

a Pre-eclampsia

b Pregnancy induced hypertension

c Insufficient data

d Neonatal Intensive Care Unit

The HTA report did not state how many studies provided intrauterine death but

stated that there was insufficient data to perform a univariate meta-analysis. Addition-

ally, there were slight differences in the number of studies that reported the outcomes

preterm birth, small for gestational age and large for gestational age between the HTA

report and the data. For example, in the HTA report, the number of studies with the

outcome preterm birth was 32 studies, however there were 33 studies with the outcome

preterm birth in the data set provided by the iWiP collaborators.

The mean within-study correlations were small in magnitude (<0.1) for each pair of

outcomes (Table 2.2). The maximum magnitude of the within-study correlations be-

tween the pairs of outcomes was 0.25. Therefore, there was only a small association

between the outcomes in each study.
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Table 2.2: Mean and range of the within-study correlations between the maternal

outcomes and the foetal outcomes

Outcome pairs
Number of Within-study correlation

studies Mean Range

Maternal Outcomes

PEa or PIHb and gestational diabetes 19 0.023 -0.228 to 0.196

PEa or PIHb and preterm birth 21 0.053 -0.100 to 0.213

PEa or PIHb and caesarean section 21 0.024 -0.085 to 0.172

Gestational diabetes and preterm birth 24 0.021 -0.118 to 0.192

Gestational diabetes and caesarean section 25 0.041 -0.121 to 0.250

Preterm birth and caesarean section 30 0.040 -0.070 to 0.172

Foetal Outcomes

intrauterine death and SGAc 4 0.034 0.003 to 0.087

intrauterine death and LGAd 4 0.043 -0.033 to 0.161

intrauterine death and admission to NICUe 4 -0.007 -0.024 to 0.011

SGA and LGA 31 -0.081 -0.228 to 0.024

SGA and admission to NICU 15 0.072 -0.028 to 0.210

LGA and admission to NICU 15 0.027 -0.068 to 0.139

a Pre-eclampsia

b Pregnancy induced hypertension

c Small for gestational age

d Large for gestational age

e Neonatal Intensive Care Unit

2.4.2 Comparison between univariate meta-analysis from HTA

report and the data

The results between the HTA report and the analysis with the data provided by the

iWiP collaboration were similar; for the majority of outcomes for both the maternal

and foetal outcomes the results were equal (Table 2.3). Any differences in the results
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from the HTA report and the analysis with the data in this chapter were slight and

were likely to have occurred due to slight estimation variations and rounding.

Table 2.3: Univariate meta-analysis results from the HTA report and the data provided

by the iWiP collaboration

HTAa report Using aggregate data provided

Outcome
Odds 95% Confidence Odds 95% Confidence

p-value
ratio Interval ratio Interval

Maternal Outcomes

PEb or PIHc 0.95 0.78 to 1.16 0.95 0.78 to 1.16 0.600

Gestational diabetes 0.89 0.72 to 1.10 0.89 0.72 to 1.09 0.243

Preterm birth 0.94 0.78 to 1.13 0.94 0.78 to 1.13 0.498

Caesarean section 0.91 0.83 to 0.99 0.91 0.83 to 0.99 0.034

Foetal Outcomes

Intrauterine death Insufficient data 0.92 0.36 to 2.33 0.851

Small for gestational age 1.06 0.94 to 1.20 1.06 0.94 to 1.20 0.311

Large for gestational age 0.90 0.76 to 1.07 0.90 0.76 to 1.07 0.209

Admission to NICUd 1.01 0.84 to 1.23 1.02 0.84 to 1.23 0.870

a Health Technology Assessment

b Pre-eclampsia

c Pregnancy induced hypertension

d Neonatal Intensive Care Unit

2.4.3 Multivariate meta-analysis results

The multivariate meta-analysis results from the IPD are provided in Table 2.4. Conclu-

sions are very similar to those from the univariate meta-analyses. From the multivariate

results, it is concluded that the odds of a caesarean section were reduced by 9% (95%

C.I.:17% to 1%) for those on a diet and physical activity based interventions compared

to those with no intervention. This was the only outcome, from the maternal and foetal

outcomes, with a statistically significant result at the 5% significance level.
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Borrowing of Strength (BoS)

The BoS statistic was small for all the Foetal outcomes (range: 2.3% to 5.5%) (Table

2.4). The largest BoS statistic was for the maternal outcome, pre-eclampsia or preg-

nancy induced hypertension, at 17.1%. The BoS statistics for gestational diabetes and

caesarean section were not as large, 10% and 8%, respectively. For the preterm birth

outcome, the BoS statistic was small at 2.6%. The low BoS values reflect that, in

general, the within-study correlations were small to moderate at best.

Between-study correlations and variances

For the maternal outcomes the between-study correlations were all estimated to be

positive, ranging from 0.173 to 0.971 (Table 2.5). The majority of the between-study

correlations for the maternal outcomes were large. The between-study correlations for

the foetal outcomes were all estimated to be +1 or -1, the extreme boundaries of the

field for correlations, suggesting potential estimation difficulties, most likely because

the magnitude of between-study variability was small for all foetal outcomes.
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Table 2.5: Estimates of the between-study variance-covariance matrix, showing the

between-study correlations in brackets.

Maternal Outcomes

PEa or PIHb Gestational Preterm Caesarean

Diabetes birth section

PEa or PIHb 0.073

Gestational diabetes 0.079 (0.971) 0.092

Preterm birth 0.019 (0.403) 0.009 (0.173) 0.031

Caesarean section 0.022 (0.888) 0.021 (0.753) 0.012 (0.779) 0.009

Foetal Outcomes

Intrauterine SGAc LGAd Admission

death to NICUe

Intrauterine death 0.053

SGA c -0.022 (-1) 0.009

LGAd -0.043 (-1) 0.017 (1) 0.035

Admission to NICUe -0.017 (-1) 0.007 (1) 0.013 (1) 0.005

a Pre-eclampsia

b Pregnancy induced hypertension

c Small for gestational age

d Large for gestational age

e Neonatal Intensive Care Unit

2.4.4 Comparison between univariate and multivariate meta-

analysis

The results were generally similar between the univariate and multivariate meta-analyses

and the statistical significance for each outcome was unchanged (based upon the con-

fidence intervals) (Table 2.4). However, there were some potentially clinically impor-

tant differences in the actual magnitude of summary effect sizes, most notably for the

maternal outcomes pre-eclampsia or pregnancy induced hypertension and gestational
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diabetes. For example, the summary odds ratio for pre-eclampsia or pregnancy induced

hypertension from the univariate meta-analysis was 0.95 (95% C.I.: 0.78 to 1.16) and

from the multivariate meta-analysis, the summary odds ratio was smaller at 0.85 with

a 95% confidence interval of 0.67 to 1.08. Therefore, the best estimate of the summary

effect for intervention of diet and exercise is that it reduces the odds of pre-eclampsia

or pregnancy induced hypertension by 15% in the multivariate meta-analysis, but only

5% in the univariate meta-analysis. Additionally, for gestational diabetes the summary

odds ratio from the univariate was 0.89 (95% C.I.: 0.72 to 1.09) and from the multivari-

ate the summary odds ratio was 0.84 with a 95% confidence interval of 0.68 to 1.04. As

a result of the diet and exercise intervention the odds of gestational diabetes is reduced

by 16%. Therefore, there was stronger evidence after the multivariate meta-analysis

that the diet and exercise intervention is beneficial for these outcomes, although 95%

confidence intervals are still wide.

Sensitivity analysis results

For the foetal sensitivity analysis, results were very similar when assuming a within-

study correlation of zero in studies where it was not provided. However, the BoS

increased when larger magnitudes of correlations were assumed (Table B.1 in Appendix

B.1). The conclusions were unchanged for different assumed values of the within-study

correlations. Similarly, for the maternal sensitivity, the results were very similar across

the different within-study correlation values (Table B.2 in Appendix B.1). Greater

differences between the multivariate meta-analysis and the sensitivity analyses were

observed for large negative within-study correlations and the magnitude of BoS were

greater.

2.5 Discussion

This chapter performed secondary data analysis of a HTA report that investigated the

effect of diet and exercise interventions during pregnancy to reduce weight gain on both
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maternal and foetal outcomes (Rogozińska et al. 2017). The original analysis in the

HTA report developed composite outcomes for the maternal and foetal outcomes from

the IPD (Rogozińska et al. 2016). The composite outcomes were analysed using uni-

variate meta-analyses, one for the maternal composite outcome and one for the foetal

composite outcome. Additionally, each foetal and maternal outcome was analysed in

separate univariate meta-analyses in the HTA report. However, it was hypothesised

that the treatment effect estimates may be correlated for each pair of outcomes. This

chapter investigated whether, through the inclusion of the correlations, applying mul-

tivariate meta-analysis methods would be beneficial in this setting. The key findings

from the analysis are summarised in Figure 2.1.

Figure 2.1: Key findings from the secondary analysis of the HTA report for the effect

of diet and exercise interventions on maternal and foetal outcomes

Key Findings:

• The results from the multivariate meta-analysis were similar to those from

the univariate meta-analysis; there was no change in statistical significance.

However, there were some differences between the multivariate and univari-

ate meta-analyses in the magnitude of the summary effect size, that might

have clinical significance, although confidence intervals are still wide.

• The borrowing of strength statistics were larger for outcomes where there

were greater differences between the univariate and multivariate results.

• The mean within-study correlations were small in magnitude and thus this

is likely to have contributed to a small BoS statistic in general (Jackson

et al. 2017).

• The estimated between-study correlations were large for the majority of

the maternal outcome pairs. However, the between-study correlations for

the foetal outcomes had estimation problems and were estimated at the

extreme boundaries for correlations.
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There was no change in the statistical significance of the results between the univari-

ate and the multivariate meta-analyses for the foetal and maternal outcomes. The

conclusions, based on statistical significance, for the effect of diet and exercise in-

terventions during pregnancy were unaltered between the univariate and multivariate

meta-analyses. For example, for the outcome small for gestational age the odds ratios

were 1.06 from both univariate and multivariate results. The 95% confidence intervals

were 0.94 to 1.20 and 0.93 to 1.20 from the univariate and multivariate, respectively

and thus, there was no change in the not statistically significant result. However, there

were potentially important clinical differences between the univariate and multivari-

ate summary results for two maternal outcomes, pre-eclampsia or pregnancy induced

hypertension and gestational diabetes. That is, the magnitude of effect was larger in

the multivariate meta-analysis than the univariate meta-analysis. For example, for

gestational diabetes the univariate meta-analysis results were 0.89 (95% C.I.: 0.72 to

1.09) and the multivariate results were 0.84 (95% C.I.: 0.76 to 1.15). Although further

research is needed, due to the wide confidence intervals.

The borrowing of strength statistic was small for most of the maternal and foetal

outcomes. However, for the maternal outcomes, pre-eclampsia or pregnancy induced

hypertension and gestational diabetes, there was a slight quantity of BoS, with values

of 17.1% and 10%, respectively. It was observed that the larger BoS values were for

outcomes that were observed to have greater differences between univariate and mul-

tivariate meta-analysis. This motivates further research of BoS in the next chapters.

In this study, the mean within-study correlations between the treatment effect esti-

mates were small for all pairs of maternal or foetal outcomes. This means there is

only a small association between any two treatment effect estimates in the same study

for the maternal or foetal outcomes. This may be one reason the BoS statistics were

small in general, since it has previously been concluded that when the within-study

correlation is zero there is no borrowing of strength (Riley et al. 2007a, Jackson et al.
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2017). Therefore, it might be that there was little difference between the univariate

and multivariate results, since there was only a small association between the pairs of

treatment effect estimates for the maternal and foetal outcomes in each study. How-

ever, the majority of the between-study correlations were estimated to be quite large

for the maternal outcomes, which means that the underlying true values for the pair of

two outcomes across the trials included in the meta-analysis were highly associated. It

was expected that by including the between-study correlations there would be a gain in

information which may have resulted in differences between the univariate and multi-

variate results (Riley 2004, Riley et al. 2007a). However, in general, differences between

the univariate and multivariate results were not observed. Although there were large

between-study correlations, large differences in results may not have occurred since the

between-study variances were small and ranged from 0.005 to 0.092 for all maternal

and foetal outcomes.

Riley et al. (2007b) investigated the estimation of the between-study correlations in

a normal random-effects meta-analysis using a maximum likelihood estimation; they

found that often the between-study correlations are truncated to the boundary of the

field for correlations. This is especially likely to occur if the within-study variances are

large compared to the between-study variances. Certain conditions need to be met in a

normal random-effects meta-analysis; these include the between-study variance covari-

ance matrix satisfying the conditions to be a non-negative definite matrix meaning that

the τ 2j ≥ 0 and −1 ≤ ρB ≤ 1. To satisfy the conditions, the between-study correlations

are truncated at the boundary when estimated. A consequence of the between-study

correlations estimated at the boundaries is an upward bias in the between-study vari-

ance estimates. Since the between-study variances were so small in this multivariate

meta-analysis, this should not be a concern.

59



2.5.1 Does the multivariate meta-analysis approach have any

additional benefits compared to the univariate meta-

analysis in this setting?

The multivariate meta-analysis approach required more information with regards to

the quantity of data needed and further assumptions were made compared to the uni-

variate meta-analysis. In this particular example, there was no clear evidence that the

multivariate meta-analysis was beneficial over the univariate meta-analysis especially

considering the extra requirements that were needed. However, there were potentially

important clinical differences between the univariate and multivariate results for two

maternal outcomes, pre-eclampsia or pregnancy induced hypertension and gestational

diabetes. For these outcomes, the multivariate meta-analysis may have proven to be

beneficial due to the clinical implications the results might affect, yet confidence inter-

vals remained large. Thus, the benefits of using the multivariate meta-analysis do not

outweigh the additional complications of a multivariate approach over a univariate in

this study. The differences in meta-analysis results between a univariate and a multi-

variate approach have been studied in many research papers and they concluded that

usually there is little difference between the univariate meta-analysis and the multi-

variate meta-analysis results (Sohn 2000, Simel & Bossuyt 2009, Trikalinos et al. 2013,

2014).

2.5.2 Further work

Although using multivariate rather than univariate meta-analysis in this particular

example did not change clinical or statistical conclusions, this may not hold in other

applications. Further, there was a sign that multivariate meta-analysis can change

summary results, as seen in this chapter for outcomes pre-eclampsia and pregnancy

induced hypertension. Additionally, for these outcomes the BoS statistic was observed

to be larger. A further investigation is needed into the relationship between the BoS

statistic and the differences between the univariate and multivariate results. Could
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the BoS statistic be used to identify situations and outcomes where the multivariate

approach is beneficial over the univariate approach?

Alternatively, could the characteristics of the meta-analysis be used to identify situa-

tions where the multivariate approach is beneficial over the univariate approach? Were

there particular characteristics, such as missing data, that meant that the multivariate

approach was more beneficial for some outcomes (for example, pre-eclampsia and preg-

nancy induced hypertension) but not others (for example, small for gestational age and

preterm birth)? For two maternal outcomes (preterm birth and caesarean section) and

two foetal outcomes (small for gestational age and large for gestational age), the major-

ity of the trials reported the outcome of interest. However, for the remaining outcomes

there was missing data for the outcome of interest; for example, for intrauterine death

the outcome was reported in 12 studies, whereas the outcome, large for gestational age,

was reported in 35 studies. The characteristics of the data (including percentage of

missing data for the outcome of interest, within-study and between-study correlations)

which a meta-analysis is to be applied will differ between outcomes and meta-analysis

studies. It is currently unclear which characteristics are more likely to result in differ-

ences between univariate and multivariate results. These characteristics including the

correlations, might influence whether there are benefits between the univariate and the

multivariate meta-analysis. This idea forms the motivation for the next few chapters

in this thesis.

2.5.3 Conclusion

The results from the original HTA report are barely affected by the use of multivari-

ate meta-analysis over the univariate meta-analysis approach. Hence, the benefits of

multivariate meta-analysis in this setting were limited and the BoS statistic was often

small. In the next chapter, the relationship between the magnitude of BoS and the dif-

ferences between univariate and multivariate meta-analysis is explored. Meta-analysis

level characteristics, including percentage of missing data for the outcome of interest,
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within-study and between-study correlations, are investigated for their relationship

with the magnitude of BoS.
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Chapter 3

An evaluation of the distribution
and magnitude of BoS in Cochrane
reviews

3.1 Background

The advantages of multivariate meta-analysis and univariate meta-analysis have been

examined and detailed in the literature. Studies have been conducted to investigate

the differences between the univariate and multivariate results. Trikalinos et al. (2013,

2014) examined 45 Cochrane reviews that contained univariate meta-analyses for two

or three binary outcomes that alternatively could be analysed using a multivariate

meta-analysis. They compared univariate and multivariate meta-analysis results and

generally found that the summary effect estimates and confidence intervals were similar.

They concluded that if the “focus is on the summary effects and the confidence intervals

then the choice between the univariate and multivariate meta-analysis has limited

practical importance” (Trikalinos et al. 2014, pg 1456). Despite this conclusion, there

are isolated examples within the review with potentially important differences between

univariate and multivariate meta-analysis. For example, for outcome one in study 35

there is a noticeable change in the summary estimates between the univariate and the

multivariate meta-analyses, (Figure 3.1). From the univariate meta-analysis, there was

(visually) not a statistically significant difference in the odds of the outcome between

treatment groups, whereas (visually) there was a statistically significant difference for

the multivariate meta-analysis. Another example is outcome two in study 38 where

63



the multivariate meta-analysis made a substantial improvement to the precision of

the summary effect estimate (Figure 3.1), seen from the narrower width of the credible

interval in the multivariate meta-analysis. The conclusions from the meta-analyses also

differ as the univariate meta-analysis results are not statistically significant, whereas

the multivariate meta-analysis results are statistically significant.
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Figure 3.1: Comparison of univariate and bivariate meta-analyses of odds ratios (on log

scale) for treatment versus comparator using the binomial or the multinomial distri-

bution to model within-study variance (topics 1 through 43). Filled circles are results

from bivariate meta-analyses. Empty circles are results from univariate meta-analyses.

θ1 : meta-analysis posterior median for the first outcome; θ2 : meta-analysis poste-

rior median for the second outcome. For topics 1 through 38, those experiencing the

first outcome are a subset of those experiencing the second outcome. For topics 39

through 43, the two outcomes are mutually exclusive. Small ‘x’ markers denote trun-

cated credible intervals. Figure used with permission from: Trikalinos, T. A., Hoaglin,

D. C. & Schmid, C. H. (2014), ‘An empirical comparison of univariate and multivariate

meta-analyses for categorical outcomes’, Statistics in Medicine 33(9), 1441-1459.

Therefore, although generally Trikalinos et al. (2013, 2014) identifiy that multivariate
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meta-analysis has no particular advantage, there are a few examples where the approach

is important for the results and conclusions. This agrees with other examples (outside of

the Trikalinos et al. (2013, 2014) review) where multivariate meta-analysis has shown

to be beneficial (Riley et al. 2007a,b, Hamza et al. 2009, Jones et al. 2009, Jackson

et al. 2011, Kirkham et al. 2012, Riley et al. 2015, Frosi et al. 2015). An example

from The Fibrinogen Studies Collaboration (2009) that contained studies with missing

fully adjusted results was shown in Chapter 1 that studies with missing outcomes

can be included in the multivariate meta-analysis to gain information from partially

adjusted results and thus gain precision in the summary result. In the same way, when

selective outcome reporting is evident, multivariate meta-analysis can be beneficial

to reduce bias in the summary result from the univariate meta-analysis. This was

demonstrated for the prognostic ability of marker p53 for patients with squamous cell

carcinoma in Chapter 1 (Jackson et al. 2011, Tandon et al. 2010). The inclusion of

correlations in multivariate meta-analysis of longitudinal outcomes was important in

an example from Jones et al. (2009) as it considerably changed the summary estimates

and their precision. However, as Trikalinos et al. (2013, 2014) suggest, the concern

is that such interesting examples are generally rare and thus recommending the use

of the multivariate method seems premature. Indeed, multivariate meta-analysis is

also more complicated than univariate meta-analysis due to the need to derive within-

study correlations and estimate between-study correlations. Therefore, it would be

useful to determine (preferably in advance) under which circumstances the utilisation of

multivariate meta-analysis would be beneficial and hence worth the extra requirements

and resources.

3.1.1 Aim of the chapter

Trikalinos et al. (2014) compared the summary effect estimates and their confidence

intervals between the univariate and multivariate meta-analyses. The aim of this chap-

ter is to empirically examine the magnitude of Jackson et al.(2017)’s BoS statistic in

the examples from the Trikalinos et al. (2013, 2014) review, to ascertain whether the
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general recommendation by Trikalinos et al. (2013, 2014) can be attributed to low BoS

values in their cohort of examples, and whether those few examples where multivariate

meta-analysis changes univariate meta-analysis conclusions can be attributed to a large

BoS value. A secondary aim of this chapter is to explore which meta-analysis factors

are associated with the magnitude of BoS values and therefore might highlight studies

where it would be beneficial to utilise multivariate meta-analysis in the future.

This chapter follows with the methods used to compare the univariate and multi-

variate results, and the method for the calculation of the BoS statistic, in the next

section. Then the potential factors associated with the magnitude of the borrowing of

strength statistic are detailed with the method for determining the association.

3.2 Methods

3.2.1 Included meta-analyses for empirical evaluation

There were 45 reviews included in the empirical review by Trikalinos et al. (2013, 2014).

Each review contained at least seven studies that reported both outcomes or at least

half the studies with both outcomes if the total number of studies was greater than

14. Each of the studies satisfying the previous requirement (i.e. at least seven studies

with both outcomes) must have at least 10 patients and at least two events in each

treatment arm. There were two reviews examined by Trikalinos et al. (2013, 2014)

that contained three outcomes and are not considered further here, since the focus in

this chapter will be bivariate models. The remaining 43 reviews were included, and

these contained two outcomes with cross classification tables for the treatment effect.

The relationships between the pairs of outcomes were either mutually exclusive or an

is-subset-of relationship. These two binary outcome relationship types were chosen,

since formulae exist for the calculation of the within-study covariances with these

binary outcome structures for each pair of treatment effect estimates in each study.

The relationship between two binary outcomes named is-subset-of refer to when one
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outcome is contained within the other. For example the number of patients that have

survived with a particular condition at, say, 6 months and a year. The second binary

outcome relationship type, the mutually exclusive relationship, is when the outcomes

are independent of each other and therefore occur separately. An example is death

from breast cancer and death from other causes, excluding breast cancer.

3.2.2 Derivation of treatment effects, within-study variances

and within-study covariances

The data was kindly provided by the original authors (Trikalinos et al. 2013, 2014).

The data for each outcome were contained in 2x2 contingency tables, containing the

frequencies, for each trial. The treatment effect estimates, that is log odds ratio esti-

mates (θ̂j), for each outcome in each study were calculated from the contingency tables

as follows:

θ̂j =logit(p̂t)− logit(p̂c)

=logit

(
xtj
Nt

)
− logit

(
xcj
Nc

)
(3.1)

where xtj is the number of patients with the event in outcome j, in the treatment group,

xcj is the number of patients with the event in the control group in outcome j, Nt is

the number of patients in the treatment group in the study and Nc is the number of

patients in the control group in the study. The variance of the log odds ratio estimate

for each outcome was calculated (Bland & Altman 2000):

σ2
i =

1

xtj
+

1

(Nt− xtj)
+

1

xcj
+

1

(Nc− xcj)
(3.2)

A fixed 0.5 continuity correction was required if any denominator in the equation for

the variance was equal to zero, (Higgins & Green 2008, Sweeting et al. 2004); that is,

if a study had a zero cell in the 2x2 contingency table then 0.5 was added to all cells

for that study. This is a similar approach to that used by the authors in the Trikalinos
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review adopted (Trikalinos et al. 2014).

The bivariate meta-analysis requires the within-study covariances between the out-

comes to be calculated. The calculation for the within-study covariance in a study is

dependent upon the relationship between the outcomes. For the is-subset-of relation-

ship the equation was (Wei & Higgins 2013b):

σ1,2 =
1

Nt
(
xt2
Nt

)(
1− xt1

Nt

) − 1

Nc
(
xc2
Nc

)(
1− xc1

Nc

) (3.3)

For the mutually exclusive relationship, the equation was (Trikalinos & Olkin 2008,

Bagos 2012):

σ1,2 = − 1

Nt
(
1− xt1

Nt

)(
1− xt2

Nt

) − 1

Nc
(
1− xc1

Nc

)(
1− xc2

Nc

) (3.4)

Then the within-study correlation can be calculated from the within-study variances

(equation 3.2) and the within-study covariance (either equation 3.4 or 3.3) using the

equation:

ρws =
σ1,2√
σ2
1

√
σ2
2

(3.5)

In some studies, the within-study correlation was estimated as, 1 or -1, which can

cause issues of singular variance matrices during the multivariate model estimation.

To avoid this issue, Trikalinos et al. (2014) used a ridge-regression approach to shrink

the magnitude of the correlations downwards, to avoid any issues of singular variance

matrices in the model estimation. In this study, the within-study correlations of ±1 are

simply replaced with ±0.99, in order to avoid the issue of singular variance matrices

(Riley et al. 2014).

3.2.3 Derivation of univariate meta-analysis results

Univariate meta-analyses were applied to each meta-analysis study in the Trikalinos

et al. (2013, 2014) dataset, using both the fixed-effect and the random-effects ap-
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proaches. The fixed-effect univariate meta-analysis was modelled by applying the fol-

lowing to each outcome, j, separately:

θ̂ij ∼ N(θj, σ
2
ij) (3.6)

where θ̂ij is the observed log odds ratio estimate for outcome j in study i, θj is the

true log odds ratio for outcome j across all studies in the meta-analysis and σ2
ij is the

within-study variance for outcome j in study i. The random-effects meta-analysis was

modelled using:

θ̂ij ∼ N(θij, σ
2
ij) (3.7)

θij ∼ N(θj, τ
2
j ) (3.8)

where θ̂ij is the observed log odds ratio estimate for outcome j in study i, θij is the true

log odds ratio for outcome j in study i, σ2
ij is the within-study variance for outcome j

in study i, θj is the summary (average) log odds ratio for outcome j across all studies

and τ 2j is the between-study variance for outcome j.

3.2.4 Derivation of bivariate meta-analysis results

Similarly, fixed-effect and a random-effects bivariate meta-analysis were applied to each

meta-analysis in the Trikalinos et al. (2013, 2014) dataset. The bivariate fixed-effect

meta-analysis is given as:

θ̂i1
θ̂i2

 ∼ N


θ1
θ2

 , δi

 , δi =

 σ2
i1 σi(1,2)

σi(1,2) σ2
i2

 (3.9)

where θ̂i1 and θ̂i2 are the observed log odds ratio estimates for outcomes 1 and 2, re-

spectively, θ1 and θ2 are the true log odds ratios for outcome 1 and 2, respectively, and

δi is the within-study covariance matrix for study i. The elements of the lead diago-

nal of the within-study covariance matrix, δi, are the within-study variances, σ2
i1 and

σ2
i2, for outcomes 1 and 2, respectively. The off diagonal element is the within-study
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covariance which is calculated from the within-study variances and the within-study

correlation, σi(1,2) = ρWi
σi1σi2.

The bivariate random-effects meta-analysis that was used is given as:

θ̂i1
θ̂i2

 ∼ N


θi1
θi2

 , δi

 , δi =

 σ2
i1 σi(1,2)

σi(1,2) σ2
i2

 (3.10)

θi1
θi2

 ∼ N


θ1
θ2

 ,Ω

 , Ω =

 τ 21 τ(1,2)

τ(1,2) τ 22

 (3.11)

where Yi1, Yi2 and δi are defined as above, θi1 and θi2 are the true treatment effects

for each outcome for each study i, θ1 and θ2 are the summary (average) treatment

effects for each outcome and Ω is the between-study covariance matrix. The elements

of Ω are the between-study variances and covariance. The between-study variances are

the elements of the lead diagonal, τ 21 and τ 22 , and τ(1,2) is the between-study covari-

ance. The between-study correlation is calculated from the between-study correlation;

τ(1,2) = ρµτ1τ2.

For both univariate and multivariate models, the models were estimated using the

inverse of fisher’s information matrix, which estimates the standard error (s.e.) of the

summary estimate for each outcome (Jackson & Riley 2014). After estimation the 95%

C.I.s for the summary estimate were derived using the following formula:

θ̂j ± 1.96(s.e.) (3.12)

For simplicity, in the univariate and multivariate random-effects no post-estimation

inflation of the variance of the summary effect estimates was used, which is some-

times proposed to account for uncertainty in the estimated between-study variances

(or estimated between-study covariance matrix) (Cornell et al. 2014, Knapp & Hartung

2003).
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3.2.5 Derivation of BoS

The aim of this chapter is to evaluate the magnitude of the BoS statistic for each out-

come in each of the 43 Cochrane reviews. The BoS quantifies the extra precision gained

from using multivariate meta-analysis of both outcomes jointly (and thus utilising their

correlations) rather than a separate univariate meta-analyses (for each outcome inde-

pendently) (Jackson et al. 2017). As mentioned in Section 1.4.8, the BoS statistic for

a particular outcome is given mathematically as:

BoS = 100%×
[
1− var(θ̂mv,j)

var(θ̂uv,j)

]
(3.13)

where θ̂mv,j is the summary effect estimate from the multivariate meta-analysis for

outcome j and θ̂mv,j is the summary effect estimate from the univariate meta-analysis

for outcome j.

The BoS statistic was calculated for each outcome in each meta-analysis in the Trikali-

nos et al. (2013, 2014) dataset, for each of the fixed-effect and random-effects ap-

proaches. The fixed-effect model was fitted using maximum likelihood (ML) estimation.

For the random-effects, two models were fitted; the first used restricted maximum like-

lihood (REML) and the second used a Method of Moments (MM) approach (Jackson

et al. 2010), a non-iterative method which is extended from the Dersimonian and Laird

approach for univariate meta-analyses. This produced a total of three BoS statistics

for each outcome in each meta-analysis (one from ML fixed-effect approach, one from

REML random-effects and one from MM random-effects) in the Trikalinos et al. (2013,

2014) dataset. The distribution of BoS statistics was summarised using descriptive

statistics and also graphically via histograms.

3.2.6 Factors associated with the magnitude of BoS

The second aim of this chapter is to identify meta-analysis level factors that are asso-

ciated with the magnitude of the BoS. The rationale is that the identified factors that
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are associated with affecting the magnitude of BoS might highlight when a multivariate

meta-analysis approach should be considered. The potential factors that were consid-

ered are meta-analysis level factors that were decided upon a priori by the research

team; the meta-analysis level factors were considered, by the research team, potentially

associated with the magnitude of BoS, or were previously suggested to influence the

magnitude of BoS (The Fibrinogen Studies Collaboration 2009, Jackson et al. 2011,

Riley 2009).

• the percentage of studies with missing data for the outcome of interest

• the percentage of studies with missing data across both outcomes

• the number of studies in the meta-analysis

• the number of studies with only the outcome of interest

• the number of studies with both outcomes

• the average within-study correlation for that outcome with others

• the average absolute within-study correlation for that outcome with others

• the maximum within-study correlation for that outcome with others

• the maximum absolute within-study correlation for that outcome with others

Additionally for the random-effects meta-analyses the following meta-analysis level

factors were also considered:

• the between-study correlation for that outcome with others

• the absolute between-study correlation for that outcome with others

• the multivariate between-study variance for both outcomes

• the univariate between-study variance for the outcome of interest

Two approaches that generalised Higgin’s I2 in the multivariate meta-analysis setting

were also considered(Higgins & Thompson 2002, Higgins et al. 2003).
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• White’s I2 statistics, as derived for each outcome using the approach of White

(White 2011).

• Jackson’s I2 statistics, as derived for each outcome using the approach of (Jackson

et al. 2012).

An additional factor, the difference between the univariate and multivariate summary

estimates, was considered to investigate whether the magnitude of the BoS statistic

identified a difference between summary effect estimates. Since the difference in the

summary estimates depend upon clinical context, the difference was divided by the

multivariate standard error for a standardised difference.

Univariable Regression

Univariable regression models were fitted for each of the factors of interest to investigate

the association between the BoS statistic and the factor of interest. For each estima-

tion type (fixed-effect, random-effects MM and REML), there were two BoS statistics

available per meta-analysis (one for each outcome). Since there were two BoS statis-

tics from each meta-analysis, there was concern that the BoS statistics from the same

study may be correlated. To address this, the univariable regression model needed to

account for clustering at the meta-analysis level. Therefore, a mixed-effect multilevel

model was utilised to fit univariable models with BoS as the outcome response. A ran-

dom effect was applied to the intercept and was assumed to be approximately normally

distributed. The following model was fitted in Stata:

BoSij = (γ0 + ui) + γ1(Xij) + eij

eij ∼ N(0, σ2
e)

ui ∼ N(0, σ2
u) (3.14)

where γ0+ui is the random intercept, where γ0 is the fixed mean intercept and ui is the

random component for study i, which is normally distributed with mean 0 and variance

σ2
u, the heterogeneity. γ1 is the effect on the magnitude of BoS for a one unit increase
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in the covariate, Xij. The term, eij, is the random error for outcome j in study i. The

error terms are normally distributed with mean 0 and variance σ2
e , the residual variance.

