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ABSTRACT Digital Twin technology is an emerging concept that has become the centre of attention for
industry and, in more recent years, academia. The advancements in industry 4.0 concepts have facilitated
its growth, particularly in the manufacturing industry. The Digital Twin is defined extensively but is best
described as the effortless integration of data between a physical and virtual machine in either direction.
The challenges, applications, and enabling technologies for Artificial Intelligence, Internet of Things (IoT)
and Digital Twins are presented. A review of publications relating to Digital Twins is performed, producing
a categorical review of recent papers. The review has categorised them by research areas: manufacturing,
healthcare and smart cities, discussing a range of papers that reflect these areas and the current state of
research. The paper provides an assessment of the enabling technologies, challenges and open research for
Digital Twins.

INDEX TERMS Digital twins, applications, enabling technologies, industrial Internet of Things (IIoT),
Internet of Things (IoT), machine learning, deep learning, literature review.

I. INTRODUCTION
Digital Twin is at the forefront of the Industry 4.0 revolution
facilitated through advanced data analytics and the Internet
of Things (IoT) connectivity. IoT has increased the volume
of data usable from manufacturing, healthcare, and smart
city environments. The IoT’s rich environment, coupled with
data analytics, provides an essential resource for predictive
maintenance and fault detection to name but two and also
the future health of manufacturing processes and smart city
developments [1], while also aiding anomaly detection in
patient care, fault detection and trafficmanagement in a smart
city [2], [3]. The Digital Twin can tackle the challenge of
seamless integration between IoT and data analytics through
the creation of a connected physical and virtual twin (Digital
Twin). A Digital Twin environment allows for rapid anal-
ysis and real-time decisions made through accurate analyt-
ics. This paper provides a comprehensive review of Digital
Twin use, its enabling technologies, challenges and open
research for healthcare, manufacturing and smart city envi-
ronments. Since the centre of gravity of the literature relates
to manufacturing application, the review has tried to capture
relevant publication from 2015 onwards across three areas:

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi .

manufacturing, healthcare and smart cities. The paper, uses a
range of academic sources found through keywords related to
IoT and data analytics, but with an overall aim of identifying
papers relating to Digital Twin.

In conducting this review, we are attempting to answer the
following research questions:

RQ1. What is a Digital Twin and what are some of its
misconceptions with current and previous definitions?

RQ2. What are the applications, challenges, and enabling
technologies associated with IoT/Industrial IoT(IIoT), data
analytics and Digital Twins?

RQ3. Is there a link between IoT, IIoT and data analytics
with Digital Twin technology?

RQ4. What are the open research and challenges with
Digital Twins?

This paper focusses on the status of Digital Twins with
IoT/IIoT and data analytics identified as enabling technolo-
gies. The rest of the paper is organised as follows: Section II
will define a Digital Twin, identifying similar concepts and
applications, while highlighting the misconceptions seen in
such definitions. Section III discusses the challenges found.
Section IV investigates the key enabling technologies for
Digital Twins while giving a brief history of each key
enabling technologies. Section V relates to current research
and is split into three subsections. Subsections A and B set
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out the methodology for producing the categorical review
in Table 5, subsection C follows with a concise analysis
of a range of papers on Digital Twins across a plethora
of disciplines and finally, the concluding section gives an
insight from an industry perspective. Section VI presents
open research, with overall challenges and findings for
Digital Twin research. Section VII concludes the paper.

II. DIGITAL TWIN
A. WHAT IS A DIGITAL TWIN?
The origins of the Digital Twin are set out in this section. The
review sets out clear definitions while also looking at some
of the misconceptions found with wrongly identified Digital
Twins.

Formal ideas around Digital Twins have been around since
the early 2000s [4]. That said, it may have been possible
to define Digital Twins earlier owing to the ever-changing
definitions.

1) DEFINITIONS
The first terminology was given by Grieves in a 2003 presen-
tation and later documented in a white paper setting a founda-
tion for the developments of Digital Twins [4]. The National
Aeronautical Space Administration (NASA) released a paper
in 2012 entitled ‘‘The Digital Twin Paradigm for Future
NASA and U.S. Air Force Vehicles’’, setting a key milestone
for defining Digital Twins.

a: NASA 2012 [5]
‘‘A Digital Twin is an integrated multiphysics, multiscale,
probabilistic simulation of an as-built vehicle or system that
uses the best available physical models, sensor updates, fleet
history, etc., to mirror the life of its corresponding flying
twin.’’ [5]

b: CHEN 2017 [6]
‘‘A digital twin is a computerized model of a physical device
or system that represents all functional features and links with
the working elements.’’

c: LIU et al. 2018 [7]
‘‘The digital twin is actually a living model of the physi-
cal asset or system, which continually adapts to operational
changes based on the collected online data and information,
and can forecast the future of the corresponding physical
counterpart.’’

d: ZHENG et al. 2018 [8]
‘‘A Digital Twin is a set of virtual information that fully
describes a potential or actual physical production from the
micro atomic level to the macro geometrical level.’’

e: VRABIČ et al. 2018 [9]
‘‘A digital twin is a digital representation of a physical item
or assembly using integrated simulations and service data.

The digital representation holds information from multiple
sources across the product life cycle. This information is
continuously updated and is visualised in a variety of ways
to predict current and future conditions, in both design and
operational environments, to enhance decision making.’’

f: MADNI 2019 [10]
‘‘A Digital Twin is a virtual instance of a physical system
(twin) that is continually updated with the latter’s perfor-
mance, maintenance, and health status data throughout the
physical system’s life cycle.’’ [10]

Definition a) is an ambiguous definition specific for
NASA’s interplanetary vehicle development [5] and is one
of the early papers that defines Digital Twins. Despite there
being over six years between publications a) and f), the con-
sensus remains that there is not a fundamental or meaningful
change. Academia and industry alike have not helped in dis-
tinguishing DT’s from general computing models and simu-
lations. Future work requires a more definitive definition for a
Digital Twin. This research aims to aid in the development of
an updated definition, while also helping in analysing related
work and pointing out wrongly identified Digital Twins.

B. DIGITAL TWIN MISCONCEPTIONS
1) DIGITAL MODEL
A digital model is described as a digital version of a
pre-existing or planned physical object, to correctly define
a digital model there is to be no automatic data exchange
between the physical model and digital model. Examples of
a digital model could be but not limited to plans for build-
ings, product designs and development. The important defin-
ing feature is there is no form of automatic data exchange
between the physical system and digital model. This means
once the digital model is created a change made to the phys-
ical object has no impact on the digital model either way.
Figure 1. illustrates a Digital Model.

2) DIGITAL SHADOW
A digital shadow is a digital representation of an object that
has a one-way flow between the physical and digital object.
A change in the state of the physical object leads to a change
in the digital object and not vice versus. Figure 1. illustrates
a Digital Shadow.

3) DIGITAL TWIN
If the data flows between an existing physical object and a
digital object, and they are fully integrated in both directions,
this constituted the reference ‘‘Digital Twin’’. A changemade
to the physical object automatically leads to a change in the
digital object and vice versa. Figure 1. illustrates a Digital
Twin.

These three definitions help to identify the common mis-
conceptions seen in the literature. However, there are sev-
eral misconceptions seen but they are not limited to just
these specific examples. Amongst the misconceptions is the
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FIGURE 1. Digital model, shadow and twin.

misconception Digital Twins have to be an exact 3D model
of a physical thing. On the other hand, some individuals that
think a Digital Twin is just a 3D model.

Figure 1. and their definitions present the different lev-
els of integration for a Digital Twin. Table 5 in Section V
of this review presents a range of publications, highlight-
ing the claimed level of integration against the actual inte-
gration based on the above definition. The definitions and
figures should help in the development and identification of
future Digital Twins.

C. DIGITAL TWIN APPLICATIONS
The next part of this review focusses on the applications
of Digital Twins. It will first start by looking at the poten-
tial applications for Digital Twins, discussing the domain,
sectors, and specific problems for Digital Twin technology.
For the moment the term and concept of a Digital Twin are
growing across academia, and the advancements in IoT and
artificial intelligence (AI) are enabling this growth to increase
[12]–[17]. At this stage, the primary areas of interest are
smart cities and manufacturing with some healthcare-related
applications of Digital Twin technology found.

1) SMART CITIES
The use and the potential for Digital Twins to be dramatically
effective within a smart city is increasing year on year due to
rapid developments in connectivity through IoT.

With an increasing number of smart cities developed,
the more connected communities are, with this comes more
Digital Twins use. Not only this, themore data we gather from
IoT sensors embedded into our core services within a city, but
it will also pave the way for research aimed at the creation of
advanced AI algorithms [3], [18], [19].

The ability of services and infrastructures within a smart
city to have sensors and to be monitored with IoT devices
is of great value for all kinds of future-proofing. It can be
used to help in the planning and development of current smart
cities and help with the ongoing developments of other smart
cities. As well as the benefits of planning, there are also
benefits within the energy saving world. This data gives an

excellent insight into how our utilities are being distributed
and used. Advancement for the smart city is the potential
to utilise Digital Twin technology. It can facilitate growth
by being able to create a living testbed within a virtual twin
that can achieve two things; one, to test scenarios, and, two,
to allow for Digital Twins to learn from the environment by
analysing changes in the data collected. The data collected
can be used for data analytics and monitoring. The scope for
Digital Twins is becoming more viable as the development of
smart cities increases connectivity and the amount of usable
data [20]–[23].

