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abstract

Evidence is provided for tuned channels in the human auditory

system selectively responsive to frequency-modulation (FM)• Thresholds

for the detection of small changes in frequency were measured with a 2IFC

procedure in two subjects at a number of frequencies« Thresholds were

determined before and after exposure to various adapting-stimuli. Large

elevations of threshold (often by a factor of three], and in some cases

small decreases in threshold (facilitation), were found depending upon

the FM parameters of the adapting-stimulus. The degree of elevation

(expressed as the adaptation factor equal to the adapted threshold

divided by the unadapted threshold) of sinusoidal-FM thresholds was

found to be dependent upon the frequency-deviation (±AF) of a sinusoidal-

FM adapting-stimulus with the same carrier- (Fc) and modulation-frequency

(F ) as the test-stimulus (Chapter 3). A characteristic function was 
m

found consisting of a linear increase in adaptation factor with increasing 

±AF up to some value of ±AF (dependent upon Fc) after which a progressive 

decline in adaptation factor occurred with further increases in ±AF. One 

possible explanation of the results in terms of the processing of frequency 

transitions by filters in the carrier-frequency domain was examined. By 

assuming the existence of rectangular filters with bandwidths equal to 

the value of ±AF at which peak adaptation occurred, and by introducing a 

cosinusoidal function to give different weights to different rates-of- 

change of frequency (df/dt) of the modulating waveform, a good fit to the 

empirical data was found with adaptation given by the area under the 

modulating waveform within the filter. A central assumption of the filter 

model was that the fall in adaptation factor at high values of ±AF was due 

to the decreasing sweep duration within the filter as ±AF increased beyond 

the filter bandwidth. This assumption was tested using linear sweeps with



a constant df/dt for values of ±AF at and beyond the hypothesised filter 

bandwidth. The decline in adaptation still occurred even though, with 

these stimuli, the sweep parameters within the filter remained constant.

One possibility discussed was that the decline in adaptation factor was 

due to the activation of lateral-inhibitory side-bands by the parts of the 

frequency transitions outside the filter and a concomitant suppression of 

filter output. Finally, a good fit to the data was given by Gaussian 

filters which were regarded as more realistic. The inferred filter band­

width and their relationship to frequency were similar to critical band- 

widths (Scharf, 1970] suggesting a common basis for these measures of 

frequency selectivity. By holding the test Fq of sinusoidal-FM constant 

and varying the adapting Fc» the selectivity of adaptation effects, tuning- 

curves, were determined [Chapter 4) and compared to measures of selectivity 

derived from Chapter 3. Large differences were found, the tuning-curves 

having markedly narrower bandwidths and a non-Gaussian shape. In Chapter 5 

evidence supporting the hypothesis that adaptation is an after-effect of 

prolonged inhibition between FM-channels tuned to Fq and Fm was found. In 

the terms of this hypothesis. Fc and Fm tuning-curves represent the range 

and strength of lateral-inhibitory connections between neighbouring channels. 

Overall, the data from Chapters 3-5 was consistent with a two-stage model

of F selectivity in FM processing, the first stage given by the derived 
c

Gaussian bandwidths and a higher stage represented by tuning-curves. Both 

carrier- and modulation-frequency tuning-curves showed evidence of thres­

hold facilitation (Chapters 4 and 5). Thresholds for single linear upward 

frequency sweeps (up sweeps) were increased by a factor of 2 to 3 following 

exposure to repetitive (8 Hz) up sweeps but not following exposure to down 

sweeps or tone bursts) correspondingly, thresholds for down-sweep stimuli 

were increased only by down sweeps. Sinusoidal FM test stimulus thresholds 

were elevated by both up-sweeps and down-sweeps and to a lesser extent by



tone bursts (Chapter 6). These results suggest the existence in the 

auditory system of channels specific to upward FM, downward FM, as well 

as AM or repetition channels. Sawtooth-FM did not reveal directional- 

specific adaptation effects because of the adapting influence of the 

rapid frequency transitions between the sweep components of sawtooth 

waveforms (Chapter 7).

Examination of unadapted thresholds as a function of test-stimulus 

duration revealed the existence of an integration time of 400 ms for the 

detection stage of FM processing (Chapter 8).
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CHAPTER 1: INTRODUCTION

1.1 ____General Introduction

1.1.1 Methodology

This study uses the techniques and rationale of selective adaptation 

to provide evidence for the processing of frequency modulation (FM) by the 

earj the determination of thresholds and elevations of threshold for the 

detection of Ffl in supra-threshold stimuli, 'that examines the processing 

of FM per se and not FM stimuli, being the principle method employed.

Adaptation procedures have been used for a number of years in the 

study of the human visual system (e.g. Blakemore and Campbell, 1969). The 

basis of the methodological rationale is the belief that demonstrations of 

threshold elevations (other measures of adaptation like negative after­

effects can be used) specific to a particular stimulus feature is evidence 

for a channel coding that feature. Subdivisions of this mechanism

into tuned elements or channels sensitive only to restricted ranges of the 

dimensions defining the feature can be demonstrated. The term channel 

refers to the total ensemble concerned with the extraction and processing 

of a stimulus feature as well as tuned subdivisions of this mechanism.

Definitions of a channel usually involve a physiological metaphor, 

the channel being regarded as a functionally isolated, ascending, pathway 

of a sensory system. Feature extraction and specificity are seen as con­

sequences of the connectivity, that is, the structural arrangement of
v.

neurones forming the channel. It is worth noting that a channel is a 

psychophysical entity referring to physiological mechanisms assumed to 

underly certain perceptual phenomena. In contrast, feature detector is the 

term usually applied to neurones selective for certain features of a stimulus.

Demonstration of the perceptual independence of auditory features 

is the crucial evidence for feature-specific channels.
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In the first study of auditory mechanisms by selective adaptation 

Kay and Matthews (1971; 1972] demonstrated precisely this for FM. Thres­

holds for the detection of FM were elevated by FM adapting-stimuli only 

and channels tuned to restricted ranges of carrier and modulation frequency 

were demonstrated. There were earlier studies of complex adaptation 

phenomena (Rawdon-Smith and Grindley, 1935j Rosenblith, 1947; Besser, 1966), 

however, Kay and Matthews (1971; 1972) introduced a new method and model 

to auditory psychophysics, one previously used in visual psychophysics, 

and numerous physiological experiments demonstrating the existence of 

auditory neurones preferentially sensitive to certain stimulus features 

including FM (see Evans, 1974; Scheich, 1976, for reviews).

1.1.2 Features

For a discussion of auditory feature analysis, the primary questions 

must be: What is a feature and is FM one? Examination of human speech and 

animal vocalizations reveal the presence of discrete segments showing major 

features such as rapid changes of frequency (FM), amplitude (AM), noise 

bursts, spectral patterns, temporal patterns, etc. Scheich (1976) dis­

tinguishes between bioacoustic dimensions as "objective variable dimensions

that are relevant in communication sounds of animals in general .... ", and

features, representing a more restricted property of significant information 

bearing content and closely related to the ethological concepts of inate 

and species-specific releasors. He lists some of the basic ideas behind 

the term feature:

1. An acoustic feature may be called a property of a 
natural sound which by itself or in the context of 
other properties is significant for eliciting a 
certain behaviour. In a wider sense, features may be 
those properties which are crucial for the identifi­
cation of sounds with high significance for the species.

2. Not every acoustic dimension in a natural sound is of 
special relevance for any given species.

3. For a relevant dimension it is usually a restricted 
range of the whole continuum of a dimension which 
has behavioural significance (boundaries).
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4. Upon crossing ths critical boundaries along the cont­
inuum of a stimulus dimension, the stimulus may become 
ineffective or the behavioral response (or the 
psychophysical percept) may change qualitatively.

(From Scheich, 1976, p.164)

In these terms FM would represent a bioacoustic dimension. Whether 

FM is a feature as defined above must be determined empirically. The 

demonstration of FM specific adaptation and FM selective neurones is 

evidence for FM as an auditory feature. This is confirmed by the tuning 

of adaptation effects [Kay and Matthews, 1972) corresponding to the critical 

boundary concept cited by Scheich [1976).

Problems arise in the isolation of the critical dimensions of 

auditory features of which FM is a good example, especially periodic FM. 

Further, in a natural situation the feature is not isolated and may be 

correlated with other stimulus properties as a result of stimulus trans­

formation at the ear Ce.g. loudness changes) or properties of the arti­

culatory mechanisms. It is possible that though coded independently the 

covariance of two features is of perceptual importance. This may be lost 

through experimental control.

For the purposes of this study a feature is defined as a property 

of a complex acoustic signal [including speech) processed independently of 

other properties for the purposes of detection, recognition or identifica­

tion of the signal.

There now follows a review of the literature.
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1.2_____Literature Survey

1.2.1 FM in Speech

FM in some form is present in all languages. A distinction can be 

made between variations of the fundamental frequency, the glottal period, 

and variations of formant frequencies, that is, formant transitions.

Lehiste and Peterson (1962) provide an excellent guide to the acoustic 

properties of some formant transitions. Formant refers to concentrations 

of energy at the resonant frequencies of the vocal apparatus. Formants 

are assigned numbers depending on frequency, hence F1, F2, F3 refer to 

formants of increasing frequency of a speech signal. A formant transition 

refers to a change in the formant frequency over time.

There has been considerable effort directed towards determining the 

role of formant transitions in the perception and identification of speech 

sounds. Some speech adaptation experiments have addressed this question 

and are discussed in a separate section. Experiments not involving adapta­

tion have led to some ambiguous and sometimes conflicting data as to the 

value of frequency transitions as a speech cue. Lindblom and Studdert- 

Kennedy (1967) found that together with the frequency "locus” of formants 

the direction and rate of change of transitions provided a cue to the 

identification of vowel sounds in a consonant-vowel-consonant syllable. 

Lehiste and Peterson (1961) measured the parameters of F2 transitions 

assumed to serve as cues to consonant identification and compared them to 

those serving as cues to the presence of complex syllabic nuclei (glides 

and dipthongs). Differences in rate of change and duration existed between 

transitions providing a possible basis for identification. The temporal 

properties of F1 and F2 transitions were found by Liberman et al (1956) to 

be a cue distinguishing between members of the series vowel-semivowel and 

vowel-vowels of changing "colour”.

A change in duration was found to produce a change in the category 

to which Ss assigned a sound. A second experiment determined that duration



5

and not rate of change was the critical variable. Whether the existence 

of a transition was necessary is unclear.

Stevens and Klatt (1974] reported that transitions acted as cues 

to the voiced-voiceless distinction for stop consonants and could be 

traded with another cue, voice-onset time (VOT). A study by Summerfield 

and Haggard (1977) found that the F1 onset frequency and not the transition 

per se was a cue to voicing. They did suggest, however, that a rising F1 

predisposed a consonantal percept which a transitionless F1 with the same 

onset frequency did not.

It seems certain that format transitions act as cues though their 

role may be secondary.

The role of variations in fundamental frequency, pitch fluctuations, 

are unambiguous. These have two major linguistic functions. First, pitch 

fluctuations occur across sentences, the pattern being referred to as the 

intonation contour. The fundamental frequency is usually in the range 

ao - 3ooHz with women higher than men and the range of the transitions can 

reach 100 Hz. Rates of change of frequency are rather low. The .intonation 

contour is the primary acoustic cue in many languages, including English, 

for the identification of utterances as questions or statements 

(Lieberman, 1967), The emotional state of the speaker is also coded in 

the intonation contour (Lieberman, 1967). Abe (1962) notes the importance 

of intonation in English calls. Second, pitch fluctuations occur within a 

word referred to as tone. Thus a distinction can be made betweenn*otona\, 

languages (e.g. English) and tone languages (e.g. Chinese). The character 

of a pitch fluctuation within a word of a tone language often determines 

the meaning of the word, i.e. pitch fluctuations in tone languages produce 

differences in meaning of an utterance that are lexical, in intonation 

the differences are syntactical (Abercrombie, 1967).
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1.2.2 Animal Vocalizations

FM is a common property of the vocalizations of numerous species 

including the squirrel monkey (see Winter and Funkenstein, 1973), the cat 

(see Watenabe and Ogushi, 1968), birds (Marler, 1955j Stein, 1968j and see 

Scheich et al, 1977), the treefrog (Narins, 1976), and bats, rodents, 

insects and cetacea (Sales and Pye, 1974).
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1.3_____Review of the Neurophysiological Literature

1.3,1 Lower Levels of the Auditory Pathway

In the cochlear nucleus (CN), but not the cochlear nerve, a number 

of units have been found showing a preference for one direction of frequency 

change, a phenomenon first reported by Evans and Nelson (1966b) iH the cat. 

This finding has been replicated by a number of studies (Erulkar et al,

1968, in the cat; Fernald and Gerstein, 1972, in the cat; Holler, 1974a,b, 

in the rat; and Britt and Starr, 1976, in the cat). Only two studies 

(Holler, 1969; Watenabe, 1972) have reported no directional preferences in 

CN units, in the rat and cat respectively. The selectivity, when found, 

varies in extent and takes the form of an asymmetrical firing density in 

the response patterns to up or down sweeps rather than an all-or-none 

response. From the studies quoted above that give the number of units 

studied and those having a asymmetrical response it can be calculated that 

only 16% of a total of 319 units are asymmetrical. Further, asymmetrical 

units are more prevalent In the dorsal CN (Evans, 1975). Host asymmetrical 

units prefer falling sweeps (Erulkar et al, 1968; Holler, 1974a,b). None 

of the units in the CN are "feature-detectors” in the sense that they 

respond only to FH stimuli and responses are largely predictable from the 

steady-state (pure-tone) response areas of the unit. Evans (1975) discusses 

directional selectivity as reflecting the asymmetrical distribution of 

inhibitory response areas around the excitatory areas of CN units. This 

asymmetry is manifest in the time delays as well as the extent of side­

bands. Further, Evans and Nelson (1966a,b) found little difference in 

threshold between FH, AH and pure-tones.

Responses to periodic FH are also predictable but could form the 

basis for the coding of modulation frequency. For periodic FH crossing 

the high frequency edge of a response area a phase-locked periodic unit 

response occurs slightly leading the modulation waveform. The maximum
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spike density is at the lowest frequency of the waveform, i.e. the furthest 

excusion into the response area. For excursions across the low frequency 

edge of the response area a similar pattern is evoked but with an inverted 

relationship to the modulation waveform. For excursions entirely within 

the response area a bimodal response distribution occurs (see Evans, 1975, 

Fig. 38A-J).

Unit responses in the CN to rate of change of frequency show pre­

ferences for certain rates, reflecting the time spent by the sweep in the 

response area (Moller, 1969, 1974a,b). At certain rates of change the 

response pattern becomes localized around the unit characteristic frequency 

(CF), and the amplitude histogram peak height increases, enhancing the 

response to a particular range of rates of change.

Watenabe (1972] found that in contrast -to. the CN preferential 

responses to direction of frequency change in the superior olive favour 

upward sweeps. This has been found in all the studies of the inferior 

colliculus (IC) examining directional selectivity (Watenabe and Ogushi,

1968} and Watenabe, 1972, in the cat; Clopton and Winfield, 1974, and 

Vartanian, 1974, in the rat). This shift of preference from down to upward 

sweeps may simply be a sampling artifact. However, Clopton and Winfield 

(1976) found exposure to patterns of upward frequency sweeps and noise 

bursts could alter the selectivity of IC units from down-selective to up —  

selective in young rats. All unexposed units were down^selective. This 

suggests the selectivity at the IC may have a functional basis and involve 

additional factors to those present at the CN.

Watenabe and Ogushi (1968) and Watenabe (1972) reported directional 

selectivity contingent upon rate-of-change of frequency with ascending units 

tuned to high rates and descending units to low rates. The FM properties 

required for maximum responsiveness were similar to those naturally 

occurring in cat vocalizations.
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Nelson et al (1966] found responses tuned to the modulation fre­

quency of AM and FM in the IC of the cat. Most responses including

directional selectivity were predictable from steady-state responses. A
un

very few units did show^predictable responses, for instance, a unit 

responding only to sweeps outside its pure-tone response area.

Vartanian (1974) determined IC unit responses in the rat to fre­

quency sweeps after first determining the steady-state excitatory response 

areas (with a pure-tone) and inhibitory areas by a two-tone method. As the 

interval between tones increased the inhibitory bandwidth decreased. Thus 

the temporal characteristics of a stimulus determine the frequency range 

of inhibitory effects. The unit response to sweeps and preferences for 

certain rates of change of frequency was dependent upon the time course 

and frequency range of sweeps vis-a-vis the excitatory and inhibitory response 

areas of the unit. This is essentially the model proposed by Evans (1975) 

for directional selectivity in the CN. At the IC, however, it may not be 

entirely adequate. First, there is the shift in preference from down—to up­

sweeps between the CN and IC. The results of Clopton and Winfield (1976), 

discussed earlier, suggest this is not due to sampling of units. Second, 

inhibitory processes are more prevalent in the IC, reflected in the number 

of onset units found there (ErulKar, 1975). This suggests an activation of 

both excitatory and inhibitory processes by stimuli in a units response area. 

Both pre- and post-synaptic inhibitory mechanisms have been found in the IC 

(Erulkar, 1975). The role of inhibitory processes in direction selectivity 

was examined by Watenabe (1972). For example, up selectivity was character­

ised by an EPSP followed by an IPSP for up-sweeps and the reverse for down- ■ 

sweeps. Such a unit would show little response to down sweeps. The temporal 

Patterning of synaptic events would seem to form the basis of directional 

selectivity in this case. Third, the asymmetry of inhibitory side-bands 

does not seem to change significantly from the CN to the IC. This may be
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reflected in the down selectivity of unexposed IC units in young rats 

CClopton and Winfield, 1976). The final exper'i£i<if ally determined functional 

selectivity (Watenabe and Ogushi, 1968) may be determined by mechanisms 

described by Watenabe (1972).

1.3.2 The Auditory Cortex

The responses of many auditory cortical units are complex compared 

to those at lower levels. A large proportion of units are concerned with 

the temporal and spatial characteristics of stimuli and can be described 

as "feature-detectors". Frequency selectivity is reduced by comparisons
l

with lower levels as is tonotopic organisation (Evans, 1968), though this 

latter concept as applied to the cortex is showing signs of rehabilitation 

(Merzenich et al, 1976). Ablation studies of the auditory cortex (Neff, Dia­

mond & Cassedy, 1975) show that the discrimination of differences in 

frequency and intensity between tones, seen as based on tonotopic organisa­

tion, are largely unimpaired by bilateral cortical ablation. Discrimina­

tion between temporal patterns of tones, tones of different duration and 

between the spatial locations of tones are impaired.

Evans and Whitfield (1964) found 6 units in the primary auditory 

cortex of the cat (4% of the population studied) responsive only to FM 

tones. Another 21% responded only to clicks and odd sounds (e.g. the 

jangling of keys). Whitfield and Evans (1965) studied the responses of 

auditory cortical units to sinusoidal and ramp FN in the unanaesthetised, 

unrestrained cat. In the majority of units responsive to FM this response 

was greater than that to steady tones, and, in 10% no response to steady 

tones was found. Periodic responses phase-locked to the modulation wave­

form of sinusoidal FM occurred and in many units this response occurred to 

one direction of frequency change. This was confirmed with ramp stimuli, 

that is, units were direction specific in contrast to the direction
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preferences found at lower levels. Some units showed complex directional 

responses to down-sweeps in the high frequency portion of the response area 

and up-sweeps in the low frequency portion. Some responses to FM were 

predictable from steady-state responses in that a unit would only respond 

to sweeps within the pure-tone response area. The majority were unpred­

ictable with FM response bandwidths wider than the pure-tone response area, 

if present. These are comparable to the units found by Nelson et al (1966) 

in the IC of the cat.

Feher and Whitfield (1966) reported auditory cortical units in the 

cat responsive only to an FM tone and steady tone presented simultaneously 

but not to either alone.

Evans and Jolley (cited in Evans, 1974) found cortical units in the 

cat tuned to a narrow range of modulation frequences and comparable to the 

psychophysical tuning curves of Kay and Matthews (1972) discussed in the 

next section.

Goldstein et al (1968) found only one FM specific unit in 131 studied 

in the cat. Watenabe (1972) in a study of 11 cortical units in three cats 

reported no FM specific units though directional preferences to FM and AM 

sweeps were found.

Kelly and Whitfield (1971) used a shocK-avoidance task to measure 

the discrimination between rising and falling FM ramps, in cats, before and 

after bilateral cortical lesions. Animals could still perform the dis­

crimination after ablation but with the following deficits: (a) a longer 

number of sessions was needed to reach maximum performance; (b) more spon­

taneous responses occurred; (c) there was greater variability across sessions,

i.e. difficulty in maintaining response level. Discrimination of the 

direction of frequency change was thus immune to cortical ablations suggest­

ing that performance could be mediated by the less refined FM processing 

capacities at lower levels. The authors suggested that the deficits found 

reflected the limited access of lower levels to processing centres.
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Swarbrick and Whitfield (1972) measured unit responses in the cat to 

wide-band noise amplitude-modulated by a triangular waveform. Of a popula­

tion of 30 units two small groups exhibited complex response properties.

The first responsed with twin peaks when the ratio of fall-time to rise-time 

of the triangular envelope was greater than 5 to 1. The other preferred 

symmetrical envelopes, the responses decreasing with increasing asymmetry.

Evans (19741 discusses units in the cortex and lower levels of the 

auditory system sensitive to stimulus parameters defining sound source 

location such as time delays and interaural intensity differences. Evans 

(1968) found that the majority of units in the cortex of the unanaethetised, 

unrestrained cat show a preference for a certain location. A further 31% 

required a certain location for any response. Sovijarvi and Hyvarinen (1974) 

studied the responses of cortical units in the cat to aspects of stimulus 

spatial characteristics. 52% of units were responsive to spatial character­

istics. 32% were responsive to the direction of sound on source movement. 

Directional responses were 'best.for movement in restricted sectors of

the field.

In summary, the auditory cortex is the location in the auditory path­

way where a significant number of units can be characterised as feature- 

detectors. Responses are largely unpredictable from steady-state response 

characteristics, if any, and are concerned with complex time-varying and 

spatial characteristics of stimuli.

1.3.3 Animal Vocalizations

A number of studies have been concerned with the neural coding of 

biologically significant sounds, that is, animal vocalizations. Species 

calls are highly complex sound patterns consisting of formants, formant 

transitions, periodic FM, FM chirps, AM, noise bands and complex temporal 

and spectral patterns.
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A. Squirrel Monkey

Wollberg and Newman (1972) recorded the responses of 213 neurones 

in the superior temporal gyrus of the awake squirrel monkey (see Winter 

and Funkenstein, 1973, for examples of species vocalizations). Over 80% 

responded to vocalizations. Some units responded reliably to one call 

type, others to most of the representative sample of call types used. The 

majority of units fell between these extremes and responded to synthetic 

stimuli (clicks, tones and noise). Analysis of the critical features of the 

vocalizations were reported for two cells. The first cell responded to all 

the callsj the other to one call, the isolation peep, only. Other calls 

produced suppression of this units response. Analysis was carried out by 

isolating temporal segments of the call. For the first cell (the multiple 

responder) it was found that temporal segments of an isolation peep had 

corresponding discrete response components. Earlier parts of the call inter- 

acted with later segments to determine the response to these segments, i.e. 

temporal structure and interaction were of importance. The full response 

was modified by deletion. The second call seemed concerned with particular 

segments of the call with parts of the call coded in terms of the effect on 

responses to later components. Newman and Wollberg (1973) found similar 

results with 90% of a population of 83 units responding to vocalizations.

A wide range of response probabilities and specificities were found with 

89% of units responding to more than half of the 12 different vocalizations. 

Response patterns to a single call differed between cells. A number of 

units responded to calls representing several call groups but not to 

acoustically similar calls, for example, calls with similar frequency 

transitions. This suggests cells were not simple feature analysers respond­

ing to say FN in the vocalization. Winter and Funkenstein (1973) recorded 

responses from the awake animal to species-specific vocalizations, FM tones, 

tones, clicks and noise. Of 116 units responding to calls, 48 were analysed



further, these being units exhibiting a reproducible response pattern cor­

related in time with the onset of the stimulus. In 63% of this group the 

response to calls could be predicted from the unit response to steady-state 

tones, that is, on the basis of spectral overlap of response areas and call 

patterns. A further 37% had unpredictable responses and a number of units 

(7% of 116 units] responded only to calls. Of 96% of units tested with all 

stimulus classes only about 4% displayed selective responses to a stimulus 

category, including FM. No responses to vocalizations based on acoustic 

features seemed to be present though a class of units responsed only to 

calls containing FM. These could be FM selective units as described by 

Whitfield and Evans C1965] or receive input from such cells.

Hupfer et al (1977) trained monkeys to discriminate between species- 

specific vocalizations and complex sound patterns similar to vocalizations. 

Performance was determined after total and partial bilateral ablation of 

the auditory cortex. No change in performance was seen after small lesions 

of the superior temporal gyrus. Medium lesions led to deficits in retention 

after retraining with animals being unable to reach criterion level though 

performance was above chance level. Animals could not carry out the task 

after total destruction of the cortex, nor discriminate between calls and 

white noise. However these animals could learn to jump off a perch to a 

call. This would suggest some ability to recognize calls was present, 

presumably mediated by centres lower in the auditory pathway.

B. Cat

Watenabe and Katsuki (1974) determined responses of units at various 

levels of the auditory system to cat vocalizations. Band pass filtering 

was employed to determine the critical spectral segments for response. At 

all levels of the auditory pathway, including the cortex, responses were 

largely predictable from steady-state responses. Inhibitory effects 

reflecting the presence of spectral energy within inhibitory side-bands was



15

also found. Some units responded only to filtered vocalizations as a 

result of these inhibitory mechanisms. The theoretical premise of the 

study was that inhibition played a role in the extraction of features within 

limited spectral regions. Sovijarvi (1975) studied 132 cortical units to 

tones, species-specific vocalizations and complex sounds including bird 

vocalizations. Most units had responses predictable from pure-tone response 

though 22% did not respond to pure-tones. Of these the majority responded 

to specific types of natural sounds. A number of units showed specific 

responses to hand-claps, jangling of Keys, etc. in line with Whitfield and 

Evans (1965).

C. Birds

Similar data to that found in the squirrel monKey has been reported 

by Scheich et al (1977) for the auditory midbrain nucleus of the Guinea Fowl. 

This nucleus is the analogue of the mammalian inferior colliculus (Campbell 

and Boord, 1974). Of special interest were units capable of detecting fre­

quency complexes and harmonic spectra.

1.3.4 Response Plasticity

The phenomenon of response plasticity is important because changes in 

response including feature specificity have been found to be dependent upon 

an animal’s behavioural state. Further apparently spontaneous changes in 

response properties can occur. The importance of anaesthetic state has also 

been noted (Evans and Nelson, 1973) Evans, 1974).

Evans and Whitfield (1964) reported response plasticity and habit­

uation in the primary auditory cortex of unanaethetised, unrestrained cats. 

Response categories were seen to change over time with transient responses 

increasing in proportion to sustained responses over the initial period of 

recording. Goldstein et al (1968) reported response plasticity in the pro­

portion of 1 in 5 units in unanaethetised cats. In some cases changes in



response selectivity occurred. Habituation was also observed. Evans (1968) 

reported changes in a cortical unit from sustained excitation to sustained 

inhibition. Evans (1968; 1974) discussed the role of attention on the 

responses of auditory units. Sovijarvi (1975) found habituation in the 

response of auditory cortical units in the cat to natural sounds including

cat vocalizations.

