

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

RELIABLE FILE STORAGE

IN A DISTRIBUTED COMPUTING SYSTEM

by

Kenneth Lunn

A thesis presented in support of an application
for the degree of Doctor of Philosophy in the

University of Keele

March 1982

1.0 A B S T R A C T ... 2
2.0 ACKNOWLEDGEMENTS ... 4

CHAPTER 1 INTRODUCTION

1 . 1 THE P R O B L E M .. 1-1
1.2 THE APPLICATION A R E A 1-4
1.3 A SOLUTION TO THE PROBLEM OF RELIABLE FILE STORAGE 1-5
1.4 C O N C L U S I O N .. 1-9

CHAPTER 2 RELIABILITY THEORY

2.1 I N T R O D U C T I O N ..2-1
2.2 SYSTEMS AND THEIR FAILURES 2-2
2.2.1 S y s t e m s .. 2-2
2.2.2 S p e c i f i c a t i o n .. 2-3
2.2.3 R e l i a b i l i t y ... 2-4
2.2.4 Errors, Faults And Failures 2-5
2.2.5 Fault A v o i d a n c e .. 2-6
2.2.6 Fault T o l e r a n c e .. 2-7
2.2.7 Fault Tolerance Techniques 2-8
2.2.7.1 Protective R e d u n d a n c y2-8
2.2.7.2 Error D e t e c t i o n 2-9
2.2.7.3 Fault T r e a t m e n t 2-11
2.2.7.4 Damage Assessment 2-13
2.2.7.5 Error R e c o v e r y ..2-14
2.2.7.6 Component D e p e n d e n c y 2-17
2.2.7.6.1 Independent C o m p o n e n t s 2-17
2.2.7.6.2 Dependent C o m p o n e n t s 2-18
2.2.7.6.3 C o n c l u s i o n .. 2-20
2.3 C O N C L U S I O N .. 2-20

CHAPTER 3 LOCAL AREA NETWORKS

3.1 I N T R O D U C T I O N ...3-1
3.2 D E F I N I T I O N S ... 3-3
3.2.1 C o m m u n i c a t i o n s ...3-3
3.2.1.1 The Cambridge R i n g 3-4
3.2.2 P r o t o c o l s ..3-6
3.2.3 Homogeneous And Heterogeneous Systems 3-7
3.2.4 A u t o n o m y .. 3-8
3.2.5 Servers And C l i e n t s3-10
3.3 PROS AND CONS OF LOCAL AREA NETWORK SYSTEMS . . 3-11
3.4 SURVEY OF EXISTING LOCAL AREA NETWORK COMPUTER

S Y S T E M S ... 3-15
3.4.1 Cambridge Model Distributed System 3-15
3.4.2 Xerox E t h e r n e t ... 3-18
3.4.3 Apollo Domain . . ^3-20
3.4.4 Z - N e t ... 3-21
3.4.5 Dec N e t ... 3-21
3.4.6 Unix Satellite Processor System 3-22
3.4.7 Other Distributed Unix Systems 3-23

Page 2

3.5 C O N C L U S I O N .. 3-24

CHAPTER 4 FILE-STORES

4.1 D E F I N I T I O N S ..4-1
4.1.1 File-stores, File-server And F i l e s 4-1
4.1.2 Da tabas e .. 4-2
4.1.3 N a m i n g ...4-3
4.1.4 P r o t e c t i o n ..4-6
4.1.5 Mutual Exclusion 4-6
4.1.6 D e a d l o c k .. 4-8
4.1.7 C o n s i s t e n c y ... 4-9
4.1.8 Atomicity And Transactions 4-10
4.2 ISSUES IN FILE-STORE DESIGN 4-11
4.2.1 Data P l a c e m e n t ... 4-12
4.2.2 C o n s i s t e n c y .. 4-13
4.2.3 Shared A c c e s s ... 4-14
4.2.4 Shared U p d a t e ... 4-15
4.2.5 N a m i n g ..4-16
4.3 A SURVEY OF A NUMBER OF EXISTING FILE-STORES . . 4-18
4.3.1 U n i x .. 4-18
4.3.2 GEC 0 S4000 ... 4-21
4.3.3 OS 360 .. 4-22
4.3.4 Xerox D F S .. 4-23
4.3.5 Apollo D o m a i n ... 4-26
4.3.6 George I I I ...4-27
4.3.7 Other Unix-like Distributed File-stores . . . 4-29

CHAPTER 5 REFINEMENT OF THE PROBLEM

CHAPTER 6 KUDOS

6.1 THE KEELE UNIVERSITY DISTRIBUTED OPERATING SYSTEM 6-1
6.2 AIMS OF K U D O S ... 6-2
6.2.1 General Objectives 6-3
6.2.2 Objectives Within Our Application 6-4
6.2.3 E x p e r i e n c e ..6-6
6.3 KUDOS S T R U C T U R E 6-10
6.3.1 The KUDOS Message Passing Scheme 6-11
6.3.2 Client-Server Architecture 6-16
6.3.3 Public/Private Domain Architecture 6-16
6.3.4 The Conceptual S t r u c t u r e6-18
6.3.4.1 The Personal Autonomous Work Station 6-22
6.3.4.2 The Multi-Access Shared System 6-23
6.3.4.3 The Public System Interface 6-23
6.3.5 Object Naming, Addressing And Location 6-23
6.3.5.1 Resources ... 6-24
6.3.5.2 Addressing 6-25
6.3.5.3 Processing .. 6-25
6.3.5.4 Resource Location 6-26
6.3.5.5 Some Effects Of Node Crashes And Start-Ups . 6-29
6.3.5.6 Alternative Schemes 6-30

Page 3

6.4 KUDOS IMPLEMENTATION TO D A T E 6-32
6.4.1 F i l e - s t o r e .. 6-32
6.4.2 UCSD Filer I n t e r f a c e6-32
6.5 EXPERIENCE AND CONCLUSIONS 6-33
6.5.1 H a r d w a r e ... 6-33
6.5.2 S o f t w a r e ... 6-35
6.6 OVERALL CONCLUSIONS 6-40

CHAPTER 7 KUDOS FILE-STORE - DESCRIPTION

7.1 THE KUDOS F I L E - S E R V E R 7-8
7.1.1 I n t r o d u c t i o n ... 7-8
7.1.2 File-server Primitives 7-10
7.1.2.1 Create And Delete 7-12
7.1.2.2 Expand And S h r i n k 7-12
7.1.2.3 Read And W r i t e ..7-13
7.1.2.4 Failures .. 7-13
7.1.2.5 Desirable Extensions To The Primitives . . . 7-14
7.1.3 File-server Protection 7-17
7.1.4 File-server Reliability 7-19
7.2 THE DIRECTORY S Y S T E M 7-22
7.2.1 General Description 7-22
7.2.1.1 Hierarchy ... 7-22
7.2.1.2 The Active F i l e - s t o r e 7-23
7.2.1.3 Associated Volumes 7-24
7.2.1.4 Mount/dismount 7-27
7.2.1.5 Directory R e s o l v i n g 7-29
7.2.1.6 Timestamping 7-31
7.2.1.7 Atomicity .. 7-32
7.2.2 File P r o t e c t i o n ..7-35
7.2.2.1 System Defined Capabilities 7-35
7.2.2.2 User Defined Capabilities 7-36
7.2.2.3 Locking .. 7-37
7.2.3 Directory System Primitives 7-40
7.2.3.1 Activate_subdirectory 7-42
7.2.3.2 Read_associated_volumes 7-44
7.2.3.3 Create_subdirectory And Delete_subdirectory 7-44
7.2.3.4 I n s e r t _ f i l e .. 7-45
7.2.3.5 Find_file .. 7-45
7.2.3.6 Delete_file 7-46
7.2.3.7 Read_lock, Writ e_ lock, Refresh_lock And

En d_ l o c k .. 7-46
7.2.3.8 L i s t .. 7-47
7.2.3.9 New_read_permit And New_write_permit 7-48
7.3 CLIENT VIEW OF F I L E - S T O R E7-49
7.3.1 Fi l e- server/directory Relationship With Client 7-49
7.3.2 Client Error Detect ion/Recovery 7-51
7.3.3 Deadlock Detec tion/recovery 7-52
7.3.4 Example Of Use Of F i l e - s t o r e7-53

CHAPTER 8 KUDOS FILE-STORE - ASSESSMENT

8.1 THE D E S I G N ... 8-1

Page 4

8.1.1 Structure And M e t h o d o l o g y 8-2
8.1.2 R e l i a b i l i t y .. 8-10
8.1.2.1 Elementary Reliability Calculations 8-12
8.1.2.2 A c c e s s ..8-19
8.1.2.3 Prevention Of L o s s 8-19
8.1.2.4 Other Aspects Of Reliability Theory 8-20
8.1.3 P e r f o r m a n c e .. 8-24
8.1.3.1 F i l e - s e r v e r .. 8-24
8.1.3.2 Directory S y s t e m 8-25
8.2 NEW I D E A S ... 8-28
8.3 FUTURE R E S E A R C H ... 8-35

CHAPTER 9 SUMMARY AND CONCLUSIONS

9.1 S U M M A R Y ...9-1
9.2 A C H I E V E M E N T S ..9-3
9.2.1 P e r s o n a l .. 9-3
9.2.2 L o c a l ...9-5
9.2.3 G l o b a l ...9-6

CHAPTER 10 REFERENCES

Page 2

1.0 ABSTRACT

This thesis considers the problem of how to construct a

file-store which is reliable in terms of high accessibility

of data and low likelihood of data loss. In particular the

problem is discussed in the context of a local area network

computer architecture. A novel approach is taken to the

implementation of the naming network for files, which

controls multiple copy redundancy. The naming network is a

single hierarchy which incorporates redundancy in the access

paths to files as well as in the files themselves, thus

improving accessibility as well as reducing likelihood of

file loss. A prototype file-store was deve loped and

i mplemented; to facilitate this the author had to develop a

simple distributed operating system wh i ch evolved as an

interesting research project in i t s ow n right. A

di st ri buted name-server algorithm was dev e loped, and

interesting insight gained into the design of local area

network computer systems. The property of local area

networks important to the file-store is scope for dynamic

redundancy; the file-store is constructed out of a number

of independent file-servers . Inconsistencies between

multiple copies of a file are resolved automatically.

Levels of redundancy and data location are controlled

through the naming network, allowing replication of files to

any degree thought necessary, bounded by the number of

independent storage volumes in the system. Deadlock

avoidance and automatic reconfiguration on hardware

Page 3

component failure are included. Some simple combinatorial

mathematics is included to highlight the reliability of

multiple independent copies of a file; the need for a more

quantitative approach is indicated.

Page 4

2.0 ACKNOWLEDGEMENTS

The work presented in this thesis was undertaken within

the Department of Computer Science at the University of

Keele. About the time of my arrival a project commenced on

distributed file-stores sponsored by the Science and

Engineering Research Council, and it is within this project

that the work evolved.

I am grateful to the Department of Computer Science,

firstly for accepting me to undertake a Ph.D.; despite

having spent two years as a Cobol applications programmer,

they divined some promise in me which I hope I have

fulfilled. The department is a small, friendly one, and I

was made to feel part of the family far more than might have

been the case in a larger, more established department.

I must also thank the undergraduates whom I had the

honour to teach. In teaching them I had to close large gaps

in my own knowledge. It was interesting to note the variety

of students who take computer science at Keele, no doubt a

consequence of the philosophy of the University.

The distributed file-store project was headed by Keith

Bennett, who also acted as my supervisor. I must thank him

for his encouragement and guidance and collaboration on a

number of research papers. The other members of the

project, namely Pearl Brereton, Paul Singleton, Philip Peake

and Pete Truman, also deserve thanks.

Page 5

The Science and Engineering Research Council is to be

thanked for financing both myself as a research student and

the distributed file-store project.

Finally, I must thank my wife Susan, who agreed that I

should embark on such a venture, accepted the financial

sacrifices, and provided plenty of encouragement with few

complaints. No marriage is thoroughly tested until it has

suffered a Ph.D. and the consequent thesis.

CHAPTER 1

INTRODUCTION

1 .1 THE PROBLEM

This thesis considers the problem of how to construct a

file-store which is reliable in terms of high accessibility

of data and low likelihood of data loss. In particular, the

problem is discussed in the context of a local area network

archi tecture.

The contribution of this thesis is seen to be largely

practical; a solution to the stated problem has been

proposed and implemented as a prototype. The algorithms for

this solution will be presented, together with extensive

discussion of the implementation.

A number of solutions to file-store reliability have

already been tried, and will be discussed later. The

solution presented here differs from most in that it

provides a user-oriented naming scheme with user-oriented

protection mechanisms. Multiple copy redundancy is

controlled through the naming network and includes

redundancy of access paths. Tailoring of redundancy for

INTRODUCTION Page 1-2

files and the location of files is also controlled through

the naming network.

We shall try throughout to distinguish between

file-store and fi l e-server. The former we see as providing

a high level of functionality, the latter as a repository

for files and as such only a component part of a file-store.

For example, a file-store may associate user-arbitrary names

with files whereas a file-server may only refer to files by

a system generated name. In our solution, the file-store

will also administer multiple copies of files. A fuller

distinction between file-store and file-server will appear

later.

The desirability of a reliable file-store needs little

justification. Improving technology has meant that data

loss through hardware failure is relatively rare. On the

other hand, storage devices are capable of holding more and

more data so that a single hardware failure can lose vast

quantities of data. Anyone who has lost even a day's work

through data loss knows how inconvenient and time-consuming

recovery can be. Complete loss of large quantities of data,

to commercial organisations in particular, can be

disastrous.

Consequently, most organisations and/or individuals

take care to secure data, largely by copying crucial data

sets, usually to magnetic tape. A former employer of the

author duplicated all critical files and kept punched cards

INTRODUCTION Page 1-3

(the primary data entry) for several days after use. Such

practices are common.

The problems with such ad hoc duplication of data are

that it requires a large amount of organisational effort, it

is prone to oversight, and involves extensive work to

recover from a failure. More automatic means of data

replication and recovery would be of significant use. Some

systems already provide this in a limited way, for example,

the George III system described later. A flexible response

is also desirable, providing different degrees of

reliability for different files according to their

i mportance.

What is meant by reliability will be discussed early on

in this thesis. Intuitively, reliability is the property of

not going wrong too often. Unfortunately, systems which

never go wrong are part of an unrealisable utopia. We shall

have to content ourselves with minimising the likelihood of

failure, restricting the consequences of failure, and hiding

the effects of failure. A successful system might be one

that, although it fails, is never seen to fail, or which

never has a greatly upsetting failure. To a large extent,

appearances are all important.

INTRODUCTION Page 1-4

1 .2 THE APPLICATION AREA

A local area network can be loosely defined as a

collection of inter-connected computers within a small area

of (say) one square mile. These computers can cooperate on

common tasks and typically service the general needs of an

organisation such as a university or a commercial

enterprise.

In terms of cost, local area networks have become

viable only over the last few years. This is partly because

the diminishing cost of computers has made possible

experimentation and techniques which previously would have

been outrageously extravagant, and partly because of the

relatively recent development of appropriate, low-cost

communication systems. It is interesting to reflect how

economics can significantly change emphasis in both research

and dev elopm ent.

Local area networks have provided a significant amount

of research material. A too rigorous definition of a local

area network would exclude many useful research projects.

Existing local area networks range from ad hoc

interconnections of existing resources on a number of

university campuses, to fully-fledged integrated computer

systems such as the Cambridge Model Distributed System

described later. Research topics cover such areas as

communications, system reliability, software design, file

storage, and concurrency.

INTRODUCTION Page 1-5

It is the belief of the author that the most fruitful

research will stem from integrated, purpose-built systems

rather than ad hoc systems. One can then view a local area

network as an alternative form of computer system

architecture. We shall later discuss the features of this

sort of architecture, in particular those most appropriate

to the problem at hand.

The choice of local area network as an implementation

vehicle for the solution to the stated problem is justified

in two ways. Firstly, local area networks are a worthy area

for research. This is an "art for art's sake" definition,

but perfectly admissible. Secondly, there are a number of

features of local area networks appropriate to the stated

problem.

Briefly, the appropriate features of local area

networks are (without definition as yet) scope for

redundancy, independence of components, and potential for

concurrency. Other features of local area networks, such as

incremental growth and the ability to absorb new

applications, are important but not related to the problem.

We shall explore local area networks more fully later.

1.3 A SOLUTION TO THE PROBLEM OF RELIABLE FILE STORAGE

The raison d'etre of this thesis is a set of algorithms

which provide a solution to the stated problem. Related to

this is a distributed operating system developed by the

INTRODUCTION
Page 1 - 6

author called KUDOS (Keele University Distributed Operating

System). The KUDOS file-store encompasses the file-store

algorithms and has been implemented as a prototype.

KUDOS itself provided some useful research. A novel

algorithm for resource location was developed and

implemented, and will be described later. This was

published as CLUNN3] . Also a great deal of time and

heartache were spent on communications software, which can

largely serve as an example of how not to approach

communications. When reading the description of that

experience the reader might do well to pity the poor tyro.

In retrospect, KUDOS was little more than a necessary

diversion. An implemention vehicle was required for the

algorithms. Had a suitable vehicle been readily available

then it would have been exploited. However, hardware and

software resources, at the time, in the computer science

department at Keele, were severely limited. Researchers

might well be advised to beg, borrow and steal whatever they

can to make Life easier; deve lopi ng tools can be

t i me-cons umi ng and leads one to mi stakes and problems

already solved by others. A readily available ope rating

.. A m n r p time for developing and system would have allowed more

experimenting with the file-store algorith

 ̂ .ffnrt was split almost evenlyActual implementation efto

between KUDOS and the KUDOS file-store. The completion of

the prototype took twelve months. The design

introduction Page 1-7

development of the algorithms spanned two years, spreading

into the development of the prototype. Early versions of

the file-store algorithms appeared in CLUNN4] .

The final set of algorithms provide a number of

important features. These are:

1. Single global hierarchical naming scheme. The

naming mechanism appears to the user as a single

hierarchy similar to that provided by Unix and many

other operating systems. There is no notion of

location embedded in the name of a file, unlike

many such file-stores on distributed systems, for

example the Apollo system. A user names a file in

the same way from any part of the system.

2. Controlled multiple copy redundancy. It is

possible to replicate a file on all or any subset

of the set of volumes in the system. If a copy

falls behind because its storage volume is

inaccessible, it is brought up to date before it is

accessed by reference to other copies in the

system. The algorithms presented can respond

flexibly to requirements by minimising the

likelihood that an out of date file is accessed or

by removing that possibility under normal progress

of the system (including the response to system

failures). Non-critical files can be stored as

one-copy, as are uncommitted files during update.

introduction Page 1-8

3. Neat solution to data placement. Through the

hierarchy of directories, though not embedded in

the name of a file, the placement of copies of a

file is controlled. This is by a mechanism called

"associated volumes" which will be described fully

later. This scheme also provides another benefit

in that a file can be accessed if any volume

containing a copy of that file is online. This is

because each volume contains a copy of all paths to

all files held by it.

4. Deadlock avoidance. It was decided to duck the

issue of deadlock detection and to adopt a policy

of deadlock avoidance. This is perhaps a better

alternative in a system where no centralised

control exists, but we shall not argue the case.

The mechanism chosen is based on timeout of locks,

and relies to some extent on the reasonable

behaviour of software using the file-store.

5. Automatic reconfiguration. If a node in the system

fails, the file-store will reconfigure itself to

provide a cont i nued servi c e . Any softwa re

dependent on a failed node for a pa rt i cu la r

transaction may, however, have to back out and

ret ry in the new configuration.

INTRODUCTION Page 1-9

6. Limited checkpointing and recovery. By adopting a

policy of careful replacement, process failure

should not leave a file in a partially complete

state.

7. File protection. A system of keys, generated by

the system and by the user prevent illegal access

to data stored in the file-store, and implement a

data privacy scheme for users.

1 .4 CONCLUS ION

The work presented in this thesis is fairly

straightforward. The problem of reliable file storage is

cited, a solution proposed and a prototype implemented.

Along the way, some useful results were derived, both

directly and indirectly relevant to the problem. Useful

experiences were gained, and the work provided insight into

organisational problems of research, as well as the more

abstract nature of it.

We shall begin the main body of the thesis by exploring

the terms of reference. Pertinent aspects of reliability

theory will be presented and set in context. An appraisal

of current developments in local area networks will be made

with the intention of extracting appropriate characteristics

for the solution to the stated problem. An appreciation of

current file-stores will be included, with a discussion of

existing solutions to file-store reliability. We shall then

i n t r o d u c t i o n Page 1 -10

refine the stated problem in the light of the definitions

made.

The next step will be to examine KUDOS. This is a

distributed operating system based on a network-transparent

means of com mu ni cation, i n the sense that communication

between any two processes i s the same irrespective of

whether or not they are on the same node. Some bitter

experiences with communications will be related. A novel

algorithm for resource location will be presented. It is

important, however, to view KUDOS as an implementation

vehicle for the file-store.

The file-store will then be described with the

algorithms which provide the aforesaid features. Some

experiences with the implementation will be related. There

will be some assessment of the file-store itself in terms of

its structure, reliability and performance; these will have

to be largely a priori. Finally, some examination of

research stemming from this thesis, and possible alternative

methods of approach, will be considered.

CHAPTER 2

RELIABILITY THEORY

2.1 INTRODUCTION

We shall consider the topic of reliability theory as

users rather than contributers, although a practical

application of the theory forms the basis of this thesis.

The most substantial body of work on reliability theory, at

least in the United Kingdom, stems from Newcastle

University. Representative of their work is CANDE1],

CANDE2D, [R AND 1D and CR AND 2] , and this chapter will draw

heavily from these sources. We shall consider some aspects

Presented in [SHOO], particularly on component dependency.

Reliability is an important parameter of good design.

It is the function of reliability theory to highlight the

major principles for achieving reliability, and to provide a

number of general policies, structures and techniques for

constructing reliable systems. To a large extent,

reliability theory is an application of intuitively obvious

Principles discovered (and probably repeatedly rediscovered)

by all good designers; this is commensurate with the view

that science is the rigorous application of common sense.

r e l i a b i l i t y t h e o r y Page 2-2

We shall commence this humble guided tour of

reliability theory by trying to define what we mean by

reliability. To a large extent we must rely on intuition,

at least in general terms. Engineering principles usually

only take on a precise meaning in a specific context. We

shall then discuss failures in a general way, and some

principles and techniques for minimising their consequences.

Throughout, we shall try to illustrate, with examples

where appropriate, which principles and techniques are most

pertinent to the problem of reliable file storage, and in

particular those which have been drawn upon in constructing

the KUDOS file-store.

2.2 SYSTEMS AND THEIR FAILURES

2.2.1 Systems

We shall consider a system to be a set of components

together with their inter-relationships and their

connections with the outside world. This definition is by

no means rigorous, but is useful and intuitively obvious. A

system itself might welt be a component of another system,

and likewise a component of a system might be seen as a

system in itself decomposable into its own components.

A useful example, familiar to most people, is a car. A

car can be seen to be constructed of a number of components

such as engine, body shell, wheels, transmission. An engine

can be seen itself as a system, comprised of pistons,

RELIABILITY THEORY Page 2-3

cylinders, crankshaft, ignition and so on. A car itself

might be seen as a component of a taxi service.

Likewise, a file-store can be seen as a system composed

of file-server, directory scheme, recovery algorithms. The

file-store is a component of a computer system, and a

file-server can be seen as a system in its own right

consisting of disc-servers, data-maps and so on.

It is important to clarify the boundaries of a system.

For example, a lord might consider a chauffeur as a

constituent component of a car. Lesser mortals could not

afford such a definition, but might implicitly assume

certain components such as a heated rear window though a car

might be defined without them.

2.2.2 Specification

The specification of a system is a set of statements

concerning the behaviour and external states of a system.

These may include a set of rules regarding the transition

"From one external state to another as a result of external

stimuli, or constraints on the external states. For

examp le, the specification of a car might include the number

°f passenger seats, luggage capacity, maximum speed and fuel

c onsumpt i on .

RELIABILITY THEORY Page 2-4

The subject of system specification is of great

importance, and there is much research on how to specify

systems rigorously (eg. [JONES]). Ambiguous or incomplete

specification of a system is a major failing too commonly

experienced by designers. However, to specify exhaustively

any large system is probably infeasible in practice, at

least with the tools currently available and with the time

constraints usually imposed. Specifications, therefore,

usually include implicit assumptions commonly associated

with the type of system.

The internal state of a system is the aggregate of all

the external states of its constituent components. The

external state is an abstraction of the internal state.

Thus, in passing from one external state to another a system

may well pass through a number of internal states. A

specification does not directly stipulate the internal

states of a system, nor indeed the components of a system.

Two functionally identical systems may well have different

internal structure and behaviour despite satisfying the same

specification. Intuitively then, a specification states

what a system does and not how it does it.

2.2.3 Reliability

The reliability of a system is a measure of the success

with which it conforms to specification and can be quite

arbitrary. For example, one measure might be the average

time to deviation from the specification (mean time to

RELIABILITY THEORY Page 2-5

failure), or perhaps the number of times it deviates from

specification over a fixed period. It is important to

realise that the reliability of a system cannot be discussed

without reference to the specification.

The reliability of a system may well involve a number

of measures, depending on the type of deviation from

specification. For example, one measure of a file-store's

reliability might be the frequency with which it loses files

(that is, it deviates from the specification which states

that it stores files), and another measure might be the

frequency with which stored files are inaccessible (that is,

it deviates from the specification that it retrieves files

placed therein). The reliability of any system is likely to

be a multi-valued measure.

2.2.4 Errors, Faults And Failures

We term the internal state of a system an erroneous

state when that state is such that further processing by the

normal algorithms of the system will cause a deviation from

the specification (that is a failure). The term error is

used to designate that part of a system which is incorrect.

A fault is a mechanical or algorithmic cause of an error.

For example, a car might be in an erroneous state if

fuel stops flowing to the carburettor. Continued use of the

car will result in the engine ceasing to propel the car,

thus causing a failure. The fault might be a break in a

r e l i a b i l i t y t h e o r y Page 2-6

"fuel line or malfunction of the fuel pump.

Similarly, a file-store might be in an erroneous state

if an area of a disc becomes corrupted. Future access to a

file stored using that area of a disc will cause a failure.

The fault might be a disintegrating disc surface or a

malfunction in the disc controller.

A fault might be permanent, meaning that the system

will continue to malfunction, or transient, meaning that the

system will function correctly in the future. Communication

systems are prone to transient errors, where messages might

be garbled due to the effect of the environment, say a

lightning strike or a power fluctuation.

2.2.5 Fault Avoidance

One method of reducing the likelihood of a failure is

To choose components with a low likelihood of failure. No

special methods are taken to deal with faults within the

system, so that a fault will eventually cause a failure.

Handling of a fault is outside the bounds of the system.

For the designer, fault avoidance is the simplest

method of preventing failure. If one can incorporate

components with low likelihood of failure at reasonable

cost, then that is the most sensible approach. Designers

should incorporate fault avoidance as extensively as

Possible. Fault avoidance is the most widely recognised

method of providing reliable software; program proving

RELIABILITY THEORY Page 2-7

techniques are just one way of detecting and removing faults

from software. However, complex systems with a large number

of components will fail eventually, and the more components,

the greater the chance of failure.

2.2.6 Fault Tolerance

Once fault avoidance becomes inadequate as a means of

achieving reliability, the designer must incorporate

additional components and abnormal algorithms to ensure that

occurrences of erroneous states do not result in system

failure. Thus the system is tolerant of faults. Fault

tolerance includes an overhead in terms of cost,

occasionally in terms of performance, and in terms of

complexity. However, when the results of a system failure

can be disastrous (eg a life-support system in a hospital),

or when the number of components is high (thus increasing

the likelihood of a component failure), then fault tolerance

is a must to increase the reliability of a system. A fault

tolerant design can produce a system which is more reliable

than its constituent components.

Fault tolerant systems differ with respect to their

behaviour in the presence of a fault. In some cases the aim

is to continue to provide the full performance and

functional capabilities of the system. In other cases only

degraded performance or reduced functional capabilities are

provided until the fault is removed; such systems are

described as having a fail-soft capability.

r e l i a b i l i t y t h e o r y Page 2-8

2.2.7 Fault Tolerance Techniques

2.2.7.1 Protective Redundancy -

The additional components and algorithms which provide

fault tolerance constitute protective redundancy. They are

redundant in that they contribute nothing to the system

during the normal functioning of other components. In an

error-free system they have no effect on the internal or

external activity, except in so far as they monitor the

internal states for errors. However, when an erroneous

state occurs for which recovery has been provided, then the

so-called redundant components and algorithms come into

play.

Two classifications of redundancy can be made, namely

masking redundancy and dynamic redundancy. Masking

redundancy masks or hides the effect of a fault in a

component; as far as the environment of the component is

concerned, the component works perfectly, despite internal

faults, at least while the masking redundancy is effective.

Static redundancy is a form of masking redundancy where all

components remain in use in the same fixed relationship

whether or not any errors are detected. An example is

triple modular redundancy where three identical components

are run in parallel and there outputs compared; the three

components act as one, and the output is the result of a

majority vote on the three sets of outputs.

r e l i a b i l i t y t h e o r y Page 2-9

Dynamic redundancy involves a component providing

implicit or explicit indications among its outputs as to

whether or not they are erroneous. The internal redundancy

of a component is complemented by external redundancy which

provides for recovery. Thus a component actually behaves

wrongly, but its miscreant behaviour is noted and acted

upon.

The KUDOS file-store employs redundancy techniques by

keeping multiple copies of files. If one copy of a file is

lost, corrupt or unavailable, the algorithms of KUDOS hide

this fact. A variant on protective redundancy is used,

where if a node in the local area network fails then another

node takes on the critical functions of the failed node.

The node which takes over might be fulfilling a function

already. Redundancy here lies in the capacity of components

to take on extra work, though performance may suffer

s l ight ly as a resu It.

2.2.7.2 Error Detection -

Error detection enables system failures to be prevented

by recognising when they are about to occur. Ideally, error

detection mechanisms should be based only on the

specification of the system and be independent of the system

itself; otherwise there is the possibility that a single

fault could affect both the system and the check, thus

Preventing error-detection. In practice, however, one is

forced to make do with much less rigorous checking than

r e l i a b i l i t y t h e o r y Page 2-10

this.

Ideally, checks on the function of a system will be

made on its results immediately before they leave the

system. Such checks are based on the specification of the

system performance. We call these acceptability checks.

Often, establishing acceptability involves replication and

checking the results obtained (eg triple modular

redundancy). A different kind of acceptability check is to

process the results of the system and determine the inputs,

then check these derived inputs against the actual inputs

(eg multiplying a set of factors to determine the number

which they were factored from). However, it is difficult to

envisage just how reversal checks could be widely applied

since a given result might be caused by a large set of

inputs (eg a system which determines whether or not an

integer is even).

Complete acceptability checking takes no account of the

design of the system. Internal checks are often the only

sensible alternative, and these do require some faith in the

internal structure of the system. Checks are made on the

behaviour of components, and a failure in a component causes

some form of recovery to take place before the erroneous

state propagates a system failure. The major example of an

internal check in KUDOS involves checking the timestamps

associated with duplicates of a file; a file with a

timestamp earlier than the other copies is in an erroneous

state and is corrected by replacement with a copy of the

r e l i a b i l i t y t h e o r y Page 2-1 1

duplicate with the latest timestamp.