2) MANUFACTURING
The next identified application for Digital Twin is within
a manufacturing setting. The biggest reason for this is that
manufacturers are always looking for a way inwhich products
can be tracked and monitored in an attempt to save time and
money, a key driver and motivation for any manufacturer.
Thus why Digital Twins look to be making the most signif-
icant impact within this setting. Likewise, with the devel-
opment of a smart city, connectivity is one of the biggest
drivers for manufacturing to utilise Digital Twins. The current
growth is in line with the Industry 4.0 concept, coined the
4th industrial revolution, this harnesses the connectivity of
devices to make the concept of Digital Twin a reality for
manufacturing processes [1], [24]–[27].

The Digital Twin has the potential to give real-time sta-
tus on machines performance as well as production line
feedback. It gives the manufacturer the ability to predict
issues sooner. Digital Twin use increases connectivity and
feedback between devices, in turn, improving reliability and
performance. AI algorithms coupled Digital Twins have the
potential for greater accuracy as the machine can hold large
amounts of data, needed for performance and prediction
analysis. The Digital Twin is creating an environment to test
products as well as a system that acts on real-time data, within
a manufacturing setting this has the potential to be a hugely
valuable asset [2], [28]–[30].

Another application of Digital Twins is in the automotive
industry, most notably demonstrated by Tesla. The ability to
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have a Digital Twin of an engine or car part can be valuable
in terms of using the twin for simulation and data analytics
[31], [32]. AI improves the accuracy of testing as it can
perform data analytics on live vehicle data to predict the
current and future performance of components.

The construction industry is another sector that hosts a
range of applications for Digital Twin use. The development
stage of a building or structure is a potential application for
a Digital Twin. The technology cannot only be applied in the
development of smart city buildings or structures but also as
an ongoing real-time prediction and monitoring tool. The use
of the Digital Twin and data analytics will potentially provide
greater accuracy when predicting and maintaining buildings
and structures with any changes made virtually then applied
physically. The Digital Twin gives construction teams greater
accuracy when carrying out simulations as the algorithms can
be applied in real-time within the Digital Twin before the
physical building.

A common goal seen so far across the field of
Digital Twins is this idea of real-time simulation as opposed
to low detailed static blueprint models. The use of these
models serves a purpose, but they are not using real-time
parameters which limit the predictability and learnability.
The Digital Twin can be learning and monitoring simul-
taneously, as well as applying machine and deep learning
algorithms [33]–[36].

3) HEALTHCARE
The healthcare sector is another area for the application
of Digital Twin technology. The growth and developments
enabling technology are having on healthcare is unprece-
dented as the once impossible is becoming possible. In terms
of IoT the devices are cheaper and easier to implement, hence
the rise in connectivity [37], [38]. The increased connectivity
is only growing the potential application of Digital Twin
use within the healthcare sector. One future application is
a Digital Twin of a human, giving a real-time analysis of
the body. A more realistic current application is a Digital
Twin used for simulating the effects of certain drugs. Another
application sees the use of a Digital Twin for planning and
performing surgical procedures [39].

Likewise with other applications within a healthcare set-
ting the use of a Digital Twin gives researchers, doctors,
hospitals and healthcare providers the ability to simulate
environments specific to their needs whether it be real-time
or looking to future developments and uses. As well as
this, the Digital Twin can be used simultaneously with AI
algorithms to make smarter predictions and decisions. Many
applications within healthcare do not directly include the
patient but are beneficial for the ongoing care and treatment,
hence the key role such systems have on patient care. Digital
Twin for healthcare is in its infancy, but the potential is vast
from using it for bed management to large scale wards and
hospital management.

Having the ability to simulate and act in real-time is even
more paramount within healthcare as it can be the difference

between life or death. The Digital Twin could also assist
with predictive maintenance and ongoing repair of medical
equipment. The Digital Twin within the medical environment
has the potential along with AI to make life saving decisions
based on real-time and historical data [40], [41].

Applications of a Digital Twin are identified here, showing
some of the cross overs in the intended use demonstrating
how predictive maintenance is adaptable frommanufacturing
plant machines to patient care. It also shows some of the
applications where they do not cross over, and Digital Twin
use is specific to its intended use. The advancements in AI,
IoT and Industry 4.0 have facilitated the growth in Digital
Twin applications.

D. DIGITAL TWIN IN INDUSTRY
General Electric (GE) first documented its use of a Digital
Twin in a patent application in 2016. From the concept set
out in the patent, they developed an application called the
‘‘Predix’’ platform [42] which is a tool for creating Digital
Twins. Predix [42] is used to run data analytics and monitor-
ing. In recent years, GE has scaled back their plans for a Dig-
ital Twin, planning to focus on their heritage as an industrial
multinational rather than a software company. Siemens, how-
ever, has developed a platform called ‘‘MindSphere’’ [43]
which has embraced the Industrial 4.0 concept with a cloud
based system that connects machines and physical infras-
tructure to a Digital Twin. It uses all the connected devices
and billions of data streams with the hope of transforming
businesses and providing Digital Twin solutions [43].

An alternative platform for developing Digital Twin and AI
technology is ‘‘ThingWorx’’ [23]. This platform created by
PTC is an Industrial Innovation Platform with the main focus
of harvesting IIoT/IoT data and presenting via an intuitive,
role-based user interface that delivers valuable insight to
users. The platform facilitates the smooth development of
data analytics while also developing an environment for a
Digital Twin solution [23].

IBM developed a platform called ‘‘Watson IoT
Platform’’ [44] marketed as an all-round IoT data tool that
can be used to manage large scale systems, in real-time,
through data collected from millions of IoT devices. The
platform has several add on features: cloud based services,
data analytics, edge capabilities and blockchain services. All
of which makes this a possible platform for a Digital Twin
system [44].

From an open-source viewpoint, there are two big projects
to highlight. The first is the ‘‘Ditto’’ project by Eclipse [45],
a ready to use platform that can manage the states of a
Digital Twin, giving access and control to physical and
Digital Twins. The platform lies in a back-end role providing
support for already connected devices and simplifying the
connection and management of Digital Twins [45]. Another
open-source project called ‘‘imodel.js’’ developed by
Bentley Systems [46] is a platform for creating, accessing and
building Digital Twins.
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III. CHALLENGES
It is becoming more evident that Digital Twin runs in parallel
with AI and IoT technology resulting in shared challenges.
The first step in tackling the challenges is to identify them.
Some of the common challenges are found with both data
analytics and the Internet of Things, and the end aim is to
identify shared challenges for Digital Twins.

A. DATA ANALYTIC CHALLENGES
Some of the challenges within the field of machine and deep
learning are listed below.

1) IT INFRASTRUCTURE
The first big challenge is the general IT infrastructure. The
rapid growth of AI needs to be met with high-performance
infrastructure in the form of up to date hardware and soft-
ware, to help execute the algorithms. The challenge with
the infrastructure currently is down to the cost of installing
and running these systems. For instance, the costs of the
high-performance graphics processing unit (GPUs) that can
perform the machine and deep learning algorithms are in the
thousands, anything from $1,000 to $10,000. As well as this,
the infrastructure needs updated software and hardware to
run such systems successfully. Overcoming this challenge
is seen through the use of GPUs ‘‘as a service’’ providing
on-demandGPUs at cost through the cloud. Amazon, Google,
Microsoft and NVIDIA, to name a few, are offering unique
on-demand services similar to traditional cloud-based appli-
cations, breaking the barrier to demand, but the poor infras-
tructure and high cost are still challenging for data analytics.
Using the cloud for data analytics and Digital Twins still pose
challenges in ensuring that the cloud infrastructure offers
robust security.

2) DATA
From a data point of view, it is important to ensure it is not
of inferior quality. The data needs to be sorted and cleaned,
thereby ensuring the highest quality of data is fed into the
AI algorithms.

3) PRIVACY AND SECURITY
Privacy and security is an important topic for anyone con-
cerned with the computing industry and this is no differ-
ent when performing data analytics. Laws and regulation
are yet to be established fully because of the infancy of
AI. The challenge is more scrutiny, regulation and mea-
sures concerning AI in the future as the technology grows.
Future regulation ensures the development of algorithms that
take steps to protect user data. The General Data Protection
Regulation (GDPR) is a new regulation that ensures the pri-
vacy and security of personal data across the UK and through-
out Europe. Despite being an umbrella regulation concerning
data and security, this highlights the concerns with handling
data when developing AI algorithms.

Regulation is one step to ensure personal data is protected,
while another method is federated learning, a decentralised
framework for training models. It allows users’ data in a
learning model to stay localised without any data sharing,
addressing privacy and security issues when implementing
data analytics within a Digital Twin.

4) TRUST
Trust is another challenge that concerns much of the field of
AI. Firstly, being because it is relatively new and secondly
because unless the developer is familiar with the complexity,
the use of AI can be daunting. The anxiety that robots and AI
will become a dominant force on earth, taking control of key
infrastructure from humans is a barrier to trust.

