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ABSTRACT

Stars with accurate and precise effective temperature (Teg) measurements are needed/to testwstellar
atmosphere models and calibrate empirical methods to determine Teg. There are few, standard stars
currently available to calibrate temperature indicators for dwarf stars. Gaia parallaxes new make it
possible, in principle, to measure T.g for many dwarf stars in eclipsing binaries. We aim to develop
a method that uses high-precision measurements of detached eclipsing binary stars, Gaia parallaxes
and multi-wavelength photometry to obtain accurate and precise fundamental effective temperatures
that can be used to establish a set of benchmark stars. We select the wellsstudied'binary Al Phoenicis
to test our method, since it has very precise absolute parameters and extensive archival photometry.
The method uses the stellar radii and parallax for stars in eclipsing, binaries. We use a Bayesian
approach to obtain the integrated bolometric fluxes for the twe,stars'from observed magnitudes,
colours and flux ratios. The fundamental effective temperaturesof two stars in AI Phoenicis are
6199 + 22 K for the F7V component and 5094 + 16 K for the KOIV component. The zero-point error
in the flux scale leads to a systematic error of only 0.2% (& 11K) in Teg. We find that these results
are robust against the details of the analysis, such ag the choice of model spectra. Our method can
be applied to eclipsing binary stars with radius, parallax/and photometric measurements across a
range of wavelengths. Stars with fundamental effective temperatures determined with this method

can be used as benchmarks in future surveys:

Key words: stars: solar-type — binaries: eclipsing — stars: fundamental parameters

1 INTRODUCTION

Detached eclipsing binary stars (DEBS), that are also
double-lined spectroscopic binaries (SB2s).are ideal bench-
mark stars because the mass and radius of both stars can be
directly measured to high precision and accuracy without a
strong dependence on modéls;, With'high-quality light curves
from space-based instrumentation such as Kepler and TESS
combined with radial velocity measurements from echelle
spectrographs, many, DEBS now have radii and masses mea-
sured to an accuracy “of 1% or better (Southworth 2015).
Some systems have masses and radii of both components
measured to,better than 0.5% (e.g. Helminiak et al. 2019a).
The studytof solar (late) type DEBS is of particular impor-
tangé. In the”Geneva-Copenhagen Survey III, F/G dwarfs
and, Kisubgiants are the most suitable stars for estimating
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age (Holmberg et al. 2009). FGK stars are the most numer-
ous type observed by Gaia, with 86% of all stars V<20 ex-
pected to be FGK stars (Robin 2005). Most exoplanets to
date have been found around FGK stars (and M-dwarfs)
(Petigura et al. 2013; Fressin et al. 2013). Asteroseismology
of planet host stars using Kepler (e.g. Carter et al. 2012) and
the upcoming PLATO mission (Rauer et al. 2014) is most
successful on F/G dwarfs and G/K subgiants.

While the best stellar mass and radius measurements
are now very accurate, effective temperature measurements
remain significant sources of uncertainty. Jofré et al. (2019)
found that most FGK type stars (excluding the Sun) have
calculated effective temperatures accurate to 200 — 300 K,
with none more accurate than 50 K. Errors in Teg are now
the dominant source of uncertainty in calibrating stellar
models (Valle et al. 2016). Furthermore, Valle et al. (2018)
found that introducing a systematic Teg error of +150 K has
a significant effect on the uncertainty of reconstructed aster-
oseismic ages. Most effective temperature measurements use
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a temperature scale defined by a set of benchmark stars (e.g.
Heiter et al. 2015). Data-driven approaches and machine
learning methods are increasingly being used for the anal-
ysis of large data sets from massive spectroscopic surveys
(Andrae et al. 2018; Ness et al. 2015). These are trained and
calibrated on data with classical determinations of param-
eters. There is no physics in these data-driven methods,
so they rely heavily on benchmark stars to establish how
features in the data relate to physical quantities, such as
Tef. There are several considerations when making a reli-
able Teg scale. First, the accuracy. Typically, for calibrators
(FGK dwarf benchmarks) the accuracy is 100 K. There are
few stars with Tef measurements more accurate than this
(e.g. Sun). Secondly, consistency is needed between surveys,
methods, and stars of different [Fe/H], [«/Fe], and logg. Fi-
nally, precise T measurements is necessary, but the current
state of measurements suggests that precision is not such an
urgent issue to address.

Most effective temperature estimates are made indi-
rectly, using spectroscopic or photometric temperature in-
dicators. In general, spectroscopic determinations of effec-
tive temperature can give precise values with typical uncer-
tainties of 50 K Jofré et al. (2019), but these depend consid-
erably on stellar atmosphere models. As an alternative to
using high quality spectroscopy, effective temperatures are
often determined using colour-temperature relations based
on the infrared flux method (IRFM) (e.g. Casagrande et al.
2010). The IRFM uses widely available photometry to ob-
tain a relatively accurate Teg mostly free from model de-
pendence. However, results from this method suffer from
uncertainties in interstellar extinction, flux calibrations and
stars with anomalous abundances — the variation in Teg
values for the same star with different photometry, extinc-
tion law or colour-temperature relation is typically 100 K
(Casagrande et al. 2011; Jofré et al. 2019).

The most accurate, model-independent determinations
of effective temperature come from a fundamental approach
based on the Stefan-Boltzmann law. This approach requires
measurements of the angular diameter and absolute flux.
However, there are few stars for which the necessary data,ex/
ist and are accurate. Heiter et al. (2015) used interferomet-
ric angular diameters along with bolometric fluxes from in-
tegrated observed spectral energy distributions=te calculate
Teg values for a sample of FGK stars t6 a, precision of 1.5%
or better. The accuracy of their values of 8 and Fy,, were up
to 3% and 5% respectively, corresponding t6 errors in Teg of
1.5% and 1%, i.e. approximately 100 K for a solar-type star.
This approach is only possible for nearby stars with suit-
ably large angular diametersmAngular diameter can also be
inferred from radius meéasured in an eclipsing binary, along
with a parallax. This technique has not been applied much
to date because good, parallax measurements have not been
available for many, EBs. For example, Ribas et al. (1998)
used a sample ofswell-studied DEBS and Hipparcos paral-
lax measurements to determine Teg to 1 — 10%. The results
from this study suffered from uncertainties dominated by
Hipparcos parallax and bolometric corrections, which were
used, along with visual apparent magnitudes to obtain bolo-
metric flux.