Sensitivity analysis were undertaken which transformed BoS onto the log scale and

similar findings were shown. Thus, the results are only discussed on the original BoS

scale for ease of interpretation.

3.3 Results

3.3.1 Distribution of BoS statistic

The distribution of BoS statistics from the 43 meta-analyses for the three methods,

(ML fixed-effect, REML random-effects, MM random-effects) are graphically displayed

in histograms in Figures 3.2 and summarised in Table 3.1. For each estimation method,

the distributions of BoS were positively skewed. A large proportion of the BoS statistics

were small, with the largest frequency of BoS statistics in the 0-5% category. However,

there were BoS statistics that were as large as 57.15% (Table 3.1), although as the mag-

nitude of BoS increases, the frequency of results in each category decreases (Figure 3.2).

The summary statistics for BoS were very similar for the three estimation methods.

For example, the median BoS statistics and the inter-quartile ranges (IQR) for the es-

timation methods (ML, REML and MM) were 8.98% (IQR: 2.71% to 20.18%), 11.06%

(IQR: 4.03% to 23.28%) and 8.58% (IQR: 3.83% to 21.98%), respectively. Additionally

for the estimation methods (ML, REML and MM) the corresponding maximum BoS

statistics were 57.15%, 51.40% and 45.78%.
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Figure 3.2: Histograms of the BoS statistics from both outcomes for each estimation

method

Table 3.1: Summary statistics for BoS from each estimation method

ML BoS REML BoS MM BoS

% % %

Minimum 0.049 0.015 0.087

Maximum 57.150 51.402 45.782

Mean 13.193 14.130 12.927

25th Percentile 2.706 4.025 3.826

Median 8.983 11.058 8.584

75th Percentile 20.179 23.276 21.977

The agreement scatter plots (Figures 3.3, 3.4 and 3.5) show the majority of the BoS

values from the meta-analyses agree between two estimation methods. The BoS values
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were more similar between REML and MM (Figure 3.5), than for comparisons with

the fixed-effect approach (Figures 3.3 and 3.4), which was expected given they are both

random-effects estimation methods.

Figure 3.3: Scatter plot of the BoS statistics from REML random-effects meta-analyses

against the BoS statistics from ML fixed-effect meta-analyses

Figure 3.4: Scatter plot of the BoS statistics from MM random-effects meta-analyses

against the BoS statistics from ML fixed-effect meta-analyses
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Figure 3.5: Scatter plot of the BoS statistics from REML random-effects meta-analyses

against the BoS statistics from MM random-effects meta-analyses

3.3.2 Differences between the univariate and multivariate meta-

analyses results

In the majority of meta-analyses, there was very little difference between the univariate

meta-analysis and the multivariate meta-analysis summary estimates and the respec-

tive confidence intervals (Figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 and Figures C.1, C.2, C.3,

C.4, C.5, C.6 in Appendix C.1). This corresponds with the review by Trikalinos et al.

(2013, 2014) who concluded that in the majority of cases any numerical differences were

often small. This was irrespective of the estimation method used in the meta-analysis.
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Figure 3.6: Comparison of the univariate and multivariate meta-analysis results on the

log odds ratio scale for outcome one from the fixed-effect meta-analysis ordered by the

BoS statistic
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Figure 3.7: Comparison of the univariate and multivariate meta-analysis results on the

log odds ratio scale for outcome two from the fixed-effect meta-analysis ordered by the

BoS statistic
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Figure 3.8: Comparison of the univariate and multivariate meta-analysis results on

the log odds ratio scale for outcome one from the REML random-effects meta-analysis

ordered by the BoS statistic
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Figure 3.9: Comparison of the univariate and multivariate meta-analysis results on

the log odds ratio scale for outcome two from the REML random-effects meta-analysis

ordered by the BoS statistic
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Figure 3.10: Comparison of the univariate and multivariate meta-analysis results on

the log odds ratio scale for outcome one from the MM random-effects meta-analysis

ordered by the BoS statistic
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Figure 3.11: Comparison of the univariate and multivariate meta-analysis results on

the log odds ratio scale for outcome two from the MM random-effects meta-analysis

ordered by the BoS statistic
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However, there are examples of meta-analyses where important differences between the

univariate and multivariate meta-analysis results arose. In these meta-analyses changes

in summary estimates and/or changes in confidence intervals were observed. An exam-

ple of a change in summary estimate is from outcome one in meta-analysis 18 (Figures

3.6, 3.8, 3.10) regardless of estimation method. For example for the fixed-effect esti-

mation, the summary log odds ratio was -1.03 from the univariate meta-analysis and

-0.85 from the multivariate meta-analysis. In this example, the univariate summary

log odds ratio for outcome one has a larger difference between the treatment groups

compared to the multivariate summary log odds ratio.

For a noticeable change in the confidence interval, an example is meta-analysis six

for outcome one. The summary log odds ratio was approximately the same for all esti-

mation methods at -0.07 for the univariate meta-analysis and -0.08 for the multivariate

meta-analysis. However, the confidence interval was narrower for the multivariate (95%

C.I. -0.46 to 0.29 for MM) compared to the univariate meta-analysis (95% C.I.: -0.52

to 0.38).

Alongside the previous changes, a change in statistical significance sometimes occurs.

An example is in meta-analysis 38 for outcome one, where the statistical significance

changed between the univariate and the multivariate meta-analyses for all estimation

methods. For example, for the REML estimation method the univariate result was

-0.39 (95% C.I.: -0.81 to 0.03) with a p-value of 0.068 and the multivariate result was

-0.42 (95% C.I.: -0.71 to -0.12) with a p-value of 0.005. In this example, there was only

a statistically significant result in the multivariate meta-analysis and the conclusion of

a beneficial treatment effect is much stronger from the multivariate meta-analysis.
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3.3.3 Is the magnitude of BoS associated with difference be-

tween univariate and multivariate meta-analysis?

For each estimation method for small values of the BoS statistics, the results for the

univariate and the multivariate meta-analyses were similar. For example, in meta-

analysis 26 for outcome two, from the REML estimation method, the BoS was 1.2%

and the univariate and multivariate results were -0.64 (95% C.I.: -0.81 to -0.47).

Additionally, generally when the BoS statistic was larger there were greater differ-

ences between univariate meta-analysis and multivariate meta-analysis results, than

compared to when BoS was smaller. Meta-analyses 38 for outcome one (results in

Section 3.3.2) and 35 for outcome one were examples where differences between the

univariate and multivariate meta-analysis results were observed. The BoS statistics in

these examples were large, at 33.5% (meta-analysis 35) and 51.4% (meta-analysis 38)

from the REML estimation method. In both these meta-analyses, the statistical signif-

icance changed between the univariate and the multivariate results. For meta-analysis

35, the p-value from the univariate meta-analysis was 0.209 (summary log OR: -0.22,

95% C.I.: -0.56 to 0.12) which is not statistically significant, whereas the p-value for

the multivariate meta-analysis was 0.004 (summary log OR: -0.41, 95% C.I.: -0.69 to

-0.13), which is statistically significant.

When the BoS was large, the magnitude of the summary effect and the width of

the confidence interval was also observed to change between the univariate and the

multivariate results. For example, outcome two from meta-analysis 26 had a BoS value

of 57.2% from the ML fixed-effect estimation method. The summary univariate and

multivariate estimates were very different in magnitude at -1.22 and -0.81, respectively;

this may be clinically important. There were also large differences in the width of their

95% confidence intervals from the univariate and multivariate meta-analyses, -1.33 to

-1.11 and -0.88 to -0.73, respectively. Although in this example there was no change in

the statistical significance between the univariate and multivariate results, there were
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potentially important clinical differences relating to the summary effect estimates.

In some examples there were large changes in the magnitude of the summary esti-

mates between the univariate and multivariate, although this did not necessarily result

in a large BoS statistic as one might have expected. For example, outcome one from

meta-analysis 32 from the REML estimation method there was a large difference in the

magnitude of the summary estimates from the univariate and the multivariate results,

-0.45 and -0.63, respectively; however the BoS statistic was only 12.2%.

3.3.4 Factors associated with the magnitude of BoS

The factors listed in Section 3.2.6 identified by the research team as potentially associ-

ated with the magnitude of the BoS statistic were examined using univariable regression

and the results are shown in Tables 3.2, 3.3 and 3.4 for fixed-effect, REML and MM

estimation methods, respectively. The results from the univariable regressions for ev-

ery potential factor were similar between the three estimation methods. All the factors

for fixed-effect were statistically significantly associated with the BoS statistic. For

REML and MM, the between-study variance (τ 2) and I2 were not statistically signif-

icantly associated with the BoS statistic. Additionally for REML, the between-study

correlation was not statistically significant, which was surprising but perhaps reflects

a lack of power, as the confidence interval was wide.
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Number of studies

For the number of studies in the meta-analysis from the fixed-effect estimation method,

there was an increase of 0.19% (95% C.I.: 0.09% to 0.29%) in the magnitude of BoS

for each additional study included in the meta-analysis (Table 3.2). In other words, for

every five additional studies the BoS value increases by 1%. In the REML estimation

method, for approximately every six additional studies the BoS value increased by

1% (increase per study, REML: 0.17%, 95% C.I.: 0.08% to 0.26% (Table 3.3)). From

Figure 3.12, it can be seen that the majority of meta-analysis studies had less than

50 studies, with the largest concentration around 20 studies. An upward trend such

that as the number of studies in the meta-analysis increases the BoS also increases is

apparent in Figure 3.12.

Figure 3.12: Scatter of BoS statistics from REML against the number of studies in the

meta-analysis

Percentage of missing data

The percentage of missing data for the outcome of interest and the percentage of missing

data across both outcomes were important factors associated with the magnitude of
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BoS. Generalising across all estimation methods, for a 1% increase in missing data (for

either percentage of missing data across both outcomes or for the outcome of interest)

there was a 0.5% increase in the BoS. For example, considering the BoS statistics

derived from the REML meta-analysis, the BoS statistic increased by 0.54% (95% C.I.:

0.31% to 0.76%) for an increase of 1% in the percentage of missing data for both

outcomes (Table 3.3, Figure 3.13). A similar result was found for the percentage of

missing data for the outcome of interest (0.55%, 95% C.I.: 0.43% to 0.67%)(Table

3.3, Figure 3.14). Upward trends are evident in both Figures 3.13 and 3.14, although

a trend is more prominent in Figure 3.14 for the percentage of missing data for the

outcome of interest, which is sensible as an outcome is more likely to gain information

from other outcomes when it is missing in more studies.

Figure 3.13: Scatter of BoS statistics from REML against the percentage of missing

data for both outcomes
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Figure 3.14: Scatter of BoS statistics from REML against the percentage of missing

data for the outcome of interest

Within-study correlation

The magnitude of the within-study correlation was also associated with the magnitude

of the BoS statistic. The magnitude of the association differed slightly between the

fixed-effect and the random-effects meta-analyses (Tables 3.2, 3.3 and 3.4). For the

fixed-effect meta-analysis, an increase of one in the average absolute within-study cor-

relation resulted in an increase of 28.37% (95% C.I.: 14.37% to 42.35%) in the BoS

statistic (Table 3.2). However, in the random-effects meta-analysis estimated using

REML the BoS statistic only increases by 23.13% (95% C.I.: 10.07% to 36.20%) for

an increase of one in the within-study correlation (Table 3.3). From Figure 3.15, there

appears to be an association between the BoS statistic and the average absolute within-

study correlation. It is unclear from the scatter graph whether the magnitude of the

BoS statistic is bounded according to the magnitude of the average absolute within-

study correlation. However, from the scatter plot it appears that it is unlikely for the

BoS statistic to be large if the average absolute within-study correlation is small.
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Figure 3.15: Scatter of BoS statistics from REML against the average absolute within-

study correlation

Between-study correlation

The absolute between-study correlation was only calculated for the random-effects

meta-analyses. For the REML and MM meta-analyses, there was no strong evidence

of an association between the magnitude of the BoS statistic and the absolute between-

study correlation. However for the MM meta-analyses, there was a statistically sig-

nificant association between the magnitude of BoS and the between-study correlation

(Table 3.4). For example, for an increase of 1 in the between-study correlation, the

magnitude of BoS increases by 2.78% (95% C.I.: 0.8% to 5.47%), which is quite a small

increase.

The lack of clear evidence for a relationship between BoS and the between-study cor-

relation is likely due to a lack of power, due to the low variability of the estimate

of between-study correlation. In Figure 3.16, the majority of absolute between-study

correlations for the meta-analyses were estimated with magnitude one, which makes

94



it difficult to see an association between the absolute between-study correlation and

the BoS statistic. Additionally, this shows that the between-study correlation often

encounters estimation problems.

Figure 3.16: Scatter of BoS statistics from REML against the absolute between-study

correlation

White’s and Jackson’s I2

The distributions of White’s I2 and Jackson’s I2 differed between the meta-analyses

estimated using REML and MM (Figure 3.17). For White’s I2 statistic, a large per-

centage of meta-analyses, for each estimation method, had very small I2 statistics that

were less than 5% (Figure 3.17a and b). For each 5% increment of I2 values between

5% and 80% there were far fewer corresponding meta-analysis. The largest value of

White’s I2 was 79.5% for REML and 75.1% for MM.

Jackson’s I2 also had its largest proportion of meta-analyses between 0% and 5% (Fig-

ure 3.17c and d). However, the proportion was not as large as that of White’s I2 (Figure

3.17a and b) and the largest values of Jackson’s I2 were not as large, 69.1% for REML
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and 64.1% for MM.

Figure 3.17: Histograms of the magnitude of the Jackson’s and White’s I2 statistics for

REML and MM meta-analyses

There was no statistically significant evidence to suggest an association between White’s

I2 or Jackson’s I2 and the magnitude of BoS (Tables 3.3 and 3.4). For example, for

Jackson’s I2 statistic from the REML meta-analyses for an increase of one in the I2

statistic there was an increase of 0.04% (95% C.I.: -0.10% to 0.18%) in the BoS statis-

tic. Visually, this can be explored through the scatter plots for White’s I2 (Figures

3.18 and 3.19) and Jackson’s I2 (Figures 3.20 and 3.21).
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Figure 3.18: Scatter plot of the BoS statistics against White’s I2 for both outcomes

from the REML random-effects meta-analyses

Figure 3.19: Scatter plot of the BoS statistics against White’s I2 for both outcomes

from the MM random-effects meta-analyses
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Figure 3.20: Scatter plot of the BoS statistics against Jackson’s I2 for both outcomes

from the REML random-effects meta-analyses

Figure 3.21: Scatter plot of the BoS statistics against Jackson’s I2 for both outcomes

from the MM random-effects meta-analyses
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Multivariate and Univariate between-study variance

The relationship between the BoS statistic and the estimated between-study variance

was explored using scatter plots. Figures 3.22, 3.23, 3.24 and 3.25 suggest that, for

either REML, MM, univariate or multivariate analyses, the estimated between-study

variance did not appear to show any association with the BoS statistic. There was

no evidence from the univariable regressions of an association between the univariate

or the multivariate between-study variance and the magnitude of the BoS statistic,

irrespective of random-effects estimation method (Tables 3.3 and 3.4). For example,

for an increase of one in the multivariate between-study variance the BoS statistic from

the REML meta-analyses increased by 6.64% (95% C.I.: -8.62 to 21.89). From the MM

meta-analyses, an increase of one in the multivariate between-study variance the BoS

statistic increased by 3.75% (95% C.I.: -11.02 to 18.53).

Figure 3.22: Scatter plot of the BoS statistics against the univariate between-study

variance from the REML random-effects meta-analyses
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Figure 3.23: Scatter plot of the BoS statistics against the univariate between-study

variance from the MM random-effects meta-analyses

Figure 3.24: Scatter plot of the BoS statistics against the multivariate between-study

variance from the REML random-effects meta-analyses
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Figure 3.25: Scatter plot of the BoS statistics against the multivariate between-study

variance from the MM random-effects meta-analyses

3.3.5 Example Revisited

In section 3.3.3, a few example meta-analyses from the Trikalinos et al. (2014) review

were discussed due to their relationship between the univariate and multivariate results

and the magnitude of BoS. In particular, outcome one from meta-analysis 38 was

interesting, since there was a statistically important difference between the univariate

and the multivariate meta-analysis results. For the REML meta-analysis, the univariate

results were -0.39 (95% C.I.: -0.81 to 0.03) and the multivariate results were -0.42

(95% C.I.: -0.71 to -0.12). The point estimates are similar between the univariate and

the multivariate, however different conclusions could be drawn from the confidence

intervals. The confidence interval for the multivariate results is narrower due to the

gain in precision and this corresponds to a large BoS statistic, 51.4%. Through the

exploration of meta-analysis level characteristics that have been shown, in this section,

to be associated with the magnitude of BoS, can the large BoS statistic in this example

be understood further? Specifically from the number of studies, percentage of missing
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data and the magnitude of the within-study correlation, the magnitude of the BoS can

be understood since in this meta-analysis all these meta-analysis level characteristics

were large. The number of studies included in the meta-analysis was 26. There was also

54% missing data for the outcome of interest and the average absolute within-study

correlation was 0.9. Thus, it is perhaps not a surprise that, in this example, the BoS

was large, given all the key factors that increase BoS were large.

3.3.6 Difference between the univariate and multivariate sum-

mary estimates divided by the standard error and its

association with the BoS statistic

The borrowing of strength (BoS) statistic quantifies the gain in precision from a mul-

tivariate meta-analysis compared to a univariate meta-analysis for the outcome of in-

terest. Therefore, the magnitude of the BoS statistic can assist in identifying when

confidence intervals for multivariate meta-analyses are more precise than univariate

meta-analyses. However, it is unclear whether the BoS statistic would also identify

changes between the univariate and multivariate summary estimates. As a method of

assessing this, the difference between the summary estimates for univariate and multi-

variate meta-analyses was calculated and divided by the multivariate standard error;

this is referred to as the ‘difference statistic’ from this point.

The difference statistic was associated with the magnitude of BoS from the fixed-effect

and random-effects meta-analyses. For example, an increase of one in the effect size

(the difference divided by the standard error), the BoS statistic increased by 2.07%

(95% C.I.: 0.18% to 3.96%) (Tables 3.5 and C.4). However, for the REML and MM

meta-analyses, the difference statistic was not associated with the magnitude of the

BoS statistic. For example, for an increase of one in the difference statistic the BoS

increased by -0.44% (95% C.I.: -3.88% to 3.01%, p-value: 0.804) for the MM meta-

analyses and by 0.40% (95% C.I.: -3.05% to 3.85%, p-value: 0.820) for the REML

meta-analyses. This suggests that although BoS reflects gain in precision, it may not
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relate to change in summary estimate.

Table 3.5: Table of univariable results for the difference between the univariate and

multivariate summary estimates divided by the standard error for each estimation

method

Estimation Effect of difference statistic on BoS

Method Coef. S.E. p-value 95% C.I.

Fixed-effect 2.071 0.964 0.032 0.1825 to 3.960

REML 0.401 1.759 0.820 -3.046 to 3.848

MM -0.435 1.757 0.804 -3.878 to 3.008

3.4 Discussion

This chapter empirically examined the differences between univariate and multivari-

ate summary effect estimates and 95% confidence intervals from 43 Cochrane reviews

containing two binary outcomes of interest, with the magnitude of the BoS statistic

(Trikalinos et al. 2013, 2014). The aim of this chapter was to analyse whether the

magnitude of BoS identified differences between the univariate and multivariate meta-

analysis results. Following, meta-analysis level factors were analysed univariably to

determine whether there was an unadjusted association with the magnitude of BoS.

The key findings from this chapter are summarised in Figure 3.26.

Figure 3.26: Key findings

Key Findings:

• When BoS was small, the differences between the univariate and the mul-

tivariate summary estimates and confidence intervals tended to be small.

• When BoS was large, there was a gain in precision, thus narrower confidence

intervals and sometimes a change in statistical significance.

103



• The majority of meta-analysis level factors analysed using univariable

mixed-effect multilevel models were associated with the magnitude of BoS:

number of studies in the meta-analysis, percentage of missing data across

both outcomes, percentage of missing data for the outcome of interest, the

number of studies with the outcome of interest and number of studies with

both outcomes and the within-study correlation (average and maximum).

• The meta-analysis level factors that were not associated with the magnitude

of BoS were the I2 statistics, between-study variance values and often the

measures of the between-study correlation were not associated.

• The difference in summary estimates between the univariate and the mul-

tivariate was not associated with the magnitude of the BoS. This suggests

that although BoS reflects gain in precision, it may not reflect changes in

the summary estimates.

In the majority of meta-analysis studies, the summary estimates and the confidence

intervals did not differ between the univariate and the multivariate meta-analyses

(Trikalinos et al. 2013, 2014). However, there were meta-analysis studies with clini-

cally and/or statistically important differences between the univariate and multivariate

meta-analysis results. This motivated research into the comparison between the results

and the magnitude of the BoS statistic.

A key finding from this chapter was that in the majority of situations where the BoS

statistic was large, greater differences between the univariate and multivariate results

were observed compared to when BoS was small. The types of differences included

differences in statistical significance, differences in width of confidence intervals and

differences in the confidence intervals values. Note that these were only observed in

particular meta-analyses with large BoS, not all meta-analyses with large BoS. Often

when BoS was large, the confidence intervals were narrower for the multivariate than

the univariate meta-analysis, which was expected due to the additional information
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included in a multivariate meta-analysis.

There were many factors that were associated with the magnitude of the BoS statistic.

The percentage of missing data across all outcomes was associated with the magnitude

of BoS, since the greater the quantity of missing data the greater the opportunities

for borrowing strength between outcomes will occur. Similarly, Riley et al. (2007a)

discussed that borrowing strength when there is missing data is advantageous in pro-

viding smaller standard errors in the bivariate meta-analysis compared to the univariate

meta-analysis. The percentage of missing data for the outcome of interest and the ab-

solute within-study correlation were also highly associated with the magnitude of BoS.

Likewise, Riley (2009) discussed ignoring the within-study correlation reduces the bor-

rowing strength.

In contrast, there were meta-analysis level factors that were not associated with the

magnitude of the BoS statistic. These included the absolute between-study correlation,

I2 statistics and the between-study variances. The between-study correlation is addi-

tional information that is utilised in the multivariate meta-analysis that is not utilised

in the univariate meta-analysis, so it was expected that there would be a relationship

between BoS and the between-study correlation. However, there was no evidence of

any association with the BoS statistic. This may be due to low power in identifying

an association since the absolute between-study correlation was one in the majority of

meta-analyses in the review. Perhaps the key reason is that the between-study corre-

lation is often poorly estimated at -1 or 1 and as a result the absolute between-study

correlation does not vary importantly across meta-analyses.

In Section 3.3.6, the difference between the univariate and the multivariate summary

estimates divided by the multivariate standard error was used to investigate the as-

sociation between the difference in summary estimates and the magnitude of the BoS

statistic. There was no evidence to suggest an association between the difference in
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effect sizes and the magnitude of the BoS statistic for the random-effects estimation

methods. In the fixed-effect setting there was evidence that there may be an asso-

ciation, although only a weak association. Therefore, it was concluded that the BoS

statistic does not detect changes in the effect sizes well for the random-effects meta-

analyses but it appears to be able to detect changes in the standard error and therefore

the width of the confidence intervals.

3.4.1 Limitations and further work

The BoS statistic is calculated during a meta-analysis. If the BoS statistic is recom-

mended to be used to identify settings where a multivariate meta-analysis is beneficial

over a univariate meta-analysis, the calculation of BoS during analysis will be a limita-

tion. Therefore, for further research it is a priority to investigate whether the BoS can

be predicted accurately in advance of the application of meta-analysis (see Chapter 4).

A limitation of this chapter was the quantity of data used to compare the univariate

and multivariate results was limited. There were only 43 Cochrane reviews included.

The studies also only had two outcomes of interest, which were either mutually exclu-

sive or one was a subset of the other. Therefore the settings reflect a narrow range of

multivariate meta-analysis applications.

The standard errors were calculated without accounting for the uncertainty in the

estimation of the between-study variances and covariances. This provided narrow con-

fidence intervals which could be adjusted in practice using the Hartung-Knapp correc-

tion (Hartung & Knapp 2001a,b, Knapp & Hartung 2003). An additional limitation of

this chapter is it is unclear whether or not the results are directly applicable to other

settings, such as continuous or survival outcomes, and this requires further work to

explore these findings in data with these outcomes.

The findings from this chapter should be investigated in different data. The BoS
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statistic should be compared with differences in univariate and multivariate results

from meta-analyses with greater than two outcomes. Additionally, further research

should be undertaken to determine whether the between-study correlation is associ-

ated with the magnitude of BoS in data with more power to detect an association.

The BoS appeared to identify differences between the univariate and the multivari-

ate results in the majority of meta-analyses. However, there were some studies where

the BoS was found to be quite small and the differences between the univariate and the

multivariate were great. This was especially noted for meta-analyses when the sum-

mary estimates differed between the univariate and the multivariate results, but the

width of the confidence intervals did not differ. However, there was little evidence to

suggest that BoS increases when there are larger differences in the summary estimates

between the univariate and multivariate meta-analyses. There needs to be further

work done to determine whether there exists a statistic/measure that is associated

with changes in the summary estimate, not just precision.

Next steps

The next chapter investigates whether the BoS statistic can be predicted from meta-

analysis level characteristics. Multivariable models are developed to predict the mag-

nitude of BoS in bivariate meta-analysis.
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Chapter 4

Development of a multivariable
model to predict the magnitude of
Borrowing of Strength in bivariate
meta-analysis

4.1 Background and aims

In Chapter 3, the differences between the univariate and multivariate results from 43 bi-

variate meta-analyses were compared alongside their respective Borrowing of Strength

(BoS) statistics. In the majority of the meta-analyses, the univariate and multivariate

results were the same. However, in some examples statistically and/or potentially clin-

ically important differences between the results were observed. Furthermore, the BoS

statistic was often quite high in these situations.

Following this, the characteristics of the meta-analyses were used to investigate the as-

sociation between a single characteristic and the magnitude of the BoS statistic. A large

proportion of the characteristics were found to be highly associated with the magnitude

of the BoS statistic. However, the question remains: when should researchers (e.g. for

Cochrane) utilise a multivariate over a univariate approach to meta-analysis? It is

not sensible to suggest that multivariate meta-analysis should be used routinely, since

generally there is little difference in the results between the two approaches (Trikalinos

et al. 2014). However, multivariate meta-analysis should also not be disregarded, in
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some situations potentially important differences occur as shown in the previous chap-

ter.

In this chapter, a multivariable model containing multiple predictors (characteristics of

the meta-analyses) is developed, with the intention that it will predict the magnitude

of BoS in a new meta-analysis dataset. The objective is to identify the most important

predictors (from those considered in Chapter 3) of large BoS. These can then be used in

combination to help identify situations in the future where multivariate meta-analyses

are most likely to be beneficial to Cochrane reviews of binary outcomes over and above

univariate meta-analyses. The focus is on predicting BoS as quantified by the BoS

statistic proposed by Jackson et al. (2017), which corresponds to the relative reduction

in the variance of the summary estimate for multivariate meta-analysis compared to

univariate meta-analysis, as defined in the introduction (Section 1.4.8). Therefore, the

developed model aims to identify situations where the gain in precision from a multi-

variate meta-analysis is large compared to the univariate. The methods for the chapter

are described in Section 4.2 and the models derived for predicting BoS are described

in Section 4.3, followed by illustration of their potential use to Cochrane reviews in

Section 4.3.5.

4.2 Methods for the development of BoS prediction

models

4.2.1 Data and choice of candidate predictors

To develop the prediction model, this chapter utilises the data from Chapter 3. Re-

call this data contained a BoS statistic for each outcome from 43 bivariate meta-

analyses fitted using a particular estimation method (e.g. restricted maximum likeli-

hood (REML)), as well as all the candidate predictors. Thus, there were 86 observa-

tions (two BoS statistics from each of the 43 meta-analyses) and these were used as the
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response data in the linear regression models that included predictors of BoS as covari-

ates. Separate models were considered for predicting BoS from bivariate fixed-effect

meta-analysis estimated using ordinary maximum likelihood (ML) and from bivariate

random-effects meta-analysis estimated using REML. Note, in this chapter the method

of moments (MM) estimation method is not considered, since the univariable regression

results were similar. Furthermore, REML is generally the preferred estimation method

(Viechtbauer 2005, Novianti et al. 2014, Langan et al. 2019).

The following were the characteristics of bivariate meta-analyses that were investigated

as the candidate predictors for BoS:

• the percentage of studies with missing data for the outcome of interest,

• the percentage of studies with missing data across both outcomes,

• the number of studies in the meta-analysis,

• the number of studies with the outcome of interest,

• the number of studies with both outcomes.

• the maximum absolute within-study correlation between the effect sizes for both

outcomes,

• the average absolute within-study correlation between the effect sizes for both

outcomes.

In addition, just for predicting BoS from a bivariate random-effects meta-analysis the

following characteristics were, also, considered as candidate predictors:

• the absolute between-study correlation between the true effect sizes across trials

for both outcomes,

• White’s I2 statistics, as derived for each outcome using the approach of White

(2011),
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• Jackson’s I2 statistics, as derived for each outcome using the approach of Jackson

et al. (2012),

• the multivariate between-study variance for the outcome of interest,

• the univariate between-study variance for the outcome of interest.

In total, when the BoS was derived using a fixed-effect bivariate meta-analysis, there

were seven candidate predictors and there were 12 candidate predictors when the BoS

was derived from the bivariate random-effects meta-analysis (REML). Since there were

86 observations of BoS, there were 12.3 subjects per variable for fixed-effect and 7.2

subjects per variable for random-effects.

4.2.2 Procedure to obtain fitted prediction models for BoS

Full multivariable models

In Chapter 3, univariable multi-level linear regression models were used to investigate

the unadjusted association between the candidate predictors (listed in previous sec-

tion) and the magnitude of BoS. In the univariable models, a random intercept was

used to account for the clustering of BoS observations in each bivariate meta-analysis.

However, in almost all the univariable models the variability in the intercept was zero,

thus the heterogeneity between the BoS observations was very small and unimportant

to account for (Tables C.1, C.2 and C.3 in Appendix C.2). Therefore, in this chapter,

it is assumed that the 86 BoS observations were independent and multivariable linear

regression models were used to further investigate the candidate predictors.

In the first instance, multivariable linear regression models containing all the can-

didate predictors (forcing them all to be included, regardless of statistical significance)

were fitted for the fixed-effect and random-effects BoS statistics. The dependent vari-

able was modelled as BoS, although log BoS was considered to see if the normality of

errors was more suitable. However, there was little benefit identified in transforming

BoS, and BoS scale is more meaningful for those using the model. The equation for
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the multivariable linear regression model for BoS is:

BoSij = γ0 + γ1X1 + γ2X2 + ...+ γpXp (4.1)

where γ0 is the intercept, γi are the regression coefficients for the candidate predictors

(i = 1...p for p candidate predictors) and Xi are the candidate predictors. Only linear

trends were considered for continuous predictors. The performance of the models was

summarised using the R2 statistic, which is the percentage of total variability between

the observations (the BoS values) in the data that is described by the fitted model.

Backwards Selected Multivariable Model

For a model to be applied in practice (e.g. by Cochrane reviewers), a parsimonious

model is more desirable than a full model. A parsimonious model should contain as

few predictors as necessary whilst maintaining explanatory power (i.e. maintaining an

acceptable R2 value). Therefore, in addition to fitting full models, containing all of

the candidate predictors, reduced multivariable models were obtained. A backwards

selection/elimination procedure was utilised, which only kept covariates in the model

if the association with the magnitude of BoS was statistically significant. The back-

wards selection procedure starts with the full model. The predictor with the largest

p-value that is also greater than a predefined value (in this chapter p=0.1 was used) is

removed from the model. The resulting model is refitted to the data and the process

of identifying and removing the predictor with the largest p-value is repeated. This

process is repeated until the model contains only covariates with p-values less than the

predefined value (p≤ 0.1). The resulting model is the backwards selected multivariable

model.

Observed BoS and Predicted BoS plots

The observed BoS values were plotted against the predicted BoS values, so that the

prediction could be empirically examined. There were some BoS values that were

predicted to be below 0%, since the models were not bounded; the values that were
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predicted to be below 0% were truncated at zero.

Model assumptions checking

For all fitted models, the assumption of constant variance of residual errors and the

assumption of normally distributed residual variances were checked (Appendix D.1).

