Keele
University

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational
purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to
guote extensively from the work, permission must be obtained from the
copyright holder/s.

SCHEDULING, USING BRANCH AND BOUND TECHNIQUES

A thesis submitted for the degree
of Doctor of Philosophy at
the University of Keele

by

AHMED MOHAMED AHMED HARIRI

Department of Mathematics,
University of Keele,
December 1981,

A G 1 B

IN THE NAME OF ALLAH THE COMPASSIONATE THE MERCIFUL

TO MY PARENTS
AND MY WIFE

PREFACE

This thesis presents the results of research carried out by the
author at the University of Keele, 1978-1981. Except where acknowledged
otherwise, the work reported here is claimed as original, and has not
previously been submitted for a higher degree at this or any other
university.

| wish to thank Dr. Chris Potts, my supervisor, for his wonderful
guidance and help throughout; King Abdul-Aziz University, Jeddah, Saudi
Arabia for their financial support; and members of the Computer Centre,
especially Dr. A. F. Grundy and Dr. P. G. Collis for their valuable comments
regarding the computer programs and Mrs. C. Parnell for her excellent
typing of the thesis.

Finally, | would like to express my utmost app}eciation to my
parents for their unfailing encouragement and support during my studies
at school and university, and my wife for her patience and for providing

badly needed moral support.

ABSTRACT

The thesis is devoted to machine scheduling problems. It is
presented in four parts.

Part | is an introductory one in which we give a full description
of machine scheduling problems together with existing methods of approach
to sclving these problems,

Part Il is started by giving a review of one machine problems
together with well known and new heuristics for most of these problems.

Then we use branch and bound techniques to solve a one machine problem
with release dates to minimize the sum of weighted completion times '"i.e.
the 1/ri/ZwiCi problem'" and a one machine problem to minimize the weighted
sum of squares of completion times 'i.e. the 1//ZwiC? problem'.

We start Part |11 by giving a review of methods to solve the flow-
and job-shop scheduling problems. We then apply branch and bound techniques
to solve the two and m machine permutation flow-shop problems with precedence
constraints to minimize the maximum completion time in each case 'i.e. the
F2/prec/C .. and Pm/prec/Cmax problems'',

Part 1V contains our conclusion together with a brief look at

multi-processor computers and their impact on the future of scheduling.

PART |:

CONTENTS

INTRODUCT I ON

CHAPTER

1:

INTRODUCTION

1.

1.

CHAPTER

-—

N

Introduction
Historical Background
Contributions of this Research

DESCRIPTION OF MACHINE SCHEDULING PROBLEMS

CHAPTER

PR NMNPNND NN
i FwWNhNdNN -

w

W N -

Introduction
Restrictions
Restrictions on the Machines

—

.2 Restrictions on the Jobs

Objectives

Problems Classification
Machine Environment

Job Characteristics
Objective Function
Examples

Computational Complexity

METHODS OF APPROACH

PART I1I:

W W W W wwe
WLWLWWNRNRNNRN—

w N

Introduction
Branch and Bound Approach
The Bounding Procedure

.

.2 The Branching Procedure
.3 The Search Strategy

Heuristic Methods

.1 Sampling Technique

Priority Rules
The Tree Type Heuristic

SINGLE MACHINE SCHEDULING

CHAPTER

=

SINGLE MACHINE SCHEDULING

Eadi i o i 3 ok

LW W W N

Introduction

Minimizing Maximum Cost f
Minimizing Total Cost Zfi
1/8/Tw;C;

1/8/tw,C,2

1/8/%w. T,

1/8/Iw; U,

Multipie Objectives

max

W N =

18

18
21
22
24
24
26
27
28
30

32
33

33
33
35
35
36
37
38
39

CHAPTER

i

HEURISTICS FOR SINGLE MACHINE PROBLEMS

CHAPTER

VIVivi Vi U Ut vl o U v v o
e e s e = e e e e e s e e s e

ol g

W W W W N R RN NN —-

vt w N

Fl VS Y

N =

Introduction
Heuristics Chosen from the Literature

]/ri/Lmax
l/ri/):Ci
1/di/ZwiCi
1/prec/2wiCi
1//ZTi

New Heuristics
l/ri,prec/ZwiCi

I/ri,prec/ZwiC?
l/ri,prec/):wiTi
1/ri,prec/ZwiUi

The Tree Type Heuristic
The Algorithm
Computational Experience

5.4.,2.1 Test Problems
5.4.2,2 Computational Results

Concluding Remarks

AN ALGORITHM FOR SINGLE MACHINE SEQUENCING
WITH RELEASE DATES TO MINIMIZE TOTAL WEIGHTED

COMPLETION TIME

N
~J

CHAPTER

aosognonovnononOONONOY

NN ONON
W 0o o 0O~

SNNSNN OV W RN -
o e .

I g w N —

Introduction

The Heuristic Method
Derivation of the Lower Bound
The Improved Lower Bound
Dominance Rules

The Algorithm

Modified Algorithm

Branching

Composite Jobs

Distributing the Multiplier of a composite job

amongst its component jobs

Procedure: Distributing XK of a Composite Job K

amongst its component jobs

Implementation of the Mixed Branching (MB)

Computational Experience
Test Problems
Computational Results
Concluding Remarks

THE SINGLE MACHINE PROBLEM WITH WEIGHTED SUM

OF SQUARES OF COMPLETION TIMES

~N sy~
« o .
WA =

Introduction
Dominance Rules
Townsend Lower Bound

Page
43

L3
L
Ll

Le
L7
48
50

52
53

54
54
56

60
60
61

61
62

65

66

66
67
69
72
76
78
30
80
85
87

83
89
95
95

99

100

100
101
102

PART 111

NN NN NSNS

O~ OV I

-9

.10
.10.1
.10.2
A1

.
.

New Bounding Procedure

Implementation of the Lower Bound

Example

The Algorithm

Incorporating the Dominance Rules with the
Lower Bound

Precedence Constraints

Computational Experience

Test Problems

Computational Results

Concluding Remarks

MULTI~MACHINE SCHEDULING

CHAPTER

8:

FLOW-SHOP SCHEDULING

CHAPTER

OO0 0000

W NN N —

ol WA (SRR

Introduction
The Pm//C Problem
max

Eranching Rule

Lower Bounds

Dominance Rules

Heuristic Methods

Open- and Job-Shop Problems

THE TWO MACHINE FLOW-SHOP PROBLEM UNDER
PRECEDENCE CONSTRAINTS

CHAPTER

WWOWWOWWOWWWOWWYWWWOWWWOWDOL\
5 e s s e e e s e s e e =
CONN SN OV oW R -

—

-—

—
[e]
..

Introduction

Branching Rule and Dominance
Lower Bounds

Job Based Bound

Conflict Bound

Heuristic

Example

The Algorithm
Computational Experience
Algorithm Representation
Test Problems
Computational Results
Concluding Remarks

THE GENERAL PERMUTATION FLOW-SHOP PRCBLEM
UNDER PRECEDENCE CONSTRAINTS

10.
0.
10.
10.
10.
10.
10,
10,
10.
10.
10.
10,

VI B FmwWwwwwWwWww N —

Vi Wi —

—

Introduction

Lower Bound

The Algorithm

Branching Rule

Lower Bounds

Dominance Rules
Implementation of the Dominance Rules
Upper Bounds
Computational Experience
Test Problems
Computational Results
Concluding Remarks

Page

105
115
119
124
126

127
130
130
130
132

134
135

135
138

138
139
m
146
150

152

152
154
157
158
159
161
161
166
167
167
167
168
176

180

180
181
184
184
184
185
188
189
190
190
191
198

PART 1V: CONCLUSION
CHAPTER 11: CONCLUSION
1.1 Contribution of this Research
2 Future of Scheduling

APPENDI X

REFERENCES

Page
199
200

200
201

PART |

INTRODUCTION

CHAPTER ONE

INTRODUCT I ON

1.1 Introducticn

This study will be devoted to machine scheduling problems. The
problems that will be under our consideration can be defined as follows.
There are a given number of jobs each of which requires one or more opera-
tions. An operaticn is the processing of a job on a machine. It is
required to determine the starting times of the operations.

Although this definition suggests that the problem is mainly
applicable to industrial production, it can be interpreted to cover
various other situations: jobs and machines can stand for patients and
hospital equipment, ships and dockyards, pregrammer and computers, etc.
Clearly, scheduling algorithms are of much importance to operational

research practitioners.

1.2 FHistorical Background

Scheduling problems have been under study for a long time, but the
first break through in scheduling came in 1954 in the form of a paper by
Johnson (Johnson, 1954). Two other important results followed shortly
(Jackson, 1955; Smith, 1956).

Encouraged by the fact that the simplex method can be used to solve
linear programming problems, Bowman (Bowman, 1959) formulated scheduling
problems as an integer programming problem, hoping that a good algorithm
for solving the latter one could be found. Others followed in the same
direction, but they soon abandoned this approach, firstly because of the
hundreds of 0-1 variables and constraints required to formulate scheduling
problems (even of small sizes), and secondly because no goed general

algori thm has been found to solve (-1 programming problems,

Branch and bound techniques were developed and first used by
Eastman (Eastman, 1959) for the travelling salesman problem and by Land
and Doig (Land and Doig, 1960) in the context of mixed integer programming.
They were first applied to scheduling problems by (lgnall & Schrage, 1965;
Lomnicki, 1965; Brown & Lomnicki, 1966; McMahon & Burton, 1967).

The difficulty of scheduling problems made heuristic methods
(methods that do not guarantee optimality) unavoidable for many problems.
Simulations of actual and hypothetical environments were used to test the
performance of these heuristics. Unfortunately, not enough work has been
done on the worst case behaviour of these heuristics. First results on the
worst case performance of heuristics were due to Graham (Graham, 1966, 1969).
A review of worst case performance of scheduling heuristics can be found
in (Garey, Graham and Johnson, 1978). However, heuristic methods are
likely to become a major research area in the near future because of
their importance in real life situations.

Classifying scheduling problems according to their degree of
algorithmic complexity was first reported in (Cook, 1971) and (Karp, 1972).
However, major development in the classification and complexity of schedu-
ling problems is mainly due to Rinnooy Kan (Rinnooy Kan, 1976), Lenstra

(Lenstra, 1977) and (Garey & Johnson, 1979).

1.3 Contributions of this research

As mentioned before, this study is devoted to machine scheduling
problems. It is presented in four parts.

Part | is an introductory one. We start this part by giving a full
description of machine scheduling problems, including notations and repre-
sentations. We shall distinguish between three types of problems: ''easy",
hard'' and ''open'' scheduling problems. This is followed by an extensive

discussion of various restrictions which will be assumed (unless stated

otherwise) throughout this study. The most important of these is the
restriction to deterministic problems, which eliminates all stochastic
aspects like queueing theory, and also the restriction to unit machine
capacities. Further to that we will restrict ourselves to choosing
specific cost functions as optimality criteria. Here, we will restrict
ourselves to the so-called regular measures, i.e. criteria in which the
quality of a schedule is a non-decreasing function of the jobs'
completion times.

In this thesis, we shall assume that once the processing order of
the operations has been determined on each machire, each operation is com-
pleted as soon as possible, and hence we do not distinguish between the
two concepts ''feasible sequences'' and ''feasible schedules'. However, some
researchers (Elmaghraby, 1968; Ashour, 1972; Rinnooy Kan, 1976) distinguish
between these two concepts: a sequence corresponds to a processing order
of operations on each machine, while a schedule determines the exact
starting and finishing times of each operation besides determining the
processing order of the operations.

We end Part | by listing most well-known methods of approach to
solving scheduling problems, e.g. branch and bound, dynamic programming,
heuristics, etc. We shall discuss in detail two of these methods, namely
heuristic and branch and bound approaches. Heuristic methods are included
because of their importance in real life situations. The branch and bound
method is included because it is amongst the most widely used methods of
approach to solving scheduling problems, and because it is the method to
be used throughout this thesis, except in Chapter 5, where we shall give
heuristic methods for solving one machine problems.

Part Il is devoted to single machine problems. We start this part
by giving a brief survey of the principal results which are classified

according to the optimality criterion chosen. This is followed by

heuristic methods for solving one machine problems, some of which are

chosen from the literature; others are new ones for which some computational
experience is reported. We end part Il by demonstrating the properties

and performance of branch and bound techniques on two single machine
problems: single machine sequencing with release dates to minimize total
weighted completion time and single machine sequencing to minimize a
quadratic function of completion times. Dominance rules and heuristics
will also be included. Computational experiences will also be reported

in every case.

Part 111 is devoted to the general flow-shop problems. The fliow-,
job=- and the open-shop problems will be discussed briefly. The special
case known as the permutation flow-shop problem will be discussed in
detail. Dominance rules, heuristics, branching rules and lower bounds
are reviewed.

We end this part by demcnstrating the performance of branch and
bound algerithms on two problems: the two-machine flow-shop and the permu-
tation flow-shop prcblems under precedence constraints to minimize the
maximum completion time in each case. As usual, computational experience
will be included.

Part IV contains our conclusion together with a brief look at multi-
processor computers and their future impact on both 'easy' and "hard"

scheduling problems.

CHAPTER TWO

DESCRIPTION OF MACHINE SCHEDULING PROBLEMS

2.1 Introduction

Machine scheduling problems can be described as follows. There
are n jobs (numbered 1, ..., n) and job i (i=1, ..., n) requires m.
operations. Each operation corresponds to the processing of a job on one
of m machines for a given period of time. The problem is to find the
optimal processing order of these operations on each machine which mini-
mizes, subject to some constraints, a given objective function.

In Section 2.2 we discuss all restrictions on the machines and the
jobs, including the ones we shall drop at some stage of this thesis.
Objective functions are discussed in Section 2.3, followed by problem
classification in Section 2.4. Finally, in Section 2.5, we discuss the

computational complexity of machine scheduling problems.

2.2 Restrictions

2.2.1 Restrictions on the machines

Unless stated otherwise, we will restrict ourselves to the
following restrictions on the machines.
M1 The set of machines i& known and fixed.
M2 All machines are independent, are available to process jobs at

the same time and remain available to process jobs during an
wnlimted period of time.

M3 Each machine k(k=1,...,m) is either watting to process the next
job, operating on a job or having finished its last job.

ML ALl rmachines are equally important.

M5 Each machine has to process all jobs assigned to it.

M6 Each machine can process not more than one job at a time.

This restriction will be relaxed in Chapters 8 and 10 to
obtain lower bounds for the m machine problems discussed
there.

M7 The processing order per machine i1s wnknown and has to
be fized.

We point out that restrictions M1 and M5 distinguish between the
deterministic problems which we are interested in from the stochastic ones.

For an introduction to the theory developed for stochastic pro-
blems, we refer to (Conway et al., 1967: Chapters 7-10) or any book on

queueing theocry.

2.2.2 Restrictions on the Jobs

Unless stated otherwise, we will 1limit ourselves to the
following restrictions on the jobs.

J1 The set of jobs is known and fixed.

J2 We shall face some situations (see Chapters 4, 5 and 6) where each
job i(i=1,...,n) has a non-negative integer release date r, at which
job i becomes available for processing (we shall use available to
denote available for processing). Unless stated otherwise we shall
assume that all the jobs are available at time zero, i.e. r.=20
for all i=1,...,n. We shall also face other situations (see
Chapters 4, 5, 9 and 10) where the processing of some of the jobs
is dependent on the processing of some other jobs. This situation
arises when precedence constraints among jobs exist as a part of
the problem. These precedence constraints on the jobs can be
represented by a directed acyclic graph (digraph) G = (V,E), where
V denotes the set of vertices and E the set of edges. The vertices
of G represent the jobs and the edges represent the arcs between
the jobs. Job i must be processed before job j on each machine if
there exists a directed path from vertex i to vertex j in E. The
transitive closure of the directed graph G is the graph obtained
by adding all arcs (i,j) (if they do not already exist) to G

whenever there is a directed path from vertex i to vertex j.

The transitive reduction of G is the graph obtained by deleting

all arcs (i,j) from G whenever there is a directed path from vertex
i to vertex j which does not include the arc (i,j) itself. The
inverse of G is the graph obtained by reversing the directions of
all arcs. The adjacency matrixz of the precedence constraints is
the n x n matrix X = (xij)’ where x. . = 1 if an arc (i,]) exists

in the transitive closure of G and xij = 0 otherwise. A precedence
graph G, together with its transitive reduction and its transitive

closure are given in Figure 2.1,

ORSORENORSOREORO
OB ONNONNO 0:’/0
O—O O—® 0"0

(a) a directed (b) transitive (c) transitive
graph G. reduction of G. closure of G.

Figure 2.1: Precedence constraints as a directed acyclic graph

A precedence graph G = (V,E) is a tree if the number of arcs leaving
(or entering) a node is at most one. It is called series—parallel
if G consists of a single node i, i.e. G = (i,@), or if G, = (Vl'El)

and G, = (V,,E,) are series-parallel with V,(V, = @ and:

2

(a) G is the series composition of G, and Gy, i.e.

G = (V1] V2, E, UEZU(V1 X VZ))’ or

(b) G is the parallel composition of G, and Gy i.e.

G = (v1 1] Vz' E] UEZ).

The directed graph G of Figure 2.1 becomes series-parallel if the
arc (1,3) is removed from G or if a new arc (1,2), (2,4) or (3,4)
[(2,1), (4,2) or (4,3)] is added to G. The simplest acyclic digraph

which is not series-parallel is shown in Figure 2.2,

Figure 2.2: A non-series parallel digraph

The precedence graphs which will be considered from now cn are of
the general (arbitrary) type. More details about series-parallel
graphs can be found in (Sidney, 1975; Lawler, 1978; Sidney, 1979;
Monma, 1979; Monma and Sidney, 1979; Monma, -).

A different definition of precedence constraints appeared in
(Rinnooy Kan, 1976): job i is said to have precedence over job j
if it is required that job i is completed on the last machine
before job j is started on the first one. Our definition of pre-
cedence constraints is more realistic since there appears no
reason why job j must be delayed until job i is completed on all
the m machines in real life situations. If precedence constraints
are not given as a part of the problem we shall assume that E = [
(.e. all jobs are independent).

Also, we shall face some situations (Chapter 4) where each job i
(i=1,...,n) must be finished before its deadline d, (time after

which job i will not be available for processing). Unless stated

J3

Jh

J5
J6

J7

J8

J9

otherwise we shall assume that all jobs remain available during
an wnlimited time.

At any instant of time, each job is eilther waiting for the next
machine, being processed by a machine or has been completed
processing on its last machine.

Some of the problems considered in this thesis (see for example
Chapters 4, 5, 6 and 7) will have weights attached to the jobs to
indicate the relative importance of each of these jobs. We shall
use w, to denote the weight assigned to job i(i=1,...,n). However,
in all other situations we shall assume that all jobs are equally
important (i.e. w;=1 for all i=1,...,n).

Each job must be processed by all the machines assigned to it.
Each job is processed by one machine at a time. For situations
where this restriction is dropped we refer to (Rinnooy Kan, 1976:
Section 5.3).

All processing times are fixed and sequence~independent. Also,
there are no setup times. For situations where there are setup
times we refer to (Rinnooy Kan, 1976: Sections 4.2.2 and 4.4.2).
Each operation once started has to be completed without inter—
ruption. This restriction is relaxed in Section 6.4 where we
allow job-splitting (pre-emption) in order to obtain a lower
bound for the single machine problem with release dates to
minimize the sum of weighted completion times.

The processing order for each job on the machines is known and
fized. This restriction is relaxed in Section 8.3 where we

talk about the open-shop problem for which this processing order
is immaterial.

Restrictions J1 and J5 again stress the deterministic character of

the scheduling problems discussed in this thesis,

- 10 -

2.3 Cbjectives

The aim in all scheduling problems considered in this thesis is to
find a schedule that minimizes a given objective function(s). It will be
useful at this stage to associate the following data with job i(i=1,...,n):
- a processing time Pik of its kth operation, k=1,...,mi (if m. =1
for all i, we shall write p; instead of pi1)°

- a weight Wi indicating the relative importance of job i. Unless
stated otherwise, we assume that wi=1 for all i=1,...,n.

- a release date r (earliest possible starting time for job i). Unless
stated otherwise, we assume that ri=0 for all i=1,...,n.

- a due date or deadline d,.

- @ cost function fi.
We assume that all data (except fi) to be non—negative integers.

Given a processing order on each machine, one can calculate the

following (for job i=1,...,n):

- the conpletion time of job i denoted by C..

- the lateness of job i denoted by Li (Li=Ci-di).

- the tardiness of job i denoted by T, (Ti = max(O,Li)).
- Ui=0 if Ci < di and 1 otherwise.

As in (Rinnooy Kan, 1976) we shall restrict ourselves to regular

measures, i.e. real functions f(C],...,Cn) such that:
' '
f(Cl,...,Cn) < f(C1,...,Cn)
implies that ci < C; for at least one job i. These functions usually

take one of the following forms:

1. f=f o= m?X{fi(ci)}

- 11 -

Thus we shall seek to minimize either the maximum cost fax OF the
total cost If.. The following objective functions have frequently been

chosen to be minimized:
n
f=12IC, = ¢ C, sum of completion times.

Introducing weights w, (i=1,...,n), we have:
i

n
f=1Iw,C = I wC wetghted sum of completion times.

n
f=:w,C."= Z wC, wetghted sum of squares of
= completion times.

Introducing due dates di(i=1,...,n) we have the following objective

functions:
f = Lmax = m?x{Li} maximum lateness.
f = Tmax = m?x{Ti} maxtimum tardiness.
n
f = ZTi = I Ti total tardiness.
i=1
n
f=3U, = I U, total number of late jobs.

We may also choose to minimize:

n
f = zwiT. = I w.T, weighted sum of tardiness.

n
f=mw,U, = L w,U, weighted sum of late jobs.

Let F, denote the time job i spends in the system (i.e. Fi=ci'ri)
me
and W denotes the waiting time of job i, i.e. wi=ci-(ri + % p‘k)'
k=1 !

- 12 -

Rinnooy Kan (Rinnooy Kan, 1976) showed that criteria based on the objective
functions: ZwiCi, ZwiFi, Zwiw and ZwiLi to be equivalent (i.e. have identical
optimum schedules). He also showed that an cptimal schedule with respect

to L is also optimal with respect to T

max ax’

Remark: Lmax and Tmax are not equivalent: a schedule with Tmax=0 may be

suboptimal with respect to L__ .
max

In Figure 2.3, we give a graph copied from (Lawler, Lenstra and
Rinnooy Kan, 1981). The graph defines elementary reduction among schedu-

ling problems. An arc from vertex V1 to vertex V, in this graph denotes

2
that problem Py is polynomially reducible to problem P2. It follows that:

- if PyeP (i.e. polynomially solvable), then P eP;

- if P, is NP-hard, then P, is NP-hard.

1

Figure 2.3:

IW. T, Iv.u.
U i
Zwic.):Ti ZUi
LC. Lmax
Cmax

Reduction among

scheduling problems

-]3_

2.4 Problems Classification

As we mentioned before, each scheduling problem requires processing
n jobs (numbered 1,...,n) on m machines (numbered 1,...,m) so as to minimize
some objective function(s). Therefore, each scheduling problem involves
well-defined set of jobs, machines and objective function(s). For this
reason, scheduling problems are usually described using a 3-parameter

notation alBIY to be defined below (Lawler, Lenstra & Rinnooy Kan, 1981).

2.4.1 Machine Environment (a)

The first parameter a = oy o,

where a]e{G,O,P,F,J}. Each of these symbols denotes a specific machire
environment (@ is the empty symbol):

a, = §: a single machine problem (p., = p;).

0: an open—shop problem (in which each job i consists

Q
fl

of a set of operations {Oil""’oim}' But the order

in which the operations are executed is immaterial,
L f a1e{P,F,J} an ordering is imposed on the set of operations corresponding
to each job.

o = P: We have a permutation flow-shop problem, in which each
job has the same sequence of operations. Also, all
machines handle the jobs in the same order.

@, = F: We have a flow-shop problem, in which each job has the
same sequence of operations, but some job may overtake
another job on some machine, i.e., the machines may
handle the jobs in different orders.

a, = J: We have a job-shop problem, in which each job has a
specified sequence of operations which may differ
from the sequence cf operations of other jobs.

1 f @, is a positive integer, then m is constant. If, on the other

hand, a2=g, then m is assumed to be variable. It is cbvious that a1=g if,

and only if a2=1.

- 14 -

2.4,2

Job characteristics

The second parameter BE{B]""’Bs} indicates the dropped restric-

tions by means of the notation given in Section 2.2. A list of the

restrictions that we shall drop occasionally will now be given.

1.

Bls{pmtn,ﬁ}

By = pmtn: Pre-emption (job splitting) is allowed (i.e. dropping
restriction J9).

By = g Pre-emption is not allowed.

Bze{prec,tree,ﬂ}

32 = prec: Precedence relation between jobs are specified which
form a precedence graph G of the general (arbitrary)
type.

B, = tree: Precedence relations between jobs (i.e. G) form a tree.

By = g: No precedence relations are specified (i.e. jobs are
independent) .

83€{ri,¢}

53 = ri: Arbitrarily release dates are specified.

53 =g ri=0 for all i=1,...,n (i.e. all jobs are available at

the same time).

A constant upper bound is specified (only if a, = J).

By = g All m. are arbitrary integers,

85£{P=]-P$P*’¢}

35 =p,.= 1: Each operation has unit processing time.
1)

35 = pijsp*: Upper bound on all processing times.

B = B: All Pij (pi) are arbitrary integers.
< 2w,

86e{pi\pJ+w.>wJ.¢}

86 = pigp »wizwj: Agreeable weights.

All w, are arbitrary integers.

- 15 -

2.4.3 Objective function

The third parameter Ye{fma ,2f.}. As mentioned in Section 2.3, the

X |

following objective functions have frequently been chosen to be minimized:

e{C oL o T
max — max’® max’ max

or
ZfiE{Zci’ZTi’ZUi’Zwici’Zwiciz’zwiTi’zwiUi}

2.4.4 Examples

l/r./zwiCi: Minimizing the weighted sum of completion time on a
! single machine subject to arbitrarily release dates.

J2/p, .=1/C : Minimizing the maximum completion time in a two-machine
ij max . . X A .
job shop with unit processing times.

Using the problem classification described in Section 2.4, we can

indicate problems under study as follows:

1/B/v: In Chapter 5.

l/ri/zwici: In Chapter 6.

1/ZwiCi2: In Chapter 7.

F2/prec/Cmax: In Chapter 9.

Pm/prec/Cmax: In Chapter 10.
2.5 Computational Complexity

The computation time needed to solve a scheduling problem is
obviously of great importance. P ¢ the set of all decision problems that
ean be solved by a deterministic algorithm in a time bounded by a poly-
nomial of the input size. (A decision problem is one whose solution is
either ''yes' or ''no"). NP is the set of all decision problems that can
be solved by a non-deterministic algorithm in a time bowund by a polyromial
of the input size. The class NP is very extensive. |t is obvious that
Pc NP. A1l scheduling problems that will be considered in this thesis

can be solved by non-deterministic algorithms and thus are members of NP.

- 16 -

Cook (Cook, 1971) proved that there are hardest problems in NP. Such
problems are called NP-complete. A problem P' i{s NP-complete if the
existence of a polynomial algorithm for P' implies the existence of a
polynomial algorithm for any problem in NP (i.e. P=NP). The location of
the borderline separating the '‘easy'' problems (in P) and the hard ones
(in NP-complete) has been under wide investigation of many researchers,
but turns out that a minor change in the value of an easy problems para-
meter often transforms this problem into a hard one.

NP-completeness of a problem is generally accepted as strong
evidence that the existence of a good algorithm is wnlikely and hence
enumerative optimization methods such as branch and bound or heuristic
methods are to be used.

The optimization version of an existence problem that is NP-
complete is called NP-hard.

Finally, a problem is satd to be an open problem if a polynomial
bounded algorithm for solving this problem has not been found and the

problem has not been proved to be hardest in NP.

- 17 -

CHAPTER THREE

METHODS OF APPROACH

3.1 Introduction

The machine scheduling problem is a combinatorial optimization
problem. The objective in this kind of problem is to find an optimal
schedule among a large but finite number of feasible schedules.

Every schedule is determined by the starting times of all operations,
where the starting time of an operation oij on machine j, Sij is greater
than or equal to the completion times of all other operations of job i
that must precede the given operation. A schedule is called a semi—active
schedule 1f the starting time of no operation can be decreased without
changing the processing order on some machine. Since the classof semi-
active schedules Z being in one to one correspondence with feasible
sequences, it has finite cardinality of at most (n)™. It can easily be
proved that Z contains at least one optimal schedule with respect to any
reqular measure (Theorem 2.2, Rinncoy Kan, 1976). For a Pm/g/y problem,
the number of feasible schedules is bounded from above by n!. This number
increases to (n!)™ for the Jm/8/y problem. This number, (n!)™, is very
large even for small values of n and m. For example, if n=m = 5: (n!)"
= 24,883,200,000.

Some further slight improvement is possible by identifying a sub-
set of Z containing an optimal schedule with respect to any regular measure.
This subset is the set, ZA’ of all active scheduling, 'i.e.those semi-
cetive schedules in which it is not possible to decrease the starting
time of amy operation without increceing the starting time of at least
one other operation. The set ZA of all active schedules is a subset of
Z and must contain an optimal schedule with respect to every reqular

measure'' (Rinnooy Kan, 1976).

- 18 -

"In general, although the set of active schedules is usually a
proportionately small and proper subset of the set of semiactive schedules,
there are still an impossibly large number.'" (Conway et al., 1967).

Clearly, searching for an optimum schedule among all possible
schedules using complete enumeration is not suitable even for problems of
small sizes. Thus the complete enumeration method may be rejected
immediately.

Most methods of approach (disregarding complete enumeration) try
to reduce the size of the set of feasible schedules by eliminating all
sequences (or parts of sequences) that are obviously non-optimum: this
is because a sequence that is at least as good has been or can be found.

In his book, Rinnooy Kan (Rinnooy Kan, 1976) gives a full review
of most known methods of approach to solving machine scheduling problems.
These methods are as follows:

1. Complete Enumeration,

. Combinatorial Analysis.
. lInteger Programming.
Branch and Bound.
Dynamic Programming.

Heuristic Methods.

[c2ANNAV B S "

Combinatorial aralysis methods rely on examining the effect a minor
change in a particular sequence has on the value of that sequence. This is
done by judging the effect of the interchange of two, possibly adjacent,
jobs in a sequence.

Several attempts have been made to solve the machine scheduling
problem by formulating it as an integer programming problem. Five of
these attempts can be found in (Rinnooy Kan, 1976). Although this formu-
lation Is attractive, there is no effective algorithm to solve the integer

programming problem.

- 19 -

Branch and bound methods are among the most popular methods of
approach for solving combinatorial programming problems. This is due to
their simplicity and their (often) computational efficiency. A branch
and bound algorithm is characterized by its branching procedure, lower
bounding procedure and its search strategy.

Dynamic prograrming methods have been used to solve a number of
machine scheduling problems, mainly 1/8/y problems. Here, machine schedu-
ling problems and other combinatorial optimization problems are interpreted
as multistage decision problems. At every stage, an equation (based on
Bellman's principle of optimality) is used to describe the optimal
criterion function (for each subproblem) in terms of the previously
obtained ones. A lower bounding procedure can be associated with this
approach too. Thus, dynamic programming may be viewed as a tree search
method similar to the branch and bound approach, but the main disadvantage
is that storage requirements are larger. However, the method has the great
advantage that many partial solutions are eliminated without being explored
further. For the implementation of dynamic programming methods, we refer
to (Held & Karp, 1962; Rinnooy Kan, 1976; Baker & Schrage, 1978A, 19788B;
Lawler, 1981).

The final approach to solving scheduling problems is by using
heuristic methods. Although these methods do not guarantee optimal solu-
tions (unlike the branch and bound and the dynamic programming methods
which guarantee the finding of an optimal solution), they dominate all
other methods in real life situations.

In the rest of this chapter we shall discuss in more detail two
of these methods of approach, namely the branch and bound approach and the
heuristic approach. The branch and bound approach is included because of
its popularity, wide use and because it will be the main approach we shall
be using in the following chapters (except in Chapter 5). The heuristic

approach is included because of its importance in real life situations.

- 20 -

3.2 Branch and Bound Approach

As we mentioned before, brench and bound methods are among the most
popular and widely used methods to solve combinatorial programming problems.
They were developed and first used by Eastman (Eastman, 1959) for the
travelling salesman problem and by Land and Doig (Land & Doig, 1960) in the
context of mixed integer programming. They were first applied to scheduling
problems by (ignall & Schrage, 1965; Lomnicki, 1965; Brown & Lomnicki, 1966;
McMahon & Burton, 1967). 'The main reasoﬁ for their present popularity
seems to be the simplicity of the basic principles, combined with easy
implementation (see Lenstra & Rinnooy Kan, 1975) and often surprising com-
putational efficiency. However, by their very nature the computational
behaviour of these methods remains unpredictable.' (Rinnooy Kan, 197€).

A general description of the branch and bound methods will now be
given. The set of all possible schedules is divided up into disjoint
subsets (this dividing is known as the branching procedure), each of which
may contain more than one possible schedule. A lower bound on the value
of each solution in a subset is calculated. |f the lower bound calculated
for a particular subset is greater than or equal to the upper bound (unless
mentioned otherwise, this upper bound is initially set to equal a very
large number, i.e. a number that is greater than the value of any feasible
schedule), this subset is ignored since an optimal schedule must exist in
the remaining subsets. These remaining subsets (if any) have to be con-
sidered one at a time. One of these subsets is chosen, according tc some
search strategy, from which to branch. This subset is then divided (as
above) into smaller disjoint subsets. As soon as one of these subsets
contains one element only, a complete sequence of the jobs should exist.
This sequence Is evaluated and if its value is less than the current
upper bound, this upper bound is then adjusted accordingly.

The procedure is then repeated until all subsets have been con-
sidered. The upper bound at the end of this branch and bound procedure

is the optimum for the particular problem.

- 21 -

Thus, the branch and bound algorithm is determined by the
following.

3.2.1 The bounding procedure

It describes the way in which we calculate the lower bound. The

effectiveness of the bound is the mcst important parameter, since it
determines the efficiency of the complete algorithm. We can distinguish
between the following methods of obtaining lower bounds.

(a) PRelaxation of Constraints

Here, one (or more) of the constraints is relaxed, such that the
solution to the resulting problem can be obtained and used as a lower
bound for the original problem. For example, a lower bound for the
1/ri/2wici problem can be obtained by relaxing the release date constraints
(i.e. by setting r;=0 for all i) and solving the resulting problem using
Smith's rule: order the jobs in a non-increasing order of Wi/pi' Lower
bounds can also be obtained by setting pi=l for all i or wi=1 for all i
and solving the resulting problem in each case.

Lower bounds may also be obtained by allowing pre-emption (i.e. by
relaxing the constraint that each operation once started has to be com-
pleted without interruption) and solving the resulting problem. This
method is used in Section 6.4 to obtain a lower bound for the 1/ri/ZCi
problem.

Also, for problems with precedence constraints one can obtain
lower bounds by relaxing these precedence constraints (or some of them).
For example, a lower bound for the F2/pre<:/(:max problem can be obtained
by solving the F2//Cmax problem using Johnson's procedure (Johnson, 1954).

One can also obtain lower bounds by allowing some machine(s) to
process more than one job at a time (i.e. relaxing the machine capacity
constraint). This method of obtaining lower bounds is used in Chapters

8 and 10,

- 22 -

(b) Lagrangian Relaxation of Constraints

This method of obtaining lower bounds involves, in the first place,
the explicit formulation of a problem as an integer (or mixed integer)
program. It is based on the observation that many NP-hard problems are
in fact "'easy'' problems made complicated by some side constraints. These
complicating constraints are dualized. Two methods exist for finding the
values of the multipliers, namely the subgradient optimization and the
multiplier adjustment methods. The optimum solution of the Lagrangian
problem is a lower bound on the optimal value of the original problem
(minimization problems). The multiplier adjustment method of solving
the Lagrangian problem is used in Section 6.3 to obtain a lower bound for
the l/ri/ZwiCi problem. Further details about these methods can be found
in (Ceoffrion, 1974; Fisher, 1978; Van Wassenhove, 1979).

(c) Dynamic Programming State Space Relaxation

This method is based con relaxing the state space associated with a
given dynamic programming recursion (i.e. reducing the number of states)
in such a way that the solution to the relaxed recursion provides a lower
bound which could be included in a branch and bound procedure to solve the
problem. ''This state space relaxation method is analogous to Lagrangian
relaxation in integer programming. Constraints in integer programming
formulations appear as state variables in dynamic programming recursions
and hence constraint relaxation corresponds to state space relaxation."
(Christofides, Mingozzi & Toth, 1981). More details about this method can
be found in the above reference and its references.

(d) Relaxation of Objective

Here, the objective function is relaxed in order to obtain a
lcwer bound. For example, a lower bound for the]//ZwiTi problem can be

obtained as follows: (Van Wassenhove, 1979)

- 23 -

Minimize I, max(Ci-di,O)

Iw, max(ci-di,O) . W, 2w

A\

Zw, (Ci-di)

A\

]]
- .d,
ZwiCi Zwl ;

A\

1
Since widi is a constant, a lower bound can be obtained by solving the

]
1//ZwiCi problem using Smith's (Smith, 1956) procedure.

3.2.2 The Branching Procedure

It describes the method used to split up a subset of possible
schedules. The most usual cnes are as follows:

(a) Sequencing jobs one by ore from the beginning (forwards branching).
This is the widely used method, see Chapters 4, 6 and 8.

(b) Sequencing jobs one by one from the end (backwards branching).
This method proved to be very effective for the tardiness problem (Lenstra,
1977) and the l/di/ZwiCi problem (Van Wassenhove, 1979).

(¢) At every stoge, a job is chosen to be sequenced either at the
beginning or at the end according to some heuristic method based on the
data of the problem, see Chapters 8 and 10.

(d) At every stage, a job is chosen to be sequenced first, last,
directly before another job or directly after another job. See (Kurisu,
1977; Potts, 1980C),also see Chapter 9.

(e) At every stage, a job is sequenced either before or after
another job. A heuristic can be used to determine this pair of jobs, see

(Potts, 1981) and Chapter 7.

3.2.3 The Search Strategy

It indicates a node (each node corresponds to a branch already made)

to branch from. One can distinguish between three methods:

- 24 -

(a) Branching from the node with the smallest Lower bound.

This method usually leads to the optimum faster than methods b and ¢
below, but it requires more computer storage to store the required data
at every node (Fox et al., 1978).

(b) Branching from the recently created node. To save storage
space, this method is used for problems given in Chapters 7 and 9.

(¢) Branching from a node with the smallest lower bound amongst
the recently created nodes. This method usually leads to the optimum
faster than method b, but it requires more computer storage space. This
method is used for problems given in Chapters 6 and 10.

A branch and bound algorithm can be represented using a search
tree. This tree usually has up to n nodes (branches) in the first level,
each of which will create up to n-1 nodes in the second level, each one of
these new nodes, in turn, will create up to n-2 nodes in the third level,

.... and one node in the last level of the search tree (except when the
branching procedure (2e) is used, in which case two nodes only exist in
every level, but the number of levels in the search tree in this case may
exceed n (but not n2) levels).