The release of Gaia DR2 has provided precise parallax
measurements of 1.3 billion stars (Gaia Collaboration et al.
2018). This presents an opportunity to revisit a fundamen-

tal approach for determining the effective temperatures of
a large sample of DEBS, and in future work, the possibil-
ity of constructing a sample of FGK benchmark stars with
accurate and precise mass, radius and effective temperature
measurements. In this paper we will describe a method for
calculating the fundamental Teg of DEBS using angular di-
ameters derived from stellar radii and parallax, and bolo-
metric flux calculated by distorting model SEDs to fit a set
of apparent magnitudes, photometric colours and flux ratios
covering a wavelength range from far ultraviolet to the in-
frared. We apply this method to the well-studied DEB Al
Phoenicis, an ideal case to show its potential. It is possi-
ble to get very high precision in Teg for this system due to
the very accurate radii (Maxted et al. 2020), precise patal-
lax measurements from two independent sources, good“con-
straints on UV flux from IUE, and a tight upperlimit on
reddening. Based on these results, we discuss the prospects
for this method in terms of testing stellar models and ecreat-
ing benchmark stars.

2 METHOD

Our method is based on the .definition of the effective tem-
perature for a star of radius"R and Juminosity L, viz.

. 2 4
L'=4nR"0sp T g,
where ogg is the Stefan-Boltzmann constant. For a binary
star at distance(d, i.e{ with parallax @ = 1/d, the flux cor-
rected for extinction ebserved at the top of Earth’s atmo-
sphere is

OSB 214 24
Jow = Joa + oo = =~ |01 Te1 + 03 Ter 5 |-

where 0y = 2R @ is the angular diameter of star 1, and sim-
ilarly for star 2. The radius here refers to the the Rosseland
radius, which is not necessarily identical to the radius ob-
tained from the analysis of the light curve. Any difference
between these definitions of the radius will be on the order
of the atmospheric scale height, so will only be a significant
difference for stars with very precise radii.

We use observed apparent magnitudes in a number of
ultraviolet, optical and infrared photometric systems to mea-
sure the integrated (bolometric) flux f ;. The method out-
lined below tries to find a balance between the contributions
from the data and the physics: bolometric luminosity (over
the whole spectrum) is only obtainable from band-limited
photometric measurements if the spectral energy distribu-
tion (SED) is known, which requires knowledge of Teg. To
break this circular argument we use Legendre polynomials to
distort the model SED for each star and produce the func-
tions that are integrated to predict observed magnitudes,
flux ratios, etc. We use Legendre polynomials as the basis
functions for this distortion because they are smooth func-
tions that are easy to compute and that can be normalised
over the wavelength range of interest. The resulting integrat-
ing function will therefore have realistic small-scale features
(absorption lines, absorption edges and molecular bands) de-
termined by the model atmosphere, but the broad shape of
the function determined by the data. By using good mod-
els SEDs and sufficient data to constrain the shape of the
flux distribution, the integrating functions should be very
close to the true SED of each star. This approach is in part
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motivated by Heiter et al. (2015), in which the authors note
a 4% difference in Fyg obtained from integrating observed
and model spectra for K and M dwarfs.

The integration is done using the following function to
represent the shape of the underlying SED for each star:

Na
i = £ X Ai(x) = £ % | doi + Zdj,in(x) . (1)
=1

Here, f7% is the SED from a stellar model atmosphere de-

fined over the range (Amin, Admax) for star i, P; is the jM Leg-
endre polynomial and

X =2(A = Amin)/(Amax = Amin) — 1.

A;(x) is the distortion function that is applies to the model
SED for star i to obtain the integrating function, f/ll This
distortion function is a linear combination of Legendre poly-
nomials with coefficients d;;. These distortion coefficients
are determined by finding the best fit to the available data
with additional constraints, if necessary, to ensure the inte-
grating functions are realistic. Ny is the number of distortion
coefficients, which we assume here is the same for both stars.
Choosing the best value of Ny is a matter of trial-and-error
— this is discussed further below. The constant dj; is cal-
culated such that A;(x) =1 at 1 = 5556 A. The tilde symbol
here denotes that this function is normalised, i.e.

Amax -
/ fadd = 1.
Amin

The limits Apin = 1000 A and Amax = 30 um are chosen so
that at least 99.8% of the flux from the model SED is in-
cluded within these limits. The “distortion coefficients” d; ;
are included so that the overall shape of the SED for each
star is determined by the data, not the model.

Since .f/Li is normalised we can use the following func-
tion to represent the observed flux at the top of Earth’s
atmosphere from star i:

USB x
fai= TQ?Tgﬁ,[f/LiA/l,

where A, is the wavelength-dependent extinctionidue to in-
terstellar dust. We use the extinction law from Cardelliet al.
(1989) for diffuse dust with R(V) = A(W/E@B=YV) = 3.1.
These are the functions that are integrated over the appro-
priate response functions to calculate/flux ratios, photomet-
ric colours and apparent magnitudes im_each photometric
system.

We use a Bayesian approach'to find the posterior distri-
butions for Teg 1 and Teg ) We frame this problem in terms
of a set of model parameters; M, and the data, D, so that
the posterior probability distribution is

P(M|D) o< P(D|M)P(M),

where P(M)/is the prior probability distribution for M. The
likelihood P(D|M)/can be divided into four parts according
to thetyperof the data being used:

P(D|M)x£9£m£x£€-

Since we are only interested in relative values of the over-
all likelihood we omit any constant normalisation factors
when we calculate these individual contributions to the like-
lihoods.

