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ABSTRACT

A series of experiments are reported which have attempted to 

isolate some factors causing inter and intrasubject variability of 

the McCollough effect.* A number of such factors were found.

1. The initial strength of the OCCA is strongly influenced by 

sleep duration. Reduction of up to one third of a normal nights 

sleep caused a marked decrease in the aftereffect strength. Sleep 

periods of under a third of normal were found to have no further 

effect. Decay rates were not affected by prior sleep duration.

2. Both the strength and decay of the McCollough effect undergo 

diurnal changes late in the evening. These changes were linked with 

the sleep cycle and evidence is presented indicating that the effect 

of the time of day upon the initial strength may be linked with the 

effect of sleep duration.

3. Some visual defects result in abnormalities of binocular,' 

dichoptic and transferred McCollough effects.

4. Different visual stimuli presented after induction cause large 

variations in the rate of decay of the OCCA. Greatest decay was 

caused by those stimuli with identical characteristics to those of 

the induction stimuli.

5. Variation in the visual stimulation presented before induction 

strongly influences the initial strength of the aftereffect but does 

not affect subsequent decay rates. Chromatic fields of identical
f

colours as the induction stimuli, and gratings of orientations of 

not more than 20 from those of the induction stimuli cause a large 

reduction in the strength of the OCCA.
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CHAPTER 1. INTRODUCTION

Of the many findings of visual psychophysics in recent years 

some of the most interesting have been the family of aftereffects 

which are contingent upon one or several parameters of visual 

stimulation suggesting that some elements (colour, form and motion 

for instance) are processed together to some extent. The 

aftereffects have attracted attention from both psychophysicists and 

neurophysiologists.

It had been postulated, for some years before these discoveries 

that the visual system may have functional sub-systems for the 

processing of such elements as contours, orientation and colour 

(Hebb, 1949). Neurophysiological evidence for these feature 

extraction processes came from the work of Hubei and Wiesel (1959). 

They found neurones in the visual cortex of the cat- which were 

excited by certain specific stimuli such as contrast bars, 

orientation, direction of movement, and length. One of the major 

questions when considering contingent aftereffects has been whether 

they represent evidence for mechanisms which respond selectively to 

specific combinations of visual features or evidence of associations 

between quite independent mechanisms.

One of the main groups of contingent aftereffects are the 

pattern contingent colour aftereffects. Neurophysiolgical evidence 

has been used to support both the view that pattern and colour are 

processed independently and 'the view that pattern and colour are 

processed together. For example, Yund, deValois and Hepler (1973) 

have found cells that respond selectively to specific form whether 

the form is represented by luminance gradients or colour gradients

y
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(the cells respond to colour but do not convey information about 

it). On the other hand, cells have been found in the monkey striate 

cortex which respond to specific colour and pattern combinations 

(Michael, 1978). The many psychophysical experiments concerned with 

pattern contingent upon colour will be reviewed later. To set both 

the historical and theoretical backgrounds it is worthwhile to 

consider two reports in detail: that of Gibson (1933), concerned 

with 'phantom fringes'; and McCollough (1965), concerned with the 

aftereffects which became known as the McCollough effect.

1.« 2. Phantom Fringes

Gibson (1933) noticed that the bluish and yellowish colour 

fringes, seen along edges while wearing prisms, decreased if they 

were worn for a long period (3 days) and that when the prisms were 

removed complementary coloured 'phantom fringes' were seen along 

edges for several hours. These phantom fringes are the first 

reported colour aftereffects contingent on form, the colour being 

selective to the direction of the edge contrast. The aftereffects 

were seen on vertical and oblique edges but not on horizontal edges. 

They were shown to be caused by a neural mechanism by Kohler (1951), 

who found that the phantom fringes could be seen in monochromatic 

sodium light.

The cells found in the cat visual cortex sensitive to the 

polarity and orientation of a light/dark border (Hubei and Wiesel, 

1962), led McCollough to reason that the phantom fringes could be 

explained by thé adaptation of separate edge-detector systems which 

are orientation specific, one system adapting to yellow and the 

other to blue. She further reasoned that if the edge-detectors were
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senstive to orientation it should be possible to adapt edge-detector
I

mechanisms of differing orientations.

1.3» The McCollough Effect

i
McCollough (1965)' reported an experiment during which she 

requested her subjects to inspect, without fixation, a screen on 

which horizontal blue and black gratings alternated with vertical 

orange and black gratings every few seconds. Subjects with normal 

colour vision were exposed to this alternation for 2 to 4 minutes.

On viewing horizontal and verical black and white test gratings, 

they reported complementary hues to those originally paired with 

either orientation (an orange hue on horizontal gratings and a blue 

hue on vertical gratings).

In the 16 years since the original report there has been 

considerable interest in this, the McCollough effect, and othqr 

contingent aftereffects which have been discovered since. However, 

much of the subsequent literature has been concerned with the 

features of the effect which were found by McCollough.

One of the most striking aspects of the effect was the strong 

relationship of the orientation and induction and test gratings. 

Rotation of the t$st pattern (a horizontal grating beside a vertical 
grating) or rotation of the head through 90* caused the aftereffects 

to be seen on a different part of the test pattern.

Rotation through 45* (so that both gratings were at oblique 

angles) caused the disappearance of the hues. The aftereffects could 

be seen, after longer adaptation periods, on patterns of concentric
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circles, spirals or radiating lines but the hues were only apparent 
where the lines were predominantly horizontal or vertical.

There was evidence that the aftereffect was not an ordinary 

afterimage. The adaptation stimulus was not an intense one nor was 

it fixated. As the subjects moved their gaze about the test pattern, 

the aftereffect did not move but remained stationary on the test 

surface. The aftereffects could be seen on gratings rather than on a 

white test surface, unlike ordinary chromatic afterimages which are 

best seen on a plain white surface. The aftereffects were seen 

after repeated exposure to comlementary colours presented with 

gratings, but alternation of orange and blue fields alone produced 

no reports of afterimages.

Another feature considered by McCollough was the interocular 

transfer of the effect. The subjects viewed alternating 
orange-vertical and blue-horizontal with the right eye with the left 

covered, and then the left eye viewed the opposite colour and 

orientation pairing with the right eye covered. On testing, reports 

of hues were consistently reversed for each eye. McCollough 

concluded that the aftereffect does not transfer interocularly.

It was found that, like phantom fringes, the aftereffect 

could be seen in 'nearly monochromatic light' (using narrow*band 

pass filters). Hues of the aftereffect remained orange and blue in 

predominantly green, yellow and orange lights.

Finally, McCollough found that the aftereffect was very slow in 

fading. The effects persisted for an hour or more even after a brief 

exposure (2 to 4 minutes). McCollough inferred several things from
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her results: firstly, that they indicate colour adaptation of 

edge-detector mechanisms in thç human visual system; secondly, that 

the mechanisms respond with decreased sentivity to those wavelengths 

with which they have been most strongly stimulated.

1.4. Variability of the McCollough Effect

One aspect which has perplexed investigators of contingent 

aftereffects is the enormous variability that is found between 

subjects and between the results obtained from the same subject on 

different occasions. Evidence of intersubject variability can be 

found in many reports (for example, McCollough, 1965 or MacKay and 

MacKay, 1975b). When subjects are used for a number of runs on 

different occasions it has been observed that large intrasubject 

variability also exists (Drs. V. MacKay and K. Bradshaw, personal 

communication).

It is apparent, when studying the numerous reports of 

aftereffects, that there is some variation in the results obtained 

by different investigators using apparently similar conditions. Some 

reports seem to contradict others (compare for example: Over, Long 

and Lovegrove, 1973 and MacKay and MacKay, 1973a). The major concern 

of this thesis is to identify some of the factors which can account 

for the variability of the McCollough effect.

\
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CHAPTER 2. PARAMETERS KNOWN TO AFFECT THE PATTERN CONTINGENT 

AFTEREFFECTS

Many parameters of the McCollough effect have been manipulated, 

both in the adaptation and test phases, to determine its underlying

cause. Much of the research stimulated by McCollough's report, has
!

investigated her suggestion that the effect is evidence of 

adaptation of edge-detector mechanisms and has attempted to link 

features of the aftereffect with known physiological characteristics 

of the visual system.
i

2.1. Orientation

The finding that the orientation of the test grating is a 

crucial parameter in pattern contingent chromatic aftereffects 

(McCollough, 1965), has led to a number of reports which have used 

orientation as the dependent variable.

\ Most neurones studied in both the cat and monkey visual cortex

show a high degree of orientation specificity. Simple and complex 

cell types respond optimally for a particular orientation of 

contour, the response falling off from this optimum. Most cells have 

an angular specificity of 10-15* in the cat and 5-10* in the monkey 

(Hubei and Wiesel 1962, 1968; Campbell, Cleland, Cooper and 

Enroth-Cugell, 1968). With reference to these data,' Fidell (1970) 

reasoned that the McCollough effect may depend on the excitation of 

different populations of neurones in the human visual system, and 

that adapting the gratings whose angular separation is 90* should 

maximally excite the different populations. Her experiments showed 

that when adaptation gratings were at 90* to each other, but varying
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in absolute o'rientation, the aftereffects did not appear to vary in

strength. When the angular separation was varied to 45* and 22° ,
' :i

however, the reports became less frequent. At 1T of separation, 

which presumably would stimulate the same population of neurones, 

reports of any aftereffect were very rare. Fidell considered her 

results to be consistent with an edge-detector interpretation of the 

effect.

It has been shown that it Is possible to produce a contingent 

aftereffect with only one adaptation grating and that complementary 

hues are still induced on orthogonal test fields (Stromeyer, 1969). 

The hues could be 'neutralized' by rotating the adaptation grating 

through 90®. This raised the question of whether the orthogonal 

orientations are coupled to colours in an opponent fashion (as 

Murch, 1972 suggests) or whether gratings of orientations differing 

by some minimum angle are chromatically independent and would
i

develop independent aftereffects. Data favouring the latter •
«

explanation, presented by MacKay and MacKay (1977a), showed that it

is possible to generate an aftereffect to one, or to several,

orientations simultaneously. They found that the aftereffect,
<

generated by adapting to a single grating, has a bell shaped 

distribution. As the angle of the test field was rotated either way 

from the angle of the adaptation grating, the aftereffect fell to 

half value at about 25° difference and was maximum at the same 
orientation. When the adaptation gratings were presented at several 

orientations, the resulting aftereffect.was shown to have an angular 

distribution which was the algebraic sum of those of each grating 

separately. It was possible to associate the same colour with two 

orthogonal orientations without any cancellation. MacKay and MacKay 

also found that the multiple aftereffects could be induced for at
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least 8 orientations at once and each showed an independent time 

course of decay (see section 2.8.).

Like Fidell (1970), MacKay and MacKay found that with 

separations of 15° between the orientation of the adaptation
igratings, the aftereffects are barely significant. However,

Stromeyer (1974) observed that the aftereffects can be induced with 

adaptation gratings separated by only 12°, if the test patterns are 

separated by a considerably greater orientation.

2.2. Spatial Frequency

The importance of the spatial frequency of the adaptation and 

test grating to the McCollough effect, was first shown by Teft and 

Clark (1968). Using the strong orientation dependency of the effect, 

they found that the degree of rotation of the test field from that

of the adaptation grating, before the aftereffect disappeared, was
1

decreased as the spatial frequency of the test grating departed from 

that used during adaptation.

%

It has been demonstrated that the aftereffects are strongest

when the test gratings have the same spatial frequency as the

adaptation gratings (Stromeyer, 1972a). Using adaptation gratings 
\

and test gratings ranging from 1 to 20 cycles per degree, Stromeyer 

found that the effects became progressively weaker on test gratings 

with a higher or lower spatial frequency than the adaptation 

gratings. The effects, however, were still detectable 2 or 3 octaves 

either side. He also demonstrated that the complementary 

aftereffects cannot be induced by patterns of the same orientation 

and different colours, unless the spatial frequencies differ. The
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effects have been shown to be difficult to produce with adaptation 

gratings which have only a half-octave separation, but are readily 

produced using gratings that are separated in spatial frequency by 

bne or more octaves (Lovegrove and Over, 1972). In addition,

Lovegrove and Over found that one grating must have a spatial
i

frequency greater than 3 cycles per degree. Using a 3.3 cycle per 

degree grating of either red or green, with gratings of the same 

orientation and the complementary colour, Breitmeyer and Cooper 

(1972) found that the number of reports of the aftereffect increased
t

as the difference between the spatial frequencies increased. The 

reports ranged from 0, when the spatial frequencies were the same, 

to 100% when they differed by 2 octaves. These reports are 

consistent with neurophysiological findings that some cortical and 

geniculate cells are sensitive to spatial frequency (Campbell et al, 

1969). Units in this study responded to gratings up to 1 octave from 

their optimum frequency.

It has been reported that after adapting to two horizontal
4

gratings of different spatial frequencies and colours,' aftereffects 

could be seen on both horizontal and vertical gratings of the 

appropriate spatial frequencies (Leppmann, 1973). The effects were 

strongest on the portions of a variable frequency test grid which 

corresponded to the adaptation frequencies. Leppmann suggested that
I

his results may indicate mechanisms which are spatially tuned but 

not orientation selective. ;

Attempts have been made to isolate the relative influence of 

spatial frequency, black bar width, and light bar width. Using 

vertical gratings of 4.5 and 9 cycles per degree, with red and green 

fields and vertical gratings with black and white bar width ratios



10

of 1:3, 3:1, 1:1, Harris (1971) concluded that the aftereffects were 

dependent on spatial frequency rather than bar width. In contrast, 

Uhlarik and Osgood (1974) found that the afterffects were strongest 

when the black bars of the adapting and test gratings were similar

in width. The white bar width and the spatial frequency had less!
i

effect. i

2.3. Pattern aftereffects contingent on colour

i
A number of people have reported 'reverse' McCollough effects 

which are pattern aftereffects contingent on colour, and have 

demonstrated the orientational and spatial frequency properties of 

these effects.

After viewing red and green gratings tilted 10° clockwise or
\

anticlockwise from vertical, subjects reported that vertical lines, 

when coloured red or green, appear tilted in the direction opposite 

to that of the adaptation pattern with the same colour (Held and 

Shattuck, 1971). The direction of the tilt aftereffect was dependent 

on colour. It was demonstrated that the amount of tilt varied as the 

angle between the adaptation and test gratings was changed. Using 

vertical test gratings, but increasing the angle of the adaptation 

gratings from, 0° to 75°, the magnitude of the aftereffect increased
i

rapidly to a peak between 10° and 15°, then dropped close to zero at 

about 40°• i

A spatial frequency shift effect, that is contingent on colour, 

has also been reported (Virsu and Haapasalo, 1973). After adapting 

to a red 7 cycle per degree grating, alternating with a green 2.5 

cycle per degree grating, subjects viewed a test grating of 4 cycles
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per degree split into gree'n and red -coloured halves, above and below 

a fixation mark. The spatial frequency of the two halves then 

appeared different. The half coloured red appeared to be a lower 

frequency and the half coloured green appeared to be a higher 

frequency.

2.4. Luminance and Contrast

The luminance of adaptation and test patterns can be considered 

in two ways. One can consider the luminance of the whole pattern, or 

the luminance of the individual components (the contrast) of the 

patterns.

(a) Luminance

It has been noted that the phantom fringes, observed after 

wearing prisms, are most vivid in dim illumination but are not 

visible at scotopic levels of illumination (Kohler 1951). Hay,. Pick 

and Rosser (1963) also observed that phantom fringes were not 

visible in scotopic illumination (below 10 mlm) but concluded that 

the strength is unaffected by different photopic levels of the test 

patterns. The McCollough effect, however, is visible at both 

scotopic and photopic levels (Stromeyer 1974). Stromeyer found that 

after adapting to broad gratings at photopic levels, subjects 

reported aftereffects even when,the luminance level of the test 

grating was reduced to below 10 ^mlm. In an experiment varying both 

the luminance of the test and adaptation stimuli, White (1976) 

showed that the aftereffect strength increased with higher luminance 

of the adaptation stimuli and with lower luminance of the test 

stimuli. Others have also noted that McCollough effects tend to be
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seen best on dim test gratings (Skovbo, Gentry, Timney and Morant, 

1974). The range of adaptation and test stimuli luminances used in 

different experiments have varied widely.

(b) Contrast
!
i

Both phantom fringes and the McCollough effect require 

luminance contrast in both the adaptation and test stimuli, before 

aftereffects are produced. Phantom fringes can only be seen on edges
i

that have a luminance; contrast. Edges that are defined by colour 

differences alone have been shown to be ineffective (Kohler, 1951). 

Hay et al (1963) showed that the phantom fringes became more vivid 

as the contrast of the test pattern was increased. The McCollough 

effect is obtained only by using adapting patterns which contain 

luminance contrast (Harris and Barkow, 1969). Both blackrcoloured 

and white-coloured gratings produce aftereffects, but the 

black-coloured gratings were more effective. Mikaelian (1980), using 

similar conditions, has obtained similar results. The results of 

Stromeyer and Dawson (1978) show that no aftereffects áre produced 

with coloured gratings which lack luminance contrast. They observed 

that, after adapting to low spatial frequency gratings of either 

coloured and black gratings or coloured and white gratings that fell 

approximately in one retinal position, aftereffects were only seen 

clearly on test gratings when the patterns were positioned on the 

retina so that the local luminance contrast of the adapting -and test 

patterns matched.
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2.5. Hue

Hue has been utilized as an independent parameter in very few
\

of the studies of the McCollough effect. McCollough (1955) used 

orange and blue adaptation fields but reported that 'the choice of 

filters is not critical: distinguishable, though unsaturated, 

aftereffects can be obtained with most pairs of filters which 

clearly differ in their transmission characteristics'. In most 

studies adaptation colours have been red and green. Using 

alternating vertical and horizontal adaptation gratings with red, 

yellow, green or blue filters, Hajos (1968) found that the 

aftereffects produced on test gratings were often named as red or 

green but very few yellow and blue effects were reported. In another 

study in which colour was the independent variable, Stromeyer (1969) 

used a variety of colours presented with only one adapting grating 

(the colours were not paired) and a test pattern which was also a

grating of one orientation. He found that the aftereffects produced<
by red and blue-green colours were the strongest and were green and 

pink respectively. Adapting colours near to blue occasionally 

produced weak yellowish aftereffects, but there was little evidence 

that yellow adapting colours produced' blue aftereffects. In a later 

report Stromeyer (1972a) found that the strength of the aftereffect 

for a given adaptation colour seemed to vary with the spatial 

frequency of the adaptation gratings. Aftereffects following 

adaptation to blue and orange could be produced if these colours 

were presented with the appropriate spatial frequency grating.
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2.6» Monocularity and Binocularity

! "14

One particularly interesting aspect of McCullough's report was 

that different aftereffects could be induced succesively and 

retained independently in either eye. She concluded that the effects 

failed to show interocular transfer. Visual aftereffects not 

selective to colour have, however, been shown to transfer. For 

example, the tilt aftereffect (Campbell and Maffei, 1971) and the 

changes in contrast thresholds induced by adapting to a grating 

(Blakemore and Campbell, 1969), both transfer and the apparent 

spatial frequency shift (Blakemore, Nachmais and S\itton, 1970) 

transfers partially.
I

Most aftereffects contingent on colour do not appear to

transfer interocularly. Opposite sets of phantom fringes can be

induced in separate eyes and are seen only with the adapted eye

(Hajos and Ritter, 1965). Many investigators have noted that*on

adapting one eye, no McCollough effect can be seen with the 
( <
unstimulated eye (Murch 1972, Stromeyer, Lange and Ganz,1973 and

MacKay and MacKay, 1975b). The apparent spatial frequency shift can« ,
be used to modify the spatial frequency, which may in turn change

the colour of the McCollough effect. The spatial frequency shift

^transfers to the unadapted eye but no colour change is seen

(Stromeyer, 1972a). Colour aftereffects contingent; on the direction 
• . I

of a spiral do riot transfer to an unadapted eye. (Stromeyer and

Mansfield, 1970) nor do motion-aftereffects contingent on colour

(Mayhew and Anstis, 1972) In both cases opposite effects can be

induced simultaneously in separate eyes. Shattuck and Held (1975) .

have shown that colour contingent tilt aftereffects do not transfer

interocularly and opposite effects generated simultaneously in

either eye do not cancel each other.
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Although these reports suggest that colour contingent 

aftereffects are largely monocular, more recent studies have shown 

'some degree of interaction between eyes. The McCollough effect can

be induced dichoptically if one eye is exposed .to alternating
*

orthogonal gratings, while the other is simultaneously exposed to 

alternating red and green homogeneous fields, one orientation being 

paired with one colour (MacKay and MacKay T973a, 1975b). Colour 

aftereffects are produced in both eyes but the aftereffects produced
i

in either eye are différent. The eye exposed to colour only has hues 

which are complementary to those originally paired during adaptation 

and the eye exposed only to pattern has hues the same as originally 

paired (these MacKay and MacKay called 'anomalous' McCollough 

effects). The aftereffects in both .eyes showed a.similar time course 

of decay to normal McCollough effects of the same initial strength, 

but their strength was only 0.1 to 0,3 times the strength of a 

normal McCollough effect produced with the same period of 

adaptation. Using similar experimental conditions Over, Longhand 

Lovegrove (1973) found no dichoptic interaction of the McCollough 

effect.

Colour contingent motion aftereffects, can be induced by 

dichoptic stimulation, but when one eye is exposed to colour and the
I

other eye is simultaneously exposed to a moving achromatic spiral, 

the aftereffect is seen only in the eye exposed to colour (Murch, 

1974). Potts and Harris (1979) report similar results, again finding 

no 'positive' aftereffect in the eye exposed to movement alone. The 

tilt aftereffect, when induced in coloured light, has been shown to 

be larger when the test stimulus is viewed in the same, rather than 

a different, coloured light (Held and Shattuck, 1971). However, this 

colour specificity is not seen when the colour and the test gratings
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are viewed dichoptically (Broerse, Over and Lovegrove, 1975).

• ,

Although Mayhew and Anstis (1972) reported no transfer in ai
colour contingent motion aftereffect, it has been observed that on 

adapting one eye only, the usual negative colour contingent 

aftereffects are seen in the adapted eye and opposite 'positive' 

aftereffects are sometimes seen in the unadapted eye (Favreau,
t

1978). A similar result has been reported when studying the
i

McCollough effect (Mikaelian, 1975). The normal negative colour 

contingent orientation aftereffects are seen in the adapted eye and 

positive- aftereffects are seen in the unadapted eye, but only after 

binocular viewing of the test pattern? this Mikaelian terms 

interocular generalisation of the McCollough effect. MacKay (1978) 

repeated the procedure used by Mikaelian and could find no such 

interocular generalisation but reported very weak normal negative 

aftereffects in the unexposed eye which were below 10% of the 

strength of the adapted eye. They were not noticeably increased by 

having a light or dark input to the unadapted eye, or by ensuring 

that either eye's imput was suppressed during exposure and-or 

testing. In a study of binocular interactions during adaptation of 

the McCollough effect, White, Petry, Riggs and Miller (1978) found
l

that Interocular transfer was facilitated if one eye received a full 

McCollough stimulus while the other eye viewed simultaneous! 

homochromatic stimulation. When the homochromatic stimultion was the 

same colour as the McCollough stimulus the aftereffect in the eye 

presented with colour was, as in the dichoptic experiments of MacKay 

and MacKay (1973a, 1975b), complementary in hue to the original 

colour-orientation pairing. When the homochromatic stimulation was a 

different colour the hues were the same as the original pairing . 

