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Abstract  
Veillonella parvula is a Gram-negative bacterium known to be an abundant commensal 

coloniser of the human gut and mouth; it is linked to progression of childhood immune system 

but has also been found to be an opportunistic pathogen. Lipopolysaccharides (LPS) are 

glycoconjugates found in the outer membrane of almost all Gram-negative bacteria and are 

composed of three components: a glycolipid (lipid A), an oligosaccharide (the core region) and a 

repeating oligosaccharide unit (O-antigen). 

Both Lipid A (the toxic component of LPS) and the polysaccharide side chains (the nontoxic 

but immunogenic portion of LPS) act as determinants of virulence in Gram-negative bacteria. O-

antigens have adhered properties and these are resistance to phagocytes, protection toward to 

antigens and antigenic variation property. Lipid A act as an immune stimulator, which induces 

the biological responses of a specific organism 

The LPS activates the host immune system, the lipid A through the Toll-like receptor 

4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex in a structure dependent 

manner and the polysaccharide side chains, act as virulence determinants of the Gram-negative 

bacteria.  Therefore, the structural elucidation of the LPS found in gut microbiota population is 

particularly interesting to understand the role of gut bacteria LPS in the activation and/ or 

suppression of the immune system response.  
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Successful separation and purification of the individual components from LPS (O-antigen, 

core- oligosaccharide and lipid A) of Veillonella parvula was achieved through a variety of 

chemical approaches, such as acetylated alditols derivatives, acetic acid hydrolysis and alkaline 

hydrolysis. Elucidation of the lipid A structure from a clinically isolated strain of V. parvula, grown 

within laboratory conditions, was achieved and gave insights into the high structural 

heterogeneity of lipid A from a gut bacterium. The most abundant species comprises a bis-

phosphorylated hexa-acylated species with a variety of iso-branched acyl chains.   

Additionally, the saccharide composition of the LPS of two separately grown strains of 

Veillonella parvula have been characterised and compared to give an insight into the complexity 

of the carbohydrate components of LPS from a gut microbiota species.  
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Chapter 1: Introduction  

Gut Microbiota 

 The intestinal tract is colonised by 1013-1014 organisms composing the gut microbiota. 

These organisms give metabolic functions to the human host but are also sustained and 

influenced by the host diet, immune system and presence of antibiotics (Sender, Fuchs and Milo, 

2016).   

Research into the microbiota has increased in the last ten years, nevertheless there are many 

questions remaining, such as: how do bacteria adapt and adjust to an environment as complex 

as the human gut? How do bacteria compete or work symbiotically together, between and/or 

within species? How do bacteria gain immune tolerance from the host immune system? (Eloe-

Fadrosh and Rasko, 2013) (d’Hennezel et al., 2017).  A better understanding of the interactions 

occurring between the gut microbiota and the human health could influence our current views 

on gut pathologies and also human nutrition, catalysing nutritional recommendations and polices 

dependent on age, geography, diet and health of individuals (Waldor et al., 2015).  

90 % of the bacteria constituting the gut microbiota belong to the Firmicutes and 

Bacteroidetes phyla (Goodman and Gardner, 2018). The latter comprises Gram-negative bacteria 

while the former phylum is composed of both obligate and facultative anaerobic bacteria of 

which most are mesodermal and stain as Gram-positives (Kim, Covington and Pamer, 2017).  

However, within the Firmicutes phylum there is a class, still poorly investigated, known as 

Negativicutes consisting of bacteria which stain as Gram-negatives, such as Veillonella and 

Acidaminococcaceae (Figure 1) (Vesth et al. 2013).  
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Figure 1: Diagram of a phylogenetic neighbour-joining tree (based on 16S rRNA genes), taken from 
Vesth et al. 2013 

Gram-Negative and Gram-Positive Bacteria  

Bacterial cells can be classified as Gram-negative or Gram-positive based on a staining 

technique which reflects the differences in the cell envelope structure and chemical composition 

(Silipo and Molinaro, 2011). Both Gram-positive and Gram-negative bacteria have a phospholipid 

bilayer which encloses the cytosol (cytoplasmic membrane) (Silipo and Molinaro, 2011). 

Enclosing the cytoplasmic membrane is a peptidoglycan layer which is a rigid envelope that gives 
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the shape and osmotic strength to the bacteria. The peptidoglycan is a carbohydrate mesh 

formed by cross-linked chains of N-acetylglucosamine and N-acetylmuramic acid (Silipo and 

Molinaro, 2011).  In Gram-positive bacteria, the peptidoglycan layer is a thick layer whereas 

Gram-negative bacteria possess a thin layer and an additional phospholipid bilayer known as the 

outer membrane (OM) which is responsible for the increased permeability of hydrophobic 

compounds and higher molecular weight hydrophilic compounds (Delcour, 2009). This OM is rich 

in lipopolysaccharides (LPS), covering up to 75 % of the bacteria cell surface (Silipo and Molinaro, 

2011). Additional extensions to the bacteria cell wall may be present, such as flagella, pili, a 

capsular polysaccharide and/or exopolysaccharide (EPS) (Harvey et al., 2013). 

 

 
Figure 2: Illustration of the structural differences between Gram-negative and Gram-positive cell walls, 

taken from Whitfield et al. (2015). 

Lipopolysaccharides (LPS) 

Lipopolysaccharides (LPS) are amphiphilic macromolecules found in the outer membrane of 

almost all Gram-negative bacteria. These heat stable compounds make up 75% of the Gram-

negative outer membrane (OM) and provide, among others, a fundamental role in cellular rigidity 

(Whitfield et al., 2015). The LPS monolayer is highly ordered and has low fluidity which is due to 

the electrostatic interactions with environmental divalent cations (eg. Ca2+ and Mg2+). Due to 

the external location, LPS are involved in vital host-bacterium interactions like recognition, 
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adhesion, colonisation, virulence, elicitation of the animal and plant host immune system. 

Furthermore, LPS are also crucial for the viability and survival of Gram-negative bacteria as they 

assist in the resistance to  antibacterial compounds and cellular stress factors (Silipo et al., 2010).  

Structure  

In general, LPS are composed of a common general architecture, which is made up of three 

diverse biochemical components: a glycolipid portion (Lipid A), an oligosaccharide part (core) and 

a polysaccharide (known as O-antigen or O-chain or O-polysaccharide) (Silipo et al., 2010). 

Bacteria which possess LPS with the O-antigen region are known as smooth-type LPS (S-LPS) due 

to the “smooth” appearance associated with the colony on agar plates (De Castro et al., 2010). 

Whereas other bacteria possess rough-type LPS (R-LPS), which lack the O-antigen and gives a 

rough appearance to the bacteria colony. R-LPS, otherwise known as LOS (lipooligosaccharide), 

gain the antigenic properties from the core sugar chain (Steimle et al., 2016).  Although, there is 

heterogeneity within each LPS molecule, it has been discovered that LPS structure can change 

within species (Raetz, 1990). The composition of LPS is highly heterogeneous and can be altered 

in response to various challenges such as exposure to different stress conditions or changes in 

growth medium (Klein and Raina, 2019).  studies of the structure of LPS from H.pylori have been 

identified as altering its LPS structure during chronic gastric infection (Maldonado et al., 2016). 

Another study showed that Francisella bacterial species alter their LPS in response to growth 

temperature; at low temperatures a mannose sugar residue is added to the non-reducing end of 

the lipid A glucosamine disaccharide, as well as alteration in the acyl chain positions (Yi et al., 

2012).  
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Lipid A  

Lipid A possesses a highly conserved structure consisting of a β-(1→6)-linked D-glucosamine 

disaccharide backbone substituted with a number of amide- and ester-linked 3-hydroxy fatty 

acids at the positions 2,2' and 3,3' respectively. The acyl chains that are directly linked to the 

sugar backbone are defined primary and some are further acylated at the hydroxyl groups by 

secondary acyl chains.  The acyl chains of the lipids affect the interactions between neighboring 

lipid A molecules and therefore plays an important role in the physiology of the membrane of 

the bacteria cell (Molinaro et al., 2015). Furthermore, the sugar backbone is generally α-

phosphorylated at position O-1 of the reducing glucosamine (GlcN I) and at position O-4' of the 

non-reducing glucosamine (GlcN II) (Raetz and Whitfield, 2002). These phosphate groups can also 

be substituted with other functional groups for example, phosphate, ethanolamine, 

ethanolamine phosphate, ethanolamine diphosphate, GlcN, 4-amino-4-deoxy-L-arabino-

pyranose and D-arabino-furanose (Erridge et al., 2002) (Silipo et al., 2010).   The structure of lipid 

A is of particular interest in the field of biochemical research as it has been identified as the toxic 

and immunomodulatory component of LPS (Rietschel et al., 1994).  In 1985, Galanos et al. 

produced synthetic lipid A and discovered it exhibits identical biological properties to Escherichia 

coli (E. coli) lipid A. This research provided evidence that lipid A is responsible for the endotoxic 

activity of LPS, which is recognised by the innate immune system receptor complex, which is 

made up of the Toll-like receptor 4 (TLR4) and myeloid differentiation factor-2 (MD-2) (Galanos 

Figure 3: Schematic representation of LPS structure. The inner core consisting of heptose 
(hep), Kdo (3-deoxy-D-manno-oct-ulosonic acid). The backbone sugars of lipid A is a 
disaccharide of Glucosamine (glcN). Taken from Wang et al. 2016  
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et al., 1985) (Fujihara et al. 2003) (Miyake, 2003).  This receptor complex is present on the cell 

surface of many different cell types including the immune cells such as macrophages and 

dendritic cells. The activation of this receptor by lipid A induces an intracellular signalling cascade 

that results in the production and release of pro-inflammatory cytokines, such as tumour necrosis 

factor-α (TNF- α), interleukin-1β (IL-1 β), interleukin-6 (IL-6) and interleukin-8 (IL-8) (Jain and 

Darveau, 2010). 

   
Core Oligosaccharide 

Core oligosaccharide is a complex component of the LPS molecule since it can be 

characterised by up to fifteen monosaccharides which can be organised giving either a linear or 

a branched structure. In the core LPS portion two different regions can be distinguished on the 

basis of the monosaccharide composition termed: inner core and outer core. The inner core 

region is directly linked to the lipid A, is well conserved and consists of uncommon sugar residues 

such as heptoses (L-glycero-D-manno-heptose and, less commonly, D-glycero-D-manno-heptose) 

and Kdo. The lipid A molecule is linked to the polysaccharide portion LPS through a 3-deoxy-D-

Primary acyl 
chain

Secondary 
acyl chain

Phosphate group β(1 → 6)-linked glucosamine 
disaccharide 

Figure 4: The structure of E. coli lipid A to show a structural representation of Lipid A from Gram-
negative bacteria. The hydroxyl group (circled in orange) links the lipid A to the core region. Also highlighted 
are the primary acyl chains linked to the sugar residues and the secondary chains linked to the primary 
ones. Adapted from Steimle et al. (2016). 
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manno-oct-ulosonic acid (Kdo) (Figure 5) residue at position 6' of the non-reducing GlcN residue 

(Erridge et al., 2002). This link between the lipid A and the kdo of LPS is reasonably well conserved 

across Gram-negative bacteria. The inner core region of LPS has been found to interact only with 

TLR4, and not with both the MD-2 and TLR4 complex and Cochet and Peri (2017) suggested that 

the inner core play a role in stabilising the interaction but not essential for the endotoxic activity 

(Chochet and Peri, 2017).  