The angular diameters 6] + 0y, and 6 = 09 are not
independent because they are both calculated using a single
value of the parallax and, in general, R; and R, will also be
correlated, i.e., the joint probability distribution P(61, 65) has
a non-zero correlation coefficient, p. For a model where the
angular diameters of the stars are 6] and ), we account for
this correlation by using the following expression to calculate
the log-likelihood Lg:

Z

log, Lo = ——,
e ~0 2(1—,02)

where

(0] —01)%  2p(0] - 01)(05—02) (05— 02)°
= 5 - + 3 .
T,1 Sy

06,100,2

For each observed apparent magnitude nmy + oyt we
predict a synthetic magnitude m,’C by numerical integration
of the binary SED, fi, = fi1 + fa,2, weighted by the re-
sponse function, Rj;;(1). The details of how this synthetic
photometry is calculated vary between different photometric
systems, but always requires a zeroypoint, magnitude which
has some uncertainty, i.e. a standard’error o, . In addi-
tion to this zero-point error, there will be’additional sources
of error that are difficult to-characterise, e.g. intrinsic stel-
lar variability, errors in the response function, errors in the
stellar models, etc. We‘quantify'this additional noise with a
single parameter oexym. The likelihood L, is then given by

loge L = 40.5x " (Wi m(mj, = mi)? ~oge(wim))
k

where wy , = 1/(0'5”( + O—Zzp,k + o'ngm).
For anobserved photometric index xj 07 x and a model
that predicts an index value x,’(, the likelihood is calculated

asing

foge Lx = =0.5% Y (wx (xf = 11)? = loge (we 1))
k

where wy = 1/(0')%,{ +02 ), and Oext,c 18 a parameter that

extc
quantifies external error gources in photometric indices.

It is essential to have measurements of the flux ratio at
a number of different wavelengths in order to calculate accu-
rate effective temperatures for both stars independently. We
assume that these flux ratios, £ +o x, are also affected by an
additional noise source with standard deviation o ¢, partly
because of the reasons listed above for apparent magnitudes,
but also because the errors in these ratios derived from the
light curve analysis may be underestimated. With this as-
sumption, the contribution to the likelihood for a model that
predicts flux ratios ¢ is

loge Le = =0.5% . (wi, (€] — ) = loge(wi. ).
k

where wy p = 1/(0'2k + a'ezxg[,).

The first eight free parameters in our model, M, are
Tett, 1, Tefr,2, 075 05, E(B=V), ext,m; Text,¢ and oexi,c. We find
that these parameters are all well-constrained by the data so
we use an improper uniform prior that requires these quan-
tities to be positive-definite, but that has no upper bound.
For the distortion coefficients we set a uniform prior over the
range [—1, 1]. We use EMCEE (Foreman-Mackey et al. 2013),
a PYTHON implementation of an affine-invariant Markov
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Table 1. Data for AI Phe used in our analysis.

Quantity Value Source

Parallax, @ 5.885+0.019mas  See text.

Radius, Ry 1.8036 £ 0.0022Re  Maxted et al. (2020)!
Radius, Ra 2.9303 +£0.0023 Ro 7
Apparent magnitude
FUV 20.473£0.160 GALEX
u320 10.734 £0.035  This work
u220n 13.932 +£0.100 7
u220w 14.066 +0.119 7
G 8.443 £0.0002  Gaia DR2
BP 8.798 +0.001 7
RP 7.914 £ 0.001 7
J 7.301 £0.023 2MASS
H 6.935 +0.034 7
Ks 6.819 +0.026 7
W1 6.747 £0.037 WISE
W2 6.830 +0.022 7
W3 6.811 £0.016 7
W4 6.768 + 0.061 7
Flux ratios
u320 0.342+£0.042  This work
u220n 0.030 = 0.066 7
u220w 0.059 + 0.090 7
U 0.442+0.021  Andersen et al. (1988)
U 0.446 + 0.020 7
B 0.725 £0.011 7
B 0.727 +0.011 7
\% 1.011 £ 0.009 ”
A% 1.011 +0.009 7
R 1.197 £ 0.024 ”
R 1.198 +0.024 7
I 1.406 + 0.023 ”
I 1.406 + 0.023 7
u 0.475 +£0.017 ”
v 0.624 + 0.009 7
b 0.870 = 0.006 ”
y 1.036 + 0.007 7
TESS 1.319£0.001 Maxted et al. (2020)
H 2.012+0.010  Gallenne et ald(2019)
Stromgren photometry
(b-y) 0.431 £0.0037 Holmbergretral=(2009)
m 0.209 + 0.0041 7
c1 0.356 + 0.0066 C
(b-y) 0.424 +0.0037  Relpurth/(1978)
m 0.219 +0.0041 7
1 0.357 + 0.0066 {
Derived quantities
6, 0.0988 + 0.0004" 2R @
6> 0.1606% 0.0005 2Ryw

ncluding cerrection\from apparent disc radius to Rosseland
radius.

chainMonte Carlo (MCMC) ensemble sampler, to calculate
the posterior probability distribution (PPD) of these model
parameters, i.e., to generate a large sample of points drawn
from probability distribution P(M|D).

—— Primary, F7V
Secondary, KOIV
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Figure 1. Multi-panel plot shewingsdata we used in our anal-
ysis. Top: BT-Settl 1D model.SEDs for the two stars: primary
Ter,1 = 6200K, logg = 3.5,\[Fe/H|] = -0.14, [a/Fe] = 0.06; sec-
ondary Tef,» = 5100 K logg =4.0, [Fe/H] = -0.14, [@/Fe] = 0.06.
These have been brought onto the same scale by multiplying by
12 and r22 respectively, where r = R/a. Middle: Filter response
profiles for apparent magnitude data. In order of increasing wave-
length: GALEX FUV, IUE (see Section 3.1.1), Gaia BP, G and
RP, 2MASS JHKs, WISE W1-4. Bottom: Observed flux ratio val-
ues.and standard errors from IUE, Stromgren uvby, Johnson UB-
VRI, TESS{ and H plotted over the associated bandpass, centred
on pivet wavelength.