To check the assumption of constant variance of residual errors the studentised residuals

and the fitted values of BoS were plotted against one another in a scatter plot (Figure

D.1 in Appendix D.1). For the normality of the residuals, a normal probability plot

was utilised with the standardised residuals (Figure D.2 in Appendix D.1).

Exploratory analysis

Further exploratory analysis was conducted to consider select interactions. To min-

imise the effect of overfitting due to large number of variables, interactions with the

absolute between-study correlation and the average absolute within-study correlations

were chosen. The methods and results for the exploratory analysis are provided in

Appendix D.2).

4.2.3 Shrinkage and optimism

Shrinkage

A prediction model that was developed to fit a sample dataset will predict well for

that sample data (Copas 1983, Steyerberg 2008). As a consequence, it is known that

prediction models are often overly optimistic when fitted to a new dataset. Thus, the

model predictions in this new dataset are unlikely to be as accurate. To improve the

predictions from the developed models in this chapter a uniform shrinkage method was

applied, which calculates a shrinkage factor and applies it to the estimated coefficients,

γ̂i, of the included predictors, Xi, of the prediction model. The shrinkage factor can be

calculated between zero and one, and thus the shrinkage factor shrinks the coefficients

towards zero.
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The uniform shrinkage factor was calculated and applied using the following steps:

1. Sample with replacement the observations from the original dataset, to generate

a bootstrap sample with the same number of observations as the original data.

2. Develop a new model in the bootstrap data using the same model development

strategy as the original model (e.g. linear regression, backwards selection, see

Section 4.2.2)

3. Using the newly developed model (from step two), predict the BoS statistic for

the original data.

4. Estimate the calibration slope, by modelling the observed BoS as a function of

the predicted BoS statistic:

observed BoS = α + φ ∗ predicted BoS (4.2)

where φ is the calibration slope.

5. Repeat steps one to four, 1000 times, to obtain 1000 estimates of the calibration

slope, φ.

6. Calculate the average calibration slope, which is the uniform shrinkage factor, Φ.

7. Adjust the original model (i.e. as developed in the original data) using the shrink-

age factor by multiplying the coefficients in the model by the uniform shrinkage

factor, Φ.

8. Re-estimate the intercept whilst holding fixed the revised predictor effects, to

provide the shrinkage adjusted model.

Optimism

The R2 measure of model performance is often overly optimistic when the model is

fitted to a new dataset (Steyerberg 2008). The percentage of variability the model
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explains will likely be lower in a new dataset (compared to the dataset used to develop

the model). For a more realistic R2, the optimism can be calculated and the R2 can

be adjusted by the optimism.

The optimistic-adjusted R2 was obtained through a bootstrap procedure, as follows:

1. The original data was sampled with replacement to generate a bootstrap sample

which contained the same number of observations as the original data.

2. Develop a new model in the bootstrap sample, using the same model development

strategy as the original model (e.g. linear regression, backwards selection, see

Section 4.2.2)

3. Calculate the R2 of the developed model in the bootstrap data. This is denoted

as the Bootstrap R2.

4. Using the original data fit the newly developed model (from step two), and cal-

culate the R2 (denoted as the Tested R2).

5. Calculate the optimism as the difference between the R2 from the bootstrap data

(Bootstrap R2) and the R2 from the original data (Tested R2).

6. Repeat steps one to five 1000 times, for 1000 Bootstrap R2, 1000 Tested R2 values

and 1000 optimisms (the difference between the Bootstrap R2 and the Tested R2.

7. Calculate the average optimism.

8. Take the average optimism (calculated in the previous step) away from the ap-

parent R2 (the R2 from the original model fitted to the original data) to obtain

the optimistic-adjusted R2.
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4.2.4 Application of the developed model to a selection of

examples

Cochrane reviews

The final models were applied to two Cochrane reviews, which were not included in

the Trikalinos et al. (2013, 2014) dataset, but are similar in setting. The reviews were

both published after the review by Trikalinos et al. (2013, 2014). The reviews were

chosen using the same inclusion and exclusion criteria as the Trikalinos et al. (2013,

2014) review (Section 3.2.1). Additionally, reviews were excluded if they were included

in the Trikalinos et al. (2013, 2014) review (even if they have since been updated). The

Cochrane database was searched for published Cochrane reviews starting from Issue

5, 2017 and working backwards in time. The search was stopped when two Cochrane

reviews which had two correlated outcomes and satisfied the inclusion criteria were

identified.

The two correlated outcomes were chosen if they were either mutually exclusive or

one outcome was a subset of the other. The reviews were required to contain at least

seven studies with both outcome with at least 10 participants and at least two events

in each treatment arm.

Further examples

In addition to applying the model to Cochrane reviews, further examples were chosen

outside the context of Cochrane reviews that were used to derive the prediction models.

These examples provide settings for us to study the performance of the models outside

of the setting they were developed in.

The real studies from Chapter 1 that were considered were the 10 hypertension trials

(Riley et al. 2015, Wang et al. 2005), the Fibrinogen study (Jackson et al. 2013) and

the p53 study (Tandon et al. 2010, Jackson et al. 2011). There were four outcomes of
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interest in the hypertension study, but only two outcomes of interest in the Fibrinogen

and the p53 studies.

4.3 Results

4.3.1 Fitted models before adjustment for overfitting

The fitted full models and the backwards selected models for the BoS observations

derived from the fixed-effect and random-effects bivariate meta-analyses are provided

in Table 4.1. The most important statistically significant predictors in all the models

were the maximum absolute within-study correlation, the percentage of missing data for

the outcome of interest, and the number of studies in the meta-analysis. For example,

from the full model for BoS estimated using the random-effects bivariate meta-analyses

and after adjustment for other variables, there was an increase of 42.06% (95% C.I.:

21.90% to 62.21%, p<0.001) in BoS for an increase of one in the maximum absolute

within-study correlation. A one percent increase in missing data for the outcome of

interest resulted in a 0.47% (95% C.I.: 0.24% to 0.69%, p<0.001) increase in BoS. For

the number of studies in a meta-analysis, an increase of one study increased BoS by

0.67% (95% C.I.: 0.19% to 1.14%, p=0.007).
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The apparent R2 values for the models range from 0.57 to 0.65 (Table 4.1), thus a large

proportion of the variation in the set of observations is accounted for by the models.

The apparent R2 values were similar between the full model and the backwards selected

model for each meta-analysis estimation method. For example, for the random-effects

meta-analysis, the R2 for the full model and backwards selected model was 0.65 and

0.64, respectively. The full and backwards selected models for the random-effects meta-

analyses accounted for a greater quantity of variability (apparent R2: 0.65 and 0.64,

respectively) than the models for the fixed-effect meta-analyses (apparent R2: 0.58 and

0.57, respectively).

From Figure 4.1, which displays the plots of the observed BoS against the predicted

BoS, it was observed that generally there was good agreement. This is expected, as the

models are fitted to this data, and so calibration will be perfect (i.e. calibration slope

of 1). The predicted BoS statistic increased as the observed BoS statistics increased.

Although in each graph there are many observations that lie on or close to the line

that represents perfect prediction, there are many that are at a distance from the line.
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Figure 4.1: Scatter plots of the observed BoS against the predicted BoS from the full

and the backwards selected models

4.3.2 Shrinkage

All the models in Table 4.1 can be re-written in the form of a mathematical equation:

BoS = α + LP (4.3)

where α is the intercept and LP is the linear predictor for the model. For example, for

the backwards selected model for the fixed-effect meta-analyses, the intercept (α) was

-14.05 and the linear predictor (LP) was:

LP =0.655× number of studies + 0.294× percentage of missing data for outcome of interest

− 0.785× number of studies with outcome of interest

+ 26.590×maximum absolute within-study correlation (4.4)
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For each model, a shrinkage factor was calculated as detailed in Section 4.2.3. The

models adjusted by the shrinkage factor can be mathematically written as:

BoS = β + Φ× LP (4.5)

where LP is as above , β is the new calculated intercept and Φ is the shrinkage factor.

For every model, the shrinkage factor was close to one (Table 4.2). Therefore, the

coefficients for each model were only shrunk slightly towards zero. The impact on the

predictions can be seen in Figure 4.2. For each model, the shrinkage factor shrinks

prediction towards the mean BoS statistic. Therefore, greater differences between the

predictions from the models before shrinkage and after shrinkage are observed when

BoS is predicted to be large (i.e. further from the mean of BoS).

Table 4.2: Table of shrinkage factors for each model

Model
Meta-analysis Shrinkage Revised

approach factor intercept

Full Model
Fixed-effect 0.95 -12.52

Random-effects 0.92 -22.22

Backwards Selected Model
Fixed-effect 0.96 -13.02

Random-effects 0.93 -7.56
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Figure 4.2: Scatter plots of the observed BoS against the predicted BoS from the

models without and with shrinkage

4.3.3 Description of the final models after shrinkage

As there was little difference between the full and backwards selection models, the lat-

ter was chosen as the final models. The final models, derived after backwards selection

and shrinkage, are shown for the fixed-effect and REML random-effects models below.
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Final model for fixed-effect BoS

The final model for BoS from fixed-effect meta-analyses was:

ˆBoS = −13.020 + 0.962 ∗
(

0.655 ∗ number of studies

+ 0.294 ∗ percentage of missing data for outcome of interest

− 0.785 ∗ number of studies with outcome of interest

+ 26.590 ∗maximum absolute within-study correlation
)

(4.6)

Final model for random-effects BoS

The final model for BoS from REML random-effects meta-analyses was:

ˆBoS = −7.561 + 0.925 ∗
(

0.477 ∗ number of studies

− 0.274 ∗ percentage of missing data across all outcomes

+ 0.557 ∗ percentage of missing data for outcome of interest

− 0.907 ∗ number of studies with both outcomes

− 19.102 ∗ average absolute within-study correlation

+ 39.297 ∗maximum absolute within-study correlation
)
(4.7)

4.3.4 Optimism in R2 of the developed models

In this section, the optimism and optimism adjusted R2 for the models are presented

(Table 4.3). The optimism corrected R2’s were smaller than the apparent R2’s, as was

expected.
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Table 4.3: The apparent, bootstrap, tested and optimism corrected R2, and the mean

calculated optimism for each model that had shrinkage and optimism applied

Models

Apparent Mean Mean Mean Optimism

R2 Bootstrap Tested Calculated corrected

R2 R2 Optimism R2

Fixed-effect Full 0.581 0.610 0.527 0.083 0.498

Random-effects Full 0.678 0.716 0.613 0.103 0.565

Fixed-effect Final 0.574 0.599 0.521 0.078 0.496

Random-effects Final 0.641 0.700 0.593 0.107 0.534

The variability explained by the models for the fixed-effect meta-analyses were very

similar between the full model and the final model, 0.498 and 0.496, respectively. The

optimism corrected R2’s were large for the models for the random-effects meta-analyses

compared to the those for the fixed-effect meta-analyses. For example, the optimism

corrected R2’s from the final models for the fixed-effect meta-analyses and the random-

effects meta-analyses were 0.496 and 0.534, respectively. The larger optimism is due

to the larger number of predictors considered for the prediction model in the random-

effects setting.

4.3.5 Application of the prediction models to examples

The predicted BoS from our models was compared in other datasets from the same

setting (i.e. binary outcomes from Cochrane reviews), using the Buzzetti et al. (2017)

and Feinberg et al. (2017) reviews.

Cochrane Examples

The Buzzetti et al. (2017) review and the Feinberg et al. (2017) review both contained

an is a subset of relationship between the two outcomes. The predicted BoS statis-

tics were predicted in these examples using the final models for the fixed-effect and

the random-effects meta-analyses. The setting for the Buzzetti et al review was the
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use of Glucocorticosteriods for alcoholic hepatitis compared with no intervention. The

two correlated outcomes were mortality at maximal follow-up and mortality at 30 days.

Feinberg et al. (2017) reviewed randomised control trials (RCTs) that compared exper-

imental nutrition support with a control for disease-related malnutrition in Intensive

Care Unit participants including trauma characterised as “at nutritional risk.” The

correlated outcomes of interest are all cause mortality at the end of intervention and

at maximum follow-up.
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The predictions of BoS, using the final models (Equation 4.6 for the fixed-effect meta-

analyses and Equation 4.7 for the random-effects meta-analyses), were not perfect,

however the outcomes with small values of BoS were predicted small values, although

not as small (Table 4.4). For example, from Buzzetti et al. (2017) for outcome one

from the random-effects, the observed BoS was 0.2%, and the predicted was 10.4%.

Similarly for large values of BoS, the predictions were large, although not as large. For

example, for Buzzetti et al. (2017) review, from the random-effects meta-analyses, the

observed BoS for outcome two was 29.4%, and the predicted BoS was 20.6%. Never-

theless, they are of a reasonably similar magnitude.

For Buzzetti et al. (2017) and Feinberg et al. (2017) reviews the results were simi-

lar between the univariate and multivariate fixed and random-effects meta-analyses

in the majority of comparisons. For example, from the Feinberg et al. (2017) review,

outcome one from the fixed-effect meta-analysis the multivariate result was -0.032(95%

C.I.: -0.210 to 0.145) and -0.031 (95% C.I.: -0.201 to 0.119) from the univariate, and

the observed and predicted BoS were 32.8% and 21.0%, respectively. There was one

example that contained a change in statistical significance between the univariate and

multivariate result; from the Buzzetti et al. (2017) review for outcome two from the

fixed-effect meta-analyses the results from the multivariate and univariate were -0.118

(95% C.I.: -0.375 to 0.138) and -0.375 (95%: -0.729 to -0.021), respectively. Addi-

tionally, the BoS statistic was large at 47.7% and was predicted to be 20.1%. There

was a potentially important clinical difference between the univariate and multivariate

results for outcome one from Feinberg et al. (2017) review from the random-effects

meta-analysis. The univariate meta-analysis results were -0.100 (95% C.I.: -0.409 to

0.210) and the multivariate results were -0.032 (95% C.I.: -0.210 to 0.145). The ob-

served and predicted BoS was 32.8% and 22.3%, respectively.
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Further examples of the application of the prediction models

The predictions of BoS from the final models (Equation 4.6 and 4.7) were also checked

in completely different settings (i.e. non binary outcomes not in Cochrane reviews).

The values of the predicted BoS for the fixed-effect were very similar for each outcome

in the hypertension, ranging from 5.7% to 5.9%. However, the true BoS values had a

greater spread of values from 1.3% to 11.3% (Table 4.5). Similar results can be seen for

the REML random-effects estimation method. Nevertheless, the predicted BoS values

were a similar magnitude to the observed values.

Table 4.5: A table of the observed and predicted BoS values from real examples

Study Outcome Observed BoS Predicted BoS

Fixed-effect from model 4.6

Hypertension

SBP 5.3 5.9

DBP 1.3 5.9

CVD 1.9 5.7

Stroke 11.3 5.7

Fibrinogen
Fully 57.9 36.8

Partially 0.1 8.4

p53
Disease-free survival 52.3 26.9

Overall survival 8.6 10.5

REML Random-effects from model 4.7

Hypertension

SBP 0.9 13.1

DBP 0.5 13.3

CVD 4.2 13.3

Stroke 20.8 13.5

Fibrinogen
Fully 53.3 34.7

Partially 1.8 6.5

p53
Disease-free survival 44.7 29.7

Overall survival 0.3 4.0
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The predictions from the models were not accurate for the Fibrinogen and p53 studies.

However, the models do predict BoS to be large or small appropriately, although the

predictions are not as large as the observed BoS. For example, from p53 study from

the fixed-effect meta-analysis the observed BoS was 52.3% whereas the predicted BoS

was 26.9%. The predicted BoS statistics, although not as large as the observed, would

still help to identify situations where BoS is likely to be large.

4.4 Discussion

The aim of this chapter was to develop prediction models for the BoS statistic for fixed-

effect meta-analyses and random-effects meta-analyses, using 86 BoS statistics from 43

bivariate meta-analyses from the Cochrane library. Full models, containing all potential

predictors, were developed for the fixed-effect and the random-effects meta-analyses.

The characteristics of meta-analysis were included in the prediction models as linear

covariates. These models were developed using backwards selection and shrinkage was

applied to obtain the final models. The key findings from the prediction model are

summarised in Figure 4.3.

Figure 4.3: Key findings

Key findings:

• Two prediction models were developed for the prediction of BoS, one for

fixed-effect meta-analyses and one for random-effects meta-analyses.

• The important covariates for predicting the BoS statistic were the within-

study correlation, the number of studies with both outcomes and the per-

centage of missing outcomes either for all the outcomes or the outcome of

interest.

• BoS statistic predictions may differ between the models developed for the

fixed-effect and the random-effects multivariate meta-analyses.
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• Between-study correlation, between-study variance and I2 statistics were

not important to prediction of the magnitude of the BoS.

The backwards selected models with shrinkage applied contained the meta-analysis

characteristics most important to the prediction of BoS, and were the final models

used in the prediction of BoS examples. For these models the optimism adjusted R2

was 0.49 and 0.53 for the fixed-effect and the random-effects multivariate meta-analysis

BoS prediction models, respectively, which suggests the models explain 49% and 53%

of the variability in the observations, respectively. The most important predictors con-

tained in both the final models were the maximum absolute within-study correlation,

the number of studies and the percentage of missing data for the outcome of interest.

In each of the final models, these predictors were also the most statistically significant

in both the multivariable models and the univariable regression models in Chapter 3.

The association between borrowing strength and missing data and/or the within-study

correlation was discussed in Chapter 3 and discussed in the literature in such papers

by Riley et al. (2007a), Riley (2009), Jackson et al. (2017), Copas et al. (2018).

These models were applied to two further Cochrane bivariate examples, as well as

some examples from Chapter 1, to examine how accurately the final models predicted

(Section 4.3.5. For the Cochrane examples, the predictions for BoS were similar to the

true BoS. Athough the predictions were not exact, but for very small BoS values the

predicted BoS were small and for large BoS the predicted BoS were large (Table 4.4).

The Cochrane examples were similar (two correlated binary outcomes) settings to the

Trikalinos et al. (2013, 2014) review data the prediction models were developed for.

Therefore, the predictions were likely to be similar to the observed.

For the examples from Chapter 1, the BoS predictions for the Hypertension exam-

ple with four outcomes were similar to each other, however, the true BoS values varied

in magnitude. It was unclear with so few examples as to whether this was due to the
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number of outcomes in the example that were greater than two, or due to another rea-

son that was unknown. The true BoS statistics for the hypertension study, with four

outcomes, did not have a range of values as great for the BoS statistic as the bivariate

real examples. The characteristics for each of the four outcomes in the hypertension

study were very similar. This resulted in very similar BoS predictions, which could

mean that the final models are missing an unknown factor that affects the magnitude

of the BoS statistic. For the bivariate real examples, Fibrinogen and p53 studies, the

predicted BoS statistics were predicted to be large, similarly the observed BoS were

large. It is unclear how accurate the prediction of BoS in further examples would be.

For exploratory purposes, interactions were investigated in further models to deter-

mine the importance of the effects of the within-study and between-study correlations

(Appendix D.2). The inclusion of interactions with the within-study and between-study

correlations did not identify anything of importance.

4.4.1 Limitations and further research

A limitation of this chapter is the number of observations per variable. For the models

for the prediction of the BoS from a fixed-effect meta-analysis and from a random-effects

meta-analysis, the number of observations per variable was 12.3 and 7.2, respectively.

Although Austin & Steyerberg (2015) discuss in their 2015 paper that two subjects

per variable is adequate in linear regression for the estimation of coefficients, stan-

dard errors and confidence intervals, there is alternative research that suggests that

problems can still occur when there are greater than 10 subjects (events) per variable

(Courvoisier et al. 2011). Ten events per variable is a rule of thumb that has arisen

from two simulation studies and is often cited as best practice (Peduzzi et al. 1995,

1996). The number of observations per variable is a limitation and this chapter has

used shrinkage and optimism to adjust the model for overfitting.

The prediction models were developed to be applied in prospective meta-analyses to
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predict the expected magnitude of BoS. However, the performance of the model out-

side of the original sample is unknown and has not been assessed through external

validation, an important step in model development (Altman & Royston 2000, Altman

et al. 2009, Debray et al. 2015b). Furthermore, a limitation of this chapter was there

was no large data that the model could be externally validated with. The next step

for the models would be to externally validate them with new data across a range of

examples. This would involve Cochrane reviews where the within-study correlation is

known or can be calculated. Unfortunately as seen by the number of observations in

the dataset in this chapter, there are few reviews that report the within-study correla-

tions or provide enough information from which the within-study correlations can be

calculated.

The data the models were developed on was a set of meta-analysis studies with only

two binary outcomes of interest. It is not known whether these models would be trans-

ferable to multivariate meta-analyses with continuous or survival outcomes, or with

greater than two outcomes. It was not developed or studied in detail in this chapter as

to whether these models could be used to predict BoS statistics in continuous outcomes

in studies with more than two outcomes of interest.

The models were very different between the fixed-effect and random-effects meta-

analyses. Therefore, predictions from these models for the same outcome were different

and the models should not be transferred freely between the estimation methods. In

Chapter 3, the true BoS statistics were sometimes different between the estimation

methods for the same outcome of interest in the same meta-analysis.

4.4.2 Recommendations

For researchers who want to identify whether a multivariate meta-analysis may be

important for borrowing strength, the models developed may be useful to predict the

potential magnitude of BoS before data analysis. If BoS is predicted to be ‘moderate’ or
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‘large’, then this provides more motivation to undertake a multivariate meta-analysis,

and results may change from separate univariate meta-analyses. In addition it is rec-

ommended that the final model for the random-effects meta-analysis is used for predic-

tions of BoS. This follows from the recommendation that random-effects meta-analysis

should be used in preference to a fixed-effect meta-analysis.

Next steps

In the next chapter the use of interactive graphs developed in R shiny for the presen-

tation of the prediction models is explored. Furthermore, the relationship between the

meta-analysis level characteristics and the magnitude of BoS are also explored through

an interactive tool developed from the equation for the BoS statistic.
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Chapter 5

Development of interactive
graphical tools for the prediction
and exploration of the BoS statistic

5.1 Introduction

The Borrowing of Strength (BoS) statistic is calculated following a multivariate meta-

analysis from the variances of the outcome of interest from the multivariate and uni-

variate meta-analyses. For the BoS statistic to be used as a decision making tool to

determine when a multivariate meta-analysis is most beneficial, its magnitude needs

to be predicted in advance of any analysis. In Chapter 4, prediction models were de-

veloped for fixed-effect and random-effects bivariate meta-analyses from a dataset of

43 Cochrane reviews with two binary outcomes.

The use of interactive graphical tools is becoming increasingly used for presenting

data and results, including clinical prediction models (Bonnett et al. 2019). An ad-

vantage of interactive graphical tools for clinical prediction models is that these can

be embedded into websites, which can be made accessible to researchers. This allows

patients and clinicians to predict and visually explore these predictions for themselves.

Advantages of interactive graphical tools include; ease of use (particularly for complex

prediction models), full models can be embedded in the background for the predication

and thereby avoid approximations.
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Additionally, the development of interactive graphs can be a useful tool for methodol-

ogy research. Interactive graphical tools allow data and/or relationships to be explored

visually in a reactive real time environment.

The relationship between the BoS statistic and some meta-analysis characteristics have

previously been discussed in the literature (Jackson et al. 2017, Copas et al. 2018).

Jackson et al. (2017) explored the relationship between BoS and the within-study cor-

relation. Copas et al. (2018) reviewed the impact that additional studies have on the

contribution made by the original studies in the meta-analysis on the BoS statistic.

However the relationship between BoS and meta-analysis characteristics has yet to be

explored through interactive tools.

The aim of this chapter is to present the prediction models from Chapter 4 on in-

teractive graphs and embed these on a website accessible to the reader. A secondary

aim of this chapter is to use interactive graphs for an exploratory purpose, to observe

the relationship between meta-analysis level characteristics and the magnitude of BoS,

from its mathematical calculation.

This chapter follows by firstly developing and presenting interactive graphical tools

produced using R shiny for the prediction of the BoS statistic for the fixed-effect

and random-effects bivariate meta-analyses. The formula for the BoS statistic is pro-

grammed into an interactive graphical tool to visually explore the relationship between

the magnitude of BoS and characteristics of meta-analyses. This tool will allow re-

searchers without a mathematical background to visualise BoS from its formula and

gain a greater understanding of how the magnitude of BoS changes according to char-

acteristics of meta-analyses.
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5.2 Interactive tools for the prediction of BoS from

developed prediction models

In this section interactive graphs are developed following the development of predic-

tion models in Chapter 4. In Chapter 4, two prediction models were developed, one for

bivariate fixed-effect meta-analyses and one for bivariate random-effect meta-analyses.

There are two advantages with displaying the developed prediction models on inter-

active graphs. Firstly, it allows researcher a tool to easily and visually predict the

magnitude of BoS in their setting. Secondly, it allows for the predictions to be visually

explored across a range of different percentages of missing data for the outcome of

interest.

5.2.1 Method to develop interactive tools for the prediction

of the BoS

In this section, the interactive graphical tools for the prediction of the BoS statistic for

a bivariate meta-analysis are presented. Two graphical tools were developed; one for

fixed-effect meta-analyses and one for random-effects meta-analyses. The interactive

graphs were developed in R shiny and the code for the two graphs can be found in

Appendices E.2 and E.3.

Recall from Chapter 4, the prediction model for the BoS for a bivariate fixed-effect

meta-analyses was (Equation 4.6):

ˆBoS = −13.020 + 0.962 ∗
(

0.655 ∗ number of studies

+ 0.294 ∗ percentage of missing data for outcome of interest

− 0.785 ∗ number of studies with outcome of interest

+ 26.590 ∗maximum absolute within-study correlation
)
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The prediction model for the BoS for a bivariate random-effects meta-analysis was

(Equation 4.7):

ˆBoS = −7.561 + 0.925 ∗
(

0.477 ∗ number of studies

− 0.274 ∗ percentage of missing data across all outcomes

+ 0.557 ∗ percentage of missing data for outcome of interest

− 0.907 ∗ number of studies with both outcomes

− 19.102 ∗ average absolute within-study correlation

+ 39.297 ∗maximum absolute within-study correlation
)

The interactive graphical tools were developed such that the BoS statistic (y axis) was

provided against the percentage of missing data for the outcome of interest (x axis).

For the prediction of the BoS statistic for a fixed-effect meta-analysis, the required

predictors were the number of studies expected to be included in the meta-analysis

and the expected maximum absolute within-study correlation. Both the values for the

number of studies and the maximum absolute within-study correlation were able to be

input into the interactive graph using sliders. The percentage of missing data for the

outcome of interest is the x axis of the interactive graph and the number of studies

with the outcome of interest can be obtained from the number of studies included in

the meta-analysis and the percentage of missing data for the outcome of interest.

The prediction model was plotted by calculating the co-ordinates where the value

of the BoS statistic was 0% and 100%, and the coordinates where the percentage of

missing data for the outcome of interest was 0% and 100%.

There were more predictors included in the prediction model for the BoS statistic

for the random-effects meta-analysis. As well as the number of studies expected to be

included in the meta-analysis and the maximum absolute within-study correlation, the

average absolute within-study correlation and the percentage of missing data for the
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alternative outcome were important predictors of the BoS statistic and required for the

interactive tool. These values were able to be input into the interactive graphical tool

using sliders. The remaining predictors, percentage of missing data across all outcomes

and the number of studies with both outcomes can be obtained from the number of

studies, the percentage of missing data for the outcome of interest and the percentage

of missing data for the alternative outcome.

Bivariate fixed-effect meta-analysis BoS prediction model

The only predictors in the prediction model for the BoS statistic for a bivariate fixed-

effect are the number of studies in the meta-analysis and the maximum absolute within-

study correlation. The interactive graphical tool for the prediction of the BoS for the

fixed-effect bivariate meta-analysis is shown below (Figure 5.1):
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Figure 5.1: A single frame of the interactive graph for the prediction model for the

prediction of BoS for a fixed-effect meta-analysis accessed from https://mhattle.

shinyapps.io/PredictingFEBoS/

Bivariate random-effects meta-analysis BoS prediction model

For the prediction of the BoS for a bivariate random-effects meta-analysis the predic-

tors are the number of studies in the meta-analysis, the percentage of missing data for

the alternative outcome, the average absolute within-study correlation and the maxi-

mum average within-study correlation. The average absolute within-study correlation

provides the minimum value for the maximum absolute within-study correlation. The

slider for the maximum absolute within-study is automatically updated given the aver-

age absolute within-study correlation. The interactive graphical tool for the prediction

of the BoS for the random-effects bivariate meta-analysis is shown below (Figure 5.2):

142

https://mhattle.shinyapps.io/PredictingFEBoS/
https://mhattle.shinyapps.io/PredictingFEBoS/


Figure 5.2: A single frame of the interactive graph for the prediction model for the

prediction of BoS for a random-effects meta-analysis accessed from https://mhattle.

shinyapps.io/PredictingREBoS/

5.2.2 Application of the interactive tools to an example

Recall the Buzzetti et al. (2017) review from Chapter 4, a Cochrane review that in-

vestigated the use of Glucocorticosteriods for alcoholic hepatitis compared with no

intervention. The two binary outcomes had an is a subset of relationship between the

two outcomes, which were mortality at maximal follow-up and mortality at 30 days.

The BoS statistic was predicted using the interactive graphical tools for the Buzzetti

et al. (2017) review in an example in Section 4.3.5. In this section, the Buzzetti et al.

(2017) review is used as an example for the interactive graphs for the prediction of BoS.
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The Buzzetti et al. (2017) review contained 12 studies and the maximum absolute

within-study correlation was 0.99. There was no missing data for the first outcome

(mortality at maximal follow-up) and there was 25% (3 studies) missing data for the

secondary outcome (mortality at 30 days). The interactive graph for the prediction

of the BoS statistic for the bivariate fixed-effect meta-analysis had the sliders set to

reflect this information, with the number of studies equal to ten and the maximum

absolute within-study correlation 1 (Figure 5.3).
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Figure 5.3: A single frame of the interactive graph for the prediction of the Bor-

rowing of Strength (BoS) statistic for a fixed-effect bivariate meta-analysis for both

outcomes from the Buzzetti et al. (2017) review example accessed from https:

//mhattle.shinyapps.io/PredictingFEBoS/

The BoS statistic for both outcomes (mortality at maximal follow-up and mortality

at 30 days) can be predicted from the same interactive graph. For the mortality at

maximal follow-up (outcome one) there was no missing data for the outcome, therefore

from the interactive graph the predicted BoS was about 10%. For the mortality at 30

days (outcome two) there was 25% missing data, therefore from the interactive graph

the predicted BoS was about 20%. Recall, from Table 4.4 in Chapter 4 the observed

BoS statistics were 3.2% and 47.7%, respectively.
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The interactive graph for the the prediction of the BoS statistic for the bivariate

random-effects meta-analysis required two single frames of the graph to predict the

BoS statistics in both outcomes, due to the different values for the percentage of miss-

ing data for the alternative outcome. For the mortality at maximal follow-up (outcome

one), there was 25% missing data for the alternative outcome. However the slider was

developed with increasing increments of 10%, so the percentage of missing data for the

alternative outcome was input as 20%, such that the BoS statistic was not overesti-

mated (Figure 5.4). For the remaining meta-analysis level characteristics, the number

of studies in the Buzzetti et al. (2017) was 12, the average absolute within-study cor-

relation was 0.866 (3dp) and the maximum absolute within-study correlation was 0.99.

Therefore, the values that were input into the interactive graphs for the random-effects

meta-analysis were 10 studies, average absolute within-study correlation of 0.85 and a

maximum absolute within-study correlation of 1 (Figures 5.4 and 5.5).
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Figure 5.4: A single frame of the interactive graph for the prediction of the Borrowing

of Strength (BoS) statistic for a random-effects bivariate meta-analysis for the outcome

one, mortality at maximal follow-up, from the Buzzetti et al. (2017) review example

accessed from https://mhattle.shinyapps.io/PredictingREBoS/

There was no missing data for the outcome, mortality at follow-up (outcome one) and

therefore the predicted BoS statistic from Figure 5.4 was just under 10%. For the

outcome mortality at 30 days, the predicted BoS from Figure 5.5 was just over 20%.

Recall from Table 4.4 in Chapter 4 the observed BoS statistics were 0.8% and 29.4%,

respectively.
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Figure 5.5: A single frame of the interactive graph for the prediction of the Borrowing

of Strength (BoS) statistic for a random-effects bivariate meta-analysis for the outcome

two, mortality at 30 days follow-up, from the Buzzetti et al. (2017) review example

accessed from https://mhattle.shinyapps.io/PredictingREBoS/

5.3 Interactive tool for investigating the relation-

ship of meta-analysis characteristics with BoS

An interactive graph is now developed to help visualise the magnitude of BoS and the

influence meta-analysis characteristics have upon the value of BoS in a bivariate meta-

analysis. The graph allows a user to plot the BoS against the percentage of missing

data for the outcome of interest, conditional on the chosen values for meta-analysis
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characteristics:

• Within-study correlation

• Within-study variances for the outcome of interest and alternative outcome

• Number of studies

• Between-study correlation

• Between-study variances for the outcome of interest and alternative outcome

• Percentage of missing data for the alternative outcome

The value of BoS is obtained based on mathematical theory, as now described.