(they were, however, transient and did not last as long as the
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normal McCollough effect). MacKay (1978) in a similar series of 

experiments, found no transfer when the colours, presented to the 

two eyes during adaptation, were different. She further reports that
i

achromatic gratings presented to one eye also facilitate transfer if 

the other eye receives a full McCollough stimulus. When achromatic 

gratings were the same orientation during adaptation, the 

aftereffects were the same hue as the original pairing (anomalous

McCollough effects), but when the orientations were orthogonal; *
during adaptation, normal complementary hues were seen.

The McCollough effect has been shown to have a binocular 

component (Vidyasager, 1976). Vidyasager used an adaptation séquence 

of three parts, binocular and monocular in each eye, of equal 

durations, with short dark intervals between each. If no binocular 

component was Involved, no McCollough effect would have been 

produced either binocularly or monocularly as the binocular stimuli 

were the reverse set of colour and orientation pairings, to the; 

monocular stimuli. He reported that after thirty minutes of a 

repeated sequence of red vertical, binocular; blue vertical, right 

eye; red horizontal, right eye; blue horizontal, binocular; red 

horizontal, left eye; blue vertical, left eye, a test pattern
I

viewed binocularly appeared bluish with vertical gtatings and 

pinkish with horizontal gratings. When viewed monocularly, 

aftereffects óf the reversed polarity were seen. These aftereffects, 

though small, showed a comparable time course of decay to ordinary 

McCollough effects. Further evidence of a binocular component is 

provided by the observation that, after binocular adaptation, the 

McCollough effects seen binocularly are larger than those seen 

monocularly (MacKay, 1978 and White et al, 1978). MacKay (1978) also 

reports that if the two eyes are presented with the same McCollough
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stimuli/ but not simultaneously, the aftereffects seen binocularly 

are considerably smaller (about 33%) than those seen monocularly.

The size of the colour contingent tilt aftereffect has been found to 

be no different when the adapting stimuli are the same in both eyes, 

from when they are the reversed pairing in either eye, showing no 

interaction between the eyes (Kavadellas and Held, 1977).

2.7. Retinal Specificity
!

Several studies have demonstrated that McCollough effects are 

confined to specific adapted portions of the retina. Opposite 

aftereffects can be produced in adjacent retinal areas so that, for
t

example, horizontal lines on one part of the retina might appear 

green but in a different area could appear red (Harris, 1969). After 

fixating an alternating pair of colour orientation gratings, 

Stromeyer (1972b) showed that the aftereffect hues which his 

subjects judged to be most saturated, occurred when the test grating 

approximately coincided with the adapted area and were less 

saturated as the overlap was reduced. If the test grating was moved 

as little as 0.5° away from the adapted area, it appeared 

colourless. Retinal specificity was perhaps most strikingly 

demonstrated by Stromeyer and Dawson (1978) who used two sets of 

vertical, 2 cycles per degree gratings of different hues for their 

adaptation stimuli. These were presented sequentially in 

counter-retinal positions, the coloured bars of one grating filling 

the retinal area occupied by the black bars of the other grating. A
l s

vertical test grating then appears pink when placed in a position 

occupied by the black bars of a green grating and green when- placed 

in the position occupied by the red grating.
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The importance of eye movements to the McCollough effect has 

been studied by Piggins and Leppmann (1973) using a contact lens 

technique to investigate the aftereffects, after adapting with 

stabilised patterns. They found that no hues were reported when the 

test stimuli were either stabilised or freely scanned. However, 

subjects consistently reported weak aftereffects after adaptation to 

sine wave gratings presented for only 9msecs. every second 

(Stromeyer, 1974b). Using such stimuli, eye movements greater than.1*
i

of arc are highly unlikely during fixation. Stromeyer further notes, 

that subjects report aftereffects when square wave gratings are 

presented for only SO^secs.

2.8. Time Course of the Aftereffects

One of the most noticeable features of form colour.aftereffects 

is the length of time they take to disappear. Phantom fringes are 

visible for several hours after wearing prisms for a number of days 

(Gibson, 1933). Kohler (1951) noted that in dim illumination weak 

aftereffects could be seen for several days after 50 days of

adaptation. Colour motion contingent aftereffects last up to 27i
hours following 3 - 5  hours of adaptation (Hepler, ,1968). Similarly, 

Stromeyer and Mansfield (1970) found that after adapting to moving 

colour gratings for 20 minutes, aftereffects were commonly seen for

a day or more and some were foufid to last up to 6 weeks.
1 '

The persistence of the McCollough effect was first noted by 

McCollough (1965) who'found aftereffects lasting an hour or more 

following only 2 to 4 minutes adaptation. After 2 hours of 

adaptation, Stromeyer (1971), observed that the aftereffects were 

visible for 2 weeks. He also reported that, on increasing the



adaptation time, the 'saturation' of the aftereffects appeared to 

strengthen for up to about 90 minutes of adaptation. In a study of 

the build up and the decay of the McCollough effect Riggs, White and 

Eimas (1974) found that the strength of the aftereffects, as 

measured by a cancellation technique, increased with lengthened 

adaptation times, up to 150 minutes. Strong aftereffects lasted for 

more than 7 days. They also found that the aftereffects followed a 

characteristic time course of decay, with curves that were not quitei
straight either on log-log or linear-log coordinates. MacKay and 

MacKay (1973b, 1975a) have also studied the decay curves of the 

McCollough effect and found that they are approximately linear on •

log-log coordinates with a slope of -1/3.
< .

The strength and the decay of the McCollough effect are 

affected not only by varying the total adaptation time, but also by 

varying the temporal parameters of the elements of the adaptation 

sequence (the 'on' and 'off' periods). Estimates of the strength of 

the effect were found to be proportional to the total light 'on' 

periods and affected by the length of the dark 'off' periods (Hajos, 

1968). The length of the 'on' periods however, has no effect over 

the range of 0.5 to 4 secs. Bradshaw (1978) found that, although 

most decay curves are linear on log-log coordinates, certain 

sequences are more linear on linear-log coordinates. These

differences were independent of the total adaptation time, and. |
iprobably independent,of the total cycle time and the 'on' 'off' 

ratio, but were strongly influenced by the 'on' interval aione.

Short 'on' intervals (1s. or less) were associated with steeper 

decay curves which were more linear on linear-log coordinates. It
t

was also found that the 'on' interval had a substantial influence on
t

the strength of the aftereffect as itwas increased to 1s, but had
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little influence beyond this. Like Riggs et al (1974), Bradshaw 

found that the strength increased as the adaptationiperiod is 

increased. ;

\

The persistence of the McCollough effect has led to numerous 

reports on the effect of different stimuli, or lack of them, on the 

decay of the aftereffects. Prolonged viewing of the achromatic test 

gratings ha s been shown to cause the aftereffects to fade 

(Stromeyer, 1972a). This observation has been repeated by Skowbo, 

Gentry, Timney and Morant (1974) and Skowbo and Clynes (1977).

Greater exposure leads to a greater fading and less recovery
.!

following a rest period (Skowbo and Clynes, 1977). High luminance 

gratings, presented after or before adaptation, interfere with the 

aftereffect more than low luminance gratings (Skowbo, 1979). In a 

study of the persistence of the aftereffect, Jones and Holding 

(1975) reported that test measurements, using achromatic gratings, 

permanently reduce the effect but little decay 'occurs over an 8 day 

period, following adaptation, if no test patterns are viewed. Skowbo 

et al (1974) found that, although achromatic gratings produce a fast 

decay, homogeneous chromatic fields, natural visual stimulation and 

complete darkness had a similar much less rapid decay. However, 

MacKay and MacKay (1974a, 1975a) have found that no decay at all 

occurs if an eye is kept in complete darkness after adaptation, even 

though the aftereffect In an eye exposed for the equivalent period, 

to either diffuse light or the natural environment, dec,ays 

substantially. An eye kept in darkness retains the McCollough effect 

until it too is exposed and then it decays in exactly the same 

manner as the eye which was originally exposed. MacKay and MacKay 

(1975a, 1977b) also report that, when studying the decay of the 

McCollough effect for several days, the effects were often higher

t
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following sleep than the effects measured the night before. They 

suggested that these results indicate that the McCollough effect is 

not caused by fatigue of colour coded edge-detector mechanisms, as 

originally proposed (McCollough, 1965), but by something like 

associative habituation of synaptic couplings, since decay only 

occurred when some stimuli or interference occurred within the eye.
I

2.9. Further factors affecting the variability of the 

McCollough Effect

Although many of the factors which influence the McCollough 

effect have been investigated, numerous inconsistencies exist 

between reports from different investigators. Detailed inspection of 

various reports, and my own preliminary investigations, have 

revealed that, even when the known factors are kept constant, 

considerable intrasubject and intersubject variability still exists.

Recent evidence has shown that the McCollough effect is 

probably not due to selective adaption of colour sensitive 

edge-detector neurones, but to some associative (possibly synaptic) 

habituation (MacKay and MacKay, 1974a, 1977b). It is possible that 

many factors of normal .life may disrupt the linking or breaking of 

these associations. Such elements could include hormonal levels, 

different food intakes, different drug levels and varied visual 

stimulation. A number of reports have indicated how the McCollough 

effect can be affected by these factors. Recent evidence has shown 

that some drugs may influence the McCollough effect (Shute, 1978, 

1979; Amure, 1978, 1979). Shute has shown that agents affecting 

cholinergic function (hyoscine, ethopopazine, mecamyamine), 

tranquillisers (benzodiazepines) and agents influencing the
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catecholamine system (premoline) all- reduce the decay and raise the 

initial strength of the McCollough effect. Caffeine reduces the 

initial strength and produces faster decay of the effect (Shute,

1978j Amure, 1979); nicotine reduces the decay of the effect (Amure, 

1978). Bradshaw (1978) found no effect using a number of 

barbiturates or an amphetamine. Dr. V. MacKay (personal 

communication)' found that the McCollough effect varied when induced

at different times of the day. This may indicate the influence of
■ • ■ ■ ■ ■  ji

diurnal changes in hormonal levels. When a period of sleep interrupts 

the measurement of decay the McCollough effect is larger after sleep 

than the effect measured immediately before (MacKay and MacKay, 

1977b). This may also reflect some diurnal change.

A number of reports have demonstrated the influence of 

different visual stimulation on the McCollough effect, after 

adaptation (see section 2.8.), but little has been reported about 

the effect of pre-adaptation visual stimulation. Skowbo (1979).has 

demonstrated that high luminance gratings, presented beforeI
!adaptation, reduce the initial strength of the McCollough effect. 

Visual stimulation before adaptation may be an important factor in 

the variability of the effect, as it may vary on different days and 

between subjects..
i

I * »
• The research reported in this thesis has attempted to isolate 

some of the factors responsible for the variability of the

McCollough effect
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CHAPTER.3: EQUIPMENT AND EXPERIMENTAL PROCEDURE

3.1 Introduction

Members of the Department of Communication and Neuroscience had 

been researching into certain aspects of the McCollough effect for 

some time. The equipment available, with a few modifications, was 

adequate for all the experiments reported. Two pieces of equipment
Iwere used for the experiments; a tachistoscope for,induction of the 

effect and a variable hue device for measuring both its pre- and 

post-induction strength. The tachistoscope was also used to present 

visual stimuli before or after induction (see Chapters 8 and 9).
i

I '

3.2 Induction of the McCollough Effect

The McCollough effect was induced using high contrast patterns 

with various colour filters presented by the tachistoscope to one or 

both eyes.
«

3.2.1. Tachistoscope

A four field tachistoscope .(fig. 3.1.) was used to present the 

induction stimuli. In every experiment two alternating stimuli were 

presented for equal periods of time with a dark interval between.

The length of the stimulus 'on* periods could be varied from 0.1 to 

20 seconds by changing the duration of the square wave pulse
l

provided to each field. Repeat accuracy was in the range of +0.5% to 

+2%. The dark, or 'off', periods could be varied by changing the 

duty cycle with a Wavetek Function Generator. The duty cycle was 

controlled by two outputs from the Wavetek which were 180° out of
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Fig. 3.1.Tachistoscope CAfter Bradshaw 1978}

D, Perspex diffuser: P, Adaptation pattern and filter: B, Beam 

splitter: F, Front surface mirror: T, Fluorescent tube.
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phase. Frequent checks .of both the ton' and 'off' periods were made 

using a light sensitive cell and a storage cathode ray tube. Each 

field was back-illuminated, during the 'on' period, by two 

fluorescent tubes (54vl 'Daylight')• A perspex 'milk-white' 

diffusion screen ensured uniform illumination of the entire field. 

Pattern frames, with a window 10.5cm. square (12x12" angular 

subtense at the eye), were used to locate the patterns .accurately. 

Fixation circles, with a diameter of 1.75cm (2* angular subtense at 

the eye), were scratched into the surface of clear perspex sheets. 

These sheets were positioned in front of each field. Illumination of 

the edge.of the perspex sheets with low voltage bulbs caused the
i

fixation circles to glow. Metal slide guides were used to retain the

tube boxes, the diffusing screen, the induction patterns and thejl
clear screen.

Fields 1 and 2 were used to present alternating stimuli to the 

right eye and fields 3 and 4 presented stimuli to the left eye. 

Fields 1 and 3 were triggered simultaneously from output A of the 

Wavetek, and fields 2 and 4 were triggered simultaneously from 

output B. The stimuli to the two eyes were usually identical (i.e. 

fields 1 and 3 and fields 2 and 4 contained identical stimuli). The 

fields were optically superimposed by an arrangement of

front-silvered mirrors and beam splitters. The front-silvered
!

mirrors could be finely adjusted with screws to ensure 'that the 

fields were superimposed binocularly. Thé beam splitters could be 

rotated in the horizontal and vertical planes to superimpose the 

fields to each eye. The fixation circles of the four fields were 

superimposed. This arrangement helped binocular fixation in both the 

•on' and 'off' periods. A central dividing screen, in the 

tachistoscope, restricted light scatter to either eye. Stimuli were
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presented monocularly by switching two fields off (either fields 1 

and 3 or 2 and 4).

t

3«2.2. Patterns

i •*

The patterns used were square wave gratings of:2.85 cycles per 

degree presented at orthogonal oblique angles (+45 and -45 to the 

vertical). Most investigators in other laboratories have used 

horizontal and vertical gratings. Oblique gratings were used here 

for two reasons. Firstly, the man-made environment contains more 

high contrast vertical and horizontal edges than oblique ones. If 

such edges are coloured they can induce small McCollough effects 

either before an experiment or during decay. Non-coloured edges may 

also influence the McCollough effect as gratings presented before or 

after induction interfere with the effect (Skowbo 1979). These 

influences may result in scatter or bias. The use of oblique 

gratings does not eliminate the problem but does reduce it.

Secondly, special sensitivities for horizontal and vertical 

orientations have been found ih the human visual system (Campbell,
i *

Kulikowski and Levinson, 1966; Hirsch, Schneider and Vitiello,

1974). The horizontal and vertical sensitivities were not identical. 

Oblique gratings are therefore more balanced with respect to each 

other.

3.2.3. Colour Filters

In every experiment reported one induction pattern was 

projected through red (590-670nm) and the other through green 

(480-560nm) 'Cinemoid' filters (14 and 24 respectively). The 

patterns were matched for luminance by using two layers of red and
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three layers of green filter.

Many investigators have used 'Wratten' magenta and green 

filters (34a or 32 and 53 respectively) which are exact complements 

of each other. These filters, however, are band stop filters and the 

magenta transmits blue wavelengths. The ’Cinemoid' filters were 

preferred because they are fairly narrow band pass filters.
: • i

!
■ j

3.2.4. Luminance

. t
The.luminances of the coloured stripes of the gratings were

matched at approximately 5mlm. The luminances of the dark stripes
l *

were approximately 0.2mlnw *

3.3. Measurement of the McCollough Effect

The presence or absence of the McCollough effect can be tested 

simply by providing an achromatic test pattern of appropriate 

spatial frequency and asking for a verbal report. The experiments 

reported in this thesis, however, required a quantitative measure of 

■the strength of the effect. Verbal reports were recorded but a 

colour matching device was used to obtain, in arbitary units, an 

objective measure.

3.3.1. Apparatus
I *

The apparatus used to record the strength of'the effect (fig.
I ■

3.2a.) was a modified version of the equipment used, by MacKay and 

MacKay (1973b, 1975b). The measurement of the effect was made by a 

'match and null' technique (see Appendix A for a .discussion of
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Fig. 3.2

Ca) Test Apparatus.

C, Moveable red and green filters: p, Projector: D, Diffusing paper: R, Ring tube:

Sh, Shutter: 0 , Chin rest: Pe, Pen motor: T, Test pattern: W, White reflecting card.

(b) Test Pattern

Projector Aperture

II

Cc) Adjustable Colour Filters 

S, Slit in filter:
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methods of measurement). The test pattern (fig. 3.2b.) consisted of 

two orthogonally orientated achromatic gratings positioned side by 

side, with a small translucent window in each half.; The gratings of 

the windows were orthogonal to the surround gratings. The whole test 

pattern was 15cmx15cm (10*30' angular subtense at the eye) and the 

windows were 6.5cmx2.2cm (4*35'x 1*35' angular subtense at the
• ' Ieye). The gratings were 2.85 cycles per degree. The; windows were

|

illuminated from the rear by reflection from a 100W projector. The 

pattern was illuminated from the front by an annular fluorescent 

. tube (Cryselo 'Warm White' 32W), which could be adjusted to match

the windows. The luminance of the white stripes was 4mlm and that of
! * '

the dark stripes 0.1mlm. The mean test luminance was thus lower than 

the mean luminance of the induction gratings. White (1976) has 

reported that the largest McCollough effects were seen using high 

luminance induction gratings and low luminance test gratings. The 

front illumination was slightly yellow to match the yellow produced 

by the red-green mix of the windows. The subjects were kept at a 

fixed distance'from the test pattern by a chin rest. The test 

pattern could be presented binocularly or monocularly to either eye 

by means of a shutter which could cover either or neither eye. Red 

and green filters were positioned in front of the 100W projector 

lens (fig* 3.2c.). They were attached to a pen motor by an extension 

arm and could be moved over the aperture of the projector. The

displacement of the red-green boundary and thus the ratio of red to 

green.light being projected, provided the colour change of the

apparatus. The light was projected onto a white card which reflected
i ^

it to the back of the translucent windows of the test patterns. The 

colour was desaturated by a slit cut in the filters, which admitted 

a fixed amount of white light. A smooth knob controlled the input to 

the pen motor, so that little indication of its position was given
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/
to the subject. The shift circuit of the Y-axis of an X-Y chart

i
recorder received a parallel input to the pen motor!. The movement of 

the red-green boundary was thus linearly related to the movement of 

the marker pen of the recorder (see section 3.3.2c.). A switch 

arrangement moved the zero of the marker pen to one,of three
i •

positions on the chart to allow, the binocular, right eye and left
i

. eye records to be separated. The X-axis of the,chart recorder 

allowed the McCollough effect to be measured as a function of time. 

The tests required the subject to match the colour of each window 

with its surround. A two way switch was used to drop the marker pen 

onto the .chart. Moving the key one way caused the pen to drop and 

make a dash on the chart, while the reverse movement caused the pen 

to make a dot. The difference between the marks was linearly related 

to the displacement of the red-green boundary and represented the 

difference between the excess of red over green at one window and 

the excess of green over red light at the other window. This 

difference was taken as the measure of the McCollough effect a,t that 

time.

»
3.3.2. Calibration of the Apparatus

i

The linearity and sensitivity of the test apparatus was
»

investigated using the following methods:

(a) Projector luminance

The red-green boundary was moved over the projector aperture,

therefore it was necessary that the luminance of the aperture was

uniform. Noh-uniform luminance would lead to the colour and 
> « 
luminance of the test being confounded. The luminance was made as

|

\
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uniform as possible by using diffusing paper within the projector.

It was measured at 1cm intervals across the aperture using a 

photometer, and did not vary significantly.

(b) Linear range of the filters

t

The red and green filters on the extension arm were arranged so 

that a full scale deflection of the potentiometer controlling the 

colour match just moved the boundary to either edge of the projector 

aperture. The slit in the filters admitted the same amount of white 

light over the whole range. The maximum range of the red-green 

boundary corresponded to a deflection of 8cm of the marker pen on 

the chart recorder. The McCollough effect observed were seldom more 

than 5cm. The surplus deflection was necessary as the measurements 

were often 'slewed', each adapting colour inducing a different 

effect (see section 3.7.3.). This slewing effect varied in magnitude 

and polarity between subjects.

(c) Chart recorder and pen motor relationship

l

The relationship between the pen motor and thè chart recorder 

was investigated by measuring the displacement of the red-green 

: boundary for each 1cm movement of the recorder pen. Each 1cm 

movement of the pen was found to correspond to equal displacements 

of the boundary. The relationship was therefore linear.

(d) Relationship between the test card colour and the colour match

The test equipment was used to study a large range of 

aftereffect strengths. It was necessary that the apparatus should be

I
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able to measure different strengths equally well. This ability was 

tested by studying the colour match of the windows in relation to 

the colour of the surround. Subjects first made a colour match of
lthe upper and lower windows with their respective surrounds. This 

indicated any orientationally linked bias present. Only subjects 

with no initial bias were used. Red filters were then placed over 

the annular fluorescent tube which illuminated the test pattern. As 

the filters were added the surround became progressively more red 

and subjects made repeated colour matches until the tube was 

completely covered. The colour saturation of the test card was then 

greater than any observed aftereffect for any subject studied.

Colour matches were also made as the filters were removed. The whole 

procedure was then repeated using green filters. The results are 

plotted in fig.3.3. and show a smooth curve. This shows that the

equipment is equally sensitive throughout the range 

aftereffects measured.

of the

(e) Time

t
The chart recorder plots could, be read to 0.05 minutes with the 

paper speeds generally used.

3.4. Experimental procedure

The experimental procedure normally consisted of three phases:

(1) a pre-induction test to check for any orientationally' linked 

colour bias or residual aftereffect?

(2) an induction phase which consisted of a period of exposure to 

alternating orthogonally orientatated gratings of opponent colours;

(3) a post-induction phase during which the strength of the induced
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Extra pre-induction tests were performed for the experiments 

reported in Chapter 8. The experiments reported in Chapter 9 

required two or more periods of post-induction measurement.