r

3 APPLICATION TO AI PHE

We selected Al Phe as the first eclipsing binary to anal-
yse with our method because this is a very well studied
eclipsing binary that is moderately bright (V=8.6) for which
good-quality light curves in several photometric bands are
available from the near-ultraviolet (NUV) to the I-band, in-
cluding a very high quality light curve from the TESS mis-
sion. Maxted et al. (2020) analysed the TESS light curve
of AI Phe using several different methods and, in combina-
tion with spectroscopic orbits from 3 independent sources,
were able to measure the masses and radii of both stars
to an accuracy of better than 0.2%. This very high accu-
racy in the stellar radii is possible because AI Phe is a
bright system with stars of similar brightness where the
eclipses are total. This gives a direct measurement of the
flux ratio for the binary from the depth of the eclipse where
one star is completely occulted, and strong constraints on
the geometry of the binary from the contact points of the
eclipse. Limb-darkening does add some uncertainty to the
measurements of the radii. Maxted et al., accounted for
this in their analysis by modelled the light curve using sev-
eral different methods to parameterise the limb darkening.
Haberreiter et al. (2009) found that the radius of the appar-
ent solar disc is 0.33Mm larger than its Rosseland radius.
Scaling this value according to the atmospheric pressure
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scale height we find that the Rosseland radii of the stars
in Al Phe are approximately 0.1% smaller than the values
given in Maxted et al. (2020). All radius values used in this
paper refer to the Rosseland radius including this correction.
Al Phe is an important system for testing stellar evolution
models of single stars (e.g., Andersen et al. 1988; Pols et al.
1997; Ribas et al. 2000; Lastennet & Valls-Gabaud 2002;
Spada et al. 2013; Ghezzi & Johnson 2015; Higl & Weiss
2017) so we felt it would be valuable to have effective tem-
perature estimates of comparable accuracy to the masses
and radii measured by Maxted et al. (2020).

3.1 Data

The input data for our analysis of Al Phe are listed in Ta-
ble 1. For the parallax we have used the average of the orbital
parallax from Gallenne et al. (2019, 5.905 + 0.024 mas) and
the value from the Gaia DR2 catalogue (5.8336+0.0262 mas;
Gaia collaboration 2018) including the zero-point correction
from Graczyk et al. (2019, —0.031 + 0.011 mas). For the er-
rors on the radii we use the sum of the random and system-
atic errors quoted in Maxted et al. (2020). The Gaia G, BP
and RP magnitudes are also from the Gaia DR2 catalogue
and include the correction from Casagrande & VandenBerg
(2018) that is required to make these magnitudes consistent
with the CALSPEC flux scale. WISE magnitudes are taken
from the All-Sky Release Catalog (Cutri & et al. 2012) be-
cause we find that the photometry is more reliable for bright
stars in this catalogue than the ALLWISE catalogue.! The
standard error estimates for the Strémgren photometric in-
dices are taken from Olsen (1994).

Flux ratios from the analysis of the UBVRI and uvby
light curves are taken from Andersen et al. (1988). These
should be very reliable because the primary eclipse is total,
i.e. the flux ratio is determined directly from the depth of
the eclipse. For the flux ratio in the TESS band we take
the mean value with its standard deviation from the re-
sults presented in Maxted et al. (2020) using a variety“of
analysis methods. We also include the flux ratio value,2.012
measured in the H-band using the VLTI interferometer, by
Gallenne et al. (2019). The bandpass for this flux ratio mea-
surement is not well defined so we assign an nominal error to
this value of 0.01, and use the 2MASS H<band*te calculate
the flux ratio for the measurement.

8.1.1 Ultraviolet photometry and flux ratios

The near-UV band contains a significant portion of the total
flux, therefore including photometry measurements in this
region is useful for constraining the shape of the SED. Al
Phe has archival GALEX NUV, FUV fluxes and IUE spec-
tra. Recent studies into the absolute photometric calibra-
tions of GALEX magnitudes find a non-linear offset between
archive and/ comparison fluxes, particularly for bright stars
in the NUV{(Camarota & Holberg 2014; Wall et al. 2019).
We compared the observed and calculated NUV magnitudes
for” aysetwof ' FGK dwarfs with corrected archive GALEX
magnitudes and CALSPEC spectra (Bohlin et al. 2014). We
found that the scatter was too large for us to confidently

! http://wise2.ipac.caltech.edu/docs/release/alluise/

Table 2. Properties of our IUE trapezoidal band passes: pivot
wavelength Apivor, minimum Apin and maximum Amax wavelengths
at which the band pass is defined, and the wavelength range over
which to taper, Asf.

Band /lpivot [A} Amin [A] Amax [A} Adsoft [A]
u320 3224 3151 3298 50
u220w 2221 1860 2600 50
u220n 2149 2000 2300 50

15077 7
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Figure 2. IUE spectrumeef AI'Phe outside of primary minimum,
with poor quality’ data narked (circles). Also shown are trans-
mission profiles of the three filters u320 (purple), u220w (blue)
and u220n (yellow) and an extinction profile for E(B-V)=0.05
(dotted line) te illustrate the location of the 2175A absorption
featurer

rely*on the GALEX NUV magnitude for stars of compara-
bleybrightness to AI Phe so we decided to not include it in
our dataset.

Milone et al. (1981) obtained a series of spectra of
Al Phe during primary minimum with the Interna-
tional Ultraviolet Explorer (IUE) satellite. We downloaded
the data from the ITUE NEWSIPS archive’? and ap-
plied the wavelength-dependent corrections suggested by
Bohlin & Bianchi (2019) to put the flux on the CALSPEC
scale. We created three trapezoidal filters with which to in-
tegrate the IUE spectra, the properties of which are given
in Table 2. Quality flags on the data restricted the range of
useful wavelengths we could use, so we placed one filter at
3200A (u320) to capture the majority of flux, and two (nar-
row and wide) around the 2175A absorption feature due to
interstellar extinction (u220n, u220w) to investigate whether
we could use this feature to constrain the reddening.

We integrated the mean flux in each filter using Equa-
tion A5 from Bessell & Murphy (2012),

_ ffv(V)Rv(V)dV
(f) = W’

and constructed light curves for each band. We fitted each
with an ELLC light curve model (Maxted 2016), using a
POWER?2 limb darkening law with coefficients calculated from

2 https://archive.stsci.edu/iue/newsips/newsips.html
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Normalised flux
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Figure 3. HARPS spectra of Al Phe in the region of the Nal
doublet. The spectra have been normalized and vertically offset
for clarity. The rest wavelengths of the Nal lines are indicated by
vertical dashed lines.