5.3.1 Method to develop the interactive graph

Developing an alternative formula for BoS in a bivariate meta-analysis

The Borrowing of Strength (BoS) statistic (Jackson et al. 2017) has been denoted in

previous chapters in its simplest form:

BoS = 100%×
[
1− var(θ̂mvmeta)

var(θ̂uvmeta)

]
(5.1)

To express BoS conditional on the values of the meta-analysis characteristics listed in

this section, Equation 5.1 requires expanding. The variances of θ̂ from the univariate

and bivariate meta-analyses can be expressed in terms of the within-study variances,

s2i1 and s2i2, the within-study covariances, λi, the between-study variances, τ̂ 21 and τ̂ 22 ,

and the between study covariances, τ̂ 212. This is shown by Riley (2004), for the variance

of θ̂ from a bivariate meta-analysis:
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R shiny tool

This formula, Equation 5.7, was embedded in the R package, Shiny, which allows

for web applications to be built, and an interactive graph built using the package.

A snapshot of the interactive graph is shown in Figure 5.6, and can be accessed by

the reader at https://mhattle.shinyapps.io/BoSstatistic/. The code for the

interactive graph can be found in Appendix E.4.

Figure 5.6: A single frame of the interactive graph for the expected maximum BoS

calculated from the eqution for BoS statistic. Accessed from https://mhattle.

shinyapps.io/BoSstatistic/

The tool allows the user to obtain BoS values for a bivariate meta-analysis by simply

inputting the number of studies in the meta-analysis, the proportion of studies with

missing data for the alternative outcome (outcome two), the within-study variances
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for both outcomes, the within-study correlation (assumed equal across all trials), the

between-study variances for both outcomes and the between-study correlation. Fur-

thermore, the values for these characteristics could be varied using the ‘sliders’ above

the graph. The slider for the within-study correlation varied in increments of 0.05 and

the minimum and maximum values were -0.999 and 0.999, respectively. The within-

study variances for each outcome (the outcome of interest and the alternative outcome)

were able to vary from 0.5 to 20, increasing in increments of 0.1 on the slider. The

number of studies included in the meta-analysis were varied using a slider from 10 to

200 in increments of 10. Increments of 10 were decided upon to make sure that the

proportion of studies missing was always an integer.

The percentages of missing data for the alternative outcome ranged from 0% to 90%

and increased in increments of 10%. The percentage of missing data for the outcome

of interest was represented on the x axis on the interactive graph; the values on the

axis ranged from 0% to 90% and increased in increments of 10%. The percentages of

missing data for both outcomes were coded such that if the percentages summed to

100% or greater the interactive graph would not plot these points, since a multivariate

meta-analysis would not exist in these cases.

For a random-effects meta-analysis, the between-study variances and correlation were

able to be varied. The between-study variances for both outcomes varied from 0 to

20 in increments of 0.1. The between-study correlation increased in increments of 0.05

from -1 to 1.

5.3.2 Interactive graph in operation

The influence of the within-study correlation and the within-study variances

under a fixed-effect assumption

The magnitude of BoS increases as the absolute value of the within-study correlation

increases, under a fixed-effect assumption (Figure 5.7). This is particularly prominent
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when the percentage of missing data for the outcome of interest is large. For example,

for 20% missing data and 60% missing data the BoS statistics for a within-study cor-

relation of 0.25 were 1.25% and 3.75%, respectively and for a within-study correlation

of 0.55 were 6.05% and 18.15%, respectively (Figure 5.7). Nevertheless, the magnitude

of BoS is zero when the within-study correlation is zero, irrespective of the percentage

of missing data for outcome of interest.

Figure 5.7: Single frames of the interactive graph for the effect of the percentage of

missing data for the outcome of interest on the magnitude of BoS for different within-

study correlations with the following characteristics: 200 studies, 0% missing data for

the alternative outcome and variances of 3 for both outcomes, under a fixed-effect

assumption.
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The magnitude of the within-study variances for the outcome of interest and the al-

ternative outcome had no effect on the magnitude of BoS (Figure E.1 In Appendix

E.1). The magnitude of BoS was unaffected even when the within-study variances

were different for the outcome of interest and the alternative outcome.

The influence of the quantity of missing data for the alternative outcome

The percentage of missing data for the alternative outcome appears to influence the

magnitude of the BoS in the interactive graph (Figure 5.8), irrespective of a fixed

or random-effects assumption. In general, as the percentage of missing data for the

alternative outcome increases, the magnitude of BoS decreases. For example, for 40%

missing data for the outcome of interest, the magnitude of BoS decreased from 25.60%

to 23.88% to 14.88% as the percentage of missing data for the alternative outcome

increased from 0% to 20% to 50%, respectively.
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Figure 5.8: Single frames of the interactive graph for the effect of the percentage of

missing data for the outcome of interest on the magnitude of BoS for different percent-

ages of missing data for the alternative outcome with the following characteristics; 200

studies, within-study correlation of 0.8 and variances of 3 for both outcomes, under a

fixed-effect assumption

The influence of the total number of studies

There was no effect on the magnitude of BoS for different total number of studies in

the meta-analysis, irrespective of a fixed or random-effects assumption (Figure E.2 in

Appendix E.1).

The influence of the between-study correlation and variances (random-

effects assumption)

Under a random-effects assumption, the within-study and between-study correlations

and the within-study and between-study variances influence the magnitude of BoS

jointly. Firstly, the relationship between the correlations is explored here. The rela-

tionship is determined by the sign of the within-study correlation. In general, when
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the within-study correlation is negative, the BoS increases as the between-study corre-

lation decreases. Alternatively, when the within-study correlation is positive, the BoS

increases as the between-study correlation increases.

The within-study and between-study variances interact together to influence the mag-

nitude of BoS from a random-effects meta-analysis. The magnitude of BoS is greatest

when there are pairs of variances that are approximately equal, provided the correla-

tions are equal. The pairs of variances that are required to be approximately equal

for this statement to hold can be either the within-study variances, the between-study

variances, the variances for the outcome of interest or the variances for the alternative

outcome, as well as all four variances. Note, this does not hold for pairs of complete

opposite variances e.g. the within-study variance for the outcome of interest and the

between-study variance for the alternative outcome. For example, in Figure 5.9 the

BoS values are greatest when the magnitude of the variances are paired either by the

variance (Figure 5.9 i. and ii.), i.e. within-study or between-study, or by the outcome

they correspond to (Figure 5.9 iii.). In these scenarios, for 60% missing data for the

outcome of interest the BoS statistic ranged between 43.33% to 43.34%. The BoS

statistic decreased to 21.22% for 60% missing data for the outcome of interest when

the magnitude of the variances were contained in unrelated pairs (Figure 5.9 iv.) e.g.

the variances with magnitude of 3 are the within-study variance for the outcome of

interest and the between-study variance for the alternative outcome. When all the

variances were equal, with magnitude of 3, apart from the between-study variance for

the outcome of interest, which had a variance of 18, the BoS statistic was 36.84% for

60% missing data for the outcome of interest (Figure 5.9 v.). Although the magnitude

of BoS was greater than the scenario of unrelated pairs, the magnitude of BoS was

greatest when the magnitude of the variances were in related pairs.
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Figure 5.9

Variances

BoS graphWithin-study Between-study

1a 2b 1a 2b

i. 3 3 18 18

ii. 18 18 3 3

iii. 18 3 18 3

iv. 3 18 18 3

Continued on next page

a Outcome of interest

b Alternative outcome
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Figure 5.9: continued

Variances

BoS graphWithin-study Between-study

1a 2b 1a 2b

v. 3 3 18 3

a Outcome of interest

b Alternative outcome

Figure 5.9: Single frames of the interactive graph for the effect of the percentage of

missing data for the outcome of interest on the magnitude of BoS for different combi-

nations of values for the within-study and between-study variances with the following

characteristics; 200 studies, within-study and between-study correlations of 0.85

Maximising BoS

The aim of the interactive graph was to visually explore the relationship between the

magnitude of BoS and the percentage of missing data for the outcome of interest.

Through the exploration of the interactive tool the value of BoS was often observed to

be less than the percentage of missing data for the outcome of interest. It will now be

explored whether the value of BoS can exceed the percentage of missing data for the

outcome of interest in the interactive tool, by maximising BoS using the conditions

that have been observed to increase the magnitude of BoS.

The number of studies was not found to influence the magnitude of BoS in the

interactive graph. To maximise the magnitude of BoS large absolute values of the

within-study and between-study correlations with equal signs is required with no
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missing data for the alternative outcome. Figures 5.10 and 5.11 display the maximised

magnitude of BoS; it can be seen that the magnitude of BoS does not exceed the

percentage of missing data for the outcome of interest.

Figure 5.10: A single frame of the interactive graph when BoS statistic was maximised

using large positive correlations. The red line represents y=x, when BoS statistic is

equal to the percentage of missing data for the outcome of interest.
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Figure 5.11: A single frame of the interactive graph when BoS statistic was maximised

using large negative correlations. The red line represents y=x, when BoS statistic is

equal to the percentage of missing data for the outcome of interest.

5.4 Discussion

In this chapter the development and use of interactive graphical tools has been ex-

plored. The prediction models from Chapter 4, were inbuilt into interactive graphical

tools; one for the fixed-effect and one for the random-effects bivariate meta-analyses.

The equation for the BoS statistic was also encoded into an interactive graphical tool

for the exploration of the relationship between the BoS statistic and meta-analysis
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characteristics. The interactive tools were developed using R shiny and allow a user to

visually explore the predicted value of BoS or the expected maximum of BoS for dif-

ferent characteristics of a meta-analysis. In this section, the key findings (summarised

in Figure 6.1) are discussed and areas for future research are described.

Figure 5.12: Key findings from the interactive tool and mathematical proofs

Key Findings:

• Two interactive tools were produced from the developed prediction models

(Chapter 4) to aid researchers to visualise their predicted BoS.

• An interactive tool was developed to aid researchers to visualise the mag-

nitude of BoS and what characteristics influence the magnitude, using the

mathematical formula of BoS.

• The within-study correlation and the percentage of missing data were iden-

tified from the potential maximum BoS interactive graph as highly influ-

ential over the magnitude of BoS.

• By maximising the BoS statistic using the within-study correlation and

the percentage of missing data for the alternative outcome, the magnitude

of BoS was found to not exceed the percentage of missing data for the

outcome of interest.

There were two interactive graphs that were developed for the prediction models from

Chapter 4 in Section 5.2. The use of the interactive graphs for the prediction models

was demonstrated using an example, Buzzetti et al. (2017), a Cochrane review.

A third interactive tool was developed in R shiny that visually displayed the

magnitude of BoS calculated from the BoS equations for different quantities of

missing data for the outcome of interest using provided values of meta-analysis

characteristics. The interactive graph was explored to investigate which combination
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of characteristics increased the magnitude of BoS. The within-study correlation

was highly influential in the magnitude of BoS. This is not a surprising result;

Jackson et al. (2017) discussed that for a complete data scenario the BoS statistic is

bounded by the square of the within-study correlation. Additionally the percentage of

missing data for the outcome of interest was highly influential to the magnitude of BoS.

The BoS statistic was maximised using meta-analysis characteristic values that

were observed to increase the magnitude of BoS. Under these conditions the interac-

tive graph showed that the BoS may be bounded by the percentage of missing data

for the outcome of interest (since the values of BoS did not exceed the percentages of

missing data).

The prediction models and the mathematical formula for BoS were not displayed on

the same graph due to each graph requiring and presenting different information. The

interactive tools for the prediction models present the predicted BoS statistic based

on the meta-analysis characteristics. The interactive graph for the mathematical

formula presents the expected maximum based on the meta-analysis characteristics.

Therefore, if these two approaches were presented on the same tool there is potential

to mislead or cause confusion for researchers, which negates the aim for these tools

to be accessible and easy for researchers to use. Additionally by presenting the two

approaches on the same interactive tool it leads to comparisons to be made between

the predicted BoS and the expected maximum BoS, two very different measures.

5.4.1 Strengths and limitations

The prediction models have been discussed in the previous chapter (Chapter 4) and

therefore the prediction models specifics will not be discussed here. In this section the

strengths and limitations of the interactive graphical tools will be discussed.
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Strengths

This chapter has many strengths including providing a greater understanding of which

characteristics of meta-analyses affect the magnitude of BoS. This chapter builds upon

the findings and investigations into the BoS statistic by Jackson et al. (2017) and

Copas et al. (2018). A greater understanding of BoS will help to identify situations in

which the BoS is considerably large. This will help researchers predict what magnitude

of BoS they might expect from their meta-analysis and in turn could help them to

decide if a multivariate approach would be beneficial over a univariate approach.

This chapter is the first time the BoS has been displayed on interactive graphs

using prediction models for BoS and the mathematical equation for BoS. The

interactive graphs allow researchers to easily visually explore the BoS and the affects

of certain characteristics on its magnitude.

The interactive graphical tools can be easily accessed by researchers through a

website. Additionally, the interactive tools are usable with the input of values aided

through embedded sliders.

Limitations

The mathematical equation for the BoS statistic was simplified using assumptions that

included equal within-study correlations across all studies in the meta-analysis. These

conditions were made to aid usability. However, they are unlikely to hold for real data

analysed in a meta-analysis. It might be expected that provided the variances and

within-study correlations are similar in each study the BoS statistic will be similar to

those in the interactive graph.

Another limitation of the interactive graphical tools is it is possible for researchers to

manipulate the information provided to the graph or from the graph to fit a desirable

narrative or analysis plan.
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5.4.2 Further work

This chapter presented the prediction models from Chapter 4 using interactive

graphical which allow researchers to visually predict the BoS statistic in their appli-

cation. In addition the mathematical equation for the calculation of the BoS statistic

was explored for its relationship to meta-analysis level characteristics. Through this

exploration it was observed that there is possibly a relationship between the magnitude

of the BoS statistic and the percentage of missing data for the outcome of interest. If

there is a relationship then it is important for future research to explore this further.

For the use of the interactive graphs, it would be beneficial to speak to researchers

about whether they would use such a tool for predicting the BoS statistic.

Next steps

In the next chapter, the relationship between the BoS statistic and the percentage

of missing data for the outcome of interest is explored further through mathematical

reasoning and examples.
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Chapter 6

Mathematical investigation of the
magnitude of the BoS statistic

6.1 Introduction

In previous chapters, BoS was studied extensively within the framework of multivariate

meta-analysis. In Chapter 3, the BoS statistic was observed to identify differences

between the univariate and multivariate meta-analysis results. In Chapters 3 and 4,

statistical models for predicting the value of BoS were developed using characteristics

of existing multivariate meta-analyses as predictors. The characteristics of meta-

analyses that were the most important predictors included; the number of studies, the

maximum absolute within-study correlation and the percentage of missing data for

the outcome of interest.

In the previous chapter, the BoS statistic was explored using developed interac-

tive graphical tools. The prediction models developed in Chapter 4 were embedded

into interactive graphical tools, to enable researchers to predict the magnitude of BoS

in their setting (Chapter 5). In particular, the potential maximum BoS calculated

from the equation for the BoS statistic was also included in an interactive graph.

This enabled the visual exploration of the affect the characteristics of multivariate

meta-analysis had on the magnitude of BoS.

The Borrowing of Strength (BoS) statistic was proposed by Jackson et al. (2017) and
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was re-examined by Copas et al. (2018) to provide a greater understanding of how

the borrowing of strength depends on individual study characteristics. Jackson et al.

(2017) discussed the relationship between BoS and the within-study correlation; when

there is no within-study correlation the BoS is zero in a fixed-effect meta-analysis.

The magnitude of BoS is bound, due to the within-study correlations when there is no

missing data.This chapter seeks to build upon the findings of previous chapters, and

the work by Jackson et al. (2017) and Copas et al. (2018), by further investigating the

relationship between the characteristics of meta-analyses, in particular the percentage

of missing data for the outcome of interest, and the magnitude of BoS. The percentage

of missing data for the outcome of interest, along with the within-study correlation and

the number of studies were the most important predictors of the magnitude of BoS.

However within-study correlations are rarely available (Riley 2009) and therefore in

these settings the BoS cannot be predicted using the prediction models in Chapter 4.

Through the development and use of a novel visual display tool in R, the magnitude of

BoS in relation to the within-study correlation, the percentage of missing data for the

outcome of interest and other meta-analysis characteristics were explored in Chapter

5. Through the exploration of this interactive graphical tool, it was observed, while

maximising BoS, that the value of BoS was observed to not exceed the percentage of

missing data for the outcome of interest.

This chapter follows by firstly discussing whether it is plausible to consider

that the BoS might be bounded by the percentage of missing data for the outcome of

interest (Section 6.2). Following, using mathematical theory, Section 6.3 will provide

an informal rule of thumb for when multivariate meta-analysis may be most important

to use.
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6.2 Is it plausible that BoS might be bounded by

percentage of missing data?

In the previous chapter (Section 5.3), the magnitude of BoS was shown to not exceed

the value of the percentage of missing data for the outcome of interest in the interactive

graph. Therefore it could be considered that the magnitude of BoS is bounded by

the percentage of missing data for the outcome of interest but is it logical to consider

this to be the relationship? In this section, a simplistic explanation containing a

univariate meta-analysis with no heterogeneity is used to outline the plausibility of

the boundedness of BoS.

In this explanation, consider a univariate meta-analysis of a particular outcome

with five studies available. Let the within-study variance for the effect estimate of the

outcome in each study, i, be s2i1. Then, the variance from the univariate meta-analysis

with no heterogeneity for outcome one is

( 5∑
i=1

1

s2i1

)−1
=
s21
5
, (6.1)

assuming that the within-study variances are equal across all studies.

Consider the situation where the univariate meta-analysis was updated and as-

sume that a further five studies were included in the meta-analysis, each having

variances of equal value to the original five studies. Furthermore, assume that there

is no heterogeneity in treatment effect across all 10 studies. The variance for the

summary statistic from the updated univariate meta-analysis with 10 studies is:

( 10∑
i=1

1

s2i1

)−1
=
s21
10

(6.2)

=
1

2

(
s21
5

)
,
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assuming that the within-study variance is equal across all studies. Therefore, the

variance from the meta-analysis with 10 studies is smaller than the variance from the

meta-analysis with five studies.

An alternative way to consider the original univariate meta-analysis with five

studies is that there were missing studies, with 50% of trials missing (i.e. 5 out of

10). Therefore, a potential maximum BoS that a multivariate meta-analysis could

achieve for this outcome is to completely recover the missing information in the five

trials where it is not available, i.e. to get back to the univariate meta-analysis result

where 10 studies truly had been available. In this situation, the BoS statistic, which

is written as (Jackson et al. 2017)

BoS = 100%×
(

1− varmvmeta

varuvmeta

)
(6.3)

can be calculated from the variances from the meta-analysis with 10 studies and the

meta-analysis with five studies. The univariate meta-analysis with 10 studies contains

the total information contribution to the summary effect estimate and the univariate

meta-analysis with five studies contains the direct information contribution to the

summary effect estimate. Therefore, the BoS statistic equation can be rewritten as:

BoS = 100%×

(
1−

s2i1
10
s2i1
5

)
(6.4)

= 100%×
(

1− s2i1
10

5

s2i1

)
(6.5)

= 100%×
(

1− 1

2

)
(6.6)

= 50% (6.7)

Therefore, the BoS in this example is 50% which is equal to the percentage of missing

data in the original meta-analysis, which had five out of ten trials. This is a simplistic

explanation to illustrate why we might expect the BoS statistic to be bounded by the

percentage of missing data for the outcome of interest. However, neither this example
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nor the graphical tool formally prove that the BoS statistic is bounded and, if so, under

what conditions the boundedness holds.
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.
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n ∑ i=
1

s2 i
2

s2 i
1
s2 i

2
−
(ρ
w
s
i
s i

1
s i

2
)2
−
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n ∑ i=
1

1
s2 i

2
−
s2 i

2
ρ
2 w
s
i
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n ∑ i=
1

1
s2 i

1
(1
−
ρ
2 w
s
i
)
−
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b
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at
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b
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p
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p
le

te
d
at

a,
w

h
er

e
b

ot
h

th
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p
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−
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b
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=
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at
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b
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b
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at
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b
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b
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b
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b
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at
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6.4 Discussion

In this chapter, the relationship between the BoS and the percentage of missing data

for the outcome of interest was investigated using mathematical proofs. During the

exploration of the meta-analysis characteristics in the interactive tool developed using

the equation for BoS in Chapter 5, the magnitude of BoS was observed to never ex-

ceed the percentage of missing data for the outcome of interest. Through a series of

mathematical proofs the BoS statistic was proved to be bounded by the percentage of

missing data for the outcome of interest, under certain conditions. In this section, the

key findings (summarised in Figure 6.1) are discussed and areas for future research are

described.

Figure 6.1: Key findings from the interactive tool and mathematical proofs

Key Findings:

• Through a simplified example, of a univariate meta-analysis and its update,

the plausibility of the boundedness of the statistic was discussed.

• The BoS statistic was proved to be bounded by the percentage of missing

data for the outcome of interest under a fixed-effect meta-analysis assump-

tion, under the conditions of equal within-study variances and correlations

across all studies for the outcomes that are reported (Theorems 6.3.1 and

6.3.3).

• The BoS statistic was proved to be bounded by the percentage of missing

data for the outcome of interest under a random-effects assumption, in

addition to the conditions of equal within-study variances and correlations

across all studies for the outcomes reported (Theorem 6.3.4).

In the first instance, the BoS statistic from a fixed-effect meta-analysis was proved to

be bounded by the percentage of missing data for the outcome of interest when there

was no missing data for the alternative outcome and secondly when there was missing
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data for the alternative outcome. The proof was extended for the random-effects meta-

analysis and included the between-study correlation and the between-study variances.

For all the proofs some assumptions were made about the within-study correlations

and the variances. The within-study correlations were assumed to be equal across all

studies in the meta-analysis. The variances for the outcome of interest in each study

were assumed to be equal and the variances for the alternative outcome were also

assumed to be equal. For any variances that were missing, these were assumed to be

infinity (Riley 2009, Jackson et al. 2011). It is under these conditions that BoS was

proved to be bounded by the percentage of missing data for the outcome of interest

under a fixed or random-effects assumption.

6.4.1 Limitations

These conditions were made to aid simplicity. However, they are unlikely to hold for

real data analysed in a meta-analysis. It might be expected that provided the variances

and within-study correlations are similar in each study the BoS statistic might still be

bounded by the percentage of missing data for the outcome of interest. A contrived

example can be used to show that it is possible for the BoS to exceed the percentage

of missing data when the condition of equal variances does not hold. Consider a fixed-

effect bivariate meta-analysis with three studies, two containing complete data and

one with missing data for the outcome of interest. The within-study variances and

within-study correlations for the three studies are shown in Table 6.1.

Table 6.1: Contrived example, for demonstration purposes, of a bivariate fixed-effect

meta-analysis with three studies

study number Within-study variances Within-study

s21 s22 correlation (ρws)

1 5 18 0.9

2 20 5 0.9

3 missing ≈ 10000 9 0
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For the missing data in study three, the missing variance is assumed to be large, say

10000, and the within-study correlation is zero. In this example, the percentage of

missing data for the outcome of interest is 33.3% and the BoS statistic is calculated as

follows:

BoS = 100%×

1−

n∑
i=1

1
s2i1

n∑
i=1

1
s2i2(1−ρ2wsi )

n∑
i=1

1
s2i2(1−ρ2wsi )

n∑
i=1

1
s2i1(1−ρ2wsi )

−
[

n∑
i=1

ρwsi
si1si2(1−ρ2wsi )

]2


= 100%×


1−

[
1
5

+ 1
20

+ 1
10000

][
1

18(1−0.92) + 1
5(1−0.92) + 1

9

]
[

1
18(1−0.92) + 1

5(1−0.92) + 1
9

][
1

5(1−0.92) + 1
20(1−0.92) + 1

10000

]
−
[

0.9√
5
√
18(1−0.92) + 0.9√

20
√
5(1−0.92)

]2


= 62.43% (6.43)

It can be seen in this example that the BoS (62.43%) is greater than the percentage

of missing data for the outcome of interest (33.3%). This is only one example of a

violation of one condition resulting in the BoS statistic no longer being bounded by

the percentage of missing data for the outcome of interest. The boundedness may also

not hold when other conditions are violated. Nevertheless, the findings in the chapter

demonstrate useful results that hold when the conditions assumed are true.

6.4.2 The relationship between the borrowing of strength and

missing data

This chapter proved under certain conditions the BoS statistic in a bivariate meta-

analysis is bounded by the percentage of missing data for the outcome of interest.

Alternatively, Copas et al. (2018) investigated the effect missing data has upon the

borrowing of strength attributed to an individual study in a bivariate meta-analysis.

Copas et al. (2018) discussed that the BoS given to a particular study is dependent upon

201



how similar its characteristics are to the other studies in the meta-analysis. Consider

a bivariate meta-analysis that contains studies with complete data and studies with a

missing outcome. The studies with complete data are not altered but the given BoS

alters compared to the same meta-analysis with complete data for all studies of the

same size. Copas et al. (2018) showed that the sum of the given BoS for the studies

with complete data is affected by the remaining studies in the meta-analysis. The

given BoS increases when the remaining studies are missing the outcome of interest

and decreases when the alternative outcome is missing, compared to complete data in

the studies. Similarly, in this chapter the interactive tool showed that the BoS statistic

in the meta-analysis increased with increasing proportions of studies with the outcome

of interest missing and decreased when the proportion of studies with the alternative

outcome missing increases.

6.4.3 Strengths

This chapter has many strengths including providing a greater understanding of which

characteristics of meta-analyses affect the magnitude of BoS. This chapter builds upon

the findings and investigations into the BoS statistic by Jackson et al. (2017) and

Copas et al. (2018). A greater understanding of BoS will help to identify situations in

which the BoS is considerably large. This will help researchers predict what magnitude

of BoS they might expect from their meta-analysis and in turn could help them to

decide if a multivariate approach would be beneficial over a univariate approach.

A focus of this chapter was the relationship between the borrowing of strength

statistic and the percentage of missing data for the outcome of interest, which

complements the models developed in Chapter 4. The relationship has been detailed

in a simplistic usable manner; the BoS is bounded by the percentage of missing data

for the outcome of interest under particular conditions. This provides a very simple

‘rule of thumb’ that some researchers may find useful, i.e. consider multivariate

meta-analysis when the percentage of missing data for the outcome of interest is large.
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Researchers might consider both the simple rule of thumb that BoS is bounded by the

percentage of missing data for the outcome of interest and also the value predicted

from the models in Chapter 4. Conversely, for complete data, it may be unlikely to be

worthwhile.

6.4.4 Further work

This chapter proved under certain conditions (equal within-study variances and corre-

lations across studies) the BoS statistic is bounded by the percentage of missing data

for the outcome of interest. However this chapter did not investigate the consequences

of violating the conditions for the boundedness. It is important to understand the

impacts violating the conditions have on the boundedness relationship. This is par-

ticularly important if it is recommended that the magnitude of BoS is considered in

determining whether a multivariate meta-analysis is beneficial in that setting.

Next steps

In the next chapter, a novel application of multivariate meta-analysis is considered,

where missing data for the key outcome is often a problem, such that, multivariate

meta-analysis may have considerable BoS.
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Chapter 7

A new bivariate approach for
meta-analysis of continuous
outcomes from randomised trials
providing a mixture of final score
and analysis of covariance
treatment effect estimates

In the previous chapters the benefits of a multivariate meta-analysis over multiple

univariate meta-analyses have been explored. The results from multivariate meta-

analyses have been compared to the results from univariate meta-analyses. In Chapter

2, the multivariate meta-analysis results and the univariate meta-analysis results were

often similar in an applied example that extended a previous HTA report. However,

there were incidences in which potential clinical differences arose between the results

and the Borrowing of Strength (BoS) statistic was larger for these outcomes. Following

in Chapter 3, the magnitude of BoS was found to identify meta-analysis studies where

the multivariate meta-analysis is beneficial over the univariate in terms of gain in

precision and potentially stronger/different conclusions. The focus of the thesis in

Chapter 4 and 6 was the further understanding of the BoS statistic and meta-analysis

level characteristics that influence the magnitude of BoS. In the next two chapters, the

thesis returns to investigate further potential benefits of the multivariate meta-analysis

approach in a novel application.
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7.1 Context and aims

A randomised control trial (RCT) is considered to be the best design for the compari-

son of treatments (Aiello et al. 2011), with a meta-analysis of RCTs considered to be

the “gold standard” for summarising the evidence about treatment effects (Trowman

et al. 2007). In RCTs, continuous outcomes (e.g. blood pressure, weight) are usually

measured at baseline (before the treatment period) and at follow up (during or at

the end of the treatment period). The treatment effect measure of interest for a

continuous outcome is usually the mean difference (i.e. treatment versus control)

in the outcome at follow-up. However, this can be estimated using a variety of

different analytical approaches, depending on if and how the baseline variable (i.e. the

continuous outcome at baseline) is adjusted for. The most commonly used methods

are the final score model, which does not adjust for the baseline variable; the change

score model, which accounts for the baseline values by modelling the change in the

outcome between follow up and baseline; and an ANCOVA (analysis of covariance)

model, which models the follow-up outcome value in a linear regression that adjusts

for the baseline variable using covariate adjustment. These three methods were

introduced in Chapter 1 in Section 1.3.2. The ANCOVA model is considered to be

the method of choice for the estimation of the mean treatment difference (Vickers &

Altman 2001, Van Breukelen 2006, Zhang et al. 2014).

When multiple RCTs are available that evaluate the same treatment in terms

of a particular continuous outcome, then different studies may have used different

methods for the analysis, potentially. Where possible, it is recommended that the

ANCOVA treatment effect estimates should be combined in the meta-analysis (Riley

et al. 2013, Fu et al. 2013). However, the researcher is restricted by the treatment

effect estimates reported unless they can be derived using individual participant

data (IPD), which is unlikely to be available for all trials. The question for the

researcher is therefore: what is the best way to combine treatment effect estimates

for continuous outcomes in a meta-analysis, given that the method to derive them
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will vary across trials? A previously proposed meta-analysis approach suggests a

univariate meta-analysis model where a single treatment effect from each trial is

obtained regardless of the continuous outcome modelling method (Higgins & Green

2008). This allows, for example, for treatment effect estimates from trials using

ANCOVA models to be combined with treatment effect estimates from trials using

the final score approach.

An interesting further issue arises when some trials report more than one treat-

ment effect estimate based on two or more of the different estimation methods (e.g.

ANCOVA and final score). For example, a trial may report the estimate of mean

difference based on a final score model, and also report the estimate from an ANCOVA

model. Furthermore, if IPD are available for a particular trial then the meta-analysts

themselves can calculate treatment effect estimates for each of the different models

using the trial’s IPD. These estimates will be correlated with each other and there-

fore may provide an opportunity to gain more information for the meta-analysis results.

Therefore, the aim of this chapter is to consider a new multivariate meta-analysis ap-

proach for synthesising treatment effect estimates from RCTs of continuous outcomes.

The multivariate approach allows for the joint synthesis of multiple treatment effect

estimates from the same trial, to borrow strength for each effect estimate by utilising

additional information from the correlation between the effect estimates (Raudenbush

et al. 1988, Becker 2000, van Houwelingen et al. 2002, Jackson et al. 2011). Particular

interest lies with the premise that the ultimate aim is to produce a summary result

based on ANCOVA effect estimates, and that in trials where ANCOVA results are not

available, information could be borrowed from other effect estimates (e.g. final score)

that are available.

The structure of this chapter hereby follows with an introduction to the analy-

sis approach of a single RCT with a continuous outcome, using final score, change
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score and ANCOVA. The current univariate meta-analysis approaches are then

described and the new multivariate meta-analysis approach introduced. The chapter

will follow with an example dataset to illustrate the use of the methods as well as

facilitate comparison between the approaches. A detailed simulation study will be

described in the subsequent chapter.

7.2 Methods

7.2.1 Models for analysis of continuous data in a randomised

control trial

The setting for the models described in this section is a single parallel-group RCT

where the study participants are randomly allocated to either a treatment group or a

control group. A baseline value for each participant is recorded prior to the treatment

period and similarly, a follow up value is recorded following the treatment period for

each participant. The models are fitted to this data to obtain the estimated mean

treatment effect and its standard error, which could then contribute to a subsequent

meta-analysis.

The three potential models (change score, final score and ANCOVA) are de-

scribed below. Each model uses a linear regression framework including the treatment

group as a covariate, but they model the baseline and final values of the outcome in

different ways. Although these were introduced in the Introduction (Chapter 1), they

are shown again below for completeness for this chapter.