The issue of trust can be a barrier because the portrayal of
the AI mostly focuses on the negative effects that could occur.
Positive media stories in the field of artificial intelligence
are becoming more common, but the challenge is evident,
and the need for wider exposure of AI and the positive
uses would help overcome challenges with trust. Privacy and
security challenges contribute to these trust issues, but more
comprehensive privacy and security regulation in AI builds
trust.

5) EXPECTATIONS
The last challenge for data analytics is the expectation that it
can be used to solve all our problems. Careful consideration is
vital for AI use and investing time in this identifies the correct
application, ensuring standard models could not produce the
same results. The same as other new technologies, they have
the potential to work hand-in-hand with strengthening things
like manufacturing and smart city developments.

The potential users only see the benefits and believe it will
instantly save time and money, hence the high expectations.
The field is still in its infancy, and the challenge needs to
be kept in mind when applying data analytics. It is evident
through the number of scenarios that use ‘‘AI’’ for processes
that do not need it, in contrast to other situations where AI
should be used. Greater exposure and understanding of AI is
needed to allow people to gain the correct baseline knowledge
of the area, thus learning how it can be applied.

B. IoT/IIoT CHALLENGES
Listed below are the challenges found in the field of internet
of things and industrial internet of things:

1) DATA, PRIVACY, SECURITY AND TRUST
With the huge growth of IoT devices both in the home and
industrial setting comes the challenge of collecting substan-
tial amounts of data. The challenge is trying to control the
flow of data, ensuring it can be organised and used effec-
tively. The challenge becomes a bigger problem with the
advent of big data. The use of IoT increases the large vol-
umes of unstructured data. For IoT to manage the amount
of data, sorting and organisation of data is a necessity and
will result in more data being usable and providing value.
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Otherwise, the data collected through IoTwill be lost or it will
be too cost-prohibitive to extract the value from the enormous
volumes amassed.

As the data could be sensitive, it could be of value to a crim-
inal, thereby increasing the threat. The threat is significantly
increased for businesses when they could be dealing with
sensitive customer data. Cyber-attacks pose more challenges
with criminals targeting systems and taking them offline,
to cripple an organisation’s infrastructure. Some organisa-
tions have thousands of connected IoT devices posing a risk
that cyber-criminals may target them to take control and use
the devices for their services. An example of this is the Mirai
botnet scandal were nearly 15 million IoT devices worldwide
were compromised and used to launch a distributed denial-
of-service attack (DDoS) [47]. The risk of DDoS attacks
increases because of the rapid growth of IoT. As well as this,
the lag in priorities around privacy and security solutions
poses a further risk of attack. When installing the devices,
the most up to date security features and protection are
needed, if not this is a vulnerability which offers a back door
for criminals to infiltrate a larger connected IoT environment.

2) INFRASTRUCTURE
The IT infrastructure currently in place is behind, due to
the rapid growth observed in IoT technology compared with
the existing systems currently in place. The updating of old
infrastructure and the integration of new technology helps
facilitate IoT growth.

Updated IoT infrastructure provides an opportunity to ben-
efit from the latest technology and leverage the applications
and services available in the cloud without expensive refresh-
ing of existing systems and technology.

Another challenge for IoT systems is connecting old
machines to the IoT environment. One of the ways to combat
this is retrofitting IoT sensors to legacy machines, ensuring
data is not wasted and old machines can have some form of
analytics.

3) CONNECTIVITY
Despite this growth in IoT use, the challenges of connectiv-
ity still exist. These are especially prevalent when trying to
achieve the goal of real-time monitoring. A large number of
sensors within one manufacturing process poses a significant
challenge when trying to connect all of them simultaneously.

Challenges with attributes like power outages, software
errors or ongoing deployment errors are impacting this over-
all goal of connectivity. Just having one sensor not fully
connected could dramatically affect the overall goal of a given
process. For example, IoT devices are one source of feeding
data to AI algorithms; this can become a major challenge as
all the data is required for it to perform accurately andmissing
IoT data could detrimentally affect the running of the system.
Retrofitting machines and harvesting the data already served
up by themachine is amethod of ensuring all data is collected.
Imputation methods are a process of finding replacement
values for missing IoT sensor data, a concept used to ensure

full connectivity and facilitate the running of AI models with
high accuracy and little to no missing data.

4) EXPECTATIONS
Likewise, with AI, the expectations associated with IoT are a
challenge, due to organisation and end-users not fully under-
standing what to expect from IoT solutions or how to best
use them. A promising aspect is that the rapid growth in
IoT indicates the end-users and organisations recognise the
value in IoT and how a smarter connected world can benefit
us all.

The expectation that IoT can just be used infinitely without
prior knowledge can be damaging, with the knock-on effect,
posingmore pressure on privacy and security concerns further
putting the burden on challenges with trust. Similar to AI,
background knowledge in IoT is needed to ensure it is used
to its full potential.

C. DIGITAL TWIN CHALLENGES
This section draws primarily on the challenges associated
with Digital Twins. However, as the research progresses, it is
clear to see the challenges found in data analytics, IoT and
IIoT are similar to those found in the challenges for Digital
Twins with some discussed below:

1) IT INFRASTRUCTURE
Similarly to both analytics and IoT the challenge is with the
current IT infrastructure. The Digital Twin needs infrastruc-
ture that allows for the success of IoT and data analytics;
these will facilitate the effective running of a Digital Twin.
Without a connected and well thought through IT infrastruc-
ture, the Digital Twin will fail to be effective at achieving its
set out goals.

2) USEFUL DATA
The next challenge is around the data needed for a Digital
Twin. It needs to be quality data that is noise-free with a
constant, uninterrupted data stream. If the data is poor and
inconsistent, it runs the risk of the Digital Twin underper-
forming as it’s acting on poor and missing data. The quality
and number of IoT signals is an essential factor for Digital
Twin data. Planning and analysis of device use are needed to
identify the right data is collected and used for efficient use
of a Digital Twin.

3) PRIVACY AND SECURITY
Within an industry setting, it is clear that the privacy and
security associated with Digital Twins are a challenge. Firstly
because of the vast amount of data they use and secondly
the risk this poses to sensitive system data. To overcome this
challenge, the key enabling technologies for Digital Twins -
data analytics and IoT - must follow the current practices
and updates in security and privacy regulations. Security and
privacy consideration for Digital Twins data contribute to
tackling trust issues with Digital Twins.
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4) TRUST
The challenges associated with trust are both from an
organisation point of view and that of the user. Digital Twin
technology needs to be discussed further and explained at
a foundation level to ensure the end-users and organisa-
tions know the benefit of a Digital Twin, which will aim to
overcome the challenge of trust.

Model validation is another way to overcome the chal-
lenges with trust. Verifying that Digital Twins are performing
as expected is key for ensuring user trust.

With more understanding, trust in Digital Twins prevails.
The enabling technology will give more insight into the
steps that ensure privacy and security practices are followed
through development, in turn, overcoming challenges with
trust.

5) EXPECTATIONS
Despite Digital Twin adoption being accelerated by industry
leaders Siemens and GE, caution is needed to highlight the
challenges that exist for the expectations of Digital Twins and
the need for more understanding. The need for solid foun-
dations for IoT infrastructure and a greater understanding of
data required to perform analytics will ensure the organisa-
tions will make use of Digital Twin technology. It is also a
challenge to combat the thinking that the Digital Twin should
be used solely because of the current trends. The positives
and negatives for the expectation of Digital Twins need to
be discussed to ensure appropriate action when developing
Digital Twin systems.

It is clear to see that challenges for both the Industrial
IoT/IoT and data analytics are also shared challenges for
the application of a Digital Twin. Despite the challenges
Digital Twin shares with IoT and data analytics from a user
perspective to the privacy and infrastructure challenges of
Digital Twin, there are also specific challenges relating to the
modelling and building of the Digital Twin.

6) STANDARDISED MODELLING
The next challenges within all forms of a Digital Twin devel-
opment relates to themodelling of such systems because there
is no standardised approach to modelling. From initial design
to a simulation of a Digital Twin there needs to be a standard
approach, whether it be physics-based or designed based.
Standardised approaches ensure domain and user understand-
ing while ensuring information flow between each stage of
the development and implementation of a Digital Twin.

7) DOMAIN MODELLING
Another challenge as a result of the need for standardised use
is related to ensuring information relating to the domain use is
transferred to each of the development and functional stages
of the modelling of a Digital Twin. This ensures compatibility
with domains such as IoT and data analytics, allowing for the
successful uses of the Digital Twin in the future.

These are important moving forward as it ensures they are
considered in the future development of Digital Twins as well

as when using IIoT/IoT and data analytics. Table 1 below
shows a summary of challenges for both data analytics and
I/IoTwhile showing the overarching combined challenges for
a Digital Twin, with challenge six and seven specifically for
Digital Twin implementation.

TABLE 1. Shared challenges.

IV. ENABLING TECHNOLOGIES
This section discusses the enabling technologies for Digital
Twins.

A. BRIEF HISTORY OF THE INTERNET OF THINGS
The Internet of Things is the term given to devices connected
to the internet. It is about giving so-called ‘‘things’’ a sense
of intelligence and the ability to collect information on their
environment. The term was first published in the late 1990s
withKevinAshton setting out his vision for IoT [48]. The idea
that all devices that are interconnected gives the developer the
ability to track and monitor everything we do, thus leading
to a smarter world. An example of this is to be found many
years earlier at Carnegie Mellon University in Pittsburgh.
Here a programme would connect a Coca-Cola machine via
the Internet to see if the drink was ready and cooled enough
for a user to buy and consume [49]: a simple but effective use
case for Ashton’s vision.