 

 
 
 
 
 
 
 
 

 

 

Some gram-negative bacteria have LPS lacking the O-antigen which are named rough (R)-form 

LPS or lipooligosaccharide (LOS) (Steimle et al., 2016) , therefore for these bacteria, the outer 

core region is the most exposed portion of the LPS, often branched, and is characterised by a 

higher structural variability than the inner core region. It is typically characterised by common 

hexoses such as glucose, galactose, N-acetyl glucosamine. The extent of the structural variability 

of the core oligosaccharides is limited within each species and genus (Erridge et al., 2002).   

O-Antigen (smooth LPS) 

The O-antigen is a polysaccharide of up to 8 repeating residues and can consist of up to 50 

residues long. Depending on the bacterial strain, the O-antigen region varies in residues, 

sequence, chemical linkage, substitution and ring formation leading to nearly limitless diversity 

(Erridge et al., 2002).  

Figure 5: Structure of Kdo Residue taken from: Ghalambor et al. 1966 
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The O-antigen is the outer most part of the LPS molecule and therefore, is the interface 

between the bacterium and its environment (Raetz and Whitfield, 2002).  Although the o-antigen 

is non-toxic, the polysaccharide chain is the immunogenic portion of LPS by presenting epitopes 

for immune system.  The long chains of the o-antigen polysaccharide can act as a physical barrier 

against the interaction between the antibodies and epitopes on the surface of the bacteria and 

thereby prevent the activation of the complement system and lytic effect. Therefore, the 

prevention of complement system activation by the o-antigen polysaccharide also protects the 

bacteria from uptake by phagocytes (Lerouge and Vanderleyden, 2002).  

Moreover, several studies have  found that some commensal and pathogenic bacteria (such 

as Helicobacter pylori, Neisseria gonorrhoeae, N. meningitidis and Haemophilus influenza) have 

been found to possess O-antigen composed of sugars such as N-acetylneuraminic acid (Neu5Ac) 

or L-fucose which resemble those of human glycosphingolipids. This adaptive ability of bacteria 

to mimic host glycoconjugates contributes to the increased resistance from attacks by the hosts 

immune system (Alexander and Rietschel, 2001). 

Lipid A and Immune Response 

Toll-like receptors (TLRs) are expressed on the surface of mammalian cells which recognise 

specific pathogen-associated molecular patterns (PAMP) (Kawai and Akira, 2009). Activation of 

these TLRs initiates signal transduction pathways activating inflammatory cytokines, B7 co-

stimulatory molecules and histocompatibility complex class II, which are necessary requirements 

of the acquired immune system (Kikkert et al., 2007).   

TLR4 was first discovered as the principle receptor for LPS through experimental evidence 

using mutations in the TLR4 gene leading to LPS hypo-responsiveness in mouse models (Qureshi 

et al., 1999). This was confirmed by research with TLR4 knock-out led to the same results 

(Hoshino et al., 1999). Further research focused on the TLR4 receptors discovered that 

transfection of TLR4 receptor protein into TLR4 defective cells was not sufficient to produce 

response to LPS leading to the discovery of a further important molecular component: MD-2 

which forms with TLR4 a protein complex for LPS/lipid A receptor (Shimazu et al., 1999).   
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The mechanism of the TLR4/MD-2 complex activation begins with LPS-binding-protein (LBP) 

delivering LPS to another protein CD14 (Correia et al., 2001). Correia et al. (2001) reported that 

LPS is brought into proximity of the TLR4/MD-2 receptor when it is in complex with CD14. 

Research by Kim and Kim, (2017) outlining the total cascade of TLR4/MD-2 receptor activation 

supports the essentiality of the interaction between CD14, LBP and LPS to bring the LPS into 

proximity of the TLR4/MD-2 receptor.  

Lipid A binding to the CD14/MD-2 receptor complex causes dimerization of the TLR4 

monomers leading to activation of the adaptor protein Myeloid Differentiation Factor 88 

(MyD88) (Takeuchi et al. 2000), the family of IL-1 receptor-associated kinases (IRAKs) and the 

adapter TNF receptor-associated factor 6 (TRAF6) (Horng, Barton and Medzhitov, 2001). The 

activation of these proteins then triggers multiple intracellular signalling pathways, importantly 

the nuclear factor-kappaB (NF-κB) inducing cascade and the mitogen-activate protein kinase 

(MAPK) cascades (Zhang et al. 1999) both leading to the amplification of the transduction signal 

with the consequent massive production of inflammatory proteins thus eliciting the 

inflammatory process (Figure 5) (Arancibia et al., 2007).  

The immunogenic potential of the LPS is dependent on the lipid A structure with the E. coli 

lipid (Figure 4) recognised as the most active agonist for human cells with its bis-phosphorylated 

hexa-acylated lipid A, with an asymmetric (4 + 2) acyl group distribution.  A moderate agonistic 

activity is seen for the lipid A from Salmonella which expresses generally mono-phosphorylated 

hexa-acylated or hepta-acylated lipid A forms (Silipo and Molinaro, 2011).  An example of a weak 

agonist is the lipid A from H. pylori with a mono-phosphorylated tetra-acylated lipid A (Steimle et 

al., 2016).  All these examples of alterations within the distribution and length of acyl chains, as 

well as in the phosphate content, affect the interaction with the hydrophobic cavity of 

the TLR4/MD-2 receptor complex (Steimle et al., 2016).  
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C-type lectins 

The saccharide part of the LPS (core and O-antigen) have also been discovered to play an 

important role in the activation of the host immune system.  

Phagocytic immune cells known as dendritic cells (DCs) express a C-type lectin called “DC-

specific ICAM-grabbing nonintegrin” (DC-SIGN) (Zhang et al. 2006).   These DC-SIGN ligands bind 

to specific sugar residues found on the surfaces of bacteria and viruses in a structure-dependent 

manner causing an immune response. Several studies found a specific epitope within the core 

region of the LPS which is necessary for the binding to DC-SIGNs and mutations within the 

saccharide composition can influence the ability of the host immune response to phagocytose 

the bacteria (Klena et al., 2005) (Zhang et al., 2006).   Resistance to this phagocytosis has been 

Figure 6: Diagram of the signalling pathways of receptor complex TLR4/MD-2. Lipid A component of LPS binds to LPS-
binding-protein (LBP) which transfers the LPS to CD14. CD14 binds to TLR4/MD-2 and causes dimerisation of TLR4 proteins 
resulting in intracellular activation of the proteins MyD-88, TRAF6 and IRAK. These proteins activate a variety of pathways 
and create a cascade of reactions resulting in a cellular immune response. 
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seen in bacteria which possess LPS with an O-antigen saccharide component through a shielding 

mechanism of the conserved core structures which be targeted by the immune system proteins 

(Burns et al., 1998) (Cortes et al. 2002).   

Other C-type lectins, such as Mannose-Binding Lectins have also been found to interact in a 

structure dependent manor with the core oligosaccharides of bacterial LPS (Man-Kupisinska et 

al. 2018). Further research on the interaction and host immune system activation between LPS 

from Klebsiella and the C-type lectins SP-D indicated that’s the oligosaccharide structure of the 

LPS influences the binding between these molecules (Sahly et al. 2008).  

Veillonella Genus  

The genus Veillonella belongs to the Negativicutes class and is characterised as comprising 

anaerobic, non-motile, small spherical cocci about 0.3 microns in diameter (Rogosa, 1964). 

Veillonella species are abundant in the human microbiome and are present as a part of the 

normal flora of the gastrointestinal tract, oesophagus, throat, vagina and oral cavity of healthy 

subjects (Bogert et al., 2013).   

Conversely, a wide range of microbiology research has shown presence of Veillonella in oral 

(Mashima and Nakazawa, 2015), prosthetic joint (Marchandin et al., 2001) and pulmonary 

infections (Pustelny et al., 2015), endocarditis (Greaves and Kaiser, 1984), and meningitis (Bhatti 

and Frank, 2000).  There is published evidence which indicates the active role in which Veillonella 

plays in disease; in 2006, Kolenbrander found that in oral infections a rise in Veillonella species 

results in proliferation of lactic acid producing Streptococci and Actinomyces, leading to dental 

plaque and infections (Kolenbrander, 2006). In 2015 Pustelny et al. investigated the relationship 

between Veillonella and the bacterium P. aeruginosa in contribution to the pathology of Cystis 

Fibrosis (CF). This research established that Veillonella supports P. aeruginosa growth within the 

CF lung where high P. aeruginosa colonization is correlated with clinical deterioration of the 

patient (Pustelny et al., 2015).  In 1970 Bladen et al. observed Veillonella assists in the 

development of plaque by Gram-positive filamentous diphtheroid. This development of plaque 
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was observed when inoculated in lactate medium, which supports growth of Veillonella but 

hinders that of the diphtheroid (Bladen et al., 1970). The basis of these interactions between 

bacterial species can be correlated to the unusual metabolism of the seven species of the 

Veillonella family. In fact, Veillonella are unable to breakdown carbohydrates, however they 

successfully thrive on lactate, pyruvate, malate or fumarate, which are by-products of 

metabolism from other bacteria species and also from the diet of the host (Kolenbrander, 2006). 

Therefore, Veillonella is important for the metabolic function in the breakdown of bacterial by-

products and promoting a mutualistic community for the development of other bacterial species 

(Ng and Hamilton, 1971).  

Metabolic cooperation between Streptococcus species and Veillonella has been subjected to 

much research for oral infections. Mashima and Nakazawa (2015) discovered different Veillonella 

species had different effects on different Streptococcus species. Further supporting this, research 

by Bogert et al.  in 2013 suggested combinations of streptococcal and Veillonella strains produce 

an increased immune response in comparison to those observed with mono-stimulations.  

Mashima and Nakazawa (2015) highlighted that several factors may influence these interactions 

between species including signalling molecules. This emphasised the deficiency in our knowledge 

of the signalling mechanisms between species and the requirement to elucidate these 

mechanisms of interactions. 

Lipopolysaccharides from Veillonella spp 

The first evidence that LPS was the endotoxin of Veillonella bacteria was seen in 1968 by 

Gewurz et al.  who discovered complement system activation by LPS extracted from Veillonella.  

Later Kikkert et al. (2007) found Veillonella parvula species can activate both TLR4 and TLR2. This 

assay was carried out using purified bacterial substances and measuring the IL-8 levels in a TLR-

transfected human embryonic kidney (HEK) cells.  Although V. parvula did show stimulation of 

both TLRs, the level of stimulation was low compared to other Gram-negative periodontal 

bacteria (Kikkert et al., 2007). In 2009, a more in-depth research conducted by Matera et al. found 

that Veillonella LPS induced cytokine production in human cell lines and that this event was TLR4 
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dependent. The study used purified LPS from V. parvula species and tested cytokine production 

on peripheral blood mononuclear cells (PBMC). Additionally, this study also revealed that V. 

parvula LPS is able to activate the p38 MAPK pathway also resulting in cytokine release (Matera 

et al., 2009).   

The previous studies showed that V. parvula LPS induces 10 – 100 - fold less cytokine 

production compared to E. coli LPS (Matera et al., 2009). The low immune stimulation by 

Veillonella LPS indicates that this bacterium and/or their LPS play a different role in its interaction 

with host cells. Several research studies have suggested that Veillonella is an important 

bacterium within our healthy microbiota and contributes towards development of the early 

childhood immune system. Various studies show that the absence of Veillonella is correlated with 

development of diseases, such as asthma (Arrieta et al., 2015), bronchiolitis (Hasegawa et al., 

2016) and autism (Strati et al., 2017). These studies show that Veillonella has a negative 

correlation with disease, however these findings were through investigation of the total gut 

microbiota and not solely Veillonella.  

 

Structure of Veillonella LPS: The History  

In 1970 the first compositional analysis of Veillonella LPS was performed, discovering the 

main monosaccharides as Kdo, a heptose, glucose, ribose, galactose, glucosamine and 

galactosamine (Hofstad and Kristoffersen, 1970). In 1984, Tortorello and Delwich further 

investigated the LPS fatty acid composition revealing the occurrence of tridecanoic acid, 3-

hydroxytridecanoic acid, and 3-hydroxypentadecanoic acid.   