Change score model

The change score approach models the difference between the final value and the base-

line value. For a simple, unadjusted analysis of the treatment effect for an individual
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trial, i, the model can be written as:

yFij − yBij = φi + θCixij + eij eij ∼ N(0, σ2
i ) (7.1)

where F represents the final score, B the baseline and C is the change score. yFij

and yBij are the follow up and baseline values, respectively, for participant j in trial i

and xij is 0/1 for participants in the control/treatment group. θCi is the change score

model’s treatment effect (mean difference in the change score between the treatment

and control) for study i, and φi is the fixed trial effect, which represents the control

group’s mean change score in this case. The residual error, eij, is assumed to be

normally distributed with mean 0 and variance σ2
i .

Final score model

The final score model is similar to the change score model, except the final score model

does not account for the baseline values. The final score model can be written as:

yFij = φi + θFixij + eij eij ∼ N(0, σ2
i ) (7.2)

where F represents the final score and yFij is the final measurement value from partici-

pant j in trial i. The intercept, φi, is the mean final score for the control group in trial

i. The treatment effect for the final score model for trial i is θFi. The residual error,

eij and the treatment group indicator, xij are the same as the change score model.

ANCOVA model

An ANCOVA model adjusts for the baseline measurement values while regressing the

final value.

yFij = φi + βiyBij + θAixij + eij eij ∼ N(0, σ2
i ) (7.3)

where F represents the final score, B is the baseline and A represents the ANCOVA

model. The interpretation of βi is the effect of a 1-unit increase in the baseline value

on the final value for study i. The final measurement value and baseline measurement
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value for participant j in study i are denoted as yFij and yBij , respectively. The

treatment effect for the ANCOVA model is θAi and φi is the intercept for study i. The

residual error, eij, and the treatment group indicator, xij, are as defined previously.

7.2.2 Choice of model for continuous data and baseline imbal-

ance

The statistical properties of the three approaches have been extensively reviewed

(Senn 1993, Wei & Zhang 2001). The ANCOVA is considered to be the best approach

for analysing continuous outcomes from RCTs compared to the final score and the

change score models since it has greater statistical power to detect a treatment effect

(Vickers & Altman 2001) whilst accounting for the correlation between baseline and

follow-up values (unlike final score) and adjusting for the starting value (unlike change

score and final score). It yields unbiased treatment effect estimates and maintains

the nominal type I error rate when there is baseline imbalance that occurs by chance

(Senn 1993, Wei & Zhang 2001, Fu & Holmer 2016).

Baseline imbalance occurs when the mean of the baseline values for treatment

and control groups is different for one or more covariates in a trial (Fu & Holmer

2016). When there is imbalance in the continuous outcome at baseline, it can lead to

biased treatment effect estimates for both the final score and change score analyses.

The final score model ignores the baseline values, consequently when there is baseline

imbalance the model does not account for the imbalance, which results in biased

treatment effect estimates. The change score model is often considered to account

for baseline imbalance, however this is incorrect (Vickers & Altman 2001). The

change score model contains the baseline values, but it does not account for baseline

imbalance as it simply calculates the change score from the baseline and final values.

Thus the magnitude of the baseline value is lost when the change value is calculated

and similarly the correlation between the change value and baseline value is also

lost. The ANCOVA model is the only model that adjusts for the baseline values and
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thereby accounts for baseline imbalances across treatment groups.

When multiple RCTs are to be synthesised, and there is little or no baseline

imbalance in all RCTs, the choice of analytical approach in each trial becomes less im-

portant and the impact on the meta-analysis summary estimates may be minor (Riley

et al. 2013). However, when there is baseline imbalance in some of the trials included,

the results from the meta-analysis may be more likely to produce treatment effects

that are biased (Trowman et al. 2007). Some argue that baseline imbalance is not a

concern since its impact is likely to be greater within an individual trial than across

trials (McKenzie et al. 2016, Wei & Zhang 2001); for example, baseline imbalances

may vary randomly around zero when averaged over similar trials. However, this may

not always be the case, since there may be systematic differences in the direction of

imbalance across trials, or the trials with a particular direction of imbalance may

have larger study weights. Therefore, in situations with baseline imbalance it is

recommended to synthesise ANCOVA derived treatment effect estimates rather than

change score or final score treatment effect estimates, wherever possible. This forms

the premise for the new meta-analysis method to summarise ANCOVA results, to be

introduced in Section 7.2.6.

7.2.3 Mathematical relationship between the ANCOVA,

change score and final score treatment effects

The relationship between the ANCOVA, change score and the final score treatment

effects in a single trial can be expressed mathematically as (Senn 1993, McKenzie et al.

2016):

θA = (1− λ) ∗ θF + λ ∗ θC (7.4)

where θA, θF and θC are the treatment effects from the ANCOVA (A), final score

(F) and change score (C) models, respectively. The term λ is the slope coefficient

from the regression of the final measurement values from participants on the baseline
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measurement values from participants, written as:

yFj = α + λyBj (7.5)

where α is the intercept, yFj is the final measurement value and yBj is the baseline

measurement value for participant j. This can be derived when a trial’s IPD is available.

Alternatively, λ can be calculated using the following equation:

λ = ρFB
sdF
sdB

(7.6)

where ρFB is the correlation between the final and baseline measurement values for

the participants in the trial, sdF and sdB, are the standard deviations of the final

measurements and baseline measurements, respectively. When the variances for the

final and baseline are equal, λ is equal to ρFB (Senn 1993).

To provide further insight into the relationship of ANCOVA, final score and change

score treatment effect estimates, some theorems and lemmas are now introduced and

proved.

Theorem 7.2.1. The value of λ influences the relationship between the ANCOVA,

final score and change score treatment effects.

For example, when the value of λ is between 0 and 1, the value of ANCOVA lies

between the final score and change score values. This can be proved, from Equation

7.4.

Proof of Theorem 7.2.1

Recall Equation 7.4, which describes the relationship between the ANCOVA, change

score and final score treatment effects.

θA = (1− λ) ∗ θF + λ ∗ θC
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Let θA, θF and θC be the treatment effects from the ANCOVA, final score and change

score models, respectively. Also, let x = 1− λ and y = λ.

Lemma 7.2.2. The treatment effects from the ANCOVA and final score models are

equal when λ = 0.

Consider the situation where λ = 0, then x = 1 and y = 0, therefore θA = θF .

Lemma 7.2.3. The treatment effects from the ANCOVA and change score models are

equal when λ = 1.

Consider the situation where λ = 1, then x = 0 and y = 1, therefore θA = θC .

Lemma 7.2.4. The value of the ANCOVA treatment effect lies between the final score

and change score treatment effect values when λ is between zero and one.

Consider the situation where 0 < λ < 1, then 0 < x, y < 1.

If θF > θC ,

θA = xθF + yθC and θA = xθF + yθC

θA > xθC + yθC θA < xθF + yθF

θA > (x+ y)θC θA < (x+ y)θF

θA > θC θA < θF

∴ θC < θA < θF (7.7)

If θF < θC ,

θA = xθF + yθC and θA = xθF + yθC

θA < xθC + yθC θA > xθF + yθF

θA < (x+ y)θC θA > (x+ y)θF

θA > θC θA > θF

∴ θC > θA > θF (7.8)
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Therefore, the ANCOVA treatment effect lies between the treatment effect for the final

score and the change score, when the regression coefficient (λ) from the final values

regressed on the baseline values is between 0 and 1.

Lemma 7.2.5. The value of the change score treatment effect lies between the final

score and ANCOVA treatment effect values when λ is greater than one.

Consider the situation where λ > 1, then x is negative and y is positive.

If θF > θC ,

θA = xθF + yθC and θA = xθF + yθC

θA < xθC + yθC θA < xθF + yθF

θA < (x+ y)θC θA < (x+ y)θF

θA < θC θA < θF

∴ θA < θC < θF (7.9)

If θF < θC ,

θA = xθF + yθC and θA = xθF + yθC

θA > xθC + yθC θA > xθF + yθF

θA > (x+ y)θC θA > (x+ y)θF

θA > θC θA > θF

∴ θA > θC > θF (7.10)

Lemma 7.2.6. The value of the final score treatment effect lies between the change

score and ANCOVA treatment effect values when λ is less than zero.

Consider the situation where λ < 0, then x is positive and y is negative.
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If θF > θC ,

θA = xθF + yθC and θA = xθF + yθC

θA > xθC + yθC θA > xθF + yθF

θA > (x+ y)θC θA > (x+ y)θF

θA > θC θA > θF

∴ θA > θF > θC (7.11)

If θF < θC ,

θA = xθF + yθC and θA = xθF + yθC

θA < xθC + yθC θA < xθF + yθF

θA < (x+ y)θC θA < (x+ y)θF

θA < θC θA < θF

∴ θA < θF < θC (7.12)

Therefore, the ANCOVA treatment effect does not lie in between the treatment effects

for final score and the change score when λ < 0 or λ > 1, as it is either the largest

or smallest in value of the three results. This situation is likely to occur in trials if

the correlation between baseline and final is large, and the variation in final outcome

values is considerably greater than the variation in baseline outcomes values (as recall

Equation 7.6 says that λ = ρFB
sdF
sdB

). It may also occur if there is a negative correlation

between baseline and follow-up values. However, in most RCTs 0 < λ < 1.

7.2.4 Univariate meta-analysis: a current method for meta-

analysis

The current methods for a meta-analysis of treatment effect estimates for a continuous

outcome involve a univariate meta-analysis approach; that is one estimate per trial
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is used in the analysis. These approaches are now introduced using a random-effects

specification, since heterogeneity is usually expected in a meta-analysis.

Separate Univariate meta-analysis

The first current option is separate univariate meta-analyses for each set of treatment

effect estimates using an ANCOVA, change score and final score model. For the AN-

COVA model, the separate univariate meta-analysis can be expressed as:

θ̂Ai ∼N(θAi, s
2
Ai)

θAi ∼N(θA, τ
2
A) (7.13)

where, for an ANCOVA model in trial i, θ̂Ai is the treatment effect estimate, θAi is

the true treatment effect and s2Ai is the estimated variance of the treatment effect

estimate in trial i. The average treatment effect from the ANCOVA model is denoted

by θA and τ 2A is the between-study variance for the true treatment effect across trials.

For the final score and the change score models, the univariate random-effects

meta-analysis model can be re-written by replacing the estimates from ANCOVA with

either those from the final score model (Equation 7.14) or the change score model

(Equation 7.15).

θ̂Fi ∼N(θFi, s
2
Fi)

θFi ∼N(θF , τ
2
F ) (7.14)

θ̂Ci ∼N(θCi, s
2
Ci)

θCi ∼N(θC , τ
2
C) (7.15)
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7.2.5 A meta-analysis method recommended by the Cochrane

Collaboration

Previously in this chapter, it was discussed that the preferred method for analysing

continuous outcomes in a single RCT is with an ANCOVA model. However, although

this method is known to have the best statistical properties compared to the final and

change score models, it is often the least reported (Higgins & Green 2008). More com-

monly, a researcher will have studies that reported the final score and/or the change

score. Unlike the separate univariate meta-analysis approach given above, the Cochrane

Handbook (Higgins & Green 2008) states that it is possible to include a mixture of

treatment effect estimates from different analytical approaches in a single univariate

meta-analysis, under the assumption that all the models are estimating the same un-

derlying treatment effects. In this way, only a single treatment effect estimate from

each study will be included in the meta-analysis. Priority should be given to that

from the ANCOVA model due to the reasons discussed earlier in this chapter. The

Cochrane combined approach therefore is a random-effects meta-analysis model that

can be expressed generally as:

θ̂i ∼N(θi, s
2
i )

θi ∼N(θ, τ 2) (7.16)

where, for trial i, θ̂i is the treatment effect estimate derived from any analytical

approach, θi is the true treatment effect in trial i and s2i is the within-study variance

(assumed known). θ denotes the average treatment effect and τ 2 is the between-study

variance.
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7.2.6 A new application of bivariate meta-analysis for contin-

uous outcomes

An alternative meta-analysis approach for combining effect estimates from RCTs with

a continuous outcome is a bivariate meta-analysis model, to simultaneously synthesise

treatment effect estimates from a pair of analytical method (e.g. ANCOVA and final

score). As shown in previous chapters, an advantage of multivariate meta-analysis

over univariate meta-analysis is borrowing of strength, which is defined as the gain in

precision (=1/variance) of summary meta-analysis results when using a multivariate

meta-analysis over a univariate meta-analysis (Jackson et al. 2017). This gain in

precision arises from the inclusion of correlated effect estimates in the same analysis.

Therefore, the idea is that we may learn about ANCOVA estimates by borrowing

information from the final score (or change score) estimates, when ANCOVA estimates

are not reported.

In section 7.2.1, three models for continuous outcomes (ANCOVA, final score

and change score) and additionally the relationship between the treatment effect

estimates from the three models were described. The three treatment effect estimates

from the three models are structurally related. Due to this, a meta-analysis containing

all three is likely to encounter the potential problem of non-convergence. Therefore,

a bivariate meta-analysis was decided as being the most appropriate for avoiding

this problem. The bivariate meta-analysis of final score and ANCOVA treatment

effect estimates was decided to be the most realistic and useful situation. The

ANCOVA model is the ideal model for the analysis of continuous data, whilst the final

score treatment effect is often the most reported (or can be derived from published

information).

In summary, the aim is to produce a summary ANCOVA estimate of the treat-

ment effect, based on available ANCOVA estimates, but borrowing information from

final score estimates in trials that do not provide ANCOVA estimates. The proposed
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bivariate random-effects meta-analysis model for ANCOVA and final score treatment

effect estimates can be mathematically expressed as:

θ̂Ai
θ̂Fi

 ∼ N


θAi
θFi

 ,Γi

 , Γi =

 s2Ai s(A,F )i

s(A,F )i s2Fi


θAi
θFi

 ∼ N


θA
θF

 ,Ω

 , Ω =

 τ 2A τ(A,F )

τ(A,F ) τ 2F

 (7.17)

where A and F represent the ANCOVA and the final score models, respectively. For

trial i, θ̂Ai and θ̂Fi represent the treatment effect estimate from the ANCOVA and final

score models respectively and θAi and θFi are the true treatment effect for the ANCOVA

and final score models, respectively. The average treatment effect for the ANCOVA

and final score models are θA and θF , respectively. The within-study covariance matrix

and between-study covariance matrix are represented as Γi and Ω, respectively. The

elements of the lead diagonal of Ω, τ 2A and τ 2F , are the between-study variances for the

ANCOVA and final score models, respectively. The remaining off-diagonal elements

of Ω are the between-study covariances, which are calculated using the between-study

correlations. For example, for the ANCOVA and the final score models:

τ(A,F ) = ρBτAτF (7.18)

where ρB is the between-study correlation, which is the correlation between the true

treatment effects, θAi and θFi. The lead diagonal of Γi, s
2
Ai and s2Fi are the variances

of the summary treatment effect estimates from the respective analytical models. The

remaining off-diagonal elements of matrix Γi are the within-study covariances, which

are calculated using within-study correlations. For example, for the ANCOVA and

final score models:

s(A,F )i = ρW(A,F )i
sAisFi (7.19)

where ρW(A,F )i
is the within-study correlation between the treatment effect estimates

from the ANCOVA and the final score models for trial i.
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Calculating within-study correlations in a trial providing IPD

The within-study correlation between the treatment effect estimates from the analytical

models is required for a bivariate meta-analysis and can be calculated from the IPD.

The above equation (Equation 7.19) can be rearranged to give the equation for the

within-study correlation:

ρW(A,F )i
=
s(A,F )i

sAisFi
(7.20)

where s(A,F )i, sAi and sFi are as above.

There are two methods to calculate the within-study correlations from IPD:

seemingly unrelated regression and bootstrapping (Riley et al. 2015). These were

explained in Section 1.4.4 and here the bootstrapping approach is used.

Potential advantages of a bivariate meta-analysis in this setting

If a trial only reports the treatment effect estimate using one of either an ANCOVA or

a final score approach, the other effect estimate will be missing. These missing values

can be handled in a bivariate meta-analysis under the missing at random assumption.

In fact, this is the reason for proposing this meta-analysis approach in this setting;

the model can borrow strength between effect estimates, to improve summary results.

In this setting, missing data refers to an unreported treatment effect estimate

and standard error from a particular model (ANCOVA or final score). The treat-

ment effect estimates from the ANCOVA are the desired outcome for pooling in a

meta-analysis, however the ANCOVA estimates are not usually available for all trials.

Therefore, the premise is that for the trials with missing ANCOVA treatment effects,

the final score treatment effects are available.

Additionally, for some trials both the ANCOVA and the final score treatment

effects are reported or are both available since they have been calculated from

available IPD. For these trials with available IPD the within-study correlation can
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be calculated as previously described. So the bivariate method may be most suitable

when some trials provide IPD (so that both ANCOVA and final score treatment effect

estimates can be derived) and other trials without IPD only provide the final score

treatment effect estimate.

Estimation of the bivariate meta-analysis

The parameters of the bivariate meta-analysis model were estimated using restricted

maximum likelihood (REML). The standard errors calculated accounted for uncer-

tainty in the estimated between-study correlation and confidence intervals were derived

using the normal distribution and implemented in Stata using White (2011)’s mvmeta

package. The BoS statistic was calculated as described in previous chapters (Sections

1.4.8 and 3.2.5).

7.2.7 A real dataset for the application of methods

The data used to investigate the new method in this chapter is from a previous meta-

analysis by Wang et al. (2005). The dataset contains IPD from 10 RCTs that investi-

gated whether active hypertension treatments lower systolic blood pressure (SBP) or

diastolic blood pressure (DBP) compared to placebo or no treatment. This provided

IPD for a total of 25,581 patients as detailed in Riley et al. (2013). Each participant

in each trial recorded a baseline and final measurement for SBP and DBP. For illus-

tration, this chapter focuses only on the SBP. The distribution of baseline values were

very similar between the treatment and control groups for the SBP in each trial, and

thus baseline balance was good, although not perfect (Table 7.1).
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Table 7.1: The baseline means and standard deviations for the systolic blood pressure

from the 10 Hypertension trials from the control and treatment groups. The treatment

effect estimates and standard errors from the ANCOVA and final score models and the

within-study correlations calculated using bootstrapping.

Trial
Baseline Mean (SD)

Treatment Effect Within-study

Estimates (SE) correlations

Control Treatment θA θF ρW(A,F )i

ANBP
153.05 152.28 -6.664 -6.899

0.962
(15.73) (15.25) (0,850) (0.884)

COOP
191.55 189.94 -14.166 -14.834

0.943
(17.64) (16.15) (2,174) (2.300)

EWPH
178.23 177.33 -12.881 -13.573

0.871
(15.06) (15.85) (3.211) (3.682)

HDFP
151.00 151.68 -8.709 -8.440

0.933
(19.53) (19.83) (0.543) (0.585)

MRC1
156.65 156.50 -8.702 -8.760

0.928
(15.96) (16.09) (0.375) (0.406)

MRC2
182.13 182.19 -10.602 -10.587

0.988
(12.73) (12.63) (0.764) (0.774)

SHEP
170.12 170.49 -11.357 -11.137

0.963
(9.24) (9.50) (0.546) (0.569)

STOP
194.15 194.68 -17.926 -17.655

0.950
(11.16) (12.21) (2.413) (2.518)

SYCH
170.25 170.73 -6.548 -6.357

0.966
(11.41) (10.90) (0.644) (0.669)

SYSE
173.94 173.75 -10.256 -10.373

0.920
(10.07) (9.86) (0.442) (0.476)

The treatment effect estimates for the SBP were all negative, which means that the ac-
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tive hypertension treatments reduce SBP compared to control or no treatment (Table

7.1). For each trial, the treatment effect estimates from each model were very similar.

In this meta-analysis example, the treatment effect estimates from the final score model

were less than the treatment effect estimates from the ANCOVA model for five trials

and vice versa in the remaining five trials. This observation will be investigated fur-

ther in Section 7.3.2 when we consider the impact of missing treatment effect estimates.

The within-study correlations of the final score and ANCOVA treatment effect

estimates were calculated using the bootstrap method. The magnitude of all the

within-study correlations were all large (Table 7.1).

7.2.8 Generating missing data scenarios

Making ANCOVA results missing at random

The bivariate method was applied to the complete data from all trials, for which

ANCOVA and final score are available for all. In truth, it would have been unnecessary

to do a bivariate meta-analysis with complete IPD, since the ANCOVA treatment effect

estimates could be derived and pooled in a univariate meta-analysis, thus negating

the need for the final score treatment effect estimates. In practice it is unlikely that

complete data will be available, either from IPD or aggregate data, and therefore

missing data scenarios were generated for application. These contained complete data

for five trials (50% of trials) and missing treatment effect estimates for the ANCOVA

for the remaining 5 trials. The scenarios were generated by setting the ANCOVA

treatment effect estimates and standard errors to randomly missing in five of the trials

(i.e. a missing at random situation).

Making missing ANCOVA results missing not at random

Also, two other missing data scenarios were created by making the missingness in

the ANCOVA treatment effect estimate dependent upon the relationship between

the ANCOVA and final score treatment effect estimates. The aim was to generate a
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situation where the new method would fail, by wrongly borrowing strength, due to

a missing not at random (MNAR) situation. For five of the trials (ANBP, COOP,

EWPH, MRC1 and SYSE), denoted as ‘MNAR1’, the magnitude of the treatment

effect estimate from the ANCOVA was greater than the magnitude of the treatment

effect estimate from the final score. Alternatively, for the remaining five trials

(HDFP, MRC2, SHEP, STOP and SYCH), denoted as ‘MNAR2’, the magnitude of

the treatment effect estimate from the ANCOVA was less than the treatment effect

estimates from the final score. There are two questions of interest here. Firstly, does

the bivariate meta-analysis provide misleading results compared to the complete data

case? Secondly, if the missing treatment effect estimates are known to be MNAR, is a

univariate meta-analysis approach more appropriate than a bivariate approach?

Finally, to avoid spurious findings based on a select few missing data scenarios,

all possible permutations of missing data scenarios for the 10 Hypertension trials with

five trials missing ANCOVA estimates were considered. For 10 trials with five studies

missing ANCOVA estimates, there were a total of 252 (C(10, 5) = 10!
5!(10−5)!) unique

permutations of missing data scenarios. Each meta-analysis approach was applied to

each set of treatment effect estimates for each of the 252 permutations and the results

were summarised across the 252 meta-analysis datasets. The mean of the summary

treatment effect estimates from each meta-analysis and the mean standard error of the

summary treatment effect estimate were recorded for each meta-analysis approach,

alongside the range of the summary treatment effect estimates and the standard

errors.

7.3 Results

The various models are now applied to the Hypertension meta-analysis dataset, and

their results compared, for each complete and missing data scenarios.
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7.3.1 Results when there are complete data

Consider first the complete data case where the ANCOVA and final score treatment ef-

fect estimates are available from all 10 Hypertension studies. The summary treatment

effect estimates for the ANCOVA were equal, -10.167 (Table 7.2), from the univariate

meta-analysis and the bivariate meta-analysis. The summary treatment effect esti-

mates were also very similar for the final score. From the univariate meta-analysis, the

final score summary treatment effect was -10.138 and from the bivariate meta-analysis

it was -10.119.

Table 7.2: Results from the complete data case; all ANCOVA treatment effect estimates

available for all 10 Hypertension studies

Type of Summary Observed Predicted

treatment treatment Standard 95% confidence BoS BoS using

effect effect error interval (%) model 4.7

measure estimate (%)

Bivariate meta-analysis

ANCOVA -10.167 0.972 -12.072 to -8.263 <0.001 7.7

Final score -10.119 0.964 -12.008 to -8.229 1.4 7.7

Univariate meta-analyses

ANCOVA -10.167 0.967 -12.063 to -8.271

Final score -10.138 0.980 -12.060 to -8.217

The standard errors of the estimates were also similar between the univariate and

the bivariate meta-analysis results (Table 7.2), which was expected as there is little

borrowing of strength with complete data in a multivariate meta-analysis (Riley et al.

2007a, Jackson et al. 2017). For the ANCOVA, the standard error was slightly lower in

the bivariate meta-analysis approach, 0.967, compared to the univariate model, 0.980

and BoS was close to 0%. Conversely, the standard error was slightly higher in the

bivariate meta-analysis approach, 0.972 for the final score, compared to the univariate

approach, 0.964 and BoS was 1.4%. However, overall, the new bivariate model adds
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very little in this situation of complete data. This is expected, as there is no missing

data, and so Chapter 6 suggests BoS will be close to zero, and the predicted BoS from

the model developed in Chapter 4 is 7.7%.

7.3.2 Results when some ANCOVA treatment effect estimates

are missing

Missing At Random

A scenario is now considered when some ANCOVA results are missing at random

(MAR) from five of the ten Hypertension trials, MRC1, MRC2, SHEP STOP and

SYSE, but the final score results are always available. In this situation, unlike the

complete data, there appears to be some advantage of the bivariate method. This is

expected, as the previous chapter showed that the BoS could be up to 50% when 50%

of studies have the outcome missing, and the predicted BoS based on prediction model

4.7 is about 30%. The summary ANCOVA treatment effect estimate for the bivariate

meta-analysis (-10.080) was closer to the summary ANCOVA treatment effect estimates

for the complete data (-10.167) than the separate univariate approach for ANCOVA

(-9.022) (Table 7.3).
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Table 7.3: Results from a missing at random example; there were no ANCOVA esti-

mates for trials MRC1, MRC2, SHEP, STOP and SYSE

Model for Summary Observed Predicted

treatment treatment Standard 95% confidence BoS BoS using

effect effect error interval (%) model 4.7

measure estimate (%)

Bivariate meta-analysis

ANCOVA -10.080 0.948 -11.939 to -8.221 53.1 30.6

Final score -10.108 0.972 -12.012 to -8.204 0.6 4.8

Separate univariate meta-analysis

ANCOVA -9.022 1.488 -11.939 to -6.105

Final score -10.138 0.980 -12.060 to -8.217

Cochrane combined meta-analysis (5 trials ANCOVA and 5 trials final score)

Combined -10.082 0.931 -11.908 to -8.257

The Cochrane combined summary estimate, -10.082 (Table 7.3), was contained

between the summary estimates from the bivariate meta-analysis for the ANCOVA

and the final score, which were -10.080 and -10.108, respectively. Additionally, the

Cochrane combined summary estimate was more similar in value to the ANCOVA

bivariate estimate than the final score bivariate estimate.

The standard error of the ANCOVA summary treatment effect estimate was

smaller in the bivariate meta-analysis model, 0.948 (Table 7.3), compared to the

univariate approach, 1.488, due to the gain in information borrowed from the five

studies with final score values. However, the standard error from the bivariate

meta-analysis for the ANCOVA was similar to the Cochrane combined approach,

0.931, where the five trials with ANCOVA results are combined with the five trials

with only final score results.
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Missing Not At Random

Consider now the results when missing data were not missing at random (MNAR).

One of the MNAR scenarios investigated here had missing ANCOVA treatment effect

estimates for the five trials (ANBP, COOP, EWPH, MRC1 and SYSE), where the

actual ANCOVA treatment effect estimate was greater than the final score treatment

effect estimate, denoted as MNAR1 (Table 7.4). The other MNAR scenario had missing

ANCOVA treatment effect estimates for the five trials (HDFP, MRC2, SHEP, STOP

and SYCH), where the actual ANCOVA treatment effect estimate was less than the

final score treatment effect estimate, denoted as MNAR2.
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The summary treatment effect estimates from the MNAR1 and MNAR2 scenarios

were quite different for all the methods (Table 7.4). The borrowing of strength

assumes that the relationship between the ANCOVA and final score treatment effect

estimates observed in those five trials that provide both, is the same as in those trials

providing only final score. However, these scenarios were purposely created so that

this was not correct.

Despite this concern, the bivariate method showed improvement over a univari-

ate meta-analysis of just five trials providing ANCOVA estimates. The ANCOVA

summary treatment effect estimates from the bivariate meta-analyses in the MNAR1

and MNAR2 scenarios were -10.336 and -9.966 (Table 7.4), respectively. These are

closer to the ANCOVA summary treatment effect estimates of -10.167 (Table 7.2)

from the complete data case (where all 10 trials gave ANCOVA results), than the

ANCOVA results of -10.582 and -9.798 from a separate univariate meta-analyses of

just five trials. The standard errors were also much smaller in the bivariate model.

However, the Cochrane combined approach appears to perform best, as it gives

summary treatment effect estimates for MNAR1 and MNAR2 scenarios of -10.276 and

-10.030, respectively (Table 7.4). These are closer in value to the ANCOVA treatment

effect estimates from the complete data case, -10.167 (Table 7.2), than the ANCOVA

summary treatment effect estimates from the new bivariate approach, 10.336 and

-9.966 (Table 7.4). Similarly to the MAR scenario, the Cochrane combined summary

treatment effect estimate was contained between the ANCOVA and final score

summary treatment effect estimates from the bivariate meta-analysis. For example,

in scenario MNAR1 the Cochrane combined summary treatment effect estimate was

-10.276 and the ANCOVA and final score summary treatment effect estimates from

the bivariate meta-analysis were -10.336 and -10.207 (Table 7.4), respectively.

The standard errors for the summary treatment effect estimates were similar
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from the bivariate meta-analysis approach and the Cochrane combined approach for

both the MNAR scenarios.

7.3.3 Investigating all permutations of missing data scenarios

The results from all the meta-analysis approaches for all the permutations of missing

data scenarios are summarised in Table 7.5. There were 252 different permutations of

missing data scenarios with five missing ANCOVA treatment effect estimates, which

includes the three examples presented previously.

Bivariate meta-analysis compared to separate univariate meta-analyses

The means of the ANCOVA and final score summary treatment effect estimates from

the bivariate meta-analyses were similar to the mean summary treatment effect esti-

mates from the separate univariate meta-analyses (Table 7.5). For example, for the

ANCOVA model, the mean summary treatment effect estimate was -10.150 from the bi-

variate meta-analyses and -10.284 from the separate univariate meta-analyses method.

However, the range of the summary treatment effect estimates from the meta-analysis

methods differed between the bivariate meta-analysis and the separate univariate meta-

analysis. The width of the range was greater for the separate univariate meta-analyses,

ranging from -12.692 to -7.934, compared to the range from the bivariate meta-analysis

approach, -10.449 to -9.606. The borrowing of strength leads to more information and

thus, the bivariate meta-analysis results are more precise (and thus less variable) when

there are missing data, compared to the separate univariate meta-analysis results.
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The mean standard error of the ANCOVA summary treatment effect estimates from

the separate univariate meta-analyses, 1.388 (Table 7.5), was much larger than the

mean standard error from the bivariate meta-analyses, 0.940. The range of standard

errors from the separate univariate meta-analyses, 0.431 to 2.317, was greater in width

and encompassed larger values than the range of standard errors from the bivariate

meta-analyses, 0.002 to 1.612.

Bivariate meta-analysis compared to Cochrane combined meta-analysis

The mean summary treatment effect estimate from the Cochrane combined meta-

analyses, -10.152 (Table 7.5), was similar to the means from the bivariate meta-analyses

for the ANCOVA, -10.150, and the final score, -10.113. The range of the summary

treatment effect estimates was narrower for the Cochrane combined meta-analyses,

-10.276 and -10.030, than the range of the summary treatment effect estimates for the

bivariate meta-analyses, -10.449 to -9.606.

Similarly, the mean standard errors between the Cochrane combined meta-analyses,

0.973 (Table 7.5), and the bivariate meta-analyses for the ANCOVA results were

similar, 0.973 and 0.940, respectively. The range of the standard errors was very

narrow for the Cochrane combined meta-analysis (range: 0.914 to 1.030), compared

to the range of standard error for the bivariate meta-analyses for ANCOVA (range:

0.002 to 1.612).

7.4 Discussion

This chapter proposed a multivariate meta-analysis approach for the synthesis of treat-

ment effect estimates from RCTs with continuous outcomes modelled using ANCOVA

or final score models. This was contrasted with two univariate approaches: synthesis

of the treatment effect estimates for each analytical method separately, or a single

univariate meta-analysis that combines treatment effect estimates from different ana-

lytical methods together; the latter method is advocated by the Cochrane Collaboration
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(Higgins & Green 2008). The current and newly proposed meta-analysis methods were

compared using an existing IPD dataset of 10 Hypertension trials (Wang et al. 2005,

Riley et al. 2013). With the complete IPD dataset the treatment effects from each

analytical model could be estimated and hypothetical missing data scenarios explored.

The key findings of the comparison are summarised in Figure 7.1.

Figure 7.1: Key findings and recommendations from the application of meta-analysis

methods to an IPD dataset with continuous outcomes

Key findings and recommendations:

• The multivariate meta-analysis approach is an alternative method of syn-

thesising treatment effect estimates from RCTs with continuous outcomes

that have been derived through a combination of ANCOVA and final score

models.

