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ABSTRACT

The the s i s  i s  devoted to machine schedu l ing  problems. I t  i s  

presented in four  parts .

Part I i s  an in t roductory  one in which we g ive  a f u l l  d e s c r ip t i o n  

of  machine schedu ling  problems together with e x i s t i n g  methods o f  approach 

to s o l v i n g  these problems.

Part I I  i s  s ta r ted  by g i v i n g  a review o f  one machine problems

together with well known and new h e u r i s t i c s  fo r  most of  these problems.

Then we use branch and bound techniques to so lve  a one machine problem

with  re lease  dates to minimize the sum of  weighted completion times " i . e .

the 1/r./Iw.C. problem" and a one machine problem to minimize the weighted

2
sum of  squares of  completion times " i . e .  the 1//Ew.C. problem".

We s t a r t  Part I I I  by g i v i n g  a review o f  methods to so lve  the f low-

and job-shop schedu l ing  problems. We then apply branch and bound techniques

to so lve  the two and m machine permutation f low-shop problems with  precedence

con s t r a in t s  to minimize the maximum completion time in each case " i . e .  the

F2/prec/C and Pm/prec/C problems",  max max

Part IV conta in s  our conc lu s ion  together  wi th a b r i e f  look at 

mu 11 i -p ro ce s so r  computers and th e i r  impact on the fu tu re  of schedu l ing.
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CHAPTER ONE

INTRODUCTION

1.1 _____Introduct ion

This  study w i l l  be devoted to machine schedu l ing  problems. The 

problems that w i l l  be under our con s ide ra t ion  can be defined as fo l lows.  

There are a gi ven number o f  jobs each o f  which requ i re s  one or more opera­

t ion s .  An operat ion  i s  the p roces s in g  of  a job on a machine. I t  i s  

required to determine the s t a r t i n g  times of  the opera t ions .

Although th i s  d e f i n i t i o n  suggests  that the problem i s  mainly 

app l ic ab le  to i n d u s t r i a l  p roduct ion,  i t  can be in te rpreted  to cover 

va r iou s  other s i t u a t i o n s :  jobs  and machines can stand fo r  pa t ien t s  and 

hosp i ta l  equipment, s h ip s  and dockyards, programmer and computers, etc.  

C lea r l y ,  schedu ling  a lgor i thms are of much importance to operat iona l  

research p r a c t i t i o n e r s .

1.2 ____ H i s t o r i c a l  Background

Scheduling  problems have been under study fo r  a long time, but the 

f i r s t  break through in schedu ling  came in 195*t in the form o f  a paper by 

Johnson (Johnson, 195*0* Two other important r e s u l t s  fo l lowed s h o r t l y  

(Jackson, 1955; Smith, 1956).

Encouraged by the fac t  that the s implex method can be used to so lve  

l i n e a r  programming problems, Bowman (Bowman, 1959) formulated schedu l ing  

problems as an in teger  programming problem, hoping that a good a lgor i thm  

fo r  s o l v i n g  the l a t t e r  one could be found. Others fol lowed in the same 

d i r e c t i o n ,  but they soon abandoned t h i s  approach, f i r s t l y  because o f  the 

hundreds o f  0-1 v a r i a b le s  and c o n s t r a in t s  requ ired to formulate schedu l ing  

problems (even o f  small s i z e s ) ,  and secondly  because no good general  

a lgo r i thm  has been found to so lve  0-1 programming problems.
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Branch and bound techniques were developed and f i r s t  used by 

Eastman (Eastman, 1959) fo r  the t r a v e l l i n g  salesman problem and by Land 

and Doig (Land and Doig, 1960) in the context o f  mixed in teger  programming. 

They were f i r s t  appl ied  to schedu ling  problems by ( I g n a l l  5 Schrage, 1965; 

Lomnicki,  1965; Brown & Lomnicki,  1966 ; McMahon & Burton, 1967).

The d i f f i c u l t y  o f  schedu ling  problems made h e u r i s t i c  methods 

(methods that do not guarantee op t im a l i ty )  unavoidable  fo r  many problems. 

S imu la t ions  of  actual and hypothetica l  environments were used to te s t  the 

performance o f  these h e u r i s t i c s .  Unfortunate ly ,  not enough work has been 

done on the worst case behaviour  o f  these h e u r i s t i c s .  F i r s t  r e s u l t s  on the 

worst case performance o f  h e u r i s t i c s  were due to Graham (Graham, 1966, 1969). 

A review o f  worst case performance o f  schedu ling  h e u r i s t i c s  can be found 

in (Garey, Graham and Johnson, 1978). However, h e u r i s t i c  methods are 

l i k e l y  to become a major research area in the near fu tu re  because o f  

t h e i r  importance in real l i f e  s i t u a t i o n s .

C l a s s i f y i n g  schedu ling  problems according to t h e i r  degree of  

a l go r i thm ic  complexity was f i r s t  reported in (Cook, 1971) and (Karp, 1972). 

However, major development in the c l a s s i f i c a t i o n  and complexity o f  schedu­

l in g  problems i s  mainly due to Rinnooy Kan (Rinnooy Kan, 1976), Lenstra  

(Lenst ra,  1977) and (Garey & Johnson, 1979).

1 .3______Cont r ibut ion s  o f  t h i s  research

As mentioned before, t h i s  study i s  devoted to machine schedu ling  

problems. I t  i s  presented in four  pa r t s .

Part I i s  an in t roductory  one. We s t a r t  t h i s  part  by g i v i n g  a f u l l  

d e sc r ip t ion  o f  machine schedu l ing  problems, in c lud ing  no ta t ion s  and repre­

sen ta t ion s .  We sh a l l  d i s t i n g u i s h  between three types o f  problems: " e a s y " ,  

" h a rd "  and "open"  schedu l ing  problems. Th i s  i s  fol lowed by an extens ive  

d i s c u s s i o n  of  va r iou s  r e s t r i c t i o n s  which w i l l  be assumed (un le ss  stated
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otherwise) throughout t h i s  study. The most important o f  these i s  the 

r e s t r i c t i o n  to d e te rm in i s t i c  problems, which e l im ina te s  a l l  s t o c h a s t i c  

aspects  l i k e  queueing theory, and a l s o  the r e s t r i c t i o n  to un i t  machine 

c ap ac i t ie s .  Further  to that we w i l l  r e s t r i c t  ou r se lve s  to choos ing 

s p e c i f i c  cost funct ion s  as op t im a l i t y  c r i t e r i a .  Here, we w i l l  r e s t r i c t  

ou r se lve s  to the s o - c a l l e d  regu lar  measures, i .e .  c r i t e r i a  in which the 

q u a l i t y  o f  a schedule i s  a non-decreas ing  funct ion  o f  the j o b s '  

completion times.

In t h i s  t h e s i s ,  we s h a l l  assume that once the p roce s s in g  order  of 

the operat ions  has been determined on each machine, each operat ion  i s  com­

pleted as soon as p o s s ib le ,  and hence we do not d i s t i n g u i s h  between the 

two concepts " f e a s i b l e  sequences"  and " f e a s i b l e  schedu le s " .  However, some 

researchers  (Elmaghraby, 196G; Ashour, 1972; Rinnooy Kan, 1976) d i s t i n g u i s h  

between these two concepts: a sequence corresponds  to a p roce s s in g  order  

of operat ions  on each machine, wh i le  a schedule determines the exact 

s t a r t i n g  and f i n i s h i n g  times of  each operat ion  bes ides  determining the 

p roces s ing  order  o f  the opera t ions .

We end Part I by l i s t i n g  most well-known methods o f  approach to 

s o l v i n g  schedu l ing  problems, e.g .  branch and bound, dynamic programming, 

h e u r i s t i c s ,  etc .  We sh a l l  d i s c u s s  in deta i l  two o f  these methods, namely 

h e u r i s t i c  and branch and bound approaches. H e u r i s t i c  methods are included 

because o f  th e i r  importance in real l i f e  s i t u a t i o n s .  The branch and bound 

method i s  included because i t  i s  amongst the most w ide ly  used methods of  

approach to s o l v i n g  schedu l ing  problems, and because i t  i s  the method to 

be used throughout t h i s  t h e s i s ,  except in Chapter 5, where we sh a l l  g ive  

h e u r i s t i c  methods fo r  s o l v i n g  one machine problems.

Part I I  i s  devoted to s i n g l e  machine problems. We s t a r t  t h i s  part  

by g i v i n g  a b r i e f  survey o f  the p r i n c ip a l  r e s u l t s  which are c l a s s i f i e d  

accord ing  to the op t im a l i t y  c r i t e r i o n  chosen. Th i s  i s  fol lowed by
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h e u r i s t i c  methods for  s o l v i n g  one machine problems, some o f  which are 

chosen from the l i t e r a t u r e ;  others  are new ones f o r  which some computational 

experience is  reported. We end part I I  by demonstrating the p rope r t ie s  

and performance of  branch and bound techniques on two s i n g l e  machine 

problems: s i n g l e  machine sequencing with re lease  dates to minimize total  

weighted completion time and s i n g l e  machine sequencing to minimize a 

quadrat ic  funct ion  o f  completion times. Dominance ru les  and h e u r i s t i c s  

w i l l  a l so  be included. Computational experiences  w i l l  a l s o  be reported 

in every  case.

Part I I I  i s  devoted to the general f low-shop problems. The f low-,  

job-  and the open-shop problems w i l l  be d i scu s sed  b r i e f l y .  The spec ia l  

case known as the permutation f low-shop problem w i l l  be d i scu s sed  in 

d e ta i l .  Dominance ru le s ,  h e u r i s t i c s ,  branching ru le s  and lower bounds 

are reviewed.

We end t h i s  part by demonstrating the performance of  branch and 

bound a lgor i thms on two problems: the two-machine f low-shop and the permu­

ta t ion  f low-shop problems under precedence c o n s t r a i n t s  to minimize the 

maximum completion time in each case. As u sua l ,  computational experience 

w i l l  be i nc luded.

Part IV conta in s  our conc lu s ion  together  wi th  a b r i e f  look at m u l t i ­

processor  computers and the i r  fu ture  impact on both " e a s y "  and " h a rd "  

schedu l ing  problems.
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CHAPTER TOO

DESCRIPTION OF MACHINE SCHEDULING PROBLEMS

2.1 ____ In troduct ion

Machine schedu ling  problems can be descr ibed as fo l low s .  There

are n jobs  (numbered 1.........n) and job i (i = 1 ...........n) requ i re s  m.

operat ions .  Each operation  corresponds  to the p roces s ing  o f  a job on one 

of  m machines fo r  a given period o f  time. The problem i s  to f ind  the 

optimal p roces s ing  order  o f  these opera t ions  on each machine which m in i ­

mizes, subject to some c o n s t r a in t s ,  a given ob jec t ive  funct ion.

In Sect ion  2.2 we d i s c u s s  a l l  r e s t r i c t i o n s  on the machines and the 

jobs ,  inc lud ing  the ones we sh a l l  drop at some stage o f  t h i s  t h e s i s .  

Object ive  funct ions  are d i scu ssed  in Section  2.3, fol lowed by problem 

c l a s s i f i c a t i o n  in Sect ion  2 .h .  F i n a l l y ,  in Sect ion  2.5,  we d i s cu s s  the 

computational complexity o f  machine schedu l ing  problems.

2.2 ____Restr i  c t ion s

2.2.1 R e s t r i c t i o n s  on the machines

Unless stated otherwise,  we w i l l  r e s t r i c t  ou r se lve s  to the 

fo l low ing  r e s t r i c t i o n s  on the machines.

M1 The s e t  o f  machines i s  known and f ix e d .
M2 A l l  machines ave indepen den ti are a v a ila b le  to  p ro cess  jo b s  a t

the  same tim e and remain a v a ila b le  to  p ro cess  jo b s  during  an 
u n lim ite d  p e r io d  o f  tim e .

M3 Each machine k (k= la . . . ,m) i s  e i t h e r  w a itin g  to  p ro cess  th e  n e x tjo b t o p era tin g  on a gob o r having f in i s h e d  i t s  l a s t  gob.
M^ A l l  machines are eq u a lly  im p orta n t.
M5 Each machine has to  p rocess  a l l  gobs a ss ig n ed  to  i t .
M6 Each machine can p rocess n o t more than one gob a t  a tim e .

This  r e s t r i c t i o n  w i l l  be relaxed in Chapters 8 and 10 to 
obta in  lower bounds for  the m machine problems d i scu ssed  
the re .
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M7 TTze 'processing  o rd er  p e r  machine i s  unknown and has to
be f ix e d .
We po in t  out that r e s t r i c t i o n s  Ml and M5 d i s t i n g u i s h  between the 

d e te rm in i s t i c  problems which we are in terested  in from the s t o c h a s t i c  ones.

For an in t roduct ion  to the theory developed fo r  s t o c h a s t i c  pro­

blems, we refer  to (Conway et  a l ., 1967: Chapters 7“ 10) or any book on 

queueing theory.

2 .2 .2  R e s t r i c t i o n s  on the Jobs * V

Unless stated otherwise,  we w i l l  l im i t  ou r se lve s  to the 

fo l low ing  r e s t r i c t i o n s  on the jobs.

J1 The s e t  o f  fo b s  i s  known and f ix e d .
J2 We sh a l l  face some s i t u a t i o n s  (see Chapters h, 5 and 6) where each

job i ( i = 1 .......n) has a non-negat ive in teger  r e le a se  date  r. at which

job i becomes a v a i l a b le  fo r  p roces s ing  (we sha l l  use a v a i l a b l e  to 

denote a v a i l a b le  fo r  p ro ce s s in g ) .  Unless s ta te d  o th erw ise  we s h a l l  
assurr.e th a t  a l l  the  jo b s  are a v a ila b le  a t  tim e ze ro t i . e .  r. = 0

fo r  a l l  i = 1 ........ n. We sha l l  a l s o  face other  s i t u a t i o n s  (see

Chapters h, 5, 9 and 10) where the p roces s in g  o f  some o f  the jobs 

i s  dependent on the p roces s ing  of  some other  jobs .  Th i s  s i t u a t i o n  

a r i s e s  when precedence c o n s tr a in ts  among jobs  e x i s t  as a part of  

the problem. These precedence c o n s t r a in t s  on the jobs  can be 
re p re se n te d  by a d ir e c te d  a c y c l ic  graph (d igraph)  G = (V,E),  where

V denotes the set o f  v e r t i c e s  and E the set o f  edges. The v e r t i c e s  

o f  G represent the jobs  and the edges represent the arcs  between 

the jobs.  Job i  must be p ro cessed  b e fo re  job  j  on each machine i f  
th e re  e x i s t s  a d ir e c te d  p a th  from  v e r te x  i  to  v e r te x  j  in  E. The 

t r a n s i t i v e  c lo su re  o f  the d i rected  graph G i s  the graph obta ined 

by adding a l l  arcs  ( i , j )  ( i f  they do not a l ready  e x i s t )  to G 

whenever there i s  a d i rec ted  path from ve r tex  i to ve r tex  j .
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The t r a n s i t i v e  re d u c tio n  o f  G i s  the graph obta ined by de le t ing  

a l l  a rcs  ( i , j )  from G whenever there i s  a d irected  path from vertex  

i to vertex  j which does not include the arc ( i , j )  i t s e l f .  The 

in v e rse  o f  G i s  the graph obtained by rever s ing  the d i r e c t i o n s  of  

a l l  a rc s .  The adjacency m a tr ix  o f  the precedence co n s t r a in t s  i s  

the n x n matrix X = ( x . j ),  where x „  = 1 i f an arc  ( i , j )  e x i s t s  

in the t r a n s i t i v e  c lo su re  o f  G and x . j  = 0 otherwise.  A precedence 

graph G, together with i t s  t r a n s i t i v e  reduction and i t s  t r a n s i t i v e  

c lo su re  are g iven  in F igure  2.1.

(a) a d i rected  (b) t r a n s i t i v e  (c) t r a n s i t i v e
graph G. reduction o f  G. c lo su re  of  G.

F igure  2.1: Precedence c o n s t r a in t s  as a d i rected  a c y c l i c  graph

A precedence graph G = (V,E) i s  a tr e e  i f  the number of  arcs  leav ing  

(or enter ing )  a node i s  at most one. I t  i s  ca l led  s e r i e s - p a r a l le l  
i f  G c o n s i s t s  of  a s i n g l e  node i ,  i . e .  G = ( i ,0 ) ,  or  i f  G1 = (V j . E j )

and G2 = (V2 .E2 ) are s e r i e s "Pa r a 1 l e  ̂ wi th  v i 0 V2 = ® and:

(a) G i s  the s e r i e s  composit ion o f  Gj and G2> i .e .

G = (V1 U V2 , E1 UE2U(V1 x V2) ) , or

(b) G i s  the p a r a l l e l  composit ion of  Gj and G2 , i .e .

G = (Vj U y 2  * E ! UE2) •

- 8 -



The d i rected  graph G o f  F igure 2.1 becomes s e r i e s - p a r a l l e l  i f  the 

arc (1,3) i s  removed from G or  i f  a new arc  (1 ,2 ) ,  (2 ,4 ) or  (3,**) 

[ ( 2 ,1 ) ,  (4,2) or (4 ,3 ) ]  i s  added to G. The s i  mplest a c y c l i c  digraph 

which i s  not s e r i e s - p a r a l l e l  i s  shown in F igure  2.2.

F igure 2.2: A non -se r ie s  p a r a l l e l  d igraph

The precedence graphs which w i l l  be co n sid ered  from  now on are o f  
the  g en era l (a rb itra ry )  ty p e . More d e t a i l s  about s e r i e s - p a r a l l e l  

graphs can be found in (Sidney,  1975; Lawler, 1978; Sidney,  1979; 

Monma, 1979; Monma and Sidney,  1979; Monma, - ) .

A d i f f e r e n t  d e f i n i t i o n  o f  precedence c o n s t r a in t s  appeared in 

(Rinnooy Kan, 1976): job i i s  s a id  to have precedence over job j 

i f  i t  i s  required that job Î i s  completed on the l a s t  machine 

before job j i s  s ta r ted  on the f i r s t  one. Our d e f i n i t i o n  o f  pre­

cedence co n s t r a in t s  i s  more r e a l i s t i c  s ince  there appears no 

reason why job j must be delayed u n t i l  job i i s  completed on a l l  

the m machines in real l i f e  s i t u a t i o n s .  I f  precedence c o n s tr a in ts  
are n o t g iven  as a p a r t  o f  th e  problem  we s h a l l  assume th a t  E = 0  
( i . e .  a l l  jo b s  are in d e p e n d e n t) .
A lso ,  we sh a l l  face some s i t u a t i o n s  (Chapter 4) where each job Î 

( i = 1, . . . , n )  must be f i n i s h e d  before i t s  dead l ine  d. (time a f te r  

which job i w i l l  not be a v a i l a b l e  fo r  p r o c e s s i n g ) .  Unless s ta te d
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othevun.se we s h a l l  assume th a t  a l l  jo b s  verm in a v a ila b le  during  
an u n lim ite d  tim e .

J3 A t any in s ta n t  o f  tim e3 each job  i s  e i th e v  w a it in g  fo v  th e  n ex t
machinet b e in g  p vo cessed  by a machine ov has been com pleted  
p vo cessin g  on i t s  l a s t  machine.

J4 Some o f  the problems considered in t h i s  t h e s i s  (see f o r  example

Chapters 5, 6 and 7) w i l l  have w eig h ts  attached to the jobs  to 

ind ica te  the r e l a t i v e  importance of  each o f  these jobs .  We sh a l l  

use w. to denote the weight ass igned  to job i ( i = 1 , . . . , n ) . However, 

in a l l  other s i t u a t i o n s  we sha l l  assume that a l l  jobs  are equa l l y

important ( i . e .  Wj=1 f o r  a l l  i = l .......n ) .

J5 Each jo b  must be p vo cessed  by a l l  th e  machines a ss ig n ed  to  i t .
j 6 Each jo b  i s  p vo cessed  by one machine a t  a tim e . For s i t u a t i o n s

where t h i s  r e s t r i c t i o n  i s  dropped we re fe r  to (Rinnooy Kan, 1976: 

Sect ion  5 .3 ) .

J7 A l t  p vo cess in g  tim es  ave f i x e d  and seq uen ce-indepen den t. A tso i
theve  are no se tu p  tim e s . For s i t u a t i o n s  where there are setup 

times we refer  to (Rinnooy Kan, 1976: Sec t ions  h .2 .2  and k . h . 2 ) .  
j 8 Each o peva tion  once s ta v te d  has to  be com pleted  w ith o u t i n t e v -

v u p tio n . Th is  r e s t r i c t i o n  i s  relaxed In Sect ion  6 .** where we 

a l low j o b - s p l i t t i n g  (pre-emption) in order  to obta in  a lower 

bound f o r  the s i n g l e  machine problem with re lease  dates to 

minimize the sum of  weighted completion times.

J9 The p vo cess in g  ovdev fo v  each jo b  on the  machines i s  known and
f ix e d .  Th i s  r e s t r i c t i o n  is  relaxed in Sec t ion  8.3 where we 

ta lk  about the open-shop problem fo r  which t h i s  p roce s s in g  order  

i s immateri a l .

R e s t r i c t i o n s  J1 and J5 again  s t r e s s  the d e t e rm in i s t i c  character  of  

the schedu l ing  problems d i scu s sed  in t h i s  t h e s i s .

10



2.3______Object ives

The aim in a l l  s chedu l ing  problems cons idered in t h i s  t h e s i s  i s  to

f ind  a schedule that minimizes a given ob jec t ive  f u n c t i o n ( s ) .  I t  w i l l  be

useful  at t h i s  stage to a s so c ia te  the fo l low ing  data with  job i ( i = 1 .......n)

a p ro cess in g  tim e  p., o f  i t s  kth operat ion,  k = l .......m. ( i f  m. = 1

for  a l l  i ,  we sha l l  w r i t e  p. instead o f  p .^ ) .

a w eig h t w. i n d i c a t in g  the r e l a t i v e  importance o f  job i .  Un less

stated otherwise,  we assume that w.=1 fo r  a l l  i = 1 .......n.

a re le a se  d a te  r. ( e a r l i e s t  p o s s ib le  s t a r t i n g  time for  job i ) .  Unless 

stated otherwise ,  we assume that r .=0 f o r  a l l  i = 1 .......n.

a due date o r  d ea d lin e  d .. 

a c o s t  fu n c tio n  f ..

We assume that a l l  data (except f . )  to be n o n -n eg a tive  in te g e r s .
Given a p rocess ing  order  on each machine, one can c a lcu la te  the 

fo l low ing  ( for  job i = 1 , . . . , n ) :

the com pletion  tim e  o f  job i denoted by C . . 

the la te n e s s  of  job i denoted by L. ( L . = C . -d . ) .
7 i i l l

the ta rd in e s s  o f  job i denoted by T. (T. = m ax (0 ,L . ) ) .

U.=0 i f  C. $ d. and 1 otherwise.
i i i

As in (Rinnooy Kan, 1976) we sha l l  r e s t r i c t  ou r se lve s  to re g u la r
m easures, i . e .  real func t ion s  f ( C , .......C ) such that:

i n

Cn) < f ( C 1 ....... c )

implies that Cj < C; fo r  at le a s t  one job i.  These func t ion s  u s u a l l y  

take one o f  the fo l low ing  forms:

1 . f  = f = max{f . ( C . ) > max . i i J

n
2. f  = Zf.  = Z f. ( c . )

I S_1 I I
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or  theThus we s h a l l  seek to minimize e i t h e r  the maximum cost f
max

total  cost E f . . The fo l l ow ing  ob jec t ive  func t ion s  have f requent ly  been 

chosen to be minimized:

n
f = EC. = E C. 

1 ! = 1 1
sum o f  com pletion  tim es .

ntroducing weights  w. ( i = 1 , . . . , n ) ,  we have

n
f = Ew. C. = E w. C. 

1 1 i --1 1 1
w eig h ted  sum o f  com pletion  tim es .

f  = Ew.C.2 = E w. C. 2 
i i  . . i i  

i =1
w eig h ted  sum o f  squares o f  
com pletion  tim es .

In t roduc ing  due dates d . ( i = 1 , . . .,n) we have the fo l l ow ing  ob jec t ive

functi  ons

f = L = max{L. } max . i
i

maximum la te n e s s .

f  = T = max{T.} 
max . i

i
maximum ta r d in e s s .

n
f = ET. = E T. 

1 i = 1 1
t o t a l  ta r d in e s s .

n
f = EU. = E U. 

1 i = 1 '
t o t a l  number o f  la te  gobs.

We may a l s o  choose to minimize:

n
f = Ew.T . = E w.T. 

1 1  i =1 ‘ 1
w eig h ted  sum o f  ta r d in e s s .

n
f = EW.U. = E w.U. 

i i . . i ii =1
w eig h ted  sum o f  la te  gobs.

Let F. denote the time job i spends in the system ( i . e .  F .=C. - r .)
m,- 1

and W. denotes the wa i t in g  time of  job i ,  i . e .  W .=C.- ( r .  + Z o . ) .
' ' ' 1 k=l lk

12



Rinnooy Kan (Rinnooy Kan, 1976) showed that c r i t e r i a  based on the ob ject ive

funct ion s :  Ew.C., Iw .F . ,  Ew.W and Ew.L. to be equ iva len t  ( i . e .  have ident ica l

optimum schedu le s ) .  He a l s o  showed that an optimal schedule with  respect

to L i s  a l s o  optimal with respect to T max r K max

Remark: L and T are not equ iva lent :  a schedule with  T =0 may be 
max max ^ max 7

suboptimal with respect to L .

In Figure 2.3, we g ive  a graph copied from (Lawler, Lenstra  and 

Rinnooy Kan, 1981). The graph def ines  elementary reduct ion among schedu­

l i n g  problems. An arc  from vertex  to vertex  in t h i s  graph denotes 

that problem is  po lynom ia l ly  reduc ib le  to problem ?£. I t  fo l low s  that:  

i f  ( i . e .  po lynom ia l ly  s o l v a b le ) ,  then P.jeP;

i f  P.j i s  NP-hard, then ? 2  i s  NP-hard.

F igu re  2.3: Reduction among schedu lin g  problems



2.4 Problems C l a s s i f i c a t i o n

As we mentioned before, each schedu l ing  problem requ i re s  p rocess ing

n jobs  (numbered 1 .......n) on m machines (numbered so as to minimize

some ob ject ive  f u n c t i o n ( s ) .  Therefore, each schedu l ing  problem invo lve s  

we l l -de f ined  set o f  jobs ,  machines and ob jec t ive  f u n c t i o n ( s ) .  For t h i s  

reason, schedu ling  problems are u su a l l y  descr ibed u s ing  a 3-parameter 

notation  a|g|y to be def ined below (Lawler, Lenstra  & Rinnooy Kan, 1981) .

2.4.1 Machine Environment (a)

= P:

The f i r s t  parameter a = a 1 «2

where a . e { 0 ,O ,P , F , J }. Each o f  these symbols denotes a s p e c i f i c  machine
environment (0 i s  the empty symbol):

= 0 : a s in g le  machine problem  (p.^ = p . ) .

= 0 : an open-shop problem  ( in which each job i c o n s i s t s

o f  a s e t  o f  o p era tio n s  { 0 . ^ .......0 .m). But t *ie orc êr

in which the opera t ions  are executed i s  immaterial.

I f  a^e {P ,F ,J }  cm o rderin g  i s  imposed  on the set of  opera t ions  corresponding

to each job.

We have a p erm u ta tio n  flo w -sh o p  problem3 in which each 

job has the same sequence of  opera t ions .  A l so ,  a l l  

machines handle the jobs  in the same order.

F: We have a flo w -sh o p  problem 3 in which each job has the

same sequence of opera t ions ,  but some job may overtake 

another job on some machine, i . e . ,  the machines may 

handle the jobs  in d i f f e r e n t  o rder s .

We have a fob -sh o p  problems in which each job has a 

s pec i f ied  sequence o f  opera t ions  which may d i f f e r  

from the sequence o f  opera t ions  of  other jobs.

I f  a2 i s  a p o s i t i v e  in teger,  then m i s  constant.  I f ,  on the other 

hand, a2=0, then m is  assumed to be v a r ia b le .  I t  i s  obv ious  that ^ = 0  i f ,  

and on ly  i f  c ^ l •

- 14 -
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2 . A.2 Job c h a r a c t e r i s t i c s

The second parameter , . . . i ndi cat es  the dropped r e s t r i c ­

t i on s  by means o f  the notat ion  gi ven in Sect ion  2.2. A l i s t  o f  the 

r e s t r i c t i o n s  that we sha l l  drop o c c a s i o n a l l y  w i l l  now be given.

1. 3  ̂eipmtn,0 }

3 . = pmtn: Pre-emption (j'ob s p l i t t i n g )  i s  al lowed ( i . e .  dropping
re s t r i  c t ion  J 9 ) •

3  ̂ = 0: Pre-emption i s  not allowed.

2 . 32e {p re c >t r e e >0}

3 = prec: Precedence r e l a t i o n  between jobs  are s p ec i f ie d  which
^ form a precedence graph G o f  the general ( a rb i t r a r y )

type.

3^ = tree: Precedence re l a t i o n s  between jobs  ( i . e .  G) form a tree.

3 = (7: No precedence r e l a t i o n s  are sp e c i f i e d  ( i . e .  jobs  are
i ndependent).

3. 3^ e { r . , 0 }

3- = r . : 
3 I

e3 = 0:
A r b i t r a r i l y  re lease  dates are s p ec i f ie d .

r .=0 fo r  a l l  i = 1 , . . . , n  ( i . e .  a l l  jobs  are a v a i l a b le  at 
the same time).

b. 3̂ e(iTi. $ m,0}

h  = mi

Si, = 0 =

$ m: A constant upper bound i s  s p e c i f i e d  (only  i f  = j)

A l l  m. are a r b i t r a r y  integers,

5. 3^e {p=1 ,p ip * ,0 )

B = p = 1 :  Each operat ion  has un it  p rocess ino  time,
5 H j

3^ = p . .$p * :  Upper bound on a l l  p rocess ing  times.

A l l  p. j  (p.) are a r b i t r a r y  in tege r s .B5 = 0:

6 . 3,e{p.  <p .->w.£w. , 0 }
6 * i  Kj I J

3/; = p. ip  .-HV.^W. :

66 = 0:

Agreeable weights.

A l l  w. are a r b i t r a r y  in tege rs,



2.4 .3  Object ive  funct ion

The th i rd  parameter y e { f  p£fj )• As mentioned in Sect ion  2.3, the

fo l low ing  ob jec t ive  funct ion s  have f requent ly  been chosen to be minimized:

f  e{C ,L ,T } 
max max’ max max

or

E f . e { E C . , ET, . VII

2.4 .4  Examples

1/r./Ew.C.: M in im iz ing  the weighted sum of  completion time on a
1 1 1 s i n g l e  machine subject  to a r b i t r a r i l y  re lease  dates.

J2/P..= l/C  : M in im iz ing  the maximum completion time in a two-machine
ij  max j 0b shop with un i t  p roces s ing  times.

Using the problem c l a s s i f i c a t i o n  descr ibed in Sect ion  2.4, we can

ind ica te  problems under study as fo l lows:

1/B/y:

1/r./EWjC. 

V/Ew.C.2 :

F2/prec/C

Pm/prec/C

max

max

In Chapter 5* 

In Chapter 6 . 

In Chapter 7. 

In Chapter 9* 

In Chapter 10.

2.5______Computational Complexity

The computation time needed to so lve  a schedu ling  problem i s  

o bv iou s l y  of  g reat  importance. P i s  the s e t  o f  a l l  d e c is io n  problem s th a t  
can be so lv e d  by a d e te r m in is t ic  a lg o rith m  in  a tim e bounded by a p o ly ­
nom ial o f  th e  in p u t  s i z e . (A dec i s ion  problem i s  one whose s o l u t i o n  i s  

e i t h e r  " y e s "  or  " n o " ) .  NP i s  th e  s e t  o f  a l l  d e c is io n  problem s th a t  can 
be so lv e d  by a n o n -d e te r m in is t ic  a lg o rith m  in  a tim e  bound by a po lynom ia l 
o f  the  in p u t  s i z e . The c l a s s  NP i s  very extens ive .  I t  i s  obvious  that 

Pc NP. A l l  schedu ling  problems that w i l l  be considered in t h i s  t h e s i s  

can be so lved by non -de te rm in i s t ic  a lgor i thms  and thus are members of  NP.
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Cook (Cook, 1971) proved that there are hardest problems in NP. Such 

problems are ca l led  NP-complete. A problem  P ' -is NP-complete i f  the  
e x is te n c e  o f  a polynom ia l a lg o rith m  f o r  P ' im p lie s  th e  e x is te n c e  o f  a 
polynom ial a lg o rith m  fo r  any problem in  KTP ( i . e .  P=NP) . The locat ion  of 

the bo rder l ine  separa t ing  the " e a s y "  problems ( in  P) and the hard ones 

( in  NP-complete) has been under wide in v e s t i g a t i o n  o f  many researchers ,  

but turns out that a minor change in the value of  an easy problems para­

meter often transforms t h i s  problem in to  a hard one.

N P-com pleteness o f  a problem  i s  g e n e ra lly  a ccep ted  as s tro n g  
evidence th a t  the  e x is te n c e  o f  a good a lg o rith m  i s  u n l ik e ly  and hence 
enw nerative  o p tim iza tio n  methods such as branch and bound o r h e u r i s t i c  
methods are to  be used.

The o p tim iza tio n  v e rs io n  o f  an e x is te n c e  problem  th a t  i s  NP- 
com plete i s  c a l le d  NP-hard.

F in a lly s a problem  i s  s a id  to  be an open problem  i f  a po lynom ia l 
bounded a lg o rith m  fo r  s o lv in g  t h i s  problem  has n o t been foun d  and the  
problem has n o t been proved  to  be h a rd es t in  NP.
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CHAPTER THREE

METHODS OF APPROACH

3.1______ Introduct ion

The machine schedu l ing  problem i s  a combinator ia l  op t im iza t ion  

problem. The ob jec t ive  in t h i s  kind o f  problem i s  to f ind  an optimal 

schedule among a large  but f i n i t e  number o f  f e a s ib le  schedule s.

Every schedule i s  determined by the s t a r t i n g  times o f  a l l  opera t ions ,  

where the s t a r t i n g  time of  an operation  0 .^ on machine j ,  s „  i s  g reate r  

than or  equal to the completion times o f  a l l  other opera t ions  o f  job i 

that must precede the given operat ion.  A sch edu le  i s  c a l le d  a sem d -a c tive  
sched u le  i f  the  s ta r t in g  tim e o f  no o p era tio n  can be d ecreased  w ith o u t  
changing th e  p ro cess in g  o rder on some machine. S ince  the class o f  semi­

ac t ive  schedules Z being in one to one correspondence w i th  fe a s ib le  

sequences, i t  has f i n i t e  c a r d i n a l i t y  of  at most ( n ! ) m. I t  can e a s i l y  be 

proved that Z conta in s  at le a s t  one optimal schedule  with respect to any 

regu la r  measure (Theorem 2.2,  Rinnooy Kan, 1976). For a Pm/B/y problem, 

the number of  f e a s i b l e  schedules i s  bounded from above by n l .  Th i s  number 

increases  to ( n ! ) m fo r  the Jm/B/y problem. Th is  number, ( n ! )m, i s  very 

large  even for  small va lues  o f  n and m. For example, i f  n = m = 5: ( n ! ) m 

= 24,883,200,000.

Some fu r the r  s l i g h t  improvement i s  p o s s i b l e  by i d e n t i f y i n g  a sub­

set o f  Z con ta in ing  an optimal schedule with  respect to any regu la r  measure. 

Th is  subset i s  the se t ,  Z^, o f  a l l  a c t iv e  sch ed u lin g , " i .e .th o s e  sem i-  
a c t iv e  sch ed u les  in  which i t  i s  n o t p o s s ib le  to  decrease the  s ta r t in g  
tim e o f  any o p era tio n  w ith o u t in c re a s in g  th e  s ta r t in g  tim e o f  a t  l e a s t  
one o th e r  o p era tio n . The set of  a l l  a c t i ve  schedules is  a subset of  

Z and must contain an optimal schedule with respect to every  regu la r  

measure" (Rinnooy Kan, 1976).
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" I n  genera l,  al though the set of a c t ive  schedules i s  u s u a l l y  a 

p ropor t iona te ly  small and proper subset  o f  the se t  o f  semiact ive  schedules, 

there are s t i l l  an imposs ib ly  large  number." (Conway et  a l . ,  1967).

C lea r l y ,  search ing  fo r  an optimum schedule  among a l l  p o s s ib le  

schedules us ing  complete enumeration is  not s u i t a b l e  even f o r  problems o f  

small s i z e s .  Thus the complete enumeration method may be rejected 

immediately.

Most methods of  approach (d i s rega rd ing  complete enumeration) t ry  

to reduce the s i z e  o f  the set of  f e a s ib le  schedules  by e l im in a t in g  a l l  

sequences (or pa r t s  o f  sequences) that are o b v io u s l y  non-optimum: t h i s  

i s  because a sequence that i s  at leas t  as good has been or  can be found.

In h i s  book, Rinnooy Kan (Rinnooy Kan, 1976) g i ve s  a f u l l  review 

of  most known methods of  approach to s o l v i n g  machine schedu l ing  problems. 

These methods are as fo l low s :

1. Complete Enumeration.

2. Combinatorial  A n a l y s i s .

3. Integer  Programming.

1*. Branch and Bound.

5. Dynamic Programming.

6 . H e u r i s t i c  Methods.

C om binatorial a n a ly s is  methods re l y  on examining the e f f e c t  a minor 

change in a p a r t i c u l a r  sequence has on the value of  that sequence. Th i s  i s  

done by judg ing  the e f fe c t  o f  the interchange o f  two, p o s s i b l y  adjacent,  

jobs  in a sequence.

Several  attempts have been made to so lve  the machine schedu l ing  

problem by formulat ing  i t  as an in te g e r  programming problem. Five  o f  

these attempts can be found in (Rinnooy Kan, 1976). Although t h i s  formu­

la t ion  i s  a t t r a c t i v e ,  there i s  no e f f e c t i v e  a lgo r i thm  to so lve  the in teger  

programming problem.



Branch and hound methods are among the most popular  methods of 

approach for  s o l v i n g  combinator ia l  programming problems. Th i s  i s  due to 

the i r  s im p l i c i t y  and the i r  (often) computational e f f i c i e n c y .  A branch 

and bound a lgor i thm  i s  character ized  by i t s  branching procedure, lower 

bounding procedure and i t s  search s t ra tegy .

Dynamic programming methods have been used to so lve  a number of 

machine schedu ling  problems, mainly 1/3/y problems. Here, machine schedu­

l in g  problems and other combinator ia l  op t im iza t ion  problems are in te rpreted  

as m u lt i s tage  dec i s ion  problems. At every stage,  an equation (based on 

Be l lman 's  p r i n c i p l e  of  op t im a l i ty )  i s  used to desc r ibe  the optimal 

c r i t e r i o n  funct ion  ( for  each subproblem) in terms o f  the p rev iou s l y  

obtained ones. A lower bounding procedure can be a s soc ia ted  with  t h i s  

approach too. Thus, dynamic programming may be viewed as a tree search 

method s im i l a r  to the branch and bound approach, but the main d isadvantage 

i s  that s torage  requirements are la rge r .  However, the method has the great 

advantage that many p a r t i a l  s o l u t i o n s  are e l im inated wi thout being explored 

fu r the r .  For the implementation of  dynamic programming methods, we refer  

to (Held & Karp, 1962; Rinnooy Kan, 1976; Baker & Schrage, 1978A , 1978B ; 

Law le r , 1981).

The f i n a l  approach to s o l v i n g  schedu ling  problems i s  by u s ing  

h e u r i s t ic  m ethods. Although these methods do not guarantee optimal s o l u ­

t ion s  (un l i ke  the branch and bound and the dynamic programming methods 

which guarantee the f in d in g  of  an optimal s o l u t i o n ) ,  they dominate a l l  

other methods in real l i f e  s i t u a t i o n s .

In the rest  of  t h i s  chapter we s h a l l  d i s c u s s  in more de ta i l  two 

of  these methods of  approach, namely the branch and bound approach and the 

h e u r i s t i c  approach. The branch and bound approach i s  included because of  

i t s  popu la r i t y ,  wide use and because i t  w i l l  be the main approach we sh a l l  

be using in the fo l low ing  chapters  (except in Chapter 5). The h e u r i s t i c  

approach i s  included because of  i t s  importance in real l i f e  s i t u a t i o n s .
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3.2 Branch and Bound Approach

As we mentioned before, branch and bound methods are among the most 

popular  and wide ly  used methods to so lve  combinator ia l  programming problems. 

They were developed and f i r s t  used by Eastman (Eastman, 1959) for  the 

t r a v e l l i n g  salesman problem and by Land and Doig (Land £ Dolg, 1960) In the 

context of  mixed Integer  programming. They were f i r s t  appl ied  to schedu l ing  

problems by ( I g n a l l  £ Schräge, 1965; Lomnicki,  1965; Brown £ Lomnicki,  1966; 

McMahon £ Burton, 1967). "The main reason fo r  t h e i r  present  p opu la r i t y  

seems to be the s im p l i c i t y  of  the ba s ic  p r i n c i p l e s ,  combined with easy 

implementation (see Lenstra  £ Rinnooy Kan, 1975) and often  s u r p r i s i n g  com­

putat iona l e f f i c i e n c y .  However, by the i r  very nature the computational 

behaviour o f  these methods remains unpred ic tab le . "  (Rinnooy Kan, 1976).

A general d e s c r ip t i o n  o f  the branch and bound methods w i l l  now be 

given. The se t  o f  a l l  p o s s ib le  schedules is  d iv ided  up in to  d i s j o i n t  

subsets  ( t h i s  d i v i d i n g  i s  known as the branching procedure), each o f  which 

may conta in  more than one p o s s ib le  schedule. A lower bound on the value 

of  each s o lu t i o n  in a subset  i s  ca lcu la ted.  I f  the lower bound ca lcu la ted  

for  a p a r t i c u l a r  subset i s  g reate r  than or equal to the upper bound (un le ss  

mentioned otherwise,  t h i s  upper bound i s  i n i t i a l l y  set to equal a very 

large number, i .e .  a number that i s  g reate r  than the value o f  any fe a s ib le  

schedu le ) ,  t h i s  subset i s  ignored s in ce  an optimal schedule  must e x i s t  in 

the remaining subsets .  These remaining subsets  ( i f  any) have to be con­

s idered one at a time. One o f  these subsets  i s  chosen, accord ing  to some 

search s t ra te gy ,  from which to branch. Th is  subset i s  then d iv ided  (as 

above) into  smaller  d i s j o i n t  subse ts .  As soon as one o f  these subsets  

conta in s  one element on ly ,  a complete sequence o f  the jobs  should e x i s t .  

Th i s  sequence i s  evaluated and i f  i t s  value i s  l e s s  than the current 

upper bound, t h i s  upper bound is  then adjusted a cco rd ing ly .

The procedure i s  then repeated u n t i l  a l l  subsets  have been con­

sidered.  The upper bound at the end o f  t h i s  branch and bound procedure 

is  the optimum fo r  the p a r t i c u l a r  problem.
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Thus, th e  branch and bound a lg o rith m  i s  determ in ed  by th e  
fo l lo w in g .

3.2.1 The bounding procedure

I t  d e sc r ib e s  th e  way in  which we c a lc u la te  th e  lower bound. The 

e f fe c t i v ene s s  of  the bound i s  the most important parameter, s in ce  i t  

determines the e f f i c i e n c y  o f  the complete a lgor ithm. We can d i s t i n g u i s h  

between the fo l low ing  methods o f  ob ta in ing  lower bounds.

(a) Relaxation  o f  Cons t ra in t s

Here, one (or more) o f  the c o n s t r a in t s  i s  relaxed,  such that the 

s o lu t i o n  to the r e s u l t i n g  problem can be obtained and used as a lower 

bound fo r  the o r i g i n a l  problem. For example, a lower bound fo r  the 

l/r./Ew.c.  problem can be obtained by re l ax in g  the re lease  date co n s t r a in t s  

( i . e .  by s e t t i n g  r .=0 for  a l l  i )  and s o l v i n g  the r e s u l t i n g  problem us ing  

Sm i t h ' s  ru le :  order  the jobs  in a non - inc rea s ing  order  of  w./p.. Lower 

bounds can a l s o  be obtained by s e t t i n g  p. = 1 fo r  a l l  i o r  w. = 1 for  a l l  i 

and s o l v i n g  the r e s u l t i n g  problem in each case.

Lower bounds may a l s o  be obtained by a l low ing  pre-emption ( i . e .  by 

re lax ing  the c o n s t r a in t  that each operation  once s ta r ted  has to be com­

pleted without in te r rup t ion )  and s o l v i n g  the r e s u l t i n g  problem. Th is  

method i s  used in Sect ion  6 ,h  to obta in  a lower bound fo r  the 1/r./EC. 

problem.

A l so ,  fo r  problems with  precedence c o n s t r a in t s  one can obta in  

lower bounds by re lax ing  these precedence c o n s t r a in t s  (or some o f  them).

For example, a lower bound fo r  the F2/prec/Cmax problem can be obtained 

by s o l v i n g  the F2//C v problem u s ing  John son ' s  procedure (Johnson, 195^) .

One can a l s o  obta in  lower bounds by a l low ing  some machine(s) to 

process  more than one job at a time ( i . e .  re l a x in g  the machine capac i ty  

c o n s t r a i n t ) .  Th is  method of  ob ta in ing  lower bounds i s  used in Chapters 

8 and 10.
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(b) Lagrangian Relaxation  o f  Con s t ra in t s

Th is  method o f  ob ta in ing  lower bounds in vo lve s ,  in the f i r s t  place, 

the e x p l i c i t  formulat ion  of  a problem as an in teger  (or mixed in teger)  

program. I t  i s  based on the observat ion  that many NP-hard problems are 

in fac t  " e a s y "  problems made complicated by some s ide  c o n s t r a in t s .  These 

complicating  c o n s t r a in t s  are dua l ized.  Two methods e x i s t  fo r  f i n d in g  the 

va lues  o f  the m u l t i p l i e r s ,  namely the subgradient op t im iza t ion  and the 

m u l t i p l i e r  adjustment methods. The optimum so l u t i o n  o f  the Lagrangian 

problem i s  a lower bound on the optimal va lue of  the o r i g i n a l  problem 

(minimizat ion  problems). The m u l t i p l i e r  adjustment method o f  s o l v i n g  

the Lagrangian problem i s  used in Sect ion  6.3  to obta in  a lower bound for  

the l/r./Ew.C. problem. Further  d e t a i l s  about these methods can be found 

in (Geoffr ion,  197**; F i she r ,  1978; Van Wassenhove, 1979).

(c) Dynamic Programming State  Space Relaxation

Th is  method i s  based on re lax ing  the s ta te  space a s soc ia ted  w ith  a 

given dynamic programming recur s ion  ( i . e .  reducing the number o f  s ta te s )  

in such a way that the s o l u t i o n  to the relaxed recurs ion  p rov ides  a lower 

bound which could be included in a branch and bound procedure to so lve  the 

problem. "T h i s  s ta te  space r e laxa t ion  method is analogous to Lagrangian 

re laxat ion  in in teger  programming. Con s t ra in t s  in in teger  programming 

fo rmulat ions  appear as s ta te  v a r i a b le s  in dynamic programming recu r s ion s  

and hence c o n s t r a in t  r e l axa t ion  corresponds  to s ta te  space r e l a x a t i o n . "  

( C h r i s t o f i d e s , Hingozzi  £ Toth, 1981). More d e t a i l s  about t h i s  method can 

be found in the above reference and i t s  references.

(d) Relaxation  o f  Object ive

Here, the ob jec t ive  funct ion  i s  relaxed in order  to obta in  a 

lower bound. For example, a lower bound fo r  the 1//Ew.T. problem can be 

obta ined as fo l low s :  (Van Wassenhove, 1979)
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Minimize

£ Ew. max(Cj“dj ,0 )  , w. £ w.

£ Ew! (C. -d . )  
i i i

i i
?  Ew. C. - Ew.d.

i i  l i

S ince  w.d. i s  a constant,  a lower bound can be obtained by s o l v i n g  the
I

l//Ew.C. problem u s ing  Sm i t h ' s  (Smith, 1956) procedure.

3 .2 .2  ____The Branching Procedure

I t  d escr ib e s  th e  method used to  s p l i t  up a su b s e t o f  p o s s ib le  
sch ed u le s . The most usual ones are as fo l low s :

(a) Sequencing fo b s  one by one from  the  b eg in n in g  (forw ards b ran ch in g). 
Th i s  i s  the wide ly  used method, see Chapters 1*, 6 and 8 .

(b) Sequencing yobs one by one from th e  end (backwards b ra n ch in g ).
Th i s  method proved to be very e f f e c t i v e  fo r  the t a rd ine s s  problem (Lenst ra,

1977) and the 1/d./Ew.C. problem (Van Wassenhove, 1979)*

(c) A t every  s ta g e , a job  i s  chosen to  be sequenced  e i th e r  a t  the  
b eg inn ing  o r a t  th e  end according  to  some h e u r i s t i c  method based  on the  
data  o f  th e  problem , see Chapters 8 and 10.

(d) A t every  s ta g e , a jo b  i s  chosen to  be sequenced f i r s t ,  l a s t ,  
d ir e c t ly  b e fo re  a no ther job  o r d i r e c t l y  a f t e r  a n o th er jo b . See (Ku r i su ,

1977; Pott s ,  1980C),a l so  see Chapter 9.

(e) A t every  s ta g e , a jo b  i s  sequenced e i th e r  b e fo re  o r  a f t e r  
a no ther jo b . A h e u r i s t i c  can be used to determine t h i s  p a i r  o f  job s ,  see 

(Po t t s ,  1981) and Chapter 7.

3.2.3  The Search St rategy

I t  in d ic a te s  a node (each node corresponds to  a branch a lrea d y  made) 
to  branch from . One can d i s t i n g u i s h  between three methods:

Ew. m ax (C j "d . ,0)
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(a) Branching from  th e  node w ith  th e  s m a lle s t  lower hound.
This  method u su a l l y  leads to the optimum f a s t e r  than methods b and c 

below, but i t  requ ires  more computer s to rage  to s to re  the required data 

at every node (Fox et a l . ,  1978).

(b) Branching from  th e  r e c e n tly  c re a te d  node. To save s torage  

space, t h i s  method i s  used f o r  problems g iven in Chapters 7 and 9.

(c) Branching from  a node w ith  th e  s m a lle s t  low er bound amongst 
th e  r e c e n tly  c re a te d  nodes. Th is  method u su a l l y  leads to the optimum 

f a s te r  than method b, but i t  requ ires  more computer s to rage  space. Th is  

method is  used fo r  problems given in Chapters 6 and 10.

A branch and bound a lgor i thm can be represented u s ing  a search

tree. Th is  tree u su a l l y  has up to n nodes (branches) in the f i r s t  l e ve l ,

each of  which w i l l  create up to n-1 nodes in the second le ve l ,  each one o f

these new nodes, in turn, w i l l  create up to n-2 nodes in the th i r d  le ve l ,

.......  and one node in the l a s t  level  of the search tree (except when the

branching procedure ( 2e) i s  used, in which case two nodes on ly  e x i s t  in

every  le ve l ,  but the number o f  l e ve l s  in the search tree in t h i s  case may
2

exceed n (but not n ) l e v e l s ) .

Here, we have g iven  the b a s i s  o f  a branch and bound a lgor ithm. 

Bes ides  t h i s ,  one can include many dev ices  to improve the e f f i c i e n c y  of 

the branch and bound procedure. For example, one might l i k e  to include 

a h e u r i s t i c  method to obta in  an upper bound on the optimum. In t h i s  t h e s i s ,  

a h e u r i s t i c  i s  e i t h e r  appl ied  once before app ly ing  the branch and bound 

procedure (as in Chapters 9 and 10) or  at every node o f  the search tree 

(as in Chapters 6 and 7).

I f  i t  i s  p o s s i b l e  to show that an optimum s o l u t i o n  w i l l  always 

e x i s t  without branching from a p a r t i c u l a r  node, then that node i s  dominated 

and can be e l im inated.  Dominance ru les  u s u a l l y  s p e c i f y  whether a node can 

be e l im inated  before computing i t s  lower bound. When used, dominance ru le s
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are u su a l l y  appl ied  at every node o f  the search tree to e l im inate  as many 

nodes as po s s ib le .  The e f fe c t  o f  dominance ru les  has been demonstrated 

(u s ing  te s t  problems) in Chapters 6 , 9 and 10.

Although a branch and bound procedure guarantees the f i n d in g  o f  an 

optimum schedule, a suboptimal s o lu t i o n  may r e su l t  i f  some o f  the p o s s i b l y  

optimum p a r t i a l  schedules  have not been explored. Th i s  i s  u s u a l l y  caused 

by l im i t i n g  the number of  nodes or the time spent on s o l v i n g  the problem 

to a f ixed number or  a f ixed  time re spec t iv e ly .  I t  can a l s o  be caused by 

r e s t r i c t i n g  the search to those schedules w i th in  a gi ven percentage o f  the 

optimum: in real l i f e  s i t u a t i o n s  one might cons ider  accept ing a s o lu t i o n  

w i th in  10% (say) o f  the optimum, in which case a node at any level  o f  the 

search tree is  e l iminated i f  the lower bound computed at that node i s  

w i th in  10% of  the upper bound.

In t h i s  t h e s i s ,  we sha l l  g ive  branch and bound a lgor i thms  for  

s o l v i n g  severa l  schedu ling  problems (see Chapters 6 , 7, 9 and 10).

