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Abstract

In this thesis, I study the evolution of low-mass (around 2 M�) solar-metallicity
stars including the effect of rotation and magnetic fields. These stars produce
a significant amount of elements heavier than iron via the so-called s process
and thus have a large impact on galactic chemical evolution. In the last decade,
researchers have been able to obtain rotational properties from asteroseismic
observations of stars. These observations cannot be reproduced by current
stellar evolution models. It is now generally accepted that a process of
transport of angular momentum is missing from the current implementations
of rotation in stellar evolution models. The aim of the thesis is to explore the
impact of rotation on the evolution and nucleosynthesis of low-mass stars,
and to use the asteroseismic and s-process nucleosynthesis observations as
constraints. To do so, I calculated rotating and non-rotating models, with
and without the Tayler-Spruit dynamo. To constrain the missing process of
angular momentum, I included an additional, artificial viscosity to models.
The main findings are the following. I determined the amount of additional
viscosity needed for the cores within my stellar evolution models to rotate
within the asteroseismically constrained rotation rates of core helium burning
stars and white dwarfs. The value I had to use for such viscosity is νadd

=106-107 cm2 s−1, several orders of magnitude higher than the value found
to match observations for lower mass stars. I then calculated for the first
time the s-process nucleosynthesis of stellar evolution models that match
these constraints on rotation rates. I concluded that the effect of rotation
on the s-process production of low mass AGB stars is negligible, which is
in agreement with s-process observations. I also placed constraints on the
mixing of chemical elements by the missing process of angular momentum,
and I have listed future work involving magnetic dynamos.
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1 Introduction

Stars are important to us for several reasons. For instance, stars create the elements

necessary for life. Our Sun is a star, which keeps us warm and provides the light we

need. Understanding how stars are born and die is important to understand what will

happen to us and our solar system. Stellar interiors are physical laboratories with extreme

conditions that test many different areas of physics: nuclear physics, particle physics,

thermodynamics, hydrodynamics, and (classical) mechanics. As a result, the study of

stars is fascinating yet complicated, because the conditions of stellar interiors cannot

usually be reproduced in a laboratory on Earth and different processes interact and

feedback on each other in a complex way.

This thesis focusses on the lives and nucleosynthesis low mass stars. A few of the reasons

of why these stars are important in relation to the work presented in this thesis are listed

here. First, because of their large number compared to massive stars, as the initial mass

function of stars strongly decreases with increasing stellar mass (see e.g. Salpeter 1955).

Second, because of their interesting nucleosynthesis (the s process in particular) which

makes them important for the chemical evolution of our Universe (see e.g. Travaglio et al.

2004; Kobayashi, Karakas & Umeda 2011; Kobayashi et al. 2011; Bisterzo 2017; Prantzos

et al. 2018). Third, because recent asteroseismic surveys allow astronomers to probe the

interior low-mass stars (Aerts, Christensen-Dalsgaard & Kurtz 2010; Beck et al. 2012).

1.1 Evolution of low mass stars

In this section the evolution of low-mass stars will be presented, starting by defining

what a low mass star is before moving to detailed stellar evolution theory, which is

loosely based on the stellar evolution lecture notes of Pols (2009) and Pettini (2014),

and on the book by Kippenhahn & Thomas (1970). The main focus of this section will

be on the asymptotic giant branch (AGB) phase, as this is where the s process takes

place, providing an important observational constraint for the stellar evolution models
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presented in this work.

Binary interaction has also been shown to play an important role in the evolution of

stars (see e.g. De Marco & Izzard 2017, for a recent overview). There are however many

problems to solve concerning single star evolution and the effects of rotation, including

the missing process of angular momentum transport and the effect of rotation on the

s-process production in AGB stars. Therefore in this thesis I solely focus on single stars.

1.1.1 General considerations

Fig. 1.1 and the accompanying text in Karakas & Lattanzio (2014) presents a schematic

overview of the different evolutionary paths of single stars, covering the whole spectrum

of initial masses. The least massive stars with an initial mass of about 0.08-0.5 M� are

shown on the left, these stars only burn hydrogen (H) into helium (He) in their cores and

form He white dwarfs. The most massive stars with an initial mass of about 25 M� and

higher are depicted on the far right. These stars undergo all nuclear burning phases (H,

He, carbon (C), neon (Ne), oxygen (O), and silicon (Si)) and most are expected to form

black holes. In between these extremes, the distinction for the different initial masses is

made based on the following:

• Low-mass stars: stars with an initial mass of about 0.5-2.2 M�. These stars start

the core He burning phase with He flashes under degenerate conditions, proceed

through the AGB phase and end their lives as CO white dwarfs (Herwig 2005;

Karakas & Lattanzio 2014).

• Intermediate-mass stars: stars with an initial mass of about 2.2-10 M�. Unlike

low-mass stars, these stars start the core He burning phase gently without the

He flashes under degenerate conditions. In Fig. 1.1 intermediate-mass stars are

split in three groups: the lower intermediate-mass stars (2.2-7 M�) which do

not ignite C in their core, the middle intermediate-mass stars (7-9.5 M�) which

ignite C via C flashes, and end their lives as O-Ne white dwarfs, and the massive

intermediate-mass stars (9.5-10 M�) which ignite C in C flashes and end their
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lives as neutron stars. Before their final fate, these stars all experience the AGB

phase (see Section 1.1.3 and Herwig 2005; Karakas & Lattanzio 2014).

• Massive stars: stars with an initial mass & 10 M�. These stars start the core C

burning phase gently without C flashes, and proceed further through core Ne, O,

Si burning phases. These stars end their lives as neutron stars or black holes, see

Heger et al. (2003).

These initial masses are all rough estimates taken from Karakas & Lattanzio (2014),

which vary with initial metallicity and composition, and when different physical processes

(like rotation) are included in the stellar evolution calculations.

The stellar evolution models presented in this thesis have an initial mass that positions

them around the border between low-mass and (lower) intermediate-mass stars. For

convenience, I refer to them as ‘low-mass’ even if they do not experience He flashes at

the start of the core He burning phase.

The majority of stars are in very long-lived phases, such that no change can be observed

during our lifetime. All the forces acting on the gas elements inside stars are in balance

with each other, creating a mechanical equilibrium. This equilibrium is commonly referred

to as the hydrostatic equilibrium (or HE) and states that gravity and pressure forces are

balanced inside the star. So the equation of motion for a gas particle is in balance, and

there is no acceleration for each gas particle:

r̈ = 0 = −Gm
r2
− 1

ρ

dP

dr
(1.1)

with r̈ being the acceleration of the gas particle, G the gravitational constant, m the

mass coordinate of the particle within the star, ρ the density and P the pressure of the

surrounding of the gas particle. When using dm/dr = 4πr2ρ, Eq. 1.1 can be rewritten as:

dP

dm
= − Gm

4πr4
(1.2)

which is the commonly known expression for the hydrostatic equilibrium, with dm being

the thickness in mass coordinates of the shell in the star.

Estimates of what happens when this equilibrium is perturbed can be given by assuming
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that the pressure forces are suddenly not present any more, so only inwards gravity is

present. Then, the star collapses under its own gravity on a ‘dynamical time scale’, τdyn,

or ‘free fall time scale’, calculated by approximating the inward acceleration:

r̈ =
R

τ 2
dyn

(1.3)

as this acceleration is the gravitational acceleration g = GM
R2 , with R and M being the

total radius and mass of the star, the expression for τdyn becomes:

τdyn ∼
(
R3

Gm

)1/2

(1.4)

For the Sun, τdyn is about half an hour, much shorter than its evolutionary time scale.

This means that stars have very fast responses to changes in their mechanical equilibrium.

Stars can reach HE again after a perturbation, but small scale oscillations around HE

may occur (see Section 1.3).

A consequence of the HE is a relation called the virial theorem, which connects the two

main energy sources within a star. The virial theorem is derived from the HE (Eq. 1.2)

by integrating over the whole star:∫ M

0

4

3
πr3 dP

dm
dm = −1

3

∫ M

0

Gm

r
dm (1.5)

assuming spherical symmetry and with P being the pressure, and m and r the mass and

radius coordinates respectively within the star. The integral on the right results in the

gravitational potential energy, while the integral on the left can be integrated by parts so

that Eq. 1.5 becomes:

[V P ]r=Rr=0 −
∫ Vr=R

Vr=0

PdV = −1

3
Egr (1.6)

where V is the volume of the star within radial coordinate r. The first term on the left

side is zero at both integration limits (the volume is zero at r=0, the pressure is zero

at r = R), whereas the second term on the left side can be rewritten as
∫ Vr=R

Vr=0

P
ρ

dm.

Assuming the star is made up of mono-atomic ideal gas, then the pressure is given by:

P =
ρ

µmu

kBT (1.7)
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where µ is the mass of the gas in atomic mass units, kB the Boltzman constant, and

mu the atomic mass unit. The internal energy u of each ideal gas particle 3
2
kbT , which

becomes 3
2
kbT
µmu

per mass unit. This can be simplified to u = 3
2
P
ρ
. Substituting this relation

into the remaining terms in Eq. 1.6 leads to
∫

P
ρ

dm = 3
2

∫
udm which is 3

2
times the

internal energy Ei̊nt. The virial theorem for an ideal gas is therefore:

Eint = −1

2
Egr (1.8)

which provides a strong relation between internal and gravitational energy of the

star: when the star contracts, it becomes more strongly bound and thus increases the

gravitational pull inwards, the internal energy has to increase as well, which can be

achieved by increasing the temperature of the star.

When nuclear reactions take place within the star, the energy generated can compensate

for the energy that is radiated away at the surface. When the energy generation is

actually balancing the energy losses at the surface, the star is in thermal equilibrium

(TE) and the total energy of the star is conserved. Like with the HE, it is important to

consider what would happen when the thermal equilibrium is violated. This can be done

by assuming that the energy generation within the star is larger than the amount of

energy radiated away at the surface (Lnuc > L). The total energy of the star would then

increase, making the star expand and cool due to the virial theorem. As the nuclear

reactions are temperature dependent, the temperature decrease leads to a decrease in

energy generation, until the energy generation again matches the energy loss. Like the

HE, the TE is thus a stable equilibrium.

The time scale over which the star reacts to changes to the TE is called the thermal time

scale, or the Kelvin-Helmholtz time scale. It is characterised as the time a star needs to

radiate away all gravitational binding energy, assuming a constant luminosity and no

energy generation in the star:

τKH ∼
Eint

L
=
Egrav

2L
(1.9)

τKH ∼
GM2

2RL
(1.10)
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with the Sun’s current values, this corresponds to 1.5 × 107 years, much longer than the

dynamical time scale but still much shorter than its lifetime.

A star can remain in TE as long as nuclear fuel is available. The nuclear time scale is the

time scale on which the star will exhaust the current burning phase if it continues at a

constant rate:

τnuc ∼
qXMr

L/Q
(1.11)

where q is the fraction of fuel available for the burning phase, X the mass fraction

of the fuel in the star, M the total mass of the star, r the burning rate, L the total

luminosity of the star, and Q is the energy released per mass of the fuel. For the Sun,

this is corresponds to 1010 years, a few orders of magnitude larger than the thermal time

scale.

To conclude:

τnuc � τKH � τdyn (1.12)

and thus the nuclear time scale determines the stellar evolution pace, and stars can be

assumed to be in HE and TE for most of their lives.

In the previous paragraphs the ideal gas law was used as equation of state. However, this

equation of state is not always applicable. The other frequently mentioned equation of

state is the degenerate one.

A gas can become degenerate when its free particles (in AGB stars usually electrons, i.e.

fermions) are limited to a finite volume at a high density. If the density increases, the

electrons are more limited in their movement and the Pauli exclusion principle becomes

important (Pauli 1925). This principle states that two or more electrons are not able to

occupy the same momentum state. The Heisenberg uncertainty principle (Heisenberg

1927), applicable to all particles, states that:

∆x∆p ≥ h

4π
(1.13)

where ∆x is the uncertainty (standard deviation) of the position of the particles, ∆p the

uncertainty in momentum, and h the Planck constant. When the density increases, the
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∆x will decrease as well. Thus ∆p has to increase as stated in the Heisenberg principle,

meaning the spread of electron velocities will go up independent of the temperature.

When the pressure due to these increased velocities exceeds the pressure from the thermal

motion of the electrons, the gas is referred to as degenerate matter. The degeneracy

pressure, only dependent on density, is: P = C × ρ
µe

where C is a constant of about

1×1013 (cgs units), and µe is the mean molecular weight of an electron. The transition

from an ideal gas to a strongly degenerate gas happens smoothly, and is called partial

degeneracy.

As the temperature and pressure are disconnected in fully degenerate gases, perturbations

of TE (like the Lnuc >L example discussed when defining the thermal time scale) have a

different effects on the star than in ideal gas conditions described in the previous section.

In a degenerate gas, the extra energy generation will not lead to an expansion and thus

cooling of the star. Instead, the extra energy will lead to heating of the region, followed

by even more enhanced energy generation, leading to more heating, followed by more

enhanced energy generation. This unstable process is called thermonuclear runaway

and will continue until the gas is hot enough to start acting like an ideal gas again. An

example of thermonuclear runaways is the core He flash in low-mass stars, see Section

1.1.2.

These unstable nuclear burning conditions can also occur in shell burning phases, if

the burning shell is sufficiently thin (the thin shell instability). This can be shown by

considering a shell with mass δm, with r0 as inner boundary and r as outer boundary in

radius, and with thickness D = r − r0 « r0. If the shell is in TE, the energy generated

inside the shell is equal to the energy flowing out of the shell. When there is more

energy generated than flowing out, the shell will expand by δr. When r0 remains roughly

constant, then dr = dD. The expansion of the shell leads to a decrease in pressure

according to HE:
δP

P
= −4

δr

r
(1.14)
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as m ∼ r2ρD and dm = 0:

δρ

ρ
= −δD

D
= −δr

r

r

D
(1.15)

and
δP

P
= 4

δρ

ρ

D

r
. (1.16)

When using a generic equation of state: P = CρaT b, the pressure term can be eliminated:

b
δT

T
= (4

D

r
− a)

δρ

ρ
, (1.17)

then the shell is thermally stable when the expansion results in a decrease in temperature,

resulting in the following expression for stability:

4
D

r
> a. (1.18)

From Eq. 1.18 it follows that if the shell is sufficiently thin, a thermal instability will

develop as the expansion will not lead to a significant temperature drop. Therefore, a

runaway reaction in the case of degeneracy described above can occur (Kippenhahn &

Thomas 1970; Yoon, Langer & van der Sluys 2004). Runaway reactions within the AGB

phase leading to the recurrent thermal pulses, see Section 1.1.3.

1.1.2 Main-sequence (MS) to the asymptotic giant branch (AGB)
phase

As a representative example of the evolution of a low-mass star investigated in this thesis,

Fig. 1.2 shows a Hertzsprung-Russell diagram (HRD) and a Kippenhahn diagram (or

structure evolution diagram), in the top and bottom panels of the figure, respectively.

The HRD shows the evolution of surface properties of a star. Two versions of the HRD

exist: an observational one showing the relationship between stellar magnitude and its

colour or temperature derived from observations, and a theoretical one showing the star’s

luminosity and its effective temperature from a stellar evolution model. Fig. 1.2 shows

the theoretical one, from the start of the MS to the white dwarf phase. The Kippenhahn

diagram shows the internal structure of the star as a function of time. Again several
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Figure 1.2: The HRD and Kippenhahn diagram of a 2 M�, Z=0.01, non-rotating model
presented in the Chapter 5. The HRD shows the entire evolution, the Kippenhahn
diagram is cut off at the start of the AGB phase. In the Kippenhahn diagram the
grey regions represent convective regions, while the lines indicate the H free (solid
line) and the He free (dashed line) boundaries. The letters indicate beginnings and
ends of evolutionary phases and event during the evolution, see text for details.
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versions of this diagram exist, but all have a measure of time on the horizontal axis and

a spatial or mass coordinate of the star from centre to surface on the vertical axis. The

version in Fig. 1.2 shows the age of the star and the mass coordinate in solar mass unit.

During the main sequence (points A-C in Fig. 1.2) H is converted into He, or more

precisely protons (p) into 4He (also known as α-particles), as the temperature in the core

is so high that the electrons are no longer bound to the hydrogen atoms. The conversion

can happen via two pathways, named the pp-chains and the CNO cycles. There are three

pp-chains: the ppI-chain follows the path:

p + p→ D + e+ + νe (1.19)

p + D→ 3He + γ (1.20)
3He + 3He→ 4He + 2p. (1.21)

with D being 2H, e+ a positron, νe an electron neutrino, and γ gamma radiation. The

ppII-chain branches out at 3He:

3He + 4He→ 7Be + γ (1.22)
7Be + e− → 7Li + νe (1.23)

7Li + p→ 2 4He. (1.24)

while the ppIII chain branches out at 7Be:

7Be + p→ 8B (1.25)
8B→ 8Be + e+ + νe (1.26)

8Be→ 2 4He. (1.27)

When temperatures of 2 × 107 K are reached and C, N, and O are present, the CNO

cycle dominates over the pp-chains. This temperature is reached in stars with an initial
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mass of about 1.3 M� and higher. The reaction sequence of the CN-cycle (or CNO I) is:

12C + p→ 13N + γ (1.28)
13N→ 13C + e+ + νe (1.29)

13C + p→ 14N + γ (1.30)
14N + p→ 15O + γ (1.31)

15O→ 15N + e+ + νe (1.32)
15N + p→ 12C + 4He. (1.33)

At higher temperature the NO-cycle becomes active in addition to the CN-cycle (CNO

II):

15N + p→ 16O + γ (1.34)
16O + p→ 17F + γ (1.35)

17F→ 17O + e+ + νe (1.36)
17O + p→ 14N + 4He. (1.37)

Due to the energy production, the core is now convective1 while burning through the H

present in the core. At point B in Fig. 1.2, the H abundance in the core is significantly

reduced, and the core of the star starts contracting as the energy production due to

nuclear burning reduces. As the whole star contracts, the effective temperature and the

luminosity both increase. The time between point B and C is too short to be visible in

the Kippenhahn diagram. Point C is where there is no H left in the core, which has now

become radiative.

The sharp hook at point C in the HRD of Fig. 1.2 is when the H-shell burning starts,

this is the phase where the evolutionary paths of low-mass and intermediate-mass stars

diverge. The difference is due to the Schönberg-Chandrasekhar (SC) limit (see Schönberg

& Chandrasekhar 1942), which states that there is a limit to the fraction of core mass

1Convection and radiation are the two main processes for energy transport in stars and will be
described in detail in Chapter 2
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over stellar mass that can be supported by an isothermal (= constant temperature) core:(
Mic

MT

)
SC

' 0.37

(
µenv
µic

)2

' 0.1 (1.38)

where Mic is the mass of the isothermal core (isothermal at this moment to be able

to stay in thermal equilibrium), MT is the total stellar mass, and µenv and µic are the

mean molecular weights of the envelope and core respectively. If the mass of the He

core exceeds this limit at the end of the main sequence, then the pressure within the

core is not high enough to sustain the weight of the envelope. This leads to rapid core

contraction until the core temperature is high enough to ignite He. If the core mass is

smaller than this limit at the end of the main-sequence, then the hydrogen burning shell

will increase the core mass until the limit is reached. At this moment, the rapid core

contraction starts on the thermal timescale, while the star is no longer in hydrostatic

and thermal equilibrium. Stars with an initial mass up to about 1.5 M� never reach the

SC limit, as their cores become degenerate before the limit is reached. The degeneracy

pressure (explained in Section 1.1.1) allows the core to sustain the weight of the envelope.

The core of the 2 M� star shown in Fig. 1.2 is just below the SC limit when it leaves

the main sequence. Therefore, it starts H-shell burning (thick solid blue line in the

Kippenhahn diagram of Fig. 1.2) in equilibrium until the SC limit is reached. The central

part of the core has become degenerate by this time, and the H-shell burning phase can

continue without rapid contraction.

The core continues to contract after point C while the envelope expands and cools. This

is called the ‘mirror principle’: when a region within a burning shell contracts, then the

region outside the shell expands, and vice versa. This is not a physical law and a convincing

explanation of this behaviour has not been found (see Aerts, Christensen-Dalsgaard &

Kurtz 2010, page 176 and references therein). A simplified explanation is as follows:

a basic relation between gravity and internal pressure is called the virial theorem, as

introduced in Section 1.1.1. Furthermore, the total energy is the sum of gravitational

potential energy, internal energy, and kinetic energy due to bulk motion in the gas.

However, during HE the kinetic energy is zero by definition. Therefore, the total internal

energy of a star is equal to minus 1/2 times the total gravitational potential energy. If



1.1 Evolution of low mass stars 14

the total energy remains constant and the virial theorem remains constant, which is

correct on thermal time scales, than both internal and gravitational energy are conserved.

Therefore, if the star contracts in a region, it has to expand in another region. And when

the temperature in the core increases, the envelope has to cool for the internal energy to

remain conserved. At lower temperatures opacities are large, which leads to convection

being the preferred energy transport instead of radiation, thus the expanding and cooling

envelope now becomes convective. The star has now reached point D in Fig. 1.2, which is

the start of the red giant branch (RGB). From point C to point D also the luminosity of

the star decreases, as the energy generation from the H-shell is absorbed by the envelope

expansion instead of being radiated from the surface.

From point D to E the core continues to contract, the envelope continues to expand and

convection continues to reach further down in the star. The expansion of the envelope

would result in a decrease of effective temperature, but the convective motions reaches

now deeper into the star, where the temperature is higher. The mixing of the cooler

surface layers and the deeper and hotter layers balances out the cooling due to expansion

and the effective temperature remains nearly constant between point D and E. The

expansion of the envelope does not absorb the full amount of energy generated by the

H-shell anymore, as convection is a more efficient method of energy transportation than

radiation. The excess energy causes the luminosity to increase. When point E is reached,

the convective region has reached into the region where H-shell burning ashes are located.

This material is now mixed by convection and reaches the surface of the star. This

process, transporting material from central regions of the star to the surface, is called

dredge-up and this event is the first dredge-up. The material that is mixed up to the

surface by the first dredge-up is enriched with products from partial H burning including
4He, 13C, and 14N (Boothroyd & Sackmann 1999; Karakas & Lattanzio 2014).

The start of the core He burning phase is different for low- and intermediate-mass stars,

as the low-mass stars have a degenerate He core and the intermediate-mass stars do

not, with partial degeneracy linking the two mass regimes. The intermediate-mass stars

ignite He in the core, when the core temperature is high enough. The low-mass stars

have to lift the degeneracy first. The temperature and density in degenerate regions are
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decoupled, which means that when the ignition of He starts, the energy released does

not lead to expansion of the region, but instead stays as thermal energy, raising the

temperature locally. This temperature increase speeds up the He burning rate, leading to

a runaway reaction (He flash, introduced Section 1.1.1) until the degeneracy is lifted and

a more quiescent He burning phase starts. The degree of degeneracy dictates the strength

of the He flashes needed to lift the degeneracy of the whole core (Deupree 1984; Deupree

& Wallace 1987). The core of the 2-M� star in Fig. 1.2 becomes partially degenerate.

There is no off-centre He flash at the start of the core He burning phase, but instead the

ignition starts in the centre. Due to the partial degeneracy of the core, the burning zone

is as large as the whole He-rich core before settling on a more quiescent burning in the

inner 0.15 M�. The degeneracy in the core is completely lifted about halfway through

the core He burning phase.

Since the H shell is still burning, the ashes make the He core grow with time. Therefore,

the envelope contracts, heats up, which decreases the opacity and as a result the convective

envelope recedes. This leads to the star moving back down to the base of the RGB

phase in the HRD at point F. When the envelope is mostly radiative again, the star

heats up more and starts burning He in its core, a moment known as the zero-age

horizontal-branch (ZAHB) at point G in the HRD (the evolution of E-G is fast and

therefore impossible to label correctly in the Kippenhahn diagram, therefore in this

figure point G reflect the steady core He burning phase, and point F the start of it).

There are no stable isotopes with a mass twice that of 4He, hence another path has to

be followed to produce heavier nuclei. At temperatures around 1.5 108 K, the triple-α

reaction takes place:

4He + 4He→ 8Be (1.39)
4He + 8Be→ 12C + 2γ (1.40)

(1.41)

At a much lower rate than the triple-α reaction, this α process also takes place:

12C + 4He→ 16O (1.42)
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making 12C and 16O the main components of the stellar core at the end of the core

helium burning phase. For the next core burning phase higher core temperatures are

needed, which are only reached in stars with a higher initial mass than those considered

in this thesis.

In order to be able to transport the energy generated by core He burning, the core

becomes convective again. Most of the energy needed to remain (close to) TE, comes

from the H-shell allowing the He-core to slowly burn through the He. Hence the core He

burning phase lasts about 250 Myr, which is 25 % of the main sequence lifetime (950

Myr) in this 2 M� star, as is shown in Fig. 1.2.

When the He in the core is depleted, the core contracts again and the envelope starts

expanding again, therefore the stars moves to the right in the HRD (point H).

1.1.3 The AGB phase

At point H, the stellar structure is similar to the structure during the H-shell burning

phase: the CO core is contracting and becoming degenerate again, while the envelope

is expanding (due to the mirror principle) and becoming convective again. This is the

early asymptotic giant branch (E-AGB) phase. The He-shell is now active and moving to

higher mass coordinates, doubling the size of the core. The H-shell is barely active (and

therefore the mirror principle is applicable and not the double mirror principle), and the

He-shell approaches the mass coordinate of the H-shell. Here the He-shell is running out

of fuel, as it is burning through He faster than the H-shell is creating it. This is the

start of the thermally pulsing asymptotic giant branch (TP-AGB) phase at point J in

Fig. 1.2. In Fig. 1.3 an overview of this region of an AGB star is shown. The He-rich

region between the two shells (the intershell) is where recurrent He flashes (thermal

pulses or TPs) take place, as thin-shell instabilities (as introduced in Section 1.1.1). The

runaway reaction first leads to enhanced (partial) He burning, creating mainly 12C via

triple-α, then to the expansion and cooling of the region, which subsequently becomes

convective (pulse-driven convective zone PDCZ) and mixes all chemical elements within

the intershell region. The thermal pulses are visible in the HRD in Fig. 1.2 around point
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Figure 1.3: Schematic overview of the region between the CO core and the convective envelope
in a TP-AGB. Please note that the time evolution is not to scale. The term
‘salting’ refers to the enrichment of the envelope by TDU events. From Busso,
Gallino & Wasserburg (1999).
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J, as the repetitive increased luminosity and reduced effective temperature features. After

the runaway reaction, He shell burning is no longer unstable, and soon dies down which

makes the pulse-driven convective zone disappear. The intershell has expanded due to the

large energy production, and has become partly convective, connecting to the convective

envelope. This merged convective region allows for intershell material to be dredged up

(third dredge-up or TDU2) to the surface. An important consequence of the TDUs is the

creation of carbon rich stars. At the start of the AGB phase, the surface C/O ratio is

well below unity, but with each TDU event C from the C-rich intershell is mixed to the

surface. When the surface C/O ratio exceeds unity, the star is called a C star (discovered

by Fr. Angelo Secchi in the 1860, see McCarthy 1994). Observations of these C stars and

in particular the carbon star luminosity function can be used to constrain the TP-AGB

stellar evolutionary models and their TDUs (see e.g. Marigo, Bressan & Chiosi 1996;

Marigo, Girardi & Bressan 1999; Stancliffe, Tout & Pols 2005, and others).

Within the H burning shell, proton capture reactions take place as before, but now

also includes TDU material. 12C is converted into 14N which acts as the seed for many

other elements. For instance, α-capture on 14N leads to the production of the unstable
18F. This isotope decays to 18O, which captures another α-particle to create 22Ne

(Iben 1975). Within the intershell, through He burning, also 19F can be created via
14N(α, γ)18F(β+)18O(p,α)22Ne(α, γ)19F. Fluorine is an interesting element as its creation

and destruction in stars are sensitive to physical conditions (see, e.g. Lucatello et al.

2011) thus providing strong constraints on stellar evolution models. Various astrophysical

sites for the production of fluorine have been suggested (see, e.g. Goriely, Jorissen &

Arnould 1989; Jorissen, Smith & Lambert 1992), but a discrepancy between observed

and predicted abundances remained. Recently it was shown that the technique to derive

the 19F abundances from observation was prone to inconsistencies in the line data of the

HF molecule, leading to differences in the F abundance of up to ∼ 0.3 dex (see Jönsson

et al. 2014a,b, 2017). AGB stars are assumed to be a significant production site, but also

2The second dredge-up does not occur in stars in the initial mass range discussed here and is therefore
not included in this chapter
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Wolf-Rayet stars (H-poor, hot massive stars) are mentioned as a possible contributor (see

e.g. Stancliffe et al. 2005). This recent development concerning the observational values

has inspired the AGB community to re-examine the fluorine production and trends in

stellar evolution models (Abia et al. 2019). More light element nucleosynthesis takes

places in AGB stars with a higher initial mass. For instance, proton capture chains lead

to the creation of 23Na from 20Ne via consecutive proton captures and beta decays. A

similar chain exists for the production of 27Al from 24Mg, via 27Si. To produce 23Na

a temperature of about 20 × 106 K is needed, while the creation of 27Al requires a

temperature of 30 × 106 K (Arnould, Goriely & Jorissen 1999).

The TDU may also allow for H to be mixed into the intershell via convective boundary

mixing (CBM), where it can be used to create 13C. The 12C present in the intershell

and the H produces 13C via 12C(p,γ)13N(β+ν)13C (see Iben & Renzini 1982b). As a

consequence a 13C-rich layer or ‘13C pocket’ (see Iben 1976; Iben & Renzini 1982a) forms,

where neutrons are released via radiative burning 13C(α,n)16O (Straniero et al. 1995)

that can be used via the slow neutron capture process (s process) to create elements

heavier than Fe (Gallino et al. 1998).