Pfingst et al (1977) measured the dependence of unit responses in 

the Rhesus monkey upon behavioural state. Stimuli were pure-tones. Four 

behavioural" states were used: (1) awake and performing a reaction time task;

(2) awake without the task; (3) drowsy sleep; (4) with non-barbiturate 

anaesthetic. In the majority of units responses were greatest in the 

performance condition. The responses in the awake condition were greater 

than the sleep condition which in turn were greater than the anaethetised 

condition. The form of spike rate vs intensity curves was also different.

Manley and Muller-Preufs (1978) studied the response variability of 

cortical units in the anaethetised squirrel monkey. In all 63 units were 

studied in the primary cortex and 43 in the secondary cortex. Cells were 

tested repeatedly over a number of hours. In the primary cortex 40% of units 

showed a change in response strength over repeated vocalizations, 10% a 

change in response pattern and 20% a change in selectivity. In the secondary 

cortex the proportions were 44%. 14% and 42% respectively.

Further plasticity may result from connections between vocalization 

control and production centres and auditory processing centres (for example 

see Zaretsky, 1978). Schuller (1979) in the bat found a number of units 

whose responses to the bats own vocalization differed from that to identical 

artificial vocalizations. Two neurones encoded the FM of an artificial echo 

during vocalization only. This interaction was not acoustic but neural in 

origin. The interaction may be specific to echo-locating bats, however.
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In summary, the properties of units in the auditory cortex or, 

rather, the neural organisation determining these properties are capable 

of modification dependent upon various factors. Though the results of 

Pfingst et al [1977) may reflect the general activation of neural networKs, 

other findings, including changes in feature specificity, may reflect more 

fundamental, and functionally important aspects of feature analysis related 

to external factors as well as physiological states. Habituation, neural 

and behavioural, is of special interest in that it may be related to 

psychophysical adaptation.

1.3.5 Summary

Evidence for individual neurones capable of detecting complex 

properties of auditory stimuli have been described in the auditory cortex. 

Recognition of certain complex features can be mediated by lower centres 

[Kelly and Whitfield, 1971; Hupfer et al, 1977) to some extent. In addition 

to the stimulus properties discussed above»auditory neurones can also signal 

the gross temporal aspects of stimuli such as: Has the stimulus commenced?

Has it ended? Is it still occurring? Neurones capable of this are transient 

onset, transient off-set and sustained response units. Further,neurones 

with anon-set and off-set response signal the duration of a sustained 

stimulus or the temporal character, within limits, of an intermittent 

stimulus.



1.4 Psychoacoustlcal Selective Adaptation

1.4.1 FM and AH

Using a YES/NO procedure Kay and Matthews (1971] reported elevations 

of sinusoidal FM thresholds following exposure to a 10 second sinusoidal 

FM (adapting] tone with a frequency deviation of ±40 Hz. Both test and 

adapting stimuli had a carrier frequency (Fc) of 0.25 KHz. The adaptation 

was tuned to modulation frequency CFj the effect becoming smaller as the 

separation between the adapting Fm and test Fm of 8 Hz increased. Adaptation 

occurred monotically,dio tically and contra-aurally. In an extension of 

this study Kay and Matthews (1972) found thresholds elevated by a factor 

of 3 after exposure to a 12 second adapting stimulus. Adaptation increased 

with increasing duration of the adapting stimulus up to a duration of 12 

seconds. The effect decayed exponentially with a time constant of 19 seconds. 

Tuning curves for modulation frequency were demonstrated at a number of 

frequencies between 1.0 and BO Hz (Fig. 1.1a). The effect was also tuned 

to carrier frequency with a bandwidth of about twice the corresponding 

critical bandwidth at 0.25 KHz reported by Scharf (1970) (Fig. 1.1b). The 

effect was selective to FM ,sinusoidal-AM adapting stimuli producing no 

elevations of thresholds,though FM did elevate AM thresholds. This effect 

was almost as large as the effects of AM upon AM. It was concluded that FM 

specific channels existed»tuned to carrier and modulation frequency. Contra- 

aural transfer of the effect suggested a central location for the mechanism

of adaptation.

Further data were presented by Green and Kay (1973, 1974) for an H*c 

of 1 KHz. In the 1973 report,elevations of sinusoidal FM thresholds were 

measured over a wide range of modulation frequencies for various adapting 

modulating waveforms. The effect of square-wave FM upon sinusoidal FM 

thresholds was less than that for sinusoidal and triangular FM adaptors 

and did not transfer contra-aurally. The 1974 study reported similar 

findings for square-wave AM.



Fig. 1.1: Taken from Kay and Matthews (1972)

(a) Tuning curves for modulation frequency

(b) Tuning to carrier frequency



a

Fig. 6. The timing of conditioning at modulation frequencies between 
0-23/sec and 120/sec. Ordinate: deterioration in detection sensitivity 
( x threshold) for named test modulation frequencies. Abscissa: conditioning 
modulation-frequency: logarithmic scale.

b

Fig. 7. Conditioning as a function of carrier frequency o f the conditioning 
tone. Ordinate: deterioration in detection sensitivity ( x threshold) o f a test 
modulation <f>t a i  =  8/sec of carrier-frequency, 250 Hz. Abscissa: con­
ditioning carrier-frequency (/„ the conditioning modulatiou-frequency 
being 8/sec throughout. Hiss Lim Irene Kay Han acted as a fourth subject 
here.
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The authors reported a functional dichotomy at 10 Hz believing that 

below 10 Hz was a predominantly central mechanism concerned with the rate 

of change of frequency of the modulating waveform. Evidence for this was 

the reduced effect of adapting square-wave FM compared to triangular FM 

below 10 Hz, the difference in rate of change of frequency between squares 

and sinusoidal FM being greater than the difference between triangular and 

sinusoidal FM. Above 10 Hz was a peripheral mechanism concerned with the 

periodicity of waveforms. Evidence for this was the lack of contra-aural 

transfer of the square-wave adaptation (therefore peripheral! and the 

relatively greater effects of square-wave FM above 10 Hz than below 10 Hz. 

Above 10 Hz adapting square-wave FM was 80% as effective as triangular FM

and only 20% below.

A number of points need to be made here. The figure of 10 Hz la

rather high.inspection of the data of the 1973 study show a separation

between diotic and contra-aural square-wave adaptation at 3 Hz with diotio

adaptation increasing to a maximum at 10 Hz. At and above this value the

effect of square-wave FM is equal to sinusoidal Ftl. Second, there is no 
clear cut dichotomy at 10 Hz. rather the change is gradual over a range of

modulation frequencies between 3 Hz and 10 Hz. .Third, examination of the

data shows square-wave to be only 25% as effective as triangular at 1 Hz

and 50% as effective at 6 Hz. Corresponding percentages for square-wave

and sinusoidal FH are 33% and 61%. The implication is that triangular FH

ie a more effective adaptor of sinusoidal FH thresholds than sinusoidal Ffl

itself (this is, in fact, true for every frequency tested). This is clearly

inconsistent with the predictions of the rate of change model as stated.

However a model applying less weight to the low and zero rate of change

portions of the sinusoidal waveform might account for this (this is discussed

later). Fourth, the existence of diotic and contra-aural tuning curves below

10 Hz (ses Fig. 1. a) shows the periodicity mechanism is operating below

this frequency and has a central component. Fifth, studies of FM
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adaptation including this one (see later) show differences in rate of change 

of frequency between adapting and test stimuli to be of little importance, 

ie. the system is insensitive to all but very large differences in rate of 

change of frequency.

In an elegant experiment Green and Kay C19763 reported that the

threshold for a 40 Hz sinusoidally modulated test at 1 kHz was elevated by

exposure to a randomly (noise) modulated stimulus. As the pass-band

if = 40 Hz) of the adapting modulation was decreased the adaptation increased, c
Maximum adaptation was at a pass-band width of about the jnd for modulation

rate. The authors concluded that this was evidence for lateral inhibitory

connections between -F tuned channels because wider pass-bands would result
m

in greater activity in adjacent channels. This would lead to less activity 

in the test channel and therefore less adaptation. Results from the present 

study show that the situation is more complicated with inhibition implicated 

as the mechanism of adaptation.

Using the method of adjustment Regan and Tansley (1979) carried out 

adaptation experiments for FM and AM at 0.5 kHz using 2 Hz sinusoidal modu­

lation. Using small frequency deviations (±0.4 Hz to ±2 Hz) they found 

large FM threshold elevations after 20 minutes adaptation. This is a sur­

prisingly large •time , possibly due to the small frequency deviations 

employed. The effect of FM upon FM thresholds was as predicted from Kay 

and Matthews (1972). However for half the subjects significant elevations 

of AM thresholds by FM adapting stimuli occurred at some values of AF.

Though large they were always smaller than FM threshold elevations.

Similarly AM adapting stimuli produced large AM threshold elevations and 

significant elevations of FM thresholds, more pronounced for the S’s who 

showed elevation of AM thresholds by FM. Quasi-FM adapting stimuli con­

trolled for spectral factors once again produced significant and large 

elevations of AM thresholds for the same Ss. These violations of the 

specificity of adaptation effects are discussed below. Using a 2AFC
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procedure the authors confirmed their main finding and found threshold 

elevation to increase with increasing frequency deviation. The elevations 

of AM threshold by Fn stimuli at 2 Hz seemed reduced for the one S common 

to both experimental procedures. At a modulation rate of 8 Hz AH elevations 

by Fn were more pronounced (cf. Kay and natthews, 1972). This is discussed 

in more detail in later chapters in the light of experimental findings.

Gardner and Wilson (1979) reported direction specific effects in Fn 

adaptation. Tone bursts (an An stimulus) were found to elevate sinusoidal 

Fn thresholds but not linear sweep Fn thresholds.. Because the data presented 

in that, paper is drawn from the present study it will not be discussed here.

Tans ley and Regan (19 80) used the method of adjustment and a YES/NO 

procedure at 0.5 KHz to measure threshold elevations for unidirectional 

frequency and amplitude ramps. Frequency deviations of the adapting stimuli 

were ten times the unadapted threshold. Directional specificity was estab­

lished for both Fn and An. A slight decrease (facilitation) of threshold 

was found for test stimuli of the opposite direction. However, as in Regan 

and Tansley (1979) Fn adaptation produced significant and large (up to a 

factor of 3) elevations of An threshold with the same direction of change 

as the adapting stimulus for both Ss. The facilitation effect was also 

found for An tests in the opposite direction. Only a small effect of An 

upon Fn was found for one S for upward An only. The pattern of results was 

the same for the method of adjustment and YES/NO procedures.

Regan and Tansley (1979) and Tansley and Regan (1980) proposed a 

model in which a frequency selective analysis (critical bands) is followed 

by a feature specific analysis (separate channels for Fn and An) the output 

of which forms the input to a detection stage.

The specificity of adaptation necessary to support the hypothesis of 

separate channels was not found in: (a) Kay and natthews (1972) where Fn 

elevated An thresholds but not vice versaj (b) Regan and Tansley (1979)



where FM elevated AM thresholds and vice versa for two of four subjects.

FM with small frequency deviations and quasi-FM were most effective(c)

Gardner and Wilson (1979) where AM elevated sinusoidal FM thresholds but 

not linear sweep thresholds) (d) Tansley and Regan (1960) where unidirec­

tional FM elevated AM thresholds with the same direction of sweep. AM did 

not elevate FM thresholds.

Dismissing the possibility of common channels coding FM and AM 

(reasons for which are given in the next section) the effects of AM upon FM 

thresholds could be: (1) that AM in the FM test stimulus acts as a cue to 

detection of the test and is degraded (adapted) by the AM adapting stimulus; 

(2) FM ih the AM adapting stimulus affects FM thresholds; (3) both the above 

factors are present. Similarly the effect of FM upon AM might be: (1) 

adaptation of FM in the AM test stimulus which acts as a cue to the detec­

tion of test; (2) AM in the FM adaptor elevating the threshold; (3) both of 

the above factors. None of this is inconsistent with the model proposed by 

Regan and Tansley (1979) and Tansley and Regan (1980) in which the detection 

stage receives its input from separate FM and AM channels.

Variations in loudness associated with frequency changes can be 

represented by the equal loudness contour (ELC) and variations in pitch 

associated with amplitude changes by the equal pitch contour (EPC). Coninx 

(1978a,b) discusses the role of the ELC and EPC in the detection of com­

bined differences in amplitude and frequency which is discussed later.

Differences in the precise nature of cross adaptation effects between 

studies may simply reflect inter-subject variations. For example, Regan 

and Tansley (1979) report effects of AM upon FM at 0.5 KHz for two Ss only, 

and only at small frequency deviations. This may simply reflect individual 

differences and the precise form of the ELC and/or EPC. For instance, the 

ELC may only be significant in a restricted range around 0.5 KHz. At 

larger frequency deviations at the same modulation frequency, temporal
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compression of the loudness changes would occur with a consequent reduced 

role for this cue.

The role of the ELC and EPC is discussed later as is an alternative 

hypothesis presented in Gardner and Wilson (1979) proposing a separate 

repetition channel.

Other points arising out of this review and discussed later are the 

role of psychophysical procedure, the mechanism underlying adaptation and 

tuning curves and the insensitivity of FM channels to rate of change of 

frequency, reflected in the large differences in this variable between 

test and adapting stimuli in the above.

1.4,2 Movement Detection

A series of short papers (Green and Kay, 1975; Green, Heffer and 

Ross, 1976; Heffer, 1978) suggested the existence of mechanisms selective 

to the direction of sound source movement. The threshold for detection of 

sound source movement, in terms of variable interaural phase difference, 

was elevated by exposure to large interaural differences resulting in move­

ment in the same direction as the test stimulus (Heffer, 1976).

Grantham and Wightman (1979) reported auditory motion after-effects 

analogous to visual motion after-effects (the waterfall phenomenon). At

0.5 kHz adaptation to a sound source moving in the horizontal plane at a 

certain speed in a single direction resulted in a test stimulus being 

judged (by a 2 AFC right-left procedure) as moving in the opposite direction. 

Movement was produced by combinations of interaural time and intensity 

differences. The effect combined with real movement of the test stimulus 

such that the perception of movement was cancelled or enhanced depending 

on whether the test movement was in the same or the opposite direction as 

the adapting movement. The size of the effect increased with increasing 

speed of movement up to a maximum at 200 deg/sec. At 2.0 kHz no effect was
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present at this speed (the only one tested). The effect was not as strong 

as the visual after-effects decaying within one to three seconds and non­

existent at low speeds for some Ss. A model in terms of motion analysers 

selective to direction of motion was proposed.

1.4.3 Loudness Illusions

Rawdon-Smith and Grindley (1935) reported a loudness illusion at

2.0 KHz. Subjects reported a steady increase in loudness over repeated

presentations (cycles) of a sawtooth amplitude modulation consisting of 
rises

sudden 1.7 dB^and eight second falls. The illusory increases in loudness 

were associated with the sudden transitions. These were perceptible, the 

slow falls were not. In the reverse condition the effect was attenuatuccted. 

Thus rapid intensity changes separated by slow returns illicit a percept 

of increasing loudness.

Using more sophisticated stimuli and methods derived from the bright­

ness illusion, Jestaedt et al (1978) elicited strong effects with larger 

intensity transitions at a number of frequencies. Once again rapid transi­

tions biased the loudness percept in the direction of this change.

Rutland (1976) describes a loudness illusion over a range of fre­

quencies from 1.25 kHz to 8 kHz. Adaptation to 8 Hz sawtooth AM produced 

an illusion of loudness change, in the opposite direction to the sawtooth 

ramps, for constant intensity test stimuli. The rapid returns of the adapt­

ing waveform had no effect, the illusion being unmodulated.

1.4.4 Other Adaptation Phenomena

Rosenblith (1947) reported that exposure to pulse trains and to a 

lesser extent square-waves produced a change in timbre of familiar sounds 

(s.g. handclap, voice) in such a way that they seemed metallic with a 

ringing obligatto. The effect was due to the higher harmonics of the
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adapting stimulus. The longer and more intense the adapting stimulus the 

longer the duration of the effect (the maximum was about 12 seconds).

Only a limited range of pulse repetition rates were effective, M0-200 pps 

at 75 dB SPL and 30-300 pps at 85 dB SPL. A silent interval between 

adaptor and test reduced the effect.

Zwicker (1964) found that a tonal after-image occurred after 

stimulation with broad-band noise with a half-octave stop band. The after­

effect corresponded in pitch to the missing region of the noise band.

Besser (1966) used interrupted noise to determine the auditory 

flutter fusion threshold (AFFT) defined as the rate of interruption at 

which the stimulus sounded continuous (about 45 Hz at 60 dB SPL). Exposure 

to adapting stimuli for a minute shifted the AFFT even if the adapting 

interruption rate was above the AFFT, i.e. the adaptor was perceived as 

continuous.

Using an adapting stimulus consisting of white noise added to a 

delayed version of itself (rippled noise), Wilson (1969) found that a 

complementary after-image was formed on a white-noise background. The 

spectral peaks of the after-image corresponded to the spectral troughs of 

the adapting stimulus. The findings were consistent with local adaptation 

at the spectral peaks of the adapting-stimulus producing a reduced response 

in these spectral regions during presentation of the white-noise test- 

stimulus.

Recently, Hall and Soderquist (1978) have examined the coding of 

residue-pitch using adaptation techniques. Residue-pitch channels were 

postulated specific for spectral region and ear of presentation.

1.4.5 Discussion

Evidence has been provided for FM specific channels (Kay and Matthews, 

1972j Regan and Tansley, 1979; Gardner and Wilson, 1979j Tansley and Regan, 

1980) and AM specific channels (Rutland, 1976,* Regan and Tansley, 1979j
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Tansley and Regan, 1980). Some moderation must be exercised in the inter­

pretation of the results until the basis for the interaction between FM 

and AM found in the majority of studies is determined. Some attempts at 

this are made in the present study.

Evidence for directional specificity came from Gardner and Wilson 

(1979) and Tansley and Regan (1980) for FM channels and Rutland (1976) and 

Tansley and Regan (1980) for AM channels. As reported in the previous 

section, neurophysiological evidence exists for FM selective neurones at 

higher levels of the auditory system. Also, most FM responding neurones 

show a preference for one direction of frequency sweep, e.g. in the coch­

lear nucleus of the cat (Evans and Nelson, 1966j Erulkar et al, 1968) and 

rat (Moller, 1974), the inferior colliculus of the cat (Nelson et al, 1966; 

Watenabe and Ogushi, 1968) and rat (Clopton and Winfield, 1974; Vartanian, 

1974), and cortex of the cat (Whitfield and Evans, 1965). For most sub­

cortical units, this selectivity can be explained in terms of the temporal 

and spatial characteristics of the units lateral-inhibitory sidebands 

(determined by steady-state stimuli) vis-a-vis the sweep parameters 

(Vartanian, 1974). A possible neuronal basis for directional-specific 

effects thus exists.

Evidence for channels concerned with the direction of sound source 

movement come from Heffer (1978) and Grantham and Wightman (1979). Units 

have been found in the auditory cortex of the cat sensitive to precisely 

this (Sovijarvi and Hyvarinen, 1974).

The Rawdon-Smith illusion (Rawdon-Smith and Grindley, 1935; Jestaedt 

et al, 1978) is a more complicated phenomenon probably unrelated to the 

illusion of Rutland (1976) if only because of the time course of the saw­

tooth cycle. Jestaedt et al (1978) concluded that the illusion probably 

reflected properties common to all sensory systems.
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The effects of Rosenblith (1947) and Besser (1966) are difficult 

to explain. The former study may involve pure-tone adaptation or TTS 

produced by the higher harmonies of the adapting stimuli resulting in 

colouration of the spectrum of the test stimuli (see Wilson, 1969).

In summary, auditory adaptation can take the form of threshold 

elevations or illusions. Evidence has been provided for FH specific 

channels organised on a directional specific basis. Tuning to carrier 

and modulation frequency has been demonstrated for periodic FM.
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1.5_____Psychoacoustical Studies of FM Stimuli

1.5.1 Introduction

A large body of literature is concerned with thresholds (dBSL), 

masking, just noticeable frequency deviation, pitch, etc. of FM stimuli. 

Because a large proportion of this literature is concerned with the per­

ception of FM stimuli rather than FM per se only papers directly addressing 

the processing of FM are discussed.

Of special relevance are studies using FM to determine the frequency 

dL as a measure of the frequency discrimination of the ear (e.g. Shower and 

Biddulph, 1931]. These thresholds are the same as those measured in this 

study and provide a useful comparison for unadapted thresholds [discussed 

later in Chapter 1).

1.5.2 The Coding of Frequency and Amplitude Changes

In accordance with Coninx [1978a,b) just noticeable difference Cjnd] 

refers to steady-state stimuli and just noticeable modulation (jnm) to 

modulated stimuli.

Zwicker (1962) discusses a model for the detection of frequency and 

intensity changes based on a common detector the input of which is given by 

the "auditory excitation pattern", the shape of which was inferred from 

masking data.

The model is based on the consideration of the ear as a frequency 

analyser consisting of a large number of overlapping bandpass filters 

tuned to different frequencies over the range of audible frequencies. This 

concept is exhibited physiologically in the frequency tuning of single units 

at different levels of the auditory system Ce.g. see Evans, 1975), and 

psychoacoustically as the critical band (see Scharf, 1970, Plomp, 1976).

For critical band filters tuned to frequencies off the centre frequency of 

frequency transitions an amplitude-modulated output would occur as the
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transition crossed and recrossed the edge of the filter. Alternatively 

the edge of the "internal excitation pattern" could move with the transi­

tions. FM could thus be regarded as being converted to AM, in that the 

neural activity elicited in some frequency-tuned channels by FM would be 

similar to that elicited by AM. This hypothesis suggests that FM and AM 

are coded by a common mechanism that takes as its input the modulation of 

neural activity Cor shift in the edge of an excitation pattern] common to 

these modulations, i.e. separate channels coding FM and AM might not exist.

According to this model the detection or discrimination of combined 

frequency and intensity changes could be enhanced, or degraded, depending 

on the phase relationship between FM and AM modulating waveforms in mixed 

modulation signals, or the direction of frequency and intensity changes in 

steady-state stimuli. The critical phase relationships or direction changes 

would be dependent on which edge of the pattern the subject was basing his 

judgement, this being determined by appropriate masking stimuli.

Data suggesting a common coding model are: (a) the similarity of 

plots of jmn vs repetition rate for FM and AM suggesting ■_ , at threshold,
l

FM and AM detection mechanisms have similar time functions (Zwicker, 1962);

(b) examination of absolute values of jnm for tones and noise show that 

if they are viewed as a change in intensity of the lowest covered critical 

band the value of 1 dB obtained is the same as that for amplitude jnds.

Zwicker (1962), using noise bands, found that the modulation sensa­

tion for FM was increased by adding in-phase AM and decreased by adding 

180° out-of-phase AM in the presence of a high-pass noise masker, i.e. when 

the judgement was made on the low-frequency edge of excitation pattern.

This would be predicted ' by " . the common coding model described

above.

Allanson and Newell (1966) used tones simultaneously modulated in 

frequency and amplitude to test the model. By varying the phase difference
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between the modulating waveforms various enhahcements and cancellations 

reflected in the excitation pattern across an array of frequency tuned 

fibres could be produced. Classification of the mixed modulation signals 

was found to be difficult as was matching to pure FM stimuli. The matching 

experiments showed a bimodal distribution, i.e. S's fell into two groups 

according to phase angle judgements for best matches. Though hard to 

interpret the results showed sore dependence of the subjective properties 

of the mixed modulation stimuli upon phase angle providing support to the

common coding model.

Feth (1972) criticised this study believing that the phase dependent 

spectral patterns of mixed modulated stimuli could have provided the basis  ̂

for S'b judgements. In order to obviate this possibility Feth (1972) 

designed a 2 AFC discrimination experiment involving tones differing in 

intensity only or both frequency and intensity. The test tone always had 

a higher intensity than the standard. The standard in turn was of the 

same frequency as the test or had a higher or lower frequency increment 

relative to the test. Three tasks were performed by the S's: (1) simple 

intensity discrimination Ci.e. no frequency difference between test and 

standard, (2) as above but with the standard at a higher frequency, (3) as 

above but with the standard at a lower frequency. In all cases S's had to 

decide whether the test was more or less intense than the standard. These 

tasks were carried out in the presence of either low or high-pass maskers,

i.e. the S was forced to base his judgement upon only one edge of the 

excitation pattern. The predictions of the common coding model as to the 

S's performance in the three tasks in each masked condition were not met.

In the low-pass condition it would be expected that S ’s performed best of 

all in task (3), where the shift in the position of the edge of the excita­

tion pattern between test and standard would be greatest, then task (1), 

then task (2). The reverse order would be expected in the high-pass
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condition. This did not occur. Added frequency information did have an 

effect if it could be discriminated on its own.

Zagorski (1975) found performance in a 2IFC taskwith tones dif­

fering in intensity, frequency, or both, to be best when both cues were 

available. However, analysis of the data showed that the information was 

not combined, i.e. independent processing of the cues occurred. The 

information could be combined in the sense that both perceptual independent 

cues could be used in the detection or decision process.

Coninx (1978a) used a forced choice procedure to measure jnds for 

stimuli differing in both intensity and frequency (unlike Feth. 1972, both 

the intensity and frequency differences were in the test tone), and jmns 

for mixed FM-AM stimuli. High- and low-pass maskers were employed to ensure 

that one edge only of the excitation pattern was used. Jnds and jnms were 

' plotted as contours on the frequency UF) - Intensity (AD plane (see 

Fig. 1.2 for examples). A symmetrical contour represents insignificant 

interaction of frequency and intensity, i.e. the direction of intensity 

change or phase of AH relative to FM is unimportant. Asymmetrical contours 

represent significant interaction and would support a common coding model.

■ At low frequencies (fc) no significant interaction was found but asymmetries 

were found above 4.0 kHz. In order to determine the basis of this inter­

action equal loudness contours (ELC) and equal pitch contours CEPC) were 

determined. These contours had significant slopes at the higher frequencies 

such that conversion of the frequency and intensity of a stimulus into the 

perceptual attributes pitch and loudness at these frequencies, would show 

significant effects of frequency upon loudness and intensity upon pitch.

The data were replotted taking this interaction into account. This had 

the effect of removing asymmetries at the higher frequencies. Low frequency 

data were unaffected because of the low slopes of the ELC and EPC at these 

frequencies (see Fig. 1.2). The predictions of the common coding model

were not met.



Fig. 1.2: Frequency-intensity contours from Coninx (1978a).



11

C.5
4

I 0

1

■ - f
I- /  0 5  
.  /

n

N ,  ■

»  i

.  0 .5  V . ' 0.5 ~\1

*  - 0 5

I

''I
K

,

___1__
L >

- 1 e - 5— <

.,1■r . 4 -

0.5 -

-A
\

>r

0
-0.5

-1

- 0.5

iyvx

1 < 
05

i 0
*-05

. \ ns
[ J r

ÌtM  v4
; * > r  is \

. ' 05 1 JM ' °. 1 05 1 W  Q. 1 05 ' TV
rf. -05- x  -°5

-1 <H *  -1
1000Hz

!
8000 Hz

:
8000 Hz

©  ©  ©
Fig. 10. Transformed jnm-contour* for three stimulueNxm- 
ditiona:
(a) partly-masked 1000 Hz pure tone (original contour in 

Fig. 5a),
(b) non-masked 8000 Hz pure tone (original contour in 

Fig. 5b).
(r) partly-masked 8OO0 Hz pure tone (original contour in 

Fig- 5c).
The scale factors are the same as for the original contours, 
and are given in Table II. Results for two subjects; FC 
(open circles) and CK (closed squares).
Bars indicate the standard deviation o f the jnm's.

it.

iL

0 5

a
-05

■ *~*

-1

.oi 1 ; * i
4--

J L

1 ■<—  
05 f 
0

-05 •

-1

1000 Hz

1 « '- o -

* % ; 0.5 \ 0.5
■ X \* \

-V V • \
‘ ‘ 1 \

•# . ' 05 ' l /  ' 3 . ' 05 ' h

/  -° -s ,X  -0 5
■

-1 -1 ■ <r 
.