3 .3______Heuri S t i c  Methods

I t  i s  c le a r  (from the p rev ious  sect ion)  that the computational 

requirements to so lve  a p a r t i c u l a r  schedu l ing  problem us ing  the branch and 

bound approach might become too time consuming fo r  large  problems. In 

fac t ,  even fo r  r e l a t i v e l y  small problems, there i s  no guarantee that a 

s o lu t i o n  can be found qu ic k ly .

H e u r is t ic  a lg o rith m s a vo id  t h i s  drawback, s in c e  by u sin g  them one 
can o b ta in  s o lu t io n s  to  la rge  problems in  a f r a c t io n  o f  th e  tim e sp e n t on 
so lv in g  them using  branch and bound tec h n iq u e s . A lso  th e  com putation  
requ irem en ts f o r  h e u r i s t ic  a lg o r itJ irs  are u su a lly  p r e d ic ta b le  f o r  problems 
o f  a g iven  s i z e .  The drawback o f  h e u r i s t ic  methods i s  th a t  they  do n o t  
guarantee o p t im a li ty  and in  some cases i t  may even be d i f f i c u l t  to  Judge 
t h e i r  e f f e c t i v e n e s s .
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One way to  a sse ss  the  e f fe c t iv e n e s s  o f  a h e u r i s t ic  i s  to  examine
i t s  w orst-ca se  behaviour. Suppose that f *  denotes the optimal s o lu t i o n

|_|
to a given problem, wh ile  f  denotes the corresponding  va lue obtained 

when the jobs  are sequenced us ing  a ce r ta in  h e u r i s t i c  H. I f ,  whatever the
j_|

problem data, f $ p f *  + 6 for  s pec i f ied  constants  p and 6 , where p i s  as 

small as p o s s ib le ,  then p i s  ca l led  the worst -case  behaviour  r a t i o  of  

heuri S t i c  H .

Unfor tunate ly ,  not enough work has been done on the wors t -case  

behaviour o f  these h e u r i s t i c s .  F i r s t  r e s u l t s  on the wors t -case  performance 

o f  h e u r i s t i c s  were due to Graham (Graham, 1966 & 1969). A review o f  wors t -  

case performance o f  schedu l ing  h e u r i s t i c s  can be found in (Garey, Graham 

6 Johnson, 1978; see a l s o  Chapter 5).

We sha l l  s t a r t  t h i s  sec t ion  by g i v i n g  two h e u r i s t i c  methods that 

have attracted  a t ten t ion  because o f  t h e i r  general a p p l i c a b i l i t y .  In 

Sect ion 3.3.1 we sh a l l  t a l k  about sampling techniques,  the f i r s t  o f  these 

h e u r i s t i c  methods. The second method, p r i o r i t y  ru le s ,  w i l l  be given in 

Section  3 *3 .2.  F i n a l l y ,  in Sect ion  3 -3 .3 ,  we sha l l  suggest  a t h i rd  

h e u r i s t i c  method, the tree type h e u r i s t i c .  Although t h i s  method w i l l  be 

gi ven in Chapter 5 when d i s c u s s i n g  h e u r i s t i c  methods f o r  ob ta in in g  near- 

optimal s o l u t i o n s  for  several  one machine problems, i t  i s  g i ven here 

because of i t s  general a p p l i c a b i l i t y .

3.3.1 Sampling Techniques

Th is  approach i s  based on the observat ion  by (H e l le r ,  1960; Ashour, 

1972) that the number o f  d i s t i n c t  schedules with  Cmax as t h e i r  maximum 

completion time i s  u s u a l l y  much smaller  than the number of  d i s t i n c t  semi­

ac t ive  schedules.  Th i s  ind ica te s  that i t  i s  p o s s ib le  to study the d i s ­

t r i b u t i o n  of  the random va r ia b le  C^gx over the set of a l l  sem i -ac t i ve  

schedules.  Th i s  d i s t r i b u t i o n  was proved to be a sym pto t i c a l l y  normal
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(He l le r ,  1959). I f  y and a denote the unknown parameters o f  the above 

d i s t r i b u t i o n ,  then i t  i s  p o s s ib le  us ing  methods o f  Bayes ian a n a l y s i s  to 

generate random schedules u n t i l  we have reached a stage where the pro ­

b a b i l i t y  of  f i n d in g  a smaller  schedule time in the next experiment i s  

not g reater  than some given constant  a.

Th is  procedure i s  s ta r ted  by con s t ruc t ing  an i n i t i a l  d i s t r i b u t i o n  

on the parameters y^ and which are s p ec i f ie d  accord ing  to our i n i t i a l  

b e l i e f s  on th e i r  va lues.  A random schedule i s  then generated. The value 

o f  t h i s  schedule i s  used to update the parameters of  the d i s t r i b u t i o n  to 

y i e l d  a new d i s t r i b u t i o n  with parameters y^ and o^. Th is  new d i s t r i b u t i o n  

i s  used to ca lcu la te  p, the p r o b a b i l i t y  o f  f i n d in g  a value C in the 

next experiment which i s  smaller  than C* , the best schedule time obtained 

so fa r .  I f  p 5 a, we stop;  otherwise  the procedure continues in a s im i l a r  

way ( i . e .  by updating y^ and cr̂  to obta in  new parameters y^ and a then 

ca lcu la te  p, e t c . ) .  "We re fe r  to (De Leede and Rinnooy Kan, 1975) for  

d e t a i l s  on the choice of  an i n i t i a l  d i s t r i b u t i o n  for  t h i s  p a r t i c u l a r  case.

During some actual experiments on a 20 job P10//C problem with  data
max

provided in (H e l le r ,  1960), convergence o f  the i n i t i a l  d i s t r i b u t i o n  to

the f i n a l  one turned out to be r e l a t i v e l y  independent of  the p a r t i c u l a r

p r i o r  d i s t r i b u t i o n  chosen. A near-optimal schedule was found in a few

seconds CPU time a f te r  rough ly  250 i t e r a t i o n s  in most cases.

Neverthe le ss ,  i t  appears to us that the BayesTan approach through

i t s  dependency on asymptot ic r e s u l t s  fo r  the d i s t r i b u t i o n  o f  C i s  more
max

of  academic i n te re s t  than of  g reat p ra c t i ca l  use; i t  seems d i f f i c u l t  to 

genera l i ze  t h i s  approach to le s s  s t ructu red  s i t u a t i o n s . "  (Rinnooy Kan, 1976).

3.3 .2  P r i o r i  ty Rules

Given a set o f  schedulable  opera t ions  S, a p r io r i t y  ru le  t e l l s  us 
which o p era tio n  0^  (corresponding  to  p ro c e ss in g  jo b  i  on machine k) sh ou ld
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be sch edu led  n e x t . (Of course,  an obvious  way to choose an operation  is  

by s e le c t in g  an operat ion  0 .^ randomly).

Most p r i o r i t y  ru le s  have been developed and can be found in (Gere, 

1966; Conway et a l . ,  1967; Day & Hottenste in ,  1970; Rinnooy Kan, 1976).

Some o f  these ru les  w i l l  now be given.

1. Job i  has a m inimal due date (the  e a r l i e s t  due d a te 3 
EDDS r u le ) .

2. O peration 0 has  the  e a r l i e s t  com pletion  tim e  
(ECT r u le ) . ' lK

3. O peration 0 has the  s h o r te s t  p ro c e ss in g  tim e  
(SPT r u le ) .

k . Job i  has th e  s m a lle s t  (o r la r g e s t)  s la c k - t im e  
( i . e .  d i f fe r e n c e  between i t s  due d a tes and the  
surrt o f  rem aining p ro cess in g  tim e s ) .

5. Job i  has m inim al (or maximal) sum o f  rem aining  
p ro cess in g  tim es ( i . e .  le a s t  (or m ost) work rem ain ing).

6 . Job i  has m inimal (or maximal) number o f  
rem aining o p e ra tio n s .

7. O peration  0.,  a r r iv e d  f i r s t  a t  machine k ( f i r s t  comey 
f i r s t  se rvea  (FCFS) o r  f i r s t - i n  f i r s t - o u t  (FIFO) r u le ) .

Other p r i o r i t y  ru le s  can be found in the above gi ven references.

Conway et  a l .  (Conway, Maxwell & M i l l e r ,  1967) reported a study by 

Jeremiah Lalchandani and Schräge which ind ica te s  that p r i o r i t y  ru le s  work 

best on non-delay schedules (schedules obta ined u s ing  p r i o r i t y  r u l e 7 )  and 

that the SPT, random schedu l ing  and the le a s t  work remaining ru le s  are 

supe r io r  to most other  ru le s  on ac t ive  schedules. Furthermore, Rinnooy Kan 

(Rinnooy Kan, 1976) reported that ru les  based on the sum of  remaining pro ­

ce s s in g  times are s l i g h t l y  better  than the SPT ru le ,  which in turn ou t ­

performs the random and FIFO ru le s .  He a l s o  reported two h e u r i s t i c  ru le s  

given by Gere which turn out to be very e f f e c t i v e :  an " a l te r n a t iv e  
o p era tio n "  ru le  where j'ob j' i s  preferred to job i (the job o r i g i n a l l y  chosen) 

i f  the choice  o f  job i threatens  overdue d e l i v e r y  o f  job j ,  and the "look  
ahead" ru le  whereby job i i s  forced to wa it i f  an urgent job i s  about to
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become a va i l ab le  for  p rocess ing .  A l l  p r i o r i t y  ru le s  are reported to work 

almost equa l ly  well when bols tered  by these two add i t iona l  ru le s .  F i n a l l y ,  

i t  i s  reported in Conway et a l . (Conway et a l . ,  1967) that Nugent proposed 

a method based on mixing the random ru le  with  some p r i o r i t y  ru le s .  By 

doing t h i s  Nugent was able to vary the amount of randomness that entered 

in to  o p e ra t i o n .s e l e c t i o n . S u r p r i s i n g l y ,  the te s t s  he made c o n s i s t e n t l y  

lead to better  r e s u l t s  than those obtained u s ing  e i t h e r  of  the two methods 

by i t s e l f .

Having obtained a complete o rder ing  of  the jobs  on a machine, i t  

might be p o s s ib le  to improve t h i s  p rocess ing  order  by in te rchang ing  p a i r s  

of  jobs  sequenced in adjacent p o s i t i o n s .  Th i s  method i s  l i k e l y  to be 

e f f e c t i v e  fo r  problems with the same p rocess ing  order  on a l l  machines.

3.3 .3  The Tree Type H e u r i s t i c

From Sect ion  3-2 we know that although  a branch and bound procedure 

guarantees the f i n d in g  o f  an optimum schedule, a suboptimal s o l u t i o n  may 

r e su l t  i f  some o f  the p o s s i b l y  optimum p a r t i a l  schedules  have not been 

explored.  Th is  fact  has been used to obta in  near-optimal s o l u t i o n s  for  

many schedu l ing  problems. Here on ly  some o f  the cand idates,  w i th in  each 

level o f  the tree, are chosen from which to branch. U sua l l y ,  one candidate 

on ly  i s  chosen w i th in  each level o f  the tree. Rare ly  more than one cand i ­

date is  chosen w i th in  each level o f  the tree. We can i d e n t i f y  the 

fo l low ing  methods o f  choosing candidates  (Mul ler-Merbach,  1981).

1. According to some p r i o r i t y  ru les  (see Sect ion  3 .3 .2 ) .

2. According to the va lue o f  the ob jec t ive  funct ion  o f  s o l u t i o n -  

i n -p roce s s ,  i . e .  job i i s  se lected to be sequenced a f te r  an i n i t i a l  p a r t i a l  

sequence ir i f  f ( iti ) < f ( itj ) fo r  a l l  jobs j ,  where f  denotes the ob jec t ive

f unct i o n .
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3. According to the va lue of  a lower bound computed at every 

node ( look ahead c r i t e r i o n ) .  Obv ious ly ,  method 2 above is  a spec ia l  

case o f  t h i s  method.

b. According to some second order  h e u r i s t i c ,  which i s  appl ied  

at every node. Obv ious ly ,  th i s  second order  h e u r i s t i c  has to be com­

p u ta t i o n a l l y  much f a s te r  than the h e u r i s t i c  under cons ide ra t ion .

I t  is  obvious  that i f  the number of  chosen candidates  i s  one, one 

would s e le c t  a candidate with  the smal les t  lower bound i f  method 3 i s  used 

and one with the sma l le s t  va lue of  the h e u r i s t i c  i f  method b i s  used.

Although t h i s  h e u r i s t i c  method can be appl ied  to a l l  types of  

machine schedu l ing  problems, i t  i s  p a r t i c u l a r l y  usefu l  fo r  one machine 

problems, e s p e c i a l l y  fo r  problems with  release dates,  due dates,  and 

precedence c o n s t r a in t s .  Several  one machine h e u r i s t i c s  can be found in 

Chapter 5-



PART I I

SINGLE MACHINE SCHEDULING
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CHAPTER FOUR

SINGLE MACHINE SCHEDULING

4.1 ____ I ntroduct ion

In th i s  chapter we s h a l l  g i ve  a b r i e f  review o f  the p r in c ip a l

r e su l t s  in one machine problems. We sha l l  c l a s s i f y  these re su l t s  according

to the op t im a l i t y  c r i t e r i o n  chosen. H e u r i s t i c  methods fo r  ob ta in ing  near

optimum s o lu t i o n s  fo r  s i n g l e  machine problems w i l l  not be d i scu ssed  in

t h i s  chapter; they w i l l  be considered in Chapter 5.

Sect ion  4.2 dea ls  with  f c r i t e r i a .  Sect ion  4.3 dea ls  wi th Ef.max i

c r i t e r i a .  The 1/B/Ew.C. problem is  considered in Sect ion  4.3 .1.  In

2
Sect ion  4.3 .2  we cons ider  the 1/B/Ew.C. problem. The 1/G/Ew.T. problem 

w i l l  be dea l t  wi th  in Sect ion  4 .3 .3 .  In Sect ion  4 .3 .4  we sh a l l  be dea l ing  

wi th  the 1/8/Ew.U. problem. C r i t e r i a  wi th  m u l t ip le  ob jec t ive s  funct ion  

are considered in Sect ion  4.4.

We conclude t h i s  se c t ion  by g i v i n g  a theorem which w i l l  be appl ied  

throughout t h i s  chapter.

Theorem 4.1 (Conway et a l . ,  1967)

There e x i s t s  an o p tim a l sch ed u le  w ith  r e s p e c t  to  any re g u la r  
measure fo r  any s in g le  machine problem w ith  equal re le a se  d a tes  w ith o u t  
machine i d l e  tim e and w ith o u t gob s p l i t t i n g .

4.2 M in im iz ing  Maximum Cost,  f max

2
Lawler (Lawler, 1973) gave an 0(n ) a lgo r i thm  to so lve  the 1/prec/

f problem. His a lgo r i thm  i s  considered as the most general r e s u l t  in 
max

s i n g l e  machine sequencing. The general  step o f  the a lgor i thm  i s  as fo l low s .  

Let S denote the set o f  unscheduled jobs  at step h o f  the a lgor i thm.  Let 

p(S) = £ j e5 Pj and ' et S ' s S  denote the set of  jobs  wi th  no succe s so r s  in S.



in the la s tSequence a job j e S1 with f \ ( P ( S ) )  i  f . ( P ( S ) )  for  a l l  ie S '  

ava i 1able pos i t i o n .

When f = L , the 1//L problem can be so lved in 0(n loq n)max max max a

steps  u s ing  J ack so n ' s  EDD ru le ,  i .e .  by o rder ing  the jobs  accord ing  to 

non-decreasing due dates (Jackson, 1955). In troduc ing  re lease  dates,  the 

general  l / r ./ L  problem is  NP-hard (Lenstra  et a l . ,  1977). However, 

when a l l  p rocess ing  times are equal,  we have two so lvab le  cases.  The 

f i r s t  one a r i s e s  when p.=1 for  a l l  i ,  in which case the problem can be 

so lved u s ing  the extended J ack son ' s  ru le :  sequence an a v a i l a b l e  job with 

the sma l le s t  due date next (a job i i s  sa id  to be a v a i l a b l e  to be cons idered 

fo r  sequencing in a given p o s i t i o n  i f  i t s  re lease  date i s  le s s  than or equal 

to the completion time o f  the job sequenced in the prev ious  p o s i t i o n ,  or  i f  

job i has a minimal re lease  date amongst unscheduled jo b s ) .  Th is  a lgo r i thm  

i s  proposed as a h e u r i s t i c  fo r  the problem with  general p roces s ing  times 

by Schräge (Schräge, 1971). The second case a r i s e s  when p.=p for  a l l  i 

f o r  which a more s o p h i s t i c a te d  a lgor i thm  e x i s t s  (Simons, 1978). With 

regard to the second case, we have the fo l low ing .  Let ir = ( ir(l) ,. .. , tt (n)) 

be a schedule obtained u s ing  the extended J a c k so n ' s  ru le .  I f  £ ^Tr(h)

for  h = 1 , . . . , n ,  then the schedule it i s  optimum; otherwise,  let -rr(i) be the 

f i r s t  late  job in tt. I f  a job tt(j ) where j< i  with d , . N > d does not 

e x i s t ,  there i s  no f e a s ib le  schedule. On the other hand, i f  there e x i s t s  

such a job tt( j ) there may e x i s t  a f e a s i b l e  schedule. Search ing  for a 

fe a s ib le  schedule can be done as fo l lows.  Choose j as large  as p o s s ib le  

and add a c on s t ra in t  that job tt ( j ) cannot be scheduled before jobs  ir(h)

for  h = j + l ....... i . Th is  i s  done by s e t t i n g  r ^ . j  = mi nh=j+1  ̂  ̂  ̂  ̂ ^. ( r ^ ) .

The extended J ack son ' s  ru le  is  then appl ied  again  subject  to the added 

con s t r a in t .  The f e a s i b i l i t y  quest ion  i s  answered in 0(n^ log n) steps.

An improved implementation by Garey et a l .  (Garey et a l . ,  1981) requ ires  

on ly  0 (n log n) steps.  (Lawler, Lenstra  & Rinnooy Kan, 1981).

- 3 h  -



In troduc ing  precedence c o n s t ra in t s  among job s ,  the spec ia l  cases:

1/prec/Lmax, l / p re c , r . , p . = 1 / L max and 1/prec , r . ,p .=P/Lmax can s t i l l  be

solved by in c rea s in g  release dates and decreas ing  due dates such that i f  i

must be sequenced before j (according  to the precedence c o n s t r a in t s )  then

r.+p. i  r. and d.+p. < d. (Lageweg et a l ., 1976). The a lgor i thms  des- 
i K t J i J J

cr ibed above are then appl ied  to the problems igno r ing  the precedence 

constra i  nts.

Var iou s  e legant branch and bound methods e x i s t  fo r  s o l v i n g  the

l / p r e c , r . /Lmax problem, see (Baker S Su, 197^; McMahon S F lo r ia n ,  1975;

Lageweg et a l . ,  1976; C a r l i e r ,  1980).

I t  i s  known that any sequence i s  optimum fo r  the 1//C problem.

Int roduc ing  release dates,  the problem can be so lved in 0 ( n log n) steps

by o rder ing  the jobs  accord ing to non-decreas ing r. . The procedure can

a l s o  be used to so lve  the 1/r .,prec/C problem a f te r  ad ju s t i n g  the
i max

release  dates to r e f l e c t  the precedence c o n s t r a in t s .

¿4.3 M in im iz ing  Total  Cost,  I f .

1*. 3-1 1/B/Iw. C.

The 1//IW.C. problem can be so lved  u s ing  S m i t h ' s  ru le :  order  the 

jobs accord ing to non - inc rea s ing  W j / p .  r a t i o s .  Th i s  procedure requ i re s  

0(n log n )steps.  I f  w.=1 for  a l l  i = 1 , . . . , n ,  the procedure reduces to the 

SPT ru le ,  i .e .  o rder ing  the jobs  accord ing to non-decreas ing  p roces s in g  

times.

Adding precedence c o n s t r a i n t s ,  represented by a d i rec ted  graph G, 

to the problem causes the problem to be NP-hard even i f  a l l  p.=1 or  w.=1 

(Lawler, 1978; Lenstra  £ Rinnooy Kan, 1978).

Branch and bound a lgor i thms for  the 1/prec/Iw.C. problem can be 

found in (Rinnooy Kan et a l . ,  1975; Po t t s ,  1980C; Po t t s ,  1981). The best
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a lgor i thm (to our knowledge) f o r  t h i s  problem i s  the one proposed in 

(Po t t s ,  1981) which inc ludes  r e s u l t s  fo r  up to 100 jobs.

The spec ia l  case in which the precedence graph G is  a t r e e - l i k e  

graph has been so lved by (Horn, 1972); by (Adolphson 6 HU , 1973) and by 

(Sidney,  1975). Th i s  procedure requ ires  0(n log n) s teps .  I f  G is  a 

s e r i e s - p a r a l l e l  graph, the problem can s t i l l  be so lved u s ing  an 0(n log n) 

a lgor i thm der ived  by Lawler (Lawler, 1978) assuming that the decomposit ion 

tree is  gi ven.  Th is  a lgo r i thm  is  based on forming composite jobs :  form a 

composite job k = i j  such that 0 , j ) e G ,  w./p. < w./p and that j i s  a d i r e c t  

successo r  o f  i. The composite job k can then be treated as one job with 

P|<_P ;+Pj anc* wk~wi +wj ‘ S t a r t i n g  at the end o f  the given decomposit ion 

tree, the procedure s u c c e s s i v e l y  forms these composite jobs  u n t i l  an 

optimum schedule is  obtained.

In troduc ing  release dates the 1/r./EC. problem has been shown to be 

NP-hard (Lenstra  et a l . ,  1977). Branch and bound a lgor i thms fo r  t h i s  problem 

have been proposed in (Chandra, 1979) and (Dessouky £ Deogun, 1980). For 

the problem with a r b i t r a r y  we ights ,  (R ina ld i  £ Sassano,  1977) have der ived  

several  dominance theorems. In Chapter 6, branch and bound a lgor i thms  for  

s o l v i n g  the problem with a r b i t r a r y  weights  are der ived.  Computational 

r e s u l t s  fo r  up to 50 jobs  w i l l  a l s o  be included.

k .3 .2  1/B/Zw.C.2

2
Only the 1//Zw.C. problem has been cons idered by other  researchers .  

The problem i s  s t i l l  open. To our knowledge, Townsend (Townsend, 1978) 

was the f i r s t  to work on t h i s  problem. Among other  th in g s ,  Townsend proposed 

a bounding procedure based on o rder ing  the jobs  in a non - in c rea s in g  order  

o f  w./p. r a t i o s  and making an adjustment to a l low  fo r  the po tent ia l  improve­

ment that could be obta ined by in terchang ing  jobs  i and j ( f o r  a l l  i and j)  

i f  they are not in the r i g h t  order accord ing to n o n - in c rea s in g  weights.
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Bagga and Ka lra  (Bagga S Ka l ra ,  1980) proposed some dominance ru le s  for  

the problem.

2
The 1//Ew.C. problem i s  considered in more de ta i l  in Chapter 7 

where we propose a branch and bound procedure fo r  s o l v i n g  t h i s  problem. 

Computational r e s u l t s  fo r  problems with  up to 70 jobs  are included. A l so ,  

we sha l l  show that the spec ia l  case where agreeable  we ights ( i .e . p. $ p̂ . -*■ 

w. £ wj) are ass igned  to the jobs can be so lved by o rde r ing  the jobs  

accord ing  to non - inc rea s ing  weights.

In Sect ion  7.9 we sha l l  show how to apply our proposed bounding

procedure fo r  a more general problem where precedence c o n s t r a in t s  among

2
jobs  e x i s t  (1/prec/Ew.C. ).

¿4.3.3 1/3/SWjTj

The 1//ET. problem is  s t i l l  open. I t  i s  cons idered to be the most

famous open schedu l ing  problem. Th is  problem has the fo l l ow ing  p rope r t ie s :

F i r s t :  A schedule tt obta ined by o rder ing  the jobs  in a non­

decreas ing  order  o f  t h e i r  p roces s ing  times (SPT-ru le )  

is  optimal i f d  /. \ + p  i  C / • fo r  a l l  i = 1 , . . . , n - 1  

(Rinnooy Kan, 1976).

Second: A schedule it obtained by o rder ing  the jobs  in a non­

decreas ing  order  o f  due dates (EDD-ru le) i s  optimal 

i f  T. $ p. fo r  a l l  jobs  i sequenced in tt (Rinnooy Kan, 1976).

Th ird :  The SPT and EDD schedules are optimal i f  they are

ident ica l  (as for  example when a l l  p. or  a l l  d. 

are equal) (Emmons, 1969).

Lawler (Lawler, 1977) developed a pseudopolynomial  a lgo r i thm  req u i r in g  

0(n^Ep.) time fo r  s o l v i n g  the 1//ET. problem.

Introduc ing  precedence c o n s t r a in t s  y i e l d s  NP-hardness,  even for

the 1/prec p.=1/ET. (Lenst ra  & Rinnooy Kan, 1978 ).  A l s o ,  the l/r./ET.
r i i i i

problem i s  NP-hard (Lenst ra  et a l . ,  1979).
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I f  a l l  p.=1, the 1/r.,p.=1/£w.T. problem can be solved as a l inear  

ass ignment problem. However, the general 1//EwjT. problem has been shown 

to be NP-hard (Lawler, 1977; Lenstra  et a l . ,  1977). Th is  general problem 

has been subject to extens ive  study (Emmons, 1969; S r i n l v a s a n ,  1971;

Rinnooy Kan et a l . ,  1975; F i she r ,  1976; Baker, 1977; P icard  £ Queyranne,

1978; Baker £ Schrage, 1978A, Van Wassenhove, 1979).

Branch and bound a lgor i thms  fo r  t h i s  problem were developed and 

used by many o f  the above l i s t e d  researchers .  Rinnooy Kan et a l .  (Rinnooy 

Kan et a l . ,  1975) used a lower bound obtained by s o l v i n g  assignment pro­

blems. A d i f f e r e n t  bound was obta ined by F i sher  ( F i she r ,  1976) through 

Lagrengian re laxat ion :  the co n s t r a in t s  that the machine can process  one 

job on ly  at a time was relaxed. Picard  et a l .  (P icard  £ Queyranne, 1978) 

put the problem into  a time-dependent t r a v e l l i n g  salesman framework.

Relaxing the problem led to a s ho r te s t  path problem. F i n a l l y ,  Van- 

Wassenhove (Van Wassenhove, 1979) obta ined a bound through Lagrengian re l a x a ­

t ion .  Th is  time, the relaxed problem i s  a weighted f low-t ime problem.

b . l . b  1/B/Zw.U.

The 1//EUj problem can be so lved in 0(n log n) steps  by u s ing  

Moore ' s  a lgo r i thm  (Moore, 1968): le t ir = ( tt (1) , . .  . , u ( n ) ) be the sequence 

obtained by order ing  the jobs  in a non-decreas ing order  of  th e i r  due dates.

I f  there e x i s t s  a job ir(i) (with i as small as po s s ib le )  that is  completed 

a f te r  i t s  due date, one of  the jobs  sequenced in the f i r s t  i p o s i t i o n s  and 

with the la rge s t  p roces s in g  time i s  marked la te  and is  removed from the 

problem. The procedure ends when a l l  the remaining jobs  are completed 

w i th in  t h e i r  due dates. Sidney (Sidney,  1973) extended t h i s  procedure to 

cover the case where ce r ta in  s p ec i f ie d  jobs  have to be completed in time. 

Adding dead l ines  occu r r in g  at or a f te r  the j o b s '  due dates causes the 

problem to be b inary  NP-hard (Lawler, 1981 A ) .
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I f  agreeable weights ( i . e .  p. < p. -> w. £ w.) were added, the
1 J ' J

r e s u l t i n g  problem can be so lved in 0 (n log n) s teps  u s ing  Law le r ' s  

a lgo r i thm  (Lawler, 1976). The problem can a l s o  be so lved  in G(n log n) 

steps i f  agreeable re lease  dates ( i . e .  d. < dj -»■ r. $ r^) were added (Kise  

et a l . ,  197SB). However, the 1//Ew.U. problem has been shown to be NP-hard 

(Karp, 1972), but can be so lved by dynamic programming in 0(n£p.) steps 

(Lawler £ Moore, 1969). The 1/r./ IU. probl em has a l s o  been shown to be 

NP-hard (Lenst ra,  1977).

In troduc ing  precedence con s t r a in t s  causes the problem to be NP-hard 

even the l/p rec ,p .= l/ IU .  problem (Garey & Johnson, 1976). The spec ia l  case 

with c h a in - l i k e  precedence c o n s t r a in t s  has a l s o  been shown to be NP-hard 

(Lenstra  & Rinnooy Kan, 1980).

k .h_____ M u l t ip le  Object ives

Although many real l i f e  sequencing problems invo lve  mu lt ip le  

c r i t e r i a ,  s u r p r i s i n g l y  l i t t l e  work has been done on these m u l t ip le  c r i t e r i a .  

The problems we sha l l  cons ider  in t h i s  sec t ion  each invo lves  on ly  two 

c r i t e r i a .  We can id e n t i f y  three types of  m u l t ip le  c r i t e r i a  problems.

The f i r s t  o f  these types o f  problems in vo lve s  i d e n t i f y i n g  a l l  

sequences that minimize a f i r s t  ob jec t ive .  One o f  these sequences which 

minimizes a second ob jec t ive  i s  chosen as the optimal sequence for  that 

p rob1em.

The second o f  these m u l t ip le  c r i t e r i a  problems invo lve s  f i n d in g  a 

sequence which minimizes the (weighted) sum of  two o b je c t i v e s .

In the l a s t  type o f  these mu lt ip le  c r i t e r i a  problems we are go ing 

to cons ider  both c r i t e r i a  as equa l ly  important. Th i s  time the problem is  

to f ind  a sequence that does well on both ob je c t i v e s  ( i f  such a sequence 

e x i s t s ) .

Smith (Smith, 1956) considered a mult i - o b j e c t i v e  problem, where 

the primary c r i t e r i o n  is  to complete p roce s s in g  a l l  the jobs  before th e i r
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dead l ines;  the secondary c r i t e r i o n  i s  to f ind  a sequence with  minimal sum

of  completion times. Th is  problem I s  denoted by 1/d./EC.. He gave an

0(n log n) a lgor i thm  to so lve  t h i s  problem (backward s chedu l in g ) :  Let

p(S) = £¡£5 Pj » sequence a job j with  dj 5 P(S) and with  pj as large as

p o s s ib le  in the l a s t  a v a i l a b le  p o s i t i o n .  S m i t h ' s  procedure can a l s o  be

used to so lve  the spec ia l  cases 1/d., p.=1/Ew.C. and the 1/d., p. < p̂ . -»■

w. £ w./Ew.C. ( i . e .  the problem with  agreeable we ights ,  even local  agree- 
i j i i

ab le  we ights:  jobs  invo lved in each step o f  Sm i t h ' s  procedure have agree­

able weights)  (Van Wassenhove, 1979).

However, the 1/dj/Ew.C. problem has been shown to be NP-hard 

(Lenst ra,  1977). Th i s  problem has the fo l low ing  p roper t ie s  (Van 

Wassenhove, 1979)•

1. F e a s ib i l i t y :  Order the jobs  in a non-decreas ing order  o f  the i r  

due dates (EDD ru le ) .  Then a f e a s ib l e  s o l u t i o n  to the problem e x i s t s  i f  

and on ly  i f  C. i  d. fo r  a l l  jobs  i .

2 . O p tim a lity :  Order the jobs  In a non - in c rea s in g  order  o f  wj/p.

r a t i o s  (WSPT ru le ) .  Then, i f  C. ^ d. fo r  a l l  jobs  i ,  the sequence is 

opt i mal.

Van Wassenhove a l s o  proposed a branch and bound procedure to so lve  

t h i s  problem. The lower bound is  obta ined by s o l v i n g  a dual problem 

obtained through a Lagrangian re laxat ion  o f  the deadl ine  c o n s t r a in t s .  

Bansal (Bansal , 1980) der ived  some dominance ru le s  for  t h i s  problem and 

presented a branch and bound procedure to so lve  the problem. Th is  time 

the lower bound i s  obta ined by order ing  the jobs  in a non - in c rea s in g  order  

o f  w./p. r a t i o s .

Emmons (Emmons, 1975) considered a s l i g h t l y  d i f f e r e n t  problem.

Th i s  time, the primary c r i t e r i o n  i s  to minimize the number o f  la te  jobs  

wh ile  the secondary c r i t e r i o n  i s  to minimize the sum of  completion times. 

Th is  problem can be looked at as a ge n e r a l i z a t i o n  o f  the 1//EU. problem
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which can be solved us ing  Moore 's  a lgor i thm (see Sect ion  l».3.*0 and o f  the 

l/d./ lC .  problem which can be so lved u s ing  Sm i t h ' s  procedure. Emmons pro ­

posed a branch and bound procedure for  s o l v i n g  t h i s  problem. Each branch 

corresponds to the assignment o f  an add it iona l  job to the set o f  la te  jobs.  

Once a stage where a l l  the remaining jobs  (ordered accord ing  to the EDO 

ru le )  are completed in time i s  reached, these jobs  are sequenced op t im a l ly  

u s ing  Sm i t h ' s  a lgor ithm. Emmons a l s o  gave some dominance theorems that 

e l im inate  many o f  the branches at each node o f  the search tree. The com­

putationa l experiments he c a r r ied  out indicated that the s o l u t i o n  obtained 

u s ing  Moore 's  a lgo r i thm  i s  u s u a l l y  optimal fo r  problems of  small s i z e s  

(n=10) and some times optimal fo r  problems of  la rge r  s i z e s ,  and in any case 

g i ve s  s o lu t i o n s  w i th in  1 or 2 percent of  the optimum. The r e s u l t s  a l s o  

indicated that the add i t iona l  computational e f f o r t  to continue to o p t im a l i t y  

to be remarkably l i t t l e ,  even fo r  problems o f  large  s i z e s .

A composite ob jec t ive  problem, where the ob jec t ive  i s  to minimize 

the sum of  weighted ta rd ine s s  and weighted completion time (1//E(h.C. + 

WjT. ) ) ,  was f i r s t  suggested by Gelders and K le indo r fe r  (Gelders £ 

K le indo r fe r ,  197*0. Th is  problem i s  c l e a r l y  NP-hard s ince  the s impler  

ve r s i on  (1//Iw.T.) i s  a lready  NP-hard (Lenst ra,  1977). Dominance con­

d i t i o n s  fo r  the problem can be found in (Van-Wassenhove, 1979). Branch 

and bound procedures for  s o l v i n g  the problem, together  wi th  some computa­

t iona l  exper iences can be found in (Gelders £ K le in d o r fe r ,  1975; Van- 

Wassenhove, 1979)•

Van-Wassenhove and Gelders (Van-Wassenhove £ Gelders,  1980) con­

s idered a m u l t i - o b je c t i v e  problem where the ob je c t i ve  i s  to minimize two 

d i f f e r e n t  c r i t e r i a .  These two c r i t e r i a  are the min im izat ion  o f  the total  

flowtime and the min im ization  o f  the maximum ta rd in e s s .  (Obv ious ly ,  the 

f i r s t  c r i t e r i o n  is  minimized by o rder ing  the jobs  in a non-decreas ing  order  

o f  t h e i r  p roces s ing  times (SPT ru le ) ,  wh i le  the second c r i t e r i o n  i s



minimized by o rder ing  the jobs  in a non-decreas ing  order  o f  t h e i r  due 

dates (EDD ru le ) . }  The problem i s  to f ind  a sequence that does well on 

both ob jec t ive s  ( i f  such a sequence e x i s t s ) .  In order  to def ine  such a 

sequence more p r e c i s e l y  they used the concept e f f i c i e n c y .

G i v e n  a s c h e d u l e  i r ,  l e t  H ( tt) and T  ( tt) b e  t h e  t o t a l  f l o w t i m e  a nd
ITlo X

maximum ta rd iness  re spec t i v e ly  of  schedule it. A sequence tt*  i s  e f f i c i e n t  
i f  there e x i s t s  no sequence tt such that:

H(tt) S H (tt*)

and

where at 

sequence

T (tt) ^ T (tt*) max $ max

least  one r e la t io n  ho lds  wi th  s t r i c t  i n equa l i t y .  

tt i s  sa id  to dominate another sequence tt 1 i f :

S i m i l a r l y ,  a

and

H ( tt) S  H ( tt' )

T
max

( tt) $ T
max

(tt1 )

where at least  one r e la t io n  i s  a s t r i c t  in equa l i t y .

" C l e a r l y ,  t h e  d e c i s i o n  m a k e r  w i l l  c h o o s e  an e f f i c i e n t  s e q u e n c e .

T h e r e f o r e ,  t h e  r e s e a r c h e r ' s  p r o b l e m  i s  t o  c h a r a c t e r i z e  t h e  s e t  o f  e f f i c i e n t

sequences and to help the d ec i s ion  maker in h i s  search through t h i s  set  in

order  to decide upon a f i n a l  sequence to be implemented." (Van-Wassenhove
2_

£ Gelders,  1980). An 0(n p log n) (pseudo-polynomial)  a lgo r i thm  to so lve  

t h i s  problem (where p i s  the average process ing  t ime), together  with  some 

computational r e s u l t s  can be found in the above reference.
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CHAPTER FIVE

HEURISTICS FCR SINGLE MACHINE PROBLEMS

5.1______ In troduct ion

I t  is  c lea r  that the computational requirements to so lve  a p a r t i ­

cu la r  scheduling  problem us ing  the branch and bound approach might become 

too time consuming fo r  large problems. In fac t ,  even for  r e l a t i v e l y  small 

problems, there i s  no guarantee that so lu t io n  can be found q u ic k ly .

H e u r is t ic  a lg o rith m s a vo id  t h i s  drawback s in c e  by u sin g  them we can o b ta in  
s o lu t io n s  to  large problems in  a f r a c t io n  o f  th e  tim e sp en t on so lv in g  
them using  branch and bound te c h n iq u e s . A lso t the  com putation  requ irem en ts  
f o r  h e u r i s t ic  a lgo rith m s are u su a lly  p r e d ic ta b le  f o r  problem s o f  a g iven  
s i z e .  The drawback o f  the  h e u r i s t ic  a lg o rith m s i s  th a t  they  do n o t guar­
an tee  o p t im a li ty  and in  some cases i t  may even be d i f f i c u l t  to  fudge th e i r  
e f fe c t iv e n e s s .

I t  i s  well known that precedence c o n s t r a in t s  among the jobs  can be 

represented by a d ir e c te d  a c y c l ic  graph G=(V,E).  The v e r t i c e s  o f  G repre­

sent the jobs ,  and i f  a d i rec ted  path from ver tex  i to vertex  j e x i s t s ,  

then job i must be processed before job j .  The t r a n s i t i v e  c lo su re  o f  the 

d irected  graph G i s  the graph obta ined by adding a l l  a rcs  ( i , j ) ( i f  they 

do not a lready  e x i s t )  to G whenever there i s  a d i rec ted  path from ver tex  i 

to vertex  j .  The t r a n s i t iv e  red u c tio n  o f  G i s  the graph obtained by de le ­

t ing  a l l  arcs  ( i , j )  from G whenever there i s  a d i rec ted  path from ver tex  Î 

to vertex  j which does not inc lude the arc  ( i , j )  i t s e l f .  Job i i s  a 

p red ecesso r  o f  job j and job j is  a su c ce sso r  o f  job i i f  the arc ( i , j )  

e x i s t s  in the t r a n s i t i v e  c lo su re  of  G. Job i i s  a d ir e c t  p red ecesso r  of  

job j and job j i s  a d ir e c t  su ccesso r  o f  job i i f  the arc  ( i , j )  e x i s t s  

in the t r a n s i t i v e  reduction of G. Define B̂ . = { i / ( i , j ) e G }  and Â . = 

{ i / ( j , i ) c G } .  Let B be the set of jobs  with no predecessors  ( i . e .
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B = { j/Bj = <j>}) and A be the set of jobs wi th  no successo r s  ( i . e .  A =

{j/A.  = 4>}). Obv ious ly ,  i f  E=<f>, then B=A=V. F i n a l l y ,  we def ine  an

unsequenced job i to be a v a ila b le  fo r  sequencing in the f i r s t  a v a i l a b l e

p o s i t i o n  i f  ieB and r. $ max{T1,min( r . ) } ,  where T i s  the completion time
1 jcB J

o f  an i n i t i a l  p a r t ia l  sequence a .
In Sect ion  5.2 we sha l l  g ive  f i v e  h e u r i s t i c s  which appeared in the 

l i t e r a t u r e .  In Sect ion  5*3 we sh a l l  suggest four  new h e u r i s t i c s  to com­

p le te  our comprehensive l i s t  of  one machine h e u r i s t i c s .  A h e u r i s t i c  which 

can be appl ied  to most one machine problems is  gi ven in Sect ion  5.^ together 

with some computational experience, fol lowed by concluding remarks in 

Sect ion  5.5.

5.2 H e u r i s t i c s  Chosen from the L i t e ra tu re  

5.2.1 1/r ./L

We sha l l  cons ider  an equ iva lent  problem, where each job i ( i = 1 , . . . , n )  

has a release  date r . , has a p roces s ing  time p.,  and has a d e l i v e r y  time q . . 

The ob ject ive  i s  to f ind  a sequence o f  jobs  that minimizes the time by 

which a l l  jobs  are de l ive red .

The b a s i s  o f  the f i r s t  h e u r i s t i c  to be g iven in t h i s  se c t ion  i s  to 

sequence an a v a i l a b le  job i wi th q. as la rge  as p o s s ib le  in the f i r s t  

a v a i l a b l e  p o s i t i o n .  I f  there i s  a choice, the job with  the la rge r  p ro ce s s ­

ing time i s  chosen. A formal statement of  the a lgor i thm  w i l l  now be given.

Step 1: Let S 1 be the set of  a l l  unsequenced jobs ,  le t k=0 and

f ind T 1 = min { r .}.
j ES '  J

Step 2: Find the set S "  = { j / j e S 1 & r^ $ T ' } .  Find a job i with ie S "

and q. = max { q .} ( in  case o f  t i e s  choose job i w ith  the 
1 j e S "  J

la rge s t  p roces s ing  time).
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Step 3: Set k=k+1, sequence job i in p o s i t i o n  k, set  t ' = T ' +p . and s '

= S ' - { i } .  I f  S ,=Sf, then stop;  otherwise  set T 1 = max{T ',min
j e S '

{ r j } }  and go to Step 2.

The above h e u r i s t i c  i s  due to Schräge (Schräge, 1971) and requires  

0(n log n) steps.

I f it = ( tt( 1 ) .......tt(n)) i s  the sequence obta ined u s ing  S ch ra ge ' s

a lgor ithm,  then the time by which a l l  jobs  are de l i ve red  T,. i s  g iven by:

j

TSc “ r ir(i) + p tt(h) + qn(j)

where e i the r  ir(i) i s  the f i r s t  job in tt or the machine w i l l  be id le  

immediately before i t  processes job n ( i ) ,  and job ir(j) i s  chosen such 

that 1 < i ^ j ^ n.

K ise  et a l .  (K i se  et a l . ,  1978a ) have shown that Tgc/T" < 2 -3 / ( SP + l ) ,  

where SP i s  the sume of p roces s ing  times o f  a l l  j obs ,  T* i s  the minimum time 

by which a l l  jobs  are de l ivered  and T^ denotes the minimum time by which a l l  

jobs  are de l ivered  when the jobs are sequenced u s ing  S c h ra ge ' s  a lgor ithm.

From the con s t ruc t ion  o f  tt, we have

rvr(i) *  rtt( h) for h= i ,. . . , j

I f  qTr(j) ^ qTr(h) ^or t^en the sequence tt i s  optimum. Otherwise,

we can f ind  a job ir(k) such that i $ k < j and that q ^ j  <  ̂ but

qir(h) ^ qTr(j) ^or" > • • • * j • fr(k) i s  c a l led  the in te r fe r e n c e  jo b
and job tt(j ) i s  c a l led  the c r i t i c a l  fo b .

I f  pir(k)
i s  the p roces s ing  time of  the in te r fe rence  job,  then i t

has been shown that T ^ / T "  < 1 + P1T(|<)/^F> (K i se  & Uno, 1978).

Pott s  (Pott s ,  1980B) gave a modif ied h e u r i s t i c  based on app ly ing  

S ch ra ge ' s  a lgo r i thm  s u c c e s s i v e l y ,  each time c o n s t r a in in g  the in te r fe rence  

job to be processed a f t e r  the c r i t i c a l  job in the fo l l ow ing  sequence. The 

formal statement o f  t h i s  modif ied h e u r i s t i c  w i l l  now be g iven.

Step 1: Set t = 0 and Tp = °°.
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Step 2:

Step 3: 

Step k:

Apply S ch rage ' s  a lgor ithm.  Let tt̂  = (tt̂ ( 1 ) ....... i r ^ ( n ) )

be the r e s u l t i n g  sequence and le t  denote the minimum

time by which a l l  jobs  sequenced in i r ^  are de l ivered.

Set T = mi n{T , T ^ } .  
p p* Sc

I f  two jobs  T r ^ ( k )  and ti ̂ (j ) such that k<j (k and j as small

as po s s ib le )  and q 

Step 5; otherwise  go to Step 6

, . c q / » can be found, then go to
71 1 (k) 77 (j )

Step 5: Set r
TT( 0 (k) * ( t ) (j)

otherwise  go to Step 2.

and t = t + l . I f  t *n ,  go to Step 6;

Step 6: Stop with  the sequence obtained has as the minimum time 

by which a l l  jobs are de l i ve red .

The worst case performance of  t h i s  modified h e u r i s t i c  i s  3/2, i .e .

2
T /T* < 3/2, and i t  requ ires  0(n log n) steps (Potts ,  1980B).

P
I f  precedence c o n s t r a in t s  among jobs  (represented by a d i rected  graph 

G in which jobs  are renumbered such that an arc ( i , j )  in G implies  that i< j )  

were introduced to the problem, then S c h ra ge ' s  a lgo r i thm  can s t i l l  be used as 

a h e u r i s t i c  fo r  the r e s u l t i n g  problem a f te r  making the fo l low ing  adjustment

r. = max{r . ,max { r^+p j/ ( j , i ) eG}}

and

qj = max{q. ,max{q^+p^./( i , j ) e G} }

fo r  a l l  jobs  i = 1 , . . . , n  and in that order.  Th is  h e u r i s t i c  requ i re s  O(n^) 

s teps ,  which are needed to compute the t r a n s i t i v e  c lo su re  of  the precedence 

graph G.

I f  r.=0 for  i = 1 , . . . , n ,  then S c h ra ge ' s  a lgo r i thm  i s  optimum even 

for  the constra ined  problem in which case q . ,  i = 2 , . . . , n  are adjusted as 

above (Baker, 197*0.

5.2 .2  1/ r ./EC.

The fo l l ow ing  h e u r i s t i c  i s  based on sequencing a job i wi th  the 

e a r l i e s t  completion time in the f i r s t  a v a i l a b l e  p o s i t i o n .  A formal
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statement of  the a lgor i thm w i l l  now be given.

Step 1: Let S '  be the set o f  a l l  unsequenced jobs  and le t T '=0 .

Step 2: Find a job i e S ' wi th  max(T1, r . ) +p as small as p o s s i b l e -

Step 3: Sequence job i in the f i r s t  a v a i l a b l e  p o s i t i o n .  Set T 1 =

max(T , r . )+p .  and S ' =S ' - { i }. I f  S '=<(>, stop; otherwise  go 

to Step 2.

Th is  h e u r i s t i c  is  due to Van Wassenhove (Van Wassenhove, 1979) and 

requ ires  0(n log n) steps.

A sequence tt = { tt (1) ,. .  . ,r  (n) } obtained u s ing  the above h e u r i s t i c  is  

optimum i f  ^ ( 1) ^ r i r ( j ) ’ ^or  J=2 , . . . , n  anc* t *1at f ° r each job ir( i)  with 

r 2 C /. . \ , we have :
TT (  I )  TT (  I ~  1  }

" ttCI ) $  r  TT ( j  )
for  a l l  j = i , i + 1 , • . . , n

5.2 .3  l/d./Ew.C.

The fo l low ing  h e u r i s t i c  i s  due to Smith (Smith, 1956)- The b a s i s

of t h i s  h e u r i s t i c  i s  to f ind  an unsequenced job j wi th  d. ?  Z p. ( S '
-1 i e S ' '

i s  the set o f  unsequenced jobs)  and Wj/Pj as small as p o s s ib le .  Th i s  job 

i s  then sequenced in the l a s t  a v a i l a b le  p o s i t i o n .  The formal statement 

of  t h i s  h e u r i s t i c  w i l l  now be given.

Step 1:

Step 2:

Let S 1 be the set of  a l l  unsequenced jobs  and le t  T 1 = Z p. .
i eS ' 1

Set s " = { i / d .  £ T ' J . Find a job j e S "  with Wj/pj as small as

p o s s ib le .  Break t i e s  by choos ing job j with  the sm a l le s t  

p rocess ing  time.

Step 3: Sequence job j in the l a s t  a v a i l a b l e  p o s i t i o n  and se t  S ' = S ' - i j }.

I f  S ' =4>, stop; otherwise  go to Step 1.

Th is  h e u r i s t i c  requ ires  0(n log n) steps.

I f  precedence co n s t r a in t s  among jobs  e x i s t ,  the above procedure 

can s t i l l  be used as a h e u r i s t i c  for  the r e s u l t i n g  problem, except that in 

t h i s  case S o f  Step 2 becomes S = { i / i e A  and d. £ T }. The h e u r i s t i c  now

requ ire s  Oin^) steps.



I f  a l l  Wj-1 fo r  i = l , . . . , n ,  then the sequence obtained u s ing  Sm i th ' s  

h e u r i s t i c  i s  optimum (Smith, 1956).

$ .2 .h  1/prec/ZWjC.

The f i r s t  h e u r i s t i c  to be given in t h i s  sec t ion  i s  based on u s ing  

the fo l low ing  r e su l t s  which have been proved by Morton and Dharan (Morton 

& Dharan, 1978).

Theorem 5-1

I f  jo b  i  has no p red ecesso rs  and w . / p . > w ./p  . f o r  a l l  jo b s  j 3
then  th e re  e x i s t s  an optimum, sequence in  which jo b  i  i s  sequenced f i r s t .
Corol la ry  5»1

I f  jo b  i  has no su ccesso rs  and w- / p .  $ w ./p  . f o r  a l l  jo b s  j 3
then  th e re  e x i s t s  an optimum sequence in  which jo b  i  i s  sequenced la s t .
T h e o r e m  5.2

I f  jo b  i  has a t  l e a s t  one p red ecesso r  and u^/p^ £ w./p. f o r  a ^  

jo b s  j t  then  th e re  e x i s t s  an optimum sequence in  which jo b  i  i s  sequenced  
im m edia tely  a f t e r  one o f  i t s  d ir e c t  p red ecesso rs .
C o ro l l a r y  5.2

I f  job  i  has a t  le a s t  one su ccesso r  and w ./p. $ w ,/p  . f o r  a l l
is 1s 3 3

jo b s  j 3 then  th e re  e x i s t s  an optimum sequence in  which jo b  i  i s  sequenced  
im m edia tely  b e fo re  one o f  i t s  d ir e c t  su ccesso rs .

Every dec i s ion  made (us ing  the f i r s t  h e u r i s t i c )  w i l l  sequence a 

job e i the r  f i r s t  (Theorem 5 .1 ) ,  l a s t  (Co ro l l a r y  5 .1 ) ,  immediately a f te r  

one o f  i t s  d i r e c t  predecessors  (Theorem 5 .2 ) ,  or  immediately before one 

o f  i t s  d i r e c t  successo r s  (Co ro l l a r y  5 .2 ) .

A formal statement o f  the a lgo r i thm  w i l l  now be g iven.

Step 1: Let S 1 be the set o f  a l l  unsequenced jobs .

Step 2: Find jobs  ie S '  and i ' e S *  such that w./p. > w./p. and w. i/p  . $
1 i J J i “ i

Wj/pj fo r  a l l  unsequenced jobs  j .  I f  i o r  i '  i s  not un iquely
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def ined, then an a r b i t r a r y  choice  i s  made. Let k and k '  denote 

the number o f  d i r e c t  predecessors  and d i r e c t  succes so r s  of  i and 

i 1 re spec t iv e ly .

Step 3: I f  k=0, then sequence job i f i r s t ,  and set  S ' =S ' - { i } . I f  S 1 =<(>,

stop; otherwise  go to Step 1.

Step I f  k '  = 0, then sequence job i ‘ l a s t  and set S 1 =S 1 - { i ' }. I f

S'=<}>, stop;  otherwise  go to Step 1.

Step 5: I f  0 < k $ k ' ,  sequence job i immediately a f te r  job j ( i . e .  form

a composite job j i ),  one of  i t s  d i r e c t  p redecessors ,  with  Wj/Pj 

as small as p o s s ib le  and go to Step 1. Otherwise sequence job 

i '  immediately before job j '  ( i . e .  form a composite job i ' j 1),  

one of  i t s  d i r e c t  succe s so r s ,  with W y / p . ,  as la rge as p o s s ib le  

and go to Step 1.

I f  two jobs  i and j are to be sequenced immediately a f te r  each 

other  (Step 5),  then these two jobs  are replaced by a s i n g l e  (composite) 

job ij  with p roces s in g  time p . +Pj ar>8 weight w.+Wj. The precedence graph 

G i s  a l so  updated as fo l low s .