Importantly, Tortorello and Delwich (1984) detected that alterations in the growth conditions 

of Veillonella bacteria affect the LPS extraction yield and chemical changes in the LPS structure. 
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Figure 7: A schematic of the literature review of the information known about the LPS from Veillonella 

species. 

 

One of the principle hindrances in the structural study of Veillonella LPS is the need for 

fastidious anaerobic growth conditions and the slow-growing rate of the species (Marriot, Stark 

and Harkness, 2007). Secondly, the growth of bacteria within the laboratory can be either 

planktonic or biofilm-forming, the former being the easier, more commonly used method where 

a homogeneous population of bacteria can be grown bacterial cells in suspension and extracted 

by centrifugation. Conversely, culture of biofilm forming bacteria is more representative of 

natural ‘in host’ conditions where bacteria are under ‘stressed’ situations by co-inhabitation with 

other bacteria and create a biofilm for survival (Kumar et al., 2017) (Donlan, 2002).  

Aims and Objectives of the Project  

It is clear from a review of the literature that there is still a lack of structural understanding 

of the Veillonella parvula LPS. A detailed structural analysis of this LPS would provide further 

information into the biological importance of these bacteria in human health. Furthermore, it 

will lead to increased knowledge of the structure-function relationship between LPS and 

immunological activity.  

The aims of the project are to fully characterise the carbohydrate moieties of extracted LPS 

from two separately grown Veillonella parvula cells through Gas Chromatography Mass 
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Spectrometry (GC-MS) analysis and NMR techniques.   Furthermore, the aim is to make a full 

characterisation of the lipid A component through GC-MS and MALDI-TOF MS analysis.  

During this study three batches of Veillonella parvula were obtained and the LPS was 

extracted and studied. Two batches were grown in the same lab, of the strain named: ATCC 10790 

and were grown in “anaerobose basa” broth in anaerobic, planktonic conditions. The third batch 

of Veillonella parvula LPS was studied from Veillonella parvula strain DSM 2008.  DSM 2008 cells 

were also grown planktonically and anaerobically. Both ATCC 10790 and DSM 2008 are the same 

strain of bacteria, however the DSM 2008 bacteria are known to have been isolated from a 

hospitalised patient. For the purpose of this study the two strains were analysed separately and 

will be defined as either ‘V. parvula ATCC 10790’ or ‘V. parvula DSM 2008’ (Scheme 1).  

 

Scheme 1: Diagram of the three batches of Veillonella parvula cells analysed during this project. With the 
name of the strain, the starting dried cell weight and the analysis completed with each batch.  
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Chapter 2: Techniques for the Structural 
Characterisation of Lipopolysaccharides 

Extraction and Isolation of LPS from Bacterial Cells  

In order to structurally characterise LPS, it is essential to extract it from intact microbial cells. 

There are several procedures to achieve the extraction of LPS depending on the occurrence or 

not of the O-antigen moiety which renders the smooth-type LPS more hydrophilic than the rough-

type LPS. One of the best known ways to isolate smooth-type LPS is the hot phenol-water method 

(Westphal and Jann, 1965) consisting of suspending the dried cells in 90% phenol/water 1:1 v/v 

at 68 °C. The hot water/phenol method also requires the additional step of enzymatic digestion 

with DNAase, RNAase and Proteases to remove nucleic acids and proteins followed by 

purification by dialysis (Westphal and  Jann, 1965). For the rough-type LPS (LOS), an extraction 

method with Phenol/Chloroform/Petroleum ether (PCP) (2:5:8, v:v:v) is typically employed 

(Galanos et al., 1969).  After removal of Chloroform and Petroleum ether, the LOS is precipitated 

from the phenol phase by adding drops of water.  The PCP procedure results in a sample that is 

generally free of cell contaminants allowing for a following easier purification of the extracted 

LPS (Galanos et al., 1969). 

Gel Electrophoresis  

The detection of LPS typology and purity can be achieved through polyacrylamide gel 

electrophoresis (PAGE) with sodium deoxycholate (DOC) or sodium dodecyl sulphate (SDS) as 

denaturing agents; both disaggregate the LPS micelles (Peterson and McGroarty, 1985) thus 

giving them the possibility to migrate through the gel.  For the identification of the LPS, silver 

nitrate gel staining procedure (0.1 % AgNO3) is used. The presence of smooth-type LPS is 

determined by the observation of a ‘ladder-like’ pattern on the gel, which is due to the migration 

of the O-antigen polysaccharide repeating units.  The LPS molecules devoid of this polysaccharide 

part will migrate to the bottom of the gel, due to the lower molecular weight of the LOS molecule 
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as it does not possess an O-antigen, (Tsai et al., 1982) the next band would be the core plus one 

repeating unit and so forth (Palva and Mäkelä, 1980).  

Purification  

Various and long purification methods have been applied to the extracted LPS to successfully 

characterise both the saccharide and lipid A components.  

Enzymatic Digestion and Dialysis 

Enzymatic digestion with DNAase, RNAase and Proteases can be applied to remove 

contaminants, such as proteins, DNA and RNA. Following enzymatic digestion, the sample is then 

subject to dialysis against distilled (milliQ) water to purify the digested LPS. Dialysis is also a useful 

technique in the purification of the sample from salts and other impurities from chemical 

modification reactions, which are described later.  

Low pressure Liquid Chromatography  

Size exclusion chromatography (SEC), also known as gel filtration/gel permeation 

chromatography/molecular exclusion is frequently used for purification of LPS.  SEC separates a 

mixture of molecules by their hydrodynamic volume through the interaction of components in 

the sample (mobile phase) with a porous matrix resin (stationary phase).  The sample passes 

through the resin and the smaller molecules (impurities) enter the pores and the larger molecules 

(LPS or degraded LPS portions) flow around the resin beads.  Consequently, the sample takes a 

more direct pathway and therefore elutes before the small molecules (Neue and Phoebe, 1997). 

Various chromatography resins use this behaviour and can be applied for different techniques 

within the purification process of LPS (Holst, 2000) (Silipo et al., 2012). 
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Structural Characterisation of Carbohydrates 

Gas chromatography Mass Spectrometry (GC-MS) is a useful analytical technique for the 

detection of complexes of carbohydrates. For the use of this technique it is mandatory that the 

sugars are converted into appropriate derivatives, so they are in a volatile form for their detection 

(Ruiz-Matute et al., 2011).  To identify monosaccharide type and glycosylation patterns there are 

a variety of derivatisation techniques that can be employed to highlight different features of the 

sugar residues within the original sugar oligosaccharide/polysaccharide sequence. 

Derivatisation Methods 

 
Acetylated O-Methyl Glycosides (AMG) 

A qualitative analysis is performed by treatment of the oligo/polysaccharide with MeOH/HCl 

to cleave the glycosidic bond and form methyl glycosides. Subsequent acetylation with acetic 

anhydride in pyridine produces the peracetylated O-methyl glycosides (AMG) (De Castro et al. 

2010). By comparison of the retention times of the GC analysis and the fragmentation pattern of 

the obtained mass spectra, it is possible to identify the type of monosaccharide residues. One 

drawback to the AMG method is the production of isomers, which cannot be distinguished apart: 

pyranose and furanose either α and β anomers could lead to miss-quantification (Di Lorenzo, 

2014).  
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Figure 8: Reaction step of the peracetylated O-Methyl Glycosides (AMG) method. Taken from (De Castro, 

2014). 

 
Acetylated Alditols (AA) 

An alternative approach of derivatisation is production of acetylated alditol (AA) derivatives, 

which is a useful analysis of basic and neutral monosaccharides. These monosaccharide 

derivatives are created using trifluoracetic acid (TFA) for acid hydrolysis followed by reduction of 

carbonyl moiety with Sodium tetrahydridoborate (NaBH4) (Di Lorenzo, 2014).  An advantage of 

the acetylated alditol derivatives is the production of “only one peak per residue” in the mass 

spectra (excluding ketoses and aldoses as the reduction step can yield the same alditol) (Ruiz-

Matute et al. 2011), which is a very useful aspect for quantification analysis. An unfavorable 

aspect of this method is that only neutral or basic species can be detected, therefore acidic 

monosaccharides cannot be detected (De Castro et al., 2010).     
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Partially Methylated Acetylated Alditols (PMAA) 

Partially Methylated Acetylated Alditols (PMAA) is a crucial derivatisation method which 

involves longer and more extensive reaction steps than either the AA or the AMG methods. First 

the compounds are methylated with Iodomethane (CH3I) in strong alkaline conditions and then 

permethylated compounds are hydrolysed in acidic conditions and then reduced with NaBD4 

(Figure 9) (De Castro et al., 2010). Use of NaBD4, a deuterated reagent, is to mark where the 

hydrolysis of the sugar ring occurred. The resultant compounds have a free hydroxyl group which 

can be acetylated and then used as indicators of the position involved in the glycosidic bond or 

cyclisation. When injected in the GC-MS, these compounds can be easily analysed following their 

substitution groups (acetyl and methoxyl groups) because the molecules break through 

ionisation preferably leaving the methoxyl group with a positive charge (Di Lorenzo, 2014).    

 
 

 

 

 

 

 

 

 

 

 

 

Figure 9: Reaction step of the Partially Methylated Acetylated Alditols method. Taken from (De Castro, 2014) 
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Absolute Configuration   

For the analysis of the absolution configuration, the distinction between enantiomers is 

performed by solvolysis with an enantiomerically pure alcohol as 2-(+)-octanol or 2-(+)-butanol.  

After the acetylation and injection to GC-MS, a comparison between the retention time of the 

acetyl 2-(+)-octyl glycosides and one of a standard mixture of O-2-(±)-octyl-glycosides standard 

monoses in D or L configuration allows the assignment of the monosaccharide configuration 

(Leontein et al., 1978).  

For a full analysis of a complex mixture of sugars, the composition can be derived using a 

combination of these methods; Table 1 gives a comparison of the methods used (De Castro, 

2014).  Furthermore, a comparison through GC-MS injection against known standards enables 

identification of the exact monosaccharide residues
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Table 1: Comparison of derivatization methods used to analyse carbohydrates on Gas Chromatography - Mass Spectrometry 

DERIVATISATION 
METHOD 

ADVANTAGES DISADVANTAGES 

Acetylated Alditols 
(AA) 

• Negative and basic monosaccharides analysed 

• One residue gives rise to one peak on MS spectra  

• Acetylated alditols are stable and once prepared 

they can be stored and used for several years 

• Acidic monosaccharides not detected 

• Ketose gives rise to two different diastereoisomers 

alditols producing two peaks on MS 

• A reactive reducing end in the reaction steps causes 

unwanted derivatives and lower yields. 

• Very low abundance of molecular ion seen on MS 
Acetylated Methyl 

Glycosides (AMG) 
• Less reaction steps than AA 

• No side reactions from aldehyde group as seen in 

AA 

• Suitable for most types of sugar residues. 

• One residue will produce more than one peak on 

MS due to rings and isomers formed 

• Not often suitable for ketose analysis 

• Anhydrous conditions are essential during 

methanolysis steps 

• Very low abundance of molecular ion peak 

Partially Methylated 
Acetylated Alditols 

(PMAA) 

• Interpretation of the MS is simple 

• Enables determination of substitution patterns of 

all residues 

• Similar disadvantages as AA 

• Many reactions required, of which of some to be 

carefully carried out in anhydrous conditions 

• Reaction steps are different for the detection of 
uronic acid. 