The details of how the 13C-pocket is formed are still not fully understood. It is clear

however that the amount of 13C formed in the ashes of the H-shell is too low and another

process must be active to produce enough 13C for a significant s process to occur (Gallino

et al. 1998). Several mechanisms have been proposed, but there is no consensus on

which process is the dominant one. In this thesis convective boundary mixing (CBM or

convective overshoot) is used as a depth dependent diffusion coefficient (Herwig 2000;

Cristallo et al. 2009, 2011). This process is able to transport H from the envelope to the

intershell (Freytag, Ludwig & Steffen 1996). This treatment was recently extended to

include the effect of mixing H into the intershell by gravity waves (see Denissenkov &

Tout 2003; Battino et al. 2016, and Section 1.3 for more information on gravity waves).

Convection and semi-convection have also been suggested to allow for H to be mixed into

the intershell (Hollowell & Icko 1988). The differences in the numerics concerning the

implementation the convective criterion explains why some codes need CBM to create

TDU events and others do not (Mowlavi 1999; Pols & Tout 2001; Stancliffe, Izzard & Tout
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2004). Rotationally induced mixing has also been suggested to mix H into the intershell

by Langer et al. (1999). Their rotating models were analysed in more detail by Herwig,

Langer & Lugaro (2003), who found that the 13C-pocket created via rotationally induced

mixing did not have enough mass to achieve the s-process abundances as observed in

AGB stars. Herwig, Langer & Lugaro (2003) also found that in a 3-M� star of solar

metallicity rotating with an initial rotational velocity of 250 km s−1, the rotational mixing

reduces the number of neutrons available for the s process (as confirmed by Siess, Goriely

& Langer 2004). The reduction is caused by the extra mixing of the neutron poison 14N

produced by 13C(p,γ)14N (Wallner et al. 2016) into the 13C pocket. This mixing takes

place during the interpulse phase and after an initial 13C had formed from the assumed

convective boundary mixing expressed in the exponential diffusion model. Consequently,

rotation alone did not lead to significant s-process production in AGB models.

The possibility of creating a 13C-pocket by magnetic buoyancy was proposed by Nucci &

Busso (2014). These authors derive, based on 2D and 3D simulations, an expression for

magneto-hydrodynamical mixing processes at the base of the convective envelope in

evolved stars. The ensuing mixing of H into the intershell during the TDU, allows the

creation of a significant 13C-pocket (Trippella et al. 2016).

Due to the many uncertainties around the formation of the 13C-pocket and the lack

of consensus on which process is responsible for the formation of the pocket, another

commonly used option to create the 13C is to simply add the H during the post-processing

calculation. This artificial method includes parameters that alter the shape and mass

extent of the 13C-pocket, which results in reasonable fits to the observed s-process

abundances (Gallino et al. 1998; Bisterzo et al. 2010; Goriely & Mowlavi 2000; Lugaro

et al. 2012; Buntain et al. 2017).

The s process refers to the slow neutron capture process on iron-group elements (Burbidge

et al. 1957; Cameron 1957; Wallerstein et al. 1997; Käppeler et al. 2011). Successive

neutron captures and β-decays lead to the creation of heavier elements. The s process

can produce elements from iron seeds (Fe, Z=26) via strontium (Sr, Z=38), barium

(Ba, Z=56) all the way up to lead (Pb, Z=82) (Gallino et al. 1998). Fig. 1.4 shows the

solar abundances broken down into different components. Peaks are visible around Sr
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Figure 1.4: The solar system abundances broken down into s- and r-process components. The
peaks in strontium, barium, and lead correspond to the three s-process peaks.
Figure from Sneden (2003).
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(including rubidium, yttrium and zirconium, generally referred to as the first s-process

peak or light s-process (ls) elements), Ba (including lanthanum, cerium, neodymium, and

samarium, generally referred to as the second s-process peak or heavy s-process (hs)

elements), and Pb (the third s-process peak at Z=82). These isotopes have in common

that they have a magic number of neutrons (n=50, 82, 126), meaning the neutrons

within the atomic nucleus fill a complete shell at those numbers. These nuclei have very

low neutron capture cross sections compared to the other elements, and therefore act

as bottlenecks along the s-process path. The isotopes are thus visible as peaks in the

composition shown in Fig. 1.4, as the s-process peaks.

The reaction path of the s process remains close to the valley of β stability in the nuclear

chart as the neutron-capture time scales of the involved isotopes are long compared to

β-decay time scales, hence the name ‘slow’ neutron capture3. The s process follows this

general sequence of reactions:

(Z,A) + n→ (Z,A+ 1) + γ (1.43)

(Z,A+ 1)→ (Z + 1, A+ 1) + e− + νe (1.44)

where Z is the number of protons and A the atomic weight, the sum of all protons and

neutrons. The first reaction is the neutron capture reaction, the second is the β-decay

reaction, see Fig. 1.5 for a section of the s-process path.

For some isotopes both reactions can take place with comparable probability. These

isotopes are called branching points, where both neutron capture and β-decay are possible

depending on the exact conditions. Branching points are an important feature of the

s-process, visible in Fig. 1.5, as these points allow for the creation of different isotopes

that are not on the main path of the s-process. These branching points are characterized

by the neutron capture time scale and the β-decay time scale of an isotope having the

same order of magnitude. The local neutron density then defines which path on the

branching point is preferred. The analysis of observed branching point abundances thus

3The other main neutron capture process is called the rapid neutron capture process, or r process,
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Figure 1.5: Detail of the chart of nuclide, showing the s-process path (thick red line), with
extra paths going through the branching points (thin red line). The neutron
number increases along the horizontal axis, and the proton number along the
vertical axis. The unstable nuclides are in yellow, with their half-life as additional
number in the box. The stable nuclides are in grey, with their isotopic abundance
fraction. From Herwig (2005).

allows for the determination of the conditions during s-process nucleosynthesis. The

quantity that determines the relative abundances of the first, second, and third s-process

peaks during the s-process is the neutron exposure, i.e. the integrated neutron flux:

τ =

∫
vTNndt (1.45)

where vT is the thermal neutron velocity and Nn the neutron density. The neutron

exposure and density depend on the conditions of the production site in which the

neutron source is activated.

Two distinct astrophysical production sites for s-process nucleosynthesis have been

identified: massive stars during core He and C shell burning, which typically produce the

so-called weak component (up to Sr), and low/intermediate mass stars during the AGB

phase, which typically produce the so-called main and strong component of the s process
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(up to Pb). The s-process isotopes between Fe and Sr are created in massive stars with

the reaction:
22Ne + α→ 25Mg + n (1.46)

as neutron source, activated at temperatures around 3×108 during the core He burning

phase and around 109 K during the C shell burning. Neutron densities of 106-107 cm−3 in

the core He burning phase and 1012 cm−3 in the C shell are reached (Pignatari et al. 2010;

Käppeler et al. 2011), and neutron exposures of 0.2 and 0.01 mbarn−1 respectively. This

process is unable to produce nuclides further up the s-process path than Sr, as there are

many neutron poisons (elements with large neutron absorption cross-sections) available

that act like neutron sinks. Only a fraction of the neutrons released are captured by

iron-group elements (see e.g. Pignatari et al. 2010). At lower metallicities, and when

including fast rotation, the s process in massive stars is able to reach further along

the s-process path, however there is no consensus on whether Pb can be produced

(Frischknecht et al. 2016; Chieffi & Limongi 2017; Choplin et al. 2018).

During the TP-AGB phase, the main and strong components of the s process create

elements up to Pb (Gallino et al. 1998; Arlandini et al. 1999). There are two location

within an AGB star where s process can take place, the convective PDCZ and the

radiative intershell. The second is the main location for s-process production in the

majority of AGB stars. The neutron source

13C + α→ 16O + n (1.47)

is activated at a temperature around 108K, releasing neutrons at a neutron density of

around 107 cm−3 with neutron exposures of around 0.1-2 mbarn−1 on a timescale of

around 104 years.

The PDCZ, however, only lasts a few years. Here neutron densities up to 1011 cm−3 are

reached, with neutron exposures around 10−2 mbarn−1. The effect of this neutron source

is thus small on the overall s-process production, but at branching points different paths

and captures neutron in shorter time scales than the β-decay time. This process thus follows a different
path through the chart of nuclei, see Thielemann et al. (2011) for an overview.



1.1 Evolution of low mass stars 25

are activated than in the 13C-pocket, thus affecting the isotopic abundances involved in

the branching points (Busso, Gallino & Wasserburg 1999; Lugaro et al. 2003).

Tthe products of the nucleosynthesis (most importantly C and the s-process

products) are brought to the stellar surface by third dredge-up events (TDUs). TDUs

occur when the envelope expands and thus cools following the runaway reaction and the

TP, allowing for the region that is unstable against convection to reach further down into

the star. During the TP-AGB phase, TDUs can occur after each TP. The TDU efficiency

has been defined as:

λTDU =
∆MTDU

∆MH

(1.48)

where ∆MTDU is the decrease in mass of the hydrogen exhausted core due to the TDU

mixing H into the intershell and ∆MH is the increase of mass in the H exhausted core by

H burning during the whole previous interpulse period (see, e.g. Frost & Lattanzio 1996;

Mowlavi 1999). Different stellar evolution codes give different values and trends for this

TP-AGB parameter. In Fig. 1.6 the λTDU evolution versus core mass in 3 M�, Z=0.02

models is shown, comparing the results of five different AGB studies (Straniero et al.

1997; Herwig 2000; Stancliffe, Tout & Pols 2005; Karakas & Lattanzio 2007; Cristallo

et al. 2011). For these studies different codes or different versions of the same codes

were used, which means the input physics between the models differ and the comparison

is not straightforward. However, differences in key quantities that influence the TDU

events can still be compared. For instance, the results by Cristallo et al. (2011, labelled

as ‘FRUITY’) and Straniero et al. (1997, labelled as ‘Stra97’) are calculated with the

same code, but using different settings for the mixing through the convective boundary

of the envelope into the radiative zone below it. The inclusion of this extra mixing in

the model by Cristallo et al. (2011) has led to the TDU events to occur at an earlier

point in the AGB evolution (as the first TDU happened at a lower core mass) than

in the model of Straniero et al. (1997). Also, the maximum value for the dredge up

efficiency is higher in the model by Cristallo et al. (2011) due to this extra mixing.

Further differences between these models are due to differences in the mass loss rates, as
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the TDU efficiency depends on the envelope mass: λTDU decreases or remains constant

when the envelope mass substantially decreases. The differences between the mass loss

rates are also the main reasons for the differences between the models of Cristallo et al.

(2011) and Stancliffe, Tout & Pols (2005, labelled as ‘Sta04’), as the latter is calculated

without mass loss. The envelope mass thus does not substantially decrease, and the

λTDU can continue to increase unlike in the model by Cristallo et al. (2011). The model

by Karakas & Lattanzio (2007, labelled as ‘K07’) is calculated with a milder mass loss

rate than the model by Straniero et al. (1997), hence reaching higher λTDU values than

the model by Straniero et al. (1997). The most efficient TDUs occur in the model by

Herwig (2000, labelled as ‘He00’), while their mass loss rate is moderate compared to

Karakas & Lattanzio (2007). However, Herwig (2000) uses the strongest mixing through

the convective boundary below the envelope and thus enhancing the λTDU (see Herwig

2000, for a detailed discussion on this effect).

In general, λTDU increases with core and envelope mass, and decreases with metallicity

(Karakas, Lattanzio & Pols 2002; Cristallo et al. 2011). Convection prescriptions influence

the TDUs, with a larger mixing length predicting larger λTDU (Boothroyd & Sackmann

1988). The choice of the criterion for convection and its implementation also influence

the occurrence and the efficiency of TDUs (Mowlavi 1999; Pols & Tout 2001).

1.1.4 Evolutionary phases after the AGB phase

The TP-AGB phase is also characterized by mass-loss, which leads to the enrichment of

the interstellar medium in s-process elements. This mass loss is thought to be driven by

large stellar pulsations, which in turn create the right conditions for dust formation in the

outer layers of the atmosphere of the star. The dust particles can easily be accelerated

leading to a large outflow (Höfner & Olofsson 2018), and lead to the removal of the

envelope. During the final phase of the TP-AGB, the mass loss rate can reach values of

10−7-10−4 M� year−1. Afterwards, in the post-AGB phase (first observed by Westbrook

et al. 1975, and point K in the HRD of Fig. 1.2) the envelope moves away from the
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Figure 1.6: Comparison of the λTDU evolution versus core mass for 3 M�, Z=0.02 AGB models
from Cristallo et al. (2011); Straniero et al. (1997); Herwig (2000); Stancliffe, Tout
& Pols (2005); Karakas & Lattanzio (2007), labelled as FRUITY, Sta97, He00,
Sta04, K07 respectively. Figure from Cristallo et al. (2011).
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central star and the central star ionizes the ejecta and forms a planetary nebula (first

discovered by Charles Messier in 1764, see Chapter 1 of Kwok 2000, for a full historical

overview, and point L in the HRD of Fig. 1.2). During the post-AGB phase, the star

consists of a CO degenerate core, the intershell, and the small remaining H-rich envelope.

The material removed by winds is moving further away from the star, exposing the

remaining object, while the H- and He-shells can still be active and keep the luminosity

constant. When the H and He shells become extinct, the remaining carbon oxygen white

dwarf evolves along the cooling track (point M in the HRD of Fig. 1.2).

1.2 Observational evidence of the s process in low-
mass AGB stars

The s-process production in rotating AGB stellar evolution models is presented in this

thesis, and therefore in this section the focus is on the observational evidence that the

s-process takes place during the TP-AGB phase. I present the various observational sites

for s-process elements, and the newest results on the understanding of the spread in

s-process observations.

Most determinations of s-process abundances come from spectroscopic observations, as

absorption and emission lines at specific wavelengths hold information on the chemical

composition of the star. Technetium (99Tc) can be found in AGB stellar spectra and can

be used as a tracer for the s process taking place, because it is formed by the s process

and it is unstable. The half-life of 99Tc is 2×105 years, which makes it a very sensitive

indicator of s-process and third dredge-ups (Merrill 1952; Cosner & Truran 1981; Little,

Little-Marenin & Bauer 1987). Its discovery in AGB spectra was a major breakthrough

as it is a sign of ongoing s-process nucleosynthesis. The presence of Tc thus indicates

that the star is an ‘intrinsic’ s-process star, meaning s-process elements are produced in

the star. ‘Extrinsic’ s-process stars have instead received the s-process elements by mass

transfer within a binary system.

S-process elements around the first and second s-process peaks have been observed for a
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large sample of AGB stars, at different metallicities, see e.g. Lambert (1985); Smith

& Lambert (1990); Plez, Smith & Lambert (1993); Abia et al. (2002). The s-process

production of an AGB star can also be observed in later evolutionary phases, such as

post-AGB stars (see e.g. Reddy et al. 2002; Reyniers et al. 2004, 2007; van Aarle et al.

2013; De Smedt et al. 2014), and planetary nebulae (see e.g. Sterling, Dinerstein & Bowers

2002; Sharpee et al. 2007; Sterling et al. 2009; Otsuka & Tajitsu 2013). Furthermore, the

intershell abundances of light elements like He, C and O can be observed directly in

post-AGB H-deficient stars, and in planetary nebulae (see e.g. Werner & Herwig 2006;

Werner, Rauch & Kepler 2014; Péquignot et al. 2000; Rodríguez & Delgado-Inglada 2011;

Delgado-Inglada et al. 2015).

The above-mentioned observations are all from intrinsic s-process sites, while extrinsic

s-process stars have been observed too, see e.g. Busso et al. (2001), and Sneden, Cowan &

Gallino (2008). Also CEMP-s stars (carbon-enhanced metal-poor stars, see e.g. Aoki et al.

2000; Izzard et al. 2009; Abate et al. 2015; Hansen et al. 2016), which are the binary

companions of metal poor AGB stars, show s-process nucleosynthesis in their spectra.

Another example is Ba stars, (first defined by Bidelman & Keenan 1951), which are the

binary companions of evolved AGB stars, and the metal-rich analogue of CEMP stars.

The first major attempt at constraining s-process models to such a wealth of information

was by Busso et al. (1995); Lambert et al. (1995); Busso et al. (2001). In these papers

a spread of s-process nucleosynthesis was found in both the intrinsic and extrinsic

s-process observations, and this spread remains one of the major questions concerning

s-process nucleosynthesis in AGB stars. The observed spread could not be matched with

predicted s-process nucleosynthesis, unless in stellar models the 13C abundance in their

standard 13C-pocket was multiplied by a factor between 1/24 and 2. This procedure

is justified by the uncertainties surrounding the formation of the 13C-pocket, and no

further physical justification was given. Since then, the AGB community has worked

towards understanding the physical origin behind this spread in s-process observations.

The next step was to separate the large sample of observations and try to match each

subset with theoretical predictions using population synthesis (Bonačić Marinović et al.

2007). In this paper, the observed spread per stellar type could be matched by using
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multiplication factors for their 13C-pocket in single digits instead of double digits as

in Busso et al. (2001), however, a physical motivation for this multiplication factor

was still missing. Therefore Cristallo et al. (2011) showed the comparison between the

s-process nucleosynthesis resulting from their stellar evolution models without using the

multiplication factor. Their results presented in Fig. 1.7 show the spread of predicted

and the observed s-process [hs/ls], calculated in Cristallo et al. (2011) via (spectroscopic

notation):

[ls/Fe] = ([Sr/Fe] + [Y/Fe] + [Zr/Fe])/3 (1.49)

[hs/Fe] = ([Ba/Fe] + [La/Fe] + [Nd/Fe] + [Sm/Fe])/4 (1.50)

using [a/b] = log10(a/b)− log10(a/b)� (1.51)

and [hs/ls] = [hs/Fe]− [ls/Fe] (1.52)

The recent studies on understanding the observed s-process spread are focussed on

the large data sets of one type of s-process observation with small error bars. I discuss

here a study on Ba stars, and on stardust grains. de Castro et al. (2016) presented a

spectroscopic study of 169 Ba stars. Cseh et al. (2018) improved the analysis of the error

bars on s-process enrichment of these Ba stars and compared them to the s-process

nucleosynthesis in AGB stellar evolution models, as shown in Fig. 1.8. The figure shows

that the main trends in the spectroscopic data are matched by the non-rotating models,

although outliers are present. Rotating AGB star models bu Piersanti, Cristallo &

Straniero (2013) were also included in the comparison, but found to provide a worse

match to the observed data set than the non-rotating models.

Another way to investigate s-process production in stars is analysing star dust. Meteorites

carry individual stardust grains, believed to be formed directly from stellar material

around stars and supernovae. A variety of grains have been discovered, among which

carbon-rich grains including silicon carbide (SiC, see e.g. Bernatowicz et al. 1987) that

can only be formed when C/O > 14. These SiC grains have also been found to have

4From C/O > 0.7 onwards C-rich grains are formed, but only in small quantities until C/O=1 is
reached. Then onward the environment favours the formation of C-rich grains over O-rich grains.
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Figure 1.7: Comparison between observed and predicted spread in s-process nucleosynthesis,
showing the spread over a range of metallicities. Different colour and symbol
combinations are used to distinguish between different types of intrinsic and
extrinsic s-process enriched stars, see Cristallo et al. (2011) for more details on the
observations. An average spread of 1 dex is found in the observed values, while the
predicted values show a spread of maximum 0.3 dex. Typical error bars are of the
order of ±0.1 dex, while conservative evaluations suggest ±0.3 dex. Corrections to
two observed values are also given. Figure from Cristallo et al. (2011).
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Figure 1.8: Comparison between Ba star observations of de Castro et al. (2016) with updated
error bars from Cseh et al. (2018) and the predicted final surface composition
for a selection of FRUITY (Cristallo et al. 2009, 2011; Cristallo et al. 2015) and
Monash models (Lugaro et al. 2012; Fishlock, Karakas & Stancliffe 2014; Karakas
& Lugaro 2016; Karakas et al. 2018), and the 3 M� models from Battino et al.
(2016). The predictions match the main features of the element ratios from the
observations, however, there are outliers outside of the range covered by the models.
Figure from Cseh et al. (2018).
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enhanced levels of the s-process only5 isotopes 128Xe and 130Xe, provide strong evidence

that low-mass, C-rich TP-AGB stars undergoing TDUs are the source of these grains

(Hoppe & Ott 1997; Lugaro et al. 1999; Lewis, Amari & Anders 1990; Ott & Begemann

1990; Zinner, Amari & Lewis 1991). The isotopic ratios in these grains can be used to

constrain AGB models.

Mass spectroscopy is the main tool that is used to analyse these grains, where the

sample is ionized into ions, which are extracted from the sample. These ions are then

sorted by their mass and charge via an electric and/or magnetic field, as ions of different

masses will follow different trajectories in an electromagnetic field. Once the ions are

sorted, they can be counted via an ion detector. The isotopic ratios of elements within

the stardust grains can then be obtained and compared to stellar evolution models. These

isotopic ratios are usually presented in parts per thousand (h) with respect to solar

values. For example, the 29Si/28Si ratio is expressed as:

δ(29Si/28Si) =

(
(29Si/28Si)measured

(29Si/28Si)solar

− 1

)
× 1000 (1.53)

Interesting comparisons can be made between models and grains, as some isotopic ratios

are sensitive to the neutron exposure, like 88Sr/86Sr, while others are sensitive to the

neutron density, like 96Zr/94Zr as discussed in Lugaro et al. (2014); Battino et al. (2016);

Lugaro et al. (2018). The latter authors compare also super-solar metallicity AGB models

to the pre-solar grain data, showing a better agreement than the solar metallicity models

(Fig. 1.9). As for the Ba star comparison discussed before, the main features in the

isotopic ratios are well matched by the models, proving that indeed the AGB stars are

the likely source of the grains. However, there are again outliers present.

Therefore, both the Ba stars and the grain data show that the spread in s-process

observations can be explained almost completely by s-process predictions. Outliers are

visible in both comparisons though. To explain these outliers, extra mixing processes

like rotation and magnetic fields have been mentioned (Herwig, Langer & Lugaro 2003;

Battino et al. 2016; Cseh et al. 2018). A still highly debated question is what the effect

5These isotopes can only be formed by the s process due to their location on the nuclear chart.
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Figure 1.9: Comparison of Zr grain data (Liu et al. 2014) and the surface evolution of AGB
models of solar metallicity (left panels) and twice-solar metallicity (right panels)
of Monash models (Lugaro et al. 2018). The coloured lines represent the models
with each open circle indicating a TDU when the envelope is C-rich. From Lugaro
et al. (2018).
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of rotation is on the s-process in AGB stars. This is a question I am addressing in this

thesis.

1.3 Stellar rotation

This thesis focusses on rotating stellar evolution models and their comparison to

observations of rotating stars. The fact that stars rotate can be explained by two

principles: turbulence in the interstellar medium and conservation of angular momentum.

Stars form from clouds of gas that collapse under their own gravity. The large-scale

turbulence in these rotating clouds adds up to a non-zero total angular momentum, and

the cloud thus rotates. The amount of angular momentum in each cloud varies greatly,

but during its collapse the rotation rate of the cloud increases due to the conservation of

angular momentum (Toomre 1964; Black & Bodenheimer 1975; Terebey, Shu & Cassen

1984; Yorke & Bodenheimer 1999). Since stars rotate, its effects on stellar evolution

needs to be investigated.

A common way to measure surface rotation rates is via spectroscopy. The faster the

star rotates, the wider the lines in the spectra due to the Doppler effect. Spectra of

stellar populations have provided us with large data sets of surface rotation rates, see e.g.

Huang, Gies & McSwain (2010). These authors show the results of using this method on

the spectra of hundreds of very young stars (Fig. 1.10), and their results can be used to

set the initial rotation rates in stellar evolution calculations. Fig. 1.10 shows the derived

projected rotational velocity V sin(i) normalised by the derived critical rotational velocity

Vcrit. This critical velocity is the break-up velocity of a star, which is reached when the

absolute values of the centrifugal and gravitational forces are equal. The histogram

shows the derived values, with a polynomial fit through the data as a thin line. The

deconvolution technique of Lucy (1974) is used to then derive the Veq/Vcrit distribution,

without the sin(i) dependence. This deconvoluted distribution is shown by the thick line

in the panels of Fig. 1.10. The different panels show the rotational velocity distribution

for three subcategories of very young B stars based on their mass, with the top panel
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showing the least massive subcategory and the bottom panel the most massive ones.

The statistics show that the least massive stars rotate faster (have an higher Veq/Vcrit

value), with the fraction of slow rotators (defined as Vcrit/Vcrit smaller than 0.5) in the

panels being 37%, 53%, and 84% from top to bottom panel respectively. Possible reasons

given in Huang, Gies & McSwain (2010) for the slower rotational velocities in the more

massive stars are mass loss and binary interaction.

Recently, information about the internal structure of stars has been determined via

asteroseismic observations (Beck et al. 2011; Beck et al. 2012). Asteroseismology is the

study of stellar oscillations. Internal vibrations caused by mechanisms described below can

be measured as they cause subtle, rhythmic changes in the luminosity of the star (Cowen

2012). Due to their subtleness, these features can only be analysed if uninterrupted

high-precision photometric (using the whole stellar spectrum without differentiating by

wavelength) time-series data sets are available. The periods of the different rhythms

can be converted into frequencies using Fourier transforms. These frequencies can be

compared to predicted frequencies, calculated by assuming perturbations in the stellar

evolutionary equations. Seismic modelling therefore is the study of finding a stellar

evolutionary model whose frequency spectrum matches the observed spectrum (see Aerts,

Christensen-Dalsgaard & Kurtz 2010, for more details).

Oscillating stars can be found all over the HRD, see Fig. 1.11. The Sun is the most

studied pulsating star, see Leighton, Noyes & Simon (1962); Balmforth (1992) for the

first discovery of the pulsations and Gizon, Birch & Spruit (2010) for a recent review on

helioseismology. The mechanism that drives the pulsations in the Sun, is also present in

other Solar-like stars (Fig. 1.11). These stars have a surface convective zones, and the

speeds of the convective motion near the surface reaches values close to the speed of sound.

This configuration is an efficient source of acoustic radiation, and thus creates oscillations

caused by sound waves (see Houdek 2006; Chaplin & Miglio 2013, for overviews of this

pulsation mechanism). Another pulsation mechanism is the κ-mechanism (first proposed

by Eddington 1917), where κ stands for opacity. This pulsation mechanism takes place

below the photosphere layer of the star, where He is ionised. When this layer is heated,

the He atoms become doubly ionized (He atoms with no electrons left) which makes the
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Figure 1.10: Rotational velocity distribution of three subcategories of the very young B star
data set presented by Huang, Gies & McSwain (2010). From top to bottom
are shown stars with 2 < M/M� < 4, 4 < M/M� < 8, and 8 < M/M�. The
histograms are the V sin(i)/Vcrit values as obtained from observations, the thin
solid line is the polynomial fit through the data. The Veq/Vcrit distribution is
plotted as thick solid line. See text for more details.
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layer more opaque. The more He is doubly ionized, the less radiation escapes the layer.

This will cause the star to expand, leading to the cooling of the doubly ionized He, and

turn it into a once ionised He. This cools the star, and in turn this results in contraction

of the outer layers, leading to the heating and thus ionization of the He layers again. The

process will repeat itself periodically. For overviews on stars pulsating according to this

mechanism, see Sandage & Tammann (2006) and Winget & Kepler (2008).

Pulsations created by the κ-mechanism and the solar-like excitation mechanism resonate

throughout the star. Depending on the location within the star, these pulsations drive

pressure modes (p-modes) or gravity modes (g-modes). P-modes hold information about

the envelope, while g-modes probe the inner part of the star. The detection of mixed

modes (Beck et al. 2011; Beck et al. 2012) in data from the Kepler spacecraft (Borucki

et al. 2010) as predicted by Dupret et al. (2009) has been a breakthrough, as mixed

modes have p-mode characteristics in the envelope and g-mode characteristics in the core.

The mixed modes are created when the frequencies of the p-modes and the g-modes

overlap, due to the core contraction and envelope expansion during the red giant phase.

As the frequencies of the modes are similar, the two modes couple and form a mixed

mode. They carry information on the centre of the star (g-mode characteristic), and are

observable at the surface (p-mode characteristic). These modes have allowed researchers

to determine the rotation rate from the surface to the core. Internal rotation rates have

now been obtained for stars on the main sequence, red giants (Solar-like oscillators), and

DAV white dwarfs. Fig. 1.12 shows a recent overview of all 1210 known (on 01-08-2018)

core rotation rates obtained from Kepler observations (see Mosser et al. 2012; Deheuvels

et al. 2012, 2014, 2015; Kurtz et al. 2014; Beck et al. 2014; Beck et al. 2018; Aerts, Reeth

& Tkachenko 2017; Hermes et al. 2017; Gehan et al. 2018, and references therein). The

initial masses of these stars are between 0.72 and 7.9 M�, with about half of the more

massive stars in the sample being main sequence stars. For a small subsample of 45

stars both the core and envelope rotation rates are known. These stars are shown in the

bottom panel of Fig. 1.12. The main sequence stars in this panel rotate uniformly, and

stars belonging to the second clump (core He burning stars that did not undergo core He

flashes) show small differential rotation. The H shell burning stars however do show
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Figure 1.11: HRD showing the different types of pulsating stars. Along the main se-
quence (dashed line) pulsating stellar types are identified (for details see Aerts,
Christensen-Dalsgaard & Kurtz 2010, and references therein) from low to high
mass are listed Gamma Doradus variables (‘γ Dor’), rapidly oscillating Ap stars
(‘roAo’), Delta Scuti variables (‘δ Sct’), slowly pulsating B-type stars (‘SPB’)
and Beta Canis Majoris stars (‘β Cep’). Evolved pulsating stars can also be
characterized in various types: along the ‘instability strip’ the region between the
two long-dashed lines, almost completely filled with Cepheid variables (‘Ceph’)
and RR Lyrae variables (‘RR Lyr’). Next to these, the Red Giants, Semiregular
variable stars (‘SR’) and the Mira variables (‘Mira’) can be found. During final
evolutionary phases, stars pulsate as subdwarf or subluminous variable B stars
(‘sdBV’) or along the white dwarf cooling track as variable dwarf with having
only hydrogen in its spectrum (‘DAV’), only helium (‘DBV’), and a mixture of
carbon, helium and oxygen (‘DOV’). The solid line shows the evolutionary track
for a 2.1 M� star. From Paxton et al. (2019).
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stronger differential rotation.