(a) The two v e r t i c e s  i and j are replaced by a new vertex

k = i j .

(b) For each arc ( h , i )  o r  (h ,j ) in G, where h / i , an arc 

(h,k) is  added.

(c) For each arc ( i , h )  or  (j ,h) in G, where h / j , an arc 

(k,h) i s  added.

Th is  h e u r i s t i c  i s  due to Morton and Dharan (Morton S Dharan, 1978). 

I t  i s  c lea r  that app ly ing  the above procedure requ i re s  ob ta in in g  the t r a n s i ­

t i ve  reduction o f  the precedence graph G which in turn requ i re s  O(n^) 

s teps  to compute.

Another h e u r i s t i c  fo r  the same problem can be found in the above 

reference. Th is  h e u r i s t i c  i s  based on S i d n e y ' s  decomposit ion p r i n c i p l e .
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The ba s i s  of  t h i s  h e u r i s t i c  i s  to form simple se t s  D., where D. c o n s i s t s
J J

o f  job j and a l l  i t s  p redecessors .  One o f  these se t s  Dj i s  chosen such 

that E w . /  E p. as la rge  as p o s s ib le .  I f  D. c o n s i s t s  of  job j on ly ,
i eD. 

J
i eD.

t h i s  job i s  sequenced f i r s t ;  otherwise  job j i s  removed from D j , i . e .  job j 

cannot be sequenced in the f i r s t  a v a i l a b le  p o s i t i o n .  The set Dj is  then 

used to form new simple se t s  as above. The procedure i s  repeated un t i l  

a l l  jobs  are sequenced. The formal statement of  th i s  a lgo r i thm  w i l l  now 

be given.

Step 1: 

Step 2:

Step 3:

Let S be the set  of  a l l  unsequenced jobs .  Let D = s ' .

For each job i e D with no successo r s  in D, f ind  a se t  D. = 

{ ¡ }U ( j/ jeD  and ( j , i ) e G } .

Find a set Dj s  D (one o f  the se ts  found in Step 2) with

E wj / E p. as large as p o s s ib le .
i eD. i eD. 1

J J

Step *t: I f  Dj c o n s i s t s  of  job j on ly ,  sequence t h i s  job f i r s t  and set

S ’ =S 1 - { j }. I f  S * =<f>, stop; otherwise  go to Step 1. I f  Dj con­

s i s t s  o f  more than one job,  set D =D j - { j }  and go to Step 2.

Th is  h e u r i s t i c  requ i re s  O(n^) steps.  Computational experience 

reported in (Morton & Dharan, 1978) showed the S idney type h e u r i s t i c  to 

be computationa l ly  almost as good as the f i r s t  h e u r i s t i c .

5 .2.5 1//ET.

The fo l l ow ing  h e u r i s t i c  i s  known as the W i1k en so n -1rwin h e u r i s t i c  

(Baker, 197*0. I t  i s  based on the observat ion  that i t  i s  p re fe rab le  to 

have job i wi th  the sm a l le s t  d. to be sequenced in the f i r s t  a v a i l a b l e

p o s i t i o n  except when a job j e x i s t s  such that T 1 + max{p . ,p j )  > max{d.,<

(where T1 i s  the sum of  p roces s ing  times o f  a l l  jobs  sequenced in an 

i n i t i a l  p a r t i a l  sequence m), in which case a job with  sm a l le s t  p roces s ing
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time i s  sequenced in the f i r s t  a v a i l a b le  p o s i t i o n .  The a lgor i thm  invo lves  

two sequences; a sequence tt of  scheduled jobs  and a sequence S '  of  

unscheduled jobs.  Jobs sequenced in it are subject  to p o s s i b l e  r e v i s i o n .  

The sequence S '  conta in s  the remaining jobs  in EDD ( e a r l i e s t  due dates) 

o r d e r .

At each stage, the a lgor i thm app l ie s  the above r e su l t  to jobs  i 

and j ,  where dj ^ dj (i and j are i n i t i a l i z e d  to be the f i r s t  two jobs  in 

S ' ) .  I f  T 1 + max{p.,Pj}  ^ dj or  p. i  P j , then job i i s  added to the end

of  it. I f  these cond i t ion s  f a i l ,  the dec i s ion  ru le  i s  app l ied  to jobs  k and 

j ,  where k i s  the la s t  job in tt. I f  T 1 - + maxip^.p^.} $ maxid^.d^.} or

i f  p^ $ Pj (or i f  no job e x i s t s  in it) , then job j i s  added to the end o f  tt. 

However, i f  t h i s  dec i s ion  ru le  f a i l s  a l so ,  a jump cond i t ion  r e s u l t s  in 

which case job k i s  removed from tt and replaced in S '  in EDD order.  The 

dec i s ion  ru le  is  then appl ied  to job j and the l a s t  job in tt. The jump 

cond it ion  occurs  in f requent ly ,  but i t  may be appl ied  severa l  times in 

success ion  in order  to sequence job j .  A formal statement o f  the a lgor i thm  

w i 11 now be gi ven.

Step 1 

Step 2 

Step 3 

Step k

Let S '  be the se t  o f  a l l  unsequenced jobs.  Let T '=0  and {ir}=<£>. 

Order jobs  in S '  in a non-decreas ing order  o f  d..

Let i and j be the f i r s t  two jobs  in S ' .

I f  T '  + max{p.,pj } < max{d. ,d j}  or  p. $ p j , then sequence job i 

next, set  T 1 = T 1 + p .• remove job i from S '  and set  i = j .  I f  

job i i s  the on ly  job in S ' ,  sequence job i l a s t  and stop. I f  

there e x i s t  more than one job in S ' ,  le t  j be the second job in 

S '  and repeat Step k.  I f ,  on the other  hand, T 1 + max{p . ,p j }  >

max{d.,dj)  and p. > p ., then set i = j ,  le t  k be the l a s t  job 

and proceed to Step 5.

in tt

I f  T 1 - + max{p^,pj)  ^ max{d^,d.}  or  i f  p^ i  p . ,  then sequence

job i next, set T 1 = T 1 + p . , remove job i from S '  and go to

Step 5:



Step 3* I f ,  on the other  hand, T '  - p + max{p ,p .}  > max{d ,d .)  

and p^ > pj then a jump cond i t ion  r e s u l t s .  Go to Step 6.

Step 6: (dump cond i t ion )  Remove job k from it,  return  i t  to S '  in EDD

order and set  T 1 = T '  - p^. I f  there e x i s t  at lea s t  one job 

in 7t, l e t  k be the l a s t  job in tt and go to Step 5. I f  no job 

e x i s t s  in n,  sequence job i f i r s t  in tt, se t  T '  = T '  + p. and 

go to Step 3.

The above h e u r i s t i c  i s  not po lynom ia l ly  bounded.

I f  we def ine  the ta rd ines s  in te rva l  fo r  job i as f o l low s :

t. i s  empty i f C. i d .  
i r ' i i

t.
i

[d. ,C. ]
i '  i i f  C. > d.

i i

Then a sequence obtained us ing  the above a lgor i thm  i s  optimum i f  there i s  

no time t for  which tet.  and tetj  fo r  the ta rd ine s s  i n t e r v a l s  o f  any p a i r  

o f  jobs  i and j  (Theorem 2.8,  Baker, W ) , i .e. the ta rd ines s  i n te r v a l s  

are mutual ly  d i s j o i n t .

5.3______New H e u r i s t i c s

In the prev ious  sec t ion  we gave h e u r i s t i c  procedures fo r  the

1/r./L , fo r  the 1/r./EC.,  fo r  the 1/d./Ew.C., fo r  the 1/prec/Ew.C.
i max i i  i i i  r i i

and for  the 1//ET. problems. In t h i s  se c t ion ,  we sha l l  suggest new pro ­

cedures to complete our comprehensive l i s t  of  h e u r i s t i c s .  Each o f  these 

procedures i s  w r i t ten  for  a problem in i t s  general form, i.e .  with  release 

dates and precedence c o n s t r a i n t s ,  and hence can be used i f  r. or  prec is  

dropped.

The heu r i s t i c sp ropo sed  in t h i s  se c t ion  are for  the 1 / r . ,p re c/ iw .C . ,

2 1 
1/r.,prec/Ew.C. , 1/r . ,prec/ lw.T.  and the 1/ r . ,prec/Ew.U. problems. The

case where each job has both a due date and a dead l ine  is  not cons idered

s ince  th i s  case has seldom been cons idered by re searchers .  Another case
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where each job has a release  date and a deadl ine i s  not considered e i the r  

s in ce  the ex i s tence  o f  a f e a s ib le  sequence, in t h i s  case, i s  NP-hard 

(Lenst ra,  Rinnooy Kan 6 Brucker, 1977).

5-3.1 1/r.,prec/EWj C.

The h e u r i s t i c  descr ibed here i s  a ge n e r a l i s a t i o n  o f  the h e u r i s t i c  

proposed fo r  use in c a l c u l a t i n g  a lower bound in the branch and bound pro­

cedures proposed in Chapter 6 fo r  s o l v i n g  the 1/r./Iw.C. problems.

Every stage w i l l  sequence an a v a i l a b le  job in the f i r s t  u n f i l l e d  

p o s i t i o n .  I f  there i s  a choice, one with the l a rge s t  w./p. i s  chosen, i .e .  

accord ing  to Sm i t h ' s  ru le .  A formal statement o f  the method i s  g iven below.

Step 1: Let S '  be the set of  a l l  unsequenced jobs .  Find the set  B =

( j / f o r  each i e S ' , ( i ,j ) /G}. A l s o  f i n d  T '  = m in { r . } .
jeB ^

Step 2: Find the set S "  = { j/ jeB  and r.  < T ' }  and f ind  a job i wi th

ie S "  and with  w./p. = max {w./p.}.
j e S "  J J

Step 3: Sequence job i in the f i r s t  a v a i l a b l e  p o s i t i o n .  Set T 1 = T '+p.

and S '  = S ' - { i } .  I f  S'=<f>, stop;  otherwise  f ind  the set  o f  jobs

B (as in Step 1), set T '  = maxiT ' ,m in { r . } }  and go to Step 2.
jeB J

The above procedure requ i re s  Otn^) steps.  I f  a l l  jobs  are independent ( i . e .

no precedence c o n s t r a i n t s ) ,  then the procedure requ i re s  0(n log n) steps.

Now we sha l l  show that an upper bound on the wors t -ca se  performance

of  t h i s  h e u r i s t i c  does not e x i s t .  Cons ider  the fo l l ow ing  two jobs  example

with r 1=0, p p h - 2 ,  ŵ  = 1, ^ - 1 ,  anc* w2=*1 * ^or   ̂ ^ **• We s h a l l  assume

that the two jobs  are independent.

The above h e u r i s t i c  H sequences job 1 before job 2 y i e l d i n g  sum of

H 2
weighted completion time SWCT = h -2.  However, in the optimum sequence, 

job 2 is  sequenced before job 1 y i e l d i n g  SWCT* = 3h. Thus SWCTH/SWCT* = 

(h2-2)/3h  which can be a r b i t r a r i l y  large.
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5 .3 *2  1/r.,prec/Ew.C.

As a h e u r i s t i c  fo r  t h i s  problem we suggest to use the same h e u r i s t i c

proposed in the prev ious  sec t ion  for  the 1/ r . ,prec/Iw.C. problem.

2
However, fo r  the 1//Ew.C. problem, we have the fo l low ing .  Let tt = 

( i r ( l ) , . . . , i r ( n ) )  be the sequence obtained us ing  the h e u r i s t i c  procedure 

o f  the prev ious  sec t ion ,  i .e .  by o rder ing  the jobs  in a non - inc rea s ing  

order  o f  Wj/p. r a t i o s .  Then in order  to improve the sequence it, two jobs 

tt( i ) and tt(j ) are temporar i l y  sequenced in p o s i t i o n s  j and i ( i <j ) respect ­

i v e l y ,  i . e .  job i and job j are temporar i ly  interchanged. I f  an improvement 

i s  made then the two jobs  ir(i) and -rr(j ) are l e f t  in t h e i r  new p o s i t i o n s .

The procedure i s  then repeated from the beg inn ing  ( i . e .  i = 1 and j=2) . I f ,  

on the other hand, no improvement can be made, the two jobs  ir( i )  and 7i(j) 

are replaced in the i r  o r i g i n a l  p o s i t i o n s  ( i . e .  p o s i t i o n  i and p o s i t i o n  j)  

and other p o s s i b i l i t i e s  are considered in a s im i l a r  way. The a lgor i thm 

terminates when a l l  p o s s i b i l i t i e s  ( i = 1 .......n-1 and j = i + 1 , . . . , n )  are con­

s idered without making any improvement.

Th is  procedure requ ires  0(n ) steps  i f  the sequence tt i s  optimum. 

Otherwise the h e u r i s t i c  i s  not po lynom ia l ly  bounded.

5 .3 .3  1/r.,prec/Ew.T.

As the h e u r i s t i c  proposed in Sect ion  5 .3 .1 ,  t h i s  h e u r i s t i c  has the 

property that the machine w i l l  never be kept un ne ce s sa r i l y  id le .  I f  there 

i s  a choice  o f  jobs  fo r  the f i r s t  u n f i l l e d  p o s i t i o n ,  then one o f  these jobs  

i s  chosen as fo l lows.  I f  an a v a i l a b le  job i i s  la te  and with  w./p. as 

la rge  as p o s s ib le ,  then t h i s  job i s  sequenced f i r s t .  Otherwise,  an a v a i l ­

able job i with dj as small as p o s s ib le  i s  temporar i l y  sequenced in the 

f i r s t  u n f i l l e d  p o s i t i o n .  I f  sequencing job i f i r s t  w i l l  make an a v a i l a b l e  

job j ( a va i l ab le  at time T ‘) wi th Wj/Pj as large  as p o s s i b l e  la te  and with 

the cost a ssoc ia ted  with  the order  j i  i s  le s s  than the cost  a s soc ia ted  with

2
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the order i j ,  then job i is  removed from i t s  temporary p o s i t i o n  and job j 

i s  sequenced in that p o s i t i o n .  Otherwise, job i i s  sequenced permanently 

in i t s  temporary p o s i t i o n .  A formal statement of  the a lgor i thm  w i l l  now 

be given.

Step 1: Let S '  be the set of a l l  unsequenced jobs.  Find

the set B = { j / f o r  each job ie S1 , ( i , j ) ^ G } .  A l so ,  f ind  T 1 =

Step 2:

mi n { r  .}. 
jeB J

Find the set S "  = { j/ jeB and rj $ T 1}.

Step 3-' I f  there e x i s t s  one job on ly  in S " ,  sequence t h i s  job f i r s t ,  

set T 1 = T '+p.  arid go to Step 7. Otherwise, proceed to Step b.
Step b: Let T"  = T '  + X p..  I f  no job j with  j e S "  and with  d. £ T " ,  go 

i eS"  1 J 
to Step 5. Otherwise, a job j with j e S " ,  d^ > T"  and Wj/Pj as

small as p o s s ib le  is  removed from the set S "  ( i . e .  job j w i l l

not be sequenced f i r s t ) .  Go to Step 3.

Step 5- I f  there e x i s t s  a job i wi th ie S "  and with  T '  + p. > d. and 

w./pj as la rge  as p o s s ib le  ( i f  there i s  a cho ice ) ,  then sequence 

job i f i r s t ,  set T 1 = T '+p .  and go to Step 7. Otherwise, 

proceed to Step 6.

Step 6: Find a job i w ith  i e S "  and d. as small as small as p o s s ib le  

(Break t i e s  by the SPT ru le ) .  Find the set S 1̂ = {k/keS11 and 

T 1 + p. + pk > d^}.  I f  S'  ̂ 4 <j>, f ind  a job j ( j ^ i )  w ith  j e S 1̂ 

and with  Wj/Pj as large as p o s s ib le .  I f  Ŝ '=<|> o r  i f  ( T 1 + p. 

+ pj - dj)  Wj $ (T 1 + pj + p. - d.)  w . , then sequence job i 

f i r s t ,  se t  T '  = T '+p.  and go to Step 7. Otherwise, sequence

Step 7:

job j f i r s t ,  set T '  = T'+p^ and go to Step 7.

Remove the newly sequenced job from S ' .  I f  S '=<}>, stop;  o the r ­

wise  f ind  the set B (as in Step 1), f ind  T '  = max { T ' , m i n { r . } }
jeB J

and go to Step 2.

Th i s  h e u r i s t i c  requ i re s  0(n">) steps
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I f  on ly  one job e x i s t s  in S " ,  then Step 3 o f  the above procedure 

w i l l  sequence th i s  job f i r s t .

Step 1* w i l l  remove a job j e S " ,  which w i l l  be completed in time i f  

sequenced a f te r  a l l  other jobs  in S " ,  from being a candidate fo r  the f i r s t  

a v a i 1able posi t i o n .

Steps 3 and k are repeated un t i l  one job on ly  e x i s t s  in S " ,  in 

which case th i s  job is  sequenced f i r s t ,  or un t i l  no job can be removed 

from S " ,  in which case Step 5 i s  executed.

Step 5 w i l l  sequence a la te  job ie S "  with w./p. as la rge  as p o s s ib le ,  

i f  such a job e x i s t s ,  in the f i r s t  a v a i l a b le  p o s i t i o n .  I f  each o f  the jobs  

¡n S "  can be completed in time, i f  sequenced f i r s t ,  then Step 6 i s  executed.

Step 6 w i l l  f i r s t  f i nd  a job i e S "  wi th d. as small as p o s s i b l e  and 

a job j e S "  ( j^ i )  with T 1 + p. + Pj > dj and Wj/Pj as large  as p o s s ib l e ,  i f  

such a job j e x i s t s .  I f  job j does not e x i s t  or  i f  the cost a s soc ia ted  

with  the order i j  is  le s s  than or  equal to the cost  a s soc ia ted  with the 

order  j i ,  then job i is  sequenced f i r s t ;  otherwise  job j i s  sequenced f i r s t .

5 .1 .1* 1/r. ,prec/Zw.U.

We s t a r t  each s tage  o f  the a lgor i thm  by con s ide r ing  a l l  jobs  with  

no succes so r s .  The e a r l i e s t  completion time o f  each of  these jobs i s  then 

computed. Any job with an e a r l i e s t  completion time which i s  la rge r  than 

i t s  due date i s  sequenced in the l a s t  a v a i l a b le  p o s i t i o n .  Th i s  part  of  

the a lgor i thm i s  repeated u n t i l  no job can be sequenced l a s t .

We then cons ider  the set o f  a v a i l a b le  jobs ;  one o f  these jobs  is  

e i t h e r  sequenced in the f i r s t  a v a i l a b le  p o s i t i o n ,  has i t s  re lease  date 

increased, or  i s  sequenced immediately before one o f  i t s  d i r e c t  succe s so r s .  

Sequencing a job i immediately before one o f  i t s  d i r e c t  succe s so r s  j means 

forming a composite job k= i j  where r ^ r .  (we assume that the re lea se  dates 

have been adjusted accord ing to the precedence c o n s t r a i n t s ,  as g iven  in
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Sect ion  5.2.1) p^=p.+pj and w ^ W j . The precedence graph G i s  then 

updated as gi ven in Sect ion  5.2 .4.  Each composite job k= i j  we form w i l l  

then be treated as a s i n g l e  job.

The procedure i s  repeated un t i l  a l l  jobs  have been ass igned  

p o s i t i o n s  in the sequence. A formal statement o f  the a lgor i thm  w i l l  

now be given.

Step 1: 

Step 2:

Step 3 ‘- 

Step 4:

Step A . 1 : 

Step 4.2:

Step A .2.1 :

Step 4 .2 .2:  

Step A .2.3:

Step 4.2.3.1

Let S '  be the set of  a l l  unsequenced jobs.  Set T '  = 0.

Find the set of jobs  A = { i / f o r  j e S ' ,  ( i , j ) t fG) .  For

each job i wi th  ieA, compute C. , the e a r l i e s t  completion

time of  job i.  I f  C. > d.,  then sequence job i in the

la s t  a v a i l a b le  p o s i t i o n ,  remove job i from S '  and go to

Step 8 . Otherwise, proceed to Step 3.

Find the set o f  jobs  B = { j / f o r  i e S 1 , ( i ,j)tfG>. A l so ,

f ind  T 1 = max{T' ,mi n { r . } }  and B 1 = { j/ jcB  and r. i  T 1}.
j eB -*

Find the set of  jobs  B^ = { j / j e B 1 and T 1 + pj > d^.}.

I f  B^=0, go to Step 5. Otherwise, f ind  a job ieB^ with

p. as small as p o s s ib le  and proceed to Step 4.1.

I f  B^=B‘ , sequence job i next, set T l=T ' + p . ,  remove job i

from S '  and go to Step 8 . Otherwise proceed to Step 4.2.

Let A. be the set of  d i r e c t  succes so r s  j o f  i .  Find the

set  of  jobs  A! = {j/ jeA.  and T 1 + p. £ r j }. Let k. denote

the number o f  jobs  in a ! .

I f  k.=0, set r. = max{r.,min ( r . } - p . )  and go to Step 3.
jeA. J

I f  k. = 1, form a composite job i j ,  j e A ! and go to Step 2.

I f  k.>1, f ind  the set  A1.' = { j / j eA! and T ' + p . + p ^ d j } .

Let n. denote the number o f  jobs  in A*.'.
i i

I f  n.=0, form a composite job i j ,  where jeA.' w i th  p. as 
i ' KJ

small as p o s s ib le  and go to Step 2.
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Step k . 2.3.2: I f  n. = 1, form a composite job i j ,  where jeA. and go to

Step A .2.3•3:

Step 5:

Step 6 :

Step 7:

Step 8 :

Step 2.

I f  n.>1, f ind  jobs j and j '  where j ,j 1 eA1.' w i th  dj as small 

as p o s s i b l e  and W j i / p j ' 3S large  as p o s s ib le .  I f  T '+p .+pj  

+P j ,^d j i  form a composite job i j ;  otherwise  form a com­

p o s i te  job i j 1. Go to Step 2.

I f  on ly  one job i e x i s t s  in B ' f sequence t h i s  job f i r s t ,  

set T l=T ' + p . ,  remove job i from S '  and go to Step 8 . 

Otherwise proceed to Step 6 .

Let Tn= T ,+ I  p..  I f  there e x i s t s  a job j e B 1 with  d.^T" 
i eB1 1 -1

(and wj/pj as small as p o s s i b l e ) ,  then remove job j from

B '  ( i . e .  job j cannot be sequenced f i r s t )  and go to Step 5.

Otherwise proceed to Step 7.

Find a job ieB '  w i th  d. as small as p o s s ib le .  Find the set 

o f  jobs  B" = ( j / j e B 1 and T ' + p . + p ^ d j } .  I f  B"/0, f ind  a job 

jeB ' 1 wi th  wj/pj  as large as p o s s ib le .  I f  B"=0 or w./p. ^ 

Wj/p^., sequence job i f i r s t ,  set T l=T ' + p . ,  remove job i 

from S '  and go to Step 8 . Otherwise, sequence job j f i r s t ,  

set T ' = T ' + P j ,  remove job j from S '  and go to Step 8 .

I f  S ' = 0 ,  s top;  otherwise  go to Step 2.

Th is  procedure requ ires  0 (n J ) steps.

Step 2 o f  the a lgor i thm  w i l l  compute the e a r l i e s t  completion time 

(based on r. and prec) o f  each job i with no succe s so r s .  Each time a la te  

job i s  found, t h i s  job i s  removed from the set of  unsequenced jobs  S '  and 

sequenced in the l a s t  a v a i l a b l e  p o s i t i o n .  I f  a l l  jobs  have been sequenced, 

the procedure ends; otherwise  Step 2 i s  repeated (Step 8).  Steps 2 and 8 

are repeated un t i l  a l l  jobs  have been sequenced or u n t i l  a s tage  where 

none o f  the jobs  wi th  no successo r s  i s  l a te ,  in which case Step 3 i s  

executed.
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Step 3 w i l l  f ind  B ' ,  the set  o f  a v a i l a b l e  jobs  which i s  needed in 

the fo l low ing  steps of  the a lgor ithm.

I f  none o f  the a v a i l a b le  jobs  i s  la te  (Step 4 ),  then Step 5 is  

executed. Otherwise, an a v a i l a b l e  job i ,  where job i i s  la te  and with  p. 

as small as p o s s ib le  i s  found and we have the fo l l ow ing .  I f  a l l  a v a i l a b l e  

jobs  are late ,  then job i i s  sequenced f i r s t  (Step 4 .1 ) .  I f  none o f  the 

d i r e c t  successors  of  job i i s  a v a i l a b l e  at time T '+p .  ( i . e .  assuming job i 

i s  sequenced next) ,  then job i i s  delayed p o s s ib l y  by i n c rea s in g  i t s  re lease  

date (Step 4 .2 .1 ) .  I f  on ly  one of  the d i r e c t  successo r s  o f  job i (j say) 

i s  a v a i l a b l e  at time T ' + p . ,  then a composite job ij  i s  formed (Step 4 .2 .2 ) .  

I f  more than one of  the d i r e c t  successo r s  o f  job i are a v a i l a b l e  at time 

T ' + p . ,  we have the fo l low ing ,  i f  none of  these jobs  can be completed 

before i t s  deadl ine  when sequenced at time T ' + p . ,  then a job j (one of 

these jobs)  wi th  pj as small as p o s s ib le  i s  found and a composite job ij 

i s  formed (Step 4 .2 . 3 . 1 ) .  I f  on ly  one o f  these jobs ,  say j ,  ( i . e .  d i r e c t  

succes so r s  of  job i which are a v a i l a b le  at time T ' + p . )  can be completed 

before i t s  deadl ine when sequenced at time T ' + p . ,  then a composite job ij  

i s  formed (Step 4 .2 . 3 . 2 ) .  F i n a l l y ,  i f  more than one job can be completed 

before th e i r  dead l ines  when each o f  them in turn i s  sequenced at time T ' + p . ,  

then two o f  these jobs  j and j '  are chosen (we may have j =j 1) such that 

d. i s  as small as p o s s ib le  and Wj,/pj, i s  as la rge  as p o s s ib le .  I f  job j '  

can be completed before i t s  deadl ine  when sequenced at time T'+p.+p^. ( i . e .  

assuming jobs i and j have been sequenced), then a composite job ij  i s  

formed; otherwise  a composite i j ' i s  formed.

Steps 5, 6 and 7 w i 11 deal with the case where each o f  the a v a i l ­

able jobs j e B ' (found in Step 3) can be completed before i t s  dead l ine  i f  

i t  i s  sequenced in the f i r s t  a v a i l a b l e  p o s i t i o n .  The on ly  access to these 

steps is  from Step 4.
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Step 6 reduces, i f  p o s s ib le ,  the number o f  a v a i l a b l e  jobs  by 

temporar i l y  removing any job which, when sequenced a f te r  a l l  other  a v a i l ­

able jobs,  can be completed before i t s  deadl ine.  Obv ious ly ,  i f  on ly  one 

job i s  l e f t ,  then th i s  job i s  sequenced f i r s t  (Step 5).

F i n a l l y ,  Step 7 w i l l  f ind  an a va i l a b le  job i with  d. as small as 

p o s s ib le  and a job j which i s  go ing to be late  when sequenced at time T '+p.  

( i . e .  assuming job i i s  sequenced f i r s t )  and with  Wj/pj as large as p o s s ib le  

i f  such a job j can be found. I f  no such job j e x i s t s  or  i f  w./p. £ Wj/py  
then job i i s  sequenced f i r s t ;  o therwise,  job j i s  sequenced f i r s t .

We po in t  out that i f  prec i s  dropped, then Steps 4.1, 4.2 ,  4 .2 .1 ,  

4 .2 .2 , 4 .2 .3 ,  4 . 2 . 3 . 1, 4 . 2 .3.2 and 4 .2 .3 .3  of  the a lgor i thm  are not executed

5.¿4_____The Tree Type H e u r i s t i c

5.4.1 The Algor ithm

From Sect ion  3.2 we know that although a branch and bound procedure 

guarantees the f in d in g  o f  an optimum schedule, a suboptimal s o lu t i o n  may 

r e su l t  i f  some o f  the p o s s i b l y  optimum p a r t i a l  schedules  have not been 

exp lored.  Th i s  fa c t  has been used to obta in  near-optimum so l u t i o n s  fo r  

many schedu ling  problems. Here, s u i t a b l e  dominance ru les  can be used to 

reduce the number o f  candidates within each level of  the tree.  Then on ly  

some o f  the remaining candidates  (w ith in  each level  of  the tree) are chosen 

from which to branch. U sua l ly ,  one candidate on ly  i s  chosen w i th in  each 

level of  the tree. Rarely ,  more than one candidate i s  chosen w i th in  each 

leve l of  the tree. Methods o f  choosing candidates  can be found in (Mu l le r -  

Merbach, 1S8 1 ; Sect ion  3 .3 .3 ) .  Here, we suggest two methods to choose one 

candidate on ly  to branch from w i th in  each level o f  the tree.

(a) According to the value o f  a lower bound computed 

at every node ( look  ahead c r i t e r i o n ) .  We sh a l l  

refer  to t h i s  case by H^.
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i s appl ied at every node. Obv ious ly ,  t h i s  second

order  h e u r i s t i c  H has to be f a s t  computationa l ly.

Several  one machine h e u r i s t i c s  can be found in 

Sec t ions  5.2 and 5.3. We sh a l l  re fer  to t h i s

case by H^.

I t  i s  obvious  that s in ce  the number of chosen candidates  i s  one, 

one would s e le c t  a candidate with the smal lest  lower bound i f  method ' a '  i s  

used and one with the smal lest  va lue of the h e u r i s t i c  i f  method ' b 1 i s  used.

I t  i s  c lea r  that a branch and bound procedure w i l l  lead to the same 

s o lu t i o n  as method ' a '  (u s ing  the same lower bound) w i th in  the same number 

o f  nodes and thus i t  may be useful  to include method ' b ' in the branch and 

bound procedure, s in ce  t h i s  may lead to a d i f f e r e n t  and may even be a 

better  so lu t ion .

The performance of  these two methods o f  choos ing  one candidate 

w i th in  each level of  the tree to obta in  a near optimum s o l u t i o n  fo r  the 

1/r./EWjC. problem was a s sessed  u s ing  te s t  problems. The branching p ro ­

cedure (Forwards Branch ing,  FB) , the lower bounding procedure (the improved 

lover  bound LB ' )  and the second order  h e u r i s t i c  used are those proposed in 

Chapter 6 . The performance o f  the second order  h e u r i s t i c  H (see a l s o  

Sec t ion  5.3 .1)  on i t s  own was a l s o  tested u s ing  the same problems.

Th is  tree type h e u r i s t i c  requ ires  0(n^ log n) i f  the second order  

h e u r i s t i c  H i s  used and (Hn** log n) i f  the improved lower bound L B 1 of 

Chapter 6 i s  used.

5 .4 .2  Computational Experience

5.4.2.1  Test Problems

Every problem c o n s i s t s  of  n jobs  where n=20, n=30, n=40 or  n=50. 

Three in tegers  were generated for  every job i , namely p . , w. and r. .

(b) According to some second order  h e u r i s t i c  H, which



Proces s ing  times p. and weights w. were generated randomly from uniform 

d i s t r i b u t i o n s  [1,100] and [1,10] r e spec t i v e ly .  Release dates fo r  every 

problem were generated from the uniform d i s t r i b u t i o n  [Q,50,5nR],  where R 

con t ro l s  the range o f  the d i s t r i b u t i o n .  The value 50 .5n measures the 

expected total  p rocess ing  time. For each se lected va lue  o f  n, f i v e  problems 

were generated for  each of  the R va lues  0.2 ,  0 .^ ,  0.6, 0.8, 1.0, 1.25, 1.5, 

1.75, 2.0 and 3.0 producing f i f t y  problems for  each value o f  n. Th is  method 

o f  data generat ion fo l lows  that given in Chapter 6 .

5 .^ .2 ,2  Computational Resu l t s

Computational r e s u l t s  fo r  the second order  h e u r i s t i c  H are g iven

in Table 5.1 ,  wh i le  the r e s u l t s  f o r  the two tree type h e u r i s t i c s  Hu and H
H L

are given in Table 5.2 .  The branch and bound procedures o f  Chapter 6 were 
used to so lve  the tested problems. As we sh a l l  po in t  out in Chapter 6 , 

whenever a problem was not so lved  w i th in  the time l im i t  of  60 seconds, 

computation was abandoned for  that problem, ( in  a l l ,  5 and 21 problems 

were le f t  unsolved when n=40 and 50 r e sp e c t i v e l y ) .  Thus, in some cases 

the f i g u r e s  g iven in Tables 5.1 and 5.2 are lower bounds on the average and 

maximum d ev ia t ion s  and upper bounds on the number o f  problems with  va lues  

w i th in  a gi ven percentage o f  the optimum.

Resu l t s  fo r  h e u r i s t i c  H are given in Table 5.1. The f i r s t  column 

o f  Table 5-1 shows the average dev ia t ion s  ( l )  of  t h i s  h e u r i s t i c .  Th is  

average takes i t s  maximum value 1.08% when n=20. Th is  va lue decreases as 

n increases  and takes i t s  minimum va lue 0 .3 *^  when n=5Q. Th is  i s  due to 

the fact  that when n inc reases ,  the e f fe c t  each ind iv idua l  job has on the 

va lue o f  the h e u r i s t i c  decreases.

Column two shows that when n—20, s i x  problems have optimum sequences 

As expected, t h i s  f i g u re  decreases as n in creases  and takes i t s  minimum 

value o f  0 when n=50.
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Table 5.1: Resu l t s  fo r  H e u r i s t i c  H

Average Number of  Cases With in  % o f  Optimum Maximum
Devia t ion  Deviat ion

% 0.0 1.0 2.0 3.0 4.0 5.0 %

20 1.08 6 36 42 45 47 48 8.62

30 0.98 3 34 40 46 49 50 4.38

1*0* 0.64 2 43 45 48 50 50 3.93

50* 0.34 0 47 50 50 50 50 1.52

*Lower bounds <on the average and maximum d ev ia t ion s and upper
bounds on the number of  cases w i th in % of optimum because of
unsolved problems.

Table 5*2: Resu l t s  fo r  H e u r i s t i c s  and

n
Heur- 
i s t i  c

Average
Devia t ion

%

Number of  Cases With in  ! 

0.0 1.0 2.0 3.0

% o f  Optimum 

4.0 5.0

Maxi mum 
Devi at ion

%
, nh

hh
0.37 27 45 48 49 49 49 8.28 3

20
h l

0.03 41 50 50 50 50 50 0.64 18

Best 0.03 42 50 50 50 50 50 0.64 - -

hh
0.24 22 47 49 50 50 50 2.71 6

30 h l
0.05 29 50 50 50 50 50 0.56 26

Best 0.04 35 50 50 50 50 50 0.56 - -

hh 0.19 17 49 50 50 50 50 1.57 11

40* h l
0.07 23 50 50 50 50 50 0.61 25

Best 0.05 28 50 50 50 50 50 0.36 —

HH 0.13 11 50 50 50 50 50 0.70 11

50*
h l

0.04 18 50 50 50 50 50 0.20 31

Best 0.03 22 50 50 50 50 50 0.20 - -

*As above. -  Number o f  cases a h e u r i s t i c  i s  better  than the other.
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The next f i v e  columns of  the same tab le  show a l l  problems of 

s i z e s  30 , 40 and 50 have s o l u t i o n s  w i th in  5% o f  optimum.

The la s t  column shows that h e u r i s t i c  H takes i t s  maximum dev ia t ion  

o f  8.62% when n=20. Th is  f i g u re  decreases as n increases  and takes i t s  

minimum value 1 .52% when n=5 0 .

Table 5.2 compares the performance of  h e u r i s t i c s  and the

best o f  these two h e u r i s t i c s  fo r  the d i f f e r e n t  va lues  of  n.

Column 1 shows that for  a g iven value o f  n, the average dev ia t ion  

o f  h e u r i s t i c  Hu i s  about one th i rd  o f  that o f  h e u r i s t i c  H (Table 5 .1 ) .  A 

fu r ther  s u b s tan t ia l  reduction in t h i s  average dev ia t ion  was obta ined when 

us ing  h e u r i s t i c  H^. Another fu r ther  reduction was p o s s ib le  when choosing 

the best o f  HH and .

The second column o f  the same tab le  shows that for  h e u r i s t i c  Hu

and n=20, 27 problems have optimum sequences (compared to s i x  problems

when h e u r i s t i c  H i s  used). Th is  number is  increased to 41 when h e u r i s t i c

H i s  used and to 42 when the best o f  Hu and H. i s  chosen. The numbers o f  
L H L

problems with  optimum sequences decrease as n increases  and reach t h e i r  

minimum va lues  when n=50. These minimum va lues  are 11, 18 and 22 when 

h e u r i s t i c s  H^, and the best o f  and are used (compared to 0 when 

h e u r i s t i c  H i s  u s e d ) .

The next f i v e  columns o f  the same tab le  show a l l  te s t  problems of  

s i z e s  30 , 40 and 50 have s o l u t i o n s  w i th in  3% o f  optimum when i s  used, 

wh i le  u s ing  leads to s o l u t i o n s  to a l l  problems (even fo r  n=20) w i th in  

1% o f  optimum.

Column 8 shows that,  fo r  a gi ven n, the maximum d ev ia t ion  from 

optimum i s  s u b s t a n t i a l l y  smaller  fo r  than i t  i s  f o r  .

The l a s t  column o f  the same tab le  shows that fo r  a g iven  n, the 

number o f  cases  gave better  r e s u l t s  than i s  much b igger  than the

number o f  cases gave bet te r  r e s u l t s  than H^.
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5.5 Concluding Remarks

In Section  5.2 we gave a f u l l  review of  one machine h e u r i s t i c s .

In Sect ion  5-3 we proposed some new h e u r i s t i c s .  Each of  the proposed 

h e u r i s t i c s  is  w r i t ten  for  a general problem and thus can be app l ied  to a l l  

r e s u l t i n g  spec ia l  cases. F i n a l l y ,  in Sect ion  5.^  we proposed a tree type 

h e u r i s t i c .  Here, a tree search procedure i s  considered and on ly  one node 

i s  se lected  for  branching w i th in  each level o f  the search tree. Th is  node 

i s  chosen e i the r  because i t  has the smal lest  lower bound ( t h i s  case i s  

referred to as H^) or because i t  has the smal les t  upper bound ( t h i s  case 

i s  referred to as H ^ ) .

The 1/r./Ew.C. problem was considered to te s t  the performance of

h e u r i s t i c s  H. and Hu on te s t  problems. The r e su l t s  showed both h e u r i s t i c s  
L H

to perform reasonably  we ll .  The r e su l t s  a l s o  showed h e u r i s t i c  to be 

s u b s t a n t i a l l y  bette r  than h e u r i s t i c  KH which ind ica te s  that to obta in  a 

near optimum s o lu t i o n ,  one should e i the r  use or both and and 

choose the best s o lu t i o n  obta ined which appears to be a reasonable 

s t r a t e g y .

F i n a l l y ,  there appears no reason why these tree type h e u r i s t i c s  

should not g i ve  r e su l t s  as good as obtained here when app l ied  to other  one 

machine schedu l ing  problems. In f a c t ,  we see no reason why these h e u r i s t i c s  

cannot be used to obta in  near optimum so l u t i o n s  for  permutation f low-shop 

problems.
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CHAPTER S IX

AN ALGORITHM FOR SINGLE MACHINE SEQUENCING WITH RELEASE 
DATES TO MINIMISE TOTAL WEIGHTED COMPLETION TIME

6.1______ I ntroduct i on

The problem considered in th i s  chapter may be sta ted as fo l low s .

Each of  n jobs (numbered 1 , . . . , n )  i s  to be processed without in te r rup t ion  

on a s i n g le  machine which can handle on ly  one job at a time. Job i 

( i = 1, . . . , n )  becomes a v a i l a b le  fo r  process ing  at i t s  re lease  date r. , 

requ i re s  a p roces s ing  time p. and has a p o s i t i v e  weight w . . Given a pro­

ce s s in g  order  it o f  the job s ,  the ( e a r l i e s t )  completion time C. fo r  each job 

i can be computed. The ob jec t ive  is  to f ind  a p roce s s in g  order  of  the jobs  

which minimizes SWCT, the sum of  weighted completion times Ew.C.. The author 

acknowledges the su b s t an t ia l  con t r ibu t ion s  of  Dr. Pott s  to the development 

o f  th i s  chapter.

When a l l  release dates are equal ,  the problem can be solved u s ing  

the a lgor ithm of  Smith (Smith, 1956) in which jobs  are sequenced in non­

inc reas ing  order of  w./p.. However, Lenstra  et  a l . (Lenstra  et a l . ,  1977) 

have shown that when jobs  have a r b i t r a r y  re lease  dates and un i t  weights  

the problem i s  NP-hard, which ind ica tes  that the ex i s tence  of  a polynomial  

bounded a lgor i thm  i s  u n l i k e l y .  Consequently, branch and bound a lgor i thms  

have been proposed fo r  t h i s  problem with un i t  weights  by Chandra (Chandra, 

1979) and Dessouky 6 Deogun (Dessouky 6 Deogun, 1980). For the problem with 

a r b i t r a r y  weights,  R ina ld i  S Sassano (R ina ld i  S Sassano,  1977) have der ived 

severa l  dominance theorems. In t h i s  chapter a branch and bound a lgor i thm  

fo r  the problem w ith  a r b i t r a r y  weights  i s  der ived.

In Sect ion  6.2 a h e u r i s t i c  method fo r  sequencing the jobs  i s  g iven.

A lower bound, which i s  computed from t h i s  sequence, i s  der ived in Sect ion

6.3 and i t s  working i s  demonstrated with a numerical example. An improvement
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to the lower bound is  presented in Section  6 .^. Sect ion  6.5  conta in s  a 

statement of  our f i r s t  branching ru le  and g i v e s  some dominance ru le s  which 

help to reduce the s i z e  of  the search tree used in the branch and bound 

a lgor ithm. A complete statement of the a lgor i thm,  inc lud ing  d e t a i l s  of  

i t s  implementation i s  given in Sect ion  6 .6 . Our modified a lgor i thm 

( in c lud in g  our second branching ru le )  is given in Sect ion  6.7.  Computational 

experience i s  presented in Sect ion  6.8 which i s  fol lowed by some concluding 

remarks in Sect ion  6.9.

6.2______The H e u r i s t i c  Method

It  i s  well known that computation can be reduced by u s ing  a h e u r i s t i c  

method to f ind  a good s o lu t i o n  to act as an upper bound on the sum of  

weighted completion times p r i o r  to the a p p l i c a t io n  o f  a branch and bound 

a lgor ithm. A l so ,  in our a lgor ithm,  a sequence generated by the h e u r i s t i c  

method i s  used at each node of  the search tree fo r  c a l c u l a t i n g  a lower 

bound.

The h e u r i s t i c  that i s  used has the property  that the machine w i l l  

never be kept unnece s sa r i l y  id le .  I f  there i s  a choice of  jobs  f o r  the 

f i r s t  u n f i l l e d  p o s i t i o n  in the sequence which preserves  t h i s  p roperty ,  one 

with the la rge s t  Wj/pj i s  chosen. A formal statement of  the method is  

given below.

Step 1 : Let S be the set of  a l l  (unsequenced) j o b s , le t H=0 and

k=0 and find TJ= min. _ I { r .}. jeS  j

Step 2 : Find the set S "  = { j/ j  eS ' ,  rj $ T*j and f ind  a job i with

• c "1 eS and wi th Wj/p. = maxjeS . i {Wj/pj}.

Step 3: Set k=k+1, sequence job i in p o s i t i o n k, set -r' t 'T=T+p., set

H=H+w.T 
1

and set S ' = S - { i }.

Step k: I f  S '=9, then stop with the sequence generated havi ng H as

i ts sum of  we ighted completion times. 0 1 he rw ise  set T' =

max{T',mi n. c i
jeS

{ rj >} and go to Step 2 .
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I t  i s  p o s s ib le  to show that an upper bound on the worst -case

performance of t h i s  h e u r i s t i c  does not e x i s t .  Cons ider the fo l low ing  two-

job example with  r^=0, p^=h-2, w^=l,  ^ = 1 ,  P2= l and W2=h, where h £ 4.

H 2
The h e u r i s t i c  H sequences job 1 before job 2 y i e l d i n g  SWCT = h -2.

However, in the optimum sequence, job 2 i s  sequenced before job 1 y i e l d i n g

SWCT* = 3h. Thus SWCT^/SWCT5' = (h^-2)/3h which can be a r b i t r a r i l y  la rge.

We now der ive  s u f f i c i e n t  cond i t ion s  for  the sequence generated by

the h e u r i s t i c  to be optimum. However, some notat ion  i s  introduced f i r s t .

I t  i s  assumed that the jobs  have been renumbered so that the sequence

generated by the h e u r i s t i c  i s  ( l , . . . , n )  and the completion times of  the

jobs  have been computed u s ing  C1 = r ^ p j ,  C. = max{ r . ,C. _.| } + p. ( i = 2 , . . . , n ) .

The jobs  may be pa r t i t i oned  into b locks  S ^ , . . . , S ^  as fo l low s .  Job Vj i s  the

la s t  job  in  a b lo ck  i f  Cy i  r. fo r  i = v . + l , . . . , n .  A set  o f  jobs  S. =
J

{ u ........V j ) forms a b lo ck  i f  the fo l low ing  cond i t ion s  are s a t i s f i e d :

(a) Uj = 1 or job u j -1 i s  the l a s t  job in a block;

(b) job i i s  not the l a s t  job in a block for  i = u . , . . . , V j - 1 ;

(c) job Vj >s the l a s t  job in a block.

Job 14. <s ca l led  the f i r s t  jo b  in  a b lo ck  and, fo r  our h e u r i s t i c ,  has the

property  that r^ $ r. fo r  i =U j+1 .......n. These d e f i n i t i o n s  concerning

blocks  were proposed by Lageweg et a l .  (Lageweg et a l . ,  1976).

The s u f f i c i e n t  cond i t ion s  fo r  the sequence generated by the 

h e u r i s t i c  to be optimum are as fo l lows.

Theorem 6 .1

The sequence ( 1 , . . . ^ )  g en era ted  by th e  h e u r i s t ic  i s  optimum i f
th e  jo b s  w ith in  each b lo ck  S .  are sequenced in  n o n -in c re a s in g  o rder o fJ

Proof

The re su l t  i s  f i r s t  proved fo r  the modified problem in which the

release  date o f  each job i in i s  set to the re lease  date o f  the f i r s t
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job in block Sj (j= 1 , . . .  ,k) . We f i r s t  show that a l l  jobs  In block Sj should

be sequenced before a l l  jobs  in block S .+1 ( j = l .......k - l )  f o r  t h i s  problem

with  reduced release dates. Consider any sequence and suppose that i e S . 

i s  chosen so that i 1s as small as p o s s ib le  and so that job i i s  sequenced 

a f te r  a job in block S i where j * >  j  . Suppose that t h i s  sequence i s  of

the form 0 ^°20 3 ' 0 4 » where cr̂  c o n s i s t s  of  a l l  jobs  in b locks  S 1 .......S.

where a^ c o n s i s t s  o f  jobs  in block S. and where the f i r s t  job o f  i s  a 

job  in Sj *. Cons ider  now the new sequence c^c^icr^c^. The completion time 

o f  job i in t h i s  sequence i s  not g reater  than the release date o f  the f i r s t  

job in which i s  in b lock  S j ( s ince  the jobs  in o^\ are contained in block 

S j . Thus the new sequence has a smal le r  sum of  weighted completion times. 

Having e s tab l i shed  that,  fo r  an optimum sequence, a l l  jobs  w i th in  a b lock 

are sequenced in adjacent p o s i t i o n s ,  t h e i r  o rder ing  i s  determined by Sm i t h ' s  

ru le .  Th i s  proves the r e su l t  fo r  the problem with reduced re lease  dates.

We now return to the o r i g i n a l  problem obta ined by inc reas ing  the 

re lease  dates to th e i r  i n i t i a l  va lues .  S ince  t h i s  increase  in re lease  

dates leaves the completion times unal tered,  the sequence ( 1 , . . . , n )  i s  a l s o  

optimum for  the o r i g i n a l  problem.

It  i s  seen in the next sec t ion  that Theorem 6.1 i s  used in d e r i v i n g  

our lower bound.

6.3______Der iva t ion  of  the Lower Bound

The method used to obta in  a lower bound i s  s i m i l a r  to the m u l t i p l i e r  

adjustment method proposed by Van Wassenhove (Van Wassenhove, 1979) for  

min imiz ing Ew.C. when jobs  have zero release date and have dead l ine s .  We 

obta in  a lower bound by performing a Lagrangean re lax a t ion  o f  each re lease  

date c o n s t r a in t  C. £ r. + pj ( i = 1 , . . . , n )  a f te r  which i t  i s  replaced by a 

weaker con s t r a in t  C. £ r *  + p. fo r  some r *  i  r . .  Th is  y i e l d s  the Lagrangean 

problem
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( 6 . 1)
n n

L(A) = mini  £ w.C. + £ A . ( r .  + p. -  C . ) }
i=1 1 1=1 ' 1 1 1

where A = ( A j , . . . , A  ) i s  a vector  of  non-negative m u l t i p l i e r s ;  the min imiza­

t ion i s  over a l l  p roces s ing  orders  o f  the jobs  wi th  C. ( i = 1 , . . . , n )  subject  

to machine capac i ty  c o n s t r a in t s  and to the co n s t r a in t s  C. £ rj + p.. We 

can wr i t e (6 . 1) a s :

n j. n
L (A) = mini  £ w.C.} + £ A . ( r .  + p.)

i =1 ¡=1 1

where w? = w. - A .  ( i = 1 , . . . , n ) .  Thus, the Lagrangean problem i s  o f  the same 

form as the o r i g i n a l  problem but each job i has a new re lease  date r *  and 

a new weight w?. The choice of  new release dates and o f  m u l t i p l i e r s  i s  

d i s cu s sed  next. However, we sh a l l  r e s t r i c t  our choice  o f  m u l t i p l i e r s  to

the range 0 $ A. Í  w. ( i = 1 .......n) to ensure that L ( a ) does not become

a r b i t r a r i l y  small .  One p o s s i b l e  approach i s  to set  r'. = 0 so that the 

Lagrangean problem can be so lved  u s ing  Sm i t h ' s  ru le .  The value o f  A which 

maximizes L ( a ) can then be found u s ing  the subgrad ient  op t im iza t ion  method. 

However, t h i s  might e n t a i l  much computation without guarantee of  a t i g h t  

lower bound. We prefer  to reta in  the o r i g i n a l  va lues  o f  the re lease  dates,  

i .e .  to set r *  = r. ( i = l , . . . , n ) ,  but r e s t r i c t  the choice  o f  m u l t i p l i e r s  so 

that the Lagrangean problem can be so lved e a s i l y .  Th i s  can be achieved by 

maximizing L(A) subject  to the cond i t ion  that the sequence generated by the 

h e u r i s t i c  so lve s  the Lagrangean problem by y i e l d i n g  we ights w? ( i = 1 , . . . , n )  

which s a t i s f y  the cond i t ion s  of  Theorem 6.1. Thus we requ i re  for  each 

block Sj that

(w. - A.)/p. Í  (w._1 - A ._ 1) / p . _ 1 fo r  i = U j+1.......Vj

I t  i s  c lea r  that L (A) i s  maximized by choos ing
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0 I f  I

r ( j = i .......k)X.
I

max{0,wi + ( X . _ 1-w._ l ) p i /p i _ l } i f  I = u . + 1 , . . . , V j

(6 .2)

Having found Cj ( i = 1 .......n) u s ing  the sequence generated by the h e u r i s t i c

and Xj u s ing  (6 .2) ,  our lower bound can be w r i t ten  as

n n
LB = Z w.C. + z X . ( r . + p. - C . ) (6.3)

i = 1 i = 1

Example 6 .1

The data fo r  the example i s  summarized in the f i r s t  three rows of  

Table 6.1. The jobs  have a lready  been renumbered so that the sequence 

generated by the h e u r i s t i c  method i s  ( 1 , . . . , 10).

Table 6.1: Data fo r  the Example

Î 1 2 3 4 5 6 7 8 9 10

r.
1

1 62 93 146 206 223 230 271 219 219

p i 50 Al 37 28 60 19 97 37 76 94

w. 10 3 8 8 3 6 10 3 6 6

E, 51 103 140 174 266 285 382 419 495 589

X.
1

0 0 5-29 0 0 5 5.15 1.15 2.2 1.3

x ; ( c r r i ’ P i )
0 0 52.9 0 0 217 283 128 440 359

Having appl ied  the h e u r i s t i c  method, the completion times o f  the 

jobs  are computed. These are shown in row 4 o f  Table 6.1 .  The sum of  

weighted completion times i s  17420. The b locks  obta ined from t h i s  sequence 

are = {1 } ,  S2 = (2,3 )»  -  (4}  and = ( 5 » 6 , 7 , 8 , 9 , 10}. The m u l t i p l i e r s ^
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obtained from (6 .2 ) ,  are shown in row 5 o f  Table 6.1. The va lue o f  the 

lower bound i s  computed from (6.3) u s ing  the bottom row o f  Table 6.1. 