• Humidity and consequent under-methylation can 

produce false results 
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Acetic Acid Cleavage of the LPS 

This procedure is used to cleave the acid-labile glycosidic bond between the Kdo residue and 

the non-reducing glucosamine of the lipid A.  This method comprises a centrifugation step which 

produces a water phase containing the oligo-/polysaccharide moiety of the LPS (that is then 

generally studied by NMR spectroscopy), and a precipitate, namely the lipid A component that 

can be analysed by MALDI-TOF mass spectrometry or even NMR.  

The deoxy functional group of kdo is positioned close to the glycosidic carbon atom which 

renders the link to GlcN II very sensitive to acid hydrolysis however this reaction can result in the 

production of unwanted products such as the loss of phosphate groups (Lindberg et al. 1975).  
31P NMR can be performed to confirm the occurrence of dephosphorylation (Helendera et al. 

1997).  Furthermore, another disadvantage of the acid hydrolysis method can lead to the 

production of Kdo reducing units with a heterogeneity of various conformations (α and β 

anomers of pyranose and furanose rings, condensed or anhydro forms) which can render the 

analysis by by NMR spectroscopy particularly difficult (Volk et al., 1972) (Di Lorenzo, 2014).  

Therefore, it is usful to perform de-lipidation of the lipid A by means of alkaline treatment 

to determine the primary structure of the core oligosaccharide portion.   
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Alkaline hydrolysis of LPS 

The alkaline treatment lies in a first O-deacylation of the LPS, and a successive N-deacylation, 

which leads to the isolation of a polysaccharide containing the glycosidic portion of the lipid A. 

O-deacylation reaction removes ester-linked (O-linked) fatty acids whereas N-deacylation causes 

the removal of amide-linked acyl chains. The latter reaction is very strong and could cause loss of 

information about the presence of acetyl groups and pyrophosphates substituents. 

The obtained product is typically full of salts, therefore it is then desalted by size exclusion 

chromatography and structurally investigated by NMR.  

 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Basics of NMR 

Nuclear Magnetic Resonance (NMR) analysis provides detailed information of oligo-

polysaccharides structure. The interpretation of the NMR spectra however is not simple due to 

Figure 10: Scheme showing the bonds broken through O-deacylation (blue) and N-deacylation (red) 
reactions. Structure portrayed is Lipid A of Escherichia coli. 
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the similar chemical environment possessed by the protons on the carbons, resulting in similar 

chemical shifts. Fortunately, protons are affected by the neighbouring protons, known as scalar-

through-bond or J-coupling, which produces splitting of peaks on NMR spectra and this enables 

identification of different sugars (Zwahlen, 2002). Scalar-coupling is effective when protons are 

separated by two or three bonds, the protons are not isochronous (do not have the same 

chemical shift) and the protons are not bound to a nitrogen or oxygen. A proton with no 

neighbouring protons, results in a singlet, if it has one neighbour it is a doublet, with two 

neighbours it is a triplet etc (Bruice, 2011).  Karplus rule defines that amplitude of the splitting of 

the NMR peaks is proportional to the cosine of dihedral angle between the two protons (Reich, 

2010). Therefore, the splitting constant gives information of what environment the proton is 

neighbouring (Vilén, 2013). Within sugar residues, stronger coupling is seen when the hydrogens 

are in a trans arrangement, but weaker coupling is observed when there is a cis arrangement. 

Use of the coupling constant can help to determine the disposition of the hydrogens, or hydroxyl 

groups in sugars resides. Furthermore, the coupling constant can be used in the determination 

of the stereochemistry of the glycosidic linkages (Taylor and Drickamer, 2006). As an example, 

the anomeric configuration can be determined by observation of the chemical shift of the 

anomeric protons and carbons and the 3JH1,H2 and 1JC1,H1 values. 

The starting point of the analysis is through 1H NMR experiments that give most resonances 

in the region between ~ 3.4 and ~ 4.0 ppm relative to ring proton signals. The anomeric protons 

are found between 4.4 – 5.5 ppm and are useful in estimating the number and nature of 

monosaccharides composing the oligo-/polysaccharide under investigation (Vilén, 2013).  In the 

high field region of the 1H-NMR spectrum it is possible to find Kdo diagnostic signals, namely the 

H3ax,eq, which usually resonate around 1.8- 2.0 ppm, whereas the methyl groups of deoxysugars 

are found around 1.1 ppm (Di Lorenzo, 2015).   

Due to the complexity of the 1D spectrum, it is usually vital to study several two-dimensional 

NMR experiments, in order to assign all the 1H and 13C resonances in the oligo-/polysaccharide. 

Homonuclear NMR experiments, e.g. 1H-1H COSY (2D correlation spectroscopy), 1H-1H TOCSY 

(total correlation spectroscopy), 1H- 1H NOESY (nuclear Overhauser effect spectroscopy) and 1H-
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1H ROESY (Rotating frame nuclear Overhauser effect spectroscopy) and heteronuclear 

experiments, such as 1H-13C HSQC (Heteronuclear single-quantum correlation spectroscopy), 1H-
13C HMBC (Heteronuclear multiple-bond correlation spectroscopy) and 1H-13C HSQC-TOCSY are 

all employed for carbohydrate analysis. Since LPS derived-oligo-/polysaccharide may be 

decorated by phosphate groups, 31P and 1H-31P HSQC experiments are also typically recorded.. 

 

Structural Characterisation of Lipid A 

Chemical compositional analysis 

The determination of the lipid A fatty acid content is usually achieved through GC-MS analysis 

of their methyl ester derivatives. This derivatisation method is achieved through treating the 

extracted LPS with MeOH/HCl followed by extraction of the lipids by n-hexane (Rietschel, 1976).  

Through interpretation of the mass spectrum produced the nature of acyl chains can be 

identified, the level of saturation and the hydroxylation pattern (De Castro et al., 2010). This 

classical chemical analysis determines the composition of the fatty acids but can be used in 

support of the analysis performed using MALDI-TOF MS and Electrospray Mass spectrometry 

(ESI-MS).  

MALDI-TOF Mass Spectrometry  

The lipid A may be obtained directly from the LPS and LOS using the protocol stated above, 

that consists in a selective hydrolysis of the linkage between Kdo and lipid A. The glycolipid part 

is recovered through precipitation or by direct extraction with a specific solvent mixture (e.g. 

chloroform/methanol/water in different proportions). On the other hand MALDI MS analysis of 

lipid A directly on cells or after a precise micro-extraction of it from an aliquot amount of cells, is 

also employed to reach the lipid A structure assessment (Di Lorenzo F, 2017). The complete 

chemical characterisation of lipid A requires the determination of: 
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1. the sugar backbone, usually a GlcN disaccharide  

2. the ester and amide linked fatty acids 

3. the acyl chains distribution  

4. the location of the polar head groups (phosphate groups). 

5. phosphate substituents and their location (if present) 

MALDI spectra can be executed in positive and negative mode. In particular, in the positive-

ion mode it is possible to visualize also peaks corresponding to oxonium ions, necessary to 

differentiate the fatty acid distribution between the two GlcN of lipid A (Di Lorenzo, 2014).  

Chapter 3: Methods and Materials  

Solvents and Reagents  

REAGENT COMPANY NUMBER 

Acetic acid Sigma-Aldrich 33209 

Acetic anhydride Sigma-Aldrich 320102 

Acetone Merck 1.00012.2500 

Ammonium bicarbonate Sigma-Aldrich 09830 

Chloroform Sigma-Aldrich 372978 

Deoxyribonuclease I from bovine 
pancreas 

Sigma Aldrich 9003-98-9 

Deuterium Oxide Sigma-Aldrich 151882 

Dimethyl Sulfoxide  Sigma-Aldrich 34869 

Ethanol  VWR chemicals 20821.330 

Formaldehyde Sigma-Aldrich F1835 

Hexane VWR chemicals 24577.323 

Hydrogen chloride – methanol solution Sigma-Aldrich 17935 

Iodomethane  Sigma-Aldrich 67692 

Light Petroleum Ether VWR chemicals 23835.365 

Methanol  Sigma-Aldrich 322415 
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Phenol (solid) Sigma-Aldrich 16016 

Phenol Sigma-Aldrich 16018 

Proteinase K Sigma-Aldrich P6556 

Ribonuclease A from bovine pancreas  Sigma Aldrich 9001-99-4 

Sephedex G10 resin GE Life Sciences 17001001 

Silver Nitrate Sigma-Aldrich 10220 

Sodium borohydride  Sigma-Aldrich 452882 

Sodium deoxycholate  Sigma-Aldrich D6750 

Sodium hydroxide Sigma-Aldrich 30620 

Sodium metaperiodate  Sigma-Aldrich S1878 

Superdex 30 resin GE Life Sciences 17090501 

Trifluoroacetic acid  Sigma-Aldrich 302031 

Tris base Sigma Aldrich 77-81-6 

Alcian Blue Sigma-Aldrich A5268 

Hydrochloric Acid  Carlo Erba 403872 

Acetetic Anahydride Fluka 45830 

Pyridine Sigma-Aldrich 270970 

Potassium hydroxide  Sigma- Aldrich P1767 

Equipment  

EQUIPMENT INFORMATION 

Gas Chromatography-Mass 
Spectrometer 

Agilent Technologies gas chromatograph 7872A equipped 
with a mass selective detector 5977B and  a Zebron ZB-5 
capillary column (Phenomenex, 30 m × 0.25 mm 
internal  diameter, flow rate 1 mL min−1, He as carrier 
gas). 

NMR Bruker 600 DRX spectrometer equipped with a cryoprobe 

Electrophoresis kit BioRad mini-protean Tetracell (1653369) with glass plates 
(1653308, 1653310) and comb (1653354). Run with the 
BioRad “powerpac” basic.  



 40 

Dialysis  Spectra-Por-3 Dialysis membrane (132724) MWCO: 3,500. 
(132754) MWCO: 12-14,000 

Dialysis Pure-a-Lyzer Pur-A-Lyzer™ Mega Dialysis Kit, MWCO 1 kDa, cap, 10 mL 
displacement. Sigma Aldrich: PURG10010-1KT 

 

 

 

Software  

SOFTWARE PROGRAMS 

Documenting and Presenting  Microsoft Office: Word, Excel, PowerPoint 

GC-MS Analysis Automated Mass spectral Deconvolution and 

Identification System (AMDIS) 

NMR analysis  Bruker TopSpin 2.1 

Growth of Veillonella parvula  

Veillonella parvula strain ATCC 10790 was grown in anaerobose basal broth (OXOID), under 

anaerobic and planktonic conditions. The bacteria cells were grown within the laboratory of 

Professor Ricca in the Department of Biology at Federico II University, Naples. The first batch of 

Veillonella cells provided were 800 mg of dried cell mass, the second batch had a dried cell mass 

of 2 grams.  
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The bacterial cells from the strain Veillonella parvula DMS 2008 (Veillon and Zuber 1898), 

were grown in anaerobic, planktonic conditions. Provided by a collaboration with Professor 

Beloin in the Department of Microbiology at The Pasteur Institute. The strain was obtained from 

the intestinal tract of a hospitalised patient and then grown within laboratory conditions. The 

starting weight of dried Veillonella cells was 2 grams.  

Extraction of LPS from Bacterial Cells 

PCP extraction  

LPS can be extracted using phenol 90%/chloroform/light petroleum ether in a 2:5:8 ratio 

(v/v/v). The dried cells were suspended in the mixture, stirred at room temperature (RT) for 30 

minutes and then centrifuged. The supernatant was collected retained and the steps are 

repeated twice more with the pellet. The removal of solvents was performed using rota-

evaporation and the LPS was precipitated from the phenol phase by adding drops of water (Galanos 

et al. 1969) (De Castro et al. 2010).  