Here, we have given the basis of a branch and bound algorithm,
Besides this, one can include many devices to improve the efficiency of
the branch and bound procedure. For example, one might like to include
a heuristic method to obtain an upper bound on the optimum. In this thesis,
a heuristic is either applied once before applying the branch and bound
procedure (as in Chapters 9 and 10) or at every node of the search tree
(as in Chapters 6 and 7).

If it is possible to show that an optimum solution will always
exist without branching from a particular node, then that node is dominated
and can be eliminated. Dominance rules usually specify whether a node can

be eliminated before computing its lower bound. When used, dominance rules

- 25 -

are usually applied at every node of the search tree to eliminate as many
nodes as possible. The effect of dominance rules has been demonstrated
(using test problems) in Chapters 6, 9 and 10.

Although a branch and bound procedure guarantees the finding of an
optimum schedule, a suboptimal solution may result if some of the possibly
optimum partial schedules have not been explored. This is usually caused
by timiting the number of nodes or the time spent on solving the problem
to a fixed number or a fixed time respectively. It can also be caused by
restricting the search to those schedules within a given percentage of the
optimum: in real life situations one might consider accepting a sclution
within 10% (say) of the optimum, in which case a node at any level of the
search tree is eliminated if the lower bound computed at that node is
within 10% of the upper bound.

In this thesis, we shall give branch and bound algorithms for

solving several scheduling problems (see Chapters 6, 7, 9 and 10).

3.3 Heuristic Methods

It is clear (from the previous section) that the computational
requirements to solve a particular scheduling problem using the branch and
bound approach might become too time consuming for large problems. In
fact, even for relatively small problems, there is no guarantee that a
solution can be found quickly.

Heuristic algorithms avoid this drawback, since by using them one
can cbtain solutions to large problems in a fraction of the time spent on
solving them using branch and bound techniques. Also the computation
requirements for heuristic algorithms are usually predictable for problems
of a given size. The drawback of heuristic methods is that they do not
guarantee optimality and in some cases i1t may even be difficult to Judge

their effectiveness.

- 26 -

One way to assess the effectiveness of a heuristic is to examine
its worst—case behaviour. Suppose that f* denotes the cptimal solution
to a given problem, while fH denotes the corresponding value obtained
when the jobs are sequenced using a certain heuristic H. If, whatever the
problem data, fH € p f* + § for specified constants p and §, where p is as
small as possible, then p is called the worst-case behaviour ratio of
heuristic H.

Unfortunately, not enough work has been done on the worst-case
behaviour of these heuristics. First results on the worst-case performance
of heuristics were due to Graham (Graham, 1966 & 1969). A review of worst-
case performance of scheduling heuristics can be found in (Garey, Graham
¢ Johnson, 1978; see also Chapter 5).

We shall start this section by giving two heuristic methods that
have attracted attention because of their general applicability. In
Ssection 3.3.1 we shall talk about sampling techniques, the first of these
heuristic methods. The second method, priority rules, will be given in
Section 3.3.2. Finally, in Section 3.3.3, we shall suggest a third
heuristic method, the tree type heuristic. Although this method will be
given in Chapter 5 when discussing heuristic methods for obtaining near-
optimal solutions for several one machine problems, it is given here

because of its general applicability.

3.3.1 Sampling Techniques

This approach is based on the observation by (Heller, 1960; Ashour,
1972) that the number of distinct schedules with cmax as their maximum
completion time is usually much smaller than the number of distinct semi-
active schedules. This indicates that it is possible to study the dis-
tribution of the random variable Crnax over the set of all semi-active

schedules. This distribution was proved to be asymptotically normal

_27-

(Heller, 1959). If u and o denote the unknown parameters of the above
distribution, then it is possible using methods of Bayesian analysis to
generate random schedules until we have reached a stage where the pro-
bability of finding a smaller schedule time in the next experiment is
not greater than some given constant a.

This procedure is started by constructing an initial distribution

on the parameters o and ¢, which are specified according to our initial

0
beliefs on their values. A random schedule is then generated. The value
of this schedule is used to update the parameters of the distribution to

yield a new distribution with parameters My and oq- This new distribution

is used to calculate p, the probability of finding a value Cmax in the

next experiment which is smaller than Cmax’

the best schedule time obtained
so far. If p € o, we stop; otherwise the procedure continues in a similar
way (i.e. by updating u, and o, to obtain new parameters My and 0, then
calculate p, etc.). 'We refer to (De Leede and Rinnooy Kan, 1975) for
details on the choice of an initial distribution for this particular case.
During some actual experiments on a 20 job PlO//Cmax problem with data
provided in (Heller, 1960), convergence of the initial distribution to
the final one turned out to be relatively independent of the particular
prior distribution chosen. A near-optimal schedule was found in a few
seconds CPU time after roughly 250 iterations in most cases.

Nevertheless, it appears to us that the Bayesian approach through
its dependency on asymptotic results for the distribution of cmax is more

of academic interest than of great practical use; it seems difficult to

generalize this approach to less structured situations." (Rinnooy Kan, 1976).

3.3.2 Priority Rules

Given a set of schedulable operations S, a priority rule tells us

which operation 01 (corresponding to processing job 1 on machine k) should

- 28 -

be scheduled next. (0f course, an obvious way to choose an operation is
by selecting an operation 0, randomly) .

Most priority rules have been developed and can be found in (Cere,
1966; Conway et al., 1967; Day & Hottenstein, 1970; Rinnooy Kan, 1976).
Some of these rules will now be given.

1. Job 7 has a minimal due date (the earliest due date,
EDD, rule).

2. Operation 0, has the earliest completion time
(ECT rule).

3. Operation 0., has the shortest processing time
(SPT rule).

L, Job 7 has the smallest (or largest) slack-time
(t.e. difference between its due dates and the
sum of remaining processing times).

5. Job i has minimal (or maximal) sum of remaining
processing times (iZ.e. least (or most) work remaining).

6. Job 7 has minimal (or maximal) number of
remaining operations.

7. Operation 0., arrived first at machine k (first come,
first served (FCFS) or first-in firvst-out (FIFO) rule).

Other priority rules can be found in the above given references.

Conway et al. (Conway, Maxwell & Miller, 1967) reported a study by
Jeremiah Lalchandani and Schrage which indicates that priority rules work
best on non-delay schedules (schedules obtained using priority rule7) and
that the SPT, random scheduling and the least work remaining rules are
superior to most other rules on active schedules. Furthermore, Rinnooy Kan
(Rinnooy Kan, 1976) reported that rules based on the sum of remaining pro-
cessing times are slightly better than the SPT rule, which in turn out-
performs the random and FIFO rules. He also reported two heuristic rules
given by Gere which turn out to be very effective: an "alternative
operation” rule where job j is preferred to job i (the job originally chosen)
if the choice of job i threatens overdue delivery of job j, and the "look

ahead" rule whereby job i is forced to wait if an urgent job is about to

_29-

become available for processing. All priority rules are reported to work
almost equally well when bolstered by these two additional rules. Finally,
it is reported in Conway et al. (Conway et al., 1967) that Nugent proposed
a method based on mixing the random rule with some priority rules. By
doing this Nugent was able to vary the amount of randomness that entered
into operation.selection. Surprisingly, the tests he made consistently
lead to better results than those obtained using either of the two methods
by itself.

Having obtained a complete ordering of the jobs on a machine, it
might be possible to improve this processing order by interchanging pairs
of jobs sequenced in adjacent positions. This method is likely to be

effective for problems with the same processing order on all machines.

3.3.3 The Tree Type Heuristic

From Section 3.2 we know that although a branch and bound procedure
guarantees the finding of an optimum schedule, a suboptimal solution may
result if some of the possibly optimum partial schedules have not been
explored. This fact has been used to obtain near-optimal solutions for
many scheduling problems. Here only some of the candidates, within each
level of the tree, are chosen from which to branch. Usually, one candidate
only is chosen within each level of the tree. Rarely more than one candi-
date is chosen within each level of the tree. We can identify the
following methods of choosing candidates (Muller-Merbach, 1981).

1. According to some priority rules (see Section 3.3.2).

2. According to the value of the objective function of solution-
in-process, i.e. job i is selected to be sequenced after an initial partial
sequence m if f(mi) < f(nj) for all jobs j, where f denotes the objective

function.

..30_

3. According to the value of a lower bound computed at every
node (look ahead criterion). Obviously, method 2 above is a special
case of this method.

L, According to some second order heuristic, which is applied
at every node. Obviously, this second order heuristic has to be com-
putationally much faster than the heuristic under consideration.

It is obvious that if the number of chosen candidates is one, one
would select a candidate with the smallest lower bound if method 3 is used
and one with the smallest value of the heuristic if method 4 is used.

Although this heuristic method can be applied to all types of
machine scheduling problems, it is particularly useful for cone machine
problems, especially for problems with release dates, due dates, and
precedence constraints. Several one machine heuristics can be found in

Chapter 5.

- 31 -

PART 11

SINGLE MACHINE SCHEDULING

..32..

CHAPTER FOUR

SINGLE MACHINE SCHEDULING

41 Introduction

In this chapter we shall give a brief review of the principal
results in one machine problems. We shall classify these results according
to the optimality criterion chosen. Heuristic methods for cbtaining near
optimum solutions for single machine problems will not be discussed in
this chapter; they will be considered in Chapter 5.

Section 4.2 deals with f__ criteria. Section 4.3 deals with Lf,
criteria. The I/B/Zwici problem is considered in Section 4.3.1. In
Section 4.3.2 we consider the I/B/Zwici2 problem. The 1/8/Iw.T, problem
will be dealt with in Section 4.3.3. In Section 4.3.4 we shall be dealing
with the I/B/ZwiUi problem. Criteria with multiple objectives function
are considered in Section 4,4,

We conclude this section by giving a theorem which will be applied
throughout this chapter,

Theorem 4.1 (Conway et al., 1967)

There exists an optimal schedule with respect to any regular

measure for any single machine problem with equal release dates without

machine idle time and without job splitting.

4.2 Minimizing Maximum Cost, fmax

Lawler (Lawler, 1973) gave an O(nz) algorithm to solve the 1/prec/
fmax problem. His algorithm is considered as the most general result in
single machine sequencing. The general step of the algorithm is as follows.

Let S denote the set of unscheduled jobs at step h of the algorithm. Let

P(S) = zieS P; and let S'eS denote the set of jobs with no successors in S.

- 27 -

Sequence a job jeS' with fj(P(S)) < £.(P(S)) for all ies' in the last
available position.

When fmax = Lmax’ the 1//Lmax problem can be solved in 0(n log n)
steps using Jackson's EDD rule, i.e, by ordering the jobs according to
non-decreasing due dates (Jackson, 1955). Introducing release dates, the
general 1/r /L . problem is NP-hard (Lenstra et al., 1977). However,
when all processing times are equal, we have two solvable cases. The
first one arises when pi=1 for all i, in which case the problem can be
solved using the extended Jackson's rule: sequence an available job with
the smallest due date next (a job i is said to be available to be considered
for sequencing in a given position if its release date is less than or equal
to the completion time of the job sequenced in the previous position, or if
job i has a minimal release date amongst unscheduled jobs). This algorithm
is proposed as a heuristic for the problem with general processing times
by Schrage (Schrage, 1971). The second case arises when p;=p for all i
for which a more sophisticated algorithm exists (Simons, 1978). With
regard to the second case, we have the following. Let m = (w(1),...,m(n))
be a schedule obtained using the extended Jackson's rule. [If C"(h) 3 dw(h)
for h=1,...,n, then the schedule 7 is optimum; otherwise, let n(i) be the
first late job in 7. If a job 7(j) where j<i with dﬂ(j) > dﬂ(i) does not
exist, there is no feasible schedule. On the other hand, if there exists
such a job 7(j) there may exist a feasible schedule. Searching for a
feasible schedule can be done as follows. Chdose j as large as possible
and add a constraint that job n(j) cannot be scheduled before jobs w(h)
for h=j+1,...,1. This is done by setting rﬂ(j) = minh=j+1,...,i (r“(h)).
The extended Jackson's rule is then applied again subject to the added
constraint. The feasibility question is answered in O(n3 log n) steps.
An improved implementation by Garey et al. (Garey et al., 1981) requires

only 0(n log n) steps. (Lawler, Lenstra & Rinnooy Kan, 1981).

- 34 -

Introducing precedence constraints among jobs, the special cases:

l/prec/Lmax, 1/preC,ri,pi=1/Lm and 1/prec,ri,pi=p/Lmax can still be

ax
solved by increasing release dates and decreasing due dates such that if i
must be sequenced before j (according to the precedence constraints) then
Fitp; £ r.j and di+pj £ dj (Lageweg et al., 1976). The algorithms des-
cribed above are then applied to the problems ignoring the precedence
constraints.

Various elegant branch and bound methods exist for solving the

1/prec,ri/L problem, see (Baker & Su, 1974; McMahon & Florian, 1975;

max
Lageweg et al., 1976; Carlier, 1980).

It is known that any sequence is optimum for the 1//Cmax problem.
Introducing release dates, the problem can be solved in 0(n log n) steps
by ordering the jobs according to non-decreasing ree The procedure can

also be used to solve the l/ri,prec/Cmax problem after adjusting the

release dates to reflect the precedence constraints.

4,3 Minimizing Total Cost, Zfi

4.3.1 I/B/ZwiCi

The 1//EwiCi problem can be solved using Smith's rule: order the
jobs according to nen-increasing wi/pi ratios. This procedure requires
0(n log n)steps. |If wi=l for altl i=1,,..,n, the procedure reduces to the
SPT rule, i.e. ordering the jobs according to non-decreasing processing
times.

Adding precedence constraints, represented by a directed graph G,
to the problem causes the problem to be NP-hard even if all pi=1 or wi=1
(Lawler, 1978; Lenstra & Rinnooy Kan, 1978).

Branch and bound algorithms for the 1/prec/):wici problem can be

found in (Rinnooy Kan et al., 1975; Potts, 1980C; Potts, 1981). The best

-35_

algorithm (to our knowledge) for this problem is the one proposed in
(Potts, 1981) which includes results for up to 100 jobs.

The special case in which the precedence graph G is a tree-like
graph has been solved by (Horn, 1972); by (Adolphson & Hy » 1973) and by
(Sidney, 1975). This procedure requires 0(n log n) steps. If G is a
series-parallel graph, the problem can still be solved using an 0(n log n)
algorithm derived by Lawler (Lawler, 1978) assuming that the decomposition
tree is given. This algorithm is based on forming composite jobs: form a
composite job k=ij such that (i,])eG, w,/p; < wj/p_j and that j is a direct
successor of i. The composite job k can then be treated as one job with
pkzpi+pj and wk=wi+wj. Starting at the end of the given decomposition
tree, the procedure successively forms these composite jobs until an
optimum schedule is obtained.

Introducing release dates the l/ri/ZCi problem has been shown to be
NP-hard (Lenstra et al., 1977). Branch and bound algorithms for this problem
have been proposed in (Chandra, 1979) and (Dessouky & Deogun, 1980). For
the problem with arbitrary weights, (Rinaldi & Sassano, 1977) have derived
several dominance theorems. In Chapter 6, branch and bound algorithms for
solving the problem with arbitrary weights are derived. Computational
results for up to 50 jobs will also be included.

L.3.2 1/8/twC”

Only the 1//ZwiCi2 problem has been considered by other researchers.
The problem is still open. To our knowledge, Townsend (Townsend, 1978)
was the first to work on this problem. Among other things, Townsend proposed
a bounding procedure based on ordering the jobs in a non-increasing order
of wi/pi ratios and making an adjustment to allow for the potential improve-
ment that could be obtained by interchanging jobs i and j (for all i and j)

if they are not in the right order according to non-increasing weights.

- 36 -

Bagga and Kalra (Bagga & Kalra, 1980) proposed some dominance rules for
the problem.

The I//ZwiCi2 problem is considered in more detail in Chapter 7
where we propose a branch and bound procedure for solving this problem.
Computational results for problems with up to 70 jobs are included. Also,
we shall show that the special case where agreeable weights (i.e. p; € P -+

W, 2 wj) are assigned to the jobs can be solved by ordering the jobs

according to non-increasing weights.
In Section 7.9 we shall show how to apply our propocsed bcunding
procedure for a more general problem where precedence constraints among

jobs exist (1/prec/ZwiCi2).

5.3.3 1/8/2w;T,

The l//ZTi problem is still open. |t is considered to be the most
famous open scheduling problem. This problem has the following properties:

First: A schedule m obtained by ordering the jobs in a non-
decreasing order of their processing times (SPT-rule)
is optimal if dw(i) + Prli) 3 Cn(i+1) for all i=1,...,n-1
(Rinnooy Kan, 1976).

Second: A schedule © obtained by ordering the jobs in a non-
decreasing order of due dates (EDD-rule) is optimal

if Ti < P; for all jobs i sequenced in m (Rinnooy Kan, 1976).

Third: The SPT and EDD schedules are optimal if they are
identical (as for example when all p; or all di

are equal) (Emmons, 1969).
Lawler (Lawler, 1977) developed a pseudopolynomial algorithm requiring
O(nthi) time for solving the l//zTi problem.
Introducing precedence constraints yields NP-hardness, even for
the 1/prec pi=1/):Ti (Lenstra & Rinnooy Kan, 1978). Also, the 1/ri/zTi

problem is NP-hard (Lenstra et al., 1979).

_37-

If all pi=1, the l/ri,pi=1/2wiTi problem can be solved as a linear
assignment problem. However, the general 1//ZwiTi problem has been shown
to be NP-hard (Lawler, 1977; Lenstra et al., 1977). This general problem
has been subject to extensive study (Emmons, 1969; Srinivasan, 1971;
Rinnooy Kan et al., 1975; Fisher, 1976; Baker, 1977; Picard & Queyranne,
1978; Baker & Schrage, 1978A, Var Wassenhove, 1979).

Branch and bound algorithms for this problem were developed and
used by many of the above listed researchers. Rinnooy Kan et al. (Rinnooy
Kan et al., 1975) used a lower bound obtained by solving assignment pro-
blems. A different bound was obtained by Fisher (Fisher, 1376) through
Lagrengian relaxation: the constraints that the machine can process one
job only at a time was relaxed. Picard et al. (Picard & Queyranne, 1978)
put the problem into a time-dependent travelling salesman framework.
Relaxing the problem led to a shortest path problem. Finally, Van-
Wassenhove (Van Wassenhove, 1979) obtained a bound through Lagrengian relaxa-

tion. This time, the relaxed problem is a weighted flow-time problem.

L.3.4 1/B/ZwiUi

The 1//TU; problem can be solved in 0(n log n) steps by using
Moore's algorithm (Moore, 1968): let = = (n(1),...,n(n)) be the sequence
obtained by ordering the jobs in a non-decreasing order of their due dates.
If there exists a job w(i) (with i as small as possible) that is completed
after its due date, one of the jobs sequenced in the first i positions and
with the largest processing time is marked late and is removed from the
problem. The procedure ends when all the remaining jobs are completed
within their due dates. Sidney (Sidney, 1973) extended this procedure to
cover the case where certain specified jobs have to be completed in time.
Adding deadlines occurring at or after the jobs' due dates causes the

problem to be binary NP-hard (Lawler, 1981A).

If agreeable weights (i.e. p. < pj W, 2 wj) were added, the

resulting problem can be solved in 0(n log n) steps using Lawler's
algorithm (Lawler, 1976). The problem can also be solved in 0(n log n)
steps if agreeable release dates (i.e. di < dj > < rj) were added (Kise
et al., 19788). However, the 1//ZwiUi problem has been shown to be NP-hard
(Karp, 1972), but can be solved by dynamic programming in O(ani) steps
(Lawler & Moore, 1969). The I/ri/ZUi probiem has also been shown to be
NP-hard (Lenstra, 1977).

Introducing precedence constraints causes the problem to be NP-hard
even the 1/prec,pi=1/ZUi problem (Garey & Johnson, 1976). The special case
with chain-like precedence constraints has also been shown to be NP-hard

(Lenstra & Rinnooy Kan, 1980).

L. 4 Multiple Objectives

Although many real life sequencing problems involve multiple
criteria, surprisingly little work has been done on these multiple criteria.
The problems we shall consider in this section each involves only two
criteria. We can identify three types of multiple criteria problems.

The first of these types of problems involves identifying all
sequences that minimize a first objective. One of these sequences which
minimizes a second cbjective is chosen as the optimal sequence for that
problem.

The second of these multiple criteria problems involves finding a
sequence which minimizes the (weighted) sum of two objectives.

In the last type of these multiple criteria problems we are going
to consider both criteria as equally important. This time the problem is
to find a sequence that does well on both objectives (if such a sequence
exists).

Smith (Smith, 1956) considered a multi-objective problem, where

the primary criterion is to complete processing all the jobs before their

-39_

deadlines; the secondary criterion is to find a sequence with minimal sum
of completion times. This problem is denoted by 1/di/ZCi. He gave an
0(n log n) algorithm to solve this problem (backward scheduling): Let
P(S) = £; g P;» Sequence a job] with dj 2 P(S) and with pj as large as
possible in the last available position. Smith's procedure can also be
used to solve the special cases 1/di’ pi=1/ZwiCi and the 1/di’ P; < pj >
W, z wj/ZwiCi (i.e. the problem with agreeable weights, even local agree-
able weights: jobs involved in each step of Smith's procedure have agree-
able weights) (Van Wassenhove, 1979).

However, the l/di/ZwiCi problem has been shown to be NP-hard
(Lenstra, 1977). This problem has the following properties (Van
Wassenhove, 1979).

1. Feasibility: Order the jobs in a non-decreasing order of their
due dates (EDD rule). Then a feasible solution to the problem exists if
and only if Ci < di for all jobs i.

2. Optimality: Order the jobs in a non-increasing order of Wi/pi
ratios (WSPT rule). Then, if C; <d, for all jobs i, the sequence is
optimal.

Van Wassenhove also proposed a branch and bound procedure to solve
this problem. The lower bound is obtained by solving a dual problem
obtained through a Lagrangian relaxation of the deadline constraints.
Bansal (Bansal, 1980) derived some dominance rules for this problem and
presented a branch and bound procedure to solve the problem. This time
the lower bound is obtained by ordering the jobs in a non-increasing order
of wi/pi ratios.

Emmons (Emmons, 1975) considered a slightly different problem.
This time, the primary criterion is to minimize the number of late jobs
while the secondary criterion is to minimize the sum of completion times.

This problem can be looked at as a generalization of the 1//ZUi problem

-40_

which can be solved using Moore's algorithm (see Section 4.3.4) and of the
1/d,/IC; problem which can be solved using Smith's procedure. Emmons pro-
posed a branch and bound procedure for solving this problem. Each branch
corresponds to the assignment of an additional job to the set of late jobs.
Once a stage where all the remaining jobs (ordered according to the EDD
rule) are completed in time is reached, these jobs are sequenced optimally
using Smith's algorithm. Emmons also gave some dominance theorems that
eliminate many of the branches at each node of the search tree. The com-
putational experiments he carried out indicated that the solution obtained
using Moore's algorithm is usually optimal for problems of small sizes
(n=10) and some times optimal for problems of larger sizes, and in any case
gives solutions within 1 or 2 percent of the optimum. The results also
indicated that the additional computational effort to continue to optimality
to be remarkably little, even for problems of large sizes.

A composite objective problem, where the objective is to minimize
the sum of weighted tardiness and weighted completion time (1//Z(hici +
wiTi))’ was first suggested by Gelders and Kleindorfer (Gelders §&
Kleindorfer, 1974). This problem is clearly NP-hard since the simpler
version (1//zwiTi) is already NP-hard (Lenstra, 1977). Dominance con-
ditions for the problem can be found in (Van-Wassenhove, 1979). Branch
and bound procedures for solving the problem, together with some computa-
tional experiences can be found in (Gelders & Kleindorfer, 1975; Van-
Wassenhove, 1979).

Van-Wassenhove and Gelders (Van-Wassenhove & Gelders, 1980) con-
sidered a multi-objective problem where the objective is to minimize two
different criteria. These two criteria are the minimization of the total
flowtime and the minimization of the maximum tardiness. (Obviously, the
first criterion is minimized by ordering the jobs in a non-decreasing order

of their processing times (SPT rule), while the second criterion is

- 41 -

minimized by ordering the jobs in a non-decreasing order of their due
dates (EDD rule).) The problem is to find a sequence that does well on
both objectives (if such a sequence exists). In order to define such a
sequence more precisely they used the concept efficiency.

Given a schedule m, let H(m) and T a () be the total flowtime and

X
maximum tardiness respectively of schedule n. A sequence 7m* is efficient
if there exists no sequence m such that:

H(m) < H(n*)
and

Tmax(“) 3 Tmax("*)
where at least one relation holds with strict inequality. Similarly, a
sequence m is said to dominate another sequence m' if:

H(n) < H(n")

and

where at least one relation is a strict inequality.

'""Clearly, the decision maker will choose an efficient sequence.
Therefore, the researcher's problem is to characterize the set of efficient
sequences and to help the decision maker in his search through this set in
order to decide upon a final sequence to be implemented." (Van-Wassenhove
& Gelders, 1980). An O(nzﬁ log n) (pseudo-polynomial) algorithm to solve
this problem (where E is the average processing time), together with some

computational results can be found in the above reference.

- L2 -

CHAPTER FIVE

HEURISTICS FCR SINGLE MACHINE PROBLEMS

5.1 Introduction

It is clear that the computational requirements to solve a parti-
cular scheduling problem using the branch and bound approach might become
tco time consuming for large problems. In fact, even for relatively small
problems, there is no guarantee that solution can be found quickly.
Eeuristic algorithms avoid this drawback since by using them we can obtain
solutions to large problems in a fraction of the time spent on solving
them using branch and bound techniques. Also, the computation requirements
for heuristic algorithms are usually predictable for problems of a given
size. The drawback of the heuristic algorithms is that they do not guar—
antee optimality and in some cases it may even be difficult to judge their
effectiveness.

It is well known that precedence constraints among the jobs can be
represented by a directed acyclic graph G=(V,E). The vertices of G repre-
sent the jobs, and if a directed path from vertex i to vertex | exists,
then job | must be processed before job j. The transitive closure of the
directed graph G is the graph obtained by adding all arcs (i,j) (if they
do not already exist) to G whenever there is a directed path from vertex i
to vertex j. The transitive reduction of G is the graph obtained by dele-

ting all arcs (i,j) from G whenever there is a directed path from vertex i

to vertex j which does not include the arc (i,j) itself. Job i is a
predecessor of job j and job j is a successor of job i if the arc (i,j)
exists in the transitive closure of G. Job i is a direct predecessor of
job j and job j is a direct successor of job i if the arc (i,j) exists

in the transitive reduction of G. Define Bj = {i/(i,j)eG} and Aj =

{i7(j,i)eG}. Let B be the set of jobs with no predecessors (i.e.

- 43 -

B = {j/Bj = ¢}) and A be the set of jobs with no successors (i.e. A =
{j/Aj = ¢}). Obviously, if E=¢, then B=A=V. Finally, we define an
unsequenced job i to be auatilable for sequencing in the first available
position if ieB and r, < max{T',Tin(r.)}, where T' is the completion time
of an initial partial sequence 04%8

In Section 5.2 we shall give five heuristics which appeared in the
literature. In Section 5.3 we shall suggest four new heuristics to com-
plete our comprehensive list of one machine heuristics. A heuristic which
can be applied to most one machine problems is given in Section 5.4 together

with some computational experience, followed by concluding remarks in

Section 5.5.

5.2 Heuristics Chosen from the Literature

5.2.1 1/ri/Lm

ax

We shall consider an equivalent problem, where each job i (i=1,...,n)
has a release date Fis has a processing time Pi» and has a delivery time q;
The objective is to find a sequence of jobs that minimizes the time by
which all jobs are delivered.

The basis of the first heuristic to be given in this section is to
sequence an available job i with q; as large as possible in the first
available position. |If there is a choice, the job with the larger process-

ing time is chosen. A formal statement of the algorithm will now be given.

Step 1: Let S' be the set of all unsequenced jobs, let k=0 and
find T' = min {r.}.
jes'

Step 2: Find the set S = {J/JeS' & r; <T'). Find a job i with ics"
and g, = max”{qj} (in case of ties choose job i with the

Jjes
largest processing time).

- LYy -

Step 3: Set k=k+1, sequence job i in position k, set T

T'+pi and '

max{T',min
jes'

= §'-{i}. If $'=@, then stop; otherwise set T'
{rj}} and go to Step 2.
The above heuristic is due to Schrage (Schrage, 1971) and requires
0(n log n) steps.
tf 7= (v(1),...,7(n)) is the sequence obtained using Schrage's
algorithm, then the time by which all jobs are delivered TSC is given by:
J

hzi Pr(h) * n(])

Tse = Tw(i) *
where either m(i) is the first job in m or the machine will be idle
immediately before it processes job m(i), and job 7(j) is chosen such
that 1 € €j €n.

Kise et al. (Kise et al., 1978A) have shown that Tg /T* < 2-3/(SP+1),
where SP is the sume of processing times of all jobs, T* is the minimum time
by which all jobs are delivered and TSC denotes the minimum time by which all

jobs are delivered when the jobs are sequenced using Schrage's algorithm,

From the construction of 7, we have
< =1 1
I‘“(i) B rn(h) for h lyeeey)

I f qﬂ(j) Sq"(h) for h=i,...,j then the sequence m is optimum. Otherwise,
we can find a job m(k) such that i € k < j and that U (k) < U () but
z . = Tyeeeyje Job i) 4

a(h) > () for h=k+1,...,] ob w(k) is called the Znterference job
and job w(j) is called the critical job.

I f Pr(k) is the processing time of the interference job, then it
has been shown that TSC/T“ <1+ pﬂ(k)/SP (Kise & Uno, 1978).

Potts (Potts, 1980B) gave a modified heuristic based on applying
Schrage's algorithm successively, each time constraining the interference

job to be processed after the critical job in the following sequence. The

formal statement of this modified heuristic will now be given.

Step 1: Set t = 0 and Tp = o,

- 45 -

Step 2: Apply Schrage's algorithm. Let ﬂ(t) = (n(t)(l),...,n(t)(n))

be the resulting sequence and let Téz) denote the minimum
time by which all jobs sequenced in n(t) are delivered.
- i (t)
Step 3: Set Tp = mzn{Tp,TSC }.
' . (t) (t) . . :
Step 4: If two jobs w (k) and = (j) such that k<j (k and j as small

as possible) and qn(t)(k)< qﬂ(t)(j)

Step 5; otherwise go to Step 6.

can be found, then go to

Step 5: Set r =r and t=t+1. If tsn, go to Step 6;
g)
otherwise go to Step 2.
Step 6: Stop with the sequence obtained has Tp as the minimum time

by which all jobs are delivered.
The worst case performance of this modified heuristic is 3/2, i.e.
Tp/T* < 3/2, and it requires O(n2 log n) steps (Potts, 1980B).
If precedence constraints among jobs (represented by a directed graph
G in which jobs are renumbered such that an arc (i,j) in G implies that i<j)
were introduced to the problem, then Schrage's algorithm can still be used as

a heuristic for the resulting prcblem after making the following adjustment

-
0]

max{ri,max{rj+pj/(j,i)eG}}

and

q; max{qi,max{qj+pj/(i,j)eG}}
for all jobs i=1,...,n and in that order. This heuristic requires 0(n3)
steps, which are needed to compute the transitive closure of the precedence
graph G.

I f ri=0 for i=1,...,n, then Schrage's algorithm is optimum even

for the constrained problem in which case Qs i=2,...,n are adjusted as

above (Baker, 1974).

5.2.2 1/ri/ZCi

The following heuristic is based on sequencing a job | with the

earliest completion time in the first available position. A formal

- Lg -

statement of the algorithm will now be given.

Step 1: Let S' be the set of all unsequenced jobs and let T'=0.
Step 2: Find a job ies' with max(T'.ri)+pi as small as possible-
Step 3: Sequence job i in the first available position. Set T' =

max(T',ri)+pi and $'=S'-{i}. If $'=¢, stop; otherwise go
to Step 2.
This heuristic is due to Van Wassenhove (Van Wassenhove, 1979) and
requires 0(n log n) steps.
A sequence m = {m(1),...,7(n)} obtained using the above heuristic is
optimum if o (1) 3 e (j) for j=2,...,n and that for each job = (i) with
rn(i) Z Cn(i-])’ we have:

rﬂ(i) < rn(j)’ for all j=i,i+l,...,n

5.2.3 l/di/ZwiCi

The following heuristic is due to Smith (Smith, 1956). The basis
of this heuristic is to find an unsequenced job j withd. > I p, (s'
is the set of unsequenced jobs) and Wj/pj as small as possib;:? This job
is then sequenced in the last available position. The formal statement

of this heuristic will now be given.

Step 1: Let S' be the set of all unsequenced jobs and let "= 1 . Pie
ieS

Step 2: set s'={i/d; > T'}. Find a job jeS" with wi/p; as small as
possible. Break ties by choosing job j with the smallest
processing time.

Step 3: Sequence job j in the last available position and set §'=5'-{j}.
If S'=¢, stop; otherwise go to Step 1.

This heuristic requires 0(n log n) steps.
If precedence constraints among jobs exist, the above procedure

can still be used as a heuristic for the resulting problem, except that in

this case §'' of Step 2 becomes s" = {i/ieA and d; 2 T'}. The heuristic now

requires 0(n3) steps.

-1’7-

If all wi=1 for i=1,...,n, then the sequence obtained using Smith's

heuristic is optimum (Smith, 1956).

5.2.4 1/prec/iw;C;

The first heuristic to be given in this section is based on using
the following results which have been proved by Morton and Dharan (Morton
& Dharan, 1978).

Theorem 5.1

If job © has no predecessors and wi/pi 2 wj/pj for all jobs g,

then there exists an optimum sequence in which job 1 is sequenced first.

Corollary 5.1

If job i has no successors and wi/pi < wj/pj for all jobs j,
then there exists an optimum sequence in which job 1 is sequenced last.
Theorem 5.2

If job © has at least one predecessor and wi/pi 2 wj/pj for all
jobs j, then there exists an optirum sequence in which job i is sequenced
inmediately after one of its direct predecessors.

Corollary 5.2

If job i has at least one successor and wi/pi € wj/pj for all
jobs J, then there exists an optimum sequence in which job < 18 sequenced
immediately before one of its direct successors.

Every decision made (using the first heuristic) will sequence a
job either first (Theorem 5.1), last (Corollary 5.1), immediately after
one of its direct predecessors (Theorem 5.2), or immediately before one
of its direct successors (Corollary 5.2).

A formal statement of the algorithm will now be given.

Step 1: Let S' be the set of all unsequenced jobs.
Step 2: Find jobs ieS' and i'eS' such that wi/pi 2 wj/pj and wi-/pi- <

wj/pj for all unsequenced jobs j. f i or i' is not uniquely

- 48 -

Step 3:

Step 4:

Step 5:

1 f

defined, then an arbitrary choice is made. Let k and k' denote
the number of direct predecessors and direct successors of i and
i' respectively.

If k=0, then sequence job i first, and set $'=S'-{i}. 1f §'=¢,
stop; otherwise go to Step 1.

If k'=0, then sequence job i' last and set $'=S'-{i'}. If

S'=¢, stop; otherwise go to Step 1.

If 0 <k k', sequence job i immediately after job j (i.e. form
a composite job ji), one of its direct predecessors, with w./pj
as small as possible and go to Step 1. Otherwise sequence job
i' immediately before job j (i.e. form a composite job i'j'),
one of its direct successors, with wj'/pj' as large as possible

and go to Step 1.

two jobs i and j are to be sequenced immediately after each

other (Step 5), then these two jobs are replaced by a single (composite)

job 1j with processing time pi+pj and weight wi+wj. The precedence graph

G is also updated as follows.

(a)

(b)

(c)

Thi

The two vertices i and j are replaced by a new vertex
k=i].

For each arc (h,i) or (h,j) in G, where h#i, an arc
(h,k) is added.

For each arc (i,h) or (j,h) in G, where h#j, an arc
(k,h) is added.

s heuristic is due to Morton and Dharan (Morton & Dharan, 1978).

It is clear that applying the above procedure requires obtaining the transi-

tive reduction of the precedence graph G which in turn requires 0(n3)

steps to compute.

Another heuristic for the same problem can be found in the above

reference.

This heuristic is based on Sidney's decomposition principle.

-L,9..

The basis of this heuristic is to form simple sets D,, where D. consists
of job j and all its predecessors. One of these sets D, is chosen such

that £ w./ L p; as large as possible. If Dj consists of job j only,

. i,
D. ieD.
ie ki €]

this job is sequenced first; otherwise job j is removed from Dj’ i.e. job j

cannot be sequenced in the first available position. The set D. is then

used to form new simple sets as above. The procedure is repeated until

all jobs are sequenced. The formal statement of this algorithm will now

be given. |
Step 1: Let S be the set of all unsequenced jobs. Let D=S', §
Step 2: For each job ieD with no successors in D, find a set Di =

{iYu{j/jeb and (j,i)eG}.
Step 3: Find a set Dj € D (one of the sets found in Step 2) with

b W;{Z p; as large as possible.

isDj |£Dj
Step 4: I f Dj consists of job j only, sequence this job first and set

S'=S'-{j}. If $'=¢, stop; otherwise go to Step 1. |If Dj con-

sists of more than one job, set D=Dj-{j} and go to Step 2.

This heuristic requires 0(n3) steps. Computational experience
reported in (Morton & Dharan, 1978) showed the Sidney type heuristic to

be computationally almost as good as the first heuristic.

5.2.5 1//1T,

The following heuristic is known as the Wilkenson-lrwin heuristic
(Baker, 1974). 1t is based on the observation that it is preferable to
have job i with the smallest di to be sequenced in the first available

position except when a job j exists such that T' + max{pi,pj} > max(di'dj}

(where T' is the sum of processing times of all jobs sequenced in an

initial partial sequence), in which case a job with smallest processing

So

time is sequenced in the first available position. The algcrithm involves
two sequences; a sequence T of scheduled jobs and a sequence S' of
unscheduled jobs. Jobs sequenced in m are subject to possible revision.
The sequence S' contains the remaining jobs in EDD (earliest due dates)
order.

At each stage, the algorithm applies the above result to jobs i
and j, where di S dj (i and j are initialized to be the first two jobs in
S'). If T' + max{pi,pj} < dj or p; < Pjs then job i is added to the end
of m. If these conditions fail, the decision rule is applied to jobs k and
j, where k is the last job in m. If T' - P * max{pk,pj} < max{dk,dj} or
if Py < pj (or if no job exists in m), then job j is added to the end of .
However, if this decision rule fails also, a jump condition results in
which case job k is removed from m and replaced in S' in EDD order. The
decision rule is then applied to job j and the last job in w. The jump
condition occurs infrequently, but it may be applied several times in

succession in order to sequence job j. A formal statement of the algorithm

will now be given.

Step 1: Let S' be the set of all unsequenced jobs. Let T'=0 and {n}=¢.

Step 2: Order jobs in S' in a non-decreasing order of d..

Step 3: Let i and j be the first two jobs in S'.

Step 4: 1f T + max{pi.Pj} < maX{di’dj} or p; < Pj then sequence job i
next, set T' = T' + P;» remove job i from S' and set i=j. If

job i is the only job in S', sequence job i last and stop. |If
there exist more than one job in S', let j be the second job in
S!' and repeat Step 4. If, on the other hand, T' + max{pi,pj} >
max{di,dj} and P; > Pj. then set i=j, let k be the last job in r
and proceed to Step 5.