STAGGER 3D atmospheric models. The primary eclipse of Al
Phe is total so the choice of limb darkening model is less
important, and we obtained similar results with linear and
power2 limb darkening models. We used EMCEE to sample
the posterior distribution with the flux out of eclipse, flux
ratio and log(f) as free parameters. The maximum likelihood
values for flux out of eclipse were then converted to an AB
magnitude included as input data in our analysis, along with
values for the flux ratio between the two stars.

3.2 Synthetic photometry

Comparing synthetic magnitudes calculated from the SED
of a star to observed magnitudes requires some care. We
found appendix A of Bessell & Murphy (2012) to be a very
helpful introduction to the subject of synthetic photometry.

For the GALEX FUV band we used the response
function published on the GALEX web pages.’. For the
error on the zero-point of the GALEX AB magnitude
scale we use the value 0.134 mag from Camarota & Holberg
(2014). For the Gaia photometry we use the revised re-
sponse functions and zero-points from Evans et al. (2018).
The 2MASS response functions were obtained from the Ex-
planatory Supplement to the 2MASS All Sky Data Re-
lease.*. The zero-points with their standard errors arefaken
from Maiz Apelldniz & Pantaleoni Gonzalez (2018). For the
WISE photometry we calculate synthetic magnitudes on
the AB magnitude scale and then apply the corrections
to Vega magnitudes from Jarrett et al. (2011) “for" which
the estimated error is 1.45% (0.016 miag). For the IUE
NEWSIPS spectra we adopted a zero pointierrot of 4% from
Nichols & Linsky (1996).

3.3 Interstellar reddening

Fig. 3 shows a selection of HARPS spectra of AI Phe ob-
tained from the ESO _Science Archive Facility in the region
of the Nal doublét. There are no detectable interstellar ab-
sorption lines-in this region and so the reddening towards
AI Phe must be véry/close E(B-V) = 0 (Karatas & Schuster
2010). Accordingly, we set a Gaussian prior on the reddening
E(B-W¥) = 0+ 0.005 and set a lower limit E(B-V)> 0.

3 https://asd.gsfc.nasa.gov/archive/galex/tools/
Resolution_Response

4 https://old.ipac.caltech.edu/2mass/releases/allsky/
doc/explsup.html

3.4 Priors on infrared flux ratios

The near-infrared (NIR) flux from solar-type stars com-
pared to the total flux or the flux at optical wavelengths
shows a well-defined relationship with T that is almost
linear and that has little dependence on metallicity or sur-
face gravity. This is the basis of the infrared flux method
(Blackwell et al. 1979; Casagrande et al. 2010) or the use of
colours such as (V — Kg) to estimate effective temperatures
for FGK-type stars (Boyajian et al. 2013). There is only one
direct measurements of the flux ratio for AI Phe at wave-
lengths longer than 1 um. We were concerned that not im-
posing any additional constraints on the flux ratio at these
wavelengths could mean that the resulting models become
unrealistic, e.g., the (V — Kj) colours computed using Sam-
ples from P(M|D) might show a much large scatter{than is
observed in real stars. This could happen if the4ise of dis-
tortion coefficients allows for models where the flux from
one star is unrealistically high at NIR wavelengths while
the other is too low, unless some constraint in, placed on
the flux ratio at these wavelengths. We address/this concern
by making the assumption that the stars in"Al Phe behave
similarly to other dwarf and sub-giant FGK-type stars in
the solar neighbourhood in order to put some constraint on
the flux ratio in the 2MASS J,3H and K bands, and the
WISE W1, W2, W3 and.W4 bands. We use stars from the
Geneva-Copenhagen survey (Holmberg et al. 2009) to define
relationships between"Leg and (V-J), (V-H), etc. The val-
ues of Teg, E(B£V), log g‘and [Fe/H] for each star are taken
from Casagrande et al-’(2011). We define separate relations
for the F7Vstar, and the KOIV star based on a different
sub-sample of ‘stars with similar properties to each. For the
F7V/star the sub-sample is defined by the following limits.

[Fe/H] > -0.5
E(B-V) <0.05
35<logg <4.5
6200K < Teg < 6600K

For the KOIV star the limits on [Fe/H] and E(B-V) are the
same but for effective temperature and surface gravity we
use the following limits.

e 30<logg <45
e 4900K < Te < 5500K

Both sub-samples were cross-matched with the WISE All
Sky Data release (Cutri & et al. 2012) using VO tools within
TOPCAT (Taylor 2017) and matching radius of 6 arcsec.
Duplicate sources were removed from the sub-samples, leav-
ing 4123 stars in the sub-sample for the F7V star and 556
stars in the sub-sample for the KOIV star. Linear relations
for the colours of these stars corrected for extinction of the
form

(V=X)g =c+mX(Tegg — Trer)/1000 K

were established using the median value of the sample and
the robust Theil-Sen estimator of the slope, as implemented
in python function scipy.stats.mstats.theilslopes. The
scatter around these relations was measured using the root-
mean-square of the residuals within 5 times the median ab-
solute deviation from the fit. The results are given in Table 3
and the fit to the data for (V-Kj) is shown in Fig. 4. The
flux ratio in each band is calculated anew from the values of
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Table 3. Results for robust linear fits to extinction-corrected
(V = X)g colours for selected stars in the solar neighbourhood.

Trer = 6400 K Trer = 5200 K

X c m rms c m rms

J 0.919 -0.408 0.015 1.511  -0.605 0.018
H 1.118 -0.549 0.019 1.918 -0.821 0.027
Ky 1.181 -0.564 0.017 2.033 -0.872  0.025
W1 1.230 -0.568 0.027 2.094 -0.865 0.035
W2 1.234 -0.547 0.039 2.101  -0.928 0.062
W3 1.182 -0.554 0.021 2.062 -0.907 0.036
W4  1.225 -0.519 0.050 2.095 -0.951 0.060

i R BRI B
=250 0 250
Tesr — 5200 K

Tesr — 6400 K

Figure 4. De-reddened V-K colours of F-type dwarfs stars (left
panel) and G/K-type sub-giants (right panel) in the solar neigh-
bourhood. The turquoise lines show the linear fits to these data
described in section 3.4.