FIGURE 2. Internet of Things diagram.

The number of IoT devices recorded year on year shows
the considerable growth of this technology. In 2018 the
figure was over 17 billion [50]. By the year 2025, [51] pre-
dicts that there will be over 75 billion devices with the indus-
try predicted to be worth over $5 trillion [52]. Figure 3. shows
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the growth in IoT devices since 2016. These figures show the
enormous impact these devices are having and further adds
to the vision set out by Ashton. The considerable number
of connected devices aids the vision of a fully connected
world, Figure 2. illustrates this idea of connected a services
through IoT. The proliferation of IoT devices is universally
beneficial, impacting the core of daily life, the communica-
tion sector, healthcare, building and transport, smart cities and
manufacturing [52], [53].

FIGURE 3. IoT device growth [51].

B. BRIEF HISTORY OF THE INDUSTRIAL INTERNET OF
THINGS
The concept of the Industrial Internet of Things (IIoT) has
come from the term IoT, drafted by Ashton [48]. The def-
inition of IoT varies across academia, and the same goes
for defining IIoT. The term is similar in characteristics to
IoT but with an added emphasis on industrial processes.
Boyes et al. present a range of definitions for IIoT, but the
main focus outlined is improving productivity for industry
[54]. Within manufacturing and industrial settings, the orig-
inal systems are Industrial Control Systems (ICS). These
are well documented and used, but the benefits of these
systems becoming autonomous and smart are potentially
seen through IIoT. Another technology intricately linked to
both IoT and IIoT is Cyber- Physical Systems (CPS) [55],
[56]. Both ICS and CPS are like IIoT, but not the same.
The main difference being IIoT devices require a connec-
tion to the internet as opposed to being enclosed in an ICS
architecture [57].

Like IoT, IIoT can have a huge impact on improving
manufacturing processes, allowing for tasks to be evaluated
with greater knowledge and real-time responses through
connected devices, thus improving the performance, produc-
tion rate, costs, waste and many other critical deliverables
within the industry setting [58]. The IIoT does not only
affect manufacturing but agriculture, oil, gas and other large
scale processes. Likewise, with IoT, Industrial IoT is having
a significant impact within the industry. This is especially
seen with Morgan Stanley predicting the market size to reach
$110 billion by 2021 [59]. Reference [60] reports that IIoT
could add $14.5 trillion to the global economy by 2030 [60].
Figure 4. shows the development of Industry 4.0, which
is the introduction of IIoT within the industrial revolution
timeline [61].

FIGURE 4. Industrial revolution.

C. I/IoT ENABLING TECHNOLOGIES AND FUNCTIONAL
BLOCKS
Both IoT and IIoT have a wide range of essential areas that
ensure the running of connected systems. These enabling
technologies are classified into four main functional domains,
as described by [62]. These domains cover the individ-
ual enabling technologies from network communication,
hardware and software to data processing, power and
energy storage — all with specific goals to enable the
full development of an IoT system facilitating an Industry
4.0 architecture.

The four enabling technology domains for I/IoT comprise
of D1 the Application domain, D2 the Middleware domain,
D3 the Network domain and D4 the Object domain as seen
below in Table 2.

TABLE 2. Enabling technologies and functional blocks: I/IoT.

D1 is made up of three layers. The first is the appli-
cation layer, which is the I/IoT applications; from smart
home and smart cities to smart farms. Next is the architec-
ture layer; this can be enabling software architectures; SOA
(Service-oriented architecture) or REST (Representational
State Transfer), both examples of what makes up the archi-
tecture layer. The third layer; software and APIs, bridges the
application domain to the middleware domain. It maintains
the operating systems and software. For instance, Android
and custom made OS’s used to operate an IoT system. This
could also be made up of custom-built APIs for the deploy-
ment of an IoT system, both of which are a key technology
for bridging D1 to D2.

The middleware domain is made up of three more layers.
The first being the cloud platform, which is made up
of services that provide on-demand computing resources
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through the cloud. Microsoft, Amazon and Google are lead-
ing providers in cloud services.

The second layer is data processing; enabled using data
mining and example services provided by BigQuery, Apache
and Storm. The third enabling layer in D2 is data storage.
This is essential in an I/IoT infrastructure, and an example is
MongoDB, which offers large storage engines.

The third part of the IoT system is D3, the networking
domain, which is made up of three enabling layers. The first
is the communication protocol layer; this comprises of the
application, transport and network protocols for a given sys-
tem, enabling seamless communication. The second enabling
layer is the network interface. Located here are essential
technology standards (for example RFID) used throughout
the IoT system, again for enabling the seamless integra-
tion of IoT. The final layer of D3, the networking domain,
is the adoption mechanisms. Consisting of the adoption layer,
which includes standards like 6TiSCH and IEEE 1095, which
enable more reliable wireless communication; likewise with
the connectivity interface and the gateway layer, all of which
are key enabling technology standards for the development of
an I/IoT system.

D4 is the final block in the IoT system, as illustrated
in Table 2. The object domain is made up of three enabling
layers. The first is the hardware platforms, consisting of
the hardware solutions, examples being Raspberry Pi or
Arduino. This domain brings together the last three layers;
examples being sensors, radio tags, displays and firmware,
all of which are vital in connecting the system. The last layer
is the mechanical and electrical parts, made up of the batteries
and the processing units needed to run the device.

The splitting up of the domain into four functional blocks is
easier for understanding the twelve enabling sections of this
given IoT system; this provides an integrated and intercon-
nected framework.

D. BRIEF HISTORY OF DATA ANALYTICS
The term data analytics is an umbrella term that groups
analytic concepts, as seen throughout the paper and academia.
Therefore an understanding and analysis of other papers are
needed. The term data analytics stems from the field of ‘‘Data
Science’’, a multidisciplinary subject that covers a range of
concepts, with an emphasis on collecting and presenting data
for analysis to gain greater insight. The subsection below
presents an in-depth analysis of the field of data analytics.
The identification and highlighting of these topics will help
in analysing other papers and seeing where this research fits
in [63].

1) DATA
To perform data analysis, the need for raw data is paramount.
There are several actions needed to turn this data into
usable information, ready for use in algorithms and statistical
analysis. These being the requirements, collection, process-
ing and cleaning. The requirements set out the necessary
needs of the data and how it is used, ensuring that specific

requirements are outlined, considering the intended use of the
data. The second stage acts on the requirement of collecting
the relevant data, identifying physically where and how the
data will be collected. The collected data will then go through
a processing phase in which it is sorted according to specific
requirements. The final phase and arguably the most impor-
tant is the cleaning of data. Despite the data being collected
and sorted, it may have significant gaps or erroneous data.
This cleaning phase uses the imputation methods, previously
identified as challenges to data analytics. These methods
ensure that no missing data exists [25], [64].

2) STATISTICS
Statistics is the overarching term for the collection, classifi-
cation, analysis, and interpretation of data. Briefly relevant
in this case for data analysis as statistical models under-
pin machine learning algorithms. Statically inference and
descriptive statistics are another way in which data analytics
are used to describe observations in collected data. AI and
the following topics below show the growth of advanced data
analytics [64], [65].

3) ARTIFICIAL INTELLIGENCE
Artificial Intelligence (AI) is the first topic of interest in data
analytics. The overall definition of AI dates back to the late
50s with this concept of creating ‘‘intelligent systems’’ [66].
These are categorised below into topics of potential impor-
tance for this project [67], [68].

4) MACHINE LEARNING
A subsection of AI, machine learning is the creation of
algorithms that can give the computer the ability to learn
and act for the user without being directly programmed
to do so. Machine learning is used to create programmes
that use sophisticated algorithms to collect and analyse data
autonomously. For more general analysis, machine learning
can fit into two types of learning: [55], [56].

a: SUPERVISED LEARNING
This is the most popular form of machine learning. The
algorithms use large amounts of labelled data to analyse and
learn. The algorithm is tasked with learning and analysing
the labelled data to identify a given task correctly; image
classification is one example [69]. The algorithms learn from
training data and are then given test data to see how well it
is accurately predicting what an image is showing, presented
through an accuracy percentage. The user then analyses these
answers and any errors are corrected and re-learned, help-
ing train the model and increasing the accuracy of a given
algorithm [70].

b: UNSUPERVISED LEARNING
Unsupervised learning is another form of machine learn-
ing, it does not require expensively marked-up data where
for each input pattern the desired output has previously
been determined: as is required for supervised learning [69].
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Unsupervised learning algorithms learn using it’s own meth-
ods in categorising and highlighting patterns within data
instead of relying on user feedback. Clustering is one method
of categorising data. Algorithms learn to cluster unlabelled
data sets together, potentially showing hidden patterns that
were not explicitly identifiable [69].

c: DEEP LEARNING
Deep learning is another part of the field of data analytics
and a subsection of machine learning. Deep learning algo-
rithms learn unstructured and unlabelled data using complex
neural networks with autonomous input feature extraction as
opposed to manual extraction [71]. These networks utilise
machine learning to create deep learning models that can take
longer to train because of the much larger neural networks,
but this allows for greater accuracy. Another type of learning
is semi-supervised learning, defined as having some labelled
data, but more data is unlabelled to see how the algorithms
can learn to be more accurate [71]. Many more algorithms
appear throughout the field of data science, but these are the
most common.