Step 5: If T' - p + max{pk.Pi} < max{dk,di} or if P € P;» then sequence

job i next, set T' = T' 4 P;» remove job i from S' and go to

_S]-

Step 3. If, on the other hand, T' - P * max{pk,pi} > max{dk,di}
and p, > p; then a jump condition results. Go to Step 6.

Step 6: (Jump condition) Remove job k from m, return it to S' in EDD
order and set T' = T' - Py If there exist at least one job
in 7, let k be the last job in m and go to Step 5. If no job
exists in m, sequence job i first inm, set T' = T' + Py and
go to Step 3.

The above heuristic is not polynomially bounded.

If we define the tardiness interval for job i as follows:

ti is empty if Ci < di

t., = 0d.,C.] if C. > d,

i i i i
Then a sequence cbtained using the above algorithm is optimum if there is
no time t for which tet, and tetj for the tardiness intervals of any pair

of jobs i and j (Theorem 2.8, Baker, 197h), i.e. the tardiness intervals

are mutually disjoint.

5.3 New Heuristics

In the previous section we gave heuristic procedures for the
1/ri/Lmax, for the l/ri/ZCi, for the I/di/EwiCi, for the l/prec/ZWiCi
and for the l//XTi problems. In this section, we shall suggest new pro-
cedures to complete our comprehensive list of heuristics. Each of these
procedures is written for a problem in its general form, i.e. with release
dates and precedence constraints, and hence can be used if r, or prec is
dropped.

The heuristicsproposed in this section are for the l/ri,prec/zwici,
1/ri:PTeC/Zwiciz. 1/ri’Pr9°/2W;Ti and the 1/"iopreC/EwiUi problems. The
case where each job has both a due date and a deadline is not considered

since this case has seldom been considered by researchers. Another case

-52_

where each job has a release date and a deadline is not considered either
since the existence of a feasible sequence, in this case, is NP-hard

(Lenstra, Rinnooy Kan & Brucker, 1977).

5.3.1 1/ri,prec/2wici

The heuristic described here is a generalisation of the heuristic
proposed for use in calculating alower bound in the branch and bound pro-
cedures proposed in Chapter 6 for solving the 1/ri/EwiCi problems.

Every stage will sequence an available job in the first unfilled
position. |If there is a choice, one with the largest wi/pi is chosen, 1i.e.

according to Smith's rule. A formal statement of the method is given below.

Step 1: Let S' be the set of all unsequenced jobs. Find the set B =
{j/for each ieS',(1,j)¢G}. Also find T' = min{r }.
jeB
Step 2: Find the set S'" = {j/jeB and s € T'} and find a job i with
ieS" and with wi/pi = max {w./p.}.
jES“ J J
Step 3: Sequence job i in the first available position. Set T' = T'+pi

and S' = S'-{i}. If S'=¢, stop; otherwise find the set of jobs

B (as in Step 1), set T' = max{T',min{r.}} and go to Step 2.
jeB

The above procedure requires 0(n3) steps. |f all jobs are independent (i.e.
no precedence constraints), then the procedure requires 0(n log n) steps.

Now we shall show that an upper bound on the worst-case performance
of this heuristic does not exist. Consider the following two jobs example
with r1=0, p1=h‘2, wlzl, r2=1, p2=l and w2=h, for h 2 4, We shall assume
that the two jobs are independent.

The above heuristic H sequences job 1 before job 2 yielding sum of
weighted completion time SWCTH = h2-2. However, in the optimum sequence,

job 2 is sequenced before job 1 yielding SWCT* = 3h. Thus SWCTH/SWCT* -

(h2-2)/3h which can be arbitrarily large.

-53-

5.3.2 1/ri,prec/2wici2

As a heuristic for this prcblem we suggest to use the same heuristic
proposed in the previcus section for the l/ri,prec/ZwiCi problem.

However, for the 1//ZwiCi2 problem, we have the following. Let m =
(v(1),...,m(n)) be the sequence obtained using the heuristic procedure
of the previous section, i.e. by ordering the jobs in a non-increasing
order of wi/pi ratios. Then in order to improve the sequence 7, two jobs
7(i) and 7(j) are temporarily sequenced in positions j and i (i<j) respect-
ively, i.e. job i and job j are temporarily interchanged. If an improvement
is made then the two jobs w(i) and w(j) are left in their new positions.
The procedure is then repeated from the beginning (i.e. i=1 and j=2). If,
on the other hand, no improvement can be made, the two jobs 7 (i) and =(j)
are replaced in their original positions (i.e. position i and position j)
and other possibilities are considered in a similar way. The algcrithm
terminates when all possibilities (i=1,...,n-1 and j=i+1,...,n) are con-
sidered without making any improvement.

This procedure requires O(nz) steps if the sequence m is optimum.

Otherwise the heuristic is not polynomially bounded.

5.3.3 1/ri,prec/zwiTi

As the heuristic proposed in Section 5.3.1, this heuristic has the
property that the machine will never be kept unnecessarily idle. |If there
is a choice of jobs for the first unfilled position, then one of these jobs
is chosen as follows. |f an available job i is late and with wi/pi as
large as possible, then this job is sequenced first. Otherwise, an avail-
able job i with di as small as possible is temporarily sequenced in the
first unfilled position. |f sequencing job i first will make an available
job j (available at time T') with Wj/pj as large as possible late and with

the cost associated with the order ji is less than the cost associated with

- 54 -

the order ij, then job i is removed from its temporary position and job j
is sequenced in that position. Otherwise, job i is sequenced permanently
in its temporary position. A formal statement of the algorithm will now

be given.

Step 1: Let S' be the set of all unsequenced jobs. Find
the set B = {j/for each job ieS',(i,j)¢G}. Also, find T' =
min{r.}.
jeB

Step 2: Find the set S' = {j/jeB and £ < T'}.

Step 3: If there exists one job only in S', sequence this job first,

set T' = T'+pi and go to Step 7. Otherwise, proceed to Step 4.

Step L. Let T" T'+Z pi. If no job j with jeS“ and with dj > Tlx’ go

ieS"
to Step 5. Otherwise, a job j with jeS', dj z T'" and Wj/pj as
small as possible is removed from the set S' (i.e. job j will
not be sequenced first). Go to Step 3.

Step 5: If there exists a job i with ieS" and with T' + Py > di and
w;/p. as large as possible (if there is a choice), then sequence
job i first, set T' = T'+pi and go to Step 7. Otherwise,
proceed to Step 6.

Step 6: Find a job i with ieS" and d; as small as small as possible

(Break ties by the SPT rule). Find the set St = {k/keS" and

T' 4+ p; *+py > d). If st # ¢, find a job j (j#i) with jest

and with Wj/pj as large as possible. |If SE=¢ or if (T' + P

+p; - dj) W < (T + Py + P " di) w., then sequence job i

first, set T' = T'+pi and go to Step 7. Otherwise, sequence
job j first, set T' = T'+pj and go to Step 7.
Step 7: Remove the newly sequenced job from S', |f S'=¢, stop; other-

wise find the set B (as in Step 1), find T' = max {T',min{r.}}
jeB

and go to Step 2.

%)

This heuristic requires 0(n’) steps.

-55-

If only one job exists in S'", then Step 3 of the above procedure
will sequence this job first.

Step 4 will remove a job jeS', which will be completed in time if
sequenced after all other jobs in S', from being a candidate for the first
available position.

Steps 3 and L are repeated until one job only exists in S", in
which case this job is sequenced first, or until no job can be removed
from $'', in which case Step 5 is executed.

Step 5 will sequence a late job ieS' with wi/pi as large as possible,
if such a job exists, in the first available position. |If each of the jobs
in ' can be completed in time, if sequenced first, then Step 6 is executed.

Step 6 will first find a job ieS'" with d. as small as possible and
a job jeS'" (j#i) with T' + P; + P > dj and Wj/pj as large as possible, if
such a job j exists. If job j does not exist or if the cost associated

with the order ij is less than or equal to the cost associated with the

order ji, then job i is sequenced first; otherwise job j is sequenced first.

5.3.4 1/ri,prec/2wiUi

We start each stage of the algorithm by considering all jobs with
no successors. The earliest completion time of each of these jobs is then
computed. Any job with an earliest completion time which is larger than
its due date is sequenced in the last available position. This part of
the algorithm is repeated until no job can be sequenced last.

We then consider the set of available jobs; one of these jobs is
either sequenced in the first available position, has its release date
increased, or is sequenced immediately before one of its direct successors.
Sequencing a job i immediately before one of its direct successors j means
forming a composite job k=ij where r, =r. (we assume that the release dates

have been adjusted according to the precedence constraints, as given in

..56_

Section 5.2.1) pk=pi+pj and wk=wj. The precedence graph G is then
updated as given in Section 5.2.4., Each composite job k=ij we form will
then be treated as a single job.

The procedure is repeated until all jobs have been assigned
positions in the sequence. A formal statement of the algorithm will

now be given.

Step 1: Let S' be the set of all unsequenced jobs. Set T'=0.

Step 2: Find the set of jobs A = {i/for jeS', (i,])€¢G}. For
each job | with ieA, compute Ci’ the earliest completion
time of job i, |If Ci > di’ then sequence job i in the
last available position, remove job i from S' and go to

Step 8. Otherwise, proceed to Step 3.

Step 3: Find the set of jobs B = {j/for ieS', (i,j)¢G}. Also,
find T' = max{T',min{r.}} and B' = {j/jeB and r, < T'}.

jeB J J
Step ki Find the set of jobs Bi = {j/jeB" and T' + P > dj}.

I f B£=ﬂ, go to Step 5. Otherwise, find a job ieBL with
p, as small as possible and proceed to Step L.,
Step 4.1: If BL=B', sequence job i next, set T'=T'+pi, remove job i
from S' and go to Step 8. Otherwise proceed to Step 4.2,
Step 4.2: Let A, be the set of direct successors j of i. Find the

set of jobs A; = {j/jeAi and T' + P, 2 rj}. Let ki denote

the number of jobs in A;.

Step 4.2.1: | f ki=0’ set r; = max{ri.min {rj}-pi} and go to Step 3.
jeA,
1
Step 4.2.2: If ki=1, form a composite job ij, jeA; and go to Step 2.
. “ 7.]
Step 4.2.3: If k;>1, find the set Al = {j/jeA, and T'+pi+pjsdj}.

Let n; denote the number of jobs in A?.
Step 4.2.3.1: I f ni:O’ form a composite job ij, where jeA; with pj as

small as possible and go to Step 2.

57

Step 4.2.3.2: I f ni=l, form a composite job ij, where jsA? and go to
Step 2.

Step 4.2.3.3: If n.>1, find jobs j and j' where J,J'eA} with dj as small
as possible and wju/pju as large as possible. |If T'+pi+pj
+pj,sdj. form a composite job ij; otherwise form a com-
posite job ij'. Go to Step 2.

Step 5: If only one job i exists in B', sequence this job first,
set T'=T'+pi, remove job i from S' and go to Step 8.
Otherwise proceed to Step 6.

Step 6: Let T"=T'+'ZBl p.. If there exists a job jeB' with djaT"
(and wj/pjlgs small as possible), then remove job j from
B' (i.e. job j cannot be sequenced first) and go to Step 5.
Otherwise proceed to Step 7.

Step 7: Find a job ieB' with di as small as possible. Find the set
of jobs B'" = {j/jeB' and Tl+pi+pj>dj}' If B"##, find a job
jeB" with Wj/pj as large as possible. |If B'"=f or wi/pi 2
wj/pj, sequence job i first, set T'=T'+pi, remove job i
from S' and go to Step 8. Otherwise, sequence job j first,
set T'=T'+pj, remove job j from $' and go to Step 8.

Step 8: If S'=@, stop; otherwise go to Step 2.

This procedure requires 0(n3) steps.

Step 2 of the algorithm will compute the earliest completion time
(based on r. and prec) of each job i with no successors. Each time a late
job is found, this job is removed from the set of unsequenced jobs S' and
sequenced in the last available position. |If all jobs have been sequenced,
the procedure ends; otherwise Step 2 is repeated (Step 8). Steps 2 and 8
are repeated until all jobs have been sequenced or until a stage where
none of the jobs with no successors is late, in which case Step 3 is

executed.

_58-

Step 3 will find B', the set of available jobs which is needed in
the following steps of the algorithm.

If none of the available jobs is late (Step L), then Step 5 is
executed. Otherwise, an available job i, where job i is late and with P;
as small as possible is found and we have the following. |If all available
jobs are late, then job i is sequenced first (Step L.1). |f none of the
direct successors of job i is available at time T'+pi (i.e. assuming job i
is sequenced next), then job i is delayed possibly by increasing its release
date (Step 4.2.1). If only one of the direct successors of job i (j say)
is available at time T'+pi, then a composite job ij is formed (Step 4.2.2).
If more than one of the direct successors of job i are available at time
T'4p,, we have the following. 1f none of these jobs can be completed
before its deadline when sequenced at time T'+p,, then a job j (one of
these jobs) with p; as small as possible is found and a composite job ij
is formed (Step 4.2.3.1). If only one of these jobs, say j, (i.e. direct
successors of job i which are available at time Tl+pi) can be completed
before its deadline when sequenced at time Tl+pi’ then a composite job ij
is formed (Step 4.2.3.2). Finally, if more than one job can be completed
before their deadlines when each of them in turn is sequenced at time T'+pi,
then two of these jobs j and j' are chosen (we may have j=j') such that
dj is as small as possible and wj,/pj. is as large as possible. If job j!
can be completed before its deadline when sequenced at time T|+pi+pj (i.e.
assuming jobs i1 and j have been sequenced), then a composite job ij is
formed; otherwise a composite ij' is formed.

Steps 5, 6 and 7 will deal with the case where each of the avail-
able jobs jeB' (found in Step 3) can be completed before its deadline if
it is sequenced in the first available position. The only access to these

steps is from Step 4.

Step 6 reduces, if possible, the number of available jobs by
temporarily removing any job which, when sequenced after all other avail-
able jobs, can be completed before its deadline. Obviously, if only one
job is left, then this job is sequenced first (Step 5).

Finally, Step 7 will find an available job i with di as small as
possible and a job j which is going to be late when sequenced at time T'+pi
(i.e. assuming job i is sequenced first) and with wj/pj as large as possible,
if such a job j can be found. If no such job j exists or if Wi/pi 2 wj/pj’
then job i is sequenced first; otherwise, job j is sequenced first.

We point out that if prec is dropped, then Steps 4.1, 4.2, 4,2.1,

4.,2,2, 4.2.3, 4.2.3.1, 4.2,3.2 and 4.2.3.3 of the algorithm are not executed.

5.4 The Tree Type Heuristic

5. b1 The Algorithm

From Sectioﬁ 3.2 we know that although a branch and bound procedure
guarantees the finding of an optimum schedule, a suboptimal solution may
result if some of the possibly optimum partial schedules have not been
explored. This fact has been used to obtain near-optimum solutions for
many scheduling problems. Here, suitable dominance rules can be used to
reduce the number of candidates within each level of the tree. Then only
some of the remaining candidates (within each level of the tree) are chosen
from which to branch. Usually, one candidate only is chosen within each
level of the tree. Rarely, more than one candidate is chosen within each
level of the tree. Methods of choosing candidates can be found in (Muller-
Merbach, 1981; Section 3.3.3). Here, we suggest two methods to choose one
candidate only to branch from within each level of the tree.

(a) According to the value of a lower bound computed

at every node (look ahead criterion). We shall

refer to this case by HL'

- 60 -

(b) According to some second order heuristic H, which
is applied at every node. Obviously, this second
order heuristic H has to be fast computationally.

Several one machine heuristics can be found in

Sections 5.2 and 5.3. We shall refer to this
case by HH'

It is obvious that since the number of chosen candidates is one,
one would select a candidate with the smallest lower bound if method 'a' is
used and one with the smallest value of the heuristic if method 'b' is used.

It is clear that a branch and bound procedure will lead to the same
solution as method ‘a' (using the same lower bound) within the same number
of nodes and thus it may be useful to include method 'b' in the branch and
bound procedure, since this may lead to a different and may even be a
better solution.

The performance of these two methods of choosing one candidate
within each level of the tree to obtain a near optimum solution for the
1/ri/§:wiCi problem was assessed using test problems. The branching pro-
cedure (Forwards Branching, FB), the lower bounding procedure (the improved
lower bound LB') and the second order heuristic used are those proposed in
Chapter 6. The performance of the second order heuristic H (see also
Section 5.3.1) on its own was also tested using the same problems,

This tree type heuristic requires O(n3 log n) if the second order
heuristic H is used and O(nh log n) if the improved lower bound LB' of

Chapter 6 is used.

5.4,2 Computational Experience

5.4.2.1 Test Problems

Every problem consists of n jobs where n=20, n=30, n=40 or n=50.

Three integers were generated for every job i, namely Pis W, and r,.
i

- 61 -

Processing times P, and weights W, were generated randomly from uniform
distributions [1,100] and [1,10] respectively. Release dates for every
problem were generated from the uniform distribution (0,50,5nR], where R
controls the range of the distribution. The value 50.5n measures the
expected total processing time. For each selected value of n, five problems
were generated for each of the R values 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5,
1.75, 2.0 and 3.0 producing fifty problems for each value of n. This method

of data generation follows that given in Chapter 6.

5.4.2.2 Computational Results

Computational results for the second order heuristic H are given
in Table 5.1, while the results for the two tree type heuristics HH and HL
are given in Table 5.2. The branch and bound procedures of Chapter 6 were
used to solve the tested problems. As we shall point out in Chapter 6,
whenever a problem was not solved within the time limit of €0 seconds,
computation was abandcned for that problem. (In all, 5 and 21 problems
were left unsolved when nz40 and 50 respectively). Thus, in some cases
the figures given in Tables 5.1 and 5.2 are lower bounds on the average and
maximum deviations and upper bounds on the number of problems with values
within a given percentage of the optimum.

Results for heuristic H are given in Table 5.1. The first column
of Table 5.1 shows the average deviations (%) of this heuristic. This
average takes its maximum value 1.08% when n=20. This value decreases as
n increases and takes its minimum value 0.34% when n=50. This is due to
the fact that when n increases, the effect each individual job has on the
value of the heuristic decreases.

Column two shows that when n=20, six problems have optimum sequences.

As expected, this figure decreases as n increases and takes jts minimum

value of 0 when n=50.

- 62 -

Table 5.1:

Results for Heuristic H

Average Number of Cases Within % of Optimum Maximum
n Deviation Deviation
% 0.0 1. 2.0 3.0 Lo 5.0 %
20 1.08 6 36 42 Lg L7 L8 8.62
30 0.98 3 34 4o Le L9 50 L.38
Lo* 0.64 2 43 4g 48 50 50 3.93
50% 0.34 0 L7 50 50 50 50 1.52

*Lower bounds on the average and maximum deviations and upper
bounds on the number of cases within % of optimum because of
unsolved problems.

Table 5.2: Results for Heuristics HH and HL
Heur- Average Number of Cases Within % of Optimum Maximum
n istic Deviation Deviation H
% 0.0 1.0 2.0 3.0 4,0 5.0 %
Hy 0.37 27 Lg 48 Lg Lg Lg 8.28 3
20 HL 0.03 L1 50 50 50 50 50 0.64 18
Best 0.03 L2 50 50 50 50 50 0.64 -
HH 0.24 22 L7 Lo 50 50 50 2.71% 6
30 HL 0.05 29 50 50 50 50 50 0.56 26
Best 0.04 35 50 50 50 50 50 0.56 --
Hy 0.19 17 Lo 50 50 50 50 1.57 1
Lo* HL 0.07 23 50 50 50 50 50 0.61 25
Best 0.05 28 50 50 50 50 50 0.36 -
HH 0.13 11 50 50 50 50 50 0.70 11
505 H 0.04 18 50 g0 50 50 50 0.20 3N
Best 0.03 22 50 50 50 50 50 0.20 -
*As above. NH = Number of cases a heuristic is better than the other.

63

The next five cclumns of the same table show all problems of
sizes 30, 40 and 50 have solutions within 5% of optimum.

The last column shows that heuristic H takes its maximum deviation
of 8.62% when n=20., This figure decreases as n increases and takes its
minimum value 1.52% when n=50,

Table 5.2 compares the performance of heuristics H,, H, and the

H? "L
best of these two heuristics for the different values of n.

Column 1 shows that for a given value of n, the average deviation
of heuristic HH is about one third of that of heuristic H (Table 5.1). A
further substantial reduction in this average deviation was obtained when
using heuristic HL' Another further reduction was possible when choosing
the best of Hy and H .

The second column of the same table shows that for heuristic HH
and n=20, 27 problems have optimum sequences (compared to six problems
when heuristic H is used). This number is increased to 41 when heuristic
HL is used and to 42 when the best of HH and HL is chosen., The numbers of
problems with optimum sequences decrease as n increases and reach their
minimum values when n=50. These minimum values are 11, 18 and 22 when
heuristics HH' HL and the best of H, and HL are used (compared to 0 when
heuristic H is used).

The next five columns of the same table show all test problems of

sizes 30, 40 and 50 have solutions within 3% of optimum when H & is used,

H
while using HL leads to solutions to all problems {(even for n=20) within
1% of optimum.
Column 8 shows that, for a given n, the maximum deviation from
optimum is substantially smaller for HL than it is for HH'
The last column of the same table shows that for a given n, the

number of cases HL gave better results than HH is much bigger than the

number of cases HH gave better results than HL'

- 64 -

5.5 Concluding Remarks

In Section 5.2 we gave a full review of one machine heuristics.

In Section 5.3 we proposed some new heuristics. Each of the proposed
heuristics is written for a general problem and thus can be applied to all
resulting special cases. Finally, in Section 5.4 we proposed a tree type
heuristic., Here, a tree search procedure is considered and only one node
is selected for branching within each level of the search tree. This node
is chosen either because it has the smallest lower bound (this case is
referred to as HL) or because it has the smallest upper bound (this case
is referred to as HH).

The l/ri/ZwiCi problem was considered to test the performance of
heuristics HL and HH on test problems. The results showed both heuristics
to perform reasonably well. The results also showed heuristic HL to be
substantially better than heuristic HH which indicates that to cbtain a
near optimum solution, one should either use HL or both HL and HH and
choose the best solution obtained which appears to be a reasonable
strategy.

Finally, there appears no reason why these tree type heuristics
should not give results as good as obtained here when applied to other one
machine scheduling problems. In fact, we see no reason why these heuristics

cannot be used to obtain near optimum solutions for permutation flow-shop

problems.

CHAPTER SIX

AN ALGORITHM FOR SINGLE MACHINE SEQUENCING WITH RELEASE
DATES TO MINIMISE TOTAL WEIGHTED COMPLETION TIME

6.1 Introduction

The problem considered in this chapter may be stated as follows.
Each of n jobs (numbered 1,...,n) is to be processed without interruption
on a single machine which can handle only one job at a time. Job i
(i=1,...,n) becomes available for processing at its release date Fis
requires a processing time P; and has a positive weight W, Given a pro-
cessing order m of the jobs, the (earliest) completion time C, for each job
i can be computed. The objective is to find a processing order of the jobs
which minimizes SWCT, the sum of weighted completion times ZwiCi. The author
acknowledges the substantial contributions of Dr. Potts to the development
of this chapter.

When all release dates are equal, the problem can be solved using
the algorithm of Smith (Smith, 1956) in which jobs are sequenced in non-
increasing order of wi/pi. However, Lenstra et al. (Lenstra et al., 1977)
have shown that when jobs have arbitrary release dates and unit weights
the problem is NP-hard, which indicates that the existence of a polynomial
bounded algorithm is unlikely. Consequently, branch and bound algorithms
have been proposed for this problem with unit weights by Chandra (Chandra,
1979) and Dessouky & Deogun (Dessouky & Deogun, 1980). For the problem with
arbitrary weights, Rinaldi & Sassano (Rinaldi & Sassano, 1977) have derived
several dominance theorems. In this chapter a branch and bound algorithm
for the problem with arbitrary weights is derived.

In Section 6.2 a heuristic method for sequencing the jobs is given.
A lower bound, which is computed from this sequence, is derived in Section

6.3 and its working is demonstrated with a numerical example. An improvement

- 66 -

to the lower bound is presented in Section 6.4. Section 6.5 contains a
statement of our first branching rule and gives some dominance rules which
help to reduce the size of the search tree used in the branch and bound
algorithm. A complete statement of the algorithm, including details of

its implementation is given in Section 6.6. Our modified algorithm
(including our second branching rule) is given in Section 6.7. Computational
experience is presented in Section 6.8 which is followed by some concluding

remarks in Section 6.9.

6.2 The Heuristic Method

it is well known that computation can be reduced by using a heuristic
method to find a good solution to act as an upper bound on the sum of
weighted completion times prior to the application of a branch and bound
algorithm. Also, in our algorithm, a sequence generated by the heuristic
method is used at each node of the search tree for calculating a lower
bound.

The heuristic that is used has the property that the machine will
never be kept unnecessarily idle. |If there is a choice of jobs for the
first unfilled position in the sequence which preserves this property, one
with the largest wi/pi is chosen. A formal statement of the method is

given below.

Step 1: Let S' be the set of all (unsequenced) jobs, let H=0 and
_ . I
k=0 and find T = m'njes'{rj}‘

Step 2: Find the set S = {j/jeS’, r; < T'}and find a job i with
R 1" . _
ieS and with w-l/pi = maxjeS”{wj/pj}‘

Step 3: Set k=k+1, sequence job i in position k, set T;Tkp., set

i

H=Haw, T and set s' = s'-{i}.

Step 4: If S'=@, then stop with the sequence generated having H as
its sum of weighted completion times. Otherwise set T'=

max{TZminjesu{rJ}} and go to Step 2.

_67-

it is possible to show that an upper bound on the worst-case
performance of this heuristic does not exist. Consider the following two-
job example with r]=0, p1=h-2, w1=l, r2=1, p2=1 and w2=h, where h = L,

The heuristic H sequences job 1 before job 2 yielding sweth = hZ

-2,
However, in the optimum sequence, job 2 is sequenced before job 1 yielding
SWCT* = 3h. Thus sweT /sweT = (h2-2)/3h which can be arbitrarily large.
We now derive sufficient conditions for the sequence generated by
the heuristic to be optimum. However, some notation is introduced first.
It is assumed that the jobs have been renumbered so that the sequence
generated by the heuristic is (1,...,n) and the completion times of the

jobs have been computed using C, = r,+p,, C, = max{ri,Ci_1} +p. (i=2,...,n).

[
The jobs may be partitioned into blocks S],...,Sk as follows. Job vj is the
last job in a block if C <, for i = vj+1,...,n. A set of jobs Sj =

J
{uj""’vj} forms a block if the following conditions are satisfied:

(a) uj = 1 or job uj-l is the last job in a block;
(b) job i is not the last job in a block for i=uj,...,vj-1;
(¢) job Vj is the last job in a block.

Job uj is called the first job in a block and, for our heuristic, has the
property that rUJ < r. for i=uj+1,...,n. These definitions concerning
blocks were proposed by Lageweg et al. (Lageweg et al., 1976).

The sufficient conditions for the sequence generated by the
heuristic to be optimum are as follows.
Theorem 6.1

The sequence (1,...,n) generated by the heuristic is optimum if

the jobs within each block Sj are sequenced in non-increasing order of

wi/pi.
Proof

The result is first proved for the modified problem in which the
release date of each job i in Sj is set to the release date of the first

- 68 -

job in block Sj (j=1,...,k). We first show that all jobs in block Sj should
be sequenced before all jobs in block Sj+1 (j=1,...,k=1) for this problem
with reduced release dates. Consider any sequence and suppose that ieSj

is chosen so that i is as small as possible and sc that job i is sequenced
after a job in block Sjl where j‘> j - Suppose that this sequence is of

the form 010203i0h’ where 9y consists of all jobs in blocks Sl""’sj-l’

where ¢, consists of jobs in block S_j and where the first job of o, is a

3
job in Sj" Consider now the new sequence c1czio3ch. The completion time
of job i in this sequence is not greater than the release date of the first
job in 03 which is in block Sj, since the jobs in 02i are contained in block
Sj' Thus the new sequence has a smaller sum of weighted completion times.
Having established that, for an optimum sequence, all jobs within a block
are sequenced in adjacent positions, their ordering is determined by Smith's
rule. This proves the result for the problem with reduced release dates.

We now return to the original problem obtained by increasing the
release dates to their initial values. Since this increase in release
dates leaves the completion times unaltered, the sequence (1,...,n) is also
optimum for the original problem.

It is seen in the next section that Theorem 6.1 is used in deriving

our lower bound.

6.3 Derivation of the Lower Bound

The method used to obtain a lower bound is similar to the multiplier
adjustment method proposed by Van Wassenhove (Van Wassenhove, 1979) for
minimizing ZwiCi when jobs have zero release date and have deadlines. We
obtain a lower bound by performing a Lagrangean relaxation of each release
date constraint C. > r, +p, (i=1,...,n) after which it is replaced by a
weaker constraint ci 2 ri +p, for some r? S r,. This yields the Lagrangean

problem

n n
L(A) = min{ = Wici + z

Are +p =€)} (6.1)
i=1 =1 I |

where A = (A],...,An) is a vector of non-negative multipliers; the minimiza-
tion is over all processing orders of the jobs with C, (i=1,...,n) subject
to machine capacity constraints and to the constraints Ci zZr, + P, We

can write(6.1)as:
n % n
L(A) =min{ £ wi:C,} + £ A, (r. +p;)
I

where w? =w, - A (i=1,...,n). Thus, the Lagrangean problem is of the same
form as the original problem but each job i has a new release date r? and

a new weight w?. The choice of new release dates and of multipliers is
discussed next. However, we shall restrict our choice of multipliers to
the range 0 € A, Sw, (i=1,...,n) to ensure that L()\) does not become
arbitrarily small. One possible approach is to set r? = 0 so that the
Lagrangean problem can be solved using Smith's rule. The value of X which
maximizes L(X) can then be found using the subgradient optimization method.
However, this might entail much computation without guarantee of a tight
lower bound. We prefer to retain the original values of the release dates,
i.e. to set r? =T, (i=1,...,n), but restrict the choice of multipliers so
that the Lagrangean problem can be solved easily. This can be achieved by
maximizing L(X) subject to the condition that the sequence generated by the
heuristic solves the Lagrangean problem by yielding weights w? (i=1,...,n)

which satisfy the conditions of Theorem 6.1. Thus we require for each

block Sj that
(W. - Ai)/pi < (Wi_1 = Ai_1)/Pi_-| for i = Uj+1o---svj

i

It is clear that L(X) is maximized by choosing

_70-

0 ifi=u,
J

max{O,wi+(xi_]-wi_])pi/pi_1} ifi=u.+1,...,v

(6.2)

Having found Ci (i=1,...,n) using the sequence generated by the heuristic
and A, (i=1,...,n) using (6.2), our lower bound can be written as
n n

IB= £ wC,+ = X (r, +p,~C.) (6.3)
P N i i

Example 6.1

The data for the example is summarized in the first three rows of

Table 6.1. The jobs have already been renumbered so that the sequence

generated by the heuristic method is (1,...,10).

Table 6.1: Data for the Example

r. 1 62 93 146 206 223 230 271 219 219
p. 50 L1 37 28 60 19 97 37 76 g4
w, 10 3 8 8 3 6 10 3 6 6
c. 51 103 1k0o 174 266 285 382 419 495 589
A, 0 0 5.29 0 0 5 5,15 1.15 2.2 1.3

Ai(Ci-ri-pi) 0 0 52.9 0 0 217 283 128 L4o 359

Having applied the heuristic method, the completion times of the
jobs are computed. These are shown in row 4 of Table 6.1. The sum of
weighted completion times is 17420, The blocks obtained from this sequence

are 5, = {1}, S, = {2,3}, S3 = {4} and 5, = {5,6,7,8,9,10}. The multipliers,

_7]-

obtained from (6.2), are shown in row 5 of Table 6.1. The value of the
lower bound is computed from (6.3) using the bottom row of Table 6.1.

This gives:

LB = 17420 - 1480 = 15940

6.4 The Improved Lower Bound

We assume that the multipliers defined in the previous section have
been computed using (6.2). Suppose that the jobs are ordered within each
block in non-decreasing order of multipliers to give a permutation m =
(r(1),...,7(n)) with the property that Sj = {ﬂ(uj),...,w(vj)} and that

£ ... £
>"rr(uJ.) m{v

j) (j=1,...,k). 1t is clear from (6.2) that A"(uj) =0
since the first job in a block always yields a zero multiplier. We now

define

g(h) - g(h-1)

] j - {ﬂ(uj+h-1)} (h=1,...,v.=u., j=1,...,k)

J]

1
w

where S§0 and

(h) _ _ - ‘o
u = A_n_.(uj_*_h) A"(Uj""h']) (h—1,-..,Vj’Uj, J"]""lk)

(h) (h-1)

The set Sj is obtained from the set S, by deleting a job having the

(h)

smallest multiplier and uj is the difference in value between the multi-
plier of the job deleted and the smallest multiplier of the remaining jobs.

From these definitions, we can rewrite (6.3) as

LB

"
135
z
o
+

- .Z (h) Ci) (6.'4)

where b}h) = z,esgh) (r. + pi) (h=1,...,vj-uj, j=1,...,k). (It is assumed

i i
J

that any summation is zero when its lower limit exceeds its upper limit).
(h)
J

bound can be found, it is possible to increase LB, To obtain the best

Clearly b is a lower bound on ZiEsSh) C

P However, if a better lower

72

possible bound on the sum of completion times of jobs having release dates
would require the solution of an NP-hard problem (Lenstra et al., 1977).
Since this is corputationally expensive, we prefer to obtain a lower bound
on ziesgh) Ci by solving the corresponding pre-emptive scheduling problem
in which the processing of any job can be interrupted and resumed at a later
time. The pre-emptive problem is solved by using the procedure to be given
below. The basis of this procedure is as follows. At any time when a

job is completed or when a new job becomes available for processing, the

job which is processed next is one with the shortest remaining processing
time., |If Béh) denotes the sum of completion times for the jobs in th)

when they are sequenced using this shortest remaining processing time rule,

we have the following improved lower bound:

k vj-uJ
' =B+ & I (h) gth) _ ph)
j=1 h=1 J J J
J
Since B}h) 2 bﬁh) , 1t is clear that LB 2 LB,

Procedure for the 1/pmtn, ri/ZCi problem

Step 1: Let S' be the set of all jobs (i.e. S' = {1,...,n}), f=0 and

find T'= Wigl {r;}. Set p; = p, for all 1.
1€

Step 2: Find the set S' = {j/jeS & r; €T} and find a job ies' with

the smailest p;. This job or part of it is to be sequenced next.

Step 3: Find t = min {r;}, where § = {j/jes’ & j#s"). 1F §'<g, set
JE
t==,
Step 4: Sequence p units of job i (from Step 2) next, where p = min
(p;, t-T9.
= ')
Step 5: Set T=T+p and P; =P; " P
Step 6: | f p; > 0, go to Step 2.

73

Step 7: Set S' =S' - {itand f=f +T'. IfS @ stop with the optimum
sequence generated having f as its sum of completion times;

otherwise set T' = mex(T',min (r.)) and go to Step 2.
jes!

Theorem 6.2 (Conway et al., 1967)

The schedule obtained using the above procedure is an optimal
solution to the J/pmtn,ri/zci rroblem.

With réspect to the above procedure, we have the following theorem
which is of some computational use. Here, jobs are assumed to have been
sequenced in an increasing order of rj, in case of ties job i with the
shortest remaining processing time is sequenced first, Jobs are
renumbered {1,...,n}.

Theorem 6.3

Suppose that t is the completion time of an initial partial schedule.
Suppose also that part of job i is processed cptimally (using the above
procedure) in an interval (¢,2,] (i.e. job 7 is not completed at time t,).
Also, suppose that there exists a job j with j chosen as small as possible
so that rj = t]’ then either job i or job j is processed in interval [tl,r]

(1f not completed before time r), where r = min (rk/rk > tj).
kes!

The existence of a job h with r < t, and P, < min(pi,pj) contra-
dicts the optimality of the above procedure. Also, the existence of a job
h with r, = t, and Ph < min(Pi»Pj) contradicts the choice of job j in the
theorem.

Theorem 6.3 can be used in Step 6 of the above procedure; in the
case when p; > 0 to determine whether to continue processing another part
of job i or to start processing job j with rj =t .,

Example 6.2
In this example we shall explain how to compute our improved lower

bound. Consider example 6.1 again. Ordering the jobs within each block

- 74 -

in a non-decreasing order of multipliers gives a permutation (1,2,3,4,5,

8,10,9,6,7). We now compute:
st) {1}
550) (2,3}, sé‘) = {3) u§1) = 5.29
s{0 = ()
sﬁo) = {5,8,10,9,6,7}, sﬁ‘) = {8,10,9,6,7} uﬁ]) = 1.15
s{2) = (10,9,6,7 w2 =13 - 115 = 0.1,
s3) - 19,6, u{P = 0.0,
s = (6,7} =285, s = W) =0,
Clearly, we have 3" = 61 = 130, Solving the pre-emptive scheduling
(1)

problem for jobs in Sh (following the procedure above) we have:

Table 6.2%
)i 1 6! 62 92 g1 93 10! 71
P; 76 19 19 76 37 76 94 97
pji 72 12 0 43 0 0 0 0
T)i 223 230 242 271 308 351 Lis 542

J the ith part of job J.

Psi the remaining processing time of job J
after its ith part has been processed.

TJi the completion time of part Ji.

-75-

We can add the following constraint:

(1)
C6 + C7 + C8 + C9 + C10 z Bl+

where Bil)_ 242 + 308 + 351 + L45 + 542 = 1888,

-

Thus we have Bil) = 1888 compared with bél) = 1485, Similarly,
8{?) = 1u69 with b{?) = 1177, () = 967 with b = 864, 8" = 581 with

béh) = 569, sﬁS) = 327 with b£5) = 327,

Thus LB' = LB + 634 = 16574,

6.5 Dominance Rules

If it can be shown that an optimum solution can always be generated
without branching from a particular node of the search tree, then that node
is dominated and can be eliminated. Dominance rules usually specify whether
a node can be eliminated before its lower bound is calculated. Clearly,
dominance rules are particularly useful when a node can be eliminated
which has a lower bound that is less than the optimum solution., Nodes at
level h of the search tree formed using our forwards branching rule FB
represent initial partial sequences in which jobs in the first h positions
have been fixed. The merits of this branching rule are discussed in the
next section. The following results will show when any of the immediate
successors of the node corresponding to an initial partial sequence ¢ are
dominated. We assume that o = o,h, whenever ¢ is not empty. Also we
define S to be the set of jobs not sequenced in ¢ and we define the
earliest start time of these unsequenced jobs as T = max{C(c), miniss{ri}},
where C(c) is the completion time of the last job of the partial sequence o.

The first of our dominance theorems is a result of Rinaldi &

Sassano (Rinaldi & Sassano, 1977). For completeness the proof is cutlined.