Th is  g ives :

LB = 17^20 - U 8 0  = 159^0

6 .A______The Improved Lower Bound

We assume that the m u l t i p l i e r s  def ined in the p rev ious  sec t ion  have 

been computed u s ing  (6 .2 ) .  Suppose that the jobs  are ordered w i th in  each 

block in non-decreas ing order  o f  m u l t i p l i e r s  to g ive  a permutation n =

(tt( 1) .......ir(n)) with the property  that Ŝ . = { n ( u j ........tt(v j ) }  and that

X . . i  . ..  ^ X / \ ( j = 1 ...........k ) . I t  i s  c le a r  from (6.2) that X , \ = 0
ir(Uj) ffVVjJ THUjl

s in ce  the f i r s t  job in a block always y i e l d s  a zero m u l t i p l i e r .  We now 

def i  ne

S j h) = s j h' l ) - M u j + h - 1)} (h= 1 .......V j -U j ,  j = 1 ........k)

where s j ^  = and

 ̂ = ATT‘(Uj+h) '  X7r(uj. +h -1) ^h=1....... vj ' uj» J = 1 ........^

The set  S
(h) s obta ined from the se t  S 

(h) ,

( h - 1)
by de le t ing  a job having the

smal les t  m u l t i p l i e r  and yj i s  the d i f fe rence  in value between the m u l t i ­

p l i e r  o f  the job deleted and the smal lest  m u l t i p l i e r  of  the remaining jobs. 

From these d e f i n i t i o n s ,  we can rewrite  (6.3) as

LB
n
Z w.C. 

. < '

k
+ I

j = 1

v . - u .
J J

Z
h=1 C i> (6.M

where bi*1  ̂ = Z. c (h) (r. + p.) ( h - 1 , . . . , v . - u ., j - 1 , . . . , k ) .  ( I t  i s  assumed 
j i ebj 1 1  J J

that any summation i s  zero when i t s  lower l im i t  exceeds i t s  upper l im i t ) .

C le a r l y  b j ^  i s a 

bound can be found

lower bound on Z . £g(h) C.. However, i f  a better  lower
j

, i t  i s  p o s s ib le  to increase  LB. To ob ta in  the best
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p o s s ib le  bound on the sum of  completion times o f  jobs  having re lease  dates 

would require  the s o lu t i o n  o f  an NP-hard problem (Lenst ra  et a l . ,  1977). 

S ince  t h i s  i s  computational ly  expens ive, we prefer  to obta in  a lower bound 

on Z. _ (h) C. by s o l v i n g  the corresponding pre-emptive schedu l ing  problem
I £ w • I

J
in which the p rocess ing  o f  any job can be in te rrupted  and resumed at a l a te r  

time. The pre-emptive problem i s  solved by us ing  the procedure to be given 

below. The ba s i s  of  t h i s  procedure i s  as fo l low s .  At any time when a 

job i s  completed or  when a new job becomes a v a i l a b le  for  p roce s s in g ,  the 

job which i s  processed next i s  one with  the sho r te s t  remaining p roces s ing  

time. I f  denotes the sum o f  completion times fo r  the jobs  in

when they are sequenced us ing  t h i s  s h o r te s t  remaining p roce s s in g  time ru le ,  

we have the fo l low ing  improved lower bound:

l b ’ = lb  + r Y Uj <B<h> - b !h >>
j =1 h=l J J J

S ince  £ b j ^  , i t  i s  c le a r  that LB £ LB.

Procedure for  the 1/pmtn, r j /EC. problem

Step 1:

Step 2:

Step 3:

Let S '  be the set of  a l l  jobs ( I . e .  S * 1 = { 1 , . . . , n } ) ,  f=0 and 

f ind  T* = min { r . } .  Set p! = p. fo r  a l l  i .
• C l  1 i ii e S 1

Find the set s "  = { j / j eS 6 Tj $ T*} and f ind  a job i eS with 

the smal les t  p. ' . Th i s  job or  part o f  i t  i s  to be sequenced next.

Find t = min { r . >, where S "  = ( j / j e S 1 £ j ^ s " ) .  I f  S ' -Sf,  set 
j e S "  J

t=°°.

Step hi Sequence p un i t s  o f  job i (from Step 2) next,  where p = min 

( p \ ,  t-T9.

< >  i i
Step 5: Set T=T+p and p. = p. - p.

Step 6 : I f  p! > 0, go to Step 2.
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Step 7: Set S '  = S '  - { i }  and f  = f  + T 1. I f  S 0 stop with  the optimum

sequence generated having f  as i t s  sum of  completion times;

otherwise  set T 1 = maxiT ' .min  ( r . ) )  and go to Step 2.
j e S ' J

Theorem 6.2 (Conway et a l . ,  1967)

The schedu le  o b ta in ed  u sing  the  above procedure i s  an o p tim a l 
s o lu t io n  to  the  l/p m tn 3r./Y .C . problem .

With respect to the above procedure, we have the fo l l ow ing  theorem 

which i s  of some computational use. Here, jobs  are assumed to have been 

sequenced in an inc reas ing  order  o f  r ., in case o f  t i e s  job i w ith  the 

sho r te s t  remaining p roces s ing  time i s  sequenced f i r s t .  Jobs are

renumbered { 1 , . . . , n } .

Theorem 6.3

Suppose th a t  t  i s  the com pletion  tim e o f  ccn i n i t i a l  p a r t ia l  sch ed u le .
Suppose a ls o  th a t  p a r t  o f  fo b  i  i s  p ro cessed  o p tim a lly  (u s in g  th e  above
procedure) in  an in te r v a l  [ t 3t ( i . e .  fo b  i  i s  n o t com pleted  a t  tim e t ^ ) .
A lso t suppose th a t  th e re  e x i s t s  a fo b  f  w ith  f  chosen as sm a ll as p o s s ib le
so th a t  r  ■ = t j 3 then  e i t h e r  fo b  i  o r  fob  f  i s  p ro cessed  in  in te r v a l  Ct j 3r l
( i f  n o t com pleted  b e fo re  tim e r ) 3 where r  -  min ( r . / r .  > t J .

k z S ' k K 1
Proof

The ex i s tence  o f  a job h with  r, < t. and p < m in (p . ,p . )  contra -
n i h i j

d i e t s  the o p t im a l i t y  of  the above procedure. A l s o ,  the ex i s tence  o f  a job 

h wi th  r h = t 1 and ph < m in (p . ,p . )  c on t rad ic t s  the choice  o f  job j in the 

theorem.

Theorem 6 .3  can be used in Step 6 of  the above procedure; in the 

case when p! > 0 to determine whether to continue p roce s s in g  another  part 

o f  job i or  to s t a r t  p roces s in g  job j wi th r = t .

Example 6.2

In t h i s  example we sha l l  exp la in  how to compute our improved lower 

bound. Consider example 6.1 aga in .  Order ing the jobs  w i th in  each block
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in a non-decreas îng order  o f  m u l t i p l i e r s  g i ve s  a permutation (1 ,2 ,3 ,4 ,5 ,

8 ,10 ,9 ,6 ,7 ) .  We now compute:

(0)
1 = {1}

(0)
2

= (2 ,3 ) , = { 3 }

(0)
3

= {4}

(0)
4

11 CO 0 , 9 , 6 ,7 ) ,  S

(2)
4

II 0 UD ,7) 4 2) =

(3)
4 = ( 9 , 6 , 7 ) v £ 3) = 0 .:

(4)
’4 = { 6 ,7 } = 2.85

: (1) = l2

( 1) _ 0 ) _

(5) _ (5)

C lea r l y ,  we have ^2  ̂ -  ^2  ̂ -  S o l v i n g  the pre-emptive schedu l ing

problem fo r  jobs  in S ^  ̂ ( f o l l o w ing  the procedure above) we have:

Table 6 .2 *

s ' 6 1 62 92 8 1 93 1 0 1 7 '

Pi
76 19 19 76 37 76 94 97

p y
72 12 0 43 0 0 0 0

T ,i 223 230 242 271 308 351 445 542
J

* j '  the i th  part of  job J.

p ' i  the remaining p roces s ing  time o f  job J 
J a f te r  i t s  I th  part has been processed.

T i the completion time o f  part  J 1.
J
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We can add the fo l low ing  con s t r a in t :

c6 + c7 + c8 + c9 + c 10 >

where -  242 + 308 + 351 + 445 + 542 = 1888.

Thus we have B ^  = 1888 compared with  = 1485. S i m i l a r l y ,

f ^ 2) = 1469 with b j2) = 1177, bJ 3) = 967 with  b j 3) = 864, B ^ ) = 581 with

b ^  = 569, S^5) = 327 with b^5) = 327.

Thus LB1 = LB + 634 = 16574.

6.5______Dominance Rules

I f  i t  can be shown that an optimum so lu t i o n  can always be generated

without branching from a p a r t i c u l a r  node o f  the search tree,  then that node

is dominated and can be e l im inated.  Dominance ru le s  u s u a l l y  s p e c i f y  whether

a node can be e l im inated before i t s  lower bound i s  ca lcu la ted.  C lea r l y ,

dominance ru les  are p a r t i c u l a r l y  useful  when a node can be e l im inated

which has a lower bound that i s  le s s  than the optimum s o lu t i o n .  Nodes at

level h of  the search tree formed u s ing  our forwards branching ru le  FB

represent i n i t i a l  p a r t i a l  sequences in which jobs  in the f i r s t  h p o s i t i o n s

have been f ixed.  The mer it s  of t h i s  branching ru le  are d i scu ssed  in the

next sect ion .  The fo l low ing  re su l t s  w i l l  show when any o f  the immediate

succes so r s  o f  the node corresponding  to an i n i t i a l  p a r t i a l  sequence a are

dominated. We assume that a = a^h, whenever a is  not empty. A l s o  we

def ine  S to be the set o f  jobs  not sequenced in o and we def ine  the

e a r l i e s t  s t a r t  time o f  these unsequenced jobs  as T = max{C(c),  min. { r . } } ,
i cS i

where C(cr) i s  the completion time o f  the l a s t  job  o f  the p a r t i a l  sequence a .
The f i r s t  of  our dominance theorems i s  a r e s u l t  o f  R ina ld i  6 

Sassano (R ina ld i  & Sassano,  1977). For completeness the proof i s  ou t l in ed .
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Theorem 6.*4 (R ina ld i  6 Sassano,  1977)

I f  job  i  i s  chosen w ith  i z S  and w ith  w ./p  . = max. Aw  ,/p .} ana i f
^ j e S  f d

rra x ir .jT ]  < m ax{r.t T} f o r  any jc S 3 where j f i 3 th en  ad i s  dom inated.
* '  V

Proof

Consider  any sequence c j a ' i a "  having aj as i n i t i a l  p a r t i a l  sequence. 

Job i can be interchanged with  the job sequenced immediately before i t  w i th ­

out inc reas ing  the sum of  weighted completion times. A f t e r  the repeated 

a p p l i c a t io n  of t h i s  p rocess ,  the sequence a i j a ' o "  w i l l  r e s u l t  which does 

not have aj as an i n i t i a l  p a r t i a l  sequence.

I f ,  in Theorem 6 . A, we have r. $ T, then the node corresponding  to 

a w i l l  have on ly  one immediate successo r  c i .  The lower bound fo r  th i s  

successo r  i s  ident ica l  wi th  that o f  i t s  parent node and need not be 

computed again.

The next r e su l t  i s  due to Dessouky 6 Deogun (Dessouky S Deogun, 

1980). I t  s ta te s  that the machine should not be kept id le  throughout a 

time in te rva l  w i th in  which another job can be completely processed. Again, 

the proof i s  ou t l ined .

Theorem 6.5 (Dessouky & Deogun, 1980)

I f  n .  £ C (a i) f o r  any i 3je S 3 then  a j  i s  dom inated.
V

Proof

Given any sequence a j o ' i o "  having aj as an i n i t i a l  p a r t i a l  sequence, 

a new sequence o i j a ' a "  can be formed in which job i has a smal le r  completion 

time and in which the jobs  in a ' and a "  do not have a l a r ge r  completion 

time. Th is  new sequence does not have aj as an i n i t i a l  p a r t i a l  sequence.

I t  i s  apparent that the cond i t ion s  o f  Theorem 6.5 are most l i k e l y  

to be s a t i s f i e d  when job i i s  chosen with C ( a i ) as small as p o s s i b l e .  I t  

is  expected that Theorem 6.5  w i l l  be most e f f e c t i v e  at reducing the s i z e  

o f  the search tree when release dates have a la rge  range.
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Our f ina l  r e s u l t  i s  a consequence o f  dynamic programming. I f  the 

f in a l  two jobs of  a p a r t i a l  sequence can be interchanged wi thout inc reas ing  

the sum of  weighted completion times o f  jobs  in the p a r t i a l  sequence and 

without inc reas ing  the time at which the machine becomes a v a i l a b l e  to 

process  the next unsequenced job,  then t h i s  p a r t i a l  sequence i s  dominated. 

The importance of  t h i s  type o f  dominance ru le  i s  o ften  overlooked in s i n g l e  

machine sequencing. R eca l l i n g  that a = cr^h, our dominance theorem i s  as 

f o l l o w s .

Theorem 6.6

I f  Cf a^j h)  < C(Ojhj )  and i f  w .C(Ojf) + w^ C( a ^ h )  $ WyC(Cjh) + 
w. C( oJ i j )  f o r  any je S 3 th en  o^hj i s  dominated.

Care must be taken when both o f  the cond i t ion s  o f  Theorem 6 .6  hold 

with  equ a l i t y  that on ly  one of  the p a r t i a l  sequences a^hj and Ojjh i s  d i s ­

carded. I t  is  p o s s i b l e  to der ive  other dynamic programming dominance con­

d i t i o n s  i n vo lv in g  the interchange of  another p a i r  o f  jobs  or i n vo lv in g  a 

la r ge r  group of jobs ,  but they are u n l i k e l y  to be very  e f f e c t i v e  once the 

three other theorems have been appl ied.

The dominance ru les  g iven  in t h i s  se c t ion  can on ly  be used i f  the 

branching ru les  descr ibed in the fo l low ing  sec t ion  i s  used. In Sect ion

6 .7 .5  we sh a l l  propose a d i f f e r e n t  method fo r  branching.

6.6 The A lqor i  thm

The branching ru le  FB (Forwards Branching) i s  d i s cu s sed  f i r s t .  As 

was sta ted in the prev ious  sec t ion ,  a node at level  h o f  the search tree 

corresponds  to an i n i t i a l  p a r t ia l  sequence in which jobs  in the f i r s t  h 

p o s i t i o n s  are f ixed .  Th is  procedure has the advantage that once a job has 

been sequenced, i t s  completion time i s  immediately computed and i t  can be 

d iscarded from cons ide ra t ion  in a l l  successor  nodes. A l t e r n a t i v e l y ,  i f



nodes correspond to f in a l  p a r t i a l  sequences, completion times o f  sequenced 

jobs  depend on the p rocess ing  order  o f  unsequenced jobs .  Before any new 

node is  created, the dominance ru les  of  the p rev ious  sec t ion  are checked.

I f  job i can be found s a t i s f y i n g  the cond i t ion s  o f  Theorem 6.4 with r. $ T, 

then a s i n g le  successo r  node i s  created whose lower bound is  the same as 

that o f  i t s  parent. In other cases ,  as many nodes as p o s s i b l e  are e l im inated  

u s ing  Theorem 6.4. Then a job i i s  found with C (o i )  as small as p o s s ib le  

and the remaining nodes are checked for  dominance u s ing  Theorem 6.5.

Theorem 6.6  i s  appl ied  to a l l  nodes which have not been e l im inated.

For each node o f  the search tree which cannot be e l im inated  by 

dominance r u le s ,  a lower bound i s  ca lcu la ted.  F i r s t l y ,  the re lease  date 

o f  each unsequenced job i i s  adjusted by s e t t i n g  r. = max ( r . ,T ) ,  where T 

denotes the e a r l i e s t  s t a r t  time o f  unsequenced jobs.  Then the h e u r i s t i c  

method described in Sect ion  6.2 and the lower bounding methods descr ibed 

in Section  6.3 and Sect ion  6.4 are appl ied  to the unsequenced jobs  and the 

c o n t r ibu t ion s  o f  sequenced jobs  are added. At level  h of  the search tree 

where there are h = n-h unsequenced jobs ,  the h e u r i s t i c  requ i re s  0(h log h) 

steps.  A fu r ther  h steps are required to compute LB. I f  LB exceeds the 

va lue  o f  a s o lu t i o n  a lready  computed, then t h i s  node i s  d i scarded.  Other­

wise ,  the lower bound LB1 i s  computed. S ince  the s o l u t i o n  o f  a pre-emptive 

schedu ling  problem with h jobs requ ires  0(h log h) s teps ,  a fu r the r

log h) steps  are required to so lve  the 0(h) pre-emptive schedu l ing  

problems. To summarise, LB requ i re s  0(h log h) s teps  and LB* requ i re s  

0 (h2 log h) steps.

F i n a l l y ,  our search s t ra te gy  i s  g iven.  A newest a c t i v e  node search 

i s  used which s e le c t s  a node from which to branch which has the smal les t  

lower bound amongst nodes in the most recent ly  created subset.

The f u l l  search tree for  Example 6.1 u s ing  branching ru le  FB i s  

g iven  in F igure 6.1.
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Fi gure 6.1: Search Tree for  Example 6.1 (Us ing FB)

Key: J o b ' s  number is g iven  in s ide  each node wh i le  node ' s  number is 
given above that node. The improved lower bound and SWCT" 
(Section  6.2) are denoted by LB1 and H re spec t i v e ly .

6.7______Modif ied Algor ithm

6,7.1 Branchi ng

I t  i s  c lea r  from the p rev ious  s e c t ion s  that a h e u r i s t i c  i s  used to 

obta in  a sequence which i s  used in computing our lower bound LB. Th is  

sequence can be pa r t i t i o ned  into  b locks  each o f  which c o n s i s t s  o f  at least  

one job. The sharpness of  the lower bound i s  determined accord ing  to the 

order  in which jobs ,  w i th in  each block, are sequenced: i f  jobs  in each 

block are sequenced in a non - inc rea s ing  order  o f  w./p. r a t i o s ,  then the 

lower and upper bounds computed u s ing  t h i s  sequence are equal.
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In genera l,  the gap between the lower and upper bounds computed 

u s ing  a p a r t i c u l a r  sequence depends on how often  t h i s  o rder ing  ( i . e .  

accord ing  to w./pj r a t i o s )  i s  v io la ted .  I f ,  for  a sequence obtained at 

the top of  the search tree,  th i s  o rder ing  i s  v io la ted  among the f i r s t  few 

jobs,  then i t s  e f fe c t  on the lower bound w i l l  be reduced once we s t a r t  

branching from the beg inning ( i . e .  using F B ) . Unfortunate ly ,  branching ru le  

FB does not have a great e f fe c t  on the gap between LB and UB i f  the o rde r ing  

( i . e .  according to w./p. r a t i o s )  i s  v io la ted  somewhere deep in the sequence.

For th i s  reason we have decided to use an approach based on s e l e c t ­

ing ce r ta in  p a i r s  of  jobs  i and j and dec id ing,  at the top o f  the search 

tree, an o rder ing  between the jobs  o f  each pa i r .  Each of  these d ec i s i o n s  

( i . e .  i before j or  i a f t e r  j)  w i l l  be referred to as a b ina ry  branching.
The cond i t ion s  under which each pa i r  of  jobs  i s  chosen to form two b inary  

branchings w i l l  be given in Section  6.7 .5.

The idea behind our b inary  branchings i s  that when s o l v i n g  the 

r e su l t i n g  problem, with p a r a l l e l  1- leve l  t rees ,  a job i with small w./p. 

together  with other jobs  w i l l  be replaced by a s i n g l e  composite job K 

having a much la rge r  w^/p^.

A b inary  branching which corresponds to sequencing job i before 

job j ,  where job i is  sequenced before job j in the sequence obtained fo r  

the parent node, w i l l  be referred to as a l e f t  branch ing,  wh ile  the other 

b inary  branching ( i . e .  j before i) w i l l  be referred to as a r ig h t  branching.

For a r i g h t  branching, the precedence con s t r a in t  i s  ignored and

re lease  date is  adjusted such that j  must be sequenced before i implies

r = max{r . , r . + p . ). Ignor ing  the precedence co n s t r a in t  co rrespond ing  to 
j J 1 1

a r i g h t  branching i s  done for  two reasons: The f i r s t  reason i s  to make 

sure that the r e s u l t i n g  precedence graph i s  s e r i e s  p a r a l l e l .  The second 

reason is to make the r e su l t i n g  problem e a s i e r  to handle.



The r e s u l t in g  precedence graph ( i . e .  when a p p ly in g  th e  c o n d itio n s  
o f  S e c tio n s  6. 7. 5 to  s e l e c t  each p a ir  o f  jo b s  and ig n o rin g  a l l  r ig h t  branch­
in g s )  c o n s is ts  o f  p a r a l le l  1 - le v e l  t r e e s .  One node of  t h i s  graph i s  in 

s e r i e s  with a l l  other nodes. Th is  node w i l l  be referred  to as the ro o t  
node. A l l  other nodes are in p a ra l l e l  wi th  each other.  F igure  6.2 

shows a 1 -leve l tree c o n s i s t i n g  of  L nodes.

Root Node

Min im iz ing  Zw.C. subject  to these precedence co n s t r a in t s  can be 

done by u s ing  L a w le r ' s  0(n log n) s e r i e s  p a r a l l e l  a lgor i thm (Lawler, 1978). 

Th is  a lgor ithm assumes that a decomposit ion tree i s  a lready  known for  the 

precedence c o n s t r a in t s .  To determine whether a given graph i s  s e r i e s  p a r a l l e l  

and, i f  i t  i s ,  to obta in  a decomposit ion tree,  one can use the method given 

in (Lawler, Tarjan £ Valdez,  —  ) which requ i re s  0(n+m) s teps  where m is  

the number o f  arcs  in the graph.

The method of  Lawler, Tarjan and Valdez i s  based on repeatedly 

decomposing the precedence graph G into s e r i e s  and p a r a l l e l  components, so 

as to show how the t r a n s i t i v e  c lo su re  o f  G i s  obta ined by ru le s  (a) and (b) 

of  Sect ion  2 .2 .2  ( i . e .  cond i t ion s  o f  s e r i e s  p a r a l l e l  g raphs ) .  "The r e s u l t  

i s  a rooted b inary  tree we c a l l  aecornposition tr e e .  Each lea f  o f  the
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decomposit ion tree i s  i d e n t i f i e d  with a node of  G. Each in te rna l  node 

marked " S "  ind ica tes  the s e r i e s  composit ion of  subgraphs id e n t i f i e d  with 

i t s  sons,  with convention that the l e f t  son precedes the r i g h t  son. Each 

in terna l  node marked " P "  ind ica te s  the p a ra l le l  composit ion o f  the sub­

graphs i d en t i f i e d  with  i t s  sons. (Here the l e f t - r i g h t  o rder ing  o f  sons is  

un important) . "  (Lawler, Tarjan S Valdez, —  ).  F igure  6.3  shows a graph 

G with i t s  decomposit ion tree.

A Se r ie s  P a ra l l e l  Graph G A Decomposition Tree fo r  G

F igure  6.3

Given a decomposit ion tree,  L aw le r ' s  a lgo r i thm  works from the 

bottom of  t h i s  decomposit ion tree upwards, f i n d in g  an optimal sequence 

fo r  a module M from the p re v io u s l y  determined optimal sequences fo r  i t s  

sons,  M̂  and M2 *
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We point out that i f  ce r ta in  cond i t ion s  are s a t i s f i e d  for  two or 

more jobs,  Law le r ' s  a lgor i thm replaces  these jobs by a s i n g l e  com posite  
job. The weight and the p roces s ing  time o f  th i s  composite job are set 

equal to the sum of  the weights  and the sum of  the p roces s ing  times o f  

i t s  component jobs re spec t i v e ly .  The composite job i s  then treated as a 

s i n g l e  job. We a l s o  po in t  out that Law le r ' s  a lgo r i thm  sequence independent 

jobs  in a non - inc rea s ing  order  of  p ( i )  = w./p. r a t i o s .

" Fo r  p a r a l l e l  composit ion o f  and M^, a l l  that i s  necessary  is  

to form the union of  the two se ts  and M^. Non - inc reas ing  r a t i o  order  

i s  fe a s ib le  and optimal fo r  M = M^M^,  assuming th i s  i s  true for  M1 , 

i nd i v i d u a l l y .

For s e r i e s  composit ion o f  and we f i r s t  f ind  a minimum-ratio 

job i in and maximum-ratio job j in M2 . I f  p ( i )  > p ( j ) ,  a l l  that is  

necessary i s  to form the union o f  the se ts  M̂  and M2 . Non - in c rea s ing  r a t i o  

order  i s  fe a s ib le  and optimal fo r  M = M^UM2 , assuming t h i s  i s  true for  M^, 

M2 i n d i v i d u a l l y . "  (Lawler, 1978).

Now suppose p ( i )  p ( j ) ,  "what we do i s  to remove i from M^, j from 

M2 and form a composite job k = ( i , j ) .  (Note: e i t h e r  i and j ,  or  both, 

may themselves be composite jobs.  The job k represents  a sequence formed 

by j o i n i n g  together the two sequences represented by i and j ) .

Now le t  us f ind  the next minimal element i in M^: I f  p ( i )  $ p ( k ) ,  

we remove i from M̂  and form a new composite job k = ( i , k ) .  We continue 

in t h i s  way un t i l  e i t h e r  M̂  i s  empty or  p ( i )  > p (k ) .  Then we f ind  the 

next maximal element in M2 . I f  p(k) > p ( j ) ,  we can s a f e l y  le t  M = M1UM2 

U{k}.  Buf i f  p(k) i  p ( j ) ,  we remove j from M2 and form a new composite 

job k = ( k ,j ).  At t h i s  po in t  we s t a r t  a l l  over aga in  with  M^, at the 

top of  t h i s  pa ragraph. "  (Lawler, 1978).

As an example, cons ider  the problem with  precedence graph G g iven 

in F igure  6.3  and with  p roces s ing  times and weights  as shown in the 

fo l low ing  table.
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i 1 2 3 h 5

Pi 3 2 1 2 1

w.
1

1 7 5 8 10

S ince  jobs  k and 5 are independent, then the set P  ̂ conta in s  

these two jobs in a non-i ncreas i  ng order  of w./p.,  i .e .  = (5,*+}. 

S i m i l a r l y ,  we have P2 = (5,3, **}  and P^ = (5,3,** ,2}.

The steps required to form S^ are as fo l low s .  We have = {1 }  

and = {5,3,** ,2 }.  S ince  w1/p1 $ we remove job 1 from M1 and job

5 from and form a composite job k = (1,5) wi th p^ = ** and w^ = 11.

Now, cons ider  the next job in M2 , i .e .  job 3, we have w^/p^ $ w^/p^ and 

thus job 3 i s  removed from M2 and a new composite job i s  formed, i .e .  k = 

(k,3) = (1,5>3),  with p^ = 5 and w^ = 16. For the same reason, one can 

form a composite job k = (1,5,3,**) and a composite job (1,5,3,**,2) . Thus

Sk = ( (1 ,5,3 ,- *4,2) }

The idea behind our b ina ry  branchings  i s  to replace a job i with 

small wj/pj together  wi th  other  jobs  by a s i n g l e  composite job K having a 

much la rge r  w^/pK- M u l t i p l i e r s  must be chosen so that the jobs  in each 

tree are sequenced in adjacent p o s i t i o n s  in the same order  as in the 

heuri s t i  c.

6 .7 .2  Composite Jobs

Tuo Jobs i  and J sequenced in  a d ja cen t p o s i t io n s  u s in g  H are s a id  
to  form  a com posite Job i j  i f  v ^ /p£  < Wj / P j  Gna? a branch i  -v J has been  
form ed. I t  is  c lea r  that t h i s  composite job has a p roce s s in g  time p.+p. 

and a weight w . + W j .
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We sha l l  make i t  c lear  when t a l k in g  about our new branching that

on ly  job i can be a composite job,  i = { ¡ ^ ....... ¡^} say,  in which case the

b inary  branching we make i s  i  ̂ j and not i ^ j as one might expect.

I f  i i s  a composite job,  a t h i rd  cond it ion  i s  needed to form a branch

i -> j ,  namely w. /p. > w./p.. Th is  i s  to make sure  that jobs  forming the
j .  1L ' L J J

composite job are (except the f i r s t  of these jobs)  in a non - inc rea s ing  

order  of  wj/p. because a l l  the b ina ry  branches we make are between each o f  

these jobs and job as shown in F igure 6.1*, where p. = w./p.. F igure  6.4 

shows one of  the cond i t ion s  of  forming a composite job a l so .  However, a l l  

c ond i t ion s  fo r  forming a composite job are given in Sect ion  6.7 .5.

F igure  6.4: Forming a Composite Job

When dea l ing  wi th a composite job instead of  dea l ing  with  each of  

the jobs forming i t  sepa ra te ly ,  we are in fac t  dea l ing  with  a job with 

la rge r  w./p.. Hence, the e f fe c t  a job i wi th small wj/p. and sequenced 

in the wrong p o s i t i o n  in u has on the lower bound w i l l  be reduced as soon 

as a composite job in vo lv in g  job i i s  formed. Composite jobs  are p a r t i ­

c u l a r l y  useful  i f  they form the s t a r t  o f  new b lock s ,  in which case the 

m u l t i p l i e r s  for  these composite jobs  are reduced to zero.
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6.7 .3  D i s t r i b u t i n g  the M u l t i p l i e r  o f  a Composite Job Amongst i t s  
__________  Component Jobs__________________________________ ____________

Consider a composite job K = { 1 , 2 ....... L} say,  wi th  a m u l t i p l i e r

X^, where:

X ' = Z X. 
K 1 = 1  1

and X. as given in (6 .2 ) .  Recal l  from Sect ion 6.3  that 0 ^ X. $ w. ( i=1,  

. . . , n ) .  D i v id in g  X^ among the L jobs  forming the composite job K, we

i , i . i
have: X^, X2 , . . . , X ^ ,  where

X ' = I  xj 
K 1 = 1 1

I , . I
I f  L=2, then fo r  X  ̂ and X^ to be v a l i d  we must have

W1 "  X 1 w2 ~  X2 

Pi " P2 (6.5)

I f ,  on the other  hand, L>2, then fo r  X^.......X^ to be v a l i d ,  the fo l low ing

in e q u a l i t i e s  must be s a t i s f i e d  a l so :

W1 +  w2 "  X1 x2 w3 "  x3 

Pj + P2 " P3
( 6 . 6)

w2 -  X2 w3 -  X3

P 2 "  P3
(6.7)

w .  + w 2 +  . . .  +  w . _ 1 -  ( x 1 +  X 2 +  . . .  +  X j _ 1 )  w.  -  X j

P, + P2 + ...  + p.1-1
( 6 . 8)

wi-1 • x i-1 > wi ■  x i 

~ -------------------~
(6.9)
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Wl + w2 + . . .  + W[__i ” (^i + A, 

Pi + P£ + ••• + P^_ 1

WL - X L
(6 . 10)

WL-1 ~ XL-1 ^ WL “ XL 

PL-1 P L
(6 . 11)

I t  i s  c lea r  that on ly  i n e q u a l i t i e s  (6.10) and (6.11) invo lve  A* , and that 

on ly  in equa l i t y  (6.10) requ ires  an upper bound on the value o f  A^. Th is  

inequa l i t y  can be wr i t ten  as fo l lows:

L
Z

i = 1
P:

L-1 L-1
(WL Z P. - p, ( Z w. -  X J )  

1=1 L i=1 ' K

Thus, we choose

\'L =  min(X^,

, i ,  Pi

L-1
(w. Z p.

L 1=1 ’

L-1
p ( I  w 

1 = 1
( 6 . 12)

I f  Al = s t o P ’ otherwise  an upper bound on the value o f  A ^ j  has to be 

obtained to s a t i s f y  i n equa l i t y  (6.11) .

PL (wL-1 '  XL - 1 ) ^ pL - 1 (wL “ XL}

XL-1 wL-1 (6.13)

A second upper bound on the value o f  A ^  can be obtained by app ly ing  

equation  (6.12) a f t e r  s e t t i n g  A^ = A^ - A^ and L = L-1,  as we sh a l l  show 

in the fo l low ing  sect ion.

6 .7 .^  Procedure

D i s t r i b u t i n g  X^ o f  a composite job K amongst i t s  component jobs.  

Here we sha l l  be in te rested in g i v i n g  a procedure fo r  d i s t r i b u t i n g
I

XK among jobs  forming the composite job K = ( 1 , 2 , . . .  L}
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Step 1 : 

Step 2:

Step 3: 

Step A:

Set Xmax
I L-1

Find XL= min {(XK ,Xm e x ,— l------ (wL I  p . - p L

s P .
? = 1

Calcu la te  X = w. , max L-1
L-1

(W, - X,')._ ♦ ' I /v I tPi l L

,f  Xniax ^ XK "  XL ’ set XL-1 Xmax’ X i ° ’ 

and stop.  Otherwise, set X^ = “ X^, L =

L-1
( E w . -X ^ ) ) }  

i = 1

fo r  a l l  i = 1.......L-2

L-1 and go to Step 2.

6 .7.5 Implementation of the Mixed Branching (MB)

Here we s t a r t  by performing a l l  p o s s ib le  b inary  branch ings  under the 

cond i t ion s  to be gi ven below. Once a l l  a l lowable  branchings  have been per ­

formed we s t a r t  sequencing the jobs  one by one from the beg inn ing  u s ing  FB.

The advantage of our mixed branching i s  that bes ides  being able to 

form composite jobs  in the relaxed problem when computing the lower bound, 

we a l s o  have the advantage of  us ing  the dominance theorems of  Sect ion  6.5 

which can on ly  be appl ied when we s t a r t  sequencing jobs  from the beg inn ing.

Procedure: B inary  Branching (BB)

Here we sha l l  g ive  a procedure to s e le c t  p a i r s  of  jobs  to form 

b inary  branch ings.  Each se lected p a i r  o f  jobs  i and j w i l l  form two b ina ry  

branch ings,  namely i i s  constra ined  to be sequenced before j and i i s  con­

s t ra ined  to be sequenced a f t e r  j .  The procedure i s  a funct ion  of  three 

parameters 1, M and Y. Parameters I and M are in tege r s  wh ile  parameter Y 

i s  rea l.  The three parameters are determined by the researcher.  Let t  =

( 1 ....... n} be the sequence obtained u s ing  the h e u r i s t i c  o f  Sec t ion  6.2.

1. Perform not more than M b ina ry  b ranch ings.

2. Find a job i such that:

(a) Job i i s  the on ly  job that can be sequenced in that p o s i t i o n .

(b) The m u l t i p l i e r  fo r  job i i s  zero.
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Job i i s  not sequenced in the f i r s t  I p o s i t i o n s  in i t .

I f  there is  a choice, choose one that occurs  f i r s t .

Find a job j which i s  not a composite job that i s  sequenced

d i r e c t l y  a f te r  i in tt (i .e. j = i + l )  such that:

The m u l t i p l i e r  fo r  job j is p o s i t i v e .

w./p. < w./p .. 
i i J  J

wi *  " i  - ^  > y.
Pi + Pj p .

I f  job i i s  a composite job, i .e .  i = ( i ^ , i ^ »•••. i^) , the cond i t ion

w. /p. > w./p. must be s a t i s f i e d  a l so .
i L  %  J  " J

We point out that i f  i i s  a composite job,  i .e .  i = ( i ^ , . . . , i ^ ) , the 

two jobs  to be se lected to form two b ina ry  branchings are and j and not 

i and j as one would expect.

We a l s o  po in t  out that we t reat  jobs  s i n g l e  when app ly ing  the 

h e u r i s t i c  and that composite jobs  remain composite ( in  the relaxed problem) 

u n t i l  the i r  root node i s  sequenced by FB.

Example 6.3

In t h i s  example we s h a l l  e xp la in  how our mixed branching procedure 

works. From example 6.1,  we have:

Table 6 .3

2. (c) 

( d )

3.

(a)

(b)

( c )

(d)

'
1 2 3 4 5 6 7 8 9 10

r .
i

1 62 93 146 206 223 230 271 219 219

p i 50 41 37 28 60 19 97 37 76 94

w. 10 3 8 8 3 6 10 3 6 6

C.
i 51 103 14C 174 266 285 382 419 495 589

A.
1

0 0 5.29 0 0 5.05 5.15 1.15 2.2 1.3

No. of  a v a i 1 - 
able jobs

1 1 1 1 1 4 4 3 2 1
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Where job i i s  sa id  to be a v a i l a b l e  i f  r. $ T 1 (t ' i s  the completion time 

of  the job sequenced in the prev ious  p o s i t i o n )  or  r. = m in { r . }  for  a l l

' j J
unsequenced jobs j.

Using the cond i t ion s  of  Sect ion  6.7-5 we can perform the fo l low ing

b inary  branchings:

1 (a) . Formi ng 2 -> 3
We can form a composite job (2-3) with

p ( 2-3) = 78

w(2-3) = 11

A (2-3) = 0, s ince  job (2-3) i s  the f i r s t  job in the second block. 

Thus X^ =

r^ = max{r^ , r2 + p2 > = 103.

Thus we have:

Table 6.4

i 1 (2-3) 4 5 6 7 8 9 10

r.
i

1 62 146 206 223 230 271 219 219

c . 51 140 174 266 285 382 419 495 589

X.
i

0 0 0 0 5-05 5.15 1.15 2.2 1.3

No. of  a v a i 1 - 
able jobs

1 1 1 1 4 4 3 2 1

In which case LB = 15993 and LB '  = 16627.

1 (b) . Forminq 3 -» 2

S ince  w^/p^ > w2/p2 , we cannot form a composite job 3-2,  wehave 

r„ = 130.
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Table 6.5

i 1 3 2 4 5 6 7 8 9 10

r. 1
i

93 130 146 206 223 230 271 219 219

C. 51
i

130 171 199 266 285 382 419 495 589

X. 0 
1

0 0 5.95 0 5.05 5.15 1.15 2.2 1.3

No. of  avai 1 -  ̂
able jobs

1 1 1 1 4 4 3 2 1

We have: LB = 16168 and LB1 = 16803.

Since LB1(2-3) < L B ' ( 3 ~ 2 ) ,  we cons ider  branch 2 -*■ 3 f i  r s t .

2 ( a ) . Forming 5 -v 6

We can form a composite job (5“6) which has:

p (5~6) - 79

w(5- 6) = 9

A (5-6) = 0, s ince  (5-6) i s  the fi  r s t  job i n the fourth b l o c k .

From Table 6.4 we have:

Table 6.6

i 1 (2-3) 4 (5-6) 7 8 9 10

r.
i

1 62 146 206 230 271 219 219

C.i
51 140 174 285 382 419 495 589

X.1
0 0 0 0 0 0 0 0

No. of  avai 1 - 
able jobs

1 1 1 1 4 3 2 1

We have LB = H = 17420. Thus the node corresponding  to 5 ->■ 6 i s

dead •
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2 (b) . Formi ng 6 -*■ 5

In th i s  case, Table 6.4  becomes:

Table 6.7

i 1 (2-3) 4 9 6 7 8 10 5

r .i
1 62 146 219 223
i

0
i

CSl 271 219 242

C.i 51 140 174 295 311* 411 448 542 602

X, 0 0 0 0 4.5 2.34 .08 0 0

No. of  a v a i 1 - 
able jobs

1 1 1 2 5 4 3 2 1

We have LB = 16965 and L B 1 = 16996.

S ince  (according to Sect ion  6.7 .5)  no other  b ina ry  branch ings  can 

be performed, we s t a r t  sequencing jobs  one by one from the beg inn ing  u s ing  

branching rule FB. The fu l l  search tree for  t h i s  example i s  given in 

F igure  6.5*
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F igure  6.1:  Search Tree fo r  Example 6.1

(Optimal)

Key: A b ina ry  branching corresponding to job i being sequenced before 
job j is  indicated by i-*-j ( i n s i d e  the node). A job i being 
sequenced f i r s t  i s  ind icated by 0 - i . Number of node i s  gi ven 
above each node. The other two numbers g iven  ou t s ide  each node 
are LB' (above) and SWCT” computed at that node.
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6.8 Computational Experience

6.8.1 Test Problems

Our a lgor ithms were tested on problems with  20, 30, *»0 and 50 jobs.  

For each job i,  an integer  p roces s ing  time p. from the uniform d i s t r i b u t i o n  

[1,100] and an in teger  weight w. from the uniform d i s t r i b u t i o n  [1,10] were 

generated. Since the range of  release dates is  l i k e l y  to in f luence  the 

e f fe c t i v ene s s  o f  the a lgo r i thm s,  an in teger  release date for  each job i 

was generated from the uniform d i s t r i b u t i o n  [0,50.5nR],  where R con t ro l s  

the range of  the d i s t r i b u t i o n .  The value 50 .5n measures the expected total  

p rocess ing  time. For each se lected value of  n, f i ve  problems were generated 

for  each of  the R va lues  0.2, 0.A, 0.6, 0.8, 1.0, 1.25, 1.5» 1.75» 2.0 and 

3.0 producing f i f t y  problems fo r  each value o f  n.

6 .8 .2  Computational Resu l t s

The a lgor i thms were coded in FORTRAN IV and run on a CDC 7600 

computer.

Average computation times and average numbersof nodes are given 

in Table 6.8. Whenever a problem was not so lvedw ith in  the time l im i t  of  

60 seconds, computation was abandoned for  that problem. Thus, in some 

cases the f i g u re s  gi ven in Table 6.8  w i l l  be lower bounds on the average 

computation times and the average numbers of  nodes. Numbers o f  unsolved 

problems for the d i f f e r e n t  va lues  o f  R are l i s t e d  in Table 6.9.

We s t a r t  by d i s c u s s i n g  the r e su l t s  obtained u s ing  our f i r s t  branching 

ru le .  I t  i s  clear, from the average computation times that L B 1 i s  s upe r io r  

to LB. The d i f fe rence  in performance i s  most apparent fo r  the t h i r t y  job 

problems. For n=**0 and n=50 the true d i f fe rence  between LB and LB1 in 

Table 6.8  i s  d i s gu i s ed  by the unsolved problems. I t  can a l s o  be seen from 

Table 6.8  that the average computation time per node i s  con s ide rab ly  le s s  

fo r  LB as i s  expected.

- 95 -



Table 6.8: Average Computation Times and
__________ Average Numbers of  Nodes__________

FB and Lower Bound LB FB and Lower Bound LB1 MB and Lower Bound LB1

n Average
Computation
Time**

Average 
Number of  
Nodes

Average
Computation
Time**

Average 
Number of  
Nodes

Average 
Computai i on 
Time**

Average 
Number of 
Nodes

20 0.08 351 0.06 170 0.06 136

30 3.23* 10439* 1.47 2203 1.78 2380

AO 17.30* 40991* 14.89* 24651* 14.81* 23591*

50 33.09* 65883* 30.58* 41255* 32.18* 38958*

* *  Times are in CPU seconds.
*  L o w e r  b o u n d s  b e c a u s e  o f  u n s o l v e d  p r o b l e m s .

Table 6.9:  Numbers o f  Unsolved Problems

R
n 0.2 0.4 0.6 0.8 1.0 1.25 1.5 1.75 2.0 3.0

FB 20 0 0 0 0 0 0 0 0 0 0

& 30 0 0 1 0 0 0 0 0 0 0
LB 40 0 0 3 4 1 2 0 c 0 0

50 0 4 5 5 5 3 1 0 0 0

FB 20 0 0 0 0 0 0 0 0 0 0

& 30 0 0 0 0 0 0 0 0 0 0
LB' 40 0 0 2 3 1 1 0 0 0 0

50 0 3 5 5 5 2 1 0 0 0

MB 20 0 0 0 0 0 0 0 0 0 0
& 30 0 0 0 0 0 0 0 0 0 0
LB' 40 0 0 2 2 1 0 0 0 0 0

50 0 3 5 5 5 3 1 0 0 0
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Table 6.9 shows that there are a tota l  o f  34 unsolved problems for  

LB compared with a total  o f  28 for  LB1 which again  demonstrates the super­

i o r i t y  of  LB1. For both bounds, the problems with small R and la rge  R are 

e a s i e s t .  Th i s  i s  expected because fo r  small R the release dates become 

unimportant once a few jobs  have been sequenced enab l ing  Theorem 6.4 to 

r e s t r i c t  the numbers of  immediate successor  nodes to one. However, when R 

i s  large  the release dates become more important than the p roce s s in g  times 

and weights a l low ing  Theorem 6.5 to s u c c e s s f u l l y  l im i t  the s i z e  o f  the 

search tree. The hardest problems occur when R = 0.6, R = 0.8 and R = 1.0.

For the modif ied a lgor ithm,  i n i t i a l  experiments showed that the 

parameter va lues  I = 15, Y = 0.046 and M = 200 to be a good choice. The 

r e s u l t s  f o r  these parameter va lues  are shown in Tab le s6 .8  and 6.9 ,  but they 

are not encouraging.  Th is  modified a lgor i thm gave bette r  r e s u l t s  (than FB) 

on ly  when n=40, in which case the number of  unsolved problems i s  reduced by 

two (one each for  R = 0.8 and R = 1.25).  The worst r e s u l t s  were obtained 

when n=5Q, in which case the number of  unsolved problems i s  increased by 

one (R = 1.25).  Obv ious ly ,  choosing M = 0 would g ive  the same r e s u l t s  as 

FB.

The performance o f  our proposed bounds (u s ing  FB) was then tested

on problems with up to 50 jobs  where W j = 1 ,  fo r  i = 1 ..... n ( i . e .  the 1/r./EC.

problem). Average computation times and average number o f  nodes ( fo r  t h i s  

spec ia l  case) are g iven in Table 6.10. Number of  unsolved problems for  the 

d i f f e r e n t  va lues  of R are g iven  in Table 6.11. The r e s u l t s  show that both 

o f  our proposed bounds have not performed as well as they did for  the case 

o f  general  weights.  Th i s  ind ica te s  that a d i f f e r e n t  approach to s o l v i n g  

t h i s  spec ia l  case i s  required. Spec ia l  purpose a lgor i thms  s im i l a r  to that 

suggested by Dessouky and Deogun (Dessouky & Deogun, 1980) are l i k e l y  to 

g i ve  bette r  r e s u l t s .
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Table 6.10: Average Computation Times and Average
Numbers o f  Nodes fo r  Problems with Unit Weights

FB and Lower Bound LB FB and Lower Bound LB1

n
Average 
Computati on 
Time**

Average 
Number of 
Nodes

Average
Computation
Time**

Average 
Number of  
Nodes

20 0.06 228 0.06 168

30 4.33* 15040* 4.21* 9323*

40 2 2 .39* 55885* 20.23* 34284*

50 31.65* 64326* 30.85* 48006*

* *  T i m e s  a r e  i n  C P U  s e c o n d s .
*  L o w e r  b o u n d s  b e c a u s e  o f  u n s o l v e d  p r o b l e m s .

Table 6.11:  Number o f  Unsolved Problems For
__________ Problems with Unit Weights________ _

n
0.2 0.4 0.6 0.8

R
1.0 1.25 1.5 1.75 2.0 3.0

20 0 0 0 0 0 0 0 0 0 0

30 0 0 0 1 0 1 0 0 0 0
LB

40 0 1 5 5 3 2 0 0 0 0

50 0 4 5 5 5 2 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0

30 0 0 0 1 0 1 0 0 0 0
LB'

40 0 0 3 5 3 1 0 0 0 0

50 0 h 5 5 5 1 0 0 0 0
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6.9 Concluding Remarks

The a lgor ithm us ing  the lower bound L B 1 i s  s a t i s f a c t o r y  fo r  s o l v i n g  

small and medium s ized  problems. However, a sharper  lower bound i s  needed 

to cut down the s i z e  of  the search tree when the number of  jobs  exceeds 

thi r t y .

One way in which the a lgor i thm might be improved i s  to use the p a r t i ­

t i on in g  idea proposed by R ina ld i  and Sassano (R ina ld i  & Sassano,  1977).

Th i s  s ta te s  that i f  an optimum sequence c o f  a subset o f  the o r i g i n a l  jobs  

can be found such that the re lease  dates o f  a l l  jobs  not sequenced in a are 

not le ss  than the completion times of jobs in a, then an optimum sequence to 

the complete problem e x i s t s  which has a as an i n i t i a l  p a r t i a l  sequence.

When such a subsequence o can be found, the remaining problem in vo l v in g  

a l l  jobs  not sequenced in a can be so lved independently. However, the 

best way to f ind  the necessary  subset  o f  jobs  requ ires  i n v e s t i g a t i o n .

The lower bounds LB and LB1 are a l s o  v a l i d  lower bounds fo r  the 

pre-emptive ve r s ion  o f  our problem. They cou ld, with  a s u i t a b l e  branching 

ru le  and with dominance ru le s ,  be used in a branch and bound a lgor i thm  for  

t h i s  pre-emptive schedu l ing  problem which i s  NP-hard (Labetoul le  et a l . ,  

1979). 0ur bounds can a l s o  be appl ied  to the p o s s i b l y  more r e a l i s t i c  non- 

pre-emptive problem in which unforced machine id le  time i s  not al lowed.

The modified a lgor i thm  proved to be usefu l  when n=A0. A l together ,  

i t s  performance was not as e f f e c t i v e  as we hoped i t  would be. Th is  was 

mainly due to the fac t  that d i f f e r e n t  problems may need d i f f e r e n t  se t s  of  

va lues  of  the parameters ( I ,  Y and M ) . However, one way o f  i n c rea s ing  the 

e f f i c i e n c y  o f  t h i s  modified a lgor i thm  might be by re-examining the cond i ­

t i on s  of  Sect ion  6.7 .6  ( i . e .  the cond i t ion s  of  forming b ina ry  b ranch ing s) .

As well as being of  in te re s t  in i t s  own r i g h t ,  the s o l u t i o n  o f  the 

problem cons idered in t h i s  chapter might prove useful  in ob ta in in g  lower 

bounds f o r  f low-shop and job-shop problems based on Lagrangean re laxa t ion .  

Th is  seems to be worthy o f  futu re  research.

- 99 -



CHAPTER SEVEN

THE SINGLE MACHINE PROBLEM WITH WEIGHTED SUM 
________ OF SQUARES OF COMPLETION TIMES ___

7.1______ Introduction

Each o f  n jo b s  has to  be -processed w ith o u t in te r r u p t io n  on a s in g le  
machine. The machine cannot p rocess  more than one jo b  a t  a tim e . Each 
jo b  i  has a p ro c e ss in g  tim e  p .  and a p o s i t i v e  w e ig h t w .. G iven any 
sequence o f  jo b s  th e  com pletion  tim e C. f o r  any jo b  i  can be o b ta in ed
assuming th a t  p ro cess in g  s t a r t s  a t  tim e ze ro . The o b je c t iv e  i s  to  f in d  a

• n  2 sequence th a t  m in im izes the  fu n c tio n  f  = T, w .C . .
• - 'l' %'l - l

Townsend (Townsend, 1978), to our knowledge, was the f i r s t  to work 

on t h i s  problem. The problem i s  s t i l l  open. However, Townsend pointed out 

that c r i t e r i a  for  o rder ing  jobs  are u n l i k e l y  to be s imple s in ce ,  in general 

two jobs  in adjacent p o s i t i o n s  cannot be ordered without reference to other 

jobs  in the set. He i l l u s t r a t e d  t h i s  by g i v i n g  the fo l l ow ing  three jobs  

example: P-j =  ̂» P2 = 3, = 1» = 15, w'2 = 17 and w^ = 7, the optimum

sequence is  123, but i f  p^ i s  changed from 1 to 2 , the optimum sequence i s  

changed from 123 to 132. He a l s o  proposed a branch and bound procedure for  

s o l v i n g  t h i s  problem. The lower bound i s  based on o rder ing  the jobs  accord 

ing to non - inc rea s ing  w./p. and making an adjustment to a l low fo r  the 

po ten t ia l  improvement that could be obtained by in te rchang ing  jobs  i and j 

( fo r  a l l  i and j )  i f  they are not in the r i g h t  order  accord ing  to non­

inc reas ing  weights.  Bagga and Ka lra  (Bagga & Ka l ra ,  1980) s tud ied  t h i s  

problem and proposed some e l im ina t ion  c r i t e r i a  to reduce the computation 

time.

In t h i s  chapter we propose a branch and bound a lgo r i thm  to so lve  

t h i s  problem. We s t a r t  by g i v i n g  some dominance theorems in Sect ion  7.2. 

Townsend's lower bound i s  given in Sect ion  7.3,  fol lowed by a new bounding
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procedure in Section  l . b .  The implementation o f  our new bounding p ro ­

cedure i s  given in Sect ion 7.5» fo l lowed by a numerical example in Section  

7.6. A f u l l  d e sc r ip t ion  o f  the a lgor i thm i s  gi ven in Section  7.7. The use 

of  dominance ru les  i s  demonstrated in Sect ion  7.8,  fol lowed by a d i s c u s s i o n  

of  a more general problem where precedence c o n s t r a in t s  among jobs  e x i s t  in 

Sect ion  7-9. Computational exper iences are given in Sect ion  7.10 fol lowed 

by concluding remarks in Sect ion  7.11.

7.2______Dominance Theorems

Suppose that T i s  the completion time of 

p a r t i a l  sequence a. And suppose that jobs  i and 

adjacent p o s i t i o n s  d i r e c t l y  a f te r  a l l  jobs  in a. 
pena l t ie s  as soc ia ted  with  jobs  i and j when they 

re spec t i v e ly .  Then we have:

the l a s t  job in an i n i t i a l

j are to be sequenced in

Let f .. and f .. be the 
•J J '

are order  i j  and j i

and

f . .  = w.(T + p . )  + w.(T + p .  + p . )  
IJ I I J I *j

2
f j i  = Wj  (T +  P j ) +  w.  (T +  p.  +  p . )

2

2

f . . ^ f .. i f  
•J J '

wj.p i (2T + p. +2pj) £ w.p.(2T + pj + 2p.)