Tefr,1, Tesr,2 and the V-band flux ratio for each trail chain
step, but otherwise are included in the calculation of the
likelihood in the same way as the directly measured flux
ratios. The flux ratio in the W1 band as a function of the
effective temperature ratio is shown in Fig. 5 for every pair-
ing of stars from the two sub-samples excluding stars’more
than 5-sigma from the appropriate linear Teg — (V=W1L) re,
lation. There is a well-defined correlation between the flux
ratio and the effective temperature ratio relation which is
accurately predicted by our linear relations, despite the fact
that we have paired stars with disparate [Fe/H| and logg
values.

3.5 Results

The results of 14 fits using different sets of input parameters
are given in Table 6. By, testing the effects of our inputs, we
were able to characterise ‘the’method — see Section 4. We
adopt the values/from run A as our final results for Teg:
6193 + 24 K forsthe'F'7 V' component and 5090 + 17 K for the
KOIV components We give the fundamental parameters of
AT Phe from this/work and Maxted et al. (2020) in Table
5 for referemnce. The output integrating function and distor-
tion“functions for this solution are shown in Figure 7. For
oursnominal run, we used 256 walkers randomly dispersed
close to’the Nelder-Mead best fit solution and ran the chain
over/10000 steps with a burn-in of 4000. The resultant dis-
tributions of parameters (distortion coefficients excluded for
clarity) can be seen in Figure 6.

Table 4. Predicted data values and residuals for the best-fit
model from Run A. The predicted apparent magnitudes are

quoted together with the error on the zero-point.

Parameter  Value Residual
Apparent magnitude
FUV 20.27 £0.13 +0.20 £ 0.21
u320 10.750 £ 0.043 —-0.016 £ 0.056
u220w 14.029 + 0.043 +0.037 £ 0.126
u220n 14.000 + 0.043 —-0.068 £ 0.109
G 8.440 + 0.001 +0.003 + 0.001
BP 8.809 + 0.001 —-0.011 £ 0.001
RP 7.904 + 0.004 +0.009 + 0.004
J 7.293 + 0.005 +0.008 + 0.024
H 6.910 + 0.005 +0.025 £ 0.034
Ks 6.794 + 0.005 +0.025 £ 0.026
W1 6.722 +0.002 +0.025 +,0:037
W2 6.837 +0.002 —0.0074 0.022
W3 6.805 + 0.002 +0.006 + 0.016
W4 6.709 + 0.002 +0.059 £ 0.061
Observed flux ratios
u320 0.414 0.342 £ 0.042
u220w 04048 0.059 + 0.090
u220n 0.025 0.030 + 0.066
U 0467 0.442 £ 0.021
U 0.467 0.446 £ 0.020
B 0.731 0.725 £0.011
B 0.731 0.727 £ 0.011
\% 1.005 1.011 £ 0.009
\% 1.005 1.011 £ 0.009
R 1.206 1.197 £ 0.024
R 1.206 1.198 + 0.024
I 1.374 1.406 + 0.023
I 1.374 1.406 + 0.023
u 0.443 0.475 £0.017
v 0.635 0.624 + 0.009
b 0.835 0.870 + 0.006
y 1.007 1.036 + 0.007
TESS 1.324 1.319 £ 0.001
H 2.017 2.012 £ 0.010
Predicted flux ratios
J 1.658 +0.030 + 0.023
H 2.017 +0.014 £ 0.033
Ks 2.076 +0.059 + 0.030
W1 2.103 +0.053 £ 0.044
W2 2.134 +0.047 £ 0.073
w3 2.198 +0.003 £ 0.042
W4 2.143 +0.059 + 0.078
Strémgren photometry
(b-y) 0.461 + 0.004 —0.030 + 0.006
mj 0.153 £ 0.006 +0.056 + 0.007
cy 0.461 + 0.008 —-0.105 £ 0.011
(b-y) 0.461 £ 0.004 —0.037 £ 0.006
my 0.153 + 0.006 +0.066 + 0.007
cy 0.461 + 0.008 —0.104 £ 0.011

Angular diameters

0,
0>

0.0989 + 0.0004
0.1605 + 0.0006

—0.0000 + 0.0006
—0.0001 + 0.0007
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Figure 5. Flux ratios in the WISE W1 band for G/K-type sub-
giants relative to F-type dwarfs stars in the solar neighbourhood.
The fluxes have been scaled so that the flux ratio in the V-band
is 1. The orange lines show the flux ratio predicted by our linear
Teg — (V-W1) relations assuming Teg 6300 K or 6500 K.

Table 5. Fundamental parameters of Al Phe from this work and
Maxted et al. (2020). The radii here are Rosseland radii, calcu-
lated by applying a small correction to the radii obtained from
the analysis of the eclipses by Maxted et al. All quantities are
given in nominal solar units (Prsa et al. 2016)

Parameter Value Source

M/ MY 1.1938 +£0.0008  Maxted et al. (2020)
My /MY 1.2438 +0.0008 ?
Ry /RY 1.8036 = 0.0022 »
Ry/RY 2.9303 +0.0023 »
T /T 1.074 = 0.004 This work
Ty /T 0.882 + 0.003 ”
L/ LY 4.329 +0.0627 ”
Lo/ LY 5.207 + 0.065 ”

Some care must be taken when using MCMC methods
to explore a model parameter space with-many=dimensions
because of the possibility that the likelthood, function has
more than one maximum, or that the PPD, has a complex
shape. Either of these possibilities makes,it’difficult to fully
sample the PPD. This problein can be avoided by using
model parameters that are closely,related to features visible
in the data. Legendre polynemials are orthogonal to one
another, i.e.,

1
= = 1
'/0 Pin(x)Pp(x)dx = mémn

We therefore expect; that any linear combination of these
polynomialsithat _can give a good fit to the data will have
coefficients'with similar values.