-76-

Theorem 6.4 (Rinaldi & Sassano, 1977)

If job © is chosen with i1eS and with wi/pi = mam.es{w./pj} and 1f
max{ri,T} € max{rj,T} for any jeS, where j#i, then of is dominated.
Proof

Consider any sequence cjo'ic' having oj as initial partial sequence.
Job i can be interchanged with the job sequenced immediately before it with-
out increasing the sum of weighted completion times. After the repeated
application of this process, the sequence cijo'c' will result which does
not have oj as an initial partial sequence.

If, in Theorem 6.4, we have r; €T, then the node corresponding to
o will have only one immediate successor ¢i. The lower bound for this
successor is identical with that of its parent node and need not be
computed again.

The next result is due to Dessouky & Deogun (Dessouky & Deogun,
1980). It states that the machine should not be kept idle throughout a
time interval within which another job can be completely processed. Again,

the proof is outlined.

Theorem 6.5 (Dessouky & Deogun, 1980)

Ifr;> C(ot) for any 1,jeS, then oj is dominated.

Given any sequence ojo'ic' having oj as an initial partial sequence,
a new sequence oijo'c' can be formed in which job i has a smaller completion
time and in which the jobs in ¢' and o' do not have a larger completion
time. This new sequence does not have oj as an initial partial sequence.

It is apparent that the conditions of Theorem 6.5 are most likely
to be satisfied when job i is chosen with C(oi) as small as possible. It
is expected that Theorem 6.5 will be most effective at reducing the size

of the search tree when release dates have a large range.

-77_

Our final result is a consequence of dynamic programming. |I|f the
final two jobs of a partial sequence can be interchanged without increasing
the sum of weighted completion times of jobs in the partial sequence and
without increasing the time at which the machine becomes available to
process the next unsequenced job, then this partial sequence is dominated,
The importance of this type of dominance rule is often overlooked in single
machine sequencing. Recalling that ¢ = o]h, our dominance theorem is as

follows.

Theorem 6.6

If C(oljh) S C(clhj) and 1f ij(Olj) + th(oljh) < th(olh) +
ch(clhj) for any jeS, then olhj 18 dominated.

Care must be taken when both of the conditions of Theorem 6.6 hold
with equality that only one of the partial sequences olhj and o]jh is dis-
carded. It is possible to derive other dynamic programming dominance con-
ditions involving the interchange of another pair of jobs or involving a
larger group of jobs, but they are unlikely to be very effective once the
three other theorems have been applied.

The dominance rules given in this section can only be used if the
branching rules described in the following section is used. In Section

6.7.5 we shall propose a different method for branching.

6.6 The Algorithm

The branching rule FB (Forwards Branching) is discussed first. As
was stated in the previous section, a node at level h of the search tree
corresponds to an initial partial sequence in which jobs in the first h
positions are fixed. This procedure has the advantage that once a job has
been sequenced, its completion time is immediately computed and it can be

discarded from consideration in all successor nodes. Alternatively, if

-78-

rnodes correspond to final partial sequences, completion times of sequenced
jobs depend on the processing order of unsequenced jobs. Before any new

node is created, the dominance rules of the previous section are checked.

If job i can be found satisfying the conditions of Theorem 6.4 with r. €T,
then a single successor node is created whose lower bound is the same as

that of its parent. |In other cases, as many nodes as possible are eliminated
using Theorem 6.4, Then a job i is found with C(oi) as small as possible

and the remaining nodes are checked for dominance using Theorem 6.5.

Theorem 6.6 is applied to all nodes which have not been eliminated.

For each node of the search tree which cannot be eliminated by
dominance rules, a lower bound is calculated. Firstly, the release date
of each unsequenced job i is adjusted by setting r, = max(ri,T), where T
denotes the earliest start time of unsequenced jobs. Then the heuristic
method described in Section 6.2 and the lower bounding methods described
in Section 6.3 and Section 6.4 are applied to the unsequenced jobs and the

contributions of sequenced jobs are added. At level h of the search tree

where there are h = n-h unsequenced jobs, the heuristic requires o(h log h)
steps. A further h steps are required to compute LB. If LB exceeds the
value of a solution already computed, then this node is discarded. Other-
wise, the lower bound LB' is computed. Since the soluticn of a pre-emptive
scheduling problem with h jobs requires 0(h log h) steps, a further

"
A

0(h* log h) steps are required to solve the 0(h) pre-emptive scheduling

problems. To summarise, LB requires 0(h log h) steps and LB' requires

2 log h) steps.

o(h

Finally, our search strategy is given. A newest active node search
is used which selects a node from which to branch which has the smallest
lower bound amongst nodes in the most recently created subset.

The full search tree for Example 6.1 using branching rule FB is

given in Figure 6.1.

_79-

Figure 6.1: Search Tree for Example 6,1 (Using FB)

L' = 17420 17107 17497 17982 17363 17753
H = 17420 17107 17497 17982 17363 17753
Optimum

Key: Job's number is given inside each node while node's number is
given above that ncde. The improved lower bound and SWCTH
(Section 6.2) are denoted by LB' and H respectively.

6.7 Modified Algorithm

6.7.1 Branching

tt is clear from the previous sections that a heuristic is used to
obtain a sequence which is used in computing our lower bound LB. This
sequence can be partitioned into blocks each of which consists of at least
one job. The sharpness of the lower bound is determined according to the
order in which jobs, within each block, are sequenced: if jobs in each
block are sequenced in a non-increasing order of wi/pi ratios, then the

lower and upper bounds computed using this sequence are equal.

- 80 -

In general, the gap between the lower and upper bounds computed
using a particular sequence depends on how often this ordering (i.e.
according to Wi/pi ratios) is violated. If, for a sequence obtained at
the top of the search tree, this ordering is violated among the first few
jobs, then its effect on the lower bound will be reduced once we start
branching from the beginning (i.e. using FB). Unfortunately, branching rule
FB does not have a great effect on the gap between LB and UB if the ordering
(i.e. according to w./p; ratios) is violated somewhere deep in the sequence.

For this reason we have decided to use an approach based on select-
ing certain pairs of jobs i and j and deciding, at the top of the search
tree, an ordering between the jobs of each pair. Each of these decisions
(i.e. i before j or i after j) will be referred to as a binary branching.
The conditions under which each pair of jobs is chosen to form two binary
branchings will be given in Section 6.7.5.

The idea behind our binary branchings is that when solving the
resulting problem, with parallel 1-level trees, a job i with small wi/pi
together with other jobs will be replaced by a single composite job K
having a much larger wk/pk.

A binary branching which corresponds to sequencing job i before
job j, where job i is sequenced before job j in the sequence obtained for
the parent node, will be referred to as a left branching, while the other
binary branching (i.e. j before i) will be referred to as a right branching.

For a right branching, the precedence constraint is ignored and
release date is adjusted such that j must be sequenced before | implies
rj = maX{rj’ri+pi}' Ignoring the precedence constraint corresponding to
a right branching is done for two reasons: The first reason is to make
sure that the resulting precedence graph is series parallel. The second

reason is to make the resulting problem easier to handle.

- 81 -

The resulting precedence graph (i.e. when applying the conditions
of Sections 6.7.5 to select each pair of jobs and ignoring all right branch-
ings) consists of parallel 1-level trees. One node of this graph is in
series with all other nodes. This node will be referred to as the root
node. All other nodes are in parallel with each other. Figure 6.2

shows a 1-level tree consisting of L nodes.

Root Node

Figure 6.2

Minimizing ZwiCi subject to these precedence constraints can be
done by using Lawler's 0(n log n) series parallel algorithm (Lawler, 1978).
This algorithm assumes that a decomposition tree is already known for the
precedence constraints. To determine whether a given graph is series parallel
and, if it is, to obtain a decomposition tree, one can use the method given
in (Lawler, Tarjan & Valdez, —) which requires 0(n+m) steps where m is
the number of arcs in the graph.

The method of Lawler, Tarjan and Valdez is based on repeatedly
decomposing the precedence graph G into series and parallel components, so
as to show how the transitive closure of G is obtained by rules (a) and (b)
of Section 2.2.2 (i.e. conditions of series parallel graphs). 'The result

is a rooted binary tree we call decomposition tree. Each leaf of the

decomposition tree is identified with a node of G. Each internal node
marked ''S'" indicates the series composition of subgraphs identified with
its sons, with convention that the left son precedes the right son. Each
internal node marked ''P'' indicates the parallel composition of the sub-
graphs identified with its sons. (Here the left-right crdering of sons is
unimportant).' (Lawler, Tarjan & Valdez, —). Figure 6.3 shows a graph

G with its decomposition tree.

A Series Parallel Graph G A Decomposition Tree for G

Figure 6.3

Given a decomposition tree, Lawler's algorithm works from the
bottom of this decomposition tree upwards, finding an optimal sequence
for a module M from the previously determined optimal sequences for its

sons, M] and M2.

We point out that if certain conditions are satisfied for two or
more jobs, Lawler's algorithm replaces these jobs by a single cormposite
job. The weight and the processing time of this composite job are set
equal to the sum of the weights and the sum of the processing times of
its component jobs respectively. The composite job is then treated as a
single job. We also point out that Lawler's algorithm sequence independent
jobs in a non-increasing order of p(i) = wi/pi ratios.

""For parallel composition of M] and MZ’ all that is necessary is
to form the union of the two sets M. and M . Non-increasing ratio order

1 2

is feasible and optimal for M = M1UM2, assuming this is true for M., M

1* 2
individually.

For series composition of M1 and Mz, we first find a minimum-ratio
job i in My and maximum-ratio job j in M,. If p(i) > p(j), all that is
necessary is to form the union of the sets M] and MZ’ Non-increasing ratio
order is feasible and optimal for M = M1UM2, assuming this is true for Ml'

M. individually." (Lawler, 1978).

2
Now suppose p(i) < p(j), "what we do is to remove i from Ml’ j from
M, and form a composite job k = (i,j). (Note: either i and j, or both,
may themselves be composite jobs. The job k represents a sequence formed
by joining together the two sequences represented by i and j).
Now let us find the next minimal element i in M;: |If p(i) < p(k),
we remove i from M] and form a new composite job k = (i,k). We continue
in this way until either M, is empty or p(i) > p(k). Then we find the

next maximal element in M,. If p(k) > p(j), we can safely let M = M UM,
L

1
U{k}. Buf if p(k) < p(j), we remove j from M, and form a new composite
job k = (k,j). At this point we start all over again with M], at the
top of this paragraph.' (Lawler, 1978).

As an example, consider the problem with precedence graph G given

in Figure 6.3 and with processing times and weights as shown in the

following table.

- 84 -

Since jobs 4 and 5 are independent, then the set P1 contains
these two jobs in a non-increasing order of wi/pi, i.e. P] = {5,4}.
Similarly, we have P, = {5,3,4} and P3 = {5,3,4,2}.

The steps required to form S, are as follows. We have M, = {1}
and M2 = {5,3,4,2}. Since w]/p1 < w5/p5 we remove job 1 from M, and job

5 from M, and form a composite job k = (1,5) with Py = L and w, = 11,

2
Now, consider the next job in M2, i.e. job 3, we have wk/pk < w3/p3 and
thus job 3 is removed from M, and a new composite job is formed, i.e. k =

(x,3) = (1,5,3), with P =5 and w = 16. For the same reason, One can

form a composite job k = (1,5,3,4) and a composite job (1,5,3,4,2). Thus
Sl*z {(1,5,3,&,2)}

The idea behind our binary branchings is to replace a job i with
small wi/pi together with other jobs by a single composite job K having a
much larger WK/pK' Multipliers must be chosen so that the jobs in each
tree are sequenced in adjacent positions in the same order as in the

heuristic.

6.7.2 Composite Jobs

Two jobs 1 and j sequenced in adjacent positions wusing H are said
to form a composite job i i1f wi/pi < wj/pj and i1f a branch 1 + § has been
formed. 1t is clear that this composite job has a processing time Pi+P.

J

and a weight wi+wj.

We shall make it clear when talking about our new branching that
only job i can be a composite job, i = {iI""’iL} say, in which case the
binary branching we make is i1 + j and not iL + j as one might expect.

If i is a composite job, a third condition is needed to form a branch

i > j, namely wiL/piL > wj/pj. This is to make sure that jobs forming the
composite job are (except the first of these jobs) in a non-increasing
order of wi/pi because all the binary branches we make are between each of
these jobs and job i, as shown in Figure 6.4, where p; = w;/p,. Figure 6.4
shows one of the conditions of forming a composite job also. However, all

conditions for forming a composite job are given in Section 6.7.5.

Figure 6.4: Forming a Composite Job

When dealing with a compesite job instead of dealing with each of
the jobs forming it separately, we are in fact dealing with a job with
larger wi/pi. Hence, the effect a job | with small Wi/pi and sequenced
in the wrong position in m has on the lower bound will be reduced as soon
as a composite job involving job i is formed. Composite jobs are parti-
cularly useful if they form the start of new blocks, in which case the

multipliers for these composite jcbs are reduced to zero.

- 86 -

6.7.3 Cistributing the Multiplier of a Composite Job Amongst its
Component Jobs

Consider a composite job K = {1,2,...,L} say, with a multiplier

kk, where:

and A, as given in (6.2). Recall from Section 6.3 that 0 < A € W, (i=1,

.,n). Dividing Aé among the L jobs forming the composite job K, we

have: Al AL

1 2,...,AL, where

if L=2, then for A; and ké to be valid we must have

(6.5)

If, on the other hand, L>2, then for x;xc to be valid, the following

inequalities must be satisfied also:

Wi o+ W, = A, - -
LI A N R T | (6.6)
P, * P, P3
W A A
- e -
2z, 333 (6.7)
P2 P3
+ + (el L))
Wyt vy Mien T M At e P W Ty (6.8)
p]+p2+...+pi_1 pi .
1 1]
Miet T Aier o Wi T P
Pi-1 P -9)

- 87 -

+ -
Wy ok, + + W (A1 + AZ + + AL_1)) wo- AL ’
p] + p2 + + pL_] = pL (-10)
-] -]
Wie1 T Ao WT AL
5 2 (6.11)
L-1 PL

It is clear that only inequalities (6.10) and (6.11) involve Al, and that

only inequality (6.10) requires an upper bound on the value of AL. This

inequality can be written as follows:

W 1 L-1 L-1 .

A S M I oppmpp (Zow - ay)
i= i=1
P
i=1
Thus, we choose

1 . i 1 L-1 L1

AL S mnn(AK, C (wL P; = P (: W, - Ak)) (6.12)

1 .
| £ AL =l stop; otherwise an upper bound on the value of AL~1 has to be

cbtained to satisfy inequality (6.11).

!
P vy = A) 2 e e - x))

P .
L-1 (

5o L C) (6.13)

A second upper bound on the value of AL_] can be obtained by applying
1

. . o
equation (6.12) after setting AK-XK - AL and L = L-1, as we shall show

in the following section,

6.7.4 Procedure

. . 3 l M .
Distributing AK of a composite job K amongst its component jobs.
Here we shall be interested in giving a prccedure for distributing

'
Ag among jobs forming the composite job K = {(1,2,...,1}

- 88 -

! = o
Step 1: Set Aax = <

L-1 L-1
. _ . oL 1 _
Step 2: Find) = mln{(AK,Amax;——t-——(wL iﬁ} P,~P, (121 wimA))}
Lop
i=1
p
1 _ _ L-1 - [
Step 3: Calculate A = w, _, _EE_(WL AL).
1 J] | | [R
Step L. I f Amax < AK - AL’ set AL-1 = Amax’ Ai =0, for all i=1,...,L-2

and stop. Otherwise, set Xé = AK - XL, L =1L-1 and go to Step 2.

6.7.5 Implementation of the Mixed Branching (MB)

Here we start by performing all possible binary branchings under the
conditions to be given below. Once all allowable branchings have been per-
formed we start sequencing the jobs one by one from the beginning using FB.

The advantage of cur mixed branching is that besides being able to
form composite jobs in the relaxed problem when computing the lower bound,
we also have the advantage of using the dominance theorems of Section 6.5

which can only be applied when we start sequencing jobs from the beginning.

Procedure: Binary Branching (EB)

Here we shall give a procedure to select pairs of jobs to form
binary branchings. Each selected pair of jobs i and j will form two binary
branchings, namely i is constrained to be sequenced before j and i is con-
strained to be sequenced after j. The procedure is a function of three
parameters |, M and Y. Parameters I and M are integers while parameter Y
is real. The three parameters are determined by the researcher. Let 7™ =

{1,...,n} be the sequence obtained using the heuristic of Section 6.2,

1. Perform not more than M binary branchings.
2, Find a job i such that:
(a) Job i is the only job that can be sequenced in that position.

(b) The multiplier for job i is zero.

- 89 -

(c)

(d)

Job i is not sequenced in the first | positions in .

If there is a choice, choose one that occurs first.

Find a job j which is not a composite job that is sequenced
directly after i inm (i.e. j=i+1) such that:

The multiplier for job j is positive.

Wi/pi < wj/p..

J
W, +w, W,
P g o= o>y,
P * P, P;
If job i is a composite job, i.e. i=(i],i2,...,i), the condition

w., /p. > w,/p, must be satisfied also.
IL 'L J)

We point out that if i is a composite job, i.e. i=(i‘,...,iL), the

two jobs to be selected to form two binary branchings are"i1 and j and not

L

and j as one would expect.

We also point out that we treat jobs single when applying the

heuristic and that composite jobs remain composite (in the relaxed problem)

until their root node is sequenced by FB.

Example 6.3

works.

In this example we shall explain how our mixed branching procedure

From example 6.1, we bave:

Table 6.3

No. of avail-
able jobs

1 62 93 146 206 223 230 271 219 219
50 I 37 28 60 19 97 37 76 94
10 3 8 8 3 6 10 3 6 6
51 103 14C 174 266 285 382 k19 Lkg5 589

0 0 5.29 0 0 5.05 5.15 1.15 2.2 1.3

-90-

Where job i is said to be available if r. < T' (T' is the completion time
of the job sequenced in the previous position) or r. = Tin{rj} for all
unsequenced jobs j.]

Using the conditions of Section 6.7.5 we can perform the following

binary branchings:

1(a). Forming 2 »~ 3

We can form a composite job (2-3) with

p(2-3) = 78

w(2-3) 11

A(2-3) = 0, since job (2-3) is the first job in the second block.

Thus AL = A, = 0.

2 3
ry = max{r3,r2 + pz} = 103.
Thus we have:
Table 6.4
i 1 (2-3) 4 5 6 7 8 9 10
r. 1 62 146 206 223 230 271 219 219
t:i 51 14¢ 174 266 285 382 hig Los 589
Ai 0 0 0 0 5.05 5.15 1.15 2.2 1.3
No. of avail- 1) 1 1 L L 3 2 ;

able jobs

In which case LB = 15993 and LB' = 16£27.

1(b). Forming 3 > 2

Since w3/p3 > wz/pz, we cannot form a composite job 3-2, wehave

r, = 130,

yA

- 91 -

Table 6.5

No. of avail-
able jobs

51

130 146 206
171 199 266
0 5.9 0

9 10
219 219
k95 589
2.2 1.3

2 1

we have:

LB

16168 and LB' = 16803.

Since LB'(2-3) < LB'(3-2), we consider branch 2 > 3 first.

2(a).

Forming 5 -~ 6

We can
p(5-6)
w(5-6)
2 (5-6)

form a composite job (5-6) which has:

79
9

0, since (5-6) is the first job in the fourth block.

From Table 6.4 we have:

Table 6.6
i (2-3) 4 (5-6) 7 8 9 10
ri 62 146 206 230 2N 219 219
Ci 51 140 174 285 382 L9 Losg 589
Ai 0 0 0 0 0 0 0
No. of avail- 1
able jobs]] ! 3 2 !
We have LB = 17420. Thus the node corresponding to 5 + 6 is
dead.

92

2(b). Forming 6 > §

In this case, Table 6.4 becomes:

Table 6.7
i 1 (2-3) L 9 6 7 8 10 5
ry 1 62 146 219 223 230 271 219 242
Ci 51 140 174 295 314 411 44§ 542 602
Ai 0 0 0 0 4,5 2.34 .08 0 0
No. of avail- 1 1 1 2 5 4 3 2 1

able jobs

We have LB = 16965 and LB' = 16956,

Since (according to Section 6.7.5) no other binary branchings can
be performed, we start sequencing jobs one by one from the beginning using
branching rule FB. The full search tree for this example is given in

Figure 6.5.

_93—

Figure 6.1: Search Tree for Example 6.1

17107 17497 17431 17821 17744k 17363 17753 17982
17107 17497 17431 17821 17744 17363 17753 17982
(optimal)

Key: A binary branching corresponding to job i being sequenced before
job j is indicated by i+j (inside the node). A job i being
sequenced first is indicated by 0-i. Number of node is given
above each node. The other two numbers given outside each node
are LB' (above) and SWCTH computed at that node.

- 94 -

6.8 Computational Experience

6.8.1 Test Problems

Our algorithms were tested on problems with 20, 30, 40 and 50 jobs.
For each job i, an integer processing time P; from the uniform distribution
[1,100] and an integer weight W, from the uniform distribution [1,10] were
generated. Since the range of release dates is likely to influence the
effectiveness of the algorithms, an integer release date for each job i
was generated from the uniform distribution [0,50.5nR], where R controls
the range of the distribution. The value 50.5n measures the expected total
processing time. For each selected value of n, five problems were generated
for each of the R values 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0 and

3.0 producing fifty problems for each value of n.

6.8.2 Computational Results

The algorithms were coded in FORTRAN |V and run on a CDC 7600
computer.

Average computation times and average numbersof nodes are given
in Table 6.8. Whenever a problem was not solvedwithin the time limit of
60 seconds, computation was abandoned for that problem. Thus, in some
cases the figures given in Table 6.8 will be lower bounds on the average
computation times and the average numbers of nodes. Numbers of unsolved
problems for the different values of R are listed in Table 6.9.

We start by discussing the results obtained using our first branching
rule. It is clear from the average computation times that LB' is superior
to LB. The difference in performance is most apparent for the thirty job
problems. For n=4k0 and n=50 the true difference between LB and LB' in
Table 6.8 is disguised by the unsolved problems. It can also be seen from
Table 6.8 that the average computation time per node is considerably less

for LB as is expected.

95

Table 6.8:

Average Computation Times and

Average Numbers of Nodes

FB and Lower Bound LB

FB and Lower Bcund LB!

MB and Lower Bound LB

n Average Average Average Average Average Average
Computation Number of Computation Number cof Computation Number of
Time** Nodes Time** Nodes Time** Nodes

20 0.08 351 0.06 170 0.06 136

30 3.23% 10439* 1.47 2203 1.78 2380

Lo 17.30% 40991+ 14, 89% 24651% 14.81% 23591%

50 33.09% 65883* 30.58% 41255% 32.18% 38958+

*#% Times are in CPY seconds.
* Lower bounds because of unsolved problems.
Table 6.9: Numbers of Unsolved Problems
R

" 0.2 0.4 0.6 0.8 1.0 1.25 1.5 1.75 2.0 3.0
FB 20 0 0 0 0 0 0 0 0 0 0
& 30 0 0 1 0 0 0 0 0 0 0
LB Lo 0 0 3 b 1 2 0 O 0 0

50 O b 5 5 5 3 1 0 0 0
FB 20 0 0 0 0 0 0 0 0 0 0
& 30 0 0 0 0 0 0 0 0 0 0
LB' 4o 0 0 2 3 1 1 0 0 0 0

50 0 3 5 5 5 2 1 0 0 0
MB 20 0 0 0 0 0 0 0 0 0 0
& 30 0 0 0 0 0 0 0 0 0 0
LB' 40 0 0 2 2 1 0 0 0 0 0

50 0 3 5 5 5 3 1 0 0 0

- 96 -

Table 6.9 shows that there are a total of 34 unsolved problems for
LB compared with a total of 28 for LB' which again demonstrates the super-
jority of LB'. For both bounds, the problems with small R and large R are
easiest. This is expected because for small R the release dates become
unimportant once a few jobs have been sequenced enabling Theorem 6.4 to
restrict the numbers of immediate successor nodes to one. However, when R
is large the release dates become more inﬁortant than the processing times
and weights allowing Theorem 6.5 to successfully limit the size of the
search tree. The hardest problems occur when R = 0.6, R = 0.8 and R = 1.0.

For the modified algorithm, initial experiments showed that the
parameter values | = 15, Y = 0.046 and M = 200 to be a good choice. The
results for these parameter values are shown in Tables6.8 and 6.3, but they
are not encouraging. This modified algerithm gave better results (than FB)
only when n=40, in which case the number of unsolved problems is reduced by
two (one each for R = 0.8 and R = 1,25). The worst results were obtained
when n=50, in which case the number of unsolved problems is increased by
one (R = 1.25). Obviously, choosing M = 0 would give the same results as
FB.

The performance of our proposed bounds (using FB) was then tested
on problems with up to 50 jobs where w;=1, for i=1,...,n (i.e. the l/ri/ZCi
problem). Average computation times and average number of nodes (for this
special case) are given in Table 6.10. Number of unsolved problems for the
different values of R are given in Table 6.11. The results show that both
of our proposed bounds have not performed as well as they did for the case
of general weights. This indicates that a different approach to solving
this special case is required. Special purpose algorithms similar to that
suggested by Dessouky and Deogun (Dessouky & Deogun, 1980) are likely to

give better results.

97

Table 6.10: Average Computation Times and Average

Numbers of Nodes for Problems with Unit Weights

FB and Lower Bound LB

FB and Lower Bound LB'

Average Average Average Average
n Computation Number of Computation Number of
Time** Nodes Time** Nodes
20 0.06 228 0.06 168
30 L, 33% 15040 L, 21 9323%*
40 22.39% 55885* 20.23% 34284
50 31.65% 64326% 30.85% 48006%
%% Times are in CPU seconds.
* Lower bounds because of unsolved problems.
Table 6.11: Number of Unsolved Problems For
Problems with Unit Weights
n R
0.2 0.4 0.6 0.8 1.0 1.25 1.5 1.75 2.0 3.0
20 0 0 0 0 0 0 0 0 0 0
L6 30 0 0 0 1 0 1 0 0 0 0
4o 0 1 5 5 3 2 0 0 0 0
50 0 b 5 5 5 2 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
L5 30 0 0 0 1 0 1 0 0 0 0
Lo 0 0 3 3 1 0 0 0 0
50 0 b 5 5 1 0 0 0 0

_98-

6.9 Concluding Remarks

The algorithm using the lower bound LB' is satisfactory for solving
small and medium sized problems. However, a sharper lower bound is needed
to cut down the size of the search tree when the number of jobs exceeds
thirty.

One way in which the algorithm might be improved is to use the parti-
tioning idea proposed by Rinaldi and Sassano (Rinaldi & Sassano, 1977).
This states that if an optimum sequence ¢ of a subset of the original jobs
can be found such that the release dates of all jobs not sequenced in o are
not less than the completion times of jobs in o, then an optimum sequence to
the complete problem exists which has ¢ as an initial partial sequence.
When such a subsequence o can be found, the remaining problem involving
all jobs not sequenced in ¢ can be solved independently. However, the
best way to find the necessary subset of jobs requires investigation.

The lower bounds LB and LB' are also valid lower bounds for the
pre-emptive version of our problem. They could, with a suitable branching
rule and with dominance rules, be used in a branch and bound algorithm for
this pre-emptive scheduling problem which is NP-hard (Labetoulle et al.,
1979). Our bounds can also be applied to the possibly more realistic non-
pre-emptive problem in which unforced machine idle time is not allowed.

The modified algorithm proved to be useful when n=40. Altogether,
its performance was not as effective as we hoped it would be. This was
mainly due to the fact that different problems may need different sets of
values of the parameters (1, Y and M). However, one way of increasing the
efficiency of this modified algorithm might be by re-examining the condi~
tions of Section 6.7.6 (i.e. the conditions of forming binary branchings).

As well as being of interest in its own right, the solution of the
problem considered in this chapter might prove useful in obtaining lower
bounds for flow-shop and job-shop problems based on Lagrangean relaxation.

This seems to be worthy of future research.

99

CHAPTER SEVEN

THE SINGLE MACHINE PROBLEM WITH WEIGHTED SUM
OF SQUARES OF COMPLETION TIMES

7.1 Iintroduction

Each of n jobs has to be processed without interrvption on a single
machine. The machine carmot process more than one job at a time. Each
job i has a processing time p; and a positive weight W Given any
sequence of jobs the completion tire Ci for any job © can be obtained
assuming that processing starts at time zero. The objective is to find a

n
sequence that minimizes the function f = I wiCiZ.

=1

Townsend (Townsend, 1978), to our knowledge, was the first to work
on this problem. The problem is still open. However, Townsend pointed out
that criteria for ordering jobs are unlikely to be simple since, in general,
two jobs in adjacent positions cannot be ordered without reference to other
jobs in the set. He illustrated this by giving the following three jobs
example: Pq = 1, Py = 3, P3 = 1, wy = 15, wy = 17 and Wy = 7, the optimum
sequence is 123, but if Py is changed from 1 to 2, the optimum sequence is
changed from 123 to 132. He also proposed a branch and bound procedure for
solving this problem. The lower bound is based on ordering the jobs accord-
ing to non-increasing Wi/pi and making an adjustment to allow for the
potential improvement that could be obtained by interchanging jobs i and j
(for all i and j) if they are not in the right crder according to non-
increasing weights. Bagga and Kalra (Bagga & Kalra, 1980) studied this
problem and proposed some elimination criteria to reduce the computation
time.

In this chapter we propose a branch and bound algorithm to solve
this problem. We start by giving some dominance theorems in Section 7.2.

Townsend's lower bound is given in Section 7.3, followed by a new bounding

- 100 -

procedure in Section 7.4. The implementation of our new bounding pro-
cedure is given in Section 7.5, followed by a numerical example in Section
7.6. A full description of the algorithm is given in Section 7.7. The use
of dominance rules is demonstrated in Section 7.8, followed by a discussion
of a more general prcblem where precedence constraints among jobs exist in
Section 7.9. Computational experiences are given in Section 7.1C followed

by concluding remarks in Section 7.11.

7.2 Dominance Theorems

Suppose that T is the completion time of the last job in an initial
partial sequence o. And suppose that jobs i and j are to be sequenced in
adjacent positions directly after all jobs in o. Let fij and fji be the
penalties associated with jobs i and j when they are order ij and ji

respectively. Then we have:

2
2
.= w (T . .
. wl(+ p') + wJ(T +p, + pj)
and
Foomw (T ap) +w (T 2
ji = Wi T + P; +w (T + P; + pi)
< .
Thus, fij < fji if
wjpi(ZT + p; +2pj) < wipj(ZT +pj o+ 2pi)
or (7.1)

WJP‘(ZT"’pi +PJ) +WJP‘pJ wlpJ(2T+pl +pJ) +w'|p'|pj
This leads to the following theorem:
Theorem 7.1 (Townsend, 1978)

There exists an optimal sequence in which job ¢ ig sequenced before

Job 4 if:
wi/py 2 Vi/P; (7.2)
vy 2 Y5 (7.3)

- 101 -

Corollary 7.1

There exists an optimal sequence in which job 1 precedes job j

) < . 2 W
if p; S P; and v, W

Theorem 7.2

J 1

solved by ordering the jobs in a non—increasing order of their weights.

The z/pi Sp.,rw,. 2 wj/ZwiCiZ (agreeable weights) problem can be

In case of ties, sequence job T with the shortest processing time first.
Proof

Obvious.

let m, and Ty be two sequences obtained by ordering jobs according
to inequalities 7.2 and 7.3 respectively. Break ties by sequencing jobs
according to inequality 7.3 in the first case and inequality 7.2 in the
second case. Jobs with equal processing times and equal weights are

sequenced in the same order in both sequences.

Theorem 7.3 (Bagga & Kalra, 1980)

If the first r positions in T and Ty contain the same jobs (need
not be in the same order), then none of the jobs in the remaining n-r
positions can occupy any of the first r positions in the optimum sequence.

Corollary 7.2 (Bagga & Kalra, 1980)

If jobs in the first r positions (and/or jobs in the last n-r
pogitions) are sequenced according to both inequalities (7.2 and 7.3)
then these Jjobs will appear in the same order in the optimum sequence.

Corollary 7.3 (Bagga & Kalra, 1980)

If 7, and T, have the same permutation of jobs then that permutation

is an optimal sequence.

7.3 Townsend Lower Bound

It is clear from Theorem 7.1 and Corollary 7.3 that if inequalities

7.2 and 7.3 are satisfied for a particular sequence, then that sequence is

- 102 -

-

optimum. On the other hand, if irequality 7.2 only is met, a lower bound
is obtained by making an adjustment to allow for the potential improvement
that could be obtained by interchanging each pair of jobs i and j for
which inequality 7.2 only is satisfied.

Thus, to obtain a lower bound, jobs are sequenced according to
inequality 7.2 alone. Then it can be seen from inequality 7.1 that the
maximum reduction in penalty that can occur when interchanging the order

of two jobs from ij to ji is:

(w.i - w,) PiP;

Thus, a lower bound is given by (assuming that jobs are renumbered 1,...,n):

oz 002 T I - wy)
LB = & w.l I p, - I I w, =w.}) p.p.
T o= = i=1 =1 4 0 T
& w.ow
i i
Example 7.1 (Townsend, 1978)
1 2 3 L 5
P; 10 L 6 1 2
W, 2 5 7 3 1
wi/pi 1/5 5/ 7/6 3 1/2

Ordering the jobs in a non-increasing order of wi/pi we have

m = 42351, To calculate a lower bound we need to consider the following

interchanges.

51 to 15: with potential reduction = (2.1) x 10 x 2 = 20

23 to 32: with potential reduction = (7.5) x 4 x 6 = 48
43 to 34: with potential reduction = (7.3) x 6 x 1 = 24
42 to 24: with potential reduction = (5.3) x 4 x 1 = 8

- 103 -

Thus, from 7.5, a lower bound LB;is given by:

LBT = 2202 - (20 + 48 + 24 + 8) = 2102

If the branching procedure (a) of Section 3.2.2(i.e. sequencing the jobs
one by one from the beginning), one can compute the following lower bounds

in a similar way:

P
~—
fl

2202 - (20 + 48) = 2134

f(54231) - (8 + 24 + 48)

-
w
—
wn
~——
n

2517 - 80 = 2437

The full search tree for this example is given in Figure 7.1.

5224 2185 2196 2134 |2h37

© ©

4938 2182 2158 2450

® 0,

3656 2150 2330

@

2362 2178
®

2178 (Optimal)

Figure 7.1: Search Tree for Example 7.1

- 104 -

Ordering the jobs according to inequalities 7.2 and 7.3, we have:
M, = 42351 and ™, = 32415, Since jobs 2, 3 and 4 are sequenced in the
first three positions in both sequences, then jobs 1 and 5 cannot be
sequenced in the first three positions of an optimal sequence and the search

tree of Figure 7.1 is reduced to that given in Figure 7.2.

2185 2196 2134

©
55 of

2362 2178

2178 (Optimal)

Figure 7.2: Reduced Search Tree for Example 7.1

7.4 New Bounding Procedure

The approach we are going to use to derive our bound is similar to
that used by Balas and Christofides (Balas & Christofides, 1981) for the
travelling salesman problem, and that of Potts (Potts, 1981) for the
single machine sequencing with precedence constraints in which the objective

is to minimize the weighted sum of completion times.

- 105 -

It will be useful at this stage to give the following definitions.

Given a directed acyclic graph G, we define the transitive closure of G

as the graph obtained by adding all arcs (i,j) to G whenever there is a

directed path from vertex i to vertex j.

matrix of G as the n x N matrix A = (ai

We can also define the adjacency

J.), where a; = 1 if an arc (i,])

exists in the transitive closure of G and aij = 0 otherwise.

To derive a lower bound, we start by formulating the problem as a

zero one programming problem. We define a zero one variable Xk (i,k=1,
..,n), where X = 1 (i=1,...,n), as follows:
1, if job i is to be sequenced before job k.
Xik =
! 0, otherwise.
n
It is clear that the completion time of job k is given by I Pi Xk and
i=1
hence the problem can be written as follows:
Minimi ; w, C 2
inimize
k=1 KK
n n
2
=z wi(ZI p,x,)
k=1 Kk i= i ik
n n 2 n n
= £ wi(IZ p."x, + E L op.p. X\ X.,) (7.4a)
k=1 k =g ik =1 j=1 1 J ik "jk
Ed
Subject to:
] + xji =1, i,J51,...,n & i#] (7.5)
i + xjk + X 2 1, Pyjok=1,..0,n & i#j#k#i (7.6)
ij=00r 1, i,j=1,000, n & i#] (7-7)

The constraint (7.5) ensures that any job i is to be sequenced either

before or after another job j.

The matrix X = (xij) can be regarded as

- 106 -

the adjacency matrix of a directed graph G The constraints (7.6) ensure

X

that GX contains no cycles. When all constraints are satisfied GX defines

a complete ordering of the jobs.
The coefficient pi2 Wy of Xy €an be regarded as the cost of
AR

can be regarded as the cost of scheduling job k not before jobs i and j.

scheduling job k not before job i and the coefficient pipjw

Hence, it is possible to introduce the 3-dimensional cost array ¢ = (Cijk)’
where Cijk = pipjwk' It is clear that if i#j#k#i, then each of Cijk and
ik is a contribution to the cost of scheduling job k after the two jobs

i and j and that Ciik® Sikk and C ik can be regarded as a contribution to
the cost of scheduling job k after job i.

Now, the problem can be written as follows:

n n n n
Minimize I (T c,op X + I T C..p Xep Xop) (7.4b)
k=l i=1 itk 7ik =1 j=1 ijk Tik Tjk
j#i

subject to (7.5), (7.6) and (7.7).

We now introduce new zero one variables yijk and Zo where vy, 0

ijk -
if i=j, i=k or j=k and z,. = 0 (i=1,...,n). Variables yijk and z,, can be

defined as follows:

1, if jobs i and j are not to be sequenced

yijk = after job k.
0, otherwise.
and
1, if job i is not to be sequenced after job k.
ik -

0, otherwise.

In other words:

X, if i#j#k#i.

ik Tjk?

Yijk ~
o, otherwise.

and Zo T Xk when 1#k.

- 107 -

It is obvious that yijk = yjik'

Problem(7.4b) can be written as follows:

n n n n n n

Minimize k; 121 hie Zie * k; iil jil ik lek+k§] P W, (7.8

where hy = S % St Sk

Subject to:
AT 1 15j=1ycua,n, i#j (7.9)
Yijk + Yikj + Yiki = 1 i,j,k=1,...,n, i#j#k#i (7.10)
AR L IPREN 21 iy k=1,...,n, i#j#k#i (7.11)
Yigk * %t % 21 i,0,k=1,...,n, i#j#k#i (7.12)
Yijk + Ykij +tz,2 1 i,J,k=1,...,n, i#j#k#i (7.13)
Yiik +tz, 0+ Zij 21 i,Jok=1,...,n, i#j#k#i (7.14)
Yijk + ykji + ij 21 i,j,k=1,...,n, i#j#k#i (7.15)
Yijk * %Gt 21 i,J,k=1,...,n, (#j#k#i (7.16)
Yik ¥ Vigi * % 21 iyj.k=1,...,n, i£jFk#i (7.17)
Yigk = 0,1 & 2,5 = 0,1 i,J,k=1,...,n (7.18)

We define a directed graph GZ,Y which has two classes of nodes. Jobs
1,...,n form the first class of nodes while pairs of jobs ij, i,j=1,...,n
& i#j, form the second class of nodes (dummy nodes). An arc from node i to
node j exists in GZ,Y if Zij > 0, while an arc from node ij to node k exists
in GZ,Y if yijk > 0.