5) DATA VISUALISATION
The final subtopic within data analytics is visualisation,
defined as a graphical representation or visualisation of data
or results. The type of data affects the way it is visualised. The
most common being multidimensional data, which can be
presented using graphs and charts, taking multiple variables,
for instance, bar or pie charts. Another data type is geospatial;
this involves data collected from the earth through location
data, visualised through distribution maps, cluster maps, and
more commonly, contour maps [72].

E. ENABLING TECHNOLOGIES AND FUNCTIONAL BLOCKS
FOR DATA ANALYTICS
The next section concerns data analytics within the field
of Artificial Intelligence, machine and deep learning. The
descriptions of enabling technologies for data analytics [73]
and the classification scheme outlined by [62] are sum-
marised in Table 3 below. The enabling technologies are like
IoT in many ways but have slightly different layers around
visualisation and the algorithm side of analytics. An overview
is seen below, with the domains labelled D5, D6, D7 and D8.

Table 3 is produced as a result of analysing Table 2 by
Bibri and Krogstie [73]; however, it is slightly different in

TABLE 3. Enabling technologies and functional blocks: Data analytics.

presentation. The table starts with D5, the object domain
followed by D6, the middleware domain, D7, the network
domain, and lastly D8, the application domain. In each of the
domains is a list of enabling technologies associated with data
analytics.

D5 is the object domain which has at least three layers,
reflecting the dual-status of the storage facilities. The first
enabling layer is the data collection, which deals with the
pre-processing of data for the analytic solutions. The use of
data sensing tools and methods enables the collection of data.
Digital signal processing units also ensure the harvesting of
data. The second layer is the data repository which facilitates
the storage and use of databases. The final layer of D5, linking
to D6, is the storage facilities which enable the storage of
copious amounts of data through the use of server storage
enabling on-demand data. This layer is also the connection to
the processing of the storage data to the middleware domain.

D6 is the middleware domain, consisting of three enabling
layers. The first links with D5, which relates to storage pro-
cessing. The second layer in D6 is data processing, which
is the main layer for enabling data analytics, cloud services
and the main middleware architectures, including software
and database systems. The third layer in D6, seen in Table 2,
is the analysis and algorithms. This layer facilitates the task
of data mining, machine learning, statistics and querying of
the collected data. As well as the enabling models within data
analytics; supervised and unsupervised learning.

D7 is the networking domain, showing enabling technol-
ogy for the connectivity protocols looking at wireless and
communication and how they enable efficient collection and
processing of data from previous layers and domains. D7 also
concerns the enabling standards relating to the privacy and
security mechanisms.

The final domain discussed is D8, entitled application.
D8 has two enabling technology layers. The first being the
hardware and visualisation layers. This layer enables tangi-
ble technology to record the data and conduct machine and
deep learning or statistical analysis. The visualisation side
of the layer easily enables the display of useful information
regarding user tasks.

Finally, the application layer highlights the applications
relating to data analytics such as self-driving cars, image
recognition or virtual personal assistants such as Amazon’s
Alexa.

In summary table 2 presents the functional domains
for enabling technologies associated with IoT/IIoT, while
Table 3 presents the functional domains for enabling tech-
nologies for data analytics. The above section provides a
framework for creating a synthesis of functional domains and
enabling technologies in the context of a Digital Twin, as can
be seen in Table 4 of subsection F, below.

F. ENABLING TECHNOLOGIES FOR DIGITAL TWIN
Similar to Table 2 by Bibri and Krogtie [73], Table 4 provides
an additional synthesis of ideas for the functional domains
and enabling technologies of a Digital Twin. Starting with
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TABLE 4. Enabling technologies and functional blocks: Digital twin.

D9 for the Application domain, progressing to D10 for the
Middleware domain, followed by D11 for the Networking
domain and finally D12 for the Object domain.

The first domain is D9, which is the application domain
and is made up of three important layers, the first being
the model architecture and visualisation layer essential for
creating high-fidelity models of the physical entity. The layer
enables the visualisation and architecture modelling of Dig-
ital Twins. This ensures Digital Twins are modelled using
more than just the behaviours of physical entities. It is enabled
through tools such as Simulink and Twin Builder. The second
layer is the Software and API, specifically used to aid in
the modelling of such Digital Twin architecture facilitating
the third layer; pre-processing and collection. This last layer
of the application domain is needed to ensure the data is
collected properly, for example, with Predix, Mindsphere and
Storm, to name just a few applications for data collection.
This layer ensures the data is harvested correctly to facilitate
the use of IoT and analytics for a Digital Twin while also
bridging domain D9 to D10.

D10, the middleware domain, consists of two enabling
layers. The first being storage technology. Which facilitates
the storage of data through Mongo DB, MySQL services and
on-demand databases which are needed for Digital Twin use.
The second layer, related to data processing, is essential to
transfer the stored data between D10 and D11.

D11 consists of the Network Domain with two enabling
layers, the first being the communication Technology layer
essential in ensuring the data collected is communicated
between domains. The second layer in the network domain
functional block for Digital Twins is the wireless communica-
tion layer, which is needed to ensure the transmission of data
wirelessly follows the correct protocol within a Digital Twin
architecture as well as bringing data to the next domain, D12.

D12, the object domain, consist of two enabling layers. The
first is the hardware platform and the second being the sensor
technology. Both are needed to ensure the correct hardware
is in place to conduct Digital Twin analysis, as well as facili-
tating the collection of data through sensor technology.

V. CURRENT RESEARCH
This next section identifies related work for IoT/IIoT and
data analytics with a focus on Digital Twins publications,
discussing a range of publications and identifying gaps in the
field. This insight from academia will aid other researchers,

enabling them to find gaps within the research and will allow
a move towards a more comprehensive definition of a Digital
Twin.

A. CATEGORICAL REVIEW METHODOLOGY
The first part of this section performs a categorical review
of the relevant literature, following methodology used by
Kritzinger et al. [11] to produce a categorical review table
of selected publications. The main elements of the review
draw on the three levels of integration of a Digital Twin,
as described in Section II, subsection B of this paper and by
Kritzinger et al. [11].
The methodology used in this paper is based on work

conducted by Kritzinger et al. [11] ], which involved the
categorisation of forty-three papers related to the topic of
Digital Twins, that were published between from 2001 to
2017. The papers were obtained via literature search engines,
such as Google Scholar. For the search performed in this
paper, the authors used Google Scholar with specific searches
targeting ACM, IEEE and Science Direct repositories. Of the
research found there were 177 papers to look at from
2015 to present (31st December 2019), with only 42,
pre-2017. The search terms included variations of Digital
Twin (Digital-Twin, Digital Twins). As well as the term
Digital Twin, the search included adding terms relating to
the broad research areas (Industrial Digital Twin, Health-
care Digital Twin, Smart Cities Digital Twin). We found
twenty-six key sources from three areas, manufacturing,
healthcare and smart cities to synthesise Table 5.

B. ORGANISATION OF THE CATEGORICAL REVIEW
The papers are ordered alphabetically in three broad areas,
manufacturing, healthcare and smart cities, shown below
in Table 5. The following sections discuss the columns used
in Table 5:

1) PAPER
The first column provides the authors and year of each
publication.

2) TYPE
The second column identifies each paper by the type of
research carried out; review paper or a case study. It could
also be a new concept relating to Digital Twins or a definition,
each is categorised accordingly.

3) DEFINED TWIN
The next two columns are the definition relating to levels of
integration. The first identifying what the original authors are
referring to; Digital Model, Shadow or Twin.

4) ACTUAL TWIN
The second column identifies if the paper accurately
describes a Digital Model, Shadow or Twin. The definitions
from Section II are used to classify the publication, giving
insight into possible misconceptions in definitions.
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TABLE 5. Categorical review.

5) BROAD AREA
A fifth column identifies the broad areas of research: this
being manufacturing, healthcare and smart cities.

6) SPECIFIC AREA
The sixth column elaborates on the broad area narrowing
down to a specific area. For instance, in manufacturing this
would be narrowed down to a smart factory or fault diagnosis
area of interest. For smart cities, this is narrowed down to
traffic or infrastructure.

7) TECHNOLOGY
The final column identifies the technology used, for example,
simulation, data analytics and IoT.

The papers are ordered alphabetically in three broad areas,
manufacturing, healthcare and smart cities, shown below
in Table 5.

C. ANALYSIS OF THE REVIEWED PAPERS
The following sections draw on the papers reviewed in the
categorical review, discussing the paper in more detail, high-
lighting any concepts and case studies performed. The sec-
tions are not limited to but will include, the main areas
of papers collected relating to healthcare, smart cities and
manufacturing. The order of the areas presented reflects the
level of current research in terms of the number of papers
found. For healthcare, the number of papers found is lim-
ited, but the potentially life-changing benefits Digital Twins
can have on the healthcare industry are prevalent [33], [40],
[41], [84]. Next closely is the smart city area with a small
number of papers found. Most research falls within the man-
ufacturing setting. Figure 5. shows the share of papers in
terms of the area of research they fit in to; healthcare, man-
ufacturing or smart cities, all discussed below with example
papers.
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FIGURE 5. Percentage share of research areas found in the analysis of
papers presented in Table 5.