Asexpected, there is some correlation between the dis-
tortionicoefficients, but the Legendre polynomials are well-
behaved and the probability distributions are unimodal.
Therefore the correlation is not an issue, since the affine-
invariant MCMC algorithm is able to properly account for
correlation in unimodal distributions. Our effective tempera-

Teff, 2

®

A
4
Aldal

elalabh
ke b

Tefr,1 Tefr,2 61 0, E(B-V) Oextm Oext,r Jextc

01

0,

Oext, m

Oext, ¢

) b b olwN

Oext, ¢

Figure 6. Contour plot of the eight main parameters used in our
MCMC analysis, for our primary run A/in Table 6.

tures are correlated, with asPearson correlation coefficient of
0.805. An irreducible error,in our analysis is the uncertainty
in the flux of Viega that sets the zero-points of the photo-
metric systems we have used. We use the value 0.5% for the
uncertainty i the flux of Vega at 5556A from Bohlin et al.
(2014).togetherywith the wavelength-dependent error in the
fluxdscale shown in their Fig. 14 to estimate the system-
atic error in our Teg values from this zero-point error. By
adding both these errors to the best-fit SED of each star
we find that the systematic error in the integrated flux is
0.8% for both stars, so the systematic errors in Teg are 12K
for the F7V star and 10K for the KOIV star. For most ap-
plications, the random and systematic errors can simply be
added, but there are applications where the systematic error
should be only added once, for example, light curve models
which use the parameters Teg | and Tef 2/ Tesr,1. We also cal-
culated stellar luminosities by exploring the parameter space
of Te, R and @ for each star with EMCEE. We find that
log(L;/Le) = 0.636 + 0.007 and log(L,/Le) = 0.717 + 0.005,
and correlations between the free parameters are shown in
Figure 8.
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Figure 7. Integrating functions and distortion functions, as de-
fined in equation 1, for our best solution (run A). Top: Maximum
likelihood integrating functions of the two stars. Middle: The dis-
tortion functions applied to the model SED for the primary star,
showing maximum likelihood fit (thick line) and all other solu-
tions. Lower: Same, but for the secondary star.
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Figure 8. Contour plotsef .the parameters used in our calculations
of stellar luminosities.
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Table 6. Fit results from different sets of input parameters. Run A is our nominal output. Values in parentheses are 1-o- standard errors in the final digit(s) of the preceding value.
Ny is the number of distortion coefficients included per star, A1 is the size of the integrating function wavelength bins in A. *N.B. these parameters have a non-Gaussian probability
distribution. E(B-V) are given as 1-o- upper limits.

Run Nx Al Tmod1  Tmod2 [Fe/H] [a/Fe] Teg, Tefr2 EB-V)*  oeym®  Text.e¥  Texc™ rmsp, | rmsa 2 Notes
(A] (K] (K] [dex] [dex] (K] (K] [mag] [mag] [mag] [mag]

A 10 20 6200 5100 -0.14  0.06 619922 5094+16  <0.004 0.01(2) 0.02(1) 0.09(4) 0.036(16) 0.035(15)

B 10 50 6200 5100 -0.14 0.06 6197 £22 5093 + 17 <0.004 0.01(2) 0.02(1) 0.09(4) 0.036(13) 0.035(13)

C 10 50 6250 5050  -0.14  0.06 6196+40 5090+29  <0.005 0.02(4) 0.02(1) 0.09(3) 0.046(43) 0.055(37)

D 6 50 6200 5100 -0.14  0.06 6197£20 5095+15  <0.004 0.01(1) 0.02(1) 0.10(5) 0.019(10) 0.024(10)

E 14 50 6200 5100 -0.14 006 6193£32 5091£24  <0.005 0.03(3) 0.02(1) 0.08(3) 0.061(39) 0/058(40)

F 10 50 6200 5100 0 0 6192+23 5089+18  <0.004 0.02(2) 0.02(1) 0.10(3) 0.056(23) < 0.037(24)

G 10 50 6200 5100  -0.5 0.2  6198+22 5092+16  <0.005 0.01(2) 0.02(1) 0.08(3) 0.045(12) “0.061(12)

H 10 50 6200 5100 -0.14  0.06 6196+20 5091+15  <0.004 0.01(1) 0.02(1) 0.10(4) 0.034(T4) %0.034(12) !
I 10 50 6200 5100 -0.14  0.06 6287+87 5146+56 <0.03 0.02(4) 0.02(1) 0.09(3) 006542) 0.052(36) 2
J 0 50 6200 5100 -0.14 0.06 6196 £ 18 5098 + 13 <0.005 0.01(1) 0.03(1) 0.10(4) — -

K 10 50 6200 5100 -0.14 006 6332+120 517176 <0.04 001(2) 0.02(1) 0.08(3)( 0.068(10) 0.058(33) 3
L 10 50 6200 5100 -0.14  0.06 6194£23 5091+17  <0.004 0.01(2) 0.02(1) 0.09(3) 0.034(19) 0.036(18) *
M 10 50 6200 5100 -0.14  0.06 6217+86 507265  <0.005 0.02(3) 0.01(1) 0.00(4) ) 0.056(29) 0.075(48)
N 10 50 6200 5100 -0.14  0.06 6196+21 5092+15  <0.005 0.01(2) 0.02(1) _0.09(4) 0.036(18) 0.036(17) °©

1 No NIR prior used. 2 No E(B-V) prior used. 3 No E(B-V) prior or u220n data used. 4 No u220n data used. > Only TESS band flux ratio used. ® NIR prior
model temperatures shifted up by 100 K.
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Figure 9. Amount of distortion (rms) needed by the polynomials
in order to fit the data to the model SEDs as a function of the
number of distortion coefficients A; used in the fit.

4 DISCUSSION
4.1 Distortion functions

We need to include enough distortion to avoid just perform-
ing an SED fit (see run J in Table 6; uncertainties in parame-
ters are underestimated), but not so much that the distortion
of SEDs becomes non-physical. Therefore in order to better
understand how much distortion is needed in our approach,
we looked into the difference between one-dimensional and
three-dimensional stellar models. Comparing BT-Settl and
STAGGER-3D models of similar temperatures, we found that
the rms difference between the two models for the primary
was 0.027, and the secondary was 0.025 — i.e. the difference
between 1-D and 3-D models is about 3%. Most of this differ-
ence lies in the UV and, if smoothed, looks like a moderately
high order (6-12) polynomial in logarithmic space. Therefore
we chose to use this type of distortion in our method.