A form of internal check is diagnostic checking. A

component is checked periodically for satisfactory

performance. Between checks it is assumed that the

component is behaving correctly. The checks should

approximate to or exceed the demands made in normal use.

The trouble with such schemes is that errors might go

undetected for a long period while damage spreads throughout

the system and beyond. A diagnostic check is used in KUDOS

to prompt reconfiguration if a directory-server fails; the

directory-server is polled periodically to ensure it still

■functions - a failed poll generates a new di r e c t o ry-s e r v e r .

2.2.7.3 Fault Treatment -

A detected error is only a symptom of the fault which

caused it. An error could be caused by any one of a variety

of faults. The task of locating and removing a fault can

therefore be very complex.

One strategy is to ignore the fault and continue to

Provide a service despite its continued presence, having

dealt with any damage it might have caused. Continued usage

of a faulty component, though, may only make sense if the

fault is effectively transient, for example caused by a rare

combination of inputs.

RELIABILITY THEORY Page 2-12

When it is decided to avoid the fault during future

operation of the system, it is first necessary to locate it.

The search strategy will inevitably be influenced by the

internal structure of the system. This can be difficult if

the fault caused violation of the intended

inter-relationships between components. One solution might

be to perform diagnostic checks on all suspect components if

an error is fo und.

Given that a component is known to be faulty, various

strategies are possible. Replacement strategies are those

in which a previously idle component is directly substituted

■for the faulty component. Reconfiguration strategies

arrange for some or all of the responsibilities of a faulty

component to be taken over by the other components which are

already in use by the system. Reconfiguration strategies

are adopted in a number of places in KUDOS.

Such strategies can further be classified as manual,

dynamic or spontaneous. In the first category the system

takes no part in the strategy, which in the case of hardware

may involve recabling. dynamic strategies react to external

stimuli lie. the system is informed that a fault has

occurred), and use provisions the system contains for

reorganising future activity. Spontaneous replacement and

a-^moc rpferred to as self-repairreconfiguration are sometimes

strategies.

r e l i a b i l i t y t h e o r y Page 2-13

KUDOS aims at providing spontaneous reconfiguration,

though a failure may result in the temporary, recoverable

disruption of user processing.

2 .2 .7.4 Damage Assessment -

Damage assessment can be based on a priori reasoning,

or can involve the system in activity to determine the

extent of the damage. Either way, this can involve reliance

on the system structure to determine what the system might

have done wrongly.

Atomic actions provide a simple method of damage

assessment. An atomic action is a set of activities which

can be considered logically as a single action, with no

information flow between that set of activities and the rest

of the system until the completion of the atomic action.

This appears in databases in the form of transactions (or

Logical transactions). The system is dependent on the

success of the atomic action as a whole, and consequently

atomic actions form a useful notional boundary within which

to carry out error detection and recovery. By definition, a

fault within an atomic action can have no effect outside the

atomic action until completion of the atomic action. The

atomic action in which a fault is detected is damaged and

must be recovered. However, this approach assumes that

. ,, A a i in p H Unplanned information flowatomic actions are we l l-det l nea.

would completely invalidate this approach.

r e l i a b i l i t y t h e o r y Page 2-14

In practice damage assessment is closely involved with

error recovery and dealing with faults, and is usually

rather uncertain and incomplete. Effort spent in trying to

prevent the spread of damage, by careful definition and

monitoring of interfaces between components, is well

worth wh i le.

2.2.7.5 Error Recovery -

Backward error recovery involves first of all backing

up one or more processes in a system to a previous state,

which is hoped to be error free, before attempting to

continue further with the operation of the system or the

subsystem. Recovery points are provided, giving a means

whereby the state of a process can be recorded and if

necessary reinstated.

Atomic actions are a useful tool for enabling backward

error recovery. If the state of the system, or those parts

changed by the atomic action, are stored before commencement

of the atomic action, the state of the system can be

restored to that before the start of the atomic action if

the atomic action fails. At the end of such a recoverable

atomic transaction a decision must be made on whether to

„„ . . . nn or to back out if the atomiccommit the atomic action, u'

action included a fault.

r e l i a b i l i t y t h e o r y Page 2-15

Fo rw a r d error recovery, on the other hand, attempts to

m a k e use of the erroneous state to recover the system. It

depends to a large extent on being able to identify the

fault, or at least its consequences. Generalised techniques

for backward error recovery are quite feasible, but forward

error recovery must, it seems, be designed as integral parts

of the system it serves.

Verhofstad [V ERH] lists a number of recovery techniques

for databases. These are obviously applicable outside the

topic of databases and some are worthy of mention here.

1. Incremental dumping. Incremental dumping involves

the copying of updated files into archival storage

(u s u a l ly t a p e) a f t e r a j o b h a s f i n i s h e d or at

r e g u l a r i n t e r v a l s . It c r e a t e s c h e c k p o i n t s f o r

u p d a t e d f i l e s . B a c k u p c o p i e s of f i l e s c a n be

restored after a crash. The George III operating

system, described later, adopts such a policy.

2. Audit trail. An audit trail records sequences of

actions on files. It can be used to restore files

^o their state prior to a crash or to back out

particular processes. An audit trail provides the

means to back out 3 process whereas incremental

dumping merely provides the means to restore files

to previously consistent states.

RELIABILITY t h e o r y Page 2-16

3. Differential files. A file can consist of two

parts: the main file which is unchanged, and the

differential file which records all alterations

requested for the main file. The main files are

regularly merged with the differential files,

thereby emptying the differential files.

4. Multiple copies. More than one copy of each file

is held. The different copies are identical except

during update. Comparison can be done to select an

up to date version. This technique provides crash

resistance; loss of a copy of a file does not mean

loss of the file itself. KUDOS adopts a multiple

copy policy for files stored under the directory

system. Before accessing a file, all available

files are considered, and out of date copies are

brought up to date before access is allowed.

5. Careful replacement. The principle of the careful

replacement scheme avoids updating any part of the

data structure in place. Altered parts are put in

a copy of the original; the original is deleted

only after the alteration is complete and has been

certified. The difference between this and other

methods is that two copies exist only during

update. The technique is used to provide crash

resistance since the original will always be

available in case a crash occurs during update.

This policy is adopted by KUDOS for updating files.

r e l i a b i l i t y t h e o r y Page 2-17

Files stored under the KUDOS directory system are

read-only, and to update a file one must take a

copy, update that, and proffer it back to the

directory system as a complete replacement. Thus

the unit of transaction in KUDOS is a complete

file. KUDOS need not worry about user processes

which do not complete.

2.2.7.6 Component Dependency -

A most critical factor in considering reliability of a

system is the component interdependency. A valuable

discussion of this is found in [SHOO]. If the reliability

°f individual components is known then the reliability of a

system of such components can be calculated.

2.2.7.6.1 Independent Components -

Suppose cC1],...,cCn] are used to provide a system such

that correct functioning only depends on the correct

functioning of any one component. This can be represented

9raphi cally:

RELIABILITY t h e o r y Page 2-18

Suppose pCiD is the probability that cCiIl will succeed.

Then the system S will succeed with probability:

p = 1 - .(1 - pC1 3) (1-pC2]). . . d - p C n])

If c C1 3 , . . . , c Cn3 are identical, each with probability p of

success then

n
p = 1 - (1-p)

and P — > 1 as n --> infinity.

Some figures might help to illustrate this:

• p\n !
i

1 ! 2 ! 3 ! 4 ! 5 !

! . 5 ! . 5 ! .75 ! .875 ! .9375 ! .96875 !
1 . 8 ! . 8 ! .96 ! .992 ! .9984 ! . 99968 !
! .9 ! .9 ! .99 ! .999 ! .9999 ! . 99999 !
! .99 ! . 9999 ! .999999 ! .99999999 ! . 9999999999 ! ;
! .999 ! .999 ! .999999 ! .999999999! ; ;

Thus if a component is 99% reliable, then dependence on

°ne of two components produces a system which is 99.99%

Plia bl e.

2-2.7. 6 .2 Dependent Components

Suppose now that cC1 3 , .. • / c Cn3 provide a system such

That correct functioning of the system depends on correct

functioning of all the components. This can be represented

9 raph i ca l ly as :

RELIABILITY THEORY
Page 2-19

Then

P = pC1] pC2T ... pCn]

If cC13, ...,cCnD are identical then

n
P = p

and P — > 0 as n — > infinity for p <

not totally reliable).

(ie c L 1 3 , • ■ • / c £ n3

Some figures to i Uu s t ra t e_th i s_a re

p\ n ! 1 ! 2 3 ! ^ —-- ---------

.5

. 8

.9

.99

.999

! .5
! . 8
! .9
! .99
! .999

! .25
! .64
! .81
! .9801
! .998

.125
! .512
i .729
! .9703
! .997

! .0625
! .4096
! .6561
! .9606
! .996

! .03125
! .32768
! .59049
! .9510
! .995

It is possible, by considering groups of components, as

. Hprive the reliability of any system
a single component, to derive

ha«? known reliability. The
whose individual components h

+ uh pn the reliability of different
calculation is complicated when

wiffprently. Reliability of
components is expressed d

a nc m p an time to failure rather
components is often expressed as mean

.... ciircess at any on 6 t i m e ̂
than a simple probability

... function correctly until a fault
typically a component will tunc

4.« malfunction until repaired.
aPpears then continue to mat

r e l i a b i l i t y t h e o r y Page 2-20

2.2.7. 6 .3 Conclusion -

The lesson to be learnt here is that independence of

components is to be sought to improve reliability. Thus, in

KUDOS, files are replicated on different volumes, preferably

on different nodes. Important too in KUDOS is the fact that

access to a copy of a file depends only on the volume which

contains that copy. Reliance on the existence of one of two

components is remarkably better than just relying on the

existence of one component, whilst reliance on the

simultaneous existence of two components is remarkably worse

than retying on just one of the components.

2.3 CONCLUSION

Ue have surveyed very briefly certain aspects of

reliability theory. In particular, we have discussed the

Principles and techniques which guided the design of KUDOS,

especially independence of components, dynamic redundancy,

automatic reconfiguration and careful replacement

strategies. We have given a broad definition of

reliability, and we shall use this definition later to state

___ hv reliability in the KUDOS Precisely what we mean by

file-store. We shall discuss later how reliable file

storage has been attempted elsewhere and how KUDOS differs

"from these.

CHAPTER 3

LOCAL AREA NETWORKS

3.1 INTRODUCTION

Local area networks are very much a fashionable subject

for computer science research. A number of universities in

the United Kingdom have implemented local area networks for

both pragmatic reasons, providing a service to the general

user community, and as vehicles for research.

In terms of functionality, local area networks offer

little that is new. It is difficult to conceive of an

application which has an overriding necessity for a local

area network. However, certain architectural features of a

local area network based computer system are very

attractive. They also introduce a new set of problems, or

. . enntPKt, particularly in terms ofat least problems in a new context, p

Process synchronisation and communication.

A local area network can be loosely defined as a

collection of inter-connected computers within a small

. „ - .„„are mile. The computers9eographic area of (say) one sq

. a. -...u ran coooerate on common tasks,within a local area network can cooper«!

l o c a l a r e a n e t w o r k s Page 3-2

and typically they service the needs of an organisation such

as a university or commercial enterprise.

This definition, however, is barely adequate. The

central feature of most local area networks is a

communication system where nodes can exchange messages at

high speed, typically with point-to-point transfer rates in

the range ten kilobytes a second to one megabyte a second.

The assumption that local area networks contain such a high

speed communications system is widespread, and commonly the

term "local area network" is taken to mean the communication

system itself.

The term "local area network" stems from the fact that

such high speed communication systems have not been devised

for a network spread over a wide geographic area. Current

wide area netuorks have much more cumbersome and slow means

of passing messages, restricting their potential. No doubt

we shall see the distinction between wide and local area

networks diminishing as techniques for implementing

communications improve. We might then simply refer to

networks and avoid the distinction.

There are a diverse range of implementations of local

area network based computer systems, from ad hoc

inter-connections of existing computer services to

Purpose-built computer systems- A number of such systems

Will be described later. After defining certain terms we

shall discuss the general features of local area networks.

LOCAL AREA NETWORKS
Page 3-3

There will then follow a brief survey of a nu.ber of

existing systems, and finally an examination of the

pertinent features of local area networks regarding the

design of a reliable file-store.

The choice of a local area network as an implementation

vehicle was implicit in the context within which the

research for this thesis commenced. It is contended,

however, that the problem and the solution are somewhat more

general. For example, the notion of associated directories

described later could well be applied profitably to a

stand-alone system based on single or multiple processors in

order to control redundancy and improve accessibility of

■files.

3.2 DEFINITIONS

3.2.1 Communications

, m-f a local area network is theThe central feature of a local

T h in is usually a high bandwidth
communication system. ,n

. • A r . * niaital Communication Ring
system such as the Cambridge Digital

r I . TALMES:, which allow directCWILK1], or Ethernet LALmta ,
„„...itprs on the local area

communication between any two P
. • nf such communication systems is

network system. A variety
nnme local area network

reviewed in CPENN3. However,
, differently, such as DECNET CSELIG]

systems have developed diffe
.. cvs t em (a message between two

which is a message-switched sy
f i through a number of intermediate

computers may be routed

l o c a l a r e a n e t w o r k s Page 3-4

computers), or a number of advertised micro-computer local

area networks which are all linked to and communicate via a

single sh a red disc.

We shall restrict ourselves to considering

high-bandwidth systems such as the Cambridge ring or

Ethernet. To illustrate the area of communications we shall

briefly describe the Cambridge ring. This will be useful

later, since KUDOS was implemented using the Cambridge ring

and some discussion of its performance will take place.

3.2.1.1 The Cambridge Ring -

The Cambridge ring differs from most other local area

network communication systems in its method of transferring

data. Usually a wire is dedicated to a single transmission

between two nodes for as long as that transmission takes, up

to some upper bound; a transmission consists of a sequence

of bytes of data sandwiched between control information

Pertinent to the network; nodes wishing to transmit must

contend for the wire, and this can be done by passing a

token fro», node to node giving access Permission, or by

Mo«. • «-•■ «.u* ui re is silent. Ethernet is a primelistening until the wire i =>

example of such a network which listens for a silent wire.

The Cambridge ring adopts a much different policy. A

train of objects called packets moves cyclically from node

to node. A packet can either be empty or contain 16 bits of

data. A further 22 bits are used in each packet for control

l o c a l a r e a n e t w o r k s Page 3-5

information. One bit indicates whether a packet is full or

empty; if the packet is full 8 bits are used to indicate

the sending node and 8 bits to indicate the receiving node.

When a packet is used to send data it returns to the

transmitter with an indication that the receiver either

accepted or rejected the packet, or whether the receiver was

busy, or whether the receiver did not exist and the packet

was ignored - this uses 2 further bits. Three other bits

are used for parity checking and hardware level packet

administration. Thus 38 bits are used to transmit each 16

bits of data. At 10 megabits a second transmission rates

this means that a packet passes a node every 4 microseconds

approximately.

The transmitter when it has data ready must wait for an

empty packet, fill in the source, destination and data bits

and mark the packet as full. The transmitter waits for the

packet to return and checks whether it was accepted,

rejected, ignored or the receiver was busy. If a packet was

Parked rejected or busy then the transmitter can inform the

sending process or automatically retry. If automatic retry

is used, the retry is delayed by the transmitter by a period

twice the time it takes a packet to get round the ring;

. . „ 1 - i pc this delay is increased towith third and subsequent retries m . b uc /

. . • • * aaifpc a Dacket to get round thesixteen times the time it takes p

retries saturating the ring. r i ng . This prevents repeated r e t n e *

LOCAL AREA NETWORKS
Page 3-6

A receiver can accept any packet sent to it, or choose

to listen to only one particular node by setting a source

select register. If the source select register is set to a

different node fro» that of the sender of a received packet,

then that packet is rejected. The source select register is

useful for block transmissions, allowing a process to

receive data from one source at a time, rather than have a

number of blocks interleaved. If the data register has not

been emptied at the receiver -hen another packet arrives,

that packet is marked as busy.

3.2.2 Protocols

Most communication systems provide an interface which

is less than ideal. The Cambridge Ring in particular is of

little direct use to an application program. The assembly

of a stream of packets for transmission, followed by

collection and collation of such a stream of packets to

receive a message would be tedious and error prone.

To overcome this, processes usually communicate using

Protocols which are a set of routines which simplify the use

of the communication service and add extra features. For

example, a basic block protocol CJOHNS] is used on the

Cambridge Ring to handle the dissembly of a block into

Packets for transmission across the network and reassembly

into blocks on receipt. It also prevents two blocks

colliding at a receiver and causing a garbled block to be

constituted out of two sensible blocks. A block is checked,

l o c a l a r e a n e t w o r k s Page 3-7

using a check sum appended to a transmitted block, to reduce

the likelihood of a received block containing an erroneous

packet. Thus the basic block protocol permits processes to

communicate using whole blocks of information and tries to

ensure that blocks are received as transmitted without

communication faults causing errors.

The ability to transmit blocks, however, is still very

basic. More protocols can be implemented to provide a

higher level of service for processes, for example the Byte

Stream Protocol for the Cambridge Ring [JOHNS], Such a

service might provide the ability to create and maintain a

communication route between any two processes in a network,

and ensure that messages arrive at a process in the same

sequence as they are sent, and that no message is lost.

3.2.3 Homogeneous And Heterogeneous Systems

A homogeneous system is one in which all nodes are of

the same architecture. However, individual nodes may have

different peripherals attached and be programmed for

specialised functions. An advantage of homogeneous systems

is that potentially a program can run on any node, thus

reducing the programming effort and possibly permitting a

process to move from node to node during the course of

e xe cut i o n .

l o c a l a r e a n e t w o r k s Page 3-8

A heterogeneous system is one in which the nodes are of

a number of different architectures. This is Likely to

evolve within an organisation which already possesses a

number of independent processors. A local area network is a

development which allows these independent computers to

Provide a more general service with easier sharing of vital

resources. For example, in a university the owner of a

small 8 -bit micro-computer might wish to use the facilities

°f the central mainframe to store large quantities of data

and for p r i nt i ng .

A homogeneous system is more likely to evolve when a

Local area network system is designed from scratch.

However, there is a strong argument that a local area

network should be able to absorb other types of computer,

s ay for a specialist application. Heterogeneity involves

roore careful interfacing of nodes, since the internal

structure of a node cannot be implicitly assumed. A number

of manufacturers are offering homogeneous local area network

systems as an alternative to mainframe-based time-sharing

systems, for example the Apollo Domain system CAP0LL03.

3.2.4 Autonomy

An autonomous node is one which can function

independently of the rest of the local area network. A node

can be autonomous in varying degrees; for example a single

node might be able to provide a user with processing and

data storage, but rely on another node to provide printing

l o c a l a r e a n e t w o r k s Page 3-9

services. Autonomy is an important consideration for a

reliable system. If a node is highly dependent on another

node, a failure in either node can effectively cause the

first node to fail.

Many local area network architectures depend greatly on

single components, for example the monitor on the Cambridge

Ring, repeaters on a loop network, single name-servers. A

sensible architecture should provide scope for high autonomy

of nodes, reducing or removing dependence on any single

component. Where dependence on a single component is

inevitable, techniques should be used for increasing the

reliability of that component.

An autonomous node might depend to some extent on the

services of other nodes on the local area network, but might

be free to determine how to exploit those services depending

on the state of the local area network. Autonomy,

therefore, we understand as an imprecise, intuitive term. A

common way of describing an autonomous node is to say it is

Loosely linked with the system.

A major design principle for KUDOS was autonomy of

components, allowing scope for reconfiguration of the system

in the event of a failure.

LOCAL a r e a n e t w o r k s Page 3-10

3.2.5 Servers And Clients

An important notion in local area networks is that of a

server. There is scope for dedicating a single node to a

single function. Such a node is often called a server.

Examples are compiler-servers, file-servers,

printer-servers.

Most local area networks utilise servers in some way.

Within KUDOS the idea of a server is used more generally to

mean a process dedicated to a particular function. Thus a

single node could handle a number of servers. Examples of

this in KUDOS are directory-servers and file-servers, which

can coexist on the same node.

The notion of a server also extends to the notion of

client-server systems. A client is any process which

utilises a server. A client of one server might well be a

server itself. For example, in KUDOS a directory-server is

a client of the file-servers in the system.

Within a system the interface between clients and

servers is an important consideration. In particular, we

shall be concerned with the level of dependence a client has

on a server. For example, what happens if the server fails.

Equally important is the dependence of a server on a client.

por example, how would a file-server cope with an "open"

file if the client fails or inadvertently omits to close the

file.

l o c a l a r e a n e t w o r k s Page 3-11

3.3 PROS AND CONS OF LOCAL AREA NETWORK SYSTEMS

It is useful to consider local area networks as a form

of computer system architecture rather than an ad hoc

collection of distinct computer systems. If local area

networks are to be considered as anything other than an

academic diversion, they must be viewed as an alternative

method for solving problems for particular applications.

Systems based on a single cpu have had considerable

success over the last two decades. Many such systems are

well developed and have been programmed to meet the needs of

a great number of applications. The problems and

limitations are well understood. Moreover, the achievements

of VLSI technology mean that single cpu systems can be

mass-produced at very low cost.

Arguably, a single cpu system will provide a more than

adequate solution to most applications. What features,

then, does a local area network based system provide which

make them worthy of consideration.

Firstly, there is the capacity for expansion.

Notionally at least, a local area network can be extended

easily with the m i n i m « of fuss and effort. It processing

Power is in short supply, one simply adds another node. In

„ . 4. hp able to add peripheral anda similar manner one ought to be aoue iu v

storage devices.

LOCAL a r e a n e t w o r k s Page 3-12

However, ease of expansion is not a natural consequence

of a local area network. There is the opportunity for

allowing easy expansion in a local area network, but the

designer of a local area network based system must be fully

aware of the need for ease of expansion and the pitfalls to

avoid. In particular, the binding of objects to processes

needs particular care. More will be said about this later,

but for example if a program has embedded in it fixed

network addresses then alteration of the network can become

difficult, requiring changes to programs if objects are

moved. A typical means of avoiding this tight binding of

objects to programs is a name-server such as that described

in the Cambridge Model Distributed System (see later).

KUDOS uses a scheme called resource directories.

Expansion has other hidden constraints, in particular

the communications system. Whatever communication system is

used, saturation is inevitable if expansion continues

unabated. It is important to consider the behaviour of the

communication system under heavy demand. A designer would

do well to consider the communications as a limited

resource. For example, if broadcasting is frequently used,

say to locate resources, then the number of broadcast

messages is likely to grow rapidly with the size of the

network, and could become a problem very quickly.

l o c a l a r e a n e t w o r k s Page 3-13

A second advantage of Local area network systems is the

performance benefit of providing cpu's on a per-user basis,

especially where there is a demand for interactive

applications, and more especially if the interactive work

involves graphic displays. A problem of time-sharing

systems is the dramatically variable response to an

individual user depending on the loading of the system. A

personal computer, integrated with a local area network,

ought to be able to satisfy most user's processing

requi rements.

On the other hand, the use of personal computers

introduces the problem of data sharing and inter-user

communication. These problems are by no means

insurmountable, but require a different solution to the ones

traditionally used in single cpu systems.

Cost is frequently advertised as a benefit of local

area networks. However, in the present topsy-turvy world of

computer prices, it is difficult to argue for or against

local area networks as a least expensive solution. For a

9iven application, a single cpu based system might well

offer the cheapest solution. A local area network, however,

might offer longer term benefits since upgrading the system

could well be done by simply adding new nodes rather than

replacing the whole system, which might well be cheaper and

Probably easier.

LOCAL a r e a n e t w o r k s Page 3-14

A significant motivation for the development of a local

area network in an established computer environment is the

ability to draw together existing computer resources to

provide a more or less unified service. University campuses

are a significant application area in this respect.

Individual departments often have their own specialised

computer equipment as well as access to a centralised shared

resource. Linking individual departments and the central

resource provides a number of benefits. For example, the

central resource might provide expensive peripherals such as

graph-plotters which are outside the budget of individual

departments. There might also be benefits in departments

accessing each others resources for inter-disciplinary

activities, or on a more mundane level for administration

pu rpo s es.

Finally, local area networks provide scope for

designing reliable systems. However, it must be said that

local area networks also provide scope for designing

Potentially very unreliable systems. Within a local area

network there are a large number of components. The

inter-dependence of these components determines the likely

effect of a component failure.

On the one hand, local area networks provide scope for

dynamic redundancy. For example, if a p r i nt e r-s e rv e r goes

offline a process might be able to use another

Printer-server elsewhere on the network. More pertinently,

if a file-server is offline, it may be possible for a

LOCAL a r e a n e t w o r k s Page 3-15

process to Locate another copy of a file on a different

f i Le-server.

On the other hand, heavy dependence on a component or

set of components can seriously impede the functioning of

the system if such a component fails. For example, if a

single name-server is provided and all objects are located

through that name-server, then the loss of that name-server

could stop all processing in the system.

We see then that local area networks provide a designer

with certain potential benefits on performance, cost,

expansion and integration of services. A number of

approaches to local area network system design are already

manifest, and some of these will be discussed in the next

section.

3.4 SURVEY OF EXISTING LOCAL AREA NETWORK COMPUTER SYSTEMS

3.4.1 Cambridge Model Distributed System

This system, described in CWILK1D and CHERBD, takes the

view that processors and other resources should be banked

together and remote users allocated resources from a pool.

It is seen as an alternative to the "computer in every

office" approach. Justification for this approach is given

as ease of maintenance, convenience (computers can be noisy,

bulky and hot), economics (the system can have fewer

computers than people), and flexibility (specialised

machines can be shared among many users).

LOCAL a r e a n e t w o r k s Page 3-16

On Logging in to the system a user is allocated a

dedicated processor from the pool. Two critical components

of the system are the Resource Manager and the Name Server.

The Resource Manager deals with allocation of processors to

clients, and with management controls. The Name Server

provides a mapping from names to network addresses. Both

these components are critical to the functioning of

Cambridge model, and are implemented on Z80A

m i c ro-comput e rs.

Other servers on the net are a file-server, a

Printing-server, a boot-server for bootstrapping an

allocated processor and a time-server. An editor-server has

been considered, though editing is usually done by an

allocated processor. Access to the network is through a

terminal concentrator, which can connect up to four

terminals to the network.

The Cambridge model is based on the Cambridge Digital

Communication Ring, described above. Data is sent one

16-bit word at a time. A number of protocols are used to

Provide block transfer (Basic Block Protocol - BBP), fast

control messages (Single Shot Protocol - SSP), and a

transport level service with virtual circuits (Byte Stream

Protocol - BSP) [JOHNS].

A number of commercial products have stemmed from the

Cambridge model and from the Cambridge Digital Communication

Ring - e.g. Logica's Polynet CL0GICA3. However, the view

LOCAL a r e a n e t w o r k s Page 3-17

that computers are unpleasant physical objects is rather

pessimistic; miniaturisation has reduced heat dissipation,

and the need for fans.

Furthermore, the demand for graphics as a widespread

tool will make the barrier of a network between terminal and

processor too restrictive. On cost we should soon see

powerful systems available very cheaply.

On reliability, the Cambridge model relies on a

statically located Resource Manager and Name Server.

Failure of these cause system failure. The Cambridge

Digital Communication Ring also raises concern - it is

dependent on a single station, called the monitor, which

maintains the packet structure, and on each repeater, and a

break in the loop will bring down the ring.

Some concern does exist about the ring as a fast means

of communication (see CBRER]). Some simulation work was

undertaken by the author early on in the KUDOS project (see

CLUNN13). Only 40% of the bandwidth of the ring is

available for data, the rest being used by the ring logic

for addressing and error detection. Although a node-to-node

transfer rate of 250 kilobytes per second is possible on a

1 0 megabit ring, contention and protocols can reduce this in

Practice to the order of 10 kilobytes, and on an
*

interrupt-driven interface rates of around 3 kilobytes can

be experienced. More discussion on the Cambridge Ring will

follow, since this has been used as the communication system

LOCAL a r e a n e t w o r k s Page 3-18

for KUDOS.

However, given that it is a very practicable system, we

are likely to see variations on this scheme gaining

Popularity. A compromise on the personal computer, with

some users having processors located at their own site,

would make such a scheme very attractive. Some assurances

on the reliability of various components, either by redesign

or guarantees on critical components, would make this a very

useful system.

3.4.2 Xerox Ethernet

The Xerox Palo Alto Research Centre have a number of

local area network research projects based on an Ethernet.

These have culminated in the Xerox Star [SMITH] computer

system which is an interesting and novel product aimed at

the automated office market. The Ethernet is a Carrier

Sense Multi Access network, connecting nodes on an unrooted

tree. Ethernet appears neater than the Cambridge Ring since

there is no dependence on a monitor and whole block

transfers can take place without irritating

dissembly/assembly into sequences of words; thus almost the

entire bandwidth of the network can be used. Much more is

known about the behaviour of Ethernet under heavy loading

LALMES] than the Cambridge Ring.

l o c a l a r e a n e t w o r k s Page 3-19

A number of projects have exploited Ethernet. For

example, Violet CGIFF13 and its associated file-store

CSTURG 3 . A client-server approach is taken. A client is a

process which acts, either directly or indirectly for a

user. A server is a process which acts (provides a service)

for a client. In this way a server can itself be a client.

The basic communication is for a client to send a request to

a server, and for the server to send a result. A client can

either issue a request and wait for the result, or issue a

number of requests and accept results as they return (not

necessarily in the same order as the requests).

A client "knows" about the structure of the network and

server, in the sense that it must be programmed to exploit

the architecture of the system. Decentralised control in

this way means that individual computers can be specialised

for different tasks, and the impact of malfunctions is

r edu c ed.

Here we have a more flexible approach. Particular

applications can exploit the network as they wish. Some

services, such as a file-store (see CGIFF13), are provided

for public use. More rigid systems can, if so desired, be

built on top of it. It appears to recognise what could be a

useful guideline to distributed computer system design:

Provide a good communication mechanism and a few services

Then let the users exploit this as they see fit.

l o c a l a r e a n e t w o r k s Page 3-20

Here we have high autonomy of individual nodes, in

contrast with the Cambridge model where there is high

interdependency of nodes with certain critical nodes such as

The name-server determining the correct functioning of the

whole system. KUDOS seeks to emulate the high autonomy and

the client-server mechanism evident in the Xerox projects.

3.4.3 Apo l lo Domain

Apollo Computers CAP0LL0] have introduced a network

based system called the Apollo Domain Architecture. The

network is a token passing ring system. Nodes are based on

a Motorola 68000 micro-processor, with up to 1 megabyte of

main memory, integral Winchester disc, optional peripherals

such as printers, and a high resolution display system.

Nodes are highly autonomous, but can interact. For

example it is possible to access the file-store of a remote

node by specifying its full network-wide name. Objects,

such as files or peripherals, have a 96 bit system-wide

address, and can be accessed from anywhere on the network.

Presently it is not clear from the documentation how this

Powerful system will be exploited, and it appears as a

linking together of high powered personal computers, rather

than a fully integrated system design.

The basic inspiration for the software is Unix, with

other features such as multiple virtual terminals (see

CLANTD). In all, this is a very ambitious project,

l o c a l a r e a n e t w o r k s Page 3-21

especially considering the short timescales involved.