©

6000 Hz 
i f ---

8000Hz

© ©
Fig. S. Transformed jod-contours (see test). Soule factors 
o f  the axes are equal to the scale factors o f  the original 
contours, and are given in Table I. The results o f  two 
subjects FC (open circles) and CK (closed squares) are 
presented for three stimulus conditions:
(a) 80<K) Hz pure tone (original contour in Fig. 2 c),
(b) Hz partly-masked pure tone (original contour in 

Fig. 3d).
(c) 8ooO Hz partly-masked pure tone (original contour in 

Fig. 3e).
Bars indicate the standard deviation o f the jnd’s.
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Further evidence against this model comes from Coninx (1978b) who 

asked Ss to adjust the depth of modulation (AF) of an FM tone to match that 

of a FM-AM stimulus with various depths of AM. The mixed stimulus modu- 

latlng waveforms were either in- or 180° out-of-phase. High-pass maskers 

were used. The matching data showed a significant effect of phase with 

out-of-phase signals having the greatest modulation sensation. The effect 

of phase disappeared when the «1 depth scale was transformed into loudness 

modulation by taking account of the effects of frequency upon loudness as 

measured by the ELC. The slope of the EPC was insignificant.

Less direct evidence against a common coding model is as follows:

(1) The frequency dl (jnd) for steady tones in a 2IFC procedure is 

not a constant fraction of the critical band (floors, 1974). That the jnd 

is a constant fraction of the critical band is a prediction of the common 

coding model where the steepest slope of the excitation pattern has a con­

stant value on a critical band scale of 27 dB/Bark. In the light of Moore's 

(1974) evidence the model would have to be restricted to modulated stimuli.

(2) The dl obtained with FM stimuli is consistently larger, by 

about a factor of two, than those found for steady-state stimuli for the 

same subjects and psychophysical procedure (Jestaedt and Sims. 1975, Moore, 

1976, Fasti, 1978). Furthermore. Jestaedt and Sims (1975) found performance 

levels for FM tones to differ from steady tones os a function of frequency 

and paradigm. Moore (1976) found dl's for FM tones did not correlate sig­

nificantly with those for steady tones in a 2IFC task and that FM data 

showed less scatter and more stability. Thus suggests FM detection 

involves different mechanisms than the detection of frequency differences 

between steady tones.

(3) The psychophysical paradigm is of critical importance with 

differences in dl between paradigms of factors of 2 to 4 for both FM and 

steady tones (Jestaedt and Sims, 1975; Wier et al., 1976; Fasti, 1978). 

These differences probably reflect the different decision and detection
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processes required by the tasks including memory factors in discrimination 

tasks (Jestaedt and Sims, 1975).

(4) Moore (1973a.b) found frequency dL's for short duration tones 

and narrow bands of noise to be consistent with a place model involving 

fluctuating excitation patterns (common coding model) above about 4 kHz. 

Below this value, however, dL’s were consistent with a temporal mechanism.

(5) Fasti (1978) found large individual differences in dL of up

to a factor of 27.

The dependence of frequency dL’s upon stimulus, paradigm and fre­

quency provide evidence against the simple model discussed earlier and 

suggest the perceptual mechanisms involved are task dependent. Together 

with evidence directly addressing the question of the common coding of 

frequency and amplitude changes, including adaptation data, it must be 

concluded that such a model is untenable. The existence of a common 

(peripheral) component in the ears response to FM and AM does not imply a 

common coding mechanism. Frequency and amplitude changes can be combined 

as perceptually independent cues at a detection stage (Zagorskl. 1975) 

consistent with the model of Regan and Tansley (1979) and Tansley and 

Regan (1980).

As a final point, if, as the data discussed earlier suggests, modu­

lation detection involves different perceptual processes to the detection 

of steady-state frequency differences, then the use of steady-state data 

to support assumptions about FM processing (as in Feth, 1972j Zagorski, 

1975; and some experiments of Coninx, 1978a) can be called into question.

1.5.3 A Spectral Basis For FM Detection?

Feth et al (1969) examined periodic FM detection by a method of 

adjustment for sinusoidal and triangular FM as a function of modulating 

frequency. The authors determined the real spectra of their signals and
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compared them to the ideal, calculated spectra. Differences thus obtained 

were used to calculate a correction factor for conversion of detection data 

to frequency dL. Contrary to the classic results of Shower and Biddulph 

(1931) the dL did not increase from modulating frequencies from 1 to 16 Hz 

but remained constant. A number of problems exist however in contemplat­

ing a spectral basis for FM detection. At low values of -F the ear does 

not integrate the stimulus signal for a long enough time to create a valid 

representation of the spectrum and consequent resolution of spectral peaks 

upon which detection would be based. Second, Feth et al (1968) determined 

spectra at modulation depths above detection levels where "they*., might be 

expected to be different (Hartmann and Klein, 1980).

Hartmann and Klein (1980) discuss two modes of FM detection, one, 

at low modulating frequencies, based upon temporal factors, and the other, 

at values of approaching the critical band, based upon spectral factors 

(Zwicker, 1952 reported in Plomp, 1976). Above or near the critical band­

width spectral peaks can be resolved.

Evidence from adaptation experiments, essentially FM detection 

experiments, show that there is no spectral basis to threshold elevation 

(Kay and Matthews, 1972{ Regan and Tansley, 1979) and, therefore, no 

spectral basis for FM detection at the modulation frequencies used in the 

studies(8 Hz and 2 Hz respectively). Further, the tuning to modulation 

frequency reported by Kay and Matthews (1972) shows the importance of 

temporal factors in detection and adaptation.

Terhardt (1974) has shown that the perception of periodic sound

fluctuations, the sensation of roughness, for FM and AM stimuli to be
v

r

determined primarily by fluctuations in relative amplitude of the sound

envelope within bandwidths defined by the critical band.
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1.6 Relationship of Selective Adaptation to Masking - Auditory,
_____Fatigue and Adaptation _ _

An important question is the relationship between selective adapta­

tion and other auditory phenomena involving changes in sensitivity specifi­

cally masking, fatigue and adaptation. The main difference is the threshold 

measured. The determination of minimal detectable frequency deviation in 

supra-threshold stimuli is the basis of FM adaptation studies. Masking 

and the other measures involve measurement of sensation level thresholds, 

or in the case of adaptation, loudness change. Both fatigue and adaptation 

can be dismissed in that measurable sensitivity changes require stimuli 

much louder than those of the present study C45 dBSL) and the time course 

of recovery is of a different order to that of FM adaptation (Moore, 1977].

The most direct evidence against the role of masking in FM adapta­

tion is the feature specificity, accepted with certain reservations, of the 

adaptation, as discussed in section 1.4.1, and the independence of adapta­

tion from spectral factors. Thus, though AM or quasi-FM might be capable 

of masking an FM stimuli given the necessary spectral and temporal condi­

tions, no elevation of FM thresholds occurs. The same can be assumed in 

the case of FM tests and adaptors that though FM threshold elevation can 

occur this does not have a spectral basis, though masking might occur. 

Further, the time course of masking is of a different order to those 

determined by Kay and Matthews (1972] for the decay of FM adaptation. The 

decay of masking is rapid, often within 100 ms (Elliot, 1971]. Masking 

is largely independent of masker duration after 20 ms. This is not the 

case for FM adaptation where adaptation increases with increasing 

adapting durations of the order of tens of seconds.

Masking is discussed later in the experimental chapters.
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1.7_____Speech Adaptation Experiments

1.7.1 Introduction

The need to explain the phenomenon of categorical perception led to 

the use of selective adaptation as an approach to the understanding of 

speech perception. In categorical perception members of a series of speech 

sounds are assigned to one of two categories, the point in the series at 

which the change from one category to the other occurs is the identification 

boundary. The categories are phonetic, for example, place of articulation 

and the voiced-voiceless distinction; the series however contains a gradual 

change in the acoustic properties acting as cues to the phonetic properties. 

The phenomenon is one of identification or labelling.

The basic paradigm of speech adaptation involves the presentation 

of rapidly repeated synthetic syllables, usually of consonant-vowel format, 

e.g. /ba/-/da/, from a speech series with a categorical identification 

function. Adaptation with end-point stimuli, that is, those at the 

extremes of the series, results in a shift of the category boundary towards

the adapting stimulus: more stimuli are assigned to the opposite category.
(.ETmas * C o r b it  ,

The first models^forwarded to explain this phenomenon were typical 

neurophysiologically based feature analysis models. The speech analysis 

system was assumed to consist of a hierarchy of increasingly complex and 

selective phonetic analysers, often organised as opponent process detectors. 

These analysers were assumed to be "fatigueable" through adaptation and 

the selectivity of this "fatigue" in shifting category boundaries con­

sidered evidence for opponent process detectors where appropriate. Such 

detectors could also provide the basis for non-adapted categorical percep­

tion. This model was largely derived from models of visual information 

processing for visual motion and colour. The inadequacy of this model was 

revealed by later studies, leading to models of increasing complexity 

including auditory feature analysers.
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The first studies positing a simple opponent process phonetic model 

were Eimas and Corbit (1973) and Eimas, Cooper and Corbit (1973). These 

authors demonstrated adaptation for the voiced-voiceless continuum. The 

effects transferred interaurally implying a central location for the mech­

anism of adaptation. An auditory basis for the effect was ruled out by the 

finding that non-speech stimuli consisting of the initial segment of the 

synthetic speech sound did not produce adaptation. However, evidence 

against a purely phonetic or linguistic model was not long in coming.

Bailey (1973) used synthetic C-V stimuli cued by formant transitions 

(evidence, incidently, for the role of frequency transitions in speech 

perception) to produce a 10-point series of /ba/ to /da/ and also /bZ/ to 

/dE/ corresponding to place of articulation. This phonetic feature has an 

advantage over the voiced/voiceless distinction in having a limited number 

of acoustic cues. Adaptation as described by Eimas and Corbit (1973) 

occurred but was contingent upon the spectral overlap of the adaptors and 

the test series. When place of articulation cues were carried in different 

formants for test and adapting stimuli little adaptation occurred. The 

role of spectral information was confirmed by Bailey (1974). When the 

spectral separation between the adapting stimuli and the test series was 

large, adaptation effects were reduced or non-existent.

Since these early papers a large body of literature has been produced 

dealing with adaptation in general and linguistic versus auditory detector 

models specifically. Some of this work is dealt with below. The discussion 

is brief because the work does not have a significant bearing on this study. 

Also the phenomenon of speech adaptation is itself in doubt (Simon and 

Studdert-Kennedy, 1978a Remez, 1980) as are simple hierarchical and serial 

processing models (Wood, 1974a Repp, 1977).
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1.7.2 Literature Review

Ades (1974) using a place of articulation continuum studied the role 

of acoustic features in adaptation including that of formant transitions.

In experiments designed to distinguish between phonetic and acoustic based 

adaptation the predictions of the . • model were largely met. Acoustic

cues did have some influence, adaptation being greater when both test and 

adapting stimuli had falling F3 transitions. Adaptation was found to be 

contingent upon consonant position in a syllable, i.e. upon linguistic 

context. Diehl (1975) with a place of articulation series used end-point 

adaptors as well as these adaptors with the formant transitions replaced 

by noise bursts. Also used were syllables having the same place of articu­

lation but different consonants. All adaptors shifted the category boundary. 

This suggested a phonetic basis to adaptation with place of articulation 

the critical variable independent of the actual consonant or auditory 

properties of the adaptor compared to the test series. Ganong (1975, 1978) 

carried out similar experiments with a place of articulation series. He 

too found that consonant differences had no effect as long as place of 

articulation was the same as the end-point stimuli. If, however, the con­

sonant difference was combined with a change in acoustic properties, namely, 

a substitution of noise-bursts for transitions a reduced effect was found. 

Though this seems to support an auditory theory the phonetic theory could 

accommodate the noise-burst result by assuming transitionless adaptors were 

"weak" phonetically. This was confirmed by the subjects reports. An 

auditory theory would require a widening of the range of acoustic cues for 

place of articulation beyond simple transitions involving mechanisms 

sensitive to bursts and transitions.

Tartter and Eimas (1975) used a place of articulation series with 

either complete end-point adaptors, transitionless adaptors (F1, F2 or both) 

and chirps consisting of 45 ms of all transitions. All stimuli produced
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some boundary shift though the effect was greatest for the complete stimulus. 

Adding the missing portions of the adaptors resulted in increased adapta­

tion even if these portions were not specifically cues for place of arti­

culation. Similar results were found for the voiced/voiceless continuum 

in direct contrast with the finding of Eimas et al (1973] that chirps were 

ineffective. Though suggesting an auditory analysis it is possible that 

overall similarity acoustically and phonetically is required for the 

greatest effects, i.e. that a linguistically based effect is contingent 

upon acoustic information. This would not explain the effect of non-speech 

chirps however.

Pisoni and Tash (1975) found adaptation of a CV series by non-speech 

VC adaptors supporting an auditory model and in direct contrast to the 

finding of Ades (1974) that the effects were contingent upon linguistic 

context.

Sawusch (1976) presented evidence against a simple opponent-process 

model by using a rating paradigm instead of a two category decision. This 

revealed adaptation at all points on the side of the adapting stimulus and 

not just at the category boundary. Points on the opposite side showed no 

change in rating. Sawusch (1977) replicated the effects of Ades (1974) on 

the role of vowel context. Even with complete spectral overlap of F2 and 

F3 no effect of VC upon CV syllables, and vice versa, was found. Further 

evidence for a linguistic basis was supplied by the finding that only VC- 

like and not vowel or vowel-like adaptors shifted the boundary for CV 

stimuli. This might of course reflect an incomplete acoustic specification 

as in the reduced adaptation found by Tartter and Eimas (1975) for 

incomplete adaptors.

1.7.3 Problems and Discussion

It can be seen from the above review that speech adaptation data is
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often conflicting and unclear as to the validity of phonetic as opposed to 

auditory models if, in fact, such a distinction is itself valid. What is 

clear is that adaptation effects are contingent upon the acoustic properties 

of the stimulus [Bailey, 1973; 1974; Ganong, 1975; 1978; Tartter and Eimas, 

1975; Pisoni and Tash, 1975]. It would seem that acoustic cues and 

auditory processing*have some role in the identification of speech sounds, 

indeed it would be strange if they did not. The question of whether speech 

adaptation is the adaptation of auditory feature analysers has hardly been 

touched, though some studies do suggest this is the case (e.g. Tartter and 

Eimas, 1975; Pisoni and Tash, 1975).

One danger of looking for an auditory basis of distinctive feature 

processing (a phonological concept) is that many acoustic cues control the 

distinctive features of speech sounds (Parker, 1977). In the search for an 

acoustical basis for speech adaptation the demands made of the auditory 

feature analysis system become increasingly elaborate. Cues to phonetic 

structure are highly variable and distributed dynamically across an entire 

syllable. This does not conform to the demands of a feature analysis system 

segmenting the speech signal into a set of invariant properties. The 

increase in the complexity of feature analysis models whether phonetic or 

phonetic/auditory can be followed in the literature from the first paper of 

Eimas and Corbit (1973). The use of physiological models of the opponent- 

process type, not restricted to phonetic models, are doubtful when consider­

ing the complex variables that form the acoustical basis of speech sounds. 

Further, little attempt has been made to equate speech and auditory 

adaptation experiments (e.g. Kay and Matthews, 1972). Speech adaptation 

has concentrated on measuring shifts in identification or labelling rather 

than sensitivity changes.

Of more fundamental importance is the recent finding of Simon and 

Studdert-Kennedy (1978) that speech adaptation is indistinguishable from



the phenomenon of stimulus anchoring. The authors discuss the procedural 

differences between speech adaptation (measured as category assignment) 

and anchoring. In adaptation the adaptor occurs many times, with short 

inter-stimulus interval (ISI), in a single block before the test stimuli 

series of which it is part. In anchoring the anchor occurs less frequently, 

with longer ISI, and is scattered randomly among the test series. The 

main difference between the procedures is the number and distribution of 

adaptor and anchor stimuli. Variations in fundamental frequency, intensity 

and vowel were introduced into a place of articulation series, i.e. on a 

particular series one of these properties would covary with place of arti­

culation. In adaptation Judgements based on pitch or loudness are dis­

sociated from those based on the phonetic feature. Selective adaptation 

and category judgements of non-phonetic continua are possible, itself 

evidence against the premise of specialized detectors for categorical per­

ception. This was true also of anchoring. By making the two procedures 

as comparable as possible in the distribution of adaptor/anchor energy the 

two phenomena could be compared. Differences in the shift in category 

boundaries in stop consonant series (place of articulation) were a matter 

of degree only reflecting the anchor concentration, making "fatigue" less 

likely in these conditions. Anchoring was as selective as adaptation. 

Anchoring is usually seen as a phenomenon resulting in a shift in the 

psychological midpoint of a stimulus series following presentation of an 

end-point anchor. The distribution of the subjects response is thus shifted. 

The authors discuss other psychophysical processes and their relation to 

anchoring/adaptation.

Remez. (1980) has found adaptation on a speech-non-speech continuum. 

Non-speech sounds were buzzes having neither phonetic nor acoustic properties 

in common with the speech end of the continuum. Both speech and non-speech 

adaptors produced boundary shifts. Obviously neither a phonetic nor acoustic
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feature analysis could account for this unless the system is so plastic 

the subject can construct the necessary feature analysis for the task.

The results imply that speech adaptation does not involve the ’’fatigue" 

of specific detectors, be they phonetic or acoustic. Other psychological 

processes must underly the phenomenon.

Burns and Ward (1978) have produced evidence of categorical per­

ception for musical intervals having no natural categories or boundaries 

when procedures equivalent to those of speech category experiments were 

used. This involved.the use of series differing by equal increments along 

relevant dimensions. When variable increments were introduced categorical 

perception was abolished. The phenomenon would thus seem to be related to 

procedure and stimulus uncertainty. Once again this suggests a role for 

central psychological factors in speech adaptation and not simply adaptation 

or "fatigue" of tuned feature detectors.



CHAPTER 2: METHODS

2.1_____Procedure

The experiments reported in this study involved the determination 

of thresholds for the detection of frequency-modulation defined in terms 

of the extent of frequency excursion of the FM in Hz (see Fig. 2.2). Both 

unadapted thresholds, which were stable over time, and adapted thresholds, 

which decreased (decayed) over time (see Kay and Matthews, 1972) were 

measured.

Thresholds were measured with a two interval forced choice (2IFC) 

procedure (examples are shown in Fig« 2.1). One cycle of the procedure 

consisted of a five second adaptation signal (this was truB for all 

experiments but one) followed by two test intervals. All signals were 

separated by silent gaps. The durations of the test intervals and all 

silent gaps were dependent upon the experiment conditions and are reported 

in the method sections of specific experiments. The upper and lower limits 

of the test interval duration were 1 second and 62.5 ms respectively.

In each test pair one interval contained an FM stimulus, the other 

an unmodulated (pure-tone) stimulus. The order of presentation was random­

ised on each trial. The subjects task was to choose which interval con­

tained the FM stimulus and to respond during the next adaptation interval. 

Response error feedback was provided. The carrier or centre frequency 

(see Fig. 2.2) of the FM test stimulus was always equal to the frequency

of the pure-tone test stimulus.

The frequency excursion of the FM test stimulus was randomly

selected on each trial from four possible values and used to plot the psycho- 

matic function. The frequency excursion giving 76% correct response was 

taken as threshold. A single threshold determination was based on a 

sequence of a 100 or more cycles (trials), i.e. about 25 decisions for each 

of the four test levels, for a particular stimulus condition. Two or three



Figure 2.1: Time diagrams showing examples of 2IFC cycles. All adaptation intervals
(ADAPT] of 5s duration.

(a) Test intervals of 500 ms duration, gaps of 100 ms (see Section 3.1.2).

(b) Test intervals of 62.5 ms duration, gaps 1 and 3 of 319 ms and gap 2 
of 537.5 ms duration (see Section 3.3.2).

Test intervals and gaps drawn to scale
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threshold determinations were carried out for each stimulus condition. The 

time between the threshold determinations within a single stimulus condi­

tion was three to five minutes. The time between threshold determinations 

for different stimulus conditions was usually longer than ten minutes. The 

possibility that adaptation might have persisted in the interval between 

threshold determinations is discussed in Appendix B.

S's Were seated in a sound-proofed booth providing about 45 dB 

attenuation in a quiet laboratory>for all experiments.

The UNADAPTED (REFERENCE) THRESHOLD was that determined when the 

adaptation interval contained a pure-tone stimulus with a frequency equal 

to that of the test stimuli. Other adaptation Interval stimuli are referred 

to as ADAPTING STIMULI and the threshold determined with these stimuli as 

the ADAPTED THRESHOLD whether or not adaptation actually occurred.

Threshold elevation Cor facilitation) is expressed as the

ADAPTATION FACTOR defined as

ADAPTED THRESHOLD 
ÜNADAPTEU (REFERENCEJ THRESHOLD

Thus, when the value of this term is 1 no adaptation has occurred, 

when greater than 1, threshold elevation (adaptation) has occurred, and 

when less than 1, threshold facilitation^-sensitisation) has occurred.

The duration of the adaptation (5 seconds) was chosen after con­

sideration of the results of Kay and Matthews (1972). They found that 

following adaptation to a 12s tone sinusoidally frequency-modulated around 

2 5o hz at a rate of 5 Hz, the detection threshold (in terms of frequency 

excursion) for a sinusoidal FM tone (with the same carrier frequency and 

modulation frequency) was elevated by a mean factor of 3. Their thresholds 

were measured with a single interval forced-choice (YES/NO) procedure.

This elevated threshold decayed exponentially, after the offset of the



adaptation interval, with a time constant of 19 seconds to near zero in one 

minute. They also found that the size of the effect, measured with the 

test stimulus Just following the offset of the adaptation interval, was a 

function of the duration of the adaptation interval. The adaptation 

increased with increasing duration up to about 12 seconds, adaptation 

remaining constant at longer durations. It was hoped that the duration of 

the adaptation interval of the present study was long enough to ensure 

that adaptation reached a maximum within the first few cycles (trials) of 

a threshold determination. It was also hoped that subsequent adaptation 

intervals would maintain a constant level of adaptation with fluctuations 

only occurring as the threshold decayed in the interval between adaptation 

intervals. This decay would be counteracted by the next adaptation inter­

val. As will be seen in the experimental chapters the procedure did yield 

consistent values of elevated (adapted) threshold with acceptable standard

deviations.

Another factor in the choice of the adaptation interval duration 

was the need to avoid long test cycle times and the possibility of sub­

ject fatigue, boredom, etc. For a duration of 5 seconds estimates took

about 10.5 minutes.

Another possibility raised by consideration of the decay of thres­

hold reported by Kay and Matthews (1972) was that of the threshold decreas­

ing between the presentation of the two test intervals leading to a lower 

threshold at the second interval than at the first. It is possible that 

two separate thresholds were measured by the 2IFC procedure under conditions 

of adaptation. A further complication is that of the threshold decaying 

within the test interval itself, especially for longer durations of test 

interval. It was felt, however, that these differences would be small and 

could be ignored because the maximum periods between adaptation intervals 

in any experiment was only 2.3 seconds and between test interval onsets
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was 1.1 seconds. For most experiments these values were 1.3 seconds and 

0.6 seconds respectively. It is interesting to note however that Kay and 

Matthews (1972) used test stimuli of 5 seconds duration. From their decay 

data one might expect appreciable decay within this period especially just 

after the offset of the adaptation interval. One might assume an increasing 

detectability of FM during the course of the test stimulus with the S basing 

his/her decision upon the final segment of the stimulus. This possibility 

would require adjustment of data describing the functions for the decay of 

threshold and the increase in adaptation with increasing duration of adapta­

tion in Kay and Matthews (1972).

2.2_____Subjects

Two S’s participated in the study. RBG, the author, was aged 21-24 

years during the period of the experiments. VJG was aged between 20-22 

years during the experiments in which she participated. Both S’s had 

audiometrically normal hearing and were aware of the nature and theory 

of the experiments.



2.2 Stimuli

Frequency-modulation is the process of varying the frequency of a 

carrier waveform in proportion to a modulating waveform. The rate of 

modulation or modulation frequency (FJ of a periodic FM stimulus is equal 

to the frequency of the modulating waveform. The frequency deviation CAP) 

is determined by the voltage level of the modulating waveform.

Figure 2.2 serves to illustrate 

and define the terminology used to describe FM stimuli in the present study. 

Carrier waveforms were always sinusoidal.

As stated above, thresholds are defined in terms of the maximum 

frequency excursion, i.e. peak to peak excursion is AF, or as percentage 

modulation (100+AF/F ). All frequency excursions were symmetrical around Fq.
C "

Stimuli were band-pass filtered (Barr and Stroud, EF2). The values 

of the low and high frequency cut-off was set so as to ensure less than 1% 

amplitude-modulation [AM) of the FM signals. These values are shown in 

Table 2.1. For a few very large values of frequency excursion some AM 

greater than 1% but less than 2% was unavoidable.

All stimuli were presented diotically through Sennheiser HD 414 head­

phones at a level of 45 dBSL in a pure-tone of frequency-Fc< The headphone 

frequency response was determined with a Bruel and Kjaer artificial ear 

Type 4153. The value of t c chosen for the present study were those around 

which the response was flat to ±0.1 dB over the range of frequency excursions 

used. These values are 0.25, 0.5, 1.0 and 4.5 kHz. This ensured insignifi­

cant AM of the signal before the ear.

All stimulus gating functions had rise/fall times of 6 ms.

As stated above stimuli were presented at a level of 45 dBSL. This 

level was chosen to minimise any masking effects that might occur before 

different intervals. The duration of the silent gaps between intervals 

(never less than 100 ms) would also ensure minimal masking effects between



Figure 2.2t Frequency-time plot showing the frequency of a carrier waveform modulated
by a triangular waveform of period 1/F where -F is the modulation _ f  m mfrequency in Hz.

AF ior 2 x (± AF)) is the extent of frequency variation fin Hz) around
the carrier or centre frequency F (expressed in kHz in this study).c

The frequency variations in this study are always symmetrical around -F .C
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intervals in that most backward and forward masking would have decayed over 

the period of the gaps (see Elliott, 1971). One might assume that masking 

is unimportant in the present study in that we are concerned not with the 

detection of the stimuli but of the FM. However, masking within FM test 

intervals, i.e. the effect of one portion of the test stimulus upon pre­

ceding and subsequent portions, especially for single sweep test stimuli 

(see Chapter 6), may be important.j



2.3_____Apparatus

A block diagram of the apparatus is shown in Fig. 2.3. The 

essentials of this system are the generation of the gated modulating wave­

forms and the gating of the modulated carriers to produce the temporal

pattern of the 2IFC procedure.

2.3.1 Key to Test Stimulus Modulating Waveforms and Generators

1. Sinusoidal Wavetek VCG Model III or Levell 
transistor RC oscillator Type TG150D.

2. Triangular Wavetek VCG Model III.

3. Sawtooth See below.

4. Single linear sweeps Purpose built triggered sweep 
generator.

A d.c. balancing circuit (top left of Fig. 2.3) ensured the frequency devia­

tion was symmetrical around -F . Another circuit (top right of Fig. 2.3) 

allowed adjustment of the value of *F of the test stimuli.