( 7 . D

Wjp j (2T  + p. + pj) + WjP.pj i  w.Pj (2T + P j + Pj) + w.p.pj

Th i s  leads to the fo l low ing  theorem:

Theorem 7.1 (Townsend, 1978)

There e x i s t s  an op tim a l sequence in  which jo b  i  i s  sequenced  b e fo re  
job  j  i f :

w . /v  . > w ./p  . (7.2)

W. w .
-z- 2 (7.3)

Thus ,

or

101



C o ro l 1 ary 7 • 1

There e x i s t s  an o p tim a l sequence in  which job  i  p recedes jo b  g 
i f  P i * P j and wi  > wj ‘

Theorem 7.2
2The 2/p • ^ p • w . ~i- w ./iw  .C . (agreeable w e ig h ts ) problem  can be 

so lv e d  by o rderin g  th e  gobs in  a n o n -in crea sin g  o rd er o f  t h e i r  w e ig h ts .
In  case o f  t i e s , sequence gob i  w ith  the  s h o r te s t  p ro cess in g  tim e f i r s t .
Proof

Obv ious.

Let *iti and n be two sequences obtained by o rder ing  jobs  accord ing 

to i n e q u a l i t i e s  7.2 and 7.3 re spec t i v e ly .  Break t i e s  by sequencing jobs  

accord ing  to inequa l i t y  7.3 in the f i r s t  case and i n e qu a l i t y  7.2 in the 

second case. Jobs with equal p rocess ing  times and equal we ights are 

sequenced in the same order in both sequences.

Theorem 7-3 (Bagga 6 Ka lra ,  1980)

I f  the  f i r s t  r  p o s i t io n s  in  and  tt̂  c o n ta in  the  scone gobs (need
n o t be in  the  same o rd e r)3 then  none o f  the gobs in  the  rem aining n - r  
p o s i t io n s  can occupy any o f  th e  f i r s t  r  p o s i t io n s  in  th e  optimum sequence. 
C o ro l l a r y  7-2 (Bagga S Ka l ra ,  1980)

I f  gobs in  th e  f i r s t  r  p o s i t io n s  (and /or gobs in  th e  l a s t  n - r  
p o s i t io n s )  are sequenced accord ing  to  b o th  in e q u a l i t i e s  (7 .2  and 7 .3)  
then  th ese  gobs w i l l  appear in  the same o rd er in  th e  optimum sequence.
C o ro l l a r y  7.3 (Bagga 6 Ka l ra ,  1980)

I f  t\j  and have th e  same p erm u ta tio n  o f  gobs th en  th a t  p erm u ta tio n  
i s  an optim a l sequence.

7.3______Townsend Lower Bound

It  i s  c lear  from Theorem 7.1 and C o ro l l a r y  7.3 that i f  i n e q u a l i t i e s

7.2 and 7.3 are s a t i s f i e d  for  a p a r t i c u l a r  sequence, then that sequence is
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optimum. On the other  hand, i f  i n equa l i t y  7.2 on ly  i s  met, a lower bound 

i s  obtained by making an adjustment to a l low fo r  the po tent ia l  improvement 

that could be obtained by in terchang ing  each p a i r  o f  jobs  i and j fo r  

which inequa l i t y  1.2  on ly  i s  s a t i s f i e d .

Thus, to obta in  a lower bound, jobs  are sequenced according to 

i n equa l i t y  7.2 alone. Then i t  can be seen from inequa l i t y  7.1 that the 

maximum reduction in penalty  that can occur when in terchang ing  the order  

o f  two jobs from ij  to j i  i s :

lwj ‘  wi> p i pj

Thus, a lower bound i s  given by (assuming that jobs  are renumbered 1 , . . . , n )

n i 2 n n
LBX = l  w . ( Z p.) - E I  (w. - w.) p.p.

1 i=1 1 j=1 J i=1 j = 1 J 1 1 J
& w.>w.

J '

Example 7-1 (Townsend, 1978)

1 2 3 h 5

p i 10 k 6 1 2

Wj 2 5 7 3 1

wi /p i 1/5 5/1* 7/6 3 1/2

Order ing the jobs  in a non - inc rea s ing  order  of  w./p. we have 

it = 1*2351. To ca lcu la te  a lower bound we need to cons ider  the fo l l ow ing  

in te rchange s .

51 to 15: with po ten t ia l  reduction = (2-1)  x 10 x 2 = 20

23 to 3 2 : with potent ia l  reduct ion = (7-5)  x k x 6 = kQ
1+3 to 31*: wi th  potent ia l  reduct ion = (7-3)  x 6 x 1 = 2k
k2 to 2h: wi th  po tent ia l  reduction = (5-3) x k x 1 = 8
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Thus, from 7-5,  a lower bound LBT is  given by:

LBt = 2202 - (20 + 4 8 + 2 4 + 8 )  = 2102

I f  the branching procedure ( a) o f  Sect ion  3 .2 . l ( i .e .  sequencing the jobs  

one by one from the beg inn ing ) ,  one can compute the fo l l ow ing  lower bounds 

in a s im i l a r  way:

LBt (4) = 2202 -  (20 + 48) = 2134 

LBt (5) = f (54231) - (8 + 24 + 48)

= 2517 - 80 = 2437

The f u l l  search tree for  t h i s  example is given in F igure  7.1.

5224 2185 2196 2134 2437

4938 2182 2158

©  ©

2450

3656 2150 2330

o  ©  ©

2178 (Optimal)

o

Figure 7.1: Search Tree fo r  Example 7.1



Rema rk

Ordering the jobs  accord ing to i n e q u a l i t i e s  1 .2  and 7.3, we have: 

it  ̂ = 42351 and 1*2 = 32415. S ince  jobs  2, 3 and 4 are sequenced in the 

f i r s t  three p o s i t i o n s  in both sequences, then jobs  1 and 5 cannot be 

sequenced in the f i r s t  three p o s i t i o n s  of  an optimal sequence and the search 

tree of Figure 7-1 i s  reduced to that given in F igure  7.2.

2185 2196

© 0 0

2134

F igure  7.2: Reduced Search Tree fo r  Example 7.1

7.4 New Bounding Procedure

The approach we are go ing to use to der i ve  our bound i s  s im i l a r  to 

that used by Balas and C h r i s t o f i d e s  (Balas £ C h r i s t o f i d e s ,  1981) fo r  the 

t r a v e l l i n g  salesman problem, and that o f  Po t t s  (Po t t s ,  1981) f o r  the 

s i n g l e  machine sequencing with  precedence c o n s t r a i n t s  in which the ob jec t ive  

i s  to minimize the weighted sum of  completion times.
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I t  w i l l  be usefu l  at t h i s  s tage  to g i ve  the fo l low ing  d e f i n i t i o n s .

Given a d irected a c y c l i c  graph G, we def ine the t r a n s i t i v e  c lo su re  o f  G

as the graph obtained by adding a l l  arcs  ( i , j )  to G whenever there i s  a

d i rected  path from vertex  i to vertex  j .  We can a l s o  def ine  the adjacency

matrix of  G as the n x n  matr ix  A = ( a . j ) , where a.^ = 1 i f  an arc  ( i , j )

e x i s t s  in the t r a n s i t i v e  c lo su re  of  G and a . . = 0 otherwise.
i J

To der ive  a lower bound, we s t a r t  by fo rmula t ing  the problem as a 

zero one programming problem. We def ine a zero one v a r i a b le  x.^ ( i , k =1 ,  

. . . , n ) ,  where x . . = 1 ( ? = ! , . . . , n ) ,  as fo l lows:

x
ik

1, i f  job i i s  to be sequenced before job k. 

0, otherwise .

n
I t  i s  c lea r  that the completion time o f  job k i s  g iven by E p. x .^  and

i = 1
hence the problem can be w r i t ten  as fo l low s :

Minimize
n
E

k=1 wk ck

n
= E 

k=1 “k ( .^, p i x ik>2

n n 2 n n
= E 

k=1
wk ( E Pi x ik  + 

¡ = 1
E

i = 1 j * ,  p i pj x i k  x jk>

j * '

(7.^a)

Subject to:

x. .
' J

+ X . .  = 1, i , j = 1 , . . . , n  £ i^j (7.5)

X.  .
U + xjk  + x kl *  '•

i » j » k= 1.......n £ i j f k i  i (7.6)

X ij
= 0 or 1, i , j ~ 1 , . . . ,  n £ i (7.7)

The con s t r a in t  (7*5) ensures that any job i i s  to be sequenced ei ther

before or a f te r  another job j .  The matr ix  X = ( x . j )  can be regarded as
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the adjacency matr ix  o f  a d irected  graph G^. The co n s t r a in t s  (7.6) ensure 

that Gv conta in s  no c yc le s .  When a l l  c o n s t r a in t s  are s a t i s f i e d  Gy def ines
X A

a complete o rder ing  of  the jobs.

2
The c o e f f i c i e n t  p. o f  x.^  can be regarded as the cost  of  

schedu l ing  job k not before job i and the c o e f f i c i e n t  p.p.w, o f  x., x.,
I J K I K  J K

can be regarded as the cost of  schedu ling  job k not before jobs  i and j .

Hence, i t  i s  p o s s ib le  to introduce the 3- dimensional cost  a r ray  c = ( c . . . ) ,

where c . ^  = p.PjW^. I t  i s  c le a r  that i f  i ^ j ^ k ^ i ,  then each o f  c . j k an<^

c i s  a con t r ibu t ion  to the cost of  schedu ling  job k a f te r  the two jobs  
j i k

i and j and that c . . k , c . ^  and ck j k can be regarded as a con t r ib u t ion  to 

the cost o f  schedu ling  job k a f te r  job i.

Now, the problem can be w r i t ten  as fo l low s :

Minimi ze
n

( I c . x . .  +, , . , i l k  i k
k=l i= l  i j = ! ° i j k  x ik  xjk^

j ?*
(7 .**b)

Subject  to ( 7 -5 ) ,  (7.6) and (7.7 ) .

We now introduce new zero one v a r i a b le s  y . .. and z.. , where y . = 0
' i j  k i k '  11jk

i f  i = j ,  i=k  or  j=k  and z . ; = 0 ( i = l , . . . , n ) .  V a r ia b le s  y ...  and z can be
ii ' i j k  ik

def ined as fo l low s :

1, i f  jobs  i and j are not to be sequenced 

Y i j k  = \  a f te r  J°b k 

0, otherwise.

and

Z ik = <

1, i f  job i i s  not to be sequenced a f te r  job k. 

0, otherwise.

In other words:

^ i j k  = i
x i k xj k -  l f

0, otherwi se.

and z . k = x . k when
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I t  i s  obvious  that y . j k = yj .k .

Problem(7.4b) can be wr i t ten  as fo l low s :

Minimi ze
n n
l  l  h.. z.. + 

k=i  i = i  ,k ik

n n 
l  Z 

k=1 i=1

n n 2 

j = 1 C i j k  y l j k +k^  Pk Wk
(7.8)

where h.^ = Ci I k  + c ikk  + ck ik

Subject to:

z. . + 2
U

= 1 i 
J '

, j - 1,.•. ,n, i¥ j (7.9)

Y i j k  + ' ' ¡ k j  + V jk l  = 1 1, j , k = 1 ,. . . ,  n , i (7.10)

Z. . + 2
IJ ' j k  *  zkl *  ’ ' »j >k= 1 , •• • , n , i f ] f V j i (7.11)

Y i j k  + 2ki *  zkj *  ' ' , j,k=1 ,. . - ,n,  i^ j^k^ i (7.12)

y i j k  + Vk l j  + zki 5 '  1 ,j ,k -1  ,. . . ,n,  i^ j^k^ i (7.13)

y i j k  +
z. . + z. . £ 1 i 
ki i j

, j , k=1 , . . . ,n, i^ j^k^ i ( 7 . H )

y i j k  + Ykj i  + Zkj *  1 »j , k = 1 ,. • • , n , i^ j/k/ i (7.15)

y i j k  +
z. . + z .. £ 1 i

k j  j  i
,j ,k =1 ,. • . ,n, i / j ^ i (7.16)

y i j k  +
y. .. + z. . £ 1 i

k j  i i j
, j , k - 1,• • • ,n, i^jj^k/i (7.17)

Y i j k  =
0,1 & z . . = 0,1 i

i j
, j , k=1 , . .. ,n (7.18)

We def ine a d i rected  graph y which has two c l a s s e s  o f  nodes. Jobs 

1 , . . . , n  form the f i r s t  c l a s s  o f  nodes wh ile  p a i r s  o f  jobs  i j ,  i , j = 1 , . . . , n  

& i ^ j ,  form the second c l a s s  of  nodes (dummy nodes).  An arc  from node i to 

node j e x i s t s  in G7 v i f  z . . > 0, wh i le  an arc  from node ij  to node k e x i s t s

in gz ,y i f  V i j k  > °-

Cons t ra in t s  (7-9) , . . * * ( 7 * 1 8 )  form an e s s e n t i a l  part  of  the problem 

formulat ion.  As con s t r a in t  (7 .5 ) ,  c o n s t r a in t  (7.9)  ensures  that any job i 

i s  to be sequenced e i t h e r  before or  a f t e r  another job j .  C on s t ra in t s  

(7.10) ensure that among any three jobs  one job on ly  can be sequenced la s t .  

Con s t ra in t s  (7 .11) ,•••» (7 .17 )  ensure that the graph G^ y con ta in s  no c yc le s .
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Cons t ra in t s  (7.11) say that any three jobs  i ,  j and k w i 11 have job j 

sequenced a f te r  job i and (or) job k i s  sequenced a f te r  job j and (or) 

job 1 I s  sequenced a f te r  job k. Con s t ra in t s  (7.12) can be In terpreted 

as fo l lows:  Any three jobs  1, j and k w l11 have job k sequenced a f te r  

jobs  i and j or job i sequenced a f te r  job k or (and) job j sequenced 

a f te r  job k. Cons t ra in t s  (7.13) say that any three jobs  i ,  j and k w i 11 

have job k sequenced l a s t  or  job j sequenced l a s t  or  (and) job 1 i s  

sequenced a f te r  job k. A l l  other  c o n s t r a in t s  can be in te rpreted  in a 

s im i l a r  way. We po in t  out that some of these c o n s t r a in t s  are redundant, 

but are included here for  a reason which w i l l  become obvious  at some la te r  

stage. It  i s  p o s s ib le  to der ive  more general  cyc le  e l im in a t io n  co n s t r a in t s

q
Z

v— 1

r
Z

v=q+1 "uk > 1 (7.19)

where k^,k2 > . . . » k r correspond to r (r£3) d i f f e r e n t  jobs  and where i , j , u  

e { k ^ .......k r ), ^ v *  9=0 * 1 » • • • »r "  1 (we assume that q=0 implies

that 2 y I j  k = 0 ) -
v=1 v

Given i ,  j  and k such that i / j / k ^ i ,  there are  not more than e igh t  

c o n s t r a in t s  of  type (7.10) s ince  there are two ways to represent each 

va r ia b le  (e.g. y .j^  i s  equ iva lent  to y^..^). For the same reason there 

e x i s t  not more than four  c o n s t r a in t s  o f  the type (7 .13 ) ,  (7.15) and ( 7 . 17).

Each o f  the c o n s t r a in t s  (7.9) may now be introduced in to  a 

Lagrangean dual ,  with a s soc ia ted  m u l t i p l i e r  to g ive :

n n 
Z  I  

k=1 i=1
(h.ik ik ki^ z ik

n n 
+  Z Z  

k=1 i=1 ki

n
Z

k=1

n
Z

i = 1

n
Z

j = 1
' i j k y i j k

n
Z

k=1
pk wk
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I t  should be noted that to reta in  symmetry two m u l t i p l i e r s  y . k and y^. are 

a s soc iated  with every con s t r a in t  of  the type (7.9 ) .  For the c o e f f i c i e n t  

of  z.^  and z^. to remain non-negative  and the m u l t i p l i e r s  y - k and y^. to 

prov ide as large  a c on t r ibu t ion  as p o s s ib le  to the lower bound, we set:

‘  i  k = Vk i = i  mi n ( h ! t »h|i, ) f i , j  = l . . . . . . . . . . . . . . . . . . n,Î5*ji k ki ( 7 . 20)

We now def ine a reduced cost matr ix  = (hj?^), where

, ( 0 ) _  ,
h i k  -  h i k  " wl k  '  Mk i

Thus, accord ing to (7.20) e i t h e r  h|j^ = 0 or  h ^  = 0.

We next introduce co n s t r a in t s  of  type (7.10) to the Lagrangean dual.  

Suppose that ( s -1 )  o f  these c o n s t r a in t s  have been introduced in to  the 

Lagrangean dual with  m u l t i p l i e r s  y ^ , . . . , y ^ s ^  to g ive:

L
(s-1)

n
E

k=l

n
E

! = 1

n
z.ik +  E 

k=1

n n
E

i = l
J k i

+  E
k=1

n n
E E

i=1 j= l

c.(s-1)
i j k y i j k

s-1
E

k=1

, (k)
n
Z

k=1
pk wk

( 7 . 21)

As mentioned before, there are not more than e igh t  c o n s t r a in t s  of type (7.10) 

fo r  every given value o f  i ,  j and k (because y . j k i s  equ iva len t  to 2J

co n s t r a in t s  e x i s t ) .  One o f  these c o n s t r a i n t s ,  y . j k + y Jkj. + y <k. = 1, 

w i l l  be introduced into  the Lagrangean dual below, each of  the other  

c o n s t r a in t s  may be dea l t  with in a s im i l a r  way.

I n t r o d u c i n g  t h e  c o n s t r a i n t  y.jk + y.kj. + y k« = 1 i n t o  t h e  

L a g r a n g e a n  d u a l  g i v e s :

L<s) = L< s ' ,) + Y < S>  0  -  y u k  -  y ikj  -  v j k i )

w h e r e  y
(s)

mi n(c.
( s -1 )  ( s -1 )  (s-1)
jk  • C ikj ’ jk i
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This  choice of  y ^  w i l l  ensure that the c o e f f i c i e n t s  of y. .. in L ^
11 jk

remain non-negative. I f  we update the 3"d imensional  reduced cost a r ray ,  

c ^  , us ing:

(s) _ ( s -1 )  (s) (s) _ (s-1) (s) ,
Ci j k  -  Ci j k  '  y ’ C ikj "  Cikj '  Y and

c ! * !  = c i " : 1) - y < s >
jk i  jk i

We can wr i te  L ^  in the fo l low ing  form:

(s) _ ;  ü u(o)
n n n n n

l '"  = £ e h-;r z i k + a  a  \ r + £ a  £ cf i i  y,
k=l 1 = 1 k=1 i = 1 kl k=1 î = 1 j = 1 1J k '-¡k

S (k) n 2 
+ 2 Y + £ PW

k=1 ' - 1 K
w.

k=1
( 7 . 22)

Suppose that N co n s t r a in t s  of  type (7.10) are added, i .e .  s = 1 , . . . , N .  Let

= (d i ^ ) » where d Jjk  = c |jk» for  a11 *

We next cons ider  the cyc le  e l im ina t ion  c o n s t r a in t s .  The general 

form (7.19) of  these co n s t r a in t s  w i l l  be assumed. Suppose that ( t -1 )  of  

these c o n s t r a in t s  have been introduced to the lagrangean dual with  

a s soc ia ted  m u l t i p l i e r s  A ^ .......A ^  ^  to g ive :

n n
L (N+t~ = E z h (t -1 )  z j z

k=l i=1 k=1 i= l  kl

♦  + £ r £n d < - » y .  ;  T (k)
k=i k=! 1=1 J=1 ' j fc 'Jk  k-M T

n 2

+ . Z . pk wk (7.23)
k-1

A new con s t ra in t  of  type (7.19) w i l l  now be introduced in to  the Lagrangean 

dual to g ive:
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(7.24)L (N+ t ) = L (N+ t - D  + x ( o  ( 1 . ;  y -  X 2 . )1 i l k  , “"ukv=1 J v v=q+1 v

where

A ^  = minimi n {d ), min (h }}
v = 1 , . . . , q  v v = q + 1 , . . . , r  v

I t  i s  c lear  that t h i s  choice of  A ^  w i l l  make sure that the c o e f f i c i e n t s  

of z >k and y. >k *n remain non-negat ive.

and can be updated as fo l lows:

D( t} = D(t_1) - > ( 0  F (t)A '  '  E

where = (e i ,^ )  and = ( g | ^ )  are two a r ray s  def ined as fo l lows:
i j k

ei^? = 1. i f  v a r ia b le  y . .. i s  in c o n s t r a in t  (7 . 19) when
i j k  i J k

added at step t,

= 0, otherwise,

and

,(t) _
’ i k

= 1, i f  v a r i a b le  z .^  i s  in c o n s t r a in t  (7 . 19) when 

added at step t,

= 0, otherwise.

,(t) u (t) (N+t)
Having updated D and H i t  i s  p o s s ib le  to w r i t e  L ' in a 

form s im i l a r  to (7.23) :

(N+t) _
n n (t)

n n l  A t ) n n n
= E E h . ,  z . .  +  E E p. . +  E A + E  E Eik i k  K|' '

k=1 i=1 k=1 i=1 ki
k=1 k=1 i=1 i=l

N
d ii i.  y : + 1 Pk2 Wk

k=1
i j k  i jk  k=1 (7.25)

The v a l i d i t y  of the proposed lower bound w i l l  now be proved in 

the fo l low ing  theorem.
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Theorem l  . h

A lo v e r  bound fo r  th e  -problem i s  g iven  by:

l b <» ->  .  ;  Y (k>
k=i ¡=1 ki k=t

+  I  X 
k=1

(k)
+  Z p 

k=1
I wik k

Proof

From d u a l i t y  theorem, the minimum value o f  L (N+t) prov ides  a lower

bound. Now s ince  h i ^  £ 0, d | j k £ 0, z.^  £ 0 and y . ^  ^ 0, then L
(N+t) .

I s

mi
(t)

nimized by s e t t i n g  z.^  = 0 whenever h . k > 0 and s e t t i n g  y . .^  = 0 when-

,(t) ( 0
ik

,(t)
i jk

ever d ) ^  > 0. Th i s  w i l l  y i e l d  h .^ '  z jk = 0 and d . ^  y = 0 and hence 

y i e l d  the required lower bound.

I t  is  c l e a r  that to increase  the lower bound, as many c o n s t r a i n t s  

as p o s s ib le  are added. Each time a c o n s t r a in t  i s  added, the lower bound is  

increased by the value o f  the m u l t i p l i e r  and hence i t  i s  he lp fu l  to add 

co n s t r a in t s  with p o s i t i v e  m u l t i p l i e r s  on ly .

I f  and are f u l l y  reduced then i t  should be p o s s i b l e  to

f ind  va lues  of the v a r i a b le s  y . j k and z.^  that s a t i s f y  a l l  the co n s t r a in t s  

and such that:

d i ^  y. .. = 0  and hi.^ z.. = 0 
• J k I j k I k I k

Th is  means that y . .. can take the va lue 1 on ly  i f  = 0 and that z.,
i Jk ' i j k  i k

can take the val ue 1 on ly  i f  h.'k = 0 .

The ex i s tence  of  a complete o rder ing  o f  the jobs  once a l l  cycle  

remover c o n s t r a in t s  have been added w i l l  now be cons idered in the 

fo l low ing  theorem.

Theorem 7-5
A com plete o rd erin g  o f  th e  fo b s  th a t  i s  c o n s is te n t  w ith  c o n s tr a in ts  

( 7 . 9 ) , . .  t ( 7 .19) e x i s t s  i f 3 and o n ly  i f 3 no c o n s tr a in ts  w ith  a p o s i t i v e  
m u l t ip l i e r  can be in tro d u c e d  in to  th e  Lagrangean d u a l.
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Proof

From graph theory, i t  i s  well known that a d i rected  graph def ines  

a p a r t i a l  order ing  of  the v e r t i c e s  i f ,  and on ly  i f ,  i t  conta in s  no cyc le s .

Here we form a d irected  graph with two c l a s s e s  o f  nodes. Jobs

1 , . . . , n  form the f i r s t  c l a s s  o f  nodes and p a i r s  o f  jobs  i j ,  i , j = l , . . . , n

and i^j formthe second c l a s s  o f  nodes (dummy nodes).  An arc  from node i

to node j e x i s t s  in t h i s  graph i f  h . ^  > 0 wh i le  an arc  from node i j  to

node k e x i s t s  i f  df^? > 0.
i J k

I f  a cyc le  e x i s t s  in t h i s  graph, then i t  i s  p o s s i b l e  to remove 

t h i s  cycle  by adding a c o n s t r a in t  o f  type (7 -19) .  I f ,  on the other  hand, 

no cyc le  e x i s t s ,  then i t  i s  p o s s ib le  to f ind  an o rder ing  o f  the jobs

( t t  1 ( 1 ) ............................t t  '  ( n ) )  which i s  co n s i s t e n t  with the graph. The reverse  o rder ing

( t t ' ( n ) .......t; ‘ ( 1)) i s  the required o rder ing  o f  the jobs  which i s  co n s i s t e n t

with con s t r a in t s  ( 7 . 9 ) , . . . , ( 7 . 1 9 ) .

Once a complete order ing  of the jobs  i s  found, i t  becomes p o s s ib le  

to evaluate  t h i s  sequence. The value of  t h i s  sequence forms an upper 

bound UB^N+t^  on the va lue  o f  the optimum. However, UB^N+t  ̂ can be

found as fo l lows:

UB
(N+t) _ LB(N+t) A l  , (t)

n n
.(v)+ i  1 ( e E g:.y z + 

v =1 k=! i=!  ,k ,k

n n n

E E E 6 ik V i j k  "
k=1 J=1 1=1 J J

(7.26)

I t  i s  c le a r  from (7.26) that U B ^ + t  ̂ = L B ^ + t  ̂ i f ,  and on ly  i f ,  

every one o f  the added t c o n s t r a in t s  of  type (7.19) has one va r ia b le  

on ly  (e i the r  one of the y . j k or one o f  the z.^  v a r i a b l e s )  with  a value 

equal to one. Thus we have the fo l low ing  theorem.

Theorem 7.6

_ UE(N+t) and only  i f ,  a l l  th e  c o n s tr a in ts  are  
s a t i s f i e d  as e q u a l i t ie s .
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From here to the end o f  th i s  chapter, by lower bound we sha l l  

mean the lower bound as proposed in t h i s  sec t ion .

7.§______ Implementation o f  the Lower Bound

The lower bounding procedure as descr ibed in the p rev ious  sec t ion  

requ i re s  a three dimensional a r ray  of  s i z e  n x n x n to s to re  the cost 

data. Th is  made the s torage  requirements fo r  the problem (even for  n=40) 

out of  the reach o f  computers. However, the s i z e  o f  the cost  a r ray  i s  

reduced as fo l low s .  From the prev ious  sect ion  we have seen that y . .. i s
i j K

equ iva lent  to y ^ ^  ( i ^ j ^ k ^ i )  and that the cost o f  s chedu l ing  job k a f te r  

job i ,  h.^, i s  equal to c . . k + c_kk + ‘' k i k *  t h i s  in mind, i t  i s

p o s s ib le  to introduce new v a r i a b le s  y ! j k ( i ,j , k = 1 , . . . ,n and i < j )  def ined 

as fo l lows  :

( |  1 ,  i f  j o b  k  i s  n o t  t o  b e  s e q u e n c e d  b e f o r e  j o b s  i  a n d  j .

i jk
0, otherwise.

Thus problem (7.8) can be w r i t ten  as fo l lows:

n n j  - 1
M i n i m i z e  Z Z Z c . . , y . . ,

k=1 j = 2  ¡ =1 '->k  ' J k +  Z  P k  WU 
k=1 K *

(7.27)

Where c... i s  defined as fo l lows:  
i J  k

•i jk

2P ; P j Wk

i o 2i  2p.p.w. + p. w. 
r j k r j k

„ 2
2p.p.w. + p. w. 

L * i  j k r i k

i f  i? k f \  and i <j

i f  k=i and i<j

i f  k=j and i <j

( 7 . 28)

S u b j e c t  t o  c o n s t r a i n t s  ( 7 . 9 ) » — . ( 7 . 1 9 ) •  w h e r e  e a c h  v a r i a b l e  y  > k  ( i , j ,

k = 1 . . . . . . . . . n  a n d  i / j ^ k ^ i )  i s  r e p l a c e d  b y  y j j k  i f  i < j  a n d  b y  y j I k  i f  i > j .

A l s o ,  e a c h  v a r i a b l e  z , k  0 , k = 1 . . . . . . . . . n  a n d  ! * k )  i s  r e p l a c e d  b y  y j k k  i f

i<k and by yk jk i f  ¡>k.
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can be obtained fromWe remark that a new d i rected  graph Gy, 

graph G7 y by coa le sc ing  equ iva lent  nodes.
^ t •f

2
The cost ar ray  has now become o f  s i z e  n (n-1)/2.  Every element of

t h i s  array  i s  involved on ly  once when adding the equ a l i t y  c o n s t r a in t s .

for  every i and j such that i<j  ( i . e .  every row o f  the cost ar ray)  there 

e x i s t s  two va lues  for  k such that k=i or k=j and because we have n (n - l ) / 2  

rows). A l so ,  we have n ( n - l ) ( n - 2 ) / 6  co n s t r a in t s  i n vo l v in g  three d i f f e re n t  

jobs  (where (n-2) is  the number o f  d i f f e r e n t  va lues  that k can take ( fo r  

each value of  i and j ,  i< j )  such that k^i and k ^ j ).

where 1 = 1 , . . . ,n (n -1 ) /2 and K = 1 , . . . , n .  Given i,  j and k, the corresponding  

element of the cost  a r ry  i s  R ( l , k )  where I = i x (n -1 )  - i x ( i - 1 ) / 2  - n + j .

We s h a l l  r e f e r  to  th i s  method o f  s to r in g  th e  c o s t  array as im p lem en ta tion  1.

o f  s i z e s  up to hQ jobs .  Al though i t  might be p o s s ib le  to store  the cost  

a r ray  for  problems o f  s i z e  50 in two a r ray s  ( in s tead  o f  one), we have saved

h a l f  the s to rage  requirements as fo l low s .  To s to re  the cost ar ray  for

problems o f  s i z e s  la rge r  than ^0 ( i . e .  50, 60 and 70) we used an array

R1( t ,K 1) where I as above and K ' = 1 , . . . , n / 2  (n i s  even). Th is  was done by

forming s t r i n g s  where every s t r i n g  R ' ( l , K ' )  c o n s i s t s  o f  two elements of

Thus, gi ven i ,  j and k, the corresponding element o f  the cost  ar ray

k $ n/2, where E = R ' ( l , k ) .  Using these s t r i n g s  enabled us to so l ve  problems 

o f  s i z e s  up to 70 jobs.  We s h a l l  r e f e r  to  t h i s  m ethod o f  s to r in g  th e  c o s t  
array as im p lem en ta tion  2.

Thus, we have n ( n - l ) / 2  c o n s t r a in t s  i n vo lv in g  two d i f f e r e n t  jobs  ( s ince

To s to re  t h i s  cost array we used a two dimensional a r ray  R (| ,K ) ,

The array  R( I , K) was used to s to re  the cost a r ray  fo r  problems

the cost ar ray.

c! • a s t r ii j ,k+n/Z

107 ¡s la rge r  than the maximum value of  any element.

i s  g iven  by [R '( I , k -n/2 )/1°7 J i f  k > n/2 and by E - 107 x LE/107J i f

116 -



We sha l l  assume that one o f  the two Implementation procedures 

d i scu s sed  above is  used.

As expla ined in Sect ion  7.6, the bounding procedure i s  s ta r ted  by

adding a l l  p o s s ib le  e q u a l i t y  c o n s t r a in t s  i n v o l v i n g  two d i f f e r e n t  jobs
2

( i . e .  o f  type ( 7 - 9 ) ) .  Th is  requ ires  0(n ) s teps .  We then add a l l  p o s s ib le

equ a l i t y  con s t r a in t s  i n vo l v in g  three d i f f e r e n t  jobs .  Th i s  requ i re s  O(n^)

steps.  We then see whether the reduced cost a r ray  de f ines  a complete

3
order ing  o f  the jobs .  Th is  i s  done by spending 0(n ) s teps  t r y i n g  to 

schedule the jobs  one by one from the end. We schedule a job k with 

c ! .. = 0, fo r  a l l  unscheduled jobs  i and j in the l a s t  a v a i l a b l e  p o s i t i o n .  

Column k and a l l  rows i n vo l v in g  job k are removed from the ar ray .  We repeat 

t h i s  u n t i l  a l l  jobs  have been sequenced or u n t i l  a stage where none o f  the 

jobs  can be sequenced l a s t  i s  reached. I f  a l l  jobs  have been sequenced, 

we stop; our bounding procedure has ended. S ince  (according to Theorem 7.6) 

the lower bound computed in t h i s  case i s  equal to the upper bound obtained 

by eva luat ing  the r e s u l t i n g  sequence, the problem has been so lved  without 

the need f o r  branching.  I f ,  on the other hand, a stage where none o f  the 

remaining jobs  can be sequenced in the l a s t  a v a i l a b le  p o s i t i o n  i s  reached, 

we reduce the s i z e  of  the problem by removing a l l  the sequenced jobs .  We 

then have the problem of  adding a l l  p o s s ib le  c o n s t r a in t s  o f  type (7 .11) ,  

. . . , ( 7 . 1 7 )  and of  type (7.19) ( i f  needed).

I t  i s  c l e a r  from Theorem (7.6)  that i t  i s  d e s i r a b le  that any o f  

the co n s t r a in t s  we add should be s a t i s f i e d  as an e qu a l i t y .  With t h i s  in 

mind we use a h e u r i s t i c  to ind ica te  which c o n s t r a in t s  to add. Th is  

h e u r i s t i c  i s  to order  the jobs  in a non - inc rea s ing  order  o f  w./p.. Let it 

be the sequence obtained u s ing  t h i s  h e u r i s t i c .  I n i t i a l  experiments i n d i ­

cated that con s t r a in t s  (7.12) are s a t i s f i e d  as e q u a l i t i e s  more o ften  than 

the others.  Hence, we decided to add a l l  p o s s i b l e  c o n s t r a i n t s  o f  type 

(7.12) and the cond it ion  that jobs  i and j  are sequenced before job k in
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the sequence t t .  This  procedure requ ires  0(n ) s teps .  Obv ious ly  the 

p o s s i b i l i t y  o f  these co n s t r a in t s  being s a t i s f i e d  as e q u a l i t i e s  depends on 

how c lo se  the sequence tt i s to the optimum sequence.

Having added a l l  p o s s ib le  con s t r a in t s  of  type (7.12) we fo l low  the 

procedure descr ibed above to see i f  the current  reduced cost a r ray  def ines  

a complete o rder ing  o f  the jobs.  I f  the answer i s  yes ,  then we have com­

pleted the lower bounding procedure. Otherwise, fo r  each ( i , j , k )  ( i , j ,  

k = 1 , . . . , n  and i^ j )  we add a l l  p o s s ib le  c o n s t r a in t s  of  type (7 . 13),  (7.1 *0,  

(7.15) ,  (7.12) ,  ( 7 .16 ) ,  (7.17) and (7.11) in that order. App ly ing  (7.12) 

( fo r  the second time) here might produce new c o n s t r a in t s  s in ce  k need not
3

be sequenced a f te r  i and j in tt. Th is  procedure requ i re s  0(n ) s teps.

I n i t i a l  experiments ind icated that the order  in which we look 

for  these c o n s t r a in t s  i s  o f  g reat s i g n i f i c a n c e .

Having added a l l  p o s s i b l e  c o n s t r a i n t s  i n v o l v in g  three job s ,  we 

apply the procedure descr ibed above to sequence the jobs  one by one from 

the end. Although a sequence (which s a t i s f i e s  a l l  the c o n s t r a in t s )  fo r  

each o f  the 700 problems cons idered has been found at th i s  s tage o f  the 

lower bounding procedure, i t  i s  always p o s s i b l e  to f ind  problems for  which 

fu r the r  c o n s t r a in t s  need to be added. These c o n s t r a i n t s  are o f  type (7 .19) .  

I t  i s  c lea r  that these c o n s t r a in t s  are more l i k e l y  to be s a t i s f i e d  as 

e q u a l i t i e s  i f  r i s  smal l.  Hence i t  is  w ise  to s t a r t  by spending O(n^) 

s teps  adding a l l  p o s s ib le  c o n s t r a in t s  in vo lv in g  four  jobs  ( i . e .  r=k) . i f  

a sequence cannot be found here, then c o n s t r a in t  (7.19) ?s  app l ied  in i t s  

general form. Th is  i s  done as fo l low s .  Consider a set  o f  r d i f f e r e n t  

jobs  ( 1 , . . . , r ) .  Then i t  is  p o s s ib le  to add the fo l low ing  c o n s t r a in t :

3

■ ■
y,  : 1+ y Sr, . - -r y .

' 1J 11 ' 2 J22
+ ...  + y, . r > t

rJ r

where i , j e { 1 ,. .  • , r ) , 1 v < j v that c | i v ! 5 the l a r g e s t  element
V V v y J y

in column v ( v = 1 , . . . , r ) .  C le a r l y ,  s e l e c t i n g  the l a r g e s t  element in a
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column requ ires  0 ( r  ) s teps.  Hence, adding a c o n s t r a in t  i n vo lv in g  r jobs 

requ ires  0 ( r ) s teps.  In the worst case, up to r ( r - l ) / 2  (number of  rows) 

c o n s t r a in t s  may be found and thus the procedure requ i re s  O(r^).

We summarize, adding a l l  p o s s ib le  e q u a l i t y  c o n s t r a in t s  o f  type

2 “3
(7.9) and (7.10) requ i re s  0(n ) and 0(nJ ) steps re spec t i v e ly .  Adding a l l  

p o s s ib le  co n s t r a in t s  of  type (7.12) requ ires  O(n^) s teps .  A fu r the r  O(n^) 

steps is  required when adding c o n s t r a in t s  o f  type (7 . 13),  (7 .1^) ,  (7 .15) ,  

(7 .12) ,  (7 -16),  (7.17) and (7 .11) .  Adding co n s t r a in t s  o f  type (7.19) 

requ i re s  O(r^) in the worst  case. F i n a l l y ,  the procedure to see whether 

the reduced cost a r ray  def ines  a complete o rder ing  o f  the job requ ires
*3

0(n ) s teps.  As mentioned above, t h i s  procedure i s  appl ied  a f te r  adding 

e qu a l i t y  c o n s t r a in t s  (7.10) and a f te r  adding co n s t r a in t s  of  type (7.12) i f  

such con s t r a in t  were needed ( i . e .  i f  a complete order ing  of  the jobs  was 

not obtained a f te r  adding c o n s t r a in t s  (7-9) and (7.10).  I f  a complete 

o rder ing  of  the jobs  cannot be found, then the procedure i s  repeated for  

the th i rd  time a f te r  adding a l l  p o s s ib le  c o n s t r a in t s  i n vo l v in g  three jobs.  

As mentioned above, c o n s t r a in t s  o f  type (7.19) were not needed for  any of  

the 700 problems tested and that the reduced co s t  a r ray ,  at t h i s  s tage,  

def ined a complete o rder ing  o f  the jobs.  Obv ious ly ,  i f  c o n s t r a in t s  of 

type (7.19) were needed for  a problem, then a fu r the r  Oin"5) s teps  is  

required to order  the jobs.

7.6______Example

In t h i s  se c t ion ,  we sh a l l  exp la in  our bounding procedure u s ing  an 

example gi ven in (Townsend, 1978) (see Sect ion  7 -3 ) .  The i n i t i a l  cost 

a r ray ,  c = (c . j^ )  where c . j ^  = p.pjW^, fo r  t h i s  example i s :

2
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Table 7.1: Ini t i a l  Cost Array

i J k= 1 2 3 4 5

1 1 _«. _ 500 700 300 100
2 80 200 280 120 40
3 120 300 420 180 60
4 20 50 70 30 10
5 4o 100 HO 60 20

2 1 80 200 280 120 40
2 32 — 112 48 16
3 48 120 168 72 24
4 8 20 28 12 4
5 16 40 56 24 8

3 1 120 300 420 180 60
2 48 120 168 72 24
3 72 180 — 108 36
4 12 30 42 18 6
5 2 ̂ 60 84 36 12

4 1 20 50 70 30 10
2 8 20 28 12 4
3 12 30 42 18 6
4 2 5 7 — 1
5 4 10 14 6 2

5 1 40 100 140 60 20
2 16 ko 56 24 8
3 24 60 84 36 12
A k 10 14 6 2
5 8 20 28 12 “ ”

As mentioned in Sect ion  7.5» i t  i s  p o s s ib le  to reduce the s i z e

cost  array  to form a new cost a r ray  c '  = ( c l . . )  (where c!.,  is
i j k  i j k

o f  t h i s  

g iven  by

(7 -28 ) ) :
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Table 7-2: I n i t i a l  Cost Array (Reduced S ize)

i j k= 1 2 3 4 5

1 2 192 900 560 240 80
3 312 600 1540 360 120
4 42 100 140 360 20
5 88 200 280 120 14 0

2 3 96 420 448 144 48
4 16 45 56 72 8
5 32 100 112 48 32

3 4 24 60 91 144 12
5 48 120 196 72 60

4 5 8 20 28 24 5

I t  i s  p o s s ib le  to add the fo l lo w in g  e q u a l i t y  c o n s t ra in t s :

y 121 + Y 122 1 

y 1 3 1  +  Y 1 3 3  = 1 

y 11*1 + y l 4 4  = 1 

y l 5 1 + y 1 5 5  = 1 

y 2 3 2  +  y 2 3 3  = 1 

y 242 + y 2 44 = 1 

y 2 5 2  + Y 2 5 5  = 1 

y 343 + V 'w  = 1 

y 3 5 3  + y 3 5 5  = 1

yi5/, + y'kss= 1

wi th 2v12
1 1 2Vi3

1 1
2p 14

1 1
2vi 15

> 1
2y23

i 1
2^24

1 1
2lJ25

1 1
2p34

1 1
2u35

192

312

42

88

420

45

32

91

60

2^45 = 5
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y !23 + y 132 + y 231  ̂ w ith  y  -  96

y 124 + y l42 + y 2i+1 = 1 "  Y = 16

Y 125 + y 152 + y 251 = 1 "  y = 32

y 134 + y l 4 3 + y 341 = 1 "  Y = 24

y 135 + y Ì 53 + y 351 = 1 Y =

y U 5 + y ;54 + y i 51 = 1 "  Y = 8

y234 + y 243 + y 342 1 "  Y = 56

y 235 + y 253 + Y 352 1 Y = ^8

y 245 + y 254 + Y452 1 "  y = 8

y 345 + y 354 + y 453 1 Y = 12

T o t a l  c o n t r i b u t i o n  t o  L o w e r  B o und 1635

The cost  a rray  becomes that given in Table 7.3.

Table 7.3: Reduced Cost Array

' j k= 1 2 3 4 5

1 2 0 708 464 224 48
3 0 504 1228 336 72
4 0 84 116 318 12
5 0 168 232 112 52

2 3 0 0 28 88 0
4 0 0 0 27 0
5 0 68 64 40 0

3 4 0 4 0 51 0
5 0 72 136 60 0

4 5 0 12 16 19 0
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We next see i f  the reduced cost  a rray  de f ines  a complete o rde r ing  

o f  the jobs.  It  is  c le a r  that job 1 can be sequenced la s t  s in ce  c . ^  = 0 

fo r  a l l  jobs i and j .  We then remove column 1 and every row in v o lv in g  

job 1. For the same reason we can sequence job 5 d i r e c t l y  before job 1. 

Column 5 and a l l  rows in v o lv in g  job 5 are removed from the cost  a r ray .  No 

o the r  jobs can be sequenced next. Removing columns 1 and 5 and a l l  rows 

in v o lv in g  jobs 1 and 5, the cost  a rray  becomes:

Table 7 - * :  Reduced Cost and S ize  Array

i j k= 2 3 4

2 3 0 28 88
4 0 0 27

3 * 4 0 51

A c c o r d i n g  t o  T h e o r e m  7.5 , i t  i s  p o s s i b l e  t o  a d d  a t  l e a s t  o n e  c o n s t r a i n t .  

S i n c e  c ^ 2 > 0, c ^ 3  > 0 a nd  c ^  > 0, i t  i s  p o s s i b l e  t o  a d d  t h e  f o l l o w i n g  

c o n s t r a i n t  ( o f  t y p e  7 - 1 2 ) :

* 3*2 + *233 + *244 *  1

w ith  c o n t r ib u t io n  to the lower bound equal to 4.

I t  i s  c le a r  that a l l  jobs can be sequenced. A unique sequence 

(4 ,3 ,2 ,5 , 1) can be found which i s  defined by va lues  y! s a t i s f y i n g  a l l1 j k

c o n s t r a in t s  and c ! ^  yJj^  = 0. The lower bound i s  g iven  by:

n ?
LB = 1635 + *  + Z p w.

k 1 k k

= 1635 + * + 539 

= 2178
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W i t h  r e g a r d  t o  t h e  l a s t  c o n s t r a i n t  a d d e d ,  o n e  c a n  s e e  t h a t  i t  i s  

s a t i s f i e d  a s  e q u a l i t y  c o n s t r a i n t  ( s i n c e  o n l y  y * ^  = a nd  c o n s e q u e n t l y  

t h e  u p p e r  b o un d o b t a i n e d  by e v a l u a t i n g  t h i s  s e q u e n c e  i s  e q u a l  t o  t h e  l o w e r  

b o u n d .  T h u s  t h e  p r o b l e m  h a s  b e e n  s o l v e d  w i t h o u t  t h e  n e e d  t o  p e r f o r m  a n y  

b r a n c h  i n g s .

7.7  The A laorithm
—  --------

In t h i s  se c t ion  we g ive  a complete d e sc r ip t io n  o f  the a lgo r ithm , 

apart  from the lower bounding procedure which has a lready  been described  

in the p rev ious  se c t io n s .  Here we sh a l l  be in te rested  in d e sc r ib in g  the 

h e u r i s t i c  used, the branching ru le  and the search s t ra te g y .

The a lgo r ithm  s t a r t s  by app ly ing  the f i r s t  h e u r i s t i c  which sequences 

the jobs in a non - in c rea s in g  order o f w./p.. Although the va lue  o f  t h is

sequence is  used as an upper bound on the optimum, the main purpose o f  t h i s

h e u r i s t i c  is  to ind ica te  which c o n s t ra in t s  are  to be added when computing 

the lower bound.

We then apply the bounding procedure as descr ibed  in  Se c t io n s  7 .k  
and 7-5. The sequence tt' obta ined at the end o f  the bounding procedure is  

eva luated  and the upper bound i s  updated a cco rd in g ly .  I f  the lower bound 

obta ined is  equal to the upper bound, the problem i s  so lved  w ithout the

need fo r  branch ing. I f ,  on the o ther hand, the lower bound i s  le s s  than

the upper bound, our second h e u r i s t i c  i s  a p p l ied  which t r i e s  to improve 

the best sequence obtained. Th is  is  done as fo l low s.  Let tt = M l ) , * ( 2)

. . .  ,n(n)} be the sequence w ith  the best s o lu t io n  obtained so fa r .  Job ttO )  

i s  removed from i t s  p o s i t io n  and tem porar i ly  sequenced in the second 

p o s i t io n ,  ( i . e .  a f te r  n (2 ) ) .  I f  the r e s u l t in g  sequence i s  better than the 

o r i g i n a l  one, then job tt( 1 )  i s  sequencedin i t s  temporary p o s i t io n ;  o th e r ­

w ise , job * ( ! )  is  considered fo r  the th i r d ,  f o u r t h , . . . ,nth p o s i t io n  in  a 

s im i l a r  way. As soon as an improvement i s  made, t h i s  job i s  l e f t  in i t s



temporary p o s it io n .  I f ,  on the other hand, no improvement can be made, 

job it( 1) i s  replaced in i t s  o r i g i n a l  p o s i t io n .

Th is  procedure i s  app lied  fo r  a l l  jobs i r ( i ) ,  i = 2 , . . . , n .  Whenever 

an improvement in the value o f  the s o lu t io n  is  made, the procedure is  

repeated from the beginn ing ( i . e .  from job it( 1 )) .  The procedure ends 

when no improvement can be made. Th is  h e u r i s t i c  requ ire s  0(n ) steps i f  tt 

i s  optimum. No such bound e x i s t s  in the worst case.

The branching ru le  used here is  s im i la r  to that used by Potts 

(P o tt s ,  1981). The no ta t ion s  of Sect ion  7.5 w i l l  be used to de sc r ibe  the 

branch ing ru le. The idea behind the branching ru le  i s  to reduce the d i f ­

ference between the lower and upper bounds ca lcu la ted  at the node from 

which we are about to branch (by upper bound here we mean the value o f  

the sequence it1 obtained at the end of the lower bounding procedure).

A c o n s t ra in t  which is  s a t i s f i e d  as in e q u a l i t y  and has a m u l t ip l ie r  

as large  as p o s s ib le  is  se lected. One o f  the v a r ia b le s  in v o lv in g  two jobs 

i and j on ly ,  i .e .  y|jj»  '" 'J  (° r Y j i j *  •>j) which occurs  in t h i s  c o n s t ra in t  

i s  chosen fo r  which y !^^ = 1 ( y j .j = 1) and that no arc  between job i and 

job j in the t r a n s i t i v e  c lo su re  o f the precedence graph formed by c o n s id e r ­

ing a l l  p rev ious branch ings ( i f  any). Two branches o f  the search  tree  can 

then be formed, namely job i i s  constra ined  to be sequenced before job j 

and job i i s  constra ined  to be sequenced a f te r  job j .  When job i i s  con­

stra ined to be sequenced before job j ,  each c o n s t r a in t  in v o lv in g  the v a r ia b le  

1 (y ‘ ) ¡s removed from the Lagrangean, w ithout a l t e r i n g  the lower
Y i j j  J ' j
bound, s ince  i t  w i l l  n e c e s sa r i ly  be s a t i s f i e d .  We then update the t r a n s i ­

t iv e  c lo su re  o f the precedence graph ( t h i s  part o f the a lgo r ithm  is  not 

performed in the f i r s t  level o f the search tree ) .  Whenever a new arc  (h ,k) 

fo r  which y (!)kk = 1, h<k (or y khk = 1 i f  h>k) , a l l  c o n s t r a in t s  in v o lv in g  y ^

( v ‘ ) are removed from the Lagrangean. Given two jobs 14 and v, we a l s o
vykhk

remove a l l  c o n s t ra in t s  in v o lv in g  y^vk i f  y ^  = 1 ( y ^  = 1) and y^ kk = 1

‘Vllvk = ’ >•
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The second case where job i i s  constra ined  to be sequenced a f te r  

job j i s  dea lt  with in a s im i la r  way. I t  i s  c le a r  that in t h i s  case where 

y . j j  = 0 (y j . j  = 0) the sequence it w i l l  be in fe a s ib le  and hence a new 

sequence w i l l  have to be found.

F in a l l y ,  our search s t ra te gy  is  g iven. A newest a c t ive  node search 

i s  used which se le c t s  a node from which to branch which has i <j and job i 

i s  constra ined  to be sequenced before job j .

We po in t  out that a l l  c o n s t ra in t s  o f  type ( 7 . 1 1 ) , . . . , ( 7 . 1 7 )  are 

stored  (c o n s t ra in t s  (7.19) were not needed). Each o f these c o n s t ra in t s  i s  

id e n t i f ie d  accord ing  to the level of the search tree and whether t h i s  con­

s t r a i n t  was added to or removed from the Lagrangean problem. Hence, when­

ever backtrack ing  is  necessary, the reduced cost  a r r y ,  fo r  a p a r t ic u la r  

node at level h o f the search tree, is  recomputed by co n s id e r in g  on ly  

those c o n s t ra in t s  that were added o r  removed at o r  a f te r  level h.

7.8  In co rpo ra t in g  the dominance Rules w ith  the Lower Bound

Although we have not needed to use the dominance ru le s  g iven  in

Sect ion  7.2, i t  i s  p o s s ib le  to incorporate  Theorem 7.1 and C o ro l la r y  7.1

w ith  the lower bound. T h is  i s  done ( in  the nota t ion  o f  Sec t ion  7.5) as

fo l lo w s .  I f  job i dominates job j ,  then the va lue  o f  c '  i< :  (r '
¡ j j ’ J 1Cj I j

i> j )  i s  added to the lower bound. For h=1.......n, ( h * j ) ,  the va lue  o f

Ch j i ’ h<j (c jh i  i f  h>J) i s  ' ^creased to take a very  la rge  va lue  M (e.g.

the sum o f  a l l  e lements). A l s o ,  i f  each o f  two jobs  i and j dominates a

th ird  job k, then the va lue  o f  c.'j k , i< j  ( c j ^  i f  ¡> j)  I s  added tQ the

lower bound. For h = 1 , . . . , n  (h ^k ) , the va lues  o f  c '  . and c '  i f  h<khki hkj ' K

(c khi and ckhj i f  h>k) are l e a s e d  to take very la rge  va lues  o f  M.

With regard to the example in Sect ion  7 .6 , we have the fo l lo w in g .

From Theorem 7.1 and C o ro l la r y  7 .1 , jobs 2, 3 and 4 must be sequenced before 

job s  1 and 5. Thus i t  i s  p o s s ib le  to add the va lues  o f  the fo l lo w in g

126 -



elements o f the cost  a r ray  to the lower boud: c [ 2 1 ,
1

C131 ’
1 1 1
141* c255» c355

1 1 1 r
c455 ’ c 2 3 T  c24l * c34l

1
. c235 , and c345 ( i .e . a1 to ta l o f 847 i s added

to the lower bound). For h=1 , . . . , 5 , the va lues  of
1

c 1h2 * C1h3* c 1h4 (where

h^1) ,  and c ^ ^ »  Ch33 ’ c ^  (where h # ) are se t  to equal H. Thus the

i n i t i a l  cost  a rray  of Table 7 .2 becomes as given  in Table 7.5.