Constraints (7.9),...,(7.18) form an essential part of the problem
formulation. As constraint (7.5), constraint (7.9) ensures that any job i
is to be sequenced either before or after another job j. Constraints

(7.10) ensure that among any three jobs one job only can be sequenced last.

Constraints (7.11),...,(7.17) ensure that the graph G, y contains no cycles.
»

- 108 -

Constraints (7.11) say that any three jobs i, j and k will have job j
sequenced after job i and (or) job k is sequenced after job j and (or)

job i is sequenced after job k. Constraints (7.12) can be interpreted

as follows: Any three jobs i, j and k will have job k sequenced after

jobs i and j or job i sequenced after job k or (and) job j sequenced

after job k. Constraints (7.13) say that any three jobs i, j and k will
have job k sequenced last or job j sequenced last or (and) job i is
sequenced after job k. All other constraints can be interpreted in a
similar way. We point out that some of these constraints are redundant,

but are included here for a reason which will become obvious at some later
stage. It is possible to derive more general cycle elimination constraints:
q
z

yijkv + Tz, =1 (7.19)

v=1

where k1,k2,...,kr correspond to r (r23) different jobs and where i,j,u

elk ..,kr}, i#j¢kV¢i, ufkv, g=0,1,...,r-1 (we assume that gq=0 implies

1°°
q
that § vy,., = 0).
ijk
v=1 v
Given i, j and k such that i#j#k#i, there are not more than eight
constraints of type (7.10) since there are two ways to represent each
variable (e.g. yijk is equivalent to yjik)' For the same reason there
exist not more than four constraints of the type (7.13), (7.15) and (7.17).

Each of the constraints (7.9) may now be introduced into a

Lagrangean dual, with associated multiplier Mg to give:

o n n) n n
L= 3¢ £ (h Pep ~ M + I L oy .o+
k=1 i=1 ik ik ki ik k=1 i=1 ki
n n n n 2
L I L C... VY + ¥ p,.w
k1 g=1 g1 K CTEIK oy TkOTk

- 109 -

It should be noted that to retain symmetry two multipliers Mok and n; are
associated with every constraint of the type (7.9). For the coefficient
of Zi and z ; to remain non-negative and the multipliers Wik and b to

provide as large a contribution as possible to the lower bound, we set:

Uik = Uki = % min(hik’hki), i,j=1,.-.,n,i#j (7.20)
. —) (0)
We now define a reduced cost matrix H = (hij)’ where
(0) _ _
M T ik T Y T HG
Thus, according to (7.20) either hfg) =0 or hé?) = 0.

We next introduce constraints of type (7.10) to the Lagrangean dual.

Suppose that (s-1) of these constraints have been introduced into the

(1)"..’Y(s-1)

Lagrangean dual with multipliers y to give:
n n n n n n n
L(S"” - T T hI(E) Zik + T 5 Uki + T . .
k=1 1=1 k=1 i=1 k=1 i=1 j=1
s—1 n
C'(s"k” Yijk ¥ L A P v (7.21)
' H k=1 k=1

As mentioned before, there are not more than eight constraints of type (7.10)
for every given value of i, j and k (because yijk is equivalent to yjik’ 23
constraints exist). One of these constraints, Yigk * Yig * Yiki ¢ 1,
will be introduced into the Lagrangean dual below, each of the other
constraints may be dealt with in a similar way.

Introducing the constraint yijk + yikj + yjki = 1 into the

Lagrangean dual gives:

L) = s yls) Yijk ™ Yikj T Yjki)

(s) _ (s-1) (s-1) _(s-1)

where y = min{cijk . cikj ' Ciki }.

- 110 -

(s)

This choice of y will ensure that the coefficients of yijk in L(S)

remain non-negative. 1f we update the 3-dimensional reduced cost array,

c(s)

, using:

cfjl)(- cfj;;l) O Ca(;i} _ Ci(i_}U EI

(s) _ (s-1) (s)
CJEi TSk T)

(s)

We can write L in the following form:

non n n n n n
A hfg) zZg v LD oW+ LTI (s
k=1 i=1 k=1 i=1 ! k=1 i=1 j=1 ijk Tijk
s n
k 2
= L) o PR YK (7.22)

Suppose that N constraints of type (7.10) are added, i.e. s=1,...,N. Let

(0) _ ,.(0) (0) _ _(N) A
D = (dijk),where dijk = cijk’ for all i,j,k=1,...,n.

We next consider the cycle elimination constraints. The general
form (7.19) of these constraints will be assumed. Suppose that (t-1) of

these constraints have been introduced to the Lagrangean dual with

(0 e

associated multipliers A to give:
n n n n
L(N+t-1) =5 3 h§ﬁ 1) Y
k=1 i=1 k=t j=1
t-1 n n _ n
+ Ky z d.(Fk” Yoo ¥ T LK)
k=1 k=1 i=1 j=1 H H k=1
o2
ML (7.23)

A new constraint of type (7.19) will now be introduced into the Lagrangean

dual to give:

=111 -

L(N+t) - L(N+t 1) + A(t) (1 - x Yik = & 7y) (7.24)
v=1 Iy v=q+1 Uy

where
L8 intmin .., }, min th, B
v=1,...,q9 tIKy v=g+l,...,r u \
(t)

It is clear that this choice of) will make sure that the coefficients
., (t) . .
of Zi and yijk in L remain non-negative.

D(t) and H(t) can be updated as follows:

o) - D(t-l) 2,0 g (t)
where E(t) = (egji) and G(t) = (g§£)) are two arrays defined as follows:
(t) _
eijk =1, if variable yijk is in constraint (7.19) when
added at step t,
= 0, otherwise,

and

ggi) =1, if variable Z. is in constraint (7.19) when

added at step t,

= 0, otherwise.

Having updated D(t) and H(t) it is possible to write L(N+t) in a
form similar to (7.23):
n n n n t n n n
LN hgi) T AR NS A
k=1 i=1 k=1 i=1 k=1 k=1 i=1 j=1
N n
(t) (k) 2
d.. .o + z Y + Z W 7.2
ijk Tigk T2 e kM (7.25)

The validity of the proposed lower bound will now be proved in

the following theorem.

- 112 -

Theorem 7.4

A lower bound for the problem is given by:

n n N t n
LB(N+t) = I T M + y(k) + I A(k) + I pk2 Wi
k=1 i=1 k=1 k=1 k=1
Proof
. . (N+t) .
From duality theorem, the minimum value of L provides a lower
. (t) (t) N+t
bound. Now since hik z 0, dijk 2 0, Zi z 0 and yijk z 0, then L()
minimized by setting Z = 0 whenever hgi) > 0 and setting yijk = 0 when-
(t) - . (t) - (t) _
ever dijk > 0. This will yield hik zZ00= 0 and dijk yijk = 0 and hence

yield the required lower bound.

1t is clear that to increase the lower bound, as many constraints
as possible are added. Each time a constraint is added, the lower bound is
increased by the value of the multiplier and hence it is helpful to add
constraints with positive multipliers only.

I f D(t) and H(t) are fully reduced then it should be possible to
find values of the variables yijk and Zo that satisfy all the constraints

and such that:

(t) _ (t) -
dijk Yije = 0 and hpt oz =0
This means that yijk can take the value 1 only if dg?l = 0 and that Z
can take the value 1 only if hfz) = 0.

The existence of a complete ordering of the jobs once all cycle
remover constraints have been added will now be considered in the

following theorem.

Theorem 7.5
A complete ordering of the jobs that 18 consistent with constraints
(7.9)y ..y (7.19) extsts if, and only if, no constraints with a positive

multiplier can be introduced into the Lagrangean dual.

- 113 -

Proof
From graph theory, it is well known that a directed graph defines
a partial ordering of the vertices if, and only if, it contains no cycles.
Here we form a directed graph with two classes of nodes. Jobs
1,...,n form the first class of nodes and pairs of jobs ij, i,j=1,...,n

and i#j formthe second class of nodes (dummy nodes). An arc from node i

to node j exists in this graph if h#})

(

node k exists if di

> 0 while an arc from node ij to
JF)k>o.

If a cycle exists in this graph, then it is possible to remove
this cycle by adding a constraint of type (7.19). If, on the other hand,
no cycle exists, then it is possible to find an ordering of the jobs
(7' (1),...,m*(n)) which is consistent with the graph. The reverse ordering
(#'(n),...,m'(1)) is the required ordering of the jobs which is consistent
with constraints (7.9),...,(7.19).

Once a complete ordering of the jobs is found, it becomes possible

to evaluate this sequence. The value of this sequence forms an upper

bound UB(N+t) on the value of the optimum. However, UB(N+t) can be
found as follows:
t n n
i) =gt oy 8 p g W
- _ ik ik
v=1 k=1 i=1
hoonoon
> el ik Vijk - 1) (7.26)

k=1 j=1 i=1

it is clear from (7.26) that UB(N+t) = LB(N+t)

if, and only if,
every one of the added t constraints of type (7.19) has one variable
only (either one of the Yijk OF one of the z., variables) with a value
equal to one. Thus we have the following theorem.
Theorem 7.6

LB(N+t) (N+t)

= UR if, and only 1f, all the constraints are

satiefied as equalities.

- 14 -

From here to the end of this chapter, by lower bound we shall

mean the lower bound as proposed in this section.

7.5 Implementation of the Lower Bound

The lower bounding procedure as described in the previous section
requires a three dimensional array of size n x n x n to store the cost
data. This made the storage requirements for the problem (even for n=40)
out of the reach of computers. However, the size of the cost array is
reduced as follows. From the previous section we have seen that yijk is
equivalent to ink (i#j#k#i) and that the cost of scheduling job k after

job i, h. ., is equal toc,. +c;, +c¢ With this in mind, it is

kik®
possible to introduce new variables y;jk (i,j,k=1,...,n and i<j) defined

as follows:

' 1, if job k is not to be sequenced before jobs i and j.

Yijk ©
0, otherwise,

Thus problem (7.8) can be written as follows:

n n j-1 . ' n 2 (
Minimize I I I ¢c... V... + I p°w 7.27)
k=1 j=2 i=1 ik Tijk 0y Tk Tk
Where C;jk is defined as follows:
{Zpipjwk if j#k#i and i<j
) 2
Cijk = { 2pipjwk + pj wk if k=i and i<j ' (7.28)
2
LZpipjwk + P oW, if k=] and i<j

Subject to constraints (7.9),...,(7.19), where each variable yijk (i,j,
. . . .)

k=1,...,n and i#j#k#i) is replaced by Yiik if i<j and by y}ik if i>].

Also, each variable z; (i,k=1,...,n and i#k) is replaced by y;kk if

i<k and by yLik if i>k.

- 115 -

Vie remark that a new directed graph Gy, can be obtained from
graph GZ,Y by coalescing equivalent nodes.

The cost array has now become of size nz(n-l)/Z. Every element of
this array is involved only once when adding the equality constraints.
Thus, we have n(n=1)/2 constraints involving two different jobs (since
for every i and j such that i<j (i.e. every row of the cost array) there
exists two values for k such that k=i or k=j and because we have n(n-1)/2
rows). Also, we have n(n=1)(n-2)/6 constraints involving three different
jobs (where (n-2) is the number of different values that k can take (for
each value of i and j, i<j) such that k#i and k#j).

To store this cost array we used a two dimensional array R(1,K),
where I=1,...,n(n=1)/2 and K=1,...,n. Given i, | and k, the corresponding
element of the cost arry is R(1,k) where | = ix(n=1) = ix(i=1)/2 - n+j.

We shall refer to this method of storing the cost array as implementation 1.

The array R(1,K) was used to store the cost array for problems
of sizes up to 40 jobs. Although it might be possible to store the cost
array for problems of size 50 in two arrays (instead of one), we have saved
half the storage requirements as follows. To store the cost array for
problems of sizes larger than Lo (i.e. 50, 60 and 70) we used an array
R'(1,K') where | as above and K'=1,...,n/2 (n is even). This was done by
forming strings where every string R'(1,K') consists of two elements of
the cost array. Given two elements of the cost array, c;jk (k € n/2) and

7 '

[. . . !
g» @ string is formed as follows: c,. + 10" x Cij,k+n/2’ where

€1, k+n/ ijk
107 is larger than the maximum value of any element.

Thus, given i, j and k, the corresponding element of the cost array
is given by LR‘(I,k-n/Z)/107J if k> n/2 and by E - 107 « LE/1O7J if
k € n/2, where E = R'(I,k). Using these strings enabled us to solve problems

of sizes up to 70 jobs. We shall refer to this method of storing the cost

array as implementation 2.

- 116 -

We shall assume that one of the two implementation procedures
discussed above is used.

As explained in Section 7.6, the bounding procedure is started by
adding all possible equality constraints involving two different jobs
(i.e. of type (7.9)). This requires O(nz) steps. We then add all possible
equality constraints involving three different jobs. This requires 0(n3)
steps. We then see whether the reduced cost array defines a complete
ordering of the jobs. This is done by spending 0(n3) steps trying to

schedule the jobs one by one from the end. We schedule a job k with

' —
“ijk

Column k and all rows involving job k are removed from the array. We repeat

0, for all unscheduled jcbs i and j in the last available position.

this until all jobs have been sequenced or until a stage where ncne of the
jobs can be sequenced last is reached. If all jobs have been sequenced,

we stop; our bounding procedure has ended. Since (according to Theorem 7.6)
the lower bcund computed in this case is equal to the upper bound obtained
by evaluating the resulting sequence, the problem has been solved without
the need for branching. If, on the other hand, a stage where none of the
remaining jobs can be sequenced in the last available position is reached,
we reduce the size of the problem by removing all the sequenced jobs. We
then have the problem of adding all possible constraints of type (7.11),
.., (7.17) and of type (7.19) (if needed).

It is clear from Theorem (7.6) that it is desirable that any of
the constraints we add should be satisfied as an equality. With this in
mind we use a heuristic to indicate which constraints to add. This
heuristic is to order the jobs in a non-increasing order of Wi/pi' Let =
be the sequence obtained using this heuristic. Initial experiments indi-
cated that constraints (7.12) are satisfied as equalities more often than
the others. Hence, we decided to add all possible constraints of type

(7.12) and the condition that jobs i and j are sequenced before job k in

- 117 -

the sequence m. This procedure requires 0(n3) steps. Obviously the
possibility of these constraints being satisfied as equalities depends on
how close the sequence m is to the optimum sequence.

Having added all possible constraints of type (7.12) we follow the
procedure described above to see if the current reduced cost array defines
a complete ordering of the jobs. If the answer is yes, then we have com-
pleted the lower bounding procedure. Otherwise, for each (i,j,k) (i,],
k=1,...,n and i<j) we add all possible constraints of type (7.13), (7.14),
(7.15), (7.12), (7.16), (7.17) and (7.11) in that order. Applying (7.12)
(for the second time) here might produce new constraints since k need not
be sequenced after i and j in m. This procedure requires 0(n3) steps.

Initial experiments indicated that the order in which we look
for these constraints is of great significance.

Having added all possible constraints involving three jobs, we
apply the procedure described above to sequence the jobs one by one from
the end. Although a sequence (which satisfies all the constraints) for
each of the 700 problems considered has been found at this stage of the
lower bounding procedure, it is always possible to find problems for which
further constraints need to be added. These constraints are of type (7.19).
It is clear that these constraints are more likely to be satisfied as
equalities if r is small. Hence it is wise to start by spending O(nh)
steps adding all possible constraints involving four jobs (i.e. r=hk), if
a sequence cannot be found here, then constraint (7.19) is applied in its
general form. This is done as follows. Consider a set of r different

jobs {1,...,r}. Then it is possible to add the following constraint:

Yo o Y. s + .0 Yy, . z 1
it Tigda? e
where 1, jv e{l,...4r}, iv < jV and that c;vjvv is the largest element

in column v (v=1,...,r). Clearly, selecting the largest element in a

- 118 -

column requires O(rz) steps. Hence, adding a constraint involving r jobs
requires 0(r3) steps. In the worst case, up to r(r-1)/2 (number of rows)
constraints may be found and thus the procedure requires O(rs).

We summarize, adding all possible equality constraints of type
(7.9) and (7.10) requires 0(n?) and 0(n3) steps respectively. Adding all
possible constraints of type (7.12) requires 0(n3) steps. A further 0(n3)
steps is required when adding constraints of type (7.13), (7.14), (7.15),
(7.12), (7.16), (7.17) and (7.11). Adding constraints of type (7.19)
requires O(rS) in the worst case. Finally, the procedure to see whether
the reduced cost array defines a complete ordering of the job requires
0(n3) steps. As mentioned above, this procedure is applied after adding
equality constraints (7.10) and after adding constraints of type (7.12) if
such constraint were needed (i.e. if a complete ordering of the jobs was
not obtained after adding constraints (7.9) and (7.10). |If a complete
ordering of the jobs cannot be found, then the procedure is repeated for
the third time after adding all possible constraints involving three jobs,
As mentioned above, constraints of type (7.19) were not needed for any of
the 700 problems tested and that the reduced cost array, at this stage,
defined a complete ordering of the jobs. Obviously, if constraints of
type (7.19) were needed for a problem, then a further 0(n3) steps is

required to order the jobs.

7.6 Example

In this section, we shall explain our bounding procedure using an
example given in (Townsend, 1978) (see Section 7.3). The initial cost

array, ¢ = (Cijk) where Cijk = PiPj¥io for this example is:

- 119 -

Table 7.1: Initial Cost Array

i j ks 1 2 3 4 5
1 1 --- 500 700 300 100
2 80 200 280 120 Lo
3 120 300 420 180 60
4 20 50 70 30 10
5 Lo 100 140 60 20
2 1 80 200 280 120 Lo
2 32 --- 112 48 16
3 48 120 168 72 24
4 8 20 28 12 4
5 16 Lo 56 24 8
301 120 300 420 180 60
2 48 120 168 72 24
3 72 180 --- 108 36
A 12 30 L2 18 6
5 24 60 84 36 12
4 20 50 70 30 10
2 8 20 28 12 4
3 12 30 42 18 6
4 2 5 7 --- 1
5 4 10 14 6 2
5 1 4o 100 140 60 20
2 16 Lo 56 24 8
3 24 60 84 36 12
b 4 10 14 6 2
5 8 20 28 12 --

As mentioned in Section 7.5, it is possible to reduce the size of this

cost array to form a new cost array ¢' = (c;jk) (where C;jk is given by

(7.28)):

- 120 -

Tabhle 7.2: Initial Cost Array (Reduced Size)
i j k= 1 2 3 4 5
1 2 192 900 560 240 80
3 312 600 1540 360 120
L L2 100 140 360 20
5 88 200 280 120 140
2 3 96 L20 LL48 144 L8
I 16 45 56 72 8
5 32 100 112 L8 32
3 4 24 60 91 144 12
5 48 120 196 72 60
y 5 8 20 28 24 5

It is possible

Y121
Y;31
Yiu
.
Y151
Y232
You2
y;.52
Y343
Y353

Yish

to add

Y122
]
Y133
]
MRATTA
]
Y155

1
Y233

[]
Y255
MRETT

]
* Y355

* Yiss

following equality constraints:

- 121 -

wi th 2u12

2u13
2y,
2u15

2U23

2u),

2”25

2u3h

2u35

2“45

312
42
88

420
hs
32
91

60

y;23
Y;zu
Y;zs
Y134
y;35
Yius
Yé3h
Y235
Yaus

Y345

Y132
Y142
Y152
Y;h3
I
Y153
Y15y
]
You3
1
Y253
Yas54

Y354

] -
Y231

Youy
Y251
Y30
]
Y351
Yy5y
i
Y342
Y352
Y452

Yis3

Total contribution

to Lower Bound

with y = 96
"oy = 16
"oy = 32
"oy = 24
"oy = 48
nooy = 8
"oy = 56
oy = 48
"oy = 8
oy = 12

1635

The cost array becomes that given in Table 7.3.

Table 7.3: Reduced Cost Array
i j k= 1 2 3 L 5
1 2 0 708 Ley 224 48
3 0 504 1228 336 72
4 0 84 116 318 12
5 0 168 232 112 52
2 3 0 0 28 88 0
L 0 0 0 27 0
5 0 68 64 Lo 0
3 4 0 4 0 51 0
5 0 72 136 60 0
y o5 0 12 16 19 0

- 122 -

We next see if the reduced cost array defines a complete ordering
of the jobs. It is clear that job 1 can be sequenced last since c;.1 = 0
for all jobs i and j. We then remove column 1 and every row involving
job 1. For the same reason we can sequence job 5 directly before job 1.
Column 5 and all rows involving job 5 are removed from the cost array. No
other jobs can be sequenced next, Removing columns 1 and 5 and all rows

involving jobs 1 and 5, the cost array becomes:

Table 7.4: Reduced Cost and Size Array

i j k= 2 3 L
2 3 0 28 88

4 0 0 27
3 4 b 0 51

According to Theorem 7.5, it is possible to add at least one constraint.
1 '

Since Cqpy >0, ¢y33 > 0 and céhh >0, it is possible to add the following

constraint (of type 7.12):
; + : + ! 21
Y3bz o Yz33 Y Youu ?

with contribution to the lower bound equal to 4.
It is clear that all jobs can be sequenced. A unique sequence
(4,3,2,5,1) can be found which is defined by values y;jk satisfying all

constraints and C;jk y;jk = 0. The lower bound is given by:

N2
1635+L}+ z pk w

LB
k 1 k

1635 + 4 + 539

2178

- 123 -

With regard to the last constraint added, one can see that it is
satisfied as equality constraint (since only yéqz = 1) and consequently
the upper bound obtained by evaluating this sequence is equal to the lower
bound. Thus the problem has been solved without the need to perform any

branchings.

7.7 The Algorithm

In this section we give a complete description of the algorithm,
apart from the lower bounding procedure which has already been described
in the previous sections. Here we shall be interested in describing the
heuristic used, the branching rule and the search strategy.

The algorithm starts by applying the first heuristic which sequences
the jobs in a non-increasing order of wi/pi. Although the value of this
sequence is used as an upper bound on the optimum, the main purpose of this
heuristic is to indicate which constraints are to be added when computing
the lower bound.

We then apply the bounding procedure as described in Sections 7.4
and 7.5. The sequence m' obtained at the end of the bounding procedure is
evaluated and the upper bound is updated accordingly. If the lower bound
obtained is equal to the upper bound, the problem is solved without the
need for branching. |If, on the other hand, the lower bound is less than
the upper bound, our second heuristic is applied which tries to improve
the best sequence obtained. This is done as follows. Llet 7 = {n(1),n(2),
...,m{n)}be the sequence with the best solution obtained so far. Job r(1)
is removed from its position and temporarily sequenced in the second
position, (i.e. after m(2)). If the resulting sequence is better than the
original one, then job n(1) is sequencedin its temporary position; other-
wise, job n(1) is considered for the third, fourth,...,nth position in a

similar way. As socon as an improvement is made, this job is left in its

-~ 124 -

temporary position. 1f, on the other hand, no improvement can be made,
job 7(1) is replaced in its original position.

This procedure is applied for all jobs =(i), i=2,...,n. Whenever
an improvement in the value of the solution is made, the procedure is
repeated from the beginning (i.e. from job w(1)). The procedure ends
when no improvement can be made. This heuristic requires O(nz) steps if =
is optimum. No such bound exists in the worst case.

The branching rule used here is similar to that used by Potts
(Potts, 1981). The notations of Section 7.5 will be used to describe the
branching rule. The idea behind the branching rule is to reduce the dif-
ference between the lower and upper bounds calculated at the node from
which we are about to branch (by upper bound here we mean the value of
the sequence m' obtained at the end of the lower bounding procedure).

A constraint which is satisfied as inequality and has a multiplier
as large as possible is selected. One of the variables involving two jobs

i and j only, i.e. y:.., i< (or yiij' i>j) which occurs in this constraint

t

1]

) = ' = . 3

ijj ° 1 (yjij = 1) and that no arc between job i and
job j in the transitive closure of the precedence graph formed by consider-

is chosen for which y

ing all previous branchings (if any). Two branches of the search tree can
then be formed, namely job i is constrained to be sequenced before job j

and job i is constrained to be sequenced after job j. When job i is con-
strained to be sequenced before job j, each constraint involving the variable
;jj (yjij) is removed from the Lagrangean, without altering the lower
hound, since it will necessarily be satisfied. We then update the transi-

b

tive closure of the precedence graph (this part of the algorithm is not
performed in the first level of the search tree). Whenever a new arc (h,k)

for which yékk = 1, h<k (or thk = 1 if h>k), all constraints involving y;kk

(y;hk) are removed from the Lagrangean. Given two jobs y and v, we also
. . . ! . 1 |
remove all constraints involving Yuvk | f Yokk = ! (ykuk = 1) and y¢kk =1
1 -—
Yiwk = .

- 125 -

The second case where job i is constrained to be sequenced after

job j is dealt with in a similar way. |t is clear that in this case where

;jj =0 (y}ij = 0) the sequence m' will be infeasible and hence a new

sequence will have to be found.

Y

Finally, our search strategy is given. A newest active node search
is used which selects a node from which to branch which has i<j and job i
is constrained to be sequenced before job j.

We point out that all constraints of type (7.11),...,(7.17) are
stored (constraints (7.19) were not needed). Each of these constraints is
identified according to the level of the search tree and whether this con-
straint was added to or removed from the Lagrangean problem. Hence, when-
ever backtracking is necessary, the reduced cost arry, for a particular
node at level h of the search tree, is recomputed by considering only

those constraints that were added or removed at or after level h,

7.8 Incorporating the dominance Rules with the Lower Bound

Although we have not needed to use the dominance rules given in
Section 7.2, it is possible to incorporate Theorem 7.1 and Corollary 7.1

with the lower bound. This is done (in the notation of Section 7.5) as
[}
...
JiJ
i>j) is added to the lower bound. For h=1,...,n, (h#j), the value of

follows. If job i dominates job j, then the value of c;j" i<j (if

CA"’ h<j (C3hi if h>j) is increased to take a very large value M (e.g.
ji

the sum of all elements). Also, if each of two jobs i and] dominates a
third job k, then the value of C;jk’ i<j (c.'jik if i>j) is added to the
lower bound. For h=1,...,n (h#k), the values of Céki and Cékj if h<k
(CLhi and cth if h>k) are increased to take very large values of M.

With regard to the example in Section 7.6, we have the following.
From Theorem 7.1 and Corollary 7.1, jobs 2, 3 and 4 must be sequenced before

jobs 1 and 5. Thus it is possible to add the values of the following

- 126 -

elements of the cost array to the lower boud: C;ZI, c;31, C;QI' CESS’ c§55’
°L55’ C§31' Sy C;bl’ °§35' Céug and Céqs (i.e. a total of 847 is added
to the lower bound). For h=l,...,5, the values of C;hz’ C;h3’ c;hh (where
h#1), and CQSZ’ cé53, CASH (where h#5) are set to equal M. Thus the

initial cost array of Table 7.2 becomes as given in Table 7.5.

Table 7.5

i J k= 1 YA 3 L 5
1 2] M M M 80
3 0 M M M 120
4 0 M M M 20
> 88 M M M 140
2 3 0 420 448 144 0
. 0 ks 56 72 0
5 32 M M M 0
3 4 0 60 91 14 0
5 48 M M M 0
4 5 8 M M M 0
7.9 Precedence Constraints

The proposed lower bounding procedure can also be used for the more
general case where precedence constraints among jobs are specified.

Given a directed graph G representing precedence constraints,
A= (aij) is the adjacency matrix of G where 3 = 1 if an arc (i,j)
exists in the transitive closure of G and aij = 0, otherwise.

Besides constraints (7.5), (7.6) and (7.7) of Section 7.4, we

have the following constraint:

X,s Z @.1y i,J=1,-...n.

Using the notation of Section 7.5, this constraint can be written as:

- 127 -

! >

yijj 2 aij’ i,j=1,...,n and i<j

or

1
2

inj aij’

i,j=],._,,n and i>]

Thus, if aij =1 (i<j), the value of the element C;jj can be added to the
lower bound. For h=1,...,n (h#j), the elements C;ji if hej (thi if h>j)
are increased to a very large number M.

It is obvious that if a,, =1 and 3 = 1, then y;jk = 1, which

means that we can add the value of the element C;jk to the lower bound.

Also, for h=1,...,n (h#k), we have: ¢, . = ¢,

hKi hkj = M for h<k (c‘lhi =

]
“khj ~
M for h>k).

With regard to the example of Section 7.6, suppose that we are

given the precedence graph 6 (Figure 7.3).

Figure 7.3: Precedence Graph G

i that = 1 and = 1 ooy -
[t is clear tha g and ag, 1 imply that Yi55 = Y355 =
' =1, H e can add the values of ' !
y]35 ence, w s of the elements CISS' C355 and
[}
¢35 tO the lower bound (a total of 320). Also, for h=1,...,k, set Che1 =
chs3 = M. Thus the initial cost array of Table 7.2 has now become that

given in Table 7.6.

- 128 -

Table 7.6

] J k= 1 2 3 4 5
1 2 192 900 560 240 80
3 312 600 1540 360 0
4 42 100 140 360 120
5 M 200 M 120 0
2 3 96 420 448 144 48
4 16 L5 56 72 8
5 M 100 M 48 32
3 4 24 60 91 144 17
5 M 120 M 72 0
L 5 M 20 M 24 5

To obtain a lower bound for this problem, we suggest the following.
Add all possible constraints of type (7.9) and (7.10). Then use a heuris-
tic to obtain a sequence T consistent with the precedence constraints (see
Chapter 5 for heuristics which can be adapted for this problem). Use the
sequence T to indicate which constraints of type (7.12) are to be added.
Sequence m may also be used to indicate which constraints of type (7.13),
ve.,(7.17) are to be added. The order in which to look for these con-
straints may need to be changed. Then all possible constraints of type
(7.19) are added as described in Section 7.5, after which a complete
ordering of the jobs exists.

lt may be wise, at this stage, to improve the bound by taking
further steps similar to the procedure taken by Potts (Potts, 1981) to
improve his bound for the single machine sequencing with precedence con-
straints. The procedure can be summarized as follows.

tet 7' = (' (1),...,7' (n)) be the sequence obtained at the end of
the above bounding procedure. Suppose also that a constraint satisfied
as inequality with multipler A has been found. Suppose that the variable
y;jk occurs in this constraint, where jobs i and j are not sequenced after

k in 7', which implies that y;jk = 1. There are at least two such variables

- 129 -

in each constraint satisfied as an inequality. This constraint is tempor=-
arily removed from the Lagrangean by increasing the appropriate elements
of the cost array by A. Suppose this leads to the existence of at least
two constraints involving the variables y;jk in that constraint with
multipliers summing up to ALt s A, then the original constraint is
removed and the new constraints are added, this leads to increasing the
lower bound by A'-A. In this case, finding a new ordering of the jobs may
be necessary, since some of the elements of the cost array may have been
increased from their zero values. If, on the other hand, A' €A or it was
not possible to find two new constraints, then the original constraint is
reintroduced, the new constraints are ignored and the lower bound remains
the same.

We should point out that this procedure to improve the lower bound

can be used for the unconstrained case also.

7.10 Computational Experience

7.10.1 Test Problems

Every problem consists of n jobs, two integers were generated for
every job i, namely p, and w,. Processing times p; (i=1,...,n) were
generated randomly from a uniform distribution [1,100). Weights W,
(i=1,...,n) were generated from a uniform distribution [1,101.

A hundred problems were generated for every value of n(n=10,20,...,

70); 700 problems in all were tested.

7.10.2 Computational Results

The algorithms were coded in FORTRAN IV and run on a CDC 7600

computer.
Initial experiments involving problems of size 20 and 30, showed
our branch and bound procedure to dominate the one proposed by Townsend.

For this reason we have excluded the results for Townsend's algorithm.

- 130 -

Results for our proposed branch and bound algorithm are given in
Table 7.8. Minimum, average and maximum total numbers of added constraints
of type (7.11),...,(7.17) are given in columns 1 to 3 respectively,
Minimum, average and maximum numbers of nodes are given in the next three
columns, followed by the average execution times in the last column.

The first three columns show that, as expected, the number of con-
straints needed increases as the size of the problem increases. Columns &,
5 and 6 show that all problems but one have been solved without the need
for branchings. This one case where branchings were needed occurred when
n=60; even in this case the problem was solved in two nodes only. It is
clear from column 7 that there was a big increase in the average execution
time for problems of size 50 from what it was for problems of size 40,

This jump occurred because of the fact that, as explained in Section 7.5,
strings were introduced to enable the computer to solve problems of size
50 or larger.

A closer look at column 2 shows that as the number of jobs increases
from 10 to 20, average number of added constraints increases by about 650%.
This rate of increase in the average number of added constraints decreases
as the number of jobs increases and reaches its minimum value of 60% when
the number of jobs is increased from 50 to 60 and from 60 to 70 (equal
rate of increase). A closer look at column 7 shows that computation time
increases by 622% as the number of jobs increases from 10 to 20. This
rate of increase in computation time decreases as the number of jobs
increases and takes the value 142% as n increases from 30 to 40, using
implementation 2 (i.e. forming strings) lead to an increase of about 286%
in computation time as n increases from 40 to 50. This sharp increase in
computation time (compared with 78% increase in average number of added
constraints) decreases as n increases and reaches jts minimum value of

about 59% as n increases from 60 to 70.

- 131 -

Table 7.8%

Column Number¥*#

n 1 2 3 L 5 6 7
implementa- 10 0 6 26 0 0 0 .00
tion 20 4 L3 159 0 0 0 .03
1 30 23 119 284 0 0 0 .12
4o 127 255 Lgo V] 0 0 .29
Implementa- 50 211 Lsh 956 0 0 1.12
tion 60 410 728 1238 0 6.02 2 2.34
2 70 738 1165 2227 0 0 0 3.71

*Times are in CPU seconds.

%%Column Number:

1. Minimum(numbir of added constraints of type (7.11),
L (7.17).

2. Average number of added constraints of type (7.11),

ey (7.17).

3, Maximum number of added constraints of type (7.11),
e (7017)'

Minimum number of nodes.
Average number of nodes.

Maximum number of nodes.

~ o
« e e e

Average computation times.

7.11 Concluding Remarks

In Section 7.2 we showed that problems with agreeable weights (i.e.
P; < P; >w, 2 wj) can be solved by ordering the jobs according to non-
increasing order of Wi We then, in Sections 7.4, 7.5 and 7.6, proposed a
branch and bound procedure for solving the general case. As mentioned
before, this branch and bound procedure was tested using randomly generated
data. The excellent results we had were not expected. The order in which

we looked for the constraints was a major factor behind these excellent

results.

- 132 -

Initial experiments on problems of size 20 and 30 jobs with

weakly correlated data: 11 < w; < 100 and wo - 10 < Py Sw;p + 10, showed

these problems to be unexpectedly harder than the randomly generated ones

In most cases, constraints of type (7.19) with r2k, were needed. This
caused the gap between the initial lower and upper bounds to be quite

large for these problems. One way to improve these results might be by

trying different orders in which we look for constraints of type (7.11),

v (707).

- 133 -

PART |11

MULTI-MACHINE SCHEDULING

- 134 -

CHAPTER EIGHT

FLOW-SHOP SCHEDUL ING

8.1 Introduction

The general flow-shop problem, indicated by F//Cﬁax, can be stated
as follows. There are n jobs numbered I,...sn, each of which is to be
processed on machines 1,...,m in that order. Fqch Job t (i=1,...,n) has a
processing time Py on machine k (k=1,...,m). Each machine can process not
more than one job at a time and each job can be processed by not more than
one machine at a time. Once the processing of a job on a machine has started,
1t must be corpleted without interruption. The order in which jobs are pro-
cessed need not be the same on all machines. The objective <z to find a
processing order on each machine which minimizes Cmam’ the maximum
completion time of all the Jjobs.

It is well known (Conway et al., 1967; Rinnooy Kan, 1976; Lenstra,
1977) that to find the optimum for the Fm//Cmax problem, we need to con-
sider only schedules with the same processing order on the first two
machines and the same processing order on the last two machines. The fol-~
lowing two-job Fh//Cmax example, given in (Conway et al., 1967), shows that
this result cannot be extended any further: Let Pig = Ppy = p23 =Py = 4,
Ppy = Pyp = Py3 = Pyy = 1. There are only two order-preserving schedules

(see Figure 8.1), both of which have a maximum completion time of 14,

Machine

1 _EJ L 2 1

14 14
Figure 8.1

_]35..

Now consider a schedule (see Figure 8.2) which has the same order on
machines 1 and 2 and the same processing order on machines 3 and 4, but in
which the order is reversed between machines 2 and 3. The maximum comple-

tion time is 12, which is less than what was obtained above.

Machine
1 2 1
2 2 1
3 1 2
4 1 2

12
Figure 8.2

| f each job has an imposed sequence of operations which may differ
from the sequence of operations of other jobs, the problem is known as the
job-shop problem and is denoted by Jm//Cmax. If the sequence of operations
for each job is not imposed but is to be chosen by the scheduler, the pro-
blem is known as the open-shop problem and is denoted by Om//cmax. If, on
the other hand, we restrict ourselves to minimization over all schedules
with the same order on each machine, the resulting problem is called the
permutation flow-shop problem which is denoted by Pm//Cmax.

The above result regarding the processing crder on the first two

and last two machines for the Fm//C problem implies that the F2//Cmax

max
and P2//C__ , and the F3//C .5 @nd P3//C problems are equivalent.
Finally, it is also well known that for m=2, the resulting flow-

shop problem, i.e. F2//C_.,x» can be solved using Johnson's algorithm

(Johnson, 1954) in which job i is sequenced before job j if min(pil’pjz)

A

m;n(piz,pj]). This algorithm requires 0(n log n) steps. |f precedence

constraints in the form of Sertes-Farallel graph G=(V,E) (where an arc

- 136 -

(i,j)eE implies that job i must be processed before job j on each machine)
were added to the problem, the resulting problem can still be solved using
Sidney's algorithm (Sidney, 1979). However, for general precedence con-
straints, the FZ/preC/Cmax problem is NP-hard (Monma, Y. For full
details about this general problem, we refer to Chapter 9. The Fz/ri/cmax
and F3//cmax problems have been shown to be NP-hard also (Garey, Johnson &
Sethi, 1976; Lenstra, Rinnooy Kan & Brucker, 1977).
Remark

As we pointed out, Cmax is the optimality criteria to be used in
this chapter. Using other criteria usually lead to NP-hard problems. The

following problems have already been shown to be NP-hard.