2.3.2 Key to Adapting Stimulus Modulating Waveforms and Generators

1. Sinusoidal Levell TG150D or Advance low
distortion oscillator SG68.

2. Repetitive sweeps Purpose built generator.
One cycle of the waveform consisted of a linear voltage 

sweep followed by a constant voltage plateau, the durations 

of which could be independently varied (see Fig. 2.4).
Down sweeps were produced by an inverting circuit.

3. Sawtooth Produced by the repetitive sweep
generator with tp = 0 ms. In fact
the lower limit of tp was about 1.0 ms.
Some loss of linearity also occurred.

The repetitive sweep generator also produced square-wave waveforms 

of the same frequency as the sweeps. These were used, in conjunction with 

the repetitive sweep adapting stimulus, as gate voltages for the FET gate 

system (see Fig. 2.3) discussed in more detail later. The function of



Figure 2.3: Block diagram of apparatus. Key in text.

Thick black lines represent signal paths, thin black lines represent 
2IFC-cycle timer-pulse paths.
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the sweep duration, t the plateau duration, t and t can be variedP s p
independently.

The time between plateau offset and sweep onset is less than 1 ys.

Figure 2.4: Modulating waveform of the repetitive sweep adapting stimulus, t is



voltage
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this system was to remove the voltage plateau producing sweeps separated 

by silent gaps. Sawtooth modulation was also used as an adapting stimulus 

in later experiments.

2.3.3 Key to Signals

(a) Gated modulating waveforms - in all cycles one test 

interval only is modulated. The temporal pattern 

of 2IFC can be seen at this point.

(b) Sinusoidal carrier modulated by gated modulation 

waveforms of (a).

(c) As in (b) if FET gate not in use. If in use the 

adaptation stimulus is square-wave gated to produce 

tone-bursts separated by silent gaps. Tone-bursts 

may or may not have frequency sweeps.

(d) Modulated carrier gated to produce silent gaps in 

2IFC cycle.

2.3.4 Key to Block Diagrams

ATTI - Purpose-built attenuator from which the four voltage (TEST 

LEVELS) levels of the test stimulus modulating waveform are derived.

2IFC CYCLE TIMING PULSES - Pulses set to the duration and order of 

the 2IFC cycle intervals and gaps. Used to control the duration of modula­

ting waveforms - GATES, TEST 1, TEST 2 and ADAPT - and the DIODE GATES and 

FET GATE. In the latter case,itis used to ensure the gate voltages are 

present during the adaptation interval only. Used to ensure d.c. bias is 

present during test phases only. Each pulse is triggered by the proceeding 

pulse allowing free-running of the cycles.

VCO - Hewlett-Packard 3310A voltage controlled oscillator for

generation of FM stimuli.



51

FET GATE - Used to square-wave-gate the adaptation stimulus under 

control of the adaptation interval timer pulse (ADAPT) (Fig. 2.5a). Two 

modes of operation exist. In the first mode the carrier is modulated by 

the repetitive sweep adapting stimulus giving the frequency-time plots of 

Fig. 2.5b. After gating by the FET gate, voltages of Figs. 2.5c and 2.5d 

the carrier consists of frequency sweeps separated by silent gaps (Fig. 2.5e). 

The gate 1 voltage swings +2V to -7V, gate 2, OV to -9V. In the second 

mode, the carrier is unmodulated and gated as above resulting in tone- 

burst stimuli.

DIODE GATES - Produces silent gaps between intervals. Controlled 

by timer pulses.

IMPED MATCH - Impedence matching.

AMP - Amplifier.

FILTER - Barr and Stroud variable filter type EF2 in band-pass mode. 

Insertion loss as the upper cut-off/lower cut-off approcches one is b i

1.0 dB. Attenuation response similar to that of a 6th order Butterworth 

function in 3b dB/oct.

ATT2 - Advance A64A step attenuator controlling stimulus level.

HEADPHONES - Sennheiser HD414.

RESP BOX - Response box incorporating light, signalling occurrence 

and duration of 2IFC cycle events, lever for voting and lights for feed­

back of response errors.

RESP RECORD - Records responses correct and errors at each of the 

four test levels, total responses and therefore total number of 2IFC cycles 

presented.

All stimulus gating functions had rise/fall times of 'vSms. Stimulus 

monitoring and calibration was done with a Tektronix dual-beam oscilloscope 

Type 502 and a frequency counter.



Figure 2.5 (a) Circuit diagram of FET gate system using 2N3819 devices.

(b) Frequency-time plot of inputs to FETs consisting of a 
carrier modulated by repetitive sweep waveform.

(c) Gate voltage of FET1 swinging + 2v -► -7v.

(d) Gate voltage of FET2 inverted version of (c) swinging Ov -*■ -9v.

Ce) Frequency-time plot of the outputs of the FET system consisting of 
linear frequency sweeps separated by silent gaps.



c
FET 1 gate voltage

V FET2 gate voltage

t—>
d



TABLE 2.1

Values of the high and low frequency cut-offs of 
the filter pass band for the - 1+ values of F

F (KHz) c
Low (kHz) High CkH:

0.25 0.15 0.35

0.5 0.3 0.7

1.0 0.46 1.5

4.5 3.b 5.5



CHAPTER 3

3.1 Adaptation as a function of adapting-stimulus frequency-
___________ deviation _____ _____________________________

3.1.1 Introduction

Experiments with FM adaptation have shown the dependence of thres­

hold elevation upon adapting stimulus duration (Kay and Matthews, 1972).

The dependence of threshold elevation upon the frequency-deviation of the 

adapting-stimulus (±AF) has only recently been studied (Regan and Tansley, 

1979). At modulation-frequencies of 8 Hz and 2 Hz threshold elevation 

increased with increasing frequency-deviation at 0.5 kHz. The resultant 

function was roughly linear. Similar experiments are reported here extend­

ing beyond those of Regan and Tansley £1979) at a number of frequencies.

3.1.2 Procedures

The procedure is that described in Chapter 2, i.e. repeated presenta­

tion of 5s adaptation and 0.5s test intervals separated by silent gaps.

Test and adapting modulation was sinusoidal with a frequency of 8 Hz. 

Unadapted thresholds were determined at 0.25, 0.5, 1.0 and 4.5 kHz. The 

elevation (adaptation) of these thresholds as a function of adapting ±AF 

was determined at all frequencies for RBG and at 1.0 kHz for VJG. Except 

for 0.25 kHz three threshold estimates were made for each value of adapting 

±AF and the mean determined. At 0.25 kHz six threshold estimates were made 

for values of ±AF up to and including ±50 Hz after which three estimates

were made.

3.1.3 Results and discussion

Plots of adaptation versus ±AF (and percentage modulation) are shown 

in Figures 3.1a-d. Data points are the mean of 3 Cor 6 at 0.25 kHz) thres­

hold estimates. Vertical bars are standard deviations. Except for 4.5 kHz



Fig. 3.1a-e. Plots of adaptation factor as a function of adapting frequency-

deviation (±Af) expressed in Hz, and percentage modulation

(±AF/F %). Data points are the means of three threshold estimates, c

vertical bars are ±1 standard deviation.

(a) f  = c
0.25 kHz, RBG

(b) -ti o
H 0.5 kHz, RBG

(c) Hi o
II 1.0 kHz, RBG

(d) •F = 
c

4.5 kHz, RBG

(e) ■F -  c 1.0 kHz, VJG
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Plots of adaptation factor as a function of percentage modulation 

C±AF/Fc%) of adapting stimulus where-Fc Is the parameter.

See figure for Key.
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all functions are of roughly the same shape showing a linear increase in 

adaptation with increasing ±AF up to some limit (the peak modulation value, 

PMV) after which adaptation decreases, at a lower rate, with further 

increases in ±Af .  Table 3.1 shows values of ±AF (hz) used. Fig. 3.2 shows 

these data plotted against percentage modulation with centre-frequency (f ) 

as the parameter.

To compare the slopes of the functionSjnormalization of both adapta­

tion factor (ADAPT) and ±AF was carried out to remove the dependence of the 

actual values of these variables upon centre frequency. Normalized values 

were expressed as a percentage where:

±AFnorm ±AF/±AF x 100 max

ADAPT - (ADAPT-1)/(ADAPT -1) x 100 norm max

where ±AF is the peak modulation value (PMV) and ADAPT the adaptation max r max

factor at this value. These are shown in Table 3.2. Thus each value of 

±AF is expressed as a percentage of the PMV and adaptation as a percentage 

of the maximum adaptation at that frequency. Data are plotted in Fig. 3.3 

with f as the parameter. The fit for the rising part of the function is 

close and approximately linear. Slopes after the peak are also close 

except for 4.5.kHz.

3.2 The dependence of adaptation upon ±AF: A simple model

3.2.1 Introduction

One way of explaining the data is to invoke a filter in the frequency 

domain such that increasing frequency deviations within the filter bandwidth 

would produce an increasing output and greater adaptation. When the fre­

quency deviation entirely fills the bandwidth adaptation would be greatest 

(the peak of the functions described in section 3.1.2). The PMV (Table 3.2)



Fig. 3. Plots of normalised adaptation versus normalised frequency deviation

with F as the parameter. RBG only. See figure for Key. c
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would equal the effective filter bandwidth. In its simplest form the model 

proposed a rectangular filter with a centre frequency equal to that of the 

sweeps. The area under the modulating waveform within the filter bandwidth 

was taken as a measure of filter output and therefore adaptation. For 

frequency excursions beyond the filter bandwidth, i.e. greater than the 

PMV, the area under the waveform within the filter would begin to.decrease; 

the duration of the sweep within the filter would decrease. The decline in 

adaptation at high frequency deviations would be due to this decrease in 

duration or increase in rate of change of frequency. This is illustrated 

in Fig. 3.4c* t>.

The area under a quarter cycle of the waveform was the quantity 

determined. The analysis at 0.25 kHz is described below. The area was 

determined with ±AF as the amplitude. The bandwidth of the rectangular 

filter was ±50Hz, the PMV. For frequency deviations less than or equal to 

the filter bandwidth the area was equal to the waveform amplitude and there­

for ±AF. This gave a linear relationship between adaptation (expressed as 

the area as a percentage) and ±AF (see Fig. 3.5). For frequency excursions 

in excess of the bandwidth the area was:

where a is the amplitude (±AF) 

b is the bandwidth.

The derivation for this formula is given in Appendix A.

The curve derived from this model is shown in Fig. 3.5. The empirical 

curve at 0.25 kHz is drawn for comparison. Adaptation was converted to a 

normalised scale by the formula given in Section 3.1.3.

Though a good fit is obtained for values of ±AF below the PMV the 

fit is poor for larger values of ±AF. This model was rejected.



Fig. 3.4.0. Illustration of terms used in analysis of area under modulating

waveform isee text).
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Figure 3.4b and c

These figures serve to illustrate further the models described 
in Sections 3.2 and 3.4 (pp.53-593.

(b) Illustration of (rectangular] filter model.F is the centre- 
frequency of the filter and the frequency transitions. c The filter is 
assumed to be symmetrical,Fi^ and F ^  are the lower and higher cut-off 
frequencies of the rectangular filter (for the Gaussian filter model 
on p.58 these would refer to the frequencies corresponding to a of the 
Gaussian function). Values of F^q and F ^  are equal to b, the filter 
bandwidth, (see p.54 and Fig. 3.4a), given by the PMV. The lower 
diagram of Fig. 3.4b shows two examples of sinusoidal-FM modulating 
waveforms. The dotted vertical lines represent the filter bandwidths.

(1) The value of ±AF is less than the filter bandwidth. In 
this case the area under a quarter cycle of the waveform is calculated 
(shaded area); this area is assumed to give a measure of filter output 
and adaptation. In these terms adaptation would be greatest when the 
frequency deviation (±AF) was equal to the filter bandwidth.

(2) The value of ±AF is greater than the filter bandwidth. In 
this case the area under the sweep within the Pilfer was calculated 
(shaded area). As ±AF increases beyond the filter bandwidth the duration 
of the (constant ±AF) sweep within the filter decreases. This was a 
central assumption of the model concerning the decline in adaptation 
with high values of ±AF found in the functions of adaptation factor 
versus adapting ±AF and was tested empirically (Section 3.3, p.56).

(c) Illustration of the cosinusoidal weighting function. The 
solid line is the cosine function, the dashed line represents the 
sinusoidal-FN modulating waveform. A weighting of 1 (a peak or trough 
of cosine function) is given to the zero crossing point (the point at 
which the frequency of the stimulus crosses Fc) of the sinusoidal 
waveform, and 0 to the peak of.the sinusoidal waveform. Thus a higher 
weighting is given to the highest rates-of-change of frequency (df/dt) 
of the modulating waveform than to the peaks where df/dt approaches 
zero.

Thus, in the situation where ±AF exceeds the hypothesised filter 
bandwidth the loss of the peaks and troughs (the high and low frequency 
extremes of the modulating waveform) has relatively less effect on 
adaptation than the loss of higher df/dt portions of the sinusoidal 
frequency transitions. It must be pointed out that the use of a 
cosinusoidal function was rather arbitrary and was intended as a 
first approximation to the FM processing systems rather broad 
tuning to df/dt.



tim
e

weighting

i

V
.  '  A

output

V-
cr

N>



55

3.2.2 A rectangular filter with weighting function

A cosinusoidal weighting function was applied to the analysis

giving:

A 7 a sinx cosx dx

The weighting function was introduced to give less weight to the 

low rates of change of frequency at the peaks and troughs of the sinusoidal 

modulating-waveform. Though it is true that the FM processing system is 

broadly tuned to rate of change of frequency there is some empirical justi­

fication, presented later, for introducing the weighting function. Less 

weight is given to the loss of the sinusoid peak for frequency-deviations 

that just exceed the filter bandwidth than to the loss of higher rates of 

change portions of the waveform at larger deviations in excess of the 

bandwidth. ( OfcC-- ^

For deviations below the PMV the curve is the same as before. A 

computer program was written to calculate values of area for

deviations between ±55 Hz and ±100 Hz. Areas were converted to a percentage 

scale and the curve is shown in Fig. 3.5. The fit for the downward portion 

of the curve is improved.

Before proceeding with an analysis at all frequencies (though Fig.

3.3 would suggest the fit would be good for all frequencies except 4.5 kHz) 

the major assumption of the model was tested. The assumption is that por­

tions of the sweep outside the filter are lost and the decline in adaptation 

was due to the increasingly shorter time spent by sweeps within the filter 

as ±AF increased. The introduction of the cosinusoidal weighting function 

did not fundamentally alter this assumption, i.e. the critical parameter 

was still the area under the portion of the waveform within the filter.



Fig. 3.5. P l o t s  o f  a d a p t a t i o n  (normalised) as a function of adapting ±AF at 0.25 KHz.

The three curves are the empirical curve for RBG (Fig. 3.1a), predicted 

curve for the rectangular filter model and the predicted curve for 

rectangular filter model with a cosinusoidal weighting function.



±Af (Hz)

100
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3»3____ The dependence of adaptation upon ±AF: Linear frequency sweeps

Linear frequency sweeps were used to test the assumption of the 

model discussed above. With sinusoidal-FM, increases in ±AF with a con­

stant repetition rate results in an increase in the mean rate-of-change of 

frequency and a decrease in the duration of a limited portion of the sweep 

(e.g. that within the hypothesised rectangular filter). With linear fre­

quency sweeps the rate-of-change of frequency can be held constant over a 

range of values of ±AF by increasing the duration within limits defined by 

the repetition rate. For an 8Hz rate the maximum duration was set at 120 ms, 

5 ms below the cycle time. Linear sweeps provide a direct test of the 

model because the rate-of-change of frequency and duration of the sweep 

within the filter can be held constant for sweeps in excess of the 

hypothesised bandwidth.

3.3.2 Procedure

The experiments were exactly the same as those for sinusoidal-FM as 

described in Section 3.1.2 except for the substitution of linear sweeps as 

adapting-stimuli. Unadapted thresholds were the same as before. Both 

upward- and downward-going frequency sweeps were used. The experiments 

were carried out at 0.25 and 1.0 KHz for RBG and 1.0 kHz for VJG.

In each experimental condition the adapting sweep duration was 

held constant for all values of adapting frequency-deviation (±AF) except 

those above the PMV. In this way the rate-of-change of frequency (df/dt) 

increases with increasing ±AF mimicing the similar changes occurring in 

sinusoidal-FM with increasing ±AF and a constant modulation-frequency. For 

values in excess of the PMV, df/dt was held constant at the PMV value by 

increasing the sweep duration as ±AF increased. The maximum duration was 

120 ms. The experiment fulfills two functions:

1. By holding df/dt constant above the PMV the parameters of the 

sweeps within the filter remain constant and equal to those of the PMV,
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i.e. optimal, condition. This allows the assumption of the model concerning 

the basis of the decline in adaptation at large values of ±AF to be tested.

2. By holding the sweep duration constant, at the PIW value, for 

sweeps with values of ±AF below the PMV, the relationship between ±AF and 

adaptation factor can be examined for linear sweeps and compared to those 

for sinusoidal-FM. At 0.25 KHz the value of df/dt for sweeps at and in 

excess of the PMV was 1333 Hz/s. At 1.0 KHz the value was 2000 Hz/s for 

RBG and VJG. An additional curve at 1.0 KHz with a value of df/dt of 1600 

Hz/s was determined for RBG. No values in excess of the PMV could be used 

in this condition as the duration at the PMV was very near the 120 ms limit.

The values of sweep duration at and above the PMV were as follows:

(a] 75 ms in the 0.25 KHz experiment*

(b) 90 ms for RBG at 1.0 KHz, 2000 Hz/sj

(c) 60 ms in the corresponding experiment with VJG;

(d] 112.5 ms in the 1.0 KHz, 1600 Hz/s experiment.

3.3.3 Results and discussion

Curves of adaptation factor versus ±AF (Hz) are shown in Fig. 3.6a, 

b and c. Vertical bar are standard deviations. The curves are roughly the 

same as those for sinusoidal-FM. At 1600 Hz/s at 1.0 KHz [RBG] the maximum 

deviation was only ±90 Hz, i.e. the sinusoidal-FM PMV and assumed filter 

bandwidth at 1.0 KHz, because of the limit to sweep duration imposed by the 

need for a constant repetition rate. Failure to adhere to this limit by 

altering repetition rate would have introduced additional variations in 

adaptation related to the tuning of adaptation to modulation frequency 

described by Kay and Matthews (1972). For upward-sweeps at 1.0 KHz and 

1000 Hz/s the PMV value for RBG is shifted downwards by 10 Hz though it is 

worth noting that the peaK is not as distinct as for sinusoidal FM and, 

indeed, downward-sweeps. For downward-sweeps at 1600 Hz/s the adaptation 

is roughly equal from ±40 to ±90 Hz (Fig. 3.6b). The upward-sweep curve at



Fig. 3.6a-c. Plots of adaptation factor as a function of adapting ±AF for linear sweep 

adapting stimuli (upward- and downward-going).

(a) 0.25 KHz, RBG

(b) 1.0 kHz, RBG

(c) 1.0 kHz, VJG

The values of df/dt refer to the value of this variable at the PMV 

maintained for values of ±AF greater than the PMV.
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1600 Hz/s shows a similar function to sinusoidal-FM. Other findings are the 

dependence of adaptation upon df/dt (Fig. 3.7b) and the general finding that 

downsweep-adaptation is less than upsweep-adaptation. Both these factors 

are discussed in later chapters. The values of PMV and peak adaptation 

are summarised in Table 3.4.

Of primary importance is the finding that the decline in adaptation 

still occurs for large frequency-deviations when the hypothesised filter 

would be expected to contain a sweep of constant duration. It can be con­

cluded that the model described earlier does not provide an adequate explana­

tion for the decline in adaptation at large frequency deviations. Further, 

the decline as measured must be due to the presence of the portion of the 

sweep outside the filter because sweep parameters within the filter remain 

constant. One possibility is the presence of lateral inhibitory side-bands(o(
ftpp.

3.4 Elaboration of the filter model

Though the model discussed above cannot explain the decline in 

adaptation found at larger frequency-deviations, it was felt that the 

analysis in terms of the area under the modulating-waveform within the 

filter was a fruitful approach to the understanding of the relationship - 

between adaptation and adapting frequency deviation below the PMV.

The analysis was continued with a more realistic Gaussian filter 

with a bandwidth ter) equal to the PMV for sinusoidal-FM (Table 3.2). The 

formula was:

o

A sinx e dx

where a is the frequency deviation ±AF (Hz) 

a is the Gaussian bandwidth.

The filter was assumed to be symmetrical around the centre frequency. 

A computer program was written to produce the values of A at 0.25, 0.5, 1.0
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and 4.5 KHz for RBG and 1.0 kHz for VJG. Values of the bandwidth are given 

in Table 3.5. Figure 3.7a-d shows plots of the Gaussian predicted curves 

against normalised empirical curves for all centre-frequencies and both 

subjects. A good fit was obtained up to the PMV after which lateral 

effects predominate.

3»5 Summary and discussion

Evidence is provided for filters in the frequency domain flanked 

by lateral inhibitory side-bands. Curves of adaptation versus adapting 

frequency-deviation for sinusoidal-FM show a distinct pattern consisting 

of a linear increase in adaptation with increasing frequency deviation up 

to a peak (the PMV] after which further increases in frequency-deviation 

result in a progressive decrease in adaptation.

A filter having a bandwidth equal to the PMV was hypothesised such 

that increasing frequency deviations within the filter would result in an 

increased output and greater adaptation. The area under the modulating 

waveform within the filter bandwidth was found to be an adequate measure of 

adaptation. The decrease in adaptation was also found for linear sweeps 

where the sweep parameters within the hypothesised filter bandwidth remained 

constant. This implies the extremes of the sweeps outside the filter acti­

vate lateral inhibitory mechanisms producing a decrease in filter output, 

and therefore adaptation. Though the sweep parameters within the filter 

can be held constant for linear sweeps, this is not so for sinusoidal FM 

where a progressive decrease in sweep duration occurs with increases in 

frequency-deviation beyond this bandwidth. As will be seen later the FM 

system is sensitive to variations in duration of constant ±AF sweeps. A 

steady decrease in duration might be expected to act with the lateral 

inhibitory effects to promote the decline in adaptation. This is not 

reflected in the slopes found for sinusoidal FM compared with those for 

linear frequency sweeps (Fig. 3.8].



Fig. 3.7a-d. Plots of adaptation (norm) as a function of adapting ±AF of 

sinusoidal-FM (see Fig. 3.1a-e)# showing predicted curves 

from Gaussian filter model (thicker lines).
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Good fits to the rising part of the functions were obtained with 

symmetrical Gaussian filters centred on the centre-frequency -of the FM 

stimuli (0.25, 0.5, 1.0 or 4.5 KHz) and with bandwidths (a) equal to the 

PMV at these frequencies. Empirical justification for the use of Gaussian 

filters comes from Patterson (1974j 1976). The relationship between the 

empirically derived FM filter bandwidth and the critical bandwidth (Scharf, 

1970) is shown in Fig. 3.9. The closeness of actual values and the simi­

larity of the functions suggest the FU filter is based on the same mechanism 

underlying the critical band measures.

In summary, the relationship between adaptation and adapting fre­

quency-deviation reveals the existence and bandwidth of frequency selective 

filters in the FM processing system analogous to that of Kay and Matthews 

(1972) at 0.25 KHz.
a

The following chapter com^res these bandwidths with those measured 

by the Kay and Matthews (1972) method.



Fig. 3.

deviation after the PMV (±AF - 100%).norm

Plots of adaptation (normalised) as a function of normalised frequency-





Fig. 3.9. ' FM filter bandwidths derived from this chapter and critical bandwidths 

(Scharf, 19703 expressed in Hz as a function of Fc (kHz).
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TABLE 3.1

RBG 0.25 kHz 

±AF (Hz)

RBG 0,5 kHz 

+AF (Hz)

RBG 1.0 kHz 

±AF (Hz)

RBG 4.5 kHz 

±AF (Hz)

VJG 1.0 kHz 

±AF (Hz)

0 0 0 0 0

2.5 10 20 100 20

10 20 40 200 40

17.5 30 60 250 60

32.5 50 80 300 70

40 60 90 350 80

50 65 100 400 90

60 70 120 500 100

70 80 160 600 • 120

100 100 800 160

120

Values of adapting frequency-deviation of sinusoidal-FM

(see Section 3.1.2, Fig. 3.1a-e).



TABLE 3.2

F (KHz) c PMV [±AF (Hz)] ADAPTmax

0.25 50 3.25

0.5 70 3.17

1.0 90 2.87

4.5 350 3.64

1.0 (VJG) 80 3.43

Values of frequency-deviation producing maximum adaptation 

(ADAPT ), i.e. the peak modulation value (PMV), at each 

centre-frequency. The values of PMV are assumed to represent 

the bandwidths of the hypothesised filters in the carrier 

frequency domain.



TABLE 3.3

0.25 KHz 
1333 Hz/s

1.0 KHz 
1600 Hz/s

1.0 KHz 
2000 Hz/s

0 0 0

10 20 20

25 40 40

40 80 60

50 90 70

60 B0

80 90

100

115

Values of adapting frequency-deviation expressed as ±AF (Hz) for 

the linear frequency sweep experiments (Section 3.3.2, Fig. 3.6a- 

c). Values were the same for upward- and downward-going sweeps

and for both subjects.



TABLE 3.4

F (KHz) SWEEP PMV ADAPTc DIRECTION [±AF (Hz)]
max

0.25 UP 50 2.89

1333 □OWN 50 2.42

1.0 UP 00 3.19

2000 DOWN 90 2.76

1.0 UP 80 3.05

2000 (VJG) DOWN 60 2.45

Values of PMV in Hz and associated values of adaptation for 

linear sweep adapting-stimuli (see Fig. 3.6a-c).



TABLE 3.5

F (kHz) c Bandwidth 
a (± Hz)

0.25 50

0.5 70

1.0 90

4.5 350

1.0 (VJG) 80

Gaussian filter bandwidths used for the analysis described 

in Section 3.4. Values used are equal to the PMV for

sinusoidal-FM described in Table 3.2.
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CHAPTER 4

4.1_____Introduction

In Chapter 3 plots of adaptation factor against adapting frequency- 

deviation reveal filters in the carrier-frequency domain with lateral 

inhibitory side-bands. FM-channels are selectivity tuned to carrier- 

frequency. Kay and Matthews (1972) determined the frequency selectivity 

of FM-adaptation by holding the centre-frequency of the test-stimulus con­

stant at 0.25 KHz and varying the adapting centre-frequency. The resultant 

functions showed a decrease in adaptation as the frequency difference between 

test and adaptor increased. This "tuning-curve" was taKen as a measure of 

the frequency selectivity of the FM-channel at 0.25 KHz. A best-fit Gaussian 

curve had a half-height bandwidth of 200 Hz, twice the critical bandwidth 

at 0.25 KHz and the filter bandwidth found in Chapter 3. Half-height refers 

to the bandwidth and the value of adaptation half-way between maximum and 

zero (x 1). A better measure may be a corresponding to the Gaussian band- 

widths of Chapter 3 and given by CO.607 (adapt -1)] + 1.

The explanation of tuning-curves involves the concept of channels, 

the test—stimulus being processed by a channel "tuned" to 0.25 KHz. An 

adapting-stimulus at 0.25 KHz is also processed by this channel and adapta­

tion is greatest (although small peaK shifts in tuning curves can occur - 

see Kay and Matthews (1972) and the results of this chapter). Adapting- 

stimuli with different centre-frequencies to the test-stimulus produce less 

adaptation because the test channel is less sensitive to these frequencies 

and/or interactions between channels are weaKer as the frequency difference 

between them increases.