 
Water/phenol extraction 

Dried cells or PCP residual (from method described above) were suspended in  water/90 % 

phenol (v/v) mixture at 68 °C (Westphal et al., 1965).  Three extractions were performed with hot 

water and centrifugation, each time collecting the supernatant. The phenol phase was also 

reserved, and both phases were dialysed (Spectra/Por® cut-off 12–14 kD, Ravensburg, Germany) 

against milliQ H2O for 3-5 days.  

Following this, the extracted materials were purified with enzymatic treatment of DNase 

(DN25-Sigma Aldrich®, St. Louis, MO, USA), RNase (R5503-Sigma Aldrich®) (37 °C, 5 h), and 

protease (P4630-Sigma Aldrich®) (56 °C, 16 h). Dialysis (Spectra/Por® cut-off 12–14 kD) was then 

repeated on the digested material against milliQ water. 

 
 Table 2: Starting dried weight of Veillonella cells and weight of extracted LPS 
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Typology analysis of LPS: DOC PAGE  

Gel Preparation:  

 A 14 % DOC PAGE was prepared, using the system of Laemmli (Laemmli, 1970). Briefly, the 

separating gel (14 % in polyacrylamide) is prepared in a 0.75 mm spacer glass plate, overlaid with 

isopropanol and removed once polymerisation was complete. The stacking gel (5 %) was 

prepared and loaded directly on top of the separating gel with a comb to form wells for sample 

loading. 

Table 3: Tabulated concentrations for the solution preparation of a 14% DOC PAGE. 

SEPARATING GEL (14 %) PREPARATION OF THE STACKING 
GEL (5 %) 

1.15 mL milliQ H2O 1.5 mL milliQ H20 

1.25 mL TRIS buffer (pH 8.8) 125 µl DOC (2%) 

250 µl DOC (2%) 335 µl Acrylamide (30%) 

- 30 µl Bromophenol Blue (%0.1) 

2.33 ml Acrylamide (30%) 12.5 µl Ammonium Persulfate 
(10%)  

25 µl Ammonium Persulfate (10%)  2.5 µl TEMED 

2.5 µl TEMED 625 µl TRIS buffer (pH 6.8) 

 
 
 

 
DRIED CELL STARTING 
WEIGHT 

EXTRACTED LPS EXTRACTION 
METHOD 

Veillonella parvula, 
ATCC 10790 

800 mg 21 mg Hot phenol/water  
 

2 g 86 mg Hot phenol/water  
Veillonella parvula, 
DMS 2008 

2 g 50 mg PCP 
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Sample Preparation: 

8 µL of sample (1 mg/mL) was mixed with 2 µL sample buffer (Bromophenol Blue 10 mg/mL) 

and incubated for 10 minutes at 100 °C. The samples were loaded into the gel and run for about 

45 minutes at 150 V.  

Staining Procedure: 

 The gel is removed from the glass plates and washed in fixing solution (Ethanol 40 %, acetic 

acid 5 %, H2O 55 % v/v/v) for a minimum of 2 hours. This is then replaced with 100 ml of oxidising 

solution (7 % Na2O2 in fixing solution, stated above) for 10 minutes and then washed for 10 

minutes, 3 times with H2O. 100 µL of silver nitrate solution (0.1 % AgNO3 v/v) is prepared and 

added to the electrophoresis gel for 30 minutes. The gel is washed in developing solution (3 % 

Na2CO3 w/v, 20 µL Formaldehyde) until sufficient visualisation of the banding patterns on the gel. 

The gel is rinsed in a stopping solution (1 % acetic acid v/v) before being stored in H2O 

(Kittelberger and  Hilbink, 1993). 

To identify the presence of exopolysaccharides and other charged sugars such as GAGs, an 

alternative staining can be applied to the sample DOC-PAGE of Alcian Blue. Solution of 0.5 % 

Alcian blue in 1 % acetic acid is prepared and applied to the gel for 16 hours before continuing 

with the first staining step of fixing solution (Al-Hakim A. et al., 1990) (Tsai et al. 1982). 

Compositional Analysis  

Carbohydrates: 

Determination of monosaccharides composition was carried out through producing sugar 

derivatives and GC-MS analysis, as described in Leontein and Lönngren (1978). Monosaccharides 

were identified as acetylated O-methyl glycosides derivatives (AMG) by methanolysis of ~1 mg of 

dried sample using 0.3 mL of 1.25 M HCl/MeOH (1:1 v/v), (85 °C, 16 h) and acetylated with acetic 

anhydride in pyridine (85 °C, 30 min). The AMG were isolated using chloroform/water 

extractions. The organic phases were collected, dried and diluted in 500 µL of acetone to be 

analysed by GC-MS. 
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Monosaccharides were also identified as Partially Methylated Acetylated Alditols (PMAA). 1 

mg of sample is dissolved in ~0.5 mL of DMSO with small amount of crushed NaOH and stirred 

for 1 hour. The sample was then treated with 0.3 mL Iodomethane (CH3I) for 16 hours. The sample 

was then extracted 5 times with water and CHCl3 (1–2 ml), with the organic phases collected and 

dried under airflow. The sample was dissolved in 0.3 mL of 2 M TFA (90 minutes, 110 °C).  

Neutralization of the sample was achieved using MeOH. Sample was dissolved in 2 mL of EtOH 

and a small amount of NaBD4 was added (stirred for 16 hours, RT). The reaction was stopped 

using 2 M HCl and dried and neutralized using MeOH. Acetylation of the sample was performed 

with acetic anhydride in pyridine (85 °C, 30 min). Chloroform/water extractions were then 

performed to isolate in the organic phases the PMAAs which were diluted in 500 µL of acetone 

to be analysed by GC-MS.  

Fatty Acids: 

For the analysis of fatty acids, an aliquot of the LPS fraction (0.5 mg) was taken. The sample 

was dried and methanolized with 1 M HCl/CH3OH, incubated at 85 °C for 16 h. The fatty acids 

were extracted with hexane, which was dried under airflow and dissolved in 500 µL acetone and 

analysed by GC-MS.   

The analyses by GC-MS were all executed on an Agilent Technologies gas chromatograph 

6850A equipped with a mass selective detector 5973N and a Zebron ZB-5 capillary column 

(Phenomenex, 30 m × 0.25 mm internal diameter, flow rate 1 mL min−1, He as carrier gas). The 

temperature program was employed for the lipid analysis and carbohydrate analysis was: 140 °C 

for 3 min, 140 °C → 280 °C at 10 °C min−1. 

Isolation of the oligo-/polysaccharide Portion (O-antigen and core) and 

Lipid A 

Oligo-/polysaccharide 

The extracted LPS sample was dissolved in acetate buffer solution (100 mM, pH 4.5) and 

incubated at 100 °C for 2 hours. Precipitation of the lipid A occurred and the supernatant, 
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containing the polysaccharide components was recovered through centrifugation (8500 rpm, 4 

°C, 30 minutes).  The supernatant was purified using a size-exclusion liquid chromatography 

column (Superdex 30, GE Healthcare, 0.75cm2x75cm, rate: 10mL/hour, fraction volume: 1.6mL, 

eluent: milli-Q H2O), each fraction was characterised by 1D NMR spectroscopy. 

Lipid A 

The lipid A precipitate was recovered as a pellet after centrifugation, washed with H2O and 

then freeze-dried before being prepared for analysis with MALDI-TOF Mass Spectrometry.  

Isolation of oligosaccharide portion by Alkaline Hydrolysis 

O-de-Acylation and N-de-Acylation 

A 15 mg aliquot of dry (over phosphorus anhydride under vacuum), purified LPS were subject 

to alkaline hydrolysis in anhydrous conditions by incubation with methylhydrazine (1.5 ml, 37°C, 

1.5 h). Ice-cold acetone was added until precipate of the O-deacylated LPS was seen.  

Centrifugation (3000 RPM, 4°C, 30 minutes) was then performed and the pellet recovered, and 

freeze-dried (Holst, 2000).   

The O-deacylated LPS sample was then treated with KOH (4 M, 1.5ml), kept at 20-22°C under 

nitrogen for 15 minutes and then incubated at 120°C (16 hours).  Neutralization was performed 

with HCl (4 M) until pH 6 was reached.  Extraction with chloroform and milliQ water followed by 

centrifugation 3 times (3000RPM, 4°C, 30 minutes) was used to separate sample (now water 

soluble) from the salts.  

The de-acylated oligosaccharide was recovered (from the water supernatant phase of 

centrifugation) and freeze-dried.  For successful analysis of the sample a desalting purification 

was required through low pressure liquid chromatography (Sephadex G-10, 16 mL/h), eluted with 

10 mM ammonium bicarbonate. (Holst, 2000) (Silipo et al., 2012). 
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NMR analysis  

For structural analysis of the extracted and isolated oligo-/polysaccharide 1H-NMR spectra 

were performed at 278 K with a cryoprobe-equipped Bruker 600 DRX spectrometer and 

dissolving each sample in 500 µL of deuterated water (D2O). Spectra were analysed using Bruker 

Top-Spin software.  

MALDI-TOF Analysis 

The analysis of the lipid A was performed using MALDI-TOF MS and MS2 analysis on a  ABSCIEX 

TOF/TOFTM 5800 Applied Biosystems mass spectrometer, equipped with an Nd:YLF laser with a λ 

of 345 nm, a <500 ps pulse length, and a repetition rate of up to 1000 Hz (Di Lorenzo, 2017), 

(Silipo A et al., 2004).  The matrix was the trihydroxyacetophenone (THAP) (91928-Sigma 

Aldrich®) dissolved in methanol/0.1% trifluoracetic acid/acetonitrile (7:2:1, v/v/v) at a 

concentration of 75 mg mL−1 

A micro extraction method of LPS was performed as described in (Di Lorenzo, 2017) and 

loaded onto a trihydroxyacetophenone (THAP) (91928-Sigma Aldrisch®) matrix dissolved in 

methanol/0.1 % trifluoracetic acid/acetonitrile (7:2:1, v/v/v) at a concentration of 75 mg mL−1 

(Silipo A et al., 2004), (Sturiale et al. 2011).  
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Chapter 4: Compositional study of 
Oligo-/Polysaccharide components 
from the LPS of Veillonella parvula 
DSM 2008 

 
Extraction with PCP method 

LPS was extracted from dried bacterial cells using the PCP method (Galanos et al. 1969). LPS 

was extracted by precipitation by adding water, the precipitate was then subject to purification 

by dialysis (12–14,000 MWCO). A 14 % DOC-PAGE and silver nitrate gel staining showed a 

polydisperse “ladder-effect” indicating the presence of a smooth-type LPS. 

Compositional Analysis of LPS saccharide domain 

Monosaccharide analysis through AMG derivations and analysis of the mass spectra fraction 

pattern enabled the detection of ribose, glucose, galactose, heptose, glucosamine, 

galactosamine and Kdo residues. Further structural information was provided by the analysis of 

the PMAA derivations of the PCP precipitate extract (Table 4). 

 Table 4: Results of sugar composition from PPMA derivation method of the PCP precipitate of Veillonella 
parvula DSM 2008 

  NATURE LINKAGE 
Pentose (Ribose) To be further investigated 
Hexose (Glc, Gal) t-Hexp  t-Hexf  2-Hexp  3-hexp  4-Hexp  3-Hexp  6-Hexp  6-Hexf 

2,3-Hexp  2,4-Hexp  2,6-Hexp  3,4-Hexp 
HexN (GlcN/GalN) 6-HexpN 

Heptose 2,7-Hep 
2,4-Hep 

Kdo To be further investigated 
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An acid hydrolysis treatment was performed on the PCP precipitate in order to gain 

identification of the saccharide composition and structure of the LPS extracted. After 

centrifugation, the water-soluble supernatant was analysed by 1H NMR spectroscopy. The 1H-

NMR spectrum showed signals typical of a mixture of oligo-/polysaccharide, however indicated 

that the product was not pure enough and required further purification steps. The use of a 

Superdex® 30 column (GE Healthcare Life Sciences) eluted with 50 mM ammonium bicarbonate 

successfully produced 6 distinct fractions containing different sized oligosaccharides.  