F2//L .« (Lenstra et al., 1977)
F2//zC, (Garey et al., 1976)
02//Lmax (Lawler et al., 1981)
Om//zC, (Gonzalez, 1979)
F2/pmtn/L (Cho & Sahni, 1978)
F3/pmtn/ZCi (Lenstra, 1981)
J2/pmtn/IC, (Lenstra, 1981)
Om/pmtn/ZC, (Gonzalez, 1979)

Only the Om/pmtn,ri/Lmax problem can be solved in polynomial time
by using linear programming (Cho & Sahni, 1978). Two other problems:
o?_//):Ci and FZ/pmtn/ZCi are still open (Lawler, Lenstra & Rinnooy Kan, 1981).
In this chapter, we shall mainly concentrate on the permutation
flow-shop problem, branch and bound algorithms for which will be reviewed
in Section 8.2. A brief discussion of the open- and job-shecp problems

will be given in section 8.3,

- 137 -

8.2 The Pm//Cmax Problem

8.2.1 Branching Rule

Most published algorithms for the permutation flow~shop problem
(see Ignall & Schrage, 1965; Lomnicki, 1965; Brown & Lomnicki, 1966;
McMahon & Burton, 1367; Nabeshima, 1367; Potts, 1974; Bestwick & Hastings,
1976; Lageweg, Lenstra & Rinnooy Kan, 1978) used the same branching rule
in which each node of the search tree corresponds to a job being segquenced
at the beginning. Hence, nodes at level h of the search tree correspond to
initial partial sequences, each of which contains h fixed jobs. However,
it is reported in (Potts, 1980A) that from computational results both Brown
and Lomnicki (Brown & Lomnicki, 1966) and McMahon and Burton (McMahon &
Burton, 1967) found that in some circumstances it is more efficient to
solve the inverse problem which is obtained by interchanging the processing
times p., and Pi,m-kel for all jobs i (i=1,...,n) and all machines k such
that 1 € k € m/2 rather than solving the original problem., This resulting
problem, i.e. the inverse problem, is equivalent to a branching procedure
for the original problem in which each node of the search tree corresponds
to a job being sequenced at the end. Hence, nodes at level h of the search
tree, in this case, correspond to final partial sequences, each of which
contains h fixed jobs.

With this in mind Potts (Potts, 1980A) proposed an effective branch-
ing procedure. He called it the adaptive branching rule. Here, each node

of the search tree corresponds to an initial partial sequence ¢, and a

1

final partial sequence 0J,, where either 0y or o, may be empty. It is clear

that Potts' branching rule reduces to the above given branching rule if o,

is empty.
Now, we shall give a full description of this adaptive branching

rule. The first branching sequences a job in position 1 while the second

branching sequences a job in position n. The following branchings will

- 138 -

either be of type 1 in which a job is added to the end of an initial partial
sequence ¢, Of of type 2 in which a job is added to the beginning of a final
partial sequence 0,. Deciding between type 1 and type 2 branchings is done
using the following rule. Let k] and k2 denote the lowest levels of the
search tree at which nodes were constructed from type 1 and type 2 respect-
ively. Also let n, and Ny be the numbers of nodes which have lower bounds
equal to the minimum value bound at levels k1 and k2 respectively. Also
let n, and n, be the numbers of nodes which have lower bounds equal to the
minimum value bound at levels k, and k, respectively. If Ny <n,, the next
branching is of type 1, while if Ny >Ny, the next branching is of type 2.
If ny = ny, then the next branching will be the same as the previous one.
If, at some level of the search tree, all nodes were eliminated by dominance
or upper bounds, all the next branchings will be of the same type as the
previous branching.

From computational results, Potts (Potts, 1980A) found that there
are substantial savings in computation when using the adaptive branching

rule than when using the usual one.

8.2.2 Lower Bounds

As mentioned before, the branch and bound techniques were first
applied to scheduling problems by (1gnall & Schrage, 1965; Lomnicki, 1965;
Brown & Lomnicki, 1966; McMahon & Burton, 1967) .

The so-called machine based bound was used for the first time by
Ignall and Schrage (lgnall & Schrage, 1965). Given an initial partial
sequence o with C(o,u) as the minimum completion time of jobs sequenced in
o on machine u and a set of unsequenced jobs §, the machine-based bound
takes the following form:

max {r, + I L+
u=l,.eom Y es Piu ¥ 9! (8.1)

- 139 -

where Ty Tin{riu}
ieS
Gxy = Minag)
ieS
u-1
r, = max {C(o,j) + =
j=1,...,u k:j

ik}

m

z P..
j=u+l '

and 9,

Using ry, instead of C(o,u) in 8.1 makes this bound slightly stronger than
the bounds used in (Lomnicki, 1965; Brown & Lomnicki, 1966; McMahon &
Burton, 1967).

The so-called job-based bound was used for the first time by McMahon
& Burton (McMahon & Burton, 1967). '"This new bound expresses the fact that
the makespan (cmax) may be determined by the total processing time for a
job, rather than by the total processing time on one machine." (McMahon
& Burton, 1967). The job-based bound takes the following form:

m
LT SR AL TR LU R
Replacing C(o,u) by ry, 'eads to a slightly stronger bound which was used by
McMahon (McMahon, 1971).

Using two-machine subproblems (instead of one) to obtain lower
bounds was developed independently by Potts (Potts, 1974) and Lageweg et al.
(Lageweg et al., 1978). Johnson's P2//C ~algorithm was used to solve
each of the resulting two-machine subproblems.

This two-machine bound was generalized by Potts (Potts, 1980A) to
give a lower bound on all completion time for all possible schedules
starting with the initial partial sequence 9, and ending with the final
partial sequence 0,. In this section we shall give a full description of
this generalized bound. Ve shall also show the relation between this bound

and the previously published ones.

- 140 -

Firstly, some notation is introduced. Let S] and S2 be the set of
jobs sequenced in op and 9, respectively. Also, let S be the set of un-
sequenced jobs. We define C1(°]-j) to be the minimum completion time of
all jobs sequenced in g, on machine j and Cz(dz,j) to be the minimum time
between the start of processing jobs in g, on machine j and the completion
of processing jobs in o, on machine m. (1f $,=0#, we define C](o],j) =0,
for all j also if 52=¢, we define Cz(oz,j) = 0).

Here, a lower bound is obtained by relaxing the capacity constraints
on some machines, i.e. by allowing some of the machines to process more than
one job at the same time. This is done by choosing a machine pair (u,v),
where 1 € u € v £ m, and relaxing the constraint that machines u+l,...,v-1
can process only one job at a time. |f u#v, a two-machine subproblem
results in which each job ieS has a processing time P;, On the first
machine, a processing time p, on the second machine and a time lag of
kV;11 Pii between . the completion of processing job i on machine u and the

=u+

start of processing job i on machine v. This resulting subproblem can be

solved by ordering the jobs using Johnson's rule for a two machine problem

v-1 v
with processing times I p. and I p.o ieS (Conway et al., 1967). On
k=u k=u+1

the other hand, if usv, a single machine problem results for which any

sequence is optimum. A lower bound for the problem is given by:

+ T(o],oz,u,v) +4q, (8.3)

l\v

8(01 pcziu’v) = r*u

where T(o1,02,u,v) denotes the minimum value of the maximum completion time

for the subproblem,

"o "
and Gy, = rinigiq,v}

= 141 -

Ciloysul, if S 78

flu T (8.4)
pik ’ if S1=ﬂ

and
Cz(ozv), if S, 70
Gv T 9 (8.5)
m
I op, if S, =p
kav+l K 2
A slightly stronger version of (8.4) and (8.5) can be written as
fol lows:
u-1
r, = max C.(c,,j) + = p,
. 1Y .
't j=1,0005u k=] ik
and -
(0,,)) + 1
Qjy = M Cploged) + T pyy
JEVyeee,m k=v+1

Thus, an overall lower bound for the probiem LB(01,02,W) is given by

specifying a set of machine pairs.

W= {(u],v1),...,(uw,vw)}
and hence

LB(01,02,W) = max{B(c1,02,u1,vl),...,B(o1,02,uw,vw)} (8.6)
The lower bound B(01.02,U.V) is a generalization of the lower bound used
in (Lageweg et al., 1078) and (Potts, 197k4) indicated by B(Ul,¢,u,v). It
is also a generalization of Nabeshima's lower bound (Nabeshima, 1967)

defined by B(o[,0,,u,u*1), u=l,c.ym=T. Finally, when W = {(1,1),...
l 2 ’] »

(m,m)}, the resulting bound is known as the machine based bound.

- 142 -

We should point out at this stage that Potts' lower bound given by
(8.3.) will be generalized to be used for a more general problem where
precedence constraints amongst jobs exist. This problem will be con-
sidered in Chapter 10.

In (Lageweg et al., 1978) and (Potts, 1974) it was found that the
sets of machine pairs {(1,m),...,(m-1,m)} and {(1,m),...,(m,m)} respectively
gave good computational results. In his paper Potts (Potts, 1980A) pro-

posed the following set of machine pairs:

W0={(],1),---.("’,"‘),(hm),...,(m-l,m)}

"one factor likely to affect the efficiency of B(OI’OZ'U’V) is the
total processing time on machines u and v. Larger total processing times
are expected to produce higher bounds. Another factor is the size of v-u:
the poor results obtained by Ashour and Quraushi (1969) for Nabeshima's
bound indicate that B(o],cz,u,v) is likely to increase as v-u increases.
With this in mind we suggest two other choices of sets of machine pairs.
Firstly, we define W1=W0U{(u,v)} if machines u and v can be found such
that 1 € u <v <m and the total processing time on each of machines u and
v exceeds the total processing time on all other machines; otherwise w1=w0,
Secondly, we define W, = W, - {(uyu) ,{u,m} if a machine u can be found
such that (m-1)/2 € u < m and the total processing time on machine u is
less than the total processing on all other machines; otherwise W=ty "
(Potts, 1980A). However, W, appears to be computationally more effective
than W1 or wz.

Computational results obtained by Potts indicated that the lower
bound proposed by him, given by (8.3), is stronger than previously published
ones. The results also showed that the set of machine pairs W, performed

better than the set of machine pairs W, and W,.

143

8.2.3 Dominance Rules

In this section we shall give some dominance rules under which a
node can be eliminated before its lower bound is calculated. Clearly,
these rules are particularly useful when a node with a lower bound that
is less than the optimum, can be eliminated.

Let o' and ¢'' be two initial partial sequences and let S' and S" be
the sets of jobs sequenced in o' and o' respectively. (Given a set S we

define S = {1,...,n}-S.) We say that ¢'' dominates o' if for any permutation

ST of ST there exists a permutation ¢ of S such that ¢, (0" ,m) <

c1(g'37,m). We now have the following theorem.

Theorem 8.1 (lgnall & Schrage, 1965; Smith & Dudek, 1367; McMahon, 1969)

If §' = S" and Cl(c’gk) < Cl(c’,k) for k=1,...,m, then o' dominates

Theorem 8.1 is referred to as the dynamic prograrming dominance theorem.
McMahon (McMahon, 1969) showed Theorem 8.1 to be the strongest possible
one for the case when S' = §': since if C](G”.k) > C1(°'-k) for some
machine k, then it is possible to choose the processing times for the
unscheduled jobs (i.e. p, where ieST) in such a way that C,(c'0",m) >
Cl (0 '?,m) .

Several elimination criteria have been developed for the case ¢! =
01j and o' = o1ij (i.e. S = S'Wil}). In the remainder of this section,
we shall give conditions under which an initial partial sequence o,i]

1

dominates another initial partial sequence o,j, but first we have the

following definition.

by = Cylogig,k) = Cilog,k), (k=1,...,m) (8.7)

Tk

An initial partial sequence o]ij dominates an initial partial

sequence o,j if one of the following conditions holds:

- 14 -

(i) (smith & Dudek, 1963)

A <

k-1 S Pik and

C](o]i,k-l) < C](o1j,k-1), (k=2,...,m) (8.8.)

(i) (McMahon, 1969; Szwarc, 1973)

max{A1k_1,A]k} < Pik? (k=2,...,m) (8.9)

(iii) (Szwarc, 1971)

Broy S8y SPiy (k=2,...,m) (8.10)

(iv) (Szwarc, 1973)

Ay € min {piu} (k=2,...,m) (8.11)
uky.o.,m

(v) (Szwarc, 1973)

max {Alu} <Py (k=2,...,m) (8.12)
u=tl,...,m
With respect to the above conditions, we have the following

results.

Theorem 8.2 (Szwarc, 1973)
Conditions (i), (1i%), (iv) and (v) are equivalent.
Theorem 8.3 (Rinnooy Kan, 1976; Lenstra, 1977)
Condition (1) tmplies condition (i7).
Given a final partial sequence g, and two unscheduled jobs i and j,

we have the following definition:

By = Cylitayak) = €y (Joy k), (k=1,...,m) (8.13)

2k

A final partial sequence jic, dominates joz if the following condition

holds (Szwarc, 1971):

- 145 -

Bop €811 S Piays (k=2,...,m) (8.14)

It is obvious that condition (8.14) is symmetrical to condition (8.10)
above.

'"Computational experience reported in (McMahon, 1971; Baker, 1975)
indicates that enumerative methods based on the simple elimination criteria
above are inferior to those based on lower bounds; inclusion of these
criteria in the latter type of algorithm leads to a gain in efficiency
only for problems of moderate size (n<15). Altogether, it seems that the
elimination criteria discussed in this section are of little algorithmic
value''. (Lenstra, 1977).

However, dominance rules have been used as a part of branch and
bound algorithms. Computational results obtained by Lageweg et al. (Lageweg
et al., 1978) indicate that introducing dominance rules reduce computation.

This result was confirmed in (Potts, 1980A).

§.2.4 Heuristic Methods

Dannenbring (Dannenbring, 1977) carried out some computational
experiments to test the performance of several permutation flow-shop
heuristics. In this section we shall talk about six of these heuristics.

The first of these heuristics is due to Palmer (Palmer, 1965) and
is known as the Slope Order heuristie (SO0). For each job i (i=1,...,n),

a slope index éi is calculated as follows:

m
b m+

8, = o1 kT =) Py

ik

A sequence is then obtained by ordering the jobs according to non-incresing

s.. The resulting sequence is then evaluated as a Pm//Cmax schedule. This
|

procedure reguires 0(max{mn,n log n}) steps.

- 146 -

The second of these heuristics is due to Campbell, Dudek and
Smith (Campbell et al., 1970) and will be referred to as the CDS heuristic.
For each k(k=1,...,m=1), apply Johnson's (Johnson, 1954) algorithm for the

P2//C ax problem to solve a two-machine subproblem where each job i (i=1,

k m
...,n) has processing times L Py and T P;; on the first and second
j=1 Y jem+1-k '

machines respectively. The resulting sequence is then evaluated as Pm//Cmax
schedule. The best of the m-1 solutions is chosen as the heuristic solu-
tion to the m-machine problem. This procedure requires 0(mn log n) steps.

The third heuristic will be referred to as the Random sampling
heuristic (R) which selects solutions by randomly ordering the jobs.

The next three heuristics are due to Dannenbring (Dannenbring, 1977).

The first of these three heuristics is called the Rapid Access
procedure (RA). This procedure is similar to that of Campbell, Dudek and
Smith. Here, only a single two-machine subproblem is formed where each

m
job i (i=1,...,n) has processing times.zl(m—j+l)pijand -§1 (j) Pij on the
first and second machines respectively{ Johnson's algoi?thm is used to
solve this two-machine subproblem. The resulting sequence is then evaluated
as Pm//Cmax schedule.

The second heuristic method is called the Rapid Accese with Close
order Search (RACS). Here, a simple interchange of each of the (n-1) pairs
of adjacent jobs is examined for possible improvement in the objective
function value.

The final heuristic is called the Rapid Access with Extensive Search
(RAES). Instead of terminating the search after one set of interchanges,
the RAES heuristic use the best immediate interchange to generate new inter-
changes. This procedure continues until no improvement in the value of the
objective can be achieved.

It should be clear now that both heuristics SO and RA generate a

single solution, while both heuristics CDC and R generate multiple solutions

- W7 -

from which the best is chosen. The CDS heuristic generates (m-1) solutions
while the R heuristic generates as many or as few solutions as desired to
be generated.

Dannenbring (Dannenbring, 1977) tested the performance of the above
heuristics (among other heuristics) using 1580 problems ranging in size
from 3 jobs, 3 machines to 50 jobs, 50 machines.

He used the branch and bound procedure given in (Dannenbring, 1973)
to find optimum solutions to 1509 of the test problems. Estimates of the
optimal solution value were obtained for the other 71 problems using the
estimation procedure described in (Dannenbring, 1973).

Computational results in (Dannenbring, 1977) showed heuristic RAES
to have the least percentage deviation from optimum and to be the most con-
sistent of all the heuristics on the small sized problems (n xm: 3 x 3 to
6 x 10). The performance of heuristics RACS, CDS, R, RA, SO on the small
sized problems follow in that order. With regard to problems of large
sizes (n x m: 7 x 3 to 50 x 50), the results showed the RAES procedure to
remain the best of all the heuristics tested and has actually widened its
lead over the others. Surprisingly, the random heuristic moved from fourth
best to second best. ''This shift is likely due to the rather arbitrary
manner in which the sample size parameter was determined, although it may
also indicate a decline in effectiveness for the other heuristics."
(pannenbring, 1977). Heuristic RACS dropped from secend to fourth
position, while heuristic CDS remained in its third position, Heuristics
50 and RA follow in that order.

The computation times obtained showed heuristic SO to involve the
least computation followed by heuristics RA, RACS, CDS, RAES and R in that
order.

"of major significance is the fact that although quite large dif-

ferences exist among the average times, the total time involved is quite

- 148 -

small, even for the most costly algorithms on the largest problems.

Both the number of jobs and the number of machines have a sig-
nificant effect on computation time; the degree of significance is
dependent on the nature of the algorithm.

In general, the most economical procedures were the single~shot
algorithms that quickly generate only one solution to the problem't,
(Dannenbring, 1977).

Unfortunately, two results only could be found with respect to the
worst-case performance of flow- and job-shop heuristics., Before stating
these two results we have the following definition. Let C%ax be an optimum
solution to a given flow= or job-shop problem with m > 2, Let cmax be the
completion time of any schedule for the same problem. Then Cmax/C;ax £m
(Gonzalez & Sahni, 1978). This worst-case bound of m for schedules in a
flow-shop can be reduced to m/2 by using the following heuristic H
(Gonzalez & Sahni, 1978). Divide the m machines in m/2 groups, each
group containing at most two machines, The machines in group i are the
(2i-1)'st and 2i'th ones. Johnson's algorithm is used to find an optimal
schedule for each of the m/2 two-machine problems. These m/2 optimal
schedules are then concatenated to obtain a schedule for the original flow-

shop problem. This heuristic requires 0(mn log n) steps. Thus, if ¢ is

max
the completion time of a flow-shop schedule obtained using heuristic H
E i i
above and Cmax is the optimum solution to the same flow-shop problem,

H * g 1 1 Sahni, 19
then € /C* < Im/2l (Gonzalez & Sahni, 1978).

Remark

With regard to the C (mean completion time) criterion, Gonzalez and
Sahni (Gonzalez & Sahni, 1978) proved the following results. Let C* be an
optimum solution for a flow- or job-shop problem angd be the solution
obtained when using any schedule for the same problem. Then C/C* < n.

Also, if ESPT is the solution obtained when the Jjobs are ordered according

- 149 -

to the SPT rule (i.e. by ordering the jobs in a non-decreasing order of

their sum of processing times), then C... /C* < m.

SPT

8.3 Open- and Job-Shop Problems

In this final section we shall give a brief discussion of the open-
and job-shop problems. The problem can be stated as follows. There are n
jobs numbered 1,...,n and m machines numbered 1,...,m. Each machine k
(k=1,...,m) can process not more than one job at a time, Each job i con-

sists of a set of m. operations {Oi],...,O }. Each operation corresponds

im;
to the processing of job i on some machine for an uninterrupted period of
time known as the processing time of job i on that machine. The problem
is an open-shop if each job consists of a set of operations {Oil""’oim}’
but the order in which these operations are executed is immaterial. |If, on
the other hand, each job has a specified sequence of operations which may
differ from the sequence of operations of other jobs, the problem is a
Job-shop.

With regard to the open-shop problem, we have the following. The
oz//Cmax problem can be solved using the algorithm of Gonzalez and Sahni
(Gonzalez & Sahni, 1976; Graham et al., 1979). This algorithm requires
0(n) steps. However,there is a little hope that any other open-shop problem
can be solved in polynomial time. In fact, the OZ/ri/Cmax, 02/tree/Cmax
(where the precedence constraints are defined as in Rinnooy Kan, 1976 and
Lenstra, 1977: An arc (i,j) in G implies that job i must be completed on
all machines before job j can start on the first one) and the Om//Cmax
problems have already been proved to be NP-hard (Lawler et al., 1981A;
Lenstra, 1981). The 03//Cmax problem has been proved to be NP-hard also
(Gonzalez & Sahni, 1976).

With regard to the job-shop problem, we have the following. There

exists an 0(n log n) algorithm (an extension of Johnson's algorithm for the

F2//cmax problem) for solving the J2/mi < 2/cmax problem (Jackson, 1956),

but two minor extensions of this problem, the J2/mi < 3/(‘,max and the

J3/m; <€ Z/Cmax problems have been proved to be NP-hard (Lenstra, 1977).

In fact, even the J2/mi €3, 1% pij < 2/Cmax and the J3/mi <2, pij=1/cma

problems are NP-hard also (Graham et al., 1979).

X

"Even within the class of NP-complete problems, the general Jm//Cmax
problem appears to be a very difficult one. A classical and by now tradi-
tional quotation from (Conway et al., 1967) asserts pessimistically that
'many proficient people have considered this problem, and all have come
away essentially empty-handed. Since this frustration is not reported in
the literature, the problem continues to attract investigators who just
cannot believe that a problem so simply structured can be so difficult
until they have tried it'." (Lenstra, 1377).

An indication of the hardness of this general job-shop problem is

clear by the fact that a ten job J10//Cmax problem formulated in 1963

(Muth & Thompson, 1963), still has not been solved.

- 151 -

CHAPTER NINE

THE TWO-MACHINE FLOW-SHOP PROBLEM UNDER PRECEDENCE CONSTRAINTS

9.1 Introduction

The problem considered in this chapter may be stated as follows. Con-
eider n jobs (numbered 1,...,n) and two machines. Fach of the two machines
can process not rore than one job at a time. Each job 7 has to be processed
on machines 1 and 2 in that order during uninterrupted times a and bi
respectively. FPrecedence constraints between jobs are represented by a
directed acyclic groph G, where the vertices of G represent the jobs.

Job i must be processed before job § on each machine if there exists a
directed path from vertex i to vertex j. The objective is to find a
schedule that minimizes the maximum completion time on the second machine.

Given any sequence m = {n(1),...,7m(n)}, the minimum completion
times C;(]) and Cﬂ(1) of the first job in the sequence on the first and
second machines are equal to (1) and arm) * b“(l) respectively. The
minimum completion times of any other job 7(i) (i=2,...,n) on the first
and second machines are given by C;(i) = C;(i-1) A and Cn(i) = max
(Cn(i-l)’ C;(i)) + bn(i) respectively.

We recall from Section 8.1 that the two problems F2/R/y and P2/8/y
are equivalent, i.e. we only need to consider schedules in which the same
processing order occurs on both machines.

Johnson (Johnson, 1954) gave an efficient algorithm for the uncon-
strained case, which is considered as one of the most important break-
through in machine scheduling problems.

Mitten (Mitten, 1959A and 1959B) considered a problem which is
similar to Johnson's problem. In his model, each job i has processing

times a; and b, on the first and second machines respectively, a non-

1 R 1
negative start-lag a; and a non-negative stop-lag bi' The start lag is

-]52_

defined to be the minimum time between the start of processing job i on

the first machine and the start of processing job i on the second machine,
while the stop lag is defined to be the minimum time between the completion
of processing job i on the first machine and the completion of job i on the
second machine. He gave a decision rule to obtain a processing order of
the jobs on both machines in order to minimize the total elapsed time.

Kurisu (Kurisu, 1976) applied Mitten's results to provide an
efficient algorithm for the two machine flow shop problem under precedence
constraints in which the constraints form a ''parallel chain''. This
algorithm is based on forming composite jobs, each of which censists of
at least one job that must be processed without interruption in the same
order they form that composite job.

Sidney (Sidney, 1979) and Monma (Monma, 1979) applied Kurisu's
results to provide an efficient algorithm for the two machine problem with
series-parallel constraints. The algorithm requires 0(n logn) steps. The
problem has also been considered in (Monma & Sidney, 1979).

However, for general precedence constraints, the problem has been
shown to be NP-hard (Monma, —). Kurisu (Kurisu, 1977) studied this
general case and gave an effection branch and search algorithm to obtain
an optimum sequence. He did not make any attempt to derive a lower bound-
ing procedure to be used in his proposed algorithm.

We now introduce some terms that are used in later sections. The
transtitive closure of the directed graph G is the graph obtained by adding
all arcs (i,j) (if it is not in G) to G whenever there is a directed path
from vertex | to vertex j. The transttive reduction of G is the graph
obtained by celeting all arcs (i,j) from G whenever there is a directed
path from vertex i to vertex j other than the arc (i,]j) itself. The
inverse of G is the graph obtained by reversing the direction of every

arc (i,j) in G. The adjacency matriz of the transitive closure of G is

‘]53

the n x n matrix X = (xij)’ where xij=1 if there exists an arc (i,j) in the
transitive closure of G and xij=0 otherwise. Job i is a predecessor of
job j and job j is a successor of job i if the arc (i,]) exists in the
transitive closure of G. Job i s a direct predecessor of job j and job j
is a direct successor of job i if the arc (i,]j) exists in the transitive
reduction of G.

In this chapter we shall give a bounding procedure to solve this
general case (i.e. F2/prec/CmaX) using the branching ruie proposed by
Kurisu (Kurisu, 1977). Section 9.2 contains Kurisu's branching rule to-
gether with some dominance theorems. Our bounding procedures will be
given in Section 9.3 followed by a heuristic in Section 9.4. Our branch
and bound algorithm will be explained in Section 9.5, where we shall con-
sider an example from (Kurisu, 1977). A complete description of the
algorithm is given in Section 9.6. Computational experience is presented

in Section 9.7 which is followed by some concluding remarks in Section 9.8.

9.2 Branching Rule and Dominance

We start this section by giving the branching rule proposed by
Kurisu (Kurisu, 1977). This branching rule partitions the set of feasible
solutions to the problem into subsets, some of which will be eliminated
using the dominance theorems to be given below. Essentially, at each
branching a job is sequenced either first, last, immediately before
another given job or immediately after another given job.

We now give four results that were used by Kurisu to act as
dominance rulesto reduce the number of branches of the search tree. The
theorems are results for the original problem, where the corollaries are
the corresponding results for the equivalent inverse problem in which the
objective is to minimize the maximum completion time subject to the
precedence constraints defined by the inverse graph. |t has become clear

now that the problem is symmetric.

- 154 -

Let us first define some notations that are going to be used
below. Let S denote the set of unscheduled jobs, let B and A be the set
of jobs with no predecessors and the set of jobs with no successors
respectively. Lefine Bi and Ai to be the set of jobs that must precede
and succeed job i in any feasible schedule respectively. Also, define B;
and A; to be the set of jobs that directly precede and directly succeed
job i.

Finally, we like to point out that all jobs i to be considered in

! !
this chapter will have the property that a,=C;-b, and b;=C;-a,, where S

i
1
and bi are as defined in the previous section and ¢ is the minimum com=

pletion time of job i, as illustrated in Figure 3.1, The original problem

|]
is obtained by setting a,=a; and b,=b, for all i. As we shall see below,

it will be useful to substitute jobs for sequences of jobs that are known
to be processed without interruption. |If K:(kl’kz""’kJ) is a composite

1
job consijting of J single jobs, then aK=CK—bK and szck-aK’ where a

It ™M

K=

a b.=% b ., and C, is the minimum possible completion time of the
ki’ K o1 ki K

composite job K (assuming that only jobs in K are to be processed). Figure

9.1 with K substituted for i, illustrates a composite job. We remark that

h=1 J
C, = max (r a.+C_+ I b.)
S F L EN

-H
Y___

Figure 9.1: Typical job

- 155 -

Theorem 9.1 (Kurisu, 1977)
r 4 r P)
If for a job ieB, a 3 bi and a < aj for all jobs jeB, then there
exists an optimum schedule in which job © is sequenced first.

Corollary 9.1 (Kurisu, 1977)

If for a job i€4, b; < aé and b; < b; for all jobs jed, then there
exigte an optimum schedule in which job i is sequenced last.
Theorem 9.2 (Kurisu, 1977)

If for a job T with B.#J, a; < b; and aé < a; for all jobs jeS, then
there exicts an cptimum schedule in which job © is sequenced inmediately
after one of its direct predecessors.

corollary 9.2 (Kurisu, 1977)

If for a job © with A#, b, <a; and b, < bJ'. for all jobs es,
then there exists an optimum schedule in which job i is sequenced
irmediately before one of its direct successors.

We next give a formal statement of Kurisu's branching procedure.

Step 1.1: If only one job exists in B, sequence this job first;
otherwise proceed to Step 1.2.

Step 1.2: If only one job exists in A, sequence this job last;
otherwise proceed to Step 2.1.
1 [} 1]
Step 2.1: If there exists a job ieB such that a; € bi and a, € a, for

all jeB, then sequence job i first (Theorem 9.1); otherwise
proceed to Step 2.2.
t 1 1 1
Step 2.2: If there exists a job ieA such that bi g a; and bi < b, for
all jeA, then sequence job i last (Corollary 9.1); otherwise
proceed to Step 3.1.

Step 3.1: 1f there exists a job ieB, such that a, g bi and 3, € a, for
)
all jobs, then let n, be the number of jobs in B,; otherwise
let n,=n. i
] 1 1 ' .
Step 3.2: If there exists a job i €A, such that ai-> biu and bi,s b.

]
for all jobs j, then let n, be the number of jobs in A,;
otherwise let n,=n. i

Step b.1: 1f 0 <ny <ny, a composite job (i.e. a new vertex) k= j i

is added to G, vertex j and vertex i are deleted from G
where jeB.; otherwise proceed to Step 4.2,

- 156 -

i
Step 4.2: A composite job k= i | is added to G vertex i' :
are deleted from G, where jeA',. ’ x T and vertex]
|

Whenever a new composite job K= i J is performed, the precedence
graph G is updated as follows.

(a) Vertex i and vertex | are deleted and a new
single vertex K=(i,j§ is added.

(b) For each arc (h,i) or (h,j) in G, where h#i,
an arc (h,K) is added.

(c) For each arc (i,h) or (j,h) in G, where h#j,
an arc (K,h) is added.

Now we shall give two results which will be referred to as the
dominance rules. Clearly, dominance rules are particularly useful when a
node can be eliminated which has a lower bound that is less then the
optimum solution,

Let L denote the value of any lower bound.

Theorem 9.3 (Potts, 1974) "

. . Z
If for a job ieB, a, < bi and a; + i=1 bj S L, then there exists

an optirm sequence in which job i is sequenced first.

Corollary 9.3 (Potts, 1974)

n
If for a job <ed, bi < a and bi + jfz aj € L, then there exists
an optimuwn sequence in which job i 1s sequenced last.

9.3 Lower Bounds

In this section, we shall be interested in deriving lower bounds
on the maximum completion time for all feasible schedules beginning with
an initial partial sequence 9y and ending with a final partial sequence Oy
Let 51 be the set of jobs sequenced in o, and 52 be the set of jobs
sequenced in Ope Also, let C,q denote the minimum completion time of all

]
jobs in o, and C , denote the minimum time between the start of processing
jobs in g, on the first machine and the completion of processing jobs in
» . . !
o, on the second machine (we define Coy = 0 if S, =08 andc gy = 0 if
52 = @). Finally, for each job i we define li = 1J/(i,j) and (j,i) are

not in G}.

-]57-

9,3.1 Job Based Bound

Lower bounds based on individual jobs (job-based bound) rather than
individual machines (machine-based bound) were first proposed by McMahon
and Burton (McMahon & Burton, 1967).

Consider an unscheduled job i. Each job j=1,...,n,j#i must be
sequenced either before or after job i. If job j precedes job i either
because jeS1 or because an arc (j,i) exists in G, then aj must be added
when computing a lower bound. If job j succeeds job i, either because jeS2
or an arc (i,j) exists in G, then bj can be added to the lower bound. I[f,
on the other hand, it is not known whether job j precedes or succeeds job i,
then the smaller of 3; and bj may be added to the lower bound. Finally,
the minimum completion time of job i (ignoring other jobs), ci’ can also

be added to give a realistic bound LBi (see Figure 9.2) as follows:

LB, = £ a.+ r a,+C.+ r b.+ b,+ ¢ min(a.,b.)
Poges, ey I T ges, I geay 3 eI

We shall refer to such a job i as the critical job.

jeli
9y jeBi 3
a.sb,
LI I S
_jeli
& jEA. fe}
a.>bj ! 2

Figure 9.2: The structure of the proposed job based bound

Thus an overall lower bound is given by

LB = max (LB.)
. i
les

Two additional lower bounds, based on 9y and , instead of job i,

may be given as follows:

- 158 -

LBgy = Gy * I by ifS., # 8.

j¢51 J 1
n
= mina, + I b, if S, =4g.
jeB =1 4 1= P
and
1
lB.= C. + I a ifs,. ¥
02 g2) P I g.
JészJ 2
n
= minb, + I a,, ifsS. =4g.
jeA Jj=1 2
We define
LB g = max(LBcl, LB, LBCZ)

9.3.2 Conflict Bound

Let LBi (ieS) denote the lower bounds obtained as above. Consider
two jobs i and j in S such that the two arcs (i,j) and (j,i) are not in G.
We have two cases to look at.

Case 1: éj > bj when a; > bi

If job i is chosen to act as the critical job, then b, will be
J
added when computing LB, (i.e. as if job j is sequenced after job i).
When job j is chosen to act as the critical job, then b, will be added
i

when computing LBj (i.e. as if job i is sequenced after job j). But since
we can have either i before j (i +j) or i after j (j - i), then we have
one of two ways in which we may be able to improve the lower bound

(a) i]

In this case LBJ can be increased by ai-bi‘ Thus a lower bound for

this case is given by:

max(LBi,LB.+ a, - b,)
J ! |

- 159 -

(b) j

In this case LB, can be increased by aj - bj' Thus, a lower bound

for this case is given by:

max (LB, + a, - b,, LB.)
! J J J
Thus a lower bound for the problem is given by:

LBij = min{max(LBi,LBj + ai-bi), max(LBi + aj-bJ,LBj)}

Case 2: aj < bj when a, < bi

Similar to Case 1, a lower bound is given by:

LBij = mln{max(LBi,LBj - e+ bi)’ max(LBi - aj + bj’LBj)}

i
An overall bound LB is given by:

LB| = max{LBij/i and j as defined above}
iy

As we have said before, i and j can be any two jobs in S such that
the two arcs (i,j) and (j,i) do not belong to G. It is clear that LBij is
likely to be increased when LBi and LBj (or both) are as large as possible.
For this reason and to reduce computational requirements, we propose to
choose one of the jobs, say i, with LB, = LB and then compute LBij for all
jeS such thatarcs (i,j) and (j,i) are not in G.

It is clear that there is no need to compute a similar conflict
bound LBij when a, < b, and a; > bj since in this case LBij = max(LBi,LBj).
Also, there is no need to compute LBij if there exists an arc between
vertex i and vertex j ((i,j) or (j,i)) in G, since there is only one choice
to take that is according to the precedence graph G and hence LBij =
max(LBi.LBj)-

From the above we conclude that the conflict bound, LBl, is at
lJeast as good as the job based bound.

we define
)

LB = max(LB LB

al? 02)

- 160 -

9.4 Heuristic

It is well-known that computation can be reduced by using a
heuristic to find a good solution to act as an upper bound. The heuristic
proposed below is applied once at the top of the search tree. It requires
O(nZ) if the transitive closure of the directed graph G is known.

Follow Steps 1 and 2 of the formal statement of the branching
procedure given in Section 9.2.

Step 3: 1f a, > bi for all jeB and 3 € b, for all jeA then sequence
a job ieA with min(aj,bi) < min(ai,bj) for all jobs jeA last
and go to Step 5; otherwise proceed to Step L.

Step 4: Sequence a job ieB with min(ai,bj) < min(aj,bi) for all jobs

jeB first and proceed to Step 5.

Step 5: Delete job i from G and update the two sets B and A. If all

jobs have been sequenced, stop; otherwise go to Step 1.

If 7 is the sequence obtained using the above procedure, then the completion
of each job sequenced in 7 can be computed. The completion time of the last
job in the sequence forms an upper bound on the value of Cmax'
Remark

One can obtain a sequence which is at least as good as the sequence
obtained using the above heuristic as follows. Consider the branching pro-
cedure given in Section 9.2. Suppose that h nodes (each node corresponds
to a composite job been performed according to Step L of the algorithm,
and where h = min(n1,n2) exist at level k of the search tree. Apply the
heuristic given above at every one of these h nodes. A node with the
smallest value of the heuristic is chosen to branch from. All other nodes
are eliminated from the search tree.

This heuristic method is given in Sections 3.3.3 and 5.5.

9.5 Example

In this section we shall illustrate our branch and bound procedure

- 161 -

by considering an example which appeared in Kurisu (Kurisu, 1977). The
processing times of the jobs on the two machines are given in Table 9.1,
The precedence graph G for the example is given in Figure 9.3, Each node
has three entries: job number i (top), a start-lag a; (left) and a stop-

'
lag bi (right).

Table 9.1

i 1 2 3 4 5 6 7 8 9
2, 4 6 3 8 10 5 9 2 3
b 7 5 1 4 7 6 3 9 4

Figure 9.3: Precedence Graph G

- 162 -

1. We have:
B = {1,2,3} and A = {7,8,9}

) !
Since by < min(a7, bgs b9). then job 7 can be sequenced last

(Corollary 9.1).

2. Having sequenced job 7 last (i.e. o, = {7}) and deleted node 7
and all arcs to that node in G (let G1 be the resulting graph), the set
of jobs with no successors A becomes A = {4,8,9}.
]] 1 '
Since b, < min(a,, bg, b9), then job 4 can be sequenced last.
Deleting node 4 and all arcs to that node in G], we get the precedence

graph G, which is shown in Figure 9.4,

Figure 9.4: Precedence Graph G,
4

3, We have
o, = {4,7}, 8 = {1,2,3} and A = {8,9)
Both Theorem 9.1 and Corollary 9.1 cannot be satisfied here and

thus composite jobs have to be formed.

- 163 -

Set of jobs with at least one predecessor is {5,6,8,9}. Since

aé < min(b8, agy 3 a9), set i=8. We have B; = {5,6} and thus n,=2.

Set of jobs with at least one successor is {1,2,3,5,6}. Since

3 < min(a3, bl’ b2, b5' b8), set i = 3. We have A; = {5,6} and thus

i)

b

Since ny = ny then we have two composite jobs
to consider: (3-5) and (3-6).

We shall compute our lower bounds for the node corresponding to
forming a composite job (3-5). The precedence graph for this case, G3,

is given in Figure 9.5.

n
Since S, = @, .. LB . =mina, + I b, =4 + 46 =50
1 (o8| . i _ i
ieB i=1
and
1
. z
0, © (4,7), oo By, = Cyp + ifs, a = 21+4+6+8+10+2+3 = 54

We remark that 3(3_6) = 8, b(3_6) =7 and C(3-6) = 1[‘_.

(4+7) + (4+3) + (749) + (5+47+43) = 49,
(6+5) + (L+3) + (7+9) + (L4+7+3) = L8,

LB]

H

L82

Figure 9.5: Precedence Graph G3

- 164 -

LB(3g) = (18) + (843) + (44749) + (L45) = 50,

L8, = (4+6+8) + (1047) + (4+3) + (9) + (3) = 54.
LBg = (4+6+8+10) + (249) + (4+3) + (3) = k9.