It was decided to measure tuning-curves at a number of frequencies 

for comparison’with measures of selectivity from Chapter 3.
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4.2_____Tuning-curves from sinusoidal-FM adapting stimuli

4.2.1 Methods

Experiments were carried out with sinusoidal-FM test-and adapting-
c a r n ' e r  —

stimuli as described in Section 3.2.1 and Chapter 2. TheVfrequency of the 

adapting-stimulus was varied with respect to the constant test frequency. 

Tuning-curves were determined at 0.25, 0.5, 1.0 and 4.5 KHz for RBG and 

1.0 kHz for VJG. Three values of adapting frequency-deviation were used 

at 0.25 and 1.0 KHz, i.e. three separate tuning curves were determined. 

Values of frequency deviation were: ±32.5 Hz, ±50 Hz (PMV) and ±100 Hz at 

0.25 KHz, ±40 Hz, ±90 Hz (PMV) and ±160 Hz for RBG at 1.0 KHz and ±40 Hz,

±80 Hz (PMV) and ±160 Hz at 1.0 kHz for VJG. Adapting frequency-deviation 

at 0.5 KHz was ±70 Hz (PMV) and ±350 Hz (PMV) at 4.5 KHz. Table 4.1 shows 

the values of adapting centre-frequency used in the experiments. During the 

determination of the tuning curves, values of adapting frequency were chosen 

randomly. Three threshold estimates were made at each value and the mean 

and standard deviation calculated.

4.2.2 Results and Discussion

Figures 4.1a-d show tuning at all frequencies and data fromboth sub­

jects. For clarity, standard deviations were not drawn but are presented in 

Table 4.1 together with mean values of adaptation factor. The lower graphs 

in Fig. 4.1a-c show tuning curves in terms of adaptation factor with adapt­

ing frequency-deviation as the parameter. The upper graphs are the same 

data plotted on a normalised adaptation scale where:

adapt % = (adapt-1)/(adapt -1) x 100
p norm max

where adapt is the value of adaptation factor at the peak of the tuning 
max

curves (not always the test frequency value of adaptation). Normalisation, 

by removing the dependence of adaptation factor upon the parameter, allows 

better comparisons of bandwidth and slope to be made.



Figure 4.1a-d. Tuning curves in the carrier-frequency domain for sinusoidal-FM 
adapting-stimuli. In Fig. 4.1a-c, adapting frequency deviation 
is the parameter. The Key to the figures is as follows:

(a) 0.25 KHz;0--- 0 ±32.5 Hz, ■ ■ ±50 Hz, A--- A ±100 Hz.

(b) 1.0 KHz (RBG); 0--- 0 ±40 Hz, ■- -- ■ ±90 Hz, A — — A ±160 Hz.
(c) 1.0 KHz (VJG); as above except ■ ---- ■ ±80 Hz.

Adapting frequency deviations were ±70 Hz at 0.5 KHz and ±350 Hz 
at 4.5 KHz.
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The data confirm the existence of frequency selectivity in FM - 

adaptation as a general property of this adaptation. The curves consist 

of a sharply tuned portion around the test frequency with wider skirts at 

the more distant frequencies. The only exception is the ±100 Hz curve at 

0.25 kHz. It is interesting to note that the data points of Fig. 7 of Kay 

and Matthews (1972) (see Fig. 1.1) show a curve with similar characteristics 

to those found here. The Gaussian curve used to fit the data may be in­

appropriate. Certainly the discrepancy in bandwidths at 0.25 kHz disappears 

if the actual data are used to plot the curve. The normalised curves show 

that except for the ±100 Hz curve at 0.25 kHz and the lower frequency half 

of the ±160 Hz curve at 1.0 kHz for RBG, the adapting frequency-deviation 

has little systematic influence upon the bandwidth and slope of the curves. 

Half-height bandwidths. with the exceptions already mentioned, are narrower 

than the bandwidths of the Gaussian filters derived from Chapter 3 (Table 

4.2). If the bandwidth corresponding to the a value of the Gaussian curves 

(taken as Gaussian bandwidth) is calculated, the difference is even greater.

Taking the filters of Chapter 3 as a direct measure of a particular 

channel’s frequency selectivity, the differences between values of adapta­

tion at the test frequency for the three values of frequency deviation is
ir ta y  be,

easily explained. The difference between the lowest and PMV value due to 

the induced activity within the "excitatory” area of the filter. At the 

highest value of ±AF the inhibitory side-bands are activated resulting in 

reduced filter output and therefore adaptation. Thus when test and adapting 

frequencies are equal the differences in the values of adaptation factor 

between the parameters are represented in the data and model of Chapter 3.

The value of adaptation is dependent upon the parameter but bandwidth and 

slope are not. The trend seems to be towards a reduction in these differences 

in adaptation factor between the values of ±AF as the difference between test 

and adapting frequency increases.

The shape of the tuning curves must be due to two main factors.
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First, the channel filter characteristic as determined in Chapter 3 where

filter output and adaptation factor are dependent upon the centre frequency

and frequency range of the adapting frequency transitions. If this influence

alone (without lateral inhibitory processes being involved) were present

-x2then the tuning-curves would be expected to have a Gaussian (y = e ) shape. 

That this is not so is evidence for the presence of the second factor, 

namely, lateral inhibition. This would be expected to increase as the 

difference between test and adapting frequencies increased because rela­

tively larger excursions into the side bands would occur. The tuning 

curves as measured represent the interaction of these two factors.

4.3 Tuning curves with linear sweep FM

4.3.1 Methods

Experiments were carried out as before but with upward-going linear 

frequency sweep stimuli. The value of frequency deviation was ±20 Hz at 

0.25 and 1.0 kHz [RBG and VJG). Values of adapting frequency deviation 

were as before except for the additional value of 0.375 kHz in the 0.25 kHz 

experiment. Three threshold estimates were made at each value and the mean 

and standard deviations calculated. The value of ±20 Hz was chosen because 

it produced values of adaptation large enough to show tuning effects with­

out large overlaps in standard deviation bars.

4,3.2 Results and Discussion

Figure 4.2a-c shows tuning curves for both subjects. Vertical bars 

are standard deviations (±150). The low-frequency half of the curve is 

roughly the same as those for sinusoidal-FM, the high-frequency side, how­

ever, reveals threshold facilitation. Thus two effects on threshold, 

adaptation and facilitation, can be measured.

If thresholds are determined by filter output or the activity 

within a particular tuned channel to an FM test stimulus then adapting



Figure 4.2a-c. Tuning curves in the carrier-frequency domain for linear frequency
sweeps at 0.25 and 1.0 KHz. Adapting frequency deviation was ±20 Hz 
in all conditions.

(a) 0.25 KHz RBG.

(b) 1.0 KHz RBG.

Cc) 1.0 KHz VJG.
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stimulus must, in some way, reduce this activity. This would produce a 

threshold elevation where an increase in test-stimulus frequency-deviation 

is necessary to increase activity in the channel to threshold level. The 

results here show the opposite effect, a facilitation of threshold such 

that smaller test modulations induce the threshold activity level within 

the channel. The maximum facilitation factor is less than the maximum 

adaptation factor and has a narrower bandwidth. What is the basis of this 

facilitation effect? From the frequency extent Cbandwidth and centre fre­

quencies] it would seem to be related to the lateral inhibition suggested 

in the Chapter 3 data. In these experiments, activation of inhibition by 

adapting sweeps produces a fall in adaptation factor even though the portion 

of the sweep within the filter represents the optimal adapting stimulus for 

that channel. Adaptation was assumed to be a function of the induced 

activity in the FM system which could be reduced by inhibition at the fre­

quency-selective stage of FM processing. The temporal separation of the 

inhibitory and "excitatory” effects would be small and the resultant, reduced, 

activity would determine the measured adaptation factor. The inhibitory 

influences must d e c a y  before the test phase of the stimulus cycle because 

any residual inhibition would also elevate thresholds by reducing test 

induced activity. The "excitatory" activity within the system which somehow 

determines adaptation and the inhibitory influences which affect this acti­

vity have different time courses, the adapting activity persisting to affect 

the detectability of the test modulation. If inhibition does not persist 

how could it produce facilitation? It might be possible that a background 

activity is present in the FM system acting to bias thresholds upwards 

through a small adaptation effect. Thus unadapted thresholds would be 

slightly adapted thresholds. Activation of the lateral inhibitory side­

bands by small sweeps might reduce any background activity in the tuned 

channel increasing the detectability of the test modulation. This would
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be analogous to the phenomenon of unmasking (Shannon, 1976; Terry and 

Moore, 1 9 7 7 )  ( s et- ftpp.

That inhibition is only present on the high-frequency side of the 

curve may be due to:

1. Larger inhibitory side-bands on the high-frequency side 

of the filter.

2. The direction of frequency sweep, i.e. with upward sweeps 

the high-frequency inhibitory area is activated after the 

excitatory region increasing the former’s apparent effect­

iveness at certain values of adapting centre frequency.

_____Summary and Discussion

Tuning-curves for carrier-frequency measured by the method described 

by Kay and Matthews (1972) for both sinusoidal and linear sweep FM have 

bandwidths narrower than corresponding measures of the frequency selectivity 

of FH adaptation from Chapter 3. The shape of the curves differ signifi­

cantly from those predicted from the Chapter 3 data and model without 

inhibitory influences, thereby suggesting the presence of these influences. 

From the shape of the curves, these influences appear to be present in 

frequencies closer to the test frequency than would be predicted from 

Chapter 3. Thi9 suggests some overlap of "excitatory" and inhibitory areas 

hidden in the Chapter 3 experiments.

At 0.25 and 1.0 KHz tuning curves were determined for three values 

of ±AF. Though estimates of bandwidth (Table 4.2) varied with this para­

meter, no systematic variation was observable. The adapting frequency _ 

deviation did determine the level of adaptation near the test frequency.

The fact that adapting frequency deviation did not influence bandwidth 

systematically may reflect the presence of a constant inhibitory to 

"excitatory" ratio for each value of frequency deviation at a particular 

frequency.
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Evidence for lateral inhibition was demonstrated with small linear 

frequency sweeps. This took the form of threshold facilitation on the high- 

frequency side of the tuning-curve 'consistent with the data and model of 

Chapter 3 but involving the concept of background adapting activity in FM 

channels. The inhibitory effects are analogous to the suppression effects 

demonstrated in masking experiments CHoutgast, 1971, Shannon, 1976, Houtgast, 

1977, Terry and Moore, 1977). This inhibition could sharpen the tuned 

response of the FM processing system to carrier (centre)-frequency. The 

bandwidths and filter shapes of Chapter 3 can be regarded as a direct 

measure of the frequency selective properties of a particular channel, that 

is, one tuned to a specific frequency. Tuning curves represent complex 

interactions between the properties of this selectivity and reflect the 

selectivity of FM adaptation rather than FM channels per se. They demonstrate 

the functional aspects of this selectivity in the form of a sharpening around 

the test frequency enhancing the ability to discriminate between FM signals 

of different centre-frequency.

Inhibition also helps tune the channel response to frequency devia-

tion such that an optimal range occurs (the PMV of Chapter 3). Thus sweeps 
below the PMV and larger than PMV sweeps are indistinguishable in terms of

induced activity within a single channel though the distributed activity 

across an array of channels could code this variable. Indeed, this limit 

imposed upon the frequency deviation of sweeps can be regarded as a by­

product of frequency selectivity which is unlikely to represent the only 

mechanism coding frequency deviation. Hartman (1977) reports experiments

suggesting three separate mechanisms in FM width perception. Further, some 

formant transitions exceed the PMV values measured in Chapter 3 (Lehiste

and Peterson. 1961) suggesting the "tuning" to frequency deviation has no

functional role in the coding of formant transitions.

Though not necessarily FM-specific in the sense that the elements of 

the channel are concerned only with FM. the selectivity studied above
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represents one stage in the processing of these stimuli below the level of 

detection "  of the test stimulus. The frequency selectivity

represents the range and strength of FN carrier-frequencies having access 

to a specific tuned channel signalling the value of one dimension of the 

test stimulus upon which ' detection v is based. The

frequency selectivity is probably based on peripheral frequency selectivity 

(Evans, 1975) with the initial input to the FM stage an array of frequency- 

tuned channels (fibres). No marKed asymmetry was found.



TABLE 4.1

Values of mean adaptation and standard deviation from all 
_________sinusoidal FM experimental conditions___________

F (TEST) c = 0.25 kHz F (TEST) =0.5 c kHz F (TEST) = c 1.0 kHz RBG

Adapting
F (kHz) c

AF
±32. 5 Hz

AF
±50 Hz

AF
±100 Hz Adapting

F

AF = 
±70 Hz Adapting 

F (kHz)
AF
±40 Hz

AF
±90 Hz

AF
±160 Hz

AF SD AF SD AF SD c AF
(

SD c AF SD AF SD AF SD

0.125 1.15 0.06 0.35 1.52 0.13 0.75 1.26 0.08 1.14 0.08

0.15 1.23 0.07 1.37' 0.07 1.41 0.11 0.4 1.83 0.11 0.8 1.16 0.06

0.175 1.44 0.09 0.45 1.99 0.04 0.85 1.15 0.08 0.11

0.2 1.47 0.1 1.61 0.19 1.68 0.07 0.5 3.17 0.21 0.9 1.23 0.13 1.45 0.06 1.63 0.11

0.225 1.92 0.17 2.18 0.12 2.11 0.26 0.55 1.66 0.06 0.95 1.35 0.13 2.11 0.17 1.71 0.18

0.25 2.55 0.1 3.25 0.115 1.87 0.1 0.6 1.68 0.08 1.0 1.87 0.24 2.87 0.25 2.06 0.12

0.275 2.14 0.11 1.81 0.11 1.92 0.08 0.65 1.18 0.11 1.05 1.18 0.09 2.55 0.12 1.59 0.09

0.3 1.32 0.06 1.32 0.06 1.45 0.03 1.1 1.26 0.17 1.63 0.05 1.29 0.08

0.325 1.08 0.12 1.15 1.19 0.09 1.3 0.11

0.35 1.17 0.16 1.1 0.11 1.2 1.11 0.06



TABLE 4.1 CCont)

Fc (TEST) = 1.0 KHz VJG Fc (TEST) = 4.5 KHz

Adapting 
F (KHz)

AF
±40 Hz

AF = 
±00 »

AF
±160 Hz Adapting 

F (KHz)
AF

±350 Hz
c AF SD AF SD AF SD c AF SD

0.75
'

1.15 0.11 4.0 1.34 0.06
0.0 4.2 1.04 0.09
0.05 1.06 0.1 1.34 0.13 1.17 0.13 4.3 2.44 0.12
0.9 1.41 0.14 1.73 0.15 1.04 0.07 4.4 3.06 0.36
0.95 1.3 0.07 2.55 0.1 1.64 0.1 4.5 3.56 0.15
1.0 1.97 0.14 3.43 0.11 1.69 0.07 4.6 2.51 0.13
1.025 2.51 0.13 4.7 1.9 0.06
1.05 2.32 0.1 1.95 0.07 1.12 0.25 4.0 1.95 0.07
1.1 1.29 0.11 1.30 0.09 1.02 0.04 5.0 1.43 0.12
1.15 1.32 0.00
1.2 1.06 0.13
1.25 1.44 0.19



TABLE 4.2

Fc +AF Bandwidth Bandwidth
(KHz) (Hz) Chap.4 (Hz) Chap.3 (Hz)

32.5 65

0.25 50 48 100
100 115

0.5 70 70 140

40 70

1.0 90 140 180

160 180

40 93

1.0 80 113 160

< £_i CD
 . 160 106

4.5 350 360 700

Table showing half-height bandwidths from sinusoidal-FM 
tuning curves with Chapter 3 Gaussian bandwidths for 
comparison.
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CHAPTER 5

5.1_____Introduction

This chapter attempts to determine the mechanism of adaptation 

using a psycho-physical technique described by Dealy and Tolhurst

(1974] in a paper entitled "Is spatial adaptation an after-effect of 

prolonged inhibition?”

The paper discusses two separate models for interactions between 

spatial-frequency tuned channels, that is, for the effect of one spatial- 

frequency upon another as described by tuning-curves (e.g. see Blakemore 

and Campbell, 1969]. The first proposes adaptation is an after-effect of 

prolonged excitation of the channel and that tuning-curves represent the 

sensitivity of the channel to a range of input frequencies. A tuning-curve 

can be regarded as an inverted threshold curve where greater adaptation 

implies a lower threshold. For auditory tuning-curves tuned, for example, 

to modulation-frequencies of 6 and 10 Hz, differences in adaptation pro­

duced by an 6 Hz adaptor at these two test frequencies would reflect the 

different sensitivities of the two channels to an 8 Hz stimulus. Obviously 

the 8 Hz channel would be more sensitive to the 8 Hz adaptor than would the 

10 Hz channel and would be more adapted. The excitation model would pre­

dict that the 8 Hz channel responds when the 8 Hz adaptors "strength" 

exceeds the channels threshold for that frequency. Because the 10 Hz 

channel is less sensitive to an 8 Hz stimulus the adaptor "strength” would 

have to be higher in order to activate and adapt the channel. If for 

"strength” we substitute adapting frequency-deviation then adaptation of 

the 10 Hz channel by the 8 Hz stimulus would be expected to occur at a 

higher adapting frequency-deviation than adaptation of the 8 Hz channel.

The second model proposes adaptation is an after-effect of prolonged 

inhibition between channels. Thus the effect of an 8 Hz adapting-stimulus

via a lateral-inhibitory connection. Theupon the 10 Hz channel comes
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effect of B Hz upon the 8 Hz channel comes from self-inhibition and, 

possibly, inhibition from surrounding channels activated by the adapting 

stimulus. This model would predict that adaptation of the 10 Hz channel 

by the 8 Hz adapting stimulus would begin at the same adapting frequency- 

deviation as adaptation of the 8 Hz channel because lateral-inhibitory 

activity would be initiated as soon as the 8 Hz channel was activated. In 

other words, adaptation of the 8 and 10 Hz channels would begin as soon as 

the adapting-frequency deviation exceeded threshold. Tuning-curves would, 

in these terms, represent the range and strength of adapting lateral- 

inhibitory connections between channels rather than the range of inputs to 

the channel. The strength of inhibition is assumed to diminish as the 

distance between test and adapting frequency increases. Figure 5.1 (Fig. 2 

of Dealy and Tolhurst, 1974} illustrates the experimental rationale and 

predictions. For adapting contrast substitute adapting frequency-deviation.

The experiments determine both the mechanism of adaptation and the 

nature of the interactions reflected in tuning-curves. In Chapters 3 and 

4, tentative models were assumed where adaptation was a consequence of 

excitation. Lateral inhibitory effects seemed to reduce this excitation 

and thus reduce adaptation. Further, the inhibition did not seem to be of 

sufficient duration to affect the test stimulus directly whereas the after­

effect of excitation did persistj neither was it clear whether adaptation 

occurred ’’somewhere else” in the system or at the level of carrier- 

frequency selective channels.

The assumptions of earlier chapters are tested directly in this 

chapter which also provides clues to the locus of adaptation. Experiments 

were carried out for two separate dimensions of sinusoidal-FM, modulation- 

frequency and carrier-frequency.



Fig. 5. * From Dealy and Tolhurst (1974) p.265. Explanation and prediction of excitation 
and inhibition models.



a Modell

After-effect of excitation
£> Model 2

After-effect of inhibition

♦

*■

Adapting contrast

Pig. 2, Two models o f the mechanism o f spatial adaptation, a ,  on the left, 
it is suggested that adaptation arises from prolonged excitation. Frequency 
F  excites "h o""*! (Tj. well and also excites channel <?T to some extent. The 
two channels become adapted to a degree dependent on how much they are 
excited by the adapting grating. The boxes labelled I  represent the 
adaptation mechanism and do not necessarily represent inhibitory inter- 
neurones. The lower part o f the left-hand Figure shows the threshold 
elevation curves expected for the test frequencies F k  and F T  after adapting 
to F  .  The points A ,  B ,  C , D  and E  are the reference contrasts in Fig. 1. 
6, oath e right it is supposed that adaptation arises from prolonged inhibi­
tion. rfr«r,n«l C t  may not be excited by frequency F A ,  but it may be 
inhibited by channel 0 A  which does, o f course, respond to frequency F k .  

Channel C  will become adapted to a degree dependent on how much 
n b n r m»l O J s excited by the adapting grating. The lower part o f tho right- 
TmH Figure shows the elevation curves expected on this hypothesis.



71

5.2 Determination of tuning curves

5 ,2,1 Methods

Two experiments with sinusoidal-FM test- and adapting-stimuli were 

carried out as follows:

(1) Modulation-frequency tuning-curves were determined by holding 

the test-frequency constant and varying the adapting-frequency (see Kay 

and Matthews, 1972, for examples of curves at 0.25 KHz). The adapting 

frequency-deviation was held constant at the PMV of the centre-frequencies 

used, 0.25 and 1.0 KHz for RBG, 1.0 KHz for VJG. PMV values can be found 

in Table 3.2. Tuning-curves were determined at test-frequencies of 8 and 

10 Hz for RBG at both centre-frequencies. Curves at 8 and 12 Hz were 

determined for VJG. Most data points at 0.25 KHz (RBG) were the means of 

two threshold estimates except the 6 , 8 and 10 Hz adapting conditions of 

the 8 Hz curve where 6 estimates were made. For all other data points 3 

estimates were made and means and standard deviations calculated.

(2) Carrier (centre)-frequency tuning-curves were determined for 

a test-frequency of 1.05 KHz for both subjects by the methods described in 

Chapter 4. Adapting frequency-deviations were ±90 Hz and ±80 Hz for RBG 

and VJG respectively. Modulation-frequencies were held constant at 8 Hz.

All data points are the means of 3 threshold estimates. Standard deviations 

were calculated.

5.2,2 Results and discussion

(1) Modulation-frequency curves: Data are shown in Fig. 5.2a-c.

MarKed tuning is found confirming the results of Kay and Matthews (1972).

Threshold facilitation is found in all curves especially at 1.0 KHz. Within

the terms of the model proposed for carrier-frequency curves in Chapter 4 ,

this is evidence for lateral-inhibition. Facilitation is discussed later

within the context of an improved model. It is worth noting that facilita- 
but,

tion was found\inot discussed by Kay and Matthews (1972). The curves at

1.0 KHz also have narrower bandwidths than the 0.25 KHz curves suggesting



(a) RBG, 0.25 kHzj 8 Hz test (closed circles, thin lines) / 10 Hz (open circles, 
thick lines).

(b) RBG, 1.0 kHzj 8 Hz test and 10 Hz test, key as above.

(c) VJG, 1.0 kHz, 8 Hz test (closed circles, thin lines)» 12 Hz test 
(open circles, thick lines).

All stimuli were sinusoidal-FM. Vertical bars on the left of 1.0 kHz curves 
are standard deviations of unadapted thresholds expressed as adaptation 
factor.

Fig. 5.2a-c. Modulation-frequency (f ) tuning-curves.
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1.0 KHz . What is important for the present is the overlap between the 

curves allowing the choice of test- and adapting-frequencies for later 

experiments where plots of adaptation as a function of adapting frequency- 

deviation are made where adapting and test frequencies are either equal or 

different (see Fig. 5.1). For RBG, 8 Hz was chosen as the adapting-frequency 

and 8 and 10 Hz as the test frequencies. The tuning-curves obviously 

validate this choice. The curve for the 8 Hz test was reported in

Chapter 3. The modulation-frequencies chosen were the same for 0.25 and

1.0 KHz. For VJG (1.0 KHz) the adapting-frequency was 8 Hz and the tests 

8 Hz and 12 Hz. Once again the 8 Hz test curve was reported in Chapter 3.

(2) Carrier-frequency curves: Curves for 1.05 KHz together with

1.0 KHz curves (with the same adapting frequency-deviation) from Chapter 4 

are shown in the left-hand graphs of Fig.S4a-b. From these curves the 

adapting (1.0 KHz) and test frequencies (1.0 and 1.05 KHz) were chosen.

5.3 Adaptation as a function of adapting frequency-deviation:
___________adaptation as an after-effect of prolonged inhibition

5,3,1 Methods

C1) Modulation-frequency- Plots of adaptation as a function of 

adapting frequency-deviation were determined with sinusoidal-FH test- and 

adapting-stimuli where:

(a) the modulation-frequency of the test and adapting 
stimuli were equal at 8 Hz. This was true for 
0.25 and 1.0 KHz and both subjects (see Chapter 3),

(b) test- and adapting-frequencies differed.

Test values were 10 Hz for RBG at both 0.25 and 1.0 KHz and 12 Hz for VJG 

(1.0 KHz). The adapting-frequency was 8 Hz. The two conditions act as a 

test for the inhibition model for channels tuned to modulation-frequency.

A further condition involved the reversal of the test- and adapting- 

frequencies of condition (b). The carrier-frequency was held constant 

throughout the experiments at either 0.25 or 1.0 KHz.

the need to differentiate between modulation-frequencies is greater at



(2) Carrier-Frequency. Plots of adaptation as a function of

adapting frequency deviation were determined with sinusoidal-FM stimuli 

where:

(a) test- and adapting-.carrier-frequencies were equal at
1.0 KHz. This is the same function as the 1.0 KHz 
function of condition (a) above, i.e. from Chapter 3,

Cb) the test-frequency was 1.05 KHz and the adapting- 
frequency 1.0 KHz. The modulation-frequency was 
held constant at 8 Hz in both conditions.

The two conditions act as a test for the inhibition model for channels 

tuned to carrier-frequency.

Three threshold estimates were made for each data point and means 

and standard deviation calculated.

5.3.2 Results and discussion

Functions from the modulation-frequency conditions are shown in 

Fig. 5 .3a~c and those from the carrier-frequency conditions in the right- 

hand graphs of Fig. 5.4a-b. In most of the 1.0 KHz curves an extra data 

point at an adapting frequency-deviation of ±10 Hz was included. This 

value was not used in the Chapter 3 experiments. The condition in the 

modulation-frequency experiments in which the differing test and adapting 

frequencies were reversed was included even though a function where test 

and adapting frequencies were equal to the adapting-frequency of this con­

dition (10 Hz for RBG, 12 Hz for VJG) would ideally be required for com­

parison. It was felt that this condition would provide useful corroborative

evidence without the comparison.

At first sight the results seem to confirm the inhibition hypothesis 

in that the different functions seem to converge on the same point 

especially if straight lines are fitted by eye. However, a major 

impediment to accepting this conclusion at 1.0 KHz is the fact that the 

smallest frequency-deviation used (±10 Hz] is of the order of ten times 

the unadapted threshold at this frequency. The scale might be too large



(a) RBG, 0.25 kHz; test and adapting-f equal to 8 Hz Cclosed squares, 
thin lines); test f = 10 Hz, adapting fm = 8 Hz (open squares, 
thick lines). Insei shows functions for small values of adapting 
±AF.

(b) RBG, 1.0 kHz; test and adapting fm = 8 Hz (closed circles, thin line);
test f * 10 Hz, adapting f = 8 Hz (open circles, thick line); test fm
8 Hz, adapting fm * 10 Hz (triangles).

(c) VJG, 1.0 kHz; test and adapting f = 8 Hz (closed squares); test fm =
12 Hz, adapting fm = 8 Hz (open circles); test fm = 8 Hz, adapting
f « 12 Hz (triangles).

Fig. 5.3a-c. Plots of adaptation as a function of adapting frequency-deviation (±AF).
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Fig. 5.4a-b. Left-hand graphs show f tuning-curves at 1.0 and 1.05 KHz. Right-hand graphs 
show plots of adaptation versus adapting ±AF where: test and adapting f =
1.0 KHz (filled squares); test f = 1.05 KHz, adapting fc = 1.0 KHz 
(open squares); test fc = 1.0 KHz, adapting.f = 1.05 KHz (triangles).