3.4.4 Z - Net

Z-net CBENHAM] is a network of highly autonomous nodes

based on Z80A 8-bit micro-processor. Each node has a single

simple, non-distributed, single-user operating system. A

number of servers are provided on the network. The network

is described as "Ethernet-l ike".

Apparently the small size of the nodes caused software

development problems. This problem occurred in developing

KUDOS. It is arguable that the overheads of interfacing an

8 -bit micro-computer to a local area network system are too

high, especially if that micro-computer is to provide a

9eneral service. This problem should diminish with 16-bit

micro-computers as nodes, and Zilog are experimenting with

the Z8000 16-bit mi c ro-processo r. Nevertheless, Z-net has

aPpeared on the market.

2.4.5 Dec Net

Dec Net is a family of packet-switched networks

Produced by Digital Equipment Corporation. It is remarkable

in that it is message-switched. It seems unlikely, however,

that message-switching will have significant impact on local

area network development, considering the availability of

digital communications systems such as Ethernet and

Cambridge Ring. The point to be made here, however, is that

l o c a l a r e a n e t w o r k s Page 3-22

the communication mechanism should not dictate the local

area network system design. It is a principle difficult to

adhere to, but KUDOS could well have developed on top of a

message-switched communication system.

3.A . 6 Unix Satellite Processor System

This network described in CLYCK3, is a star network

based on the DEC PDP-11 series. A central processor runs a

version of Unix and satellite processors are linked to the

central processor via a collection of serial lines.

Satellite processors do not have their own operating

systems, but rely entirely on the central processor.

The interface between satellite processor and central

Processor is at the level of system call. A program running

in the satellite processor which issues a system call has

that call trapped and routed to the central processor. In

this way a program on a satellite processor has access to

the services of a Unix operating system.

One use of this system is to develop stand-alone

systems. More relevant to this thesis, it can also be used

to provide a user with the real-time capabilities of a

dedicated mini, together with the level of service of a Unix

time-share system. Another possibility, discussed in

CLYCK3, is that a powerful satellite processor might be used

by the central processor for running compute-bound programs,

leaving the central processor to service system calls.

LOCAL a r e a n e t w o r k s Page 3-23

Such a system, one might argue, is not "truly

distributed". However, variations on this scheme are likely

to evolve, meeting the needs of certain styles of

organisation. A satellite processor may be implemented as a

capable of stand-alone performance, reducing the dependence

on the central processor. Moreover, the central processor

is an obvious bottle-neck and critical component, so that

improvement of reliability and performance can be

concentrated there.

One important point, most recognizable here, is the

need for a communications system and set of services as the

core of a network system. Whether these are provided in a

central processor or as a number of services on a network is

a f'bi t r a ry .

3.4.7 Other Distributed Unix Systems

Coinciding with the production of this thesis, a number

of distributed Unix systems have appeared. The author is

a lso aware of as yet unpublished work at York University

CTOML] and Strathclyde University on distributed Unix. The

e *istence of such distributed developments is an interesting

indication of the maleability of the Unix operating system.

The clear definition and good judgement in the choice of the

system calls, and the implementation of all but a small part

of the operating system in a high level language have

encouraged the use and adaptation of Unix.

LOCAL a r e a n e t w o r k s Page 3-24

Cocanet CL AW R 3 modifies the Unix kernel to trap service

requests for remote resources. Inter-process communication

is modified to facilitate use of a network. Minimal changes

have been made to the Unix kernel interface so that major

changes to existing Unix software are unnecessary.

The Newcastle Connection CBR0WN3 adopts a slightly

different approach. A layer (the Connection Layer) is

Placed between the kernel and the user software which

filters system calls and redirects requests to remote

resources. The user software sees an apparently normal

single-system kernel, and the kernel itself needs no special

Ed if ic at io n, apart from a driver for the communication

network. "Network awareness" is restricted to the

connection layer.

The distributed Unix described in CLUDER3 is unusual in

that it connects a number of individual Unix systems to a

pool of Unix-derivative file-servers through a

circuit-switched communication system. This differs from

the above approaches in that the user-processors have no

direct way of communicating apart from through shared

f i l e-servers.

3 *5 CONCLUSION

This brief discussion and survey has indicated a

variety of approaches to local area network design. The

KUDOS approach stems most directly from the Cambridge Model

l o c a l a r e a n e t w o r k s Page 3-25

Distributed System and the Xerox approaches.

It is the author's belief that a greater diversity will

appear over the next few years. "Local area network seems

to imply, at present, a basic communication system such as

the Cambridge Ring or Ethernet. However, it is important

not to discount such approaches as the Unix Satellite

Processor System. Cheap digital circuit-switched telephone

exchanges might also have a significant impact.

Whatever the underlying communication system, local

area networks will play an important role in future computer

systems. We shall finish this section by indicating a

number of guidelines which underlie the design of KUDOS.

Naively we might expect a local area network system to

Provide the performance per-user of a dedicated mini, the

level of service and sharing of a large time-sharing system,

9 reatly improved reliability, incremental growth, and

f Lexibility. These are the expressed aims of the Apollo

Domain Architecture CAPOLLOU.

On performance, the route which seems most profitable

is the personal computer, located near to the user. The

Cambridge System is based on the view that computers should

be grouped together away from users, but if a high level of

service is expected by a user, for example h i gh - r es o lu t i on

graphics, then placing a network between user and computer

is a retrogressive step. Even a high- bandwidth

communication system is unlikely to cope with the data flow

LOCAL a r e a n e t w o r k s Page 3-26

between terminal and main processor for interactive

graphics. It may be necessary to place certain specialised

and expensive computers remotely, but there are distinct

advantages in placing the routine services and user

interface as close to the user as possible.

Essentially, if a resource is cheap and there is no

functional justification for sharing, then that resource

should be provided on a per-user basis. Time-shared systems

evolved around the fact that processing power was an

expensive resource. That is no Longer the case.

On service, we need to provide a group of users with a

pool of resources, say a shared file-store and peripherals

such as printers, plotters and tertiary storage. Some of

these are too expensive to provide and maintain on a

Per-user basis; a file-store must be shared if it is to

contain other than purely personal data. How they are

Provided is arbitrary: in the Cambridge System it is via a

Pool of independent servers across a network; in the Unix

satellite system it is provided by exploiting the services

of a central time-sharing operating system.

Reliability is a crucial issue in a local area network.

In some local area networks the number of critical

components is high. For example, the Cambridge system

relies on the Ring monitor, the resource manager, the

name-server, and the boot-server. Failure of any one of

these seriously degrades or incapacitates the system.

LOCAL a r e a n e t w o r k s Page 3-27

Reducing dependence on critical components should be a

crucial aim in local area network design. We want high

autonomy of nodes. The personal computer approach goes some

way to achieving this.

Incremental growth should be a natural consequence of

local area network architecture; adding nodes should be a

simple and relatively inexpensive operation up to some

clearly defined limit. This can, however, be crippled by

bottlenecks on the communication system and on various

servers. Much more information is required on the

comparative performance of communications systems such as

Ethernet and Cambridge Ring. It is not enough to say that

there is plenty bandwidth available. If networks are to

grow larger, it is necessary to know at what point will a

decay in service occur.

Local area network systems must be designed with

incremental growth in mind. Thus demand on

Performance-critical aspects of the system must grow

Linearly with the size of the network. For examp le / i f

broadcasting to all nodes is a common ly used technique, then

the processing needed to handle broadcast messages grows

Proportionally to the square of the number of nodes. Thus

broadcasting should be avoided for all but small systems, or

in rare and extreme cases such as error recovery.

LOCAL a r e a n e t w o r k s Page 3-28

Applicability of a local area network seems to imply a

heterogeneous system. The architecture of a node should be

chosen to fit an application, rather than to pander to

network constraints. However, it may be sensible to choose

the same architecture for a number of similar servers. This

would save on programming effort and help to attain standard

interfaces.

The KUDOS design attempts to provide these properties.

Alternative designs may give a different emphasis. For

example, the Cambridge model aimed to minimise cost and ease

maintenance of hardware. The properties of a system should

he largely determined by the original design aims. The

design aims of KUDOS will be presented in chapter 6.

CHAPTER 4

FILE-STORES

In any computer system secondary storage performs a key

function, as a repository for data, as an extension of main

memory, and as a means of inter-user communication. The

user-view, how it performs, how reliable it is, are critical

to the success not only of the file-store, but of the whole

s y s t em.

We shall begin this chapter by defining certain terms

and then discussing certain issues in file-store design. We

shall then examine a number of existing file-stores and

conclude with a discussion of existing approaches to

reliable file storage.

4.1 DEFINITIONS

4.1.1 File-stores, File-server And Files

We take this opportunity to define "file-store" for the

rest of this thesis. A file-store will be considered as a

repository for data, providing a mnemonic (user-arbitrary)

naming scheme for files, with some means of protecting data

FILE-STORES Page 4-2

from unauthorised update and/or interrogation, plus some

method of allowing clients to ensure consistent update of

data. A file will be taken to be a user-arbitrary sequence

of bytes which is stored by the file-store under a given

name, and not interpreted by the file-store.

Further, a file-server will be taken to mean a

repository where files can be stored, and which provides an

index address for files contained in it (e.g. i-nodes in

Unix, or UID's in Xerox DFS - see later). This address may

contain authorisation information. A directory-server will

Provide a mapping from user-arbitrary mnemonics to the

file-server index, and provide data protection, perhaps

using any authorisation facilities provided by the

f i le-server.

4.1.2 Database

A database implies a much more complex and explicit

relationship between collections of data than a file-store.

A database interprets the data to a large extent, whereas a

file-store imposes relatively few constraints on the data

content of a file.

Three general structures for database have gained wide

acceptance, namely hierarchical, network and relational.

The former two structures involve explicit pointers,

allowing a user of the database to navigate around the data.

Relational databases contain no such explicit pointers, but

FILE-STORES Page 4-3

the structure of data held is restricted and operations on

the database involve reference to actual data content.

This thesis does refer to work on databases. To a

large extent the problems of distributed database are

similar, but require different approaches. In a sense, the

designer of a file-store has much less to worry about.

It was decided at the begining of the Keele distributed

"file-store project not to consider the problems of databases

as such, except in so far as they were relevant to

fi l e-stores. This was possibly a wise decision since it

narrowed the aims of the project so that they could be

tackled with the limited resources available. However, it

may be worthwhile extending some of the results of the

research presented here to databases. More will be said

about this later in the thesis.

^•1.3 Naming

The naming of files in a file-store is an issue of

great importance. It is desirable to give individual users

a flexible and adaptable naming scheme. This section

introduces some basic concepts and definitions, and in a

later section we shall examine some of the issues related to

a file-store. A useful source is CSALTD.

FILE-STORES Page 4-4

Firstly, we take a name to be an identifier, such as a

character string or integer, used to refer to an object.

Clearly an object can have many names; this is useful since

an object can be referred to in many ways; for example it

is often beneficial for the system software to use a short

integer identifier C i e name) for an object, whilst a user

would find such a name difficult to remember. It is also

Possible for a name to refer to many objects, for example a

name may refer to a file which has multiple copies, though

this can lead to ambiguities which must be resolved in

Practi ce.

By a context we take to mean a mapping from a set of

names to a set of objects. A common example is a directory

in a file-store which provides a mapping from file names to

files. A sensible restriction on a context is that a name

maps to only one object, and we shall assume this. It

might, however, be sensible to permit two or more names to

refer to the same object in the same context.

A context might well map a name to another context.

For example, a directory in a file-store may name other

directories, often referred to as sub-directories. In this

case we have a naming network. This allows reference to an

object indirectly via a path name. A path name is a

sequence of names, where all but the last name is a name of

a context; the object referred to by a path name is the

object named by the last name in the path-name in the

context derived by removing the last name from the initial

FILE-STORES Page 4-5

path-name. This is illustrated by the Unix file-store (a

description of which will follow later), where

/usr/fs/ken/tmp1 refers to the file tmp1 in the directory

/usr/fs/ken.

If there is a particular context in a naming network

from which all objects referred to by contexts in the naming

network can be named by a path-name then that context is

called a root. Unix has a single root, but more than one

root is conceivable; indeed any context which refers to a

root is by definition itself a root. If a root exists then

a naming network can itself be considered a context where

the names are path-names stemming from the root, and the

objects mapped are those mapped by the path-names.

By an address we take to mean a name which is system

generated. Intuitively, an address refers to the location

of an object, but this is not always the case. An example

of an address in Unix is an i-node number, which refers to a

file on a disc. The i-node number itself is not sufficient

to locate the data in a file and it is necessary to use the

i-list as a mapping from i-node to blocks of data on the

disc. The i-node number is not usually referred to directly

by a user, but is obtained from a directory which maps names

to i-node numbers.

In practice the implementation of a context, such as a

directory in a file-store, may not provide a direct mapping

from name to object, but from name to address (which is but

FILE-STORES Page 4-6

another name). That address may have to be interpreted in

another context in order to access the object. For example,

Unix directories map names to i-nodes, which in turn map to

■files.

Finally, there is widespread use of the idea of a

unique identifier. A unique identifier is a name in a

single global context which names all objects in the system.

Its advantage is that it provides an unambiguous way of

identifying any object in the system. Typically a unique

identifier is a fixed length integer or bit-string with a

range of values chosen to be large enough to exceed the

number of objects ever likely to be created by the system.

4 . 1 . 4 P r o t e c t i o n

In a system which is shared among a number of users,

the issue of data protection is important. Individuals

should be limited to what data they can access and how.

This is to prevent reading of confidential data, to prevent

inadvertent update of another persons data, or in extreme

circumstances to prevent malicious update of another persons

data.

4 . 1 . 5 Mu tu a l E x c l u s i o n

In a system where a number of processes update shared

data concurrently, there is a requirement that updates

Proceed in a sensible manner. The classical example used to

FILE-STORES Page 4-7

highlight the need for mutual exclusion is the bank balance

update. Suppose two processes A and B update a bank balance

X by adding a and b respectively. There are a number of

ways this might happen, for example:

1)

2)

3)

4)

A reads X
A adds a to X
A writes X
B reads X
B adds b to X
B writes X

B reads X
B adds b to X
B writes X
A reads X
A adds a to X
A writes X

A reads X
B reads X
A adds a to X
B adds b to X
A writes X
B writes X

B reads X
A reads X
B adds b to X
A adds a to X
B writes X
A writes X

Th e resulting value of X for these four instances i s : —

1) X+ a+ b
2) X+b+a
3) X+b
4) X+a

N e a r l y the first two are correct, the latter two incorrect.

To ensure the correct processing of data it is

necessary to ensure that the actions of A and B exclude each

other in time, at least during the update of X. In CBRIN13

and CBRIN23 we find a number of mechanisms for mutual

FILE-STORES Page 4-8

exclusion discussed.

The most appropriate form of implementing mutual

exclusion on files is some form of locking mechanism. If a

file is locked then only the issuer of a lock can access

that file.

It is useful to discriminate between read and write

access. A read lock permits inspection but no update of a

tile. A write lock permits update of a file. It is common

to allow a file to have a number of read locks or just one

write lock but not both.

Some systems permit locking of part of a file only.

This is necessary for database applications. We take the

view (perhaps naively) that locking of whole files is

adequate for non-database applications.

^•1.6 Deadlock

Locking presents the problem of deadlock. Two clients

are said to be deadlocked if each is waiting for action by

the other in order to proceed. For example, two clients may

wish to lock files A and B. If simultaneously client 1

Locks A, client 2 locks B, then client 1 tries to lock B and

client 2 tries to lock A, neither can proceed unless the

other relinquishes its first lock. More complex forms of

deadlock can occur, involving a number of clients waiting

^ r each other.

FILE-STORES Page 4-9

A system must either prevent deadlock, or detect

deadlock and recover from it. In a distributed system where

knowledge of the complete state of the system is difficult

to obtain, deadlock detection is difficult. Deadlock

Prevention is therefore the most attractive option.

CBRIN2D discusses a number of deadlock prevention

schemes. For example, if all resources are ordered

hierarchically, and a client is restricted to locking only

those resources higher up the hierarchy than those it has

already locked, and if all clients guarantee to release

locks within a finite time, then it can be proved that

clients will not deadlock. However, such an ordering of

resources is difficult to enforce on a file-store, more

especially a distributed file-store. Some form of deadlock

Prevention or detection must, however, be provided if

locking of files is permitted.

^•1.7 Consistency

A file-store (or database) is said to be consistent if

it satisfies a set of conditions called consistency

constraints. These constraints are arbitrarily chosen, but

intuitively state that the file-store (or database) behaves

sensibly. Some examples of consistency constraints will be

given later. Consistency constraints can be considered part

of the specification of a file-store.

FILE-STORES Page 4-10

It is often the case that a file-store (or database)

roust pass through inconsistent states. For example, a

transfer of money between accounts may leave a ledger file

inconsistent between the debiting of one account and the

crediting of the other.

To overcome this, operations on a database are usually

grouped into "logical transactions" which are similar to

atomic actions with the added property that they transform

the database from one consistent state to another.

4.1.8 Atomicity And Transactions

Atomicity is taken to mean the property that an

operation succeeds completely, or has no effect at all. In

Practice, this is difficult to achieve. For example, a disc

write may not succeed, but may write incorrect data through

some electrical fault. Techniques are required to ensure

that either an action completes successfully or that any

i t e r a t i o n made by the action is undone.

A transaction is a group of operations which, taken

together, are atomic; ie the whole group of operations

succeed or no effect is apparent. More properties are often

associated with transactions, especially in databases, such

as the provision of mutual exclusion and preservation of

tons i st ency constraints.

f i l e- s t o r e s Page 4-11

The point at which a transaction completes successfully

and relinquishes the ability to roll back and restore the

states it changed is called the commit point. Before

commit, the effects of the transaction, its internal state

and partial results should be invisible to the rest of the

system; this may mean that other transactions may have to

wait for the resources used by the uncommitted transaction.

After commit, the results of a transaction are eventually

made visible and resources freed for use by other

t ransactions.

Transactions nay be nested; a transaction may consist

of a number of concurrent sub-transactions. One technique

for implementation is two-phase commit, which allows a group

of transactions to operate as one. A coordinating process,

to commit the group of transactions, issues a "ready to

commit" request to all transactions in the group. Each

transaction replies with a ready, or with failed; ready

transactions enter a ready state in which no more operations

can be carried out. If the coordinating process receives a

"ready" reply from alt the transactions then it issues a

commit request to all transactions; otherwise it issues an

abort to all transactions.

A .2 ISSUES IN FILE-STORE DESIGN

FILE-STORES Page 4-12

4.2.1 Data Pi a cement

A serious problem in local area networks is where to

Place data and what algorithms to use. A number of issues

arise, and the designer must choose a scheme appropriately.

Firstly, on performance, it is intuitively obvious that

the "nearer" data is to a process the faster that process

can access that data. However, physical proximity is

Probably not an adequate definition of nearness. On a local

area network which is fast enough, accessing a file on a

remote node may be little slower than accessing the file on

a local node. Certainly, there should be no difference in

accessing two files on two similar remote nodes, at least

with a communication system such as Cambridge Ring or

Ethernet. Where the local area network provides significant

delay either on latency C i e time to service an operation) or

transmission rate, then a distinction between local and

remote is useful.

An aspect of performance, not considered in this

thesis, is loading on a node which contains a file-store.

It two copies of a file exist, it is clearly advisable to

access the file via the file-server with the least loading.

On reliability, under a multiple copy scheme, it is

necessary to place files in order to minimise likelihood of

loss and to maximise the availability. There is clearly no

sense in placing two copies of a file on the same volume if

it is possible to split them across two volumes. If volumes

FILE-STORES Page 4-13

are on distinct nodes then alt the better.

4.2.2 Consistency

There are a number of consistency constraints which one

Night place on a file-store in a local area network:

1. Any two copies of the same file shall appear to be

identical to the user;

2. Any process which does not successfully complete an

operation on a file shall have no effect on the

contents of that file;

3. Between user generated operations on a file, the

contents of that file shall not appear to change;

4. Two independent processes operating on the same

file concurrently will have the same effect as if

one process had completed operations on a file

before the other commenced.

The first constraint is clearly vital. At worst, a user

Process ought to be informed if two copies of a file are not

identical, but then the process is left with a difficult

decision. The second constraint implies some form of

recoverable atomic action or transaction. The third point

Night well be an integrity constraint (ie the system models

the real world). The fourth point again implies some form

°f atomic action or transaction.

FILE-STORES Page 4-14

The second and fourth constraint sound to be of

overriding importance. It is interesting to note that a

number of file-stores do not guarantee either, especially

Unix. Preserving consistency in a file-store may often

involve some form of transaction; KUDOS provides this in a

very limited way for operations on a single file.

4.2.3 Shared Access

Users need to share data storage for reasons of economy

and consistency. Users may not be able to afford private

storage for all their personal data, and a number of users

may wish to interrogate and operate on the same file.

Sharing a file-store, however, leaves two important issues

to be resolved, namely the protection of data from illegal

access or update, and the control of concurrent access so

that the result of multiple operations is sensible.

The question of data protection is application

dependent. Technology will probably lead to a situation

where personal data is physically held separate from shared

data. After all, it the cost of personal storage is low

enough why put personal data in a shared file-store - shared

tile-stores should be tor shared data only. Meantime,

however, some sharing ot storage for personal data is to be

exPected.

FILE-STORES Page 4-15

The problem of confidential shared data is much more

difficult. Some form of access restriction is necessary for

this. For highly confidential data, some form of encryption

my be necessary, but this should probably be a function of

client software, not the file-store.

Protection should not go so f a r as to restrict the

services of the system. Moreover, elaborate protection

mechanisms offer a challenge to certain types of user. A

simple, but effective scheme is desirable, flagrant misuse

being prevented or penalised outside the system. Protection

against accidental rather than malicious damage is more

important and easier to implement effectively.

4.2.4 Shared Update

The constraint that two independent processes operating

on the same file concurrently will have the same effect as

if one process had completed operations on a file before the

other commenced, requires some method of ensuring mutual

exclusion. The usual mechanism used in file-stores and

databases is a lock. Before a process accesses a file, it

must lock that file, and on completion of the activities

involving that file, unlock it.

One problem with locks is that of deadlock, discussed

earlier. Another problem with locks is how to deal with a

Process which does not relinquish a lock either by oversight

or because that process fails. With a single controlling

FILE-STORES Page 4-16

executive the problem is easily solved. However, in a

Loosely-coupled system, the detection of such a problem is

not easy and must rest to a large extent with the server of

the file (or indeed any other resource) which is locked.

4.2.5 Naming

The naming scheme of a file-store is largely for the

benefit of the users of the system. The naming is typically

mnemonic, allowing users to give names which indicate the

content and function of individual files. Ideally filenames

should be arbitrary strings of characters, though practical

Limitations usualLy exist, and some unhelpful restrictions

are often imposed such as a very short name length or a

Particular structure to a name.

Apart from allowing individual users to retrieve files,

the naming scheme should allow users to share files. This

means that any file can be accessed (via a global context)

by any user on the system. Unix achieves this by allowing

any user to use the path-name of any file in the system.

Note, however, that being able to name a file does not

necessarily imply the ability to access it. OS4000 (see

Later) provides a cumbersome mechanism for file sharing via

a shared context called POOL; to access another u s e r ’s file

the other user must catalogue that file in POOL, or

catalogue a directory referring to that file in POOL. The

0 S 4000 policy seems to be designed to provide file

Protection through limitations on naming as well as by more

FILE-STORES Page 4-17

normal methods of password and user-oriented protection;

this turns out in practice to be a severe limitation.

A useful feature of a file-store is the ability to

switch contexts. For example, if user 1 wishes to access

the files of user 2, it is useful if user 1 can use the same

names (ie the same context) as user 2. Unix provides this

as a change directory command. 0S4000 has no such

roschanism, and sharing of files is consequently tedious.

Two possible ways of implementing a file-store are

discussed by CSALTD. The first technique effectively

requires access to a file for read and write using the file

name each time. The second technique, called "direct

access", is to use the name of a file to obtain an address,

and that address is used for accessing the contents of the

file. The choice of technique depends on a number of issues

in the design of the system.

The direct access method is most common, and is the one

chosen by KUDOS. The arguments in favour of this were

Mainly performance, and it provides a hidden benefit that

scratch files need not be given a user-oriented name at all.

!n KUDOS there is added complexity in that a file may exist

e s a number of copies. Accessing a file via its name each

time might have certain benefits, and we shall explore these

later when we assess KUDOS.

FILE-STORES Page 4-18

4.3 A SURVEY OF A NUMBER OF EXISTING FILE-STORES

4.3.1 Unix

Unix CRITCHD has deservedly gained popularity as a

time-sharing operating system. It has been cited as a

standard operating system for the new generation of 16-bit

micro systems. Much of its popularity derives from its

f i le-store.

Unix provides a hierarchical file-store visible to all

users. A directory can contain files or other directories.

All directories, apart from a special directory called root,

live in a parent directory. Root is the ancestor of all

directories, and a path can be traced to any file or

directory from root.

Files are named by specifying the full path name of the

file. For example, "/fs/ken/diary" refers to the file

"diary" in the directory "ken" which is a subdirectory of

”fs", which in turn is a subdirectory of "/" (i.e. root).

In this way any file in the system can be named.

To ease the tedium of specifying full path-name the

concept of a "current directory" is used. For example, if a

current directory is ”/fs/k.n" then to refer to

"/fs/ken/diary" it is only necessary to specify "diary" and

the current directory will be prefixed by default.

FILE-STORES Page 4-19

AIL files in the Unix system are held in this

file-store. By convention certain directories are set aside

for system files. Individual users are typically given a

subtree for their own data storage. Protection of files is

implemented by a system of "ownership" based on the

registered users of the system.

A mechanism for mounting and dismounting subtrees

associated with volumes provides removable file systems. A

removable file system can be mounted anywhere in the system.

Effectively, mounting replaces a leaf of the tree with a

whole subtree.

A file entry in a directory is actually a pointer to an

object called an i-node. The i-node holds

Protection/ownership information and a map of data blocks on

disc. More than one directory entry can point to an i-node,

so that an actual file can have more than one name; this is

called "linking". This facility is very useful for sharing

data, but can cause problems with dangling or lost pointers.

For example if a file is accidentally lost through some

system failure, the i-node could be reallocated to a

different file. The name which originally pointed to that

i-node now points to a different file. The i-node knows of

Only one link to it, but there may be many incorrect ones.

Unix is very popular with users because of the simple

structure of the file-store. It is easy to understand, and

Pot obstructive. Files are considered as sequences of bytes

FILE-STORES Page 4-20

by the system and any record structure must be interpreted

at a higher level; this overcomes the structure clashes

common with a number of other systems which insist that

files have a record structure. Files are random access;

system calls exist not only for sequential read/write but

also to move the pointer to anywhere in the file for the

next read/write.

The file-store also accommodates peripherals, denoted

as special files. Thus an application or system program can

write to a peripheral as easily as to a file. This is

Particularly useful in situations such as diverting output

to a terminal rather than a file, or vice versa - one

Program can do both tasks, and the program does not know

exactly where its output is going or its input is coming

from. Certain natural restrictions do exist, such as lack

of random access on a magnetic tape, or reading from a

Printer.

Directories themselves are classed as files and can be

read as any other file. This means that system software

does not need special calls to interpret the contents of a

directory. It is sometimes useful for applications software

to examine directories too.

Apart from the file-store, Unix has a number of

Attractive features, such as pipes, fork, shell, and a wide

variety of utilities and software packages which form a very

versatile system. Emulating its features on a local area

FILE-STORES Page 4-21

network would be an admirable aim. However, some of the

features such as fork do exploit the architecture of a

single processor system, and therefore would have no direct

translation.

4.3.2 GEC OS4000

This operating system tGECH also has a hierarchical

file-store. However the whole file-store is not accessible

to all users, only to a privileged user called the

super-user. A normal user has direct access only to his own

subtree. Indirect access to other subtrees can be provided

by a mechanism of context pointers and referencing. A

context pointer is a name for a file or directory which is

dereferenced to provide the full name in the file-store.

Each user has a private set of context pointers. A file or

directory name can be a reference, which means it is

dereferenced to another file/d i rectory name. Initially a

user is provided with a context pointer to the command

directory and a shared data area (called POOL), which

contains references to files which users have placed there

to enable shared access.

There is no "change directory" capability, so that all

objects in a users file-store need to be referred to by a

full name starting at the users directory. Files are held

in a record format, causing certain structure clashes for

aPplication programs.

FILE-STORES Page 4-22

Although potentially as attractive as Unix, the awkward

naming and added complexity of context pointers and

references to access public and shared data make this

fi le-st o re tedi ous to use and severely restricts the

activities of a user.

*►.3.3 OS 360

The IBM 0S360 file-store is remarkable principally

because of how difficult it is to use. There are no

contexts for naming - a file must have its full name

specified. To manipulate files a huge number of parameters

are required such as volume, size (in cylinders or tracks),

access method (shared, exclusive, read only, sequential,

random), record format (fixed, variable), blocking factors,

and a host of other parameters if anything out of the

°rdinary is required.

Houever, OS 360 is not an interactive system, and the

'ile-store is usually static. Under a batch system, users

a re often remote from the system or have procedures set up

►or them by technical staff. The file-store is designed

“ith efficiency in mind - data is stored in large blocks

Placed as contiguously as possible. Since under a batch

system most files are accessed sequentially from beginning

To end, and throughput is important, this significantly

improves efficiency.

FILE-STORES Page 4-23

This is not a file-store to be emulated, especially

under an interactive system. However, it is an example of

one which did meet the needs of a certain class of users,

and which was designed with the overriding objective of

efficiency. It is included here because the author suffered

long at its mercies, and wishes to warn others of the tedium

of such a file-store.

4.3.4 Xerox DFS

The Xerox Distributed file-store C61FF13 is

Particularly relevant to this thesis. It is based on an

Ethernet local area network, and has a number of users.

With some adaptation many of the algorithms in this thesis

could be implemented on this system.

It is based on the client-server principle. The basic

communication is for a client to send a request to a server,

and for the server to send a result. A client can either

issue a request and wait for the result, or issue a number

of requests and accept results as they return (not

necessarily in the same order as the requests).

The DFS is implemented as a number of servers. Files

ape identified by a unique identifier (UID) which is

effectively a long integer. Clients communicate directly

with the servers which contain the files they wish to

a c ces s .

f i l e -s t o r e s Page 4-24

Atomic transactions and recovery are implemented using

a mechanism called "intention lists". Locks and updated

records are stored in the intention list, and the state of

the system outside the intention list is unchanged until the

intention list is committed. On commit the contents of the

intention list are applied. If a failure occurs before

commit the intention List can be scrapped and the

transaction has no effect. After the intention list has

committed, and before the contents applied, a failure can be

recovered by applying that intention list again. This is an
t

alternative to updating the disc and rolling back if a

transaction fails. It is essentially a form of careful

replacement only of individual disc pages, rather than whole

f i l e s .

A scheme of "stable storage", where a disc page is

written on two parts of a disc to improve recovery under a

crash, is used to increase reliability of crucial data such

as intention lists. By writing the same data to two

different surfaces, the likelihood of data being destroyed

through faults on a disc are minimised. Also, by writing

two pages, the likelihood that one succeeds is higher.