One crucial topic in the study of stellar rotation is the fact that there is a discrepancy

between the observed rotation rates and the ones from stellar evolution theory. This

discrepancy suggests that there is a process missing from the models that is efficient in

the transport of angular momentum from the core to the outer layers. Key evidence for

this missing process is provided by the internal rotation of the Sun. Indeed, models that

include only hydrodynamic transport processes predict a high degree of radial differential

rotation in the solar radiative zone between 0.3-0.7 R� in disagreement with helioseismic

measurements (e.g. Pinsonneault et al. 1989; Chaboyer, Demarque & Pinsonneault 1995;

Eggenberger, Maeder & Meynet 2005). Further evidence for missing angular momentum

transport in stars was provided by Suijs et al. (2008) who showed that stellar evolution

codes predict core rotation rates at least an order of magnitude faster than white dwarf

rotation rates. Then, Denissenkov et al. (2010) demonstrated the need for additional

angular momentum transport when investigating the spin-down of solar-type open-cluster

stars. These various lines of evidence for missing angular momentum transport have now

been confirmed. Since 2012 crucial new information on the internal rotation profile of

low-mass stars resulted from asteroseismology studies of observations provided by the

Kepler spacecraft (Borucki et al. 2010; Aerts, Mathis & Rogers 2019). Stellar evolution

codes have again been unable to match the observed low core rotation rates (see Fig. 1.13

and Eggenberger, Montalbán & Miglio 2012; Marques et al. 2013; Tayar & Pinsonneault

2013; Cantiello et al. 2014). In view of this mounting evidence that has accumulated

over more than a decade, there is now consensus that a process of angular momentum

transport is missing in the theory of rotating stellar evolution models.

There is no consensus yet however on the physical origin of this missing process. Broadly

speaking there are three possibilities: hydrodynamical, wave-driven, or magnetic (Pinson-

neault et al. 1989). The hydrodynamical processes are included in the implementation of

rotation in stellar evolutionary codes, and consist of shear and large scale circulation

processes. The magnetic process commonly used to study transport of angular momentum

is the Tayler-Spruit (TS) dynamo (Spruit 1999, 2002), which has proven to be effective

in coupling the core and envelope to increase the transport of angular momentum (see
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Figure 1.12: Overview of all known core rotation rates from the Kepler observations, colours
indicate the stellar evolutionary phase. The top panel shows the 1210 stars for
which only the core rotation rate has been determined, the bottom panel shows
the 45 stars for which both rotation rates are known. From Aerts, Mathis &
Rogers (2019).
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Figure 1.13: Log10 of period versus log10 of radius comparison between stellar evolution models
with different assumptions of angular momentum transport and asteroseismic
observations of the core rotation of red giants by Mosser et al. (2012). The
calculated core rotation rates are too high compared to the observed values.
Figure from Cantiello et al. (2014).
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Eggenberger, Maeder & Meynet 2005; Suijs et al. 2008; Cantiello et al. 2014). However,

the increased transport by this process alone is still not enough to match observed

rotation rates (apart from the Sun). A recent study using different prescriptions for

magnetized stellar winds reached the same conclusion, that more transport of angular

momentum is needed (Tayar & Pinsonneault 2018). Recently a new derivation of the

dynamo has been presented (Fuller, Piro & Jermyn 2019).

Angular momentum transport by internal gravity waves has been studied mainly in multi-

D simulations (Fuller et al. 2014; Rogers 2015; Rogers & McElwaine 2017). While their

results are promising, they struggle with translating its behaviour to a 1D parametrisation

that can be included in 1D stellar evolutionary codes. Also, first efforts of estimating the

effect of this mechanism show that also this process alone is insufficient (Pinçon et al.

2017).

For both magnetism and wave-driven processes much work needs to be done to under-

stand and implement the related mechanisms. Therefore, constraints are required on its

efficiency, so that its physical character can be revealed. This can be done by adding a

constant called additional viscosity, νadd, to the equation that described transport of

angular momentum in stellar evolutionary codes (see Eggenberger, Montalbán & Miglio

2012; Eggenberger 2015; Eggenberger et al. 2017, 2019). While this additional viscosity

has no physical meaning, its values can help us reveal information on the missing process.

For instance, a result coming from those publications is that the efficiency of the missing

process increases with increasing initial mass. The main goal of including νadd in stellar

evolution models is to collect enough information to find the physical origin of the missing

process via reverse engineering.

1.4 Stellar evolution models

Our understanding of rotation and its impact on stellar evolution is still a major challenge

in the study of stars. Pioneering work has been done by Kippenhahn & Thomas (1970),

Endal & Sofia (1978) and Pinsonneault et al. (1989). For many years though, rotation



1.4 Stellar evolution models 44

was not included in stellar evolution models, because including rotation means that the

assumption of spherical symmetry in stars is no longer valid, resulting in more complicated

equations to be solved. Stars, however, do rotate and a number of discrepancies between

observations and models exist. Most of these discrepancies point towards the need for

extra mixing in the models and adding rotation to the models would do exactly that. In

Meynet & Maeder (1997), a list of these discrepancies is given, which can be summarized

into abundance issues and issues with number ratios of stars with different spectral types

or temperatures. Maeder & Meynet (2012) note that recent progress in astrophysical

observations in high resolution spectroscopy and asteroseismology, among others, resulted

in larger deviations from non-rotating models.

Interestingly, rotation is predicted to have an impact on the s-process in AGB stars as

already mentioned in Section 1.1.3. In Herwig, Langer & Lugaro (2003) and Siess, Goriely

& Langer (2004), rotation was found to prevent the s-process from taking place in AGB

stars. Then, Piersanti, Cristallo & Straniero (2013, the FRUITY models) presented the

first set of yields for rotating AGB stars. As in Herwig, Langer & Lugaro (2003), these

authors found that adding rotation leads to extra mixing within the 13C pocket. However,

they found that rotation did not prevent the occurrence of the s process. Their models

could produce a spread of s-process production patterns in AGB stars. An important

difference between the FRUITY study and the earlier publications is that Piersanti,

Cristallo & Straniero (2013) used lower initial rotation rates of 10, 30, 60, and 120 km s−1

and also varied efficiency parameters of rotationally induced mixing, hence reducing

the amount of extra mixing due to rotation, and its consequences for the s-process

production.

The effect of rotation on the s-process production in low-mass AGB stars has recently

been inferred using observations of 169 Ba stars, which are binary stars that have

experienced mass transfer during the AGB phase of the primary and therefore show

s-process enrichment in their envelope (de Castro et al. 2016). Cseh et al. (2018) compared

them to non-rotating and rotating models (see their Fig. 7), showing that the s-process

production by non-rotating models provides a better match to the observed s-process

enrichment than the rotating models by Piersanti, Cristallo & Straniero (2013). This
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result provides another observational constraint on the s-process production in rotating

low-mass stars.

1.5 Aims and motivations of this thesis

The unique aspect of this thesis is to combine both asteroseismic and nucleosynthesis

observations to constrain stellar evolution in the 1.5-3 M� mass range. The aim of this

work is to calculate rotating stellar evolution models, and to reproduce simultaneously

the asteroseismic and nucleosynthesis observations.

The contents of this thesis are as follows: the stellar evolution theory of low-mass stars

is presented in Chapter 2. In Chapter 3, I describe the methodology of the models

presented in the result chapters. Chapter 4 is the first result chapter, in which I present

the calibration of the artificial, additional viscosity for 2.5-M� stars, which is then used

as input in Chapter 5. In this chapter I present the nucleosynthesis of rotating AGB

models that have core rotation rates matching asteroseismic observations. Chapter 6 is

a collection of exploratory studies. This thesis ends with a chapter on final remarks,

including a summary, discussion, future work section. My publication record is listed

after my conclusions. Appendices are added to show the derivations of some important

equations, and the input files of my stellar evolution calculations.
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2 Stellar evolution theory

This chapter gives an overview of stellar evolution theory. The various physical ingredients

as well as the implementation of rotation are presented in detail.

2.1 Non-rotating stellar structure

Non-rotating, single stars without strong magnetic fields will only experience pressure and

gravity forces, which are isotropic. Therefore, these stars are spherically symmetric and

the equations describing them can therefore assume spherical symmetry. All quantities in

stellar evolution are then constant on spheres, which means only one spatial variable is

needed to describe them and only one dimension needs to be considered. The radius would

be the obvious independent variable, but the mass, m, is chosen because compositional

changes are easier to follow in the Lagrangian (mass) coordinates than in the Eulerian

(radius) coordinates.
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The full set of stellar structure equations is:

mass conservation:
∂r

∂m
=

1

4πr2ρ
(2.1)

hydrostatic equilibrium:
∂P

∂m
= − Gm

4πr4
(2.2)

energy generation:
∂l

∂m
= εn − εν −

∂u

∂t
+
δ

ρ

∂P

∂t
(2.3)

energy transport:
∂lnT

∂m
= − Gm

4πr4P
min [∇MLT,∇rad] (2.4)

with:∇MLT (see Section 2.2.3, in convective zones) (2.5)

∇rad =
3

16πacG

κlP

mT 4
(in radiative zones) (2.6)

δ =
χT
χP

=
T (∂P/∂T )ρ,Xi

ρ(∂P/∂ρ)T,Xi

(2.7)

chemical composition:
∂Xi

∂t
=

(
∂

∂m

)
t

[
(4πr2ρ)2Dmix

(
∂Xn

∂m

)
t

]
(2.8)

+
mi

ρ
(Σjrji − Σkrik)

with r being the radius, m the mass, ρ the density, P the pressure, G the gravitational

constant, l the local luminosity, εn the nuclear energy produced per unit mass and

per second, εν the energy carried away by neutrinos per unit mass and per second, u

the internal energy per unit mass, t the time, T the temperature, ∇ the temperature

gradient with respect to pressure dlnT
dlnP

, mi the mass of element i, Xi the mass fraction of

a certain nuclide i, the subscript t in some derivatives means time is kept constant while

calculating the derivative, Dmix the diffusion coefficient of all mixing processes included

in the calculation, and rji and rik the reaction rates creating and destroying element i,

respectively (Kippenhahn & Thomas 1970).

The final equation needed to complete this set is the equation of state, which describes

the microscopic properties of stellar matter, for a given density ρ, temperature T and

composition Xi. This thermodynamic description of matter is usually expressed as the

relation between the pressure and these quantities

P = P (ρ, T,Xi). (2.9)
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as introduced in Section 1.1.1. This expression is simple for a perfect gas which is totally

ionised. When the gas becomes partially degenerate or ionised, the equation of state

becomes much more complicated. As this computation is expensive and will therefore

slow down stellar evolution codes, it is common in stellar evolution codes to get the

thermodynamic properties of the matter from pre-calculated tables. The 2005 update of the

OPAL EOS tables are used in this thesis, see Rogers, Swenson & Iglesias (1996) and Rogers

& Nayfonov (2002), and can be found on https://opalopacity.llnl.gov/EOS_2005/.

The same OPAL group has created opacity tables. These tables also have a CO enhanced

option, which are needed for core He burning and further phases. These CO enhanced

tables are used in calculations performed in this thesis. The OPAL tables are used within

the temperature range of log10T=3.75 to 8.7. Below this temperature range, the opacity

tables of Ferguson et al. (2005) are used. These tables include the effect of molecules

and grains on the opacity. Updates on these molecular opacities are already available in

Marigo & Aringer (2009), who included updates on atomic and molecular absorption

coefficients. The update also include full freedom in defining the chemical composition of

the gas. However, comparison studies have shown that both molecular opacity tables are

comparable in the stellar evolutionary calculations performed for this thesis (close to

solar metallicity, 2 to 3 M�), differences only occur at lower metallicities (see Ventura &

Marigo 2010; Constantino et al. 2014; Fishlock, Karakas & Stancliffe 2014).

2.2 Convection and convective boundaries

The set of equations for stellar structure, see Eqs. 2.2-2.8, includes the equation for

energy transport. As shown in this equation, there are two options for transport of

energy: radiation and convection. Radiation always takes place, convection sets in when

it is more efficient to transport energy than radiation. Transport of energy by radiation

is done by repetitive absorption and emission of photons, creating a random motion of

the photons. When a zone is convective, the material itself is unstable to vertical motion

and patterns of rising and falling parcels develop.
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2.2.1 Brunt-Väisälä frequency

The Brunt-Väisälä frequency is used in the criteria for convective instability and can be

derived by considering a fluid element in a star at some level r0, which is in pressure

equilibrium with the surrounding medium. If this element is displaced vertically, in an

adiabatic motion without viscous effects, its equation of motion is:

%int
d2r

dt2
+ g(%int − %ext) = 0 (2.10)

with g being the gravity, and %int and %ext the interior and exterior density relative to

the element. For a small displacement, (r − r0) a first order solution can be derived,

being the equation of harmonic motions without damping. The solution is of the form:

(r − r0) = AeiNt (2.11)

which yields:

−%intN
2AeiNt + g

(
d%int

dr
− d%ext

dr

)
AeiNt = 0 (2.12)

with A being a constant. The oscillation frequency N , called the Brunt-Väisälä frequency,

of a fluid element out of equilibrium position is given by:

N2 =
g

%int

(
d%int

dr
− d%ext

dr

)
(2.13)

or, if ∆% = %int − %ext then: (2.14)

N2 =
g

%

d(∆%)

dr
(2.15)

These oscillations are also known as gravity waves since gravity is the restoring force.

When N2 is positive, the medium is stable against convection, while when N2 is negative,

it is unstable against convection.

Equation 2.15 can be expressed in terms of temperature gradients, as the density gradient

can be written as:

1

ρ

d(∆ρ)

dr
= δ

(
dlnText

dr
− dlnTint

dr
− ψdlnµext

dr

)
(2.16)
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where pressure terms are neglected as pressure equilibrium is assumed. Then, while using

the definition for pressure scale height H−1
P ≡ −dlnP

dr
, which is the distance over which

the pressure is changing by a factor e, the oscillation frequency N becomes:

N2 =
gδ

HP

(∇int −∇+
ϕ

δ
∇µ) (2.17)

with δ = −( ∂ln%
∂lnT

)P,µ, ϕ = ( ∂ln%
∂lnµ

)P,T , ∇int = dlnTint
dlnP

, ∇ = dlnText
dlnP

, and ∇µ = dlnµext
dlnP

.

The stability criterion then becomes:

∇ < ∇int +
ϕ

δ
∇µ (2.18)

or: ∇rad < ∇ad +
ϕ

δ
∇µ (2.19)

which is known as the Ledoux criterion, with ∇ad the adiabatic temperature gradient

defined as P
Tρcp

. By assuming a star is a chemically homogeneous medium, the last term

is zero. The criterion is then known as the Schwarzschild criterion. According to this

latter criterion, the dominant source for energy transportation becomes convection when

the envelope is cool (leading to a higher opacity and thus higher ∇rad), or when the ratio

of l/m is high, for instance, in regions with a high energy flux (again leading to a higher

∇rad). In Section 1.1 examples of both regions have been mentioned in the evolution of

low-mass stars.

Deciding on which criterion should be used has been discussed extensively, mainly for

massive stars (see Salaris & Cassisi 2017, for a recent review). The different criteria for

convection create HRD tracks of massive stars that are either on the cool (red) side or

the hot (blue) side at the point of core He ignition, which is unfortunately not enough to

provide strong constraints on which criterion to use (Langer & Maeder 1995). For lower

masses the effects are smaller. The main difference is that the core mass growth during

the main-sequence and core He burning phase and thus its life time during these phases

is smaller when the Ledoux criterion is used (Robertson & Faulkner 1972; Aguirre et al.

2011; Paxton et al. 2013; Salaris & Cassisi 2017).

Recently published results of 3D hydro studies indicate that the Schwarzschild criterion

should be preferred over Ledoux (Arnett et al. 2019; Arnett et al. 2019).
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2.2.2 Semiconvection and thermohaline mixing

Two other mixing processes are linked to convection: semiconvection and thermohaline

mixing. Semiconvection is the name for the region that is stable according to the Ledoux

criterion, but unstable according to the Schwarzschild criterion. Several descriptions to

calculate the diffusion coefficient for semiconvection exist in modern stellar evolution

codes (Langer, Fricker & Sugimoto 1983; Weaver, Zimmerman & Woosley 1978), however,

semiconvection is only included when the Ledoux criterion is used.

Semiconvection occurs when an upwards displaced convective parcel is denser than the

surrounding medium (follows from the Ledoux criterion), it is thus moved downwards by

gravity (Kato 1966; Kippenhahn, Weigert & Weiss 2013). The parcel is also hotter than

the surrounding medium (as it is unstable against Schwarzschild), thus it radiates into

the surrounding medium, increasing the pressure of the medium and therefore increasing

the density within the parcel. As a result, the parcel will move downwards faster, and

its oscillation around the equilibrium become larger and larger. These oscillations are

semiconvection. It is used in low-mass models, to account for mixing due to breathing

pulses that occur at the end of the core He burning phase. These pulses are present

when a small amount of He is added to the core that is mostly He-depleted. This He

will enhance the energy production rate, and thus luminosity, resulting in an increase

of ∇rad. This increase leads to a short-lived growth of the core boundary, which is

called a ‘breathing pulse’ (Eggleton 1972; Robertson & Faulkner 1972). Its existence is

controversial as its unclear if it is a physical or numerical effect. Stellar evolution models

that do not experience these pulses and thus the semiconvective mixing afterwards seem

to better match observational data (Caputo et al. 1989; Cassisi, Salaris & Irwin 2003). A

recent overview on the difficulties found when modelling the core He burning phase can

be found in Salaris & Cassisi (2017).

∇µ can be negative in some cases and thus increases outwards, due to binary interaction

(Marks & Sarna 1998; Bitzaraki et al. 2004; Stancliffe & Glebbeek 2008; Wellstein, Langer

& Braun 2001), accretion during the planetary formation (Vauclair 2004), or off-centre

ignition of nuclear burning like the core He or C flashes (Thomas 1967; Siess 2009).
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When ∇µ is negative, the configuration of a parcel with higher µ in a layer with a lower

µ is stable if the parcel is hot enough to have lower density. However, due to radiative

losses, the temperature of the parcel reduces, the pressure inwards increases and thus the

density increases. As a result, the parcel will sink resulting in efficient mixing. This is

thermohaline convection1. It can be included in low mass stellar evolution models (up to

an initial mass of 2 M�), as it is assumed to operate during core He burning flashes, and

at the base of the convective envelope at the start of the RGB phase (Eggleton, Dearborn

& Lattanzio 2006; Charbonnel & Lagarde 2010; Angelou et al. 2012). Its influence is

mainly on the surface abundances of, for instance, 3He and lithium (see Charbonnel &

Lagarde 2010; Lagarde et al. 2011, 2012). As this mixing process does not influence the

structure of the star (Lagarde et al. 2012), it is expected to have no influence on the

s-process production.

2.2.3 Mixing-length theory (MLT)

The mixing length theory (see e.g. Biermann 1932; Böhm-Vitense 1958) describes

transport of energy by convection. To determine how far a fluid parcel travels (lMLT)

before it dissolves in the background, a free parameter α = lMLT/HP is defined. In other

words this parameter shows how efficient convection is, as a large α indicates that a

fluid parcel travelled a larger distance before dissolving. In my calculations I use the

standard MLT prescription (Cox & Giuli 1968), which assumes no radiative losses of the

fluid parcels. It is therefore only applicable for regions of high opacity, but despite this

restriction, it is the default version of MLT.

The MLT equations for convective speed vc, convective flux Fc, and convective efficiency

1The derivation of this mixing process is not unlike the rotating instability GSF (see Section 2.4.5),
as this instability requires a negative gradient of specific angular momentum. See Angelou (2014) for a
extensive discussion on this similarity.
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Γc are:

v2
c =

l2gQ(∇conv −∇′)
8HP

(2.20)

Fc =
ρvccpT l(∇conv −∇′)

2HP

(2.21)

Γc =
∇conv −∇′
∇′ −∇ad

=
cpρ

2lvcκ

24σT 3
(2.22)

with ∇′ being the temperature gradient of the fluid parcel, ∇conv the average temperature

gradient within the convective region that is present in Eq. 2.4, and Q = − dlnρ
dlnT P

. From

these three expressions a simple algebraic equation can be obtained to provide a value

for ∇. The equation is (Cox & Giuli 1968):

ξ1/3 +Bξ + a0B
2ξ − a0B

2 = 0 (2.23)

where ξ is:

ξ =
∇r −∇
∇r −∇ad

(2.24)

and the values for A, B, and a0 can be obtained via:

Γ = A(∇−∇′1/2) (2.25)

∇r −∇ = a0A(∇−∇′)3/2 (2.26)

B =
[
(A2/a0)(∇r −∇ad)

]1/3 (2.27)

The convective diffusion coefficient is then calculated by Dconv = 1
3
αMLTvcHP , which is

used in Eq. 2.8.

2.3 Rotating stellar structure

In rotating stars, centrifugal forces lead to deviations from the spherical symmetry used

in the derivation of equations 2.2 - 2.8. This deformation is axisymmetric, until the

rotational energy becomes a notable fraction of the binding energy leading to triaxial
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deformations. This stage, where the rotational velocity is of the order of or higher than

the critical velocity (where the gravitational pull inwards is in balance with the centrifugal

motion outwards), can be reached both in the central regions and in the envelope, see

Hirschi, Meynet & Maeder (2005) and Georgy, Meynet & Maeder (2011). This stage is

only reached in the final phases of massive star evolution, and therefore not considered in

this work.

Even when the star is slowly rotating, the shapes of constant pressure, density and

temperature surfaces will be affected by centrifugal forces and deviate from spherical

symmetry. As a result, several of the stellar evolution equations have to be altered. In

total, there are four ways in which rotation may affect the equations of stellar structure

(Endal & Sofia 1976):

1. Centrifugal forces reduce the effective gravity at any point not on the axis of

rotation;

2. Centrifugal forces are generally not parallel to the force of gravity, the equipotential

surfaces are no longer spheres and thus the spherical symmetry used in the

derivation of the stellar evolution equations is no longer valid;

3. Radiative flux varies with local effective gravity which has a latitude dependence,

described by the von Zeipel theorem (see Zeipel 1924; Maeder 2009);

4. Rotational instabilities transport chemical elements and angular momentum.

The first three effects are directly incorporated in the stellar evolution equations

(Kippenhahn & Thomas 1970). In that paper, the spherical surfaces normally used are

replaced by isobars. This method is corrected, completed and also simplified by assuming

anisotropic turbulence acts much faster on the isobars than in the perpendicular vertical

direction (Chaboyer & Zahn 1992; Zahn 1992). This enforces rotation that is constant

as a function of radius at a given latitude in radiative regions. This type of rotation is

called shellular rotation (Meynet & Maeder 1997). As a result of the strong horizontal

turbulence, matter on isobars is approximately chemically homogeneous and therefore a
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Figure 2.1: Internal rotation rate of the Sun, using long time series of 2088 days (García et al.
2004; Korzennik 2005). These time series allow for the determination of the Solar
rotation profile with small error bars, down to 0.3 R/R�. This analysis shows that
the Sun is rotating rigidly in the radiative zone independent of the latitude, and
differentially rotating at different colatitudes in the convective region (see also
Section 2.3.2). Figure from García et al. (2007).

one-dimensional description is still appropriate.

The radiative zone of the Sun is in agreement with shellular rotation as it rotates at a

uniform rate, see Fig. 2.1 and Kosovichev (1988), Brown et al. (1989), Elsworth et al.

(1995), Thompson et al. (1996), and García et al. (2007). The rotation profile within the

radiative Solar core is still unknown, although a recent publication suggests that the core

is rotating faster than the surrounding radiative zone (Fossat et al. 2017).
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2.3.1 Equations for stellar structure including rotation

New equations for the stellar structure can now be derived, using isobars. On an isobar,

pressure is constant by definition. Let VP be the volume enclosed by a surface SP of

constant pressure P . Its radius rP, defined as the radius of the sphere of the same volume

VP, is such that VP=4πr3
P/3. Then the equation of mass conservation, conservation of

momentum and energy transport are altered in the following way:

(
∂mP

∂rP

)
t

= 4πr2
Pρ̄ (2.28)(

∂P

∂mP

)
t

= − GmP

4πr4
PfP

(2.29)(
∂lnT̄

∂mP

)
t

=
GmP

4πr4
PP

fPmin
[
∇MLT,∇rad

fT

fP

]
(2.30)

with mP being the mass interior to the equipotential surface and the f -factors:

fP =
4πr4

P

GmPSP

〈
g−1
〉−1 (2.31)

fT =

(
4πr2

P

SP

)2 (
〈g〉
〈
g−1
〉)−1 (2.32)

where 〈g〉 is g averaged over the isobaric surface, the subscript ‘P ’ refers to the isobar

with a pressure equal to P , and x̄ is the average of quantity x in a volume separating two

isobars. The first three of the ways rotation affects the stellar evolution equations are

now accounted for: the first one by including fP, the second by using isobaric surfaces,

and the third one by including fT . Including the fourth one involves adding new terms to

the equation for the transport of chemical elements.

The transport of angular momentum (j ∝ Ωr2) is treated in the diffusive approximation

with an equation for the angular velocity, as the radius is assumed locally constant

(Endal & Sofia 1976; Pinsonneault et al. 1989; Heger, Langer & Woosley 2000):(
∂Ω

∂t

)
m

=
1

i

(
∂

∂m

)
t

[
(4πr2ρ)2iDam

(
∂Ω

∂m

)
t

]
− 2Ω

r

(
∂r

∂t

)
m

(
1

2

dlni
dlnr

)
(2.33)
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where Ω is the angular velocity, i = 2
3
r2 is the specific angular momentum for a spherical

shell at mass coordinate m, Dam is also known as the turbulent viscosity (Heger, Langer

& Woosley 2000). The various contributions to Dam are derived in Section 2.4, and the

diffusion equation Eq. 2.33 is derived in Appendix 7, as well as the diffusion equation for

the mixing of chemical elements (Eq. 2.8).

2.3.2 Rotation in convective regions

Shellular rotation is assumed for the radiative zones, as the horizontal turbulence smooths

out differential rotation along the isobars. However, this is not true for convective zones.

Currently there are two treatments for rotation in a convective region:

• Treatment A: Convective regions are treated as solid body rotators. The argument

behind this option is that the convective motions create strong turbulent viscosity

which homogenises the distribution of angular velocity. As a result the convective

region will have a uniform distribution of angular velocity.

• Treatment B: Convective regions have a constant distribution of angular momen-

tum. The argument for this treatment is that the large-scale convective motions

dominate the region, and that they conserve their angular momentum. As a

result, the convective region has a uniform distribution of angular momentum.

Treatment A is the standard treatment in stellar evolution models. Only a few studies

consider treatment B (i.e., see Kawaler & Hostler 2005; Cantiello et al. 2014; Tayar &

Pinsonneault 2018). In Cantiello et al. (2014) both options were tested, as both are

included in the implementation of rotation in MESA. The choice for option A or B did

not influence their conclusions on the evolution of core rotation rates, as the mixing

process that are responsible for the transport of angular momentum are still identical.

Their dependence on the molecular weight gradients remains the limiting factor for the

transport of angular momentum. As shown in Fig. 2.1, the solar rotation profile is nearly

constant in its convective region, with no dependence on radius. Therefore, treatment A
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is currently the preferred option in 1D stellar evolution models.

3D simulations of rotating convective regions indicate that the situation is more compli-

cated than the two treatments presented above. For instance, Toomre & Brun (2004)

shows 3D simulations of solar convection, and concludes that the angular velocity distri-

bution is not at all constant throughout the region. Browning, Brun & Toomre (2004)

presents 3D simulations of core convection in a 2-M� star, rotating at different rotation

rates. They also find differential rotation in the convective region, as well as elongation

of the core along the rotation axis. The overview of Deupree (2004) indicates that indeed

the two treatment of rotation in convective regions are unrealistic. Nevertheless, these

options are currently the standard in 1D stellar evolution codes. Brun & Palacios (2009)

show that the convective motion itself depends on the rotation rate of the star, which

impacts the convective boundary mixing (Brun et al. 2017).

2.4 Rotational induced instabilities

When rotation is included in stellar evolution models, the number of instabilities increases

(Heger, Langer & Woosley 2000; Maeder & Meynet 2012). All these instabilities have

a common effect: they redistribute angular momentum and chemical elements. In the

next subsections, these processes and prescriptions used in stellar evolution codes are

presented.

2.4.1 Solberg-Høiland (SH) instability

The Brunt-Väisälä frequency, see Section 2.2.1, was derived for a non-rotating medium.

Displaced elements in a rotating medium, however, are also subject to the centrifugal

force which modifies the oscillation frequency and thus the criterion for convective
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stability (Wasiutynski 1946). The Solberg-Høiland criterion for convective stability is:

N2 = N2
T +N2

µ +N2
Ωsinθ ≥ 0 (2.34)

or :N2 = RSH =
gδ

HP

(
∇ad −∇+

ϕ

δ
∇µ

)
+

1

r3

d

dr
(r2Ω)2 ≥ 0 (2.35)

Like convection, this instability takes place on the dynamical time scale. It can occur in

regions where the specific angular velocity strongly decreases outwards, and is calculated

in a similar way to the dynamical shear instability. The diffusion coefficient for this

instability can be calculated by the square of the extent of the unstable region dinst

divided by the dynamical time scale, as this instability works on the dynamical time

scale. The dinst is limited to the pressure scale height, and in an attempt to smooth the

transition between stable and unstable regions, this length scale is multiplied by a factor

close to unity of rRSH/g:

DSH =

[
min {dinst, HP}

(
rRSH

g

)]2

/τdyn (2.36)

Some authors exclude this instability (i.e. Hirschi, Meynet & Maeder 2004) assuming the

dynamical shear instability (defined in the next section) is always dominant over the SH

instability.