Table 7 .5

i j k= 1 2 3 4 5

1 2 0 M M M 80
3 0 M M M 120
4 0 M M M 20
5 88 M M M 140

2 3 0 420 448 144 0
4 0 45 56 72 0
5 32 M M M 0

3 0 60 91 144 0
5 48 M M M 0

4 5 8 M M M 0

7^9______Precedence C on st ra in t s

The proposed lower bounding procedure can a l s o  be used fo r  the more 

general case where precedence c o n s t ra in t s  among jobs are s p e c i f ie d .

Given a d irected  graph G rep resenting  precedence c o n s t r a in t s ,

A = (a j j )  is  the adjacency matrix o f  G where a . j = 1 i f  an arc  ( i , j )  

e x i s t s  in the t r a n s i t i v e  c lo su re  o f  G and a .j  = 0, o therw ise .

Besides c o n s t ra in t s  (7 .5 ) ,  (7.6) and (7.7) o f  Se c t ion  7 .4 , we 

have the fo l low in g  c o n s t ra in t :

>J
a. ' .j = 1 , ,n.

Using the notation of  Section 7.5, th is  constra in t  can be wri tten as:
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y .. .  ^ a. .,
'JJ  'J

i ,j = 1, . . . ,n and ¡<j

y ! . . ^ a. . 
J ' J ij

i »j = 1, . . . ,n and ¡>j

Thus, i f  a {j = 1 ( ¡ < j ) ,  the value o f  the element c . '„  can be added to the

lower bound. For h=1.......n (h ^ j ) ,  the elements c ’ .. i f  h<i ( c ' i f  h>i)
h j i  J j h i J

are increased to a very large  number M.

I t  I s  obvious that i f  a ;k = 1 and aj>k = 1, then y ! j>k = 1, which

means that we can add the va lue  o f the element c. ., to the lower bound.
i jk

A ls o ,  fo r  h = 1 , . . . , n  ( h A )  , we have: c '  = c '  . = M fo r  h<k ( c , \ .  = c,'. . =
n K I  n K J k h i  k h j

M fo r  h > k ) .

With regard to the example o f  Sect ion  7 .6 , suppose that we are 

g iven  the precedence graph G (F igu re  7 .3 ).

y 135 

c 135 

ch53

given

I t  i s  c lea r  that a ^  = 1 and a ^  = 1 imply that 

= 1. Hence, we can add the va lues  of the elements 

to the lower bound (a tota l o f  320). A lso ,  fo r  h=1 

_ M. Thus the i n i t i a l  co st  a rray  o f  Table  7.2  has 

in Table 7.6.

Y 155 = y 355 =

c 155* c355 and 

. . . .  ,4, se t  =

now become that
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Table 7.6

' j k= 1 2 3 4 5

1 2 192 900 560 240 80
3 312 600 1540 360 0
4 42 100 140 360 120
5 M 200 M 120 0

2 3 96 420 448 144 48
4 16 45 56 72 8
5 M 100 M 48 32

3 4 24 60 91 144 17
5 M 120 M 72 0

¿4 5 M 20 M 24 5

To ob ta in  a lower bound fo r  t h i s  problem, we sugge st  the fo l lo w in g .  

Add a l l  p o s s ib le  c o n s t ra in t s  o f  type (7.9) and (7 .10 ).  Then use a h e u r i s ­

t i c  to ob ta in  a sequence tt con s is te n t  w ith the precedence c o n s t r a in t s  (see 

Chapter 5 fo r  h e u r i s t i c s  which can be adapted fo r  t h i s  problem). Use the 

sequence i t  to ind ica te  which c o n s t ra in t s  o f  type ( 7 . 12) are to be added. 

Sequence Tt may a lso  be used to ind ica te  which c o n s t r a in t s  o f  type (7 .13 ),  

. . . , ( 7 . 1 7 )  are to be added. The o rder in which to look fo r  these con­

s t r a i n t s  may need to be changed. Then a l l  p o s s ib le  c o n s t r a in t s  o f  type 

(7.19) are added as descr ibed  in Sect ion  7 .5 , a f te r  which a complete 

o rd e r in g  o f  the jobs e x i s t s .

I t  may be w ise , at t h is  stage, to improve the bound by tak ing  

fu r th e r  steps s im i la r  to the procedure taken by Po tt s  (P o t t s ,  1981) to 

improve h i s  bound fo r  the s in g le  machine sequencing w ith  precedence con­

s t r a i n t s .  The procedure can be summarized as fo l low s.

Let tt1 = ( tt ( 1 ) .......u (n)) be the sequence obta ined at the end of

the above bounding procedure. Suppose a l s o  that a c o n s t ra in t  s a t i s f i e d  

as in e q u a l i t y  w ith  m u lt ip ie r  A has been found. Suppose that the v a r ia b le  

y ? j k  OCCurs !n t h ' S c o n s t r a in t * where jobs i and j are not sequenced a f te r  

k in it' ,  which implies that y j Jk = 1. There are at le a s t  two such v a r ia b le s
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in each c o n s t ra in t  s a t i s f i e d  as an in e q u a l it y .  T h is  c o n s t ra in t  i s  tempor­

a r i l y  removed from the Lagrangean by in c re a s in g  the approp r ia te  elements 

o f  the co st  a rray  by X. Suppose t h i s  leads to the ex is tence  of at le a s t  

two c o n s t ra in t s  in v o lv in g  the v a r ia b le s  y !.,  in that c o n s t r a in t  w ithi j K

m u l t ip l ie r s  summing up to X . I f  x '  > X, then the o r i g i n a l  c o n s t ra in t  is  

removed and the new c o n s t ra in t s  are added, t h is  leads to in c re a s in g  the 

lower bound by X 1 - X . In t h i s  case, f in d in g  a new o rde r ing  o f  the jobs may 

be necessary, s ince  some o f  the elements o f the co st  a rray  may have been 

increased from th e ir  zero va lues.  I f ,  on the other hand, X 1 $ X o r  i t  was 

not p o s s ib le  to f ind  two new c o n s t r a in t s ,  then the o r i g i n a l  c o n s t r a in t  is  

re introduced, the new c o n s t ra in t s  are ignored and the lower bound remains 

the same.

We should po in t out that th is  procedure to improve the lower bound 

can be used fo r  the unconstrained case a lso .

7 .10 Computational Experience

7.10.1 Test Problems

Every problem c o n s i s t s  o f n job s,  two in tege rs  were generated fo r  

every job i ,  namely p. and w . . P rocess ing  times p. ( i = 1 , . . . , n )  were 

generated randomly from a uniform d i s t r i b u t i o n  [1 ,100 ].  Weights w. 

( i = 1 , . . . , n )  were generated from a uniform d i s t r i b u t i o n  [1 ,10].

A hundred problems were generated fo r  every  va lue  o f  n (n=10 ,20 .......

70);  700 problems in a l l  were tested.

7.10.2 Computational Results

The a lgor ithm s were coded in FORTRAN IV and run on a CDC 7600

c o m p u t e r .

I n i t i a l  experiments in v o lv in g  problems o f  s i z e  20 and 30, showed 

our branch and bound procedure to dominate the one proposed by Townsend.

For t h i s  reason we have excluded the r e s u l t s  fo r  Townsend 's a lgo r ithm .
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R esu lts  fo r  our proposed branch and bound a lgo r ithm  are g iven  in 

Table 7.8. Minimum, average and maximum to ta l numbers o f  added c o n s t r a in t s

of type ( 7 . 1 1 ) .......(7.17) are given in columns 1 to 3 re sp e c t iv e ly .

Minimum, average and maximum numbers o f  nodes are g iven  in the next three 

columns, followed by the average execution times in the la s t  column.

The f i r s t  three columns show that, as expected, the number o f  con­

s t r a in t s  needed increases as the s iz e  o f  the problem in c rea se s.  Columns 4, 

5 and 6 show that a l l  problems but one have been so lved w ithout the need 

fo r  b ranch ings.  Th is  one case where branch ings were needed occurred when 

n=60; even in th is  case the problem was so lved in two nodes on ly .  I t  is  

c le a r  from column 7 that there was a b ig  increase  in the average execution 

time fo r  problems o f  s iz e  50 from what i t  was fo r  problems of s i z e  l*o.

Th is  jump occurred because o f  the fact that,  as exp la ined  in Se c t ion  7.5, 

s t r i n g s  were introduced to enable the computer to so lve  problems o f  s iz e  

50 or  la rge r.

A c lo se r  look at column 2 shows that as the number o f  jobs increase s  

from 10 to 20, average number o f added c o n s t ra in t s  in c rease s  by about 650%. 

T h is  rate o f  increase  in the average number o f  added c o n s t r a in t s  decreases 

as the number o f  jobs increases and reaches i t s  minimum va lue  o f  60% when 

the number o f  jobs is  increased from 50 to 60 and from 60 to 70 (equal 

rate  o f  in c rease ).  A c lo se r  look at column 7 shows that computation time 

increase s  by 622% as the number o f  jobs increase s  from 10 to 20. Th is  

rate o f  increase  in computation time decreases as the number o f  jobs 

increase s  and takes the va lue  142% as n increase s  from 30 to 40. Using 

implementation 2 ( i . e .  forming s t r in g s )  lead to an increase  o f  about 286% 

in computation time as n increases from 40 to 50. T h is  sharp increase  in 

computation time (compared w ith  78% increase  in average number o f  added 

c o n s t ra in t s )  decreases as n increase s  and reaches i t s  minimum va lue  o f  

about 59% as n increases from 60 to 70.
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Table 7 .8 *

Column Number**

n 1 2 3 4 5 6 7

Implementa- 10 0 6 26 0 0 0 .00
tion 20 b 43 159 0 0 0 .03

1 30 23 119 284 0 0 0 .12
bO 127 255 450 0 0 0 .29

Implementa- 50 211 454 956 0 0 0 1.12

t i on 60 410 728 1238 0 0.02 2 2.34

2 70

C
Or^

. 1165 2227 0 0 0 3.71

*Tlmes are in CPU seconds.

>*Column Number:

1. Minimum number o f  added c o n s t r a in t s  o f  type (7 .11 ),
. . . , ( 7 . 1 7 ) .

2. Average number o f  added c o n s t ra in t s  o f  type (7 *11),
. . . , ( 7 . 1 7 ) .

3. Maximum number o f  added c o n s t ra in t s  o f  type (7 .11 ),
. . . , ( 7 . 1 7 ) .

4. Minimum number o f  nodes.

5. Average number o f  nodes.

6. Maximum number o f nodes.

7. Average computation times.

7 .11 Concluding Remarks

In Sect ion  7.2 we showed that problems w ith  agreeable  weights ( i . e .  

p. $ pj w. £ Wj) can be so lved  by o rd e r in g  the jobs accord ing  to non­

in c re a s in g  order o f w . . We then, in Se c t ion s  7 .4, 7 .5  and 7 .6 ,  proposed a 

branch and bound procedure fo r  s o lv in g  the general case. As mentioned 

before, t h is  branch and bound procedure was tested  u s in g  randomly generated 

data. The e xce l le n t  r e s u l t s  we had were not expected. The order in which 

we looked fo r  the c o n s t ra in t s  was a major fa c to r  behind these e xce l le n t  

re s u l t s .
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I n i t i a l  experiments on problems o f  s i z e  20 and 30 job s  w ith  

weakly co rre la ted  data: J1 $ Wj $ 100 and w. - 10 ^ p. ^ w. + 10, showed 

these problems to be unexpectedly harder than the randomly generated ones. 

In most cases,  c o n s t ra in t s  o f type (7.13) w ith  r^b , were needed. Th is  

caused the gap between the i n i t i a l  lower and upper bounds to be q u ite  

la rge  fo r  these problems. One way to improve these r e s u l t s  might be by 

t r y in g  d i f fe re n t  o rders  in which we look fo r  c o n s t r a in t s  o f  type (7 .11),  

. . . , ( 7 . 1 7 ) .

- 133 -



MULTI-MACHINE SCHEDULING



CHAPTER EIGHT

FLOW-SHOP S C H E D U L I N G

8.1______ I ntroducti on

The g en era l flo w -sho p  problem3 in d ic a te d  by F //C  ^  can be s ta te d  
as fo llo w s . There are n gobs numbered l 3 . . . 3n3 each o f  which i s  to  be 
p ro cessed  on machines l 3 . . . 3m in  th a t  o rder. Each job  i  ( i= l3 . .  n ) has a 
p ro c e ss in g  tim e p . k on machine k (k=l3 . . . t m). Each machine can p ro cess  n o t 
more than one gob a t  a tim e and each gob can be p ro cessed  by n o t more than  
one mac fane a t  a Ume. Once the  p ro cess in g  o f  a gob on a machine has s ta r te d ,  
i t  must be com pleted  w ith o u t in te r r u p t io n .  The order in  which gobs are pro­
ce ssed  need  n o t be the same on a l l  m achines. The o b je c t iv e  i s  to  f i n d  a 
p ro c e ss in g  o rder on each machine which m in im izes C th e  maximum 
com pletion  tim e o f  a l l  the  gobs.

I t  i s  well known (Conway et a l . ,  1967; Rlnnooy Kan, 1976; Lenstra , 

1977) that to f in d  the optimum fo r the F m / / ^  problem, we need to con­

s id e r  on ly  schedules w ith the same p rocess ing  order on the f i r s t  two 

machines and the same p roce ss in g  order on the la s t  two machines. The f o l ­

lowing two-job F V / C max example, g iven  in (Conway et a l . ,  1967),  shows that

t h i s  r e s u l t  cannot be extended any fu rthe r:  Let d = n -  „ _ ,
H I  h22 ~ P23 ~ -  h,

p21 = P12 = p 13 = p2 h = K  There are on ,y two o rd e r -p re se rv in g  schedules 

(see F igu re  8 .1 ) ,  both o f  which have a maximum completion time o f  14.

Machi ne

1 2

1 2

1 2

1 2

14

1 2 1

2 2 1

3 2 1

4 2 1

14
F igure  8.1
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Now cons ider  a schedule (see F igu re  8.2) which has the same order  on 

machines 1 and 2 and the same p roce ss in g  o rder  on machines 3 and k ,  but in 

which the o rder i s  reversed between machines 2 and 3. The maximum comple­

t ion  time is  12, which is  le s s  than what was obta ined above.

Machi ne

1 2 1

2 2 1

3 1 2

k 1 2

12

F igure  8.2

I f  each job has an imposed sequence o f  ope ra t ion s  which may d i f f e r  

from the sequence o f  opera t ions  o f  o ther jo b s ,  the problem is  known as the

jo b -sh o p  problem and i s  denoted by Jm//Cmax I f  the sequence o f  operat ions

f o r  each job i s  not imposed but i s  to be chosen by the schedu le r,  the pro­

blem i s  known as the open-shop  problem and is  denoted by Oml i t  i f  ~7 max- 1r * on

the o ther hand, we r e s t r i c t  ou rse lve s  to m in im izat ion  over a l l  schedu les 

w ith  the same order on each machine, the r e s u l t in g  problem i s  c a l le d  the 

perm u ta tio n  flo w -sho p  problem which i s  denoted by Pm//Cmax*

The above re su l t  regard ing  the p ro ce s s in g  o rder on the f i r s t  two 

and la s t  two machines fo r  the Fm//Cmax problem im p lie s  that the F2//Cmax

and P2//Cmax’ and the F3//Cmax and P3//Cmax P roblems equ iva len t.

F in a l l y ,  i t  i s  a l s o  well known that fo r  m=2, the r e s u l t in g  flow-

shop problem, i .e .  F2//Cmax, can be so lved  u s in g  Jo h n so n 's  a lgo r ithm

(Johnson, 1951*) in which job i i s  sequenced before  job j i f  min(o „ 1 *1 *P j2 ' 5

m in (p i 2 ,P j l ).  Th is  a lgo r ithm  requ ire s  0 (n log n) step s.  I f  precedence 

c o n s t r a in t s  in the form o f  S e r ie s -P a r a l le l  graph G=(V,E) (where an arc
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( i , j ) e E  Im plies  that job i must be processed before job j on each machine) 

were added to the problem, the r e s u l t in g  problem can s t i l l  be so lved  u s ing  

S id n e y 's  a lgo r ithm  (Sidney, 1979). However, fo r  general precedence con­

s t r a i n t s ,  the F2/prec/Cmax problem is  NP-hard (Monma, ).  For f u l l

d e t a i l s  about t h i s  general problem, we re fe r  to Chapter 9. The F2/r./Ci max

and F3//Cmax problems have been shown to be NP-hard a l s o  (Garey, Johnson £ 

S e th i ,  1976; Lenstra , Rinnooy Kan £ Brucker, 1977).

Remark

As we pointed out, Cmax i s  the o p t im a l i t y  c r i t e r i a  to be used in 

t h i s  chapter. U sing other c r i t e r i a  u su a l ly  lead to NP-hard problems. The 

fo l lo w in g  problems have a lready  been shown to be NP-hard.

max 

F2//XC.

02//L max

Om//ZC.

F2/pmtn/Lniax

F3/pmtn/£C.

J2/pmtn/EC

F2//Lmax (Lenstra  e t  a l . ,  1977)

(Garey et a l ., 1976)

(Lawler et a l ., 1981)

(Gonza le z ,  1979)

(Cho £ Sahn i,  1978)

(Lenstra ,  1981)

(Lenstra ,  19 8 1)

Om/pmtn/XC. (Gonzalez, 1979)

Only the Om/pmtn, r . /Lmgx problem can be so lved  in polynomial time 

by u s in g  l in e a r  programming (Cho £ Sahn i,  1978). Two other problems:

02//EC. and F2/pmtn/ZC. are s t i l l  open (Lawler, Len stra  £ Rinnooy Kan, 19 8 1) 

In t h i s  chapter, we s h a l l  mainly concentrate  on the permutation 

flow -shop problem, branch and bound a lgo r ithm s fo r  which w i l l  be reviewed 

in Sect ion  8.2. A b r ie f  d i s c u s s io n  o f  the open- and job -shop  problems 

w i l l  be g iven  in Sect ion  8.3.
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8.2 The Pm//C Problem
(Tiä X  _______

8.2,1  Branching Rule

Host pub lished  a lgor ithm s fo r  the permutation flow -shop problem 

(see Ig n a l l  £ Schräge, 1965; Lomnicki, 1965; Brown s Lomnicki, 1966;

McMahon 6 Burton, 1967; Nabeshima, 1967; P o t t s ,  197^; Bestw ick & H a s t in g s ,  

1976; Lageweg, Lenstra  & Rinnooy Kan, 1978) used the same branching ru le  

in which each node o f  the search tree corresponds to a job being sequenced 

at the beginn ing. Hence, nodes at level h o f  the search tree  correspond to 

i n i t i a l  p a r t ia l  sequences, each o f  which conta in s  h f ixed  job s.  However, 

i t  i s  reported in (Po tts ,  I 98OA) that from computational r e s u l t s  both Brown 

and Lomnicki (Brown £ Lomnicki, I 966) and McMahon and Burton (McMahon £ 

Burton, 1967) found that in some circum stances i t  i s  more e f f i c i e n t  to 

so lve  the inverse  problem which is  obtained by in te rchang ing  the p roce ss in g

times p .k and P i>m_k+1 fo r  a l l  jobs i ( i = 1 ....... n) and a l l  machines k such

that I a  i  »/2 rather than s o lv in g  the o r i g i n a l  problem. Th is  r e s u l t in g  

problem, i.e .  the inverse  problem, is  equ iva len t  to a b ranch ing  procedure 

fo r  the o r i g i n a l  problem in which each node o f  the search  tree  corresponds 

to a job being sequenced at the end. Hence, nodes at leve l h o f  the search 

tree ,  in t h i s  case, correspond to f in a l  p a r t ia l  sequences, each o f  which 

con ta in s  h f ixed  jobs.

With t h i s  in mind Potts  (Po tts ,  I 98OA) proposed an e f f e c t iv e  branch­

ing procedure. He ca l led  i t  the a d a p tive  branching  r u le .  Here, each node 

o f  the search tree corresponds to an i n i t i a l  p a r t ia l  sequence 0 ] and a 

f in a l  p a r t ia l  sequence a,,, where e ith e r  0  ̂ o r  o2 may be empty. I t  i s  c lea r  

that P o t t s '  branching ru le  reduces to the above g iven  branch ing ru le  i f  02 

i s  empty.

Now, we sh a l l  g ive  a f u l l  d e sc r ip t io n  o f  t h i s  adapt ive  branch ing 

ru le .  The f i r s t  branching sequences a job in  p o s i t i o n  1 w h ile  the second 

branch ing  sequences a job in p o s i t io n  n. The fo l lo w in g  b ranch ings  w i l l
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e ith e r  be o f  type 1 in which a job is  added to the end o f  an i n i t i a l  p a r t ia l  

sequence a 1 o r  o f  type 2 in which a job i s  added to the beg inn ing  o f  a f in a l  

p a r t ia l  sequence o2 - Dec id ing  between type 1 and type 2 b ranch ings  i s  done 

u s in g  the fo l low in g  ru le .  Let and denote the lowest le v e ls  o f  the 

search  tree at which nodes were constructed  from type 1 and type 2 re spect­

iv e ly .  A l s o  le t n1 and n2 be the numbers o f  nodes which have lower bounds 

equal to the minimum va lue  bound at le v e ls  k 1 and k2 r e sp e c t iv e ly .  A lso  

le t  n  ̂ and n2 be the numbers o f  nodes which have lower bounds equal to the 

minimum va lue  bound at le v e ls  k 1 and k2 re sp e c t iv e ly .  I f  n^ < n2 , the next 

branch ing  i s  o f  type 1, w h ile  i f  n1 > n2 , the next b ranch ing i s  o f  type 2.

I f  n  ̂ = n2 , then the next branch ing w i l l  be the same as the p rev ious  one.

I f ,  a t  some level o f  the search tree, a l l  nodes were e lim inated  by dominance 

o r  upper bounds, a l l  the next branch ings w i l l  be o f  the same type as the 

p rev ious  branching.

From computational r e s u l t s ,  Po tts  (Po tts ,  1980A) found that there 

are s u b s ta n t ia l  sa v in g s  in computation when u s in g  the adapt ive  branch ing 

ru le  than when u s in g  the usual one.

8 .2 .2  Lower Bounds

As mentioned before, the branch and bound techn iques were f i r s t  

app l ied  to schedu ling  problems by ( I g n a l l  & Schräge, 1965; Lomnicki, ig65; 

Brown 6 Lomnicki, 1966; McMahon S Burton, 1967).

The so -c a l le d  machine b ased  bound  was used fo r  the f i r s t  time by 

Ig n a l l  and Schräge ( ig n a l l  6 Schräge, 1965) . Given an i n i t i a l  p a r t ia l  

sequence 0 w ith  C(o,u) as the minimum completion time o f  jobs sequenced in 

0 on machine u and a set o f  unsequenced jobs S, the machine-based bound 

takes the fo l low in g  form:

max 
u=1 ,

( i \ l
i eS

P:1 u ( 8 . 1)
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where mi n{r.
i eS

i u }

a nd

^ U
= m in {q . } 

. c ^ iu  
1 eS

u-1
r . = max {C(c ,j!> + ï

1 u j = 1 , . . . ,  u k=j

m

^ iu
= E p. . 

j=u+1 ' J

U sing  r * u instead of 0 (0 ,11) in 8.1 makes t h i s  bound s l i g h t l y  s t ronge r  than 

the bounds used in (Lomnicki, 1965; Brown £ Lomnicki, 19 66 ; McMahon &

Burton, 1967) .

The s o - c a l le d  jo b -b a sed  bound was used fo r  the f i r s t  time by McMahon 

£ Burton (McMahon £ Burton, 1967). " T h i s  new bound exp resse s  the fa c t  that 

the makespan (C ) may be determined by the to ta l p ro ce s s in g  time fo r  a 

job ,  ra ther than by the to ta l  p ro ce ss in g  time on one m achine." (McMahon 

£ Burton, 1967). The job-based bound takes the fo l lo w in g  form:

m
max (C(a,u) + max { E p + E min{p, ,p } } }  (8.2)
u=1 , . . . ,m-1 ieS k=u ,k h e S - { i } hu hm

R e p l a c i n g  C ( c , u )  b y  r A l e a d s  t o  a s l i g h t l y  s t r o n g e r  b o u n d  w h i c h  w a s  u s e d  b y  

McMahon ( McMa hon,  1971).

Using two-machine subproblems ( in stead  of one) to ob ta in  lower 

bounds was developed independently by Po tt s  (P o tt s ,  197^) and Lageweg e t  a l .  

(Lageweg et a l . ,  1978). J o hn son 's  P2//C a lgo r ithm  was used to so lve  

each o f  the r e s u l t in g  two-machine subproblems.

T h is  two-machine bound was gene ra l ized  by Po tts  (P o tt s ,  1980A) to 

g iv e  a lower bound on a l l  completion time fo r  a l l  p o s s ib le  schedules 

s t a r t i n g  w ith  the i n i t i a l  p a r t ia l  sequence o 1 and ending w ith  the f in a l  

p a r t ia l  sequence 0 2 - In t h i s  se c t ion  we sh a l l  g ive  a f u l l  d e s c r ip t io n  o f  

t h i s  genera lized  bound. We sh a l l  a l so  show the re la t io n  between t h i s  bound 

and the p re v io u s ly  pub lished  ones.
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F i r s t l y ,  some notat ion  i s  introduced. Let S 1 and S2 be the se t  o f 

jobs  sequenced in and a re sp e c t iv e ly .  A l s o ,  le t  S be the se t  o f  un­

sequenced jobs. We define  C^(c^ ,j)  to be the minimum completion time of 

a l l  jobs sequenced in on machine j and C2 (a2>j )  to be the minimum time 

between the s t a r t  o f  p roce ss in g  jobs in a2 on machine j and the completion 

o f  p roce ss in g  jobs in o2 on machine m. ( I f  $ ^ 0 ,  we de f ine  C ^ o ^ j )  = 0, 

fo r  a l l  j a l so  i f  S 2=0, we define  C2 (o2 ,j) = 0).

Here, a lower bound is  obtained by re lax in g  the capac ity  c o n s t ra in t s  

on some machines, ?.e. by a l low in g  some o f  the machines to p rocess  more than 

one job at the same time. T h is  i s  done by choosing  a machine p a i r  ( u , v ) ,

where U  u i  v i  m, and re la x in g  the c o n s t ra in t  that machines u+1....... v-1

can p rocess  on ly  one job at a time. I f  u^v, a two-machine subproblem 

r e s u l t s  in which each job ieS has a p ro ce ss in g  time p.^ on the f i r s t

machine, a p roce ss in g  time p . y on the second machine and a time lag o f 
v-1Z p.. between the completion o f p ro ce ss in g  job i on machine u and the 

k=u+1 1
s t a r t  o f  p roce ss in g  job i on machine v. Th is  r e s u l t in g  subproblem can be

so lved  by o rde r ing  the jobs u s ing  John son 's  ru le  fo r  a two machine problem
v - 1 v

w ith  p ro ce ss in g  times Z p and Z p . , ieS (Conway et a l . ,  1967) . On
k=u 1K k— u+1 '

the o ther hand, i f  u=v, a s in g le  machine problem r e s u l t s  fo r  which any 

sequence is  optimum. A lower bound fo r  the problem i s  g iven  by:

B ( o  , o , , u , v )  = r * u +  T ( o 1 , a 2 , u , v )  +  q, (8.3)

w h e r e  T ( a ^ , a 2 , u , v )  d e n o t e s  t h e  mi ni mu m v a l u e  o f  t h e  maxi mum c o m p l e t i o n  t i m e  

f o r  t h e  s u b p r o b l e m ,

r * U = ; ’ £ { r »U}

and q *  -  mi n{qj v > 
i eS

where:

- U1  -



I u

and

11 v

(oi »u) , i f

U - 1

Q-

W
 

II

i f S,=0

C2 (o2v ) , i f  S2^0

m

 ̂ ^ i k ’ 
k—v+1 IK

i f  $2=0

(8.4)

(8.5)

A s l i g h t l y  s tronge r  ve rs io n  o f (8.4) and (8.5) can be w r it te n  as 

f o l l o w s :

r . u
max C . ( a . , j )
j = 1 .......“

u-1

+ P ikk=j

and

i v
max
j = v ,

j

C2 (°2 ’j)  + , E , P ik  
k=v+1

Thus, an o ve ra l l  lower bound fo r  the problem LB(a.j,a2 ,W) is  g iven  by 

s p e c i f y in g  a set o f  machine p a i r s .

W = { ( u j . v , ) .......(uw,Vw) }

and hence

LB(0 r a2 ,W) = max{B(a1 ,a2 ,u1 , v l ) , . . . , B ( a 1 ,a2 ,uw,vw)} (8 .6)

The lower bound B (a^ ,a2 »u,v) i s  a g e n e ra l iz a t io n  o f  the lower bound used 

in (Lageweg et a l . ,  1978) and (Po tt s ,  1974) ind ica ted  by ,4>,u,v). I t  

i s  a l so  a ge n e ra l iz a t io n  o f Nabeshima 's lower bound (Nabeshima, 1967)

defined by B (o t ,a2 ,u ,u + 1 ) , u =1 ,. .. ,m -1 .  F in a l l y ,  when W = { ( 1 , 1 ) .......

(m m)}, the r e s u l t in g  bound is  known as the machine based bound.
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We should po in t  out at t h i s  stage  that P o t t s 1 lower bound g iven  by 

(8 • 3 •) w i l l  be genera lized  to be used fo r  a rnore genera 1 problem where 

precedence co n s t ra in t s  amongst jobs e x i s t .  T h is  problem w i l l  be con­

s idered  in Chapter 10.

In (Lageweg et a l . ,  1978) and (Po tt s ,  197*0 i t  was found that the 

se ts  o f  machine p a i r s  { ( 1 ,m), . . . , (m-1 ,m)} and {(1 ,m), . . . , (m,m)} re sp e c t iv e ly  

gave good computational r e s u l t s .  In h i s  paper Potts  (P o tt s ,  1980A) pro­

posed the fo l low in g  set o f machine p a ir s :

WQ = { (1 ,1 )...... (m,m) , (1 ,m) , . . . ,  (m-1 ,m) }

"One fa c to r  l i k e l y  to a f fe c t  the e f f i c i e n c y  o f  B ( a , , a 2 ,u ,v) i s  the 

to ta l  p roce ss in g  time on machines u and v. Larger to ta l  p ro ce ss in g  times 

are expected to produce h igher bounds. Another fa c to r  is  the s iz e  o f  v-u : 

the poor r e su l t s  obtained by Ashour and Quraushi (1969) fo r  Nabeshima's 

bound ind ica te  that B(cr^,a2 ,u,v) i s  l i k e l y  to increase  as v-u in c rease s.

With t h i s  in mind we suggest two other cho ices o f se ts  o f  machine p a i r s .  

F i r s t l y ,  we define  W ̂  =WQL/{ (u , v ) } i f  machines u and v can be found such 

that 1 ^ u < v  <m  and the tota l p roce ss in g  time on each o f  machines u and 

v exceeds the to ta l p ro ce ss in g  time on a l l  o ther machines; o therw ise  W^=Wq . 

Second ly, we de f ine  w2 = wq “ i ( u , u ) , (u,m)} i f  a machine u can be found 

such that (m -l)/2 < u < m and the to ta l p ro ce ss in g  time on machine u is  

le s s  than the tota l p rocess ing  on a l l  o ther machines; o therw ise  W2=Wq . "  

(P o tt s ,  1980A). However, W  ̂ appears to be com putationa lly  more e f fe c t iv e  

than Ŵ  or W^.

Computational r e s u l t s  obtained by Potts  ind ica ted  that the lower 

bound proposed by him, g iven  by (8 .3) ,  i s  s t ronge r  than p re v io u s ly  pub lished  

ones. The r e su l t s  a l s o  showed that the se t  o f  machine p a i r s  WQ performed 

bette r  than the se t  o f  machine p a i r s  Wj and W2>
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8 .2 .3  Dominance Rules

In t h i s  sec t ion  we sh a l l  g ive  some dominance ru le s  under which a 

node can be e lim inated before i t s  lower bound is  ca lcu la ted .  C le a r ly ,  

these ru le s  are p a r t i c u la r l y  usefu l when a node w ith  a lower bound that 

i s  le s s  than the optimum, can be e lim inated.

Let o '  and o "  be two i n i t i a l  p a r t ia l  sequences and le t  S '  and S "  be 

the se ts  o f jobs sequenced in a 1 and a "  re sp e c t iv e ly .  (Given a se t  S we 

de f ine  S = { 1 , . . . , n } - S .) We say that a "  dominates o '  i f  f o r  any permutation 

—  o f  P "  there e x i s t s  a permutation ~  o f  S17 such that Cj ( a "~ ,m )  $ 

C j i o 'a ' . m ) .  We now have the fo l low ing  theorem.

Theorem 8.1 ( I g n a l l  £ Schrage, 1965; Smith £ Dudek, 1967; McMahon, 1969)

I f  S '  -  S "  and C ^(o " jk )  $ C j(o 't k ) f o r  k - l i . . . i mi then  c "  dom inates

Theorem 8.1 is  re ferred  to as the  dynamic programming dominance theorem, 
McMahon (McMahon, 1969) showed Theorem 8.1 to be the s t ro n g e s t  p o s s ib le  

one fo r  the case when S '  = S " :  s in ce  i f  C ^ a '^ k )  > C ^ a ' . k )  fo r  some 

machine k, then i t  i s  p o s s ib le  to choose the p ro ce ss in g  times fo r  the 

unscheduled jobs ( i . e .  p . k where i eP") in such a way that C1 (a"oTT,m) >

Cj ( a ' P ’.m) .

Several e l im in a t io n  c r i t e r i a  have been developed fo r  the case a '  = 

a j anc! 0"  = c ^ i j  ( i . e .  S "  = S ' l K O ) .  In the remainder o f t h i s  se c t io n ,  

we sh a l l  g ive  cond it ion s  under which an i n i t i a l  p a r t ia l  sequence o ^ j  

dominates another i n i t i a l  p a r t ia l  sequence a^j,  but f i r s t  we have the 

fo l low i ng defi ni t ion .

A., — Cj (a.j i j ,k) “ C ^ (o^ j,k ) ,  (k— 1 ,... ,m ) (8.7)

An i n i t i a l  p a r t ia l  sequence a ^ i j  dominates an i n i t i a l  p a r t ia l  

sequence o ,j  i f  one o f the fo l low ing  c o n d it io n s  ho ld s:

-



( i )  (Smith £ Dudek, 1969)

A1k-1 *  P ik  and

C i(® ii  >k- 1) $ C i (0 1 j ,k~1), ( k - 2 , . . .  ,m) (8 .8 . )

( i i )  (McMahon, 1969; Szwarc, 1973)

max(A1k_ i »û l k > ^ P jk » (k=2 , . . . ,m) (8 .9 )

( ¡ i i )  (Szwarc, 1971)

A1k-1 ^ A1k ^ P ik  (k=2 ,. . . ,m ) (8.10)

( iv )  (Szwarc, 1973)

A ,k « min {p .u } (k=2....... m) (8.11)
u=k.......m

(v) (Szwarc, 1973)

max (A 1u) S p . k (k=2 .......m) (8.12)
u— 1 , . . .  ,m

With respect to the above co n d it io n s ,  we have the fo l lo w in g  

r e s u l t s .

Theorem 8.2 (Szwarc, 1973)

C onditions ( i i )  t  ( H i ) t ( iv )  and (v) are e q u iv a le n t .
Theorem 8.3 (Rinnooy Kan, 1976; Lenstra , 1977)

C ondition  ( i )  im p lie s  c o n d itio n  ( i i ) .
Given a f in a l  p a r t ia l  sequence and two unscheduled jobs  i and j ,  

we have the fo l low ing  d e f in i t io n :

A2k = C2 ^J ' a2 * '  C2 ^ a2 ,k ^ ’ ^k=1 .......m) (8 . 13)

A f in a l  p a r t ia l  sequence j i a2 dominates j a2 i f  the fo l lo w in g  cond it ion  

ho lds (Szwarc, 1971):

- 145 -



^2k ^ ^2k-1 ^ P ik —1 * (k=2 ,.. . ,m ) (8.14)

I t  i s  obv ious that cond it ion  (8.14) i s  symmetrical to cond it ion  (8.10) 

above.

"Computational experience reported in (McMahon, 1971; Baker, 1975) 

in d ic a te s  that enumerative methods based on the simple e l im in a t io n  c r i t e r i a  

above are in f e r io r  to those based on lower bounds; in c lu s io n  o f  these 

c r i t e r i a  in the la t te r  type o f  a lgo r ithm  leads to a ga in  in e f f i c ie n c y  

on ly  fo r  problems o f  moderate s iz e  (n^15). A lto ge the r,  i t  seems that the 

e l im in a t io n  c r i t e r i a  d iscu ssed  in t h i s  se c t ion  are o f  l i t t l e  a lgo r ith m ic  

v a lu e " .  (Lenstra ,  1977).

However, dominance ru le s  have been used as a part  o f  branch and 

bound a lgo r ithm s. Computational re su l t s  obtained by Lageweg et a l . (Lageweg 

et a l . ,  1978) ind ica te  that in troduc ing  dominance ru le s  reduce computation. 

Th is  r e su l t  was confirmed in (Po tts ,  1980A).

8 .2 .4  H e u r i s t ic  Methods

Dannenbring (Dannenbring, 1977) ca rr ied  out some computational 

experiments to te st  the performance of several permutation flow-shop 

h e u r i s t i c s .  In t h i s  se c t ion  we sh a l l  t a lk  about s i x  o f  these h e u r i s t i c s .

The f i r s t  o f  these h e u r i s t i c s  is  due to Palmer (Palmer, I 965) and 

i s  known as the Slope Crder h e u r i s t ic  (SO). For each job i ( i = 1 , . . . , n ) ,

a s lope  index 6. i s  ca lcu la ted  as fo l low s:

m

6.1
Z

k=1
(k

m+11
ik

A sequence is  then obtained by o rd e r in g  the jobs  accord ing  to n o n - in c re s in g  

6 ..  The r e s u l t in g  sequence is  then eva luated  as a Pm//Cmax schedule. Th is  

procedure requ ire s  0(max{mn,n log n}) step s.
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The second of these h e u r i s t i c s  i s  due to Campbell, Dudek and

Smith (Campbell et a l . ,  1970) and w i l l  be re fe rred  to as the CDS h e u r i s t i c .

For each k (k= 1 , . . .  ,m-l) , apply John son 's  (Johnson, I 95A) a lgo r ithm  fo r  the

P2//C problem to so lve  a two-machine subproblem where each job i (1=1.
k m

. . . , n )  has p roce ss in g  times Z p . . and Z p . . on the f i r s t  and second
j= l  J j=m+1- k 1J

machines re sp e c t iv e ly .  The r e su l t in g  sequence i s  then eva luated as Pm//Cmax

schedule. The best o f  the m-1 s o lu t io n s  is  chosen as the h e u r i s t i c  s o lu ­

t ion  to the m-machine problem. Th is  procedure requ ire s  0(mn log n) steps.

The th ird  h e u r i s t i c  w i l l  be referred  to as the Random sam pling  
h e u r i s t ic  (R) which se le c t s  s o lu t io n s  by randomly o rde r in g  the jobs.

The next three h e u r i s t i c s  are due to Dannenbring (Dannenbring, 1977). 

The f i r s t  o f these three h e u r i s t i c s  i s  c a l le d  the Rapid A ccess  
procedure  (RA ). Th is  procedure i s  s im i la r  to that o f Campbell, Dudek and

Smith. Here, on ly  a s in g le  two-machine subproblem is  formed where each
m m

job  i ( i = 1 , . . . , n )  has p ro ce ss in g  times Z (m -j+ l)p . .and  Z (j)  p . . on the
j=1 IJ j=1 'J

f i r s t  and second machines re sp e c t iv e ly .  J o hn son 's  a lgo r ithm  i s  used to

so lve  t h i s  two-machine subproblem. The r e s u l t in g  sequence is  then evaluated

as Pm//C schedule, 
max

The second h e u r i s t i c  method i s  ca l led  the Rapid A ccess w ith  Close 
o rd er Search  (RACS). Here, a simple interchange of each o f  the (n-1) p a ir s  

o f  adjacent jobs is  examined fo r  p o s s ib le  improvement in the o b je c t ive  

func t ion  value.

The f in a l  h e u r i s t i c  i s  c a l led  the Rapid A ccess w ith  E x te n s ive  Search  
(RAES). Instead o f  term inating the search  a f te r  one se t  o f in te rchanges,  

the RAES h e u r i s t i c  use the best immediate interchange to generate new in t e r ­

changes. Th is  procedure continues u n t i l  no improvement in the va lue  o f  the 

o b je c t ive  can be achieved.

I t  should  be c le a r  now that both h e u r i s t i c s  SO and RA generate a 

s in g le  s o lu t io n ,  w h ile  both h e u r i s t i c s  CDC and R generate m u lt ip le  s o lu t io n s
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from which the best i s  chosen. The CDS h e u r i s t i c  generates (m-1) s o lu t io n s  

w h ile  the R h e u r i s t i c  generates as many o r  as few s o lu t io n s  as de s ired  to 

be generated.

D a n n e n b r i n g  ( D a n n e n b r i n g , 1977) t e s t e d  t h e  p e r f o r m a n c e  o f  t h e  a b o v e  

h e u r i s t i c s  ( amo ng  o t h e r  h e u r i s t i c s )  u s i n g  1 5 8 0  p r o b l e m s  r a n g i n g  i n  s i z e  

f r o m  3 j o b s ,  3 m a c h i n e s  t o  50 j o b s ,  50 m a c h i n e s .

He used the branch and bound procedure g iven  in (Dannenbring, 1973) 

to f ind  optimum so lu t io n s  to 1509 o f  the te st  problems. Estim ates o f the 

optimal so lu t io n  value were obtained fo r  the other 71 problems u s in g  the 

e st im at ion  procedure described in (Dannenbring, 1973).

Computational r e s u l t s  in (Dannenbring, 1977) showed h e u r i s t i c  RAES 

to have the le a s t  percentage dev ia t io n  from optimum and to be the most con­

s i s t e n t  o f  a l l  the h e u r i s t i c s  on the small s ized  problems (n x m: 3 x 3  to 

6 x 10). The performance of h e u r i s t i c s  RACS, CDS, R, RA, SO on the small 

s ized  problems fo llow  in that order. With regard to problems o f  la rge  

s i z e s  (n x m: 7 x 3 to 50 x 50), the r e s u l t s  showed the RAES procedure to 

remain the best o f a l l  the h e u r i s t i c s  tested and has a c tu a l ly  widened i t s  

lead over the o the rs.  S u r p r i s i n g l y ,  the random h e u r i s t i c  moved from fou rth  

best  to second best. " T h i s  s h i f t  i s  l i k e l y  due to the ra the r  a r b i t r a r y  

manner in which the sample s i z e  parameter was determined, although i t  may 

a l s o  ind ica te  a dec line  in e f fe c t iv e n e s s  fo r  the other h e u r i s t i c s . "  

(Dannenbring, 1977). H e u r i s t i c  RACS dropped from second to fourth  

p o s i t io n ,  wh ile  h e u r i s t i c  CDS remained in i t s  th i rd  p o s i t io n .  H e u r i s t i c s  

SO and RA fo l low  in that order.

The computation times obtained showed h e u r i s t i c  SO to invo lve  the 

le a s t  computation followed by h e u r i s t i c s  RA, RACS, CDS, RAES and R in that 

o rder.

"O f major s ig n i f i c a n c e  is  the fa c t  that a lthough  q u ite  la rge  d i f ­

ferences e x i s t  among the average times, the to ta l  time invo lved i s  qu ite
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sm a ll ,  even fo r  the most c o s t l y  a lgo r ithm s on the la rg e s t  problems.

Both the number o f  jobs and the number o f  machines have a s i g ­

n i f i c a n t  e f fe c t  on computation time; the degree o f s i g n i f i c a n c e  is  

dependent on the nature o f  the a lgorithm .

In genera l,  the most economical procedures were the s in g le - s h o t  

a lgo r ithm s that q u ic k ly  generate on ly  one s o lu t io n  to the problem". 

(Dannenbring, 1977) .

Unfortunate ly ,  two re su l t s  on ly  could be found w ith  respect to the

w orst -ca se  performance o f  flow- and job-shop h e u r i s t i c s .  Before s t a t in g

these two re su l t s  we have the fo l low ing  d e f in i t io n .  Let C* be an optimum

so lu t io n  to a g iven  flow- or  job-shop  problem w ith  m > 2. Let C be the
max

completion time of any schedule fo r  the same problem. Then C / r *  < m
max max v m

(Gonzalez 6 Sahni , 1978). Th is  w orst-case  bound o f  m fo r  schedules in a

flow -shop  can be reduced to m/2 by u s in g  the fo l lo w in g  h e u r i s t i c  H

(Gonzalez £ Sahn i,  1978). D iv ide  the m machines in m/2 groups, each

group con ta in ing  at most two machines. The machines in group i are the

( 2 1- 1 ) 1st  and 2 i ' t h  ones. John son 's  a lgo r ithm  is  used to f in d  an optimal

schedule  fo r  each o f  the m/2 two-machine problems. These m/2 optimal

schedules are then concatenated to obta in  a schedule fo r  the o r i g i n a l  f low-

shop problem. Th is  h e u r i s t i c  requ ire s  0(mn log n) s tep s.  Thus i f  CH
’ max 1s

the completion time o f  a flow-shop schedule obta ined u s in g  h e u r i s t i c  H

above and C*ax i s  the optimum so lu t io n  to the same flow -shop problem,
H y- p

then Cmax/Cmax $ 'm/2 (Gon2a1ez & Sahn i, 1978).

Rema rk

With regard to the C (mean completion time) c r i t e r io n ,  Gonzalez and 

Sahni (Gonzalez £ Sahn i,  1978) proved the fo l lo w in g  r e s u l t s .  Let C* be an 

optimum so lu t io n  fo r  a flow- or job-shop  problem and C be the s o lu t io n  

obta ined when u s ing  any schedule fo r  the same problem. Then C/C* $ n 

A l s o ,  i f  CSpT is  the s o lu t io n  obta ined when the jobs are ordered accord ing
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to the SPT ru le  ( i . e .  by o rd e r in g  the jobs in a non-decreasing  o rder o f  

t h e i r  sum o f  p roce ss in g  t im es),  then C ^ / C *  $ m.

8.3  Open- and Job-Shop Problems

In th is  f in a l  se c t ion  we sh a l l  g ive  a b r ie f  d i s c u s s io n  o f  the open- 

and job-shop  problems. The problem can be stated  as fo l low s.  There are n 

jobs numbered l , . . . , n  and m machines numbered 1 ,... ,m . Each machine k 

( k = l , . . . ,m )  can process not more than one job at a time. Each job i con­

s i s t s  o f  a set o f  m. operat ions  {0 n 1i 1, . .  . ,u. j. tach operat ion  corresponds

to the p roce ss in g  o f  job i on some machine fo r  an un in te rrupted  period  of

time known as the p roce ss in g  time o f  job i on that machine. The problem

is  an open-shop  i f  each job c o n s i s t s  o f a se t  of ope ra t ion s  {0. . . .  0 }
i 1 ' ’ * '  * i nr *

but the o rder in which these operat ions  are executed is  immateria l. I f ,  on 

the other hand, each job has a sp e c i f ie d  sequence o f  ope ra t ion s  which may 

d i f f e r  from the sequence o f  opera t ions  o f other job s ,  the problem i s  a 

jo b -sh o p .
With regard to the open-shop problem, we have the fo l lo w in g .  The 

02//Cmax prob,em can be so lved  u s ing  the a lgor ithm  o f  Gonzalez and Sahni 

(Gonzalez £ Sahn i,  1976; Graham et a l . ,  1979). Th is  a lgo r ithm  requ ire s  

0 (n) s t e Ps * However,there i s  a l i t t l e  hope that any o the r  open-shop problem 

can be so lved  in polynomial time. In fac t,  the 02/r./C , 02/tree/C

(where the precedence c o n s t ra in t s  are defined as in Rinnooy Kan, 1976 and 

Lenstra ,  1977: An arc  ( i , j )  in G im plie s  that job i must be completed on 

a l l  machines before job j can s t a r t  on the f i r s t  one) and the 0m//C
max

problems have a lready been proved to be NP-hard (Lawler e t  a l . ,  1981A- 

Len stra ,  1981). The °3//Cmax problem has been proved to be NP-hard a lso  

(Gonzalez 6 Sahn i,  1976).

With regard to the job-shop  problem, we have the fo l lo w in g .  There 

e x i s t s  an 0(n log n) a lgo r ithm  (an extension  o f  J o h n so n 's  a lgo r ithm  fo r  the
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F2//Cmax Prob,em) fo r  s o lv in g  the J2/m. $ 2/Cmax problem (Jackson, 1956),

but two minor exten sions  o f  t h i s  problem, the J2/m. i  3/C and thei max

J3/m. £ 2/cmax Pr°61ems have been proved to be NP-hard (Lenstra ,  1977).

In fa c t ,  even the J2/m ^ 3, 1 =£ p. . $ 2/C and the J3/m. $ 2, d =1/C
1 1J max i i J max

problems are NP-hard a lso  (Graham et a l . ,  1979).

"Even w ith in  the c la s s  o f  NP-complete problems, the general Jm//Cmax

problem appears to be a very  d i f f i c u l t  one. A c l a s s i c a l  and by now t r a d i ­

t iona l quotat ion  from (Conway et a l . ,  1967) a s s e r t s  p e s s im i s t i c a l l y  that 

'many p r o f ic ie n t  people have considered th is  problem, and a l l  have come 

away e s s e n t i a l l y  empty-handed. S ince  t h i s  f r u s t r a t io n  is  not reported in 

the l i t e r a t u re ,  the problem continues to a t t r a c t  in v e s t ig a t o r s  who j u s t  

cannot be l ieve  that a problem so simply s t ruc tu red  can be so d i f f i c u l t  

u n t i l  they have t r ie d  i t ' . "  (Lenstra ,  1977).

An in d ic a t io n  o f  the hardness o f t h i s  general job-shop  problem i s  

c le a r  by the fact that a ten job J 1°//cmax problem formulated in 1963 

(Muth 6 Thompson, 1963), s t i l l  has not been so lved.
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CHAPTER NINE

THE TWO-HACHINE FLOW-SHOP PROBLEM UNDER PRECEDENCE CONSTRAINTS

9.1______ In troduction

The problem considered in t h i s  chapter may be stated  as fo l lo w s .  Con­
s id e r  n jo b s  (numbered l j . . . t n) and two m achines. Each o f  th e  two machines 
can p ro cess  n o t more than one jo b  a t  a tim e . Each jo b  i  has to  he p ro cessed
on machines 1 and 2 in  th a t  o rder during  u n in te r ru p te d  tim es a . and b .% %
r e s p e c t iv e ly .  Precedence c o n s tr a in ts  between jo b s  are re p re se n te d  by a 
d ir e c te d  a c y c l ic  graph G, where the v e r t ic e s  o f  G re p re se n t the jo b s .
Job i  m ust be p rocessed  b e fo re  job  j  on each machine i f  th e re  e x i s t s  a 
d ir e c te d  pa th  from  v e r te x  i  to  v e r te x  j .  The o b je c t iv e  i s  to  f i n d  a 
sch ed u le  th a t  m in im izes th e  maximum com pletion  tim e on th e  second  machine. 

Given any sequence n = ( tt( 1 ) .......m(n)}, the minimum completion

I
times and o f  the f i r s t  job in the sequence on the f i r s t  and

second machines are equal to a ^ j  and a ^ ^  + b ^ j  re sp e c t iv e ly .  The 

minimum completion times o f  any other job u ( i )  ( i = 2 .......n) on the f i r s t
I I

and second machines are g iven  by + a ^ . ^  and = max

(Cu ( i - D ’ Cm ( i ) } + b7i(i) reSPe c t i v e lV*

We re c a l l  from Sect ion  8.1 that the two problems F2/B/y and P2/B/y

are equ iva len t,  i .e .  we on ly  need to con s ide r  schedules in which the same 

p roce ss in g  order occurs on both machines.

Johnson (Johnson, 195*0 gave an e f f i c i e n t  a lgo r ithm  fo r  the uncon­

s t ra in e d  case, which is  considered as one o f  the most important break­

through in machine schedu ling  problems.

M itten  (M itten, 1959A and 1959B) considered  a problem which i s  

s im i l a r  to Johnson s problem. In h is  model, each job i has p ro ce ss in g  

times a. and bj on the f i r s t  and second machines r e sp e c t iv e ly ,  a non-
I ,

negative  s t a r t - l a g  a. and a non-negative  s t o p - la g  b . . The s t a r t  lag is
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defined to be the minimum time between the s t a r t  o f  p ro ce ss in g  job i on 

the f i r s t  machine and the s t a r t  o f  p ro ce ss in g  job i on the second machine, 

w h ile  the stop lag is  defined to be the minimum time between the completion 

o f  p roce ss in g  job i on the f i r s t  machine and the completion o f  job i on the 

second machine. He gave a d ec is io n  ru le  to ob ta in  a p ro ce ss in g  o rder of 

the jobs on both machines in  order to minimize the to ta l e lapsed time.