3.4.1. Pre-induction Test

aftereffect was measured over a period of time.

All experiments were conducted at a low level of room 

illumination.This level remained constant throughout the experiment. 

Before the pre-induction test took place the subject adjusted to 

this level while the procedure was explained. A chin rest ensured 

that the subject viewed the test pattern from a fixed distance of 

72cm. The luminance of the surround was adjusted to match that of 

the windows'while the colour bias was neutral. As the subject viewed 

the test pattern he was shown how to vary the colour of the windows 

with the smooth knob. It was explained that his task was to match
i

the colour of the upper window with its surround and to press the 

key, connected to the pen of the X-Y chart recorder, away from him 

and then to match the colour- of the lower window with its surround, 

pulling the key towards him. He was told that turning the knob too 

far one way would make the window too green and the other way too 

red. The subject was requested to make the match carefully but 

rapidly by deciding on the best position if the match did not seem 

perfect. Before the pre-induction tests were performed subjects were 

encouraged to practise with the apparatus.

I
' !

The pre-test measurements were recorded by matching upper and 

lower windows alternately with the left eye, right eye and 

binocularly using the shutter. This sequence was varied but was 

always repeated four times. The time taken to perform these tests
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varied between 0.5-1.5mins. The pre-rtest bias was then calculated by 

averaging the difference between the upper and lower settings for 

each condition. Subjects whose bias was high (above: 0.5cm) wereI
asked to return a few days later to check whether the bias had 

faded. Some astigmatic subjects, however, had a constant bias. Any 

orientationally linked bias of the subjects that remained was either 

added to, or subtracted from the post-induction readings, according 

to the relative polarity of the bias.

3.4.2. Induction Procedure

. . i
After the pre-test period the subject swung hi,s chair to view

t

the tachistoscope. He was asked to support his head on a chin rest 

and to position it so that each eye directly viewed a front- 

silvered mirror. The exposure commenced 10-30secs. after the 

pre-test. The fixation circles *were illuminated to ensure binocular
i ''

fusion of the field. The tachistoscope was then- switched to ; 

automatic triggering mode. The ’on’ and ’off' periods required were 

adjusted before the experiment began. Each field could be 

illuminated for different periods and have variable onset 

asynchron y For most experiments two identical fields were 

triggered simultaneously, alternating with two opposite fields which 

were also triggered simultaneously. The colour and orientation 

pairings could be easily altered by changing the colour filters or 

the gratings of the fields. A number of experiments used monocular 

stimulation only. During these experiments either the right or left 

fields were switched off and the unstimulated eye was covered with 

an eye patch. The exposure period varied with different experiments 

and was measured with a stop watch. The time was independeitly 

recorded on the chart recorder. During the exposure the subject was

i



instructed to allow his gaze to move constantly around the fixation 

circle. This procedure allowed some standardisation of eye movements 

amongst subjects and ensured equal exposure to light and dark bars 

of the test pattern. Subjects were asked to report any afterimages 

during adaptation, particularly during the 'off' periods. At the end 

of the exposure period the subject was told to turn away from the 

tachistoscope and to gaze around the room, but not at the test 

pattern. '■

3.4.3. Post-induction Tests

The post-induction tests started one minute after the end of
r '

the exposure period. The one minute period was introduced for 

several reasons; firstly to allow subjects to become accustomed to 

the room lighting: secondly to remove some variability from the 

results; and thirdly to allow any afterimages to decay. A large 

aftereffect decays rapidly over the first few minutes and tests made 

before one minute are extremely variable. The colour match procedure 

was the same as the pre-test procedure. The order in which the left 

eye, right eye and binocular recordings were made was varied. In 

some experiments, however, the order of testing depended on the 

conditions used. Three sets of colour matches were made. The 

subjects were also asked for a verbal report of the test pattern. If 

no colour was reported subjects were requested to decide which half 

of the test pattern seemed to be most red or green.

Some experiments required measurement of the aftereffect over a 

period of time so that the decay could be studied. Recordings were 

taken at set intervals (see section 3.7.2.) which were measured by a 

stop watch. The time was also recorded by the chart recorder. To
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standardize the illumination the subject usually remained in the 

experimental room during the decay period.

3.5. Subjects'

All the subjects were adult staff or students at the University

of Keele. The subjects were all tested for colour vision

abnormalities using Ishihara plates and for acuity using a Snellen 

chart. Some subjects with poor acuity were used for the experiments 

reported in Chapter 7. Most subjects were naive initially but learnt 

of the nature of the McCollough effect at some stage. All were naive 

as to the particular purpose of any series of experiments (except

NJL).

3.6. Subject Reliability
I

3.6.1. Colour match settings

The reliability of a group of match settings depended upon the
i

strength of the aftereffects measured. Strong aftereffects were 

generally more variable than weak aftereffects. The standard 

deviation for strong aftereffect was usually in the range of 10-20%. 

For weak aftereffects (below 2.0cm) the standard deviation was 

usually in the range of 10-15%. A large proportion of the deviation 

in the strong effects apeared to be a systematic change due to rapid 

decay. Pre-test readings and just detectable aftereffects'had a 

standard deviation of 10-25%.
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t
3.6.2. Repeatability ! '

When experiments were repeated with the same subject the 

aftereffects varied in strength. Some causes of this variability 

were found during the course of the experiments and were then 

controlled. The variability changed therefore from about 12% at 

first to about 8% towards the end.

3;7. Decay curves

Various aspects of the decay were investigated in order to 

determine the validity of the 'match and null' method of 

measurement. The red and green components of the decay curve were 

also investigated. All the decays were recorded binocularly and 

monocularly, after an induction of 15 minutes comprising of 1 second 

'on' and 4 seconds 'off' periods.  ̂ i

t

3.7.1. Comparisons of methods of measurement

Numerous methods have been used to measure the McCollough 

effect. It has been claimed that the 'match and null' method leads 

to a 'different type of (decay) curve' which results 'from some 

special feature of the method' (Shute 1979). Comparisons of the 

'match and null', a null and a match method, were made to 

investigate this claim.

!

The apparatus could be modified to provide a pure match or a 

pure null measure of the aftereffect. A match measure was provided 

by substituting the normal test pattern with one which had 

homogeneous achromatic windows '(fig. 3.4a.), The windows were



(a} Match method test pattern

Cb) Null method test pattern
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matched to the surround gratings without being nulled. The decays

were compared using the match and null method in one eye and the

match method in the other. Since control experiments had shown that

the initial strength and decay curve did not vary significantly
\

between the two eyes for the subject used in this experiment, 

comparing the two eyes was a valid way of comparing the two 

measuring methods. The methods of measurement were reversed in a 

later experiment, to check for any bias produced by either eye. The 

results (fig. 3.5.) show that the match method gives a measurement 

which, as would be expected since no null measure was involved, is 

approximately half that given by the match and null method. The 

decay curves do not vary significantly.

A null measure was provided by substituting the normal test 

pattern with a transluscent pattern without windows. The two halves 

were separated by a homogeneous black bar (fig. 3.4b.). The upper 

and lower halves of the pattern were nulled without matching. 

Comparisons with the match and null method were made by using the
i *

null method in one eye and the match and null in the other. The 

measurement method used in each eye was reversed in a later • 

experiment. The results (fig. 3.6.) show that the null method gives 

a measurement which, as would be expected since no match- measure was 

involved, is approximately half that provided by the match and null 

method. The decay curves do not vary significantly.

The decay curves obtained by a match method and a null method 

show similar characteristics to those obtained with the match and 

null technique. The decay curves reported in this thesis are not, 

therefore, due to some peculiarity of the method used to obtain

them
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Fig. 3.5. Comparison of Match and Match and Null decay measures

3.6. Comparison of Null and Match and Null decay measures
i

\
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3.7.2. Measurement Intervals

The decay curves'reported in this thesis have been recorded by 

repeated testing after induction. A number of reports have indicated 

that testing the McCollough effect either causes or hastens its 

decay. Jones and Holding (1975) have compared the decay of the 

McCollough effect after repeated testing and time-elapse testing. 

They found that the repeat test procedure resulted in a linear 

decline of the aftereffect but the time-elapse, or delayed, test 

procedure resulted in little decrease of aftereffects measured up to 

120hrs. after induction. When the delayed test subjects were 

retested they showed a greatly reduced aftereffect. Jories and 

Holding concluded that this was due to the first test. Skowbo, 

Gentry, Timney and Morant (1974) have found that exposure to 

achromatic gratings causes marked fading of the McCollough effect. 

Since the test procedure requires exposure to acromatic gratings, 

their results would suggest that repeated tests reduce the 

aftereffect strength. j
j

t
It has been suggested that the decay curve which is usually 

obtained in this laboratory results from the test time intervals 

used to measure it (Shute 1979). MacKay and MacKay (1973b) have 

found that a typical aftereffect decays rapidly at first and then 

decays at an ever decreasing rate and sometimes takes several days 

to fade completely. This produces curves which are straight on 

either log-log (MacKay and MacKay 1973b) or linear-log plots 

(Bradshaw 1978; White 1976). The test time intervals used in this 

laboratory have therefore been at 1,5,10,20,40,60,80,100 minutes and 

then every 100 minutes after the induction period. The claim that 

this results in abnormal decay was investigated by,using a number of

1
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different test time intervals. Three schedules were used: one using 

shorter intervals of 1/3,5,10,15,20,30,40,50,60,70,80,90,100 

minutes» and. two using longer intervals of 1,20,60,100 minutes and . 

30,60,100 minutes.

The decay curves obtained for both the short (fig. 3.7.) and 

the long (fig.1 3.8.) intervals do not vary significantly from the

normal test intervals. These results show that the intervals which
jihave been used do not unduly influence the decay. Although they do 

not prove that systematic differences which are due to the test 

procedure are not present, they do indicate that the reduction, or 

induction, effects are negligible. The repeated testing procedure 

seems to be a valid method.of measurement which provides a rapid way 

of obtaining data. Similar results and conclusions have been 

obtained by White (1978) who' compared his repeat test procedure with 

a number of delayed test results obtained after 1,4,16 and 96hrs. 

Although the delayed test aftereffects strengths were usually

different they were 'too high' or 'too low' equally>often for each
i

decay time. White concluded that 'repeated testing seems valid, fora

first approximation to measuring the time course for form-contingent
r

colour aftereffect decay'.

\

3« 7,3. Red and green decay

Preliminary experiments revealed that different aftereffect 

strengths were produced by the red and green induction gratings.

This 'slewing' effect varied between subjects in strength and 

polarity but usually the pink aftereffect, produced by the green 

gratings, was stronger than the green aftereffects Stromeyer (1972a) 

has suggested that the McCollough effect consists of two components
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g. 3.7. Comparison of de,cayB produced by normal and short measu r e m e n t  interval

3.8. C o m p a r i s o n  of deoays produced by normal and long m e a s u r e m e n t  intervale.
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which decay at different rates and produce an aftereffect which 

decays rapidly at first then more slowly. A number of experiments 

were performed to investigate this suggestion.

I
(a) Normal Induction '

i!

It was possible to indentify the red and green components of 

the aftereffect using the pre-induction readings. These readings 

were made with little or no colour bias and represented the 

'neutral' position on the chart recorder. Points to one side of the 

pre-induction readings represented the pink aftereffect and points 

on the other side represented the green aftereffect. A slight error 

was involved as normally the pre-test registered an initial bias of

0.1-0.3cms and the three or four readings were scattered in á range 

of 0.2-0.5cms. The neutral position was taken as the mid point of

the scatter and therefore could have been mis-placed by a few
!

millimeters. However, this was only 0.1-0.5% of the initial 

strength. The results (fig. 3.9.) for two subjects show that the 

pink aftereffect is slightly stronger than the green, but the decay 

curves do not vary significantly. Most subjects reported verbally 

that the pink hue of the aftereffect was more vivid than the green. 

Stromeyer (1969) has noted that after induction with various 

filters, the red aftereffect is the most commonly reported.

(b) One Colour Induction

Stromeyer (1969) has shown that McCollough effects can be 

produced by using one colour with one orientation pattern. In order 

to study the slewing effect more closely, one colour and orientation 

was presented to one eye and the opposite pairing was presented to



Fig. 3.9.
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the other. The stimuli were presented in the reverse arrangement in
i

a later experiment to enable any bias produced by either eye to be
i

removed. The results (fig. 3.10.) show that no bias was produced by 

the eyes and although the pink aftereffect is higher, the decay 

curves are not significantly different. The difference in the 

initial strength of the red and green components, therefore, does 

not alter the overall shape of the decay curves.

3.8. Terminology.
i 1

The strength of the aftereffect throughout the test of the * 1
thesis will be described simply as a number. This number represents 

the average number of centimeters between the recorder pen marks 

for each condition (i.e. an average strength of 2.6cms will be 

referred to as 2.6). Decay measurement times refer to the time from
i *

the .end of the induction period not from the beginning.

V•*
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CHAPTER 4 EXPLORATORY EXPERIMENTS

4.1. Introduction

The main body of the research reported in this thesis stemmed 

from observations regarding the variability of results in some 

preliminary experiments on the McCollough effect. Because of the' 

scale of this variability, it was decided to look for factors which
t

appeared to have a systematic effect on the decay or the strength of 

the OCCA. Although the early experiments were not designed to 

investigate variability, many extraneous factors which might have 

affected the aftereffect were recorded.
t

The experiments, initially suggested by Prof. D.M. MacKay, 

followed on from thesis work by Dr. K. Bradshaw (1978). These had 

three concernst the effect of altering the temporal characteristics 

of the induction period; differences between monocular and binocular 

aftereffects; and the build-up of the aftereffect. They will be 

briefly described in order to illustrate the variability which 

emerged.

4.2. Controlled factors

In all the experiments reported in this chapter, certain 

factors were controlled, or recorded, because previous research had

shown that they could affect the characteristics of the McCollough
«

effect.

■i

All experiments were conducted in a room of constant low 

luminance (4mlm) and subjects were exposed to this illumination
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lOmins. before the experiment began, as well as during the pre-test, 

induction and post-induction phases. Induction and test gratings

were at constant luminance, as it has been noted that high luminance
;i

induction gratings with low luminance test gratings produce higher 

aftereffects (White, 1976). It has also been demonstrated that high 

luminance gratings, presented before or after induction, reduce the 

OCCA strength (Skowbo et.al., 1974; Skowbo and Clynes, 1977; Skowbo, 

1979). MacKay and MacKay (1976) have shown that total darkness 

arrests the decay of the McCollough effect. In all aspects of the 

experiments constant luminances were found to be essential to reduce 

variability.

The 'on' and 'off' intervals of the induction period were also
1

carefully monitored since Bradshaw (1978) has shown that changes in 

either of these intervals affects both the strength and the decay of 

the aftereffect. The duration of the induction period was fixed for

each set of experiments. Decay measurements were made at fixed
*

intervals (see Section«3.7.2.) but although they began at the same
i

time there was some variation in the time taken to do them.

Another factor thought likely to cause variation in the 

McCollough effect was diet. It has been shown, for example, that 

various drugs, including such common agents as caffeine and 

nicotine, affect both the decay and the strength of the aftereffect 

(Shute, 1978; Amure, 1978, 1979). The subject's diet was not 

controlled, but various aspects of it, including any medication, 

were recorded. Most experiments were performed in the morning to 

reduce the possibility of diet variation.
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4.3. Temporal characteristics of the Induction Period

The experiments recorded in this section were performed in 

order to analyse the effect of varying the 'on* and 'off' intervals 

of the induction period.

(a) Intersubject
\

A number of subjects were used for several of these runs, all 

of whom had normal, or corrected, acuity and normal colour vision. 

Table 4.1 shows the initial OCCA values for 4 subjects after various 

induction sequences.

Table 4.1.

SUBJECT NJL MJM RJM NM MEAN S.E

INDUCTION SEQUENCE

ON OFF

0. 1 1.9 1.4 1.7 0.5 1.3 1.23 0.26

0.2 1.8 1.6 1.7 1.1 1.3 1.43 0.14

0.4 1.6 2.3 3.0 2.6 2.8 2.68 0.15

0.8 1.2 1.5 3.1 4.5 2.5 2.9 0.63

1 1 2.1 5.6 2.9 2.1 3.1 0.32,

0.1 0.1 0.6 1.8 — — 1.2 0,60.

0.1 1 0.8 1.2 — — 1.1 0.26

The above table shows large differences in the initial OCCA for 

all the induction sequences although the conditions were identical
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for each subject. These differences were not always consistent. For
*

instance, though in general subject MJM had larger OCCA's than the 

other subjects, on one occasion (using induction sequence of 0.8s 

'on* and 1.2s 'off') subject RJM developed a substantially higher 

aftereffect. This difference in variation between subjects occurred 

many times in the exploratory experiments. Fig. 4.1 shows the decay 

curves of the McCollough effect for the 4 subjects after 4 different 

induction sequences. These also show large and inconsistent 

variations.

(b) Intrasubject

Two subjects repeated some of the experiments a number of times 

and the initial strengths of the repeated runs are shown in table
l

4.2

Table 4.2.

INDUCTION SUB. NJI» MEAN S.E.

SEQUENCE

ON OFF

0.1 1.9 0.9 1.3 0.8 1.4 1.1 0.15

0.2 1.8 1.1 1.6 1.2 1.7 1.4 0.15

0.4 1.6 1.5 2.3 2.5 — 2.1 0.31

0.8 1.2 3.4 3.6 3.0 3.4 3.35 0.12

SUB MJM ;

0.1 1.9 2.3 1.7 1.1 1.7 0.35

0.2 1.8 2.3 1.3 1.1 1.77 ; 0.3

0.4 1.6 3.0 1.3 1.7 3.03 0.66

0.8 1.2 3.1 3.3 ,3.1 3.17 0.06
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Table ,4.2. shows that each subject displays a range of 

variability for every induction sequence, even though the conditions

for each sequence were identical. This range of variability is!
typical for all the early experiments. The results indicate that 

the longer 'on* period of 0.8s was associated with less variability 

for both subjects. Some selected decay rates for the 2 subjects are 

shown in Fig. 4.2, and these alsp show intrasubject variability. 

Since the subjects were kept in a room of constant luminance while 

the decay was recorded, there was no obvious explanation for these 

results.

4.4. Build-up of aftereffect strength

Experiments were performed to investigate the build-up of the 

aftereffect, using various induction periods. Like the experiments 

in Section 4.3., they show large differences in the initial strength 

and decay, but also illustrate the variability of the build-up of 

the McCollough effect.

(a) Intersubject

In these experiments the induction period was varied in iength 

from between 5 and 30 mins. A constant induction sequence of 1s 

'on' and 4s 'off' intervals was used. The initial strength after 

each induction duration for 4 subjects is shown in table 4.3.
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Table 4.3.

SUBJECT MJM NJL GC RJM

INDUCTION

DURATION

5 2.1 2.1 2.4 2.95

10 2.67 2.37 3.1 3.13

20 2.8 2.43 4.13 3.87

30 3.83 3.05 4.05 3.7

The results again show intersubject variability in the initial 

strength as well as individual differences in the way the OCCA 

strength builds up. Two subjects have slightly lower initial 

strengths after 30 mins, than 20 mins, which suggests that they have 

reached a 'saturation* level. The other two subjects however, show 

no signs of reaching a saturation level, since the aftereffect is 

greater at 30 mins.

t

(b) Intrasubject

The sequence of experiments reported above were repeated by one 

subject MJM 3 times and these results are shown in table 4.4.
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Table 4.4.

INDUCTION MEAN S.E.

DURATION

5 2.07 2.1 2.55 2.24 0.16

10 2.1 2.67 3.05 2.6 0.27

20 2.9 2.8 3.9 3.2 0.35

30 3.83 4.07 3.63 3.84 0.12

These results show intrasubject variability for each induction 

period. Build-up of the aftereffect in another subject was ¡studied 

by measuring the strength at set intervals during the induction 

period. The length of the induction period was varied between 2 and 

32 mins, and the McCollough effect was measured at intervals of 

2,4,8,16 and 32 mins, for the longest periods and at appropriate 

intervals for the shorter periods. The sequence of experiments was 

repeated randomly 3 times and the results are shown in table 4.5.

Table 4.5

INDUCTION . MEAN S.E.

DURATIONS

2 1.3 1.7 1.6 1.57 0.12

2,4 1.45 2.3 ; 2.33 2.03 0.28

00* 1.9 1.87 2.43 2.06 0.18

2,4,8,16 2.3 ’ 3.26 3.03 2.86 0.28

2,4,8,16,32 3.8 3.77 3.7 3.76 0.03

The results again show large intrasubject variability and that 

the aftereffect does not always build up in the same way. The
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variability of the build-up can be seen more clearly,' in graph form 

(Fig. 4.3.).

Both subjects show that the longest periods of induction are
t

associated with less variability, of the results.

4.5. Monocular and Binocular results

A number of investigators have indicated that monocular and 

binocular McCollough effects vary slightly in strength and decay 

slope (MacKay, 1978). The experiments reported in this section 

were performed to clarify some of these variations. Monocular and 

binocular strengths were measured after 15 mins, of binocular 

induction, comprising various 'on' and 'off' sequences. • Since 

intrasubject and intersubject variability have already been 

illustrated in the previous sections, this section will be used to 

show how some runs, or sets of runs, could even show a reverse 

trend to previous results.

Two subjects repeated four induction sueqences a number of 

times. The induction sequences of 0.1s 'on', 1.9s 'off'; 0.2s 'on, 

1.8s 'off'; 0.4s 'on', 1.6s 'off'; and 0.8s 'on', 1.2s 'off' were 

presented binocularly and tested both binocularly and monocularly. 

Figure 4.4. shows a summary of the inital strengths.

In general it was found that with short 'on' periods (0.1 and 

0.2s) initial binocular test strengths were lower than results for 

monocular tests. The longest 'on' period (0.8s) produced higher
t i

binocular than monocular results. A few of the results 

(cross-hatched in the diagram) show a reverse in this trend. Some
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of the results reveal quite considerable variations in the initial 

strength.

The decay rates of the monocular and binocular■tests are shown 

in Fig. 4.5. The graphs indicate that the rates of* 1 decay were very 

similar for each test condition and both showed slower decay rates 

when the induction period consisted of longer 'on' periods.

However, both subjects show one'sequence of runs where this trend is 

reversed. If each subject's results are 'pooled' the aberrant 

result reduced the significance of the other results considerably.

4.6. Conclusions

The preliminary experiments reported in this chapter have shown 

considerable intra and intersubject variability in the initial 

strength, the decay and the build-up of the McCollough effect. In 

addition, they have illustrated how a few results can obscure or 

negate trends which have emerged from a large number of experiments. 