Analysis of each fraction using 1H-NMR revealed a successful separation of the O-antigen 

moiety and the core oligosaccharide portion. The anomeric region of the 1H-NMR can be seen to 

contain many signals highlighting the complexity of the saccharide in the LPS (Figure 11). 

 

 
 
 
 
 
 
 
 
 

1 

2 

3 

4 

5 

6 

Figure 11: Following acid hydrolysis of the PCP procedure extracted LPS, fractionation of the oligosaccharides 
was achieved through Superdex® 30 chromatography. Six fractions were produced and analysed through 1H-NMR. 
Fractions 1 and 2 identified as containing the O-antigen region, fraction 6 contained the core region, fractions 3, 4 
and 5 are a mixture containing both the core and O-antigen moieties. 
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Core- oligosaccharide 

From the Superdex 30® column fractionation (Figure 11), the final eluted fraction (fraction 6) 

was identified using 1H- NMR to contain the core region. This hypothesis arose from the presence 

of signals at 1.9/2.0 ppm which are identified as the H-3 methyl protons of the Kdo unit.  A PMAA 

derivatisation was performed on an aliquot of this fraction and enabled the composition of the 

sugars of the core region of the LPS from Veillonella parvula DSM 2008 showing a high variety of 

hexoses variously substituted, also hexosamine residues were found (Table 5).   

O-Antigen Polysaccharide 

The first two fractions eluted from the Superdex 30® chromatography (Fractions 1 and 2) 

were identified as containing the O-antigen saccharide component of LPS. This was known 

through the 1H-NMR spectra being typical of a polysaccharide.   The first two eluted fractions 

were subject to AA and PMAA derivatisations to make the sugar compositional analysis.  Both AA 

derivations and PPMA derivations were compared to standards and identified the presence of 

glucose and galactose residues for the hexose residues (Table 5). 

Additionally, some preliminary 31P NMR analysis of fractions 1 and 6 (of Figure 11) indicated 

the presence of phosphates which will be further examined through 2D NMR experiments and 

MALDI-TOF MS investigation.  
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Table 5: The saccharide composition of the Core and O-antigen regions of extracted LPS using the PCP 
method. The composition if the core was found using Partially Methylated Acetylated Alditols and for the O-
antigen a use of both Partially Methylated Acetylated Alditols and Acetylated Alditols derivatives. Analysis 
was through GC-MS. 

CORE O-ANTIGEN 

t-Hex (Glc) 

3-Hexp 

2-Hexp 

2-Hexf   

4-Hexp/5-Hexf  (4-Glc) 

6-Hexp 

2,3 Hexp (Gal) 

2,6 Hexp 

2,4-Hexp  

6-HexN 

2,7-Hep 

2,4-Hep 
 

2-pent (to be further investigated)  

t-Hex (Glc) 

3-Hex (Gal) 

4-Hexp/5-Hexf (4-Glc) 

3,6-Hex 

 

Future steps will be the study of the 2D NMR spectra that will be recorded for each Superdex® 

fraction, in order to characterise the structure of each eluted component.  

Alkaline treatment of LPS  
The extracted LPS sample was subject to O-de-acylation and N-de-acylation reactions in order 

to isolate the full saccharide region of the investigated LPS. Following purification using size 

exclusion chromatography to remove salts, the fully deacylated product was subject to 1H-NMR 



 

 

51 

analysis. The spectrum showed an impure sample, but anomeric signals were clear to detect the 

presence of an oligosaccharide. 

The sample was then purified using a Pure-A-Lyzer dialysis kit, 1 kDa for 3 hours and 1H-NMR 

of the dialysed and freeze-dried sample confirmed the purification through the loss of many 

background signals (Figure 12).  Through analysis of the 1H-NMR, defined signals were identified 

as belonging to glucosamine residues of the lipid A (5.0-5.5 ppm), as well as signals from the Kdo 

units (1.8/2.0 ppm): potentially 2 Kdo were identified.  

The combination of the data belonging to the O-de-acylation/N-de-acylation step with those 

from fraction 5 of the Superdex 30® column separation (which has the potential to define the 

linkage region between the O-antigen and the core oligosaccharide), the full LPS structure can be 

understood. Further 2D NMR will need to be performed to confirm this.   
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Discussion 

Veillonella parvula is known to be an abundant commensal coloniser of the human gut and 

mouth; it is linked to progression of childhood immune system but has also been found to be an 

opportunistic pathogen. Furthermore, Veillonella parvula, is found in the Negativicutes which is 

a class of the Firmicutes phyla (Poppleton et al., 2017). Negativicutes are a phylogenic 

phenomenon as they ancestrally are Gram-positives, although bacteria, such as Veillonella 

species, possess two systems of membrane and express LPS therefore they stain as Gram-

negatives (Antunes et al., 2016) (Poppleton et al., 2017). Increasing the understanding of the 

 

 

A 

B 

Figure 12: 1H NMR of PCP extracted LPS from Veillonella parvula DSM 2008 after de-acylation 
procedure. a) spectra after SEC to remove salt impurities. b) after dialysis to further purify sample 
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chemical structures of LPS found from gut microbiota bacteria species is particularly interesting 

to enable to form a link between how and if the structures of the LPS play a vital role in the 

activation/modulation/suppression of the immune system response (Matera et al., 2009) 

(Arrieta et al., 2015).  Moreover, in this case, it could also improve the knowledge of the evolution 

of bacterial cell envelope being Veillonella a bacterium at halfway between Gram-positives and 

Gram-negatives. 

In this present research it was uncovered that Veillonella parvula DSM 2008 (isolated from 

the gut of a hospitalised patient) possesses smooth-type LPS. As well as characterisation of the 

lipid A component, described in Chapter 5, the saccharide portion of the LPS has been isolated 

and preliminary structural analyses have been performed. The results were obtained from a 

combination of chemical analyses coupled with GC-MS spectrometry and 1H-NMR spectroscopy.  

The study of the composition of each distinct region of the LPS is extremely interesting as 

they both play important and separate biological roles.  The composition of the O-antigen has 

been found to play many roles for the survival and virulence of bacteria species. The structure of 

the O-antigen affects the TLR4 signalling outcome (Lebeer et al, 2010).  The O-antigen 

composition is also important for the survival and ‘hiding’ from the host immune system. A 

publication by Moran et al. (1996) found that specific monosaccharides within the O-antigen 

enables the LPS to mimic carbohydrates found on host cells therefore the bacteria form a 

“camouflage” from attacks from the immune system.  Possibly, Veillonella, found in this 

phylogenetic phenomenon class, adapted to express LPS with an O-antigen as a protective 

mechanism from immune system within human intestinal tract and therefore can inhabit the 

human host without harm.  

Here, the O-antigen was found to be composed of repeating units of pentose and hexose 

residues. Through performing both AA and PPAM chemical derivations and comparison with 

standards, the pentose sugars of the O-antigen were identified as a 2-linked ribose residue and 

the hexose residues are mixture of glucose and galactose.  From the number of anomeric signals 

found in the 1H-NMR spectrum it can be hypothesised that the O-antigen could be made up of a 
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particular trisaccharide repeating unit. In summary, the O-antigen of Veillonella parvula DSM 

2008 strain has a complex structure, additionally it is known that the O-antigen of bacterial 

species are heterogeneous therefore further investigation using additional 2D NMR techniques 

need to be employed.  

Confirmation of the core oligosaccharide sugar composition of LPS is extremely interesting 

biologically as it has been identified that there are specific sugar residues within the core region 

which directly bind to C-type lectins and activate phagocytosis of the bacteria by the human 

immune system (Zhang et al., 2006).  In the present study, for the core region, the presence of 

the Kdo was found: a structural element in almost all core regions of bacterial LPS (Holst, 2007) 

which is comparable to the LPS from phylogenetically close bacteria (Helander et al. 1992). Here, 

the composition of the core was found to be a mixture of glucose, galactose, glucosamine, 

galactosamine, heptoses and Kdo residues. The results of the PPAM analysis provides information 

about the ring structure and the branching of the sugars, showing that many of the hexose 

residues are 3-substituted.  Further confirmation of the presence of Kdo was obtained by 1H-

NMR analysis due to the presence of the typical methylene signals in the range 1.9-2.2 ppm.  

 
Further Work:  

A more detailed investigation of the full structure of the core and O-antigen region of the LPS 

from Veillonella parvula will be the next step of the present work. This can be achieved through 

further investigation with AMG derivative standards by GC-MS analysis. A full completion of the 

compositional saccharide analysis would aid the prospective 2D NMR experiment investigation. 
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Chapter 5: Lipid A Structure of 
Veillonella parvula DSM 2008 

Veillonella parvula DSM 2008 

Fatty Acid Composition  

The lipid A portion of LPS has been analysed starting from both the PCP and hot phenol/water 

extracts, as previously discussed in Chapter 4. The lipid A fatty acid composition has been 

achieved by the analysis of their methyl ester derivatives which showed the occurrence of 

hydroxytridecanoic acid (C13:0(3-OH)), hydroxytetradecanoic acid (C14:0(3-OH)), 

hydroxypentadecanoic acid (C15:0(3-OH)), undecanoic acid (11:0), dodecanoic acid (12:0), 

tridecanoic acid (13:0), hexadecanoic acid (C16:0) and heptadecanoic acid (C17:0).  Also, 

unsaturated species were identified as tetradecenoic acid (C14:1) and pentadecenoic acids 

(C15:1) as minor species.  

 
MALDI-TOF analysis V. Parvula DSM 2008 

Full structural elucidation of the lipid A was obtained through MALDI MS and MS2. Three 

methodologies were applied to gain the overall results: Negative-ion MALDI MS and MS2 analysis 

executed directly on the dried bacterial cells, the same analysis after a microextraction method 

of lipid A (Figure 13) (Di Lorenzo, 2017), and the MALDI MS and MS2 analysis of the mild acid 

hydrolysis precipitate (see Chapter 4) which supported the results. 

From all the spectra the high heterogeneity of the lipid A is clearly visible, both in terms of 

phosphorylation and acylation pattern in accordance with the fatty acid compositional analysis. 

It is possible to identify four distinct clusters of peaks relative to bis-phosphorylated tri- to hexa-

acylated species and each of these clusters is also characterized by the occurrence of species 

lacking one phosphate unit (Dm/z=80).    
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Figure 13: MALDI-TOF Mass Spectrum recorded in negative ion mode using the micro-extraction method 

of the PCP precipitate from Veillonella parvula DSM 2008. (communications with Di Lorenzo, 2018) 

 

Mono- and bis-phosphorylated hexa-acylated lipid A species are the most dominant in the 

spectrum which was identified by the cluster at around m/z 1688.6 and 1768.6 respectively. In 

detail, the peak at m/z 1768.6 matched with a bis-phosphorylated GlcN disaccharide backbone 

carrying two primary ester-linked C13:0(3-OH), two amide-linked C15:0(3-OH) acyl chains, while 

one C11:0 and one 13:0 were the secondary acyl substituents. The species identified at m/z 

1768.6 was attributed to a bis-phosphorylated lipid A carrying two primary ester-linked C13:0(3-

OH), two amide-linked C15:0(3-OH) as previously described, while two 13:0 were the secondary 

acyl chains in this species (Figure 14). The slightly less intense cluster of peaks at around m/z 

1688.6, as stated above, is attributed to the related hexa-acylated species lacking one phosphate 

group (Dm/z=80).   
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Figure 14: Sketch of the bis-phosphorylated hexa-acylated lipid A species identified using MALDI-TOF MS. 
A) Species at m/z 1796.6 with  two ester linked C13:0 (3-OH) and two amide linked C15:0 (3-OH) acyl chains 
and further substitutions on both the primary acyl chains of the non-reducing GlcN by tridecanoic acids 
(C13:0) B) Species at m/z 1768.6 also with two ester linked C13:0 (3-OH) and two amide linked C15:0 (3-OH) 
acyl chains  but with secondary substitutions by C13:0 and C11:0  

 

In order to characterise the location of the secondary acyl substituents, with respect to the 

GlcN disaccharide backbone, several negative ion MALDI MS2 experiments were recorded. 