L8, = (8) + (3+4) + (4+3) + (L+5+7+2) = LQ.

LB = 54

6LB,; = max(50,54,54) = 54,

A conflict bound L8, g can be computed as follows:
’
LB, o= min(max(49,40-4+7), max(49-3+4,40))
= 48
Similarly, LBg o= 49 and LBy 5.¢ = 50.
]
In this case we have LB = LB = 54 and hence LB._ = LB = 54,
CB JB
In a similar way, one can compute lower bounds for the node

corresponding to forming a composite job (3-5) to give:

LBCB = LBJB = 56.

4. We have
B = {,’2,(3-6)} and A= {8’9},
| i ' 1
Since a; < min(b,, a,, a 3-6). Thus job 1 can be sequenced first

(Theorem 9.1). Deleting node 1 and all arcs from that node in G3, we get

the precedence graph Gy, given in Figure 9.6.

Figure 9.6: Precedence Graph G,

-165-

The procedure can be completed in a similar way to give an optimum

sequence for the example (1,3,6,9,2,5,8,4,7), which has a value 54.

9.6 The Algorithm

Here, we shall give a complete description of the algorithm in its
general form, i.e. in the case where the heuristic, dominance rules, the
job based bound and conflict job bound are all used. Each of the other
algorithms is a special case of the algorithm described here.

We start the algorithm by computing the transitive closure of the
precedence graph. This requires 0(n3) steps. We then apply the heuristic
method given in Section 9.4 to obtain a sequence. The completion time of
each job in this sequence is then calculated. The value of the completion

time of the last job in this sequence forms an initial upper bound on Cra

"
The branch and bound procedure is then started. Before any new

node is created, Steps 1 and 2 of Section 9.2 and the dominance rules

(Theorem 9.3 and Corollary 9.3) are checked in that order. If a job i can

be found satisfying the conditions of Step 1.1, Step 2.1 or Theorem 9.3
(Step 1.2, Step 2.2 or Corollary 9.3), then a single successor node is
created in the search tree, with a lower bound equal to that of its parent,
corresponding to job i being sequenced first (last).

For each node of the search tree (corresponds to performing a com-
posite job K=ij according to Step 3 or L of Section 9.2), the transitive
closure of G is updated by adding the arc (h,j) whenever an arc (h,i)
exists (w#j) and by adding the arc (h,k) wherever the arcs (h,i) and (j,k)
exist (h#j, k#i). The lower bounding procedure for that node fs then
started as follows. An 0(n) stepsis spent on computing LBi for each job i
(i=1,...,n), i.e. 0(n2) steps is needed to compute, LB, the job based bound
of Section 9.3.1. If LB is not less than the current upper bound, this

node is eliminated. Otherwise, 0(n) steps is needed to compute LB01 and

- 166 -

LB, of Section 9.3.1. If the lower bound obtained so far is not less than
the current upper bound, this node is eliminated. Otherwise, given a job i
with LB, = LB, we spend a further 0(n) steps on calculating LBI, the con-
flict bound. This node is eliminated if LBl is not less than the upper
bound, otherwise it forms the basis for our next branchings.

The branch and bound procedure continues in a similar way. When-
ever a complete sequence is obtained, this sequence is evaluated and the
upper bound is altered if the new value is less than the old one.

Finally, our search strategy is given. A node from which to branch
is chosen at random from the most recently created subset of nodes. As
mentioned in Section 3.2, the advantage of this type of search strategy

is that it requires less storage space than if another search strategy

is used.

9.7 Computational Experience

9.7.1 Algorithm Representation

It is clear from the above sections that each algorithm to be

considered can be represented by (LBD, UBD, DOM) where:

LBD = JB, CB or - Describes the bound to be used (see Section 9.3).
If neither of the boundsis used LBD = -,

UBD = H or - According to whether the heuristic of Section 9.4
is or is not used.

DOM = D or - According to whether the dominance rules (Theorem
9.3 and Corollary 9.3) of Section 9.2 are or are
not used.

9.7.2 Test Problems

The algorithms were tested on problems with 20, 40, 50 and 60 jobs
(initial tests showed problems with 60 jcbs to be much harder than problems
with L0 jobs. For this reason we decided to include results for 50 job

problems). These problems contained problems with random and correlated

- 167 -

processing times. For each job i, two integer processing times a; and bi
were generated from the uniform distribution [1,100] or [208i+1, 20€i+20]
according to whether the processing times for that problem are to be

random or correlated, where €, is an integer randomly drawn from {1,2,3,4,5}.
This method of processing times generation follows that of (Lageweg, Lenstra
& Rinnooy Kan, 1978). In the precedence graph G, each arc (i,]) with i<j

was included with a given probability p. For each value of n, twenty
problems (ten with random processing times and ten with correlated pro-
cessing times) were generated for each of the p values 0.05, 0.2, 0.3, 0.5

and 0.75. Thus 400 problems in all were used to test the algorithms.

9.7.3 Computational Results

The algorithms were coded in FORTRAN 1V and run on a CDC 7600
computer.

Computational results for problems with random processing times are
given in Tables 9.2 to 9.4, Computational results for problems with cor-
related processing times are given in Tables 9.5 to 9.7. Whenever a
problem was not sclved within the time limit of 70 seconds or after 15,00b
nodes had been generated (whichever occurs first), computation was abandcned
for that problem. Thus, in some cases the figures given in Tables 9.2, 9.3,
9.5 and 9.6 will be lower bounds on average computation times and average
number of nodes.

As we mentioned above, the test problems have been divided into two
groups, the first group contains problems with random processing times and
the second one contains problems with correlated processing times.

With regard to the first group, average computation time, average
number of nodes and number of unsolved problems are given in Tables 9,2,
9.3 and 9.4 respectively. The first three columns of each Table compare

the performance of Kurisu's branching rule, with the job based bound and

- 168 -

Table 9.2

Average Computation Time for Problems

with Random Processing Times#*%

ALGORI THM
" P ('p',-) (JB’-’-) (CB,",' (CB,H,') (CB,H,D)
20 0.05 0.03 0.03 0.03 0.03 0.04
0.2 0.06 0.05 0.05 0.05 0.05
0.3 0.07 0.06 0.06 0.05 0.05
0.5 0.07 0.06 0.05 0.06 0.06
0.75 0.05 0.06 0.05 0.06 0.06
4o 0.05 0.35 0.30 0.30 0.28 0.33
0.2 19.10%* 3.95 3.62 3.58 3.31
0.3 13.56% 2.00 1.97 1.91 1.70
0.5 3.71 0.87 0.87 0.83 0.80
0.75 0.77 0.73 0.73 0.71 6.71
50 0.05 5.01 0.67 0.67 0.58 0.65
0.2 -- 22.63% 11.89 11.76 11.82
0.3 40.65% 8.23 4,35 4,29 3.72
0.5 9.48% 2. 42 2.42 2.32 2,21
0.75 1.99 1.77 1.77 1.67 1.68
60 0.05 Ly, 12% 1.27 1.26 1.08 1.13
0.2 -- -- -- -- -
0.3 38.L42% 38.54% 38.42% 38.24% 37.78%
0.5 24, 10% 3.93 3.93 3.71 3.70
0.75 4,33 3.65 3.6h 3.43 3.4

%% Times are in CPU seconds.

*

Lower bounds because of unsolved problems.

More than 7 problems were left unsolved.

- 169 -

Table 9.3: Average Number of Nodes for Problems
with Random Processing Times

ALGORITHM
) P (-s"o- (JBn-s" (CB"a' (CB.H,') (CB,H,D)
20 0.05 4 3 3 1 0
0.2 28 10 10 7 5
0.3 33 12 12 5 5
0.5 17 7 5 L
0.75 2 2 2 1 0
Lo 0.05 36 13 13 1 1
0.2 7915% 935 816 800 772
0.3 5291% 371 358 335 300
0.5 1109 4o 4o 29 23
0.75 25 8 8 2 1
0 0.05 1595 24 24 4 3
° 0.2 -~ 3669%* 1525 1492 1446
0.3 11335% 1480 606 594 kg
0.5 2144 150 150 133 109
0.75 68 15 15 1 1
60 0.05 10664 39 39 10 8
0.2 -- -~ -- -- -
0.3 48BY* 5094* 4883% L4861% 4964
0.5 hy52% 64 64 42 Lo
0.75 151 25 24 6 6

* Lower bounds because of unsolved preblems.

- More than 7 problems were left unsolved.

]70

Number of Unsolved Problems with

Random Processing Times

Table 9.4:

ALGORITHM

(cB,=-,=) (CB,H,=) (cB,H,D)

(JB,-,-)

(=4=s-)

QO O OO

[Jee B e o}

(o I oo Jien B oo R e]

OCoooo

O NCOCO

SO N MNP
OODoOoO OO

4o

Lo I o Y oo Qo cve i e

(== B e o I = |

OO0 O OOo

oNOoO OO

OMNO~—O

wn n
O N NN P~

- e
OO O oo

50

or~nNo O

oONINO O

OO O

OMSNINO O

NN e— O

wn un
O N MNP~
OO0 00O

60

- 171 -

Table 9.5:

Average Computation Time for Problems

with Correlated Processing Times**

ALGORITHM
n p (_’-9' (JBD-’- (CBo'»" (CB.H,‘) (CB,H,D)
20 0.05 0.03 0.03 0.03 0.04 0.0k
0.2 0.16 0.09 0.09 0.09 0.07
0.3 0.16 0.1 0.10 0.08 0.08
0.5 0.08 0.06 0.06 0.06 0.06
0.75 0.05 0.06 0.06 0.06 0.06
40 0.05 k.26 1.05 1.05 1.08 0.69
0.2 -- k.21 k.16 3.93 2.45
0.3 14,28%* 0.97 0.97 0.91 0.88
0.5 1.40 0.81 0.81 0.75 0.72
0.75 0.77 0.76 0.76 0.72 0.72
50 0.05 17.36% 12,13% 12.22% 12.28% 8.16%
0.2 - 12.19% 12.10% 12.07% 11.63%
0.3 - 15,96% 13.63% 13.63% 13.11%
0.5 11.46%* 6.45 6.45 6.34 3.62
0.75 1.97 1.74 1.74 1.68 1.69
60 0.05 52. 42 37.37% 37.36% 37.40% 29.31%
0.2 == == == -- ~-
0.3 50.06% 50.06% 50.06% Lg,95% L6 .29%
0.5 28.92% 19.07% 17.63% 17 .4g* 12.37%
0-75 h-u3 3'53 3052 3:""’" 3.[{3

%% Times are in CPU seconds.

s
~

Lower bounds because of unsolved problems.

More than 7 problems were left unsolved.

- 172 -

Table 9.6:

Average Number of Nodes for Problems
with Correlated Processing Times

ALGOR!THM
n p
=) (48,-,- (€B,-,- (CB,H,-) (CB,H,D)
20 0.05 4 4 4 4 2
0.2 112 Lo 36 30 18
0.3 13 43 41 20 20
0.5 28 9 9 5 3
0.75 3 2 2 1 1
40 0.05 1698 210 209 208 39
0.2 -- 902 885 811 450
0.3 5838+ 99 99 81 70
0.5 267 28 28 12 8
0.75 25 12 12 2 1
0 0.05 5671% 2767+ 2767% 2767* 1390%
> 6.2 -- 1740+ 1714% 1698 1367%
0.3 -- 2370% 1913% 1905% 1613%
0.5 2626%* 748 747 726 281
0.75 77 14 14 1]
60 0.05 12454 Lsgg« 4583% LsB8o* 2796%
0.2 -~ -- -- -- --
0.3 6626* 6812 6629 6615%* 5095%
0.5 5326% 2340x 2072% 2050%* 1378%
0.75 177 17 17 5 3

* Lower bounds because of unsolved problems,

- More than 7 problems were left unsolved.

=173 -

Number of Unsolved Problems with

Table 9.7:

Correlated Processing Times

ALGORITHM

(c,-,-) (cB,H,~) (CB,H,D)

(J8,-,~)

(_9-’-)

oo oo

Oooc oo

oo oo

OCOocooo

oO~NMOoO o

wn

O NN~
* e o s
Oooocoo

Lo

v ——— YD

~—_—_— 0o

_——e—00

—_——0 o

NNO — O

Mm~~SNo

nre~S~S~SNo

NSNS NO

.....

- 174 -

with the conflict bound respectively. The excellent performance of our
algorithms (JB,-,~) and (CB,-,-), on this class of problems is clear,
especially for problems of size 40, which we managed to solve using ejither
of our bounds. Furthermore, using algorithm (CB,-,-), we even managed to
solve all problems of size 50. Unfortunately, the search trees for two
problems (out of 50) of size 50 become large when our first algorithm, i.e.
(JB,-,~) is used and hence these two problems were left unsolved, Among
the test problems of size 60, our algorithms were particularly effective
for problems with p = 0.05, 0.5 and 0.75, but problems with P = 0.2 appear
to be too hard for all the algorithms. Columns 2 and 3 of Tables 9.2, 9.3
and 9.4 show that the critical bound (algorithm (CB,~,-)) performs better
than the job based bound (algorithm (JB,-,-)) and hence it will be used
henceforth,

By adding our upper bounding procedure, Columns 3 and 4 of Tables
9.2 and 9.3 show that a small reduction in computation (except for some
problems of size 20) and in the number of nodes can be achieved, Finally,
by adding the dominance rules, Columns 4 and 5 of Tables 9.2 and 9.3 show
that a further reduction in computation can be achieved for most problems
with p = 0.2, 0.3 and 0.5 and that number of nodes has also been reduced
in most cases.

With regard to the second group, average computation time, average
number of nodes and number of unsolved problems are given in Tables 9.5,
9.6 and 9.7 respectively. The excellent performance of our algorithm for
problems of size 40 is stil} clear, especially for problems with p = 0.2
which have been solved using either of our two algorithms (JB,-,-) or
(cB,-,-), while using Kurisu's algorithm (-,-,=) nearly all the ten problems
were left unsolved. For problems of size 50, our algorithms have also
performed well, where at most one problem was left unsolved using either

of our algorithms, compared to all problems being left unsolved in two

- 175 -

cases (p = 0.2 and 0.3) using algorithm (-,-,-). Algorithms (JB,-,-) and
(cB,-,-) have not performed well on problems of size 60, compared with
their performance on random problems.

By adding our upper bounding procedure, columns 3 and 4 of Tables
9.5 and 9.6 show that a small reduction in computation and in number of
nodes can be achieved in most cases. Finally, by adding the dominance
rules, columns 4 and 5 of Tables 9.5, 9.6 and 9.7 show that the effect of
these rules have become very clear on this class of problems. They were
particularly useful for problems of size 60 and p = 0.05, 0.3 and 0.5.

Disregarding the results for problems of size 60 and p = 0.2, the
number of unsolved random and correlated problems using algorithm (CB,H,D)
are 5 and 13 respectively. Thus, the correlated problems appear to be the
most difficult and the most challenging, which is in accordance with results
obtained for problems with no precedence constraints (Lageweg et al., 1978;
potts, 1980A), and with that of Chapter 10 (to follow) for the permutation

flow shop problem under precedence constraints.

21L§ Concluding Remarks

All our algorithms showed superiority over Kurisu's algorithm.
This superiority is particularly clear when n = 40 or 50 and p = 0.2 or
0.3. However, all our algorithms are satisfactory for solving problems
of sizes up to 50 jobs. In fact, using the conflict bound we managed to
solve all problems of sizes up to 50 jobs except for three correlated
problems with 50 jobs. Unfortunately, when n = 60 and p = 0.2 or 0.3,
the problem becomes too hard for all the algorithms.

Although the conflict bound performed very well, it is possible
to improve it further. This can be done as follows. Let i and j as
defined in Section 9.3.2, and max(LBi, LBj +a; - bi) in case la, can be

written as follows:

- 176 -

max(LB,, LB, + a, - b, + I (a, = b))
i] i i TeBinlj h h

&ah > bh

and max(LBi + a.j - bj' LBj) in case 1b, can be written as follows:

max(LB, + a, - b, + L (a, = b.), LB.)
I heB A1 h "h J

&ah > bh

Thus, LBij of case 1 can be written as follows:

= min{max(LB,, LB, + a, - b, + I (a, - b
LB, ; = min{max(LB;, LB; + a2, - b, e h ™ b)),
J

Sah > bh

LB, +a, - b, + z (a, = b,), LB.)}
max (; j j thjﬂIi h e LB

LBij of case 2 (Section 9.3.2) can be dealt with in a similar way.

Another obvious way to try to improve the conflict bound is by
considering all possible values of i and j (i.e. as given in Section 9.3.2)
instead of considering a job i with LB.=LB.

Finally, it is possible to generalize the conflict bound as follows.
Given three unrelated jobs i, j and k (i.e. no arc exists between any two
of them), we have the following cases.

Case 1. All three jobs have processing times on the first machine
which are larger than their processing times on the second
machine. The fact that one of the three jobs is sequenced
after the other two, will be used to obtain a lower bound,

which is given by:

- 177 -

Case 2:

Case 3:

Case U:

LBijk = man[max(LBi, LBj' LB, + a; + a - b, - bj)

max(LBi, LB, LB_j +a; + a3

LBi + a-j + a

- b, - b,

max(LBj, LB 1.

k?* k k)

- bj - b
Two of the three jobs only (jobs i and j, say) have processing
times on the first machine which are larger than their pro-
cessing times on the second machine. As in Case 1, the fact

that one of the three jobs is sequenced after the other two

will be used to obtain a lower bound, which is given by:

k
LBj +a; - bi),

LB, .\ = mintmax (LB, , LB, LB

ik +a, aj - b, - bj)’

max(LBi, LB, ,
max(LBj, LB, , LBi + aj - bj)].

We point out that computing LBijk in this case will not lead to

increasing the lower bound since LBi in this case, is not

L
larger than max(LB,, LBij)'

One of the three jobs only (job i, say) has a processing time on
the first machine which is larger than its processing time on the
second machine. It appears to be useful, in this case, to use

the fact that one of the three jobs is sequenced before the other

two to obtain a lower bound, which is given by:

LBijk = min[max(LBi, LBj' LB, + bj - aj)’
max(LBi, LB, , LBj +b, - ak),
max(LBj, LB, LB, + bj + b, - aj - ak)]’
As in case 2, computing LBijk here will not lead to increasing
the lower bound since LBijk’ in this case, is not larger than
max(LBi, LBjk)'

None of the jobs has a processing time on the first machine which

is larger than its processing time on the second machine. As in

Case 3, we will use the fact that one of the three jobs is

- 178 -

sequenced before the other two to obtain a lower bound, which
is given by:

LB = min[max(LBi, LBj’ LB

i ik + bi + bj - a,

k i

max(LBi, LBk’ LBj + bi + bk - a,

max(LBj, LB, LB, + bj +b - aj - ak)].

k’
Obviously, given k unrelated jobs 1,2,...,k, one can compute a

lower bound LB],Z,...,k in a similar way.

-]79_

CHAPTER TEN

THE GENERAL PERMUTATION FLOW-SHOP PROBLEM UNDER PRECEDENCE CONSTRAINTS

10.1 Introduction

In this chapter we consider the general permutation flow-shop
problem under precedence constraints. The problem can be described as
follows. There are n Jjobs numbered 1,...,n and m machines numbered
1,...,m. Each job i(i=1,...,n) has to be processed on the m machines
1,2,...5m, in that order. The processing time of each job i on each
machine k, denoted by P 1. 18 given. Once a job has started on a machine
it must be conpleted on that machine without interruption. The precedence
constraints among jobs are represented by a directed acyclic graph G = (V,E),
where V denotes the set of vertices and L the set of edges. The vertices
of G represent the jobs and the edges represent the arcs between the jobs.
Job © muét be processed before job j on each machine if there exists a
dirvected path from vertex i to vertex J tn E. The objective is to find a
gequence of jobs that minimizes the maximum completion time.

Clearly, this problem is NP-hard since the special case where there
are no precedence constraints among jobs, i.e. the Pm//Cmax problem, is NP-
hard (Lenstra, 1977). To the author's knowledge, no one has worked on
this problem before.

We shall restrict ourselves to using the definitions and notations
used in Chapters 8 and 9. Also, we shall assume that the graph G is made
transitive before applying our proposed branch and bound procedure.

our bounding procedure will be presented in Section 10.2. Section
10.3 contains the full algorithm including further detail about our bounds,
branching rule, dominance rules, implementation of the dominance rules and
our upper bounding procedure. In Section 10.4 we report on computational

experience followed by some concluding remarks in Section 10.5.

- 180 -

10.2 Lower Bound

The lower bound described here is a generalization of the bounds

given in Section 8.2.2 for the unconstrained problem.

Given an initial partial sequence o, and a final partial sequence
0,, We shall derive a lower bound on the maximum completion time for all
feasible sequences beginning with the partial sequence o, and ending with
the partial sequence 0,. This is done by relaxing the capacity constraints
on some machines, i.e. by allowing some of the machines to process more
than one job at the same time. A machine pair (u,v), where 1 Su<v <m,
is chosen and the constraint that machines u+l,...,v-1 can process only

one job at a time is relaxed. |f u#v, a two-machine sub-problem with

precedence constraints is produced in which each job ieS (set of unscheduled

jobs) has a processing time Piy On the fi:§§ machine, a processing time Piv
on the second machine and a time lag of I p; between the completion of
k=u+1

processing job i on machine u and the start of processing job i on machine
v. (This resulting problem is NP-hard (Monma , —); see also Chapter 9).
Using the lower bound derived in Section 9.3.1 for the two-machine problem
subject to precedence constraints and the time lag of each job between the

two machines u and v, a lower bound, T (01, Oy u,v) for ufv, for the two

machine sub-problem can be written as follows:

v-1
T(o c u,v) =max{ I p. +p,, + T P, +p. + I)
1 Y2 7? ‘'eS 1eB. 1y Ju k=u+1 _jk jv - pIV
J j eh,
v min(piys Pyy)) (10.1)
el,
J

= i . = ‘, E .='.U.
where B th/(h,j)eE}, A {h/(j,h)eE} and I =V (8, AJ)

We define C](ol,k) to be the minimum completion time of all jobs

sequenced in o, on machine k (if o, is empty we define ¢,(o,,k)=0) and

- 181 -

cz(gz,k) to be the minimum time between the start of processing jobs in 9,
on machine k and the completion of processing jobs in g, on the last machine
(i f g, is empty, we define C2(02,k)=0). Now, if we define qu to be the

earliest starting time of job i on machine u and is given by:

u-1
.= max{max{C, (o ,k) + I + I p,.'
l"“‘l {) 1 1? hEB, phk k':k plk }’ EE)B(. {c](01s1)
k=1,...,U i i
+ ; Py + 2 P!
L oPhk ¥ h't + 3 p
k=1 h By, h'eAns, N u
h i
z .
+ mln{ph'1 ,ph'u 13} (10.2)

h'eBi'(BhU(AhnBi))

Where the first term in r. is a machine based bound based on machine k.
It is a generalization of that used by many researchers for the uncon-
strained permutation flow-shop problem (ignall & Schrage, 1965; Lomnicki,
1965; Brown & Lomnicki, 1966; McMahon & Burton, 1967; Nabeshima, 1967;
Potts, 1974; Bestwick & Hastings, 1976; Lageweg, Lenstra & Rinnooy Kan,
1978; Potts, 1980A). The second term is a job based bound based on jobs
in Bi using machines 1 and u.

And define qjv as the minimum time between the completion of job j

on machine v and the completion of all jobs and is given by:

k
q. = max{max{C (g.,k) + T p., + £ p.. v}, max {C,(o,,m)
jv kv, L L T
PR J J
m z T
+ I py tton Phty * ! P!
o, Pk T eB}{\AJ h'v " h'eA Ph'm
z min{p, 1 v 11}
infpye Pyt (10.3)

+
h sAJ.-(AhU(Bhn AJ.)

Due to the symmetry of the problem, the two terms in qjv can be explained

in a similar way to that given above.

- 182 -

Then a lower bound, B(o1,02,u,v), for the problem is as follows:

B(o1,02,u,v) = Tin rog t T(o],oz,u,v) +min q, (10.4)
i€eS jes Jv
Alternatively, if u=v, a single machine subprobliem results in

which each job i has a processing time Piy* @ release date iy (calculated
using equation 10.2) and a tail 9y (calculated using equation 10.3). This
resulting single machine problem with precedence constraints is NP-hard
(Lenstra, Rinnooy Kan & Brucker, 1977). Thus a lower bound for this
single machine problem is to be used. Such a lower bound can be obtained
by setting qiu=T;g qju for all ieS and solving the resulting problem using
Lawler's algorithm (Lawler, 1973), which sequences a job i with no pre-
decessors and ro, @s small as possible first. |If n={1,...,s}, is the
sequence obtained using Lawlar's algorithm, then an optimum solution to

this problem, and of course a lower bound for original single machine

problem is given by:

s
max (r I p.,) +min q. (10.5)
h=1,...,s h, j=h 'Y i=1,...,s 'Y
Remark: A different lower bound can be obtained by setting r, = min r,
nemar x i . ju
jes

for all ieS and solving the resulting problem in a similar way.
A lower bound can also be obtained using a one machine subproblem
and disregarding the precedence constraints and solving the resulting

problem for which any sequence is optimum. This lower bound is given by:

(10.6)

B(g,,0,,u,u) =min r. + I p. +minq,
12PN Ges T4 jes U jes U
This bound is known as the machine based bound. It is weaker and more quickly

computed than 10.4 and 10.5 and will be used to make sure that our bound
will not be less than the machine based bound.

More details about our bounds will be given in the following

section.

- 183 -

10.3 The Algorithm

10.3.1 Branching Rule

Our branching procedure has the property of adding as few nodes
as possible to the search tree. Each node of the search tree corresponds
to a job being sequenced either first or last. Let B be the set of jobs
with no predecessors and A be the set of jobs with no successors. At every
stage, one of the jobs in B is sequenced first if the number of jobs in A
is at least equal to the number of jobs in B. Otherwise one of the jobs

in A is sequenced last. A formal statement of our branch and bound

procedure is given below.

Step 1: Update the two sets B and A. Let n and Ny be the numbers

of jobs in these two sets respectively.

Step 2: I f n1=1, sequence the only job in B first and go to Step 5.
I f n2=1, sequence the only job in A last and go to Step 5.
Step 3: 1 f n1én2, sequence a job ieB with the smallest lower bound

(among all jobs in B) first and go to Step 5.

Step b: (n1>n2)- Sequence a job jeA with the smallest lower bound

(among all jobs in A) last and proceed to Step 5.

Step 5: Remove the newly sequenced job from Vand S. If S#§, go to
Step 1. Otherwise, evaluate the obtained sequence and use
its value as an upper bound on the value of the optimum.
Search back for any left nodes (each node corresponds to a
job being sequenced first or last) with lower bounds less
than the upper bound. If such nodes can be found, update
the graph G and the set of unscheduled jobs S and go to
Step 1. Qtherwise, stop, the procedure has ended.

10.3.2 Lower Bounds

initial experiments were carried out using the two-machine bound
(given by equation 10.4) and the one-machine bound (given by equation 10.5)
confirmed the remark by (Potts, 1980A) (for the unconstrained problem)

that a two-machine bound is more efficient than a one-machine bound.

- 184 ~

esults also showed that j . .
The resu at calculating ro, and qjv as given in equations
10.2 and 10.3 respectively was too time consuming and that using a weaker

but more quickly calculated bound using:

u-1
r. = max (cy(o,,h) + ¢)
T 14990 L Pik
H i,jeS and u,v=1,...,m (10.7)
qjv . max (z ij + Cz(cz,h))

h=v,...m k=v+]

gave good computational results.

Having decided to use the lower bounds B(c],oz,u,v) given by 10.4

and 10.6 (r,

iy and qjv as in 10.7), the choice of machine pairs is discussed

next.

In (Lageweg et al., 1978) and (Potts, 1974) it was found that the sets of
machine pairs {(1,m},...,(m-1,m)}and {(1,m),..., (m,m)} respectively gave
good computational results for the unconstrained problem. Finally, it was
found in (Potts, 1980A) that the set of machine pairs {0, 0 (mym), (1,m),
eo.,(m=1,m)} gave good computational results.

With all this in mind we have decided to use the set of machine
pairs {(1,m),...,(m-T,m}. To ensure that our proposed bound is never less
than the machine-based bound, the set of machine pairs {(,1),...,(mm?
will also be used. We conclude that the set of machine pairs to be used

is given as follows:
W= ((1,1),...,(mm,(1,m),...,(m=1,m)} (10.8)
Thus an overall lower bound, LB(OI’GZ’W) for the problem is given by:

LB(0,,0,,W) = max(B{o,,0,,u,v)/(u,v)eW) (10.9)

10.3.3 Dominance Rules

In this section we shall be interested in finding conditions under

which a particular node can be eliminated before its Jower bound is calculated
culated.

185

Dominance rules are particularly useful when a node with a lower bound
which is less than the optimum, can be eliminated.
Using the notations of the previous sections, let i,jéeB. We

now define:

By = c](g]i_j,k) - C](c]j,k), k=1,...,m

)]
Also, for two jobs i , j €A, we define:
-lcl -'
AZk = CZ(J | Oz,k) - cz(_j Oz,k)’ k:].._.,m

Theorem 10.1

If for two jobs t and jeB:
A by g Pigs for k=2,...,m (10.10)

then olij dominates olJ.

Proof

Let m = (n(1),m(2),...,m(r)) be an arbitrary sequence of jobs such

that:
S - {i,j}
and that o1jni is a feasible partial sequence.
The proof continues as given in (Szwarc, 1971) for the unconstrained

problem. We shall prove that:
(10.10) implies C‘(c1ijn,k) - Cl(°1j"’k) < C1(013j,k) - C](oj,k)

for all k 1,...,m.

For n=@, (10.10) is trivially true. For 778, we have the following:
Step 1: Let r=1, then 7=n(1). Proof by induction. The theorem is
true for k=1 since C,(g,ijn(1),1) - C,lo,jm(1),1) = Piq =
C1(c1ij.7) - c](glj,l). Suppose the theorem is true for

kzh-1. We will prove it for k=h. Consider

- 186 -

Step 2:

¢, (o

(o, Pjm(1),h) - ¢, (o,jm(1),h) = max{C1(o]Uﬂ(1),h-1)a

Cyloqi5am)Y + pogqyy = max{Cyloyjn(1),h=1), €y (oygh)i=po gy,

< max{C, (o iin(1),h-1) - € (o jn(1),h-1), €, (o ij,h) - C (o,],h)}
< max{C,(o41j,h=1) - € (oy5,h=1), € (04ij,h) = Cy(oqj,h)}

< C1(o1|_|,h) - C1(01J,h) = Ak
This concludes the proof for r=t.
Let r=2, then m=(n(1),m(2)). For the case when k=1, the theorem

holds. Assuming the theorem is true for k=h-1, we will prove it

for k=h. As in Step 1 we have:

c (01ijﬂ(1)ﬂ(2),h) = €, (o, jr(1)n(2),h) < max{C, (o, ijm(1)m(2),h-1)

1

C1 (0'1j‘ﬂ'(1)"(2)|h—])9 C](U‘lijn(])ph) = C](‘J]j“(])’h)}

/N

max{C, (o, ij,h=1) = C,(o,j,h=1), C loyijm(1),h) = € (o, jn(1),h)}

N

maX{C](Ulij,h—1) = c](O]j,h'1), C1(01ijlh) - C1(01j,h)}

IN

c1(olij,h) - €, (0j,h)
By performing Steps 3, 4, ..., r one can prove the necessary

result.,

Corollary 10.1

! R .
then j'i T, dominates j 0q

Proof

{4
If for two jobs 7 and j'EA:

Azk < A2 Ye1 <$P;lpoge for k=2,...,m (10.11)

!

Similar to the proof of the theorem above.

- 187 -

10.3.4 Implementation of the Dominance Rules

The dominance rules from Theorem 10.1 and Corollary 10.1 are
checked at every node of the search tree (j.e. after performing Steps 1
and 2 and before performing Step 3 of the branching procedure of Section

10.3.1).

It is clear that for condition 10.10 to hold we must have
Piy $P; for k=2,...,m (10.12)
Also, for condition (10.11) to hold we must have

Py S Pir for k=1,... ,m-1 (10.13)

Conditions (10.10) and (10.11) need not be transitive. For this reason we
have to check these two conditions for each pair (i,j) such that i,jeB and
that (10.12) holds for job i in the first case, and for each pair (i',j')
such that i',j'eA and that (10.13) holds for job i’ in the second case.

If n, <n (using the notations of Section 10.3.1), we start by
checking condition (10.11) for each pair of jobs G'yh, i;j'eA to
eliminate as many nodes as possible from being candidates for the last
available position. If only one job is left as a candidate for the last
position then this job is sequenced last; otherwise we check condition
(10.10) for each pair of jobs (i,]), ihjeB to eliminate as many nodes as
possible from being candidates for the first available position., |If only
one job is left as a candidate for the first position, then this job is
sequenced first; otherwise we proceed to Step 3 of Section 10.3.1. The
case when n; < n, is dealt with in a similar way except that here we start
by checking condition (10.10) and then (if necessary) we check condition
(10.11). The application of conditions (10.10) and conditions (10.11)
require 0(m "12) and o(mnzz) steps respectively,

Let n; and n; be the number of candidates for the first and last

available positions after applying conditions (10.10) and (10.11)

- 188 -

respectively (it is clear that ny < n, and "é <n,).

Initial experiments showed that replacing ny and n, in Steps 3 and
kb of Section 10.3.1 by ny and né respectively, led to a slightly worse
result. For this reason, the idea of using dominance rules to direct our

branching procedure will be abandoned.

10.3.5 Upper Bounds

I't is well known that computation can be reduced by using a
heuristic to find a good solution to act as an upper bound on the maximum
completion time before the start of the branch and bound procedure.

As stated before, whenever a complete sequence of scheduled jobs
is obtained using the branch and bound algorithm, the maximum completion
time of the jobs ordered in this sequence is calculated and used as an
upper bound on the maximum completion time. Additionally, a heuristic
method is used once at the top of the tree to obtain an initial upper
bound. This heuristic is as follows. Firstly, disregarding the precedence
constraints, we apply Cmpbell's method (Campbell et al., 1970; also given
in Section 8.2.4) which requires applying Johnson;s FZ//Cmax algorithm
using processing times for job i (i=1,...,n) of P, and ? Pi\ to

k=1 k=m+1-h
obtain a sequence. This sequence is then evaluated as 3n Pm//Cmax schedule.
This procedure is applied for values h=1,...,m=1, Let n'=(n'(1),n'(2)’._.’
n'{n)) be the best sequence obtained. Secondly, we reorder jobs in 7' to
form a new sequence 7 as follows. Each step will sequence a job 7' (i) with
no predecessors and i as small as possible first, This procedure is
repeated until all jobs have been assigned positions in . The sequence =
is then evaluated as a Pm/prec/Cmax schedule. The maximum completion time
of jobs sequenced in 7 is used as an upper bound on the value of ¢

max"

This procedure requires 0(max{mn log n,nz}) steps.

_]89-

10.4 Computational Experience

10.4.1 Test Problems

The algorithms were tested on problems of sizes up to 40 jobs
These test problems consisted of problems with random processing times
(R), problems with correlation between the processing times of each job
(c), problems for which the random processing times of each job have a
s + . -
positive (T') or negative (T°) trend, and finally, problems with correla-
. ‘s + -
tion and a positive (CT") or a negative (CT”) trend for the processing
times of each job.
For each test problem with n jobs and m machines, mn integer data
. re generated fro i i i i
Py Were g ed from uniform distributions [aik,ﬁik]. For problems with
correlation, n additional integers 6; were randomly chosen from {1,2,3,4,5}.
Problems with negative trends were obtained by renumbering machine k as
m-k+1 for k=1,...,m. Values of % and Bik for different classes of test
problems are given in Table 10.1.

This method of processing times generation follows that of Lageweg
’

Lenstra and Rinnooy Kan (Lageweg et a., 1978).

Table 10.1: Test Data

an f By Random Correlated

No trend 1 : 100
o 200, +1 : 208, +20

Positive trend 125(k~1)+1 : 125(k~1)+100 24 (k-1 6 :
$(k=1)+20 R 2§(k-l)+206i+20

In the precedence graph G, each arc (i,j) with i<j was included
with a given probability p. The following values of p have been considered:

0.0, 0.7, 0.2, 0.3, 0.4, 0.5 and 0.75,

_]90-

For each set of values (p,n,m), 40 problems were generated from

the six different classes of problems according to Table 10.2,

Table 10.2: Number of Test Problems for each
set of values (p,n,m)

Number of

Problem Class
Test Problems

Random (R) 10
Corretated (C) +
Random with positive trend (t7)
Random with negative trend (T)
Correlated with positive trend (1
Correlated with negative trend (T-)

—
viviuoian o

10.4.2 Computational Results

The algorithms were coded in FORTRAN 1V and run on a CDC 7600
computer. |

Computational results are given in Tables 10.3, 10.4 and A.1.1,
Whenever a problem was not solved after 50,000 nodes had been.generated,
computation was abandoned for that problem. Thus, in some cases, the
figures shown in Table 10.3 will be lower bounds on the average computation
times (A.C.T.) or lower bounds on the average rumber of nodes (A.N.NL).

Average computation times and average number of nodes for our pro-
posed lower bound are given in the first two columns of Table 10.3. Adding
our dominance rules and upper bounding procedure, the corresponding results
are given in the third and fourth columns of the same table. Numbers of
unsolved problems classified according to the value of p(p=0.1, 0.2, 0.3,
0.4, 0.5, 0.75) and according to problem class (R, C, T+, T, CT+, CT") are

given in Table 10.4. The precise numbers of unsolved problems for each set

of values (p,n,m), classified according to problem class, are given in

Table A.1.1.

- 191 -

Given a particular value of p, columns 3 and 4 of Table 10.3 and
column 2 of Table 10.4 show that using dominance rules and the heuristic
reduces computation and increases the efficiency of the algorithm. However,
the major increase in the efficiency of the algorithm is due to the domi nance
rules, which is consistent with the results of references (Lageweg, Lenstra
& Rinnooy Kan, 1978; Potts, 1980A) for the unconstrained permutation flow-
shop problem.

As expected, increasing the value of p (for particular values of n
and m) decreases average computation time, average number of nodes and
number of unsolved problems. An unexpected result is observed in the
second column of Table A.1.1, where increasing the value of p from 0.0 to
0.1 (for n=20 and m=3) led to an increase in the humber of unsolved problems
from 13 to 18. This was due to the effect of using the dominance rules
and the heuristic on the (0.0,20,3) problems.