The variability of these experiments caused a shift in emphasis in 

the research. Later experiments were performed to isolate some of 

the factors causing this variability. In identifying these factors 

it was hoped that the experiments would give further indications of 

the nature of the McCollough effect.
i

These preliminary experiments also demonstrated a number of 

useful points for further research. They showed that induction 

periods consisting of relatively long 'on' and 'off' periods of 1s 

or more produced less variable and larger aftereffects. Other 

experiments have shown that long 'on' and 'off' periods produce 

larger OCCA's (Bradshaw, 1978). For this reason most of the



OC
CA

 S
tr

-.
ng

th
 

OC
CA

 S
tr

-e
ng

th

Fig- 4.5- Introoubjact voriabillty of monocular' and b i nooular decay
. MJM

0- J -1, j

6 6

1-

oo
•

▼ a

Voo
• V
• oo

■ o
va

▼ • m C*
10

■
20 40 60 80100

Time (mins)
4 i

3-,

2 -

1-

30 0  50(

0 . 8 - 1. 21

o

*0

3 ▼

o o
▼
o

T

o
V

▼ 
• '
o

o

5
O • Run 1 
û ■ Run 2 
* » Run 3

10 20 40 60 60100
T 1me Cm i ne)

300 500

Open eymbole represent monocular* tests 
Full symbol© rep r e s e n t  b i n o c u l a r  tests



OC
CA

 S
tn

en
gt

h 
OC

CA
 S

fc
i-

en
gt

b

67

3 í

2 i

H

O
O
▼
V

o «0
■

o

■ o o •▼ O
* 2

O 
• - Dr

ao

▼
ao

•oo CO 
f • 2

1 5 10 20
1 ■- ■ t * ».. .......

40 60 80100 
Tim« (min«)

o • Run 1
□ ■ Run 2 0p«n mym b o 1s r«pre»ent monocular»

Run 3 Ful 1 a y m b o 1• r e preprnt binocular“

300

ttsts
te«t«

500



68

experiments reported in this thesis have used 1s 'on' and 4s 'off' 

intervals during induction. The build-up experiments showed that 

the variability of the McCollough effect was higher below 10-20 

mins, of induction and that longer periods of induction produced 

more stable aftereffects. However, some subjects showed signs ofj
reaching a saturation level after 20 mins, of induction. Therefore 

the duration of the induction period was set at 15 mins, in order to 

give the maximum stability without saturation. Finally, the. 

binocular and monocular experiments indicated that when the 

McCollough effect was induced binocularly, most; subjects developed 

similar monocular aftereffect strengths which decayed at nearly 

indentical rates in each eye. This observation was used for the 

experiments reported in Chapters 8 and 9.
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CHAPTER 5 SLEEP AND THE MCCOLLOUGH EFFECT

5.1. Introduction

In their experiments MacKay and MacKay (1974a, 1975a and 1977b) 

reported that when a night's sleep intervened in the course of 

measuring the decay of the McCollough effect, the measured strength 

on waking was equal to, or greater than, the reading before sleep 

(fig. 5.1). They further noted that after as many as 10 hrs. of 

sleep there was no significant decay in the measured strength of an 

OCCA, induced just before going to sleep (MacKay and MacKay, 1977b). 

In normal circumstances a 10 fold decay would have been expected for 

the same initial strength. The observation that the readings after 

sleep were often higher than the night before was confirmed in some 

preliminary experiments by the author.

Typical examples of .time-course of McCollough 
effect over 2 days and nights [for same subject as in Fig. 2 
on different occasions with initial exposures of 12 min (□) 
and 20 min (0)]. Note apparent arrest of decay overnight 

(arrows). Scales of time and strength are logarithmic.
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During these experiments it was further noted that the initial 

strength of the McCollough effect induced after nights of poor sleep 

were usually lower than those induced following a normal night's 

sleep, even when identical induction conditions were used. It 

seemed possible that variation in the number of hours sleep was 

responsible for some of the variability of the McCollough effect. A 

number of experiments were performed to investigate this 

possibility.

1

5.2. Changing Sleep durations; bedtime variable,, induction hour 

f ixed

5.2.1. Introductory Experiments

There were a number of ways of varying sleep duration. In 

these introductory experiments subjects were asked to vary the 

number of hours sleep by changing the time of going to bed and 

waking at a fixed hour. Subjects were also requested to vary their 

sleep duration only after they had had a standard sleep on the 

previous night. The experiments were performed as far as possible 

at a standard hour each morning, a set interval after waking. This 

time and interval varied slightly between subjects, owing to various 

domestic factors, but was fixed for each subject. After the set 

interval, subjects spent 10 mins, in the laboratory, under standard 

illumination, before performing the pre-test. A McCollough effect 

was then induced by using a 15 min. period, comprising intervals of 

1s 'on' and 4s 'off'. Subjects were asked to eat and drink the same 

breakfast before each experiment and to expose themselves, as far as 

possible, to the same visual stimulation. These external factors 

were recorded on a standard questionnaire, shown in table 5.1.
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Table 5.1.

1. How many hours sleep did you have last night?

2. (a) How many hours sleep did you have the night before? 

(b) Is this about average?

3. How long have you been awake?

4. (a) Did you have a standard breakfast?

(b) If not, how did it vary?

(c) How many cups of coffee or tea have you had?

5. (a) Have you had any unusual visual stimulation?

(b) If so, what was it?

Each experiment was performed at intervals of 2 days or more 

after the previous induction to allow the OCCA to decay. The 

duration of sleep was varied randomly. Outside of laboratory 

controlled experiments it is difficult to assess accurately the 

amount of sleep that subjects have had and these experiments have 

relied upon their own subjective assessment. A number of reports, 

however, have indicated that such assessments are reasonably 

accurate (Baekeland and Hoy, 1971). Assessment of the shorter 

periods of sleep were likely to be underestimated and long periods 

of sleep overestimated (Johns, 1977).

The McCollough effects were measured after a standard 1 min. 

rest period following induction. Pre-test readings we're subtracted 

from this reading to give the initial strength. The results for one 

subject (NJL, Fig. 5.2a) show 24 runs spread over a period of 

several months. Periods of up to 5 hours sleep before the standard 

induction time made very little difference to the induced strength 

of the effect. For sleep periods from 5 to 9 hours, however, there
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Fig. 5.2 . Bedtime variable: induction hour fixed
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was a strong positive correlation between sleep duration and the 

initial OCCA strength. The results for 2 other subjects (Fig. 5.2b 

and c) show similar trends. They indicate that sleep deprivation 

reduces the initial OCCA strength, for a standard stimulus sequence, 

to half or two thirds of the strength developed after a full night's 

sleep (about 7.5 to 8 hrs. for all these subjects). Sleep 

deprivation belcw a certain level causes no further decrease. Even 

after a totally sleepless night, the induced OCCA was still at 

baseline strength. There is a critical point which varies around 5 

to 6 hrs. sleep, after which further sleep seems to boost the 

McCollough effect strength. One subject (RJW, Fig. 5.2c) was tested 

on two occasions, marked with stars, after suffering a week of 

repeated sleep deprivation. On these runs he failed to reach the 

ejected OCCA levels. A number of spot checks were made upon 

subject NJL to investigate the effects of repeated sleep 

deprivation. On 3 occasions the McCollough effect was induced after 

7hrs sleep following 3 nights of 5hrs sleep. The OCCA strength was 

found to be 2.0, 2.15, and 1.9 which compares with, an average of 

2.45 after standard runs (see Fig. 5.2a). This indicates that 

repeated sleep deprivation has a.cumulative effect upon the strength 

of the aftereffect.

The figures next to each point represent the number of days 

since the last induction period. These show no correlation with the 

strength of the McCollough effect but provide evidence that any 

'carry-over' between inductions was negligible and was not 

responsible for the trend that emerged.
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The trends shown by the 3 subjects in the introductory 

experiments were very similar. Both the start and the amount of the 

'upturn' in the graphs were the same. Later experiments showed that 

this similarity was somewhat coincidental and may have been due to 

the similarity in the sleep habits of the 3 subjects. All these 

subjects habitually slept 7.5 to 8hrs from between 12am and 8am.

This section reports the effect of changing the sleep duration of 2 

subjects who usually slept 9 to 10hrs. The results for these 

subjects are shown in fig. 5.2d and e. They show, as with the 

others, an increase in the initial OCCA strength after longer sleep 

durations. In this case however the 'upturn' in the graph occurs 

after sleep durations of more than 7hrs and is not as large. It 

seems that differing sleep habits lead to slightly different trends. 

The results of section 5.2.1. are not, therefore, characteristic of 

all subjects and variation in sleep habits could be the source of 

some intersubject variability of the aftereffect.

5.2.3. Further Subjects

5.2.2» Subjects with different sleep habits

Owing to the demanding nature of the experiments, there was a 

lack of subjects who were willing to undertake a series of runs. 

There were, however, a number of people who were willing to do 2 or 

3 runs. The experimental conditions and procedure were identical to 

those reported in section 5.2.1. The results for 7 subjects are 

shown on a composite graph (Fig. 5.3). Although these are too 

fragmentary to show detail they indicate that, in line with the 

trend shown in Fig. 5.2, longer periods of sleep are associated with 

an increase in the induced OCCA strength for all subjects.
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5.2.4. Induction hour In the late afternoon

One subject was conveniently sleep-deprived at regular 

intervals, owing to the nature of his research. He performed 

physiological experiments throughout the night and slept in short 

bursts, usually amounting to 3 to 4 hours. Unfortunately, the 

McCollough effect could not be induced and recorded until about 5 or 

6 pm, as his experiments continued throughout the day. The standard 

induction hour in these runs was, therefore, fixed at 6pm which was 

12 to 13 hours after waking. In all other respects the experimental 

procedure was identical to that reported in section 5.2.1.

The results (Fig. 5.4) show the same trend as that shown in 

Fig. 5.2, but are more variable. It is not clear whether there is a 

'baseline' level because the results for fewer than 6hrs. of sleep 

vary so much. In addition the standard error of each run is also 

very large. These variations may be due to a number of factors.

The runs below 6hrs. of sleep were recorded after short bursts of 

sleep during the night, rather than after a continuous stretch.

Agnew and Webb (1971) have reported that some subjects lack the 

ability to discriminate brief periods of sleep from wakefulness. 

Furthermore, since these runs were conducted 12 to 13 hours after 

waking, rather than 1/2 to 1 hour, it was impossible to have the 

same level of standardization of diet and visual stimulation as in 

the other subjects. For example, one possible factor, coffee 

intake, varied between 5 and 14 cups. It has been reported that 

caffeine, an active ingredient of coffee, influences the strength 

and decay of the McCollough effect (Shute, 1978). There was 

variation in both the type and amounts of other parts of the diet.
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The results have shown that changes in the prior sleep 

duration, or pattern, influence the initial strength of the 

McCollough effect. Since it is known that the decay of the 

McCollough effect is arrested by a period of sleep (MacKay and 

MacKay, 1974a, 1975a and 1977b), it was decided to investigate the 

effect of prior sleep duration upon the decay rate. Shute (1978) 

has reported that after sleep deprivation, the McCollough effect in 

one subject showed little or no decay. From this one might expect 

that the large OCCA observed after a good night's sleep would decay 

at a faster rate than the small effect observed after sleep 

deprivation.

The decay rate of the McCollough effect was recorded following 

a number of the runs reported in section 5.2.1. Decays were 

measured after having 4,5 or 8 hours sleep as the initial strength 

varies significantly after different sleep durations. The results 

shown in Fig. 5.5 indicate that, although the initial strength 

varies significantly, the decay slopes (on log-log plots) do not.

5.2.6. Conclusions

5.2.5« Effects of prior sleep on decay

The results show that the duration of sleep before a standard 

induction strongly influences the initial strength of the McCollough 

effect but has no measurable effect on the decay rate. The effect 

of prior sleep upon the strength of the McCollough effect may be due 

to a number of factors:

1. The amount of sleep.

2. As the bedtime was variable, the effect recorded at a fixed
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hour in the morning may result from a disruption of a circadian 

change, which occurs at a critical period during the previous 

evening.

3. The OCCA may be reduced by the extra visual stimulation 

received during the increase in waking hours.

4. The alertness and ability of the subject may be decreased 

owing to the lack of sleep.

A number of experiments were performed in an attempt to isolate 

the factor responsible.

5.3 Subject alertness and ability

One possible explanation of the results reported in section 5.2 

is that sleep deprivation affects the subject's alertness and 

ability. Both animal and human data hatfe shown that sleep 

deprivation affects psychological ability. Prior REM (rapid eye 

movement) sleep deprivation has been shown to impair discrimination­

learning in rats (Pearlman and Becker, 1973) and mice (Fishbein, 

1971). REM sleep deprivation, prior to training, impairs the 

formation of a permanent memory trace in man (Fishbein and Gutwein, 

1977). Tilley and Empson (1978) and Fowler, Sullivan and Ekstrand 

(1972) have shown that RfiM sleep facilitates memory consolidation. 

These results may be relevent to the trend observed in section 5.2, 

as REM sleep is known to increase in the last third of a normal 

night's sleep (Warburton, 1975) or after the first 3hrs'of sleep 

(Williams, Agnew and Webb, 1964). Sleep deprivation is known to 

reduce attentional control (Hockey, 1970; Fisher, 1980). Wilkinson 

(1968) showed that performance on vigilance tests was impaired when 

sleep was reduced to 2hrs. or less and that false reports increased
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below 3hrs. sleep. He also reported that below 3hrs. sleep, 

subjects' 'intrinsic capacity' to discriminate signals, and their 

willingness to report signal detections, decreased.i The runs 

reported in this chapter lasted approximately 25 minutes. Wilkinson 

(1961) has shown that sleep deprivation has little effect upon short

tasks (5mins or less) but does affect subjects' ability to perform
\

longer tasks (over 15mins). Wilkinson, Edwards and Hains (1966) 

have reported that 7-5hrs sleep on a single night had little effect 

upon the the vigilance of subjects but between 5 and 3hrs there was 

a steep decline in vigilance ability. Less than 3hrs caused no 

further decline. The trend observed in section 5.2. may therefore 

be due to sleep deprivation which affects the subject's ability to 

perform the colour match, or his ability to concentrate upon the 

induction patterns. Subjects reported that sleep deprivation does 

not seem to affect their ability or concentration. Two tests were 

performed during random runs to give an objective measure of their 

ability to perform the experiments.

1. The variability of the pre-test was recorded.

2. A contrast measurement was taken.

5.3.1. Pre-test Variability

The variability of the pre-test recordings was examined to 

assess the ability of the subject to perform the colour match. 

Since the pre-test measurements are performed with little or no 

colour bias, the subject should have about the same value and 

variability on each occasion, unless sleep deprivation impairs his 

ability. Table 5.2 shows the mean and the standard error of the 

pre-test readings of 3 subjects after different amounts of sleep.



8 2

Table 5.2.

SUBJECTS NJL MJM RJW

HOURS SLEEP MEAN S.E. MEAN S.E. MEAN

3 0.3 0.1 0.15 0.2 0.4 0.2

4 0.1 0.1 0.4 0.13 0.4 0.2

5 0.2 0.15 0.2 0.1 0.3 0.15

6 -0.1 0.3 0.3 0.05 0.3 0.12

7 0.25 0.05 0.0 0.07 0.25 0.17

8 0.2 0.13 0.2 0.17 0.35 0.14

The table shows that the pre-test variability does not vary 

consistently with the number of hours sleep. Fig. 5.2 also shows 

that, although there is some fluctuation in the standard error of 

the results, the variation does not correlate with the amount of 

sleep.

5.3.2. Contrast Measurement

A subject's ability to concentrate on gratings was assessed 

before a number of runs by recording the luminance at which they 

could no longer perceive a fine grating (18 cycles per degree). The 

grating was placed in an apparatus in which the luminance could be 

varied. The luminance at which the grating could just be seen was 

recorded. Six readings were taken before the pre-test procedure: 3 

as the luminance was lowered and 3 as it was increased. A smooth 

knob varied the luminance of the grating and the amoun't by which it 

was turned could be read to 2 degrees. It was found that the 

photometer could not accurately distinguish the luminance change 

caused by 8 degrees of turn of the knob and the results (Table 5.3.)
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have therefore been presented as the mean angle through which the 

knob was turned from zero.

1
Table 5.3.

SUBJECTS BA NJL MJM

HOURS SLEEP MEAN MEAN MEAN

3 135 138 139

4 134 140 135

5 135 136 139

>’ 6 138 136 135

7 137 141 138

8 133 137 136

They show that both the mean and standard error of the readings 

do not vary consistently with the number of hours sleep.

5.3.3. Conclusion

The subject’s ability to perform colour matches and to 

concentrate upon gratings does not seem to be impaired by sleep 

deprivation. The results reported in section 5.2, therefore, are 

not due to reduction in the subject's ability or concentration. 

Moreover one would expect that if reduction in the strength of the 

OCCA were due to impairment of ability, the decrease would continue 

with increased sleep deprivation and be maximum at Ohrs. The 

results show no further decrease of the McCollough effect strength 

after 3 to 4hrs sleep deprivation. Finally, one might argue that 

sleep deprivation in some way reduces the saccadic eye movements of 

the subjects and thus reduces the strength of the McCollough effect



since it has.been shown that lack of eye movements, or stabilised 

vision during induction results in no OCCA (Piggins and Leppmann, 

1973). This argument may be countered by the observation that 

during all the experiments reported here subjects constantly moved 

the direction of their gaze around a circle on the induction 

patterns to stop any fixation.

5.4. Effects of Darkness

8 4

It has been demonstrated by MacKay and MacKay (1975a, 1977b) 

that keeping an eye in darkness has the same effect as sleep upon 

the decay of the McCollough effect. They found that if one eye is 

totally occluded after equal effects are induced in both eyes, it 

retains the effect at full strength. The effect in the unoccluded 

eye, however, decays as a negative power function of time. When the 

occluded eye is exposed its OCCA begins to decay at the same rate.

5.4.1. Patching one eye for 5hrs. before sleep

One explanation of the results of section 5.2 could be that a 

lower McCollough effect is induced after short periods of sleep 

because of the extra exposure to light on the previous evening.

This possibility was investigated by wearing a light-tight eye patch 

over one eye for 5 hours, prior to sleep. In all other respects the 

experimental procedure was identical. Subjects varied the number of 

hours sleep by varying their bedtime and waking at a set hour. The 

results (Fig. 5.6a) show the same trend as, and are approximately 

the same values as the results shown in Fig 5.1a. Fig.- 5.6b shows a 

bar graph of the occluded and unoccluded eye readings after various 

sleep durations. Although the readings are not identical they do 

not differ significantly, or in a consistent manner. The results
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indicate that patching an eye before sleep has no effect upon the 

strength of the McCollough effect induced after waking.

5.4.2. Effects of patching one eye while sleeping

The possibility that extra^light stimulation causes a reduction 

in the McCollough effect was further investigated by occluding one 

eye with a light-tight patch while sleeping. The subject slept in a 

brightly lit room, of average luminance of 8mlm, so that one eye was 

deprived of light and the other received some stimulation all night 

through the eyelid. The results for the two eyes after varying 

amounts of sleep are shown in Table 5.4.

Table 5.4.

HOURS SLEEP OCCLUDED EYE UNOCCLUDED EYE

5 1.95 2.05

6 2.15 2.10

7 2.80 2.85

8 2.95 2.90

The results indicate that the effect of total light deprivation 

is not consistently different from partial light deprivation. 

Increasing sleep again shows a consistent increase in the OCCA

strength:
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5.4.3. Conclusion

The results show that the decrease in McCollough effect 

strength obtained after short periods of sleep is not caused by the 

increase in light stimulation on the previous evening. Although 

sleep and darkness both allow the effect to be retained when they 

interrupt a period of decay, darkness prior to induction has no 

effect.

5.5. Effects of patching in the morning

\

In this experiment a light-tight patch was worn.over one eye 

for various periods after waking, to determine the effect of 

darkness upon the McCollough effect later in the morning. The 

hypothesis being tested was that the variation in the strength of 

the OCCA observed on waking was a transitory effect which would fade 

during the day as a result of visual stimulation. To vary the sleep 

duration, bedtime was varied and the waking time was fixed at 8am.

No food or coffee was consumed before the induction period (because 

of the variation in the period between waking and induction).

Patches were worn for up to 6hrs after waking. Fig. 5.7 shows the 

effect of wearing a patch after sleep lasting 8hrs and 5hrs for 

between 0 and 6hrs after waking. The induction was performed 

10mins. after the removal of the patch, to allow the dark adapted 

eye to recover.

These results show that patching an eye after sleep does not 

increase or decrease the initial strength of the McCollough effect 

but that the prior sleep duration is correlated with the strength.
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They also indicate that the trend shown in Fig. 5.2 is not 

transitory, but is evident at least 6 hrs. after waking in either 

darkness or normal visual stimulation.

5.6. Bedtime fixed, induction hour variable

All the experiments described in the previous sections have)
changed the number of hours sleep by varying the bedtime and waking 

at a set hour. The results obtained could therefore be due not to 

the amount of sleep but to the timing of the sleep or the increase 

in waking hours at night. It i,s known that sleep has different 

effects on memory when it occurs in different halves of the night 

(Yaroush, Sullivan and Ekstrand, 1970). The increase in waking 

hours might conceivably affect some internal circadian rhythm during 

a critical period. The latter hypothesis could explain why the 

strength of the McCollough effect on waking increases after 5 to 

6hrs. sleep but remains stable for sleep durations between O and 

5hrs. The critical period in the experiments reported would then be 

from 11pm to 3am. It was decided to test this possibility by 

changing the method of varying the sleep duration. The number of 

hours sleep was altered by varying the waking time and keeping the 

bedtime fixed at 11pm. Experimental runs were performed only after 

nights when the subject had gone to sleep within 15 mins of going to 

bed. There was no independent measure of the time between going to 

bed and going to sleep (the sleep latency) but Johns (1977) has 

shown that subjective reports are 'valid as well as reasonably 

reliable and accurate*. Induction periods were as in the previous 

experiments, performed following a set interval after waking and the 

subject's diet and intervening visual stimulation were kept as



9 0

constant as possible.

The results (Fig. 5.8) show the same trend and are 

approximately the same values as the results for the same subject 

shown in Fig. 5.2a. The strength of the McCollough effect remains 

below 2.0 for sleep durations from 0 to 5-6hrs and then rises with 

further increase in sleep duration.

Conclusion

The results indicate that the strength of the McCollough 

effect, when induced on waking, is affected by the number of hours 

of prior sleep, but that the timing of the sleep has no significant 

effect. The trend observed in the original experiments was not 

therefore due to a disruption of some circadian rhythm during the 

previous night.