(a) RBG (b) VJG
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to reveal the critical area of convergence around the threshold values of 

adapting frequency deviation. For this reason further experiments were 

carried out at a later date with smaller frequency-deviations. This was 

not necessary at 0.25 KHz because small , enough frequency-deviations 

relative to the unadapted threshold had bee.n used [see the inset of Fig. 

5.3a where the vertical arrow gives the unadapted threshold for the B Hz 

adapting stimulus). The hypothesis and model of adaptation as an after­

effect of inhibition is thus confirmed at 0.25 KHz.

5.4 Data from small adapting-frequency-deviations

5.4.1 Methods

The experiments were identical to those described above for the main

1.0 KHz modulation- and carrier-frequency conditions. Three threshold 

estimates were made at each data point.

5.4.2 Results and discussion

Fig. 5.5a-b shows plots of adapted threshold as a function of 

adapting frequency-deviation. The vertical arrow on the figure points 

to the unadapted threshold of the adapting stimulus, i.e. the point at 

which adaptation would be expected to begin in each of the conditions. 

Adapted threshold was used because this gives a more precise description 

of the influence of the adaptor or the differing thresholds of the three

conditions. These conditions are:

(1) Modulation- and carrier-frequencies, 8 Hz and 1.0 KHz 

respectively, equal for both test- and adapting-stimull (closed circles, 

solid lines of Fig. 5.5).

(2) Test- and adapting-carrier-frequency constant at 1.0 KHz, 

test modulation-frequency equal to 10 Hz (12 Hz for VJG), adapting frequency 

equal to 8 Hz (closed squares, solid lines of Fig. 5.5).

(3) Modulation-frequency of test and adapting stimulus constant



Fig. 5.5a-b. Plots of adapted threshold versus adapting ±AF for small values of ±AF where:

(a) RBG, test and adapting fc = 1.0 KHz, fm = 8 Hz (closed squares); test f 
=1.05 kHz, adapting fc = 1.0 KHz, fm = 8 Hz, fc = 1.0 KHz (triangles, 
dashed lines).

(b) VJG, test and adapting f = 1.0 kHz, fm 
= 1.05 kHz, adapting fc = 1.0 kHz, fm = 
12 Hz, adapting f = 8 Hz, fQ = 1.0 kHz

= 8 Hz (closed circles); test f 
8 Hz (closed squares; test 
(triangles, dashed line).
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at 1.0 KHz, test carrier-frequency equal to 1.05 KHz, adapting carrier- 

frequency equal to 1.0 KHz Ctriangles, dashed line of Fig. 5.5].

Straight lines were fitted by eye to each of the functions. It 

can be seen that the thresholds in each of the functions begins to rise 

at or very near the point at which the adapting frequency-deviation exceeds 

threshold, i.e. the point at which it would be expected to activate its 

own channel and adapt surrounding channels via lateral-inhibitory con­

nections. The validity of the inhibition model is confirmed at 1.0 KHz 

for both modulation-frequency and carrier-frequency tuned channels.

5.5_____Discussion

The data are consistent with a model in which adaptation is an 

after-effect of prolonged inhibition. However, it is impossible to differ­

entiate between lateral excitatory processes and lateral inhibitory pro­

cesses by these experiments as both would generate the same predictions 

with respect to adaptation as a function of adapting frequency-deviation.

If the lateral excitatory model was correct, excitatory Inputs to the 

channels would also produce adaptation and tuning-curves would represent 

the interaction and lateral and input influences unless an additional 

factor were introduced by which only the lateral activity resulted in 

adaptation. Only one factor is present in the inhibitory models description 

of tuning-curves and adaptation and for this reason it remains the more 

attractive model. The implications of the inhibitory model for earlier 

data and models is discussed below.

C1) Tuning curves: These represent the frequency-range of channels 

adapting a test channel through lateral-inhibitory connections. As the 

distance between the test- and adapting-channels increases, the strength 

of inhibition diminishes. When test- and adapting-frequencies are equal 

adaptation can be effected through self-inhibition and/or inhibition from 

adjacent channels activated by the input stimulus. The shape of the tuning-
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curve may reflect processes involved in facilitation discussed below. A 

single FM channel can be considered as being tuned to both carrier- and 

modulation-frequency.

(23 Threshold facilitation: This is found in both carrier-

frequency Cf ) and modulation-frequency ifj tuning-curves and is the c
opposite process to adaptation. The concept of inhibition of background 

adapting activity was introduced in Chapter 4 to explain the phenomenon. 

Obviously this is now inadequate given that adaptation is a consequence 

of inhibition and that connections between channels are inhibitory. In 

the context of the inhibitory model, facilitation can be regarded as a 

release from adapting inhibition, that is, an inhibition of inhibition. 

Because the connections between channels have a limited range, more distant 

channels cannot reach the test-channel directly but could inhibit channels 

closer to the test thereby reducing their effect on the test channel. To 

account for facilitation this "releasing" inhibition must inhibit back­

ground activity in channels adjacent to the test channel. The bandwidths 

of facilitation effects are narrower than adapting bandwidths in both f, 

and f tuning-curves. In f tuning-curves facilitation is only present 

with small frequency-deviations, presumably because these activate a small 

range of channels around the facilitating or "releasing” channels so that 

any adaptation present can be overridden by the "releasing" process. For 

fm tuning-curves the input bandwidth might be such that except for a small 

frequency region the "releasing” effects, though present, are hidden by 

simultaneous adapting effects. The input bandwidth may determine which 

channels are activated but not the bandwidth of adaptation and "releasing” 

effects. "Releasing" effects might sharpen the tuning in a manner similar 

to that discussed in Chapter 4 for lateral inhibition in an excitatory 

model. The \
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(3 ) The role of frequency-deviation and the Gaussian filter of 

Chapter 3 : The data of earlier chapters were discussed in terms of a 

model in which both the Gaussian curves of Chapter 3 and the F tuning-U
curves of Chapter 4 represented the range of carrier-frequencies exciting 

a channel and where adaptation was assumed to be an after-effect of this 

excitation. An attempt was made in Chapter 4 to explain the difference 

between Gaussian and tuning-curve bandwidths in terms of lateral-inhibitory 

processes. In Chapter 3 the level of adaptation of a single-tuned channel 

was shown to be a function of the frequency-deviation (±AF) of the adapting- 

stimulus. The activation of the channel and the resulting adaptation Cnow 

Known to be due to self-inhibition and inhibition from adjacent channels) 

was adequately described by the area under the modulating waveform within 

a Gaussian filter. After a certain value of ±AF, the PMV, adaptation was 

reduced consistent with the presence of lateral inhibitory connections.

It must be concluded from the data of this chapter that tuning- 

curves do not represent the input bandwidth of a channel, i.e. the range 

of frequencies activating a channel, because adaptation is restricted to 

the frequency tF and Fc) selective level of FM-specific channels and both 

adaptation and tuning-curves represent adapting lateral inhibitory connec­

tions between these channels. Thus, two stages of F^selectivity can be 

distinguished, the input bandwidth, and the selectivity at the level of 

FM-specific channels represented by tuning-curves, ie. the bandwidth of 

adaptation effects. As stated earlier, the activation of a particular FM- 

specific channel is a function of ±AF of the adapting-stimulus within limits 

defined by a Gaussian filter in the Fc domain. This filter can be regarded 

as representing the input bandwidth of a channel, the effective bandwidth 

being given by the PMV, the optimal value of ±AF producing maximum activa­

tion of the channel. As a consequence of the input bandwidths, channels

other than the F channel will be stimulated by the sweeps or portions 
c
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thereof, but only a limited range of channels described by the Fc tuning- 

curves will adapt or "release" the test channel.

The difference between Gaussian filter bandwidth and tuning-curve 

bandwidth showsthe selectivity of the system to carrier-frequency to be 

improved at the FM-specific level. The function of the inhibition might 

be to reduce activity in channels adjacent to the F̂__ channel sharpening 

the response at the channel level. Inhibition might also "clear" channels 

in preparation for the next FM stimulus.

When test- and adapting-frequencies differ, as in tuning-curve 

experiments, +AF determines the level of activation of the adapting channel, 

and therefore its adapting influence upon adjacent channels, as well as 

the range of F -channels activated. It does not determine the bandwidth 

of adapting connections between channels which is the critical factor 

determining tuning-curve bandwidth and the independence of tuning-curve 

bandwidth from ±AF (Chapter 4). This independence of tuning-curve bandwidth 

from ±AF is implicit in the convergence of the adaptation versus +AF func­

tions, because if bandwidth was reduced at smaller values of ±AF, no con­

vergence would be predicted because the channels would not overlap.

As stated earlier, the functions of adaptation versus ±AF show the 

same characteristics when test- and adapting-frequencies differ as they do 

when these frequencies are equal. This is also consistent with the inhibi­

tion model and the Gaussian filter as input bandwidth. Because the response 

of the adapting channel is a function of ±AF the adaptation it delivers 

to the test-channel will show the same function with respect to ±AF. This 

would be true even if the test channel was also activated to some smaller 

extent by the adapting frequency.

In summary, the model now proposed is that the FM system examined

so far can be considered as a two-dimensional array of channels defined by

their best F and F and connected by lateral-inhibitory connections, 
c m
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These connections determine the strength and bandwidth of adaptation 

(tuning-curves) and presumably the systems selectivity to Fc and F^.

Because channels are tuned to Fc as well as F^, the activation of a 

particular channel is a function of ±AF. Facilitation effects reflect 

the bandwidth of inhibitory connections and ”release-from-inhibition" 

which acts to sharpen the systems tuning. Adaptation is an after-effect 

of prolonged inhibition via the lateral inhibitory connections whose primary 

role is the production of improved frequency selectivity.

In terms of this model, the decline in adaptation with large 

values of ±AF found in Chapter 3 and attributed to lateral-inhibitory 

side-bands can represent, M) lateral-inhibitory side-bands of the input 

bandwidth which when activated reduce the activity arriving at the Fc 

channel, (2 ) activation of "releasing” channels by the sweeps such that 

adapting activity in channels adjacent to the test-channel is reduced,

(3) both these factors. Both factors would predict a flattening out of 

the decline in adaptation if the sweeps within the Gaussian filter remained 

constant. Some evidence for this can be seen in the curves of Chapter 3. 

Unfortunately, data for wider excursions was not collected.

The model is discussed in more detail in Chapter 9, as is a 

possible basis for F_ tuning.



80

CHAPTER 6

P - 1____ Introduction

The experiments reported in this chapter deal with elevations of 

FM thresholds by various adapting stimuli (Fig. 6 .1 ) at a number of 

carrier-frequencies.

FM adapting stimuli (Fig. 6.1c and d) consisted of upward- or down­

ward-going linear frequency sweeps separated by silent gaps. The experi­

ments were designed, in part, to test the effectiveness of these stimuli 

which have a number of advantages over the periodic-FM adapting stimuli 

employed in earlier chapters. Firstly, sweep extent (frequency deviation), 

duration and rate of change of frequency can be specified and manipulated 

without altering modulation-frequency or repetition-rate. Obviously, the 

sweep variables cannot be varied independently and a limit would be set on 

sweep duration consistent with maintaining a constant repetition rate (see 

Chapter 3). Secondly, the sweeps are comparable in form, frequency region 

and duration to some formant transitions of human speech (see Lehiste and 

Peterson, 1961). Though natural speech rarely contains rapidly repeated. 

Identical transitions the repetitive feature of the linear-sweep adapting- 

stimuli is similar to the stimulus regime of speech adaptation experiments 

with adapting stimuli consisting of rapidly repeated syllables (e.g. Bailey,

1973). if FM-channels are assumed to be involved in speech perception, it 

is useful to Know they respond to speech-like frequency transitions.

Thirdly, the sweeps occur in one direction of frequency change only allowing 

the directional specificity of adaptation effects to be studied with the 

appropriate test-stimuli.

The tone-burst stimuli (Fig. 3.1b) have the same characteristic 

as the FM-stimuli except for the frequency-sweeps. They act as a control 

stimulus for the feature-specificity of adaptation effects.



Fig. 6.1. Frequency-time plots of the adaptation interval stimuli.
(a) Pure-tone stimulus Cunadapted threshold).
Cb) Tone-bursts.
(c) Upward-going frequency sweeps.
(d) Downward-going frequency sweeps.
The duration of bursts on sweeps was 75ms and the repetition rate of 
stimuli Cb3 — Cd3 was 8 per second.
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s.Z Experiments with l i n e a r  sweeps; Sinusoidal-FM test^stimuU.

6.2,1 Methods

Test-stimuli were of 500 ms duration. The duration of the silent 

gaps was 100 ms (see Fig. 2.13. The FM test-stimulus consisted of sinu­

soidal FM with a modulation-frequency of 8 Hz. Three adapting-stimuli were 

used:

(a) unmodulated tone-bursts of 75 ms by
50 ms gaps, i.e. a cycle-time of 125 ms (Fig. 3bJ,

fhl tone-bursts with upward-going linear frequency sweeps.
Sweep ibureU duration was 75 ms, gaps 50 ms, i.e. a 
cycle time of 125 ms (Fig. 3c),

( c ) as in (b) but with downward-going frequency sweeps 
(Fig. 3d).

Unadapted thresholds were determined with a pure-tone within the 

adaptation interval (Fig. 3a).

•The adapting-stimuli had repetition-rates of 8 per seoond equal to 

that of the FM test stimulus. The value of centre-frequency (Fc> of the 

adapting-stimuli was also equal to that of the test-stimulus. This assumed

1 „x p the test-and adapting-stimuli were pro- that for a particular value of Fc the tesr F

u „oT tuned to an 8 Hz modulation-frequency and the cessed by the same channel tun

value of F .

ThI experiment was carried out at all four values of F0> i.e. 0.25, 

0.5, 1.0 and 4.5 KHz. The values of the frequency excursion and rate-of- 

change of frequency of the FM adapting-stimuli are shown in Table 3.1.

The values of ±dF were arbitarily chosen, the only qualification 

being that they produced large elevations of test thresholds. At 0.5 KHz 

the value of 131 Hz for RBG only produced small elevations so the value

. + VJG. This new value was used forWas doubled before the experiment

ir 0r,<- -Fnr 4.5 KHz most of the values chosen RBG in later experiments. Except

. n-F F used (see Chapter 3). were at or near the PMV for the val c



6.2.2 Results and discussion

Adaptation factors at the various values of Fc used are shown in

Fig. 6.2. Adaptation to up-, down-sweeps and tone-bursts are shown. Data

points are the means of three threshold estimates. Vertical bars are

standard deviations. The linear sweep adapting sweeps thus constitute

effective stimuli for FH-adaptation. Though these stimuli were used in

Chapter 3 and 4 these experiments were carried out at a later date to

those reported here. Linear sweeps are therefore an important stimulus for

the reasons discussed in the introduction to this chapter. the 0.5 KHz

sweeps for RBG produced smallF'elevations of threshold.

Of some interest is the finding that tone-burst stimuli adapt

J u  Tho Hata indicates a trend of increasing adapta-sinusoidal-FM thresholds. The data lnoicaL
, onmw psoecially in the data of RBG. No effecttion with increasing frequency, especially

was present at 0.25 KHz. This effect of tone-bursts is inconsistent with 

the feature-specificity of Fli adaptation reported by Kay and Matthews (1072, 

One would not expect an FM-channel to respond to. and be adapted by, tone- 

bursts. The effect is investigated further, later in this chapter.

6.3 f o m e n t s  with l l n . » B a g S L ¿ ? ^ "

Test-stimuli consisted of single linear frequency sweeps allowing

, „Miin mdinE of FM to be examined with the the possibility of direction-specific coding

linear sweep adapting-stimuli discussed 

6.3.1 Methods
Test-stimuli were of 62.5 ms duration. Gaps 1 and 2 were of 310 ms 

duration, gap 2 was of 537 ms duration (see lower diagram of Fig. 2.1,.

These values ensured the interval between adapting-stimuli was the same as

in the previous experiment and that any decay of adaptation during this

i  Th f m  test-stimuli were upward- and downward 
interval would be comparable. The F

T h e  e d a D t i n g - s t i m u l i  were identical 
going single linear frequency sweeps. The P



Fig. 6.2. Adaptation factors as a function of F with adapting-stimulus type as the 
parameter. The test stimulus was sinusoidal FM. The key is as follows:

• —  -• tone-bursts
•  ---• up-sweeps

■ ---- ■ down-sweeps

Ca) RBG tb) VJG
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to those used in the previous experiment except that the value of ±AF at 

0.5 kHz was increased to ±62.5 Hz for RBG. The experiment was carried out 

at 0.5, 1.0 and 4.5 kHz. The value of ? c of the test- and adapting-stimuli 

was equal. Unadapted thresholds were determined, as usual, with a pure- 

tone in the adaptation interval. Both Ss participated in the experiment.

6,3,2 Results and discussion

Adaptation factors to up-sweeps, down-sweeps and tone-bursts at the

three values of F are shown in Fig. 6.3. The left-hand graphs are the up- c
sweep test data, those on the right the down-sweep data. Data points are 

the means of three threshold estimates and vertical bars represent ±1 

standard deviation. Unadapted thresholds are reported and discussed in 

Chapter 8. The data indicate that only the FM adapting-stimuli with the 

same direction of sweep as the test-stimulus produce threshold elevations. 

For example, in the top left-hand graph of Fig. 6.3 (RBG/up-sweep test) 

both tone-burst and down-sweep adapting stimuli were ineffective, up-sweeps 

were. Thus support is provided for the existence of direction-specific 

adaptation effects. This is discussed in more detail in the discussion 

at the end of this chapter.

The fact the effect of tone-bursts on FM-thresholds disappears with 

single sweep test-stimuli at all frequencies suggest the test-stimulus 

must be repetitive for the effect to occur. Before discussing the effect 

in more detail two more experiments are reported.

6.4_____Examination of the effect of tone-bursts on sinusoidal-FM 
_ thresholds________.________________________________

This experiment was designed to ensure the effect of tone-bursts

was not an artifact related, for instance, to a single duration of bursts,

and to examine the robustness of the effect.



Fig. 6.3. Adaptation factors as a function of F with adapting-stimulus 
parameter. Test stimuli were single linear frequency sweeps 
Fig. 6.2.

(a) RBG, up-sweep test.
Cb] RBG, down-sweep test.
(c) VJG, up-sweep test.
(d) VJG, down-sweep test.

type as the 
Key as in
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6.4.1 Methods

The test-stimuli (sinusoidal-FH) and 2IFC procedure were identical 

to those of the experiment reported in Section 6.2.1. Adapting-stimuli 

were tone-bursts of 5, 10, 25, 50, 100 ms duration. Data for 75 ms tone- 

bursts were taken from the previous experiment (Section 6.2). The tone- 

burst repetition-rate was 8 per second equal to the test-stimulus modula­

tion-frequency. The experiment was carried out at 0.5, 1.0 and 4.5 kHz, 

i.e. the frequencies at which the effect was found in Section 6.2. Single 

threshold estimates at 0.25 kHz confirmed that no effect was present at 

this frequency consistent with the lack of effect at 75 ms (Fig. 6.2).

It was concluded that any effect at 0.25 kHz was too weak to warrant further 

investigation. Only RBG participated in the experiment.

6.4.2 Results and discussioji

Adaptation factors as a function of tone-burst duration with Fc as 

the parameter are shown in Fig. 6.4. Data points are the means of three 

threshold estimates, vertical bars represent ±1 standard deviations. All 

burst-durations except the lowest and highest values at 0.5 kHz produce 

elevations of sinusoidal-FH thresholds. Ths effect increases with increas­

ing F over the range of burst-durations examined. The elevations at 4.5 
c

kHz are of the order of those produced by some FM-stimuli. The data show 

a preferred duration of burst, especially at 4.5 kHz. The preferred dura­

tion at 4.5 kHz is 25 ms. at 0.5 and 1.0 kHz the preferred range of dura­

tion is between 40 and 60 ms. For the moment it is enough to note that the 

effect is reproducible over a range of burst parameters.

6.5 Effect of tone-bursts; Triangular-FM test-stimuli

It was found that the effect of tone-bursts disappeared when single 

linear sweep test-stimuli were used. One possibility for this is that the 

effect only occurs with repetitive test-stimuli. To test this triangular-



Plots of adaptation factor as a function of tone-burst duration for tone-
burst adapting-stimuli. F Is the parameter. The key is on the figure.c
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FM test-stimuli were employed where the number of cycles of the modulating- 

waveform, i.e. the number of repetitions, was varied.

6.5.1 Methods

The experiment was carried out at 1 KHz for RBG only. Adapting- 

stimuli were identical to those used in Section 6.2 at 1 KHz. The modula­

tion-frequency of the test stimulus was B Hz. The experimental variable 

was the number of cycles of the test-stimulus modulating-waveform. Number 

of cycles were 1, 2, 3, 4, 6 and 8. Unadapted and adapted thresholds were 

measured in each experimental condition. Table 6.2 summarises the test

conditions.

6.5.2 Results and discussion

Adaptation factors are shown in Fig. 6.5. Data points are the 

means of three threshold estimates. Vertical bars represent ±1 standard 

deviation. It can be seen that both up- and down-sweeps elevate the test 

thresholds at all the numbers of cycles used, and that the effect of sweeps 

is always greater than the effects of tone bursts.

The adaptation produced by sweeps is roughly equal in each test con­

dition and except for the 4-cycle test-stimulus no differences in adapta­

tion to up- and down-sweeps occurs. The present experiment at 4-cycles is 

identical to the experiment reported in Section 6.2, except for the differ­

ence in test-stimulus modulating-waveform. That the adaptation to both up­

end down-sweeps is marKedly lower than in the Section 6.2 experiment suggests 

the relationship between test- and adapting-sweep variables is of some 

importance in determining adaptation. This relationship cannot be of 

critical importance however, because in most studies of FM-adaptation, 

including this one, the test- and adapting-stimuli have very different

temporal characteristics.



Fig. 6.5. Adaptation factor as a function of the number of cycles of a triangular-FM 
test-stimulus modulating-waveform. Adapting stimulus type is the parameter. 
The Key is as follows:

tone-bursts 
up-sweeps 

down-sweeps
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The experiment confirms the role of test-stimulus repetition in 

determining the effects of tone-bursts. This effect increases as the 

number of cycles of the test-stimulus increases. A number of hypotheses 

concerning the basis of this effect are discussed in the next section.

6.6_____Summary and general discussion

The two main findings of this chapter are:

(1) the existence of directional-specific effects in FM- 
adaptation, and

(2) that the effect of tone-bursts without an FM component 
are related to the repetitive character of FM test- 
stimuli.

These two findings are discussed separately below.

(1) Directional-Specificity

Tha directional^specific data suggests the FM processing system is 

divided into two functionally separate channels, one coding upward-going 

frequency transitions, the other downward-going transitions. This speci- 

ficlty is in accord with neurophysiological evidence for units showing a 

specific or preferential response to a particular direction of frequency 

transition (e.g. Whitfield and Evans. 1965, see Chapter 1. Section 1.3). 

The data of Chapter 5 suggested adaptation was an after-effect of inhibi­

tion between channels tuned to both F0 and Fm. The tuning (frequency- 

selectivity) of adaptation effects was also a consequence of the range and 

strength of lateral inhibitory connections. Implicit in this model is the

n n t n u t  to a test stimulus determines threshold assumption that a channel s output to a

 ̂ , tortured bv adaptation. It follows that detectionand that this output is reduced Dy au H
fm stimuli bv frequency-selective of FM occurs after the processing of mi stimuax uy H y

channels. If it occurred before this stage of processing adaptation would 

not occur.
The additional factor of directional-specificity must now be 

incorporated into this model. Directional-specificity must be established
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before the frequency-selective stage of processing, i.e. the level at which 

adaptation occurs. If directional-specificity was established above this 

stage of processing, no directional-specific adaptation would be found.

It must be assumed that two separate directional-specific channels exist 

each with a frequency-selective stage of processing which is the locus of 

the adaptation mechanism.

Sinusoidal-FM can now be regarded as consisting of two functionally 

separate, non-interacting (from the point of view of adaptation) FM com­

ponents, upward-going transitions and downward-going transitions. Thus, in 

the experiment of Section 6.2 both directions of FM adapting sweep adapt 

sinusoidal-FM thresholds. It must be assumed the effect of up-sweeps is a 

result of adaptation of the up-specific channel only and, similarly, down- 

sweep adapting stimuli only affect the down-sweep component of the sinu­

soidal-FM test. It must also be assumed that the detection of sinusoidal- 

FM (and triangular-FM) is based on the activity in both direction-specific 

channels because both directions of adapting frequency sweeps elevate 

thresholds.

More recent experiments (Tansley and Regan, 1980) have confirmed 

the existence of directional-specific FM and AM adaptation effects (see 

Chapter 1). A psychophysical, ”black-box” model of the various stages of 

Processing of FM stimuli is presented in Fig. 6.6.

S 3 1_____ The Effect of Tone-Bursts

This effect is important because it violates the feature-specificity 

of FM adaptation. As mentioned in the introduction, other workers have 

found effects of FM on AM or vice versa (Kay and Matthews, 1972j Regan and 

Tansley, 1979 j Tansley and Regan, 1980). Two separate hypotheses for the 

effect are discussed below.

(a) Repetition hypothesis

The finding that the effect of tone-burst requires a repetitive



Fig. 6.6 A model of the processing of FM stimuli.
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test-stimulus may be regarded as evidence for an effect based on repetition 

per se and therefore a channel carrying repetition information. Repetition 

refers to any periodic Cin this study] time-varying attribute of a stimulus. 

Whether periodic repetition is a necessary condition for the effect requires 

experimental confirmation.

This interpretation of the data requires that the subject utilises 

repetition information in the detection of periodic-FM independently of FM 

information. Thus both FM and repetition information distinguish between 

the unmodulated and modulated test stimuli in experiments involving sinu- 

soidal-FM. Adaptation of the repetition channel with an appropriate 

stimulus would degrade the repetition information and the resultant loss 

of detectability of the test would require compensation in the form of an 

increased test threshold [expressed as ±AF). Obviously the effect would 

not occur with single sweep test-stimuli which are not repetitive.

Because all the FM adapting-stimuli used in the study are repetitive 

adaptation of periodic-FM test-stimuli by these stimuli must be regarded as 

involving two components, a repetition component and an FM effect proper.

This presents the greatest difficulty for the repetition hypothesis because 

unless the repetition channels display almost exactly the same F^ and Fq 

tuning properties as do FM channels (see Chapters 3-5) it would be impossible 

to explain facilitation effects and indeed any adaptation lower than a 

base-line adaptation set by the repetition component of the adapting-stimuli.

(b) AM hypothesis

There is evidence from a number of sources that FM and AM are pro­

cessed separately by the auditory system [Feth, 1972; Kay and Matthews,

1972; ZagorsKi, 1975,- Coninx, 1978a,b; Regan and Tansley, 1979; Tansley 

and Regan, 1980) [see Chapter 13. It is possible that the dependence of 

loudness upon frequency, as defined by the equal loudness contour (ELC) may 

provide the explanation of the effect of tone-bursts. Loudness fluctuations
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associated with test-stimulus FM may be coded by AM channels and con­

tribute to the detection of the test modulation. Tone-bursts, an AM 

stimulus, would adapt the AM channels carrying this information. The 

fact that the effect of tone-bursts disappeared with single-sweep and 

single-cycle triangular-FM could be explained by assuming the associated 

loudness fluctuations in these test-stimuli were too small to aid detection. 