1) HEALTHCARE
An element to take from the several definitions of Digital
Twins is the concept as described by He [75], the ‘‘digital
replications’’ of a physical thing. El Saddik redefined this
with the inclusion of Digital Twin replications of living things
as well as non-living entities [40]. Presenting potential use
of the Digital Twin for the healthcare sector shows it is not
limited to manufacturing.

Ross [41] presents work with Hewlett-Packard using AI
and IoT to create Digital Twin avatars of people in several
ways. From a health perspective, the Digital Twin technology,
combined with AI algorithms, can be used to see the effects
specific lifestyle changes could have on a person’s health,
recommending specific changes from AI and Digital Twin
analysis. This use emphasises the full integration of data
from both the physical twin (The Human) and the Digital
Twin (The Replica). Giving the human the ability to see what
impact their actions are having on the physical twin while
also showing the effect some lifestyle changes could have on
them [41].

In another more recent setting, Laaki et al. [33] present a
working prototype of autonomous surgery harnessing IoT and
Industry 4.0 connectivity to create a Digital Twin of a patient.
The authors propose a remote surgery application through a
mobile network. The prototype uses a robotic arm, virtual
reality (VR) with a 4G environment, to deliver precision
surgery. The paper presents the complexity with multidisci-
plinary research, citing this as one of the reasons why the
work used simulation as opposed to a physical prototype.
Laaki et al. also discuss problems with integrating the pro-
totype with a Digital Twin. The authors explore some of the
advancements in AI and Industry 4.0 and how they ease the
challenges of connectivity, integration and multidisciplinary
research [33].

Liu et al. [38] present a novel approach for the future deliv-
ery of healthcare combining cloud technology with Digital
Twins to create a framework that helps to monitor, diagnose
and predict the health of a patient. Liu et al. achieve this
through the advancement and use of IoTs wearable technol-
ogy and in-home sensors with an emphasis on use for the
elderly. In addition to a framework, the authors also present
several applications citing the feasibility of each. The main
contribution of Liu et al.’s paper is the ability to predict a
problemwith patients more accurately, through the combined
use of IoT, Cloud and Digital Twin technology [38].

2) SMART CITIES
This section is focused on current research involving smart
cities in relation to Digital Twins. Research in recent years
has seen substantial growth in urbanisation combinedwith the
rise of IoT and data analytics [3]. Mohammadi and Taylor [3]
cite this as one of the motivations for their work and identify
the varying states in spatiotemporal flux, emphasising that
these need to be understood to maintain growth. The concept
they present does this through the use of Digital Twin and
virtual reality headsets, allowing them tomonitor fluctuations
while making predictions through real-time analytics [3].

Ruohomaki et al. [83] also present a framework,
‘‘mySMARTlife’’, which makes use of advancements in IoT
across cities to create a smart city Digital Twin. The paper
presents a case study for helping in urban planning and
built environments, but has particular uses in the energy
consumption field with the ability to use the Digital
Twin for monitoring and comparing of energy consump-
tion based on the environment and human impact. Both
are used for real-time and future developments [83]. Both
Mohammadi and Taylor [3] and Ruohomaki et al. cite the
need for the uptake of Industry 4.0 concepts to ensure the
level of data exchange is high enough for the twin to perform
accurately.

Fuelling the energy grid, along with implementing the
integration of renewable energy methods, is a challenge.
With this comes the need for accurate delivery within a
smart city. Wind power is an example of a renewable energy
source which needs to be delivered, monitored and analysed.
Pargmann et al. [19] present a cloud-based Digital Twin
monitoring system used for the development and monitoring
of wind farms. The authors present a working prototype that
uses data feeds, and parameters set out both from a technical
and business context, allowing for the creation of a working
twin of a wind farm development [19].

Sivalingam et al. [18] review and produce a case study
that investigates wind farm use and energy consumption
for a smart grid. The paper cites some of the challenges
with the reliability of power consumption and the general
maintenance of wind turbines. The authors propose a work-
ing methodology that makes use of IoT sensors combined
with data analytics within a Digital Twin environment to
accurately perform and predict maintenance of the wind
turbines [18].

In terms of a smart city, Jo et al. [16] and Chen et al. [23]
both present work that is related to smart cities and both utilise
Digital Twins. The first, by Jo et al. [16], presents a paper
that produces a feasibility study on the potential uses of a
Digital Twin for a smart farm. The authors note the impor-
tance of Industry 4.0 for the realisation of this project as it
makes the deployment of Digital Twin a challenge in complex
environments. The authors highlight three applications, GE’s
Predix, Eclipse’s Ditto and IBM’s Watson as contenders for
the deployment of Digital Twin technology along with some
guidelines on how the monitoring of livestock can be smarter
through the use of a Digital Twin [16].
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Chen et al. [23] present Digital Twins for cars and traffic
management. The paper explores the challenges with driving,
showing there needs to be more data flow within the vehi-
cle used and a connection to other vehicles in the vicinity.
Chen et al. [23] present a framework that uses a Digital Twin
combined with learning algorithms that monitor and analyse
feedback based on user behaviour. The algorithms facilitate
a real-time digital behavioural twin of a driver, providing
warnings and instructions on how to drive more safely to
minimise risk [23]. Both Jo et al. and Chen et al. share the
need and challenge of data exchange both citing the need for
greater connectivity, which is needed to achieve the optimum
result and accuracy for each of the Digital Twins.

3) MANUFACTURING
Finally, this section concerns an area that includes the major-
ity of research relating to digital twins. It is also an area that
has many sub-fields, from large smart factories to smaller
machines and tools. For this reason, the section is split into
the following subsections: a) Smart Manufacturing Reviews,
b) Simulation and Artificial Intelligence, c) System Design
and Development and d) Energy Efficient Manufacturing.

a: SMART MANUFACTURING REVIEWS
Reviews in this field are limited, but the first to note is
presented by Qi and Tao [25] which give a comprehensive
‘‘360’’ view on Digital Twins for big data in a manufactur-
ing and industrial setting. It gives a comparison of enabling
technologies for Digital Twins as well as arguing the impor-
tance of emerging technologies for the development of smart
manufacturing [25].

Tao presents two review papers, [82] and [81]; the
first [82] compares Digital Twins and Cyber-Physical sys-
tems within a smart manufacturing environment. The latter
by Tao et al. [81], is a state-of-the-art paper for Digital Twins
combined with industry. Both papers share enabling tech-
nologies, IoT, cloud, big data, and artificial intelligence show-
ing how these technologies use Digital Twins. Tao et al. [85]
also elaborates on some of the main application uses; Digital
Twin simulation, Digital Twin ‘‘as a service’’, data fusion
and interaction and collaboration. Both cite the increased
development of Industry 4.0 technologies with an emphasis
on data analytics and IoT as a factor in the growth and use of
Digital Twins [81], [82], [85].

b: SIMULATION AND ARTIFICIAL INTELLIGENCE
The above papers have touched on some key areas relating
to using Digital Twins combined with simulation and AI
approaches for manufacturing. Kuehn [78] describes a con-
cept that cites ‘‘virtual clones’’ of a system combined with
machine learning algorithms to enhance the manufacturing
process. The author categorises key areas in a manufactur-
ing process to highlight their specific goals and concepts
for applying a Digital Twin to the manufacturing process,
giving enterprises the ability to test, simulate and optimise

manufacturing processes in a virtual environment ensuring
increased quality and efficiency.

Similarly to Kuehn [78], Min et al. [36] present a paper
that exhaustively lists the key enabling technologies with
an emphasis on digital twin solutions using AI, specifically
machine learning, giving comprehensive evaluations. The
work uses a case study to evaluate the pros and cons of using
machine learning and Digital Twins for the petrochemical
industry, applying each to an industrial IoT petrochemical
factory [36]. A limitation found when performing the case
study is that the Digital Twin and algorithms are unique to
a petrochemical plant. Transfer learning could be used to
find commonalities in algorithms to help create solutions
transferable to other manufacturing processes.

A subsection of manufacturing is fault diagnosis with two
papers of interest found. The first paper by Jain et al. [76]
present a simulation study which discusses a Digital Twin
approach to fault diagnosis for distributed photovoltaic sys-
tems (PV). The advancements in Digital Twin technology
allows the team to develop a Digital Twin that can estimate
accurately faults relating to PV energy units in real-time [76].