Herein, the MALDI MS2 spectrum of precursor ion at m/z 1796.6 will be described as example 

(Figure 15).  The spectrum showed a main peak at m/z 1566.4 relative to a fragment avoid of one 

C13:0(3-OH), whereas other peaks at m/z 1352.3 and 1138.3 were relative to lipid A fragments 

lacking one C13:0(3-OH) and one C13:0 (m/z 1352.3), or lacking C13:0(3-OH) and two C13:0 (m/z 

1138.3). The peak at m/z 1370.3 was very important in terms of the structural characterisation 

as it was relative to a fragment devoid of an entire ester-linked moiety made up of one C13:0(3-

OH) and one C13:0, indicating the occurrence of the acyl chain C13:0 as a secondary substituent 

of the primary ester-linked C13:0(3-OH).  Similarly peak at m/z 925.1 was attributed to a lipid A 

species derived from the loss of one entire unit of C13:0(3-OH) and C13:0, plus the sequential 

loss of one primary C13:0(3-OH) and the other secondary C13:0. Finally, the important peak at 
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m/z 710.0 derived from the cleavage of the glycosydic linkage (Y1) (Domon and Costello, 1988) 

indicated that the acyl chains linked to the reducing GlcN units were only the primary C13:0 (3-

OH) and C15:0 (3-OH), thus confirming that the secondary acyl chains only decorate the non-

reducing GlcN residue.  

 

 

Figure 15: MS2 spectrum recorded in negative ion polarity of precursor ion at m/z 1796.6. In the inset the 
proposed bis-phosphorylated hexa-acylated lipid A structure. 

 

A less intense lipid A species identified at m/z 1877.7 and 1957.7 matched with mono- and 

bis-phosphorylated hexa-acylated species which are further decorated by a hexosamine residue 

attached at position 4’ of the non-reducing GlcN via phosphodiester bridge (Figure 16). The 

distinction of whether this hexosamine is glucosamine or galactosamine remains undetermined 

as both species were identified in the compositional analysis.  

In conclusion, one of the main species composing the Veillonella parvula lipid A is the one 

sketched in Figure 15. 
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Figure 16: Image of hexa-acylated species with a hexosamine residue linked to the non -reducing end of 
the GlcN I residues of the lipid A disaccharide. This was identified using MALDI TOF MS analysis with a m/z 
1957.7. The glucosamine decorating the lipid A backbone in position 4’ of GclN I is tentative. 

Discussion 

Lipid A has been identified as the toxic component of the LPS through activating the 

TLR4/MD-2 complex, leading to an immune response. Much research into lipid A structure-

activity relationship has shown that the number of acyl chains, phosphorylation pattern and the 

presence of further charged groups on the GlcN disaccharide are major determinants modulating 

the toxicity of the lipid A (Molinaro et al. 2015). 

In this study, the production of methyl esters derivatives of the fatty acids in the extracted 

LPS were identified using GC-MS which gave a preliminary indication of the high heterogeneity 

of the acyl chains within the lipid A species. The methyl ester derivatives indicated, among others, 

the presence of odd-numbered acyl species.  The presence of these latter acyl chains is 

particularly unusual compared to the known published lipid A structures; however, a few 
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publications of the lipid A from other microbiota bacteria, such as Bacteroides fragilis, have also 

seen this trend (Wollenweber et al., 1980). There is also evidence that many Gram-positive 

bacteria of the microbiota synthesise predominantly odd-numbered branched-chain fatty acids 

in their bacterial membrane lipids, such as B. subtilis and S. aureus (Kaneda, 1991). This would 

potentially correlate with the ancestral tree of Veillonella, which is found within a class of the 

Gram-positive phyla Firmicutes (Poppleton et al., 2017).  

The chemical structure of the lipid A from Veillonella parvula was seen to change in number 

of acyl chains, with the predominance of hexa-acylated lipid A species but also penta-acylated 

and tetra-acylated species (Figure 15). Moreover, the MALDI TOF mass spectra investigation 

found that the lipid A species also have alterations in the phosphate content as species containing 

only one phosphate group were identified. The lipid A typically has an overall negative charge, 

which is supported by the presence of the phosphate groups therefore, a loss of phosphate will 

reduce the negative charge. The human immune system can recognize and attack through 

charged interactions between the negative lipid A and positively charged anti-microbial proteins 

(Maeshima and Fernandez, 2013).  In Bacteroides thetaiotaomicron, another bacterium in the 

gut microbiota, the loss of a phosphate group on the GlcN head group of lipid A creates resistance 

to high levels of associated antimicrobial peptides (Cullen et al., 2015), therefore it is possible to 

suppose that the loss of a phosphate group on Veillonella could reduce or prevent the host 

immune system attacks on the bacteria (Steimle et al., 2016) (Maeshima and Fernandez, 2013).  

Additionally, phosphate groups of the lipid A are able to form interactions with some of the 

protein residues in the TLR4/MD-2 receptor complex (Maeshima and Fernandez, 2013).  

Alterations in the number of phosphate groups of the lipid A may affect the ability of the LPS to 

activate the TLR4 signaling pathway. Moreover, it has been demonstrated in the case of  

Bordetella pertussis LPS that the TLR4 activation increases when both the GlcN composing the 

lipid A sugar backbone are modified with an addition of glucosamine residues (Shah et al., 2013).  

Interestingly, the presence of a side chain of a hexosamine residue was also observed here in 

Veillonella parvula DSM 2008 (Figure 16). The addition of groups like amino-sugars can further 

alter the charge and assist the LPS/bacteria to evade the host immune system (Steimle et al., 
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2016). This could be a mechanism by which the bacterium alters itself to “hide” from the host, 

an important role when inhabiting the human gut.  

In conclusion, whether and how all these structural peculiarities affect the immunological 

properties of Veillonella LPS will be further investigated in a future detailed structure to function 

relationship study. Nevertheless, it is obvious from the high heterogeneity of the lipid A species 

found in this study on Veillonella parvula, and supported by previous literature data on gut 

microbiota, that there is a delicate balance to be maintained between a bacterial species being 

commensal or pathogenetic which is highly reliant on the chemical structure of the lipid A.   
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Chapter 6: Characterisation of 
saccharide domains of the LPS from 
Veillonella parvula strain ATCC 10790. 

Veillonella parvula ATCC 10790 (Batch 1)  

 
Isolation of LPS  

A first attempt of extraction of the LPS from Veillonella parvula ATCC 10790, grown in 

planktonic and anaerobic conditions, was performed with a very small starting weight of dried 

bacterial cells (800 mg), but was used to give an insight into the carbohydrate composition of the 

LPS. A first method of extraction was executed using the PCP method (Galanos et al. 1969) 

however no precipitation after centrifugation was formed when water drops where added to the 

phenol phase. Therefore, the hot water/phenol extraction method was applied (Westphal and 

Jann, 1965).  

A 14 % DOC PAGE analysis with silver nitrate gel staining was performed on the dialysed and 

lyophilised water phase obtained by the above extraction, producing a weak ‘laddering’ effect 

demonstrating the presence of high molecular-weight species in the upper part of the gel.  

The sample was purified with DNase, RNase, and Proteinase K followed by extensive dialysis 

(MWCO 12-14.000 Da) against milliQ water for three days. The sample was recovered and freeze 

dried, producing only 21 mg of extracted material. A 14 % DOC PAGE analysis of the enzymatically 

treated sample was run and stained with both Alcian Blue (used to stain acidic polysaccharides) 

and silver nitrate.  The Alcian Blue stain was positive with a dark blue banding indicating the 

occurrence of some acidic polysaccharide contaminant (not shown). The silver nitrate staining 

did not produce a ladder effect but a dark staining across the electrophoretic pattern on the gel 

(Figure 17).  
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Chemical Analysis of LPS carbohydrate component  

Monosaccharide compositional analysis was achieved through AMG derivations of the 

extracted, purified sample to give the monosaccharide composition of the full LPS. Table 6 gives 

the results obtained by analysing GC-MS spectra; it is worth noting that it was not possible to 

identify the occurrence of Kdo, namely a key component of the LPS structure.  

Veillonella parvula 
LPS 

E. Coli LPS 

Figure 17: 14% DOC PAGE run at 150 V for 1 hour. Blue banding was seen with Alcian Blue and laddering effect 
seen with silver nitrate staining. 



 

 

64 

Table 6: Monosaccharide detected from AMG analysis of LPS before and after enzymatic digestion of 
extracted LPS from Veillonella parvula (Batch 1) 

Monosaccharide 

 (before enzymatic digestion) 

Monosaccharides 

(after enzymatic digestion) 

Deoxyhexose (Rha) Deoxyhexose (Rha) 

Pentose (Rib) Pentose (Rib) 

Deoxy-hexosamine  - 

Hexose (Glc) Hexose (Glc) 

- Hexosamine (GlcN) 

Veillonella parvula ATCC 10790 (Batch 2)  

Isolation of LPS  

A second tentative of structural investigation was performed starting from bacterial cells with 

a dried weight of 2 grams that were washed with distilled water, ethanol and acetone. To confirm 

no saccharides were lost in this cell wash, a proton NMR spectrum was recorded.  

The hot phenol/water extraction method (Westphal and Jann, 1965) was used. Both the 

water and phenol phase were subject to dialysis (MWCO 12-14.000 Da) and freeze dried. 86 mg 

of sample was weighed for the water phase which was then attempted to confirm the presence 

of LPS though a 14 % DOC PAGE and silver nitrate gel staining, however the gel produced 

inconclusive results (Figure 18).  
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The water phase from the hot phenol/water extraction was then subject to enzymatic 

digestion using DNAase, RNAase and proteinase K, followed by extensive dialysis against milliQ 

water for four days. After the purification with enzymatic treatment, 41 mg of sample was 

collected. 14% DOC page with silver nitrate gel staining was performed (Figure 19a).  No distinct 

ladder-effect was seen on the gel, only a thick banding and the same results were seen when 

repeated with further dilutions of V. parvula LPS (Figure 19b).  

  

Figure 18: A 14% DOC PAGE run at 150 V for 1 hour with 1 mg/ml concentration of LPS. V. parvula LPS 
was extracted using hot water/phenol method from Batch 2 and E. coli LPS is used as standard. 

E.coli LPS Veillonella 
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Chemical Analysis of Extracted LPS 

Compositional Analysis with GC-MS 

Monosaccharide content analysis though AMG derivations of the extracted LPS before 

enzymatic purifications revealed the presence of deoxy-hexose (Rha), pentose (Rib), deoxy-

hexosamine, hexose (Glc), hexosamine (GlcN) and heptose residues (traces) (Figure 20). 

However, following enzymatic digestion purification it was not possible to perform compositional 

analysis as the quality and quantity of the remaining sample was so poor which is mainly due to 

the low starting material and also due to loss of sample during the various reaction steps involved 

in the analysis.  