Deadlock prevention is through a locking mechanism

which can be broken. If a client wishes to lock a record

which is already locked, then the intention list of the

first client is marked so that it cannot commit, and the

second client now has the lock. This avoids certain forms

°f deadly embrace, but consistency must be ensured by the

FILE-STORES Page 4-25

client, and a client can conflict with another client so

that neither can proceed.

No directory scheme is implicit in the DFS. A

directory server has been implemented as a client of the DFS

to give a mnemonic to UID mapping. This is an optional

service and a client may use its own mechanisms for locating

tiles.

There is no concept of ownership for a file - knowing a

UID permits access to it. How a UID is determined is not

described. File operations are apparently only at disc page

level - a reasonable requirement, but not as neat as the

Unix sequence of bytes. How files are stored on disc is not

described.

The DFS is a basic but very flexible file-store. More

application-oriented structures can be implemented by

clients to the DFS (such as the directory server). The

atomic transaction property permits writing of a database

system as a client of the DFS. Atomic transactions in a

f i l e-server are also important in file-store applications,

as we shall later discuss.

The directory scheme detailed in this thesis could well

run as a client to this DFS. The client-server concept has

in fact been used. This file-server is far advanced of the

crude file-server used in KUDOS, and its properties of

atomicity would have been a boon to the file-store in a

number of ways. The KUDOS file-store is, however, more

FILE-STORES Page 4-26

user-oriented and Leans more towards Unix in its external

appearance.

4.3.5 Apollo Domain

The file-store on the Apollo Domain system is

hierarchical, and similar to Unix. Each node has a

hierarchical file-store, and files are named within a node

in the same manner as Unix. There is a network-wide root

directory which contains the root directories for each of

the nodes. The network-wide root is replicated on all

nodes. The full network-wide name of a file is preceded by

two slashes and the name of the node where it is held. A

system of current directories is implemented as in Unix to

ease naming.

For example, it the current directory is

//compscil/smith lie the directory smith on the node

c o m p s c i D , then a user on the node compscil can use the

names //compsci 1 /smith/prog/sort, /smith/prog/sort, and

Prog/sort to refer to the same file. The first is the

network-wide name, the second the local name, and the third

the name in the current context.

The notion of linking varies from that of Unix. Apollo

Provides a link by storing the full name of a file for

second and subsequent links; Unix just provides a pointer

to the i-node for the linked file. This should avoid the

Problem of dangling pointers which can occur under Unix if

f i l e -s t o r e s Page 4-27

an i-node is Lost.

4.3.6 George III

One of the earliest hierarchical file-stores is

supported by the George III operating system on the early

range of ICL mainframes CICLU. It names all files in the

system, both disc and magnetic tape files. A user need not

know where a file is stored and a file may be moved by the

system without the user knowing.

There are three types of file in George III.

Peripheral files are strings of records with formats

appropriate to the peripheral being simulated, say a card

reader or a line printer; such a file may be kept on disc

or magnetic tape. Direct access files have a format

appropriate for storage on disc or drum only, reflecting the

random access capabilities of such devices. Magnetic tape

■files also have a special format, corresponding to the

storage medium.

This is contrary to the Unix philosophy that a file

should be device independent. Otherwise access to files

through the job control language can become long-winded and

Prone to semantic errors. On an interactive system in

Particular it is tedious to have to over specify the details

°f files in order to gain access. It also causes problems

for the programmer who needs to consider the types of files

being used.

FILE-STORES Page 4-28

The George III hierarchy is a rooted tree with a

"master directory" at the root from which all files and

directories in the system can be traced. A directory can

contain files or directories up to a limit of 64. Each

directory has associated with it a unique user name, and

that user name can be used to name the directory instead of

the full path-name. A dictionary of users is kept, and this

forms the basis of the accounting system for storage. A

current directory scheme is used to ease naming.

The binding of a unique user name to a directory, and

the limit on a directory size seems an unfortunate

restriction. However, the George III system is batch

oriented, and as such is unlikely to have a large number of

smal l files per user.

Directories contain access information for files based

on user names. Access to a file in a directory can be

restricted or prevented for other named users of the system.

A back-up system runs an incremental dumper at regular

intervals which copies recently updated files from direct

access devices to magnetic tape. This means that a failure

of the direct access system can be recovered by a roll-back

to a previously accepted state. The scheme is also used to

free direct access devices when they are becoming full.

Files which are deleted from direct access devices can be

retrieved from magnetic store on demand. This allows the

file-store to contain more data than can be held on direct

f i l e - s t o r e s Page 4-29

access devices.

This appears to be a significant attempt at providing a

large scale file— store on a commercial operating system with

built-in redundancy to allow recovery from system failures.

Compared with 0S360, this is a much more attractive

fi l e-store.

4.3.7 Other Unix-like Distributed File-stores

A number of distributed Unix-like systems, or

extensions of Unix, appeared at the end of the author s

involvement in KUDOS. They are discussed here for

comparison. Notably, the approaches have been different.

The LOCUS project CPOPEKD closely parallels the KUDOS

Project, especially in the provision of low level network

transparency. It too provides a hierarchical file-store

with replication. The operating system and file-store are

based on existing Unix software.

The file-store is broken into groups, and the files

within a group are replicated at all sites associated with

that group. Synchronisation of file usage by many users is

through a "Current Synchronisation Site" which is designated

as being responsible for coordinating access to all files

within that group. All open calls for a file must involve a

m®ssage to the Current Synchronisation Site irrespective of

whether or not the file is stored at that site. Any site

which has a copy of the file can support the open request.

f i l e -s t o r e s Page 4-30

Once a file is updated at one site, the Current

Synchronisation Site is informed and the other sites which

contain copies of this file are brought up to date. Each

copy of a file has a version vector associated with it.

This version vector contains an integer for each copy of the

file. When a file is updated the entry in its version

vector for itself is incremented. [POPEK] claims that by

comparing version vectors inconsistencies can be resolved

when, for example, a site has been offline during an update.

Certain conflicts can arise when say a file is

replicated three times, then one copy is offline and the

other two updated followed by the latter two being offline

and the former being updated. For the sake of availability,

such possibilities have been allowed. [P0PEK3 claims that

such conflicts are likely to be rare, since actual sharing

of files is low; this seems to be ignoring the problem.

C o n s i d e r i n g the s i m i l a r i t y between LOCUS and KUDOS, i t

would have been w o r t h w h i l e to make a f u l l c o mp r i s o n .

However , the t i m i n g of the two p r o j e c t s makes t h i s

i n f e a s i b l e f o r the p u r p o s e s of t h i s t h e s i s .

Cocanet CLAWR] and the Newcastle Connection [BROWN]

both provide a network-wide hierarchical file-store. These

Two hierarchies are similar to each other and to the Apollo

Domain, and are direct derivatives of the Unix hierarchical

*1 le-store.

FILE-STORES Page 4-31

In the Newcastle Connection it is possible to

effectively mount the tree of one node as a subtree in the

tree of another node. Thus the root of one system can

appear as a subdirectory in another system, building a large

naming network out of a number of naming networks. This is

a radically different approach from KUDOS which provides a

single naming network by overlaying naming networks in a way

to be desc ri bed .

Neither Cocanet nor the Newcastle Connection, as yet,

supports mu 11ip l e-copy redundancy of files, though no doubt

such extensions are being considered. This, and the

approach to naming are the significant differences between

the external appearance of the KUDOS file-store and these

two file-stores.

CHAPTER 5

In chapter 1 we stated the basis for the research

Presented in this thesis is the problem of how to construct

a file-store which is reliable in terms of high

accessibility of data and low likelihood of data loss. Let

us now elaborate this in the light of chapters 2,3,4.

Firstly, we gave a broad definition of reliability. We

said that reliability is a measure of how successfully a

system satisfied its specification. We highlighted the

Problem of rigorous specification and suggested that an

incomplete specification would be adequate for most systems,

so long as the specification covered the essential aspects

of behaviour; indeed the behaviour of a system is often

implicit in the type of system, say a car is assumed to

carry people.

In the third chapter we discussed local area networks

as an implementation vehicle for a file-store, highlighting

certain features of local area networks as being useful to

the designer, especially the capacity for dynamic redundancy

and component independence.

REFINEMENT OF THE PROBLEM

REFINEMENT of t h e p r o b l e m Page 5-2

We then discuss e'd fully what is understood by

file-stores and a number of related issues. We can draw a

number of conclusions regarding the desirable properties of

a file-store, namely:-

1. The file-store must provide a sensible naming

scheme which permits a user to name any file

unambiguously, and in a manner easily understood by

the user. Moreover, the naming scheme should be

flexible, allowing the users a wide choice of names

and the ability to change context. Arguably the

hierarchical scheme used by systems such as Unix

are the best practical systems currently providing

such features.

2. In a multi-volume system, some means of controlling

the location of files is required. This is

particularly important where multiple copies of a

file are kept.

3. The file-store should control access by a number of

users, preventing inconsistencies due to concurrent

access, and also to provide some form of data

protection to prevent the access of a user to data

which should not be accessed by that user.

4. The file-store must provide adequate performance in

terms of the latency of file access requests and in

terms of data transfer rates.

REFINEMENT of t h e p r o b l e m Page 5-3

5. The file-store must be reliable in terms of

availability of files, the likelihood of loss of

files, and atomic update of files.

In the design of the KUDOS file-store the overriding

objective was reliability, measured in three ways:-

1. The probability that an individual file is

available at any one time.

2. The probability that an individual file is lost.

3. The probability that file updates succeed

completely or not at all.

KUDOS provides algorithms which allow a file to be

rePlicated in such a way as to increase availability and

peduce likelihood of loss.

KUDOS, however, provides a number of other important

"features which largely provide the aforesaid desirable

Properties, namely:-

1. A single global hierarchical naming scheme.

2. Controlled multiple copy redundancy.

3. A neat solution to data placement.

4. Deadlock avoidance.

REFINEMENT of t h e p r o b l e m Page 5-4

5. Automatic reconfiguration.

6. Limited recovery facilities for user transactions.

7. File protection.

KUDOS made a small attempt at providing good performance,

but the prototype system had too many inefficiencies to

highlight this and time was too short to tackle this problem

folly.

The rest of this thesis will be devoted to a

description of KUDOS and its file-store, and some assessment

°f its success. A number of points will be made regarding

the implementation of the prototype. The prototype itself

has probably little scope for extension to a working system,

So it wilt be important to highlight throughout what was

learnt by implementing a prototype. It might also be useful

to consider how the KUDOS algorithms might be used

e Isewh e re.

CHAPTER 6

KUDOS

6.1 THE KEELE UNIVERSITY DISTRIBUTED OPERATING SYSTEM

KUDOS stands for the Keele University Distributed

Operating System, developed by the author. The research

Presented in this thesis forms part of a research project in

the Department of Computer Science at Keele University,

nominally investigating distributed file-stores. That

Project commenced December 1979 and is still active.

The Keele project was funded by the Science Research

Council, with two research associates, the grant holder Dr

K.H. Bennett, and three research students. The work

Presented here inevitably benefits from the individuals

within the project. However, the work presented is entirely

the author's; where an individual has contributed in any

way is indicated in the text. This thesis represents a

Project within a project, and only reflects one aspect of

the overall project.

k u d o s Page 6-2

The project began with the somewhat over-ambitious aim

of designing and building a distributed operating system.

Much will be said about this later, assisted very much by

hindsight. This chapter describes the most successful

att empt, developed by the author. In all humbleness, it

must be said that success is measured largely by the fact

that a prototype was implemented, and worked; other

"Approaches, perhaps more adventurous and with greater

Potential, were being explored by other members of the team.

A small implementation of KUDOS exists on two LSI-11/02

micro-computers, providing a distributed file-store,

resource location facilities and a communications scheme.

Currently the only processing available to a user is a UCSD

Pascal micro-engine CMICROE] which accesses the distributed

file-store remotely.

We shall begin this chapter by describing the early

goals set by the team, originally detailed in CLUNN2] . Some

^ f l e c t i o n on these goals will be followed by a description

°f KUDOS. The existing implementation will be described,

finishing with a set of conclusions and experiences with

k u d o s .

6 -2 AIMS OF KUDOS

The original design objectives for the development of a

bistri bu ted operating system CLUNN2] are i ncluded here

^erb at i m) • These shall be qualified i n the light of

k u d o s Page 6-3

experience. The decision to write a distributed operating

system was prompted by the lack of available operating

systems for local area network based systems at the time.

Moreover, it was seen as a vehicle for developing ideas

other than those on file-stores, providing a basis for

discussion on topics such as process location and

communication techniques.

6.2.1 General Objectives

These guidelines would apply to any development of a

computer system. They ought to be obvious, but are stated

here for completeness.

D To p r o v i d e a u s e f u l s y s t e m f o r the g i v e n a p p l i c a t i o n ,

with an a d e q u a t e r e s p o n s e to u s e r r e q u e s t s .

2) To p r o v i d e a r e l i a b l e s y s t em whi ch e n s u r e s

1. a c c e s s i b i l i t y of f i l e - s t o r e , measured as the

p r o b a b i l i t y of a f i l e b e i n g a v a i l a b l e on the s y s t em

2. i n t e g r i t y of f i l e - s t o r e measured as the p r o b a b i l i t y

t h a t a g i v e n f i l e i s the l a t e s t v e r s i o n of t h a t

file

k u d o s Page 6-4

3. reliability of hardware, measured as the

probability that a usable system is provided

together with the mean time to failure of the

system.

4. reliability of software, capable of tolerating

certain classes of hardware error (such as parity

errors, disc i/o errors) or even component failures

(such as disc head crashes or, in the case of a

network, loss of one of the nodes).

3) To provide a secure system which enables a user to

Protect data from corruption or even access by other users,

and which can curtail a rogue process attempting illegally

to alter currently executing software.

Briefly, these three objectives can be summarised as

Saying that the system should be useful, reliable and

secure.

6.2.2 Objectives Within Our Application

These objectives, though more specific than the

Previous ones, avoid dictating the technical specification,

father, they attempt to define ideals which would apply to

roany similar systems. Such ideals may not be achievable,

but we hope to go a long way towards them or discover

reasons why we cannot.

k u d o s Page 6-5

1 . To provide a Pascal compi Le/execute system

implemented on a distributed network, providing an

integrated hierarchical file-store spread across the storage

devices of the various machines on the network.

2. To implement in such a way that the reliability of

the system increases with the number of machines on the

network, rather than decreases.

3. To implement in such a way that the integrity and

accessibility of the file-store is significantly better than

it would be if implemented on a single machine with

P l i a b i l i t y equivalent to that of a single node on the

network. This seems to imply that the file-store is not

dependent in any way on any one node of the network.

4. To make the fact that the system is implemented on

a distributed network opaque to the user; that is the

system appears as a black box.

5. To ensure that the processing capability of the

network increases proportionately with the number of nodes

°n the network.

6. To implement in such a way that response time is

not significantly degraded by increasing the size of the

network, perhaps to some upper limit (say ten machines). If

Possible response time should be improved by increasing the

size of the network, by utilising the potential for parallel

Processing.

k u d o s Page 6-6

7. To provide automatic reconfiguration of the system

should any of the components fail, other than the

communications medium. This should be hidden from the user

as far as possible, though some degradation of response

m i g h t be expected, firstly through the reduction of

Processing power in the system, and secondly in the short

term through the use of recovery routines.

8. Above all, the system should never grow too

complex, large or limited to prevent easy experimentation.

This is a research project, and as such is primarily

interested in trying out new ideas.

6.2.3 Experience

In an open-ended project one rarely achieves exactly

what one set out to achieve. The benefits derive from

discovery and self-discovery as much as from the ultimately

realised aims. The original objectives provide an

interesting yardstick by which to measure success, and they

are also useful as guidelines when the tendency to meander

is too great.

The general objectives now look a little naive, and

could doubtless be refined. The entity "useful system" and

the property "adequate response" need much elaboration. The

notion of reliability has been extended to include

accessibility and atomicity of update. There would be a

chariness now of using the word integrity; more specific

k u d o s Page 6-7

statements of properties are needed, integrity being a term

too widely and too carelessly used.

The specific objectives were more soundly stated, quite

feasible, and are perhaps worth commenting on individually:-

1. The notion of providing a Pascal compile and

execute system was perhaps an unnecessary restriction. The

Project was nominally to investigate file-stores, and a

file-store should be able to interface to any sensible

Processing system. The origins of this objective were

embedded in the project no doubt because of the Pascal

implementation expertise within the department. The

file-store implemented in KUDOS could be interfaced to any

Particular language/processing system. The fact that the

Prototype interfaced only to a Pascal system was due to

limitations on time, and it could as easily have been

interfaced to a BASIC programming system, or whatever.

2. Increasing the reliability of the system with the

number of nodes on the system implies exploiting the

Possibility for dynamic redundancy and implies high autonomy

in the system. KUDOS achieved this to a large extent.

3. By integrity it was meant that files rarely be

lost. KUDOS provides a flexible response to reliability in

this respect, as well as providing a flexible scheme for

increasing the accessibility of files. This objective

became an overriding one in the realisation of KUDOS.

k u d o s Page 6-8

4. Our view of distributed computing has changed. We

no longer see the system as a "black box". This is largely

due to our growing realisation that most individual users

can be satisfied by the provision of a powerful personal

computer at low cost. Under such circumstances the user

must be aware of when, why and how he is using a distributed

resource. Thus the distributed nature of the system should

be translucent rather than opaque.

5. Greater understanding of the limi tâtions of

e* t end i ng local area networks li mi ts the objective of

increasing processing capability proportionally with the

size of the network. A number of bottle-necks exist in

Local area networks, such as the bandwidth of the

communication system or heavy demand on certain critical

s e rvices.

6. KUDOS was not designed with the objective of

Performance foremost. Little can be said about response

times in the light of experience, except that the personal

computer approach ought to satisfy the needs of most users,

and that response time should be little affected by the

network except in so far as a user requires a network

s e r v i c e.

7. Automatic reconfiguration was largely achieved in

Ku d o s through the directory system and resource directories.

k u d o s Page 6-9

8. KUDOS did not grow too large or complex. As an

operating system it probably has little to offer.

Hopeful ly , however, some of the ideas will find homage

e Isewh ere.

Overall, KUDOS achieved a number of the teams original

objectives. To call it an operating system is perhaps too

9ross; it is more a limited collection of network services.

Much has been learnt, however, and there is potential for

extending the ideas. One begins to realise, to quote C.P.

^now, one's "inability to do much". To design, implement

end evaluate from scratch a system as ambitious as

originally envisaged is probably beyond the scope of a

small, newly-formed team in the time available.

One might seriously argue that the objectives were

wrong. In retrospect, it would have been better to set

objectives such as the investigation of existing distributed

file-stores and a relative evaluation of their properties.

some classification of file-stores would have been useful,

as would some classification of local area network systems.

Much of this went on implicitly, but it would have been

better to have them as fixed objectives.

Such are the benefits of hindsight. Nevertheless, the

original objectives proved useful, if only as a torch to

light the way. The consequences of those objectives are now

described.

k u d o s Page 6-10

We shall begin by describing the message passing

mechanisms developed in KUDOS. The scheme was developed in

tandem with the operating system, and was a huge compromise

between need, efficiency and compactness of code (a

Potential recipe for disaster, but it worked - just). We

shall discuss the compromises and suggest a better approach

which should have been taken, had it been feasible. The

expe ri ences with message passing and communication were by

means novel, but they did consume much time and effort.

We shall then describe two underlying philosophies in

the development of KUDOS, namely "client-server

a rchitecture" and "pub l ic/private domain architecture". An

attempt is made to clarify and distinguish certain general

features of a local area network computing system.

There will then follow a description of the prototype

system implemented, and the chapter will end with a number

°f experiences and conclusions.

6 -3 KUDOS STRUCTURE

KUDOS i s a m e s s a g e - p a s s i n g d i s t r i b u t e d o p e r a t i n g s y s t em

f o r a h e t e r o g e n e o u s s y s t em of comput e r s c o n n e c t e d by a l o c a l

a pea n e t wor k . It i s a c l i e n t - s e r v e r s y s t e m , where a s e r v e r

Can i n f a c t be a c l i e n t of a n o t h e r s e r v e r . A d i s t i n c t i o n i s

made between the " p u b l i c doma i n " (s h a r e d r e s o u r c e s) and the

P r i v a t e domain (p e r s o n a l r e s o u r c e s) . O b j e c t s a re

dynami ca l l y r e l o c a t e a b l e w i t h i n the s y s t em and are l o c a t e d

k u d o s Page 6-11

by "resource directories".

Message-passi ng was chosen since it offered a simpler

solution to providing a heterogeneous system. Procedure

calls across a network with nodes having different

machine-codes was considered (almost certainly mistakenly)

to be difficult to implement. Experience in developing

KUDOS indicates that some form of procedure-1 ike call across

a network with appropriate synchronisation would be easier

to use and less error-prone than ad hoc send and receive

P M mi t i ves .

6.3.1 The KUDOS Message Passing Scheme

Suppose n C 1 n C q] are nodes on the network. Each

node nCi] provides a number of ports for data reception.

Any process in any node can send a message to any port in

any node by specifying the address of that port (eg.

(nCi],p) - port p on node nCi3). A process can send to a

Port within its own node.

Any process in a node can receive data from any port in

that node; thus more than one process can receive from the

same port. The motivation for this was to allow a number of

similar servers to accept requests from the same input

stream. In practice this did not occur, and had this been

necessary an alternative would have been to invent a

coordinating process which received all requests for a

collection of similar servers and rerouted the request to a

k u d o s Page 6-12

ready server. Multiple servers collecting requests from the

same port is potentially quite error-prone.

A process can create a port within a node and later

destroy it. Problems were experienced when a port was

destroyed and its number reallocated; the newly created

Port occasionally received messages intended for the process

which earlier destroyed a port with the same number. Such

situations arose when a process backed out or the protocol

between a client and server broke down, often due to errors

in the code, having unfortunate consequences and making the

fault difficult to trace. To overcome this problem port

numbers were allocated so that repetition was infrequent.

Messages arriving for a destroyed or non-existent port

number disappear; ideally such messages should raise an

exception in the sending process, but the synchronisation

chosen forbade this.

To send, a process must provide a reference to the data

to be sent. To receive a process must provide a buffer for

the received data. Two forms of receive are defined - fixed

and variable. A fixed receive will only be satisfied when

its buffer is filled by one or more sends. A variable

receive will be satisfied by the first send, and will return

the size of the data in its buffer. The reason for a

variable receive was to allow communication with an

interactive keyboard, where the length of an expected

message cannot be predetermined. It might also have been

Useful for detecting the end of a file, with a short or

k u d o s Page 6-13

empty buffer being returned, though this was not used in

Practice. A send which is not exhausted by a receive will

have its remaining data held for subsequent receives.

This scheme is very flexible for data transfer. For

Example, a file-server may send a file 512 bytes at a time,

but a client may only want to take 80 bytes at a time.

Using a fixed receive on an 80 byte buffer the underlying

structure clash is hidden from both client and server.

A system of timeouts is provided for both send and

receive. A send will timeout if:

i) the node does not exist;

1i) the node does not respond;

iii) the message is to be sent locally and the port does not

exist;

1 v) the message is to be sent locally and the message has

been first in the queue for a specified time.

A receive will timeout if the port does not exist or if

nothing arrives in the port within a specified time.

Unfortunately timeout (ii) can occur because of

Protocol errors. Timeout (iv) was chosen as being more fair

than timing out over length of time in the queue - it

k u d o s Page 6 - 1 4

er)s u r e s t h a t no send w a i t s i n d e f i n i t e l y but does not

P e n a l i s e a s ende r i f the queue i s undu l y l ong .

Within a node, both send and receive hold up the

issuing process until completion or timeout. A send to

another node will suspend only until the data has been

transported to the node, and not necessarily received from

the port; this removes the need for an acknowledge, but

Leaves the process in an uncertain state regarding the

success or failure of the send.

All client-server communication in the system is by

message-passing. The communication system on a node has

been called the "message exchange". Message exchanges

communicate directly via a high bandwidth local area

Petwork.

The above primitives are a mixture of design and

e*pediency. It would have been preferable to have used much

higher level primitives, with the much greater reliability

°f, say, a full transport service with its own error

checking and correction. However, given the software and

hardware available, it was necessary to restrict the size of

the message exchange, and to improve its speed by reducing

1 * s leve l of service.

Close parallels can be drawn between this scheme and

that of CLISKD. A node corresponds to a guardian, although

We provide no nesting of guardians. The scheme is

essentially "no-wait send", issuing a message without

k u d o s Page 6-15

waiting for acknowledge or reply. We would prefer a

"synchronisation send", waiting for acknowledgement of

receipt, and an "invocation send", waiting for a reply as

well as an acknowledgement. [HALS] suggests how we might

implement these, but it is felt that any improvement must be

Preceded by a hardware upgrade to provide a faster local

area network.

Note, in particular, that message passing is through an

address rather than a name. A naming scheme is provided,

but must be used independently to obtain an address.

The largest problem on the message exchange is that a

remote send does not guarantee receipt. In practice most

transactions are of the send request / wait reply type. A

remote invocation send (often called "remote procedure

tall") would be more useful, and reduce the error checking

required by a client - presently it is necessary to check

tor timeout on both send and receive.

Communications we see as the hub of any computer

system. On a single processor system the issue is often

clouded by other machine specific ones. On a distributed

system it becomes clearer. Once a concise and powerful

mSchanism for communication exists we see local area

networks developing from ad hoc interconnections of

computers to complete computation systems in their own

pight.

k u d o s Page 6-16

6.3.2 Client-Server Architecture

In CSTURG] and related work we see an emphasis on the

idea of a client-server relationship. A client is defined

as any process initiated by or on behalf of a user. A

server is any process which provides a service to a client.

this way a server can itself be a client of another

Process. Examples of client-server relationships are (in

Unix) shell-editor, ed i t o r- f i l es t o r e, s h e l l-c omp i l e r ,

compi ler-fi lestore.

On a distributed system, the client-server relationship

is very important. The client-server interface is often

implemented across nodes. Consequently it must be concise

and not take advantage of side-effects as is often the case

in single-processor systems. This necessity is even more

important when a single server can be accessed concurrently

from a number of nodes.

6.3.3 Public/Private Domain Architecture

This section expands the philosophy developed within

and the projected structure of KUDOS. It is similar to many

local area network computer systems, such as the Cambridge

Model Distributed System. KUDOS is in an embryonic state at

the time of writing this thesis, and this section should be

viewed as a projected strategy rather than a description of

a completed system.

k u d o s Page 6-17

The most important feature of the strategy is the

dichotomy between the public and private services provided

on a network, and the isolation of the interface between

them. Though such concepts are embedded in many local area

network systems, they are not always emphasised. The

distinctions ought to be particularly useful for large scale

development, especially of a heterogeneous system. One can

see a developing trend toward such a philosophy, especially

with regard to protocol standardisation and open system

inter-connect [ISO]. However, we shall decline to argue the

case and hope that the reader appreciates the value of the

aPp roa ch.

The f i r s t i mpact of the m i c r o - p r o c e s s o r was to d i s p e r s e

c o mp ut i n g . Yet peo p l e do not n o r m a l l y work i n i s o l a t i o n .

Ku d o s a ims to i n t e g r a t e the d i s p e r s e d p r o c e s s o r s to p r o v i d e

a more a t t r a c t i v e s e r v i c e to u s e r s whose needs o v e r l a p or

who r e q u i r e c l o s e c o o p e r a t i o n wi t h one a n o t h e r .

At the same time KUDOS aims to maintain and enhance the

independence of a user's work-station so that it provides

the level of interactive response now expected of a

micro-processor system. If necessary a work-station should

designed to stand alone. Not only does this have

advantages with regard to performance and reliability, but

Security can be improved by restricting remote access to a

Work station.

k u d o s Page 6-18

KUDOS attempts to take advantage of Low cost processing

Power to provide a responsive service to a user whilst

retaining the advantages of a mainframe system with regard

to mass storage, intei— user communication, high-quality

Peripherals, and services such as periodic archive and data

P repa ration.

The user sees the system in two parts. Firstly there

is the private domain over which he has complete

jurisdiction. Secondly there is the public domain which can

be accessed only by certain protocols.

6 . 3 . 4 The C o n c e p t u a l S t r u c t u r e

A personal autonomous work -stati on (PAWS) i s envi s aged

which provides a user with all h i s processi ng needs and

which cont rols a l l private data storage and private

Peripheral handling. Each personal autonomous work-station

interacts with the multi-access shared service (MASS)

through the public system interface (PSI). The public

system interface does not provide access to another personal

autonomous work-station although this might be achieved

indirectly through a service provided by the multi-access

shared system.

The m u l t i - a c c e s s s h a r e d s y s t e m p r o v i d e s g e n e r a l

s e r v i c e s such as a f i l e - s t o r e , i n t e r - u s e r c o mmu n i c a t i o n and

P u b l i c p e r i p h e r a l a c c e s s . The p u b l i c s y s t em i n t e r f a c e

P r o v i d e s the p r i m i t i v e s f o r a c c e s s i n g the m u l t i - a c c e s s

k u d o s Page 6-19

shar ed s y s t em. The m u l t i - a c c e s s s h a r e d s y s t e m i s i n no way

dependent on any p e r s o n a l autonomous w o r k - s t a t i o n , but a

P e r s o n a l autonomous w o r k - s t a t i o n can be made dependent to

v a r y i n g d e g r e e s on the m u l t i - a c c e s s s h a r e d s y s t em; at one

ext reme a p e r s o n a l autonomous w o r k - s t a t i o n c o u l d be j u s t an

i n t e l l i g e n t t e r m i n a l (i n which ca s e i t s autonomy i s

mi n i m a l) , at the o t h e r ext reme a s o p h i s t i c a t e d s y s t em

P r o v i d i n g g r a p h i c s and mass s t o r a g e , or be a s p e c i a l i s e d

sys tem such as a p l a n t c o n t r o l l e r .

The f o l l o w i n g d i a g r a m i l l u s t r a t e s the c o n c e p t u a l

structure of KUDOS:

k u d o s Page 6-20

KUDOS CONCEPTUAL STRUCTURE

Public System Interface (PSI)

Public Peripheral interface (PPI)

Personal Autonomous Workstation (PAWS)

Multi-access Shared System (MASS)

k u d o s Page 6-21

A likely physical structure is:

communi cat i ons

k u d o s Page 6-22

6.3.4.1 The Personal Autonomous Work Station -

Each personal autonomous work-station could be tailored

to meet particular needs, and could represent a substantial

system in itself. The personal autonomous work-station

could use the multi-access shared system as a data store, a

communication system or a gateway to another system.

Dependence on the multi-access shared system could be

minimal or extreme depending on the application.

A simple, intelligent terminal would rely on the

mu Iti-access shared system almost completely, perhaps even

for some processing if the multi-access shared system offers

services such as a compi ler-server or edi tor-server. At

this level the system would appear much like a traditional

time-share system.

A plant controller might use the multi-access shared

system for depositing operational statistics. This is not

essential to the functioning of the plant, but useful to

°ther users of the multi-access shared system. Here we have

high independence of the personal autonomous work-station.