Similar work by Xu et al. [24] proposes a AI focused
solution for fault diagnosis in a smart manufacturing envi-
ronment. Xu et al. highlight challenges in the amount of
training data available for creating accurate AI algorithms
for new manufacturing processes, something also needed to
create accurate Digital Twins. To ensure any challenges are
mitigated, the front running of the model is using a Digi-
tal Twin which learns and diagnoses faults while producing
training data. The second phase can then make use of transfer
learning using the collected training data from phase one
of the algorithm. A more accurate fault diagnosing system
is achieved with the help of a Digital Twin and transfer
learning. The authors present a workable case study with
a car manufacturing environment testing and evaluating the
effectiveness of the concept [24].

c: SYSTEM DESIGN AND DEVELOPMENT
Another key area for embracing Digital Twin use is through
the design and development stage of manufacturing processes
and systems. Shangguan et al. [80] discuss an approach
that draws on Digital Twin use but also introduces the
Cyber-Physical System (CPS) trend. The authors present a
Hierarchical Digital Twin Framework (HDTM) for the design
and development of dynamic CPSs in a smart manufacturing
environment. The Digital Twin is used throughout the levels
of CPS design, harnessing the ability to reuse and test against
physical data on a virtual twin. The authors perform a case
study showing the benefits of a Digital Twin, which are best
seen here as it gives the authors the ability to use the twin in
a real-time predictive design setting as well as learning for
large scale system changes. The framework is an application
for industrial robot design [80].

Howard [12] presents a paper that is an insight into the
trend of Digital Twin, evaluating its uses and suitability for
the ever-evolving smart manufacturing world. The main goal
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achieved is the design and development of manufacturing
electronic hardware through ‘‘virtual validation’’ utilising
a Digital Twin [12]. Both papers cite challenges identified
by leaders and visionaries in the world of Digital Twins,
analytics and smart manufacturing.

Aside from high-level system design, Karadeniz et al. [77]
and Chhetri et al. [74] produce contextual papers and case
studies on the development of Digital Twin systems for man-
ufacturing processes. The former [77] discusses the advance-
ments in Industry 4.0 and IoT using a case study to explore
how this growth is facilitating the trends of AR (Augmented
Reality) and VR (Virtual Reality). The authors set out a
concept that creates a Digital Twin of gastronomic things
(devices and processes relating to food and cooking) and
presents this as ‘‘eGastronomic things’’, similar to the Inter-
net of Things. The gastronomical processes have physical
IoT sensors collecting data to create a Digital Twin. The
authors use an ice cream machine as a case study to show
how a Digital Twin can help in monitoring and maintaining
the performance of ‘‘eGastronomic’’ processes, namely the
ice cream machine [77].

The latter, byChhetri et al. [74] also cites the advancements
in digitalisation for the growth in smart manufacturing design
and developments. The authors propose a methodology and
perform a case study that takes advantage of the growth
in IoT to build a Digital Twin of a manufacturing process.
In this methodology, the IoT sensors help collect and store
data streams that are used to indirectly highlight side channel
states; acoustics, power and magnetic output of a process.
These can be used to localise a fault and identify problems
with the manufacturing processes. The team validates the
work with a case study of a Fused-Deposition Modelling
system (FDM) which produces high accuracy anomaly detec-
tion, the first of its kind in this format [74].

Mandolla et al. [2] discuss another trend adapted for the
smart manufacturing industry, Blockchain. A growing list of
blocks within a decentralised ledger can be used to record
data across many computers. The previous blocks are linked
using a cryptography hash, a method of protecting data using
encrypted codes. These hashes are unique to each block
and contain attributes such as timestamp and transaction
data. Blockchain growth is attributed to its increased use in
processes other than its original intended use; for example,
cryptocurrency [86]–[88]. Mandolla et al. [2] present an
example of blockchain use, in a case study showing how
they have combined it with a Digital Twin. The authors focus
on aerospace manufacturing concerning the metal additive
process. Mandolla et al. create a Digital Twin of this process
while providing a conceptual answer to securing the pro-
cess through blockchain, and monitoring through a Digital
Twin [2]. Similarly, Bilberg and Malik [1] are using robotics,
to explore how they can be adapted for a manufacturing
process, they present an event driven Digital Twin that works
in parallel with a robot to perform tasks on an assembly
line. The other combines the physical task and the virtual
task to create a real-time, skills-based robotic production line

accurately allocating a task to the human or robot based on the
optimumproduction they could respectively achieve [1]. Both
papers, through the use of case studies, identify the benefits of
digitalisation, but both also cite the challenges with seamless
integration, something needed for the effective running of an
assembly line and Digital Twins [1], [2], [89].

d: ENERGY EFFICIENT MANUFACTURING
In line with national and international targets, energy
used for manufacturing, is required to be monitored
and reduced; hence, the need for potential solutions for
energy efficient production lines. Both Lu et al. [79] and
Mawson and Hughes [28] present systems and architecture
for energy efficient manufacturing. A driver for this are
the environmental benefits. However, more efficient manu-
facturing will also reduce cost, increase profits and future
investments. Lu et al. present a paper that focuses on devel-
oping an architecture that implements energy aware Digital
Twin model with a platform called MCLoud. Both of which
facilitate an Industry 4.0 environment where manufacturing
processes are monitored continuously and self-configured
through CPSs and Digital Twins, with energy efficiency the
overall goal.

Mawson and Hughes [28] also draw on the advancement
in Industry 4.0, citing a review on their effectiveness for
increased automation, connectivity and flexibility for man-
ufacturing processes. The main contributions of the paper are
a holistic review and case study using methodologies and
frameworks derived from the analysis of energy consumption
at the machine process level. Mawson et al. cite various
simulation tools, but they lack multi-level integration.

To produce a high accuracy model, all aspects of the man-
ufacturing process from the materials to resource flows are
needed to analyse energy consumption accurately. These are
challenges demonstrating howDigital Twins, VR andARwill
facilitate future research [28].

VI. OPEN RESEARCH
The penultimate section in this review briefly discusses open
research questions for Digital Twins as well as exsploring the
literature reviewed for challenges facing future research.

A. DIGITAL TWIN IN MANUFACTURING
Manufacturing and fully integrated Digital Twins are pro-
posed in the literature, but are not currently realised in indus-
try. Section V, above, explored a number of case studies,
reviews and concepts relating to publications in the manufac-
turing industry. There are a number of publications on smaller
developments of a Digital Twin. Industry examples of case
studies were listed in Table 5 and discussed in greater detail
in Section V subsection C and summarised below.

In the literature not all publications cover all aspects of
a Digital Twin from the physical and virtual modelling to
the data, connection and service parts of modelling a Digital
Twin. Modelling and scaling are needed to create generic
Digital Twins. Zheng et al. [8] and Schleich et al. [35]
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both present sensor-based modelling of different stages of
a Digital Twin with Shangguan et al. [80] only focusing on
the hierarchy modelling of the virtual and physical modelling
of a Digital Twin; there is a need for a generic model for a
complete Digital Twin.

Literature covering data fusion is another topic that is heav-
ily researched across all areas of science but is less researched
when applying data fusion and Digital Twins in an indus-
trial setting. Likewise, with Digital Twin modelling, another
avenue is to incorporate data fusion when developing generic
models. The literature explores how predictive maintenance
can incorporate Digital Twins with data fusion which is a
promising area of research [7], [90].

Lacking in research is the modelling of Digital Twins
that use virtual and physical data fusion, this can also be
discussed under the term ‘‘Cyber-Physical’’ fusion. The need
is for standardised approaches when modelling data fusion
with Digital Twins. References [7], [90] and [91], explore
some of the ways data fusion can be used for Digital Twins
in industry, while also highlighting some of the potential
challenges with implementing data fusion, from connection
problems to security threats.

Years of research in the maintenance of machines has pro-
duced the term prognostics and health management (PHM)
primarily used in an industrial setting as it can be applied to
the health and manufacturing processes from small to large
scale plants [24], [92], [93]. Digital Twin technology pro-
motes PHMas a potential for research in areas of fault diagno-
sis and predictivemaintenance for industrial processes, which
are tangible with the development of Digital Twins [10], [94].

The Digital Twin also allows for the potential interaction
and collaboration of machines, giving the ability for sim-
ulation of processes, facilitating the goal of more accurate
manufacturing [82], [95], [96].

1) INDUSTRY CASE STUDIES
In the literature reviewed above, seven authors present find-
ings from a number of case studies on Digital Twin imple-
mentations. To summarise [1], [36] and [2], all three papers
and case studies discuss how digital twins can be utilised to
optimise themanufacturing processes. Reference [1] explores
the benefits in optimisation when applying a Digital Twin
to an assembly line. Min et al. [36] investigate how Digital
Twin use can optimise production in the petrochemical indus-
try. Reference [2] presents work on how Digital Twins and
blockchain can be used to support and optimise the aircraft
manufacturing industry.

The first three publications above concern case studies
which explore optimisation, while the next four, [28], [74],
[77] and [80], relate to the modelling of Digital Twin sys-
tems. [74] investigates a case study on how to model and
maintain a Digital Twin with IoT sensors; [28] uses a case
study to explore how to develop digital twin models using a
multi-levelled framework and [80] explores the use of a hier-
archical modelling framework for Digital Twin development.
The last paper, by Karandiz et al. [77] presents a case study

on the 3D modelling of an ice cream machine exploring how
a Digital Twin can be utilised.

Specific findings from each of these case studies con-
tribute to the overall finding from the literature, presented in
Section VI.D below.