K u r isu  (K u r isu ,  1976) applied  M i t t e n 's  r e s u l t s  to p rov ide  an 

e f f i c i e n t  a lgo r ithm  fo r  the two machine flow shop problem under precedence 

c o n s t r a in t s  in which the c o n s t ra in t s  form a " p a r a l l e l  ch a in ".  Th is  

a lgo r ithm  i s  based on forming composite jobs,  each o f  which c o n s i s t s  of 

at le a s t  one job that must be processed w ithout in te r ru p t io n  in the same 

o rde r  they form that composite job.

Sidney (S idney, 1979) and Monma (Monma, 1979) app lied  K u r i s u ' s  

r e s u l t s  to provide  an e f f i c i e n t  a lgo r ithm  fo r  the two machine problem w ith 

s e r i e s - p a r a l l e l  c o n s t ra in t s .  The a lgo r ithm  requ ire s  0(n logn )  step s.  The 

problem has a l s o  been considered in (Monma s S idney, 1979).

However, fo r  general precedence c o n s t r a in t s ,  the problem has been 

shown to be NP-hard (Monma, —  ). Ku r isu  (K u r isu ,  1977) stud ied  t h i s  

general case and gave an e f fe c t io n  branch and search a lgo r ithm  to ob ta in  

an optimum sequence. He did not make any attempt to d e r ive  a lower bound­

ing procedure to be used in h i s  proposed a lgor ithm .

We now introduce some terms that are used in la te r  se c t io n s .  The 

t r a n s i t i v e  c lo su re  o f  the d irected  graph G is  the graph obta ined by adding 

a l l  a rcs  ( i , j )  ( i f  i t  ' s not in G) to G whenever there is  a d ire c te d  path 

from ve rtex  i to ve rtex  j .  The t r a n s i t i v e  re d u c tio n  o f  G i s  the graph 

obtained by d e le t in g  a l l  a rc s  ( i , j )  from G whenever there i s  a d irected  

path from vertex  i to ve rtex  j other than the arc  ( i , j )  i t s e l f .  The 

in v e r s e  o f  G i s  the graph obtained by re v e r s in g  the d i r e c t io n  o f  every 

a rc  ( i , j )  in G. The adjacency m a tr ix  o f  the t r a n s i t i v e  c lo su re  o f  G is
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the n x n matrix X = ( x .^ ) ,  where x fj. = 1 i f  there e x i s t s  an a rc  ( i , j )  in the 

t r a n s i t i v e  c lo su re  o f  G and x . j - 0  o therw ise . Job i i s  a p red ecesso r  o f 

job j and job j i s  a su ccesso r  o f  job i i f  the arc  ( i , j )  e x i s t s  in the 

t r a n s i t i v e  c lo su re  o f  G. Job i i s  a d ir e c t  p red ecesso r  o f  job j and job j 

¡s a d ir e c t  su ccesso r  o f  job i i f  the arc  ( i , j )  e x i s t s  in the t r a n s i t i v e  

reduct ion  o f  G.

In t h i s  chapter we sh a l l  g ive  a bounding procedure to so lve  th is  

general case ( i . e .  F2/prec/Cmax) u s in g  the b ranch ing ru le  proposed by 

Ku r isu  (K u r isu ,  1977). Sect ion  9.2  con ta in s  K u r i s u 's  branch ing ru le  to ­

gether w ith  some dominance theorems. Our bounding procedures w i l l  be 

g iven  in Sect ion  9.3  followed by a h e u r i s t i c  in Se c t ion  9 .4 . Our branch 

and bound a lgor ithm  w i l l  be expla ined in Sect ion  9 .5 ,  where we s h a l l  con­

s id e r  an example from (K u r isu ,  1977). A complete d e sc r ip t io n  o f  the 

a lgo r ithm  is  g iven  in Sect ion  9.6. Computational experience  i s  presented 

in Se c t ion  9 .7  which is  fo llowed by some conclud ing  remarks in Se c t ion  9.8.

9.2______Branching Rule and Dominance

We s t a r t  t h i s  sec t ion  by g i v in g  the branching ru le  proposed by 

K u r isu  (K u r isu ,  1977). Th is  branch ing ru le  p a r t i t i o n s  the se t  o f  f e a s ib le  

s o lu t io n s  to the problem in to  subse ts,  some o f  which w i l l  be e lim inated  

u s in g  the dominance theorems to be g iven below. E s s e n t i a l l y ,  at each 

branch ing  a job i s  sequenced e ith e r  f i r s t ,  l a s t ,  immediately before 

another g iven  job o r  immediately a f te r  another g iven  job.

We now g ive  four r e s u l t s  that were used by K u r isu  to act as 

dominance ru les to reduce the number o f  branches o f the search  tree. The 

theorems are r e su l t s  fo r  the o r i g i n a l  problem, where the c o r o l l a r i e s  are 

the correspond ing re su l t s  fo r  the equ iva len t  in ve rse  problem in  which the 

o b je c t ive  i s  to minimize the maximum completion time sub ject  to the 

precedence c o n s t ra in t s  defined by the in ve rse  graph. I t  has become c le a r  

now that the problem is  symmetric.
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Let us f i r s t  def ine  some nota t ion s  that are go ing to be used 

below. Let S denote the set o f  unscheduled job s ,  le t  B and A be the set 

o f jobs w ith no predecessors and the se t  o f jobs w ith  no succe sso rs  

re sp e c t iv e ly .  Define B. and A. to be the se t  o f  jobs that must precede 

and succeed job i in any f e a s ib le  schedule re sp e c t iv e ly .  A lso ,  de f ine  B.

I
and A. to be the se t  o f  jobs that d i r e c t l y  precede and d i r e c t l y  succeed 

job i .

F in a l l y ,  we l ik e  to po in t out that a l l  jobs i to be considered in

t h i s  chapter w i l l  have the property  that a .=C j-b .  and b j= C . -a . ,  where a!

1
and b. are as defined in the prev ious se c t ion  and C. i s  the minimum com­

p le t io n  time o f  job i ,  as i l l u s t r a t e d  in  F igu re  9 .1 . The o r i g i n a l  problem
I I

i s  obtained by s e t t in g  a.=a. and b.=b. fo r  a l l  i.  As we s h a l l  see below,

i t  w i l l  be usefu l to s u b s t i tu te  jobs fo r  sequences o f  jobs that are known

to be processed w ithout in te r rup t io n .  I f  K = (k 1,k2 ....... kj) i s  a composite
■ i J

job c o n s i s t in g  o f J s in g le  job s,  then a^=C^-b^ and b^=CK- aK , where aK = I  
J i = 1

ak i '  bK =. 1  bki and CK ‘ s the m in ' murn p o s s ib le  completion time o f  the

composite job K (assuming that on ly  jobs  in K are to be p rocessed ).  F igu re

9.1 w ith  K su b st itu te d  fo r  i ,  i l l u s t r a t e s  a composite job. We remark that 
h-1 J

(  ̂ akj + + £C„ = max
K h=1 , . . • , J ¡=1

* a > Lu hj « •
h i=h+l kl

a.
i — — *

cr^ a . ?
I
I

if---------------------  C. -------------------- *

F igu re  9 .1 : Typ ica l job



Theorem 9-1 (Ku r isu ,  1977)
' t  t tI f  f o r  a job  izB , < b^ and =£ a . f o r  a l l  jo b s  jz B , th en  th e re  

e x i s t s  an optimum sch ed u le  in  which jo b  i  i s  sequenced  f i r s t .
C o ro l la r y  9.1 (K u r isu ,  1977)

i t  i tI f  f o r  a job  izA , b_i  $ and b^ S b . f o r  a l l  jo b s  jz A s th en  th e re  
e x i s t s  an optimum sched u le  in  which jo b  i  i s  sequenced l a s t .
Theorem 9.2 (K u r isu ,  1977)

I f  f o r  a jo b  i  w ith  B 4 0 ,  a \  K b \ and a \  $ a .  f o r  a l l  jo b s  j z S ,  th en  
th e re  e x i s t s  an optimum schedu le  in  which jo b  i  i s  sequenced  im m edia tely  
a f t e r  one o f  i t s  d ir e c t  p red ecesso rs .
C o ro l la r y  9.2  (K u r isu ,  1977)

' i  i tI f  f o r  a job  ^ w ith  A 4 0 t bi  S a . and b^ < h . f o r  a l l  jo b s  j z S t  
th en  th e re  e x i s t s  an optimum sched u le  in  which jo b  i  i s  sequenced  
im m ediately  b e fo re  one o f  i t s  d ir e c t  su c ce sso rs .

We next g ive  a formal statement of K u r i s u ' s  branch ing procedure.

Step 1 . 1 : I f  on ly  one job e x i s t s  in B, sequence t h i s  job f i r s t ;  
otherw ise  proceed to Step 1.2.

Step 1 .2 : I f  on ly  one job e x i s t s  in  A, sequence t h i s  job l a s t ;  
otherw ise  proceed to Step 2.1.

Step 2.1 :
1 1 I I

I f  there e x i s t s  a job ieB such that a. $ b. and a. £ â . fo r

a l l  jeB, then sequence job i f i r s t  (Theorem 9 -1 ) ;  otherw ise  
proceed to Step 2.2.

Step 2 .2 :
i i  i i

I f  there e x i s t s  a job i eA such that b. $ a. and b. $ b^ fo r

a l l  jeA, then sequence job i l a s t  (C o ro l la ry  9 .1 ) ;  o therw ise  
proceed to Step 3.1«

Step 3.1:
i i  i i

I f  there e x i s t s  a job ieB, such that a. $ b. and a. i  a. fo r
i i i i j

a l l  jobs,  then le t  n  ̂ be the number o f  jobs in B.; otherw ise  
le t  n^=n.

Step 3.2:
■ i i i i

I f  there e x i s t s  a job i eA, such that a.i > b .*, and b .1 $ b.
i i 1 i J

fo r  a l l  jobs  j ,  then le t  n^ be the number o f jobs in A.; 
otherw ise  le t  n2=n.

Step 4.1 : I f  0 < n| K n2 i a composite job ( i . e .  a new vertex) k= j i

i s  added to G, ve rtex  j and ve rtex  i are deleted from G 
where j e B I ; o therw ise  proceed to Step 4.2.
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Step 4.2: A composite job k= i ' j is  added to G, ve rtex  i 'a n d  ve rtex  i 
are deleted from G, where jeA i. ve rtex  j

i

Whenever a new composite job K= i j  U  performed, the precedence

graph G i s  updated as fo l low s.

(a) Vertex i and ve rtex  j are deleted and a new 
s in g le  ve rtex  K = ( i , j )  is  added.

(b) For each arc  ( h , i ) or ( h ,j ) in G, where h * i ,  
an arc  (h,K) i s  added.

(c) For each arc  ( i , h )  o r  ( j ,h )  in G, where h * j , 
an a rc  (K,h) is  added.

Now we sh a l l  g ive  two re su l t s  which w i l l  be re fe rred  to as the 

dominance ru le s .  C le a r ly ,  dominance ru le s  are p a r t i c u la r l y  usefu l when a 

node can be e lim inated  which has a lower bound that i s  le s s  then the 

optimum so lu t io n .

Let L denote the va lue  o f  any lower bound.

Theorem 9-3 (Po tts,  1974) n
I f  f o r  a fo b  icB , a .  5 t {  and a< + b .  5 L, th en  th e re  e x i s t s  

an optimum sequence in  which jo b  i  i s  sequenced f i r s t .
Coro 11 a ry  9-3 (P o tt s ,  1974)

nf *
I f  f o r  a job  ieA t b .  $ a . and b .  + Z a . S L, then  th e re  e x i s t s

¿=1 0an optimum sequence in  which jo b  i  i s  sequenced la s t .

9,3______Lower Bounds

In t h is  se c t ion ,  we s h a l l  be in te re sted  in d e r iv in g  lower bounds 

on the maximum completion time fo r  a l l  f e a s ib le  schedu les beg inn ing  w ith  

an i n i t i a l  p a r t ia l  sequence and ending w ith  a f in a l  p a r t ia l  sequence 

Let Sj be the se t  o f  jobs sequenced in Oj and be the se t  o f jobs  

sequenced in A lso ,  le t  Cal denote the minimum completion time o f  a l l

job s  in  0  ̂ and C o2 denote the minimum time between the s t a r t  o f  p ro ce ss in g  

job s  in  o2 on the f i r s t  machine and the completion o f  p ro ce s s in g  jobs in 

a2 on the second machine (we de f ine  Ca1 = 0 i f  = 0 and C a2 = 0 i f

S2 = 0). F in a l l y ,  fo r  each job i we de f ine  1. _ { j / ( i , j ) and ( j , i )  are 

not in G).
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9.3.1 Job Based Bound

Lower bounds based on ind iv id ua l  jobs (job-based bound) rather than 

in d iv id u a l  machines (machine-based bound) were f i r s t  proposed by McMahon 

and Burton (McMahon £ Burton, 1967).

Consider an unscheduled job i.  Each job j = 1 , . . . ,n , j^ i  must be 

sequenced e ith e r  before or a f te r  job i.  I f  job j precedes job i e i th e r

because j e S 1 or because an arc ( j , i )  e x i s t s  in G, then aj must be added

when computing a lower bound. I f  job j succeeds job i ,  e i t h e r  because jeS^ 

o r  an a rc  ( i , j )  e x i s t s  in G, then b^ can be added to the lower bound. I f ,  

on the other hand, i t  i s  not known whether job j  precedes o r  succeeds job i,  

then the sm aller o f â . and b^ may be added to the lower bound. F in a l l y ,  

the minimum completion time o f  job i ( ig n o r in g  other jo b s ) ,  C., can a l s o  

be added to g ive  a r e a l i s t i c  bound LB. (see F igu re  9.2) as fo l low s:

LB. = I  a. +  Z a. +  C. +  Z b. +  Z b. +  Z m in (a .,b .)
j e S 1 J jeB. J j e S 2 J jeA. J j e l .  J J

We s h a l 1 refer to such a job i as the c r i t i c a l  jo b .

°1
jeB.

j e l .
£ 1

a ,$b . 
J J

'

a .>b . 
J J

j eA.
J i °2

F igure  3 .2 : The s t ru c tu re  o f  the proposed job based bound

Thus an o ve ra l l  lower bound is  g iven  by

LB = max (LB.) 
i eS

Two ad d it ion a l  lower bounds, based on Oj and c?2 instead o f  job i ,  

may be g iven as fo l low s:
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LB01 C01  +  }  bj ’
j ^ s 1 J

i f  s 1 * 0 .

and

mi n a . + E b .,
jeB j = 1

LBo2 Co2 + * aj ’
j ^ s 2

i f  s 1 = 0 .

i f  S 2 4  0.

m in b .  + E a . ,  i f S = 
jeA J J=1 J 2

We def ine

LBJg = maxiLB^,, LB, LBa0)cl a r

9 .3 -2  C o n f l ic t  Bound

Let LB. ( ie S )  denote the lower bounds obtained as above. Consider

two jobs i and j in S such that the two arcs  ( i , j )  and ( j , i )  are not in G.

We have two cases to look at.

Case 1: a. > b. when a. > b.
11________ J J________ 1 1

I f  job  i i s  chosen to act as the c r i t i c a l  job, then bj w i l l  be 

added when computing LB. ( i . e .  as i f  job j i s  sequenced a f te r  job i ) .

When job  j i s  chosen to act as the c r i t i c a l  job ,  then b. w i l l  be added 

when computing LB̂ . ( i . e .  as i f  job i i s  sequenced a f te r  job  j ) .  But s in ce  

we can have e ith e r  i before j (i +  j )  o r  i a f te r  j (j -  ¡ ) ,  then we have 

one o f  two ways in which we may be ab le  to improve the lower bound.

(a) i -» j

In th is  case LBj can be increased by a .-b ..  Thus a lower bound for  

t h i s  case i s  g iven  by:

m ax(LB.,LB.+  a. - b )
* J i i '
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j £ )__ m .
In t h i s  case LB. can be increased by aj -  b j . Thus, a lower bound 

fo r  t h i s  case i s  given by:

max (LB. + â . - b  ̂, LB^)

Thus a lower bound fo r  the problem is  given by:

LB.j = min{max(LB.,LBj + a . - b . ) ,  max(LB. + aj " bj » LBj ) }

Case 2: a. < b. when a. < b.J . - J. - ■ *

S im i la r  to Case 1, a lower bound is  g iven  by:

LB.. = mi n{max(LB. , LB . - a. + b . ) ,  max(LB. -  a. + b . , LB ) }
i j  i J  i i i j  J  j

I
An o v e ra l l  bound LB i s  given by:

I
LB = max{LB../i and j as defined above}

' . j  U

As we have sa id  before, i and j can be any two jobs in S such that

the two a rcs  ( i , j )  and ( j , i )  do not belong to G. I t  i s  c le a r  that LB. i s
'J

l i k e l y  to be increased when LB. and LB^ (or both) are as la rge  as p o s s ib le .

For t h i s  reason and to reduce computational requirements, we propose to

choose one o f  the jo b s ,  say i ,  w ith  LB. = LB and then compute LB .j  f o r  a l l

je S  such that a rc s  ( i , j )  and ( j , i )  are not in G.

I t  i s  c le a r  that there i s  no need to compute a s im i l a r  c o n f l i c t

bound LB., when a. < b. and a. > b s in ce  in t h i s  case LB.. = max(LB..LB ).
' J  1 1  J J  i j  * J

A lso ,  there is  no need to compute LB.^ i f  there e x i s t s  an a rc  between

ve rtex  i and ve rtex  j ( ( i »j ) o r  (j , i )) in G, s in ce  there is  on ly  one choice

to take that is  accord ing  to the precedence graph G and hence LB.. =
'J

m ax(LB., LB ^ ) .

From the above we conclude that the c o n f l i c t  bound, LB*, i s  at 

le a s t  as good as the job based bound.

We define

LB
CB

max(LBa |, LB , LBa2 )
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9.*» H e u r i s t ic

It  i s  well-known that computation can be reduced by u s ing  a 

h e u r i s t i c  to f ind  a good s o lu t io n  to act as an upper bound. The h e u r i s t i c  

proposed below is  app lied  once at the top o f  the search tree. I t  requ ire s  

2
0 (n ) i f  the t r a n s i t i v e  c lo su re  o f  the d irec ted  graph G i s  known.

Follow Steps 1 and 2 o f  the formal statement o f  the branching 

procedure given in Sect ion  3 .2 .
Step 3 • I f  a j > b. fo r  a l l  jeB and aj i  bj fo r  a l l  jeA then sequence 

a job ieA w ith minCa^.b.) $ m in (a .,b .)  fo r  a l l  job s  jeA la s t  

and go to Step 5; o therw ise  proceed to Step k .
Step Sequence a job ieB w ith  m in (a .,b j)  $ m in (a .,b .)  fo r  a l l  jobs

jeB f i r s t  and proceed to Step 5.

Step 5: Delete job i from G and update the two se t s  B and A. I f  a l l

jobs  have been sequenced, stop ;  o therw ise  go to Step 1.

I f  it i s  the sequence obtained u s ing  the above procedure, then the completion

o f  each job sequenced in tt can be computed. The completion time o f  the l a s t

job in the sequence forms an upper bound on the va lue  o f  Cmax

Remark

One can obta in  a sequence which i s  at le a s t  as good as the sequence 

obta ined u s in g  the above h e u r i s t i c  as fo l low s.  Consider the b ranch ing  p ro ­

cedure g iven  in Section  9.2. Suppose that h nodes (each node corresponds 

to a composite job been performed accord ing to Step h o f  the a lgo r ithm , 

and where h = m in in ^ n ^ )  e x i s t  at level k o f  the search tree. Apply the 

h e u r i s t i c  g iven  above at every one o f  these h nodes. A node w ith  the 

sm a l le s t  va lue o f the h e u r i s t i c  i s  chosen to branch from. A l l  o ther nodes 

a re  e lim inated  from the search tree.

Th is  h e u r i s t i c  method i s  g iven  in Se c t ion s  3 .3 .3  and 5.5.

9 . 5 _____Example

In th is  sect ion  we sh a l l  i l l u s t r a t e  our branch and bound procedure
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b y  c o n s i d e r i n g  a n  e x a m p l e  w h i c h  a p p e a r e d  i n  K u r i s u  ( K u r i s u ,  1 9 7 7 ) .  T h e  

p r o c e s s i n g  t i m e s  o f  t h e  j o b s  o n  t h e  t w o  m a c h i n e s  a r e  g i v e n  i n  T a b l e  9 . 1 .  

T h e  p r e c e d e n c e  g r a p h  G f o r  t h e  e x a m p l e  i s  g i v e n  i n  F i g u r e  9 . 3 .  E a c h  n o d e  

h a s  t h r e e  e n t r i e s :  j o b  n u m b e r  i ( t o p ) ,  a  s t a r t - l a g  a !  ( l e f t )  a n d  a  s t o p -  

l a g  b .  ( r i g h t ) .

Table 9 . 1

i 1 2 3 b 5 6 7 8 9

a.
i

b 6 3 8 10 5 9 2 3

b.
i 7 5 1 b 7 6 3 9 1*

F !9ure 9- 3: Precedence Graph G



We have:1 .

B = {1 ,2 ,3 }  and A = ( 7 ,8 ,9 )
1 1 1 1

Since  by $ min(a^, bg, b ^ ) , then job 7 can be sequenced la s t  

(C o ro l la r y  9.1)•

2. Having sequenced job 7 la s t  ( i . e .  o 2  = { 7 }) and deleted node 7

and a l l  a rcs  to that node in G ( le t  G1 be the r e s u l t in g  graph ),  the set 

o f  jobs w ith no succe sso rs  A becomes A = {**,8,9).
I I I I

S ince  b^ $ min(a^, bg, b ^ ) , then job k can be sequenced la s t .  

D e le t in g  node and a l l  a rcs  to that node in G1, we get the precedence 

graph G  ̂ which i s  shown in F igu re  3 .k .

F igure  9-^: Precedence Graph G0
----------------------- _ l __________ ________ £

3. We have

~ ^ » 7 ) »  B = d » 2 , 3 )  and A = { 8 ,9 }

Both Theore» 9.1 and C o ro l la r y  9.1 cannot be s a t i s f i e d  here and

thus composite jobs have to be formed.
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S! nee

I

I

Set o f  jobs with at le a s t  one predecessor is  (5 ,6 ,8 ,9 ) .
| I I I I

m in(bg, a,., a^, a^) , se t  i=8. We have B. = (5 ,6 }  and thus n^=2. 

Set o f  jobs w ith at le a s t  one succe sso r  i s  { 1 , 2 , 3 , 5 ,6 } .  S ince

........................... i i
m in(a^, b ^  b2 , b,., bg) , se t i = 3 .  We have = {5 ,6 }  and thus

S ince  n  ̂ = n2 then we have two composite jobs 

to con s ide r:  (3_5 ) and ( 3- 6 ).

We sh a l l  compute our lower bounds fo r  the node correspond ing to 

forming a composite job ( 3 " 5 ) • The precedence graph fo r  t h i s  case, G^, 

i s  g iven  in F igu re  9-5.
n

Since  S 1 = 0, LB = min a + E b. = 4 + 46 = 50 
1 ieB ¡=1 1

and

a2 = (4,7), LBa2 = Co2 + j^s â . = 21+4+6+8+10+2+3 = 54

We remark that a ^ _ g j  -  8 , b ^_g ^  = 7 and ^ ( 3 - 6) -  14.

LB = (4+7) + (4+3) + (7+9) + (5+7+3) = 49.

LB2 = (6+5) + (4+3) + (7+9) + (4+7+3) = 48.

F igure  9.5: Precedence Graph G
3
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l b ( 3_6) = (14) + {k+3) + (4+7+9) + (4+5) = 50.

LBj. = (4+6+8) + (10+7) + (4+3) + (9) + (3) = 5 4 .

LBg = (4+6+8+10) + (2+9) + (4+3) + (3) = 4 9 .

LB9 = (8) + (3+4) + (4+3) + ( 4+S+7+2) = 40.

LB = 54

£LBJB = max(50,54,54) = 54.

A c o n f l i c t  bound LB^ gcan  be computed as fo l low s:  

LB1 g=  min(max(49,40-4+7) , max(49~3+4,40))

= 48

S im i l a r l y ,  LBg>g= 49 and L B ^ . ^  = 50.
I

In t h i s  case we have LB = LB = 54 and hence LB„ = LB = 5 4
CB JB

In a s im i la r  way, one can compute lower bounds fo r  the node 

correspond ing to forming a composite job (3~5) to g ive :

l b cb = lB JB = 56-

4. We have

B = ( 1 , 2 , ( 3 - 6 ) }  and A = { 8 ,9 }.

S ince  a, < m i n ^ ,  a2 , a 3_6 ) . Thus job 1 can be sequenced f i r s t  

(Theorem 9 .1 ) .  De le t ing  node 1 and a l l  a rcs  from that node in Gj, we get 

the precedence graph g iven  in F igure  9 .6 .

F igure  9 . 6: Precedence Graph
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The procedure can be completed in a s im i l a r  way to g ive  an optimum 

sequence fo r  the example ( 1 ,3 ,6 ,9 ,2 ,5 ,8 ,4 ,7 ) ,  which has a value 54.

9.6_____ The A lgo r i  thm

Here, we sh a l l  g ive  a complete d e sc r ip t io n  o f  the a lgo r ithm  in i t s  

general form, i .e .  in the case where the h e u r i s t i c ,  dominance r u le s ,  the 

job based bound and c o n f l i c t  job bound are a l l  used. Each o f  the other 

a lgo r ithm s is  a spec ia l case o f the a lgo r ithm  described  here.

We s t a r t  the a lgor ithm  by computing the t r a n s i t i v e  c lo su re  o f the 

precedence graph. Th is  requ ires O(n^) steps. We then apply  the h e u r i s t i c  

method g iven  in Sect ion  9 .4  to ob ta in  a sequence. The completion time o f  

each job in t h i s  sequence is  then ca lcu la ted .  The va lue  o f  the completion

time o f  the la s t  job in t h i s  sequence forms an i n i t i a l  upper bound on C max

The branch and bound procedure i s  then s ta rted .  Before any new

node i s  created, Steps 1 and 2 o f  Sect ion  9 .2  and the dominance ru le s

(Theorem 9 *3  and C o ro l la ry  9 .3) are checked in that o rder.  I f  a job i can 

be found s a t i s f y i n g  the cond it ion s  o f  Step 1.1, Step 2.1 o r  Theorem 9.3  

(Step 1.2, Step 2.2 or C o ro l la r y  9 .3 ) ,  then a s in g le  successo r  node i s  

created in the search tree, w ith  a lower bound equal to that o f  i t s  parent, 

co rre spond ing  to job i being sequenced f i r s t  ( l a s t ) .

For each node o f  the search tree (corresponds to perform ing a com­

p o s i t e  job k"=ij accord ing to Step 3 or 4 o f Sec t ion  9 .2 ) ,  the t r a n s i t i v e  

c lo su re  o f G is  updated by adding the arc  (h ,j ) whenever an arc  (h , i )  

e x i s t s  (h^j) anc* by adding the arc  (h»k) whenever the a rc s  ( h , i )  and ( j , k )  

e x i s t  (h/j,  k ^ i ) .  The lower bounding procedure fo r  that node i s  then 

s ta rted  as fo l low s.  An 0 (n ) s t e p y i s  spent on computing LB. fo r  each job i

( i = 1.......n ) , i .e .  0 (n ) steps is  needed to compute, LB, the job based bound

o f  Sect ion  9 .3 .1 .  I f  LB i s  not le s s  than the cu rrent upper bound, t h i s

node i s  e lim inated . Otherwise, 0 ( n) s tep s  i s  needed to compute LB and
a1
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LBa2 o f  Sect ion  9 .3 .1 .  I f  the lower bound obtained so fa r  i s  not le s s  than

the cu rrent upper bound, t h i s  node is  e l im inated .  Otherwise, g iven  a job i

w ith  LB. = LB, we spend a fu r th e r  0(n) steps on c a lc u la t in g  Lb ' ,  the con-
1

f l i c t  bound. Th is  node i s  e lim inated  i f  LB is  not le s s  than the upper 

bound, otherw ise  i t  forms the b a s is  fo r  our next b ranch ing s.

The branch and bound procedure continues in a s im i l a r  way. When­

ever a complete sequence i s  obta ined, t h i s  sequence i s  eva luated  and the 

upper bound i s  a lte red  i f  the new value is  le s s  than the o ld  one.

F in a l l y ,  our search  s t ra te g y  is  g iven .  A node from which to branch 

i s  chosen at random from the most recent ly  created subset o f  nodes. As 

mentioned in Sect ion  3 *2 , the advantage o f  t h i s  type o f  search  s t ra te gy  

i s  that i t  requ ire s  le s s  storage  space than i f  another search s t ra te g y  

i s  used.

9 .7 _____Computational Experience

9 .7 .1  A lgor ithm  Representation

I t  i s  c le a r  from the above se c t io n s  that each a lgo r ithm  to be

considered  can be represented by ( LBD, UBD, DOM) where:

LBD = JB, CB or  - Descr ibes the bound to be used (see Sect ion  9 .3 ) .
I f  n e ithe r  o f  the bound iis  used LBD = -.

UBD = H or -  Accord ing to whether the h e u r i s t i c  o f  Se c t ion  9.^
is  o r  i s  not used.

DOM = D o r Accord ing to whether the dominance ru le s  (Theorem
9.3 and C o ro l la r y  9 *3) o f  Sect ion  9.2  are  o r  are 
not used.

9 .7.2  Test Problems

The a lgo r ithm s were tested on problems w ith  20, bO, 50 and 60 jobs  

( i n i t i a l  te s t s  showed problems w ith  60 jobs to be much harder than problems 

w ith  b0 jobs.  For t h is  reason we decided to inc lude  r e s u l t s  fo r  50 job 

p rob lem s) . These problems contained problems w ith  random and co r re la ted
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p ro c e s s in g  times. For each job i ,  two in te ge r  p ro ce s s in g  times a. and b
i i

were generated from the uniform d i s t r i b u t i o n  [ 1 , 100] or [20e .+ 1 , 20e .+20] 

a cco rd ing  to whether the p roce ss in g  times fo r  that problem are to be 

random o r  co rre la ted ,  where e. i s  an in teger randomly drawn from ( 1 ,2 ,3 , 4 , 5 }. 

T h is  method o f  p ro ce ss in g  times generation  fo l low s  that o f  (lageweg, Lenstra  

S Rinnooy Kan, 1978). In the precedence graph G, each a rc  ( i , j )  w ith i< j 

was included w ith  a g iven  p r o b a b i l i t y  p. For each value o f  n, twenty 

problems (ten with random p rocess ing  times and ten w ith co r re la ted  p ro ­

c e s s in g  times) were generated fo r  each o f  the p va lues  0 .05, 0 .2 , 0 .3 , 0 5 

and 0.75. Thus 400 problems in a l l  were used to te st  the a lgo r ithm s.

9 .7 .3  Computational Resu lts

The a lgo r ithm s were coded in FORTRAN IV and run on a CDC 7600 

computer.

Computational r e su l t s  fo r  problems w ith  random p roce ss in g  times are 

g iven  in Tables 9.2  to 9 .4. Computational r e s u l t s  fo r  problems w ith  c o r ­

re la ted  p roce ss in g  times are g iven  in Tables 9-5  to 9 .7 . Whenever a 

problem was not so lved w ith in  the time l im it  o f  70 seconds o r  a f t e r  15,000 

nodes had been generated (whichever occurs f i r s t ) ,  computation was abandoned 

f o r  that problem. Thus, in some cases the f ig u re s  g iven  in Tables 9 .2 ,  9 3

9 .5  and 9.6  w i l l  be lower bounds on average computation times and average 

number o f  nodes.

As we mentioned above, the te s t  problems have been d iv ided  in to  two 

groups,  the f i r s t  group con ta in s  problems w ith  random p roce ss in g  times and 

the second one conta in s  problems w ith co rre la ted  p ro ce s s in g  times.

With regard to the f i r s t  group, average computation time, average 

number o f  nodes and number o f  unsolved problems are g iven  in Tab les 9 2 ,

9 .3  and 9.4  re sp e c t iv e ly .  The f i r s t  three columns o f  each Table compare 

the performance o f  K u r i s u ' s  branching ru le ,  w ith the job based bound and
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Table 9.2: Average Computation Time fo r  Problems
___________ w ith  Random P roce ss in g  T im es*“___________

ALGORITHM
n p

( J B , - , - ) (CB (CB,H,-) (CB,H,D)

20 0.05 0.03 0.03 0.03 0.03 0.04
0.2 0.06 0.05 0.05 0.05 0.05
0.3 0.07 0.06 0.06 0.05 0.05
0.5 0.07 0.06 0.05 0.06 0.06
0.75 0.05 0.06 0.05 0.06 0.06

40 0.05 0.35 0.30 0.30 0.28 0.33
0.2 19.10* 3.95 3.62 3.58 3.31
0.3 13.56* 2.00 1.97 1.91 1.70
0.5 3.71 0.87 0.87 0.83 0.80
0.75 0.77 0.73 0.73 0.71 0.71

50 0.05 5.01 0.67 0.67 0.58 0.65
0.2 - - 22.63* 11.89 11.76 11.82
0.3 40.65* 8.23 4.35 4.29 3.72
0.5 9 .48* 2.42 2.42 2.32 2.21
0.75 1.99 1.77 1.77 1.67 1.68

60 0.05 41.12* 1.27 1.26 1.08 1.13
0.2 - - — - “ - - - -

0.3 38.42* 38.54* 38.42* 38.24* 37.78*
0.5 24.10* 3.93 3.93 3.71 3.70
0.75 4.33 3.65 3.64 3.43 3.44

* *  Times are in CPU seconds.

* Lower bounds because o f unsolved problems. 

- More than 7 problems were le f t  unsolved.
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Table 9 .3 :  Average Number o f  Nodes fo r  Problems
____________ with Random P roce ss in g  Times_______

n p
(JB , ~

20 0.05  b 3
0.2 28 10
0.3  33 12
0.5  17 7
0.75  2 2

40 0.05 36 13
0.2 7915* 935
0.3 5291* 371
0.5 1109 bO
0.75 25 8

ALGORITHM

(C B , - , - )  (CB.H,-)

3
10
12
72

1
7
5
5
1

13
816
358

*♦0
8

1
800
335

29
2

(CB,H,D)

0

1
772
300
231

50 0.05
0.2
0.3
0.5
0.75

0.050.2
0.3
0.5
0.75

1595

11335*
2144*

68

4884*
4452*

151

24
3669-
1480
150
15

24
1525606
150

15

5094*
64
25

4883*
64
24

4
1492
594
1331

4861*
42
6

3
1446
449
109

1

4g64*
4o
6

*  Lower bounds because o f unsolved  problems 

- More than 7 problems were le f t  unsolved.

170 -

O
 LA LA-3*



Table 9. A: Number of Unsolved Problems w ith
_____________Random P roce ss in g  Times_____________

n P
(JB ,-,

AO 0.05 0 0
0.2 A 0

0.3 2 0

0.5 0 0

0.75 0 0

ALGORITHM

(C B ,- , - ) (CB,H,-) (CB.H.D)

50 0.05 0
0.2 >7
0.3 6
0.5 1

0.75 0

02
0
0
0

0
0
0
0
0

0
0
0
0
0

60 0.05 7 0 0 0 0
0.2 >7 >7 >7 >7 >7

0.3 5 5 5 5 5
0.5 1 0 0 0 0

0.75 0 0 0 0 0
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Table 9.5: Average Computation Time fo r  Problems
_________ w ith  Corre lated P roce ss in g  T im es*"_________

ALGORITHM

n P (JB (C B , - , - ) (CB,H,-) (CB,H,D)

20 0.05 0.03 0.03 0.03 0.04 0.04
0.2 0.16 0.09 0.09 0.09 0.07
0.3 0.16 0.11 0.10 0.08 0.08

0.5 0.08 0.06 0.06 0.06 0.06
0.75 0.05 0.06 0.06 0.06 0.06

*40 0.05 A .26 1.05 1.05 1.08 0.69
0.2 - - 4.21 4.16 3.93 2.45
0.3 14.28* * 0.97 0.97 0.91 0.88
0.5 1.40 0.81 0.81 0.75 0.72
0.75 0.77 0.76 0.76 0.72 0.72

50 0.05 17.36* 12.13* 12.22* 12.28* 8 .16 *
0.2 - - 12.19* 12.10* 12.07* 11.63*
0.3 — 15.96* 13.63* 13.63* 13.11*
0.5 11.46* 6.45 6.45 6.34 3.62
0.75 1.97 1.74 1.74 1.68 1.69

60 0.05 52.42* 37.37* 37.36* 37.40* 29 .31 *
0.2 - - - "* - - — —

0.3 50.06* 50.06* 50.06* 49.95* 46.29*
0.5 28.92* 19.07* 17.63* 17.49* 12.37*
0.75 4.43 3.53 3.52 3.44 3.43

* *  T i m e s  a r e  i n  CPU s e c o n d s .

* L o w e r  b o u n d s  b e c a u s e  o f  u n s o l v e d  p r o b l e m s .  

-  More t h a n  7 p r o b l e m s  w e r e  l e f t  u n s o l v e d .
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Table 9.6: Average Number o f  Nodes fo r  Problems
_________ w ith  Corre lated  P roce ss in g  Times__________

ALGORITHM
n p

( J B , - , - ) (C B , - , - ) (CB,H,-) (CB,H,D)

20 0.05 4 4 4 4 2
0.2 112 40 36 30 18
0.3 113 43 41 20 20
0.5 28 9 9 5 3
0.75 3 2 2 1 1

AO 0.05 1698 210 209 208 39
0.2 — 902 885 811 450
0.3 5838* 99 99 81 70
0.5 267 28 28 12 8
0.75 25 12 12 2 1

50 0.05 5671" 2767* 2767* 2767* 1390*
0.2 — 1740* 1714* 1698* 1367*
0.3 - - 2370* 1913* 1905* 1613*
0.5 2626* 748 747 726 281
0.75 77 14 14 1 1

60 0.05 12454* 4589* 4583* 4580* 2796*
0.2 - - “ - — - - - -
0.3 6626* 6812* 6629* 6615* 5095*
0.5 5326* 2340* 2072* 2050* 1378*
0.75 177 17 17 5 3

* Lower bounds because of unsolved problems. 

- More than 7 problems were l e f t  unsolved.
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Table 9.7: Number o f Unsolved Problems with 
Corre lated P rocess inq  Time«;

n p
A L GO RI TH M

(JB,-,-) (CB,-,-) ( C B , H ,-) (CB.H.D)

M O  0 .0 5 
0 . 2  
0.3 
0.5 
0.75

i  J • o l
' 0 0 0 n

s •

5 0  0.05 
0 . 2  
0.3 
0.5 
0.75

>7t 1 i I !
1 0 o 0 0
» 0 o o S

6 0  0.05 
0 . 2  
0.3 
0.5 
0.75

l 5 5 5 , 

>77 \ 7 >? > 7
* l l l  ‘ 

0 » 0 0
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Wl

al

, I th  the c o n f l i c t  bound re sp e c t iv e ly .  The e x c e l le n t  performance o f  our 

i I g o r  Ithrrs ( J B . - , - )  and (C B . - . - ) ,  on t h i s  c la s s  o f  problems I s  c le a r ,  

e s p e c i a l l y  fo r  problems o f  s i t e  1,0, which we managed to so lve  u s in g  e ith e r  

o f  our bounds. Furthermore, u s in g  a lgo r ithm  ( C B . - . - ) ,  we even managed to 

s o lv e  a l l  problems o f  s iz e  50. Unfortunate ly ,  the search trees fo r  two 

problems (out o f  50) o f s ize  50 become large  when our f i r s t  a lgo r ithm , i .e .  

( J B , - , - )  I s  used and hence these two problems were l e f t  unsolved. Among 

the  te s t  problems o f  s iz e  60, our a lgo r ithm s were p a r t i c u la r l y  e f f e c t iv e  

f o r  problems w ith p ,  0.05, 0.5 and 0.75. but problems w ith  p = 0.2  appear 

to  be too hard fo r  a l l  the a lgo r ithm s.  Columns 2 and 3 o f  Tables S .2 ,  9 . 3  

and 9 .«  show that the c r i t i c a l  bound (a lgo r ithm  (C B , - , - ) )  performs better

than the job based bound (a lgo r ithm  ( J B , - , - ) )  and hence i t  w i l l  be used 

hence forth .

By adding our upper bounding procedure, Columns 3 and o f  Tables

9 .2  and 9.3  show that a small reduction in computation (except fo r  some 

problems o f  s iz e  20) and in the number o f  nodes can be achieved. F in a l l y ,  

by adding the dominance ru le s ,  Columns b and 5 o f  Tables 9.2  and 9 3 show 

tha t  a fu r th e r  reduction  in computation can be achieved fo r  most problems

w ith  p = 0.2, 0.3 and 0.5 and that number o f  nodes has a l s o  been reduced 

i n most c a s e s .

With regard to the second group, average com putation time, average 

number o f  nodes and number o f  unsolved problems are g iven  in Tables 9 5

9 .6  and 9 .7  re sp e c t iv e ly .  The exce l len t  performance o f  our a lgo r ithm  f i r  

problems o f  s i z e  60 is  s t i l l  c le a r ,  e s p e c ia l l y  f o r  problems w ith  p = 0.2 

which have been so lved u s ing  e ith e r  o f our two a lgo r ithm s (JB ,-  -)  o r  

( C B , - . - ) .  w h ile  u s in g  K u r i s u 's  a lgo r ithm  ( - , - , . )  „ ea r ly  „  , the U n  

were l e f t  unsolved. For problems o f  s i z e  50, our a lgo r ithm s have a l s o  

performed w e l l ,  where at most one problem was le f t  unso lved  u s in g  e i t h e r  

o f  our a lgo r ithm s,  compared to a l l  problems being l e f t  unsolved in two
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ca se s  (p = 0.2 and 0.3) u s in g  a lgo r ithm  A lgor ithm s ( J B , - , - )  and

( C B , - , - )  have not performed well on problems o f  s i z e  60, compared w ith 

t h e i r  performance on random problems.

By adding our upper bounding procedure, columns 3 and 4 o f  Tables 

9 .5  and 9 .6  show that a small reduction in computation and in number o f 

nodes can be achieved in most cases. F in a l l y ,  by adding the dominance 

r u le s ,  columns 4 and 5 o f  Tables 9 .5 ,  9.6  and 9 .7  show that the e f fe c t  o f 

these  ru le s  have become very c le a r  on th is  c la s s  o f  problems. They were 

p a r t i c u l a r l y  use fu l fo r  problems of s i z e  60 and p = 0.05, 0.3 and 0.5.

D is re ga rd in g  the r e su l t s  fo r  problems o f  s iz e  60 and p = 0 .2, the 

number o f  unsolved random and co rre la ted  problems u s in g  a lgo r ithm  (CB,H,D) 

a re  5 and 13 re sp e c t iv e ly .  Thus, the co rre la ted  problems appear to be the 

most d i f f i c u l t  and the most ch a l len g in g ,  which is  in accordance w ith  r e s u l t s  

ob ta ined  fo r  problems w ith no precedence c o n s t ra in t s  (Lageweg et a ! . ,  1978; 

P o t t s ,  1980A), and w ith  that o f Chapter 10 (to  fo llow ) fo r  the permutation 

f low  shop problem under precedence c o n s t ra in t s .

9 .8 ______Concluding Remarks

A l l  our a lgo r ithm s showed s u p e r io r i t y  over K u r i s u ' s  a lgo r ithm .

T h is  s u p e r io r i t y  is  p a r t i c u la r l y  c le a r  when n = 40 o r  50 and p = 0 2 or

0 .3 .  However, a l l  our a lgo r ithm s are s a t i s f a c t o r y  fo r  s o l v in g  problems

o f  s i z e s  up to 50 job s.  In fa c t ,  u s in g  the c o n f l i c t  bound we managed to

s o lv e  a l l  problems o f  s iz e s  up to 50 jobs except fo r  three co rre la ted

problems w ith  50 jobs.  Unfortunate ly ,  when n = 60 and p = 0.2 o r  0 3

the problem becomes too hard fo r  a l l  the a lgo r ithm s.

A lthough the c o n f l i c t  bound performed very  w e l l ,  i t  i s  p o s s ib le

to  improve i t  fu rthe r.  Th is  can be done as fo l lo w s .  Let i and j  as

d e f ined  in Sect ion  9 .3 .2 ,  and max(LB., LB. + a - h i ; «  1i j i u j '  ,r< case la ,  can be

wri tten as f o l l o w s :
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max(LB., LB. + a. - b. + Z (a - b ))
' J ' l e B . n i . 

> J

Sa, > 
n h

h ~ h '

and  max(LB. + a^ ■  b . ,  LB^) in case 1b, can be w r it ten  as fo llow s;

max(LB + a. - b .  + Z (a. - b. ) , LB.)
' J J heB .m . h h J 

J i

£ah > bh

Thus, LB.j o f  case 1 can be w r it ten  as fo l low s:

LB.. = min{max(LB., LB. + a. - b. + Z (a, - bu ) ) .  
'J  - J i i heB.fll . h h ’

1 J

eah > bh

max (LB. + a .  - b .  + Z (a. - b, ),  L B . ) }
1 J J heB.fll . h h J

J '

t a h "  bh

i r  o f  case 2 (Sect ion  9 .3 -2 )  can be dea lt  w ith  in a s im i l a r  way. 
i j

Another obvious way to t ry  to improve the c o n f l i c t  bound i s  by 

c o n s id e r in g  a l l  p o s s ib le  va lues  o f 1 and j ( i . e .  as g iven  In Se c t ion  9 -3 .2 )  

in stead  o f  con s ide r in g  a job i w ith  LB-=LB.

F i n a l l y ,  i t  i s  p o s s i b l e  t o  g e n e r a l i z e  t h e  c o n f l i c t  b o un d a s  f o l l o w s .  

G i v e n  t h r e e  u n r e l a t e d  j o b s  i ,  j  a nd  k ( i . e .  no a r c  e x i s t s  b e t w e e n  a n y  two  

o f  t h e m ) ,  we h a v e  t h e  f o l l o w i n g  c a s e s .

Case 1- A l l  three jobs have p roce ss in g  times on the f i r s t  machine 

which are la rge r  than th e ir  p ro ce s s in g  times on the second 

machine. The fa c t  that one of the three job s  i s  sequenced 

a f te r  the other two, w i l l  be used to ob ta in  a lower bound, 

which is  g iven  by:
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Case 2:

Case 3:

Case h:

= mi n[max(LB., LB.,
J LBk + a. +i a . - b.

J ' • V  >

max(LB.,
LV

LB.
J

+ a. + a. - b . k i -  bk ).

max(LB., 
J LBk ’

LB.i aj + a. - b. 
k J

-  bkn .

Two o f  the three jobs on ly  (jobs i and j ,  say) have p roce ss in g  

times on the f i r s t  machine which are la rge r  than th e i r  p ro ­

ce ss in g  times on the second machine. As in Case 1, the fact 

that one of the three jobs is  sequenced a f te r  the other two 

w i l l  be used to obta in  a lower bound, which i s  g iven  by:

= mi n[max(LB., LB.,
J LBk

+ a .
i

+ a . - b. - b .) , 
J ' J

max(LB.,
LBk ’

LB.
J

+ a.
i - b . ),

max(LBj,
LV

LB.
i

+ a . 
J

- b . ) ] .
J

We po in t  out that computing L B . jk in t h i s  case w i l l  not lead to

in c re a s in g  the lower bound s ince  LB... , in t h i s  case, i s  not
i j  k

la rge r  than max(LB^, L B . J .

One of the three jobs on ly  (job i ,  say) has a p ro ce ss in g  time on 

the f i r s t  machine which is  la rge r  than i t s  p ro ce ss in g  time on the 

second machine. I t  appears to be u se fu l ,  in t h i s  case, to use 

the fact that one o f  the three jobs i s  sequenced before the other 

two to obta in  a lower bound, which is  g iven  by:

L B . = mi n[max(LB., 
i jk  i

LBj, LBk
+ b.

J
- a . ) ,

max(LB.,
LBk ’

LB.
J

+
bk " ak } ’

max(LBj,
LBk ’

LB.
i

+ b.
J + bk '

As in  case 2, computing LB.j k  here w i l l  not lead to in c re a s in g  

the lower bound s ince  LB.j k , in t h i s  case, i s  not la r g e r  than 

max(LB., LB ., ) .
i j K

None o f  the jobs has a p roce ss in g  time on the f i r s t  machine which

is  la rge r  than i t s  p roce ss in g  time on the second machine. As in 

Case 3, we w i l l  use the fa c t  that one o f  the three job s  i s
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sequenced before the other two to ob ta in  a lower bound, which 

is  g iven  by:

LB... = mi n [max(LB., LB., LB. + b. + b. - a. - a . ) .
i j k  \ j k i j i j *

max(LB. , LBk , LB^ + b. + bk - a. - ak ) ,

max(LBj, LBk> LB. + b. + bk - â . -  ak ) ].

O bv iou s ly ,  g iven  k unrelated jobs 1 ,2 .........k, one can compute a

lower bound LB, „ . in a s im i la r  way.
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CHAPTER TEN

THE GENERAL PERMUTATION FLOW-SHOP PROBLEM UNDER PRECEDENCE CONSTRAINTS

1o .1 In troduct ion

I n  t h i s  c h a p t e r  we c o n s i d e r  t h e  g e n e r a l  p e r m u t a t i o n  f l o w - s h o p  

p r o b l e m  u n d e r  p r e c e d e n c e  c o n s t r a i n t s .  The problem  can be described, as 
fo l lo w s .  There are n jo b s  numbered l i . . . t n and m machines numbered 
2  , m. Each jo b  i  ( i - 1 , . . . t n) has to  be p ro cessed  on th e  m machines
7 o m in  th a t  o rd er . TJze p ro cess in g  tim e o f  each fo b  i  on each 
machine k t den o ted  by P ^ »  g iven . Once a jo b  has s ta r te d  on a machine 
i t  must be com pleted  on th a t  machine w ith o u t in te r r u p t io n .  The precedence  
c o n s tr a in ts  among jo b s  are re p re sen ted  by a d ir e c te d  a c y c l ic  graph G = (Vt E)t 
where V deno tes the  s e t  o f  v e r t ic e s  and E th e  s e t  o f  edges. The v e r t ic e s  
o f  G re p re se n t th e  jo b s  and the  edges re p re se n t the arcs between the  jo b s .  
Job i  m ust be p rocessed  b e fo re  jo b  j  on each machine i f  th e re  e x i s t s  a 
d ir e c te d  path  from  v e r te x  i  to  v e r te x  j  in  E. The o b je c t iv e  i s  to  f i n d  a 
sequence o f  jo b s  th a t  m inim izes the maximum com ple tion  tim e .

C l e a r l y ,  t h i s  p r o b l e m  i s  N P - h a r d  s i n c e  t h e  s p e c i a l  c a s e  w h e r e  t h e r e  

a r e  n o  p r e c e d e n c e  c o n s t r a i n t s  among j o b s ,  i . e .  t h e  P m / / C max p r o b l e m ,  i s  N P -  

h a r d  ( L e n s t r a ,  1977)» To t h e  a u t h o r ' s  k n o w l e d g e ,  no o n e  h a s  w o r k e d  o n  

t h i s  p r o b l e m  b e f o r e .

We s h a l l  r e s t r i c t  o u r s e l v e s  t o  u s i n g  t h e  d e f i n i t i o n s  a n d  n o t a t i o n s  

u s e d  i n  C h a p t e r s  8 a n d  9- A l s o ,  we s h a l l  a s s u m e  t h a t  t h e  g r a p h  G i s  made  

t r a n s i t i v e  b e f o r e  a p p l y i n g  o u r  p r o p o s e d  b r a n c h  a n d  b o u n d  p r o c e d u r e .

Our bounding procedure w i l l  be presented in Se c t ion  10.2. Sect ion  

10 3 con ta in s  the fu l l  a lgo r ithm  in c lu d in g  fu r th e r  d e ta i l  about our bounds, 

b ranch ing ru le ,  dominance ru le s ,  implementation o f  the dominance ru le s  and 

our upper bounding procedure. In Sect ion  10.^ we report  on computational 

experience  followed by some conclud ing remarks in Sec t ion  10.5.
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10.2 Lower Bound

The lower bound described  here I s  a g e n e ra l iz a t io n  o f  the bounds 

g iv en  In  Sect ion  8 .2 .2  fo r  the unconstrained problem.

G i v e n  a n i n i t i a l  p a r t i a l  s e q u e n c e  o ,  a n d  a f i n a l  p a r t i a l  s e q u e n c e

o2 , we s h a l l  d e r ive  a lower bound on the maximum completion time fo r  a l l

f e a s ib le  sequences beg inn ing  w ith the p a r t ia l  sequence a, and ending with

the p a r t ia l  sequence o2 . Th is  is  done by re la x in g  the cap ac ity  c o n s t ra in t s

on some machines, i .e .  by a l low ing  some o f  the machines to process  more

than one job  at the same time. A machine p a i r  (u ,v ) ,  where 1 < u i  v $ m,

I s  chosen and the c o n s t ra in t  that machines u + 1 , . . . , v -1 can p rocess  on ly

o n e  j o b  a t  a t i m e  i s  r e l a x e d .  I f  u * v ,  a  t w o - m a c h i n e  s u b - p r o b l e m  w i t h

precedence c o n s t ra in t s  i s  produced in which each job ieS ( se t  o f  unscheduled

jo b s )  has a p ro ce ss in g  time p ^  on the f i r s t  machine, a p ro ce s s in g  time p.

on the second machine and a time lag o f  \  p between the completion o f
k=u+1

p ro c e s s in g  job 1 on machine u and the s t a r t  o f  p ro ce s s in g  job i on machine 

v .  (T h is  r e s u l t in g  problem is  NP-hard (Monma , _  ) ; see a l s o  Chapter 9 ).  