5.7. Bedtime fixed, induction hour fixed; sleep variable

Although the experiment reported in section 5.6 showed that the 

results are not due to a disruption of a circadian rhythm before 

sleep, it was possible that the trend observed could be due to 

internal physiological changes during the morning. The induction 

hour varied between 2.30am and 8.30am because of the changes in 

sleep duration. The possibility that the variation in the induction 

hour was responsible for the trend observed was tested by repeating 

the experimental procedure of section 5.6 but with the induction 

hour fixed at 8.30am. Intervals between waking and induction 

therefore increased with a decrease in sleep duration.
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Fig. 5.8. Bedtime fixed: induction hour variable
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Again the results (Fig. 5.9) show the samettrend as Fig. 5.2a. 

An ’upturn' in the graph does not occur until 7hrs sleep but this 

may reflect one aberrant result (at 7hrs sleep). The rest of the 

results do not vary significantly from those obtained on Fig. 5.2a.

Conclusion

The results obtained in section 5.6. are not due to the 

variation in the induction hour. The trends that emerged seem to be 

due to the sleep duration.

5.8., Bedtime variable, induction hour fixed? 2hr. snift in prior 

sleep cycle

The possibility that the reduction, of the initial McCollough 

effect strength after reduced sleep results from a disruption of a 

circadian rhythm was further investigated by shifting the sleep 

cycle. The sleep pattern of one subject (NJL) was shifted by 2hours 

from 12pm-8am to 2am-10am. McCollough effect strengths were then 

recorded, over a period of 2 weeks, after various sleep durations. 

Change in the sleep duration was again produced by keeping the 

waking hour fixed and changing the bedtime.

The results (Fig. 5.10.) show a similar trend and yielded 

approximately tHe same values as those presented in Fig. 5.2a. They 

indicate that a disruption of the circadian rhythm, after shifting 

the sleep cycle, has little effect upon the inital McColiough effect 

strength, whereas changes in sleep duration have a strong influence.

\
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Fig. 5.10. Bedtime variable: induction hour fixed: 2hr shift in prior sleep cycle

Fig. 5.11. Summary of results

o -Fig. 5.2.(a) 
•  -Fig.-5.8.
» -Fig. 5.9.
■ -Fig. 5.10. 
o -  Fig. 5.6. (a)
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5.9. Conclusions and Discussion
t

The results of this chapter have shown that the strength of the 

McCollough effect is strongly influenced by prior sleep duration. 

Aftereffects induced after 0-5hrs sleep were low in strength but 

when the sleep duration was lengthened from 5 to 9hrs, the strength 

of the OCCA increased. This trend was independent of the number of 

hours in darkness and the timing of the sleep. Experiments also 

showed that the results were not due to a reduction in performance 

or to a lack of concentration. Sleep duration did not affect the 

decay rate of the aftereffect. Some of the results are summarized 

in fig. 5.11.

There are few reports of the effect of a few hours of sleep 

deprivation on visual perception. Those which do show a positive 

result have been recorded after sleep deprivation lasting 30hrs. or 

more. For example, Clark and Warren (1939) have shown pronounced 

changes in myopia, hyperopia and accommodation after 30hrs. sleep 

deprivation. They also showed a slight decrease in visual acuity 

and visual fields for four colours, but in common with other 

observers they noted that test results do not reflect the subjective 

mis-perceptions and visual hallucinations reported by most subjects 

(see for example Cappon and Banks, I960; Pasnau, Naitoh, Stier and 

Kohlar, 1968). Most other links between vision and sleep have 

concentrated upon the effects of prior visual input on the length- 

and types of sleep (Allen, Oswald, Lewis and Tagney, 1972; 

Bowe-Anders, Herman and Roffwarg, 1974; Horne, 1976).

It may be significant that the pattern of results which is most 

similar to that presented in this chapter, is to be found in reports



95

upon the effect of sleep on memory and learning. It has been>
suggested that the MCCollough effect probably results from some form 

of synaptic association (Creutzfeldt, 1973; MacKay and MacKay, 

1975b). Although the McCollough effect consists of colours which are 

complementary to those originally presented, it is similar to memory 

processes in that it is retained until it is overwritten or decays. 

Most studies of sleep deprivation suggest that learning and memory 

are impaired during or just after the deprivation period (Williams 

Gieseling and Lutin, 1966). Recent evidence indicates that, 

although in general sleep facilitates memory (Jenkins and 

Dallenbach, 1924), retention is poor if a short period of sleep 

occurs just prior to learning (Ekstrand, Barrett, West and Maier,

1977) . Sleep durations of between 0.5 and 4hrs result in a 

reduction in memory as compared with a control condition of no 

sleep. This effect fades when the sleep duration increases to 6hrs. 

Thèse results suggest that the processes occurring during the early 

stages of sleep produce unfavourable conditions for the stor'age of 

new information and such processes may affect associative visual 

information processing.

Some studies have concentrated on specific stages of sleep. 

For example, many investigators have concluded that loss of REM 

sleep results in a decrement in memory (Fishbein, 1970; Fishbein and 

Gutwein, 1977; Pearlmdn and Greenberg, 1973; Tilley and Empson,

1978) . The results of this chapter have shown that the loss of the 

last third of a normal nights sleep strongly affects the strength of 

subsequent aftereffects. This trend may be linked to the 

observation that most REM sleep normally occurs during the last 3hrs 

(Williams, Agnew and Webb, 1964) or the last third of sleep 

(Warburton, 1975). However, links between REM sleep and the
»
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McCollough effect must remain speculative until the aftereffect is 

studied in conjunction with EEG controls.

There is a large body of evidence which shows that the 

electrical, metabolic and neurotransmitter activity of the brain 

changes during sleep and sleep deprivation (Jouvet, 1969; Jouvet, 

1972; Fishbein and Gutwein, 1977). Total sleep deprivation causes a 

fall in the level of acetylcholine (Bowes, Hartman and Freedman, 

1966) and of noradrenaline and serotonin (Tsuchiya, Toru and 

Kobayashi, 1969). After sleep deprivation, however, the level of 

serotonin rapidly rises to above control level (Toru, Shibuya and 

Shimazono, 1975). REM sleep deprivation appears to have different 

effects since Hery et. al. (1970) have shown that it causes an 

increase in the level of serotonin. After REM sleep there is an 

increase in the level of noradrenaline (Pujol, Jouvet and Glowinski, 

(1967). Satinoff, Drucker-Colin and Hernandez-Peon (1971) have 

demonstrated that REM sleep deprivation leads to paleocortical 

excitability and to an increase in the inhibition responsible for 

sensory filtering. Some of these changes in brain activity during 

sleep deprivation are concomitant with changes in memory (Fishbein, 

and Gutwein 1977; Wietzman, 1977). Moruzzi (1966) has suggested 

that one function of sleep is to allow some areas of the brain to 

recover from 'plastic' activities. Short periods of sleep would 

reduce the recovery period and therefore reduce the plastic 

abilities of the brain. It is possible that the changes in the 

strength of the McCollough effect after different sleep durations, 

are due to the differences in prior brain activity, during either 

the sleep deprivation or during the different sleep durations.
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Whatever the mechanism responsible for the trend that emerged 

in this chapter, it is evident that changes in individual sleep 

habits may be significantly responsible for some intrasubject 

variability and that differences in sleep patterns could result in 

intersubject variability of the initially induced strength of the 

McCollough effect.

1
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CHAPTER 6. TIME OF DAY AND THE MCCOLLOUGH EFFECT

6.1. Introduction

The experiments reported in Chapter 5 indicated that, although 

prior sleep duration had an effect on the initial strength of the 

McCollough effect, the timing of the sleep period had no effect.

This was taken as evidence that there was no circadian rhythm 

influence upon the OCCA. However, during some exploratory 

experiments it was found that the McCollough effect did vary, 

apparently systematically, when induced at different times during 

the day. Dr. V.MacKay (personal communication) has reported that 

she tried to induce aftereffects at the same hour for any set of 

experiments because she suspected that there was a systematic change 

in the characteristics of the OCCA throughout the day. She has 

reported that the decay rate degreases when the induction period 

occurs later in the day (MacKay, 1978). This chapter reports some 

of the results of varying the induction hour of the McCollough 

effect. For clarity, the time of day will be based on a 24hr. clock ■ 

system.

6.2. Variation of OCCA strength thoughout the day

Although the author's exploratory experiments had revealed some 

variations in the OCCA strength throughout the day, they had not 

been performed under standard conditions. McCollough effects were, 

therefore, induced at different hours after controlling as many 

factors as possible. A standard induction period of 15mins., 

consisting of 1s. 'on' and 4s. 'off' intervals, was used at 

different times of the day between the hours of 09.00 and 01.00.
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The experiments were performed after a standard sleep the previous 

night for each subject. Both the bedtime and the waking time were 

fixed. Subjects spent 15mins. in the laboratory before each 

induction period under standard illumination. It was impossible to 

control the diet of each subject before each run since the induction 

periods occurred at different times of the day. Subjects were, 

however, asked not to smoke or gonsume anything for an hour before 

each experiment began.

The results for 3 subjects (Fig. 6.1) show that there is a 

considerable variation (up to 20%) of the McCollough effect during 

the hours studied. This variation appears to be largely random and 

may be due to changes in external factors, such as diet or the 

visual stimulation, before each run at a different hour. Two of the 

subjects appear to have a lower McCollough effect in the early 

afternoon than the late morning and late afternoon but this change 

is not significant. This drop may be due to the lunch the subjects 

usually ate, or to the fact that they ate outside the building and 

spent some time in increased illumination. Some experiments have 

shown that there is a consistant 'post-lunch* dip on a variety of 

human performance tests.(Blake, 1967). This post-lunch dip was 

independent of the timing of mealtimes (Colquhoun,1971; Blake,1967). 

However, the post-lunch dip observed in the McCollough effect was 

not consistant. Despite the random in OCCA strength during most of 

the day, there does seem to be a systematic drop after 23.00 for 

each subject. Although the results after 23.00 are still variable, 

they do show a trend towards a lower OCCA and the results recorded 

at 01.00 are all lower than the results recorded throughout the rest

of the day
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Fig- 6-1- Effect of varying induction hour
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6.3. Induction in the evening

In view of the results obtained in section 6.2 it was decided 

to concentrate on the variation of the McCollough effect in the 

evening and early morning following a standard induction.

6.3.1. Initial OCCA strength

McCollough effects were recorded under standard conditions from 

between 20.00 and 08.00 and some runs, therefore, involved sleep 

deprivation. Nothing was consumed for 2 hours, rather than 1 hour, 

before these runs, in the hope that this would reduce the 

variability of the results. The standard sleep period before each 

run was from 00.00 and 08.00 for one subject (NJL) and 00.30 to 

08.00 for the other (MJM).

The results of the two subjects (Fig. 6.2) show a systematic 

drop from approximately 23.30 to 03.00. Although there is some 

variation in the results, this trend is significant. The McCollough 

effect does therefore, show a time of day effect. It is interesting 

to note the upper and lower limits of the OCCA strength during the 

period in which they were recorded. These experiments were 

performed after a standard sleep the night before, which was 8hrs. 

for -subject NJL and 7.5hrs. for subject MJM. The average value of 

the upper limit of the results, from between 20.00 and 20.30 

correspond to the average value obtained in the morning after these 

sleep durations for each subject (see Figs. 5.2a and 5.2b). The 

lower level on each graph corresponds closely to the 'base level' 

observed after short sleep durations. Possible implications of 

these results will be discussed later (Section 6.7).
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Fig. 6.2. Sleep duration fixed: induction hour (following evening) variable
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6.3.2. Induction in the evening, shift in sleep period

These experiments were performed under identical conditions to 

section 6.3.1 but the standard sleep period was 'shifted' and was 

be,tween 02.00 and 10.00. Subjects had had this shifted sleep cycle 

for at least 10 days before the first run.
j

The results for 2 subjects {Fig. 6.3) show the same trend in 

the initial OCCA strength as Fig. 6.2 but the reduction occurs 

later, from between 01.00 and 04.00. One subject (MJM) had shifted
this sleep cycle after the previous experiment. The reduction in the 

McCollough effect is shifted by approximately the same number of 

hours as his sleep cycle. This suggests that the reduction in the 

OCCA strength at night is a result of some change in an internal 

mechanism which is related to the sleep cycle.

6.3.3. Decay rates of the OCCA

It has been reported that the decay rate of the McCollough 

effect decreases when the induction period.occurs late in the day 

(MacKay, 1978). Since the results of Section 6.3.1 indicated that 

the initial strength of the McCollough effect varies when it is 

induced from 23.30 and 03.00 it was decided to record the decay 

rates over this period. The experimental conditions were identical
< \ j

to those of section 6.3.1.

Thè results for two subjects (Fig. 6.4) show that the decay 

rate and initial strength varies systematically when induced in the 

late evening - early morning. The decay rates decrease when the 

Induction period occurs at a late hour. The decay rate starting at
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Fig. 6.3. Induction hour variable: 2hr. shift in sleep cycle
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23.30 does not vary from the decay rate after 8hrs. sleep starting
I

at 09.00. {see Fig. 5.5).

6.4. Effects of eye patching in the evening

It was possible that the reduction in the OCCA strength at 

night was due to an increase in the visual stimulation entering the 

eye. To test this possibility one eye was totally occluded with a 

light-tight patch for variable periods before induction. The 

induction period was varied from between 23.30 to 04.00 and the eye 

was occluded from 20.00. Since the waking hour the previous morning 

was set, the eye received the same period of visual stimulation 

before each run. It was not possible to control the type of 

stimulation received before patching. Patches were removed, in the 

laboratory in standard illumination, 15 mins, before the induction
i ,

period to allow the occluded eye to recover from dark adaptation.

The results (Fig. 6.5) show that occluding an eye in the 

evening has no effect upon the initial McCollough effect strength 

since they show the same trend and are approximately the -same values 

as those shown in Fig. 6.2a. They indicate that the reduction of 

the induced OCCA strength at night is not caused by an increase in 

light stimulation and suggest that it is caused by an internal

mechanism.

6.5. Induction late evening after variable sleep the night before

The experiments reported so far in this chapter have been after 

a standard sleep the night before and have shown a time of day 

effect. Experiments reported in Chapter 5 have shown that the
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Fig. 6.5. Effect of keeping eye in darkness early evening

Fig. 6.6. Sleep duration variable: induction hour (following evening} variable 
4-i

«After 5hrs. sleep

i

20 22 24 2 6 8

Time of day
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strength of McCollough effects induced in the morning were strongly 

influenced by the sleep duration the night before. It was decided 

to investigate any interaction betwee these factors and to determine 

whether the sleep effect also influenced the OCCA, when it is 

induced in the evening.

The experimental conditions of section 6.3.1 were repeated, but 

the sleep duration before each run was varied. Variation in the 

sleep duration was achieved by varying the bedtime and fixing the 

waking hour at 08.00.

The results (Fig. 6.6) show the effect of varying the induction 

hour from between 20.00 and 08.00 after 8,7 and 5 hrs sleep. ; The 

average high level of all 3 curves (from between 20.00 and 23.00) 

correlate with the sleep duration of the previous night. These 

average levels were slightly higher than the average initial 

strength found in the morning after these sleep durations for this 

subject (see Fig. 5.2a). However, this variation was not 

significantly different and the sleep duration does influence the 

OCCA when induced in the evening. The results also show some 

interaction between the 'sleep effect' and the 'time of day' effect. 

The initial aftereffect strength when induced after short sleep 

durations, is lower and is not reduced until later in the evening 

(01.30 after 7hrs. sleep and 02.00 after 5hrs. sleep). It appears 

to decline after intercepting the 8hrs. sleep curve. The 'sleep 

effect' and the 'time of day effect' seemed to be linked in some 

way, which may indicate a common underlying cause.
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6,6. Decay at 12pm. after different sleep durations

If, as the results of Section 6.4 suggest, the|sleep effect and 

the time of day effect have a common basis, then the results of 

section 6.3.3 and section 5.2.5 appear to be inconsistent. The 

results of section 5.2.5 showed that sleep duration had no effect on 

the decay rate of the McCollough effect. However, the results of 

section 6.3.3 showed that the decay rate does change during the 

evening. This inconsistency was investigated by examining the decay 

rates of the OCCA at the same time at night (00.00 hrs) after 

various sleep durations.

The results (Fig. 6.7) show that the decay rates of the 

McCollough effect after 8,7 and 5hrs. sleep do not vary when induced 

at midnight. These results are consistent with the results of 

section 5.2.5 and show that prior sleep duration does not influence 

the decay rate, but does affect the initial OCCA strength. The time 

of day affects both the decay rate and the initial strength.

6.7. Conclusion and Discussion

The experiments of this chapter have shown that the strength of
i

the McCollough effect shows a time of day effect and undergoes a 

circadian reduction late in the evening. The timing of the • 

reduction depends upon the sleep cycle. Reduction in the initial 

strength was not caused by increased visual stimulation. This time 

of day effect is linked with the effect of sleep duration on the 

strength of the aftereffect, as McCollough effects induced in the 

evening after a reduction in sleep do not show a diurnal drop in 

strength until later. There is evidence that the decay rate of the
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McCollough effect also shows a time of day effect. Thus, although 

both sleep duration and the time of day affect the plasticity of the 

mechanism responsible for the OCCA, only the time of day affects the 

long term retention. The upper and lower limit of OCCA strengths 

for each subject in the time of day experiments and the sleep 

duration experiments, were not significantly different. This may 

offer further evidence of a link between the two factors.

There is little evidence of any other visual task undergoing a 

circadian change although other psychological and physiological 

factors are known to vary (Blake, 1967; Colquhoun, 1971). Varioust
aspects of memory are known to change throughout the day. A number 

of reports suggest that immediate recall is better in the morning 

than the afternoon (Folkard, Monk, Baddeley and Rosenthall, 1977; 

Hockey, Davis and Gray, 1971; Bradbury, Hatter, Scott and Snashall, 

1970). It; has also been reported that long-term retention is poor 

when measured at 04.00 as compared with 20.30 (Monk and Folkard, 

1978). The similarity of these reports with the results of this 

chapter may reflect the associative nature of the McCollough effect.

It is clear that the time of day affects both the decay and the 

initial strength of the McCollough effect. This could result in 

some inter and intrasubject variability if experiments were 

performed at different hours of the day.
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CHAPTER 7. ABNORMAL VISION AND THE MCCOLLOUGH EFFECT

7.1. Introduction

The brief'summary of exploratory experiments reported in 

Chapter 4 revealed a large degree of intersubject variability of the 

McCollough effect. This variation may have been due to differences 

in the visual perception of the subjects, or visual abnormalities 

which may be either optical or neural in origin.

During one series of experiments it was noted that two subjects 

consistently showed differences in OCCA strength in each eye after 

binocular induction. Later, it was found that these subjects were 

amblyopic. Subjects were, as reported in Chapter 3, screened for 

abnormal colour vision and acuity but the tests used (Ishihara 

plates and Snellen charts) are relatively crude and cannot detect 

some visual abnormalities. Stereoblind subjects, for example, may 

have normal or corrected acuity in both eyes, and their condition is 

apparent only when they are tested with specifically designed 

apparatus or figures (for example, stereograms). Amblyopia, which
t

is characterised by a .developmental loss of acuity in one eye, also 

shows a lack, or severe reduction, of binocular functions 

(Duke-Elder, 1973). There is a growing body of evidence showing 

that both amblyopic and stereoblind observers manifest peculiarities 

of interocular transfer of a number of achromatic aftereffects (for 

example, Ware and Mitchell, 1974). Amblyopic subjects also perceive 

certain stimuli abnormally (Levi, Harwell, Pass and Venverloh, 1981; 

Bradley and Freeman, 1981).
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The McCollough effect has been shown to exhibit specific 

monocular and binocular properties (see Chapter 2 and Coltheart,

1973 for review). A number of reports have revealed some 

intersubject variability when dichoptic stimuli were used (MacKay 

and MacKay, 1975b) and there has been contradictory evidence about 

dichoptic OCCA's (Over, Long and Lovegrove, 1973) and interocular
•I

transfer (Mikaelian, 1975). As stereoblind and amblyopic subjects 

show different interocular transfer of some aftereffects from normal 

observers, the effects of these visual abnormalities on the 

McCollough effect were investigated to determine whether they could 

be responsible for some intersubject variability. A variety of 

normal, amblyopic and stereoblind subjects were investigated using 

binocular, monocular and dichoptic stimulation.

7.2. Subiect Data

Normal

Uncorrected Acuity 

Left Right

Corrected Acuity 

Left Right

Stereopsis

NJL 6/4 , 6/4 • - Good

MJM 6/5 6/4 ■ - Good

PDF 6/5 6/5 - Good

SG 6/4 6/4 - Good

Stereoblind

TB 6/9 6/6 - Poor

MH 6/12 6/9 6/5 "6/6 None

PS 6/12 6/6 0 6/5 6/4.5 None
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IM 6/36 6/18 6/6 6/5 Poor

Amblyopic ■

DRB 6/9 6/60 6/5 6/60 None

BK 6/5 6/60 6/5 6/60 Poor

GJS 6/18 6/6 6/18 6/5 Poor

LBS 6/36 6/5 6/36 6/4 None

ATS 6/4 6/12 - Poor

CJH 6/6 6/60 6/5 6/60 None

MS 6/36 6/9 6/36 6/6 None

KIG 6/60 6/18 6/60 6/9 None

7»3. Binocular stimulation

*

• Normal subjects usually develop similar McCollough effect 

strengths in each eye after binocular induction, but some 

preliminary experiments indicated that amblyopic subjects developed 

substantially different aftereffect strengths in the normal and 

amblyopic eyes. In order to study this phenomenon systematically, 

monocular strengths were recorded after binocular stimulation using 

a variety of subjects. Amblyopic subjects were instructed to wear 

their corrective lenses throughout the experiment. A standard 

15min. induction period, consisting of 1s 'on* and 4s 'off* 

intervals, was used.

7.3.1. Initial Strength

The initial strengths for each were recorded monocularly using 

4 normal subjects, 4 stereoblind subjects and 8 amblyopic subjects.
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Each subject repeated the run at least once and the data (shown in 

Fig. 7.1) were averaged. The results show that the 4 normal 

subjects (Fig. 7.1a) all developed similar McCollough effects in 

each eye. The small differences which were observed varied in 

strength and polarity from run to run. Every amblyopic subject, 

however, consistently developed a significantly higher aftereffect 

strength in the normal eye than in the amblyopic eye (shown cross 

hatched). A similar result has been reported by Campbell, Hess and 

Shute (1978) who found that after binocular stimulation, amblyopic 

subjects developed smaller OCCA's in the amblyopic eye. They also 

reported that after testing the normal eye, the effect in the 

amblyopic eye was greater than the normal, which presumably was due 

to some form of transfer (see below). Two of the stereoblind 

subjects, like the normal subjects, developed a similar aftereffect 

strength in each eye, but the other 2 subjects developed different 

strengths in each eye. The difference was not as great as that 

observed for the amblyopic subjects.