The organisation and function of the personal

autonomous work-station is undefined in this system except

in so far as it must conform to the requirements of the

Public system interface. Thus it must be able to tap the

communication system and do so in a particular way. An

individual personal autonomous work-station can be tailored

a particular application.

k u d o s Page 6-23

6.3.4.2 The Multi-Access Shared System -

The multi-access shared system should provide a high

quality, highly reliable file-store with a hierarchical

naming scheme. The file-store must encompass protection of

data, controlled multiple access, mutual exclusion, backward

error recovery to aid failure recovery in the personal

autonomous work-station, and forward error recovery to cope

with internal failures in the multi-access shared system.

There should be controlled access to peripherals, either

directly or through a spool in the file-store. Other

services which might be offered by the multi-access shared

system could be a mail-box system, a buffer-server for

inter-PAWS communication, or gateways to other systems.

6.3.4.3 The Public System Interface -

The public system interface provides the primitives for

accessing the multi-access shared system. Examples of

Primitives would be file create, file delete, directory

Cpeate, directory delete, file write, file read, file lock,

file unlock. The public system interface should be concise

and as simple to use as possible.

6.3.5 Object Naming, Addressing And Location

Communication with all objects in the system is through

Message-passing via ports as described earlier. A port is

addressed by two integers (nCi],p) where nCiD is the num ber

k u d o s Page 6-24

of the node, and p is the port number within that node. A

server has with it an associated name. The Location of a

server may change, but its name does not. We describe here

the algorithm used by KUDOS to Locate servers, and other

global resources. This first appeared as CLUNN33 . The

a Lgorithm is Low on processing requirements and on

roessage-passing demand.

6.3.5.1 Resources -

Each resource in the system i s named. Resources are

accessed by an address. A resource might well change i t s

address, but not its name. Names of resources need not be

Unique, although the nature of the resource mi gh t requi re

this. Addresses of resources are necessari ly unique; that

1 s/ two resources cannot live at the same address at the

Saroe time . Finally, a resource may not be available, i n

wh i ch case it has no address.

Examples of such resources are dismountable discs which

roay be moved from one drive to another, or from one machine

to another. A disc is Likely to have a unique name, such as

a volume number. Such a disc must, however, be accessible

wherever it is mounted.

Naming of resources might be sophisticated. For

e *ample all printers in the system might be prefixed

^PRINTER and suffixed by location or device type such as

/pRlNTER/R00M2 or /PRINTER/DAISYWHEEL. Location of

k u d o s Page 6-25

resources could then be quite elaborate for example finding

the names of all printers available so that a user can

choose the place to print a file.

6.3.5.2 Addressing -

We assume that nodes are ordered cyclically, as if on a

Loop, so that each node has an immediate left hand neighbour

and an immediate right hand neighbour. Such an ordering of

nodes is quite natural under ring-structured networks, such

as a Cambridge Ring, but can easily be simulated under other

network structures such as Ethernet.

6.3.5.3 Processing -

It is assumed that each node has a limited processing

Power. Dumb nodes can however be assimilated into the

system since the resources they hold will be managed at

another node which does have processing ability. Thus dumb

nodes can be considered as not strictly part of the network,

at least for the purposes of this algorithm.

It is required that at least one node in the system can

dynamically create and execute a non-trivial process. Since

this is a requirement for almost any useful computer system

this is not a drawback. More than one such node is likely,

and this adds to the reliability of the algorithm.

k u d o s Page 6-26

6.3.5.4 Resource Location -

Each node in the system maintains a directory of the

resources which are currently available on that node. This

is called the local resource directory. Access to a local

resource directory Cor more strictly its manager) is through

a fixed address on all nodes, say address zero. A process

locates any resource in the system by sending a message to

its local res ou r ce di recto ry (ie the one on the process's

node) .

All local resource directories active in the sys tern

ma i nt a i n between themselves a single total resource

di rectory . The manager of the total resource di rectory run s

at some unspecified node and has an address determined by

the process creation mechanism. The total resource

directory knows of all available resources in the system and

is the ultimate source of reference when seeking a resource.

To locate a resource a process sends a find request to

its local resource directory, containing the resource name,

and then awaits for the local resource directory to reply

w ith the resource's address or an indication that the

resource does not exist. The first task of the local

resource directory is to check whether or not the resource

is local to the node, and if so it replies with the address.

Otherwise the local resource directory passes on the find

request to the total resource directory which will reply to

the process with the appropriate address. Apart from the

k u d o s Page 6-27

address of the total resource directory a local resource

directory maintains no other information about the system

external to its own node.

When a resource becomes available the manager of the

resource informs its local resource directory of the name

and address. The local resource directory stores the

information and also passes the information to the total

resour ce directory. When a resource is removed from the

system the local resource directory and the total resource

directory are informed in a similar manner. Thus the total

resource directory reflects swiftly any change in system

conf i gu rat i on.

When a node is started up the local resource directory

does not know the address of the total resource directory.

When finally the local resource directory is asked for a

resource it does not know about, it must first locate the

total resource directory. Thus the local resource directory

sends a message to its immediate left hand neighbour. If

the left hand neighbour does not know where the total

resource directory is it passes the message on to its left

hand neighbour. Assuming the total resource directory

exists the message will propagate around the system until

the address of the total resource directory is found.

If the total resource directory does not exist then the

Message will ultimately return to its originating local

resource directory. This local resource directory then

k u d o s Page 6-28

Knows that the total resource directory does not exist and

can therefore set about creating it. To do this the local

resource directory sends out a bid to its left hand

neighbour. This bid is an indication of how prepared a node

is to run the total resource directory. On receiving a bid

■from its right hand neighbour a local resource directory

inspects the bid, if it desires it ups the bid, and passes

the bid to its left hand neighbour. Thus the bid cycles

around the system until it returns to the originator. The

returned bid contains the address of the node which made the

highest bid, and the bid originator sends a message to the

highest bidder asking it to create a total resource

directory. The total resource directory, on creation,

cycles a request to all local resource directories for

information contained in each local resource directory.

It is likely that more than one bid is originated since

two or more local resource directories might simultaneously

detect the absence of the total resource directory. Thus

when a local resource directory receives a bid it enters

"bidding mode". Once in bidding mode a local resource

directory cannot change its bid. If bids are ensured

unique, say by including the node address as the least

significant part of the bid, then the total resource

directory will not be created at two sites. When the total

pesource directory cycles its request for information each

local resource directory in turn exits bidding mode and

stores the address of the new total resource directory as

k u d o s Page 6-29

w ell as sending its own information to the total resource

di recto ry.

6.3.5.5 Some Effects Of Node Crashes And Start-Ups -

If a node crashes the total resource directory is

likely to contain addresses of resources which no longer

exist. When a process tries to access such a resource it

must inform the total resource directory of the problem.

The total resource directory will then duly remove all

information concerning the crashed node, perhaps after

checking out the node itself.

Possibly a node might crash whilst it holds a message

which is being cycled. Thus an originator of a cycled

Message must implement a time-out to prevent indefinite

hold-ups. Another problem arises when an originator crashes

before the new total resource directory is created. This is

Solved by putting a time-out on bidding mode, and any local

pesource directory in bidding mode which times out

0riginates a bid itself.

Finally, one problem occurs when two bids are cycling

the system and a node starts up. If this node misses one

bid but makes the highest bid on the second bid then total

pesource directories would be created on different nodes.

One solution is for the left hand neighbour of a node to be

'fixed whilst the local resource directory is in bidding

roode, thus excluding newly-started nodes from subsequent

k u d o s Page 6-30

bids. Alternatively two total resource directories could be

allowed to start, but the one with the lower bid could back

down; this is facilitated by including the bid value on the

request for information circulated by the total resource

di rectory.

Failure of the node containing the total resource

directory would ultimately be detected by a local resource

directory. This local resource directory would then have to

initiate a bidding cycle. Closing down a node containing

the total resource directory could involve direct copying of

the total resource directory information to another node or

by the total resource directory initiating a bidding

sequence via its local resource directory and ensuring that

a null bid is made.

6.3.5.6 Alternative Schemes -

The above algorithm effectively implements a central

directory, although this central directory is easily

reestablished in the event of failure. Whilst this runs

counter to some philosophies of distributed computing, it is

reliable and reasonably efficient. Moreover it makes use of

redundancy in a clever way to guard against failure. As

Such it represents a software implemented solution to the

Problem of name-servers in the Cambridge Model Distributed

S y s t e m C W I L K E] .

k u d o s Page 6-31

CCASEY] discusses various alternative schemes, mainly

based on a broadcast facility. Without a broadcast facility

the feasibility of keeping copies of the total resource

directory at each site is much lower. Also, without a

broadcast it is much more difficult to search for an object.

Moreover, a broadcast in a loosely linked system involves a

High overhead, especially since communications are likely to

be significantly slowed by protocols.

The above scheme needs storage proportional to the

number of resources available in the system, not to the

Physical size of the system. Nodes handling few resources

have few overheads. Replicating a complete directory at

each site fails on both these counts. Further, adding a new

resource is much less expensive in the above scheme than in

Updating each site.

In a tightly coupled system where communications are

fast and inexpensive, and where access to shared data is

relatively easy the above scheme is far too cumbersome and

sophisticated. In a loosely coupled system, with

communication speeds in the order of milliseconds for

transmitting a message, the above scheme minimises the

number of messages required without sacrificing reliability.

k u d o s Page 6-32

6.4 KUDOS IMPLEMENTATION TO DATE

6.4.1 File-store

A file-store has been implemented on two LSI-11/02

roi cro-computers each with a hard disc, and connected by a

Cambridge Digital Communication Ring. The code is written

in Mo du la [WIRTH1H using a compiler developed at the

University of York CCOTTD, with a small number of assembler

routines. Including communications software, terminal

handling, resource directories, file-server and

directory-server the code occupies about 4,000 lines and

uses approximately 50 kilobytes of main-memory per node.

The file-store includes all the features described in

the following chapter, but a number of limitations exist

because of the size constraints of the small machines. For

example, only a few directories can be active concurrently

or buffer overflow occurs.

The code was written entirely by the author, but thanks

ape due to Dr 0. P- Brereton for her assistance on aspects

°f the Cambridge Ring Basic Block protocol used to provide

node to node communication.

6.4.2 UCSD Filer Interface

A filer for accessing the KUDOS file-store has been

Wpitten in Pascal for a UCSD Pascal micro-engine CMICR0ED.

The filer runs as an application program and allows a user

k u d o s Page 6-33

to transfer files between KUDOS and the local storage on the

micro-engine. Facilities exist for manipulating directories

as well as files.

The code occupies about 1500 lines, but could be

shortened considerably. Transfer is slow (less than 1Kbyte

a second), but again considerable optimisation is possible.

Problems were experienced with the "typing" of UCSD files

when storing them as "untyped" KUDOS files, but these are

resolved.

6.5 EXPERIENCE AND CONCLUSIONS

6.5.1 Hardware

It is a sobering thought that hardware which was a good

buy two years ago now seems out of date. It is now possible

to buy 16-bit micro-processor-based systems with

12 8—k i lobyte main-memory, a mu Iti-megabyte disc and an

operating system included for around ten thousand pounds or

^ es s.

On communications, we are only just beginning to see

commercial local area network's. In the UK we see a number

°f companies developing Cambridge Ring based systems. A

token passing ring is used in Apollo. Ethernet is now

commercially available.

k u d o s Page 6-34

Ideally any node on KUDOS (or any other local area

network system) should be at least the power of a 16-bit

Processor. The size and speed constraints of 8-bit

Processor configurations is not cost-effective in terms of

the effort required to overcome them.

Moreover, any node for development purposes, should not

be seen as a raw machine. An operating system should be

seen as part of a node, not something imposed on the

hardware. The task would have been much easier if our nodes

had, say, a Unix operating system available. In terms of

effort required, it is better to adapt rather than create,

depending of course on the quality of the system to be

adapted. Much time and effort was spent on writing drivers,

file-server and support/development software instead of

concentrating on the main aspects of research.

This can, however, be said with hindsight. Our

0riginal research aims, regarding processing in particular,

have been tempered. The decision to take a personal

computer approach to providing user processing clarified a

humbe r of issues.

Much the same can be said regarding communications, but

there is much less off-the-shelf hardware and software

available. At Keele work is continuing on an "access logic

unit" for the Cambridge Ring, which should provide a node

w i t h a transport level service. Presently all communication

in KUDOS is handled by a node down to packet level,

k u d o s Page 6-35

consuming much needed cpu cycles and main-memory and

Providing a slow, crude, inefficient service.

6.5.2 Software

Our main development tool has been Modula, using the

compiler developed at the university of York. Experience

with the language coincides largely with that of CHOLDD.

Essentially it is a great step forward from the use of

assembly languages for real-time programming, but has a

number of irritating features.

Some of the features (or lack of them) smack of

Pedantry. For example, without a GOTO statement some forms

of error recovery become convoluted with many nested IF's.

°n occasions it is preferable to use the LOOP construct with

a single iteration merely to exploit the EXIT feature. The

omission of off-stack storage and pointers, of a FOR

statement, of set types and variant records mars a very

Useful language.

One of the main features of Modula, namely its strong

typing, causes a number of problems too. Sometimes it is

useful to consider, for example, a status register as an

INTEGER and at other times as a word of type BITS. On

Cambridge Ring transmission/reception it is sometimes

Necessary to interpret a packet as an integer, sometimes as

a record of two bytes. The York compiler provides a UNIV

Parameter declaration, which allows a procedure to accept

k u d o s Page 6-36

any type of parameter provided it is of the same size. This

■feature was used frequently. It would be much better to

have a "non-type" variable definition, or be able to declare

a variable as having a number of types; limitations would

°f course exist because of storage representation, say a

variable could not be both INTEGER and REAL.

One feature which would have been desirable in Modula

i s some means of scheduling processes. Modula-2 allows

this. The only scheduling in Modula is round-robin with a

Process relinquishing control only on issue of a wait. This

roeans that a rogue process can hog the processor.

There were no run-time debugging aids available.

Locating bugs usually involved tracing procedure calls

e*plicitly using the console, or inspecting the stack, or in

foments of complete desperation single-stepping. This adds

to the case for adapting an established operating system,

rather than writing ones own; debugging software should be

more readily available.

In all the writing of a message exchange, resource

directories, file-server, di r e ct o ry - s e rv e r and personal

computer filer spanned twelve months. The underlying design

evolved gradually in the twelve months prior to this. It

would have been preferable to experiment further with the

a lgorithms, particularly with respect to performance

analysis. Time constraints forbade this.

k u d o s Page 6-37

A large amount of programming effort was spent on

communication difficulties. The Cambridge Ring Basic Block

Protocol was adapted for use by the message exchange.

Ideally a transport level service such as the Cambridge Byte

Stream Protocol would have been used, but the problems of

space and performance were considered too great.

Experience strongly indicates that the Cambridge Ring

a rchitecture, as it stands, is not suited to this

aPplication. A block transfer architecture such as Ethernet

would probably be more appropriate. The current Cambridge

Ring seems more suited to connecting slow, dumb peripherals

to processors, rather than processors to processors.

However, one cannot totally ignore the success with which it

is utilised in the Cambridge Model Distributed System. It

Night be useful here to list some notable drawbacks of the

Cambridge Ring. One caveat is to remember that similar

criticisms can be levelled to some extent to most existing

communication systems.

Firstly, a packet on the Cambridge Ring consists of 38

bits, only 16 of which are data. The other bits contain

addressing information local to the ring and of little

direct use to the user. Thus a 10 megabit/sec ring provides

aPproximate ly 4 megabit/sec of data transfer. Increasing

the size of a packet would improve this ration, but increase

the likelihood of waste within a packet.

k u d o s Page 6-38

This does not imply, however, that any two nodes can

communicate at 4 megabit/sec. A transmitter can only use

°ne slot at a time, and cannot reuse a slot until it has

Passed round the ring after returning from a transmission.

Thus on an n-packet ring only every (n+1)th packet can be

used; at best on a one-packet ring a single node can

transmit at 2 megabit/sec.

Further limitations are imposed by the packet

assembly/dissembly. Most data flow is in the form of

variable length blocks. Consequently a protocol is required

to dissemble a block, transmit it word by word, and assemble

the block at the receiver. Most block protocols require at

least 3 words per block on top of the data to ensure correct

transmission. A transport service would require even more

0ve rh eads .

Packet assemb ly/dissembly is also a great overhead on a

Processor if the packets are handled on interrupt, or by

Polling in the main processor. To free a processor from

this, some form of DMA interface to the ring is required,

^or example, if it takes 100 microseconds to process each

Packet, then this immediately reduces the data flow to 20

kilobytes/sec, with the processor just dedicated to packet

handling.

The Cambridge ring has a fair share policy for slots.

A node is guaranteed a slot within a fixed period, dependent

°n the network configuration. This seems to imply that the

k u d o s Page 6-39

ring will provide a fair share policy on all data flow.

This is unlikely to happen in practice.

A receiver can accept packets from any other node on

the ring. On block transfers this would mean that two

concurrent senders would interleave at a receiver. The

receiver would have the added task of inspecting each packet

Tor who sent it before deciding what to do with it. To

avoid this a receiver can opt to listen to only one node.

This is used by block protocols to remove the interleaving

Problem. Typically a receiver accepts the first header

Packet on a first-come first-served basis, then receives

only from the sender of the header until all the block is

received, then opens its ears for the next header.

Contention for the wire (as in a carrier-sense network

such as Ethernet) has been removed, but a more worrying

contention for the receiver has been introduced. Simulation

pesults CLUNN1] indicate that an average delay across the

ring because of this is in the order of a few milliseconds,

depending on the loading of the ring.

Basic block protocols themselves have problems. If a

receiver times out a block prematurely, it might

accidentally interpret a data packet as a header packet and

accidentally swallow a subsequent block which is then lost

decause of a checksum error. If polling is used for block

send/receive then the transmission/reception effectively

becomes half-duplex; thus if two nodes send to each other

k u d o s Page 6-40

simultaneously they will both fail, back off and retry. If

these retries occur immediately they will fail again, and

this can continue indefinitely. These, and other

Possibilities, are rare but can happen with unfortunate

cons equenc es.

The slow communication, and the difficulty of

implementing protocols on the Cambridge Ring restricted, to

a large extent, the development of the message exchange. A

tower latency for message transmission would have allowed

waiting for acknowledgements, and the implementation of

remote invocation sends, where a send waits for a reply.

However, we encountered the Cambridge Ring in an early

stage of its development; add on hardware/software to

Provide a more powerful interface to the Cambridge Ring may

Well improve the performance and simplify its use

significantly. Such a device is under development at Keele

University CBENND.

6 -6 OVERALL CONCLUSIONS

Despite certain tactical mistakes, the design and

implementation of KUDOS has been a worthwhile exercise.

Firstly, it provided a vehicle for the file-store. It also

involved some novel ideas, and as such is justified as a

Piece of research in itself. An interesting question is

whether the effort of developing a prototype system

Prevented the author from concentrating more on the

k u d o s Page 6-41

theoretical aspects. Perhaps proving the algorithms in the

mathematical sense rather than the practical sense would

have been better. However, the practical problems had

lessons of their own and did affect significantly a number

°f decisions (though not always for the better), and a

tangible form of proof is to construct a working model.

It is designed with a local area network architecture

in mind, rather than being an ad hoc interconnection of

stand-alone systems. However, it does not exclude

stand-alone systems from participating. A major principle

has been that the hub of the system should be the

communication system.

The implementation, on rather restricted hardware, has

Proved the feasibility of the design, although the

Performance left much to be desired, especially with regard

l o communications. Future developments would be more

Promising if they took advantage of improved hardware, now

available at tower cost, together with established software

adapted to the KUDOS design.

A significant conceptual division highlighted by KUDOS

is that between those components of a system which must be

shared among users, and those components which can be

Provided on a per-user basis. It is the contention of the

author that processors can be provided per-user, except for

certain specialist applications. The existence of systems

such as Apollo, Perq CICL] and Xerox Star [SMITH] add weight

k u d o s Page 6-42

to this argument.

A component which inherently must be shared is

"file-store. Users have a need for common data which

the

i s

continually updated. It this component to which the rest of

this thesis is devoted.

CHAPTER 7

This chapter describes the KUDOS file-store. There is

a distinction made between the file-server in the system and

the file-store as a whole. KUDOS has largely ignored the

Problems of reliability and recovery within a file-server,

and utilises algorithms which recover file-server failures

through mu Itip le-copy policies.

That is not to say that reliability within a

tile-server is unimportant. An essential feature of KUDOS

is that it takes a set of file-servers and combines them to

make a file-store which is more reliable than an individual

tile-server, in terms of the likelihood that a file is lost

and the likelihood that a file is available.

The chapter subsequent to this will discuss the KUDOS

tile-store, highlighting a number of its features and

suggesting further avenues for exploration. This chapter

will concentrate on a detailed description of the

tile-store, begining with the file-server, and then the

di rectory system.

KUDOS FILE-STORE - DESCRIPTION

The structure of the file-store is described by

■following diagram:

k u d o s FILE-STORE - DESCRIPTION Page

the

7-2

KUDOS FILE-STORE - DESCRIPTION Page 7-3

A - Locate directory-server

B - locate/add/deLete files

C - file I/O, file creation/de letion

D - catalogue location of directory-server

E - file I/O, file creation/deletion
(for storage of directories and copies of files)

F - catalogue location of volumes

G - physical I/O

k u d o s f i l e -s t o r e DESCRIPTION Page 7-4

A client is any software acting on behalf of a user

accessing the file-store. The name-server is a vital

component of the KUDOS system. It implements a mapping from

a logical name space to a network address. The name-server

is shown as a single process, but is implemented as

described in chapter 6. The name-server is accessible to

any c lient.

The implementation of KUDOS had a single

directory-server. This could be distributed in practice,

but was in fact located at a single node (though it could

">ove from node to node for recovery purposes). The

directory server implements a mapping from file names to

volume/file identifier pairs. A file name may refer to a

number of copies of a file and the directory-server resolves

inconsistencies between copies of the same file. A

Protection scheme exists and will be described later.

The file-server provides access to the contents of

files, and the ability to create and delete files. Again, a

Protection scheme exists.

The interfaces were implemented by message-passing, but

effectively were remote invocation send (remote procedure

call) since each send of a request was followed immediately

by a wait for a reply. The interfaces on the above diagram

are:

A - i) f i n d the d i r e c t o r y - s e r v e r

ii) find the file-server handling a volume

KUDOS f i l e -s t o r e DESCRIPTION Page 7-5

iCD i)

i i)

i i i)

i v)

v)

c - i)

i i)

D - i)

m 1 as C

F - i)

G - i)

locate/deLete/add files

protect/change protection on files

l o c a t e/ad d/d e l e t e directories

list directories

1 ock / un to ck files

c reat e/de let e files

read/write contents of files

catalogue location of directory-server

for storage of directories and copies of files

catalogue location of file-server handling a

particular volume

physical I/O

The file-server and di r e c t o ry - s e r ve r will be described

in detail. A problem exists in how to describe them. The

code in MODULA would not help; the message passing scheme

Proved unwieldy and unclear. Ada has been chosen to

describe the interfaces. It provides, through package

specifications a way of describing the appearance of a

component without disclosing its implementation. It is also

widely known, and a language with which the author is

fami liar.

A package in Ada is a collection of procedures,

Processes, data types and data objects arbitrarily grouped

together by the programmer. A package is divided into a

specification and a body. The specification defines

Precisely those features of a package available to any

k u d o s f i l e -s t o r e DESCRIPTION Page 7-6

Procedure or process using that package, in terms of

Procedures with their parameters, the data types available,

and any data objects available. The package body is the

actual implementation of the package, and may include

Procedures, processes, data types and data objects not

visible to a user of the package.

The reader should not worry unduly about the details of

Ada. A knowledge of Pascal [JENS] or similar such

Procedure-oriented language should be sufficient to make the

Ada specification clear, together with the following points.

1. The IN prefix to the type of a parameter indicates

that the value of the parameter is used by the

procedure, but not changed, equivalent to a non-VAR

parameter in Pascal; the OUT prefix indicates that

the value passed to the procedure is not used, but

the returned value may be set by the procedure; a

prefix IN OUT means that the value passed will be

used by the procedu re and the procedure may

dete rmi ne a different returned value , equivalent i n

effect to a VAR parameter in Pascal.

The on ly novel feature i s the notion of an

excepti on. An exception i s a means in Ada of

notifying an error; an exception causes the block

in which an exception is raised to abort and

execute an exception handling routine. A number of

standard exceptions exist in Ada, for situations

k u d o s f i l e - s t o r e DESCRIPTION Page 7-7

such as array bound violations or divide by zero.

A programmer can also define and raise exceptions.

Another problem exists in how to describe the

algorithms used in the directory-server. A compromise used

is to invent a Pascal-like language with extensions for set

operations. This combines brevity with precision. Anyone

familiar with elementary set theory should have little

difficulty in following the descriptions. More appreciation

of the problems of software specification might have been

useful here (eg CJONESD). The following chapter wilt

discuss the development of KUDOS more fully.

KUDOS f i l e -s t o r e DESCRIPTION Page 7-8

7.1 THE KUDOS FILE-SERVER

7.1.1 In t rodu ct i on

We consider a file to be a user-arbitrary sequence of

bytes. A file-server is a repository for files which

Provides some name or address for a file, and which allows

insertion, deletion and update of files. The file-server

may have its own authorisation and protection scheme to

restrict access to files stored in it.

How data is arranged on disc depends on the

file-server, but can affect performance and reliability. A

number of schemes exist. Typical of these is Unix CRITCH]

which uses a scheme called i-lists, allowing flexible use of

files. Partial recovery is sometimes possible if the disc

is corrupted through software or hardware faults; certain

e rroneous states in the Unix file-store can be rectified by

running utilities which check the correctness of the state

°f the disc, say to ensure that a block is not accidentally

a t-located to two distinct files. CLAMPD describes a much

more robust scheme with redundancy on disc sectors which

Permits substantial recovery after corruption of part of the

disc.
-v •

For the initial implementation of KUDOS a very simple

scheme was chosen where a file is. reserved as a contiguous

sequence of disc sectors. All of a file's space must be

reserved before it is filled, which is a limitation. Apart

from this, however, it provides a neat, economical

KUDOS f i l e -s t o r e DESCRIPTION Page 7-9

file- server which requires at most two disc accesses to

retrieve any byte. A cache scheme is used to reduce

swapping when a file is sequentially accessed.

The internal structure of the file-server is

independent of the KUDOS structure. A file-server could be

implemented in different ways, providing a common interface

is u s e d .

Protection is by a system of capabilities (or access

tokens). To access a file it is necessary to provide the

appropriate capability. A file has a number of capabilities

associated with it, corresponding to different modes of

access (read, write, etc.). Capabilities are randomly

9enerated integers, and a client must remember or find out

capabilities in order to gain access.

There is no "structure" to the addressing of a file,

files are denoted by an integer address within a volume,

9enerated by the file-server. Any structure, such as a

Mnemonic naming scheme, must be imposed by a client, such as

a directory-server.

Access to a file-server is available to any client i n

k u d o s , p rovi di ng appropriate capabilities are known. A

number of file-servers are provided and are addressed by a

volume number. A volume number is unique to a volume, and

Published in the resource directories when the vo lum e i s

online through a f ile-se rv e r .

KUDOS f i l e -s t o r e DESCRIPTION Page 7-10

7.1.2 File-server Primitives

The primitives used for manipulating files on a

■file-server are presented here, described using Ada package

specifications [ADA], No description of the implementation

will be given, except to justify the interface, either in

terms of the positive benefits, or the compromises made in

implementation. The file-server is by no means unusual

enough to elaborate in great detail.

KUDOS FILE-STORE - DESCRIPTION Page 7-11

PACKAGE file-server IS

TYPE capability IS INTEGER;
TYPE f i le_id IS INTEGER;

PROCEDURE createC size: IN INTEGER;
file: OUT f i l e_id;
read_permit,write_permit: OUT capability)

PROCEDURE deleteC file: IN file_id;
write_permit: IN capability);

PROCEDURE exp an d(file: IN file_id;
write_permit: IN capability;
new size: IN INTEGER)

PROCEDURE shrinkC file: IN file_id;
write_permit: IN capability;
new size: IN INTEGER)

PROCEDURE read (file: IN file_id;
read_permit: IN capability;
displacement: IN INTEGER;
length: IN INTEGER;
buffer: OUT ARRAY INTEGER OF BYTE);

PROCEDURE write (file: IN file_id;
write_permit: IN capability;
displacement: IN INTEGER;
length: IN INTEGER;
buffer: IN ARRAY INTEGER OF BYTE);

FUNCTION size (file: IN file_id;
read_permit: IN capability)

RETURN INTEGER;

volume_saturated,
no_su ch_f ile,
i ncorrect_capabi L i t y ,
access_outside _ f iIe : EXCEPTION;

END file-server;

k u d o s f i l e - s t o r e DESCRIPTION Page 7-12

1.2.1 Create And Delete -

To create a file the size of the file must be

specified. The file-server returns a file address and two

capabilities, permitting subsequent read access and write

access to that file.

One benefit, perhaps not too significant, of reserving

space before writing is that writes cannot fail because of a

volume becoming full. An obvious drawback is that the size

of a file is often unknown on creation, and therefore

excessive areas of a disc may be needlessly reserved to

avoid the failure of a process writing to the file.

To delete a file a process needs to know the write

capability. There are arguments in favour of having a

delete capability, which would allow a process to be able to

write to a file without being able to delete it. This was,

however, unnecessary for the purposes of KUDOS.

^ -1 .2.2 Expand And Shrink -

To overcome the fixed file size, an expand (not

implemented), and a shrink (implemented) primitive have been

included. It would have been preferable to be able to

create empty (zero-sized) files and to have automatic

expansion on write. The shrink removes spare from the end

°f the file; the expand creates space at the end of a file.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-13

7.1.2.3 Read And Write -

Read and write are random access. There is no concept

of "file open". Any pointers to within the file must be

Kept by the client. To read/write data it is necessary to

specify the file, the displacement in the file, the amount

of data required, and the appropriate capabilities. Files

cannot span more than one volume.

Not having a "file open" notion frees the file-server

from maintaining contexts, and from worrying about clients

which do not complete or which omit to issue a "file close".

It does put an imposition on the client wanting sequential

access, but this is a small price to pay. The lack of a

"file open" also means that any number of files can be

accessed concurrently - there is no table of open files to

maintain. The file-server is autonomous in the sense that

it does not depend on its environment to maintain it in a

correct state; it has only one mode of operation, namely

file access.

7.1.2.4 Failures -

The exceptions which can be raised are as follows:

1. Volume_saturated (by create and expand). There is

insufficient space remaining on the volume to

satisfy the create or expand.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-14

2. No_such_file (by delete, expand, shrink, read,

write). The file referred to does not exist.

Either it has not been created or has been deleted.

3. Incorrect_capability (by delete, expand, shrink,

read, write). The capability provided with the

operation does not correspond to the one generated

on creation of the file. This prevents illegal

access by processes not knowing the capability of a

file, or mistaken accesses to a file which has been

created with the same f ile_i d (address) as a

previously deleted file.

4. Access outs ide_file (by read , write) . Th e

operation tried to read from or write to a data

area beyond the end of the file specified on

creation or on the most recent shrink or expand.

7.1.2.5 Desirable Extensions To The Primitives -

The primitives implemented are clearly not ideal. In

Particular, the need to reserve a file's data area on

creation is very limiting. However, the primitives were

adequate for the implementation of the directory-server and

Provision of remote archive filing for a UCSD Pascal

roi c ro- engine.