U s ing  the lower bound derived  in Sect ion  9 -3 .1  fo r  the two-machine problem 

sub je c t  to precedence c o n s t ra in t s  and the time lag o f  each job between the 

two machines u and v, a lower bound, T (a ,,  c 2 , u,v) f o r  u ?v ,  f o r  the two 

machine sub-problem can be w r it te n  as fo l low s:

T(c u,v ) = m a x (  E 
j  eS i e B j

i u ju

v-1
£

k=u+1 Jk jv
z

i e A .
J

I V

+ ” in(Piu'  P i v »  (10.1)
£ j

where B. = ( h / (h , j ) c E } ,  A. = (h / ( j ,h )e E }  and I .  = V -(B  U a  )
J J J J j

We def ine  C ^ a ^ k )  to be the minimum completion time o f  a l l  jobs 

sequenced in o 1 on machine k ( i f  o 1 i s  empty we de f ine  C1(o 1 ,k)=0) and
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C2 (o2 ,k) to be the minimum time between the s t a r t  o f p ro ce s s in g  job s  in a2 
on machine k and the completion o f  p ro ce ss in g  job s  in a2 on the l a s t  machine 

( i f  a 2  i s  empty, we define  C2 (a2 ,k )=0 ).  Now, i f  we define  r  to be the 

e a r l i e s t  s t a r t in g  time of job i on machine u and i s  g iven  by:

u-1
r iu  = max{max(C1 ( a ^ k )  + ^  Phk + ,2 p . k ' }, max ( C ^ . l )

k— 11 •« «> u f h i

+ . L  Phk + n ph 'l  +
k_1 h eBh h eA H B .

n i
E V u

h ’ cB .-tB jU tA jnB.)) raln" V ,  * P h 'u ) , }
( 10. 2)

Where the f i r s t  term in r.  i s  a machine based bound based on machine k.
i u

I t  is  a ge n e ra l iz a t io n  o f  that used by many researchers  f o r  the uncon­

s t ra in e d  permutation flow-shop problem ( ig n a l l  & Schrage, 19 65 ; Lomnicki, 

1965; Brown £ Lomnicki, 1966; McMahon £ Burton, 1967; Nabeshima, 1967; 

P o t t s ,  197^; Bestw ick £ H a st ing s ,  1976; Lageweg, Lenstra  £ Rinnooy Kan, 

1978; P o t t s ,  1980A). The second term is  a job based bound based on jobs 

in B. u s in g  machines 1 and u.

And def ine  q j y as the minimum time between the completion o f  job j

on machine v and the completion o f  a l l  jobs and is  given by:

J v
max{max{C2 (a2 ,k) + Z  ̂ Phk + _ ,_Z  ̂ P j k '>* ["3* {C2 (a2 ,m)'2 2 

k = v ,..  . ,m heAj k =v+1 heA.
J

m E z

+ , Z phk + h ' e B,Aa . Ph 'v  + h 'eA. Ph' 
k=v h j h

+ E min{p. 1 w,p. ' } } }
h 'cA.-(AhU ( B n A . )  h V h m

(10.3)

Due to the symmetry o f  the problem, the two terms in  q <v can be exp la ined  

in a s im i l a r  way to that g iven  above.
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Then a lower bound, B ^  ,a2 , u , v ) , fo r  the problem i s  as fo l low s:

B ( o - ,0 « ,u ,v ) = min r. + T (o l l o . ,u , v )  +  min q.
1 1 ieS jeS  JV

(10.4)

A l t e r n a t iv e ly ,  i f  u=v, a s in g le  machine subproblem r e s u l t s  in

which each job i has a p roce ss in g  time p .u , a re lease  date r J(j (ca lcu la ted

u s in g  equation  10.2) and a t a i l  q . u (ca lcu la ted  u s in g  equation 10.3). Th is

r e s u l t i n g  s in g le  machine problem w ith  precedence c o n s t ra in t s  i s  NP-hard

(L e n s t ra ,  Rinnooy Kan £ Brucker, 1977). Thus a lower bound fo r  t h i s

s i n g l e  machine problem is  to be used. Such a lower bound can be obtained

by s e t t in g  q. =min q. fo r  a l l  ieS and s o l v in g  the r e s u l t in g  problem u s in g  
1u j eS  ̂u

L a w le r 's  a lgo r ithm  (Lawler, 1973), which sequences a job  i w ith  no p re ­

d ec e s so r s  and r. as small as p o s s ib le  f i r s t .  I f  ir={1....... s } ,  i s  the

sequence obtained us ing  L a w la r 's  a lgo r ithm , then an optimum s o lu t io n  to 

t h i s  problem, and o f  course a lower bound fo r  o r i g i n a l  s i n g le  machine 

problem is  g iven  by:

(rh ,u  + }  P iu } + 1lin 
h ~ 1 , . . . , s  i-h  i —1»

(10.5)

Remark: A d i f f e re n t  lower bound can be obta ined by setting -  min r ^  

fo r  a l l  ieS and s o lv in g  the r e s u l t in g  problem in a s im i l a r  way.

emA lower bound can a lso  be obtained u s ing  a one machine subprobl 

and d i s r e g a rd in g  the precedence c o n s t ra in t s  and s o lv in g  the r e s u l t in g  

problem fo r  which any sequence is  optimum. Th is  lower bound is  g iven  by:

B (o , ,a , ,u ,u )  -  min r 
ieS

+ I  p . + min q .
I U . _ c I U : _ c  j uieS jeS

( 10 . 6 )

T h is  bound i s  known as the machine based bound. I t  i s  weaker and more q u ic k ly  

computed than 10.4 and 10.5 and wi l l  be used to make sure  that our bound 

w i l l  not be le s s  than the machine based bound.

More d e t a i l s  about our bounds w i l l  be g iven  in the fo l lo w in g

se c t io n .



10.3.1 Branch ing Rule

10.3_____ The A lgo r  i thm

Our branching procedure has the p roperty  o f  adding as few nodes 

as p o s s ib le  to the search tree. Each node o f  the search tree corresponds 

to  a job being sequenced e ith e r  f i r s t  o r  l a s t .  Let B be the se t  o f  jobs 

w ith  no p redecessors  and A be the se t  o f  jobs  w ith  no su cce s so r s .  At every 

s ta ge ,  one of the jobs  in B i s  sequenced f i r s t  i f  the number o f  job s  in A 

i s  a t  le a s t  equal to the number o f  jobs  in B. Otherwise one o f  the jobs 

in A i s  sequenced la s t .  A formal statement o f  our branch and bound 

p r o c e d u r e  i s  g iven  below.

Step 1: 

Step 2: 

Step 3: 

Step 

Step 5-

Update the two se ts  B and A. Let n } and n2 be the numbers 

o f jobs in these two se ts  re sp e c t iv e ly .

I f  n^=1, sequence the on ly  job in  B f i r s t  and go to Step 5.

I f  n2=1, sequence the on ly  job in A la s t  and go to Step 5.

I f  n 1-n 2> sequence a job ieB wi th the sm a l le s t  lower bound 

(among a l l  jobs in B) f i r s t  and go to Step 5.

( n ^ n 2 ). Sequence a job jeA  w ith the sm a l le s t  lower bound 

(among a l l  jobs in A) la s t  and proceed to Step 5.

Remove the newly sequenced job from V  and S. I f  S/flf, go to

Step 1. Otherwise, eva luate  the obta ined  sequence and use 

i t s  value as an upper bound on the value o f  the optimum. 

Search back fo r  any le f t  nodes (each node corresponds to a 

job being sequenced f i r s t  o r  la s t )  wi th lower bounds l es s  

than the upper bound. I f  such nodes can be found, update 

the graph G and the set o f  unscheduled jobs S and go to 

Step 1. Otherwise, stop, the procedure has ended.

1 0 . 3 . 2  L o w e r  B o u n d s

I n i t i a l  experiments were ca r r ie d  out u s in g  the two-machine bound 

(g iven  by equation 10.*0 and the one-machine bound (g iven  by equation  10.5) 

confirmed the remark by (Po tts ,  1980A) ( fo r  the unconstra ined  problem) 

that a two-machine bound is  more e f f i c i e n t  than a one-machine bound.
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The r e s u l t s  a l s o  showed that c a l c u la t i n g  r ju and qj v  as gi ven in equations  

10.2  and 10.3 re spec t i v e ly  was too time consuming and that u s ing  a weaker 

but more q u i c k l y  ca lcu la ted  bound us ing:

r .
i u

u-1
max (C . ia . ,h )  + E 

k*hh=1, . . . u

h
max ( E P.. + C (. 

k=v+1 Jk Lh = v , . . .m

i k '

f i ,jeS and u ,v= 1 .......m ( 10.7)

gave good computational r e su l t s .

Having decided to use the lower bounds B i c ^ . o ^ u . v )  gi ven by 10.4

and 10.6 ( r . u and q^v as in 10.7),  the choice  o f  machine p a i r s  i s  d i s cu s sed  

n e x t .
ln(Lageweg et  a l . ,  1978) and (Potts ,  1974) i t  was found that the se t s  o f  

machine p a i r s  { ( 1 ,m), . . . , (m-1,m)}and { ( 1 ,m), . . . , (m,m)} r e sp e c t i v e l y  gave 

good computational re s u l t s  fo r  the unconstra ined problem, f i n a l l y ,  i t  was 

found in (Pott s ,  1980A) that the set o f  machine p a i r s  { ( 1 , 1 ) , . . . , (m,m), ( 1 ,m), 

. . . , (m-1,m)} gave good computational r e s u l t s .

With a l l  th i s  in mind we have decided to use the set o f  machine

p a i r s  { ( 1 ,m).......(m-1,m)}. To ensure that our proposed bound i s  never l e s s

than the machine-based bound, the set of  machine p a i r s  i ( 1 , 1 , ) , . . . , (m,m)} 

w i l l  a l s o  be used. We conclude that the set o f  machine p a i r s  to be used 

i s  g i ven as f o i l o w s :

W = { ( 1 , 1 ) .......(m,m) , (1 ,m)........(m-l,m)} (10.8)

Thus an o ve ra l l  lower bound, L B f a ^ a ^ W )  fo r  the problem i s  g iven  by:

L B (a , , a 2 ,W) = max(B(^,c?2 , u,v)/(u,v)eW) (10.9)

10.3.3  Dominance Rules

th i s  sec t ion  we sha l l  be in te rested  in f i n d ,„g co„d ;t i o n s  ^

which a p a r t i c u l a r  node can be e l im inated before i t s  lower bound i s  c a l c u l  t d
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D o m i n a n c e  r u l e s  a r e  p a r t i c u l a r l y  u s e f u l  when a  n o d e  w i t h  a l o w e r  b o un d  

w h i c h  i s  l e s s  t h a n  t h e  o p t i m u m ,  c a n  b e  e l i m i n a t e d .

Using the notat ions  of the p rev ious  s e c t i o n s ,  le t i , j eB .  We 

now def ine:

¿i|^ = C  ̂ ( cr  ̂ i j  , k ) L j ( c j . j j , k ) ,  k —1 , . .  . ,m

i i
A l s o ,  fo r  two jobs  i , j eA, we def ine:

i i  i
= C2 (j 1 ” *̂ 2 °2 *^) » 1 , • • • ,m

Theorem 10.1

I f  f o r  two jo b s  i  and jzB :

Llk - 1  * * lk  * Pi k 3 f o r k =2>“ ->™ (10.10)

th en  a f i d  dom inates a^J.

Proof

Let tt = ( tt(1) ,tt(2) , . . .  ,Tr(r)) be an a r b i t r a r y  sequence o f  jobs  such

t h a t :

TTcS “ { i , j }

a n d  t h a t  a ^ j tti i s  a f e a s i b l e  p a r t i a l  s e q u e n c e .

The proof  continues as given in (Szwarc, 1971) for  the unconstrained 

problem. We sh a l l  prove that:

(10.10) implies C ^ a ^ J i r . k )  - C ^c^ j i r . k )  $ C ^ c y j . k )  - C ^ a j . k )

■ fo r  3 1 1 k 19. . .
For tt=0, (10.10) i s  t r i v i a l l y  true. For tr/gf, we have the fo l low ing :  

Step 1: Let r= 1, then t t = t t (1).  Proof by induct ion.  The theorem i s

true for  k=l s ince  C1 (a1 i j i r ( l )  ,1) - C? ( a ^ i r d )  ,1) = p M =

C1 (cr1 i j , 1) - C j t a j j . l ) .  Suppose the theorem i s  true for  

k =h -1. We w i l l  prove it  fo r  k=h. Consider
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c 1 (cr  ̂ i j i r ( l ) » h ) -  C.j ( a 1 j  it ( 1 )  , h )  = m a x i  C 1 ( c ^ j i r  (1 )  , h - 1) >

C1 (ct1 i j ,h) > + p ^ ^ h  *  m a x iC ^ a ^ ’u d )  ,h -1 ) ,  C ^ a ^ ’ . h ) } -

si max{C1 ( a tt( 1) , h - l )  - C1 (c?1jTr(l) , h - l )  , ( ^ ( O j i j . h )  -  C1 (o1j , h ) J

^ max (c?i i j , h —l) — (cf̂  i j  ^h) ~ Ci(o-jj>^)^

« C1 ( a i i j ,h) - C1(a^j,h) = Ak 

This  concludes the proof  for  r=1 .

Step 2: Let r=2, then tt=  ( t t( 1 )  , tt( 2 ) )  . For the case when k =1 , the theorem

holds.  Assuming the theorem i s  true for  k=h-1, we w i l l  prove i t  

f o r  k=h. As in Step 1 we have:

C1 ( c y  jir (1) ir(2) ,h) -  C] (c^ jir (1 )  tt (2) ,h) < max{ C 1 ( ct 1 i j it (1) it (2) ,  h - 1)

-  C 1 ( a 1 j it ( 1 )  ir  (2) , h - l ) ,  C 1 ( c 1 i j tt ( 1 )  ,h) -  C 1 ( a 1 j tt ( 1 )  ,h )}

si maxiC1( c 1 i j , h - 1) -  C1 ( ct 1 i j tt ( 1) , h ) -  C1 ( ct1 jir ( 1 )  ,h) }

$ max(C1 ( c ^  j . h - 1 )  - C j i c d j . h - l ) ,  ^ ( c y j . h )  - ( ^ ( 0 ^ , ( 1)}

$ C1 (cr 1 i j , h) - C1 (aj ,h)

By performing Steps 3, h .........r one can prove the necessary

r e s u l t .

r .nro l la ry  10.1

I f  f o r  two jo b s  i  and j  eA:

&2k < a2 k - 2  * pi 'k - l *  f o r  k=2> " -> m (10.11)

, t
then  j ' i  o2  dom inates 3 a 2 '
Proof

S i m i l a r  t o  t h e  p r o o f  o f  t h e  t h e o r e m  a b o v e .

- 187 -



1 0 . 3 Implementation o f  the Dominance Rules

The dominance r u le s  from Theorem 10.1 and C o ro l l a r y  10.1 are 

checked at every node o f  the search tree  ( i . e .  a f t e r  performing Steps 1

and 2 and before performing Step 3 of  the branching procedure o f  S ec tio n  
10.3.1 )  •

I t  i s  c lea r  that  f o r  cond it ion  10.10 to hold we must have

p. 1 p . k fo r  k=2 .......m (10.12)

A l s o ,  f o r  cond i t ion  (10.11) to hold we must have

p . i  ^ p. i,  fo r  k=1 , . . . ,m-1  ( 10. 13)r i m i k

Cond i t ion s  (10.10) and (10.11) need not be t r a n s i t i v e .  For t h i s  reason we 

have to check these two cond i t ion s  fo r  each p a i r  (i , j)  such that i , j eB  and

i i .that (10.12) ho ld s  fo r  job i in the f i r s t  case, and f o r  each p a i r  (i ,j ) 

such that  i ' , j ' e A  and that (10.13) ho ld s  f o r  job i '  in the second case.

I f  n2 < r>i (u s ing  the no ta t ion s  o f  Sec t ion  10 .3 .1 ) ,  we s t a r t  by 

check ing  c ond i t ion  (10.11) fo r  each p a i r  of  jobs  ( i ’ , j ' ) ,  i j j ' e A  to 

e l im in a te  as many nodes as p o s s i b l e  from being  candidates  for  the l a s t  

a v a i l a b l e  p o s i t i o n .  I f  on ly  one job i s  l e f t  as a candidate fo r  the l a s t  

p o s i t i o n  then t h i s  job i s  sequenced l a s t ;  otherwise  we check cond i t ion  

(10.10)  f o r  each p a i r  o f  jobs  ( i , j ) ,  ¡JeB to e l im inate  as many nodes as 

p o s s i b l e  from  being candidates  for  the f i r s t  a v a i l a b l e  p o s i t i o n .  I f  o n ly  

one job  i s  l e f t  as a candidate for  the f i r s t  p o s i t i o n ,  then t h i s  job i s  

sequenced f i r s t ;  otherwise  we proceed to Step 3 of  Sec t ion  10.3.1. The 

case when n1 i  n2 i s  dea lt  with  in a s i m i l a r  way except that here we s t a r t  

by checking  cond i t ion  (10.10) and then ( i f  necessary)  we check con d i t ion  

(10 11). The ap p l i c a t io n  o f  cond it ions  (10.10) and c o n d i t i o n s  (10.11) 

requ i re  0(m n ,2) and 0(mn22 ) steps  re sp e c t i v e ly .
j I

Let nj and n2 be the number o f  candidates  fo r  the f i r s t  and l a s t  

a v a i l a b l e  p o s i t i o n s  a f te r  app ly ing  cond i t ion s  (10.10) and (10.11)
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r e sp e c t i v e l y  ( i t  is c le a r  that nj $ n ] and $ n2 ) .

I n i t i a l  experiments showed that rep lac ing  and „2 in Steps 3 and 

k o f  Sect ion  10.3.1 by nj and n '  r e sp e c t i v e l y ,  led to a s l i g h t l y  worse

r e s u l t .  For th i s  reason, the idea o f  u s ing  dominance ru le s  to d i r e c t  our

branch ing  procedure w i l l  be abandoned.

10.3.5  Upper Bounds

I t  i s  well known that computation can be reduced by u s ing  a 

h e u r i s t i c  to f ind  a good s o lu t i o n  to act  as an upper bound on the maximum 

completion time before the s t a r t  of the branch and bound procedure.

As sta ted before, whenever a complete sequence o f  scheduled jobs  

i s  obta ined u s ing  the branch and bound a lgor ithm,  the maximum completion 

time o f  the jobs ordered in t h i s  sequence i s  ca lcu la ted  and used as an 

upper bound on the maximum completion time. A d d i t i o n a l l y ,  a h e u r i s t i c  

method i s  used once at the top o f  the tree to ob ta in  an i n i t i a l  upper 

bound. Th is  h e u r i s t i c  i s  as fo l lows.  F i r s t l y ,  d i s r e ga rd in g  the precedence 

c o n s t r a i n t s ,  we apply Campbel l ' s  method (Campbell e t  a l . ,  1970; a l s o  gi ven

in Sect ion  8 .2 .4 )  which requ ires  app ly ing  Johnson 's  F2//C a laor i thm
u max 3n m

u s in g  p roce s s in g  times fo r  job i ( i = 1 , . . . , n )  o f  E p . ( and E p., to
i kk=1 " *  k=m+1-h

obta in  a sequence. Th is  sequence i s  then eva luated as an Pm//C schedule
max

T h i s  procedure is  appl ied  fo r  va lues  h = 1 , . . . ,m - l .  Let tt ' = ( tt ' (1) , u ' (2) , ..  ., 

7T1 (n)) be the best sequence obtained. Secondly,  we reorder  jobs  in w' to 

form a new sequence tt as f o l low s .  Each s tep  w i l l  sequence a job tt ‘ ( i ) w ith  

no predecessors  and i as small as p o s s i b l e  f i r s t .  Th is  procedure is  

repeated u n t i l  a l l  jobs  have been a s s igned  p o s i t i o n s  in ir. The sequence ir 

i s  then eva luated  as a Pm/prec/Cmgx schedule. The maximum completion time 

o f  jobs  sequenced in it i s  used as an upper bound on the value o f  C

Th i s  procedure requ ires  0(max{mn log n,n^} ) s teps
max
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10 .4 Computational Experience

10.4.1  Test Problems

The a lgor ithms were tested on problems o f  s i z e s  up to 40 jobs.  

These te s t  problems cons i s ted  o f  problems with  random p roce s s in g  times 

( R ) * problems with  c o r re la t i o n  between the p roce s s in g  times o f  each job 

( C ) , problems fo r  which the random p roce s s in g  times o f  each job have a 

p o s i t i v e  (T+) or  negative (T ) trend, and f i n a l l y ,  problems with  c o r r e l a ­

t i on  and a p o s i t i v e  (CT+) or a negative  (CT ) trend fo r  the p roces s ing  

t imes o f  each job.

For each te s t  problem w ith  n jobs  and m machines, mn in teger  data

p. were generated from uniform d i s t r i b u t i o n s  [ a .^ , 3 . ^ ] .  For problems with i It

c o r r e l a t i o n ,  n add i t iona l  in tegers  6 . were randomly chosen from {1 ,2 ,3 ,4 ,51 .  

Problems with  negative  trends were obta ined by renumbering machine k as

m-k+1 f o r  k=1 , . . . ,m .  Values  o f  a . k and g ^ f o r  d i f f e r e n t  c l a s s e s  o f  te s t  

problems are g iven  in Table 10.1.

Th is  method o f  p rocess ing  times generat ion  fo l l ow s  that o f  Lageweg, 

Lens t ra  and Rinnooy Kan (Lageweg et a . ,  1978).

Tab le 10.1; Test Data

a
ik 6,Ik Random

Corre la ted

No trend 1

P o s i t i v e  trend 12£(k-l )+1

100

12 i ( k - 1 )+100

200.+1
i

2 i ( k - l ) + 2 0 6

: 206.+20 
i

.+1 : 2 } ( k - l ) + 2 06 .+ 20

In the precedence graph G, each arc  ( i , j )  w i th  

with  a g iven  p r o b a b i l i t y  p. The fo l l ow ing  va lues  o f  p 

0 . 0 , 0.1 ,  0 .2 , 0.3 ,  O.ft. 0.5 and 0.75.

i< j  was inc luded  

have been cons idered:
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For each set o f  va lues  (p,n,m), ¿*0 problems were generated from 

the s i x  d i f f e r e n t  c l a s se s  o f  problems accord ing  to Table 10.2.

Table 10.2: Number of  Test Problems fo r  each
_______________ set of  va lues  (p,n,m)_____________

Problem C la ss
Number of  
Test Problems

Random (R) jg 
Corre la ted  (C) ig  
Random with p o s i t i v e  trend (T+ ) 5 
Random with  negative  trend (T ) 5 
Corre la ted with p o s i t i v e  trend (T+ ) 5 
Corre lated  with negative  trend (T- ) 5

10.4 .2  Computational Resu l t s

The a lgor ithms were coded In FORTRAN IV and run on a CDC 7600

c o m p u t e r .

Computational r e s u l t s  are g iven  in Tables 10.3, 10.4 and A . 1.1. 

Whenever a problem was not so lved a f te r  50,000 nodes had been generated, 

computation was abandoned fo r  that problem. Thus, in some cases ,  the 

f i g u r e s  shown in Table 10.3 w i l l  be lower bounds on the average computation 

t imes (A.C.T.)  or lower bounds on the average number o f  nodes (A.N.N.).

Average computation times and average number o f  nodes fo r  our p ro ­

posed lower bound are given in the f i r s t  two columns of  Table 10.3. Adding 

our dominance ru le s  and upper bounding procedure, the cor  responding re su l t s  

are  g iven  in the th i rd  and fourth  columns o f  the same tab le .  Numbers o f  

unsolved  problems c l a s s i f i e d  according to the va lue  o f  p(p=0.1, 0 .2 ,  0.3, 

0.4, 0.5 ,  0.75) and according to problem c l a s s  (R, C, T+ , T " ,  CT+ , CT") are 

g iven  in Table 10.4. The p rec i se  numbers o f  unsolved  problems fo r  each set 

o f  va lues  (p,n,m), c l a s s i f i e d  according to problem c l a s s ,  are gi ven in

Tab 1e A . 1.1•
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Given a p a r t i c u l a r  va lue o f  p, columns 3 and k o f  Table 10.3 and 

column 2 of  Table  10.4 show that u s ing  dominance ru le s  and the h e u r i s t i c  

reduces computation and Increases  the e f f i c i e n c y  of  the a lgor i thm.  However, 

the major Increase In the e f f i c i e n c y  o f  the a lgor i thm  I s  due to the dominance 

r u l e s ,  which I s  c on s i s ten t  with  the r e s u l t s  o f  references  (Lageweg, Lenstra

£ Rinnooy Kan, 1378; Po t t s ,  1380/1) fo r  the unconstra ined permutation f low- 

shop problem.

As expected, in creas ing  the value of  p ( fo r  p a r t i c u l a r  va lues  o f  n 

and m) decreases average computation time, average number o f  nodes and 

number o f  unsolved problems. An unexpected r e su l t  i s  observed in the 

second column o f  Table A . 1.1, where in c rea s ing  the value o f  p from 0.0 to 

0.1 ( fo r  n=20 and m=3) led to an increase in the number o f  unsolved problems 

from 13 to 18. Th is  was due to the e f fe c t  o f  u s ing  the dominance ru les  

and the h e u r i s t i c  on the (0.0,20,3)  problems.

Using the f i r s t  column of  Table 10.1*, Table 10.5 shows the order  

o f  the d i f f e r e n t  c la s se s  o f  problems fo r  the d i f f e r e n t  va lues  o f  p obtained 

accord ing  to the percentage o f  the unsolved problems to the tota l  number of 

te s t  problems from each o f  these c l a s se s  (see footnote o f  Table 10.1*) The 

f i r s t  and l a s t  rows o f  Table 10.5 contain the hardest and e a s i e s t  c l a s s e s  

o f  problems for  the d i f f e re n t  va lues  o f  p re spec t i v e ly .
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Table 10.3: Average Computation Time and 
__________ Average Number o f  Nodes*_______

A lgo r i  thm
n m LB

A.C.T . * A.N.N. *
LB+D+H

A .C .T . * A .N.N.*

8 5 0.10 532 0.03 134
8 7 0.20 812 0.17 640

10 3 0.89 8,879 0.39 3,236
10 5 1 .23 6,836 1.04 5,284
10 7 2.11 8,723 1.62 6,115
15 3 4.47 21,553 1.20 5,739
15 5 7.74 28,398 7.22 25,523
20 3 10.64 31,487 5.81 19,621
20 5 - “ “ “

30 3 - - - -
40 3 “ “ •

8 5 0.06 290 0.04 168
8 7 0.09 304 0.07 246

10 3 0.38 3,738 0.14 1,002
10 5 0.74 3,964 0.72 3,381
10 7 0.89 3,504 0.47 1,630
15 3 3.28 16,940 1.16 5,621

15 5 8.35 27,961 8.37 26,112
20 3 7.14 32,398 5.50 25,058
20 5 - - - -

30 3 - “ -

40 3 “
'

8 5 0.03 103 0.02 73
8 7 0.06 199 0.05 138

10 3 0.05 317 0.02 63
10 5 0.22 1,203 0.17 786
10 7 0.52 1,977 0.41 1,394

15 3 1.95 10,576 0.90 4,555
15 5 3.79 13,944 3.23 10,741
20 3 6.21 26,018 3.89 16,125
20 5 13-27 30,624 12.90 28,822
30 3 9.21 22,897 9.18 20,573
40 3 12.40 26,707 14.83 25,799

8 5 0.02 65 0.01 43
8 7 0.03 89 0.02 63

10 3 0.02 110 0.01 43
10 5 0.06 295 0.04 115
10 7 0.14 445 0.12 367
15 3 0.97 6,420 0.34 1,874

15 5 1.37 4,493 0.04 115
20 3 3-98 16,745 1.04 4,356
20 5 7.38 18,529 6.60 16,229
30 3 10.33 18,026 6.17 12,988
40 3 13.68 22,780 13.51 19,060
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A l g o r i  thm

p n m LB
A . C . T . *  A . N . N . *

LB+ D+ H
A . C . T . *  A . N . N . *

o . A 8 5 0 . 0 1 3A 0 . 0 1 22

8 7 0 . 0 2 b5 0 . 0 2 37

10 3 0 . 0 1 37 0 . 0 1 18

10 5 0 . 0 3 126 0 . 0 2 72

10 7 O . O A 9 7  ' O . O A 79

15 3 0 . 1 7 1 , 0 7 A 0 . 0 8 361

15 5 0 . 3 0 1 , 0 1 1 0 . 2 1 6 5 2

20 3 2 . 0 7 9 , A A 5 0 . 7 2 3 . 6 A 2

20 5 A . 52 1 3 , 5 8 3 A . 12 1 1 , 3 6 8

30 3 A . 81 1 2 , 2 8 7 3 . 9 9 9 , ^ 5 A

A0 3 1 A . 3 9 1 8 , 2 9 2 1 1 . 2 9 1 7 , 5 1 9

0.5 8 5 0 . 0 1 22 0 . 0 1 1A

8 7 0 . 0 1 28 0 . 0 1 22

10 3 0 . 0 1 A2 0 . 0 1 15

10 5 0 . 0 2 52 0 . 0 2 35

10 7 0 . 0 2 35 0 . 0 2 26

15 3 0 . 0 7 3A8 0 . 0 5 15A

15 5 0 . 1 2 35 b 0 . 1 1 30 A

20 3 1 . 0 6 5 , 5 3 5 0 . 2 6 9 0 3

2 0 5 2 . 7 2 8 , 5 5 9 1 . 9 9 5 . 6 9 A

30 3 3 . 9 2 8 , 7 5 ^ 1 .2 k A , A 2 2

A0 3 8 . 3 5 1 2 . 8 A 5 6 . 9 9 1 0 , 1 3 7

0 . 7 5 8 5 0 . 0 0 7 0 . 0 0 5

8 7 0 . 0 1 8 0 . 0 1 6

10 3 0 . 0 1 10 0 . 0 1 A

10 5 0 . 0 1 8 0 . 0 1 A

10 7 0 . 0 1 10 0 . 0 1 8

15 3 0 . 0 2 12 0 . 0 2 5

15 5 0.03 16 0 . 0 3 13

20 3 0 . 0 7 70 0 . 0 6 20

20 5 0 . 1 5 35 5 0 . 1 3 2 1 0

30 3 0 . 3 8 3 1 8 0 . 2 7 A 8

A0 3 2 . 0 0 1 , 2 8 9 0 . 9 0 17 6

j. „ L o w e r  b o u n d  on t h e  a v e r a g e  w hen t h e r e  a r e
u n s o l v e d  p r o b l e m s .

-  T i m e s  a r e  i n  CPU s e c o n d s .

-  A . C . T .
-  A . N . N .
-  LB 

D
H

A v e r a g e  C o m p u t a t i o n  T i m e  
A v e r a g e  Number  o f  N o d e s  
L o w e r  Bo und  
D o m i n a n c e  R u l e s  
H e u r i  s t i  c
Most  p r o b l e m s  w e r e  l e f t  u n s o l v e d
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Table 10.4: Numbers o f  Unsolved Problems
_________ fo r  D i f fe ren t  Values  o f  p*_________

p Problem
Class LB

A lgo r i  thm
LB+D+H

0.0 R 44 41
C 52 37
T+ 19 15
T" 27 23
CT+ 29 22
CT" 26 21

0.1 R 37 37
C 49 41
T+ 19 18
T" 20 19
CT+ 27 23
CT" 25 20

0.2 R 19 17
C 38 30
T+ 4 3
T" 4 4
CT+ 15 9CT- 14 9

0.3 R 13 11
C 24 18
T+ 0 0
T" 7 3
CT+ 6 2
CT- 6 4

0.4 R 7 6
C 19 14
T+ 1 1
T" 3 3
CT+ 1 1
CT" 4 3

0.5 R 6 4
C 11 6
T+ 1 0
T" 1 1
CT+ 2 1
CT" 0 0

A l l  problems with p = 0.75 were so lved.

For every  value o f  p (p=0.0, 0.1, 0.2, 0.3, 0.4, 0 .5 ,  0 .75 ) ,  
problems were generated from each o f  the two c l a s s e s  R and C 
55 problems were generated from each o f  the other  c l a s s e s  o f

110
and
prob lems.
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Table 10.5

p 0.0 0.1 0.2 0.3 0.4 0.5

Hardest CT+ CT+ C C C C
T" CT- CT+ T" CT" R
C C CT" R R CT+
CT- T" R CT~ T" T"
R T+ T" CT+ CT+ T+

E a s ie s t T+ R T+ T+ T+ CT"

The f i r s t  row of  Table 10.5 shows that the problems with  c o r re ­

l a t i o n  and a p o s i t i v e  trend for  the p roces s in g  times o f  each job (CT+) to 

be the hardest fo r  p=0.0 and 0.1 wh ile  problems with  c o r r e la t i o n  between 

the p roce s s in g  times of  each job (C) to be the hardest fo r  a l l  other  values 

o f  p. The l a s t  row of  the same table shows problems with  p o s i t i v e  trends 

f o r  the p roces s ing  times of  each job to be the e a s i e s t  in most cases.

However, i f  we cons ider  the percentage o f  the number o f  a l l  

unsolved problems to the total  number o f  te s t  problems (770 problems o f  

each o f  the two c l a s s e s  R and C and 385 problems of  each o f  the other 

c l a s s e s  were te s ted ) ,  one can order  the d i f f e r e n t  c l a s s e s  as fo l l ow s :

C, CT+ , CT", R, T ' ,  T+, where problems in c l a s s  C are the hardest and 

problems in c l a s s  T+ are the e a s i e s t .  Thus, the co r re la ted  problems appear 

to be the most cha l leng ing ,  which i s  co n s i s t e n t  wi th  the f i n d i n g s  o f  

references  (Lageweg, Lenstra  £ Rinnooy Kan, 1978; Po t t s ,  I 9 8OA) f o r  the 

unconstra ined case and with  that of  Chapter 9 fo r  the two-machine f low-shop 

problem under precedence co n s t r a in t s .
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F i n a l l y ,  u s in g  Table 10.k , one can order  the d i f f e r e n t  c l a s s e s  o f  

problems accord ing  to the e f fe c t  o f  the dominance ru le s  on these d i f f e r e n t  

c l a s s e s  fo r  the d i f f e r e n t  va lues  o f  p. These orders  are gi ven in Table 

10.6. The e f fe c t i v e n e s s  o f  the dominance ru le s  on each c l a s s  was m e a s u r e d  

by the percentage o f  the reduct ion  in the number o f  unsolved  problems when 

u s in g  these dominance ru les  to the number o f  unsolved problems when the lower 

bound on ly  I s  used. The f i r s t  and l a s t  rows of  Table 10.6 conta in  the 

most and least  affected c la s se s  o f  problems fo r  the d i f f e r e n t  va lues  o f  

p re sp e c t ! ve ly .

Table 10.6

0.0 0.1

Host affected C CT"
CT+ C
T+ CT+
CT" T+
T" T"

Least a f fected  R R

0.2 0.3 0 .h  0.5

CT+ CT+ C T+
CT" T" CT" CT+
T+ CT" R C
C C CT+ R
R R T+ CT"

T" T+ T" t '

Table  10.6 shows that the dominance ru les  to be most e f f e c t i v e  on 

the problem c la s s e s  C, CT+ and CT and most i n e f fe c t i v e  on the problem 

c l a s s e s  R and T".

Table A . 1.1 shows that most o f  these reduct ion  in the number of  

unsolved problems occurred when m=3. However, f o r  m>5, the dominance 

r u le s  were most e f f e c t i v e  when p=0.0.
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10,5 Concluding Remarks

The branch and bound procedure proposed in t h i s  chapter forms the 

f i r s t  work that has been done on the permutation f low-shop  problem under 

precedence co n s t r a in t s .

Th i s  branch and bound procedure enabled us to so lve  problems with 

up to bo j obs .  The computational re s u l t s  showed that the performance o f  

the dominance ru les  was remarkably good. As expected, the e f f i c i e n c y  o f  

the a lgo r i thm  increases  as the value of  p increases.  I t  was most i n e f fe c ­

t i v e  when p=0.0. Obv ious ly ,  in th i s  case (p=0.0),  one would choose to use 

the branch and bound procedure proposed by Pott s  (Po t t s ,  I 98OA; see a l s o  

Chapter 8).  However, even when p=0.1 or 0.2, our branch and bound a lgor ithm 

performed badly, e s p e c i a l l y  on cor re la ted  problems. Th i s  ind ica te s  that a 

d i f f e r e n t  approach i s  needed fo r  these cases.  An approach based on s e l e c t ­

ing c e r ta in  p a i r s  o f  jobs  i and j (where no arc j o i n i n g  jobs  i and j e x i s t s  

in E) and dec id ing ,  at the top o f  the search tree,  an o rder ing  between the 

two jobs  o f  each p a i r  seems worth i n v e s t i g a t i n g .  One way o f  s e l e c t i n g  

these p a i r s  o f  jobs  would be by s e le c t i n g  a p a i r  o f  jobs  i and j (where 

a rc s  ( i ,j )  and ( j , i )  are not in E) such that job i has the l a r ge s t  number 

o f  i n - go in g  arcs  and job j has the l a r ge s t  number of  ou t -go ing  a rcs .

Improving the two-machine lower bound, perhaps as g iven  in Chapter 

9 , should  a l s o  y i e l d  a more e f f i c i e n t  a lgor ithm.
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CHAPTER ELEVEN

CONCLUSION

11.1 Cont r ibut ion  o f  t h i s  Research

As mentioned in Chapter 1, t h i s  t h e s i s  i s  devoted to schedu l ing  

problems. Emphasis has been on d e r i v i n g  optimal branch and bound a lgor i thms 

f o r  two s ing le -machine  problems and two mult i-machine problems. We have 

a l s o  g iven  some a t ten t ion  to h e u r i s t i c  methods (methods which do not 

guarantee  optimal s o lu t io n s )  because these methods dominate a l l  other 

methods in real l i f e  s i t u a t i o n s .

We s tarted  Chapter 5 by g i v i n g  a review o f  one machine h e u r i s t i c s .

We then completed our comprehensive l i s t  o f  one machine h e u r i s t i c s  by 

su gge s t i n g  four  other one machine h e u r i s t i c s .  A tree type h e u r i s t i c  was 

a l s o  included.  The ba s i s  o f  t h i s  h e u r i s t i c  i s  to s e le c t  one node at each 

leve l o f  the tree from which to branch. Th is  node is  se lected  u s ing  one of  

the f o l l ow in g  two methods: (a) it  has the sma l le s t  lower bound in which 

case the tree type h e u r i s t i c  is  re ferred to by H^; (b) i t  has the sma l le s t  

va lue  o f  a second order  h e u r i s t i c  H, in which case the tree type h e u r i s t i c  

i s  refer red  to by H^. The performance of  one o f  the proposed h e u r i s t i c s  

together with  h e u r i s t i c s  HL and was tested on the 1/r./£w.C. problem.

The te s t  problems included problems with  up to 50 jobs .  Optimal or  sub- 

optimal s o l u t i o n s  to these problems were used to compare the performance 

o f  the h e u r i s t i c s .  The r e su l t s  showed h e u r i s t i c  to be s u b s t a n t i a l l y  

better  than h e u r i s t i c  HH< They a l s o  ind icated that app ly ing  both h e u r i s t i c s  

( i . e .  Hl and HH) and choosing the best s o l u t i o n  i s  a reasonable  s t ra tegy .

I t  would be i n te re s t i n g  to see how h e u r i s t i c s  HL and HH together w i th  other 

proposed h e u r i s t i c s  perform on d i f f e r e n t  problems and a l s o  on problems of 

s i z e s  la rge r  than 50.
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In Chapter 6 we proposed branch and bound a lgor i thms  to so lve  the 

l/r./Ew.C.  problem. Problems with up to 50 jobs  were used to te s t  the per­

formance o f  our proposed a lgor i thms.  The r e s u l t s  showed a l l  our a lgor i thms  

to  work reasonably  we l l ,  e s p e c i a l l y  problems with  up to **0 jobs.

In Chapter 7 we proposed a branch and bound a lgor i thm for  the 1//Ew C2
i i

problem. Problems with up to 70 jobs  were used to te s t  the performance of

ou r  proposed a lgor ithm. The e xce l len t  r e s u l t s  we had were not expected:

a l l  the 700 te s t  problems but one were so lved without the need f o r  branching.

We have a l s o  expla ined how our proposed bounding procedure can be appl ied  

2
to the 1/prec/IWjC. problem. I t  would be in te re s t i n g  to te s t  the performance

o f  our proposed bounding procedure in a branch and bound a lgor i thm  fo r  the 

2
1/prec/Zw.C. problem.

Branch and bound a lgor ithms for  the F2/prec/C problems are aiven
max 3

in Chapter 9. The performance o f  our a lgor i thms was a s sessed  us ing  te st  

problems with up to 60 jobs.  A l l  problems with  up to 1*0 jobs  and most pro ­

blems w ith  50 jobs  were so lved us ing  our best a lgor ithm.  Unfortunate ly ,  

our  a lgor i thms  were not so e f f e c t i v e  on problems with 60 jobs .  Methods of  

improving our bounding procedure to deal wi th  t h i s  case were a l s o  included.

F i n a l l y ,  in Chapter 10 we gave a branch and bound a lgor i thm  to so lve

the Pm/prec/C problem. To the a u th o r ' s  knowledge no-one has worked on max

t h i s  problem before. The te s t  problems included problems with  n/m: 8/5,

8/7, 10/3, 10/5, 10/7, 15/3, 15/5, 20/3, 20/5, 30/3, 1*0/3. The r e su l t s  

showed our  proposed a lgor ithm to work reasonably  w e l l ,  e s p e c i a l l y  on pro ­

blems with  large values o f  p. Inc lud ing  dominance ru le s  in the a lgor i thm  

lead to remarkably better  re su l t s .

U .2 Future o f  Scheduling

With the cont inu ing  dramatic reduct ion in the s i z e  and cost  of  

computer hardware, i t  i s  becoming a v i a b le  p ro p o s i t i o n  to b u i ld  computers
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with  thousands o f  ind iv idua l  p roces so r s  s u i t a b l y  l inked together. Each 

one o f  these processo r s  i s  capable o f  execut ing  a n o n - t r i v i a l  program.

The assumption that as many processo r s  as needed are a v a i l a b l e  has been 

made in almost a l l  work done on p a r a l l e l  computing. Although t h i s  assump­

t i on  i s  u n r e a l i s t i c ,  a p a r a l l e l  a lgor i thm (an a lgor i thm  which i s  adapted 

fo r  p a r a l l e l  computers) w i l l  in p r a c t i s e  be run on a machine with  a f i n i t e  

number o f  p rocesso r s .  (The complexity o f  a p a r a l l e l  a lgo r i thm  depends very  

much on the s t ruc tu re  o f  the p a r a l l e l  computer on which i t  i s  run.)

Several  p a r a l l e l  models have been proposed and s tud ied  by researchers.  

Two important models are the S in g le  In s t r u c t io n ,  M u ltip le  Data stream  (SIMD) 
model and the M u ltip le  I n s t r u c t io n  M u ltip le  Data stream  (MIMD) model.

SIMD computers are character ized  by the fo l l ow ing  (Dekel s  Sahni,

1980):
1. They c o n s i s t  o f  M p roces s ing  elements (PEs) indexed 0 , 1 , . . . , M-1. Each 

element (PE) knows i t s  index and i s  capable o f  performing the standard 

a r i thm et ic  and log i ca l  opera t ions .

2. Each PE has a local memory.

3 . The PEs operate s imultaneous ly  and under the contro l  o f  a s i n g l e  

i n s t r u c t i o n  stream. (Th is  means a l l  the PEs execute the same program 

s im u l taneou s ly . )

A. A subset o f  the PEs may be chosen to perform an i n s t r u c t i o n .  The 

remaining PEs w i l l  be l e f t  id le .

The MIMD computers are a l s o  character ized  by the above four  po in ts  

except that po in t  3 i s  replaced by:

3 . Each PE may operate independent o f  a l l  other  PEs. (Th is  means the 

PEs do not have to operate s imu ltaneous ly  nor under a s i n g l e  

i n s t r u c t i o n  stream.)

Dekel and Sahni (Dekel £ Sahni,  19 80) gave (among other  th ing s )

0 ( log n) p a ra l l e l  a lgor ithms (based on computation t rees )  to so lve  the 

fo l l ow ing  schedu ling  problems:
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(a) Scheduling n jobs  on one machine to minimize the 

maximum la teness .  Pre-emptions are permitted.

(b) Scheduling n jobs  on one machine to minimize the 

number of la te  jobs.

(c) Scheduling n jobs on one machine to minimize the 

sum of  completion times subject to dead l ines .

The complexity of  the f a s t e s t  sequentia l  a lgo r i thm  known fo r  each 

o f  the above problems i s  0(n log n ) .

I f  A i s  a p a ra l l e l  a lgor ithm for  a problem P, the e f f e c t i v e n e s s  o f  
p ro c e sso r  u t i l i z a t i o n  (EPU) i s  defined as fo l low s :

EPU(P.A)
Complexity of the f a s t e s t  sequentia l  a lgo r i thm  for  P 

Number of PEs used by A x Complexity o f  A

Each p a ra l l e l  a lgor i thm for  each of the above schedu l ing  problems 

uses 0 (n) PEs and thus has EPU(P,A) = 0(n log n/(n log n))  = 0 (1/log n) .

We po in t  out that the best EPU one can hope f o r  is  0 (1 ) .  Some p a ra l l e l  

a lgo r i thm s  that achieve th i s  EPU can be found in (Dekel & Sahn i,  1980).

Of the SIMD models, Dekel and Sahni (Dekel & Sahn i,  ----  ) con­

s ide red  a model with  on ly  the shared memory (SMM), i .e .  a model wi th  a 

la rge  common memory which i s  shared by a l l  PEs. In t h e i r  model i t  i s  

assumed that any PE can access  any word of  the common memory in 0(1) time 

and that not more than one PE can access  to read from or  w r i te  in the 

same word s imultaneous ly .  They gave (among other th ing s )  p a r a l l e l  a lgor ithms 

to so lve  the fo l low ing  schedu ling  problems:

( a )  S c h e d u l i n g  n j o b s  w i t h  u n i t  p r o c e s s i n g  t i m e s  on  

o n e  m a c h i n e  t o  m i n i m i z e  t h e  n um b e r  o f  l a t e  j o b s .

( b )  S c h e d u l i n g  n j o b s  w i t h  u n i t  p r o c e s s i n g  t i m e s  on  

o n e  m a c h i n e  t o  m i n i m i z e  t h e  sum o f  c o m p l e t i o n  

t i m e s  s u b j e c t  t o  d e a d l i n e s .

Each of  the p a ra l l e l  a lgor i thms requ i re s  0 ( lo g  n) time, uses 0(n2 )

PEs and has EPU that i s  o f  0(1/n). We remark that the f a s t e s t  sequent ia l
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a lg o r i t hm  known for  each o f  the above problems requ i re s  0(n log n) time.

C lea r l y ,  given an MI HD computer with a la rge  number o f  p roce s s in g  

elements (PEs) s u i t a b l y  l inked together, i t  should be p o s s ib le  to des ign  

branch and bound a lgor ithms for  s o l v i n g  NP-hard problems o f  g rea te r  s i ze  

than has so fa r  been p o s s ib le .  Of course, i f  every a l t e r n a t i v e  at each 

s tage  o f  a branch and bound a lgor i thm i s  pursued in p a r a l l e l  then t h i s  

a l go r i t hm  executes in polynomial  time. The problem that may a r i s e  here 

i s  that un less  each PE is  d i r e c t l y  connected to each o f  the other  PEs, not 

a l l  PEs can, in genera l,  be made immediately aware of  the new best va lue o f  

the upper bound. Unfortunate ly ,  a model that can overcome t h i s  problem i s  

not  appropr ia te  because o f  the large number o f  the PEs invo lved.  However, 

a s u i t a b l e  cho ice  o f  network (model) i s  one in which each PE is  connected 

to  j u s t  a small number of  t o p o l o g i c a l l y  neighbour ing PEs. The r - a r y  n-cube 

network considered in (Burton et a l . ,  19 8 1) conforms to t h i s  requirement.

The r - a r y  n-cube network c o n s i s t s  o f  n rn PEs, each o f  which has i t s  

own memory and with a sub -sect ion  for  handl ing  communication. Each PE in 

t h i s  network conta in s  the same program and enjoys two-way communication 

w i th  e xac t l y  2 r se lected  neighbour ing PEs. Any i d le  PE repeatedly requests  

work ( i f  any) from and exchanges information  with each of the PEs to which 

i t  i s  connected. Each PE w i l l  apply branching ru le s ,  e l im ina t ion  ru le s ,  a 

lower bound and an upper bound l o c a l l y  to a l l  sub-problems i t  i s  going  to 

work on. For fu r the r  de ta i l  about t h i s  r - a r y  n-cube network, we re fer  to 

the above g iven reference.
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APPENDIX 1

Table A . 1.1: Numbers of  Unsolved Prob 1ems*

p n m Problem
Class LB LB+D+H

0.0 10 3 R 1 0
C 1 0
T+ 0 0
T" 2 1
CT+ 1 0
CT" 0 0

0.0 10 5 R 1 1
C 0 0
T+ 0 0
T“ 1 1
CT+ 1 0
CT" 0 0

0.0 10 7 R 0 0
C 1 0
T+ 0 0
T 2 2
CT+ 1 0
CT” 0 0

0.0 15 3 R 2 1
C 6 0
T+ 0 0
T 2 0
CT+ 2 1
CT" 3 1

0.0 15 5 R 5 5
C 6 3
T+ k 0
T" 3 3
CT+ k i»
CT" 3 3

0.0 20 3 R 5 it
C 8 ¿4
T+ 0 0
T” 2 1
CT+ 5 2
CT” 5 2
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P n m
Problem
Cla ss LB LB+D+H

0.1 10 3 R 0 0
C 0 0
T+ 0 0
T" 1 0
CT+ 1 0
CT~ 0 0

0.1 10 5 R 0 0
C 0 0
T+ 0 0
T 1 1
CT+ 0 0
CT" 0 0

0.1 10 7 R 0 0
C 1 0
T+ 0 0
T“ 0 0
CT+ 0 0
CT~ 0 0

0.1 15 3 R 1 1
C 2 1
T+ 1 0
T" 0 0
CT+ 3 0
CT- 3 1

0.1 15 5 R it b
C 7 6
T+ 0 0
T" 1 1
CT+ b it
CT" 2 1

0. 1 20 3 R 2 2
C S it
T+ 3 3
T" 2 2
CT+ b it
CT~ 5 3

R 1 1
C 3 1
T+ 0 0
T" 0 0
CT+ 3 1
CT“ 0 0
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p n m Problem
Class LB LB+D+H

0.2 15 5 R 2 2
C 3 1
T+ 0 0
T" 0 0
CT+ 1 1
CT- 1 1

0.2 20 3 R 3 2
C 7 3
T+ 1 1
T" 0 0
CT+ h 2
CT" k 2

0.2 20 5 R 5 5
C 9 9
T+ 2 2
T" 1 1
CT+ k 1
CT" 3 1

0.2 30 3 R 1 1
C 8 8
T+ 1 0
T" 2 2
CT+ 3 2
CT 3 3

0.2 W 3 R 7 6
C 8 8
T+ 0 0
T~ 1 1
CT+ 2 2
CT' 3 2

0.3 15 3 R 2 1
C 0 0
T+ 0 0
T" 0 0
CT+ 1 0
CT" 0 0

0.3 15 5 R 0 0
C 0 o
T+ 0 0
T" 0 0
CT+ 0 0
CT" 0 0
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P n m P rob 1em 
C la ss LB LB+D+H

0.3 20 3 R 2 1
C 4 1
T+ 0 0
T" 3 0
CT+ 1 0
CT- 1 0

0.3 20 5 R 2 2
C 6 6
T+ 0 0
T ' 2 2
CT+ 1 1
CT" 1 0

0.3 30 3 R 2 2
C 6 4
T+ 0 0
T 1 1
CT+ 1 0
CT" 2 2

0.3 40 3 R 5 5
C 8 7
T+ 0 0
T“ 1 0
CT+ 2 1
CT' 2 2

0.4 20 3 R 1 0
C 2 0
T+ 0 0
T- 0 0
CT+ 0 0
CT" 1 1

0.4 20 5 R 0 0
C 6 6
T+ 0 0
T" 1 1
CT+ 0 0
CT" 1 0

0.4 30 3 R 1 1
C 6 3
T+ 0 0
T" 1 1
CT+ 0 0
CT' 1 1
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p
Problem
Class LB LB+D+H

0.1* bO 3

0.5 20 3

0.5 20 5

0.5 30 3

0.5 *t0 3

R 5
C 5
T+ 1
T 1
CT+ 1
CT" 1

R 0
C 1
T+ 0
T" 0
CT+ 1
CT" 0

R 0
C b
T+ 0
T“ 0
CT+ 0
CT" 0

R 1
C b
T+ 0
T" 0
CT+ 0
CT" 0

R 5
C 2
T+ 1
T” 1
CT+ 1
CT" 0

5
5
1
1
1
1

0
0
0
0
0
0

0
1
0
0
0
0

b
2
0
1
1
0

*  A l l  problems with p=0.75 were so lved.

- For p=0.0 and 0.1, most problems with n/m=20/5, 
30/3 and 40/3 were le f t  unsolved.
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