7.3.2. Amblyopia and Interocular Generalization

For some time it has been generally agreed that the McCollough 

effect does not transfer interocularly to any great' extent. One of 

the few exceptions to this observation has been reported by 

Mikaelian (1975), who claimed that aftereffects were present in the 

unstimulated eye if subjects had previously viewed a test pattern 

binocularly. Mikaelian termed this phenomenon 'interocular, 

generalization'. MacKay (1978) repeated these experiments and found 

no evidence of such an effect in normal subjects. Recently, 

however, another report has suggested that amblyopic subjects show a
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Fig. 7.1. Monocular test after binocular induction 

CaD Normal subjects
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Ce) Stereoblind subjects
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similar form of generalization. Campbell et. al. (1978) found that, 

following binocular induction, amblyopic subjects developed a small 

OCCA in the amblyopic eye and a large OCCA in the normal eye? but 

after test measurements in the normal eye, the aftereffect in the 

amblyopic eye was even higher than that of the normal.

On reviewing the data of the previous section and after further 

experiments performed to investigate such effects with amblyopic 

subjects, the author found no consistent evidence of an increase for 

the amblyopic eye after a test of the normal eye. Analysis of 30 

binocular runs (Fig. 7.2) showed an increase for the amblyopic eye 

on only 6 occasions (marked with an up arrow) and this increase was 

never sufficiently large to 'boost' the OCCA to a higher level than 

that in the normal eye. In most runs the aftereffect remained 

similar in strength and in 4 runs (marked with a down arrow) the 

OCCA actually decreased in strength.

7.3.3. Decay

Monocular decay rates of each eye were measured using 2 normal, 

2 stereoblind and 4 amblyopic subjects (Fig. 7.3). The.results show 

that normal subjects, as noted in Chapter 4, have a similar decay 

rate in each eye. Although the amblyopic subjects developed smaller 

aftereffects in the amblyopic eye, the decay slopes for, each eye 

were similar. Both the stereoblind subjects who had similar, and 

those who had different, aftereffect strengths in each eye had decay 

slopes which did not vary.
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7.3.4. Conclusions

, The experiments show that, although normal subjects develop, 

similar strengths of aftereffect in each eye after binocular 

stimulation, some stereoblind and all amblyopic subjects develop 

much larger McCollough effects in the dominant than the 

non-dominant, or amblyopic, eye. The visual defects affect only the

induction of the OCCA since the decay rates for each eye, as in
\

normal subjects, were similar. , The small aftereffect in the 

amblyopic, or non-dominant, eye may have been due to either 

binocular rivalry or neural deficiencies. Some evidence suqgests 

that suppression of visual input by binocular rivalry does not 

reduce the strength of the McCollough effect (White and Riggs, 

(1975). Following electrophysiological evidence, which shows that 

early visual experience can modify the neurones of the visual cortex 

(Blakemore and Cooper, 1970; Hirsch and Spinelli, 1970, 1971), it 

has been suggested that amblyopia and binocular disorders are caused 

by abnormal neural qualities, resulting from abnormal visual input 

to one or both eyes during childhood (Mitchell, Freeman, Millidot 

and Haegerstrom, 1973; Hohmann and Creutzfeldt, 1975). If the small 

aftereffect seen in the amblyopic eye was due to rivalry, and not to 

a neural disorder, one would expect a larger aftereffect in that eye
i

when it was exposed to monocular stimulation. The following 

monocular experiments were performed to resolve this question.

7.4. Monocular stimulation

McCollough effects were induced and tested monocularly in both 

the left and right eyes, on different occasions, using 4 normal, 3
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t
stereoblind and 6 amblyopic subjects. The unstimulated eye was 

occluded during induction by a light-tight patch.

7.1. Initial Strength

The initial strengths yielded by the left and right monocular 

tests are shown in Fig. 7.4, where results for amblyopic eyes are 

shown cross-hatched. They show that the normal, and some 

stereoblind, subjects developed slightly lower monocularly tested 

initial strengths after monocular rather than binocular induction 

(cf Fig. 7.1 a and c). Every amblyopic subject, except subject CJH, 

also gave a slightly lower monocular result in the normal eye. All 

the amblyopic subjects, however, showed a larger initial strength in 

the amblyopic eye when the normal eye had been occluded during 

induction. The same trend was observed in a stereoblind observer 

(TB) who had displayed consistently different aftereffect strengths 

in the two eyes after binocular induction.

These results suggest that the small OCCA observed in the 

amblyopic, or non-dominant, eye after binocular induction was due to 

binocular rivalry and not to neural deficiencies, since any neural 

deficiences were still present during monocular stimulation. In 

addition, during monocular induction, any 'pure binocular' neurones 

are unlikely to be stimulated, so that one could expect the 

monocular test result to be smaller after monocular than binocular 

induction. Since normal subjects are not affected by binocular 

rivalry during binocular stimulation, it is likely that the rivalry 

observed in amblyopic, and some stereoblind, observers may be 

related to their abnormal visual perception. It has been shown that
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retinal rivalry has no effect on the strength of monocular motion 

aftereffects (Lehmkuhle and Fox, 1975) and this has been taken as 

evidence that suppression occurs at a higher level than the cortical 

neurones thought to cause the MAE.

7.4.2. Interocular transfer

It is generally agreed that the McCollough effect, and other 

colour contingent aftereffects, fail to show substantial interocular 

transfer (Murch, 1972), but some reports have shown weak ' 

aftereffects (below 10%) in the occluded eye (MacKay, 1978; Favreau, 

1978). A number of reports have shown that amblyopia and 

stereoblindness reduce the interocular transfer of a variety of 

achromatic aftereffects including: the motion aftereffect (Mitchell, 

Reardon and Muir, 1975); the tilt aftereffect (Movshon, Chambers and 

Blakemore, 1972; Mitchell and Ware, 1974); and the grating threshold 

elevation effect (Ware and Mitchell, 1974). In view of these data,

one might expect that amblyopia and stereoblindness should if
\

anything reduce still further the interocular transfer of the 

McCollough effect, to a barely significant, or zero level. To test 

this prediction, the experiments in the previous section were 

repeated but both the stimulated and unstimulated eyes were tested 

to investigate interocular transfer. Normal, stereoblind and 

amblyopic subjects were used and the results are shown in Fig. 7.5. 

The block data represent the stimulated eye and the dotted data the 

unstimulated eye, or the transferred McCollough effect. Fig. 7.5b. 

shows the transferred McCollough effect as a percentage of the 

aftereffect found in the stimulated eye.
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The data obtained for the normal subjects were consistent with 

past evidence. When either eye was stimulated, most subjects showed 

small but consistent, aftereffects (below 11%) in the unstimulated 

eye. One subject showed weak (3-5%) transfer of an aftereffect of 

opposite polarity. When the normal eye was stimulated, most of the 

the amblyopic subjects, as predicted, showed weak or no transfer to 

the amblyopic eye. It was surprising, therefore, to find that all 

amblyopic subjects showed consistently large transfer (varying from 

22 to 50%) from the amblyopic to the normal eye. One amblyopic 

subject (LBS) did show transfer in both directions but transfer from 

the amblyopic to the normal eye was larger (22%) than ,in the 

opposite direction (15%). The stereoblind subjects again varied, as 

2 failed to show substantial transfer from either eye; but subject 

(TB), like the amblyopic subjects, showed consistent transfer in one 

direction. Subject TB also showed similarities to the amblyopic 

subjects as he developed consistently larger monocular OCCA 

strengths in one eye, after binocular stimulation (see Fig. 7.1). 

Transfer of approximately 30% was, as in the amblyopic subjects, 

observed from the eye which developed a smaller aftereffect.

These results show that amblyopic, and some stereoblind, 

subjects exhibit greater interocular transfer of the McCollough 

effect than do normal subjects, but only from the amblyopic, or 

non-dominant, eye. This result was in contrast with past evidence, 

which indicated that such subjects have reduced transfer of 

achromatic aftereffects. It is also contrary to the report of 

Mitchell and Ware (1974), who noted that 'transfer was greater from 

the dominant eye to the non-dominant eye than vice versa', since 

these amblyopic and stereoblind subjects showed greater transfer 

from the non-dominant, or amblyopic, eye to the dominant.
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The variability in the results of the stereoblind subjects was 

probably due to small differences in their binocular capability 

since Keck and Price (1982) have shown that such subjects had a wide 

variation in the amount of transfer of a motion aftereffect which 

was dependant upon their particular disorder. Furthermore, although 

it is generally agreed that stereoblind individuals do not show 

transfer of achromatic aftereffects (see above), some recent reports 

have indicated that some do retain a population of binocular 

neurones since they show interocular transfer of the grating 

threshold elevation aftereffect (Anderson, Mitchell and Timney 1980; 

Hess, 1978).

7.4.3. Decay of transferred McCollough effect |

One of the properties of the McCollough effect is that it shows 

a characteristic time course of decay (MacKay and MacKay, 1973b)
i

which in normal subjects is similar in each eye. For this reason, 

the large transferred McCollough effect observed in subjects with 

abnormal vision was investigated to see whether it decayed at the 

same rate as the effect in the stimulated eye, since it could have 

been a transitory aftereffect. McCollough effects were induced 

monocularly in 2 amblyopic and 2 stereoblind observers in the 

amblyopic or non-dominant eyes respectively. The decay rates of the 

aftereffect in the stimulated eye and of the transferred McCollough 

effects in the normal, or dominant, eyes are compared in Fig. 7.6.

The results show that the transferred McCollough effect is not 

transitory but lasts up to at least 200mins. In all but one 

subject, however, the decay rate of the transferred McCollough 

effect was slightly faster than the decay rate in the stimulated
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eye.

7,5» Binocular Rivalry

It has been demonstrated that binocular rivalry produced by 

achromatic stimuli does not affect the strength of the McCollough 

effect (White and Riggs, 1975), though MacKay ()978) reports contrary 

findings. Rivalry produced by patternless colour has been shown not 

to reduce the McCollough effect in the stimulated eye and to enhance 

interocular transfer (White et al, 1978). The monocular experiments 

reported above indicated that the small aftereffect obtained in 

amblyopic, or non-dominant, eyes during binocular stimulation was 

due to some binocular rivalry produced by some, or all, of the 

inducing stimuli presented to the normal or dominant eye. In order 

to investigate which aspect of the McCollough effect stimuli-, if 

any, was responsible, a number of experiments, in which one 

parameter of the inducing stimuli was deliberately manipulated to 

cause greater rivalry than the other, were performed with amblyopic 

subjects. The stimuli were presented binocularly, but either the 

colours were different in each eye and the gratings were of the same 

orientation, or the gratings were orthogonal in each eye and the 

colours were the same (see Fig. 7.7).

t
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Fig. 7.7.

Left Eye Right Eye

Experiment 1 R/// G///

G \W r\ W

Experiment 2 R/// r\ W

c\\\ G///

The results for 3 amblyopic and 3 normal subjects are shown in Fig.

7.8. Experiment 1 refers to runs in which the gratings were the 

same and the colours different, and experiment 2 to those in' which

the colours were the same and the gratings different. The
\aftereffects were different in each eye, but as in each case they 

were complementary to the grating and colour pairings of the 

induction stimuli, they are all shown as positive. The results 

reveal that the type of binocular rivalry does not affect the

strength of the McCollough effect in the amblyopic eye (shown

cross-hatched) to a great extent, as under both conditions the 

strength of the aftereffect was low. However, the strength in the

normal eyes was affected to a different extent by the two types of

rivalry. When the colours were different and the grating 

orientation the same, the normal eye developed a large (in two 

cases, larger than average) McCollough effect. When the gratings
t

were orthogonal and the colours-were the same in each eye, smaller
t

than average aftereffects developed in the normal eye (though they 

were larger than the OCCA in the amblyopic eye). Normal subjects, 

as expected, showed no asymmetry of results between the two eyes,



Fig. 7.e Monocular test after binocular (rivalry) induction
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Expt. 1. Gratings same orientation: colours different
Normal Subjaot*

Expt. 2. Colours same: gratings different orientation
Normal Subject.«
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but did show a greater OCCA in both when when the gratings were the 

the same orientation.

7.6. Dichoptic Stimulation

The experiments in this chapter have shown that amblyopic, and 

some stereoblind, subjects show different transfer properties from 

normal subjects. Following a suggestion by Dr. V. MacKay, it was 

decided to investigate the effect of amblyopia on dichoptic 

stimulation, since it has been demonstrated that in normal subjects, 

McCollough effects can be induced dichoptically (MacKay and MacKay, 

1973a and 1975b). Aftereffects resulting from dichoptic stimuli 

must rely on some degree of interocular interaction.

• Amblyopic and stereoblind subjects did a number of runs: half
i *

with the achromatic gratings presented to the amblyopic, or 

non-dominant, eye and the colour fields to the normal eye; and the 

other half with the reverse arrangement.

7.6.1. Initial Strength

t

MacKay and MacKay (1975b) have shown that dichoptic stimulation 

in most normal subjects results in a weak, normal McCollough effect 

in the colour stimulated eye and a stronger 'anomalous' McCollough 

effect in the grating-stimulated eye (i.e. colours same as original 

pairing). Since amblyopic and stereoblind show different transfer 

from one eye to the other, it was of interest to investigate whether 

varying the dichoptic stimuli presented to the two eyes resulted in 

different aftereffect strengths. The results for 3 amblyopic and 2
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stereoblind observers are shown in Fig. 7.9. The cross-hatched data 

represent the amblyopic, or non-dominant, eye. Experiment 1 refers 

to runs when the gratings were presented to the normal eye and 

experiment 2 when coloured fields were presented to the normal eye.

The data show that all subjects develop large McCollough 

effects in each eye under both conditions? and, as in the data 

presented by MacKay and MacKay (1975b), the grating-stimulated eye 

generally developed a larger, anomalous OCCA. All the amblyopic and 

one stereoblind observer (MH), unlike normal subjects, developed 

different aftereffect strengths, dependent upon the direction of the 

dichoptic stimulation. These subjects developed a larger McCollough 

effect and a larger anomalous McCollough effect when the grating was 

presented to the normal eye.

7.6.2. Decay of dichoptic aftereffects

The decay of dichoptically induced McCollough effects was 

studied by MacKay and MacKay (1975b), who reported that the time

courses of both the normal and anomalous aftereffects were similar.
\

Decay rates of dichoptically induced McCollough effects for 2 

amblyopic and 1 stereoblind observer, are shown' in Fig. 7.10. Both 

amblyopic and stereoblind observers, like normal subjects, show a 

similar decay rate for both the normal and anomalous McCollough

effects
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Fig. 7.  ̂ Monocular test after dichoptic induction 
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7.7. Conclusions and Discussion

The general conclusion which emerged from this chapter is that
»

visual abnormalities may be one' source of intersubject variability 

of the McCollough effect, particularly when studying interaction 

between the eyes. Unlike normal observers, amblyopic and some 

stereoblind subjects develop; significantly different aftereffects 

in each eye after binocular induction. The amblyopic or 

non-dominant eye always developed a smaller OCCA strength after 

binocular induction but after monocular induction the strength in 

those eyes increased substantially. Past evidence has shown that 

amblyopic and stereoblind subjects have reduced interocular transfer 

of.a variety of achromatic aftereffects (Ware and Mitchell,.1974). 

This data, together with that showing that the McCollough effect 

dogs not transfer to any great extent in normal subjects (Coltheart, 

1973), suggested that amblyopic subjects would not exhibit transfer 

of the OCCA. However, amblyopic showed greater transfer (up to 50%) 

than normal subjects (less than 11%) but only from the amblyopic to 

the normal eye. After dichoptic induction, amblyopic subjects 

developed a larger McCollough effect and 'anomalous1 McCollough 

effect when the gratings, were presented to the normal eye than when 

gratings were presented to the amblyopic eye. Normal subjects show 

no such asymmetry. Finally, after binocular induction in which the 

inputs to the two eyeswere different it was found that amblyopic 

observers developed a much larger OCCA strength in the normal eye 

when the gratings were the same orientation and the colours 

different than when the colours were the same and the gratings were 

different orientations. The amblyopic eye was unaffected. Normal 

subjects showed no asymmetry between the two eyes but did develop» a
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larger OCCA in both when' the gratings were the same orientation.

Apart from revealing a source of variability the experiments of 

this chapter have raised some interesting points. It is generally 

believed that the poor stereopsis of both amblyopic and stereoblind 

individuals is caused by a lack of binocularly driven neurones 

(pohmann and Creutzfeldt, 1975; Mitchell et. al., 1973) and the , 

reduction in interocular transfer of some achromatic aftereffects is 

taken as evidence of this. It is interesting therefore that such 

subjects show greater transfer of the McCollough effect than normal 

subjects. MacKay (1978) has suggested that the McCollough effect 

may not be cortical, as is widely believed, but may be located at a 

relatively unsophisticated level of the visual system, possibly at 

the.lateral geniculate nucleus. The experiments showing that 

stereoblind and amblyopic subjects have enhanced transfer of the 

OCCA and those showing that they develop dichoptic aftereffects, if 

such subjects are deficient in binocular neurones, strengthens this 

possibility.
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CHAPTER 8 EFFECTS OF VISUAL STIMULATION UPON DECAY

8.1 Introduction * •

One of the most intriguing aspects of the McCollough effect is
• i

its persistence, which has stimulated much research and theoretical 

debate. Most investigators have reported that the aftereffect can 

be detected for at least 2 or 3 days (MacKay and MacKay, 1973b; 

Stromeyer, 1971) and some have claimed that it may last up to 2
tweeks, if subjects are not exposed to test gratings (Jones and

i '

Holding, 1975). The rate of decay of the OCCA has been found to 

follow a characteristic time course which was approximately linear 

on either log/log scales (MacKay and MacKay, 1973b) or linear/log 

scales (Riggs, White and Eimas, 1974) in normal room illumination. 

Various reports have shown that variation of the visual stimulation 

after induction changes the decay rate. At one extreme, MacKay and 

MacKay (1975a, 1977b) found that darkness completely arrests the 

decay of the OCCA and that readings taken after may even be higher 

than readings taken before a period of darkness. Skowbo et. al. 

(1974) on the other hand, reported that complete darkness was 

associated with a slow decay which was similar to the decay caused 

by homogeneous chromatic fields and 'natural' visual stimulation, 

but exposure to achromatic gratings (of the same orientation and
i

spatial frequency as the induction gratings) caused a marked fading 

of the aftereffect. Subsequent reports have confirmed the latter 

observation and have indicated that longer exposure to achromatic 

gratings and high luminance gratings produces a greater decline of 

the McCollough effect than short exposures or low luminance gratings 

(Skowbo and Clynes, 1977; Skowbo, 1979).
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Past evidence, therefore, indicates that although there is 

agreement about the effects of achromatic gratings upon the decay 

rate of the McCollough effect, the effects of other visual 

parameters are not clearly defined.

The experiments reported in Chapter 4 showed a large degree of 

inter and intpasubject variability of the decay rate. This

variability occurred despite attempts to keep the experimental
iconditions constant. Subjects remained in a room of constant 

luminance while decay measurements were taken and were asked not to 

consume any food, coffee or nicotine. In general these instructions 

were obeyed for at least lOOmins. after induction but these 

precautions did not reduce the variability to a great extent. 

Although the overall luminance level of the laboratory was constant, 

some aspects of the visual stimulation could not be controlled. 

Subjects were exposed to contrast edges within the laboratory which 

changed according to the direction of their gaze. Furthermore, since 

some subjects wrote or drew during the decay process they were 

ejqposed to varying densities and orientations of lines. Some 

subjects may have been exposed to a lowered luminance level if they 

closed their eyes owing to tiredness or boredom. Finally, since

both subjects and experimenters' clothes varied from experiment to
>experiment (sometimes patterned, sometimes plain) subjects wouldi '

have been exposed to differing chromatic stimulation.

The experiments reported in this chapter were performed to 

clarify some of the past evidence and to examine any aspects of the 

post-induction visual stimulation which may have affected the decay

rate
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8.2 Monocular Experiments
\

» *
»

The experiments reported in this section are to some extent 

repeats of the experiments of Skowbo et.al. (1974). Both the 

induction stimuli and post-induction stimuli were presented 

monocularly. Five types of post-induction stimuli were used:

1. Darkness

2. Room illumination

3. White fields

4. Alternating orthogonal achromatic gratings (of the same 

orientation and spatial frequency as the indudtion 

gratings)

5. Alternating red and green homogeneous fields

Stimuli 4. and 5. were presented tachistoscopically for 5 s.
»

each with no dark intervals; stimuli 3 were presented for 4s. With a 

1s. 'off' interval. The luminances of stimuli 3,4,'and 5 were
i

approximately matched. The induction stimuli were presented for 1s. 

with a 4s .  'off' interval, in this respect the experiment varied 

slightly from that of Skowbo et.al., who used alternating 5s. 

stimuli for both the induction and post-induction stimuli. The OCCA 

was measured within 10-15s of the end of induction. The results 

averaged over 2 runs, for 8 subjects, are shown in Fig. 8.1. Since 

all the decays started at slightly different initial strengths 

(because they represent runs performed on separate occasions) the
i

decays are presented as a percentage of the aftereffect recorded
t ■

just after induction (i.e. 0 mins, of decay).
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Fig. 3.1 Effects of visual stimuli upon the decay of the McCoilough Effect
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The results show that, as predicted by past research, 

achromatic gratings produced a rapid decay of the aftereffect. The 

most rapid decay, however, was associated with the‘homogeneous 

chromatic fields in all but two subjects (MAHM & RJW). The darkness 

condition always produced the least decay.; room illumination and 

alternating white fields were associated with a medium decay rate 

between the two extremes. .It might be postulated that the
i

achromatic gratings cause a fast decay because they are effectively 

test patterns and the aftereffect seen on such patterns, being 

opposite to the colours seen during adaptation* acts as a 

neutralizing stimulus. Skowbo et. al. (1974) used two points to 

argue against such a theory and these are relevant to the results 

reported here. Firstly, aftereffects are best seen on test patterns 

where the orthogonal gratings are presented side by side; but the 

gratings shown during decay were alternated and as a result subjects 

reported that the gratings were achromatic. Secondly, McCollough 

effects are best seen on gratings of low photopic luminance; but the 

luminance of the achromatic gratings was much higher than that of 

the test gratings. Since subjects did not see the aftereffect on 

the achromatic gratings the neutralizing effect would have been 

negligible. i

Some of the results contrast sharply with those of Skowbo 

et.al. (1974) who found rapid decay only with achromatic gratings 

and about the same (slower) decay with darkness, 'natural' visual 

stimuli and homogeneous chromatic fields (see Fig. 8.2). The 

discrepancies in the two sets of results are difficult to explain, 

though the differences in experimental procedure may have, had an 

influence. After all the experiments reported in this thesis, the 

OCCA was allowed to decay naturally (between 2 to 7 days, depending
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upon the pre-test readings) whereas Skowbo et.al 'neutralized' any

remaining aftereffects after each session by presenting opposite 
♦

filter-grating combinations to those used during induction. White 

(1976) has shown that such neutralization (or nullification).;l
processes do not truly eliminate the OCCA and that both the original 

and neutralizing McCollough effect may be retained. Skowbo et.al. 