KUDOS f i l e -s t o r e DESCRIPTION Page 7-15

A particular deficiency of the above file-server is the

lack of atomic write to files. Such a facility would have

been most useful in the directory- server implementation.

More useful would have been a recoverable transaction at

file-server level which spanned a number of files, with full

commit/ro 11back capability. A transaction which spanned

more than one file-server would have been even better.

It is arguable that mutual exclusion should be

implemented at the file-server level, though we shall not

argue the case here; the granularity of lock implemented in

the directory-server might have been finer had it been

implemented at the file-server level, though problems of

synchronisation might have arisen.

It is the author's belief that much useful and highly

Practical work could be done on the provision of a better

interface to files than is commonly implemented. Many

systems enforce an artificial structure on files, such as

fixed length blocks corresponding to disc sectors, sometimes

as variable length records. Unix has overcome a number of

these problems by defining a file as a sequence of bytes

with no other apparent structure. Certain other features

would possibly improve the versatility of file systems, such

as the ability to insert arbitrary length strings in the

middle of a file, or to delete arbitrary length strings in

the middle or at the begining of a file.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-16

Perhaps the sort of interface to a file most desirable

is not a simple sequential or random access read, but more

°n the lines of a text editor, with roll-back capability.

This sounds like wishful thinking, but this approach might

be highly profitable for remote access to files where a

minimum of data exchange between a client and a file-server

is desirable.

There also exists a large class of files with a record

basis, used commonly in data processing applications.

Indexed sequential files are a widespread example, where a

record in a file can be randomly accessed on the value of

specific key fields. A philosophy typified by Unix is that

such files can be built on top of a random-access

byte-oriented file, though efficiency and performance

considerations cast doubt on the advisability of such an

approach. Such files are largely being replaced by database

systems, though a number of database systems currently

advertised turn out, on closer examination, to be little

™ore than indexed or hashed file maintenance systems.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-17

7.1.3 File-server Protection

Files are protected by two capabilities. A capability

here is used in the restricted sense of a "key" or "token"

Permitting access, not in the wider sense understood in

capabi l ity-domain architectures [CASEY]. The read

capability allows inspection but not alteration of a file.

The write capability allows alteration.

Capabilities are randomly generated integers (current

imp lementation size 16 bits). With a 16-bit capability

there is a 1 in 65,536 chance of guessing it correctly.

Greater security can be gained by increasing the size of the

capability. A client permits access to a file created by it

only by passing the appropriate capability to another

c l i e n t .

A client must remember capabilities in order to retain

access to files. There is no direct means of finding a

tile's capabilities. If a capability is lost, then

affectively so is the file. Garbage collection, in

conjunction with the directory system, is possible, by

marking all files with a directory entry and deleting all

others.

Note that there is no official ownership of files at

this level. However, knowledge . of a capability could be

considered a form of ownership. A client can restrict

access to a file by not disclosing its capabilities. A

client can also permit limited access by releasing only the

KUDOS f i l e -s t o r e DESCRIPTION Page 7-18

read capabi Li ty.

The notion of ownership was Largely ignored in KUDOS.

One might argue that in many areas a system of ownership is

irrelevant. Ownership was considered a separate issue from

the problems being tackled. However, for many practical

aPplications an ownership scheme would be necessary,

S p e c i a l l y where accounting is needed.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-19

7.1.4 File-server Reliability

Three aspects of reliability should be considered here.

Firstly there is continuity of service, secondly recovery

■from breakdown, and thirdly atomicity of update.

Continuity of service is largely dependent on hardware

reliability, and there is little the software engineer can

do to prevent it. Of course, there is the possibility of

software failure, but it is the naive assumption of this

thesis that software performs to specification.

Recovery from breakdown is well within the software

engineer's scope. Advantage can be taken of the physical

structure of a disc to reduce the damage caused by a head

crash for example. Moreover, good software will prevent

failure leaving the disc in indeterminate state.

[LAMP] and [REDE] describe a scheme where each block of

a file is stored together with its file identity and

displacement within a file. Directories exist for normal

access to a file, but in the event of damage to a directory

it can be reconstructed, or partially reconstructed, from

the actual data blocks of files. Furthermore, each block is

checked on access to see that it is the correct block for

that file. This is a form of backward error recovery using

Protective redundancy.

KUDOS f i l e -s t o r e DESCRIPTION Page 7-20

Another scheme using redundancy is described in

CSTURGT. Here, certain critical data is stored on two

different surfaces, so that in the event of a head crash at

Least one copy will remain undamaged.

An important software feature is the avoidance of or

recovery from broken contexts. If a file-server fails and

recovers without a client detecting the failure, then there

must be nothing of importance altered by the recovery which

would harm the client. This is one reason for removing the

open/closed concept from the KUDOS file-server. A recovery

of the file-server does not harm any operations which do not

occur during recovery, and any operations during recovery

will detect failure.

Atomic read/write would be useful to many clients, in

the sense that a read or write either completes successfully

or has no effect at all. The KUDOS file-server does not

implement atomic read/write, because of the implementation

used. This is a serious omission. One solution is to

reduce a file write to a single disc access which is assumed

to be atomic. Another solution is to use careful

replacement strategies for update within a file, allowing

roll-back if a write fails, and a distinct point (the commit

Point) after which roll-forward is guaranteed. Intention

Lists provide this CSTURG]. Under the current

implementation, the failure of a disc during a write which

spans more than one block can cause only part of the write

to su cceed.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-21

KUDOS file-server commands return a success/fail

condition, expressed as exceptions in the above Ada

specification, though in an actual Ada program the exception

would have a wider implication. If the condition is

received by a client, then it knows the state of the file.

If the condition does not arrive, then it knows the file is

indeterminate, and can take corrective action.

Because read and write are random access rather than

sequential, a read or write can be repeated without

side-effects; that is, they are idempotent. A repeated

read could cause problems if a reply was delayed rather than

failed, but this could be handled by the communications

P rot oc ol.

The topic of this thesis, however, is not to consider

reliability of an individual file-server, but to construct

°ut of a number of file-servers a file-store which is more

reliable than an individual file-server.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-22

7.2 THE DIRECTORY SYSTEM

7.2.1 General Description

7.2.1.1 Hierarchy -

KUDOS provides a single hierarchical file-store using

redundancy to improve reliability and continuity of access

for file storage. The hierarchy is similar to that of Unix

CRITCH], but without links (more than one path-name for the

same file).

A root directory exists, which is replicated on all

volumes. The root directory contains subdirectories (not

necessarily replicated on all volumes). Each subdirectory

in turn can have subdirectories of its own. All directories

can also contain files.

Files and directories are named according to the Unix

convention. A name within a directory is an arbitrary

sequence of characters. The root is referred to as "/".

The directory "usr" in "/" is referred to as "/usr". The

directory "ken" in "/usr" is referred to as "/usr/ken". The

iile "modules" in "/usr/ken" is referred to as

"/usr/ken/modules".

To access a file it is necessary to activate all

directories in the path to that file. Activation of a

directory involves creating a process to handle operations

on files in that directory. Such a process is called a

directory manager, and is created on behalf of a client by

k u d o s f i l e -s t o r e DESCRIPTION Page 7-23

the parent directory's manager. The manager of root is

permanently active.

The address of the root manager is published in the

resource directory, and any client can access root. To

activate any directory the whole path-name can be given to

root. Alternatively, if a directory is known to be active,

a sub directory (or sub sub directory, etc.) can be

activated by providing the path-name from that directory to

the directory manager.

The manager of a directory is responsible for all

operations on files in that directory, for ensuring

consistency of various copies of that directory, and for

deactivating itself once a series of transactions are

complete.

The manager of a directory is also responsible for

multiple client access to the directory. Only one manager

is allowed to exist for any one directory at one time. It

must therefore provide features for mutual exclusion, such

as locks.

7.2.1.2 The Active File-store -

We can now make a useful distinction. We shall call

the active file-store the hierarchy, of directories and their

contained files which have currently active managers. The

dormant file-store is all the rest. Files can only be

accessed through the active file-store.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-24

We can conclude that it is only necessary to ensure

that the active file-store is consistent and up-to-date.

Inconsistencies can be permitted in a dormant part of the

"file-store until that part is activated.

In a large file-store with many users the active

■file-store is likely to represent a small proportion of the

total file -store . Certain areas of the fi le-store are

likely to be accessed more often than others. More

■f sequent ly used areas should be held active t o redu ce the

overh eads of activation. This is achieved by holding a

di rectory active for a fixed period after any operation on a

■file; thus a heavily used directory will not deactivate.

7.2.1.3 Associated Volumes -

Each directory has a set of "associated volumes". The

associated volumes of a directory are exactly those volumes

on which any file in that directory is replicated. The

directory too is replicated on all its associated volumes.

The set of associated volumes of a directory must be a

subset of the associated volumes of its parent directory.

This means that the associated volumes of root must be all

the volumes in the system. Thus if a directory has three

associated volumes, then any file stored in that directory

is replicated three times. Any sub directory can have at

roost three associated volumes. There is no point storing a

directory on volumes where it does not keep files. Thus a

k u d o s f i l e -s t o r e DESCRIPTION Page 7-25

directory is only stored on its own associated volumes, not

those of its parent.

The overlay structure is illustrated by the following

diagram:

k u d o s f i l e -s t o r e DESCRIPTION Page 7-26

The root (r) has associated volumes v1 v2 v3 v 4 . Directory

a has associated volumes v1 v2 v3 , b has v3 v4, c has v2 v3,

d has v1 and e has v1 .

Consequently a volume contains the full path to any

Tiles held by it; if a volume is online its contents are

accessible. This makes volumes independent of each other

for purposes of access.

Originally considered was the weaker condition that the

associated volumes of a directory could be any volume in the

system. This allowed greater flexibility, but meant that

some files on a volume could only be accessed when another

volume was online. The only other envisaged solution to

that problem was to replicate all directories on all

volumes; this was considered too prohibitive.

Associated volumes allow tailoring of the file-store

with respect to reliability to meet varying needs. For

example, a user might be allocated three associated volumes

in his initial directory. He can then create sub

k u d o s f i l e - s t o r e DESCRIPTION Page 7-27

directories with one, two, or three associated volumes.

None-criticaL files might only be kept as one copy, those

which are difficult to recreate as two copies, highly

critical files as three copies.

A shell (re Unix CRITCHD), command-language interpreter

or other user interface, might hide the details from a user,

simply offering three levels of reliability (or n-levels),

the level to be specified by a user at directory creation,

perhaps decided by default when not specified. Accounting

and charging techniques could be used to prevent

indiscriminate use of replication.

The overhead of keeping the full path to all files on a

volume is minimal. Typically a volume will contain only a

handful of extra directories, reflecting a tiny portion of

its storage capacity. This is easily outweighed by the

benefits of independence of volumes, allowing access to all

files on a volume if that volume is available.

7.2.1.4 Mount/dismount -

When a volume comes online its fite-server publishes

its volume number in the resource directories. There is no

explicit mount procedure apart from this. It is the

responsibility of the directory server to detect its

Presence and to act accordingly.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-28

Removal of a volume may cause problems for a directory

manager. The directory manager should detect the absence of

the file-server when it fails to respond, and act

accordingly. This may mean aborting some processes, but the

manager could recover without rolling back. Currently if an

associated volume fails the directory manager backs out.

The current implementation does not acknowledge a

volume until the active file-store diminishes to just root.

This is not necessary, but was a compromise. Volume removal

also causes a dependent directory manager to back out,

aborting any incomplete transactions. Again, this is not

necessary, but was a compromise.

In principle it ought to be possible to dismount a

volume, update it, and reintroduce it to the system. The

system and the volume would then reconcile each other. This

could be the technique used for recovering from a volume

crash. The repaired volume could be restored to a previous

state, and it would eventually catch up with the rest of the

system. Alternatively, it could be restored with an empty

coot, and it will restore itself from copies on other

volumes, except for files which had only one copy and which

were kept on that volume.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-29

7.2.1.5 Directory Resolving -

We assume a strictly increasing timestamp universally

available throughout the system. When a file is stored

through the directory system, the filename together with the

timestamp is stored in each copy of the directory.

On activation, all online copies of the directory are

inspected. If a copy is out of date, this is detectable by

comparing file for file the individual timestamps. If one

copy refers to a more recent file the other volumes can be

forced to catch up, by copying the newer file onto the

out-of-date volumes and inserting the new timestamp in the

out-of-date directories.

A problem can occur when a file is deleted from one

copy of a directory whilst another copy is offline. The

solution to this is to place an assassin in a directory if

all associated volumes are not online. If the assassin is

stored with the timestamp of the file deleted it can safely

remove that file from other directories at a future resolve.

Creation of a more recent file will destroy the assassin.

Directories are not stored with a timestamp - it is not

sensible to copy directories on resolving the parent.

Neither can an assassin be Left for a directory. One

condition of the system is that a directory can only be

deleted if it is empty. This can make directories very

difficult to delete if their associated volumes are

repeatedly offline. There is no apparent simple solution to

k u d o s f i l e -s t o r e DESCRIPTION Page 7-30

t h i s .

Suppose X1,X2,...,Xn are n copies of directory X stored

on n distinct volumes. Suppose that for each file x in Xj

(1<=j<=n) that x.Tj is the timestamp on insertion of x in

Xj. Then the algorithm for resolving Xl,X2,...,Xn is.

FOR EACH x IN UN ION(Xj,j = 1..n) DO

T =M AX(x.Tj,j = 1..n);
SELECT i FROM 1..n SUCH THAT x.Ti=T;

FOR EACH j IN 1..n WHERE x.Tj<T DO
COPY x IN Xi TO x IN Xj

END ;

END;

The algorithm for resolving using assassins is

FOR EACH x IN UN IO N(X j ,j=1..n) DO

T=MAX(x.Tj,j= 1..n>;
SELECT i FROM 1..n SUCH THAT x.Ti=T;

IF <assassin for x in Xi> THEN
IF < a 11 associated volumes online> THEN

FOR EACH j IN 1 . .n DO
Xj:=Xj-Cx>

END;
ELSE

FOR EACH j IN 1..n DO
<place assassin for x in Xj

and set x.Tj to T>
END;

END IF;
ELSE

FOR EACH j IN 1..n WHERE x.Tj<T DO
<remove any assassin for x from Xj>
COPY x IN Xi TO x IN Xj

END;
END IF;

END;

Note that the assassin will not delete a file later than the

one it was set to assassinate, and if a later file exists

k u d o s f i l e -s t o r e DESCRIPTION Page 7-31

then the assassin is removed from all online directories.

The resolving of directories is the responsibility of

the manager, and the resolve must complete before any

operations on files in that directory are allowed to

proceed. This should ensure that a directory remains up to

date. It is possible, however, to envisage circumstances

where old copies of files could be presented to a user, say

in a two volume system where the first volume is offline one

day, the second volume offline the next, then the first

volume offline the next.

Ext ra conditions could be imposed on resolving. One

could be that a resolve can only take place when the

majority of assoc i at ed volumes is onli ne. This means that

at least one of the associated volumes contains an

up-to-date copy of the di rectory . This reduces the

availability of directories, but for three copy directories

the availability should be greater than that of a single

volume. A deeper discussion of this will take place later.

7.2.1.6 Ti mes tampi ng -

The notion of a timestamp is important in distributed

computing, but there are a number of problems associated,

Particularly with regard to synchronisation (seeCLAMPO]).

k u d o s f i l e -s t o r e DESCRIPTION Page 7-32

The Cambridge Model Distributed System [HERB] has a

single time-server. This reduces the autonomy of other

nodes. A more sensible solution is to have a clock in each

node which is kept running by a backup battery even when the

node is not operational. Provided these are not used for

intei— process synchronisation they ought to be suitable for

most applications with even a poor synchronisation of within

a few seconds. Thus crude, periodic synchronisation would

be adequate.

Since only one manager for a directory is allowed in

KUDOS, provided that manager always consults the same clock,

and that clock is accurate to within a few seconds, there

should be no problems. The KUDOS prototype did not have a

clock available, and simulated the effect by a simple

counter incremented on each read.

Alternatively, any strict monotonical ly increasing

integer would suffice as a timestamp for a directory, and

could be stored in each copy of a directory, the maximum one

among online copies being used. This may cause problems if

a directory can be activated with a minority of online

associated volumes.

7.2.1.7 Atomicity -

To provide recoverable update to files, KUDOS enforces

careful replacement. To update a file a client must first

make a copy of that file, update the copy and replace it in

k u d o s f i l e -s t o r e DESCRIPTION Page 7-33

the directory system. When the directory-server receives a

file to be inserted in the system it assumes that the file

is correct; i.e. file contents are the responsibility of

the client.

As stated before, our implementation does not provide

an atomic write to a file. However, it does provide one

feature which allows atomic update of a complete file.

Given two file pointers (or addresses) in a file-server

there exists a command to make the first file pointer refer

to the contents of the second file. This is done by a

single sector write to disc which is assumed in KUDOS to be

atomic; this assumption is weak, and improvements in the

file-server are required to remove it.

Using this feature it is possible to provide an atomic

insert of a file in a directory by creating a new copy of a

file, creating a new copy of the directory and if all

operations succeed so far only then to swap the old copy of

the directory for the new copy. Otherwise the old copy

remains, so that the insert is atomic.

Delete file should also be atomic, since this again

involves only one write to disc. Deletion of a directory

however can cause problems if some associated volumes are

offline. It might be sensible to insist that a directory

can only be deleted when all associated volumes are online.

This is an unfortunate niggle, but directories are typically

not deleted very often.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-34

The assumption that a single write to disc is atomic is

somewhat risky. A disc write can partially complete,

leaving useless or unreadable data in the disc sector.

Schemes for increasing the reliability of disc update exist,

such as stable storage in the Xerox DFS. A major deficiency

of the KUDOS file-server is its lack of a truly atomic

write, and this must be seen as an important improvement.

k u d o s f i l e - s t o r e DESCRIPTION Page 7-35

7.2.2 File Protection

7.2.2.1 System Defined Capabilities -

The f i l e- se rve r provides two capabili t i es for file

access - a read capab i l i t y and a write capability. To

inspect a file in the f i le-serve r a client must quote the

read capability; to update the file a client must quote the

write capability. The di r e c t o ry-s e rv e r utilises these

capabilities to protect the files it refers to. To insert a

file, the directory-server makes a new copy with new

capabilities. These capabilities are recorded in the

d i recto ry.

If a client wishes to inspect a file, the directory

system will divulge the read capability, but not the write

capability. A client of the directory- server can therefore

inspect a file in a directory but not update it. To update

a file a client must create a new copy in a file-server and

request the directory-server to replace the old copy on its

behalf. Thus the di rectory-server enforces a policy of

careful replacement. This wilt only be done if the

directory se rv e r discerns that the cli ent has the

appropriate authority.

The capabilities of a directory are never divulged.

Otherwise a client could inspect a directory and gain

illegal access to the contents of a file. The

di rectory-server will release other information on its

contents freely, such as names and timestamps.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-36

7.2.2.2 User Defined Capabilities -

On inserting a file a client can provide two further

capabilities, a user-defined read capability, and a

user-defined write capability. These are stored in the

directory, and any request for information on that file must

be accompanied by the appropriate user-defined capability.

The directory system will not delete nor overwrite a

file without the user-defined write capability, nor will it

provide inspection rights without the user-defined read

capability. If no user-defined capability is provided on

initial insert then any client can access files through the

d i re ct o ry system.

The user-defined capability is the principle data

protection mechanism for a user. A simple mapping can be

arranged from a mnemonic password to a capability. A user

can allow general read access by not imposing a user-defined

read capability, or general write access by not imposing a

user-defined write capability. Alternatively a user can

allow limited sharing by informing a restricted set of users

of the appropriate passwords.

All of a single user's user-defined capabilities might

be identical or might vary. It is possible to change these

capabilities, which would be seen by the user as a change of

password.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-37

Sophisticated sharing mechanisms might be handled by

storing user-defined capabilities in protected files.

Elaborate schemes for group access could be implemented

through special client software. However, this approach to

ownership is probably too inflexible and needs more careful

consideration, and ignores such problems as the need for

accounting in a shared system.

Directories have no user-defined capabilities. It is

therefore not possible to prevent access to a whole subtree

without protecting each individual file. This is because of

the special nature of directories, but careful thought

should provide some means of providing such protection if it

was thought necessary. However, this would probably involve

extra capabilities being handled by directory managers for

each directory operation.

7.2.2.3 Locking -

In a multi-access system it is necessary to provide

some means of mutual exclusion for access to shared data.

Usually this is by locking files. KUDOS provides a locking

mechanism on files which allows multiple reads or single

write (but not both).

To prevent locks being held indefinitely for a failed

client, locks must be refreshed by a client periodically. A

lock which is not refreshed within a set period can be

broken by another client.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-38

A successful file lock returns a lock capability. This

capability must be quoted when refreshing the lock, removing

the lock, or in the case of a write lock when inserting or

deleting a file.

It is permitted to issue a write lock for a file which

does not exist. This prevents clashes of names on inserting

files under a new name.

To update a file it is necessary to issue a write lock,

and to provide the write lock with the update request. It

is the responsibility of the client to use the lock

sensibly. That is, the client is expected to lock all

appropriate files before updating, rather than updating and

then issuing the locks.

A more lenient approach to inspecting files has been

t aken. A read lock exists, which excludes w ri tes to a file,

but a file can be inspected without a read lock . Most

inter-active file inspections are not so critical as to

require the overhead of locking.

The locking and update of fi les i n KUDOS are major

deviations which prevent KUDOS being used for database

applications. The unit of transaction is a file. Any

usable database would require locking and update at record

level, permitting concurrent update of a file by many

clients.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-39

Although no attempt at describing a database extension

of KUDOS is included in this thesis, it is speculated that

the solution through KUDOS would be to spawn a file manager

to control access to a file (which may be replicated). This

file manager would have similar responsibilities to a

directory manager. A file manager, however, must impose a

structure on a file, whereas the inner echelons of KUDOS

consider files as arbitrary sequences of bytes. Such a file

manager would utilise a file-server in much the same way as

a client. Locking of records under replication would be

done at the manager rather than at file-server level. There

could only be one file manager for a given file at any one

time.

There would then have to be two classes of files

interpreted by KUDOS. Database files would not be

accessible to normal clients (other than a file manager).

This could easily be achieved by use of capabilities.

Resolving database files would also be handled differently -

there is no need to copy the whole file, just the

inconsistent records.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-40

7.2.3 Directory System Primitives

As with the file-server primitives, the interface to a

directory manager is described using Ada packages. The

implementation was actually me s s ag e-pa s s i ng using Modula.

PACKAGE directory_manager IS

TYPE capability IS INTEGER;
TYPE f i l e _ i d I S I NTEGER;
TYPE path-name IS ARRAY INTEGER OF CHARACTER;
TYPE name IS ARRAY INTEGER OF CHARACTER;
TYPE resource address IS RECORD node,port: INTEGER END;
TYPE volume I? INTEGER;
TYPE volume list IS ARRAY INTEGER OF volume;

PROCEDURE a c t i v a t e _ s u b d i r e c t o r y
(directory: IN path-name;

dire etory_manage r : OUT resource_address;
permit: OUT capability);

PROCEDURE read_assoc i ated_volûmes
(permit: IN capability;

volumes: OUT vo lum e l i s t) ;

PROCEDURE c r e a t e _ s u b d i r e c t o r y
(permit: IN capability;

directory: IN name;
volumes: IN volume_lis t);

PROCEDURE delete_subdirectory
(permit: IN capability;

di rectory: IN name);

PROCEDURE i n s e r t _ f i l e
(permit: IN capability;

file-server: IN volume;
file: IN file_i d;
f i le_read_permit: IN capability;
lock_permit: IN capability;
user_write_permit: IN capability;
use r_ r e a d_p e r m i t : IN capability);

PROCEDURE find_file
(permit: IN capability;

filename: IN name ;
u s e r_read_permit: IN capability;
file-server: OUT ARRAY INTEGER OF volume
file: OUT ARRAY INTEGER OF file_id;
read permit: OUT capability);

k u d o s f i l e -s t o r e DESCRIPTION Page 7-41

PROCEDURE delete file
(pe rmi t : IN capability;

filename: IN name;
user write permit: IN capability;
lock ""permit: IN capability);

PROCEDURE read lock
(permit: IN capability;

filename: IN name;
user read permit: IN capability;
lock- permit: OUT capability);

PROCEDURE write lock
(permit: IN capability;

filename: IN name;
user write permit: IN capability;
lock- permit: OUT capability);

PROCEDURE ref resh lock
(permit: IN capability;

filename: IN name;
lock permit: IN capability);

PROCEDURE end_lock
(permit: IN capability;

f i l ename: IN name;
lock_permit: IN capability);

PROCEDURE list (permit: IN capability;
name_li s t : OUT ARRAY INTEGER OF name);

PROCEDURE new read_permit
(permit: IN capability;

o ld_use r_read_permit: IN capability;
new_user_read_permit: IN capability);

PROCEDURE new w ri te_pe rmi t
(permit: IN capability;

o ld_user_write permit: IN capability;
new_user_write permit: IN capability);

name in_use, name_locked, not_a_directory,
direc^ory_not_empty, name_not_Locked, no_such_file,
cannot_lock_di rectory, name_write_locked,
name_read_locked, illegal_pe rmi t :

EXCEPTION;

END directory manager;

k u d o s f i l e -s t o r e DESCRIPTION Page 7-42

The managers are actually interfaced through the

message passing mechanism. Thus the "activate" primitive

returns the address to which operations on the newly created

manager should be sent. A manager generates a capability

which allows operations on the directory, and any client

must provide the appropriate capability to gain access;

this is largely an accident-prevention mechanism to stop a

manager with the same address as an old deactivated manager

being accessed as if it were the old manager.

A set theoretic description of the algorithms will be

given below. X is the directory and X1,X2,...,Xn the online

copies of the directory. R is the set of files read locked

in the directory X, and W the set of files write locked.

For each x in R, x.count is the number of read locks on x.

For each x in X, x.directory is true if x is a directory.

To simplify the presentation, capability checking has been

omitted, but it is a trivial exercise for the reader to

include capability checking in the algorithms. The raising

of an exception causes immediate abort of the operation.

7.2.3.1 Activate_subdirectory -

The activate command can be issued to any directory

manager. It specifies the path-name from that directory.

The activate may in fact not have to create a directory

manager if the directory is already active, but it is

necessary to obtain the address of the directory manager.

The activate will in fact activate all directories on the

k u d o s f i l e -s t o r e DESCRIPTION Page 7-43

path. A directory deactivates when all subdirectories have

deactivated and no file transactions are current. No

explicit deactivate is available to clients.

The actual implementation of directory activation

depends largely on the process creation mechanism of the

system. Under the Modula implementation a pool of processes

were held waiting for a directory for them to activate.

This was a poor solution enforced by the fact that Modula

does not garbage-collect space used by a terminated process.

Under Unix, the fork mechanism of process creation, where a

process effectively duplicates itself, would have been

ideal; Ada tasking is another attractive option. There is

no requirement, however, that a directory manager should run

on the same node as its parent manager.

The sequence of actions a manager takes before allowing

operations are:

manager:

<locate all online associated volumes>
< r ead the online directories Xl,...,Xn>
< resolve Xl,...,Xn>

WHILE < a c t i ve request within timeout Li mi t >
DO <service request>;

END manager;

The associated volumes of a directory are recorded in the

parent directory.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-44

7.2.3.2 Read_associated_volumes -

This primitive returns the List of associated volumes

of the directory. This is necessary for a client wishing to

create a subdirectory or wishing to know the level of

replication of a directory.

7.2.3.3 Create_subdirectory And De lete_subdirectory -

Creation and deletion of directories is straight

forward. On creation empty subdirectories are written to

the associated volumes of the subdirectories. There is no

distinction between directory and file names. A directory

and a file with the same name are not allowed

simultaneously. A directory can only be deleted when it is

empty, and only when all associated volumes are online.

<create directory d > :

IF d IN X THEN RAISE name_in_use;
IF d IN W THEN RAISE name_locked;

FOR EACH i IN 1..n DO
Ccreate empty subdirectory d in Xi>

END;

END <create directory d>;

^delete directory d>:

IF NOT (d IN X) OR NOT d.directory
THEN RAISE not_a_directory;

IF <d not empty in each of Xl,...,Xn>
THEN RAISE directory_not_empty;

FOR EACH i IN 1 . .n DO
<delete d in Xi>

END;

END <delete directory d>;

KUDOS FILE-STORE DESCRIPTION Page 7-45

7.2.3.4 Insert_file -

To insert a file a client must provide a new copy of

the file, and the appropriate capabilities. The client's

copy of the file is unchanged and remains the client's

property. The directory server takes its own copies.

A file cannot be inserted with the same name as an

existing file; to insert a file it is necessary to delete

the old copy. The file to be inserted must be locked and

the appropriate lock capability provided.

<insert file x>:

IF X IN X THEN RAISE name_in_use;

IF NOT (x IN W) THEN RAISE name_not_locked;

<set T to current time>

FOR EACH i IN 1..n DO
COPY x TO x IN Xi WITH x.Ti=T;

END;

END <insert file x>

7.2.3.5 Find file -

Th i s provides a client (with the correct capabi lities)

with read- on ly informat i on on a named file. It is up to a

client to decide whether or no t t 0 issue a read lock.

Without a read lock it is possible that the directory-server

will scratch that file because of update by another client.

< find file x>:

IF NOT x IN X THEN RAISE no_such file;
I F x . directory THEN R A I S E no sucTi- file;

k u d o s f i l e -s t o r e DESCRIPTION Page 7-46

< return address of copies of x>

END <find file x>;

7.2.3.6 Delete_file -

To delete a file it must be write locked.

<delete file x>:

IF NOT (x IN W) THEN RAISE name_not_locked;

IF NOT Cx IN X) THEN RAISE no_su ch_f ile;

IF < al l associated volumes online> THEN
FOR EACH i IN 1..n DO

Xi =Xi--CX>;
END;

ELSE
FOR EACH i IN 1..n DO

<place assassin for x in Xi>
END;

END I F ;

END <delete file x>;

7.2.3.7 Read__lock, Write_lock, Refresh_lock And End_lock -

The locks are straight forward. The refresh_lock

refreshes a lock. If a lock is not refreshed within a fixed

Period it can be broken by another client after a specified

time limit. End_lock removes a lock. A file can have one

write lock or a number of read locks, but not both a read

and a write lock.

Without refreshing and timeout the locking algorithms

are as follows. Implementing timeout is a relatively

painless extension, involving storing the lock time in R or

k u d o s f i l e -s t o r e DESCRIPTION Page 7-47

W and updating it on refresh.

<read Lock x>:

IF NOT x IN X THEN RAISE no_such_fiLe;
IF x.director/ THEN RAISE cannot_Lock_directory;
IF x IN W THEN RAISE name_write_locked;

IF x IN R THEN x . c ou n t : = x. c ou n t + 1
ELSE BEGIN R = R + -Cx>; x.count:=1 END;

END <read Lock x>;

<write Lock x>:

IF (x IN X) AND x.directory THEN
RAISE cannot_Lock_directory;

IF x IN R THEN RAISE name_read_Locked;
IF x IN W THEN RAISE name_write_Locked;

W:=W+ix>;

END <w ri t e Lock x>;

<end Lock on x>:

IF x IN R THEN
BEGIN x.count:= x .count-1;

IF x.count=0 THEN R:=R--Cx>;
END

ELSE IF x IN U THEN W:=W--Cx>
ELSE RAISE name_not_Locked;

END <end Lock on x>;

7.2.3.8 List -

Directories are not directLy accessibLe to a client,

Preventing iLLegaL access to their contents. To find out

the contents of a directory a speciaL primitive is provided.