2.4.2 Dynamical shear instability (DSI)

Stars have both rotational velocity and density gradients, due to their stratified internal

structure. The instability created by two regions moving with a denser region on top of a

less dense region is known as the Rayleigh-Taylor instability, while the instability created

when two regions move at different velocities is called the Kelvin-Helmholtz instability.

This instability can be seen in nature, for instance by wind blowing over the sea creating

waves, or in the shape of clouds. The interplay of the two instabilities needs to be studied

in detail, and is expressed by the Richardson criterion (Zahn 1974; Endal & Sofia 1978).

The Richardson criterion was derived by Chandrasekhar (1961), who considered two cells

at levels z and z + ∂z, moving with velocities v and v + ∂v. respectively. The instability
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takes place when the work done against gravity due to the displacement is smaller than

the kinetic energy available. The work done against gravity can be expressed as:

∂W = g∂ρ∂z2 (2.37)

and the kinetic energy available is:

∂K =
1

2
ρ

[
(v2 + (v + ∂v)2)− 2

(
v +

∂v

2

)]
(2.38)

=
1

4
ρ(∂V )2 (2.39)

As the instability occurs when ∂K > ∂W , we get:

1

4
ρ(∂v2) > g∂ρ∂z2 (2.40)

Ri ≡ g

ρ

∂ρ/∂z

(∂v/∂z)2
<

1

4
= Ric (2.41)

where the critical Richardson number is 1/4. Then, by using Eqs. 2.15-2.17, the Richardson

criterion can be rewritten as:

Ri ≡ N2

(∂v/∂z)2
< Ric (2.42)

or :N2 < Ric

(
sinθr

∂Ω

∂r

)2

(2.43)

as in shellular rotation ∂v/∂z=rsinθ(∂Ω/∂r) where θ is the latitude.

This instability occurs on the dynamical time scale, and therefore effects working on

longer time scale can be neglected (i.e. thermal effects). The corresponding diffusion

coefficient is calculated by first multiplying the spatial extent of the unstable region, dinst

(limited to the pressure scale height HP), with the extent of the deviation of Ri from Ric.

The square of this multiplication is then divided by the local dynamical time scale:

DDSI =

[
min {dinst, HP}

(
1−max

{
Ri

Ri,c

, 0

})]2

/τdyn (2.44)

where the term between the round brackets is included to allow for a smooth transition

between stable and unstable regions. The instability is assumed to be weaker when the
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deviation from the Richardson criterion is smaller. When Ri > Ri,c the flow is assumed

to be stable against the dynamical shear instability, however it might be unstable against

the secular shear instability (explained in the next section).

2.4.3 Secular shear instability (SSI)

Thermal effects, working on thermal time scales, can reduce the density gradient and

thus their stabilizing effects. These effects can thus allow for shear instabilities to occur

on thermal time scales, even in regions that are stable according to the Richardson

criterion. Molecular weight gradients, however, inhibit the secular shear. Both aspects

have to be included in the stability criterion (Endal & Sofia 1978). The first condition,

concerning the thermal effects, includes the Prandtl number, Pr. The Prandtl number is

calculated by dividing the kinematic viscosity by the thermal diffusivity. The stronger

the thermal diffusion, the weaker the density gradient and thus the stronger the secular

shear. The first criterion for stability against secular shear is:

RiSSI,1 =
Rcrit

8
PrRi >

1

4
(2.45)

with Rcrit being the critical Reynolds number which is ' 103 (Zahn 1974; Richard 1999).

This condition implies that in the inviscid limit of Pr → 0, any differentially rotating

region is unstable against secular shear independent of molecular weight gradients. This

is not correct. To account for this, the second condition only considers the dependence of

N2 on the molecular weight gradient when including N2 in the Richardson criterion as

in Eq. 2.43 (Heger, Langer & Woosley 2000):

RiSSI,2 =
ρψ∇µ

P

(
g
dlnr
dΩ

)2

>
1

4
(2.46)

Only when both criteria are violated, the secular shear instability will occur. Its strength

is determined by calculating its velocity. This velocity is calculated by dividing the size

scale of the turbulent element l by the time scale τ v Rcrit/(dΩ/dlnr) (a thermal time
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scale):

l2 v νRcrit/(dΩ/dlnr) (2.47)

vSSI = l/τ = [ν(dΩ/dlnr)/Rcrit]
1/2 (2.48)

andHv,SSI =

∣∣∣∣ dr

dlnvSSI

∣∣∣∣ (2.49)

where Hv,SSI is the typical velocity scale height of the flow, used here as the typical length

scale of the instability. Then, the equation for the diffusion coefficient is the following:

DSSI = min {vSSI, cs}min {Hv,SSI, HP}
(

1− max {Ri,SSI,1, Ri,SSI,2}
Ri,c

)2

(2.50)

2.4.4 Eddington-Sweet (ES) circulation

This large-scale circulation arises as the centrifugal forces make the isobars oblate, instead

of spherical. As a consequence, the isobars are less close to each other at the equator

than at the polar regions. Since the radiative flux is proportional to the effective gravity,

there is a deficiency of this flux at the equator and an excess at the poles. This imbalance

causes the circulation (Zeipel 1924; Eddington 1925; Sweet 1950; Kippenhahn 1974),

known as the Eddington-Sweet circulation or meridional circulation. Also the Earth is

oblate and experiences meridional (north-south direction) and zonal (west-east) air flows.

Meridional flows are responsible for strong storms and extreme weather (heat and cold

waves)2.

The derivation of the Eddington-Sweet circulation velocity starts with the first law of

thermodynamics:

∇ · F = ρε− cPρ
dT

dt
+ δ

dP

dt
(2.51)

or ∇ · F = −δ∇ad −∇
∇ad

gρvr (2.52)

2www.scientificamerican.com/article/why-do-we-have-a-hurricane-season/
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where F is the radiative flux, and all other symbols have been defined before. The

meridional velocity vr then becomes:

vr =
1

ρg

∇ad

δ∇ad −∇

[
ρε− cPρ

dT

dt
+ δ

dP

dt

]
(2.53)

and vr =
∇ad

δ∇ad −∇
Ω2r3l

(Gm)2

[
2(εn + εv)r

2

l
− 2r2

m
− 3

4πρr

]
(2.54)

For all derivation steps in between the above equation, see Kippenhahn (1974). The

µ-gradient suppresses or even inhibits the meridional circulation, and this effect can be

written as a ‘stabilizing’ circulation velocity vµ (Kippenhahn 1974; Pinsonneault et al.

1989):

vµ =
HP

τ ∗KH

ϕ∇µ

∂(∇−∇ad)
(2.55)

where τ ∗KH is the local Kelvin-Helmholtz time scale. The difference between vr and vµ is

the effective velocity vES . The resulting diffusion coefficient is then (Endal & Sofia 1978):

DES = min {dinst, Hv,ES} vES (2.56)

with Hv,ES the typical length scale of the instability:

Hv,ES =

∣∣∣∣ dr

dlnvES

∣∣∣∣ (2.57)

The strong effect of the µ-gradient is due to gravity: the µ-gradient always decreases

outwards, meaning that the gravitational forces have to be overcome for the ES circulation

to proceed. When the ES-circulation is not strong enough to do so, the circulation is

deflected horizontally, see Mestel (1953) for more details.

The ES circulation is the only instability described in this section that is active in

regions of constant Ω, while all others are active when Ω is changing. Therefore, the

ES circulation mixes chemical elements and transports angular momentum in large

(radiative) regions within stars, while the other instabilities are active in smaller regions.

2.4.5 Goldreich-Schubert-Fricke (GSF) instability

The GSF instability is formed when the surfaces of constant specific angular momentum

make an angle relative to the rotation axis, see Goldreich & Schubert (1967); Fricke
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(1968). Like the Eddington-Sweet circulation, the GSF instability is suppressed when

µ-gradients are present, and vµ is therefore used here again. However, the GSF instability

is excluded from most of the stellar evolution models presented in this thesis, based on

the independent studies of Hirschi & Maeder (2010) and Caleo, Balbus & Tognelli (2016).

Both papers show that viscosity, assumed to be negligible in the original derivation of

the instability (James & Kahn 1970, 1971), either turbulent as in Hirschi & Maeder

(2010) or molecular and radiative as in Caleo, Balbus & Tognelli (2016), suppresses the

GSF instability. Hirschi & Maeder (2010) shows that for several evolutionary phases

of a 20-M� star, the GSF instability is always weaker than the dynamical shear. The

implementation of the GSF instability in MESA currently follows Heger, Langer &

Woosley (2000) and does not include the stabilising effect of the viscosity. Therefore, I

exclude GSF from my stellar evolution calculations.

2.4.6 Other implementations and instabilities

Other rotational induced, hydrodynamical instabilities are the ABCD-instability (Spruit,

Knobloch & Roxburgh 1983) and the triple diffusive instability (Knobloch & Spruit

1983). Due to a lack of reliable estimates of their efficiency is their inclusion in stellar

evolution calculations currently unjustified (Heger, Langer & Woosley 2000; Maeder 2009).

2.5 Magnetic dynamos

Magnetic fields exist in stars in two different configurations: long-lived and stable or

short-lived and dynamical. The stable or fossil fields are remnant fields present since the

formation of the star and are generally associated with strong, static, large-scale fields

(Cowling 1945; Braithwaite & Spruit 2004; Braithwaite 2006). These fossil fields might

be a relic of a field present in the star forming region, and somehow locked into the star.

Dynamical fields are dynamo-driven fields relying on instabilities, and are commonly
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Figure 2.2: Schematic overview of the process of winding up magnetic field lines. Figures a-c
show the omega effect, while figures d-f show the alpha effect, explained in the
text. Figure from Fletcher (2006).

found in slowly rotating stars. These fields are weak, and are assumed to be created in

rotating stars (Tayler 1973; Markey & Tayler 1973; Wright 1973). The development of

the understanding of both types of fields is ongoing, see e.g. Walder, Folini & Meynet

(2012) for a recent overview.

Some of the stellar evolution models presented in this thesis include dynamical fields,

because of their link to angular momentum transport. These fields can be created in

differentially rotating stars. The theory of the formation of dynamical fields starts

with assuming shellular rotation (differentially rotating) and a weak initial or seed

magnetic field. Due to the differential rotation, the magnetic field lines are wound up

and the non-axisymmetrical components are expelled. This process of making the field

axisymmetric is fast, of the order of hundreds of years (estimated with values reasonable
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for the Sun). The azimuthal field formed by the winding up of the weak initial field

increases in strength until instabilities start to form, with the Tayler-Spruit instability

being the most important one (Tayler 1973). This instability, present in radiative zones,

generates a new field component in the radial direction and this field is also wound up by

differential rotation, see Fig. 2.2a-c. Applied to stellar interiors, this dynamo field leads

to an effective viscosity influencing the transport of angular momentum and additional

mixing of the chemical elements (Spruit 1999, 2002).

The inclusion of these effects in the stellar evolution codes used to calculate the models

shown in this thesis are both based on the Tayler-Spruit instability, derived by Spruit

(2002). The effective diffusivity generated by the Tayler-Spruit instability is:

De,TS =
De0De1

De0 +De1

fq (2.58)

with: f(q) = 1− qmin

q
(if q > qmin) (2.59)

= 0 (if q < qmin) (2.60)

q =
r

Ω

∂Ω

∂r
(2.61)

qmin = q0 + q1 (2.62)

= (
Nµ

Ω
)7/4(

η

r2Nµ

)1/4 + (
NT

Ω
)7/4(

η

r2NT

)1/4(
η

κ
)3/4 (2.63)

De0 = r2Ωq4(
Ω

Nµ

)6 (2.64)

De1 = r2Ω max

[
q

(
Ω

NT

)3/4(
κ

r2NT

)3/4

, q4

(
Ω

NT

)6
]

(2.65)

with f being a factor added to the stress so that it vanishes smoothly as the gradient q

approaches the minimum value required, qmin, for dynamo action to take place (Spruit

2002). De0 represents the case where the effects of stratification are dominated by

the compositional gradient and De1 represents the case where thermal diffusion (the

stabilizing stratification is due entirely to the entropy gradient) dominates. The right

term in the maximum operator in Eq. 2.65 dominates over the left term when the thermal

diffusion has no effect. The value of qmin takes into account that the dynamo action is

only possible when the rotational gradient is strong enough to overcome the stabilising
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effects of both the compositional gradient (q0) and of the thermal buoyancy (q1). It is

important to note that in Spruit (2002) it is written that the algebraic complexity of the

expressions included in the derivation are not equal to the level of sophistication of their

analysis. Therefore, the two cases (domination by the compositional gradient and the

thermal diffusion) are combined by using a ‘patching formula’ as shown in Eq. 2.58.

The effective diffusivity νe,ST generated by the Tayler-Spruit instability is included in

the equation for mixing of chemical elements (Eq. 2.8). The effective viscosity that is

included in the transport of angular momentum in Eq. 2.33 is derived similarly as to the

effective diffusivity:

νe,TS =
νe0νe1

νe0 + νe1

fq (2.66)

νe0 = r2Ωq2(
Ω

Nµ

)4 (2.67)

νe1 = r2Ω max

[
q

(
Ω

NT

)1/2(
κ

r2NT

)1/2

, q2

(
Ω

NT

)4
]

(2.68)

Ω will only approach N when the rotation rate is close to the critical rotation, which is

not reached in the models presented in this thesis. Therefore, Ω� N is true in general

(Spruit 2002), a difference in value of several orders of magnitude. Therefore, De,TS is

much smaller than νe,TS which means that the TS-dynamo is much more effective at

transporting angular momentum than mixing chemical elements.

2.6 Uncertainties concerning rotation

Now that all rotationally induced mixing processes have been defined, I can present the

sums that make up the total diffusion coefficients as included in the transport of angular

momentum (Eq. 2.33) and the mixing of chemical elements (Eq. 2.8):

Dam = DDSI +DSH +DSSI +DGSF +DES + νTS (2.69)

Dmix = DDSI +DSH +DSSI +DGSF +DES +DTS (2.70)
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where the only difference is the inclusion of the dynamo effects. Several uncertainties are

however present.

The first is the treatment of mixing processes like the dynamical shear instability in stellar

modelling, due to the need to parametrize and approximate aspects of hydrodynamics in

hydrostatics. Multidimensional studies of the processes and the comparison between 1D

and multi-D simulations are needed to improve the treatments. A comparison between

the 1D hydrostatic model and 2D hydrodynamical simulation of the DSI is published in

Edelmann et al. (2017). They conclude that most of the differences between 1D and

2D come from the fact that in stellar evolution models the evolutionary time step is

larger than the time scale of the dynamical shear instability. Details on how to deal

with this were beyond the scope of that paper, but it does mention possible options, like

combining the dynamical and secular shear in one prescription.

The difference between the evolutionary time step and the dynamical time scale has led

to some research groups excluding all rotationally induced dynamical processes from

their calculations3. As most of these processes only occur in late stellar evolutionary

phases (Hirschi, Meynet & Maeder 2004, see e.g.), this exclusion has very minor effects

on the outcome of stellar evolution models.

Furthermore, the interaction between the instabilities included Eqs. 2.69 and 2.70 is not

included in the theory. Studies on this problem have been published (see e.g Chaboyer

& Zahn 1992; Zahn 1992; Urpin, Shalybkov & Spruit 1996; Meynet & Maeder 1997;

Maeder 1997; Talon & Zahn 1997; Talon et al. 1997; Maeder et al. 2013), however, the

effect in stellar model of these interactions are not large and are therefore not included.

Another uncertainty is that there are different variants of the equation for the transport

of angular momentum and also how it is included in stellar evolution models differs. Two

options are available, and the first is given in Eq. 2.33. The second option is to follow

Zahn (1992), as done in the GENEC code (Maeder & Zahn 1998; Eggenberger et al.

3Private communication with Prof. S.C. Yoon
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2008) and use:

ρ
∂

∂t
(r2Ω)|Mr =

1

5r2

∂

∂r
(ρr4ΩU(r)) +

1

r2

∂

∂r
(ρDr4∂Ω

∂r
) (2.71)

with Ω(r) being the mean angular velocity at level r, U(r) the vertical component of

the meridional circulation velocity and D the sum of the different diffusion processes.

As a consequence of keeping Mr constant, angular momentum is conserved during

contraction or expansion. The first term on the right side is an advective term describing

the meridional circulation, while the second is a diffusive term describing the diffusive

processes like shear. Treating meridional circulation as advection is more physical than

treating it as diffusion and is thus considered to be more correct (Paxton et al. 2013), but

it is also numerically more expensive. The differential equation in MESA therefore treats

the meridional circulation as a diffusive process, following Heger, Langer & Woosley

(2000).

The differential equation for the mixing of chemical elements can also be written as an

advective-diffusive equation as eq. 2.71. Chaboyer & Zahn (1992) found that when the

horizontal component of the diffusion is large, the vertical advection of the elements can

be expressed as a diffusion process:

Deff =
|rU(r)|2

30Dh

(2.72)

with: Dh = |rU(r)| (2.73)

where the latter expression is derived by Zahn (1992).

Tests have been performed (Potter, Tout & Eldridge 2012; Potter, Tout & Brott 2012) to

investigate whether one implementation of transport of angular momentum should be

preferred over the others. These tests are done for both individual stars (intermediate-mass

and massive stars) and stellar populations, and included Heger, Langer & Woosley (2000)

and two versions of the above-described GENEC implementation. While there were

differences between the resulting three sets of main-sequence models, the authors of

Potter, Tout & Eldridge (2012); Potter, Tout & Brott (2012) and were unable to identify

a preferred implementation. Instead, they state that the different options generate

significant differences in results based on mass, metallicity, and rotation rate, but that
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the different models lead to similar qualitative conclusions. Finally, the TS-dynamo is

controversial. There are several papers challenging the derivation of the TS-dynamo.

One of the papers on the TS-dynamo is Denissenkov & Pinsonneault (2007), where a

disagreement with an extrapolation in the original derivation leads to lower viscosities

and a stronger dependence on the µ-gradients. As a result, the coupling between core

and envelope is weaker and the gap between model outcomes and observations is bigger

in this version than in the original the TS-dynamo. In Zahn, Brun & Mathis (2007) the

TS-dynamo is criticised too, for being too simple to be applied in stellar evolution codes,

when compared to their 3D simulations. Another revision can be found in Maeder &

Meynet (2004), where the derivation of the diffusion coefficients of the TS-dynamo differs

from the one in Spruit (2002). In Spruit (2002) the solution was limited to two cases,

one where the µ-gradient dominates and one where the thermal gradients dominate.

In Maeder & Meynet (2004) a more general solution is derived, that still matches the

limiting cases of Spruit (2002). As a result of the new equations, the diffusion coefficient

for the transport of angular moment is larger and the coupling between core and envelope

is stronger.

Fig. 2.2 also shows the alpha effect (Steenbeck, Krause & Rädler 1966; Brandenburg

2001), which in turn transforms the toroidal magnetic field back into a poloidal one. This

transformation is due to the Coriolis effect4, creating twists in the magnetic field lines

(Fig. 2.2e), which then become small loops. Both the toroidol field and the Coriolis force

have opposite signs on the northern and southern hemisphere, making the small loops

rotate in the same direction. Due to magnetic diffusivity, these loops create a poloidal

field. This dynamo is included in Potter, Chitre & Tout (2012), who found that this

dynamo improved their comparison to observed surface nitrogen enrichment of massive

stars.

Recently a new derivation of the TS-dynamo was published (Fuller, Piro & Jermyn 2019).

The details of this derivation and some initial results will be discussed in Chapter 6 and

4The Coriolis Effect is the apparent deflection of a moving object when viewed from a rotating frame
of reference.
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7.

2.7 Effect of rotation on stellar evolution

The consequences of including rotation in stellar evolution models will be noticeable at

both large and small scales, as some instabilities occur on the dynamical time scale and

some on slower time scales. In this section I discuss the studies that include rotating

stellar evolution models in the mass range considered in this thesis.

To investigate the effect of rotation on the HRD of stellar evolution models, I created

Fig. 2.3. This figure shows a comparison between non-rotating and rotating (with an

initial rotation rate of Ω/Ωcrit=0.4) models with an initial mass of 2 and 3 M�, at

solar metallicity, calculated with MESA by the MIST group (Choi et al. 2016) and

with GENEC (Ekström et al. 2012). As described in Section 2.4.6, these two codes use

two different implementations of rotation and there is therefore no added benefit from

including more models (i.e. Charbonnel & Lagarde 2010; Brott et al. 2011; Potter, Chitre

& Tout 2012). Fig. 2.3 consists of two panels, the top one showing the evolution of the

eight included models up to the AGB phase, while the lower panel shows only the main

sequence and the star of the RGB phase. At first glance these figures show that the same

general trends are present in these models, both non-rotating and rotating, as described

in Section 1.1 with Fig. 1.2. There are minor differences visible though. For instance,

all rotating models start the main sequence at a lower effective temperature than their

non-rotating counterparts due to the centrifugal forces making the rotating stars slightly

more ‘puffy’ at their surfaces. Also, all rotating models shown in Fig. 2.3 have a wider

main sequence than the non-rotating models. This is because of the extra mixing due

to rotation, which mixes H into the core during the main sequence, thus lengthening

this evolutionary phase. The effect is more profound in the GENEC models than in the

MIST models, possibly due to the differences in the implementation of rotation. The

main sequence of the rotating GENEC models ends at a luminosity 5-10 % higher than

the non-rotating GENEC models, due to their more massive rotating cores caused by the
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lengthened main sequence. This effect is not visible in the MESA models as the main

sequence width in the rotating MESA models is more similar to the non-rotating MESA

models, and thus their masses (and thus luminosities) are similar as well.

The MESA models converge early on the RGB, while the GENEC models converge at

the start of the vertical part of the RGB. At this point the MESA models are hotter

than the GENEC models. The differences between the MESA and GENEC models might

be explained by differences in the treatment of convection, convective boundary mixing,

and opacities. A similar comparison of GENEC and MESA models has recently been

presented by Gossage et al. (2018), who also included models with initial masses of 4 and

7 M�. The trends in these models are the same as in the lower initial masses.

There is another point to discuss when explaining Fig. 2.3, which is that the cores of

these rotating models rotate too fast when compared to asteroseismically determined

core rotation rates. Therefore, the differences will probably be even smaller between

non-rotating MESA models and the rotating MESA models with cores that rotate at

rates matching the asteroseismic observed ones.

Due to the convergence of the HRD tracks, the rotating and non-rotating stellar evolution

models will have core masses that are similar at the start of the TP-AGB phase. Piersanti,

Cristallo & Straniero (2013) report in their Table 1 a difference in core mass at the first

TP of < 5 % between a 2-M� non-rotating model and a 2-M� model with an initial

rotation rate of 120 km s−1. Also these models have core rotation rates that are too high

when compared to asteroseismic observations, which means this trend is expected to hold

as well in models that have cores that do match the asteroseismic rotation rates. Their

s-process production in the AGB phase is however strongly dependent on the rotation

rate, and those yields will likely be different in the models match the asteroseismic

rotation rates.

The above mentioned studies discuss the effect of rotation on the stellar structure, but

not on the chemical composition. The changes due to rotation in surface abundances

pre-AGB in stars with an initial mass of 1-4 M� were performed by Charbonnel &

Lagarde (2010) and Lagarde et al. (2011). They also include thermohaline mixing (see

Section 2.2.2) in their models. They find that the thermohaline mixing accounts for the
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Figure 2.3: HRDs of non-rotating and rotating stellar evolution models at solar metallicity
of two initial masses (2 and 3 M�) and two codes: MESA models by the MIST
group (Choi et al. 2016) and GENEC models by the Geneva group (Ekström et al.
2012). The non-rotating models are plotted in solid lines, the rotating models
(initial rotation rate of Ω

Ωcrit
=0.4) in dashed lines, but in the same colour as the

corresponding non-rotating model. The bottom panel shows the evolution up to
the AGB phase, while the top panel is a zoomed in on the main sequence and the
start of the RGB. Similar trends are visible in all models, with minor changes
between the non-rotating and rotating models (see text for more details).
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observed ratios of light elements in Galactic open glusters, field stars, and planetary

nebulae. Rotationally induced mixing is able to add the star-to-star variations in those

ratios, as well as structural changes leading to the thermohaline instability to occur at

lower initial masses than in non-rotating models. Again, these models rotate at rates

that do not match the asteroseismically obtained ones and the effect based on rotation in

their models are therefore likely overestimated.

Currently there are only a few publications on stellar evolution models that do match

the asteroseismically obtained core rotation rates. These publications all focus on how

these core rotation rates are reached, and not on the effect of rotation on the chemical

composition of the stars (see, e.g. Spada et al. 2016; Eggenberger et al. 2017; Tayar &

Pinsonneault 2018). The goal of my thesis is to fill this gap. In the next Chapter I will

introduce the initial parameters of models that will do this.
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3 Methodology

The stellar evolution models presented in this thesis have been calculated with modules

for experiments in stellar astrophysics (MESA, see Paxton et al. 2011, 2013; Paxton

et al. 2015, 2018, 2019). MESA is open source, has independent modules for physics and

numerical algorithms that can be used as stand-alones and runs well on desktops, laptops,

and multi-core architectures. The code includes comprehensive microphysics and is being

maintained and developed since its first release on 23 January 2007 by a dedicated code

development team1. This combination makes MESA widely applicable in astrophysics.

Extra physics is added and users are encouraged to share all information needed for

others to recreate their results. The broad applicability to astrophysics of MESA is visible

in the list of published results, which can be found at http://mesastar.org/results.

It includes publications across the entire initial stellar mass-range, metallicity studies,

studies on progenitors of supernovae and studies on processes like mass loss, tidal heating

and gravity modes. The MESA revision used to calculate the models in this thesis is

8845, released on June 19 2016.

In this chapter I will present all input parameters for my MESA calculations, followed

by sections on the details of the resolution and rotation settings of my MESA models.

Then, I will present the second code I have used, a post-processing code called MPPNP,

see Section 3.4. I used MPPNP to calculate the s-process nucleosynthesis. This chapter

continues with an overview of the running times of each code and the machines used.

The chapter ends with an introduction to each result chapter.

3.1 Input parameters MESA

Many of the input parameters for non-rotating processes have been chosen to match the

ones in Nugrid papers (Pignatari et al. 2016; Battino et al. 2016; Ritter et al. 2018), so

1mesa.sourceforge.net/index.html
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that my models can be used in conjunction with those papers. An overview is given

in Table 3.1, which includes the settings to physics discussed in Chapter 2 and in the

following subsections.

Table 3.1: Table with a summary of the MESA settings.

Parameter Setting
Convection:
Criterion Schwarzschild
Semiconvection Excluded
Thermohaline Excluded
MLT mixing length α 1.73 (see Herwig 2005)
CBM:
Treatment Exp. decaying diffusion (Herwig et al. 1997)
During AGB Double exp. decaying diffusion (Battino et al. 2016)
Mass loss:
Starting at RGB Reimers (1975): ηR=0.5
Starting at AGB Blöcker (1995): ηB=0.01, 0.04, 0.5
Opacities:
Log10T=3.75 to 8.7 OPAL CO enhanced
Log10T<3.75 Ferguson et al. (2005)
Chemical composition:
Initial composition Grevesse & Noels (1993)
Network agb.net, 19 isotopes
Reaction rates NACRE Angulo et al. (1999), with exceptions
Rotation:
Angular momentum transport Diffusive as in Heger, Langer & Woosley (2000)
f parameters fc=1/30, fµ=0.05
Convective regions Solid body

3.1.1 Initial composition and network

The reference solar abundance used in this thesis is taken from Grevesse & Noels

(1993). The composition is followed in the MESA models by a network named agb.net

which includes 19 isotopes: neutrons, 1H, 2H, 3He, 4He, 7Li, 7Be, 8B, 12,13C, 13,14,15N,
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16,17,18O, 19F, 22Ne, and 56Fe. A set of 27 reactions are used to calculate the changes

in the composition. These 27 reactions include all the pp-chain reactions and the CN-

and NO-cycles as listed in Section 1.1.2, as well as the triple-α reaction and several

α-capture reactions: 12C(α,γ)16O, 14N(α,γ)18F(e+,ν)18O, 18O(α, γ)22Ne, 13C(α,γ)16O,

and 19F(α,p)22Ne. Together, the isotopes and reactions included are sufficient to track

the energy generation of a low-mass AGB star with an initial mass of 2 M�.

The NACRE reaction rate compilation (Angulo et al. 1999), is used for most reaction

rates in the MESA calculations, with a few exceptions: the rate for 12C(α,n)16O is from

Kunz et al. (2002), the rate for the 14N(p,γ)15O is from Imbriani et al. (2004) and the

rate for triple-α is from Fynbo et al. (2005).

3.1.2 Mass loss

The Reimers formula for mass loss (Reimers 1975) is used during the RGB phase:

Ṁ = 4× 10−13ηR
(L/L�)(R/R�)

M/M�
M�/[yr

−1] (3.1)

with ηR being an efficiency factor. This formula was determined by analysing the line

profiles in spectroscopic observations of cool giant stars, and is widely used in the stellar

evolution community when modelling giants. During the AGB phase however, mass loss

is observed to be higher than the Reimers formula predicts (Blöcker 1995; Höfner &

Olofsson 2018). For this phase we change to the Blöckers mass loss formula (Blöcker

1995) in the AGB phase:

Ṁ = 4.83× 10−9ηB
(L/L�)2.7

(M/M�)2.1

ṀR

ηR

M�[yr−1] (3.2)

with ηB being an efficiency factor for this mass loss formula. This formula was built on the

results of Reimers (1975) and atmosphere modelling of Mira-like stars by Bowen (1988).