Over a number of repetitions of a test-waveform, the fluctuations may become 

detectable and useful in the task of differentiating between the unmodulated 

and modulated test stimuli. If there is, for instance, a significant slope

to the ELC around the F of the test stimulus which produces loudnessc
fluctuations, then the adapting stimulus would also have a corresponding

AM component. It might be assumed that two adaptation components exist,

FM and AM, in adaptation with FM-stimuli. Loudness-fluctuations associated

with other frequency regions of sweeps might be conveniently ignored if AM

channels are assumed to be tuned to F . Unlike the repetition componentc

hypothesised above, an AM component of FM adapting-stimuli could be of 

little consequence, especially if one considers that the adaptation pro­

duced by the tone-bursts (essentially a 100% square-wave modulated AM 

stimulus) was usually quite small. The size of the effect must reflect the 

importance of the test AM component in detection as well as the effective­

ness of the AM adapting component. Against the AM hypothesis is the 

finding that the effect of tone-bursts is ’’tuned" to burst duration.

Changing the burst duration while holding repetition rate constant (Section 

6.4) does not alter the characteristics of the amplitude transitions nor 

the total number of transitions occurring in the adaptation interval. The 

AM variables that might be expected to influence adaptation of the test 

AM component are unchanged.

It is clear that the role of the ELC in FM adaptation needs to be 

examined to test the two hypotheses presented above. As a final point
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Coninx (1978a) found the slopes of the ELC to be steeper at higher fre­

quencies such that greater loudness fluctuations associated with FM were 

introduced. This is consistent with the finding that the effect of tone- 

bursts increases with increasing frequency (Fig. 6.4) and supports the AM 

hypothesis. Further support of the AM hypothesis comes from the experiment 

of Section 6.5 where adaptation was measured as a function of the number of 

cycles of the test-stimulus modulating-waveform. As predicted by the 

repetition hypothesis the tone-burst effect increased with the number of 

repetitions of the test. The adaptation to sweeps remained constant how­

ever when it would be expected to follow the rise in the tone-burst effect 

as the effectiveness of the sweep repetition component increased.

Directional specificity is examined further in the next two 

chapters.



TABLE 6.1

The values of the frequency-deviation ±AF (Hz] and rate of change 

of frequency (df/dt] of the FM adapting stimuli for all values of carrier- 

frequency (F ) used.

F (KHz] c
±AF (Hz] df/dt (Hz/sJ

0.25 ±50 1333

0.5
±31
±62.5 for VJG

833.3
1667

1.0 ±80 2134

4.5 ±187.5 5000



TABLE 6.2

Summary of test conditions. The time between adaptation inter­

vals in the 1 to 4 cycles conditions was 1.3s fas in earlier experiments). 

For th8 6 and 6 cycles conditions this time were 1.8s and 2.3s respectively.

Number of 
cycles

Test stimulus 
duration 

(ms)

Duration of 
gaps 1 & 3 

Cms)

Duration of 
gap 2 
(ms)

1 125 287.5 475

2 250 225 350

3 375 162.5 225

4 500 100 100

6 750 100 100

8 1000 100 100



CHAPTER 7 i

7.1 ____ Introduction

Directional-specific effects are examined with a number of dif­

ferent test- and adapting-stimuli.

7.2 ____ Repetitive linear sweep test-stimuli

7.2.1 Methods

Test-stimuli were either upward- or downward-going linear frequency 

sweeps. Sweeps were of 62.5 ms duration, separated by silent gaps of the 

same duration. The repetition rate was thus 6 per second. Four sweeps 

occurred in the 500 ms test interval. Adapting-stimuli were tcne-bursts, 

up-sweeps and down-sweeps (Fig. 6.1) of 62.5 ms duration and having the 

same repetition rate as the test-stimulus. The frequency-deviation of the 

FM adapting sweeps was ±80 Hz. The experiment was carried out at Fc = 1.0 

KHz for both Ss. The unmodulated test-stimulus consisted of tone-bursts 

of 62.5 ms duration and a repetition rate of 8 per second. The subject’s 

task is to decide which tone-burst stimulus contains frequency sweeps.

7.2.2 Results and discussion

Figure 7.1 shows histograms of mean adaptation factor (3 threshold 

stimulus) for each adapting—stimulus. The left hand figure shows the data 

for the up-sweep test, the right-hand the data for the down-sweep test.

For each pair of histograms at a particular adapting-stimulus, the left-hand 

histogram is the data for RBG and the right the data for VJG. This is 

true of every histogram presented in this chapter. The vertical bars are

±1 standard deviation.

The main finding of the experiment confirms the existence of 

directional-specific adaptation, i.e. only the adapting-stimulus with the 

same direction of frequency sweep as the test is an effective adapting- 

The effects of tone-bursts reappears apparently confirming thestimulus.



Fig. 7.1. Histograms of mean adaptation factor for various adapting-stimulus 
conditions. Test stimuli were upward- or downward-going repetitive 
linear frequency-sweeps with a repetition-rate of 8 per second 
equal to that of the-adapting-stimuli. The left-hand histogram 
of each pair is the data for RBG, the right the data for VJG.
This is true for every figure in this chapter. F =1.0 KHz. 
Vertical bars are ±1 standard deviation. c
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repetition hypothesis in that the effect was not present with single linear 

sweeps but is with repetitive linear sweeps. However, because the unmodu­

lated test interval is also repetitive, repetition information would not 

aid the task of detecting the FM test-stimulus. The experiment with 

repetitive linear sweeps must be done in this way because tone bursts with 

or without FM would be instantly distinguished from an unmodulated, con­

tinuous comparison. The experiment provides evidence against the repetition 

hypothesis. Even if repetition information was assumed to have a role, the 

repetition hypothesis could not explain the fact that FM-sweeps in the 

opposite direction do not adapt thresholds when they would be assumed to 

have a repetition component as effective as the tone-burst adapting-stimulus.

Recently, Tansley and Regan (1980) have confirmed the existence of 

directional-specific FM adaptation effects using similar test-stimuli.

These were 500 ms ramps spaced apart by 200 ms gaps where one test-interval

contained 7 ramps.

7.3 S a w t o o t h - m o d u l a t e d  t e s t  s t i m u l i

Sawtooth-FM might be expected to be a suitable stimulus for 

demonstrating directional-specific adaptation effects. Rutland (1976) 

found sawtooth-AM stimuli produced AM illusions consistent with the existence 

of directional-specific AM channels as found by Tansley and Regan (1980).

Upward- and downward-going sawtooth-FM test stimuli were used in 

conjunction with upward- and downward-going FM sweep adapting-stimuli 

(Fig. 6.1). The direction of sawtooth-FM refers here to the sweep portion

of the waveform.

7.3,1 Methods

The modulation-frequency of the sawtooth-FM test stimulus was 8 Hz. 

Adapting-stimuli were FM-sweeps (duration * 62.5 msj repetition-rate = 8 

per second). Experiments were carried out at 0.5 kHz for RBG and 0.5 and
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1.0 kHz for VJG. The adapting frequency-deviation was ±62,5 Hz at 0.5 kHz 

and ±80 Hz at 1.0 kHz.

7.3.2 Results and discussion

Histograms of mean adaptation factor for the adapting-stimulus con­

ditions are shown in Fig. 7.2. The left-hand graph shows data for the up- 

sawtooth test condition, the right-hand graph the data for the down-sawtooth 

condition. Both the 0.5 and 1.0 kHz data are presented in the figure.

Three threshold estimates were made in each condition and means and standard 

deviations calculated.

No directional-specific effects are found with sawtooth-FM test 

stimuli as both up- and down-sweep adapting-stimuli elevate thresholds in 

each test-stimulus condition. This suggests sawtooth-FM is not a su'dcU^ 

stimulus for research into directional-specific FM adaptation. It is 

possible, however, that the effects of FM-sweeps upon sawtooth-FM with 

sweeps in the opposite direction is due to some other component, AM or 

repetition features, of the test- and adapting-stimuli. Though this would 

mean that FM-adaptation was small or non-existent in some stimulus condi­

tions the possibility was tested with single linear frequency-sweep test 

stimuli and sawtooth-FM adapting-stimuli.

7.4 Single sweep test-stimuli; sawtooth-FM adapting-stimuli

If the lack of directional:specificity found in the previous section 

were due to an AM Cor repetition) component of the test- and adapting- 

stimuli, then this influence would be removed by using single sweep test- 

stimuli (see Chapter 6) revealing "pure-FM" adaptation. Sawtooth-FM was 

used as the adapting-stimulus. If it is an adequate stimulus for directional- 

specific adaptation, then up-sawtooth would be expected to elevate up-sweep 

test thresholds only. Similarly, down-sawtooth would only elevate down- 

sweep thresholds.



Fig. 7.2. Histograms of mean adaptation factor for various adapting-stimulus 
conditions. Test-stimuli were upward- or downward-going sawtooth 
FM, where direction refers to the sweep component of waveform.
Test modulation-frequency was 8 Hz, adapting repetition-rate 8 
per second. F * 0.5 kHz (RBG and VJG) or 1.0 kHz (VJG). Vertical 
bars are ±1 standard deviation.
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7.4.1 Methods

Test-stimuli were 62.5 ms single linear frequency-sweeps as used in 

Chapter 6. Adapting-stimuli were up- or down-sawtooth-FM where ±AF was 

±62.5 Hz at 0.5 KHz and ±60 Hz at 1.0 KHz. The modulation-frequency of 

the sawtooth-FM was 8 Hz. Both Ss participated in the experiments at 

0.5 KHz, only VJG at 1.0 KHz.

7.4.2 Results and discussion

Histograms of the adaptation factor for each adapting condition 

are shown in Fig. 7.3. The left-hand figure shows the data for the up-sweep 

test condition, the right-hand the data for the down-sweep test condition. 

Three threshold estimates were made in each experimental condition and the 

means and standard deviations calculated.

Once again jno. directional-specific effects were found. On the 

basis of earlier experiments with single sweep test-stimuli, no contamina­

tion of adaptation by other stimulus components could have occurred. The 

data suggest that not only the sweeps of sawtooth-FM, but also the extremely 

rapid transitions between sweeps, are effective FM adapting-stimuli. For 

example, because down-sweeps do not elevate up-sweep thresholds (Sections 

6.3 and 7.23 the effect of the down-sawtooth adapting-stimulus upon single 

up-sweep thresholds must be due to the rapid upward transitions of this 

particular stimulus. To test this possibility, square-wave-FM adapting- 

stimuli were used in conjunction with the test-stimuli of this section.

7.5 Single sweep test-stimuli : square-wave-Fn adapting-stimuli

This combination of test- and adapting-stimuli allows the adapting 

effscts of rapid FM transitions to be examined.

7.5,1 Methods

Square-wave-FM adapting-stimuli had a frequency-deviation of ±62.5 

Hz at 0.5 KHz (RBG and VJG) and at ±80 Hz at 1.0 kHz (VJG). Their modulation-



Fig. 7.3. Histograms of mean adaptation factors for up- and down-sawtooth 
adapting-stimuli at 0.5 KHz CRBG and VJG) and 1.0 KHz (VJG). 
Test-stimuli were single linear frequency sweeps (up or down). 
The modulation-frequency of the adapting stimuli was 8 Hz. 
Vertical bars are ±1 standard deviation.
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frequency was 8 Hz. Test-stimuli were identical to those of the previous 

section.

7.5,2 Results and discussion

Adaptation factors at 0.5 and 1.0 KHz for the two test conditions 

are shown in Fig. 7.4. Three threshold estimates were made for each con­

dition and means and standard deviations calculated. Square-wave-FM 

elevates thresholds for both directions of test sweep, confirming that the 

rapid frequency transitions of square-wave and sawtooth-FM are effective 

adapting-stimuli.

7.6_____Square-wave-FM test-stimuli

7.6.1 Methods

To examine further the role of rapid frequency transitions in FM- 

adaptation, square-wave-FM test-stimuli were used with up-sweep and down- 

sweep adapting-stimuli. Adapting-sweeps had durations of 62.5 ms and a 

repetition-rate of 8 per second. Adapting frequency-deviation was ±62.5 Hz 

at 0.5 KHz and ±80 Hz at 1.0 KHz (VJG only). The test-stimulus was a 

single cycle of an 8 Hz square-wave modulating waveform having a duration 

of 62.5 ms. Tone-bursts with a repetition rate of 8 Hz and a burst dura­

tion of 62.5 ms were used as a control stimulus.

7.6.2 Results and discussion

Figure 7.5 shows histograms of the adaptation factor'for each 

adapting-stimulus condition. Three threshold estimates were made in each 

condition and means and standard deviations calculated. Both directions 

of FM-sweep elevate the test threshold, tone-bursts do not. The experiments 

confinn that the rapid frequency transitions of square-wave and sawtooth-FM 

are processed by the same channels as other FM stimuli. For this reason, 

sawtooth-FM is not a suitable stimulus for research into the directional- 

spBcific processing of FM stimuli.



Fig. 7.4. Histograms showing the effects of a square-wave-FM adapting- 

stimulus (F = 8 Hz) upon single sweep thresholds at 0.5 KHz 
(RBG and VJG) and 1.0 kHz (VJG). Vertical bars are ±1 

standard deviation.



sweep
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7.7_____Summary and discussion

Directional-specificity was established with repetitive linear 

frequency-sweeps but not sawtooth-FM. This is because sawtooth—FM con­

tains rapid frequency transitions in the opposite direction to the sweep 

component of the waveform. Because both upward- and downward-going adapting 

sweeps elevate sawtooth thresholds, sawtooth-FM, like sinusoidal-FM, must 

contain two functionally separate FM components, both contributing to the 

detectability of the test FM. This is also true of square-wave FM. The 

adapting effects of these rapid transitions was confirmed by using sawtooth 

and square-wave adapting-stimuli with single sweep test-stimuli. The role 

of rapid transitions in the detectability of test FM was confirmed with 

square-wave FM test-stimuli.

The fact that the system responds to rapid transitions confirms 

that the tuning of FM channels to rate-of-change of frequency is rather 

broad. However, the test-stimulus characteristics do determine adaptation 

to some extent. Thus, in the date of Fig. 7.1, 7.2 and 7.5, the adapting- 

stimulus characteristics are constant and the differencee in adaptation 

factors between the figures for a particular adapting-stimulus must be due

to the test stimulus.

The effect of the context of the rapid frequency transitions can

, J 7 4 Here, test-stimuli are single sweeps and the
be. seen in Fig. /•J anQ ' *

adapting-stimuli are sawtooth-Fd (Fig. 7.3) or square-wave-Fd (Fig. 7.4).

The only difference between the experiments from the point of view of the 

rapid transitions is their context. All other relevant test- and adapting

+.=„+• Thus the effects of down-sawtooth upon the up- variables are constant, mu
.  ̂, «-4 7 a ip due to the upward-going rapid transition of thesweep test in Fig. ■Li3

sawtocth-FM. The effect of square-wave-Fd upon up-sweep test thresholds 

in Fig. 7.4 must also be due to the upward-going rapid transition. The 

large difference in adaptation factor between these two conditions reveals



Fig. 7.5. Histograms of mean adaptation factor for various adapting-stimuli 
at 0.5 KHz (RBG and VJG) and 1.0 kHz CVJG) (Fm = 8 Hz}. The test- 
stimulus was a single cycle of an 8 Hz square-wave modulating 
waveform with a duration of 62.5 ms. Vertical bars are ±1 
standard deviation.
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the effect of adapting sweep context. Similar differences also exist in 

the effects of downward-going rapid transitions. The data indicate that, 

in general, rapid transitions are more effective in the context of square- 

wave FM than sawtooth-FM. Rapid transitions are discussed in more detail

in Chapter 9.

The data of Fig. 7.3 also show that the sweep component of sawtooth- 

FM is always a better adapting stimulus than the rapid transition component. 

Thus, for a particular direction of test sweep the greatest adaptation is 

found when the sweeps of the adapting sawtooth-FM are in the same direction. 

When sweeps are in the opposite direction and adaptation is due to the rapid 

transitions, the effect is reduced. In the context of square-wave-FM, 

these rapid transitions equal sweeps in their effectiveness.

Green and Kay C1973j 1974) have found both square-wave FM and AM 

to be effective adapting-stimuli. The effectiveness of rapid amplitude 

transitions means a simple explanation of the Rutland (1976) AM-illusion 

is impossible. In this experiment a oonstant amplitude test-stimulus 

appeared to have a changing amplitude following exposure to sawtooth-AM 

adapting-stimuli. The apparent change in direction was in the opposite 

direction to the adapting sweep components and continuous (l.e. sawtooth 

period was not represented in the illusion). If rapid transitions can 

also adapt AM channels, then the explanation of the illusion in terms of 

the relative outputs of directional-speclfio channels is impossible unless 

a dissociation between mechanisms involved in threshold elevation and 

illusions exists. However, if rapid transitions of amplitude are less 

effective than sweeps in the context of sawtooth-AM, as in the case for 

sawtooth-FM (above), the sweep adapted ohahnel would be the more adapted 

and the output of the opposite channel would be relatively higher, thereby 

producing the illusion. A stronger illusion would be expected if AM sweeps 

separated by silent gaps were the adopting stimulus.
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Tansley and Regan (1980) is a foot-note to their paper criticise 

Gardner and Wilson (1979) for not using an AM control stimulus when looking 

for directional-specific FM effects. Given the effectiveness of rapid 

amplitude transitions (Green and Kay, 1974) the tone-burst stimulus would 

provide such a control. No adaptation to this stimulus occurred (also see 

Chapter 6 experiments with single sweep FM test-stimuli) from which it can 

be concluded no AM adaptation of FM thresholds occurred, i.e. the possibility 

of cross-adaptation .was. excluded.
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CHAPTER 8

6,1_____Introduction

This chapter is concerned with unadapted thresholds which are com­

pared with values of threshold from other studies. The relationship 

between threshold and test-stimulus duration is also examined.

8.2 Unadapted thresholds: periodic-FM

Most periodic-FM test-stimuli were sinusoidal-FM, however, triangular-

FM, sawtooth-FM, repetitive linear frequency-sweeps and square-wave-FM were

also used. Thresholds expressed as ±AF/Fq% are presented in Table 0.1.

Figure 8.1 shows B Hz sinusoidal-FM thresholds as a function of Fc. The

shape of the curve is, in general, in accordance with the findings of other

workers (Shower and Biddulph, 1931; Jestaedt and Sims, 1975; Fasti, 1978].

Figure 8.2 shows the same data together with data from other studies using

8 Hz periodic-FM at values of Fc used in this study CFeth. Wolf and Bilger,

1969; Kay and Matthews, 1972; Jestaedt and Sims, 1975]. Thresholds are of 
o f '

the same order\as''those found by these studies.

8.3 Unadap^d thresholds: single linear frequency-swe_e_ps

Figure 8.3 shows values of threshold for both upward- and downward- 

going single linear frequency-sweeps of 62.5 ms duration as a function of 

Fc. A similar function to that for sinuscidal-m is found. The threshold 

for down-sweeps is markedly higher than that for up-sweeps for both Ss 

(Table 8.2). Values of threshold are within the range found by other 

workers at similar sweep durations (Nabelek and Hirsoh, 1969, Tsumura. Sons 

and Nimure, 1973). Arlinger et al (1977) report linear sweep thresholds to 

be no greater than those for sinusoidal-FII unlike the present study where 

linear sweep thresholds ore always in excess of sinusoidal-FH thresholds.

ThBy also failed to find differences between up- and down-sweep thresholds 

at 1.0 kHz. Tsumura, Sons and Nimura (1973) found a small difference in



Fig. 8.1. Unadapted thresholds for 8 Hz sinusoidal-FM as a function of F for RBG
c

(solid lines) and VJG (dotted lines). The upper graph shows thresholds

expressed as ±AF/F %, the lower thresholds as ±AF (Hz).c
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Fig, 8.2. Unadapted thresholds, expressed as ± h f/F %, for 8 Hz sinusoidal~FM as

a function o f  F with thresholds from other studies for comparison.
«

The solid line is data for RBG and the dotted line is data for VJG. 

The key is as follows!

■ e-d Jestaedt and Sims (19753 8 Hz sinusoidal-FM at 0.25 
and 1.0 kHz, Four subjects ia-d3. 2IFC procedure.

O Kay and Matthews (19723 8 Hz slnusoidal-FM, 0,25 KHz. 
Method of adjustment.

★ Feth et al (19693 8 Hz sinusoidal-FM at 1.0 kHz, 
Method of adjustment.

▼ Feth et al (19893 8 Hz triangular-FM at 1.0 kHz, 
Method of adjustment.

Differences in paradigm which introduce an additional factor when comparing 

these thresholds Case Jestaedt and Sims, 19753.
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threshold but in the opposite direction to that found here. An explanation 

of these discrepancies may be derived from an examination of the stimuli 

employed by Arlinger et al (1977) and Tsumura, Sone and Nimura (1973).

These stimuli consisted of frequency transitions with constant frequency 

segments at the initial and final frequency of the transition. For some 

subjects the task might become one of detecting the frequency difference 

between steady-state segments. This might account for the size of Arlinger 

et al's (1977) thresholds which are consistent with pitch DLs found with 

steady-state stimuli (e.g. Moore, 1973j*;Wier, Jestaedt and Green, 1976).

The fact that with similar stimulus configurations the thresholds of Tsumura, 

Sone and Nimura (1973) and Nabelek and Hirsch (1969) are so much larger than 

Arlinger et al's (1977) may be explicable when one considers the finding of 

Fasti (1978) that for pulsed-tone DLs, individual differences of up to a 

factor of 27 exist compared to a factor of 4 for periodic-FM.

It would seem that isolated single frequency sweeps are the best 

stimuli for measuring the frequency DLs of frequency transitions.

8,4____ Directional-specif icity

From the relationship between up- and down-sweep thresholds (Fig. 

8.3) it seems that the sensitivity of the down-channel is less than the up- 

channel. In other words the down-sweep test-stimuli must have a higher ±AF 

(with constant duration) in order to induce the threshold level of activity 

in FM-channels. It follows that when up- and down-sweeps have the same 

values of ±AF and duration the induced activity, determined by these two 

variables (see Chapter 3 and Appendix C), is greatest in the up-channel.

Recently, Collins and Cullen (1978) have found up-sweep stimuli 

are detected at lower intensities than down-sweep stimuli, a difference in 

sensitivity in the same direction as that found for FM thresholds in this 

study. At 1.45 kHz the difference was only found for stimulus durations



Fig. 6.

sweeps as a function of F . See figure for key.c

Unadapted thresholds, expressed as ±AF/Fc%, for 62,5 ms up- and down-





below 35 ms at 0.45 KHz, however, the difference extended beyond 90 ms.

To account for this difference in sensitivity the authors discussed a

model in terms of the temporal distribution of displacement maxima on the

basilar membrane. These would be more dispersed for falling glides leading

to a smaller number of afferent fibres responding within a certain time

compared to rising glides where less dispersion would occur. The effects

would be greater at lower frequencies and the difference is afferent

activity to rising and falling glide stimuli would occur over a greater

range of stimulus durations. If this mechanism played a role in the

differences between up-sweep (glide} and down-sweep FM thresholds the

difference in threshold might be expected to decrease with increasing F .c
As Table 8.2 shows the relative difference between thresholds does in fact 

decrease at higher values of F . It is possible, therefore, that the 

mechanism determining differences in sensitivity between up- and down-sweep 

stimuli has a role in the difference in FM thresholds between these stimuli. 

The afferent activity generated by the sweep stimuli must provide the input 

to FM-specific channels in which case if ±AF and duration are equal up-sweep 

activity might be expected to be greater than down-sweep activity. This 

model is only applicable to short duration sweep stimuli whereas Fig. 8.5 

shows the difference in threshold between up- and down-sweeps-is present 

over a wide range of durations at 1.0 KHz. It must also be noted'that 

Collins and Cullen (1978} used glides of 500 Hz much wider than the FM 

threshold values of this study.

It is possible that the difference in threshold is a property of

the detection stage of the Ffl processing system (see Fig. 6.5) rather than

reflecting a peripheral mechanism before FM specificity is established. 
ir\ “tV>ne*Vic>lel

If the difference's established below FM specific channels then the findi: 

that adaptation to up-sweeps is usually greater than adaptation to down- 

sweeps (Fig. 3. t Fig. 6.3j Fig. 6.4) is easily explained in terms of the
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difference in activity generated by these stimuli ir^FM-channels. If the 

difference in threshold reflects a property of the detection stage then 

up- and down-sweep adaptation might be expected to be equal, a situation 

occurring less frequently than differing adaptation. Whatever the mechanism 

the concept of differing sensitivities of up- and down-channels to parti­

cular sweep parameters must be introduced to account for equal or greater 

down-sweep adaptation if a pre-FM-specific mechanism is involved or 

differing adaptation if the detection stage alone determines differs in 

threshold. As Appendix C shows, the relationship between up- and down-sweep 

adaptation changes as a function of sweep duration (and therefore rate-of- 

change of frequency) when ±AF is constant at 1.0 kHz. Though FM-channels 

must be broadly tuned to df/dt, it is possible that these broad tuning

characteristics differ between up- and down-channels as a function of F .c

Sawtooth-FM produces some interesting problems, in that up-sawtooth 

thresholds are lower than down-sawtooth thresholds (Table 8.1). If it were 

not known that the rapid frequency transitions of these stimuli also con­

tributed to the detectability of sawtooth-FM (Chapter 7), then the difference 

in threshold would not be surprising given the relationship between single 

sweep thresholds of different direction. However, the presence of the rapid 

transitions in the modulation waveform would be expected to decrease or 

remove this difference in threshold between the two sawtooth waveforms.

It must be assumed that rapid transitions contribute less to detectability 

than the sawtooth sweep. This is supported to some extent by the finding 

that adaptation produced by the rapid transitions of sawtooth-FM is always 

less than adaptation to a sawtooth-sweep in the same direction (e.g. the 

difference between up-sawtooth and down-sawtooth adaptation of up-sweep 

thresholds in Fig. 7.3). As discussed in Chapter 7, rapid transitions in 

sawtooth-FM are less effective adapting-stimuli than identical transitions 

in square-wave-FM. In the context of sawtooth waveforms, their contribution
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to detectability might also be reduced. In a situation where sweeps and 

rapid transitions are presented together the FM channels may respond 

preferential to sweeps with a greater likeness to formant transitions.

8.5 The relationship between unadapted-threshold and test stimulus 
 duration___________________________________ ___________

8.5.1 Methods

The main body of the experiment was carried out at 1.0 kHz with

triangular -FM, single up-sweep and single down-sweep thresholds. Experiments

were also carried out at 0.25 and 0.5 kHz with 8 Hz triangular-FM. Only

one subject, RBG, was used. At 1.0 kHz experiments with triangular-FM

were done with values of F of 4, 8 and 16 Hz. The experimental variablem
was the duration of the modulated test interval, the duration of the 

unmodulated interval being adjusted in each experimental condition to match 

this value. Adjustments in the duration of the silent gaps were made for 

test durations below 500 ms to keep the overall duration of the test phase 

constant. Above 500 ms the duration of the silent gaps was set at 100 ms. 

Test-stimulus and silent gap durations are given in Table 8.3. Durations 

of 62.5 ms were used for sweep only, 1000 ms for triangular-FM only.

8.5.2 Results and discussion

Triangular-FM thresholds are shown in Fig., 8.4 and 8.5, sweep thres­

holds in Fig. 8.6. All thresholds are the means of three estimates. The 

curves show an exponential relationship between threshold and test-stimulus 

duration such that threshold decreases as duration increases. A time con­

stant of 400 ms can be derived from the curves. At 1.0 kHz the curves for 

triengular-FM at different values of Fm are almost identical indicating 

that the overall duration of the test-stimulus and not the number of cycles 

of the waveform within the test interval determines periodic-FM thresholds. 