The current impLementation returns onLy the names of the

■files, but could well return information such as the date of

insertion of the file.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-48

7.2.3.9 New_read_pe rmi t And New_w r i t e_pe rm i t -

These allow a client to change the user-defined

capabilities. This can be seen as the equivalent of a

password change.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-49

7.3 CLIENT VIEW OF FILE-STORE

7.3.1 Fi l e-server/directory Relationship With Client

As stated before, the directory- server is a client of

all file-server in the system. Di ag ratnat i ca l ly this can be

seen as

where _____________

(1)—K B ~)
means A is a client of B.

This is a sensible division, since the

client-file-server interface can be tailored for fast,

efficient access, and the c l ient-directory interface

tailored to provide reliable, secure storage.

Access to the file-server means that a client can use

scratch files without worrying about naming conventions. A

major deficiency in Unix is the Lack of a scratch file

mechanism; all files in Unix have to be named.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-50

The dichotomy between file-server and di

also permits more flexibility. In principle

directory system could be implemented on the

rectory-serve r

more than one

same set of

fi le-servers.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-51

7.3.2 Client Error Detection/Recovery

All KUDOS file-store commands return a result. Not all

KUDOS commands are, however, atomic under current

implementations. Only inserting and deleting files and

changing usei— defined capabilities in a directory are

at om i c .

A client must necessarily detect errors. A KUDOS

command which does not return a result may or may not have

completed. Idempotent commands, such as file read and write

can be repeated. Some instructions, such as locking, have

side-effects and cannot automatically be repeated. In many

cases the client must test to see whether or not a command

completed.

How clients recover from failures both in KUDOS and in

themselves is dependent on themselves. KUDOS merely

promises to behave consistently, and to inform of failures

where possible. We shall discuss later how, by better

design, KUDOS might have assisted error recovery in clients.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-52

7.3.3 Deadlock Detection/recovery

The timeout on a lock is the mechanism for deadlock

avoidance in KUDOS. No deadlock detection is provided, nor

is queueing for a lock. It is up to a client to respond to

a file which is locked by another client, say by retrying

after a certain interval.

A rogue client could cause deadlock by repeatedly

refreshing a lock on the file. KUDOS cannot detect this.

Guidelines can be given for the design of clients but if a

client does not adhere to them there is little KUDOS can do.

The principle guideline for deadlock avoidance is - in

a transaction involving multiple files do not refresh a lock

until all files are locked; if a subsequent refresh fails

then back out the transaction. Otherwise, refreshing a lock

before all locks are made effectively locks a file

indefinitely and causes potential deadlock with two clients

waiting for each other.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-53

7.3.4 Example Of Use Of File-store

(input of a text file)

Let us suppose a user wishes to input a text file with

the name "/usr/ken/thesis". That user has a personal

work-station which is a client of the KUDOS file-store, and

which has no local file storage.

The personal work-station must first locate a

file-server (any will do) in the resource directory system.

The personal work-station will then create a file in a

file-server of a default size larger than the expected text

file. Then, using a series of writes place the text file

sequentially in the file-server. At the end of the input,

the personal work-station then shrinks the file in the

file-server to the correct size.

The personal work-station then locates root through the

resource directories, and activates "/usr/ken". It then

write locks the name "thesis", and inserts the file, and

removes the lock. Once the file is inserted, the original

file-server copy can be deleted.

If any of the directory requests fail, the user can be

informed, and corrective action requested. For example

"/usr/ken/" may not exist. Note that the file-server copy

is untouched and the user will not have lost any data.

k u d o s f i l e -s t o r e DESCRIPTION Page 7-54

The personal work-station might periodically insert the

input text in the directory /usr/ken every few minutes, to

avoid loss of data if the file-server crashes. It may also

issue the write lock at the beginning of the transaction and

hold it (by refreshing) until the transaction is complete,

thus preventing conflict with another user trying to update

that file; this policy is probably safest in general.

CHAPTER 8

This chapter assesses the KUDOS file-store in terms of

its success as a design, as an expression of new ideas, and

as a lead in to future research. The design will be

assessed principally in terms of its reliability and

performance. The new ideas are mainly centred around the

overlay mount scheme and the the notion of an active

file-store, based on associated volumes and directory

managers.

8.1 THE DESIGN

The major goal in the design of KUDOS was to provide a

file-store which is reliable in terms of the high likelihood

that a file is access, and the low likelihood that a file is

lost. Performance aspects were not considered a major part

of the design aims, but of course performance cannot totally

be ignored. In this section we shall first discuss the

structure of KUDOS, with respect to what lessons can be

learned, especially with respect to its distributed nature.

The reliability aspects of KUDOS will be examined. Finally,

KUDOS FILE-STORE - ASSESSMENT

k u d o s f i l e -s t o r e ASSESSMENT Page 8-2

some comment will be made on performance.

8.1.1 Structure And Methodology

The author has a growing belief that the structure of a

system is more important than the finer details. KUDOS was

developed to prove (in the practical sense) a set of

algorithms; as such it largely suffered as an operating

system design. A good set of underlying algorithms does not

necessarily imply a successful system. The file-store in

particular would have benefitted from a more abstract

approach.

Good design is difficult to measure. If the designer

follows a methodology there is the criterion of how

rigourously that methodology was applied. A methodology

itself has criteria for assessing the quality of a design.

However, how does one compare two designs derived using two

different methodologies? Is a design developed without a

recognised methodology necessarily bad?

Certain principles of good design have gained popular

approval. For example, it is widely held that the use of

GOTO in programming can lead to code which is difficult to

understand and maintain, as well as permitting dangerous

habits to be developed and applied CDIJKD. The question of

style is raised by CKERN3; it is argued that clarity and

simplicity are of more importance than efficiency in the

design of a program.

KUDOS FILE-STORE ASSESSMENT Page 8-3

It is worth exploring what the development of KUDOS and

its file-store has uncovered in the design of distributed

systems. What lessons can be learnt from the mistakes as

well as the successes?

The design technique used by the author for the

development of individual processes was step-wise refinement

(CDIJK23 and CWIRTH43). The partitioning of functions into

processes was done with no methodology for guidance. A

technique for recognising the natural concurrency in a

system would be most useful. Traditional programming

methodologies tend to hide natural concurrency.

Developments such as communicating sequential processes

[HOAR] provide ways of constructing concurrent programs with

the aim of rigorous proof, but in themselves do not help the

problem solver in the early stages. The author is aware of,

though not yet fully conversant with, system design

techniques such as CJACK] which do attempt to model

concurrent systems. Designing an operating system with such

techniques would be an interesting exercise.

It must be said, however, that a product was not being

developed; the KUDOS project, as developed by the author,

was an experiment which demonstrated and refined a set of

algorithms which solved specific problems.

If KUDOS and its file-store were to be rewritten,

greater consideration of its overall structure would have to

be taken. In particular, the model of an ideal fault

KUDOS FILE-STORE ASSESSMENT Page 8-4

tolerant component described in CANDE2] would

significant influence. The model is illustrated by

following diagram:

have

the

KUDOS FILE-STORE ASSESSMENT Page 8-5

service
requests

normal
responses

interface
ex cept i ons

failure
exceptions

Masking of errors is achieved by raised exceptions (detected

errors) invoking redundant code which takes corrective

action and returns to normal processing. Detected errors

which cannot be recovered within the component are indicated

in the outputs as interface exceptions (illegal requests for

service) or failure exceptions (errors due to the

component), and must be dealt with outside the component.

The component interfaces to other components and may have to

deal with their errors.

This model is essentially simple (as most generalities

are, once realised). Without it, ad hoc application of

reliability techniques can cause structural problems. This

was clearly evident in the KUDOS file-store. The

file-server component in particular was deficient in this

respect, especially regarding lack of atomic update to disc.

KUDOS FILE-STORE ASSESSMENT Page 8-6

More careful consideration of directory managers would have

solved some of the recovery problems described later.

Better consideration of exception reporting and handling by

the operating system as a whole would have aided client

recovery substantially.

KUDOS provided high reliability in certain aspects, but

overall had a number of deficiencies such as the failure to

define atomic actions which, by controlling information

flow, are fundamental to the design of reliable software. A

major lesson learnt is that technique alone is not

sufficient for designing systems. KUDOS algorithms applied

techniques such as redundancy very successfully, and derived

much from other algorithms and techniques; a better

structure would have displayed them more suitably.

Another aspect of the structure of KUDOS is its

distributedness. A feature worthy of note is that the

distributedness is not overly reliant on a particular

physical configuration. The location of software components

such as the directory-server or a file-server is relatively

unrestricted. The name-server (resource directories) is the

mechanism that permits this, allowing binding of names into

software rather than physical addresses; reconfiguration is

therefore much simpler.

An interesting question is whether the design and

programming of systems for concurrent computer

architectures, including local area networks, is

KUDOS FILE-STORE ASSESSMENT Page 8-7

fundamentally different from the design and programming of

the same systems for single processor computer

architectures. The problems of process definition,

synchronisation and communication are essentially similar.

If communications and object location are adequate and

well-defined, then the location of processes hardly matters

in terms of the functionality of the system. The tools for

implementation differ, as do the characteristics of the

hardware, especially with respect to performance.

KUDOS exploits the "distributedness" of a local area

network in terms of its scope for dynamic redundancy. By

having a number of similar hardware components it is

possible to reconfigure the software system in response to

hardware failure. However, many of the algorithms would be

appropriate in more traditional single processor

architectures; in particular, the overlay mount scheme is

potentially of use in any system where multiple file

redundancy is required.

On the subject of technique, some comments can be made.

An interesting observation is that whilst the KUDOS

implementation used a no-wait send, the usage was almost

always as a remote invocation send (remote procedure call),

since a service request was usually followed by a wait for a

reply. Ignoring the implementation argument, an original

motivation for the no-wait send was that a process

requesting a service could be doing something else before

processing the reply. This is an efficiency argument, and a

KUDOS FILE-STORE ASSESSMENT Page 8-8

particularly weak one. In practice there is usually little

else that a process can do whilst waiting for a service to

complete. Extra complexity is introduced if the requesting

process does not wait for the reply; it must either poll

the reply port periodically or respond to an interrupt.

There is also the question of synchronisation. The

points at which processes wish to exchange information a r e

typically points at which they require to synchronise.

Moreover, if they do not synchronise at points of

information exchange, problems of recovery can arise. For

example, a no-wait send to a non-existent or failed process

would result in a reply never returning. A requesting

process would then have to implement time-outs, which is an

added complexity. Its recovery may also be more difficult

if it had continued processing after the send of the

request.

Perhaps an analogy can be drawn between the GOTO in

sequential programming and a no-wait send in concurrent

programming. Both relate most directly to typical

machine- leve l implementations, and form the underlying

mechanisms for building higher level constructs. Both are

tempting to use for rather weak efficiency arguments. Both

lead to problems in terms of complexity of code.

The use of time-outs as an error detection mechanism in

KUDOS has raised serious doubts. KUDOS used these

extensively because of the way communication was

KUDOS FILE-STORE ASSESSMENT Page 8-9

implemented. A time-out returns no information about a

failure, and does not always indicate that a failure has

occurred. Choosing sensible time-out limits also proves

difficult. A too short time-out causes more trouble than it

is worth; a too long time-out can mean that response to a

failure is unbearably sluggish, especially if it causes an

interactive user to wait. Essentially a send should return

an error condition if it fails to deliver the message, even

if that is across a network. Thus a synchronisation send,

at least, is necessary.

To sum up the lessons in technique, the author has

learnt that concurrent systems are difficult to program.

The choice and disciplined use of appropriate tools is

important. However, given that the tools are adequate,

especially with respect to communications, the fact that a

concurrent system is implemented on a number of machines

rather than time-sliced on a single processor should make

little difference.

On structure, more fundamental questions need

answering. To successfully develop a significant software

system embodying concurrency, a more rigorous approach to

software design is necessary than was applied to KUDOS. In

defence, KUDOS was developed to exemplify certain algorithms

for a file-store. In practice an operating system and

file-store should be designed with the choice of algorithms

dictated more by requirements and the derived structure.

KUDOS FILE-STORE ASSESSMENT Page 8 -10

8.1.2 Reliability

As stated in Chapter 2, the reliability of a system is

a measure of the success with which it meets its

specification. In the design of the KUDOS filestore, three

aspects of the specification were selected, namely that

files should not be lost, that files should be accessible,

and that updates to files should complete successfully or

have no effect at all.

The main faults tackled by KUDOS are data destruction,

through a disc head crash for example, or data

unavailability, due to any number of reasons such as

communications failure or a failed storage device. Failure

during processing is handled, though not in an altogether

satisfactory manner.

Fault tolerance was the major strategy, though no

attempt to provide non-stop processing was made. The major

fault tolerant technique was protective redundancy, by

replicating files and access paths to files. This reduced

the likelihood of loss of a file in a manner to be

elaborated more fully later, and increased the availability

of files.

Under a mu 11ip l e-copy policy, an erroneous state exists

when two copies of the same file are different in content

(there is an interesting debating point here regarding

whether a duplicated file is logically a single object or

not). These errors are detected through timestamps (or

KUDOS FILE-STORE ASSESSMENT Page 8-11

alternatively generation numbers) stored with files and

compared before access to any copy of a file is allowed.

The recovery from such an erroneous state is to overwrite

the less recent copies of a file with the most recent.

This policy still does not ensure that a file is kept

up to date, but remarkably increases the likelihood (see

later). Stronger conditions can be imposed which make the

likelihood of a triplicated (or more) file being out of date

insignificant.

Ensuring that updates succeed or fail without effect is

through a policy of careful replacement. Thus, if a process

updating a file fails before reinstating it in the directory

system, the effect is to leave a previous correct version of

the file available.

Component independence, too, has played a significant

part. In particular, storing access paths to all files on a

volume on that volume increases accessibility of files.

Aspects of reliability theory not used fully, and which

would have been useful , are multi-level recovery policies

and atomic actions. The lack of appreciation of the value

of the latter caused a number of problems which will be

discussed later.

We shall continue this section with a consideration of

some simple combinatorial mathematics which emphasise the

effects of data replication in terms of access and

KUDOS FILE-STORE ASSESSMENT Page 8-12

likelihood of loss. Some discussion will then take place

regarding the way KUDOS tackled these aspects, and finally a

look at other reliability considerations in KUDOS.

8.1.2.1 Elementary Reliability Calculations -

There seems to be a distinct lack of quantifiable

reliability information used in system design. There are

perhaps many reasons for this. A piece of equipment such as

a disc might have a short production span before it is

superseded by a superior design. A piece of computer

equipment is complex, and the task of calculating its

reliability from the known reliabilities of its components

is too gross a task, at least with the design tools

currently to hand. To test a significant number of items

for a sufficiently long period would be too expensive.

Thus we are left with components whose probability of

failure is unknown. Any reliability calculations must

therefore, on the whole, be relative. Rather than ask how

reliable a system is, perhaps we can say how reliable it is

relative to its constituent components. Making worst case

assumptions about the reliability of components we can then

derive worst case information about the system.

A complex component, such as a disc, provides us with

even more problems, in that it can fail for any number of

reasons. A power-supply failure might remove the disc from

the system for a white, but not damage stored data. A head

KUDOS FILE-STORE ASSESSMENT Page 8-13

crash could effectively destroy all the contained data, and

at best only a partial recovery of data can be made. The

length of time a disc is faulty can also effect the system

and is dependent on external matters such as the proximity

of a service engineer.

We shall firstly make some elementary calculations

based on the naive assumption that at any given time a

component functions correctly with known probability. We

shall then discuss more suitable probability distributions

which may allow more representative modelling of a

distributed computing system.

Suppose that a disc is online with probability P.

Then, given independence of discs, if there are n copies of

that file then under KUDOS algorithms the file is online

with probability
n

1 - (1-P)

KUDOS FILE-STORE - ASSESSMENT Page 8-14

Tabulating this for various values of P and n we get

1
1 -

P\n | 1 ! 2 1 3 ! 4 ;

1 .1 1 .1 ! .19 I . 271 ! .344 1
1 .2 ; .2 ! .36 | .488 ! . 590 ;
1 .3 1 .3 ! .51 ; .657 ! . 760 1
1 .4 ; .4 ! .64 1 . 784 ! .870 1
1 .5 1 . 5 ! .75 1 . 875 ! .938 ;
1 .6 I .6 ! .84 1 . 936 ! . 974 11 .7 I .7 ! .91 1 .973 ! .992 i1 • 8 1 .8 ! .96 I . 992 ! .998 |

.9 1 .9 ! .99 ; .999 ! . 9999 11 .95 1 .95 ! .9975 1 .999875 ! 11 .98 ; .98 ! .9996 I .999992 ! i1 .99 i . 99 ! .9999 i .999999 ! i! .999 1 .999 ! .999999 | i ;

i
i.

P\n | 5 i 6 I 7 |

I .1 i .401 ! .469 i .522 |
! .2 ; .672 ! .738 ; .790 1
! .3 1 .832 ! .882 ! .918 ;
; .4 1 .922 ! .953 i .972 1
; .5 | .969 ! .984 i . 992 1
; .6 ; .990 ! .996 i .998 ;
1 .7 ! .998 ! .99927 ; .999781 .8 [.99968 ! .99994 1 .999987 i
; .9 1 .99999 ! .999999 i .9999999 i
1 .95 ; j i i
; .98 j ; i i
i .99 | ; ; i
; .999 1 ; I j

The figures not entered in the bottom right of

table all exceed .999999 .

the

KUDOS FILE-STORE ASSESSMENT Page 8-15

Thus if a disc has a down time of 1 hour in 100 (P=.99),

then a file with two copies will be unavailable 1 hour in

10,000 (over 1 year), and with 3 copies 1 hour in 1,000,000

(114 years. If a disc loses all its data once in 1,000

hours (42 days), and the disc is repaired immediately and

returned to the system and brought up to date, then a file

copied on two discs will be lost once in 1,000,000 hours

(114 years), and copied on 3 discs will be lost once in

1,000,000,000 hours (114,077 years). These figures of

course ignore failures in other parts of the system.

Earlier we considered the possibility of insisting that

updates to replicated files could only proceed if a majority

of associated volumes are online. This removes the

possibility of old files reappearing unless individual discs

are rolled back. We can use the binomial theorem CFREU] to

derive the probability that a majority of associated volumes

are online for a file replicated n times. The binomial

theorem gives us the probability of m discs being online as

m n- m
n! P (1-P)

m ! (n-m) !

The probability that a majority (over half) of the volumes

i s on l i ne i s

m n- m
n! P (1-P)

m ! (n-m) !

where M is the least integer greater than n/2.

SUM
m = M .. n

KUDOS FILE-STORE ASSESSMENT Page 8 -16

For various values of P and n we tabulate as follows:

I
1

P\n 1 1 • 2 ! 3 4

1 .1 1 .1 i .01 ! .0280 .0037
1 .2 1 .2 i .04 ! .104 .0272
1 .3 i .3 I .09 ! .216 .0837
1 .4 | .4 1 .16 ! .352 .1792
1 .5 1 . 5 1 .25 ! .5 .31 25
1 .6 1 .6 | .36 ! .648 . 4752
1 .7 1 .7 1 .49 ! .784 .6517
1 .8 I .8 1 .64 ! .896 .81 92
1 .9 1 .9 1 .81 ! .9720 .9477
1 .95 I .95 1 .9025 ! .9928 .9869
1 .99 i .99 i .9801 ! .999702 .999408
1 .999 i .999 1 .998001 ! .999997 .999994

1 P\n 1 5 1 6 ! 7

1 .1 1 .0085 1 .001 3 ! .0028
1 .2 1 .0579 I .017 ! . 037
! .3 1 .1631 | .0704 ! .1278
1 .4 1 .31 74 I .1792 ! .2897
1 .5 1 .5 i . 3422 ! .5
i .6 J .6826 I . 5452 ! .7102
1 .7 i .837 1 .7442 ! .8741
! .8 1 .9421 I . 901 1 ! .9667
1 .9 i .9914 I .9841 ! .9973
i .95 i .9988 | .9977 ! .9998
i .99 I .99999 i .999804 ! .9999996
i .999 | .9999999 |

KUDOS FILE-STORE ASSESSMENT Page 8-17

Under the majority online constraint, availability is

appreciably reduced. If a disc is offline 1 hour in 100

(P=.99) then a three copy file will be offline 1 hour in

3,333 (20 weeks) compared with 1 hour in 1,000,000. if a

disc is irretrievably lost once in 1000 hours, then a file

replicated 3 times wilt be lost once in 333,333 hours (38

years), but weakening of this constraint under a disaster

would allow recovery with much greater probability.

It is important to note how the number of copies

affects the majority online constraint. It is better to

have an odd number of copies. There is a significant

availability drop by increasing an odd number of copies by

one in all cases. Intuitively this can be explained, since

increasing an odd number of copies by one (say from 5 to 6)

increases the majority (from 3 to 4) but does not increase

the maximum number which can be offline at any one time (2).

Intuition fails, however, for low values of P; for P=0.7 we

find it better to have 3 copies than 6.

A more realistic approach will include a reliability

factor for the communication system, say C is the

probability that the communication system is working, and a

factor for a node, say N is the probability that a given

node is working (assuming all nodes have the same factor).

Then, if a personal work-station is working the availability

of any copy of a file will be PNC. If a file has two copies

kept on separate nodes then the probability it is available

k u d o s f i l e -s t o r e ASSESSMENT Page 8-18

2 2 2 2
(1) (2 PN - (PN))C = 2PNC - P N C

but if the copies are kept on the same node, though on

different discs on that node, then the probability a copy is

avai table is

2 2
(2) (2P-P)N C = 2PNC - P NC

2 2 2
and since P N C < P NC when N<1 we see that (1)<(2).

That is, as one would expect, it is better to keep copies of

files on separate nodes as well as separate discs. If N is

reasonably close to 1 however, the difference may be

insignificant.

The simple assumption that a component functions

correctly with a fixed probability P is naive. The

probability a component functions correctly can depend on a

number of factors, particularly time. Some components

become increasingly likely to fail as time progresses,

perhaps through wear and tear. A disc is likely to produce

Such properties, and a major function of maintenance is to

Prevent such failure. Other components become less likely

to fail as time progresses; this could be the case for many

electronic components which may fail in the first few hours

because of slight defects in manufacture, but successful

operation for a certain period implies continued success.

Other components might have a high incidence of early

failure, typically give trouble free operation for a long

Period, then begin to develop faults after a certain period.

KUDOS FILE-STORE ASSESSMENT Page 8-19

A number of probability distributions can be used to

model such behaviour. However, a useful approach to

reliability calculation is to use the mean time to failure

of components to deduce the mean time to failure of a

system. [SHOO] gives a thorough discussion of this, much

too detailed to discuss here.

8.1.2.2 Access -

KUDOS uses multiple copy redundancy of files and

directories, not only to reduce the likelihood that a file

is lost, but also to ensure that the access paths to a file

are available if a copy of the file is available. The

mechanism is the overlay mount scheme. This is an important

application of component independence, the component in

question being a volume. By placing an access path to each

file on a volume on that volume access is increased. KUDOS

achieves this with a small overhead in disc space usage.

8.1.2.3 Prevention Of Loss -

In KUDOS any file can be replicated to whatever level

of redundancy is required, up to a maximum equal to the

number of volumes in the system. As related earlier, the

likelihood of loss can be made arbitrarily small.

An important feature of KUDOS is the correction of out

of date files through directory resolving by directory

managers. By imposing constraints, such as the majority of

KUDOS FILE-STORE ASSESSMENT Page 8-20

associated volumes must be online for activation to be

complete, the likelihood that an old copy of a file is

imposed on a user is substantially minimised. This is a

principle form of error detection and recovery in KUDOS. A

discrepancy between copies of a directory is an error which

is resolved before the system continues processing.

8.1.2.4 Other Aspects Of Reliability Theory -

KUDOS did not begin with any aims to explore the

general use of reliability techniques, but inevitably

applied them where possible. KUDOS does not present a

reliable system in terms of non-stop processing, and its

granularity for recovery is somewhat coarse; this does not

imply that KUDOS is inherently incapable of non-stop

processing, nor of having a finer granularity for recovery.

Atomic actions (or transactions), and atomicity are

important considerations. The critical file operations in

the KUDOS directory system are atomic, in the sense that

they succeed or have no effect. This is, however, based on

the naive assumption that a single write to disc is atomic.

Write to disc can be made atomic by a number of means, such

as stable storage. Some directory operations are not atomic

because of certain implementation difficulties, but this

only causes minor irritation such as a directory reappearing

when it has been deleted. A set of stronger conditions,

such as a directory only being deleted when all associated

volumes are online, or by leaving assassins and insisting

KUDOS FILE-STORE - ASSESSMENT Page 8-21

that a majority of associated volumes are online, would

p rov i de atomicity.

A major deficiency of the current KUDOS implementation

is the lack of atomic write to a file in the file-server.

Moreover, a file-server which supported transaction

processing would be a great boon to KUDOS, especially if a

t w o— phase commit protocol were available. It would simplify

many of the directory commands and allow more powerful ones,

perhaps permitting extension to database.

Atomic actions are a vital feature for aiding error

recovery in a client. A client may wish to compose a whole

sequence of operations into an atomic action. This cannot

presently be done in the KUDOS directory system - single

file operations are atomic, but cannot be rolled back on

completion. Extension of KUDOS to allow recoverable atomic

actions must be seen as an important step. Recoverable

atomic transactions would be significant, bringing the

file-server more into line with the Xerox DFS.

Under the current scheme this might be achieved by

w r it ing back a directory only when such a sequence of

concurrent operations has completed. This is complicated by

the possibility of concurrent client access. How to

implement recoverable atomic actions encompassing more than

one directory is not clear, at least with the current

st ructures.

k u d o s f i l e -s t o r e ASSESSMENT Page 8-22

However, few file-stores offer atomicity even at single

file operation. For example, GEC 0S4000 can lose a complete

file if an edit crashes. Unix does not offer atomicity of

file operations. Systems with generation schemes do offer

roll-back since a previous generation is available if

creation of a new generation fails; this is not atomic

however if an incomplete new generation is left after a

crash.

An important concept in reliability is the notion of

idempotence. An idempotent command is one which can be

repeated without side-effects. This feature of a command

allows a client simply to retry without roll-back if the

result of a command is indeterminate. The result of a

command may be unknown for a number of reasons such as a

communications failure. For example, sequential write is

not idempotent, but random access write is. A sequential

write implicitly moves a pointer within a file-server which

would be moved twice on a repetition. With random access

write no such pointer exists.

Some commands in KUDOS cannot be made idempotent. For

example, repeating a write lock will reject second and

subsequent locks if the first lock had succeeded. Under the

capability scheme it would be difficult to make locking

idempotent.

k u d o s f i l e -s t o r e ASSESSMENT Page 8-23

The other directory command which is not idempotent is

creating a directory. However, retrying this command will

inform the client that the directory already exists, and so

a client can determine whether the previous command

succeeded with a simple retry.

In the file-server, file create is not idempotent in

the sense that retry will leave a file in the file-server

which no one knows about. This is not a client's concern

and so file create does appear idempotent.

A client should make use of idempotence as a means of

error recovery. For example, the directory-server will

retry a file write up to five times (it is very pessimistic

about communication protocols).

A major underlying aim of KUDOS was to avoid static

servers. Static servers mean that the whole system is

dependent on single nodes, giving serial dependencies rather

than independent parallel options. Much work could be done

on process relocation within the KUDOS multi-access shared

system.

Currently the directory-server is implemented as a set

of processes resident at a single node. There is, however,

no reason why it should not be distributed across a number

of nodes. It may, for performance reasons alone, be

sensible to locate a directory manager on a node where a

copy of the directory is kept.

k u d o s f i l e -s t o r e ASSESSMENT Page 8-24

Presently a di rectory-server is located at all

file-server nodes, but only one is operative. If the

operative directory-server node fails then this is detected

by the other dormant servers and one of them becomes

operative and publishes the address of the new root

directory manager in the resource directories. Only one

address for a name is allowed in the resource directories,

so there is no likelihood of two directory-servers operating

in parallel.

It would be preferable to see a much more flexible

scheme, allowing partial recovery of a server rather than

complete roll back. If a directory-server fails under the

present scheme then all current operations fail, and clients

must recover for themselves. Running secondary managers on

separate nodes would allow some operations to be recovered.

A more elaborate communication scheme with virtual calls

which could be redirected might help on this.

8.1.3 Performance

8.1.3.1 Fi le-server -

The file-server performance, particularly on file

read/write, is likely to be the most critical aspect of the

KUDOS file-store. Some delay on other aspects could be

tolerated, such as file create, file delete.

KUDOS FILE-STORE - ASSESSMENT Page 8-25

The current KUDOS file-server requires at most two disc

accesses to obtain any block of any file. A cache of most

recently used blocks means that repeated access to a file

should only need one disc access to obtain a block, and a

recently used block would not need a disc access at all.

The file-server I/O is therefore in principle fast.

This is one reason for the dichotomy between

file-server and directory server. A client can then access

a fast, efficient file-server for I/O, and consolidate this

with the rather slower directory system.

The one major failing of KUDOS is the communication

mechanism, and this must be improved significantly over

current performance. The best inter-node process-to-process

transfer rate achieved to date is about 6 kilobytes/se c.

Admittedly, this is on slow LSI/11 machines with no DMA, but

a sensible file-server must be able to deliver data at least

an order of magnitude faster.

8.1.3.2 Di rectory System -

The directory system is a prime target for

optimisation. The current implementation is very slow,

requiring seconds to activate a directory.

Firstly, directory managers time out after a short

period because there is no room for unused processes in the

Modula system. A better solution might be to force out the

manager least recently used and with no current operations

KUDOS FILE-STORE ASSESSMENT Page 8-26

on activation of a new directory.

A more powerful node with a swap device would reduce

the frequency of activation and deactivation by increasing

the number of potential concurrent managers. Such a node

would also reduce the heavy swapping of buffers between

main-memory and disc necessary on the current

i mplement at i o n .

Activation can also involve a lot of file copying.

Perhaps some of the copying could be done concurrently with

client access to the directory, thus reducing client wait

time for activation. This wait time could be high if a

whole path of directories has to be activated.

Insert also involves a high amount of copying, but

other commands involve very few disc accesses at all. The

number of disc accesses would be even less on a more

powerful node where caching was more feasible.

Tabulated below are the file-server accesses and

messages required by the directory system for each

primitive. This assumes that a directory manager can keep a

copy of the directory in virtual memory, and also holds

locking information in virtual memory. Note in particular

that the messages required are proportional to the level of

replication of directories, and not to a higher order of the

level of replication.