The Blöcker mass loss formula was constructed with three goals in mind: the formula

had to reflect the strong mass loss in AGB stars, had to be applicable to stellar evolution

equations, and had to agree with the observed initial-final mass relationships. Several

mass loss formulae exist for the AGB phase and were compared in Stancliffe & Jeffery
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(2007). This paper compares the mass loss formulae of Reimers (1975); Blöcker (1995);

Vassiliadis & Wood (1993) for a 1.5-M� star at Z=0.008 and reports large differences in

the yields of the models. All yields, however, are mostly consistent with the observations

and therefore a ranking of mass loss formulae was not provided.

The efficiency factors of the Reimers and Blöcker mass loss formulae have been set to

values used in previous publications of collaborators (see Nugrid papers Pignatari et al.

2016; Battino et al. 2016): ηR=0.5, and ηB=0.01 during the O-rich phase and ηB=0.04

during the C-rich phase. This change in ηB is motivated by observational constraints, like

the maximum level of C enhancement seen in C-rich stars and planetary nebulae (Herwig

2005; Marigo & Girardi 2007; Mattsson, Wahlin & Höfner 2010; Nanni et al. 2017), as

well as in hydrodynamical studies of mass loss rates in C-rich stars, see Mattsson &

Höfner (2011).

It is common for convergence issues to arise during the final TPs of stellar evolution

calculations and these issues also occur in the models presented in this thesis. While these

issues are common, it is unclear if their nature is physical or numerical as discussed in

detail in Lau et al. (2012). Observational constraints are needed to settle this issue. There

are however two options formulated on how to proceed, the first being the continuation

of the AGB phase with a higher mass loss rate and the second the ejection of the whole

remaining envelope (see Wood & Faulkner 1986; Herwig, Bloecker & Schoenberner 1999;

Sweigart 1999; Lau et al. 2012). We proceed with the models by increasing the mass loss

parameter to ηB=0.5, which allows for a smooth continuation of the models into the

white dwarf phase.

The effect of rotation on mass loss in my models is discussed in Section 3.3.

3.1.3 Convective boundary mixing

The Schwarschild and Ledoux criteria for convection do not give a description of the

boundaries of the convective zones. Their derivations predict that displaced fluid elements

have zero acceleration at the boundary, but their velocity is not equal to zero. This means

that they should be able to continue travelling into the non-convective neighbouring
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region. One way of predicting the extent of convective boundary mixing (CBM) is using

the exponentially decaying diffusion coefficient by Herwig et al. (1997). This coefficient is

based on the convective boundaries found in the work of Freytag, Ludwig & Steffen

(1996) that could best be described by:

DCBM = D0exp

[ −2z

f1HP0

]
(3.3)

where D0 and HP0 are the diffusion coefficient and pressure scale height at the convective

boundary respectively, and z is the distance calculated from the formal convective

boundary into the radiative zone. This CBM treatment starts inside the convective zone,

at distance f1HP0 from the edge and that is the location where D0 is set. By doing so,

the problem of D=0 at the exact edge of the zone is avoided. Denissenkov & Tout (2003)

and Herwig et al. (2007), have shown the diffusion coefficient for certain convective

boundaries in the AGB phase, and their effect on the AGB phase has been investigated

in Battino et al. (2016). This CBM treatment for the AGB phase is based on matching

the slope of the diffusion coefficients found in Denissenkov & Tout (2003) and Herwig

et al. (2007). They found that this could best be done by adding a second exponential:

D2 = D0exp [−2z2/(f2HP0)] (3.4)

which is adopted for distances of z > z2. The diffusion coefficient for CBM at distances

z > z2 is:

DCBM = D2exp [−2(z − z2)/f2HP0] (3.5)

As in Pignatari et al. (2016); Battino et al. (2016); Ritter et al. (2018), I use f1 = 0.014

for all convective boundaries expect for the one below the TP and below the TDU, for

which I use the double exponential method as described above. The values of f2 and

D2 for the two regions it is used are summarised in Table 3.2, and match the values in

Battino et al. (2016).
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Table 3.2: Table with the f2 and D2 values used in the MESA calculations.

Parameter TP TDU
f2 0.14 0.25
D2 (cm2s−1) 105 1011

3.1.4 Minor code alterations

Sometimes the mixing length of a convective zone is larger than the zone itself. I found

that it is standard treatment in MESA since revision 3713 onwards to limit the mixing

length to the size of the zone, a procedure named ‘clipping’. The inclusion or exclusion

of this treatment leads to similar nucleosynthesis results as it only affects very small

convective regions (see Battino et al. 2016). However, as ‘clipping’ is a numerical fix

to a problem created by implementing the poorly understood physical process that is

convection, it is not used in this work.

I also altered the implementation of the CBM to ensure the double exponential CBM

only becomes active during the TPs and TDUs. Finally, I made a modification related to

the implementation of opacities in MESA. As in Pignatari et al. (2016) and Battino et al.

(2016). I only use the OPAL Type 2 opacities throughout the evolution. To do this in

revision 8845, I needed to adjust the MESA source code to cancel the blending of the

two types of OPAL opacity tables as this blending created an opacity jump in the region

of interest.

3.2 Resolution settings

In this Section I present all resolution settings used in my MESA calculations. The same

settings are used for non-rotating and rotating models. Most settings are either the same

as in Pignatari et al. (2016); Battino et al. (2016), or stricter.

Two files in MESA working directories allow the user to change the settings for all

parameters either before the calculation starts, or during the calculation. The first is
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called inlist, the second run_star_extra.f (located in the src-folder in the working

directory). I use both files, which allows me to calculate the main sequence to the end

of the AGB phase without human intervention. My inlist only contains the settings

needed to start the model, like initial mass, metallicity, general output settings, and the

settings needed for the main sequence calculation. Settings for later phases, like CBM

settings for the AGB phase, are included in the run_star_extra.f file. The change in

mass loss during the AGB phase is also done via the run_star_extra.f file, as well as

minor changes in resolution settings. Examples of both files can be found Appendix B.

The general resolution setting in MESA is called varcontrol_target, which is the

target value for relative variation in the structure of the star from one models to the

next. The variables included in varcontrol are density, temperature, radius, luminosity,

energy, velocity, and gas pressure. This target is set to 5×10−5 in my inlist, while the

MESA default is 10−4. This default time step adjustment is based on the comparison of

the actual variation and this value. If the actual variation is smaller than the target, the

time step will increase. Thus the higher this target value, the bigger the average time

step and the shorter the running time will be. However, many other settings for the time

resolution exist which will influence the time step, which will be discussed below.

Several extra settings for the time resolution are limits on the magnitude of change in

log10 central density, effective temperature, central temperature, and luminosity:

delta_lgRho_cntr_limit = 0.05

delta_lgRho_cntr_hard_limit = 0.1

delta_lgT_cntr_limit = 0.01

delta_lgT_cntr_hard_limit = 0.02

delta_lgTeff_limit = 0.01

delta_lgTeff_hard_limit = 0.02

delta_lgL_limit = 0.1
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delta_lgL_hard_limit = 0.2

when the ‘limit’ is reached the next time step will be reduced, while when the ‘hard limit’

is reached the current time step will be recalculated with a smaller time step. These four

‘limit’ values are the default values, the four ‘hard limit’ values are set to be twice the

correspoding ‘limit’. No default exists for these ‘hard limits’. Extra luminosity limits are

activated to increase the time resolution during PDCZ:

delta_lgL_He_limit = 0.01

lgL_He_drop_factor = 0.5

lgL_He_burn_min = 2.0

The first line is another limit on the magnitude of the change in He burning luminosity,

the second line is the factor by which the limit is multiplied when the He burning

luminosity is reducing, and the third line limits the activation of the limits He burning

luminosity to values higher than log10LHe=2. The last condition thus ensures the other

two limits are only active during the PDCZ. Default values for these three settings

are 0.025, 1, and 2.5. Limits to changes in abundances are also included for the time

resolution:

dH_limit_min_H = 1.e-2

dH_limit = 0.1

dH_div_H_limit_min_H = 1d-5

dH_div_H_limit = 0.5

dHe_limit_min_He = 1.e-2

dHe_limit = 0.1

dHe_div_He_limit_min_He = 1d-5

dHe_div_He_limit = 0.5
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The second line means that when the change in H abundance is larger 0.1, the next

time step is reduced. The first line gives a limit on when this limit on the change of H

is activated: only when the H abundance is larger than 0.01. The lines 3-4 repeat this

procedure for the relative change of the H abundance, again this limit is only activated

when the H abundance is larger than 10−5. The lines 5-8 repeat these limits for the

absolute and relative change of the He abundance. The default settings for these limits

are 1099 for the absolute change of both elements. The default values for limits on the

relative change of both elements are respectively 10−3 and 0.9, so all eight limits are set

to stricter values in my calculations than the defaults. All eight limits are only activated

when the abundance decreases.

Resolution settings for the spatial/mass zoning have also been included to allow for extra

mesh points at regions of interest, for instance the 13C-pocket. The resolution settings

are:

xa_function_species(1) = ’h1’

xa_function_weight(1) = 10

xa_function_param(1) = 1d-9

xa_function_species(2) = ’he4’

xa_function_weight(2) = 10

xa_function_param(2) = 1d-4

xa_function_species(3) = ’c13’

xa_function_weight(3) = 25

xa_function_param(3) = 3d-10

xa_function_species(4) = ’n14’

xa_function_weight(4) = 25

xa_function_param(4) = 5d-9
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omega_function_weight = 50

These different settings are included in the following equation:

xa_function = xa_function_weight*log10(xa + xa_function_param)

where the ‘weight’ and ‘param’ are set for the four elements defined in the ‘species’ line,

and ‘xa’ is the abundance of the element in the mesh point for which the function is

calculated. Default settings only exist for 4He, and are 30 for weight and 10−2 for the

param, which are the threshold settings for a split of a mesh point into two mesh point.

Using these stricter mesh resolution settings allows for extra mesh points in the intershell

during AGB phase, as shown in Table 3.4.

Another reason why these settings are much stricter than the defaults is that there are

barely any resolution settings dedicated to rotation. The only one is the above included

omega_function_weight, which allows for extra mesh points in regions of high Ω values

and not gradients. The regions with Ω gradients are however more important for the

resolution, as this is where most rotationally induced instabilities are active. These

instabilities lead to changes in abundances though, as these instabilities are calculated on

the interface between two mesh points, with gradients and derivatives being calculated

for the change in a variable from one zone to the next. Changes in abundance are dealt

with in the mesh resolution settings.

As can be expected, there are more mesh points in the rotating models than in the

non-rotating ones as shown in Tables 3.3 and 3.4. Table 3.3 list the total number of

time steps per evolutionary phase, the duration of the phase in years, and then the ratio

showing the typical length of the time steps in each phase. The same information is

given about the total number of mass zones and the typical mass per mass zone in each

phase. These values are given for both the non-rotating 2-M� model and a rotating 2-M�
model, the latter includes an additional, artificial viscosity to enforce core rotation rates

comparable to the asteroseismically obtained values. The main differences between these

two models can be found in the number of mass zones, especially in the TP-AGB phase,
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confirming that the changes in abundances due to rotationally induced mixing and the

changes in Ω are included in the above presented mesh resolution settings.

Table 3.4 shows the same quantities as in Table 3.3, but for three important AGB phases:

the pulse driven convective zone, the third dredge-up, and the 13C-pocket. Again the

rotating model has more mesh points, but only in the 13C-pocket. The convective regions

are not affected by the rotationally induced mixing, as convection works on the dynamical

time scale and dominant rotationally induced instabilities work on the secular one.

It is not common in the stellar evolution community to publish detailed resolution

settings and detailed information on the time steps and mass zones used. Three papers

do mention those details for non-rotating studies, either for the AGB phase (Straniero

et al. 1997; Pols & Tout 2001), or for the general evolution (Fields et al. 2016, a study

performed with MESA as well). The number of time steps and mass zones as presented

in Table 3.4 are larger than the values presented by Straniero et al. (1997); Pols & Tout

(2001), and the typical length per time step and the typical mass per mass zone are

smaller than in both two papers. The focus of Fields et al. (2016) is on the effect of the

experimental uncertainties in H and He burning reaction rates, and the number of mass

zones in their models is therefore larger than mine during the main sequence. Similar

values for the number of time steps and mass zones are obtained in the AGB phase.

The only study I found on resolution settings in rotating models is Lau, Izzard &

Schneider (2014), who study the effect of resolution on the surface enrichment of 14N in

massive stars during the main sequence. The authors of this paper find that the nitrogen

enrichment in their models is similar when using between 100 and 10000 time steps for

the main sequence, when using a fixed mass per zone of 0.05 M�. My models have around

400 time steps during the main sequence, with a typical mass per zone of 0.002 M�.

In the following result chapters I present abundance profiles and time evolution plots

that show well resolved features.
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Table 3.3: Table with the typical numbers of time steps and mass zones of the MESA
calculations, showing a non-rotating and rotating model (‘250 6’) from Chapter 5.
The non-rotating model experiences one extra TP in its TP-AGB phase than the
rotating model, hence the difference in number of time steps for the TP-AGB phase.
Concerning the ‘final’ white dwarf points: the default MESA stopping criterion
for WD tracks is used. This criterion is based on the equations of state currently
implemented in MESA. This stopping criterion is reached at log10L/L� '-5.25 and
log10Teff/K'3.41.

Phase Time steps Duration(yr) yr/step Mesh zones M�/zone
Non rotating

MS 428 9.2×108 2.1×106 1000 2.0×10−3

H shell burning 1537 4.3×107 2.8×104 2200 1.3×10−3

Core He burning 1250 2.9×108 2.3×105 2300 1.6×10−3

E-AGB 1881 2.0×107 1.1×104 3200 2.7×10−4

TP-AGB 103867 3.5×106 33 up to 5500 2.7×10−4

Post AGB - PN 5354 3.7×104 6.9 4500 1.3×10−4

WD 1027 1.4×1010 1.4×107 down to 1600 3.9×10−4

Rotating
MS 393 9.6×108 2.4×106 1200 1.7×10−3

H shell burning 1652 4.5×107 2.7×104 2200 9.1×10−4

Core He burning 1311 2.9×108 2.2×105 2300 8.6×10−4

E-AGB 1472 1.8×107 1.2×104 3200 1.6×10−3

TP-AGB 96016 3.5×106 36 up to 8000 1.9×10−4

Post AGB - PN 17545 2.0×104 1.1 6500 9.5×10−5

WD 1020 1.4×1010 1.3×107 down to 1700 3.6×10−4

Table 3.4: Table with the typical numbers of time steps and mass zones of the AGB phase in
the MESA calculations, showing a non-rotating and rotating model (‘250 6’) from
Chapter 5.

Phase Time steps Duration (yr) yr/step Mesh zones Mass (M�) M�/zone
Non rotating

PDCZ 650 40 0.06 4200 0.025 6.0×10−6

TDU 400 200 0.5 2900 0.0035 1.2×10−6

13C-pocket 2000 5.0×105 250 5300 1.0×10−4 1.9×10−8

Rotating
PDCZ 650 40 0.06 4200 0.025 6.0×10−6

TDU 350 200 0.5 3100 0.0035 1.1×10−6

13C-pocket 2000 5.0×105 250 7600 1.0×10−4 1.3×10−8
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3.3 Rotation settings

Most calculations presented in the result chapters include rotation, for which a large

number of extra input parameter have to be included. Here I present all these parameters,

as well as the effect of the inclusion of rotation on various physical processes already

discussed in Section 3.1. This section ends with the code modification made to enhance

transport of the angular momentum, which is needed to match the core rotation rates

derived from asteroseismic observations, as discussed in Section 1.3.

3.3.1 Input parameters

There are two free parameters in the implementation of rotation in MESA: the first is fc
(am_D_mix_factor ) in Eq. 2.70, which allows the user to vary the contribution of the

rotationally induces instabilities to the mixing of chemical elements (first introduced

by Pinsonneault et al. 1989). The second is fµ (am_gradmu_factor), which is added

in front of the molecular weight gradient ∇µ that appears in the derivation of the SH

instability, secular shear, and ES circulation see Section 2.4. The parameter fµ determines

the dependence of the individual instability on the molecular weight gradient. Both f

parameters are introduced to compensate for various simplifications in the derivation of

the instabilities, and are limited to values between 0 and 1.

The values of fc and fµ are set to 1/30 and 0.05 respectively in Heger, Langer & Woosley

(2000). The value of the first f parameter is based on theoretical work by Chaboyer &

Zahn (1992), who found a value of 1/30 for the combination of shear and meridional

circulation. The value of the second f parameter is calibrated by Heger, Langer &

Woosley (2000) to match the surface enrichment of nitrogen in massive stars at the

end of the main sequence. Other values have been used for both parameters and are

summarized in Table 3.5. For instance, Pinsonneault et al. (1989) calibrated fc and fµ
to the Sun. They found that the fµ value has little effect on their solar model, and is

therefore set to the ‘standard’ value of 1. Their fc value is set to 0.046, similar to the
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value of Chaboyer & Zahn (1992), to match the lithium depletion in the Sun. Based on

VLT Flames data on rotational velocities and nitrogen surface abundances from Hunter

et al. (2009), Brott et al. (2011) found that a value of fc=0.0228 best fits the data. This

is only half the value of Pinsonneault et al. (1989). Brott et al. (2011) set the fµ value to

0.1, following the calibration of Yoon & Langer (2005) of their models including the

TS-dynamo to He surface abundances at the end of the main-sequence. Finally I mention

that also Chieffi & Limongi (2013) calibrated these f parameters, and set the fc value to

1 (referred to as ‘conservative approach’), and fitted fµ to match the nitrogen surface

enrichment at the end of the main-sequence. What makes the calibration complicated, is

that the two parameters are dependent on each other and convective boundary mixing.

The dependence on these two f parameters of the s-process production in low-mass AGB

stars has been investigated by Siess, Goriely & Langer (2004) and Piersanti, Cristallo &

Straniero (2013). Siess, Goriely & Langer (2004) varied fµ between 0−0.05 and found that

fµ=0 leads to no s-process production even for very slow rotators, while slow rotators

with fµ=0.05 results in s-process production. Piersanti, Cristallo & Straniero (2013)

found that varying fµ between 0.05−1 and fc between 0.04−1 results in variation in

s-process production similar to the spread of s-process production obtained by changing

the initial rotation rate between 10 and 120 km s−1.

In this thesis I used the same values as Heger, Langer & Woosley (2000). The main

reason for this choice is that it is now know from asteroseismology observations that a

process of angular momentum transport is missing from the implementation of rotation

in stellar evolutionary codes. This knowledge currently eliminates the possibility of

a meaningful calibration. Furthermore, the calibrations of these parameters in codes

comparable to MESA, being Heger, Langer & Woosley (2000) and Brott et al. (2011),

give similar values (see Table 3.5) so possibly the range of values to be used for the f

parameters is small. The values from Pinsonneault et al. (1989) and Chieffi & Limongi

(2013) are different, but less reliable as the models presented in Pinsonneault et al. (1989)

show little effect to changes in fµ, and the models presented in the result section in

Chieffi & Limongi (2013) are calculated with another implementation of rotation that

does not include f parameters.
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Table 3.5: Calibration of f parameters in stellar evolution codes.

fc fµ reference
0.046 1 Pinsonneault et al. (1989)
1/30 0.05 Heger, Langer & Woosley (2000)
0.0228 0.1 Brott et al. (2011)
1 0.03 Chieffi & Limongi (2013)

Instead of varying the f parameters, the strategy in this thesis is to use observations to

constrain the missing process of angular momentum transport.

For each of the rotationally induced instabilities there are several input parameters

available in MESA. These include a factor to multiply the strength with (D_ES_factor

etc., 0 means the instability is not used, 1 is the standard value), and the possibility

to smooth the diffusion coefficient over time and mass zones. None of the smoothing

methods are used in my models, with the only exception being in the models including the

TS-dynamo in Section 4.3. The possible effects and the disadvantages of the smoothing

methods are discussed in Section 5.A.3.

The models presented in the result chapters include different sets of rotationally induced

instabilities, to test the effect of the current implementation of the instabilities on both

the transport of angular momentum and the mixing of chemical elements. A typical

inlist can be found in Appendix B.

3.3.2 Code alterations for the enhanced transport of angular
momentum

As introduced in Chapter 1, asteroseismic observations have shown that an efficient

mechanism for the transport of angular momentum is missing from the current stellar

evolution theory. While the missing mechanism is now a well known, code-independent

conclusion, the physical nature of this mechanism is still unknown. The impact of the

Tayler-Spruit dynamo on the internal rotation was investigated by Cantiello et al. (2014),
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who found that this mechanism does not provide sufficient coupling between the core

and the envelope in the post main-sequence evolution to reproduce the low values of

core rotation for red giants. A preliminary study of the effect of internal gravity waves

by Fuller et al. (2014) has reached the same conclusion. Mixed oscillation modes were

investigated by Belkacem et al. (2015), who found that this transport mechanism seem

to play only a negligible role during the subgiant and early red-giant phase, but it could

be important later on for more evolved red giants. In the following subsections, a set of

code modifications to investigate this missing mechanism are introduced.

To reveal the physical nature of the missing process of transport of angular momentum, I

start by characterizing its efficiency by including an additional, artifcial viscosity νadd (as

introduced in Section 1.3). The implementation of this νadd is straightforward, as it is a

constant value, which is added to the total diffusion coefficient used in the transport of

angular momentum equation:(
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and:

Dam =
∑

Drot,i + νadd (3.7)

where Drot,i is the sum over all rotationally induced instabilities.

Spada et al. (2016) tested the dependency on the angular momentum transport efficiency

on internal rotation and published results using a two-zone model. Their approach was

to explore a simple power law dependence of the internal rotation by setting the angular

momentum diffusion coefficient to:

D = D0

(
Ωcore

Ωenv

)α
(3.8)

Where D0 and α are parameters to be determined. Note that the implementation results

in a diffusion coefficient that is dependent on time via the ratio of Ω’s, but independent

of spatial coordinate. Their values scale with and are sensitive to the internal rotational

profile. In Spada et al. (2016), solid body rotation is enforced until the TAMS, or until

1Gyr after the TAMS. The latter settings are needed for them to match asteroseismically
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obtained core rotation rates of both subgiants and giants.

The extra viscosity νadd and the approach by Spada et al. (2016) are only included in

the transport of angular momentum and not in the equation for mixing of chemical

elements. The reason for this is that there is ample observational evidence that a strong

process of transport of angular momentum is missing, while there is no observational

evidence that mixing of chemical elements needs to be strongly increased in low- and

intermediate-mass stars. I did investigate the inclusion of νadd in the mixing of chemical

elements, the results are presented in Section 6.2.

3.3.3 Rotation and mass loss

The angular momentum removed via winds corresponds to the angular momentum

contained by the removed mass. Rotationally enhanced mass loss is generally not included

in low-mass evolutionary models, as there is only observational proof of rotationally

enhanced mass loss in massive stars (i.e, see Gathier, Lamers & Snow 1981; Vardya 1985;

Nieuwenhuijzen & de Jager 1988). Choi et al. (2016) therefore only uses the rotationally

enhanced mass loss for stars with an initial mass above 10 M�, Ekström et al. (2012)

however includes it for all their rotating models.

I performed a test to investigate how sensitive the core rotation rate is to this loss in

angular momentum due to the mass loss caused by winds. The test is as follows: I ran

three rotating models (initial mass of 2 M�, metallicity of Z=0.01, initial rotation rate of

125 km/s) with as only difference the mass loss. In model 1 I set this to my standard

settings: Reimers mass loss efficiency of 0.5, no rotationally enhanced mass loss. In model

2 the only change from model 1 is that I set the Reimers mass loss efficiency to 1.0,

which results in a doubled mass loss rate, see eq. 3.1. Model 3 includes the rotationally

enhanced mass loss factor as in Langer (1998):

Ṁ(Ω) = Ṁ(0)

(
1

1− Ω/Ωcrit

)ξ
M�/[yr

−1] (3.9)

with: Ω2
crit =

(
1− L

LEdd

)
GM

R3
(3.10)
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Table 3.6: Table of the model characteristics of the three models included in the mass-loss
parameter study. Listed are the total mass of the star, core rotation rate, and
surface angular momentum at the moment of the first thermal pulse. Relative
differences to the standard model are given between brackets.

M∗,TP1 Ωcore jsurface

(M�) (s−1) ()cm2 s−1)
Model 1 standard 1.98 5.87E-02 3.91E17
Model 2 higher η 1.95 (-1.5%) 5.69E-02 (-3.0%) 3.70E17 (-5.5%)
Model 3 rot.enhanced 1.98 (0%) 6.08E-02 (+3.6%) 3.94E17 (0.77%)

where Ṁ(0) is the non-rotating mass-loss rate, ξ is assumed to be 0.43, Ωcrit is the critical

angular velocity at the surface and the Eddington luminosity LEdd is a mass-weighted

averaged luminosity.

The results of tests are shown in Table 3.6. For all three models, the total mass, the

core rotation rate, and the specific angular momentum at the surface are shown at the

moment of the first TP. All parameters in Model 2−3 are within 6 % of the Model

1 parameters. This means that the changes in the mass loss routine do not influence

the core angular momentum, which justifies using the Model 1 parameters. The reason

for this is that the mass loss during the pre-AGB evolution is small, and the surface

rotation rate throughout the evolution of low-mass stars is a small fraction of the critical

velocity. Therefore the rotationally enhanced mass loss is negligible. During the AGB

phase the mass loss is significant and will result in removing the whole envelope. During

this evolutionary phase however, the molecular weight and angular velocity gradients

built up at the edge of the core are strong enough to eliminate diffusion over this edge.

Extra coupling between core and envelope is needed to overcome these gradients and

allow for angular momentum to be transported from the inner to the outer regions of the

star, in order to match the asteroseismically obtained rotation rates (see Chapter 4).
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3.4 Post-processing code MPPNP

Calculating a stellar evolution model with MESA, or with any stellar evolution code, with

a full s-process nuclear reaction network is costly due to the large number of isotopes and

reactions that have to be included. The memory needed for calculations within stellar

evolution codes is proportional to the amount of isotopes and mesh points included in the

model. As memory is finite, this means that one can either include a large network or a

large number of mesh points. This is one of the reasons why stellar evolution calculations

and detailed nucleosynthesis are often decoupled and performed separately. The only

requirement for this is that the network included in the stellar evolution calculations is

able to calculate the energy generation at any point in the star in sufficient detail. This is

done as well for the models presented in this thesis. In Section 3.1.1 I describe the network

included in my MESA calculations, which indeed includes all energy generating reactions

and isotopes. I have performed the detailed s-process nucleosynthesis calculations with

MPPNP, which is described next. Following this are presented a composition comparison

between MESA and MPPNP.

3.4.1 Nuclear reaction network in MPPNP

Using the MESA output files, the detailed nucleosynthesis can be calculated with MPPNP

(Multi-zone, Post-Processing Nucleosynthesis Parallel), described in Pignatari et al. (2016).

This code is able to calculate the nucleosynthesis over the whole star (=multi-zone),

and is parallelised with MPI (see https://www.mpi-forum.org/docs/). I use the same

reaction network as in Pignatari et al. (2016), and other NuGrid papers like Battino et al.

(2016) and Ritter et al. (2018). This network includes about 103 isotopes between H and

Bi, and about 50000 nuclear reactions. The network is dynamic, isotopes are added to

and removed from the network depending on stellar conditions. By allowing for these

changes to the network, the calculation can be made more efficient as nuclear reactions

that do not lead to a change in abundance are not calculated (see Bennett et al. 2012;

Pignatari et al. 2016, for details).
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The reaction rates are taken from different data sets: the NACRE compilation (Angulo

et al. 1999) is used for the charged particle reactions from H to Z<14 (28Si(p,γ)29P is the

final reaction included in this dataset), Iliadis et al. (2001) is used for the proton-induced

reaction for A=20-40 (starting with 20Ne(p, γ)21Na and ending with 40Ca(p, γ)41Sc),

updating some of the reactions in Angulo et al. (1999). When more recent updates are

available, then these are included: Fynbo et al. (2005) for triple-α, Kunz et al. (2002)

for 12C(α, γ)16O, and Imbriani et al. (2004) for 14N(p,γ)15O. These settings correspond

to the MESA network settings. Concerning the important neutron sources, Heil et al.

(2014) is used for 13C(α,n)16O and Jaeger et al. (2001) for 22Ne(α,n)25Mg.

Neutron capture reaction rates are taken from the Kadonis compilation (Dillmann

et al. 2014). Some exceptions are the neutron-capture cross sections for the Zr isotopes,

for which the recommended rates of Lugaro et al. (2014) are used. The β-decay and

electron-capture rates are taken from Fuller, Fowler & Newman (1985), Oda et al. (1994),

Langanke & Martínez-Pinedo (2000), and Aikawa et al. (2005), completed with the JINA

reaclib library Cyburt et al. (2010).

For every stellar evolution time step, the temperature, the density, and the total diffusion

coefficient are used to calculate the abundances of a 103-isotope nuclear reaction network.

This is followed by a time implicit diffusion solver, meaning that the solver uses information

of both the current and the next time step to calculate the composition of the next time

step. This is computationally expensive, but numerically more stable than using only the

current time step in the calculation (as in explicit solvers). The reaction flux of each

isotope at current state is used to adapt the problem size every time step and in every

computational grid cell. The combination of multi-zone calculations and the inclusion of

the diffusion coefficient in the calculations, means that MPPMP can be used for rotating

models as well.

3.4.2 Comparison MPPNP-MESA

When using two separate codes for stellar evolution and detailed nucleosynthesis instead

of one, the accuracy of the chain of codes has to be checked. In Fig. 3.1 I compare the
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abundances of four main isotopes calculated by MESA and MPPNP. The profiles of

MESA are drawn in colour, with the MPPNP profiles in a dashed black line. In the top

panel, the region from the core up to the start of the convective envelope is shown for a

non-rotating 2.5-M� model at the start of the AGB phase. In the bottom panel, the

profiles are shown at the end of the AGB phase, zoomed into the 13C-pocket region.