The difference in threshold between up- and down-sweeps is preserved over 

the range of stimulus durations used.



as a function of test-stimulus

duration for triangular-FM at 0.5 and 1.0 KHz and for values of F of 4, 8
m

and 16 Hz at 1.0 KHz. See figure for Key.

Fig. 8.4. Unadapted thresholds, expressed as ±AF/F %,c
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as a function of test-stimulus

duration for 8 Hz triangular-FM at 0.25 KHz. See figure for Key.

Fig. 8.5. Unadapted thresholds, expressed as ±AF/F %,c
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The time constant derived from the curves can be regarded as the 

integration time of the detection stage of FM-processing. The figure is 

larger than that found for the detection of FM-stimuli, as opposed to FH, 

by Collins and Cullen (1978) and most other estimates of integration time 

for auditory stimuli. The value of the constant is independent of carrier- 

frequency. If, as seems likely from Chapter 3 and Appendix C, the area 

under the test-stimulus modulating waveform or sweep (the "FM-energy") 

determines threshold, then the data show that only the "energy" within the 

first 400 ms of the stimulus is integrated and determines threshold.



TABLE 8.1

Unadapted thresholds expressed as ±AF/Fc% for periodic FM stimuli used 
in this study______ ______________________________________________

Stimulus and 
duration

F t  Hz] F (Hz)m c
Subject Mean

Threshold
(±AF/F %) c

Sinusoidal-FM 8 0.25 RBG 0.91
500 ms 8 0.25 VJG 0.716

8 0.5 RBG 0.123
8 0.5 VJG 0.09
8 1.0 RBG 0.123
8 1.0 VJG 0.077
8 4.5 RBG 0.36
8 4.5 VJG 0.473
10 0.25 RBG 0.93
10 1.0 RBG 0.12
12 1.0 VJG 0.07

Sawtooth-FM 
500 ms

UP 8
8
e

0.5
0.5
1.0

RBG
VJG
VJG

0.092
0.103
0.093

DOWN 8
8

0.5
0.5

RBG
VJG

0.206
0.18

8 1.0 VJG 0.158

8 1 n RBG 0.098
Repetitive UP I ■ u

1 n VJG 0.102
linear sweeps 8 l • u

a n RBG 0.183
500 ms DOWN 8

8
i • u 
1.0 VJG 0.168

o 1 0 RBG 0.12
Triangular-FM 8

500 ms

Square
o 0 5 RBG 0.66

-wave-FM 6
n 5 VJG 0.58

62.!5 ms 8
8 1.0 VJG 0.62



TABLE 8.2

Thresholds expressed as ±AF/F % for single-sweep test stimulic

CSee Figure 8.3)

(kHz)
UP

RBG
DOWN DOWN

UP UP
VJG
DOWN DOWN

UP

0.25 0.96

0.5 0.65 1.53 2.35 0.56 1.25 2.23

1.0 0.88 1.5 1.7 0.82 1.53 1.86

4.5 3.13 3.8 1.21 2.9 3.6 1.24



TABLE 8.3

Durations of tsst-stimuli (triangular-FM, single up-sweeps, single down- 
sweeps) and silent gaps used in the experiment reported in Section 8.5.

Test stimulus 
duration 

(ms)

Duration of 
gaps 1 and 3 

(ms)

Duration of 
gap 2 
(ms)

62.5 319 537

125 287.5 475

250 225 350

375 162.5 225

500 100 100

750 100 100

1000 100 100
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CHAPTER 9; DISCUSSION AND SUMMARY

9.1 Background to the thesis

The overall plan of the thesis was to provide insight into the 

auditory processing of complex stimuli and provide a link between con­

ventional psychoacoustical research and speech processing. The experiments 

and models are firmly planted in theories of pattern recognition through 

feature analysis, the aim of the experiments being to provide evidence for 

feature analysis in auditory processing. The success of this approach in 

the investigation of the visual system, the promising results of Kay and 

Matthews (1971, 1972) and the use of pattern recognition theories of pitch 

processing (Terhardt, 1974bi Wilson, 1974) made the investigation quite 

attractive. Selective adaptation techniques provide the best existing 

psychophysical tool for the study of feature analysis allowing the 

experimenter to examine the part of the auditory system concerned with the 

feature in question. What is examined is the subjects processing and 

detection of FM as a distinct feature of FM stimuli. The test stimulus, 

or more precisely, the test modulation, can be considered as the probe 

introduced into channels specific for FM. The unadapted threshold

gives the base-line measure of the system's sensitivity to FM. Elevations 

of threshold after exposure to adapting stimuli reflect changes in state of 

FM-channels measurable as changes in sensitivity to test modulations.

9.2 Main findings

These are as follows:

(a) The relationship between adaptation factor and frequency- 

deviation (±AF) found in Chapter 3. This is consistent with the existence 

of a Gaussian filter in the carrier-frequency (F ) domain. ExcursionsU

beyond the filter resulted in a decline in adaptation due to

lateral inhibitory side-bands of the filter. For values of ±AF less th£-
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or equal to the effective filter bandwidth, a quantitative description of 

adaptation was provided by the integral of the modulating-waveform. This 

accounted for the rise in adaptation with increasing ±AF of sinusoidal-FM 

transitions of constant duration (Fig. 3.1). This model was tested and 

confirmed by using linear-sweep adapting stimuli of constant duration and 

variable ±AF (Fig. 3.6). Thus when the duration of a transition is constant, 

linear relationship exists between adaptation factor and adapting ±AF. The 

number of repeats (overall duration) of an adapting stimulus must also be 

an important variable. For instance, using small frequency deviations 

Regan and Tansley (1980) found much larger adaptation factors than those 

found in the present study with comparable stimuli. Regan and Tansley (1980) 

adapted for 20 minutes however.

(b) Large differences between Gaussian bandwidths, which can be

considered as a measure of the F -selectivity of the system, and F tuning-c c

curves were found in Chapter 4. On the basis of the results of Chapter 5 

concerning the mechanism of adaptation the difference was consistent with 

a two-stage model of Fc-selectivity in FM-channels. The wider Gaussian 

bandwidths represent the selectivity of the system at the input stage, i.e. 

the range of frequency-tuned (probably direction-specific) channels (or 

fibres) activating a particular channel at the frequency-selective level 

(Fig. 6.6). The closeness of Gaussian bandwidths to critical bandwidths 

and the similar functions with respect to frequency (Fig. 3.9) suggest they 

are measures of general auditory frequency selectivity based on a common 

mechanism. The lateral inhibitory side-bands of the Gaussian filter could 

represent processes at this level of selectivity analogous to 'lateral 

suppression" effects in masking (Houtgast, 1972j 1974j Shannon, 1976f Terry 

and Moore, 1977). Alternatively, it may represent the activation of 

"releasing" channels at the frequency-tuned channel level. Tuning-curves 

represent a second stage of frequency selectivity at the level at which
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adaptation occurs. They represent the range of FM-channels having an 

adapting influence upon the test channel where adaptation is an after­

effect of prolonged inhibition of a channel by adjacent channels. The 

bandwidth of frequency selectivity revealed by tuning-curves is rather 

narrow and better than measures of pure-tone frequency selectivity as 

revealed by critical-bands ( S c h a r f, 1971). Neurophysiological data 

(Whitfield and Evans, 1965) shows that the opposite is true in the case of 

FM-specific neurones where wider bandwidths are usually found.

(c) As discussed above the mechanism of adaptation was found to be

lateral-inhibitory connections between tuned-channels in both the F andc

Fm domains. The range of adapting inhibitory connections determined both

F and F tuning-curve bandwidths. Facilitation effects were consistent c m
with an "inhibition of inhibition" or "releasing” effect produced by 

channels not directly connected to the test channel. The visual precedent 

of the experiments of Chapter 5 (Dealy and Tolhurst, 1974) had supporting 

neurophysiological evidence for inhibition between feature detectors (e.g. 

Blakemore and Tobin, 1972). No such data exists to support the auditory 

model. However, specific predictions are generated concerning interactions 

between, for example, Fm tuned neurones in the auditory cortex of the cat 

(Jolley, cited in Evans, 1974). This level of processing, referred to as 

the frequency-selective level, can be considered as a two-dimensional array 

of tuned channels defined by preferred ? c and F^. Tuning-curves as measured 

must represent the resultant function of a complex of inhibitory inter­

actions at this level.

(d) The existence of direction-specific adaptation points to a 

division of FM-channels into two major sub-channels below the level at 

which adaptation occurs. It was necessary to assign each direction-specific 

channel a separate frequency selective level of processing (Fig. 6.6). 

Directional-specificity is the fundamental division or critical-boundary



108

within FM-specific channels. The immunity from cortical ablations of the 

discrimination of rising from falling sweeps in the cat (Kelly and Whitfield. 

1972) is consistent with the early establishment of direction-specificity 

in sensory pathways. This specificity might arise from an exploitation of 

the direction preferences of neurones at lower levels of the auditory path­

way (see Section 1.3.1). At higher levels direction-specific rather than 

preferential neurones are found.

(e) The fact that adaptation affects test thresholds means the

test modulation is processed in both direction-specific and F - and F -c m
selective channels before being detected. The threshold in these terms is 

the rise in output of a particular channel or channels in the array that 

can be detected at the measured performance level. Thus detection of test 

modulation and the identification of supra-threshold FM is based on excita­

tory activity in FM-channels, the selectivity of adaptation and adaptation 

itself are determined by inhibitory processes. The integration time of the 

detection stage was found to be 400 ms and to be independent of F .

A number of inconsistencies of the empirical data with the model 

exist. These are as follows:

(a) Cross-adaptation of FM-thresholds by AM stimuli occurs, as 

Found by other workers (see Section 1.4.1). This is inconsistent with the 

feature-specificity of FM-channels. The work of Coninx (1978a,b) suggests 

a role for the equal loudness contour (ELC) in these cross-adaptation 

effectsj the effect of tone-bursts increases with Fc consistent with the 

steeper slopes of the ELC at higher frequencies found by Coninx (1978a,b).

(b) The model describing the relationship between the integral of
l

the modulating waveform and adaptation would predict increases in adaptation 

with increasing duration of frequency sweeps. However, the concept that 

adaptation rises indefinitely with sweep duration (limited of course by 

the need to maintain a constant repetition rate) is rather simple and not

V



verified empirically. In the 0.25 kHz data of Appendix C, adaptation levels 

off after 50 ms with a slight decrease occurring for down-sweeps as dura­

tion increases. In the 1.0 kHz data the adaptation to down-sweeps is 

roughly constant over a range of durations. Differences in the form of 

the functions exist between up- and down-sweeps especially at 1.0 kHz.

Thus the temporal factors of the sweep are important and differences exist 

between up- and down-channels. In Fig. 3.6.6 adaptation to 1600 Hz/s 

sweeps was either equal or less than 2000 Hz/s sweeps. The model would 

predict higher adaptation at 1600 Hz/s because the sweep durations are 

larger for each value of ±AF below the filter bandwidth.

The response of the system, as measured by adaptation, shows dis­

tinct preferences for the temporal characteristics of FM sweeps. This is 

confirmed by the finding that test-stimulus waveform characteristics can 

influence adaptation factors (p.85). This might represent tuning or pre­

ferences for values of df/dt. Holler (1974a,b) found CN units to have pre­

ferred rates-of-change of frequency and Watanabe and Ogushi (1968) and 

Watanabe (1972) report preferred rates-of-change of frequency dependent 

upon the a units directional preference. The successful use of the co­

sinusoidal weighting function in Chapter 3 also points to the need to con­

sider df/dt. Sergeant and Harris (1962) and Pollack (1968) have shown

subjects are capable of detecting small differences in rate-of-change of
%

frequency. However, these jrasults cannot represent the influence of df/dt 

per se because an increase in adaptation is found when sweep duration is 

constant and ±AF increases (Fig. 3.1, Fig. 3.6) whereas a decrease in 

adaptation is found when sweep duration is a decreased and ±AF held constant 

(Appendix C). In both cases df/dt is increasing but the effects on adapta­

tion are in opposite directions. Without further data on the role of df/dt : 

±AF and sweep duration can be considered the critical variables of adapting- 

stimuli. The input stage to the frequency selective stage of processing



can be considered as an array of frequency-tuned elements, the activation 

of which is distributed over time as the frequency of a stimulus changes. 

The activation of the next level involves summation of this temporally 

distributed activity. An optimal sweep duration can be conceived 

representing the time in which maximal summation occurs independent of 

the bandwidth (±AF) of activation.

CcD Rapid frequency transitions were found to adapt FM-channels 

when on the basis of Appendix C they would be expected to have little 

effect because of their extremely short durations. A modified version of 

the Green and Kay (1973, 1974) concept of channels concerned with the wave­

form of modulation might help explain the results. Thus rapid transitions 

and square-wave-FM could be processed in different channels to sweeps but 

still have access to the frequency-selective stage of FM-processing, hence 

sweeps adapt rapid transitions and vice-versa. Whereas sweep induced 

activity is given by the area under the modulating waveform, the activity 

generated by rapid transitions in FM-channels might be described by ±AF 

only. This might account for the effect of context of rapid transitions 

found in Chapter 7. In the context of sawtooth-FM, i.e. sweeps, the speci­

fication of ±AF might be impaired compared to square-wave-FM with its con­

stant frequency segments.

(d) As discussed above, adaptation experiments reveal preferences 

based on the temporal characteristics of adapting sweeps. Thresholds for

single frequency sweeps as a function of sweep duration reveals an inte­

gration time of 400 ms at the detection stage of the system. Thus two dis 

tinct temporal processes seem to exist for the processing of sweeps.

The main body of the data support the general scheme of the model 

of Fig. 6.6, A wide range of further experiments are suggested, especially 

into the role of temporal factors (other than repetition rate and modula­

tion-frequency) in adaptation and detection.
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9 ■ 3_____The role of FM-channels

Psychophysical evidence is provided for auditory feature analysis 

in the form of channels selectivity responsive to FM and tuned to limited 

ranges of the dimensions defining this modulation. An important question 

is the role of these channels in the coding of naturally occurring sounds. 

The experiments deal with the detection of small frequency transitions 

whereas FM-channels, if they have a role in speech processing, must deal 

mainly with supra-threshold FM in the form of formant transitions and 

intonation contours. Though it is possible that the properties of the 

system discovered in the thesis are exclusive to the threshold task, it is 

hoped they have some function in normal situations. Further, adaptation 

can be regarded as an artificially created by-product of FM-channels, in 

that, the stimulus regime of the experiments does not occur naturally.

The system is stimulated into an abnormal state reflecting the after­

effects of prolongation of processes whose normal function is the coding 

of FM.

The inhibitory connections between channels can be regarded as a

sharpening mechanism that reduces activity in channels adjacent to the F^

or F channel increasing its relative output. Because of the limits 
m

imposed on ±AF by Fc selectivity, frequency-deviation cannot be fully coded 

in the output of a particular channel. The full specification of ±AF may 

involve the extent of activation across the array of channels.

Though experiments have confirmed, with some ambiguity, a role for 

frequency transition in speech processing (Section 1.2 and 1.7.2), it is 

hard to see any need for channels coding the properties of centre-frequency 

(as opposed to an initial and terminal frequencies which would also give 

the frequency deviation) and modulation-frequency. The latter is especially 

interesting in that it is hard to see any role in speech perception for 

channels coding this feature which is not a common feature of speech sounds.



Channels tuned to seem to be acting as counters having preferred rates 

of arrival of sweeps.

If the properties of FM channels have a functional basis and are 

important in the processing of naturally occurring frequency-modulations 

then the experiments point towards directions for research into the 

important variables of FM in speech.

The evolutionary development of feature-analysis systems, the 

neurophysiological reality of which is well established (see Evans, 1974j 

Scheich, 1976] can be regarded as an alternative to the exhaustive specifi­

cation of sensory input. Feature-specific channels allow the classification 

of stimuli according to features having significance for the species. The 

codification of stimulus patterns is only of value when mechanisms capable 

of analysing the code exist or arise through ontogenetic sensory experience.

9.4 ____ Methodological shortcomings

The main problem was the time taken for a single threshold deter­

mination which was about 45 minutes. Because auditory selective adaptation 

was a relatively recent discovery, it was felt necessary to carry out at 

least three threshold estimates in each experimental condition. The 

standard deviations obtained suggest one threshold estimate per condition 

would be sufficient. This would reduce by two-thirds the time taken for 

a threshold determination. By exploring different paradigms and adapta­

tion times, a rapid method might be developed allowing the effects to be 

studied in a larger population of subjects.

9.5 ____ Conclusions

1. Evidence is provided for the existence of channels in the human 

auditory pathway selectively responsive to frequency-modulation.

2. Support is found for an essential low-level division of these 

channels into those coding up-sweeps and those coding down-sweeps.
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3. A higher level division of direction-specific channels into 

channels responsive to limited ranges of carrier- and modulation-frequency 

is indicated. Evidence for these channels takes the form of tuning-curves 

representing the range of adapting carrier- or modulation-frequencies that 

elevate (or facilitate) the threshold of a fixed carrier- and modulation- 

frequency test-stimulus.

4. Support is provided for the hypothesis that adaptation is an 

after-effect of prolonged inhibition of a channel by self-inhibition and 

lateral inhibition from surrounding channels. In these terms tuning- 

curves represent the range and strength of lateral-inhibitory connections 

between channels.

5. The experimental results are consistent with a two-stage model

of F selectivity. The first level is given by a Gaussian filter, closely c

related to the critical band, the existence of which was inferred from

functions of adaptation factor versus adapting frequency deviation given

in Chapter 3. The second stage is represented by F -tuning curves.c

6. Adaptation produced by sweeps of constant duration was found 

to be directly proportional to ±AF when the value of ±AF is less than 

the effective Gaussian filter bandwidth.

7. Preferences for the temporal characteristics of sweeps are

found.

8. Detection of FM occurs after feature-specific processing or 

j alternatively, as a consequence of this processing.
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APPENDIX A

The derivation of formula for the area under a sinusoidal wave­

form when the frequency deviation is in excess of the hypothesised filter 

bandwidth is given below.

2

A * J a sin x dx 
o

where A is the area
z is the intercept on the x (time) axis from the point where 

the waveform crosses the filter boundary (see Fig. 3. ) 
a is the amplitude expressed as ±AF (Hz).

= a[-cos x)o

* a(-cos z + cos o)

* a(1 - cos z)

« a - acos z

/ o
where acos z ■ a»1-sin x

2 2 2 (acos z) » a  x (1 _ sin z)

acos z - /a2 - a2 sin2z 

where b ■ a sin z

a cos z * J F ~ -

A f l .  ~J2.a - /a - b



APPENDIX B

-that
It is possible\adaptation may persist for some time leading to 

spurious estimates of elevated thresholds.

As reported in Chapter 2, two or three threshold estimates are made 

at each stimulus condition, a data point being the mean of such a series.

The time between estimates is 3-5 minutes. This is longer by over a factor 

of three than the decay time of adaptations reported by Kay and Matthews 

(1972). Adaptation was found to be almost zero after one minute, at least 

at 250 Hz, following a 12 second exposure to the adapting stimulus. This 

suggests that persistence does not occur over the time between threshold 

estimates of the present study. However, because of differences in subjects, 

psychophysical procedures, stimulus conditions and carrier frequencies, it 

was felt that the possibility of persistence was worth studying.

As stated above, the time between threshold estimates for a single 

stimulus condition was between three and five minutes. The time between 

estimates for different stimulus conditions was usually longer than ten 

minutes. Any persistence should thus be observable within a series of 

adapted threshold estimates for a single stimulus condition (data point).

If persistence was present one would expect that within a three estimate 

series the third estimate would yield a higher threshold than the second 

which would in turn be higher than the first. Since thresholds were 

recorded in the order in which they were obtained, it is possible to test 

this prediction.

A sample of 45 mean adapted thresholds (135 (45 x 3) threshold 

estimates) were analysed. Pairs of threshold estimates compared for each 

mean adapted threshold were 1 and 2, 1 and 3 and 2 and 3. The persistence 

hypothesis predicts the latter threshold of each pair would be higher. For 

each pair the following calculations were made.



(a) % of sample in which the second threshold was 
higher than the first.

(b) % of sample in which the second threshold was 
lower than the first.

(c) % of sample in which the second threshold was 
equal to the first.

A sample of 28 unadapted thresholds .

were also analysed as a control.

Samples included thresholds at different frequencies and different 

stimulus conditions. There was no a priori reason to assume that persistence 

would be frequency or stimulus condition specific. An analysis of the 

samples by stimulus condition (both test and adapting stimuli) revealed no 

such specificity, that is, the trends of the data of Fig. B discussed later 

were not specific to a certain stimulus condition.

Data are shown in Figure B. The persistence hypothesis would pre­

dict that a greater percentage of the sample would conform to (a) above.

The trend seems to be in the opposite direction for pairs 1 and 3 and 2 and 

3 where most of the sample conform to (b), i.e. the latter thresholds of 

these pairs are the lower. The hypothesis that the effect of adaptation 

persists over a duration of 3-5 minutes or more can be rejected on the basis 

of this data in which the trend is in the opposite direction to that pre­

dicted by the persistence hypothesis.

The unadapted threshold data for all pairs seems to support the 

persistence hypothesis in that the percentage of the sample conforming to

(a) is greater than that conforming to (b). Obviously the,data from 

unadapted thresholds has no bearing upon the validity of the persistence 

hypothesis. The data can be assumed to indicate a bias towards higher 

thresholds for the second and third estimates of a series for reasons other 

than persistence of adaptation (e.g. loss of attention by S, decreased moti­

vation, boredom leading to more erroneous decisions). Such a trend might 

be expected to be present in the adapted threshold data. Though this



Fig. B1. Graph showing separate data for 45 adapted thresholds and 28 unadapted

thresholds (each threshold being the mean of three threshold estimates)

in terms of the percentages of the samples conforming to the stated

relationships between pairs of threshold estimates within a series.

Subject RBG only. Data pooled across frequency (F ) and stimulusc
condition.



100

RBG

PAIR 1 &2

|~~j adapted thresholds sample size =45 

Q  unadapted thresholds sample size = 2 8

PAIR 1 & 3 PAIR 2 & 3

LÜ
80

<  
in

fe &0
LU
o  

z  40
QJ
o  
c r
LU
CL „  20

0

RELATIONSHIP BETWEEN PAIR OF THRESHOLDS 

COMPARED



trend is observed in pair 1 and 2, this is not the case in pairs 1 and 3 

and 2 and 3. It can be concluded that no persistence occurs.

The trend in the unadapted threshold, however, data might indicate 

the presence of an adapting influence of the test-modulation persisting 

across the separate threshold estimates such that later estimates are 

higher.



APPENDIX C

In Chapter 3 the relationship between ±AF and adaptation factor 

was determined and adequately described by the area under the adapting 

transitions when transition duration was a constant. However, the 

influence of duration upon adaptation factor when ±AF was a constant was 

not examined. The model of Chapter 3 would predict that adaptation also 

increased with increasing duration of sweep. This assumption was tested 

at 0.25 and 1.0 kHz with up- and down-sweep adapting-stimuli with an 8/s 

repetition rate and an 8 Hz sinusoidal-FM test-stimulus of 500 ms duration. 

Experiments were carried out for RBG only. At 0.25 kHz the adapting ±AF 

was ±25 Hz at 1.0 kHz this value was ±80 Hz. Three threshold estimates 

were made in each condition and means and standard-deviations calculated.

Data are presented in Fig. C1. Both curves show a trend of

increasing adaptation factor as sweep duration it ) increases. At 0.25 kHzs

the curve flattens out at 50 ms, this was not found at 1.0 kHz. At 1.0 kHz 

the increase for down-sweeps (squares] is less marked than the increase for 

up-sweeps. The general trend confirms that predicted rise in adaptation as 

duration increases with ±AF constant, i.e. as the area under the sweep 

Increases. However, a major problem exists. In that. Chapter 7 shows 

rapid frequency transitions to produce large elevations of threshold. 

Extrapolation from the curves of Fig. C1 would predict little adaptation 

with such transitions, i.e. high rates-of-change of frequency. This is 

discussed in Chapter 9.

Figure C1 shows that at 1.0 kHz the relationship between up- and 

down-sweep adaptation changes is a function of tg. This indicates the 

broad tuning of up- and down-channels to df/dt differs (see Chapter 8).



Fig. C1. Adaptation factor as a function of adapting sweep duration (ts) in ms 

at 0.25 KHz (upper graph] and 1.0 KHz (lower graph]. The adapting- 

stimulus repetition rate was 6/s and the value of Fm of the sinusoidal- 

F test-stimulus 8 Hz. Adapting ±AF was ±25 Hz at 0.25 KHz and ±80 Hzm i - o

at 1.0 KHz. Vertical bars are ±1 standard deviation.
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APPENDIX D: LATERAL INHIBITION IN HEARING

D«1 Physiological two-tone suppression

Two tone inhibition or suppression (the latter term is favoured) 

is found in many species at the level of the cochlear nerve (Evans, 1975 

for review) as well as higher levels (e.g, cochlear nucleus, Evans, 1975, 

inferior colliculus, Vartanian, 1974), The phenomenon involves the 

suppression of unit activity evoked by a tone or noise stimulus by another 

stimulus over a restricted range of frequencies and intensities (see 

Fig, D.1a), Suppression £reas are asymmetrical and lie on either side of, 

sometimes overlapping, the excitatory area. The latencies of suppression 

effects are the same as those for excitation. The mechanism of the 

suppression effects is uncertain, though some evidence exists for lateral 

inhibition at the cochlear nucleus level but not the cochlear nerve level 

(Evans, 1975),

P-*̂  Psychophysical evidence for lateral suppression

Until recently direct psychophysical evidence for lateral suppres- 

sion was lacking. Von Bekesy (1963) [J.Acoust.Soc.Am., 35, pp.588-601) 

found pitches corresponding to the upper and lower cut-off frequencies of 

an octave band of noise comparable to Mach bands in vision

H oWcin 3in the form of emphasis of the edges of the noise 

by contrast phenomena.

Houtgast (1972) found evidence for lateral suppression in the form 

of Mach band type phenomena using non-simultaneous masking techniques 

including the pufsation threshold technique as well as forward masking. 

Suppression effects took the form of marked edge effects in the masking 

pattern (Fig. D.1b). Houtgast (1972) also demonstrated a psychophysical 

phenomenon analogous to physiological two-tone suppression. This took the



Figure D.1: (a] Single cochlear fibre response are as for single tons excitation

(open circles) and response areas of tones suppressing response 

to continuous tone at the frequency and intensity indicated by 

the triangle (hatched area and filled circles). From Arthur 

et al. (1971) [J.Physiol., 212, pp.593-609]

(b) Examples of edge effects in non-simultaneous masking conditions. 

From Houtgast (1972).

(c) Forward-masking patterns and unmasking (suppression) areas.

From Shannon (1976).
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form of an unmasking offset produced by a second "suppressing" stimulus

presented during the masker interval. Thus the masking of the probe

stimulus is reduced by the suppressing stimulus. Suppression effects

have been confirmed by Shannon [1976) and Terry and Moore [1977).
Sciroe/

Whereas the masker and probe (test) stimuli have theyfrequency the 

suppressing stimulus is at a different frequency and intensity with 

respect to the masker allowing suppression areas to be mapped (see Fig. D.1c) 

Suppression areas are similar to those found in physiological two-tone 

suppression. Once again these effects are only observable with a non- 

simultaneous masking paradigm. More recently, Houtgast (1977) has produced 

further evidence for lateral suppression from measures of auditory 

frequency selectivity with rippled-noise maskers. In non-simultaneous 

stimulus conditions, bandwidthsVialf those obtained from simultaneous 

masking conditions are found.
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