• For complete data (i.e. ANCOVA available for all trials), there was little

difference in the summary treatment effect estimates and standard errors

between the separate univariate meta-analyses and the newly proposed

bivariate meta-analysis, as expected.

• For the 252 permutations of missing data scenarios (irrespective of missing

data mechanism), the mean summary treatment effects from the bivariate

meta-analyses and the mean summary treatment effects from the Cochrane

combined meta-analyses were similar to each other, but different to those

from the separate univariate meta-analyses. Furthermore, the Cochrane

combined approach and bivariate meta-analysis approach gave closer re-

sults to those from the complete data case than the separate univariate

meta-analysis.

• The mean standard errors from the bivariate meta-analysis are smaller than

those from the separate univariate or Cochrane combined meta-analyses.
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However, the range of standard errors was narrower for the Cochrane com-

bined approach than the bivariate approach. The range of standard errors

for the separate univariate approach was larger than the ranges from the

bivariate or Cochrane combined approach.

• The bivariate meta-analysis approach is potentially most important if there

is evidence of baseline imbalance and some studies are missing ANCOVA

results. In other situations, the Cochrane combined meta-analysis is ad-

vantageous over the bivariate approach when IPD is unavailable, since the

Cochrane combined approach does not require the within-study correla-

tions.

The results of this chapter demonstrate that the separate univariate meta-analysis

method should not be used for the synthesis of treatment effect estimates from trials

with a continuous outcome modelled using ANCOVA and/or final score models. In

the presence of missing treatment effect estimates, the summary treatment effect

estimates from the separate univariate meta-analyses differed from the summary

treatment effect estimates from the complete data.

In comparison to the bivariate approach for the missing data scenarios, the sep-

arate univariate meta-analysis summary treatment effect estimate was further from

the summary treatment effect estimates from the complete data case. Additionally in

the presence of missing treatment effect estimates, the standard errors for the summary

treatment effect estimates were greater from the separate univariate meta-analyses

than the bivariate meta-analyses. Furthermore, for all the permutations of missing

data scenarios the ranges of summary treatment effect estimates and their standard

errors were large for the separate univariate meta-analyses compared to the bivariate

approach or the Cochrane combined approach.

The bivariate meta-analysis approach and the Cochrane combined meta-analysis
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approach treatment effect estimates and standard errors were similar for the selected

MAR and MNAR scenarios (Section 7.3.2). The mean summary treatment effect

estimates and the mean standard errors were similar between two methods from the

252 missing data permutations. Therefore, for the situation where there is baseline

balance and half the ANCOVA treatment effect estimates are missing the choice

between method is unimportant with regard to the accuracy of results. However, there

are benefits to utilising the bivariate meta-analysis approach, including borrowing

strength about the relationship between the treatment effect estimates from the

final score and the ANCOVA models. An additional benefit is the interpretability of

the results from a bivariate meta-analysis. The bivariate meta-analysis provides a

summary treatment effect estimate for each analytical model included in the analysis

(Jackson et al. 2011). Whereas, the Cochrane combined meta-analysis provides a

singular summary treatment effect estimate which is synthesised from treatment effect

estimates from different analytical models (Higgins & Green 2008).

7.4.1 Considerations for a bivariate meta-analysis

Conversely, this benefit of utilising a bivariate approach may also lead to technical

difficulties, e.g. how to draw conclusions based on two summary treatment effect

estimates compared to one summary treatment effect estimate.

Another possible consideration for the utilisation of a bivariate approach is the

need for IPD for the derivation of the within-study correlation matrix. IPD is an

important component to the bivariate approach since, without IPD for some trials

the bivariate approach is unlikely to be usable, due to unavailable within-study

correlations through lack of reporting (Riley 2009). An advantage of IPD is it can be

assessed whether there is baseline imbalance present.

Consequently, the decision between the bivariate meta-analysis approach and

the Cochrane combined meta-analysis approach has many considerations. It is
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important to consider the number of studies that provide both estimates together with

the quantity of IPD that is obtainable. Furthermore, there are some examples when

the use of the Cochrane combined approach should be considered over the bivariate

approach including when there is a struggle to obtain IPD. Another consideration is

if the ANCOVA is provided for the majority of trials and in the remaining trials there

is no evidence of baseline imbalance.

7.4.2 Limitations

The methods in this chapter were compared using only one dataset where only one

outcome (SBP) was studied. Therefore, it is difficult to be certain how the conclusions

from this chapter transfer to other datasets.

This chapter studied different missing data scenarios and the impacts missing

data had on results from different meta-analysis methods. Although this chapter

studied missing data there were restrictions on the quantity of missing data. For

each missing data scenario there was always missing data for half of the ANCOVA

treatment effect estimates. It is unclear how different proportions of missing data for

the ANCOVA treatment effect estimates might affect results from the meta-analysis

methods.

To avoid estimation problems for the bivariate method, treatment effect esti-

mates from two analytical models were chosen for the analysis. In this chapter, the

ANCOVA and final score were selected, since in trials the standard derivations of

changes from baseline are often not reported. Although the change score model was

not selected, it might be expected that similar results would be observed had this also

been analysed instead of the final score results. However, the final score results were

chosen as these are more commonly reported and can be derived more easily from

reported aggregate data.
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7.4.3 Further research

In this chapter, the trials within the dataset all had good baseline balance across the

treatment and control groups. However, the impact that baseline imbalance might

have on the comparison of methods is important to address in further research. The

summary treatment effect estimate may be biased if the baseline imbalance across

treatment groups has not been accounted for. Consider an example where trials with

baseline imbalance do not provide IPD and report treatment effect estimates from

final score models and the trials with baseline balance provide IPD (i.e. treatment

effect estimates from ANCOVA and final score models). It is unknown, based upon

the data available to the meta-analyst, that there is baseline imbalance in the trials

without IPD. In this situation which method should be recommended? The use of

estimation methods for univariate meta-analysis methods for the synthesis of summary

treatment effect estimates from RCTs with continuous outcomes has been studied

in a simulation study (McKenzie et al. 2016), although the bivariate meta-analysis

approach has not been considered.

Before recommendations on which meta-analysis method should be utilised in

future, further work is required. A focus for future work should include examining

the methods in further data sets to check the results from this chapter hold. This

future work could include different proportions of missing ANCOVA treatment effect

estimates and treatment effect estimates from change score models rather than final

score models.

Next steps

The next chapter will continue this work through a simulation study with the aim of

assessing each meta-analysis approach under varying percentages of missing data, as

well as baseline balance and baseline imbalance conditions.

239



240



Chapter 8

A simulation study to assess the
performance of a bivariate
meta-analysis method for
randomised control trials with
continuous outcomes

8.1 Background

In the previous chapter, a new bivariate approach for synthesising treatment effect

estimates from randomised control trials (RCTs) with continuous outcomes, measured

at baseline and follow-up, was proposed and explored. The approach was studied using

an individual participant data (IPD) meta-analysis for interventions for the treatment

of hypertension. For each trial, the treatment effect estimates were derived from both

ANCOVA model and final score model. To study the application of the bivariate

approach, missing data scenarios were generated by forcing some of the trials to have

missing treatment effect estimates from the ANCOVA model. The bivariate approach

was applied and compared to two other methods: (i) a univariate approach of trials

that provide ANCOVA results, and (ii) combining (in a univariate meta-analysis)

ANCOVA results from some trials and final score results in other trials. The latter

approach is the current approach recommended by Cochrane (Higgins & Green 2008).

The results suggest little difference in the meta-analysis approaches given com-
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plete data (i.e. ANCOVA results from all trials). However, for settings with missing

ANCOVA estimates, the results from the bivariate meta-analysis approach and

the Cochrane approach were similar and improved upon findings from a separate

univariate meta-analysis of just ANCOVA results. Thus, it was concluded that the

use of separate univariate meta-analyses in this setting should be avoided, and either

the Cochrane approach or the bivariate approach could be used. However, this

recommendation was only based on a single application, and so in this chapter a more

detailed simulation study is conducted to compare the various methods across a range

of different scenarios, including missing data scenarios. The simulation study aims to

make recommendations about which approach should be used and the settings that

influence this decision.

8.2 Models and setting

8.2.1 Description of models for continuous outcomes

For each trial in the simulation study, the continuous outcome, systolic blood pressure

(SBP), was modelled using the ANCOVA and final score models. The details of these

models were provided in Chapter 7, Section 7.2.1.

8.2.2 Setting for simulation study

The setting for the simulation study was based on the Hypertension data analysed

in Chapter 7, and so the outcome simulated was systolic blood pressure, which is a

continuous outcome.

In this simulation study, we investigate the effects of baseline (im)balance on

summary measures from different meta-analysis methods. Baseline imbalance occurs

when the mean of the baseline continuous outcome in each treatment arm differs (Fu

& Holmer 2015). Baseline imbalance can occur due to an inadequate randomisation

method, selection bias or occur by chance (Fu & Holmer 2016). Previous studies have
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concluded that final score models and change score models produce biased estimates

in the presence of baseline imbalance (Fu et al. 2013, Fu & Holmer 2015, Vickers &

Altman 2001). However, the ANCOVA method produces unbiased estimates (provided

a linear adjustment is correct), since it adjusts for the baseline measurement and thus

accounts for the baseline imbalance.

Although the ANCOVA model is advocated as the method of choice, RCTs are

still analysed using final score models or change score models (Fu & Holmer 2015).

This impacts a researcher doing a meta-analysis as they are likely to encounter a

selection of treatment effect estimates from different models.

8.3 Simulation study methods

The simulation study is described below in steps and the simulation code can be found

in Appendix F.3.

8.3.1 Simulation plan

Step 1: Generating data for one IPD meta-analysis

For the generation of IPD for the simulation study, the Hypertension data was used

to provide reasonable values and distributions for parameters (Table 8.1) using the

ANCOVA model (Equation 7.3). The first step for the generation of the data was to

set the number of trials per meta-analysis, either 5, 10 or 20. Within each trial, the

patients were generated with unique identifiers and the number of patients per trial

was fixed, at either 100 or 1000. In each trial, the patients were allocated into either

a treatment group or a control group using a binomial distribution with an equal

probability of 0.5.
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Table 8.1: Parameters used in the simulation study to generate scenarios with baseline

balance

Parameter Values Information

k 5, 10, 20 Number of studies in each meta-analysis

m 0, 10, 20, 40, 60 Percentage of MAR ANCOVA treatment effects

n 100, 1000 Number of participants per study

θ -10 Average treatment effect

τ 2 0, 2.25, 9 Between-study variance

σ2 225 Variance of random error term

φi N(80,25) Intercept

βi N(0.5,0.0025) Baseline adjustment

xij N(165, 324) Baseline systolic blood pressure

N(170, 324) Baseline systolic blood pressure for imbalance settings

Step 1a: Simulation of the baseline balance setting

Next, the baseline systolic blood pressure (SBP) for each participant in each trial

was generated from a normal distribution with a mean of 165 and variance 324. For

the baseline balance setting, the baseline SBP generation mechanism was the same

regardless of which treatment group a participant was allocated to.

Step 1b: Simulation of baseline imbalance settings

There were three baseline imbalance settings that were considered in this chapter.

The first setting was the unconditional baseline imbalance, where all the trials within

the meta-analysis have baseline imbalance. This was simulated by generating baseline

SBP values for the participants in the control group from a normal distribution

with mean 170 and variance 324. The baseline SBP values for the treatment group

were drawn from the same distribution as the baseline balance setting i.e. a normal

distribution with mean 165 and variance 324. Thus, the treatment group has a

5mmHG lower SBP at baseline than the control group, on average in the trials.
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The remaining two baseline imbalance settings were generated by conditioning

which trials contained baseline imbalance across treatment groups. The first con-

ditional baseline imbalance setting generated baseline imbalance across treatment

groups for trials which will be simulated to have missing ANCOVA treatment effect

estimates (representing trials with no IPD available). The first x trials in the simulated

meta-analysis will have missing ANCOVA treatment effect estimates, where x is the

value that satisfies the percentage of missing data simulated. Therefore, the trials

with IPD (or complete treatment effect estimate data) will have baseline balance and

the trials with only treatment effect estimates from the final score model will have

baseline imbalance.

The second conditional baseline imbalance setting generated baseline imbalance

for trials simulated to have both ANCOVA and final score treatment effect estimates,

thereby representing trials with IPD available. Therefore, the trials with IPD will have

baseline imbalance and the trials with only treatment effect estimates from the final

score model will have baseline imbalance. The baseline balance and imbalance were

generated in the same manner for both the conditional baseline imbalance settings.

For the trials with baseline imbalance, the baseline SBP values were generated in the

same way as the unconditional baseline imbalance setting, from a normal distribution

with mean 170 and variance 324. For the trials with baseline balance, the baseline

SBP values were generated as in Step 1a for the baseline balance setting, from a

normal distribution with mean 165 and variance 324.

Step 2: Simulation of ANCOVA model

The remaining parameters for the ANCOVA model (Equation 7.3) that require

generating include the error term, ei, the treatment effect θ, the baseline adjustment,

βi and the intercept, φi. The error term was normally distributed with mean 0 and

variance σ2, which was fixed at 225 for all simulations. The intercept was drawn from
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a normal distribution with mean 80 and variance 25 and the baseline adjustment

was also drawn from normal distribution with mean 0.5 and variance 0.0025. The

treatment effect was also drawn from a normal distribution with a mean, -10, and

the variance was the between-study variance, τ 2, either 0, 2.25 or 9 depending on the

chosen scenario.

Based on the parameter values chosen, the final SBP for each individual in

each trial was then simulated using the ANCOVA model (Equation 7.3). This

provided one simulated meta-analysis dataset of IPD.

Step 3: Simulate 1000 IPD meta-analysis datasets

To generate 1000 IPD meta-analysis datasets, steps 1 and 2 were repeated 1000 times.

Step 4: First stage of IPD meta-analysis

For each simulated trial in each IPD meta-analysis, the final score model (Equation 7.2)

and the ANCOVA model (Equation 7.3) were fitted. The trial-specific treatment effect

estimates and standard errors from both the final score model and the ANCOVA model

were obtained. The within-study correlations between the pairs of treatment effect

estimates from the ANCOVA and the final score models were obtained using seemingly

unrelated regression (Section 4.2.4) (Riley et al. 2015). Bootstrapping (Section 4.2.4)

was considered too computationally intensive for the requirements in this chapter.

Step 5: Generating missing data

A key aim of the simulation study was to investigate how each method performs in

the presence of missing data; that is, some trials have missing ANCOVA estimates.

Therefore, settings with different percentages of missing data were generated as part

of the simulation study. The percentage of missing data was kept constant across each

meta-analysis in the setting and ranged from 10% to 60%(e.g. 10%, 20%, 40%, 60%),

as well as complete data with 0% missing data. The missing data was generated for the
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ANCOVA treatment effect estimates under the missing completely at random (MCAR)

assumption, following the fitting of models in Step 3. Since the data was generated

at random, the first x ANCOVA treatment effect estimates (and their variances) were

forced to be missing such that x satisfies the percentage of missing data required.

To fully simulate the setting of unavailable IPD for the trials with missing data, the

within-study correlations for these trials were also subsequently forced to be missing

under the MCAR assumption.

Step 6: Second stage of IPD meta-analysis

Recall, the methods for comparison were univariate meta-analysis of ANCOVA

treatment effects only, bivariate meta-analysis of ANCOVA and final score treatment

effects and the Cochrane univariate meta-analysis approach (either ANCOVA or

final score treatment effects from each study, with ANCOVA preferred if both are

available). All the methods for the comparison used a random-effects meta-analysis

and utilised the REML estimation method for the estimation of the between-study

variance. The standard errors calculated did not account for the uncertainty in the

estimation of between-study variance and covariance (for multivariate meta-analysis).

The 95% confidence intervals were derived using the normal distribution.

An IPD meta-analysis was excluded from the simulation if a meta-analysis method

failed to converge within 200 iterations or if a meta-analysis method failed to estimate

the summary treatment effect or standard error. This meant that for each simulation

scenario and percentage of missing data setting, the number of meta-analysis results

were the same across each meta-analysis method, which allowed for fair comparisons

between methods.

Step 7: Performance measures

For the comparison of meta-analysis methods, several performance measures were cal-

culated to investigate the summary treatment effect estimate and the confidence in-
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terval, for each simulation scenario. The percentage bias, empirical standard error

and the mean square error were calculated to assess the performance of the summary

treatment effect estimate in each meta-analysis. Additionally, for each meta-analysis,

the coverage of the 95% confidence interval (proportion of meta-analyses the 95% con-

fidence interval contained the true value for the estimate of interest, in this case the

summary treatment effect estimate) (Burton et al. 2006) and the power (proportion of

meta-analyses that gave a significant p-value<0.05) were calculated to assess the confi-

dence intervals from each meta-analysis method. Furthermore, the mean BoS for both

ANCOVA and final score outcomes from the bivariate meta-analysis were calculated.

8.3.2 Scenarios

The simulation study investigated the performance of the meta-analysis methods

using nine different simulation scenarios (Table 8.2 and Table F.1 in Appendix F.1).

The simulation study scenarios differed by the number of trials included in the

meta-analysis and the value of the between-study variance of the treatment effect.

The number of trials in the meta-analysis were decided upon to simulate scenarios

with small (5), medium (10) and large (20) number of trials. Similarly for the

between-study variance, the scenarios included no between-study variance (therefore

a between-study correlation of zero), small (2.25) and large (9) between-study variance.
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Table 8.2: Table of scenarios for the simulation study for the baseline balance and

imbalance settings

Scenario
Number of Between-study Percentage of missing Number of

studies variance data participants

Baseline balance setting

1 5 0 0, 20, 40, 60 100, 1000

2 10 0 0, 10, 20, 40, 60 100, 1000

3 20 0 0, 10, 20, 40, 60 100, 1000

4 5 2.25 0, 20, 40, 60 100, 1000

5 10 2.25 0, 10, 20, 40, 60 100, 1000

6 20 2.25 0, 10, 20, 40, 60 100, 1000

7 5 9 0, 20, 40, 60 100, 1000

8 10 9 0, 10, 20, 40, 60 100, 1000

9 20 9 0, 10, 20, 40, 60 100, 1000

Baseline imbalance setting

Unconditional 10 2.25 0, 10, 20, 40, 60 1000

1st Conditional 10 2.25 0, 10, 20, 40, 60 1000

2nd Conditional 10 2.25 0, 10, 20, 40, 60 1000

Each scenario in Table 8.2 was simulated for each percentage of missing data with

both 100 participants per trial and 1000 participants per trial. These sub-scenarios’

characteristics are tabulated in further detail in Table F.2 in Appendix F.1.

There were three different baseline imbalance settings, an unconditional and

two conditional baseline imbalance settings. The effects of baseline imbalance were

investigated using Scenario BI, 10 trials of 1000 participants in the meta-analysis and

a between-study variance of 2.25 (Table 8.2).
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8.4 Results: Part 1 - Baseline balance scenarios

The results of the simulation study are now provided, for each of the different scenar-

ios, considering situations with missing data and baseline balance (baseline imbalance

is considered in Section 8.5). A key focus of the results section is the comparison be-

tween the bivariate meta-analysis method for the ANCOVA outcome and the Cochrane

recommended meta-analysis method.

8.4.1 Magnitude of BoS from the bivariate approach

In the bivariate model, the BoS statistic for the ANCOVA treatment effect outcome

increased as the percentage of missing data for the ANCOVA treatment effect estimate

increased (Figures 8.1 and 8.2). This is consistent with the findings in Chapters 4 and

6, which showed that the percentage of missing data for the outcome of interest was

an important predictor for the magnitude of BoS. Since BoS increases with increas-

ing missing data, the bivariate approach will be most beneficial over the univariate

approach when there are trials with missing ANCOVA estimates.
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Figure 8.1: The magnitude of BoS in relation to the percentage of missing data for

scenarios 1 to 9 for trials with 100 participants

Figure 8.2: The magnitude of BoS in relation to the percentage of missing data for

scenarios 1 to 9 for trials with 1000 participants
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8.4.2 Comparison of percentage bias in summary treatment

effect estimate

The percentage bias for summary estimates was similar for the Cochrane recom-

mended approach and the bivariate approach (Figures 8.3 and 8.4). For example,

in Figure 8.4 Scenario 8, with 60% missing data, the percentage bias was tiny; for

the Cochrane approach it was -0.189% and for the bivariate approach for ANCOVA

was -0.136%. In fact, the greatest difference in percentage bias between the two

approaches for any of the sub-scenarios was 0.153%. The magnitude of percentage

bias was also small for the univariate method for ANCOVA (Figures 8.3 and 8.4). For

example, in Figure 8.4 Scenario 8 the percentage bias was -0.249% when there was

no missing data and was -0.415% when the percentage of missing data increased to 60%.

The magnitude of the percentage bias increased as the between-study variance

increased for all meta-analysis methods, which can be observed by looking down

the columns of graphs in Figures 8.3 and 8.4. Additionally, the percentage bias was

reduced when there was an increase in the number of participants in each trial and/or

an increase in the number of trials in the meta-analysis (Figures 8.3 and 8.4).
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8.4.3 Comparison of meta-analysis methods: mean squared

error

Mean squared error was similar between Cochrane approach and bivariate

approach for ANCOVA

The mean squared errors for the Cochrane recommended meta-analyses were similar

to the mean squared errors for the bivariate meta-analyses for the ANCOVA outcome

(Figures 8.5 and 8.6). It is observable in Figures 8.5 and 8.6, that there was little

difference in the mean squared errors for the two methods. For example, in Figure

8.6 Scenario 9, the mean squared errors for the bivariate meta-analysis method for the

ANCOVA outcome and the recommended by Cochrane meta-analysis method were

0.561 and 0.547, respectively, when there was 60% missing data.
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Mean square error increased for univariate approach as percentage of miss-

ing data increased

As the percentage of missing data increased for the ANCOVA treatment effect esti-

mate, the mean squared error increased for the univariate meta-analysis method for

the ANCOVA outcome (Figures 8.5 and 8.6). For example, in Figure 8.6 Scenario 7,

the mean squared error from the univariate meta-analysis method was 2.033 for 0%

missing data and was 4.991 for 60% missing data. For all other methods in Scenario

7, the mean squared error ranged from 2.033 to 2.090 for 0% missing data and ranged

from 2.065 to 2.331 for 60% missing data.

8.4.4 Comparison of meta-analysis methods: mean empirical

standard error

Empirical standard error smaller for Cochrane approach than bivariate ap-

proach for ANCOVA

The mean empirical standard error was often observed to be slightly smaller for

the Cochrane recommended meta-analysis method than the bivariate meta-analysis

method for the ANCOVA outcome (Figures 8.7 and 8.8). For example, in Figure 8.5

Scenario 8 with 60% missing data, the mean empirical standard errors for the Cochrane

recommended method and the bivariate method for ANCOVA outcome were 1.412 and

1.555, respectively. This was more evident in Figure 8.7 when the number of partici-

pants in each trial was 100, particularly when the number of trials in the meta-analysis

was small e.g. 5 trials.
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Empirical standard error is large for univariate approach for ANCOVA

when the percentage of missing data is large

The mean empirical standard error increased for the univariate approach as the per-

centage of missing data for the ANCOVA treatment effect estimates increased (Figures

8.5 and 8.6). This is evident in Figure 8.6 Scenario 9, since the mean empirical standard

increases from 0.691 for 0% missing data to 1.069 for 60% missing data. The mean

empirical standard errors remain similar across the different percentages of missing

data for the other meta-analysis methods. For example, in Figure 8.6 Scenario 9, the

mean empirical standard error for the Cochrane recommended method was 0.691 for

0% missing data and 0.699 for 60% missing data.

8.4.5 Comparison of meta-analysis methods: performance of

95% confidence interval

Coverage was similar between Cochrane approach and bivariate approach

for ANCOVA

The coverage of the 95% confidence interval was similar between the Cochrane rec-

ommended meta-analysis method and the bivariate meta-analysis method for the AN-

COVA outcome (Figures 8.9 and 8.10). For example, in Figure 8.10 Scenario 7, with

60% missing data for the ANCOVA treatment effect estimate the coverage for the

Cochrane recommended meta-analysis method was 89.325%, compared to a coverage

of 87.714% for the bivariate meta-analysis method. Interestingly, they were both much

less than 95%, suggesting that corrections, such as Hartung-Knapp would be useful.
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Power was similar for the bivariate and Cochrane methods

The power was similar between all the meta-analysis methods (Table F.3 in Appendix

F.2). In the majority of scenarios, the power was 100% for all meta-analysis methods.

For all the meta-analysis methods excluding the univariate meta-analysis method for

the ANCOVA outcome the power ranged from 97.898% to 100%. The power was less

for the univariate meta-analysis method when there were large quantities of missing

data, the number of participants in each trial was small and the between-study variance

was large. For example, for scenario 7, with 100 participants per trial the power was

86.587% when there was 60% missing data, much larger than those for the Cochrane

or bivariate methods.

Coverage from univariate approach for ANCOVA decreased as percentage

of missing data increased

The coverage was worse for the univariate meta-analysis for only ANCOVA treatment

effect estimates compared to the multivariate meta-analysis or the Cochrane meta-

analysis approach. As the percentage of missing data increased for the ANCOVA

treatment effect estimates, the coverage of the 95% confidence interval for the univariate

meta-analysis method for the ANCOVA outcome decreased (Figures 8.9 and 8.10).

This was particularly evident when there was a small number of studies included in

the meta-analysis, as shown in Scenarios 4 and 7, in Figures 8.9 and 8.10. For example,

in Figure 8.10 scenario 7, the coverage for 0% missing data was 89.0% compared to

75.126% when the missing data was 60%.

264



8.4.6 Comparison of meta-analysis methods: bias in hetero-

geneity estimates

Bias in between-study variance often less for Cochrane approach than the

bivariate approach for ANCOVA

The magnitude of the bias in the estimate of the between-study variance was often

greater for the bivariate meta-analysis method for the ANCOVA outcome compared

to the Cochrane method (Figures 8.11 and 8.12). For example, in Figure 8.12 scenario

8 (recall that Scenario 8 had a true between-study variance of 9), when there was 60%

missing data the bias for the Cochrane recommended meta-analysis method was 0.056

compared to -0.153 for the bivariate meta-analysis method for the ANCOVA outcome.
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8.5 Results: Part 2 - Baseline imbalance

The results for the scenarios with baseline imbalance are now described.

8.5.1 Unconditional baseline imbalance across all trials

Comparison between the bivariate and Cochrane recommended methods

For the unconditional baseline imbalance setting, each trial in the meta-analysis had

baseline imbalance across treatment groups. In this setting, the bivariate meta-analysis

method for the ANCOVA treatment effect estimates had more desirable performance

measure results when there was missing data, compared to the alternative Cochrane

recommended meta-analysis method (Figure 8.13). The magnitude of the percentage

bias was smaller for the bivariate approach for the ANCOVA treatment effect estimates

(range: -0.113 to 0.007) compared to the Cochrane approach (range: -0.129 to 14.408);

this was especially apparent when the percentage of missing data was large.
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Figure 8.13: Performance measures for the analysis of the unconditional baseline im-

balance for the methods: ANCOVA outcome form multivariate meta-analysis, the

univariate meta-analysis for the ANCOVA and the Cochrane meta-analysis method

Additionally, the mean squared errors and the mean empirical standard errors were

greater for the Cochrane recommended meta-analysis method than the bivariate

meta-analysis method for the ANCOVA outcome when the percentage of missing data

was large (Figure 8.13). For example, the mean squared errors ranged from 0.306 to

0.363 for the bivariate meta-analysis method for the ANCOVA compared to 0.306 to

2.396 for the Cochrane recommended meta-analysis method.

For increasing missing data, the coverage of the confidence interval decreased

for the Cochrane recommended meta-analysis method. For example, when there was

60% missing data, the coverage was 45%, whereas the coverage for the bivariate

method for the ANCOVA treatment effect estimates was close to 95% (range: 91.8%

to 92.3%) regardless of the quantity of missing data in the meta-analysis.
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Univariate meta-analysis for the ANCOVA outcome

The separate univariate meta-analysis method for the treatment effect estimates from

the ANCOVA model had desirable performance measure results (Figure 8.13). The

percentage bias was small in magnitude (range: -0.06% to -0.20%) and the coverage

for the confidence interval was close to 95% (range: 90.8% to 91.5%) for each percentage

missing data quantity. This is since the method only ever uses studies with available

ANCOVA results, and thus the baseline imbalance is addressed directly. However, a

downside is that this method does not use all available studies and therefore is not

utilising all available information.

8.5.2 Conditional baseline imbalance

First conditional baseline imbalance setting

The first conditional baseline imbalance setting was the trials with no IPD (miss-

ing ANCOVA treatment effect estimates), which had baseline imbalance across their

treatment arms (treatment or control) and the trials with IPD had baseline balance

across their treatment arms. The performance measures were very similar between the

Cochrane approach and the bivariate approach for the ANCOVA treatment effect es-

timates (Figure 8.14). For example, when there was 10% missing data, the percentage

bias for the Cochrane approach and the bivariate approach were 4.567% and 4.248%,

respectively. For settings with a percentage of missing data greater than 20%, the

performance measure results were less desirable for both methods. For example, when

there was 60% missing data, the percentage bias for the Cochrane approach and the

bivariate approach were 14.431% and 12.7384%, respectively. The bivariate approach

for the ANCOVA treatment effect estimates had slightly greater coverage than the

Cochrane method for 60% missing data with a coverage of 56.9% compared to 44.2%.

Both coverage percentages were considerably lower than the 95% that would be desired.
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Figure 8.14: Performance measures for the analysis of the conditional baseline imbal-

ance, the trials with no IPD have baseline imbalance across treatment groups, for the

methods: ANCOVA outcome form multivariate meta-analysis, the univariate meta-

analysis for the ANCOVA and the Cochrane meta-analysis method

In this baseline imbalance setting, applying a separate univariate meta-analysis for the

ANCOVA treatment effect estimates had more desirable performance measures than

the other methods (Figure 8.14). For example, the percentage bias from the univariate

meta-analysis method for the ANCOVA outcome was -0.175% whereas for the other

methods the percentage bias ranged from 12.738% to 14.802%. It was expected, in

this baseline imbalance setting, that the separate univariate meta-analysis would have

better performance than the other methods. This is because the separate univariate

meta-analysis for the ANCOVA treatment effects is the only meta-analysis method

that provides results that are not influenced by the baseline imbalance in the trials

without IPD.
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Second conditional baseline imbalance setting

The second conditional baseline imbalance setting that was studied in this chapter had

baseline imbalance across treatment groups for trials that had available IPD. For the

trials with missing ANCOVA treatment effect estimates, there was baseline balance

across the treatment groups. In this baseline imbalance setting, the Cochrane method

had more desirable performance measures compared to the bivariate approach for the

treatment effect estimates from the ANCOVA model (Figure 8.15). The percentage bias

magnitude for the ANCOVA treatment effect estimates from the bivariate approach

increased as the percentage of missing data increased. For example, the percentage

bias for the bivariate approach for the ANCOVA outcome was -0.074 when there was

0% missing data and was -12.664 when there was 60% missing data. However, the

percentage bias magnitude did not increase for the Cochrane approach but was close

to 0%, ranging from 0.029 to 0.217 across all the percentages of missing data.
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Figure 8.15: Performance measures for the analysis of the conditional baseline imbal-

ance, the trials with IPD have baseline imbalance across treatment groups, for the

methods: ANCOVA outcome form multivariate meta-analysis, the univariate meta-

analysis for the ANCOVA and the Cochrane meta-analysis method

Additionally, the coverage of the 95% confidence interval for the Cochrane approach

was closer to 95% (range: 90.644% to 92.285%) than the bivariate approach for the

ANCOVA treatment effects (range: 61.222% to 91.968%) (Figure 8.15). The mean

squared error was smaller for the Cochrane approach than the bivariate approach for

the ANCOVA outcome when there was increasing missing data. For example, when

there was 60% missing data, the mean squared errors for the Cochrane approach and

the bivariate approach for the ANCOVA outcome were 0.321 and 2.059, respectively.
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8.6 Discussion

This chapter assessed the performance of meta-analysis methods for the synthesis of

treatment effect estimates from randomised control trials with continuous outcomes

modelled using either the ANCOVA or final score models. The meta-analysis meth-

ods analysed were the current univariate approaches (separate and Cochrane recom-

mended) and the newly proposed bivariate approach. These were analysed under a

variety of different simulated scenarios to assess how each meta-analysis method’s per-

formance is affected by particular conditions. The key findings from the simulation

study are described in Figure 8.16 and discussed in further detail below.

Figure 8.16: Key findings from the simulation study for the analysis of meta-analysis

methods

Key Findings:

• The performance measures for the Cochrane recommended meta-analysis

method were similar to the performance measures for the bivariate meta-

analysis for scenarios with baseline balance.