(1974) reported that at least 24hrs. elapsed between sessions; but
I

if the stimulating conditions were not presented in random order, 

the previous day's McCollough effect (either 'inducing' or 

'neutralizing') may have systematically influenced the results. 

Furthermore, after each test procedure, Skowbo et.al. exposed 

subjects to homogeneous fields for 7 mins., which could introduce
t ,

complications in the decay measurements.

Pig. 8.2.
SKOWBO, GENTRY, T1MNEY, AND MORANT (1974-) *

Figs, I  and 2. Influence o f  PAS conditions on decay of the ME. The ordinate is the percentage of the ME measured before 
PAS which tem ains after PAS. The abscissa is the amount o f time o f exposure to  PAS. In  Experiment l ,  there were five 
10-min segments o f  PAS; in Experiment 2, PAS was continuous for SO min. The PAS conditions arc represented by the
symbols --------- - for achromatic gratings, ▼--------r  for homogeneous chromatic fields, * -------- * for natural visual
stimulation, and for complete darkness.



1 4 8

The results shown in Fig. 8.1 which indicate that darkness was 

associated with very little decay of the OCCA, are very similar to 

those of MacKay and MacKay (1974a, 1975a and 1977b) who found no
i i

decay at all if subjects were kept in complete darkness after 

induction. The slight decay reported in this thesis may have been 

caused by the repeated testing at 0, 10 and 20 mins, since the test 

procedure has been shown to cause some decay (Jones; and Holding, 

1974).

i
l '

8.3 Dichoptic comparisons of the effects of visual stimuli

The preliminary experiments reported in Chapter 4 revealed that 

both the initial strength and the decay rate of the McCollough 

effect showed considerable intrasubject variability on different 

occasions. It was, therefore, possible that some of the results 

reported above were not truly representative, since each decay was 

measured on a separate occasion and may have been influenced by day 

to day variability. The preliminary experiments also showed that 

following binocular induction, the initial strength and decay rate 

were always very similar in each eye. This observation presented an 

ideal way of comparing the effects of two stimulating conditions in 

a controlled manner. Some of the above stimulating conditions were, 

therefore, repeated after binocular induction, and the decay rates 

of the left and right eyes were compared. In each section the 

results presented are the average of 2 runs; the first when stimulus 

A was presented to the left eye and stimulus B to the right;' and the 

second when stimulus B was presented to the left eye and stimulus A 

to the right. Any biases produced by a dominant eye were therefore 

removed. The laboratory was darkened during the stimulus
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presentation to prevent interference from extraneous light. The 

experimental procedure was, in all other respects, the same as that 

of Section 8.2. Apart from the darkness condition all the stimuli
i

were approximately matched for luminance.

8.3.1 Comparison of homogeneous chromatic fields with darkness

In this experiment the red and green homogeneous fields were 

projected in the tachistoscope and the darkness condition was 

produced by a light-tight patch over one eye. A comparison of the 

two decay rates appears in Fig. 8.3 and, in common with the earlier 

experiments, it shows that red and green homogeneous fields produced 

a marked decrease in the strength of the McCollough effect whereas 

darkness was associated with very little (maximum of 14%) decay. 

However, »this comparison does not reveal whether the chromatic 

stimulation or the difference in luminance affected the decay rate.

8.3.2 Comparison of achromatic gratings'with darkness

Darkness was again produced in one eye by using a light-tight 

patch and the gratings were presented using the tachistoscope. The 

results (shown in Fig 8.4) indicate that achromatic gratings were 

associated with a rapid decay of the OCCA when compared with 

darkness; but as the luminances were different it was not clear 

whether the rapid decay was caused by the patterned stimuli or the
t

increased luminance of the grating stimuli.

I

k
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8.3.3 Comparison of homogeneous chromatic fields with achromatic 

gratings

Controlled comparisons of the effects of homogeneous chromatic
I

fields and achromatic gratings upon the decay of the McCollough 

effect were complicated because it is known that aftereffects can be 

induced dichoptically when chromatic fields are presented to one eye 

and gratings to the other. (MacJCay and MacKay, 1973a and 1975b). In 

order to avoid dichoptic effects, a device was incorporated into the 

tachistoscope which changed the dichoptic colour and orientation 

pairings every 4 flashes. This arrangement should have had the 

effect of neutralizing any dichoptic aftereffects because small, 

opposite effects were repeatedly induced.

• The ¡results (Fig. 8.5) show that both stimulating conditions 

caused a marked decay of the OCCA but that the coloured fields were 

usually slightly more effective, even under the controlled 

conditions. However, neither condition shows the same degree of 

decrease for each subject as in the original experiments. These 

averaged results do not reveal the variability in each decay reading 

and in the results from run to run which may have resulted from the 

experiment conditions.

8.3.4 Comparisons of homogeneous chromatic fields with achromatic

gratings: alternating fields

The variability of the results of Section 8.3.3 may have been 

due to the dichoptic interaction between the gratings and the 

coloured fields. Although the dichoptic 'pairing' of stimuli was
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changed every 4 presentations to neutralize the dichoptic 

aftereffects, White (1977) has shown that such neutralization 

procedures do not remove the OCCA* s but rather leave two separate 

McCollough effects. An alternative ejqperimental procedure was used 

to compare the effects of the stimuli without dichoptic interaction. 

This procedure involved presenting the stimuli for 5s. with a 5s. 

'off* interval. The coloured fields were presented to one eye 

during the off interval of the grating cycle and the gratings were 

presented to the other eye during the off interval of the coloured 

field cycle, i.e:

Time 1st Eye 2nd Eye

5s R off

10s off ///

15s G off

20s off \\\

The results (Fig. 8.6) show a similar trend to those of Fig. 8.5, 

but each subject shows a greater decrease for each condition, even 

though the stimuli were presented for a shorter period during each 

lOmin. presentation because of the increased 'off' time. These 

results were also less variable than those of Section 8.3.3 but the 

diagram does not show this.

8.3.5 Comparison of darkness with white fields

When the effect of darkness and white fields upon ,the decay 

were compared (Fig. 8.7) it was found that the decay caused by the 

white fields was much larger. Darkness, as in the previous 

experiments produced very little decay. Since both stimuli 

conditions varied in luminance only, the large decay caused by
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achromatic gratings and homogeneous chromatic fields as compared to 

darkness may have been due to luminance difference.

8.3.6 Comparison of homogeneous chromatic fields with white fields

: In this experiment the stimuli were presented simultaneously to

either eye. The results (Fig. 8.8) show that the red and green 

fields produced a much more rapid decay than the white fields, even 

though they were approximately matched in luminance. This indicates 

that the McCollough effect was affected by the chromatic stimulation 

rather than the luminance of the red and green fields.
t

i '

8.3.7 Comparison of achromatic gratings with white fields

The effect of achromatic gratings was compared with the effect 

of white fields using simultaneous dichoptic presentations, and the 

decays are shown in Fig. 8.9. These reveal that the gratings 

reduced the strength of the OCCA to a much larger extent than the 

white fields. Since they were approximately matched for luminance 

this suggests that the patterned stimuli rather than the luminance 

of the fields was responsible for the rapid decay of the 

aftereffect.

8.3.8 Summary of results

»
The dichoptic comparison of this section has consistently 

supported the data presented in Section 8.2. In all the | 

experiments, darkness produced less decay than any other stimuli 

which were used. All the other stimuli had approximately the same
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luminance. These findings are in line with past research which has 

shown that darkness produces little or no decay of the McCollough 

effect (MacKay S MacKay, 1977b). The other experiments have shown 

not merely that greater decay was associated with high luminance, 

but that a larger decay was caused by chromatic or patterned stimuli 

which were the same as those used during induction. In general, the 

homogeneous chromatic stimuli produced greater decay than the 

achromatic gratings, but the difference was slight. The one 

exception was subject RJW who, as in Section 8.2, showed slightly 

greater decay when stimulated with gratings.

8.4 Investigation of the effects of other chromatic and patterned
:i

stimuli upon the decay 1

. In all the experiments reported so far in this chapter the
l

chromatic and patterned stimuli have been identical to those of the 

induction stimuli. Further experiments were therefore performed to 

investigate whether any other chromatic or patterned stimuli, 

different from those used during induction, would have the same 

effect upon the decay of the OCCA. The experimental procedure was 

the same ars that used in Section 8.3.

8.4.1 Comparison of red/green with blue/orange homogeneous fields

The coloured fields used in this experiment were the same size 

(12*x12* angular subtense at the eye) and were approximately matched 

for luminance. The red and green filters were the sarnie as those
t

used to induce the McCollough effect (see Chapter 3) and the blue 

and orange filters were 'Cinemoid' 19 and Kodak 558/13 filters 

respectively. The results (Fig 8.10a) show that both sets of
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homogeneous chromatic fields produced a marked decay of the OCCA, 

but the red and green caused far more decay than the blue and orange 

fields. Further experiments showed that the blue and orange fields 

caused much the same degree of decay to white fields of the

same luminance (Fig. 8.10b). These experiments suggest that the 

large decay caused by red and green homogeneous fields was noti *
merely a result of chromatic stimulation, but was caused by specific 

wavelengths of light which were the same as those used to induce the 

McCollough effect.

8.4.2 Comparison of left/right oblique with horizontal/vertical 

achromatic gratings

In this experiment the oblique and the horizontal/vertical 

grating fields were the same size (12°x12* angular subtense at the 

eye) and the same average luminance. Both sets consisted of ' 

gratings which had the same spatial frequency as the test and 

induction gratings. The results (Fig 8.11a) show that the decay 

caused by the left and right oblique gratings (i.e. those of the 

same orientation as the induction gratings) was greater than that 

caused by the horizontal and vertical gratings, although both caused

a marked decline of the OCCA. When the horizontal and vertical
» • ’ ' *

gratings were compared with white fields of the 'same average 

luminance, it was found that the gratings produced slightly greater 

decay (Fig. 8.11b). The difference in effectiveness between the 

stimuli was not as great as that between oblique gratings and white 

fields (see Fig. 8.9).
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8.5 Conclusions

The general conclusion from the experiments is that variation 

of visual stimuli presented after induction can produce large 

differences in the decay rate of the McCollough effect. The decay 

ranged from approximately 8% produced in (briefly interrupted) 

darkness to 80% produced with homogeneous red and green fields.

Even small differences in stimuli caused a marked effect upon the 

decay rate (for example the difference between oblique and 

horizontal/vertical gratings). It is therefore entirely plausible 

that the variation in the decay rates reported in Chapter 4 were due
l

to small changes in the conditions during decay. To take a mundane, 

but entirely possible example, if the experimenter or subject was
4

wearing black or dark clothes on one occasion and bright red or 

green on a second occasion, one would expect a greater decay on the 

second. Some of the differences in the visual stimulation during 

decay were possible to control in future experiments (by wearing a 

standard white laboratory coat, for example) but others were not.

The laboratory used for the experiments abounds in high contrast 

edges of varying orientations as did the the materials subjects 

handled in between decay measurements. The only possible way of 

obtaining standard stimulation during decay would be to ask subjects

to gaze throughout at a large homogeneous field. This would not
1

only be inhumane but would have drastically reduced the number of 

(unpaid) volunteers!

In addition to revealing sources of variability, these 

experiments have clarified some of the past data. In common with 

previous reports by MacKay and MacKay (1975a) and contary to those
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of Skowbo et. al. (1974) they have shown that darkness causes very

little decay. Achromatic gratings of the same orientation and

spatial frequency as the induction gratings produced a rapid decay

as reported by Skowbo et.al. (1974) and Skowbo & Clynes (1977).

Whereas Skowbo et.al. found that darkness, room illumination and

homogeneous chtomatic fields had the same effect upon decay, this

study has indicated significant differences, the decay being.
• i

largest when homochromatic fields were presented, and smallest in

darkness. The differences in the results may have been due to

variation in experimental method (see Section 8.2).

All past reported research about the effects of visual stimuli 

upon decay have used achromatic gratings and homogeneous chromatic 

fields which comprised the same component stimuli used to induce the 

McCollough effect. The experiments reported in this chapter have 

shown that less decay was produced by either gratings or coloured' 

fields which were different from those used in the induction
Iprocedure. Unfortunately, there has only been time.to study the 

effects of gratings at 45* (i.e. maximum) from the orientations used 

during induction, and of coloured fields of greatly different 

wavelengths from those used during induction. It would be
t

informative to study the effects of small changes in wavelength and 

orientation and of changing the spatial frequency of the gratings 

upon the decay, since these experiments would be of theoretical 

interest. The results, however, have shown that it is not just 

chromatic or patterned stimuli which produce a fast decay of the 

McCollough effect, but chromatic or patterned stimuli which have the 

same charateristics as those used to induce the aftereffect. 

Following their results showing that the McCollough effect does not
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decay in darkness, MacKay & MacKay (1975b) postulated that the 

aftereffect was due to associative habituation of synaptic 

couplings. This view may be supported by the observation that the

greatest decay is caused by components of the stimuli used to induce1
the OCCA; since the the recovery from adaptation may depend upon 

specific disruption of selective changes in the synaptic couplings.

t
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CHAPTER 9 EFFECTS OF VISUAL STIMULI PRESENTED BEFORE INDUCTION

9.1 Introduction

i

One aspect of the experiments which was impossible to control 

fully was the visual stimulation to which the subjects were exposed 

prior to induction. Some of the variation observed in the initial 

strength after identical induction periods may have been due to 

differences in the stimulation before the experiments began.

Although stimulation prior to induction may be an important 

factor in the establishment of the McCollough effect, there has been 

little research reported in this area. It has been claimed, 

how’ever, that gratings presented before induction 'interfere' with 

the McCollough effect and that high luminance gratings have more 

effect than low luminance gratings (Skowbo, 1979). A number of 

experiments were performed to investigate the effect of various 

stimuli presented before induction of the McCollough effect.

9.2 Monocular stimulation

The general experimental procedure (see Chapter 3) was varied 

slightly for all the experiments reported in this chapter. Subjects 

performed a pre-test measurement after 10mins. under standard 

illumination, as normal, but then they were subjected to a variety 

of visual stimuli for 20mins. Following this exposure the 

experiments proceeded as usual.
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In these preliminary experiments McCollough effects were 

induced and tested monocularly after exposure to 5 types of visual 

stimuli!

1. Complete darkness

2. Room illumination

3. White fields . '

4. Alternating orthogonal achromatic gratings (of the same 

orientation and frequency as the induction stimuli)

5. Alternating red and green homogeneous fields

Stimuli 3,4 and 5 were presented at 5s intervals; 3 and 4 with no 

dark intervals; and 5 with a 1s dark interval. The averaged results 

of two runs for 4 subjects are shown in Fig 9.1, which reveals that 

both the red/green fields and the achromatic gratings presented 

before induction reduced the strength of the McCollough effect by 

approximately the same, large extent. Room illumination and 

darkness were associated with the smallest reduction and white 

fields with a slight reduction in McCollough effect strength.

It is of interest to compare the results with those of the 

experiments concerning the effect of varying visual stimulation 

after induction (Chapter 8). Homogeneous chromatic fields and 

achromatic gratings presented before induction result in a small 

aftereffect and if presented after induction cause a rapid decay. 

White fields and room illumination were associated with a relatively 

small decay if they were presented after induction and a large OCCA 

if shown before induction. It is interesting therefore that 

darkness prior to induction has the same effect as normal room 

illumination, since the results of Chapter 8 and of MacKay and
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MacKay (1977b) have shown that darkness after induction can reduce, 

or stop, the decay of the McCollough effect. Some experiments in 

Chapter 5 also'indicate that long periods of darkness before 

induction have little or no effect upon the strength of the 

McCollough effect.

9.3 Effects of stimuli prior to induction upon decay

The results of Chapter 8 have shown that the stimuli used above 

had very different effects upon the decay rate of the McCollough 

effect when they were presented after induction. The experiments of 

Section 9.2 were therefore repeated, but the decay rates were 

measured to see whether the stimuli affected the decay rate when

they were presented before induction. The results (Fig. 9.2) reveal
. i

that different stimuli presented before induction did not affect the

decay rate of the OCCA although they had varying degrees of 

influence upon the initial strength.

i
9.4 Dlchoptic comparisons of the effect of stimulation before 

induction

Though the results of Section 9.2 were consistent from run to 

run, preliminary experiments had revealed that the initial strength 

of the McCollough effect varied widely from day to day. Thus the 

hypothesis that the above results were due to normal variation, and 

not to the effects of the stimuli before induction, cannot be 

dismissed. Different stimuli were therefore investigated by 

comparing their effects, when presented to different eyes, upon a 

binocularly induced McCollough effect, since preliminary experiments
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had revealed that aftereffect strengths in each eye were similar 

following binocular induction. The tachistoscope was used to 

present the white, red and green fields and the gratings. These 

were presented for 5s with a 5s 'off' interval, each eye being 

stimulated during the 'off' interval of the other to avoid dichoptic 

interaction. The darkness condition was produced by a light-tight 

patch. ;

9.4.1 Comparison of homogeneous chromatic fields with darkness

A comparison of the effect of red and green fields and darkness 

presented before induction is shown in Fig 9.3, which indicates that 

in all 4 subjects the eye stimulated by the chromatic fields 

developed a much lower OCCA strength. This result is consistent 

with those of Section 9.2, but the direct comparison does not show 

whether the reduced aftereffect was caused by the difference in 

luminance or by the chromatic stimulation (see Section 9.4.3).

9.4.2 Comparison of achromatic gratings with darkness
t

The results of comparing the effects of achromatic gratings 

with darkness (Fig. 9.4) are again consistent with those of Section 

9.2. They show that the aftereffect was much lower in strength in 

the eye which had been stimulated by achromatic gratings before 

induction. As in the previous experiment, the results do not reveal 

whether the reduction in aftereffect was caused by the difference in 

luminance to the eyes, or by the patterned stimuli (see Section

9.4.4)
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9.4.3 Comparison of homogeneous chromatic fields with white fields

After prior stimulation with red and green fields the OCCA was 

substantially lower than in an eye which had been stimulated with 

white fields (Fig. 9.5). Previous experiments have revealed that 

red and green fields caused more reduction than darkness. This may 

have been caused by luminance difference, but since the white fields 

were of approximately the same luminance as the chromatic fields, it 

seems that the chromatic information caused the reduction.

9.4.4 Comparison of achromatic gratings with white!fields

A comparison of the effects of prior exposure to achromatic 

gratings and to white fields (shown in Fig. 9.6) revealed that the
i • j

white fields were associated with a much larger aftereffect. The
t • ,

strength of the McCollough effect in the eye stimulated by thè white 

fields was similar, for each subject, to the strength found in the 

previous section when the same stimulation was used. Since the 

luminances were now approximately matched the results indicate that 

it was the patterned stimulation of the gratings that caused the 

observed reduction in OCCA strength.

0

9.4.5 Comparison of white fields with darkness

As a control experiment the effect of darkness upon the 

strength of a subsequent McCollough effect was compared with the 

effect of white fields. The results (Fig. 9.7) reveal that for all 

4 subjects McCollough effects following darkness or white field
i

stimulation were similar. It appears that differences in luminance
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before the induction of the OCCA do not have a large effect upon the 

initial strength.

The similarity between thè dark and white field conditions is 

interesting, since Skowbo (1979) has shown that' differences in the 

luminance of gratings presented before induction do affect the 

strength of the McCollough effect. Since the results of Section

9.4.4. have shown that achromatic gratings reduce the aftereffect 

strength to a much larger extent than white fields of the same 

average luminance it is possible that the data presented by Skowbo 

(1979) were not merely the result of luminance differences per se, 

but were caused by luminance-dependence of the effectiveness of the 

grating stimulus.

9.4.6 Comparison of achromatic gratings with homogeneous chromatic 

f ields

Dichoptic interaction between the gratings and the coloured

fields was avoided by presenting the stimuli to each eye during the■i
’off’ interval of the other. The results (Fig. 9.8) show that the 

effects of both stimuli upon the initial strength of the aftereffect 

were approximately the same. For both conditions the OCCA was lower 

than the average aftereffect usually found for all subjects.

9.5. Effect of grating orientation

Following the results of Section 8.4.2, showing that horizontal 

and vertical gratings had less effect upon decay than oblique 

gratings (or gratings of the same orientation as those presented
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during induction), the effect of grating orientation before 

induction was investigated. The experimental procedure was the same 

as that of Section 9.4. and the results (Fig. 9.9a) are averaged 

over 2 to 3 runs. During each of these runs, left and right oblique 

gratings were presented to one eye and horizontal and vertical 

gratings to the other. Fig. 9.9 shows that the initial strength of 

the aftereffect, following the presentation of the oblique gratings, 

was much lower than the initial strength after viewing alternating 

horizontal and vertical gratings (i.e. gratings of different 

orientation from those used during induction). Further experiments 

showed that the effect of horizontal and vertical gratings was not 

significantly different from that of white fields of the same 

average luminance (Fig. 9.9b).

After these experiments it was decided to investigate the 

effects of prior exposure to gratings of a number of different 

orientations to find whether the orientation had a progressively 

different effect. Gratings of 5 orientations were compared with the 

oblique gratings. These were: 10, 15, 20 and 30 and 45 degrees 

different in orientation from those used during induction (oblique). 

Since the aftereffects were of different strengths on each run, the 

effect of the gratings of varying orientations upon the initial 

strength of the aftereffect have been converted to a percentage of 

the strength in the eye which was presented with the oblique 

gratings. The results for 4 subjects are shown in Fig. 9.10. Point 

0 from the adaptation stimuli represents runs in which oblique 

gratings were presented to both eyes and for clarity the results 

were put at 100%, since the strength in either eye was only a few 

percent different. The results to the left of this point represent
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runs in which the left eye was the 'standard' (^«e. the left eye was 

presented with oblique gratings) and the results to" the right 

represent runs in which the right eye was the standard.

The graphs reveal that the OCCA strength resulting from 

inductions following the prior presentation of gratings was strongly 

dependent upon their orientation. However, the effect of varying 

the orientation was not graduated but had a specific 'cut off' 

point. Gratings of orientations 10 and 15 degrees from the oblique 

gratings had a similar effect to that of oblique gratings, sometimes 

producing slightly lower, and sometimes slightly higher, 

aftereffects. Gratings of orientations 30 and 45 degrees from the 

oblique, on the other hand,always produced much less reduction in 

OCCA strength .than the oblique. The gratings which were 20 degrees

from the adaptation stimuli had a variable effect upon the different
i .subjects. In general, therefore, it seems as if thé reductioh in 

the McCollough effect caused by prior grating presentation occurs 

only if the grating orientations are within 15 to 20 degrees of 

those used to induce the aftereffect.