The main isotopes within the intershell are shown, and the abundance profiles mostly

overlap. Differences come from the fact that in MESA the mixing and nucleosynthesis

are calculated at the same time, while in MPPNP these calculations are performed

separately.

To quantity this comparison I performed a χ2-test (Pearson 1900), which is a statistical

hypothesis test for observed and predicted distributions. The purpose of the test is to

find out how likely the observed distribution is, assuming the null hypothesis is true.

This is done by calculating the χ2-value:

χ2 =
nz∑
i=1

(xi,MPPNP − xi,MESA)2

xi,MESA

(3.11)

with i being the number of zones, and nz the total number of zones. This χ2 value is

then transformed in a probability. The χ2 values are shown in Table 3.7 for all four mass

fractions at the start and end of the AGB phase. The whole mass range shown in Fig.

3.1 is included in the analysis, but mass fractions below 10−6 are excluded. The null

hypothesis is defined as that the two distribution are the same. A value for χ2 close to

zero means the probability of the null hypothesis to be rejected is small. The exact value

for these probabilities per χ2 values is given in Table 3.7 between brackets. The 1H mass

fractions of both codes at the start of the TP-AGB phase are identical, and no χ2 values

is given.

Commonly chosen values for the significance level of the probabilities are 0.05 and

0.1, which means that there is a 5% or 10% (respectively) chance of concluding that a

difference exists, while the distributions are the same. All eight probabilities presented in

Table 3.7 are above both values, and thus the null hypothesis is statistically significant.

Unfortunately, χ2 values of other post-processing codes are not published, so I cannot

provide a comparison of my values.
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Figure 3.1: Comparison between chemical composition of MESA and MPPNP. Top panel
shows the abundances of the main isotopes at the start of the AGB phase. The
bottom panel the same isotopes at the end of the AGB phase, zoomed into the
13C-pocket region. Mass fractions of MPPNP is shown in black lines plotted
over the MESA abundance profiles which are drawn in colour. The χ2 values for
these eight comparisons are shown in Table 3.7. The profiles are taken from the
non-rotating model presented in Chapter 5.
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Table 3.7: Table with the χ2 values of the comparison between MESA and MPPNP. The value
between the brackets is the probability corresponding to the χ2-value. The null
hypothesis is that the mass fraction profiles from both codes are the same at the
start and and of the TP-AGB, corresponding to a probability of 1.

isotope χ2 (p) start TP-AGB χ2 (p) end TP-AGB
1H - 0.0455 (0.83)
4He 0.0826 (0.77) 0.854 (0.36)
12C 0.178 (0.67) 1.42 (0.23)
16O 0.00525 (0.94) 1.78 (0.18)

3.5 Computational cost and architectures

In this Section I will explain details of the running times of the different codes used and

which machines were used for the calculations. Both codes are parallelised (MESA with

OpenMP and MPPNP with MPI), so I will also discuss how many cores I used for each

calculation.

How well the codes scale, meaning the extra speed-up in computational time when extra

cores are made available, is important to check when deciding on the number of cores

used for each calculation. To examine the speed-up S(p) I use Amdahl’s law (Amdahl

1967):

S(p) =
ts
tp

=
1

1− f + f/p
(3.12)

which gives the maximum speed-up S(p) for a fixed amount of work. In this equation, ts
and tp are the time the calculation takes on one and on several (p) processors, respectively.

p is the number of cores involved in the calculation, and f the fraction of the calculation

that benefits from parallelisation. I performed a test to find out what MESA’s f -fraction

is and up to how well MESA scales with the maximum speed-up calculated by Amdahl’s

law with the given f fraction. I used the non-rotating model of Chapter 5 for this test,

and I varied the number of cores included from 1 to 24. The results are shown in Fig.

3.2, the top panel. This figure shows the MESA scaling for a typical set-up as used in

Chapter 5, up to the end of the AGB phase. The comparison to the speed-ups calculated
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via Amdahl’s law and with different f values shows that about 70% of the MESA code

benefits from parallelisation. When the serial fraction is known, theoretical speed-up is

limited to:

Maximum speed up =
1

1− f (3.13)

a relation found when taking the limit of Amdahl’s law for an unlimited number of

processors. For MESA, f=0.7, and thus the maximum speed-up is 3. When using 16

cores, this value is almost reached. However, when including four cores, the speed-up is

already above 2. Therefore, I typically use eight cores, compromising between speed-up

and efficiency.

The scaling of MPPNP is shown in the bottom panel of Fig. 3.2, for a typical set-up as

used in Chapter 5, for calculations up to the end of the AGB phase. As comparison

Amdahl’s scaling for different f values are again included, which show that about 99% of

MPPNP benefits from parallelisation. This f values means the total speed-up of MPPNP

is 100. The small maximum speed-up of MESA compared to MPPNP is the second

main reason why I use MPPNP for the detailed stellar evolution calculations (similar

results on scaling factors for stellar evolution and nucleosynthesis codes are presented

here: Martin, José & Longland 2018). The number of cores I can use for my MPPNP

calculations are currently limited to 450 cores (computer cluster restrictions). I typically

used around 400 cores for each run. A full AGB post-processing run lasts about 48 hours

on Viper, which is the computer cluster of 5500 cores at the University of Hull2. An

average total cpu core hours per run is thus 20 000.

2http://hpc.wordpress.hull.ac.uk/what-is-viper/
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Figure 3.2: Speed up figures of MESA and MPPNP (top and bottom panel respectively),
compared with different tracks of the Amdahl’s law, using several parallelised
fractions. The horizontal axis shows the amount of core included in the calculation,
and the vertical axis the speed-up factor.
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3.6 Overview of results chapters

Here I give an overview of the following third result chapters. All MESA and MPPNP

calculations presented in these chapters are performed by me.

3.6.1 First result chapter

First-author publication in A&A, 2019, 622

The transport of angular momentum has been a challenging topic within the stellar

evolution community, even more so since the recent asteroseismic surveys. All published

studies on rotation using asteroseismic observations show a discrepancy between the

observed and calculated rotation rates, indicating there is an undetermined process of

angular momentum transport active in these stars.

In this chapter I am particularly interested in being able to reproduce with 2.5-M�
stellar evolution models the asteroseismically observed rotation rates of the seven core He

burning stars in Deheuvels et al. (2015). This observational set was chosen since these

seven stars have both the core and surface rotation rates determined, a combination that

is rare. I also use the known white dwarf rotation rates, as a second observational set.

I investigate the effects on the core rotation rates by including the TS-dynamo and the

artificial, additional viscosity. I present the set of parameters that allowed me to enforce

the core rotation rates of my models to match the above mentioned observed rotation

rates.

3.6.2 Second result chapter

First-author publication in A&A,2019, 629

In this chapter I extend the results of the first result chapter by investigating the s-process

nucleosynthesis in both non-rotating and rotating models. The aim of this chapter is

to find out if rotation, when the core rotation rates match asteroseismically obtained

values, is able to influence the s-process production in low-mass AGB stars. A set of
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2-M� MESA and MPPNP calculations are presented.

In this chapter I try to enforce the core rotation rates of my models to match the general

trends in the observed values, which now include all core rotation rates of stars with a

mass between 1.4 and 3 M� derived from Kepler observations. I enforce models to match

these values as an upper limit using the results of the first paper. I also use those results

to enforce the models to match the observed white dwarf rotation rates.

The aim of these models is to obtain an estimate of the s-process production in rotating

AGB stars, that rotate at rates matching the asteroseismically obtained values. I also

include a model that rotates an order of magnitude faster than the observational values,

which can be seen as a conservative limit on the s-process production.

I end the chapter with a discussion on all uncertainties of the models, both the increased

transport of angular momentum and the implementation of rotation in general.

3.6.3 Exploratory studies chapter

In this chapter I present exploratory studies that did not make it into either of my papers.

The following research questions are considered:

• Only one surface rotation rate of an AGB star (R Doradus) has been determined,

but stellar evolution models for single stars have been unable to match this value.

Can the surface rotation rates of my stellar evolution models that include an

additional, artificial visocsity match the surface rotation rate of R Doradus?

• What is the effect of including this additional, artificial viscosity in the mixing

of chemical elements?

• What happens to the efficiency of the transport of angular momentum in the

TS-dynamo, when the dependency on the molecular weight profile is removed?

• A new derivation for the TS-dynamo has been presented in Fuller, Piro & Jermyn

(2019). Does this process indeed transport enough angular momentum out of the

stellar core? The results of this study has been included in A&A, 2019, 631 (I
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am second author).
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4 Constraining transport of angular momen-
tum in stars: combining asteroseismic ob-
servations of core helium burning stars and
white dwarfs

J. W. den Hartogh, P. Eggenberger, and R. Hirschi

These results are published in Astronomy & Astrophysics, Volume 622, id.A187.

4.1 Overview

Context: Transport of angular momentum has been a challenging topic within the stellar

evolution community, even more since the recent asteroseismic surveys. All published

studies on rotation using asteroseismic observations show a discrepancy between the

observed and calculated rotation rates, indicating there is an undetermined process of

angular momentum transport active in these stars.

Aims: We aim to constrain the efficiency of this process by investigating rotation rates of

2.5-M� stars.

Methods: First, we investigated whether the Tayler-Spruit dynamo could be responsible

for the extra transport of angular momentum for stars with an initial mass of 2.5 M�.

Then, by computing rotating models including a constant additional artificial viscosity,

we determined the efficiency of the missing process of angular momentum transport by

comparing the models to the asteroseismic observations of core helium burning stars.

Parameter studies were performed to investigate the effect of the stellar evolution code

used, initial mass, and evolutionary stage. We evolved our models into the white dwarf

phase, and provide a comparison to white dwarf rotation rates.

Results: The Tayler-Spruit dynamo is unable to provide enough transport of angular

momentum to reach the observed values of the core helium burning stars investigated

in this chapter. We find that a value for the additional artificial viscosity νadd around
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107 cm2 s−1 provides enough transport of angular momentum. However, the rotational

period of these models is too high in the white dwarf phase to match the white dwarf

observations. From this comparison we infer that the efficiency of the missing process

must decrease during the core helium burning phase. When excluding the νadd during

core helium burning phase, we can match the rotational periods of both the core helium

burning stars and white dwarfs.

4.2 The seven KIC stars

In Table 4.1 we summarise the important parameters of the seven KIC stars used as

comparison sample, which are taken from Deheuvels et al. (2015). We include the core

and surface rotation rates, the ratio between them, and the surface gravity (log g), all

with their error margins. The metallicities of the seven stars are around solar, according

to the APOGEE Data Release 14 (Abolfathi et al. 2018), which includes all seven stars.

We used a metallicity of Z = 0.014 and the metal abundance mixture of Grevesse &

Noels (1993), and therefore focus on matching the global trends of the seven stars as a

group instead of trying to find best-fit models for each star individually. This allows us

to constrain the missing process of angular momentum for core helium burning stars.

The initial mass of our models is chosen to be 2.5 M� because this is very close to the

mean observed mass of the seven KICs. In Appendix 4.B we will see that the influence of

the stellar evolution code used on the rotational properties is negligible.

Other observations of rotation rates in evolved stars in the same mass range have been

published in Massarotti et al. (2007), Mosser et al. (2012), Tayar et al. (2015), and

Ceillier et al. (2017) and analysed in Tayar & Pinsonneault (2018). These data sets,

however, only include either the surface or the core rotation rates. To date, the data set

of Deheuvels et al. (2015) is the only data set in the 2 to 3 M� mass range that provides

both rotation rates. This allows us to constrain our models better than when we only

have one of the rates, so we only use the data set of Deheuvels et al. (2015) in this study.
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Table 4.1: Properties of the seven KIC stars from Deheuvels et al. (2015). From left to right
we list the Kepler Input Catalog ID, the obtained mass, surface gravity and rotation
rates of core and envelope. The last column shows the ratio of the rotation rates.

KIC-id M/M� log10(g/cm s−2) Ωc/(2π nHz) Ωs/(2π nHz) Ωc/Ωs

KIC5184199 2.18 ± 0.23 2.907 ± 0.012 200 ± 13 63 ± 20 3.2 ± 1.0
KIC4659821 2.21 ± 0.18 2.935 ± 0.013 165 ± 14 79 ± 15 2.1 ± 0.4
KIC8962923 2.23 ± 0.26 2.832 ± 0.013 138 ± 8 79 ± 10 1.8 ± 0.3
KIC3744681 2.45 ± 0.35 2.712 ± 0.015 194 ± 20 63 ± 36 3.1 ± 1.8
KIC9346602 2.51 ± 0.36 2.675 ± 0.013 164 ± 6 53 ± 15 3.1 ± 0.9
KIC7467630 2.57 ± 0.27 2.776 ± 0.015 121 ± 18 96 ± 28 1.3 ± 0.4
KIC7581399 2.90 ± 0.34 2.843 ± 0.013 164 ± 12 87 ± 14 1.9 ± 0.3

It is important to note that the rotation rates labelled as ‘core’ rotation rates are actually

‘near core’ values, as shown in Fig. 5 of Deheuvels et al. (2015). The comparison of the

calculations to the region where the observations of the core rotation originate from is

explained in Appendix C.

4.3 Can the TS dynamo provide enough coupling to
explain asteroseismic derived rotation properties
of core helium burning stars?

The first goal of this chapter is to investigate whether the TS dynamo provides enough

coupling between core and envelope to match the observations of the core helium burning

stars analysed by Deheuvels et al. (2015). Cantiello et al. (2014) show for stars with an

initial mass of 1.5 M� that during the early RGB, inclusion of the TS dynamo provides

more coupling between core and envelope but not enough to match the RGB rotation

rates provided by Mosser et al. (2012). Thus, they concluded that the RGB phase is the

evolutionary phase where more coupling is needed. However, the evolution of 1.5-M�
and 2.5-M� stars are very different, in particular during the RGB phase. Stars with an

initial mass below about 2 M� undergo helium flashes in the core after they have become



4.3 Can the TS dynamo provide enough coupling to explain asteroseismic
derived rotation properties of core helium burning stars? 106

degenerate, and cores of stars with a higher initial mass ignite core helium burning before

becoming degenerate. As a consequence, the times between the end of core hydrogen and

the start of core helium burning are different; our calculations show a difference of one

order of magnitude. For this reason, testing the conclusions of Cantiello et al. (2014) for

2.5-M� stars is a valuable task, especially when comparing them with observations of

stars that are already past the RGB phase.

Figure 4.1 shows the core (solid line) and envelope (dashed line) rotation rates of our

2.5-M� models as a function of the surface gravity with different initial rotational

velocities: 25, 50, and 150 km s−1. The start of the main sequence (MS) is where the core

and envelope rotation rates are equal (top left) and the end of the core helium burning

phase is where core and surface rotation rates are the furthest apart (middle and bottom

right). The core H and core He burning phases are both shown in thick line widths, while

the RGB phase is shown in thinner line width. Starting with the comparison of the

surface rotation rates (dashed lines), we see that the 50 km s−1 models, with the TS

dynamo (wTS) and without (nTS), reach five of the seven data points, while the 25 km

s−1 model reaches one of the seven and the 150 km s−1 model reaches none. We therefore

set the initial rotation rate of all the models to 50 km s−1. The two other data points

can be reached by reducing the initial mass of the models, see Appendix 4.B.

When focussing on core rotation rates during the core helium burning phase, we see that

all models including the TS dynamo (Ωc '104 nHz) are two orders of magnitude away

from the data points. Including the TS dynamo improves the match to the observations

as the difference between observations and the model without the TS dynamo (Ωc '106−7

nHz) is more than 3 orders of magnitude worse. We thus conclude that also for the 2.5-M�
stars, the TS dynamo does not provide enough coupling between core and envelope to

reduce the core rotation rates enough to match asteroseismic observations of the core

helium burning stars.
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Figure 4.1: Effect of inclusion of the TS dynamo. Rotation rates of the core (solid line) and
envelope (dashed line) of the models with the TS dynamo (wTS) and without
(nTS). The initial rotation rates of the models are included in the legend. Data
points are from Deheuvels et al. (2015).
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4.4 Additional viscosity needed to reproduce observa-
tions of helium burning stars

Now that we have shown that the models with and without the TS dynamo cannot

reproduce the asteroseismic observations of the seven secondary clump stars from

Deheuvels et al. (2015), we continue by determining the strength of the missing process

of angular momentum transport as a first step to revealing its physical nature. To do so,

a constant νadd is added to the transport of angular momentum. We stress, however, that

we do not believe the missing process of angular momentum transport is constant.

4.4.1 Determination of the additional viscosity needed to re-
produce the Deheuvels et al. (2015) data

From Eggenberger et al. (2017) we know that the efficiency of the unknown transport

process for angular momentum increases with stellar mass. Therefore, in this study a

stronger process is expected than employed by Eggenberger, Montalbán & Miglio (2012),

studying a 1.5-M� star, and Eggenberger et al. (2017), studying a 0.84-M� star.

As mentioned before, we did not attempt to fit all stars separately, but we look for global

trends instead. Using Fig. 4.2, we determined the global efficiency of the missing process

of angular momentum in the seven KIC stars. Figure 4.2 shows the ratio of core to

envelope rotation rate, which, as mentioned by Eggenberger et al. (2017), allows us to

determine νadd independently of the initial rotation rate. The best match in Fig. 4.2 is

νadd=107 cm2 s−1, which matches five of the seven data points. The other two models

included reach none (νadd=106 cm2 s−1) or two (νadd=108 cm2 s−1) of the data points.

More importantly, the general trend shown by the data points is best matched by the

model that includes a νadd of 107 cm2 s−1. Again, the two data points with the highest

surface gravities cannot be reached (see Appendix 4.B for how to reach these points).

When comparing the lines in Fig. 4.3 to the lines in Figs. 4.7 and 4.8, we can determine

the start of the core He burning phase in Fig. 4.3. This is at the lowest surface gravity, in

the bottom right corner of the figure. Then, both surface gravity g and the core rotation
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rate Ωc increase in a short amount of time until steady core He burning sets in and a slow

decrease in both surface gravity and the core rotation rate characterises the rest of this

phase. All data points are positioned around the turning point of the trend in surface

gravity. From Fig. 4.8 it follows that these seven stars are thus in the early phases of

core He burning.

In Fig. 4.3 the core and surface rotation rates are shown for the same three models as in

Fig. 4.2. This figure confirms the choice for the initial rotation rate because the data

points for surface rotation are matched. Also in this comparison, the general trend shown

by the data points is best matched by the model with a νadd of 107 cm2 s−1.

4.4.2 Time dependence of the additional viscosity

In Sect. 4.4.1 we showed that the mean efficiency of the missing transport mechanism in

the seven stars of Deheuvels et al. (2015) is around 107 cm2 s−1 when adding the νadd at

the start of the main sequence. In this section we investigate whether this is dependent

on the evolutionary phase during which νadd is added to the calculation. By doing this

we are able to determine whether there is a phase in which the transport of angular

momentum dominates the rest of the evolution. In this section we focus on the evolution

up to the core helium burning phase and in Sect. 4.5.2 we focus on the later phases to

investigate the influence of the inclusion of νadd on the final white dwarf spin.

We calculated models that include the νadd only from the end of the main sequence

and from the start of the core helium burning phase. For the first, we find that adding

the same νadd is sufficient to reach the data points, see Fig. 4.4, and that this model is

comparable to the model in which we included νadd from the start of the main sequence.

Therefore, we conclude that the main sequence is not a dominant phase for angular

momentum transport in our models, but we have no arguments to exclude νadd during

the main sequence either.

The inclusion of νadd only at the start of the core helium burning phase changes the

evolution of the rotation rates, see again Fig. 4.4. Without the νadd earlier in the

calculation, the core rotation rate is higher at the start of the core helium burning phase
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of core to surface rotation rate as a function of surface gravity for three models
calculated with an initial rotational velocity of 50 km s−1, while the νadd is varied.
The data points are from Deheuvels et al. (2015).
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(2015).
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in this model than in the models that do include νadd earlier in the evolution. This is why

the line of this model starts at a different point (top-left corner) in the figure. However,

this difference has disappeared around log10(g/cm s−2)' 2.8. The location of the curve

in this model is dependent on νadd, shown by the model labelled ‘2.5 106 cm2 s−1’, this

number being the νadd added at the start of the core helium burning phase. Thus, when

we add the νadd at the start of the core helium burning phase, we are still able to reach

all data points. However, we then have to use a value in the range of 2.5 106 < νadd cm2

s−1 < 107 . While the data cannot rule out the models that include νadd at the start of

the core helium burning phase, the data does favour earlier inclusion of νadd because no

data points are found with an angular velocity of the core above 200 nHz.

When we suppress the νadd from the start of the core helium burning phase onwards, we

are unable to reach any data points. The reason for this is that the molecular weight

gradient is too strong and without any νadd there is no transport of angular moment over

this gradient. Therefore, we conclude that the crucial phase for the transport of angular

momentum is the start of the core helium burning phase.
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Figure 4.4: Effect of varying the inclusion time of νadd on the core and surface rotation rate.
The models presented here have been calculated with the best fit parameters (50
km s−1, 107 cm2 s−1), apart from the model labelled ‘2.5*106 cm2 s−1’, while
varying the moment of including the νadd. The labels reflect the phase when the
νadd is included. For the 2.5 106 cm2 s−1 model, the moment of inclusion is at the
start of the core helium burning phase.



4.5 White dwarf rotation rates 114

4.5 White dwarf rotation rates

After the core helium burning phase, we continued the models until they reached the

white dwarf phase. In between these two phases, the stars pass through the asymptotic

giant branch phase (AGB). During this phase, the energy production comes from the

hydrogen and helium burning shell, located between the core and envelope. The helium

shell becomes unstable, resulting in thermal pulses (TP-AGB phase). Around 25 to 30

thermal pulses take place in this phase in our models, and between each TP a third

dredge-up (TDU) can occur. During the TP-AGB phase mass loss is enhanced, leading

to removal of the envelope. Via the planetary nebulae phase, the star moves to the white

dwarf track.

4.5.1 Calculation of the AGB phase

We calculated the full AGB phase as we would have done when studying the s-process

nucleosynthesis (see Pignatari et al. 2016; Battino et al. 2016, for details). For instance,

for the mass-loss treatment during the AGB phase we used Blöcker (1995) with an

efficiency of 0.01 at the start of the AGB phase, 0.04 from when the envelope is carbon

rich, and to 0.5 when the convergence issues appear (see below). We also used calibrated

parameters for convective boundary mixing specifically for the AGB phase.

This is an improvement compared to the works of Suijs et al. (2008, no AGB specific

mass loss, manually stopped models somewhere in AGB phase), Tayar & Pinsonneault

(2013, no details given apart from initial mass and rotational velocity), and Cantiello

et al. (2014, unphysical large mass loss efficiencies in the AGB phase which shorten this

phase). By calculating the whole AGB phase, we can investigate the effects of the νadd

on the thermal pulse cycle by investigating both the transport of angular momentum

and the s-process nucleosynthesis, and compare them to the standards models without

νadd. We report that the models with νadd included during the TP-AGB phase are able

to transport angular momentum during the TDUs. This is due to the TDU reducing the

molecular weight gradient and therefore the (local) barrier that has to be overcome to
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transport angular momentum.

It is common for convergence issues to arise during the final TPs in calculations like these

and we report that these issues also occur in all models presented in this chapter. There

are two options for how to proceed, the first being the continuation of the AGB phase

with a higher mass loss rate and the second the ejection of the whole remaining envelope

(see Wood & Faulkner 1986; Herwig, Bloecker & Schoenberner 1999; Sweigart 1999; Lau

et al. 2012). We proceed with the models by increasing the mass loss parameter from 0.04

to 0.5, which allows for a smooth continuation of the models into the white dwarf phase.

4.5.2 Final spins of best fit models

In this section we show the comparison between the calculated rates and the observed

white dwarf rotation rates by Hermes et al. (2017) and the compilation by Kawaler

(2015). Most pulsating white dwarfs (WDs) in these two papers are DAVs, variable

WDs with spectral type DA having only hydrogen absorption lines in their spectra.

These pulsating WDs can be found in a specific temperature regime where their surface

hydrogen has to become partially ionised. This regime for white dwarfs with masses

around 0.6 M� is between 12 600 and 10 600 K, so we show the rotational periods

of our models when passing through that same temperature regime in Fig. 4.5. The

observational points from other pulsating white dwarfs are depicted as black crosses,

while the DAVs are shown as black diamonds. The number of observed white dwarf

periods is still low (36, we removed EPIC 201730811 because it is in a post-common

envelope close binary according to Hermes et al. 2015), so no statistical comparison is

provided. White dwarf spins are also available for magnetic white dwarfs (see Kawaler

2015, for a summary). All of our models are non-magnetic, with only one exception, so

we do not include these data points in our comparison.

All coloured symbols in Fig. 4.5 are WDs from our models. The two blue symbols

correspond to the models introduced in Sect. 4.3, where we tested the impact of the TS

dynamo. These models are the only ones without νadd in Fig. 4.5. As already shown by

Suijs et al. (2008) and Cantiello et al. (2014), the model without the TS dynamo (nTS,
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dark blue circle) is orders of magnitude lower than the observed white dwarf periods.

The model that does include the TS dynamo (wTS, light blue hexagon) reaches the

lower limit of observed white dwarf periods, but as we saw before this model does not

reach the observed periods of core He burning stars.

All models that include νadd in Fig. 4.5, have a spin period that is larger than all observed

white dwarf rotation rates. There are three models with νadd of 106, 107, and 108 cm2 s−1

included during the whole calculation (three triangles), and one model where we excluded

the νadd of 107 cm2 s−1 from the end of the core He burning phase (square). All these

models are introduced in Sect. 4.4.1, except for the last one. From the previous section,

we know that only the models labelled ‘107 cm2 s−1’ and ‘end core He b’ match the core

He burning observations. However, they all transport too much angular momentum in

the later phases of the evolution to match the white dwarf observations. Even the model

that does not include νadd after the core He burning phase is finished does not reach

the observed white dwarfs periods. Therefore, the efficiency of the missing process of

angular momentum is negligible after the end of the core He burning phase according to

our models, and the efficiency of the missing process also has to change during the core

helium burning phase itself.

To investigate this last conclusion in more detail, we calculated models where we include

νadd at the ZAMS and exclude it at different moments during the core helium burning

phase. The whole core helium burning phase lasts for 183 Myr in these models and

νadd has been excluded from times that correspond to 1/4, 2/4, and 3/4 of that time

span. After excluding νadd we continue the calculation into the white dwarf phase. These

three new models have also been included in Fig. 4.5. Again the rotational period within

the DAV temperature range is used1. All three models are located within the range

of observed white dwarf periods, and all three therefore match both the core helium

burning and white dwarf observed rotation rates.

1Apart from model ‘1/4’ because this model undergoes a very late thermal pulse (VLTP) during the
WD phase and is rebrightened before the DAV temperature range is reached. Convergence issues prevent
the model from returning to the WD phase. We therefore calculated the rotational period of this WD
just before the VLTP.
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Figure 4.5: WD periods as a function of WD mass. The data points are from Kawaler (2015)
and Hermes et al. (2017). The black diamonds are the DAVs, the black crosses are
other pulsating white dwarfs. All coloured symbols are our predicted WD periods:
the sphere and hexagon are the models without νadd; the triangles are the models
with different values of νadd; the square is the model that excludes νadd at the end
of core helium burning; and the star, cross, and plus signs are the models that
exclude νadd at different times during the core helium burning phase.
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4.6 Conclusions

In this chapter, we investigated the efficiency of the missing process of angular momentum

by calculating 1D stellar evolution models with an initial mass of 2.5 M�. As observational

tests, we used the observed core and surface rotation rates of core helium burning stars

as published by Deheuvels et al. (2015) and white dwarf rotational periods published by

Kawaler (2015) and Hermes et al. (2017). The main conclusions of this chapter are the

following:

• As for the 1.5-M� of Cantiello et al. (2014), the 2.5-M� models including the TS

dynamo do not provide enough coupling between core and envelope to match

asteroseismic observations of core rotation rates.

• We have added a constant additional viscosity to our model as a first step towards

revealing the physical nature of the missing process of angular momentum

transport.

• We are able to match the core rotation rates published by Deheuvels et al. (2015)

by adding νadd = 107 cm2s−1 and using an initial rotational velocity of 50 km s−1.

This order of magnitude for νadd is independent of stellar evolution code, and

initial mass (see Appendix 4.B).

• The trends identified by Eggenberger et al. (2017) concerning the increase in νadd

with both initial mass and evolutionary phase are confirmed here. See Table 4.2

for an overview of all published studies on νadd. The strong increase in νadd from

the two lower mass studies to this 2.5-M� study suggests that when increasing

the initial mass of the star, the change from radiative to convective core has less

effect on the efficiency of the missing process of angular momentum than the

absence of helium flashes in the more massive stars.

• We show that the dynamical instabilities (DSI and SH) are not attributed to the

transport of angular momentum from ZAMS to the end of core helium burning

in our models (see Appendix 4.B).
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Table 4.2: Summary of all published values for νadd to date

Initial mass (M�) νadd (cm2 s−1) Phase reference
0.84 1×103-1.3×104 early red giant Eggenberger et al. (2017)
1.5 3 × 104 red giant Eggenberger et al. (2012)
2.5 107 core He burning this work

• We show that the extra transport of angular momentum that fits the observations

of the core helium burning phase leads to rotation periods in the WD phase that

are too high. Our results show that the efficiency of the missing process needs to

change during the core helium burning phase, and must be strongly decreased

before the end of the core helium burning phase.

• When excluding νadd at 1/4, 2/4, or 3/4 of the whole duration of the core helium

burning phase, our models match the observed rotation rates of both the set of

core helium burning stars and the set of white dwarfs.