• The performance measures for the univariate meta-analysis for the AN-

COVA outcome were poor compared to the performance measures for the

other meta-analysis methods in situations where trials have baseline bal-

ance

• When all the trials with IPD have baseline balance across treatment arms,

the choice between the Cochrane recommended meta-analysis method and

the bivariate meta-analysis method for the ANCOVA outcome had limited

importance.

• When there is baseline imbalance in trials without ANCOVA estimates,

both the bivariate method and the Cochrane method performed poorly;

rather, it is better to use a separate univariate meta-analysis of just those
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trials that provided ANCOVA estimates.

• When there is baseline imbalance in trials with ANCOVA estimates but

not in others then the Cochrane method or bivariate method could be used.

Comparison between Cochrane recommended meta-analysis method and

bivariate meta-analysis method for the ANCOVA treatment effect estimates

The performance measures were similar between the Cochrane recommended meta-

analysis method and the bivariate meta-analysis method for the ANCOVA outcome

when there was baseline balance, irrespective of the quantity of missing data. Both

methods were affected in the same ways from increases in the between-study variance,

increases in the number of trials within the meta-analysis and increases in the number

of participants in each trial. Therefore, similar results were seen between these two

methods from different scenarios.

The Cochrane recommended meta-analysis method and the bivariate meta-analysis

method for the ANCOVA outcome performed very differently within the baseline

imbalance settings. This simulation study considered three different baseline imbal-

ance settings. The first baseline imbalance setting was the unconditional baseline

imbalance setting, where all trials had baseline imbalance across the treatment arms.

In this setting, the bivariate method for the ANCOVA outcome had more desirable

performance measure values than the Cochrane recommended method.

The remaining two baseline imbalance settings were conditional upon whether

or not a trial had available IPD (reported the treatment effect estimate from the AN-

COVA model). In the first conditional baseline imbalance setting, there was baseline

imbalance across treatment arms for trials without IPD (missing treatment effect

estimates from the ANCOVA model). The bivariate meta-analysis for the ANCOVA

outcome method’s performance measure values were more similar to the Cochrane
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recommended method than for the unconditional baseline imbalance setting. Al-

though the performance measures were more similar, the performance measure values

were more desirable for the bivariate method than the Cochrane recommended method.

In the second conditional baseline imbalance setting, there was baseline imbal-

ance across treatment arms for trials with IPD. The Cochrane recommended

meta-analysis method had more desirable performance measures in this setting than

the bivariate meta-analysis method for the ANCOVA treatment effects. This was the

only baseline imbalance setting studied in this chapter that favoured the Cochrane

recommended approach.

Separate univariate meta-analysis method

The baseline balance and the unconditional baseline imbalance settings agreed with

the findings from Chapter 7; the univariate meta-analysis for the ANCOVA treatment

effects performs poorly in the presence of missing ANCOVA treatment effect estimates

when there is baseline balance in other trials that provide other results. This is

because the univariate meta-analysis is ignoring information from studies without

ANCOVA treatment effect estimates. This information is informative to the true

treatment effect and unbiased given the groups are balanced in those trials. Therefore,

the separate univariate meta-analyses should be avoided when there are missing

ANCOVA treatment effect estimates from RCTs when there is baseline balance.

However, for the conditional baseline imbalance settings, the separate univariate

meta-analysis performed well compared to the other meta-analysis methods. Although

it performs well, the separate univariate meta-analysis does not include information

from studies that do not report the ANCOVA treatment effect estimates, causing a

loss of information. The separate univariate meta-analysis is observed to perform

well since the ANCOVA model accounts for the baseline imbalance, therefore all the

information in the univariate meta-analysis is not influenced by the baseline imbalance
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as it pools only ANCOVA results.

8.6.1 Limitations and further research

Due to estimation problems and the relationship between the analytical models,

multivariate meta-analyses of all three were not used. The simulation study used

a bivariate meta-analysis of ANCOVA treatment effects and final score treatment

effects. The final score model was used over the change score model, since the final

score treatment effects are more commonly reported and can be derived from ag-

gregated data more easily. Although it might be expected that results would be similar.

This thesis has studied settings with multiple correlated outcomes. Further re-

search is needed for meta-analyses of multiple correlated continuous outcomes

measured at baseline and follow-up.

8.6.2 Recommendations

The Cochrane recommended meta-analysis method of combining ANCOVA and final

score estimates performs well when there are no concerns regarding baseline balance

across treatment groups in studies that did not provide ANCOVA estimates. The

Cochrane recommended method performs as well as the bivariate meta-analysis for

the ANCOVA outcome when there is baseline balance across treatment groups for all

trials. The Cochrane recommended meta-analysis method is advantageous over the

bivariate meta-analysis method, since it is less complicated and does not require IPD

for the calculation of within-study correlations.

When there is baseline imbalance across treatment groups in some trials, it is

recommended that a separate univariate meta-analysis of the available ANCOVA

treatment effect estimates is used. This is irrespective of whether the baseline

imbalance is conditional on available ANCOVA treatment effects or unconditional

across all trials. In these settings the performance measures for the Cochrane method
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and bivariate method were poor compared to had ANCOVA results been available for

all trials.
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Chapter 9

Discussion

This chapter provides a summary of the key findings from this thesis and discusses their

implications. An aim of this chapter is to seek to answer some further questions that

arise from the key findings and to make recommendations for future meta-analyses of

multiple outcomes. The limitations of this work are presented and areas of further re-

search are discussed (Section 9.5). Lastly, this thesis closes with some final conclusions

(Section 9.6).

9.1 Overview of the thesis

There are different meta-analysis approaches to analysing multiple outcomes from

independent studies to obtain an effect estimate for each outcome. The most common

approach is separate univariate meta-analyses for each outcome; however, there exist

multivariate meta-analysis methods that can jointly analyse multiple outcomes, utilis-

ing within-study and between-study correlations. This thesis studied the benefits and

application of multivariate meta-analysis over the univariate meta-analysis approach.

In Chapter 2, the results from multivariate meta-analyses were compared to re-

sults from separate univariate meta-analyses. A Health Technology Assessment

(HTA) report that investigated the effects of diet and exercise interventions during

pregnancy for the reduction of weight gain on maternal and foetal outcomes was

reanalysed (Rogozińska et al. 2017). The HTA report studied multiple outcomes for
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mothers and foetuses in separate univariate meta-analyses as well as developing a

maternal composite outcome and a foetal composite outcome which were analysed in

univariate meta-analyses (Rogozińska et al. 2016). For all trials in the HTA report,

the individual participant data (IPD) was available and therefore the within-study

correlations of each pair of outcomes were available. The HTA report had a large

number of trials, however there was missing data for some outcomes from some trials,

thus there was an opportunity to borrow strength via the correlation of outcomes

in a multivariate meta-analysis. However, the findings show the results between the

univariate meta-analyses and the multivariate meta-analysis were generally similar for

the maternal and foetal outcomes e.g. there were no changes in statistical or clinical

significance. However, potentially clinically important differences were identified

in two maternal outcomes, pre-eclampsia or pregnancy induced hypertension (PE

or PIH) and gestational diabetes. The odds of gestational diabetes for the diet

and exercise intervention compared to control were estimated to be lower from the

multivariate meta-analysis than from univariate meta-analysis, similarly for PE or PIH.

There are many papers that have investigated the difference in multivariate and

univariate results, and concluded that often there was little difference between the

univariate and multivariate results (Sohn 2000, Simel & Bossuyt 2009, Trikalinos

et al. 2013, 2014). Despite the fact that the benefits of multivariate meta-analysis

were limited in the HTA report, the benefits of multivariate meta-analysis are well

documented in the literature (Riley et al. 2007a,b, Hamza et al. 2009, Jones et al.

2009, Jackson et al. 2011, Kirkham et al. 2012, Riley et al. 2015, Frosi et al. 2015).

Benefits of multivariate meta-analysis include reduction in bias due to partial reporting

(Kirkham et al. 2012, Frosi et al. 2015), improved statistical properties (Riley et al.

2007a,b), and joint inferences (Riley et al. 2015) (Chapter 1). A specific benefit of

multivariate meta-analysis, that was of particular interest in this thesis, is borrowing

strength across outcomes (Riley et al. 2007a, 2015, Jackson et al. 2017, Copas et al.

2018).
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The borrowing of strength (BoS) quantifies the gain in precision from utilising

extra information in a multivariate meta-analysis compared to a univariate meta-

analysis. The BoS statistics were larger for the outcomes, PE or PIH and gestational

diabetes, where potentially important clinical differences were observed between

the multivariate and univariate meta-analysis results, than the outcomes with no

difference between the multivariate and univariate results.

In Chapter 3, the distribution of BoS was studied in the Trikalinos et al. (2013,

2014) review, which concluded there were generally limited differences between

multivariate and univariate meta-analysis results. The aim was to investigate whether

the BoS statistic identified settings where the multivariate meta-analysis was beneficial

over the univariate approach. In the data from the Trikalinos et al. (2013, 2014) review

very large BoS statistics were calculated e.g. 51.4% (see Section 3.3.3) in a few of the

applications. It was observed empirically that the BoS statistic was greater when there

were greater differences between the multivariate and univariate meta-analysis results.

However, the magnitude of BoS statistic was only observed to identify differences in

the widths of confidence intervals, and may not be sensitive to changes in the pooled

estimate.

The BoS statistic is calculated during a multivariate meta-analysis. For the

BoS statistic to be used in determining whether a univariate or multivariate meta-

analysis would be beneficial, there was a need to be able to predict the magnitude

of BoS in the setting before any analysis. Some meta-analysis level characteristics

of univariate and multivariate meta-analyses were selected as possible candidate

predictors and in Chapter 4 prediction models for the magnitude of BoS from

fixed-effect and random-effects meta-analyses were developed. The common predictors

in the two parsimonious final models (one for each fixed-effect and random-effects

meta-analyses) were the number of studies in the meta-analysis, percentage of missing
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data for the outcome of interest and the maximum within-study correlation. The

relationship between BoS and the within-study correlations has been discussed

previously (Jackson et al. 2017), such that no borrowing of strength will occur when

there is no within-study correlation in a fixed-effect meta-analysis. The percentage of

missing data was expected to be important, since there is a greater need for borrowing

strength with an increase in missing data (Riley et al. 2007a). The number of studies

is important, as the more studies available, the more outcome estimates available to

borrow strength from.

The prediction models for the BoS statistic for the fixed-effect and the random-

effects meta-analyses were embedded in interactive graphical tools using R shiny in

Chapter 5. These tools allow for researchers to more easily predict the magnitude

of the BoS statistic in their meta-analysis setting. Following the importance of the

meta-analysis level characteristics as predictors for BoS in Chapter 4 and Chapter 5,

the relationship between the magnitude of BoS and the meta-analysis level charac-

teristics was explored through an interactive tool developed in Chapter 5 (available

from: https://mhattle.shinyapps.io/BoSstatistic/). The interactive tool was

developed to allow researchers to visually explore the impacts the meta-analysis

characteristics have upon the magnitude of BoS, with particular interest in the

percentage of missing data for the outcome of interest. Through the exploration of

the interactive graph in Chapter 5, it was proposed that a bounded relationship might

exist between the BoS statistic and the percentage of missing data for the outcome of

interest (Chapter 6). Using mathematical assumptions in Chapter 6, the BoS statistic

was mathematically proved to be bounded by the percentage of missing data for the

outcome of interest for both fixed-effect and random-effects bivariate meta-analyses

with complete and missing data for the alternative outcome.

Chapter 7 investigated whether the benefits of multivariate meta-analysis could

be extended to a novel application; the meta-analysis of a continuous outcome from
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RCTs. In RCTs, continuous outcomes are measured at baseline and follow-up, and

can be modelled using three different models: Final score, Change score and ANCOVA

models (Vickers & Altman 2001). The ANCOVA model is the preferred model but

is often not reported (Frison & Pocock 1997, Vickers & Altman 2001, Van Breukelen

2006, Zhang et al. 2014). Therefore for a meta-analysis, researchers are restricted

to the available treatment effect estimates from the models reported in the trial

publications, if trial IPD is unavailable. The current methods for meta-analysis of

continuous outcomes analysed using ANCOVA, final score or change score models are

univariate meta-analyses; either three separate univariate meta-analyses for treatment

effect estimates from each model or an alternative univariate meta-analysis method

advocated by Cochrane (Higgins & Green 2008). The Cochrane method is a univariate

meta-analysis that analyses one treatment effect estimate from any model per trial

with priority to treatment effect estimates from the ANCOVA model. In Chapter 7, a

bivariate meta-analysis approach that jointly analyses treatment effect estimates from

the final score model and treatment effect estimates from the ANCOVA model was

proposed. Each meta-analysis method (separate univariate method, Cochrane method

and bivariate method) was applied to an IPD dataset of 10 RCTs for the treatment of

Hypertension, where the continuous outcome was systolic blood pressure. For each of

the trials, there was baseline balance across treatment groups. Missing data scenarios

of 50% missing ANCOVA treatment effect estimates were generated to replicate when

ANCOVA treatment effect estimates are unavailable. All possible permutations of

missing data scenarios for 50% missing were analysed and summarised in Chapter 7.

The bivariate and Cochrane univariate meta-analysis had similar results to the results

from the complete data case, although the mean standard errors were smaller for the

bivariate meta-analyses than the Cochrane univariate meta-analyses. To investigate

the comparison of methods further and to include different settings, like baseline

imbalance, a simulation study was undertaken in Chapter 8. The simulation study

analysed each meta-analysis’ performance measures in different settings: including

baseline balance, baseline imbalance, changes in between-study variance, number of
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studies and number of participants. The simulation study found that the Cochrane

meta-analysis method can be recommended if non-ANCOVA effect estimates are only

from trials with baseline balance across treatment arms. Furthermore, if there are

a mixture of balance and imbalanced trials, then the Cochrane method can still be

used as long as the non-ANCOVA effect estimates are only from balanced trials.

The performance of the bivariate meta-analysis method is similar to the Cochrane

method, however it is more complex to undertake. When all the trials have baseline

imbalance, the separate univariate meta-analysis of the available ANCOVA effect

estimates performs the best.

9.2 Key findings

This section aims to reiterate the key findings, which are summarised in Figure 9.1.

Then some of the key findings are discussed in further detail.

Figure 9.1: Key findings

Key findings:

• Although there is published research that suggests that results from multi-

variate meta-analysis do not differ from the univariate meta-analyses, this

is not true for all meta-analyses (Sohn 2000, Simel & Bossuyt 2009, Trikali-

nos et al. 2013, 2014). In some studies, statistical and clinical differences

occur when comparing multivariate and univariate results.

• The Borrowing of strength (BoS) statistic can identify when multivariate

meta-analysis results may differ from univariate and therefore when mul-

tivariate may be beneficial over a univariate meta-analysis (Jackson et al.

2017, Copas et al. 2018).

• The BoS statistic can be predicted from meta-analysis level characteristics

prior to any analysis or decisions regarding analysis.
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• The key characteristics of a meta-analysis that are important predictors for

the magnitude of BoS are the percentage of missing data for the outcome of

interest, the number of studies and the maximum within-study correlation.

• The magnitude of BoS can be explored through an interactive tool devel-

oped for the visualisation of BoS in relation to meta-analysis characteristics.

• The BoS statistic, under certain conditions, is bounded by the percentage

of missing data for the outcome of interest.

• The application of the bivariate meta-analysis approach to continuous out-

comes from RCTs modelled using final score and ANCOVA models, in

general, performs as well as a Cochrane advocated univariate meta-analysis

approach, where there is baseline balance across treatment groups in the

trials available for meta-analysis (Higgins & Green 2008).

• When there is baseline imbalance across treatment groups in included tri-

als, the Cochrane meta-analysis and the bivariate meta-analysis had poor

performance measures when compared to the separate univariate meta-

analysis for the available treatment effect estimates from the ANCOVA

model.

9.2.1 BoS statistic identified differences between the univari-

ate and multivariate meta-analysis results

An aim of this thesis was to explore whether, through the exploration and further

understanding of borrowing strength, the application of multivariate meta-analysis

could be improved. A key focus was aiding researchers to know when the application

of multivariate meta-analysis would be beneficial over a univariate meta-analysis. This

is particularly important, since the multivariate meta-analysis is not widely utilised,

even though the benefits of multivariate meta-analysis has been widely documented
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(Riley et al. 2007a,b, Hamza et al. 2009, Jones et al. 2009, Jackson et al. 2011,

Kirkham et al. 2012, Riley et al. 2015, Frosi et al. 2015). For example, the Cochrane

collaboration to date have not published multivariate meta-analyses of multiple

outcomes and multivariate meta-analysis for multiple outcomes is not a method de-

tailed in their handbook for systematic reviews of interventions (Higgins & Green 2008).

The differences between the univariate and multivariate meta-analysis have been re-

viewed in multiple published works (Sohn 2000, Simel & Bossuyt 2009, Trikalinos et al.

2013, 2014, Price et al. 2019). Sohn (2000), Simel & Bossuyt (2009) and Trikalinos

et al. (2013, 2014) concluded that the results from the multivariate and the univariate

meta-analyses are often similar, and therefore recommendations have been made

that there is limited practical importance in the decision between the meta-analysis

methods. However, through the reanalysis of the data from the Trikalinos et al. (2013,

2014) review in Chapter 3, there were results from meta-analyses with potentially

important clinical differences and differences in statistical significance. Therefore,

this thesis recommends that the multivariate meta-analysis method should not be

disregarded in all situations, rather there is a need to determine when differences may

occur and when the multivariate approach is most beneficial.

For the recommendation that the multivariate meta-analysis should not be dis-

regarded and should be utilised in beneficial situations, there needs to be a practical

way for researchers to identify when the multivariate meta-analysis should be used.

The BoS statistic was developed as a measure to quantity the gain in information

from utilising a multivariate meta-analysis compared to a univariate meta-analysis

(Jackson et al. 2017). It was recommended by Jackson et al. (2017) that the BoS

statistic should routinely accompany multivariate meta-analysis results. Through

the investigation of differences between univariate and multivariate results in the

Trikalinos et al. (2014) review and the corresponding magnitudes of BoS, the BoS

statistic was identified as sensitive to differences in the precision between the univariate
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and multivariate meta-analysis results. Through the magnitude of the BoS statistic, it

is hoped that researchers may be able to determine when multivariate meta-analyses

is most beneficial.

9.2.2 Meta-analysis characteristics can inform the magnitude

of BoS that could be expected/predicted

The BoS statistic is easily calculated within meta-analysis computer packages or

from the multivariate meta-analysis results (White 2011, Jackson et al. 2017, Copas

et al. 2018). This is insufficient if the recommendation is to use the BoS statistic

to inform the decision on which analysis to utilise. Therefore, the BoS statistic was

further analysed to increase the understanding of what influences the magnitude of BoS.

In Chapters 3 and 4, meta-analysis level characteristics from the 43 meta-analyses

in the Trikalinos et al. (2013, 2014) review were compared to the magnitude of the

corresponding BoS statistics. In Chapter 4, prediction models were developed from

meta-analysis level characteristics for the prediction of the magnitude of BoS. Separate

prediction models were developed for fixed-effect and random-effects meta-analyses,

since the BoS statistics were observed to differ between the fixed-effect and the

random-effects meta-analyses (Chapter 3). The prediction models were applied to

examples of meta-analyses, for which the true BoS statistics were known. Although

the predictions from the prediction models were not exact, in the examples the

prediction models were able to predict large BoS values for true large BoS values.

Therefore, in Chapter 4, it was concluded that it is possible to broadly predict the

BoS statistic from meta-analysis level characteristics. As a result, the magnitude of

the predicted BoS statistic could be used to inform the decision as to whether there

may be differences between the univariate and multivariate results.

The impact of individual meta-analysis level characteristics were explored fur-

ther through an interactive tool (Chapter 5). Through the visual exploration of
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the tool, the tool implied that specific relationships for the BoS statistic and some

meta-analysis characteristics may exist. There was prior knowledge from a paper

by Jackson et al. (2017) that discussed the relationship between the within-study

correlation and the magnitude of BoS. Jackson et al. (2017) discussed that for studies

with complete data the BoS statistic is bounded by the magnitude of the within-study

correlation. However, in addition to the within-study correlation relationship, the

interactive tool indicated a relationship between BoS and the percentage of missing

data for the outcome of interest, which was also an important predictor for the

magnitude of BoS in the prediction models (Chapter 4). The bounded relationship

between the magnitude of BoS and the percentage of missing data for the outcome

of interest was proved in Chapter 6. This relationship is important for researchers to

quickly and easily estimate the BoS that they might expect in their meta-analysis.

This relationship and the prediction models could help researchers determine whether

the multivariate method is beneficial in their setting. That is, they could predict

BoS from either the percentage of studies missing the outcome of interest, or the

prediction models developed. If BoS is predicted to be ‘large’, then they may consider

the multivariate approach.

9.2.3 Bivariate meta-analysis does not perform as well as uni-

variate methods for continous outcomes analysed using

final score and ANCOVA models

For RCTs with continuous outcomes, there are three analytical models researchers can

use to model the data to estimate the treatment effect. The recommended method for

the estimation of treatment effect estimates is the ANCOVA model, since it has greater

statistical power to identify a treatment effect (Frison & Pocock 1997, Vickers & Altman

2001, Van Breukelen 2006, Zhang et al. 2014). However, the ANCOVA model is rarely

utilised since it is more complex than the other two analytical models. A researcher

doing a meta-analysis of RCTs with a continuous outcome of interest is limited to the

treatment effect estimates reported in the trial’s publication. Consequently, researchers
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may have treatment effect estimates estimated using different models. A bivariate

meta-analysis method was proposed for this situation and compared to two different

univariate methods, Cochrane method and separate univariate method (Chapter 7).

The Cochrane univariate meta-analysis and bivariate meta-analysis’ perfor-

mance measures were similar when there was baseline balance

The Cochrane collaboration recommend a method which analyses one treatment effect

estimate from each trial irrespective of model (with priority allocated to treatment

effect estimates from the ANCOVA model) in a univariate meta-analysis (Higgins &

Green 2008). A simulation study in Chapter 8 compared the Cochrane univariate

meta-analysis method to the bivariate meta-analysis method for scenarios with baseline

balance. The performance measures (percentage bias, mean squared error, coverage

of 95% confidence interval and power) for the Cochrane method were similar to those

for the bivariate method. For the meta-analysis of RCTs with continuous outcomes

with baseline balance, it is recommended that the Cochrane univariate meta-analysis

is used to analyse treatment effect estimates.

The performance of univariate meta-analysis methods when there was base-

line imbalance

For the meta-analysis of RCTs with continuous outcomes with baseline imbalance,

the separate univariate meta-analysis of treatment effect estimates from the ANCOVA

model had better performance measures than the Cochrane method or the bivariate

method. Therefore, when there is baseline imbalance, it is better to disregard any

treatment effect estimates from the final score models than include these in a meta-

analysis, due to the bias in the effect estimates. Alternatively, if there is a mixture of

trials, some with baseline balance and some with baseline imbalance, then the Cochrane

meta-analysis method could be used as long as the non-ANCOVA effect estimates are

only from trials with baseline balance.
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9.3 Borrowing of strength: is it more than a sum-

mary measure?

9.3.1 Is it realistic to expect researchers to rely on BoS for

the choice of analysis method?

Prior to this thesis, the borrowing of strength was discussed in the literature as a

benefit from the application of multivariate meta-analysis and as a measure for the

quantity of information gained, a summary statistic provided after a multivariate

meta-analysis (Riley et al. 2007a, Jackson et al. 2017, Copas et al. 2018). However, this

thesis proposes that the BoS statistic has more potential uses than just a post-analysis

measure. In this thesis, the magnitude of BoS has been shown to identify differences

between results from the univariate meta-analysis and multivariate meta-analysis

results. Although the question of whether it is reasonable to expect researchers to rely

on BoS for decision making has not been answered.

Although the BoS statistic identified differences between the univariate and

multivariate results, this is not the full story since the BoS did not identify differences

in the summary effect estimate when the width of the confidence intervals were equal

for the univariate and multivariate results. Additionally, it was observed that a large

BoS statistic does not necessarily equate to differences in univariate and multivariate

results. For example, from the Trikalinos et al. (2013, 2014) data in meta-analysis 27

for outcome two, the univariate and multivariate REML meta-analysis results were

-0.94 (95% C.I.: -1.10 to -0.78) and -0.90 (95% C.I.: -1.03 to -0.78), respectively

and the BoS was 29.9% (see Section 3.3.2 in Chapter 3). Conversely, there are

benefits of multivariate meta-analysis that are not necessarily identified through the

magnitude of BoS or differences in the results between univariate and multivariate

results, for example the relationship between outcomes can be described (Jackson

et al. 2011). Finally, the magnitude of BoS does not provide any indication whether
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a multivariate meta-analysis is feasible. For a multivariate meta-analysis, it needs

to be considered whether the within-study correlations are available either through

the availability of IPD or from published material. If the within-study correlations

are not available, the methods for the estimation of the overall correlations provides

no information regarding the within-study and between-study correlation and, as a

result, the heterogeneity also can not be examined (Riley et al. 2008). Additionally,

the within-study correlations are rarely available from publications (Riley et al. 2007a,

2008, Riley 2009). Therefore, the collection of IPD is the preferred method for the

collection of within-study correlations. However, the collection of IPD is not without

its own caveats, which include time requirements, resources, statistical expertise,

and selection bias may still occur (Debray et al. 2015a). Additionally, when IPD is

available for an IPD meta-analysis, a decision needs to be made whether a one-stage

or two-stage meta-analysis approach is used, this is particularly important since the

two approaches can produce different effect estimates (Debray et al. 2013, Burke et al.

2017).

Therefore, it would be alarming to recommend that researchers rely solely on

the expected or predicted magnitude of BoS for decision making for the choice of

analysis method. On the other hand, for the planning of meta-analysis studies where

the collection of IPD or estimation of within-study correlations can be included, the

expected BoS will be useful for researchers to inform the choice of methods. After

all, this thesis has shown the BoS is useful for identifying differences between the

univariate and multivariate results.

Can the BoS inform the decision on whether to collect IPD?

A logical extension to whether the BoS statistic should be relied on for the choice

of meta-analysis method, is to ask whether the magnitude of BoS should be used to

determine whether researchers put time and resources into collecting IPD. The concern

with proposing the BoS statistic to inform whether IPD should be collected is this
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assumes that the benefits of the multivariate meta-analysis are the only advantages to

obtaining IPD. However, the advantages of IPD reach beyond availability of within-

study correlations required for multivariate meta-analysis. Such advantages include

identification of treatment effect modifiers, reducing publication bias, standardisation

of statistical analysis, and model assumptions can be checked in each study. (Riley

et al. 2010, Debray et al. 2015a). Therefore, the BoS should not be solely used as a

decision making tool for the collection of IPD. Although the magnitude of BoS may be

of interest to aid this decision, the other advantages of IPD should also be considered

along with the time and resource constraints.

9.3.2 How easily implemented are the methods for predicting

BoS?

Prediction models and prediction interactive graphs

The prediction models in Chapter 4 are easily implemented with regards to mathemat-

ical calculation, since the prediction model has only linear terms and no interactions.

Alternatively, the prediction model could be built into a calculator, for example, on

a website, that would only require a user to input the requested values. For the use

of the prediction models, a user would need to decide whether their analysis would

use a fixed-effect or random-effects assumption, to inform which prediction model is

applicable to their setting. This decision should not be seen as a problem, since the

decision of fixed-effect or random-effects assumption should be made prior to analysis.

The predictors in each of the prediction models related to the studies and outcomes,

include the total number of studies in the meta-analysis, percentage of missing data

and number of studies with a particular outcome. These predictors are easily avail-

able from IPD and aggregate data (AD). However, the within-study correlations are

not necessarily known without IPD and definitely won’t be known if it is planned for

the overall correlation to be estimated methods (Riley et al. 2008, Riley 2009). If the

expected within-study correlation is known, this could be used with caution.
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Interactive tool from the BoS equation

The interactive tool is easily accessed through a website where it is embedded.

However, the interactive tool requires larger quantities of information than the

prediction models. Additionally, some of this information required is estimated

during the multivariate meta-analysis, for example the between-study correlation

and between-study variance. Furthermore, the within-study correlations are also

required for the interactive graph; in the same way as this was problematic for the

prediction model, this is information that is not always available if IPD is not available.

Additionally for the set up of the interactive tool, mathematical assumptions

were made about the studies in the meta-analysis. These assumptions including equal

within-study correlations and within-study variances across all studies are simplistic

and are unlikely to occur in practice. Therefore, caution needs to be taken when using

the interactive tool as the accuracy of magnitude of BoS is uncertain if violations of

the mathematical assumptions occur.

Through the implementation of sliders on the interactive graph, it is very easy

for a user to vary their expected characteristics of meta-analysis and visually explore

the impacts these changes may have upon the magnitude of BoS. This makes the

interactive graph very usable for researchers. This is particularly advantageous if

there is uncertainty around the expected value of a meta-analysis characteristic.

Therefore, the interactive graph is a useful tool for researchers who are considering a

meta-analysis of data which contains multiple outcomes.

Bounded relationship for BoS

The expected value of BoS is bounded by the known percentage of missing data for

the outcome of interest, under certain conditions. Although it is useful to know that

such a relationship exists between the BoS and the percentage of missing data for the

outcome of interest, the mathematical assumptions made are too simplistic. When
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the mathematical assumptions are violated, the BoS is not always bounded by the

percentage of missing data for the outcome of interest. On the other hand, an advantage

of the bounded relationship between the BoS statistic and the percentage of missing

data for the outcome of interest is it does not require lots of information that may be

unknown. It is easily understood and can be quickly calculated by researchers without

the need for calculations and exploration of graphs. Therefore, it provides a useful rule

of thumb to be used (even if cautiously) by researchers who would like to know how

much BoS to expect.

9.3.3 Which method for predicting BoS should be used?

The progression of research into the prediction of BoS raises the questions; how useful

are the prediction models if, from the bounded relationship, we know how much BoS

to expect? And which method should be used to inform the magnitude of BoS? The

bounded relationship is simplistic due to the mathematical assumptions made, however

the information required is easily accessible from aggregate data (AD). This does not

negate the need for the prediction models, since the mathematical assumptions in

the bounded relationship can be violated in practice, which may result in the BoS

exceeding the percentage of missing data for the outcome of interest. Therefore, if all

the required predictors (for the prediction model) are known or can be approximated,

it is recommended that the prediction model is used to predict the magnitude of BoS.

If some of the predictors are unknown, the bounded relationship provides a reasonable

rule of thumb. A researcher may also wish to use the interactive graph to observe how

the unknown predictors may influence the magnitude of BoS.

9.3.4 What magnitude of BoS is ‘large’?

A question many researchers may ask is “what BoS is ‘large’?”. In this thesis, providing

a categorisation of BoS into large, medium and small cut-off has been avoided. There

are concerns with providing such a scale for recommendations for a categorisation of

BoS, since a BoS statistic that is considered large in one setting may not be considered
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large in another. Therefore, a cut-off between what is a small and large BoS will not

be provided.

9.4 Recommendations

The recommendations from this thesis have been discussed in Sections 9.1 and 9.3, and

are summarised in Figure 9.2.

Figure 9.2: Key recommendations

Recommendations:

• Multivariate meta-analysis is a useful tool to borrow strength across corre-

lated outcomes to improve precision and the quantity of evidence toward

summary results.

• As a multivariate approach is more complex than a univariate approach and

may require the estimation of within-study correlations, it is not always

required.

• When there is complete data, generally a multivariate approach is not

needed.

• The magnitude of BoS might be considered when deciding whether a mul-

tivariate or univariate meta-analysis approach should be used for analysis.

• Where possible, the BoS should be predicted before analysis using the

developed prediction models or the interactive graphical tools for the pre-

diction of BoS.

• If some of the predictors for the prediction model are unavailable the bound-

edness of BoS (by the proportion of studies missing the outcome of interest)

is an adequate rule of thumb to use and the interactive graph can be used
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to identify how the characteristics of meta-analysis might affect the mag-

nitude of BoS.

• When there is baseline balance the Cochrane recommended univariate

meta-analysis is recommended for RCTs with continuous outcomes mod-

elled using final score and/or ANCOVA models.

• When there is baseline imbalance across treatment group, a separate uni-

variate meta-analysis for ANCOVA treatment effect estimates is recom-

mended.

9.5 Limitations and further research

In this section, the limitations of this thesis and areas for potential future research are

discussed.

9.5.1 Consideration of other distributions

In this thesis, to model the multivariate meta-analysis methods the normal distribution

for the study effects was assumed. However it is known that the normality assumption

is difficult to verify for small numbers of studies in a meta-analysis (Jackson et al.