KUDOS FILE-STORE ASSESSMENT Page 8-27

1
i
!
i

primitive ! f i l e- s e rv e r
i
;

accesses!
1
1

me ssages
(other than file-
server ac ces s es)

1
1
1

i activate ! 2E*D 1 2 1
i (single dire ctory) ! ! 1
J activate ! 2E *D 1 P + 1 1
; (path) ! (for each i 1
1 ! di rectory in path) ! 1
i assocvols ! 0 1 2 i
i mkdi r ! 2D | 2 i
; de l d i r ! 2D 1 2 1
i i ns f i l e ! (B+2)*D 1 2 1
; find ! 0 1 2 1
; r lock ! 0 1 2 ;
! wl ock ! 0 i 2 i
; reflock ! 0 1 2 ;
1 endlock ! 0 | 2 I
i delete ! 2D 1 2 1
; list ! 0 ! E+2 1
; change read ! D 1 2 1
I changew rite ! D 1 2 1

where D = no of copies of a directory
(ie no of associated volumes)

E = no of entries in a directory
B=no of blocks in a file
P=no of names in a path

KUDOS FILE-STORE ASSESSMENT Page 8-28

It is clear that directory activate and file insertion are

the roost expensive primitives. Inserting a file can be

speeded up by increasing the block size and reducing B for a

given file.

These figures would change with a different file-server

implementation with different primitives. Moreover, they

are worst case figures. For example, on activation, rather

than read and write each record in a directory separately,

buffering could be used to take a block of records at one

go, reducing the file-server access by a factor equal to the

number of records in a block.

8.2 NEW IDEAS

There are two ways in which KUDOS contributes to

computer science research. Firstly, it includes novel

ideas, particularly the overlay mount structure realised

through associated volumes and the active file-store, and

also a distributed name-server. The second form of

contribution is a use of existing ideas in a neu way, often

as variations on a theme. We shall discuss KUDOS with

respect to both these aspects.

Firstly, there is the overlay mount structure of the

KUDOS file-store. Since Unix has become a paradigm as an

operating system and file-store, we shall compare the KUDOS

file-store with Unix. In KUDOS each volume contains a full

path to all files contained by it on behalf of the directory

KUDOS FILE-STORE ASSESSMENT Page 8-29

system. Thus a client is only dependent on the volume on

which a file is stored in order to be able to access that

file. In Unix a volume is mounted as a file system which is

a subtree of the root file system. All volumes depend on

the continued function of the volume containing the root

file system.

We refer to KUDOS as having an overlaid mount

structure, because the higher echelons of the hierarchy are

replicated on a number of volumes, and to Unix as having a

subtree mount structure. Note that the overlay structure of

KUDOS means more than simply that a volume contains the

names of all its contents. The directories in KUDOS contain

much more than just a name and provide cross-reference to

other volumes.

Diagrammatically, in a three volume system we might see

a structure such as the following figure. In the subtree

mount scheme v2 and v3 are dependent on v1 . In the overlay

scheme, no such dependency exists.

KUDOS FILE-STORE - ASSESSMENT Page 8-30

Over Lay:

Subtree:

OVERLAY AND SUBTREE MOUNT

KUDOS FILE-STORE ASSESSMENT Page 8-31

Overlay provides the following features:

1. Independence of volumes, increasing the reliability

and access of the files. It is much more

attractive in a distributed scheme where volumes

are physically separated by a communications

system.

2. A volume can be removed from the system and

accessed independently. This might be the case if

the communication system breaks down, or say an

individual wishes to take a computer home for a

period. KUDOS algorithms will restore consistency

with the rest of the system for such a removed

volume on réintroduction.

3. A clear tailoring of the system to provide

different reliability for different parts of the

system. The root is fully overlaid, and so is most

reliable and accessible. Overlaying can be reduced

to no overlay at all at some of the leaves.

4. Through the notion of associated volumes, control

over the location of copies of a file.

5. A single global context for naming all files in the

system. Thus a client can uniquely reference a

file from any part of the system. In some

distributed systems the access path to a file

depends on the location of that file. On Unix, by

KUDOS FILE-STORE - ASSESSMENT Page 8-32

mounting a volume at a different point the

path-name of a file can change.

Some problems with overlay have not been resolved in KUDOS.

The main one is how to mount a volume and resolve it with

the active file-store without damaging current operations.

It might be possible to prompt a directory manager to

resolve during activation as well as at the start of

activation. Presently the lazy-man option has been taken of

waiting for a directory to activate before introducing a new

volume.

A large number of file-stores do provide independence

of volumes. However, such systems usually embed in the

filename the volume containing the file, which is an

unfortunate restriction, and do not handle multiple copies

of the same file.

As a total system, KUDOS is a development in a very

active field of research. It overlaps and draws benefit

from a number of systems, such as the Cambridge Model

Distributed System, the Xerox distributed file-server, and

LOCUS. We shall now review the KUDOS file-store in the

light of other systems and in its own right.

The major aim in the development of KUDOS is

reliability. However, reliability is a vague term and must

be refined before any rigorous statements can be made.

KUDOS concentrates on a limited aspect of providing a

reliable system. This aspect was tackled in a very

KUDOS FILE-STORE ASSESSMENT Page 8-33

different way in LOCUS.

KUDOS chose the principle unit of transaction to be a

whole file. The Cambridge Model and Xerox systems chose

blocks within files as the principle unit of transaction.

KUDOS also does not permit multiple concurrent update to a

single file. KUDOS needs revision in these areas,

especially if database is to be supported.

KUDOS is unusual in that the major mechanism for

enforcing consistency and providing high reliability is the

naming mechanism, that is the directory scheme. The

Cambridge Model and Xerox file-stores do not impose naming

schemes, and thus cannot enforce constraints at that level.

Perhaps the underlying difference in motivation is that

KUDOS aimed implicitly at providing a u ser-oriented

file-store rather than just a file-server which needs

another layer to provide a us e r-o r i e nt e d naming scheme.

The major aspects of reliability theory used in the

KUDOS file-store are redundancy, component independence and

careful replacement. At the operating system level,

reconfiguration strategies are used on component failure.

However, the granularity of transactions, based on the unit

of a file, implies that a component failure can affect a

large number of concurrent transactions, requiring them to

roll back a considerable way. Thus KUDOS cannot be regarded

as a non-stop system; rather it is one which fails safe and

which can recover quickly.

KUDOS FILE-STORE ASSESSMENT Page 8-34

In KUDOS a firm distinction was made between file-store

and file-server. Effort was concentrated on developing the

file-store, largely at the expense of the file-server.

KUDOS provides, at present, a rather poor file-server, with

a minimal set of properties required to support the

directory scheme. The definition of file, too, was

restricted, ignoring structured files such as indexed

sequential. This was a way of simplifying the problem.

Likewise, the ignoring of database was a simplification.

KUDOS imposed a protection scheme , not based on any

global concept of ownership within the system, but by

capabilities. This approach is common in distributed

systems, such as the Xerox file-store. Protection was

implemented at file level and at directory level. Access is

prevented on an individual file basis, but there may be

arguments in certain applications for limiting access to

whole directories or subtrees.

The mutual exclusion in KUDOS is at file level. The

Xerox file-store provides mutual exclusion at block level.

Both adopt a locking policy with a similar timeout mechanism

to avoid deadlock. To provide a finer grain of locking,

KUDOS would have to revise its policy of careful

replacement; update in place might still be avoided, but a

suitable commi t / r o 11-ba c k policy in the file-server should

achieve the same effect as careful replacement at a lower

cost than complete data replacement.

KUDOS FILE-STORE ASSESSMENT Page 8-35

Consistency, in terms of two copies of a file being

identical, is enforced through the active file-store

structure. Careful replacement prevents incomplete

operations on files leaving a file partially updated.

Multiple copies of files are used to reduce likelihood of

loss.

To sum up, KUDOS provides a complete file-store with a

full, single, global, hierarchical naming scheme, with

mu Itip le-copy redundancy, deadlock avoidance, controlled

data-p lacement, automatic reconfiguration, limited

checkpointing and recovery and file protection. In so doing

it has introduced a number of new ideas, particularly

overlay mount, associated volumes, active file-store and a

distributed name-server. A number of features and ideas

could be developed and explored more fully. These are

elaborated in the next section.

8.3 FUTURE RESEARCH

KUDOS has certainly provided food for thought. It has

concentrated on two aspects of file-store reliability and

paid a limited respect to the general techniques of

reliability theory. There are two ways future research

might develop from KUDOS. Firstly, the algorithms could be

explored and developed further. Secondly, on a more

personal note, the insight gained through the development of

KUDOS might be used by the author to explore related topics

in reliability theory and data storage.

KUDOS FILE-STORE ASSESSMENT Page 8-36

As stated, the current implementation of KUDOS can only

be considered an experimental model. It has, however,

proved the feasibility of KUDOS algorithms, and would

justify a more ambitious implementation. One approach would

be to adapt Unix time-sharing systems as nodes. This would

involve a substantial reorganisation of the file-store, but

it would retain much of the Unix style at system call level.

The i-list structure is more sensible for a general purpose

file-server than the current KUDOS scheme. Moreover, a wide

variety of software already exists to ease the burden of

deve Lopmen t.

Such nodes, under a KUDOS regime, would not provide

user processing, and would therefore have ample capacity for

handling directory- server mechanisms. A single node would

be capable of running a directory server for a substantial

distributed system. The economic feasibi lity of this i s now

high. A small Unix system can be purchased f o r

approximately ten thousand pounds, and there should be a

continuing diminution of costs. A network of such nodes,

both as members of a multi-access shared system and as

personal autonomous work-station would be very attractive.

Apart from optimisation of some of the KUDOS

algorithms, there are some areas which could be improved.

Firstly, there is the mounting of a volume and its

interaction with the active file-store. On the one hand it

is desirable to bring the volume into the active file-store

as soon as possible. On the other hand, one must avoid

KUDOS FILE-STORE ASSESSMENT Page 8-37

upsetting current operations. This might be solved by

devising methods of resolving a directory both during as

well as at the beginning of activation.

Another problem is what to do if a volume in the active

file-store fails. Currently this will back out the whole

directory-server and abort all current operations. This is

not a neat solution and could be refined.

The problem of how to handle a directory-server failure

needs more examination. Perhaps failure can be prevented by

duplicating directory managers. Alternatively, it could be

minimised by distributing directory managers, or a separate

journal of incomplete operations might be used to allow

reactivation of the directory server elsewhere. Better

structuring of KUDOS is certainly desirable here.

The area of communications needs closer examination.

At least a remote invocation send (remote procedure call)

should be provided. Other features such as automatic

rerouting of virtual calls on a node failure would be very

useful.

An area of growing interest to the author is database.

It was an expressed aim of the Keele file-store project not

to discuss databases. This was possibly a serious omission,

and closed a number of interesting avenues of investigation.

Certainly, at the file-server level a file-store ought to be

able to support a database. Database is becoming more

important to a variety of applications. Any future computer

KUDOS FILE-STORE ASSESSMENT Page 8-38

system which cannot support database will be at a serious

disadvantage.

It is debatable whether the KUDOS algorithms could be

sensibly developed to handle database. Certainly the

current granularity of locking and the policy of careful

replacement would need substantial revision. In particular,

the file-server would need improvement. The file-server

would need to provide recoverable transaction processing,

probably with a two-phase commit protocol. More

functionality would be desirable, say by adding the capacity

to handle indexed sequential files.

The mathematical treatment of the work presented could

be developed significantly. In all there seems to be very

little mathematical justification behind much system design.

However, techniques of probability theory exist and need

only be applied to applications such as the one described

here. Related earlier was the difficulty of providing

thorough mathematical analysis with current design tools.

However, the use of computer-aided design of computer

systems should facilitate the automatic calculation of

system reliability from the known reliability of components.

CHAPTER 9

SUMMARY AND CONCLUSIONS

In this final chapter we shall summarise the thesis and

discuss the achievements culminating in this thesis.

9.1 SUMMARY

The thesis began by citing the problem of reliable file

storage, and restricted attention to the problem in the

context of local area network computer systems. The topic

of reliability theory was discussed and relevant aspects

highlighted for inclusion in a solution to the stated

problem. In particular the notions of redundancy, component

independence, and atomicity were considered most relevent to

the solution proposed.

Local area network computer systems were considered on

the one hand as a highly topical computer system

architecture, and a subject area receiving a great deal of

attention for a number of reasons. Local area networks

offer a number of attractive features, notably ease of

expansion, high performance, applicability, cost and

reliability. On the other hand local area networks were

SUMMARY AND CONCLUSIONS Page 9-2

considered as a particularly relevent architecture for

providing reliable file storage.

Filestores were discussed with reference to a number of

existing systems. A number of issues were raised, notably

problems of data placement, consistency, shared access and

naming. A definition of file-store was made which included

a file-server as a component part.

A distributed operating system called KUDOS (Keele

University Distributed Operating System) was described.

This was developed by the author as a vehicle for

implementing a prototype file-store. To a large extent it

became a project in its own right, including some novel

ideas, notably on dynamic resource location. Some

interesting experiences are related, especially on

communications and on the approach taken.

The KUDOS file-store was then described. This

constructs a reliable file-store out of a number of

independent f i le-s e rv e rs . This file-store provides a single

global hierarchical naming scheme, controlled mu 11ip l e-copy

redundancy, a neat solution to data placement, deadlock

avoidance, automatic reconfiguration, limited checkpointing

and recovery, and file protection.

Finally, the file-store is. discussed in terms of its

design, its contribution, and possible future research.

SUMMARY AND CONCLUSIONS Page 9-3

9.2 ACHIEVEMENTS

The achievements can be divided broadly into three

categories, namely personal, local and public. The personal

achievements are what the author himself derived from the

exercise. The local achievements are seen as those directly

relevant to the department and the research team within

which the work took place. Finally, the global achievements

are the actual, tangible contributions to the subject.

An important achievement is the recognition of what

went wrong, and hopefully why. Some self-criticism is

important here, though the psychological trick of regression

tempts one naturally to ignore this exercise.

9.2.1 Personal

(The reader should forgive the use of the first person in

this section, but it seems most natural)

One of the original motivations for embarking on a

Ph.D. was to broaden my technical appreciation of the

subject. Having spent two years as an applications

programmer/analyst my appetite for the subject was wetted,

far more than in the minimal exposure to computer science as

an undergraduate following a Pure Mathematics course.

However, working in a commercial environment tends to tunnel

one's vision, giving a detailed understanding of a limited

number of aspects of the subject.

SUMMARY AND CONCLUSIONS Page 9-4

A Ph.D. seemed an ideal way of stepping off the

treadmill and looking around. The first year was largely a

process of catching up, involving much broader reading than

is represented in this thesis. Teaching undergraduates was

a particularly useful exercise; an excellent way of

understanding something is having to explain it to someone

else.

Secondly, I wanted to see something of the academic

world, other than the rather limited view of an

undergraduate. To many outsiders the academic world is a

mystical brotherhood, reserved for an intellectual elite,

and frequently divorced from reality. It is reassuring to

find that this is not true.

I was rather fortunate in the contact I had with other

academics. I attended a number of conferences, workshops

and seminars, and also had the honour of presenting my own

work at some of these. A great deal of this is due to the

department and project in which I was working, and I am duly

grateful.

Thirdly, there is the mountaineering aspect. I did a

Ph.D. because it was there. Even if one does not make it

there is the satisfaction of having tried.

These objectives were all achieved. There was never

any serious wish to become a grand master overnight, and to

make outstanding contributions to the subject; if one is

lucky enough then so be it. A small contribution suffices

SUMMARY AND CONCLUSIONS Page 9-5

for most. In all, then, the personal aspects of the Ph.D.

were successful.

9.2.2 Local

The research presented took place within a research

project involving a number of people, and one should assess

it in terms of that project. However, the work was

self-contained and entirely the author's.

The overall project divided into a number of fairly

independent projects, including the construction of a

Cambridge Ring, design and construction of network

interfaces, some simulation work on networks, communication

protocols, robust processing (or process survivability) in a

hostile environment, and another file-store project.

It is difficult to relate directly the development of

KUDOS to the other projects. It was not developed in

conjunction with anyone else, though the free flow of ideas

was helpful both ways.

KUDOS, then, should be seen as a representative of the

groups work, though not typical. KUDOS most nearly

approached the title of the global project, though the other

projects were by no means irrelevant.

It is open to speculation whether the group would have

benefitted from a more constrained development. There might

have been distinct benefits from having a single core

SUMMARY AND CONCLUSIONS Page 9-6

project on which everyone worked, with other projects

spinning off. A serious Limitation on the team's progress

was Lack of equipment. WhiLst hardware does not soLve

everything, the Lack of certain tooLs invoLved a great deaL

of time and effort in deveLoping them or making do without.

9.2.3 GLobaL

This section is perhaps the most difficult to write,

though the credibility of the thesis relies upon it. What

contribution is made to the subject?

On a tangible note, the work for the P h .D . resulted in

three externally published papers, CLUNN13 , CLUNN33 , CLUNN43 .

The latter paper represents the early ideas for the KUDOS

file-store before it was developed, and is of historical

significance to this thesis. CLUNN13 was the result of a

simulation study of the Cambridge Communications Ring, and

was an early self-contained project. LLUNN33 describes the

distributed name-server algorithm presented earlier in this

thesis.

The KUDOS file-store has a number of features, as

described in the introduction, namely:

1. Single global hierarchical naming scheme. The

naming mechanism appears to the user as a single

hierarchy similar to that provided by Unix and many

other operating systems. There is no notion of

location embedded in the name of a file, unlike

SUMMARY AND CONCLUSIONS Page 9-7

many such file-stores on distributed systems.

2. Controlled multiple copy redundancy. It is

possible to replicate a file on all or any subset

of the set of volumes in the system. If a copy

falls behind because its storage volume is

inaccessible, it is brought up to date before it is

accessed by reference to other copies in the

system. The algorithms presented can respond

flexibly to requirements by minimising the

likelihood that an out of date file is accessed or

by removing that possibility under normal progress

of the system (including the response to system

failures). Non-critical files can be stored as

one-copy, as are uncommitted files during update.

3. Neat solution to data placement. Through the

hierarchy of directories, though not embedded in

the name of a file, the placement of copies of a

file is controlled. This is by a mechanism called

"associated volumes".

4. High availability. Associated volumes also provide

another benefit in that a file can be accessed if

any volume containing a copy of that file is

online. This is because each volume contains a

copy of all paths to all files held by it.

SUMMARY AND CONCLUSIONS Page 9-8

5. Deadlock avoidance. It was decided to duck the

issue of deadlock detection and to adopt a policy

of deadlock avoidance. This is perhaps a better

alternative in a system where no centralised

control exists, but we do not argue the case. The

mechanism chosen is based on timeout of locks, and

relies to some extent on the reasonable behaviour

of software using the file-store.

6. Automatic reconfiguration. If a node in the system

fails, the file-store will reconfigure itself to

p rov i d e a continued servi ce • An y software

dependent on a failed node for a particular

t ransacti on may, however, have t 0 back out and

retry in the new configuration.

7. Limited checkpointing and recovery. By adopting a

policy of careful replacement, process failure

should not leave a file in a partially complete

state. It is felt that this area of KUDOS requires

more scrutiny, especially with respect to atomic

update in the file-server.

8. File protection. A system of keys, generated by

the system and by the user prevent illegal access

to data stored in the file-store, and implement a

data privacy scheme for users.

SUMMARY AND CONCLUSIONS Page 9-9

The first four features are perhaps the most

significant. The pertinent underlying mechanism for

implementing these are associated directories and active

file-store management.

The topic of local area networks is of particular

interest to a number of research groups, and the experiences

and ideas will no doubt have relevance to them. In

particular the distributed name-server algorithm and the

notion of overlay mount of volumes are novel ideas worthy of

further exploration.

To sum up, KUDOS is an example of a computing system in

a topical area whose recipe includes some new ingredients

and a variation on the use of existing ingredients. Whilst

it is not an earth-shattering success, it provided the

author with a deeper understanding of the subject area, and

i ntroduced some ideas of note to others. And finally,

despi te the occass i ona l and inevitable troughs of

depress ion, it was enjoyable; what more can one ask.

CHAPTER 10

REFERENCES

CADA] "Reference Manual for the Ada Prog ramini ng Language".

United States Department of Defence, July 1980.

[ALMES] Almes, 6.T., Lazowska, E.D. " The Behaviour of

Ethernet-like Computer Communications Networks". Proc. 7th

Symposium on Operating System Principles, pp 66-81.

CANDE1] Anderson, T., Randell, B. "Computing Systems

Reliability". Cambridge University Press, 1979.

CANDE2] Anderson, T., Lee, P.A. "Fault Tolerance Principles

And Practice". Prentice/Ha 11 International 1981.

CAP0LL03 Apollo Computer Inc., various sales and information

literature, 5 Executive Park Drive, N. Bellerica, MA 01862,

USA.

CBARN] Barnett, J.K.R. "A Highly Reliable File System which

Supports Multiprocessing". Software Practice & Experience,

REFERENCES Page 10-2

Vol 8, pp 645-671, 1978.

[BENHAM] Benhamou, E. "Integrated Software Design for

Z-Net, A Local Micro-computer Network". Proc 2nd

International Conference on Distributed Computing Systems

(IEEE Catalog 81 CHI 591-7) pp 397-403, April 1981.

[BENN] Bennett, K.H., Singleton, P. "The Design of a

Microprocessoi— based Access Logic Unit for the Cambridge

Ring", Internal Report DCP/R7, Dept of Computer Science,

Univ of Keele, England.

[BREN] Brenner, J.B. "A General Model for Integrity

Control". I CL Technical Journal, 1978, 1 , 71 .

[BRER] Brereton,0.P. "Message Passing Performance On A

Cambridge Ring"' Software Practice and Experience (to

appear) .

[BRIN1] Brinch Hansen, P. "The Architecture of Concurrent

Programs". Prentice Hall 1977.

[BRIN2D Brinch Hansen, P. "Operating System Principles".

Prentice/Hall.

[BROWN] Brownbridge, D.R., Marshall, L .F .,Randal l, B. R."Th e

Newcastle Connection" Software Practice and Experience Vol

12, pp 1147-1162, December 1982.

REFERENCES Page 10-3

[CASEY] Casey, L.M. "Computer Structures For Distributed

Systems" Ph.D . Thesis, Univ of Edinburgh, December 1977.

CCOTTD Cottam, I.D. "Functional Specification of the Modula

Compiler", Internal Report 33, Dept of Computer Science,

Univ of York, England.

[DIJK] Dijkstra, E. "Go To Statement Considered Harmfule"

Communications of the ACM, Voi 11, No 3, pp147-143, March

1 968.

[DIJK] Dijkstra, E., Dahl, O.J., Hoare, C.A.R. "Structured

Programming" Academic Press 1972.

[DION] Dion, J. "The Cambridge File Server", ACM Operating

Systems Review, Voi 14,4, October 1980.

CESWAD Eswaran, K.P., Gray, T.N., Lorie, R.A., Traiger, I.L.

"The Notions of Consistency and Predicate Locks on a

Database System". Communications of the ACM, November 1976,

Voi 19, 11, pp 624-633.

[FREU] Freund, J.E. "Mathematical Statistics".

Prentice/Hall International 1972.

CFRID] Fridrich, M., Older, W. "The Felix Fileserver",

Proc. 8th Symposium on Operating System Principles",

De cembe r 1981.

REFERENCES Page 10-4

[GEC] Various systems documentation for OS4000 systems. GEC

computers Ltd, England.

[GIFF1] Gifford, D.K. "Violet, an Experimental

Decentralised System". Integrated Office System Workshop,

IRIA, Rocquencourt, France. (Nov. 1979). Available as

Report CSL-79-12 Xerox Corporation, Palo Alto, CA.

CGIFF2] Gifford, D.K. "Weighted Voting for Replicated

Data". Proceedings of Seventh Symposium on Operating System

Principles. December 1979, pp 150-159.

[HALS] Halsall, F. "Interprocess Communication In Multiple

Computer Systems". Microswap, Vol 3, No 2, November 1979.

[HERB] Herbert, A. "The User In t e rf a c e To The Cambridge

Model Di st r i bu ted System". Proc of 2n d Inte rnati onal

Conference On Distributed Computer Systems (IEEE Catalog

81CH1591-7), April 1981, pp 503-508.

[HOAR] Hoare, C.A.R. "Communicating Sequential Processes,

Communications of the ACM vol 21,8 August 1978.

[HOLD] Holden, J.C., Wand, I.C. "An Assessment of Modula".

Software Practices Experience. Vol 10, pp 593-621 (1980).

[ICL] Various systems documentation. International

Computers Ltd., England.

REFERENCES Page 10-5

[ISO] "Reference Model for Open Systems Interconnect".

I SO/TC97/SC16 N227, British Standards Institution, 101

Pentonville Road, London N1 9N D .

[JACK] Jackson, M. "System Development". P rentice/H a l l

International 1983.

[JENS] Jensen, K., Wirth, N. "Pascal User Manual And

Report". Sp r i ng e r-Ve r l ag 1978.

[JOHNS] Johnson, M.A. "Ring Byte Stream Protocol

Specification". Internal Report, Computing Laboratory, Univ

of Cambridge, England.

[JONES] Jones, C.B. "Software Development a Rigorous

Approach". Prent u ce/Hall International 1980.

[LAMP] Lampson, B.W. " An Operating System for a Single

User Machine". Proceedings of Seventh Symposium on

Operating System Principles, December 1979.

[LAMPO] Lamport, L. "Time, Clocks and the Ordering of

Events in a Distributed System". Communications of the ACM,

July 1978, Voi 21-7, pp 558-565.

[LANT] Lantz, K.A., Rashid, R.F. "Virtual Terminal

Management in a Multiple Process Environment". 1979 ACM

0-89 791-009-5 /79/1 200/0 08 6.

REFERENCES Page 10-6

[LINDS] Lindsay, B.G., Selinger, P.G. "Notes on Distributed

Data Bases". Advanced Course on Distributed Data Bases.

Sheffield City Polytechnic. 9th July, 1979.

CLISK] Liskov, B, "Primitives for Distributed Computing".

Proceedings of the 7th Symposium on Operating System

Principles, December 1979.

[LOGICA] various sales and information, Logica Ltd, England.

[LUDER] Luder, G.W.R. et al, "A distributed Unix System

Based on a Virtual Circuit Switch". Proceedings of the 8th

Symposium on Operating System Principles, December 1981.

CLUNN1] Lunn, K., Bennett, K.H. "Message Transport On The

Cambridge Ring - A Simulation Study". Software Practice &

Experience. Vo l 11, No 7, July 1981. pp 711-716.

CLUNN2] Lunn, K. "System Design Objectives" Internal Report

DCP/WD/23, Dept of Computer Science, Univ of Keele, Sept

1 979.

CLUNN3D Lunn, K., Bennett, K.H. "An Algorithm For Resource

Location In A Distributed Computer Network". ACM Operating

Systems Review. April 1981.

[LUNN4] Lunn, K., Bennett, K.H. "A Highly Reliable

Distributed Filestore Directory System", Proc. 2nd

RE FERENCES Page 10-7

International Conference on Distributed Computer Systems

(IEEE Catalog 81CH1591-7), pp 299-307, April 1981.

[LYCKO Lycklama, H., Christensen, C. "A Minicomputer

Satellite Processor System". The Bell System Technical

Journal. July 1978. Vol 57, 6/2, pp 2103-2114.

CMICR0E3 "Pascal Microengine Reference Manual", The

Microengine Company, 3182 Redhill Avenue, Newport Beach, CA

92663, USA.

CMITCHD Mitchell, J., Dion, J. "A Comparison of Two

Network-based File Servers" Proc. 8th Symposium on

Operating System Principles, Dec 1981, pp 45-46.

CMONTGD Montgomery, W.A. "Polyvalues: A Tool

forlmp lementing Atomic Updates to Distributed Data".

Proceedings of Seventh Symposium on Operating System

Principles, December 1979. pp 143-149.

CN AT A3 Nataragan, N. "Atomic Actions and Timestamps". ACM

Operating Systems Review, April 1980. Vol 14-2, pp 21-24.

CPEAK3 Peake, P.J. "Another Distributed Filestore

Proposal". University of Keele, Dept of Computer Science

internal document. DCP/WD/26.

CPENN3 Penney, B.K., Baghdadi, A. A. "Survey of Computer

REFERENCES Page 10-8

Communication Loop Networks", Research Report 78/42, Dept of

Computing and Control, Imperial College of Science and

Technology, London, England.

CPERQ] various sales and information literature, ICL,

England.

CR AN D1] Randell, B., Lee, P.A., Treleaven, P.C.

"Reliability Issues in Computing Systems Design". Computing

Surveys, June 1978, Voi 10, No 2.

CRAND2] Randell, B. "System Structure for Software Fault

Tolerance". IEEE Transactions on Software Engineering, Voi

SE-1, No 2, June 1975.

CREDE] Redell, D.D. et al. "Pilot: An Operating System

for a Personal Computer". Communications of the ACM,

February 1980, Voi 23, No 2, pp 81-91.

CRITCH1] Ritchie, D.M., Thompson, K. "The Unix Time-sharing

System". The Bell System Technical Journal, July 1978. Voi

57, 6/2, pp 1905-1930.

CRITCH2] Ritchie, D.M. "Unix Time-sharing System - A

Retrospective", The Bell System Technical Journal, July

1978. Voi 57, 6/2, pp 1947-1970.

CRITCH3] Ritchie, D.M. and Thompson, K. "The Unix Time

REFERENCES Page 10-9

Sharing System". Communications of the ACM, Vol 17, July

1974. pp 365-375.

[SALT] Salter, J.H. "Naming and Binding of Objects".

Operating Systems - an Advanced Course. Edited by Bayer, R.

et al. Springer-Verlag, 1979. pp 99-208.

[SELIG] Seligman, D.R. "On The Performance Evaluation Of

DECNET" Proc. 2nd International Conference on Distributed

Computer Systems (IEEE Catalog 81CH1591— 7), pp 484-496,

April 1981.

CSHOO] Shooman, H.L. "Probabilistic Reliability: An

Engineering Approach". McGraw Hill, 1968.

[SMITH] Smith, D.C., Irby, C., Kimball, R. "The Star User

Interface: an Overview". Proc. 1982 National Computer

Conference, AFIPS, June 1982, pp 515-528.

[STURG] Sturgis, H., Mitchell, J., Isreal, J. "Issues In

The Design And Use Of A Distributed File System". ACM

Operating Systems Review, Vol 14, No 3, July 1980, pp 55-69.

[TOML] Tomlinson, G.M., Keeffe, D., Wand, I.C., Wellings,

A.J. "The Pulse Distributed File System" Internai Report,

University of York, England, November 1982.

[V ERH] Verhotstad, J.S.M. "Recovery Techniques for Data

REFERENCES Page 1 0-1 0

Base Systems". Computing Surveys 10-2, 1978, pp 167-195.

CWILK1] Wilkes, M.V., Needham, R.M. "The Cambridge Model

Distributed System". Operating Systems Review, Vol 14, No

1, pp 21, January 1980.

CWILK2] Wilkes, M.V., Needham, R.M. "The Cambridge Model

Distributed System". Internal Report, Computer Laboratory,

Univ of Cambridge, England, 1979.

CWIRTH1] Wirth, N. "Modula: A Language For Modular

Multiprogramming". Software Practice & Experience, Vol 7,

1 977.

EWIRTH2] Wirth, N. "The Use Of Modula". Software Practice

8 Experience, Vol 7, 1977.

CWIRTH3D Wirth, N. "Design And Implementation Of Modula".

Software Practice & Experience, Vol 7, 1977.

CWIRTH4U Wirth, N. "Data Structures + Algorithms =

Programs". Prentice/Hall 1976.

	etheses coversheet.pdf
	791304.pdf