• This implies that transport processes for which the efficiency only depends on the

amount of differential rotation (such as the diffusive mixing introduced in Spada

et al. 2016, based on the AMRI by Rüdiger et al. 2007) are incompatible with

the result that the missing process has to be strongly decreased by the end of

the core helium burning phase, unless an inhibiting effect is included to facilitate

the decrease. A consequence of this work is that we have all initial parameters

for the follow-up study, which will focus on the s-process production in rotating

AGB stars. For this study, having a core rotation rate in the AGB phase that

is consistent with asteroseismic observations of earlier and later evolutionary

phases is crucial.
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4.A Evolution of rotation from ZAMS to core helium
burning

Here we discuss the rotational evolution of the models up to the core helium burning

phase. The Hertzsprung-Russell diagram (HRD) of two models, one without a νadd

(labelled nTS) and one with a νadd (labelled 107 cm2 s−1) is shown in Fig. 4.6. The

two models do not include the TS dynamo. This figure shows that the two models

are comparable. The same is true for the evolution of the surface gravity g shown in

Fig. 4.7, where log g is shown versus log10(t∗)'log(tWD-t). In this figure, the horizontal

segments of the lines are the core hydrogen (MS) and helium (Core He b) burning

phases. The hydrogen shell burning phase takes place in a short amount of time at

log10(t∗/yr)'10.160, the hydrogen/helium shell burning phase after the core helium

burning phase at log10(t∗/yr)'10.154. In this chapter we focus on the core helium

burning phase, which starts at log10(g/cm s−2)'1.8 and a log10(t∗/yr) '10.160. Then, in
a relatively short amount of time, log10(g/cm s−2) '2.9 is reached. From there, during the

remaining core helium burning phase log g evolves with a constant slope until log10(g/cm

s−2) '2.4 is reached. This loop is visible in the log10 g vs Ω figures, where the lower

halve of the curves is the long-lasting phase.

Figure 4.8 shows the time evolution of the angular velocity of core Ωc (solid lines) and

envelope Ωe (dashed lines) from the start of the main sequence to the start of the AGB

phase. During the core burning phases, the rotation rates of core and envelope are

close to constant in both models, with the model including νadd showing a near solid

body rotation trend during the main sequence. The nTS model, however, shows large

differences between core and envelope rotation rates during the shell burning phases.

These phases are characterised with core contraction and envelope expansion (also known

as the mirror principle, see Kippenhahn, Weigert & Weiss 2013), resulting in a steeply

increasing core rotation rate and steeply decreasing envelope rotation rate.

The model including νadd shows different trends during the shell burning phases. The

coupling provided by νadd allows for transport of angular momentum even when the

core is contracting. As a result, the core rotation rate follows the trends of the envelope
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rotation rate and decreases during the shell burning phases (orange lines in Fig. 4.8). This

trend is as observed by Aerts, Reeth & Tkachenko (2017), who compare a compilation

of rotation rates of main sequence stars to the rotation rates of more evolved stars by

Mosser et al. (2012). They find that there must be a drop in core rotation before or

during the end of hydrogen and the start of helium core burning phases.

The details of the angular velocity Ω and corresponding angular momentum j profiles

from core to surface are given in Figs. 4.9 and 4.10. Both figures show this profile at four

moments in the evolution: the start and end of the main sequence and the start and

end of the core helium burning phase. The solid body start of the models is visible in

both figures, and from there the differences appear. As mentioned before, the angular

velocity of the core and envelope in the model without νadd (left panel of Fig. 4.9) evolve

separately and oppositely due to the mirror principle. This effect is already visible at the

end of the main sequence, and results in a difference between core and envelope rotation

rate of several orders of magnitude at the end of the core helium burning phase. In the

right panel the j profiles are shown. A decrease in j in a region during a certain phase

indicates transport of angular momentum. A sharp feature is usually the outer edge of a

convective zone, which creates a barrier for transport of angular momentum. The general

lack of transport of angular momentum in the nTS model is visible in the j profiles of

Fig. 4.9, because they largely overlap.

When an additional viscosity of νadd=107 cm2 s−1 is added, the differences between core

and envelope angular velocity are smaller than in the nTS model (left panel of Fig. 4.10).

The whole star is close to solid body rotation up to the end of the core helium burning

phase, as also shown in Fig. 4.8. In this model a large amount of angular momentum is

transported out of the core between the end of the main sequence and the start of the

core helium burning phase (right panel of Fig. 4.10). This efficient transport is also able

to overcome the edge of convective regions, resulting in a lack of sharp features in the

j-profiles. The transport continues during the core helium burning phase, creating a

short moment at the end of the core helium burning phase when the convective envelope

rotates at a higher angular velocity than the rest of the star.
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Figure 4.6: Hertzsprung-Russell diagram of 2.5 M� models, one without a νadd of 107 (dashed
line) and one with a νadd of 107 (solid line). Neither model includes the TS dynamo.
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Figure 4.7: Time evolution of surface gravity g. Timescale is t∗=tWD-t), with tWD being the
age of the star at the end of the calculations. The offset in time comes from a
slightly longer white dwarf phase for the 107 cm2 s−1 model compared to the nTS
model.

Figure 4.8: Coupling made visible: the evolution of core (solid line) and envelope (dashed)
rotation rates from the ZAMS to the start of the AGB phase. Differences between
the two models become visible at the start of the hydrogen shell burning phase,
where the model without TS dynamo and νadd shows that the core and envelope
rotation rates move apart, while the model including a νadd of 107 cm2 s−1 shows
the rotation rates are coupled.
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Figure 4.9: Angular velocity and angular momentum profiles of the nTS model for four
moments as described in the label.
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Figure 4.10: Same as Fig. 4.9, but for the model that includes a νadd of 107 cm2 s−1.
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4.B Model uncertainties

In Sect. 4.4 we were not able to match the data points at the highest surface gravities

corresponding to KIC5184199 and KIC4659821. Here, we show that this is a consequence

of setting the initial mass to 2.5 M�. When matching the initial mass to the masses

listed in Table 4.1, we can indeed match the highest surface gravities, as shown in Fig.

4.11. For all models in this comparison, we use νadd = 107 cm2 s−1. The model with the

lowest initial mass (2.2 M�) reaches the higher surface gravities of the two data points

earlier unreached. These two data points correspond to the observations of stars with

initial masses of 2.18 ± 0.23 and 2.21 ± 0.18 M�, indeed matching the lower initial mass

of 2.2 M�. When comparing the model with the highest initial mass (2.9 M�) to the data

points, we find that the star with the highest mass, KIC7581399, of 2.90 ± 0.34 M�, has

a log10(g/cm s−2) = 2.843 ± 0.013 and is located on the 2.5-M� model. This might imply

that the actual mass of KIC7581399 is located near the lower end of the error margin.

The implementation of rotation in MESA allows for the inclusion and exclusion of

individual rotationally induced instabilities. The dynamical instabilities (DSI and SH)

are not part of the GENEC models as published by Eggenberger et al. (2012, 2017). Here

we investigate their effects on the transport of angular momentum in the MESA models

presented in this chapter. To test this, we calculated an extra model with an initial mass

of 2.5 M� and νadd = 107 cm2 s−1 with only the ES and SSI included, and added this

model to Fig. 4.3 with the label ‘ES+SSI’. The overlap of this model and the 2.5-M�
model, which also includes the dynamical instabilities, shows that the SH and DSI do

not contribute to the transport of angular momentum. Edelmann et al. (2017) have

already shown issues with the 1D implementation of the DSI in stellar evolutionary codes,

and therefore being able to exclude this instability in studies on angular momentum

transport reduces the uncertainties of our results. They also confirm that the settings

of the GENEC models are satisfactory. We show a comparison between MESA and

GENEC models (see Eggenberger et al. 2008, for a description of this code and their

implementation of rotation) in Fig. 4.12, with their νadd and initial mass, as labelled.

The same trends can be identified in these models as in the MESA models of earlier
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Figure 4.11: The effect of model uncertainties on the core and surface rotation rates. The first
three models presented here have been calculated with the best fit parameters (50
km s−1, 107 cm2 s−1), while the initial mass is varied. The fourth model includes
only the ES and SSI instabitity. The models labelled ‘2.5 M�’ and ‘ES+SSI’
overlap.
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Figure 4.12: Code comparison: the models presented here are calculated with GENEC to
show our conclusions are independent from evolutionary code.

sections: when the initial mass is reduced, the data points at high surface gravities can

be reached. A νadd of 107 cm2 s−1 provides a better fit than 5×106 cm2 s−1. Therefore,

our conclusions are code independent.

4.C Rotation near the core

As mentioned in Sect. 4.2, the numbers in the core rotation rates column in Table 4.1 are

actually ‘near core’ rotation rates. Their location is 0.1–1% of the normalised radius

away from the most central point, see Fig. 5 in Deheuvels et al. (2015). In this region the

obtained rotation rate is constant despite the noise in this figure. In Fig. 4.13 we show a
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Figure 4.13: For comparison with Fig. 5 of Deheuvels et al. (2015). The region of interest is
between r/R� of 10−3 and 10−2.

similar figure for the nTS and 107 cm2 s−1 models, where the rotation rate at the start

and end of the core helium burning phase is shown. We see that the model including the

extra νadd shows a constant trend in the region of interest at both times, as needed for

the comparison to the data of Deheuvels et al. (2015). However, the nTS model shows

a strong decrease in this region, providing another argument against these standard

models.
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5 The s process in rotating low-mass AGB
stars: Nucleosynthesis calculations in mod-
els matching asteroseismic constraints

J.W. den Hartogh, R. Hirschi, M. Lugaro, C.L. Doherty, U. Battino, F. Herwig, M.

Pignatari, and P. Eggenberger

These results are published in Astronomy & Astrophysics, Volume 629, id.A123.

5.1 Overview

Aims: In this chapter I investigate the s-process during the AGB phase of stellar models

whose cores are forced to rotate at rates consistent with asteroseismology observations of

their progenitors and successors.

Methods: I calculated new 2M�, Z=0.01 models, rotating at 0, 125, and 250 km s−1

at the start of main sequence. An artificial, additional viscosity was added to enhance

the transport of angular momentum in order to reduce the core rotation rates to be in

agreement with asteroseismology observations. I compared rotation rates of my models

with observed rotation rates during the MS up to the end of core He burning, and the

white dwarf phase.

Results: I present nucleosynthesis calculations for these rotating AGB models that were

forced to match the asteroseismic constraints on rotation rates of MS, RGB, He-burning,

and WD stars. In particular, I calculated one model that matches the upper limit of

observed rotation rates of core He-burning stars and I also included a model that rotates

one order of magnitude faster than the upper limit of the observations. The s-process

production in both of these models is comparable to that of non-rotating models.

Conclusions: Slowing down the core rotation rate in stars to match the above mentioned

asteroseismic constraints reduces the rotationally induced mixing processes to the point

that they have no effect on the s-process nucleosynthesis. This result is independent of
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the initial rotation rate of the stellar evolution model. However, there are uncertainties

remaining in the treatment of rotation in stellar evolution, which need to be reduced in

order to confirm my conclusions, including the physical nature of my approach to reduce

the core rotation rates of my models, and magnetic processes.

5.2 Set of models

Table 5.1: Properties of stellar evolution models. Names of the models are a combination
of initial rotation rate (first number) and the order of magnitude of νadd (second
number). The H-free core mass and the core rotation rate are given at the time
the first TP (TP1) occurs. The white dwarf mass (MDAV) is taken when the star
proceeds through the DAV phase (see text for details) on the white dwarf cooling
track.

Model vrot,i νadd Mc,TP1 Ωc,TP1 MDAV

km s−1 cm2 s−1 M� 2πnHz M�
noR - - 0.501 0.622
125 0 125 0 0.501 4.98×106 0.620
125 6 125 106 0.500 3.52×103 0.621
250 0 250 0 0.504 6.68×106 0.621
250 5 250 105 0.502 5.00×104 0.620
250 6 250 106 0.502 5.20×103 0.613

Our set of models is listed in Table 5.1. I calculated 2-M� models at metallicity

Z=0.01. I chose two initial rotation rates set at the ZAMS: 125 and 250 km s−1

corresponding to a v/vcrit of 0.27 and 0.57 respectively. These initial values match the

range found for very young B stars (log gpolar > 4.15) by Huang, Gies & McSwain (2010)

and are similar to those used in previous publications of rotating AGB stars: Langer

et al. (1999); Herwig, Langer & Lugaro (2003); Siess, Goriely & Langer (2004) used 250

km/s for their 3-M� model, while Piersanti, Cristallo & Straniero (2013) used up to 120

km s−1 for their 2-M� star.
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Figure 5.1: The Hertzsprurg-Russell diagrams (HRD) of the non-rotating and rotating models,
see text for discussion.

The values of 105 and 106 cm2 s−1 for νadd were chosen to reach the observed core rotation

rates, see Sect. 5.2.1 for the comparison. In all models, νadd=0 from the end of the core

He burning phase onward. These settings follow the results of Paper I, except that the

values used for νadd are lower than in Paper I. This difference is caused by the different

aims of the studies: in Paper I I focussed on the observations of a small data set of core

He burning stars (Deheuvels et al. 2015), while in this study I am interested in obtaining

a model that can serve as an upper limit of all observed core rotation rates. I also include

models with νadd=0 for both initial rotation rates.

My rotating models only include the ES circulation and the SSI. I exclude all dynamical

instabilities (DSI and SH) as these instabilities do not transport angular momentum (see
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Appendix B in Chapter 4) or participate in the mixing of chemical elements. I discuss

this point in more detail in Appendix 5.A. The exclusion of the GSF instability is based

on Hirschi & Maeder (2010) and Caleo, Balbus & Tognelli (2016), and described in detail

in Section 2.4.5.

Fig. 5.1 shows the HRDs of the models listed in Table 5.1 up to the post-AGB phase.

Rotating models are located to the right of the non-rotating model on the ZAMS due to

the centrifugal force expanding the star and producing a cooler surface. The core masses

of the rotating models without νadd at the end of the main sequence are slightly larger

than those of the models including νadd and of the non-rotating models because of the

mixing of extra fuel into the core during the main-sequence. As a result of the larger core

mass, the next core burning phase is shorter and therefore the core masses after the core

He burning phase are comparable (Table 5.1). Small variations in core masses occur after

the AGB phase due to differences in the number of TPs and thus core growth during the

AGB phase. This mass difference, see Table 5.1 is visible as difference in luminosity in

the post-AGB tracks in Fig. 5.1.

5.2.1 Rotational evolution

Figure 5.2 shows four models from Table 5.1: the two rotating models without νadd

and the two rotating models with νadd=106 cm2 s−1. The different trends visible in the

models with and without νadd are explained in detail in Paper I. In short, by adding νadd,

coupling is provided between the core and envelope that allows for transport of angular

momentum from the core to the envelope, even during the evolutionary phases where the

core is contracting. As a result, the core rotation rate shows a steady decrease during the

evolution, instead of an increase as in the standard rotating model without νadd.

From the four models shown in this figure, those with νadd = 0 only match the observations

at the start of the main sequence, while those with νadd=106 cm2 s−1 represent rough

upper limits of the observed core rotation rates. During the core He burning phase

the comparison between these models and the observations is especially important. I

therefore added markers (black dots) to the two models, indicating every 10% of the
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total duration of the core He burning phase. These dots show that from 10% to 80% of

the total duration of the core He burning phase, the models are in the same location as

the observed rotation rates in this figure.

The core rotation rates at the first TP are given in Table 5.1. These rates show a

difference of three orders of magnitude between the models with and without νadd. I also

calculated a model with a low initial rotation rate of 10 km/s, which has a core rotation

rate of Ω/2π = 7.88×105 nHz at the first TP. This is still two orders of magnitude higher

than the rotation rates of the models matching the observed rotation rates, showing

that simply reducing the initial rotation rate cannot match the observed rotation rates.

Another method to reduce the core rotation rate, for instance νadd, is needed.

I also calculated the ‘250 5’ model. The core rotation rate at the first TP is an order of

magnitude higher than the ‘250 6’ model. The core rotation rate during core He burning

of this model is at least an order of magnitude higher than all observed core rotation

rates for this evolutionary phase. At the first TP, the core rotation rate is an order of

magnitude larger than the ‘250 6’ model. Therefore, s-process production of this model

can be considered a conservative prediction for the s-process production of stars rotating

at rates matching the asteroseismically measured rotation rates. In Table 5.1 I also show

the white dwarf rotation rates from the models. Most of the white dwarfs for which

rotation rates are known are DAVs, which are pulsating H-rich white dwarfs. They have

a Teff between 10600−12600 K, because the H on their surface has to be partially ionised

for the pulsations to take place. The presented rotation rates are taken within the DAV

temperature range1. As in Fig. 5.2, the models including νadd = 106 cm2s−1 match the

observed white dwarfs rotation rates from Kawaler (2015) and Hermes et al. (2017), while

the ‘250 5’ model is an order of magnitude too low. The models without νadd are far

from the observed values (confirming the results of Suijs et al. (2008) and Cantiello et al.

(2014)). As mentioned previously, I remove νadd after the end of the core He burning

phase, therefore conserving angular momentum within the core from this point onward.

1The ‘250 5’ model undergoes a very late thermal pulse (VLTP) whilst on the WD cooling track,
before the DAV temperature range is reached. As this model runs into convergence issues before returning
to the white dwarf track, I have taken the rotation rate just before the very late thermal pulse.
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Figure 5.2: Evolution of core (Ωc) and surface rotation (Ωs) rates. Four of the models listed
in Table 5.1 are shown here, and compared to asteroseismically obtained rotation
rates. The observational data points are the core (red diamonds) and the surface
(orange stars) rotation rates, taken from Mosser et al. (2012), Deheuvels et al.
(2012), Deheuvels et al. (2014), Deheuvels et al. (2015), Ceillier et al. (2017), and
the compilation of observed main-sequence stars from 12 other papers presented in
Aerts, Reeth & Tkachenko (2017). From these observational studies, I only selected
single stars in the mass range 1.4−3.0 M�. Typical error bars of these observations
are of the order of the symbol size used. The solid and dot-dashed show the core
rotation rates of the models with and without the additional viscosity respectively.
The dashed lines show the envelope rotation rates of the models. The thick line
segments correspond to the core burning phases, and the thin segments to the shell
burning phases. The black dots indicate the time spend in the core He burning
phase by the models with νadd 6= 0, each spaced by 10% of the total duration
starting at the 10% mark and ending with the 100% mark (the dots located on the
most left and right, respectively). These dots show that these models spend most
of their time during this evolutionary phase close to the observed rotation rates.
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As in Cantiello et al. (2014); Aerts, Mathis & Rogers (2019), this approach allows to

match the observed rotation rates during both the core He burning phase and the white

dwarf cooling track.

5.3 s-process production in models matching astero-
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Figure 5.3: Abundance and diffusion profiles within 13C-pocket regions. These regions fall
within the same interpulse period as the fifth TDU (from my MPPNP results).
The left panels show the abundance profiles of the non-rotating model, and the
middle and right panels show the abundance and diffusion profiles of the ‘250
5’ model. The top panels correspond to the maximum extent of the TDU, the
middle panels correspond to the maximum 13C-pocket size, and the bottom panels
correspond to the profiles when the s-process production has started. The influence
of rotation on the 13C-pocket of the ‘250 5’ is small, the only difference is that the
abundance profiles are not as smooth as in the ‘noR’ model.
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In this section I show the s-process production of two the models from Table 5.1: the

‘250 5’ and ‘250 6’ models. I compare the s-process production of these models to the

s-process production of my non-rotating model. The other models included in Table 5.1,

which do not include an additional viscosity, are discussed in Appendix 5.A together

with a comparison to previously published work on s-process production in rotating

AGB stars.

5.3.1 13C-pockets

As explained in the Introduction, the 13C-pocket in low-mass AGB stars is where most of

the neutrons for the neutron captures are produced. Therefore, I start the comparison

with the abundance and diffusion profiles in the 13C-pockets. Specifically, I compare the
13C-pocket of the non-rotating and the ‘250 5’ model during the interpulse period in

which the fifth TDU takes place. I chose to use this model for this comparison as it will

give us a conservative upper limit of the impact of rotation on the 13C-pocket.

The abundance and diffusion coefficient profiles of the 13C-pockets are shown in Fig. 5.3

for three different time steps. The diffusion profiles are calculated following Herwig,

Langer & Lugaro (2003): I show the Lagrangian mixing coefficient (Dm and not the

Eulerian one Dr which is given as MESA output) as I want to assess the effect of the

mixing processes on the chemical elements:

Dm =

(
dm

dr

)2

Dr = (4πρr2)2Dr (5.1)

where all symbols have their usual meaning. In the same figure I also added the Ω profiles

on log-scale, to better understand the behaviour of the instabilities. These Ω-profiles show

that the pocket is located just below the drop in Ω, which coincides with the maximum

extent of the TDU.

For all three time steps, the profiles and the size of the 13C-pocket in the two models are

comparable, because the diffusion coefficient of the Eddington-Sweet (ES) circulation

is present with values between 101-102 g2 s−1. This is not high enough to impact the

abundance profiles. Also, the ES circulation is only present in regions of constant Ω,
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Figure 5.4: Time evolution of Ω. The Ω profile is taken from the interpulse of the ‘250 5’ model
that is shown in Fig. 5.3. Grey regions are the convective envelope during TDU
(left) and the TP (right), dashed black contour lines show constant log10(r/R�),
coloured contour lines show Ω values in linear range (the darker the contour line,
the lower Ω). Model numbers 59400, 60000, and 60500 correspond to the three time
steps in Fig. 5.3, and the vertical axis of this figure corresponds to the horizontal
axes of the ‘250 5’ panels in Fig. 5.3. The contraction of the region leads to a
steeper Ω gradient in the 13C-pocket region.

which is also where the 13C abundance is low. The reason behind these characteristics

can be explained by the strong dependence of DES on Ω (Heger, Langer & Woosley 2000),

which is Dm,ES ∝ Ω2. The Ω evolution during the interpulse phase of the ‘250 5’ model

is shown in Fig. 5.4. When Ω increases due to the contraction of the intershell region,

Dm,ES remains nearly constant due to the smaller radial coordinate of the 13C-pocket.

The ES-circulation is also dependent on the molecular weight gradient, which prevents

this mixing process from being active within the 13C-pocket.

The secular shear, the only other rotationally induced instability included in this model,

is only present in the panels of Fig. 5.3 when the s-process production has started, in the

region of the 13C-pocket. The Dm,SSI depends on dΩ/dr, which is stronger in the bottom

panel of Fig. 5.3, as shown in Fig. 5.4. Molecular weight gradients inhibit Dm,SSI, which is

why Dm,SSI decreases around m/M� '0.59675. The high values of Dm,SSI however, have

little effect on the abundance profiles as Dm,SSI is discontinuous (more details on this
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Figure 5.5: Surface enrichment of ‘noR’, ‘250 5’ and ‘250 6’. This comparison shows that the
s-process production of rotating models that match asteroseismically measured
rotation rates is comparable to that of the non-rotating model.

can be found in Appendix 5.A). Continuous spatial mixing is needed to influence the

abundance profiles and the resulting s-process production. It is unknown whether the

discontinuous character of the SSI is physical or numerical (see also Aerts et al. 2018).

Diffusion coefficients of rotationally induced instabilities have been discussed in the

previous publications on rotating AGB stars (see Langer et al. 1999; Herwig, Langer

& Lugaro 2003; Siess, Goriely & Langer 2004; Piersanti, Cristallo & Straniero 2013).

These publications, however, discuss rotating models, that do not include a process able

to decrease the core rotation rate in order to match the asteroseismically measured

core rotation rates. Therefore, these models rotate too fast at the start of the AGB

phase. This is clear from Column 5 in Table 5.1, where the standard rotating models

‘125 0’ and ‘250 0’ rotate three orders of magnitude faster than the models that match

the asteroseismically measured core rotation rates (‘125 6’ and ‘250 6’). Therefore, a

consistent comparison is not possible between the models of previous publications and
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models described in this section. Here I only note that Fig. 2 of Piersanti, Cristallo &

Straniero (2013) shows the location in the intershell where their models are unstable

against the ES circulation and the GSF instability (not present in my models, as discussed

in Sect. 5.2). While Piersanti, Cristallo & Straniero (2013) does not mention the strength

of their diffusion coefficients, their Fig. 2 shows that they found the interpulse to be

unstable for ES circulation at the same location as in my models.

5.3.2 Surface enrichment of s-process elements

In the previous subsection I found that rotation results only in small differences in the
13C-pockets when the ‘250 5’ model is compared to the non rotating model. I therefore

expect the resulting s-process production of the two models to be comparable.

In Fig. 5.5 I show the surface enrichment factors for the models ‘noR’, ‘250 5’, and ‘250

6’. The surface enrichment factors have been calculated after the final TDU and are

scaled to their initial abundances. All three models largely overlap in this figure. The

‘noR’ model experienced one TDU more than the two rotation models, I therefore show

the surface enrichment of the TDU before the last TDU for the ‘noR’ model to have a

fair comparison.

From this I conclude that when the models rotate at a rate that matches the asteroseis-

mically measured rotation rates or an order of magnitude faster, the s-process production

is comparable to that of the non-rotating model, as suggested by Piersanti, Cristallo

& Straniero (2013). A consequence of this result is that, according to my models, any

spread in observed s-process production of a certain metallicity is unlikely to be caused

by rotation (see e.g. Abia et al. 2002 and de Castro et al. 2016).

As the results of the rotating models described in this section match the non-rotating

model, I refer the reader to Battino et al. (2016) and Battino et al. (2019) for a comparison

to s-process observations, because the non-rotating models described in those papers are

similar to those presented here.
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5.4 Final remarks

In this paper I presented rotating AGB star models (2 M�, Z=0.01) that are forced to

match the asteroseismically measured rotation rates before and after the AGB phase. For

the first time, I have presented the s-process production of such models that rotate at

such rates. My main findings are described below.

• My models including additional viscosity of νadd= 106 cm2 s−1 follow the upper

limit of the observed trend of core and envelope rotation rates inferred from

Kepler observations, comparable to the results of den Hartogh, Eggenberger &

Hirschi (2019).

• The models that are forced to match the asteroseismically measured core

rotation rate show s-process production similar to that of the non-rotating model.

Therefore the effect of rotation on s-process production is negligible in these

models.

• I also calculated a model where the core rotates an order of magnitude faster

than observed values, as conservative upper limit to observed rotation rates. The

s-process production of this model is also comparable to the non-rotating model,

strengthening my previous conclusion.

• The results above are independent of the initial rotation rate.

Several uncertainties may potentially affect these conclusions. The most important

is the constant νadd that is used to reduce the theoretical core rotation rates to the

asteroseismically obtained rates. This constant has no physical meaning (yet) and the

results presented here should therefore be interpreted as not necessarily the final answer,

but as a next step towards understanding the s-process production in rotating low-mass

AGB stars. In particular, different combinations of the value for νadd and the values of

the two f parameters in the implementation of rotation may lead to similar core rotation
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rates. The range of values for these f parameters might however be limited, as more

recent calibrations by Yoon, Langer & Norman (2006) and Brott et al. (2011) resulted in

fµ=0.1, fc=0.03), similar values to the ones found by Heger, Langer & Woosley (2000).

My conclusions remain the same when I tested these values in my calculations.

Another issue is that I have only investigated the effects of non-magnetic mixing processes.

In Paper I, I already found that the TS-dynamo does not allow for enough transport of

angular momentum in stellar evolutionary models with an initial mass of 2.5 M� to

match the observations (confirming results of Cantiello et al. 2014, for their 1.5-M�
models). Recently, a revised derivation of the TS-dynamo was published by Fuller, Piro

& Jermyn (2019) who show that this mechanism is able to match the asteroseismically

obtained core rotation rates. However, this prescription does not predict a fast rotating

solar core as suggested by reported detections of gravity modes (Eggenberger, Buldgen &

Salmon 2019).

Besides the uncertainties around the missing process of angular momentum transport,

the current implementation of rotationally induced mixing processes remains a major

challenge (Appendix 5.A). I cannot exclude the possibility that better descriptions will

effect the s-process production in rotating AGB stars. Furthermore, two flavours for

the implementation of rotation in stellar evolution codes exist: diffusive (see e.g. Heger,

Langer & Woosley 2000) and advective (see e.g. Maeder & Meynet 2000, 2012), where

the second implementation uses different prescriptions for the mixing processes and this

could affect the s-process production in AGB stars.

I will investigate these uncertainties in future publications.

5.A The s-process in models without additional vis-
cosity

In this appendix I describe my models that rotate too fast to match asteroseismically

measured core rotation rates and provide a comparison to the previously published

papers (Herwig, Langer & Lugaro 2003; Siess, Goriely & Langer 2004; Piersanti, Cristallo

& Straniero 2013). I stress that for all these models the core rotate orders of magnitude
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Table 5.2: Set of stellar evolution models described in this Appendix. Only the rotational
instabilities are listed as all other parameters are equal.

Model ES SSI GSF DSI SH
250 0 y y - - -
250 0 +GSF y y y - -
250 0 +all y y y y y

faster in the evolved evolutionary phases, as compared to the observations.

Another difference between the models described in the main text and those presented

here is the amount of rotationally induced mixing processes. Because in the previously

published papers mentioned above all rotationally induced mixing processes as defined by

Heger, Langer & Woosley (2000) were included, I provide here a model that also includes

all processes. Piersanti, Cristallo & Straniero (2013) mentions that the GSF instability is

the main process responsible for the pollution of the 13C-pocket by 14N, limiting the

neutron exposure and keeping the s-process production concentrated around the Sr/Y/Zr

peak. I therefore also add a model that includes only the ES circulation, the SSI, and the

GSF instability. The three models described in this Appendix is listed in Table 5.2.