2011). Although the multivariate normal meta-analysis is the most commonly used

multivariate meta-analysis method, there are other distributions that could be assumed

particularly for settings where it is inappropriate to assume the effect sizes are normally

distributed. Copulas are a family of multivariate distributions that have a uniform[0,1]

marginal distribution (Genest & Mackay 1986, Nelsen 2007, Danaher & Smith 2011,

Nikoloulopoulos 2015, Dimier & Todd 2017). Copulas are starting to be applied to

multivariate meta-analysis and therefore it is important to investigate whether the

findings from this thesis hold for multivariate meta-analyses modelled using Copulas

(Nelsen 2007, Nikoloulopoulos 2015, Dimier & Todd 2017).
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9.5.2 Consideration of Bayesian methods

This thesis was undertaken using frequentist methods, however, a frequentist approach

is not the only approach to multivariate meta-analysis. A limitation of this thesis

is that Bayesian analysis methods were not considered for the univariate or multi-

variate meta-analyses. In recent years there has been research in extending methods

of Bayesian univariate meta-analysis methods to Bayesian multivariate meta-analysis

methods (Wei & Higgins 2013a, Nam et al. 2003, Bujkiewicz et al. 2013). This thesis

did not assess the performance of Bayesian multivariate meta-analysis for the synthesis

of effect estimates from continuous outcomes in RCTs. However, a Bayesian approach

might be beneficial in these situations. The advantage of a Bayesian meta-analysis

over a frequentist approach is external evidence can be included in the analysis (Bu-

jkiewicz et al. 2013, Mavridis & Salanti 2013). Information to inform the choice of

priors can arise from studies external to the meta-analysis (e.g. observational stud-

ies, clinical trials, expert’s (clinicians) opinions). This is particularly important in the

age of evidence-based medicine when the aim is to use all available relevant evidence

to make informed decisions and Bayesian methods can provide the opportunities to

include further information (Ashby & Smith 2000). Therefore, an important research

question for future research to answer is whether a Bayesian multivariate meta-analysis

is beneficial for the synthesis of summary treatment effect estimates for randomised

control trials with continuous outcomes analyses using a mixture of ANCOVA, final

score and change score models.

9.5.3 Extending to different settings

The settings in this thesis were all meta-analyses of RCTs (Chapters 2, 3, 4, 7

and 8). The HTA report reanalysed in Chapter 2 was a meta-analysis of RCTs

that investigated the effect of diet and exercise interventions during pregnancy for

managing weight gain on maternal and foetal outcomes. The Trikalinos et al. (2014)

review data contained 43 Cochrane reviews that contained at least seven RCTs for

each outcome, that were then analysed in a multivariate meta-analysis. The setting for
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the new novel application of multivariate meta-analysis were RCTs with continuous

outcomes measured at baseline and follow-up.

Meta-analysis is not unique to settings with RCTs and the recommendations in

this thesis need to be researched for other settings. For future work, research

using non-randomised settings including cohort studies, case-control studies and

cross-sectional studies should be conducted to extend the recommendations from this

thesis to these settings.

Furthermore, the magnitude of BoS compared to multivariate and univariate re-

sults was assessed in meta-analyses of binary outcomes (Chapter 3). The prediction

models in Chapter 4 were developed using this data. However, there are other data

types which were not considered in this thesis, including time-to-event and continuous,

for which the multivariate meta-analysis methods might be beneficial and currently

are not used, particularly since they are not advocated, for example by Cochrane

(Higgins & Green 2008).

In the comparison of methods study (Chapter 7), each permutation had treat-

ment effect estimates from the ANCOVA model for 50% of the trials and were missing

for the remaining 50%. In practice, this is unlikely to always be true. It is important

for different proportions of treatment effect estimates to be investigated to determine

whether the recommendation made should be made for all missing data scenarios

(greater than 60% missing). Therefore, it is a priority for future research to assess the

effects different proportions of missing treatment effect estimates from the ANCOVA

model have on the recommendations made.

The three different baseline imbalances scenarios were investigated for simula-

tions of 10 trials with 1000 participants, between study variance of 2.25 and 50%

missing data for the ANCOVA treatment effect estimate. For future research, the
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meta-analysis characteristics and proportions of missing data should be varied to

explore the effect these characteristics may have on recommendations for settings with

baseline imbalance.

9.5.4 Extending bivariate meta-analysis

In this thesis, the majority of applications of multivariate meta-analysis were the

specific case of multivariate for two outcomes, the bivariate meta-analysis. The results

and implications from the thesis may be extendable to meta-analyses with more

than two outcomes, however this was not investigated. In particular, the prediction

models were developed from meta-analysis level characteristics from bivariate settings.

Therefore, it is uncertain how accurate predictions for meta-analysis settings with

more than two outcomes may be. That is not to say that the prediction models should

not be used in these settings, but researchers should be cautious with interpreting the

predicted BoS. To conclusively make recommendations for multivariate meta-analyses,

the studies in this thesis need to be extended to settings with more than two outcomes.

It is worth noting that in Chapters 7 and 8 that studied a new application of a

bivariate meta-analysis, a trivariate meta-analysis (meta-analysis of three outcomes)

was considered but not investigated further since the treatment effect estimates from

the three models are too closely related and therefore estimation problems were likely.

9.5.5 Prediction model validation

There are limitations to the prediction models developed in Chapter 4. The prediction

models were developed based only on 86 values of BoS from 43 bivariate meta-analyses

with binary outcomes. The prediction models were not developed from different

types of data, for example, continuous, time-to-event or diagnostic outcomes, and the

prediction model was not externally validated.

It is important to externally validate a prediction model, in addition to internal
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validation. External validation is used to investigate the performance of the model in

a different population, such that the model is developed to be generalisable (Altman

& Royston 2000, Altman et al. 2009, Collins et al. 2014). However, the prediction

model developed in Chapter 4, was not externally validated as there was insufficient

data considered appropriate for the external validation. Externally validating the

models is a priority for future research, especially if the model is to be used.

9.6 Final conclusions

In conclusion, the multivariate meta-analysis is beneficial for many applications of

meta-analysis, but it also has limitations compared to the univariate method. The ap-

plication of multivariate meta-analysis should be encouraged, particularly in situations

with large quantities of missing data and large within-study correlations. However,

in some settings, multivariate meta-analysis may be redundant, particularly when uni-

variate meta-analysis results are the same. With further developments in methods such

as the borrowing of strength statistic, the multivariate meta-analysis may be seen in

more meta-analysis reviews. However, until such time that multivariate meta-analysis

is advocated, e.g. by the Cochrane collaboration, it is likely to remain an underutilised

method for meta-analysis based on published results. However, with the growing use

and collection of IPD, the opportunities for multivariate meta-analysis increase.
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Appendix A

A.1 Hypertension example fixed-effect forest plots

Figure A.1: Fixed-effect meta-analysis of treatment effect estimates from the change

score model
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Figure A.2: Fixed-effect meta-analysis of treatment effect estimates from the final score

models
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A.2 Hypertension example random-effects forest

plots

Figure A.3: Random-effects meta-analysis of treatment effect estimates from the change

score models
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Figure A.4: Random-effects meta-analysis of treatment effect estimates from the final

score models

A.3 Conference Presentations

International Society for Clinical Biostatisticians (ISCB) 2016

“When should we use multivariate meta-analysis? Predictors of Borrowing of Strength

in 43 bivariate meta-analyses with Cochrane.”

Young Statistician’s Meeting (YSM) 2017

“Can we use predictors of Borrowing of Strength to flag when a multivariate meta-

analysis is most needed?”

Royal Statistical Society (RSS) Conference 2018

“Multivariate meta-analysis of correlated outcomes: how much borrowing of strength

do we expect?”
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Appendix B

B.1 Sensitivity analysis

Table B.1: The results from the sensitivity analysis with different values for the imputed

within-study correlations for the foetal outcomes in studies where it was not provided

Correlation Odds Ratio 95% confidence interval BoS

0

0.97 0.38 to 2.48 5.1

1.06 0.93 to 1.20 3.4

0.89 0.77 to 1.03 2.2

0.99 0.81 to 1.20 3.6

0.55

1.48 0.46 to 4.73 48.2

1.01 0.88 to 1.16 20.0

0.84 0.70 to 1.01 13.9

0.98 0.80 to 1.21 16.6

-0.39

0.81 0.31 to 2.11 5.6

1.06 0.93 to 1.20 13.0

0.87 0.72 to 1.05 7.4

0.98 0.80 to 1.19 12.4
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Table B.2: The results from the sensitivity analysis with different values for the imputed

within-study correlations for the maternal outcomes

Correlation Odds Ratio 95% confidence interval BoS

0

0.85 0.67 to 1.08 17.1

0.84 0.68 to 1.04 10.1

0.94 0.76 to 1.15 2.6

0.89 0.80 to 0.99 8.1

0.69

0.80 0.63 to 1.03 21.4

0.81 0.64 to 1.01 13.4

0.92 0.74 to 1.14 11.1

0.88 0.79 to 0.98 16.2

-0.69

0.70 0.50 to 0.99 28.5

0.74 0.56 to 0.98 19.4

0.81 0.61 to 1.09 11.1

0.88 0.78 to 0.98 19.6
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Appendix C

C.1 Comparison of univariate and multivariate

meta-analyses with corresponding BoS
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Figure C.1: Comparison of the univariate and multivariate meta-analysis results for

outcome one from the fixed-effect meta-analysis ordered by the BoS statistic
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Figure C.2: Comparison of the univariate and multivariate meta-analysis results for

outcome two from the fixed-effect meta-analysis ordered by the BoS statistic
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Figure C.3: Comparison of the univariate and multivariate meta-analysis results for

outcome one from the REML random-effects meta-analysis ordered by the BoS statistic
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Figure C.4: Comparison of the univariate and multivariate meta-analysis results for

outcome two from the REML random-effects meta-analysis ordered by the BoS statistic
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Figure C.5: Comparison of the univariate and multivariate meta-analysis results for

outcome one from the MM random-effects meta-analysis ordered by the BoS statistic
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Figure C.6: Comparison of the univariate and multivariate meta-analysis results for

outcome two from the MM random-effects meta-analysis ordered by the BoS statistic
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C.2 Univariable regression
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Table C.4: Table of results from the univariable mixed-effect multilevel models for the

difference between the univariate and multivariate summary estimates divided by the

standard error for each estimation method

Estimation
Intercept

Residual Heterogeneity,

Method Variance, σ2
e σ2

u

Fixed-effect 12.977 158.033 6.55×10−13

REML 14.128 139.860 8.89 ×10−16

MM 12.916 125.209 6.12 ×10−17
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Appendix D

D.1 Model assumptions checked

The assumptions made for the development of multivariable linear models were checked

using the residuals in plots for each model. Figure D.1, shows the plots for each model

of the fitted values against the studentised residuals. These plots are used to investigate

the assumption of constant variance. The plots do not appear to indicate towards a

strong violation of the assumption of constant variance. There do not appear to be

any patterns that would suggest that there is a non-linear term missing.
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Figure D.1: Scatter plots of the studentised residuals against the fitted values from the

models

The normal probability plots of the standardised residuals for each of the models are

shown in Figure D.2. For a perfect normal distribution all of the plots should follow

the normal line. In each plot there are deviations from this line in multiple places, but

this was considered mild, as the plots approximately follow the line. Due to the BoS

having a lower bound of zero it was expected that non-normality was a possibility. To

avoid this we could have transformed BoS onto another scale, however this would not

have fully resolved any non-normality problems and the interpretability of BoS would

have been lost. Therefore, the residuals were thus deemed appropriately approximately

normally distributed for our application.
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Figure D.2: Normal probability plots for the standardised residuals

D.2 Exploratory analysis: consideration of interac-

tions

D.2.1 Method for exploratory analysis

Selective interactions were considered for exploratory purposes only. Only select

variables were considered for interactions to minimise the effect of overfitting due to

a large number of variables. Interactions with the absolute between-study correlation

and the average absolute within-study correlations were chosen. The absolute

between-study correlation and the average absolute within-study correlations were

investigated (without interactions) using the full models in Section 4.3.1.

Parsimonious models were developed using backwards selection with a signifi-
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cance level of 0.1 for the removal of covariates or interactions. A covariate was only

removed from the model if the covariate was not contained within an interaction

in the model. For the fixed-effect meta-analyses, only interactions with the average

absolute within-study correlation were included. It was decided that the average would

be considered rather than the maximum within-study correlation, as the average

is contributed to by all the observations. For the random-effects meta-analyses,

the interactions for the average absolute within-study correlations and the absolute

between-study correlation were included for exploratory analysis. These models

are included here for exploratory purposes only, since there were concerns around

overfitting, due to the number of covariates included in the models compared to the

number of observations.

D.2.2 Results for exploratory analysis

For the fixed-effect meta-analyses, the interactions that remained in the model were the

percentage of missing data for all outcomes, the number of studies with the outcome

of interest and the number of studies with both outcomes, which were interacted with

the average absolute within-study correlation (Table D.1).
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The two interactions with the within-study correlation that were kept in the model for

BoS from the random-effects meta-analyses were statistically significant (Table D.2).

The two interactions were with the percentage of missing data for the outcome of

interest and Jackson’s I2. The interactions with the absolute between-study correlations

were not statistically significant. For example, the interaction between the number of

studies and the absolute between-study correlation had a p-value of 0.050 in the model.
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Appendix E

E.1 Interactive tool stills
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Figure E.2: The effect of the number of studies in the meta-analysis on the magnitude of

BoS from a fixed-effect meta-analyses with no missing data for the alternative outcome,

within-study correlation of 0.4 and within-study variances of 5

E.2 Interactive tool code for the prediction of BoS

for bivariate fixed-effect meta-analysis

server code

library(shiny)

shinyServer(function(input, output){

i<-reactive({

n<-input$n

ws<-input$ws

-13.020+0.962*(-0.13*n+26.590*ws)

})

j<-reactive({
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n<-input$n

ws<-input$ws

-13.020 +0.962*(0.655*n+29.4+26.590*ws)

})

k<-reactive({

n<-input$n

ws<-input$ws

((13.020/0.962)+0.13*n-26.59*ws)/(0.294+0.00785*n)

})

l<-reactive({

n<-input$n

ws<-input$ws

((113.020/0.962)+0.13*n-26.59*ws)/(0.294+0.00785*n)

})

output$thePlot<-renderPlot({

plot(c(0,100), c(0,100), type = "n", xlab = "Percentage of missing

data for the outcome of interest (%)", ylab = "BoS (%)",

cex.axis=1.3, cex.lab=1.4)

grid()

if(i()<0 & j()>100){

segments(x0=0,y0=0, x1=k(),y1=0)

segments(x0=k(),y0=0,x1=l(),y1=100)

segments(x0=l(),y0=100,x1=100,y1=100)

}

if(i()<0 & j()<=100){

segments(x0=0,y0=0,x1=k(),y1=0)

segments(x0=k(),y0=0,x1=100,y1=j())

}

if(i()>=0 & j()>100){
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segments(x0=0, y0=i(),x1=l(),y1=100)

segments(x0=l(),y0=100,x1=100,y1=100)

}

if(i()>=0 & j()<=100){

segments(x0=0,y0=i(),x1=100,y1=j())

}

})

output$blank<-renderText({

" "

})

})

ui code

library(shiny)

fluidPage(

titlePanel("Predicted BoS for bivariate fixed-effect meta-analysis",

windowTitle = "Predicted BoS"),

fluidRow(

column(6,

sliderInput("n", "Number of studies", 10, 200, 200, step=10),

sliderInput("ws", "Maximum absolute within-study

correlation", 0, 1, 0, step=0.05)

)

),

column(width = 12, offset = 0.5,

plotOutput("thePlot")

)

)
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E.3 Interactive tool code for the prediction of BoS

for bivariate random-effects meta-analysis

server code

library(shiny)

shinyServer(function(input, output, session){

observe({

a<-input$aws

updateSliderInput(session,"ws", value=a, min=a, max=1, step=0.05)

})

i<-reactive({

n<-input$n

ws<-input$ws

a<-input$aws

k<-input$k

-7.561+0.925*(0.477*n-0.274*(k/2)-0.907*n*((100-k)/100)-19.102*a

+39.297*ws)

})

j<-reactive({

n<-input$n

ws<-input$ws

a<-input$aws

k<-input$k

31.289+0.925*(0.477*n-19.102*a+39.297*ws)

})

h<-reactive({

n<-input$n

ws<-input$ws

a<-input$aws
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k<-input$k

((7.561/0.925)+0.43*n+19.102*a-39.297*ws+0.137*k-0.00907*n*k)/

(0.42+0.00907*n)

})

l<-reactive({

n<-input$n

ws<-input$ws

a<-input$aws

k<-input$k

((107.561/0.925)+0.43*n+19.102*a-39.297*ws+0.137*k-0.00907*n*k)/

(0.42+0.00907*n)

})

r<-reactive({

k<-input$k

100-k

})

q<-reactive({

n<-input$n

ws<-input$ws

a<-input$aws

k<-input$k

31.199+0.925*(0.477*n-0.557*k-19.102*a+39.297*ws)

})

output$thePlot<-renderPlot({

k<-input$k

plot(c(0,100), c(0,100), type="n", cex.main=1.8, xlab = "Percentage

of missing data for the outcome of interest (%)",

ylab = "BoS (%)", cex.axis=1.3, cex.lab=1.4)

grid()

337



if(k<=0){

if(i()<0 & j()>100){

segments(x0=0,y0=0, x1=h(),y1=0)

segments(x0=h(),y0=0,x1=l(),y1=100)

segments(x0=l(),y0=100,x1=100,y1=100)

}

if(i()<0 & j()<=100){

segments(x0=0,y0=0,x1=h(),y1=0)

segments(x0=h(),y0=0,x1=100,y1=j())

}

if(i()>=0 & j()>100){

segments(x0=0, y0=i(),x1=l(),y1=100)

segments(x0=l(),y0=100,x1=100,y1=100)

}

if(i()>=0 & j()<=100){

segments(x0=0,y0=i(),x1=100,y1=j())

}

}

else if(k>0){

if(i()<0 & q()<=0){

segments(x0=0,y0=0, x1=r(),y1=0)

}

if(q()<=100 & i()<0){

segments(x0=0, y0=0, x1=h(), y1=0)

segments(x0=h(),y0=0, x1=r(),y1=q())

}

if(i()<0 & q()>100){

segments(x0=0,y0=0,x1=h(),y1=0)

segments(x0=h(),y0=0,x1=l(),y1=100)
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}

if(i()>=0 & q()>100){

segments(x0=0,y0=i(),x1=l(),y1=100)

segments(x0=l(),y0=100,x1=r(),y1=100)

}

if(i()>=0 & q()<=100){

segments(x0=0,y0=i(),x1=r(),y1=q())

}

}

})

})

ui code

library(shiny)

fluidPage(

titlePanel("Predicted BoS for bivariate random-effects meta-analysis",

windowTitle = "Predicted BoS"),

fluidRow(

column(6,

sliderInput("n", "Number of studies", 10, 200,200, step=10),

sliderInput("k", "Percentage of missing data for the alternative

outcome", 0, 90, 0, step=10)

),

column(6,

sliderInput("aws", "Average absolute within-study

correlation", 0, 1, 0, step=0.05),

sliderInput("ws", "Maximum absolute within-study

correlation", 0, 1, 0, step=0.05)

)
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),

column(width = 12, offset = 0.5,

plotOutput("thePlot")

)

)

E.4 Interactive tool code for BoS from its mathe-

matical equation

server code

library(shiny)

shinyServer(function(input, output){

ws<-reactive({

if(input$ws==1){

ws<-0.999

} else if(input$ws==-1){

ws<--0.999

} else {

ws<-input$ws

}

})

lambda<- reactive({

ws<-ws()

vara<-input$vara

varb<-input$varb

ws*sqrt(vara)*sqrt(varb)

})

eta<- reactive({

bs<-input$bs
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tausq1<-input$tausq1

tausq2<-input$tausq2

bs*sqrt(tausq1)*sqrt(tausq2)

})

m<-reactive({

if(input$k==10){

m<-c(0,10,20,30,40,50,60,70,80)

} else if(input$k==20){

m<-c(0,10,20,30,40,50,60,70)

} else if(input$k==30){

m<-c(0,10,20,30,40,50,60)

} else if(input$k==40){

m<-c(0,10,20,30,40,50)

} else if(input$k==50){

m<-c(0,10,20,30,40)

} else if(input$k==60){

m<-c(0,10,20,30)

} else if(input$k==70){

m<-c(0,10,20)

} else if(input$k==80){

m<-c(0,10)

} else if(input$k==90){

m<-c(0)

} else {

m<-c(0,10,20,30,40,50,60,70,80,90)

}

})

bos<-reactive({

vara<-input$vara
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varb<-input$varb

n<-input$n

k<-input$k

mlambda<-0

mvar<-100000

tau1<-input$tausq1

tau2<-input$tausq2

(1-(((((1/(tau1+mvar))*((m()/100)*n))+((1/(tau1+vara))*((k/100)*n))

+((1/(tau1+vara))*(n-((m()/100)*n)-((k/100)*n))))

*((((tau1+mvar)/(((tau1+mvar)*(tau2+varb))

-((eta()+mlambda)^2)))*((m()/100)*n))

+(((tau1+vara)/(((tau1+vara)*(tau2+mvar))

-((eta()+mlambda)^2)))*((k/100)*n))+(((tau1+vara)

/(((tau1+vara)*(tau2+varb))-((eta()+lambda())^2)))

*(n-((m()/100)*n)-((k/100)*n)))))/((((((tau1+mvar)

/(((tau1+mvar)*(tau2+varb))-((eta()+mlambda)^2)))

*((m()/100)*n))+(((tau1+vara)/(((tau1+vara)*(tau2+mvar))

-((eta()+mlambda)^2)))*((k/100)*n))+(((tau1+vara)

/(((tau1+vara)*(tau2+varb))-((eta()+lambda())^2)))

*(n-((m()/100)*n)-((k/100)*n))))*((((tau2+varb)/(((tau1+mvar)

*(tau2+varb))-((eta()+mlambda)^2)))*((m()/100)*n))

+(((tau2+mvar)/(((tau1+vara)*(tau2+mvar))

-((eta()+mlambda)^2)))*((k/100)*n))+(((tau2+varb)

/(((tau1+vara)*(tau2+varb))-((eta()+lambda())^2)))

*(n-((m()/100)*n)-((k/100)*n)))))-(((((eta()+mlambda)

/(((tau1+mvar)*(tau2+varb))-((eta()+mlambda)^2)))

*((m()/100)*n))+(((eta()+mlambda)/(((tau1+vara)*(tau2+mvar))

-((eta()+mlambda)^2)))*((k/100)*n))+(((eta()+lambda())

/(((tau1+vara)*(tau2+varb))-((eta()+lambda())^2)))
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*(n-((m()/100)*n)-((k/100)*n))))^2))))*100

})

output$thePlot<-renderPlot({

m<-m()

bos<-bos()

plot(m, bos,pch = 19,ylim=c(-10,100),xlim = c(0,100), cex.main=1.8,

xlab = ’Percentage of missing data for the outcome of interest’,

ylab = ’BoS(%)’, cex.axis=1.3, cex.lab=1.5, grid())

abline(0,1, col="red")

})

output$blank<-renderText({

" "

})

output$wscorr<-renderText({

if(input$ws==1){

"Note: The within-study correlation can not be equal to 1,

rather the within-study correlation is estimated as 0.999."

} else if (input$ws==-1){

"Note: The within-study correlation can not be equal to -1,

rather the within-study correlation is estimated as -0.999."

} else {

" "

}

})

output$BoS<-renderText({
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paste(bos())

})

})

ui code

library(shiny)

fluidPage(

titlePanel("BoS", windowTitle = "BoS"),

fluidRow(

column(4,

sliderInput("n", "Number of studies", 10, 200,200, step=10),

sliderInput("k", "Percentage of missing data for the alternative

outcome", 0, 90, 0, step=10)

),

column(4,

sliderInput("ws", "Within-study correlation", -1, 1, 0.8,

step=0.05),

sliderInput("vara", "Within-study variance for available data for

outcome of interest", 0.5, 20, 20, step=0.1),

sliderInput("varb", "Within-study variance for available data for

the alternative outcome", 0.5, 20, 20, step=0.1)

),

column(4,

sliderInput("bs", "Between-study correlation", -1, 1, 0, step=0.05),

sliderInput("tausq1", "Between-study variance estimate for outcome of

interest", 0, 20, 0, step=0.1),

sliderInput("tausq2", "Between-study variance estimate for the

alternative outcome", 0, 20, 0, step=0.1)

),
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fluidRow(

column(12,style = "padding-left:30px",

plotOutput("thePlot"),

textOutput("blank"),

textOutput("wscorr")

))

)

)

345



346



Appendix F

F.1 Details for all sub-scenarios
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F.3 Baseline balance and imbalance simulation

code

/* Number of studies */

local nstudy 10

*/ set missing percentage and calculate number of studies missing */

local percentmiss 60

local miss=‘nstudy’*(‘percentmiss’/100)

*/ Number of participants in each study */

local parti 1000

/* number of simulations */

local nsim 1000

/* proportion of participants in each arm */

local trtproportion 0.5

/* For baseline balance settings */

/* Mean for baseline of systolic blood pressure

local baselinemean 165

/* For baseline imbalance settings*/

/* mean for baseline of systolic blood pressure for control */

local baselinemeanc 170

/* mean for baseline of systolic blood pressure for treatment

group */

local baselinemeant 165

/* standard deviation of baseline sbp */

local baselinesd 18

/* error term */

local errorsig 15

/* mean treatment effect */

local trteff -10

/* standard deviation of treatment effect, set to 0 for same

treatment effect across studies */

local trteffsd 1.5

/* baseline adjustment */

local baseadj 0.5

/* baseline adjustment standard deviation, set to 0 for same baseline

adjustment across studies */

local baseadjsd 0.05

/* intercept */
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local inter 80

/* intercept standard deviation, set to 0 for same intercept across

studies */

local intersd 5

/* seed */

set seed 453

/* file for meta-analysis results */

postfile study metaid multancova multancovase multfinal ///

multfinalse iterations bos1 bos2 tau2ma tau2mf bscorr i2ma ///

i2mf uniancova uniancovase i2ua tau2ua unifinal unifinalse ///

i2uf tau2uf Cochrane Cochranese i2c tau2c using ///

"study.dta", replace

/* simulation */

forvalues i=1/‘nsim’ {

clear

/* loop to generate number of participants per trial

trial and participant id

stack data from each study and save data */

forvalues j=1/‘nstudy’{

clear

set obs ‘parti’

gen trialid=‘j’

gen patientid=_n

save data‘j’, replace

if ‘j’>1{

append using data1

save data1, replace

}

}

/* open data from all studies that have been stacked */

use data1, replace

sort trialid

/* proportion of participants in each arm */

gen trtgrp=rbinomial(1,‘trtproportion’)

/* Use the following for baseline balance setting */

/* Baseline systolic blood pressure */

gen baseline=rnormal(‘baselinemean’, ‘baselinesd’)

/* Use one of the following for desired baseline imbalance setting */

/* For baseline imbalance setting unconditional all

encompassing */

/* Baseline systolic blood pressure */

gen baseline=rnormal(‘baselinemeanc’, ‘baselinesd’) if ///

trtgrp==0
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replace baseline=rnormal(‘baselinemeant’, ‘baselinesd’) if ///

trtgrp==1

/* For baseline imbalance setting conditional, baseline ///

imbalance for missing treatment effect estimates from the ///

ANCOVA model (i.e. for trials without IPD) */

/* Baseline systolic blood pressure */

gen baseline= rnormal(‘baselinemeanc’, ‘baselinesd’) if ///

trtgrp==0 & trialid<=‘miss’

replace baseline=rnormal(‘baselinemeant’, ‘baselinesd’) if ///

baseline==.

/* For baseline imbalance setting conditional, baseline ///

imbalance for available treatment effect estimates from ///

the ANCOVA model (i.e. for trials with IPD) */

/* Baseline systolic blood pressure */

gen baseline= rnormal(‘baselinemeanc’, ‘baselinesd’) if ///

trtgrp==0 & trialid>‘miss’

replace baseline=rnormal(‘baselinemeant’, ‘baselinesd’) if ///

baseline==.

/* error term */

gen error=rnormal(0,‘errorsig’)

/* the beta2, beta1, alpha one for each study (repeated for each

participant for calculation purposes for final measurement) */

/* generate treatment effect. For same treatment effect across

studies set standard deviation to 0. */

gen beta2a=rnormal(‘trteff’,‘trteffsd’) if patientid==1

by trialid: egen beta2=sum(beta2a)

/* generate baseline adjustment. For same baseline adjustment

across studies set standard deviation to 0. */

gen beta1a=rnormal(‘baseadj’,‘baseadjsd’) if patientid==1

by trialid: egen beta1=sum(beta1a)

/* generate intercept. For same intercept across studies set

standard deviation to 0. */

gen alpha1=rnormal(‘inter’,‘intersd’) if patientid==1

by trialid: egen alpha=sum(alpha)

/* calculate final scores for participants */

gen final=alpha + beta1*baseline + beta2*trtgrp + error

/* file for models fitted */

postfile model studyid b1 V11 b2 V22 corr using "model.dta", ///

replace

/* Fit each model separately for each study */

forvalues j=1/‘nstudy’{

regress final baseline trt if trialid==‘j’

mat b=e(b)

mat V=e(V)
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local b1=b[1,2]

local V11=V[2,2]

regress final trt if trialid==‘j’

mat b=e(b)

mat V=e(V)

local b2=b[1,1]

local V22=V[1,1]

sureg (final = baseline trt) (final = trt) if trialid==‘j’ ///

, corr

mat V=e(V)

local corr=V[2,4]/(sqrt(V[2,2])*sqrt(V[4,4]))

post model (‘j’) (‘b1’) (‘V11’) (‘b2’) (‘V22’) (‘corr’)

}

postclose model

/* open and merge data from models and correlations */

use "model.dta", clear

gen V12=sqrt(V11)*sqrt(V22)*corr

replace b1=. if studyid<=‘miss’

replace V11=. if b1==.

replace V12=. if b1==.

/* multivariate met-analysis */

mvmeta b V, reml iterate(200) wt(keepmat(wts)) nounc

mat b=e(b)

mat V=e(V)

local mb1=b[1,1]

local mb2=b[1,2]

local mb1se=sqrt(V[1,1])

local mb2se=sqrt(V[2,2])

matrix A=wtsborrowed

matrix B=J(rowsof(A),1,1)

matrix C=B’*A

local bos1=C[1,1]

local bos2=C[1,2]

mat sig=e(Sigma)

local tau2_ma=sig[1,1]

local tau2_mf=sig[2,2]

local bscorr=sig[1,2]/sqrt(sig[1,1]*sig[2,2])

mat Q=e(Q)

mat Qa=e(Qa)

local i_2ma=max(0, 100*(1-(Qa[1,1]/Q[1,1])))

local i_2mf=max(0, 100*(1-(Qa[2,2]/Q[2,2])))

local ic=e(ic)

/* univariate ma for ANCOVA */

mvmeta b V, reml iterate(200) vars(b1) nounc

mat b=e(b)

mat V=e(V)

local ub1=b[1,1]

local ub1se=sqrt(V[1,1])
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mat Q=e(Q)

mat Qa=e(Qa)

local i_2ua=max(0, 100*(1-(Qa[1,1]/Q[1,1])))

mat sig=e(Sigma)

local tau2_ua=sig[1,1]

/* univariate meta-analysis for final */

mvmeta b V, reml iterate(200) vars(b2) nounc

mat b=e(b)

mat V=e(V)

local ub2=b[1,1]

local ub2se=sqrt(V[1,1])

mat Q=e(Q)

mat Qa=e(Qa)

local i_2uf=max(0, 100*(1-(Qa[1,1]/Q[1,1])))

mat sig=e(Sigma)

local tau2_uf=sig[1,1]

/* Cochrane meta-analysis */

gen b3=b1

gen V33=V11

replace b3=b2 if b3==.

replace V33=V22 if V33==.

mvmeta b V, reml iterate(200) vars(b3) nounc

mat b=e(b)

mat V=e(V)

local ub3=b[1,1]

local ub3se=sqrt(V[1,1])

mat Q=e(Q)

mat Qa=e(Qa)

local i_2c=max(0, 100*(1-(Qa[1,1]/Q[1,1])))

mat sig=e(Sigma)

local tau2_c=sig[1,1]

post study (‘i’) (‘mb1’) (‘mb1se’) (‘mb2’) (‘mb2se’) (‘ic’) ///

(‘bos1’) (‘bos2’) (‘tau2_ma’) (‘tau2_mf’) (‘bscorr’) (‘i_2ma’) ///

(‘i_2mf’) (‘ub1’) (‘ub1se’) (‘i_2ua’) (‘tau2_ua’) (‘ub2’) ///

(‘ub2se’) (‘i_2uf’) (‘tau2_uf’) (‘ub3’) (‘ub3se’) (‘i_2c’) ///

(‘tau2_c’)

}

postclose study
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