Using the first column of Table 10.4, Table 10.5 shows the order
of the different classes of problems for the different values of p obtained
according to the percentage of the unsolved problems to the total number of
test problems from each of these classes (see footnote of Table 10.4). The
first and last rows of Table 10.5 contain the hardest and easiest classes

of problems for the different values of p respectively,

- 192 -

Table 10.3:

Average Computation Time and

Average Number of Nodes*

Algori thm
o n om LB
A.C.T.* AN.N.* A.C.T.% AN.N.*
0.0 8 5 0.10 532 0.03 134
8 7 0.20 812 0.17 640
10 3 0.89 8,879 0.39 3,236
105 1.23 6,836 1.0k 5,284
10 7 2.1 8,723 1.62 6,115
15 3 L. 47 21,553 1.20 5,739
15 5 7.74 28,398 7.22 25,523
20 3 10.64 31,487 5.81 19,621
20 5 - - - -
30 3 - - - -
ho 3 - - -
0.1 8 5 0.06 290 0.0L4 168
’ 8 7 0.09 304 0.07 246
10 3 0.38 3,738 0.14 1,002
10 5 0.74 3,964 0.72 3,381
10 7 0.89 3,504 0.47 1,630
15 3 3.28 16,940 1.16 5,621
15 5 8.35 27,961 8.37 26,112
20 3 7.14 32,398 5.50 25,058
20 5 - - - -
30 3 - - - -
ko 3 - - - -
8 0.03 103 0.02 73
0.2 8 3 0.06 199 0.05 138
10 3 0.05 317 0.02 63
10 5 0.22 1,203 0.17 786
0 7 0.52 1,977 0.41 1,394
15 3 1.95 10,576 0.90 4,555
15 5 3.79 13,944 3.23 10,741
20 3 6.21 26,018 3.89 16,125
20 5 13.27 30,624 12.90 28,822
30 3 9,21 22,897 9.18 20,573
ko 3 12.40 26,707 14,83 25,799
0.02 65 0.01 43
0. g ; 0.03 89 0.02 63
10 3 0.02 110 0.01 43
10 5 0.06 295 0.04 115
10 7 0.14 Lig 0.12 367
15 3 0.97 6,420 0.34 1,874
15 5 1.37 b,493 0.04 115
20 3 3.98 16,745 1.04 4,356
20 5 7.38 18,529 6.60 16,229
30 3 10.33 18,026 6.17 12,988
Lo 3 13.68 22,780 13.51 19,060

-]93_

Algorithm

o noom LB LB+D+H

A.C.T.* A.N.N.* A.C.T.* A.N.N.*

0. 8 5 0.01 34 0.01 22
g8 7 0.02 45 0.02 37

10 3 0.01 37 0.01 18

10 5 0.03 126 0.02 72

10 7 0.04 97 ¢ 0.04 79

15 3 0.17 1,074 0.08 361

15 5 0.30 1,011 0.21 652

20 3 2.07 9,545 0.72 3,642

20 5 4,52 13,583 h.12 11,368

03 4,81 12,287 3.99 9,h5h

0.5 8 5 0.01 22 0.01 14
8 7 0.01 28 0.01 22

0 3 0.01 42 0.01 15

10 5 0.02 52 0.02 35

10 7 0.02 35 0.02 26

15 3 0.07 348 0.05 154

15 5 0.12 354 0.11 304

20 3 1.06 5,535 0.26 903

20 5 2.72 8,559 1.99 5,694

30 3 3.92 8,754 2,24 L 422

ko 3 8.35 12, 845 6.99 10,137

0.75 8 5 0.00 7 0.00 5
8 7 0.01 8 0.01 6

10 3 0.01 10 0.01 L

10 5 0.01 8 0.01 L

10 7 0.01 10 0.01 8

15 3 0.02 12 0.02 5

155 0.03 16 0.03 13

20 3 0.07 70 0.06 20

20 5 0.15 355 0.13 210

30 3 0.38 318 0.27 48

ho 3 2.00 1,289 0.90 176

Lower bound on the average when there are
unsolved problems.

Times are in CPU seconds.

- A.C.T Average Computation Time
- A.N.N Average Number of Nodes
- LB Lower Bound

D Dominance Rules

H Heuristic

Most problems were left unsolved

-]9&-

Table 10.4: Numbers of Unsolved Problems
for Different Values of p*

p Problem Algorithm
Class LB LB+D+H
0.0 R 4y L1
c 52 37
T 19 15
T 27 23
cT 29 22
c k9 41
T 19 18
T 20 19
cT” 25 20
0.2 R]9 17
c 38 30
T+ I 3
T 4 4
T 14 9
0.3 R 13 11
c 2h 18
T+ 0 0
T 7 3
cTt 6 2
cT- 6 L
0.4 R 7 6
c 19 14
T+ 1 1
T- 3 3
CT+ 1 1
cT™ A 3
0.5 R 6 4
C 11 6
T+] 0
T° 1 1
cT+ 2 1
cT” 0 0

* All problems with p = 0.75 were solved.,

- For every value of p (p=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75), 110
problems were generated from each of the two classes R and C and
55 problems were generated from each of the other classes of problems.

- 195 -

Table 10.5

p 0.0 0.1 0.2 0.3 0.4 0.5
Hardest Tt CT+ c c c c
T- cT- cT+ T" cT R
c c o R R cT+
cT- T" R cT” T T
R T+ T" cTt cTt T+
Easiest T+ R L T T T

The first row of Table 10.5 shows that the problems with corre-
lation and a positive trend for the processing times of each job (CTY) to
be the hardest for p=0.0 and 0.1 while problems with correlation between
the processing times of each job (C) to be the hardest for all other values
of p. The last row of the same table shows problems with positive trends
for the processing times of each job to be the easiest in most cases.

However, if we consider the percentage of the number of all
unsolved problems to the total number of test problems (770 problems of
each of the two classes R and C and 385 problems of each of the other
classes were tested), one can order the different classes as follows:
¢, T+, ¢T7, R, T7, T*, where problems in class C are the hardest and
problems in class T+ are the easiest. Thus, the correlated problems appear
to be the most challenging, which is consistent with the findings of
references (Lageweg, Lenstra & Rinnooy Kan, 1978; Potts, 1980A) for the

unconstrained case and with that of Chapter 9 for the two-machine flow=-shop

problem under precedence constraints.

- 136 -

Finally, using Table 10.4, one can order the different classes of
problems according to the effect of the dominance rules on these different
classes for the different values of p. These orders are given in Table
10.6. The effectiveness of the dominance rules on each class was measured
by the percentage of the reduction in the number of unsolved problems when
using these dominance rules to the number of unsolved problems when the lower
bound only is used. The first and last rows of Table 10.6 contain the

most and least affected classes of problems for the different values of

p respectively.

Table 10.6

Most affected c cT cTt cTt C T+
cT+ c (o T" cT™ CT+
Tt cTt T+ cT- R c
cT™ T+ c c cTH R
T— T- R R T+ CT-

Least affected R R T T+ T- T

Table 10.6 shows that the dominance rules to be most effective on

the problem classes C, CT* and (T~ and most ineffective on the problem

classes R and T .

Table A.1.1 shows that most of these reduction in the number of
unsolved problems occurred when m=3. However, for m25, the dominance

rules were most effective when p=0.0.

- 197 -

10.5 Concluding Remarks

The branch and bound procedure proposed in this chapter forms the
first work that has been done on the permutation flow-shop problem under

precedence constraints.

This branch and bound procedure enabled us to solve problems with
up to L0 jobs. The computational results showed that the performance of
the dominance rules was remarkably good. As expected, the efficiency of
the algorithm increases as the value of p increases. |t was most ineffec~
tive when p=0.0. Obviously, in this case (p=0.0), one would choose to use
the branch and bound procedure proposed by Potts (Potts, 1980A; see also
Chapter 8). However, even when p=0.1 or 0.2, our branch and bound algorithm
performed badly, especially on correlated problems. This indicates that a
different approach is needed for these cases. An approach based on select-
ing certain pairs of jobs i and j (where no arc joining jobs i and j exists
in E) and deciding, at the top of the search tree, an ordering between the
two jobs of each pair seems worth investigating. One way of selecting
these pairs of jobs would be by selecting a pair of jobs i and j (where
arcs (i,j) and (j,i) are not in E) such that job i has the largest number
of in-going arcs and job j has the largest number of out-going arcs.

Improving the two-machine lower bound, perhaps as given in Chapter

g, should also yield a more efficient algorithm.

- 198 -

PART 1V

CONCLUSION

-]99_

CHAPTER ELEVEN

CONCLUSION

11.1 Contribution of this Research

As mentioned in Chapter 1, this thesis is devoted to scheduling
problems. Emphasis has been on deriving optimal branch and bound algorithms
for two single-machine problems and two multi-machine problems. We have
also given some attention to heuristic methods (methods which do not
guarantee optimal solutions) because these methods dominate all other
methods in real life situations.

We started Chapter 5 by giving a review of one machine heuristics.
We then completed our comprehensive list of one machine heuristics by
suggesting four other one machine heuristics. A tree type heuristic was
also included. The basis of this heuristic is to select one node at each
level of the tree from which to branch. This node is selected using one of
the following two methods: (a) it has the smallest lower bound in which
case the tree type heuristic is referred to by H ; (b) it has the smallest
value of a second order heuristic H, in which case the tree type heuristic
is referred to by HH. The performance of one of the proposed heuristics
together with heuristics HL and HH was tested on the 1/ri/ZwiCi problem.
The test problems included problems with up to 50 jobs. Optimal or sub-
optimal solutions to these problems were used to compare the performance
of the heuristics. The results showed heuristic HL to be substantially
better than heuristic HH. They also indicated that applying both heuristics
(i.e. HL and HH) and choosing the best solution is a reasonable strategy.
It would be interesting to see how heuristics HL and HH together with other
proposed heuristics perform on different problems and also on problems of

sizes larger than 50.

- 200 -

In Chapter 6 we proposed branch and bound algorithms to solve the
1/ri/};wici problem. Problems with up to 50 jobs were used to test the per-
formance of our proposed algorithms. The results showed all our algorithms
to work reasonably well, especially problems with up to 40 jobs.

In Chapter 7 we proposed a branch and bound algorithm for the 1//Zw.C?
problem. Problems with up to 70 jobs were used to test the performance of -
our proposed algorithm. The excellent results we had were not expected:
all the 700 test problems but one were solved without the need for branching.
We have also explained how our proposed bounding procedure can be applied
to the 1/prec/2wiC? problem. It would be interesting to test the performance
of our proposed bounding procedure in a branch and bound algorithm for the
1/prec/2wicf problem.

Branch and bound algorithms for the F2/prec/Cmax problems are given
in Chapter 9. The performance of our algorithms was assessed using test
problems with up to 60 jobs. All problems with up to 40 jobs énd most pro-
blems with 50 jobs were solved using our best algorithm. Unfortunately,
our algorithms were not so effective on problems with 60 jobs. Methods of
improving our bounding procedure to deal with this case were also included.

Finally, in Chapter 10 we gave a branch and bound algorithm to solve
the Pm/prec/C__ problem. To the author's knowledge no-one has worked on
this problem before. The test problems included problems with n/m: 8/5,

8/7, 10/3, 10/5, 10/7, 15/3, 15/5, 20/3, 20/5, 30/3, 40/3. The results
showed our proposed algorithm to work reasonably well, especially on pro-
blems with large values of p. Including dominance rules in the algorithm

lead to remarkably better results.

11.2 Future of Scheduling

With the continuing dramatic reduction in the size and cost of

computer hardware, it is becoming a viable proposition to build comput
ers

- 201 -

with thousands of individual processors suitably linked together, FEach

one of these prccessors is capable of executing a non-trivig) program.

The assumption that as many processors as needed are available has been

made in almost all work done on parallel computing. Although this assump-

tion is unrealistic, a parallel algorithm (an algorithm which is adapted

for parallel computers) will in practise be run on a machine with a finijte

number of processors. (The complexity of a parallel algorithm depends very
much on the structure of the parallel computer on which it is run.)
Several parallel models have been proposed and studied by researchers.

Two important models are the Stngle Instruction, Multiple Data stream (SIMD)

model and the Multiple Instruction Multiple Data strean (MIMD) model.

SIMD computers are characterized by the following (Dekel & Sahni,

1980) :

1. They consist of M processing elements (PEs) indexed 0,1,...,M=1, Each
element (PE) knows its index and is capable of performing the standard
arithmetic and logical operations.

2. Each PE has a local memory.

3. The PEs operate simultaneously and under the control of a single
instruction stream. (This means all the PEs execute the same program
simultaneously.)

b, A subset of the PEs may be chosen to perform an instruction. The
remaining PEs will be left idle.

The MIMD computers are also characterized by the above four points
except that point 3 is replaced by:

3. Each PE may operate independent of all other PEs, (This means the
PEs do not have to operate simultanecusly nor under a single
instruction stream.)

Dekel and Sahni (Dekel & Sahni, 198¢) gave (among other things)
o(]og2 n) parallel algorithms (based on computation trees) to solve the

following scheduling problems:

- 202 -

(a) Scheduling n jobs on one machine to minimize the
maximum lateness. Pre-emptions are permitted.
(b) Scheduling n jobs on cone machine to minimize the
number of late jobs.
(c) Scheduling n jobs on one machine to minimize the
sum of completion times subject to deadlines.
The complexity of the fastest sequential algorithm known for each
of the above problems is 0(n log n).
If A is a parallel algorithm for a problem P, the effectiveness of

processor wtilizsation (EPU) is defined as follows:

Complexity of the fastest sequential algorithm for P
Number of PEs used by A x Complexity of A

EPU(P,A)

Each parallel algorithm for each of the above scheduling problems
uses 0(n) PEs and thus has EPU(P,A) = 0(n Tog n/(n 1092 M) =0 (1/10g n).
We point out that the best EPU one can hope for is 0(1). Some parallel
algorithms that achieve this EPU can be found in (Dekel & Sahni, 1980) .

0f the SIMD models, Dekel and Sahni (Dekel & Sahni, —) con-
sidered a model with only the shared memory (SMM), i.e. a model with a
large common memory which is shared by all PEs. In their model it is
assumed that any PE can access any word of the common memory in 0(1) time
and that not more than onre PE can access to read from or write in the
same word simultaneously. They gave (among other things) parallel algorithms

to solve the following scheduling problems:

(a) Scheduling n jobs with unit processing times on

one machine to minimize the number of late jobs.

(b) Scheduling n jobs with unit processing times on
one machine to minimize the sum of completion

times subject to deadlines.
Each of the parallel algorithms requires 0(log n) time, uses O(nz)

PEs and has EPU that is of 0(1/n). We remark that the fastest sequential

- 203 -

algorithm known for each of the above problems requires 0(n leg n) time.
Clearly, given an MIMD computer with a large number of processing
elements (PEs) suitably linked together, it should be possible to design
branch and bound algorithms for solving NP-hard problems of greater size
than has sc far been possible. 0f course, if every alternative at each
stage of a branch and bound algorithm is pursued in parallel then this
algorithm executes in polynomial time. The problem that may arise here
is that unless each PE is directly connected to each of the other PEs, not
all PEs can, in general, be made immediately aware of the new.best value of
the upper bound. Unfortunately, a model that can overcome this problem is
not appropriate because of the large number of the PEs involved. However,
a suitable choice of network {(model) is one in which each PE is connected
to just a small number of topologically neighbouring PEs. The r-ary n-cube
network considered in (Burton et al., 1981) conforms to this requirement.
The r-ary n-cube network consists of nr" PEs, each of which has its
own memory and with a sub~section for handling communication. Each PE in
this network contains the same program and enjoys two-way communication
with exactly 2 r selected neighbouring PEs. Any idle PE repeatedly requests
work (if any) from and exchanges information with each of the PEs to which
it is connected. Each PE will apply branching rules, elimination rules, a
lower bound and an upper bound locally to all sub-problems it is going to
work on. For further detail about this r-ary n-cube network, we refer to

the above given reference.

- 204 -

Table A.1.1:

APPENDI X 1

Numbers of Unsolved Problems%*

Problem
Llass

LB

LB+D+H

0.0

0.0

0.0

0.0

0.

0

0

.0

10

10

10

15

15

20

T+
-

cT+
0

CT+
cT-

cT”

cT™

CO ik N O = e

W B N wrpoMNOOWN O = NO —O O = st OO -

VIiVIipN O oW

OO MNMNMNODO O OO =wOQ = OO —-0OC0CoO

- —_ OO -

PN = O - W Smwoww

Al

LB+D+H

LB

Problem

Class

COOOO0OO O

OO —r O

cTt
5% o

10

1

0.

OO OO0

OO0 —O0OO

cT+
T~

10

.1

0

OO0 OO

O= OO OO

10

.

0

—— 00 O

Lol BE_ i o= o o W o)

cT+
cT-

15

.1

0

TN © v T e

LT INO =N

15

i

G.

NN o

N NN N ST I

cTt
cT™

20

1

0.

-_—e OO0 -~ O

- N0 O MO

cT+
cT

15

002

Al

Problem
Class

LB

LB+D+H

0.2

15

20

20

30

40

—_—_O0 OoOWwWN

FEO =W

W o= O N

W RN = o~ WLWR ~ O —=

—_—_ oo =N

NMNO =W N

- s RO AN

DN = O o0 WRoN O -

15

15

cT~=

O =000 MN

OO0 OO0 OO

COOO OO0 ~—

QOO OO0 oOo

Problem
Class

LB

LB+D+H

0.3

20

20

4o

T+
T-
Tt
cT”

CT+
cT-

N = =0 0N —_ — PN ON -_——=wo N

NN - O coun

MNO —=O N O —=MNOOCVN QOO O —= —

N - OO~

20

20

30

CT+
T~

Al.hL

—_ 00— 00O — OO ON -

-— O = OO\

OO 0O0CVOD —_ OO OO0 O

_— O - O -

Problem

Class

LB

LB+D+H

0.4

Lo

cT™

—_ ek TN

- =

20

20

30

ko

T+
I-
cTt

CT

OO O p~— OO OO0 I~0o o B o 3« JENSPRY N

O = - o

QOO0 =0 CooOowWwo Cooooo

O = - O N P

X

All problems with p=0.75 were solved.

For p=0.0 and 0.1, most problems with n/m=20/5,
30/3 and 40/3 were left unsolved.

REFERENCES

ADOLPHSON, D. L. & HU, T. C. Optimal linear ordering. SIAM J. Appl.Math.
25 (1973), 403-423.

ASHOUR, S. Sequencing Theory. Springer Verlag (1972).

ASHOUR, S. & QURAISHI, M. N. Investigation of various bounding procedures
for production scheduling problems. Internat. J. Production Res., 7

(1969), 249-252.

BAGGA, P. C. & CHAKRAVARTI, N. K. Optimal m-stage production schedules,
J. of Canadian Operations Res. Society, 6 (1968), 71-78.

BAGGA, P. C. & KALRA, K. R. A node elimination procedure for Townsend's
Algorithm for solving the single machine quadratic penalty function
scheduling problem. Mamagement Science, 26 (1980), 633-636.

BAKER, K. R. Introduction to sequencing and scheduling. Jokn Wiley & Sons,
(1974).

BAKER, K. R. A comparative study of flow-shop algorithms. Oper. Res., 23
(1975), 62-73.

BAKER, K. R. Computational experience with a sequencing algorithm adapted
to the tardiness problem. AIIE Transactions, 9 (1977), 32-35.

BAKER, K. R. & SCHRAGE, L. E. Finding an optimal sequence by dynamic pro-
gramming. An extension to precedence-related tasks. Oper. Res., 26,

No. 1 (1978A).

BAKER, K. R. & SCHRAGE, L. E. Dynamic programming solution of sequencing
problems with precedence constraints. Oper. Res., 26, No.3 (1978B).

BAKER, K. R. & SU, Z. 5. Sequencing with due-dates and early start times
to minimize maximum tardiness. Naval Research Logisties Quarterly,

21 (1974), 171-176.

BALAS, E. & CHRISTOFIDES, N. A restricted lagrangean approach to the tra-
velling salesman problem. FHath. Programming, 21 1981), No.1, 19-46,

BANSAL, S. P. Single machine scheduling to minimize weighted sum of com-
pletion times with secondary criterion: A branch and bound approach.
European Journal of Oper. Res., 5 (1980), 177-181.

BARNES, J. W. & BRENNAN, J. J. An improved algorithm for scheduling jobs on
identical machines. AIIE Transactions, 9, No. 1 (1977).

BESTWICK, P. F. & HASTINGS, N. A. J. A new bound for machine scheduling.
Oper. Res. Quart., 27 (1976).

BOWMAN, E. H. The schedule-sequencing problem. Oper. Res., 7 (1959),
621-624,

BROWN, A. P. G. & LOMNICKI, Z. A.. Some applications of the branch and bound
algorithm to machine scheduling problems. Oper. Res. Quart., 2

(1966), 173-186.

R1

BURTON, F. W., McKEOWN, G. P. RAYWARD-SMITH, V. J. & SLEEP, M. R.
Parallel processing and combinatorial optimization. Presented at the
Conference on Combinatorial Optimization, Stirling (1981).

CAMPBELL, H. G., DUDEK, R. 6. & SMITH, M. L. A heuristic algorithm for n
job, m machine sequencing problem. Management Sei., 16 (1970), 630-637.

CARLIER, J. Probleme a une machine., Manuscript, Institut de programmation,
Universite FParts, VI (1980).

CHANDRA, R. On n/1/F dynamic deterministic systems. Naval Research
Logistice Quarterly, 26 (1979), 537-5hh,

CHO, Y. & SAHNI, S. Preemptive scheduling of independent jobs with release
and due times on cpen, flow and job shops. Technical Report 78-5,
Computer Science Department, University of Mimnesota, Minneapolis,
(1978).

CHRISTOFIDES, N., MINGOZZI, A. & TCTH, P. State-space relaxation procedures
for the computation of bounds to routing problems. Networks, 11,

(1981), 145-164,

COFFMAN, E. G. (ed.) Computer and job-shop scheduling theory. Filey, New
York (1976).

COOK, S. A. The complexity of theorem-proving procedures. Proc. 3rd Annual
ACM Symp. Theory of Computing. (1971), 151-158,

CONWAY, R. W., MAXWELL, W. L. & MILLER, L. W. Theory of scheduling. 4ddison—
Wesley, Reading, Massachusetts (1967).

DANNENBRING, D. G. The evaluation of heuristic solution procedures for large
combinatorial problems. Unpublished Ph.D. dissertation, Columbia
University, New York (1973).

DANNENBRING, D. G. An evaluation of flow-shop sequencing heuristics.
Management Sct., 23, No. 11 (1977).

DAY, J. & HOTTENSTEIN, M. P. Review of sequencing research. Naqval Research
Logistice Quart., 17 (1970), 11-39,

DEKEL, E. & SAHNI, S. Binary Trees and.parallel scheduling algorithms,
Department of Computer Setence, Untversity of Minnesota, TR 80-19

(1980) .
DEKEL, E. & SAHNI, S. Parallel scheduling algorithms. (Unpublished paper).
DELEEDE, E. & RINNOOY KAN, A. H. G. Unpublished manuscript (1975).
DESSOUKY, M. I. & DEOGUN, J. S. quuencing jobs with unequal ready times to
minimize mean flow-time. Society for industrial and applied mathe-

maties journal on computing, 10 (1981), 192-202,

DUDEK, R. A. & TEUTON, 0. F. Development of M-stage decision rules for
scheduling n jobs through M machines. Oper. Res., 12 (1964), L71-497.

EASTMAN, W. L. A solution to the travelling salesman problem. Eeonometrica
27 (1959). >

R2

EASTMAN, W. L., EVEN, S. & ISAACS, I. M. Bounds for the optimal scheduling
of n jobs on m processors. lManagement Scet., 11, No. 2 (1964).

ELMAGHRABY, S. E. The machine scheduling problem review and extensions.
NRLQ 15 (1968), 205-232.

EMMONS, H. One machine sequencing to minimize certain functions of jobs
tardiness. Oper. Res., 17 (1969), 701-715.

EMMONS, H. One machine sequencing to minimize mean flow time with minimum
number tardy. HNaval Res. Logist. Quart., 22 (1975), 585-592.

FISHER, M. L. A dual algorithm for the one machine scheduling problem.
Math Programming, 11 (1976), 229-251.

FISHER, M. L. Lagrangian relaxation methods for combinatorial optimization.
Paper presented at the Summer School in Combinatorial Cptimization,
Urbino, Italy (1978), 10-21.

FISHER, M. L. Worst-case analysis of heuristic for scheduling and packing.
tanagement Sct., 26, No. 1 (1980).

FOX, B. L., LENSTRA, S. K., RINNOOY KAN, A. H. G. & SCHRAGE, L. E. Branch-
ing from the largest upper bound: Folklore and facts. European J.

of Oper. Res., 2 (1978), 191-194,

GAREY, M. R. Optimal task sequencing with precedence constraints.
Discrete Math., 4 (1973), 37-56.

GAREY, M. R. & GRAHAM, R. L. Bounds for mu]tiprocessor Schedu]ing with
resource constraints. SIAM Journal on computing, Vol.4 (1975),
187-200.

GAREY, M. R., GRAHAM, R. L. & JOHNSON, D. S. Performance guarantees for
scheduling algorithms. Oper. Res., 26, No. 1 (1978).

GAREY, M. R. & JOHNSON, D. S. Scheduling tasks with non-uniform deadlines
on two processors. J.Assoe. Comput. Mach., 23 (1976), 461-467.

GAREY, M. R. & JOHNSON, D. S. Computers and intractability: A guide to
the theory of NP-completeness. Freeman, San Francisco (1979)

GAREY, M. R., JOHNSON, D. S. & SETHI, R. The complexity of flow-shop and
job-shop scheduling. Math. Operations Res., 1 (1976), 117-129.

GAREY, M. R., JOHNSON, D. S., SIMONS, B. B. & TARJAN, R. E. Scheduling
unit -time tasks with arbitrary release times and deadlines. .

Comput. System Science, to appear (1981).

GELDERS, L. & KLEINDORFER, P. R. Co-ordinating aggregate and detailed
scheduling decisions in the one-machine job shop: Part | Theory.
Oper. Res., 212 (1974), L6-60.

GELDERS, L. & KLEINDORFER, P. R. Co-ordinating aggregate and detailed

scheduling in the one machine job shop: Part I'l Computation and
structure. Oper. Res., 23 (1975), 312-324,

R3

GEOFFRION, A. Lagrangian and its uses in integer programming. Math,
Prog. Study, 2 (1974), 82.

GERE, W. S. Heuristics in job shop scheduling. Management Science, 13
(1966), 167-190.

GONZALEZ, T. NP-hard shop problems. Report £S-79-35, Department of
Computer Science, Pennsylvania State University, Untversity Park (1979).

GONZALEZ, T. & SAENI, S. Open shop scheduling to minimize finish time,
J.Assoc. Comput. Mach., 23 (1976), 665-679.

GONZALEZ, T. & SAHNI, S. Flow shop and job shop schedules: Complexity
and approximation. Oper. Res., 26, No. 1 (1978).

GRAHAM, R. L. Bounds for Certain Multiprocessing Anomalies. Bell Sys.
Tech. J., 45 (1966), 1563-1581,

GRAHAM, R. L. Bounds on multiprocessing time anomalies. STAM J.Appl.
Math., 17 (1969), 263-269.

GRAHAM, R. L. Bounds on multiprocessing anomalies and related packing
anomalies. In: Proceedings of the 40th AFIPS Conference (1972).

GRAHAM, R. L., LAWLER, E. L., LENSTRA, J. K. & RINNOOY KAN, A. H. G.
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Ann.Discrete Math., 5 (1979), 287-326.

GUPTA, J. N. D. Economic aspects of production scheduling systems. Journal
of the Uperations Research Society of Japan, 13,169-193,

HARIRI, A. M. A, & POTTS, C..N: _An algorithm for single machine sequencing
with release dates to minimize total weighted completion time.
Peport BW 142, Mathematisch Cenmtrum, Amsterdam (1981),

HELD, M. & KARP, R. M. A dynamic programming approach to sequencing
problems. J. SIAM, 10 (1962).

HELLER, J. Combinatorial, probabilistic and statistical aspects of an
MxJ scheduling problem. AEC Research and Development Report, New

York (1959).

HELLER, J. Some numerical experiments fer an MxJ flow-shop and its
decision theoretical aspects. Oper. Res., 8 (1960), 178-184,

HORN, W. A. Single~machine job sequencing with tree like precedence order-
ing and linear delay penalties. SIAy, Jowrnal on Applied Mathematiecs,
23 (1972), 189-202.

IGNALL, E. & SCHRAGE, L. Application of the branch and bound technique to
some flow-shop scheduling problems. Oper. Res., 13 (1965), 400-412.

JACKSON, J. R. Scheduling a production line to minimize maximum tardiness,
Regearch Report 43, Management Science Research Project, Untversity
of Californta, Los Angeles (1955),

JACKSON, J. R. An extensicon of Johnson's results on job Tot schedulj
Naval Res. Logist. Quart., 3 (1956), 201-203. 'ng.

R4

JOHNSON, S. M. Optimal two- and three-stage production schedules with
setup times included. ~Naval Res. Log. Quart., 1 (1954), 61-68.

KARP, R. M. Reducibility among combinatorial problems. In: R. E. Miller
& J. ¥. Thatcher (eds.) Cormplexity of computer computations, Plenum
Press, New York (1972), 85-103.

KISE, H., IBARAKI, T. & MINE, H. Approximate algorithms for the one-
machine maximum lateness scheduling problem with ready times.
Tectmical Report, Department of Applied Mathematies and Fhysies,
Kyoto University, Kyoto, Japan (1978A).

KISE, H., IBARAKI, T. & MINE, H. A solvable case of the one-machine
scheduling problem with ready and due times. OCper. Res., 26 (1978B),
121-126.

KISE, H. & UNO, M. One-machine scheduling problems with earliest start
and due time constraints. Mem. Kyoto Tech. Univ. Sei. Tech., 27

(1978), 25-34.

KURISU, T. Two-machine scheduling under required precedence among jobs.
Operations Research Soc. of Japan, 20 (1976).

KURISU, T. Two-machine scheduling under arbitrary precedence constraints.
Oper. Res. Scetety of Japan, 20, No. 2 (1977¥_

LABETOULLE, J., LAWLER, E. L., LENSTRA, J. K. & RINNOOY KAN, A. H. G.
Preemptive scheduling of uniform processors subject to release dates.
Report BW 99, Mathematisch Centrum, Amsterdam (1979).

LAGEWEG, B. J., LENSTRA, J. K. & RINNOOY KAN, A. H. G. Minimizing maximum
lateness on one machine: Computational Experience and Some
Applications. Statist. Neerlandica, 30 (1976), 25-41,

LAGEWEG, B. J., LENSTRA, J. K. & RINNOOY KAM, A. H. G. Job-shop scheduling
by implicit enumeration. MNanagement Sei., 24 (1977), Lk1-45Q,

LAGEWEG, B. J., LENSTRA, J. K. & RINNOOY KAN, A. H. G. A general bounding
scheme for the permutation flow-shop problem. Oper. Res., 26, No. 1,

(1978).

LAND, A. H. & DOIG, A. G. An automatic method for solving discrete pro-
gramming problems. Econometrica, 28 (1960), 497-520.

LAWLER, E. L. Optimal sequencing of a single machine subject to precedence
constraints. Management Science, 19 (1973), 5hb-5he,

LAWLER, E. L. Sequencing to minimize the weighted number of tardy jobs.
Rairo Rech. Oper., 10.5 Suppl. (1976), 27-33.

LAWLER, E. L. A pseudopolynomial algorithm for sequencing jobs to minimize
total tardiness. Ann. Discrete Math., 1 (1977), 331-342,

LAWLER, E. L. Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Annals of Discrete Mathematics, 2

(1978), 75-90.

LAWLER, E. L. Efficient implementation of dynamic programming algorithms.
To appear (1981).

RS

LAWLER, E. L. Unpublished work (19814) .

LAWLER, E. L., LENSTRA, J. K. & RINNOOY KAN, A. H. G. Minimizing maximum
lateness in a two-machine open shop. Oper. Res., € (1981A), 153-158,

LAWLER, E. L., LENSTRA, J. K. & RINNOOY KAN, A. H. G. Recent developments
in deterministic sequencing and scheduling: A survey. To appear (1981).

LAWLER, E. L. & MOORE, J. M. A functional equation and its application to
resource allocation and sequencing problems. Management Science, 16

(1969), 77-84.

LAWLER, E. L., TARJAN, R. E. & VALDES, J. Analysis and isomorphism of
series parallel digraph. (To appear). .

LENSTRA, J. K. Sequenciqg by enumerative methods. Mathematical Centre
Tracte 69, Mathematisch Centrum, Amsterdaem (1977).

LENSTRA, J. K. Unpublished work (1981).

LENSTRA, J. K. & RINNOOY KAN, A. H. G. A recursive approach to the genera-
tion of combinatorial configurations. Working Paper WF/75/25,
Craduate School of Management, Delft (1975).

LENSTRA, J. K. & RINNOGY KAN, A. H. G. Complexity of scheduling under
precedence constraints. Oper. Res., 26 (1978), 22-35.

LENSTRA, J. K. & RINNOOY KAN, A. H. G. Computational complexity of discrete
optimization problems. Ann. Discrete Math., 4 (1979), 121-140,

LENSTRA, J. K. & RINNOOY KAN, A. H. G. Complexity results for scheduling
chains on a single machine. European J. Oper. Res., 4 (1980), 270-275.

LENSTRA, J. K., RINNOOY KAN, A. H. G. & BRUCKER, P. Complexity of machine
scheduling problems. Ann., Discrete Math., 1 (1977), 343-362.

Liu, C. L. Optimal scheduling on multiprocessor computing systems. In:
Proceedings of the 13th Annual Symposium on Switching and Automata

Theory (1972).

LOMNICK! ,Z.A. A branch and bound algorithm for the exact solution of the
three machine scheduling problem. Oper. Res., 16, No. 1 (1965),

89-100.

MCMAHON, G. B. Optimal production schedules for flow shops. Journal of
the Canadian Oper. Res. Soctety, 7 (1969), 141-151.

McMAHON, G. B. A study of algorithms for industrial scheduling problems.
Ph.D. Thesis, University of New South Wales (1971) .

McMAHON, G. B. & BURTON, P. G. Flow-shop scheduling with the branch and
bound method. Oper. Res., 15 (1967), 473-481.

McMAHON, G. B. & FLORIAN, M. On scheduling with ready times and due dates
to minimize maximum lateness. Oper. Res., 23 (1975),475-482,

MITTEN, L. G. Sequencing jobs on two machines with arbitrary time lags.
Management Sci., 5 (1959A).

R6

MITTEN, L. G. A scheduling problem. J.Ind.Eng., 10 (1959B).

MONMA, C. L. The two-machine maximum flow time problem with series parallel
recedence constraints: An algorithm and extensicns. Oper. Res., 27,
No. 4 (1979).

MONMA, C. L. Sequencing to minimize the maximum job cost. Oper. Res., 28,
No. 4 (1980).

MONMA, C. L. Sequencing with general precedence constraints. (To appear).

MONMA, C. L. & SIDNEY, J. B: Sequencing with series parallel precedence
constraints. Mathematics of Cperations Res., 4, No. 3 (1979).

MOORE, J. M. An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Maragerent Science, 15 (1968), 102-109.

MORTON, T. E. & ODHARAN, B. G. Algoristics for single machine sequencing
with precedence constraints, Management Science, 24, No. 10 (1978).

MULLER-MERBACH, H. Heuristics and their design: A survey. FEuropean J. of
Oper.Res., 8 (1981), 1-23.

MUTH, J. F. & THOMPSON, G. L. (eds.) Industrial scheduling. Frentice-Hall,
Englewood, N.J. (1963).

NABESHIMA, |. On the bound of makegpans and its application in M machine
scheduling problem. J. Operations Res. Soc. of Japan, 9 (1967),

98-136.

PALMER, D. S. Sequencing jobs through a multi-stage process in minimum
total time: A quick method of obtaining a near optimum. Oper. Res.
Quart., 16, No. 1 (1965),

PICARD, J. C. & QUEYRANNE, M. The time-dependent travelling salesman pro-

blem and its application to the tardiness problem in one-machine
scheduling. Cper. Res., 26 (1978), 86-110.

POTTS, C. N. The job-machine scheduling problem, Fh.D. Thesis, University
of Birminghan. (1974)

POTTS, C. N. An adaptive branching rule for the permutation flow-shop
problem. European J. CUper. Res., 5 (1980A), 19-25.

pOTTS, C. N. Analysis of a heuristic for one machine sequencing with
release dates and delivery times. Oper. Res., 28 (1980B), 1L436-1Lk41,

POTTS, C. N. An algerithm for the single machine sequencing problem with
precedence constraints. In: Mathematical Frogramming Study 13 on
Combinatorial Optimization, 11 (1980C), 78-87.

POTTS, C. N. Private communication (1981).
RINALD!, G. & SASSANO, A. On a job scheduling problem with different ready

times: Some properties and a new algorithm to determine the optimal
solution. Report R 7724, Instituto di Automatica, University di

Rome (1977).

R7

RINNOOY KAN, A. H. G. Machine scheduling problems: Classification, com-
plexity and computations. Martinus Nyhoff, The Fague, (1976).

RINNOOY KAN, A. H. G., LAGEWEG, B. J. & LENSTRA, J. K. Minimizing total
costs in one-machine scheduling. Oper. Res., 23, No. 5 (1975).

SAHNI, S. Algorithms for scheduling independent tasks. J./Assoe. Comput.
Mach., 23 (1976), 116-127.

SCHRAGE, L. Obtaining optimal solutions to resource constrained network
scheduling problems. Unpublished manuscript (1971).

SIDNEY, J. B. An extensicn of Moore's due date algorithm. In: S. E.
Elmaghraby (ed.), Syrposium on the theory of scheduling and ite
application, Lecture Notes in Economics and Mathematical Systems 86,
Springer, Eerlin (1973), 393-398.

SIDNEY, J. B. Decomposition algorithms for single-machine sequencing with
precedence relations and deferal costs. Oper. Res., 22 (1975), 283-298,

SIDNEY, J. B. The two-machine maximum flow time problem with series-parallel
precedence relations. Oper. Res., 27, No. 4 (1979).

SIMONS, B. A fast algorithm for single processor scheduling. Preoc. 19th
Annual IEEE Syrp. Fowndations of Corputer Science (1978), 2u46-252,

SMITH, W. E. Various optimizers for single-stage production. Naval Res.
Logist. Quart., 3 (1956), 59-66.

SMITH, R. D. & DUDEK, R. A. A general algorithm for solution of the n-job
M-machine sequencing problem of the flow-shop. Oper. Res., 15 (1967),
71-82,

SMITH, R. D. & DUDEK, R. A. Erratum. Oper. Res., 17 (1969).

'SRINIVASON, V. A hybrid algorithm for the one machine sequencing problem
to minimize total tardiness. Naval Res. Logist. Quart., 18 (1971),

317-327.

SZWARC, W. Elimination methods in the mxn sequencing problem. Naval
Research Logistics Quarter, 18 (1971), 295-305.

SZWARC, W. Optimal elimination methods in the mxn flow-shop scheduling
problem. Oper. Res., 21 (1973), 1250-1259.

SZWARC, W. Remarks. Oper. Fes., 23 (1975).

TOWNSEND, W. The single machine problem with quadratic penalty function
of completion times: A branch-and-bound solution. Management
Seience, 24 (1978), 530-534.

VAN WASSENHOVE, L. Special-purpose algorithms for one machine sequencing
problems with single and composite objectives. Ph.D. Thesis,
Industrial Beleid, Katholicke Universiteit Leuven (1979).

VAN WASSENHOVE, L. & GELDERS, L. F. Solving a bicriterion scheduling
problem. European J. of Oper. Rec., 4 (1980), 42-48,

WILKERSON, L. J. & IRWIN, J. D. An imgroved algorithm for scheduling
independent tasks. AIIE Transactions, 3, No. 3 (1971).

RE

	etheses coversheet.pdf
	787277.pdf