/

The figure of 15 degrees is interesting since Campbell & Maffei 

(1970), using evoked potential data, have demonstrated that 

selectivity to orientation in the human visual system was "so high 

that a channel was not influenced by another 15 degrees away".

9.6. Effect of different colours [

i

The experiments of the last chapter showed that the decay of 

the McCollough effect was greatly increased by the presentation of
t



183

red and green homogeneous fields (the same colours that were used 

during induction) but that other colours had no more effect than 

white fields. Following the results of Section 9.4.6, which 

indicated that red and green fields presented prior to induction 

produce a large reduction in OCCA strength as compared to white 

fields, it was decided to investigate the effects of prior exposure 

of chromatic fields of different wavelengths.

The effects of red and green fields prior to induction were 

compared with .blue and orange fields (Cinemoid 19 and Kodak 558-13 

respectively). The results (Fig. 9.11) show that presentation of 

the red and green fields caused a much lower OCCA strength than the 

blue and orange. This experiment suggests that the reduction caused 

by the red and green fields was not merely a result of chromatic 

stimulation, but was a result of specific wavelengths of light.

\ :

9.7. Conclusions

The experiments of this chapter have shown that different 

visual stimulation, received before induction, can have a varied . 

effect upon the initial strength of the McCollough effect. Some of 

the variation of the initial strength observed in the preliminary 

experiments may, therefore, have been due to differences in the 

visual stimulation before induction either before entering the 

laboratory or during the 10mins. in standard room illumination. One
tfactor which may have caused variation was the pre-test measurement,i '

since the test pattern consisted of achromatic gratings of the same 

orientation and spatial frequency as the induction gratings, and 

these have been shown to cause a large reduction in the initial
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I

strength of the McCollough effect. There were considerable 

differences in the time taken to perform the pre-test, particularly 

amongst the more naive subjects, and it now seems probable that 

these differences had significant effect upon the strength of the 

OCCA. One way of overcoming this problem would be to introduce a 

standard exposure of the pre-test gratings before each experiment.

Some of the results have indicated that gratings of 

orientations within 20 degrees of the inducing stimulus orientation, 

presented before induction, have the greatest suppressivet effect upon 

the establishment of the McCollough effect. This fact, together 

with the results showing that chromatic fields of the same 

wavelength as those used during induction produce a small OCCA, may 

indicate some kind of habituation of the psychophysical ’channels’

between which associative couplings are formed during induction.
\ : ;

f

' i •

4
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CHAPTER 10 GENERAL CONCLUSIONS

The overall purpose of the research presented In this thesis 

was to identify some of the causes of inter and intrasubject 

variability the strength and the decay of the McCollough effect. A 

number, of experiments have identified specific factors that can 

cause variability.

1. The initial strength of the McCollough effect is strongly 

influenced by prior sleep duration. (a) Reduction of sleep duration 

by about one third of normal caused a large drop in aftereffect 

strength; but (b) further reductions had no effect. (c) Increases 

above the normal sleep duration resulted in a larger aftereffect.

Changes in an individual's sleep duration by a few hours can thus 

result in large intrasubject variation; and differences in sleep 

habits can result in significant intersubject variation of thé 

strength of OCCA induced under standard conditions.; Decay slopes

(on log-log plots), however, were not affected (Chapter 5).

2. Both the initial strength and the decay of the McCollough 

effect are affected by the time of day and seem to follow a diurnal 

rhythm. In line with past research (MacKay, 1978), the rate of 

decay was found to decrease during the late evening - early morning.I
The initial strength also drops during this period. The exact 

timing of these diurnal changes varies with the phase of the sleep 

rhythm of the subjects (Chapter 6). Variability of both strength 

and decay 6f the McCollough effect may therefore occur as a result 

of performing experiments at late hours of the day or of subjects 

shifting the timing of their sleep.

3. The effects of sleep and time of day upon the strength of the
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OCCA seem.to have a common basis. Small aftereffects produced after 

sleep deprivation do not undergo the normal diurnal reduction but 

occur later in the evening. In addition, the high and low 

aftereffect levels found with variation in sleep and time of day are 

approximately the same for each subject. Inter and intrasubject 

variability can be reduced only by controlling both the sleep 

duration and the timing of the experiments for all subjects.

4. The decay of the McCollough effect is strongly dependent upon. •
the type of visual stimulation received after the induction process. 

In line with past evidence, it was found that (briefly interrupted) 

darkness causes very little decay (MacKay and MacKay, 1974a,' 1975a, 

1977b) and that achromatic gratings of the same orientation as the 

induction gratings, cause a rapid decay (Skowbo et.al., 1974; 

Skowbo, 1979). Generally, however, the most rapid decay was found 

to-be caused by homogeneous chromatic fields of identical 

wavelengths to those used during induction. Other visual stimuli, 

including white fields and achromatic gratings or chromatic fields, 

different from those used during induction, cause greater decay thani *
darkness but less decay than stimuli of similar characteristics to

t

the induction stimuli (Chapter 8). The large variation caused by 

different visual■stimuli may be responsible for some of the 

variability of the decay of the OCCA. This variability can only be 

controlled by a strict experimental procedure.

5. Variation of the visual stimulation prior to induction causes
i ’

significant differences in the initial strength'of the McCollough 

effect. Stimulation by oblique gratings or red and green fields 

(i.e. stimuli with identical characteristics to the induction 

stimuli) caused a marked reduction in the OCCA strength as compared 

with other types of stimulation (including: white fields, darkness,

'I.
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blue and orange fields and horizontal and vertical fields). The
.J :i

reduction of the aftereffect by gratings was limited to those of 

orientations within 15- 20 degrees of the induction stimulus' 

orientation. Visual stimulation prior to induction was found to 

have no effect upon subsequent decay (Chapter 9). Differences in 

visual stimulation before induction can, therefore, introduce 

variability of the initial strength. One particularly relevant 

source of variability is the duration of exposure to pre-test 

patterns which consist of gratings of the same orientation as the 

inducing patterns.

6. Amblyopic andst:ereoblind subjects exhibit different monocular,
. i

binocular> dichoptic .and transferred McCollough effect results .from 

normal observers. After binocular stimulation, the strength in 

amblyopic, or non-dominant, eyes is much lower than in the normal, 

or 'dominant, eyes. If the amblyopic eye is stimulated monocularly, 

the aftereffect strength is much larger. Normal subjects develop 

similar aftereffect strengths in both eyes after binocular 

stimulation and the strength is approximately the same after 

monocular stimulation. Amblyopic and some stereoblind subjects show
i

large transfer (up to 50%) of the McCollough effect, but only from 

the amblyopic eye. It is generally agreed that normal observers do 

not show substantial transfer (less than 10%). Finally, normal 

subjects develop similar 'anomalous' McCollough effects when 

gratings are presented to either eye. However, when the gratings 

were presented to amblyopic eyes or non-dominant eyes, both the 

'anomalous' and the McCollough effects were larger than when the 

gratings were presented to the normal eye (Chapter 7). These 

differences between normal observers and those with visual 

abnormalities couïd lead to intrasubject variability, especially in



194

studies of dichoptic.or transferred McCollough effects.

Pressure of time has prevented extensive exploration of a
i ,

number of topics and many experiments have suggested a need for 

further research. One general point to emerge from all the 

experimental chapters was that there was a need to compare the 

effects of various factors upon the McCollough effect with other 

colour contingent aftereffects since a number of investigators (for 

example, Skowbo, Gentry, Timney and Morant, 1975) have suggested
i '

that these aftereffects are related. This is particu. larly true of 

the experiments reported in Chapter 7, since these have shown that 

the McCollough effect transferred more with amblyopic subjects than 

with normal subjects. Past research has showed that amblyopia 

reduces the transfer of a variety of achromatic aftereffects. It 

would be informative to investigate the effects of amblyopia upon 

the transfer of other colour contingent aftereffects, in order to 

find out if the McCollough effect is unique, or whether colour 

contingent aftereffects form a group, since research so far has 

indicated that all aftereffects contingent upon colour (including 

.the McCollough effect) do not transfer in normal subjects. The 

experiments reported in Chapter 8 and 9, on the effects of various 

visual stimulation before and after induction, have helped reinforce 

the theory that the McCollough effect is an associative process. It 

would be informative to repeat these experiments, especially with
4

stimuli which have similar characteristics to the induction stimuli, 

on other contingent aftereffects, in order to find out whether all 

such aftereffects are caused by associative processes.
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I

Apart from this general point a number of the areas studied 

have suggested particular topics which are in need of further 

research.
\

1. The cause of the effect of sleep upon the McCollough effect 

must remain speculative until controlled EEG studies, measuring the 

type and duration of sleep, can be done. Also, since brain 

activity, particularly neurotransmitter production, is known to 

change rapidly during sleep arid sleep deprivation, it would be of 

interest to artificially alter the levels of a variety of agents in 

order to Investigate their effects upon the OCCA. Another source of 

information may be found in the study of the effects of sleep 

inducing or reducing drugs on the strength of the OCCA, particularly 

since a number of such drugs are known to alter the overall types of 

sleep.

2. * A few experiments indicated that the influence of sleep loss 

upon the McCollough effect is cumulative. Though an arduous task, 

it may be productive to undertake a controlled investigation of the 

effect of repeated sleep loss. Such a project might also include a 

study of long-term diurnal effects, particularly that of changing 

diurnal rhythms (with, for instance, shift workers).

3. The difference in various McCollough characteristics, between 

normal and amblyopic or stereoblind subjects suggests that the 

effects of various other visual abnormalities, particularly those 

thought to be neural in origin, should be studied. Amblyopia was 

regarded as one particular defect in Chapter 7, but is known to be 

caused by several different factors, each producing a condition with 

its own characteristics. The effect of those different types of 

amblyopia, together with various colour deficiencies, could be

• istudied



196

4. Although the effects of visual stimulation upon the decay of 

the McCollough effect have been studied before, the experiments

reported in Chapter 8 suggest a need for a number of more controlled
i

investigations. In particular, it would be of interest to study the 

effect of gratings of various orientations and spatial frequencies 

and the effect of a number of colours of varying wavelength.

5. The experiments concerning the effect of visual stimulation 

presented before induction suggested that further studies in this 

area could produce some worthwhile results. Such studies could 

include the effect of varying the spatial frequency of gratings and 

of the effect of various colours.

■6. Diet and drug intake have been recorded and controlled (as far 

as possible) in all the experiments reported in this thesis since a 

number of reports have indicated that some drugs, including caffeine 

and nicotine, affect both the strength and the decay of the 

McCollough effect (Shute, 1979; Amure, 1978, 1979)i In order to 

fully control variability of the OCCA, it may be necessary to
i

investigate the effects of all,parts of the diet or at least those 

substances known to affect body metabolism. •

7. The decay graphs throughout this thesis have shown that a large 

proportion of the decays were arrested between either the 5 and 10, 

or the 10 and 20 minute measurement. The decay rate before and 

after these periods was normal. This suggests that the OCCA decays 

readily at first but then undergoes a short period of stabilization. 

Further research is needed to examine this phenomena more closely.

Despite the varied nature of the subject matterj several broad 

conclusions have emerged from this thesis. Every experimental 

chapter has shown a need to identify and control those factors which
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have an influence upon the McCollough effect. One way of
t

identifying factors causing variability is to note and record all 

details« even apparently irrelevant ones, about the subject and 

environment before, as well as during, each experiment. I am 

grateful to Dr. V. MacKay who suggested such a procedure when I 

started this research. I am reminded of a decay record which she 

showed to me on one portion of which was written "sitting on the

step in bright sunlight preparing sprouts". Such attention to 

detail, kept on a permanent record, creates a source of cross

reference from which further experiments can isolate 

relevant to the McCollough effect.

factors

Each chapter has, to a greater or lesser extent, indicated that 

the McCollough effect is caused by an associative process. The 

stark contrast between.the effect of sleep and time of day upon the 

McCollough effect and their influence upon other visual tasks 

(acuity, simple aftereffects, etc.)f and the similarity betweeh the 

pattern of results of Chapter 5 and 6 to the reports concerning the 

effects of sleep and time of day upon memory and learning offers, at 

least circumstantial, evidence that the underlying processes causing 

the OCCA are associative. On the basis of their research showing 

that darkness stopped the decay of the OCCA, MacKay and MacKay 

(1975b) suggested that the McCollough effect was due to associative 

habituation of synaptic couplings. Two lines of evidence supporting 

this view were presented in Chapters 8 and 9. Several sets of data 

showed that where stimuli with characteristics identical to those of 

the inducing patterns (i.e. oblique gratings or red and green 

homogeneous fields) were presented after the induction, they caused 

a much greater decay of the McCollough effect than any other visual
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stimulation. Furthermore, when oblique gratings or; red and green 

fields were presented before induction, the initial strength of the 

aftereffect was greatly reduced* (but subsequent decay slopes were 

not affected). It is possible that when these stimuli are presented 

after induction, they disrupt specific synaptic couplings and thus 

reduce the strength of the OCCA. When they are presented before 

induction, they may cause habituation of the particular 'channels' 

between which associative couplings are formed during induction.

*
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APPENDIX A METHODS OF MEASUREMENT.

A large proportion of the variability and conflict which exists 

in the McCollough literature may arise from the variety of methods 

used to measure the effect. Methods used have varied from simple 

verbal reports to some which have used equipment designed to match 

or cancel the effect. Some of these methods are examined below.

All methods used to indicate the strength of the McCollough 

effect yield only indirect measurements since the aftereffect itself 

is a property of the hervous system. Colour reports, or 

measurements, are not measures of the aftereffects but are evidence 

that the aftereffects are present. Methods of measurement are 

therefore subject to a number of desiderata. Firstly, they may 

depend on some factors which are incidental to the aftereffect. For 

example, the measurement may be affected if the luminance varies as 

the colour changes. Secondly, units of measurement should be 

expressed so as to yield useful estimates of the aftereffect 

strengths. Obviously as the aftereffect becomes more vivid, 

measurement scores would be expected to increase. However, one 

cannot be certain whether each increase of any meastire represents 

the same increase in the aftereffect. | -)
. . »

A.1. Verbal Reports.

A number of investigators have used verbal reports of the test 

pattern to determine the presence or absence of the McCollough 

effect (McCollough, 1965? Over and Lovegrove, 1973? White and Riggs, 

1974? Wyatt, 1974? Vidyasagar, 1973? Schmidt and Finke, 1979). 

McCollough (1965) used verbal reports to test whether orientation
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colour contingent aftereffects could be induced. She found that 

only some of the subjects reported the effects possibly because they 

were typically quite desaturated. Verbal reports were used by 

Lovegrove and Over (1973) to determine whether the effect could be 

induced dichoptically. Unlike MacKay and MacKay (1973a, 1975a),who 

used a match and null technique, they found no evidence of dichoptic 

induction. The aftereffects induced dichoptically áre smaller than 

those induced normally. The lack of any positive report may have 

been due to the very desaturated hues of the aftereffect which were 

only detected using a sensitive methodi of measurement.

Verbal reports are only useful to determine the number of 

subjects who detect an aftereffect. They do not give an indication 

of its strength. The decay of the effect, or the different 

strengths induced by various methods, cannot be investigated. 

Magnitude estimations have been used in attempts to. give numerical
• i

strengths to the aftereffect (Stromeyer, 1969; Sharpe and Tees,

1978; Uhlarik and Osgood, 1974) but the small range of magnitude . 

over which the McCollough effect exists makes this technique 

difficult. In addition, a subject's criteria for such an estimate 

may vary from test to test.

A.2. Short-term memory matching.

Some experiments liave involved the use of coloured paper, or 

chips, to match the aftereffect (Stromeyer, 1972a; Foreit and 

Ambler, 1978; Ambler and Foreit, 1979). This method requires the 

subject to view a test pattern and then to choose the paper, or 

chip, which most resembles the hue seen. Such a method, however, 

relies on short-term memory matching. Newhall, Burnham, and Clarke
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(1957) have shown that such colour matches are appreciably brighter
t

and more saturated than matches using the normal method of 

simultaneous presentation. Short-term memory matching cannot, 

therefore, be regarded as an accurate representation of the 

aftereffect.

A.3. Orientation Change.

The McCollough effect is strongly dependent upon the 

relationship between the orientation of the test and induction 

gratings (Fidell, 1970; MacKay and MacKay, 1977a). Teft and Clarke 

(1968) have used this dependence to investigate the effect of 

changing the spatial frequencies of both the test and induction 

gratings. The degree to which test gratings of different spatial 

frequencies could be rotated before the aftereffect completely
i

faded, was taken as a measure of the McCollough effect. Although 

this measure gives an indication of the strength of the effect the 

variable being measured is the range of orientations over which the 

effect remains visible.

A.4. Colour Matching

The hues seen on test patterns have been matched using 

projection colorimeters (Hirsch and Murch, 1972; Skowbo et al, 1974? 

Murch, 1971). Using such instruments the aftereffect can be 

expressed in terms of C.I.E. chromaticity coordinates. This method 

allows one to examine the decay and varying strengths of the effect. 

Murch (1971) and Hirsch and Murch (1972) have used a small 

adjustable central grey area to match the hue of the surrounding 

test pattern. Skowbo et al. (1974) have matched the aftereffect by
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presenting the test pattern to the left eye and a homogeneous 

adjustable field to the right eye. This method introduces the 

problem of binocular rivalry. All matching methods involve 

comparing gratings with a blank field which makes it difficult to 

match the luminances. The luminance of the blank field could be 

matched with either the luminance of the white lines or the average

luminance of the test pattern. If it is matched with the average
i

luminance the luminances of the white lines and the blank field will 

be different and this may affect the colour matching during the 

test. If it is matched with the white lines the average luminance 

of the two fields will be different. In addition, as the test 

pattern is viewed for some time, Mach bands may be produced due to 

the sharp luminance gradients (Davidson, 1966). The perceived 

luminance of the white lines will not be uniform and this further 

complicates any luminance match. Most investigators who have used 

the colour match method, have not specified the relationship of the 

test grating and blank field luminances (for example Skowbo and 

Clynes, 1977; Hirsch and Murch, 1972).
i
j

A.5. Null Methods.

The null method of measurement requires the subject to adjust 

the colour of the test pattern,iuntil it appears achromatic. Fidell 

(1970) and Holding and Jones (1970) have used this method and have 

asked the subject to view each half of the test pattern separately. 

This procedure introduces two problems, firstly there is lack of a 

definite end point and secondly the subjects criteria for making the 

judgement may change between measurements. Riggs et al. (1974) and 

White (1976) have eliminated these problems by using two polarized

filters which nulled the two halves of the test field
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simultaneously. The subjects were instructed to null the aftereffect 

until both halves of the test pattern were matchedi This method 

provided a definite end point so that the strength of the McCollough 

effect could then be expressed accurately in terms or colorimetric 

purity.

Riggs et al. (1974) recognised a number of constraints of their 

method, some of vftiich Were only partially resolved. Firstly, the

colours used to test the aftereffect must be exactly complementary
• . • ' 
to the aftereffect hues. However, they report that some strong

effects could not be matched by any position of the filters.i
Secondly, the green and red components must be balanced for a null

match to be made. This was only approximately achieved, since

subjects varied so that some could not find a balanced position.

Thirdly, the filament image should be homogeneous in the plane of

the filters. Since tliis was not achieved, slight differences in

luminance occurred on the test pattern. The fourth constraint

mentioned by Riggs et al. was that the apparatus should be able to
*

measure the strongest aftereffects. This applies to all methods of 

measurement. Riggs et al. reported that the longest exposures 

produced aftereffects vAiich could not be measured without 

modification of the apparatus.

A.6. Match Interference.

The method of matching the McCollough effect by using 

interference produced by transparent birefringent tape, has been 

used by Shute (1976) and Amure (1979). This method matches the red 

hue of the aftereffect with the red light produced by removing green 

light. Two projectors were used, one projecting a test
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pattern and the second a blank slide. Two pieces of polaroid, with 

their ax es of transmission parallel, and a rotating insert were 

arranged ovér the lens of the second projector. A transparent 

biréfringent 1.5X plate for green light (^=535nm), with a 

retardation of 800nm, was placed in the rotating insert. As this 

plate was rotated between the parallel polars, a red interference 

colour was produced. The intensity of colour increase4 from zero to 

maximum as the angle between the slow direction of the wave plate 

and the transmission axis of the polars increased from 0* to 45*.

The strength of the aftereffect was recorded as the percentage 

extinction of green light required to produce the red colour match. 

After a rotation of c® this was taken to equal 100sin*2c. However,

due to the arrangement of the polarised filters the luminance of the
•i11

match area changes as the colour varies. The change in the

saturation of the colour was therefore confounded with a chlange in 
• «

the luminance. Shute (1979) has reported that the matching was not 

impaired by the reduced luminance of the interference system.' He 

estimated photometrically that the luminance was reduced by about 

43%. It has been shown that low luminance test patterns produce 

stronger aftereffects than test patterns of high luminance (White, 

1976). Although the test patterns remain at the same luminance, 

using this method, the area to which they are matched changes

dramatically. Most investigators have removed or added the
■ ■ . ■»I

pre-induction to the.post-induction measurements. Shute (1979) 

reports that he did not do this for two reasons: firstly, he 

believes that subthreshold McCollough effects, which are too small 

to measure, may be present; secondly, he concludes that the decay of 

the effect depends on1 the initial strength, no matter how this 

strength is achieved. However, Bradshaw (1978) reports that the 

effect is strongly dependent upon the induction 'on' and 'off'
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timing and that initial strength has little, if any, effect on 

decay.

A.7. Match and Hull. * i

The methods of matching and nulling the McCollough'efect can be

combined to give a simultaneous match and null measure (MacKay and

MacKay, 1973b; MacKay, 1978; Bradshaw, 1978). This method involves

the use of a test pattern of two halves which have orthogonal

gratings. Each half contains translucent windows which have 
»

i

gratings orthogonal to the surround. Filters behind the windows can 

be adjusted to match them to the hue of the surroundinggratirtgs. At
‘ i

the same time the hue on the gratings of the windows are nulled. A

detailed description of the method and apparatus used can be found

in Chapter 3.
0

The match and null method gives a larger measure than either 

matching or nulling alone and can therefore be used to show small• 

differences in the strengths of the aftereffect. This is an important 

consideration when studying the changes produced under different 

induction conditions or the gradual decline of the effect during 

decay. The method also provides a definite end point. However, 

there are a number of constraints. The apparatus should have been 

able to measure aftereffects of all strengths; Some very strong 

aftereffects could not be measured without changing the amount of

white light which desaturated the colour of the filters. Secondly,
• | '

the method used both a match and a null component and it should have 

been possible to match all aftereffect hues. Some subjects 

occasionally had difficulty in matching the green hue with the green 

colour produced by the filters. Thirdly, the matches were always



218

performed in a slightly yellow light. This was added to the test 

surround to match the yellow produced by the red-green mix. The 

various tests and calibrations of the method are reported in Chapter

3
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