In order to be sure that we used a reasonable numbet
of distortion coefficients, we performed some extra tests=on
the code to characterise the effects of distortion. Wedooked
into the range of 0 < Np < 20; being sure that on the scale of
absorption lines and features, the highest order of these Leg-
endre polynomials are linear and have no unrealisticieffects.
We quantified the amount of distortion with*the-following:

[ FM()A3d2
[ FM(da

rms =

We note a steady rise in the amount,of distortion used with
number of coefficients. A choice of 4 < Np; < 10 gives a bal-
ance between too little‘distortion and too much uncertainty
in the amount of distortion needed, and rmsy ; is approxi-
mately constant in this range. We cannot directly compare
these rms differences with those between 1-D BT-Settl and
3-D STAGGER models: the latter are defined over a narrower
range (02 =20 pm) than the former (we use 0.1 — 30 um).
Restrieting'the wavelength range we use to match STAGGER
increases rmsy ; at least twofold as we lose useful constraints
in“the UV.

Figure 10 shows the effect the number of distortion coef-
ficients used has on the uncertainties in fit parameters. The
uncertainties in additional noise due to external sources of
error, particularly oextc, decrease with N while the uncer-
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Figure 10. Standard error'on each fit parameter for each number
of distortion coefficients A;. Top: Errors on effective temperatures
Tefr,1 (blue) and Teg > (orange). Second panel: Errors on angular
diameters 0; (blue),and'@, (orange). Third panel: Errors on inter-
stellar reddening E(B=V). Lower panel: Errors on external error
sources Oext,mpOexte and Oextc-

tainties in physical parameters Teg, 8 and E(B-V) increase.
This/could be explained by the hypothesis that for higher
Na, the distortions begin to take advantage of flux ratios
being unconstrained between filters and begin to move flux
in and out of gaps between filters to improve the fit, which
is not physically justified. The largest gap between filters we
use is in the infrared (see Figure 1), but models are generally
reliable in the IR (see IRFM) so we do not expect this to
be a major issue in our final results. Our choice of Ny = 10
was made to balance the rising error in physical parameters
with the high error in oextc at low orders.

4.2 Different models

We tested the effect of using models with different input
parameters — wavelength binning (runs A and B), tem-
perature (run C) and metallicity (runs F and G). There
is no significant effect in the result when changing the in-
put SEDs. This indicates that our method of distortion is
working and not very dependent on the input model. In cal-
culating our adopted values in run A, we used temperatures
and a metallicity appropriate for AI Phe (Andersen et al.
1988), and smaller wavelength binning. There was no signif-
icant difference in the output between 20A and 50 A bins,
so we chose to run all other tests with the larger bin size in
order to save computational costs.
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4.3 Constraining E(B—V) in the ultraviolet

Constraints on interstellar reddening are vital in reducing
the uncertainty on the derived values of effective tempera-
ture. In the case of AI Phe we were fortunate to be able to
restrict the range of E(B—V) explored in our Bayesian analy-
sis using the absence of the Nal doublet in HARPS spectra,
and the depth of the 2175 A absorption feature using the
u220n and u220w ultraviolet fluxes and flux ratios. How-
ever, we looked at the effect of removing these constraints.
In run I of Table 6 we see a significant increase in the un-
certainties on E(B-V) and Teg. If we remove the additional
constraint provided by placing a narrow bandpass (u220n)
in the UV, the uncertainties increase even further (run K).

Our results suggest that imposing a prior on E(B-V)
is the strongest constraint on reddening, so including prior
knowledge of interstellar reddening from e.g. spectroscopy or
Stromgren photometry is a powerful way to improve results.
If this is not possible, having UV observations to pin down
the shape of the UV end of the SED helps in determining
the fit. By defining narrow bands in the IUE spectra, we
were able to constrain the shape of the SED in the NUV
more than if we used broad bands. These encompass more
flux than narrow bands, but narrower bands are better at
fixing the shape of the ultraviolet end of the SEDs.

4.4 NIR flux ratios

The Tef values used in Section 3.4 to derive the NIR flux
ratio priors are calculated using the IFRM, so there may
be some systematic offset between these values and the true
Teg- Therefore, we need to check what the impact of an offset
Te-TirrM is on our results. We found that our NIR flux
ratio priors showed a very weak dependence on the values of
TirrMm used: introducing an offset of 100 K changes the Teg
results by no more than 1 - 2K (see run N in Table 6). In
general, applying NIR flux ratio priors to our data had little
effect on our results for Al Phe.

5 CONCLUSIONS

For eclipsing binaries stars with well-defined~eclipses it is
possible to measure the radii of the two stars.to much bet-
ter than 1% using high quality data <~ 70 DEBs in DEBCat
(Southworth 2015) have masses and radii“of both compo-
nents measured to this accura€¢y. The end-of-mission accu-
racy of the parallaxes from the Gaia/mission is expected to
be at least 16 pas for bright stars, 1.e. better than 0.5% for
stars within 300 pc. Thereforé, precise and accurate angular
diameters for many_stars\in’eclipsing binaries are already
available. There is potential to use these results to calculate
precise and aceurate fundamental effective temperatures for
many stars,/but this/requires accurate measurements of the
bolometric flux. The method that we present in this paper is
a robust tool for deriving the bolometric flux for both stellar
components in an DEB, provided there are enough photo-
meétric "data. We show the potential of this method with
the wellccharacterised DEB, Al Phoenicis. The fundamental
effective temperatures we obtained for this system are very
precise: Tef,1 = 6199+22, Tofr o = 5094 £ 16. This is due to the
high quality of the R and w measurements, a strong upper

limit on interstellar reddening, and constraints from ultravi-
olet photometry. While the choice of input model SED has
a small effect on the output effective temperatures, the tests
we have done on the method show that uncertainties on the
interstellar reddening have a large effect the uncertainty on
the derived values of effective temperature. From the results
in Table 6, we see that a constraint on E(B-V) of about
0.01 mag is needed to reduce Teg errors to less than 50 K.
Uncertain reddening will tend to bias the Teg estimates as
E(B-V) cannot be negative.

There are many bright eclipsing binaries of all types be-
ing discovered as a results of survey like WASP, KELT, K2,
TESS, ASAS (Kirkby-Kent et al. 2018; Lubin et al. 2017
Maxted & Hutcheon 2018; Lee et al. 2019; Helminiak et al.
2019b), many of which have both Gaia parallaxeshand
a wealth of archival photometry. We conclude,that’ the
prospects for measuring accurate and precise effective tem-
peratures for a large number of stars in eclipsing binaries
are excellent.
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