 

Figure 19: 14 % DOC PAGE run at 150 V for 1 hour. Then stained with silver nitrate A) E. coli LPS 
standard giving laddering effect compared to the dilutions of Veillonella LPS (1 mg/ml of Batch 2 
extracted with hot phenol/water), producing inconclusive results. 1: Veillonella 1mg/ml, 2: Veillonella 
500ug/mL, 3: E. coli LPS  b)Further dilutions of enzymatically treated Veillonella LPS: 1: Veillonella 0.33 
mg/ml, 2: Veillonella 0.16 mg/ml, 3: E. Coli LPS.  

a) 
b) 

1 2 3 
1 2 3 
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Figure 20: Annotated chromatogram of monosaccharides from a GC-MS analysis of AMG derivations of 

extracted LPS from hot water/phenol of Veillonella parvula (Batch 2)  

 
NMR analysis of Polysaccharide portion  

To improve the analysis of the structure of the LPS saccharide, the lipid A portion was cleaved 

through mild acid hydrolysis with an acetate buffer treatment (see Experimental Section).  

Separation through centrifugation produced two phases: a water phase and a pellet, the 

former containing the saccharides component whereas the latter containing the lipid A portion.  

Analysis though a proton NMR spectrum was inconclusive due to contamination of the sample 

by exopolysaccharide glucans.  

Discussion 

In this current research study, the first attempt of extraction of the LPS from Veillonella 

parvula ATCC 10790, grown in planktonic and anaerobic conditions, was performed with a very 

small starting weight of dried bacterial cells (800 mg) (Batch 1), but was used to give an insight 

into the carbohydrate composition of the LPS.  
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Extraction of LPS was only possible with hot/phenol water method indicating that the LPS 

from Veillonella parvula contains an O-antigen, therefore being a smooth-LPS. The DOC PAGE 

with silver staining was unsuccessful in the verification of the presence of the O-antigen, which 

is usually seen by a ladder effect on the gel (Tsai et al., 1982). Furthermore, the results of the 

Alcian Blue were positive highlighting the presence of contaminating sugars such as EPS (Al-

Hakim A. et al., 1990) (Tsai et al., 1982). The AMG results of this extracted component show a 

highly heterogeneous mixture of various sugar monosaccharides within the core and O-antigen 

of the LPS.  After purification with enzymatic treatment and dialysis, a clearer compositional 

analysis was made.   

A second batch of the same bacteria cell culture strain ATCC 10790 with a dry cell mass weight 

of 2 grams was analysed. Comparing the compositional analyses of these two batches, the 

carbohydrate content is comparable with large peaks representative of hexose (Glc) and also 

pentose and deoxyhexose residues. However, the second batch gave further signals which were 

identified as deoxy-hexosamine and heptose residues in traces. This showed that more starting 

material gave a more successful analysis as a higher concentration of potential LPS was extracted.  

It is important to highlight that in the AMG results of both these batches of extracted 

Veillonella parvula LPS (strain ATCC 10790), the Kdo could not be found. Kdo may not be found 

within this analysis could be due to quantity of “contaminating” monosaccharides within the 

sample. Here the purity of the sample could be one of the reasons in which Kdo may not be 

identified.  To overcome the problem of purification the extracted LPS was subject to enzymatic 

treatment in order to remove unwanted nucleic acid contaminants which may interfere with the 

clear interpretation of GC-MS chromatogram spectra. Unfortunately, after this purification both 

a GC-MS and DOC PAGE analysis proved that no LPS could be identified: no signals seen on the 

chromatogram spectra and no laddering seen after silver staining. Another reason in which the 

Kdo may not have been identified could be due to the chemical treatments of the sample 

involved to derivatise the sample for the GC-MS analysis may have modified Kdo sugars. If the 

Kdo monosaccharides had become chemically modified during the AMG reactions, then the mass 

spectrometry analysis could fail to give an accurate analysis.  
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Subsequent acid hydrolysis was performed to cleave the acid-labile bond between Kdo and 

GlcN from the lipid A of an LPS (if present).  The analysis by 1H NMR analysis of the water-soluble 

phase did not provide any further insight into the carbohydrate composition or structure of the 

extracted LPS, whereas it confirmed the hypothesis of the occurrence of an acidic 

exopolysaccharide material likely composed of a variety of sugars with glucose being the main 

species since this has been found as the main peak in all the GC-MS analyses executed on both 

V. parvula ATCC 10790 batches. Unfortunately, acid hydrolysis of the extracted LPS can create 

unwanted products such as reducing kdo sugars which make the analysis through NMR practically 

difficult therefore if more sample were available, a further analysis using a de-acylation reaction 

could be useful in obtaining the oligosaccharide component of the LPS (Di Lorenzo, 2014).  

The conclusion to be drawn from this extraction and analysis would be to state that possibly 

the extraction method used caused a co-extraction of the LPS material and an exopolysaccharide 

whose presence impaired chemical analyses interpretation.  

Comparison of the Two Strains 

During this research two batches of cells were provided from separate laboratories with 

different growth conditions. The results from V. parvula DSM 2008 could provide an insight into 

the differences between a strain of bacteria isolated from a hospitalised patient which would 

have an active immune system at the time of extraction.   LPS from ITCC 10790 strain contained 

deoxy-hexose, pentose, deoxy-hexosamine, hexose, hexosamine and heptoses residues; (Figure 

21), compared to the Veillonella strain extracted from the hospitalised patient (DSM 2008) which 

lacked deoxy-hexoses but Kdo residues were identified (Table 2). Although the strains of 

Veillonella parvula are the same (DSM 2008 and ATCC 10790) the growth medium was different. 

The bacteria ATCC 10790 was grown in medium “anaerobose basal broth (OXOID)” which is 

commonly used for anaerobic bacteria (Gibbons and MacDonalnds, 1960).   The growth media 

can have a direct influence on the structure of the LPS and therefore may play a role in the 

compositional difference seen in this research.   
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As stated in Chapter 4 in the analysis of the ITCC 10790 strain, the chemical analysis of the 

extracted LPS could be hindered by the impurity through the co-extraction exopolysaccharide 

whose presence may impair the chemical analyses interpretation. Therefore, only speculations 

can be made of this analysis.  

 

Overall Conclusion and Discussion  
The intestinal tract is colonised by 1013-1014 organisms composing the gut microbiota which 

play a vital role in the health of the human host (Sender, Fuchs and Milo, 2016). There is very 

little understanding of the biological mechanisms which allow the human body to host a complex 

microbial ecosystem without the constant activation of the immune system. A better 

understanding of the interactions occurring between the gut microbiota and human immune 

system could influence our current views on gut pathologies and human nutrition (Waldor et al., 

2015).  

The elucidation of the structure of LPS from bacteria found within the gut microbiota is of 

particular importance in expanding our understanding of the role which LPS plays in gut bacteria. 

The structure of the LPS, specifically the lipid A, activates the host immune system through the 

TLR4/MD-2 receptor complex in a structure dependent manner (Silipo and Molinaro, 2011).  

Therefore, this study of the LPS from the bacteria species Veillonella, a key coloniser of the 

intestinal tract and oral cavity, furthers our knowledge in the growing biomedical field of the gut 

microbiota. Bettering our understanding of how bacteria inhabit within the human host, play a 

role in the activation and or suppression of the immune system response will lead to greater 

improvements in medical care in the future.  

This research focused on two batches of Veillonella parvula cells, enabling full compositional 

analysis of the saccharide composition of the LPS from the bacterium. The compositional analysis 

through gas chromatography- mass spectrometry was the main technique used throughout and 
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provided a key foundation for the 1H NMR experiments and the prospective 2D NMR analysis.  

Furthermore, the composition of the monosaccharides within the separate domains (the core 

and O-antigen) were successfully obtained through liquid chromatography and analysed using 

GC-MS and NMR analytical methods.   

Within this study the core region of the LPS was found to contain a mixture of glucose, 

galactose, glucosamine, galactosamine, heptoses and Kdo residues. The core composition is of 

particular interest due to its interaction with the immune system through binding to C-type 

lectins (Zhang et al., 2006).   The binding to C-type lectins leads to the activation of phagocytosis 

however resistance to this phagocytosis has been observed in bacteria which possess LPS with 

an O-antigen saccharide component (Burns et al., 1998) (Cortes et al. 2002). This protective 

method against phagocytosis may also be employed by Veillonella as during this study it was 

discovered that these Veillonella species possess the S-type LPS, containing an O-antigen 

polysaccharide. This could be further investigated by performance of immunological assay of the 

LPS from Veillonella with and without the O-antigen region.  

The composition of the O-antigen was found in the research to be composed of repeating 

units of pentose and hexose residues. Although separation was enabled through liquid 

chromatography, further purification would enable a more detailed analysis of the 

polysaccharide.  

A compositional analysis of the fatty acids within the lipid A, the glycolipid part of the LPS, 

was performed which was supported by the successful elucidation of the full lipid A structure 

through MALDI-TOF and MS2 mass spectrometry.  The main species composing of two ester 

linked C13:0 (3-OH) and two amide linked C15:0 (3-OH) acyl chains and further substitutions on 

both the primary acyl chains of the non-reducing GlcN by tridecanoic acids (C13:0) (seen in Figure 

16). It is important to highlight the heterogeneity of the lipid A species identified within the 

analysis performed, finding variation in the level of phosphorylation, acyl chain lengths and 

substitutions. The structure of the lipid A species elutes varied effects on the immune system 

response: activation and/or suppression. Veillonella Parvula has been identified as an 
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opportunist coloniser therefore it could be hypothesized that the ratio of these lipid A structure 

could vary dependent on the strain, environment or where they are isolated from (Mashima and 

Nakazawa, 2015) (Marchandin et al., 2001).  A further investigation and comparison into the lipid 

A structure of LPS from Veillonella grown in different growth conditions would be a useful 

support for this hypothesis.   

The findings within this research are novel as it is first structural elucidation of the lipid A 

component from the bacteria species Veillonella Parvula. Secondly, the elucidation of the sugar 

composition of the individual components of the LPS from Veillonella Parvula will lead to an 

increased knowledge of how the chemical structure of LPS from the microbiota relates to their 

interaction with the host. The successful separation of the O-antigen and the core enables the 

project to be continued into a deeper investigation with an aim to complete the full structure of 

the LPS from Veillonella parvula.  For this more detailed investigation into the structure of the 

LPS, a continuation of the full structure of the core and O-chain region needs to be performed, 

which would identify the order of the residue linkages, the O-antigen repeat unit and the link 

between the core and O-antigen. 

To understand how alterations within the growth environment affects directly the 

composition of the core region in Veillonella LPS, a comparative study between mutant core 

and/or O-chain knock-out strains and wild-type strains would be ideal (Wang et al. 2015).   To 

confirm the importance and role of the O-antigen and/or core region of the LPS from Veillonella 

species research could be applied using mutated bacteria with knock-out of the genes coding for 

proteins involved in the production of the O-chain and/or core sugar linkages. It is known that 

Veillonella can be an opportunist pathogen as well as commensal (Mashima and Nakazawa, 2015) 

(Marchandin et al., 2001) so a mutation study could identify if the LPS are the causative agents 

within infections.  
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Summary 

 
• Successful extraction and purification of the LPS from the gut microbiota bacteria 

Veillonella parvula has been achieved followed by separation of the two diverse 
saccharide components: O-antigen and core oligosaccharide. 

• Structure of the lipid A of the LPS from Veillonella parvula has been found using a 
combination of gas chromatography/mass spectrometry, MALDI-TOF mass 
spectrometry and tandem mass spectrometry (MS2) 

• Compositional analysis of the monosaccharide residues composing the Core region and 
O-antigen region of the LPS from Veillonella parvula, using gas chromatography mass 
spectrometry and NMR techniques.  
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