B. DIGITAL TWIN IN HEALTHCARE
This next section discusses the open research questions for
Digital Twins in a healthcare setting. Some of the research
cites the potential for adapting Digital Twin technology for
humans. An example is a Digital Twin of a person to mon-
itor day-to-day health and well-being giving the potential
for a human twin for simulating what positive and negative
lifestyle changes could have on the physical human. The
significant open research comes in the form of modelling
and breaking down the barriers to modelling a human body
to a Digital Twin. Again, down to the issue of having no
standardised Digital Twin modelling methods [91]. Similar
to PHM in manufacturing, this concept is an exciting area
of research with the Digital Twin being used to monitor
and maintain people’s health. From day-to-day healthcare to
ongoing health conditions, the Digital Twin can be used in
a similar way to PHM, combining data analytics to ensure
patients are healthy. Reference [33] presents open research
relating to surgery; using historical datawith current real-time
data for Digital Twin simulations of surgery and overall
healthcare. The aim is to spot risks before they arise using
the virtual twin of the patient.

An area of research is in the field of data fusion, with
[33] and [38] citing the need for research in accurately dealing
with data collected and processed for a Digital Twin, mainly
as it deals with sensitive patient data over the virtual and
physical Digital Twin, adequate interaction and convergence
are needed for greater trust and use; hence, the need for more
research.

Remote surgery and healthcare is another exciting area
of research. The ability of a doctor being able to perform
pre-surgery checks remotely through a Digital Twin is a
promising way to minimise risk to life. Another concept
presented by Laaki et al. [33] is the open research for network
supported remote surgery; this comes in line with the devel-
opments of 5G for mobile networked surgery, another area of
future research for Digital Twins in healthcare [33], [41].

Data fusion, modelling, remote surgery and the implemen-
tation of Digital Twins for healthcare facilitates more specific
areas of research. References [33], [40], [41] and [38] all
cite the ongoing concern with the security of collection and
processing of data for a Digital Twins, more importantly
when dealing with sensitive data from a healthcare setting.
The goal of future work is to ensure the privacy of the data
used for a Digital Twin.

C. DIGITAL TWIN IN SMART CITIES
The final area of interest is the open research questions
for Digital Twins assosiated with smart cities. The review
reported in Section V, above, shows that this area is similar
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to healthcare in terms of limited academic research. The
papers currently cover large parts of this broader vision of
a smart city; anything from city-wide Digital Twins for smart
cities to more specific areas like traffic management Digital
Twins [23], [97] and livestock management [16] to renewable
energy [19]. The topics touched on how the large scale Digital
Twin can be used for a fully connected large town or city.

An exciting opportunity is the combination of Digital Twin
and local infrastructure, as explored by [3] and [83], making
use of 3D modelling for smart city development and main-
tenance. Open areas to be researched come in the form of
applying data analytics, such as predictive analytics applied
to a Digital Twin for developing smart city.

A standardised Digital Twin for a smart city is a must.
However, this necessitates further research in areas for the
interactions of data fusion for the physical and virtual inter-
change of data for a Digital Twin. The need for modelling
in a smart city is emphasised by [23] and [97] with the
call for more generic models that take into account all
components of a smart city. Chen [23] presents a traffic
management concept integrated without the need for further
developments or more generic modelling, setting a standard
for compatibility between smart buildings and smart traffic.
With the rise and development of Digital Twins for manufac-
turing, it is clear to see the opportunities for smart cities are
increasing [3], [23], [83].

D. COMMON NEEDS AND SPECIFIC FINDINGS
1) DATA MODELS
The first set of findings relate to the Digital Twin model and
its architecture. There is a lack of unified models or a generic
Digital Twin architecture in the literature, with no consensus
on how to build a Digital Twin system. Developing a design
paradigm for building a Digital Twin could be a generic way
of implementing a basic Digital Twin system.

2) HETEROGENEOUS SYSTEMS
As the Digital Twin environment is heterogeneous, while also
being connected to large distributed networks, it is an ongoing
goal seen throughout the field for researchers to gain a deeper
understanding of how to deal with such systems. This is
something to be achieved through evaluating and compar-
ing current Digital Twin systems with each other, exploring
how they differ in handling smaller and larger heterogeneous
Digital Twin environments.

3) ARTIFICIAL INTELLIGENCE (AI)
With the advancement in digitalisation, AI is one of the lead-
ers and facilitators for growth and adaptability for enabling
Digital Twins and is becoming the main component of such
systems. The open areas of research evaluating the impact of
AI, machine and deep learning algorithms could potentially
have on the advancements and uses of Digital Twin tech-
nology. These advancements in Industry 4.0 concepts have
enriched the way we live, work and communicate, in turn,

opening up more research opportunities as the demand for
Digital Twin technology increases. AI paves the way for more
case studies in an industry setting for evaluating the predictive
maintenance and remaining useful life of systems as a case
study.

4) SECURITY
With the advancements in technology like blockchain, come
several opportunities to ensure security with the main focus
on exploring solutions that aid secure Digital Twins.

5) DATA EXCHANGE
Like security and AI, with more connectivity comes the rise
in Digital Twin systems and its enabling technologies. More
research will ensure the Digital Twin can thrive when sharing
data between devices. An open area is looking for solutions
in achieving the seamless integration of data for small IoT
systems as well as large heterogeneous systems. The devel-
opment of small Digital Twins needs to be scaled up, with
consideration for weak data exchange.

6) IoT
Most of the open research is from an IoT perspective when
thinking of a Digital Twins. There needs to be a way to
retrofit sensors to ensure the data exchange is accurate and
performing to its best ability. Edge computing is another open
area of research for IoT and Digital Twin technology.

E. CHALLENGES TO OPEN RESEARCH
There are a number of challenges encountered when trying
to address open research questions for Digital Twins, as dis-
cussed below.

1) MULTIDISCIPLINARITY
One significant challenge comes from the multidisciplinary
environments used for designing and developing. These arise
due to the many different fields of research involved in col-
laborating, which can aid breakthroughs, but also a hindrance
as goals in several fields lead in different directions for the
research, ultimately leading to slower results.

2) STANDARDISATION
As highlighted in this paper and seen inmany new and emerg-
ing technologies, another challenge facing Digital Twin is
with the lack of standardisation. This results in discrepancies
between projects in Digital Twin. A contributing factor is the
variety of definitions seen; this, coupled with no standardis-
ation is a challenge, slowing the progress of the Digital Twin
technology.

3) GLOBAL ADVANCEMENTS
With the vast advancements in Digital Twins and their
enabling technologies, come many benefits but also chal-
lenges. Futuristic and unrealistic goals lead to slower uptake
and development of newly adapted technologies and opin-
ions. With the breakthrough of Industry 4.0 and the rapid
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growth of digitalisation comes the growth of technologies
at different rates. However, the accelerated growth leads to
a range of challenges with connectivity and data exchange.
For example, the supporting systems or IoT devices may not
be compatible with the Digital Twin. This growth at different
rates can also pose new challenges for security in terms of
exposing vulnerabilities.

VII. CONCLUSION
The growth in Digital Twin use has seen a shift in recent
years, facilitated by an increase in the number of published
papers and industry leaders investing heavily in developing
Digital Twin technology. It would not be possible without
the same growth in the AI, IoT and IIoT fields, which are
becoming key enablers for Digital Twins. The majority of the
Digital Twin research is focused on the manufacturing field,
as evidenced through the large proportion of papers in this
area reviewed above. The number of papers found in manu-
facturing is noticeably higher compared to papers discussing
Digital Twins for smart cities and healthcare, highlighting
gaps in the research for these areas.

AI is becoming a component within Digital Twins and
exploring where these algorithms can be applied is another
avenue of open research. The effects of AI combined with
Digital Twin are topics amongst the publications but on a
small scale. The exciting and inevitable future research will
explore scaling up smaller successful Digital Twin and AI
projects. An important finding is the lack of standardisa-
tion and misconceptions with definitions for Digital Twins.
Addressing the challenges with standardisation ensures
future developments are actually Digital Twins and not
wrongly defined concepts.

The review carried out above highlights two other areas
of growing interest, Digital Twins for healthcare and smart
cities. Thus, the reason why the paper contributes to a cat-
egorical review that includes not only manufacturing but
healthcare and smart cities. The paper discusses each area,
highlighting how researchers are developing Digital Twins,
while also identifying challenges and key enabling technolo-
gies, thus aiding future work. The paper also identifies the
lack of clear definitions for a Digital Twin, showing how
there is no real difference in definition since being initially
coined in 2012. It is also evident that some research wrongly
identifies Digital Twins as models and shadows. Across the
literature, there are examples of small scale Digital Twin
projects, but a lack of large scale projects. One reason for this
is the lack of domain knowledge on successfully scaling up
larger Digital Twins. Papers concerning Digital Twin use in
manufacturing identify a range of publications with particular
growth in the health of the machines and predictive mainte-
nance. Digital Twins for healthcare draws on similar themes
in terms of health status and monitoring, with a number of
papers investigating Digital Twins use for predictive analyt-
ics of human users. The paper also highlights the advance-
ments in remote surgery and the importance of researching
data fusion, mainly due to the nature of sensitive data used

in healthcare. Research for smart cities is limited, but the
potential to investigate Digital Twins for traffic management
systems and smart city developments is on the rise.

Despite the field of Digital Twin being in its infancy and
dominated by manufacturing, this review paves the way for
further work. The paper provides a foundation for other
researchers to investigate the field further.
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