5.A.1 Effects on the 13C-pocket of the inclusion of all rotation-
ally induced diffusion processes

The two new models are restarted from the ‘250 0’ model in Table 5.1 at the last

TP before the first TDU and thus before the first 13C-pocket. This allows for a direct

comparison of s-process production in these models to the ‘250 0’ model without the

extra mixing processes, as the first TDU is the start of the s-process production.

The abundance profiles shown in the left column of Fig. 5.6 are characteristic for the

models presented in this section. Compared to the abundance profiles of the ‘250 5’

model, there are two distinct differences. The first is that the 13C-pocket in Fig. 5.6

is widened compared to the 13C-pocket in Fig. 5.3 . This is due to the higher rotation

rate leading to the ES circulation being two orders of magnitude stronger in the ‘250 0’



5.A The s-process in models without additional viscosity 143

models, see columns 2−4 in Fig. 5.6, than in the ‘250 5’ model. The second difference is

that the abundance profiles in the ‘250 0’ pocket are less smooth than in the ‘250 5’

pocket. This is due to the discontinuous mixing by the SSI, as already mentioned in

Sect. 5.3.1. The ES circulation is however still present in the 13C-pocket region in the

‘250 0’ model even when the s-process production has started. This results in poisoning

of the ‘250 0’ pocket by 14N.

The diffusion profiles of the model including the GSF instability are shown in the third

column from the left in Fig. 5.6. This instability depends on both the Ω values and on

the spatial derivative of Ω, and is present almost throughout the mass range shown. It is

however not dominant over the ES circulation or the SSI, and will therefore not have

much effect on the s-process production, contrarily to what was concluded by Piersanti,

Cristallo & Straniero (2013).

The right column in Fig. 5.6 shows the diffusion profiles of the model including all

rotationally induced instabilities. Both new instabilities (DSI and SH) have diffusion

profiles with a discrete character and will therefore have limited effect on the s-process

production within this model.

5.A.2 Surface enrichment

Figure 5.7 shows the comparison of the surface enrichments, including the surface

enrichment of the non-rotating model. All ‘250 0’ models are comparable in this figure,

confirming the findings of the previous section that the inclusion of GSF, DSI, and SH

does not have an effect on the s-process production. Compared to the non-rotating model,

the s-process production has greatly increased up to Sm. I thus also find that rotation

could increase the s-process production. This increase can be explained by the widened
13C-pocket, allowing for more Fe-group seeds to be activated by neutron captures. The

pocket is widened compared to the non-rotating models because of the ES circulation

being active during the creation of the pocket. The poisoning of the 13C-pocket by ES

circulation mixing in 14N is the reason why this increased production has not continued

until Pb.
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The surface enrichment of the models included in Fig. 5.7 can be compared to Piersanti,

Cristallo & Straniero (2013) as they present 2-M� models at solar metallicity albeit

at much slower rotation rates. The trends these models show is that the inclusion of

rotation reduces the overall s-process production, due to the contamination of the pocket

by 14N, which is opposite to what I find and further investigation would be needed to

understand this difference. However, both sets of rotating models show core rotation

rates that are several order of magnitude above the asteroseismically measured rotation

rates throughout the evolution. Further studies do not seem warranted.

Comparison to Herwig, Langer & Lugaro (2003) and Siess, Goriely & Langer (2004)

is less straightforward, as the first study concludes that the combination of overshoot

(now renamed as convective boundary mixing) and rotation might allow for a spread in

s-process production in AGB stars, while the second study does not combine the two

processes.

Neither of the previously published studies on rotating AGB stars mentioned the changes

in smoothness of abundance profiles as reported in the previous section.

5.A.3 Discontinuous mixing and smoothing options

The reason why I find these differences with Piersanti, Cristallo & Straniero (2013), may

be related to the choice of smoothing options. The discontinuous character of several

instabilities are caused by two features within the implementation of the instabilities.

The first is that the implementation itself of these instabilities allows for a discontinuous

behaviour, as there is of course a stability criterion present in the implementation. If the

zone within a model is unstable according to the instability criterion, the instability

becomes active, while in the next zone it can be stable again. The second issue is that

when dynamical and secular shear appear, they should be taken into consideration

immediately and not at the start of the next time step. The current implementation does

include the shear at the next time step and therefore overestimates its impact. These

issues reduce the practical use of these instabilities (as also concluded by Aerts et al.

2018, in a different astrophysical context).



5.A The s-process in models without additional viscosity 145

Smoothing options are available and tested to solve the issues, however, it is impossible to

decide which feature is physical and should not be smoothed, and which is numerical and

should be smoothed. Therefore, in this work I have decided to avoid the use of smoothing

functions. Among several different options tested, the only ‘smoothing’ option that seems

to effectively improve stellar profiles is the inclusion of a low additional viscosity. This

has the effect that the Ω-profile is smoothed, which leads to a reduced appearance of

secular and dynamical shear. However, the discontinuous behaviour of the SH instability

is still present. Including all instabilities in an accurate manner remains a challenge.
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Figure 5.7: Surface enrichment of the non rotating and the 250 0 models, showing that the
inclusion of GSF, SH and DSI does not alter the s-process production. This is a
numerical issue: there is work to be done between the derivation of the instabilities
and their implementation in stellar evolutionary codes.
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6 Exploratory studies

In this chapter I present some further exploratory studies. The following research questions

are considered:

• The surface rotation rate of one AGB star (R Doradus) has been determined,

however stellar evolution models for single stars have been unable to match this

value. Can the surface rotation rates of the stellar evolution models presented

in this thesis that include the additional, artificial viscosity match the surface

rotation rate of R Doradus? (Section 6.1)

• What is the effect of including the additional, artificial viscosity in the mixing of

chemical elements? (Section 6.2)

• What happens to the efficiency of the transport of angular momentum in the

TS-dynamo model, when the dependency of the dynamo on the molecular weight

profile is removed? (Section 6.3)

• A new derivation for the TS-dynamo has been presented in Fuller, Piro & Jermyn

(2019). Does this process indeed transport enough angular momentum out of the

stellar core? The results of this study has been included in A&A, 2019, 631 (I

am second author). (Section 6.4)

6.1 Surface rotation rate of AGB star R Doradus

Vlemmings et al. (2018) determined a surface rotation rate of the nearby AGB star R

Doradus of v sin(i) = 1± 0.1 km s−1, and compared this value to the surface rotation

rates of stellar evolution models (García-Segura et al. 2014, 2016). Their conclusion is

that the surface rotation rate of R Doradus cannot be reached by single star models.

They did not, however, include any enhanced transport of angular momentum in the
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single star evolutionary models. In this section I therefore test if the observed value can

be reached by my models that include an additional viscosity.

The surface rotation rate for R Doradus is the first direct detection of rotation in the

extended atmosphere of an AGB star has been presented, as a very high signal-to-noise

ratio is needed for careful analysis of its velocity. As the star has a temperature of

about 2100 K and a radius of 400 R�, R Doradus is an oxygen-rich and far evolved

along the AGB phase. Both García-Segura et al. (2014) and García-Segura et al. (2016)

were performed with an initial mass of 2.5 M�, while the initial mass of R Doradus

is estimated to be 1.3-1.6 M�. Therefore, a single star model with an initial mass of

1.5 M� was calculated for the comparison Vlemmings et al. (2018). The trends of the

surface rotation rate during the AGB phase of this 1.5 M� are claimed by Vlemmings

et al. (2018) to be similar to the 2.5-M� models, hence Vlemmings et al. (2018) inferred

that the surface rotation rate of R Doradus is a strong indication that the star has a

binary companion. The authors also noted that this conclusion is independent of the

initial rotation rate used. Here, we test this conclusion, by comparing the trends in the

2-M� stellar models presented in Chapter 5 to the 2.5-M� models of García-Segura et al.

(2014).

The surface rotation rate throughout the AGB phase for models ‘125 0’, ‘125 6’ and ‘250

0’ are shown in Fig. 6.1. These models are chosen to investigate the effect on the surface

rotation rate of the initial rotation rate and of the inclusion of the additional viscosity.

At the start of the AGB phase, all the presented models have a surface rotation rate

above 1 km s−1, which decreases rapidly when mass is lost, since along with the mass

also angular momentum is removed from the star. Furthermore, during the AGB phase

the envelope is expanding and therefore the star rotates slower at the surface. The higher

the initial rotation rate, the more angular momentum is present in the star and thus in

the envelope. This is why the ‘250 0’ model has a higher vsurf than the ‘125 0’ model.

When including νadd=106 cm2 s−1 (‘125 6’), more angular momentum is transported from

the core outwards. However, as already seen in Chapter 4 and Chapter 5, the surface

rotation rate is not significantly altered by this. This is due to the large size of the

envelope over which the transported angular momentum is spread out. When the three
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models approach the end of the AGB phase, their surface velocity reaches values around

0.01 km s−1 and lower, comparable to the surface velocities of the 2.5-M� model from

García-Segura et al. (2014). The inclusion of νadd=106 cm2 s−1 and the increase in the

initial rotation rate by a factor of two do not influence greatly the surface velocity during

the AGB phase.

My test with existing models agrees with the results of Vlemmings et al. (2018) that it is

not possible to match the observed surface rotation rate of R Doradus with a single

star evolution. Therefore, it is likely that R Doradus has indeed experiences binary

interaction in its life time. This result does not justify designing and performing a

dedicated parameter study around the surface rotation rate of R Doradus.
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Figure 6.1: Evolution of surface rotation rate during the AGB phase. Three 2 M� models are
presented, rotating at an initial rotation rate of 125 km s−1 (‘125 0’ and ‘125 6’)
or 250 km s−1 (‘250 0’). One model includes the additional, artificial viscosity
(‘125 6’). All models are well within one order of magnitude of each other at any
point in the AGB phase, showing that the inclusion of an additional viscosity
νadd and a change in the initial rotation rate do not alter significantly the surface
rotation velocity.
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6.2 Additional viscosity added to the mixing of chem-
ical elements

As mentioned in Section 3.3.2, there is no observational evidence that the missing process

of angular momentum transport should also strongly mix chemical elements. In this

section I present some tests where I included an additional viscosity to increase the

mixing of chemical elements (νadd,Xi) to investigate what its effect would be.

This second additional viscosity νadd,Xi is implemented following the same method as for

the additional viscosity to increase the transport of angular momentum (to avoid any

confusing I rename to it in this section as νadd,Ω): in Eq. 2.8, νadd,Xi is added to Dmix.

In Fig. 6.2 is shown the Kippenhahn diagram of the 2-M�, Z=0.01 model that rotates

with an initial rotation rate of 250 km s−1, including νadd,Ω=106 cm2 s−1 and νadd,Xi=106

cm2 s−1. The main consequence of the inclusion of νadd,Xi is that the molecular weight

gradients do not inhibit the mixing of chemical elements, as the enhanced mixing smooths

out the molecular weight gradients faster than that they are created by nuclear fusion.

Therefore, this star grows a larger He core, and later on a CO core. As a result, this

2-M� model will likely ignite C (the network currently does not include it), and continue

its evolution through all other burning phases. This is clearly visible when comparing

Fig. 6.2 to Fig. 1.2, the latter showing a non-rotating stellar evolution model of the

same initial mass and metallicity as the model in Fig. 6.2. The H burning shell in the

non-rotating model starts at a mass coordinate of 0.25 and ends ' 0.35 M�, while in the

model presented in Fig. 6.2 the H burning shell starts at 0.35 M� and ends ' 1.75 M�.

The corresponding HRD of the model including both νadd parameters (labelled as ‘250 6

6’) is shown in Fig. 6.3, with the model that only includes νadd,Ω (labelled as ‘250 6 0’).

A wide bifurcation in evolutionary tracks in visible. The ‘250 6 0’ model follows the

classical HRD track of a 2-M� star, while the ‘250 6 6 ’ model evolves towards higher

luminosities while increasing its effective temperature, and thus moves to the opposite

side of the HRD.

This type of evolution is called (quasi-)chemically homogeneous (QCHE), and was first
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described by Maeder (1987). In Maeder (1987), chemically homogeneous evolution was

obtained in massive stars by fast rotation, where the rotationally induced instabilities

were strong enough to smooth out the gradients in the molecular weight. These QCHE

stars were then suggested to evolve into Wolf-Rayet stars, massive He-rich stars. The

possibility of the formation of Wolf-Rayet stars via chemically homogeneous evolution

in rotating massive stars has been investigated further (see e.g. Langer 1992; Yoon &

Langer 2005; Schootemeijer & Langer 2018) since then. Also the formation of gamma-ray

bursts (GRBs), explosions linked to supernovae, via chemically homogeneous evolution

has been considered (see e.g. Yoon, Langer & Norman 2006; Woosley & Heger 2006), and

merging very massive black holes (de Mink & Mandel 2016; Marchant et al. 2016; Abbott

et al. 2016) might lead to QCHE as well. However, all these studies only investigated

massive stars and the observational evidence of chemically homogeneous evolution is

limited. For low- and intermediate-mass stars, there is no evidence of QCHE. Thus, the

value of the νadd,Xi must be lower than of the νadd,Ω.

Figure 6.3 also includes tracks for models with values of νadd,Xi lower than 106 cm2 s−1.

These tracks show that when νadd,Xi is 102 cm2 s−1 or lower, the evolutionary tracks

follow the same path as the non-rotating models, while higher values allow for the

QCHE as described above. The difference of several orders of magnitude between the two

νadd values suggests that the missing process cannot be a diffusive process, as diffusive

processes have the same efficiency for the mixing of chemical elements as for the transport

of angular moment. Magnetic dynamo processes, however, transport angular momentum

several orders of magnitude more efficiently than that they mix chemical elements as

discussed in Section 2.5.
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Figure 6.2: Kippenhahn diagram of the ‘250 6 6’ model, showing that the star evolves quasi-
chemically homogeneous. Convective regions are shown in grey. The H shell
burning (blue shades show energy generation, the darker the higher the energy
generation rate) nearly reaches the surface, indicating the stars has little H left.
The same trend is visible after core He burning, as the He burning shell also moves
up to near the surface. The horizontal axis shows the model numbers (non-linear
in time), to ensure all evolutionary features are visible.
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Figure 6.3: Effect on HRD tracks of adding an additional viscosity (νadd,Xi) to mixing of
chemical elements. The HRD shows the evolution of models with an initial mass
of 2 M�, an initial rotation rate of 250 km s−1, and a νadd,Ω of 106 cm2 s−1. The
third number in the labels reflects the order of magnitude of the νadd,Xi: here is
shown 0, 102,103, 104, and 106 cm2 s−1. See text for discussion.
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6.3 Tayler-Spruit dynamo without µ dependence

A magnetic process proposed to be important for the transport of angular momentum is

the azimuthal magnetorotational instability (AMRI) (see e.g. Rüdiger et al. 2007; Rüdiger

et al. 2007, 2018). This instability occurs when a hydrodynamically stable medium that is

differentially rotating is destabilized by an azimuthal magnetic field, where the azimuthal

angle φ is the third spherical coordinate (with the others being r and θ) and represents

the angle in the horizontal plane. It is active in regions with a (steep) radial differential

rotation profile, and inactive in region with a flat rotation profile. The effect of this

instability in stellar evolution models has been tested by Spada et al. (2016), and it

indeed seems to be effective in the transport of angular momentum. AMRI is however

still in development, and the dependency of the AMRI on molecular weight µ has not

been considered yet. This is however an important variable, as a strong molecular weight

gradient can stop the transport of angular momentum. The fully developed Tayler-Spruit

dynamo is a much less popular instability in the asteroseismic community, because it is,

in its current form, not able to provide enough transport of angular momentum to match

the asteroseismically obtained core rotation rates. The current derivation, however, does

include a molecular weight dependence. Therefore, as a numerical experiment, I present

here a test without this dependence with the aim to investigate its importance.

The calculation of the TS-dynamo without the µ dependency is performed in two ways.

The first option (labelled as ‘ExMu1’ in the following figures) changes how the effective

diffusivity due to the TS-dynamo is calculated in the regime where both the temperature

gradient and the gradient in the composition affect the diffusivity, see Eqs 2.58-2.68, by

removing the effect of the gradient in composition on the effective diffusivity. The effective

diffusivity is now equal to the regime where Nµ is zero. In the second option (labelled as

‘ExMu2’), the effect of the gradient in composition in the calculation of the thermal

buoyancy has been completely removed. Instead of N2
T=N2-N2

µ, it now is expressed as

N2
T=N2 in the MESA routine where the TS-dynamo is calculated. Both alterations affect

the transport of angular momentum and the mixing of chemical elements.

This exploratory study was performed on 2.5-M� models with a metallicity of Z=0.014
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and an initial rotational velocity of 150 km s−1. Fig. 6.4 shows the evolution of the core

and surface rotation rates for three models: one including the standard TS-dynamo (‘TS’),

and two with the altered TS-dynamo as described above. The models are compared to

the same set of asteroseismically obtained core and surface rotation rates as used in

Chapter 5. The two models with the altered TS-dynamo behave in a almost identical

manner, showing that the both methods have the same effect, and are able to reach the

asteroseismically obtained data points during the core He burning phase. The evolution

during the RGB is different in the altered TS-dynamo models from the standard TS

model, as the altered TS-models predict solid body rotation until log10=2.9 cm s−2 is

reached, while the standard TS-dynamo model does not. This can be explained by the

strong molecular weight gradient that is built up during the RGB at the edge of the core.

The coupling between core and envelope is weakened by this gradient in the standard

TS-dynamo. As the alterations to the TS-dynamo take away the dependence on this

gradient, the model including this altered dynamo are able to transport more angular

momentum out of the core during this phase than the model including the standard

TS-dynamo. To summarise: the removal of the dynamo dependence on the molecular

weight indeed increases the transport of angular momentum form the core outwards, to

the point that the asteroseismically obtained core rotation rates can be reached.

The next step is hence to compare the final surface abundances of the models including

the altered TS-dynamo to the non-rotating 2.5-M�, Z=0.014 model. This comparison

is shown in Fig. 6.5. The final abundances of the three models overlap in this figure,

confirming the conclusion of Chapter 5: the s-process production of stellar evolution

models that have core rotation rates that match asteroseismically obtained rates, have

the same s-process production as non-rotating stellar evolution models. The conclusion is

now strengthened, as in Chapter 5 the core rotation rate was reduced by νadd which is

constant in both time and space. Now, I have confirmed the conclusion in models which

core rotation rates were reduced by a process that is constant in neither space nor time.
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Figure 6.4: Comparison between the core and surface rotation rates of three 2.5-M�, Z=0.014
models including the TS-dynamo, one with µ dependence (‘TS’), and two without
(‘ExMu1’ and ‘ExMu2’) as explained in the text. Each colour represents a different
model, and both the core (Ωc, solid and dot-dashed lines) and surface (Ωs, dashed
lines mostly overlapping each other) rotation rate are shown. The black dots
indicate the time spend in the core He burning phase by the models, each spaced
by 10% of the total duration starting at the 10% mark and ending with the 100%
mark (the dots located on the most left and right, respectively). These dots show
that these models spend most of their time during this evolutionary phase close
to the observed rotation rates. The observational data points are the core (red
diamonds) and the surface (orange stars) rotation rates of single stars in the mass
range of 1.4−3.0 M�, taken from Mosser et al. (2012), Deheuvels et al. (2012),
Deheuvels et al. (2014), Deheuvels et al. (2015), Ceillier et al. (2017), and the
compilation of observed main-sequence stars from 12 other papers presented in
Aerts, Reeth & Tkachenko (2017). The two models with the altered TS-dynamo
match the asteroseismically obtained values while the model with the standard
TS-dynamo does not.
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Figure 6.5: Final surface abundances of the models including the altered TS-dynamo (labelled
as in Fig. 6.4), compared to the non-rotating model (‘noR’). The final abundances
of the three models are overlapping, confirming the conclusion of Chapter 5.

6.4 New derivation of the TS-dynamo

The results presented in this section are published in A&A, 2019, 631.

Recently a new derivation of the Tayler instability was published by Fuller, Piro &

Jermyn (2019), who argue that the dynamo (‘TSF-dynamo’) allows transport of angular

momentum during the RGB phase, despite the composition gradients. In this derivation,

the saturation of the Tayler instability takes place at larger magnetic field amplitudes, and

thus allows for stronger angular momentum transport. The equations for the transport of
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angular momentum are:

ν = α3
TSFr

2Ω

(
Ω

Neff

)
(6.1)

N2
eff =

η

K
N2

T +N2
µ (6.2)

qmin = α−3
TSF

(
Neff

Ω

)5/2 ( η

r2Ω

)3/4

(6.3)

with α being a dimensionless factor (discussed below), η and K the thermal and magnetic

diffusivities, Neff the effective Brunt-Väisälä frequency, and qmin the new minimum

threshold for shear (q=-∂lnΩ
∂lnr

). Only when the shear is larger than qmin angular momentum

is transported via ν.

The results are shown in Fig. 6.6, where the core rotation rates of the new and old

derivation of the TS-dynamo are compared to the observed rates during the RGB, core

He burning phase, and the white dwarf phase. The core rotation rates of the models

presented in Fuller, Piro & Jermyn (2019) are within the range of values found via

asteroseismic observations. The new derivation, however, is based on scaling relations,

leading to the addition of a free parameter α which is assumed to be close to unity.

Further tests of the TSF-dynamo are prsented by Eggenberger, Buldgen & Salmon

(2019) who investigated the new derivation in comparison to the solar rotation profile.

The main result is that the TSF-dynamo results in transport of angular momentum

too strong to be able to match the inner region of the solar rotation profile. This is no

surprise, as Fuller, Piro & Jermyn (2019) already mentioned that they find near solid

body rotation for the Sun.

Another test has been performed for subgiants (Eggenberger et al. 2019), including a

code comparison between MESA and GENEC. I calculated the MESA models presented

in this letter. In this latest paper we focussed on the rotation rates of six subgiants

published by Deheuvels et al. (2014). Because these six subgiants are located at different

points on the subgiant branch, we could investigate the evolution of rotation rates along

this phase. Furthermore, for all six subgiants both the core and surface rotation rate has

been derived from observations, therefore allowing us to also investigate whether the new

derivation can reproduce the observed differential rotation within this evolutionary phase.
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Figure 6.6: Comparison between the observed rotation rates (coloured areas) and rates
calculated with the old (black line, labelled as ‘TS only’) and new derivation
(thick red line, ‘αTSF=1’) of the TS-dynamo. The results calculated with the new
derivation match the observed core values along the RGB, core He burning phase
(‘clump cores’), and the white dwarf phase. Figure from Fuller, Piro & Jermyn
(2019).
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We tried to match the core rotation rate of the six subgiants, and the results are shown

in Fig. 6.7. The asteroseismically obtained core rotation rates can be reach by models

including the TSF-dynamo. However, different values of αTSF are needed to reproduce

the core rotation rates of the different subgiants. The smaller αTSF, the higher the value

for qmin, and thus the higher the degree of differential rotation in the models and vice

versa. A seventh data point has been added to Fig. 6.7, which is red giant KIC 4448777

(Mauro et al. 2016). This red giant has a very similar mass to the six subgiants, and they

can therefore be assumed to be its progenitors. To match the values of this red giant,

however, yet another αTSF value of 3 is needed. Furthermore, the model with αTSF=3

predicts a very low degree of differential rotation as the star ascends the RGB. This

trend, as already mentioned in Fuller, Piro & Jermyn (2019), is in disagreement with the

large sample of red giants published by Mosser et al. (2012) and Gehan et al. (2018).

We extended our the analysis by comparing these GENEC results to calculations

performed with MESA and focussing on the red giant. I calculated these MESA models

with the same inlist and run_star_extra files as used in Fuller, Piro & Jermyn (2019),

only slightly adjusting the initial parameters like mass and chemical composition to

match KIC 4448777. With this comparison, we could test if the implementation of the

TSF-dynamo in GENEC is equivalent as in MESA. The results are shown in Fig. 6.8.

Models of both stellar evolution codes converges to comparable ratios.

In any case the main result is that the TSF-dynamo is unable to predict the degree of

differential rotation observed in consecutive evolutionary phases. This result is independent

of differences in the models calculated by MESA and GENEC: in fact, Fig. 6.8 shows

that the MESA and GENEC models that correctly reproduce the differential rotation in

red giant KIC 4448777, cannot correctly reproduce the differential rotation in subgiants.
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Figure 6.7: Core rotation rates as a function of surface gravity for the six subgiants. Different
panels show different values for the α factor. Each subgiant and corresponding
GENEC model is represented by a different colour. The seventh star, shown
in orange, is a red giant with the same mass as the six subgiants. Figure from
Eggenberger et al. (2019).
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Figure 6.8: Ratio of core to surface rotation rate as function of surface gravity. The seven
data points are six subgiants, and one red giant (in orange). MESA (brown lines)
and GENEC (orange lines) models are shown with αTSF=1 (dotted lines) and 1.5
(continuous lines). Figure from Eggenberger et al. (2019).
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7 Conclusions

In this thesis, I focus on stellar evolution models including rotation and the effects of

magnetic fields with an initial mass of 2.0 and 2.5 M� at solar metallicity. This mass

range is particularly interesting, because the bulk of the s-process production in the

Galaxy takes place during the AGB phase of stars with an initial mass of ' 1.5-3 M�.

These stars thus have a large impact on galactic chemical evolution. As the s process

takes place in a thin mass region (' 10−3 M�), within a short amount of time (' 104

yr), it is sensitive to rotational induced instabilities. As a result, these stars are a perfect

test for the implementation of rotation in stellar evolution codes.

Another reason why this mass range is especially interesting is because asteroseismic

observations are numerous for stars in this mass range, and have provided us with new

information on the properties of stars. In the last half decade, researchers have been able

to obtain rotational properties from asteroseismic observations of stars. When comparing

these to the rotational properties resulting from stellar evolution codes, a discrepancy

has been found. It is now common knowledge that a process of transport of angular

momentum is missing from the current implementations of rotation in stellar evolution

codes. This is another reason why these stars are a perfect test for the implementation of

rotation.

This mass range thus has numerous observational constraints, both from asteroseismic

and nucleosynthesis observations. As a result, I have been able to compare my models to

observations, from the main sequence until their final fate as white dwarfs. The main

summary points are:

• I presented 2.5-M�, Z=0.014 models that include an artificial, additional viscosity

νadd which enforces the cores rotate within the observed range of core rotation

rates.

• The value I had to use for such viscosity is νadd =106-107 cm2 s−1, several orders

of magnitude higher than the value found to match observations for lower mass

stars.
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• The additional viscosity νadd has to be removed from my models during or at the

end of the core He burning phase to be able to match the white dwarf rotation

rates.

• I presented for the first time the s-process nucleosynthesis of stellar evolution

models with cores that are made to rotate within the observed range of core

rotation rates.

• Based on the final surface abundances in these models, I concluded that the

effect of rotation on the s-process production of low mass AGB stars is negligible.

• I also calculated the s process production of a model that is enforced to rotate

one order of magnitude faster than the observed core rotation rates. Also the

final surface enrichment of this model is comparable to that of the corresponding

non-rotating model.

• These results are in agreement with the recent works by Lugaro et al. (2018) on

stardust grains and Cseh et al. (2018) on Ba stars, showing that non-rotating

models can match the s-process observations.

Furthermore, from my exploratory studies I conclude that:

• R Doradus has likely experienced binary interaction during its evolution.

• The efficiency for the mixing of chemical elements by the missing process of

angular momentum transport has to be several orders of magnitude lower than the

efficiency for the transport of angular momentum. If the efficiencies were similar,

the stellar models would predict (quasi-)chemically homogeneous evolution for

which there is no observational evidence.

• The dependence of the TS-dynamo on the molecular weight profile strongly

reduces its efficiency to transport angular momentum.

• Models including the newly derived TSF-dynamo (Fuller, Piro & Jermyn 2019),

which is able to reduce the core rotation rate to match the asteroseismically
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obtained core rotation rates of subgiants, struggle to also correctly predict the

core rotation rate in the subsequent stellar evolutionary phase.

As summarised above, I presented for the first time detailed s-process nucleosynthesis

within stellar evolutionary models that match the asteroseismically obtained core rotation

rates. I showed that the s-process production in these models is similar to that of

corresponding non-rotating models. This result is in agreement with the most recent

observations of s-process in stardust grains and Ba stars, which show limited spread in

the s-process efficiency.

I also showed that the missing process of angular momentum transport cannot be as

efficient in the mixing of chemical elements as it has to be in the transport of angular

momentum. This puts extra constraints on the missing process of angular momentum:

magnetic processes are more likely to be the solution than diffusive processes. The exact

origin of this missing process of angular momentum transport is still unknown, and

requires further investigation.

Besides the missing process of angular momentum transport, there are several uncertainties

in the implementation of rotation in stellar evolutionary codes. One way to move forward

with the implementation of rotation in MESA and other stellar evolution codes would be

to investigate the different instabilities individually, as is done for the GSF-instability

by Hirschi & Maeder (2010) and Caleo, Balbus & Tognelli (2016) and for the DSI by

Edelmann et al. (2017). The impact of the investigations into the GSF-instability is that

I have not included this instability in any of my models presented in this thesis. The

investigation into the DSI showed that dynamical shear calculated with a 2D code is

present where the 1D GENEC model predicted it to be, however, the instability lasted

longer in the 1D than in the 2D models, due to the limitations in the 1D code related to

the length of time steps, as already discussed in Section 2.4.2. Similar detailed studies

are urgently needed for all the other rotationally induced instabilities, to check whether

their effects in stellar evolution codes are correctly implemented.

Such investigations could also reveal whether all instabilities are significant in stellar

evolution models, or if some dominate over others. In the latter case, the inclusion of



168

some instabilities could be redundant. For instance in Fuller, Piro & Jermyn (2019), only

the new dynamo is considered, as they assume that the transport of angular momentum

by the dynamo is dominant over all other instabilities. The next step could then be to

investigate the combined effects of the dominant processes. Possibly the behaviour of this

sum would be easier to implement into stellar evolutionary codes than the individual

instabilities.

Furthermore, the implementation of rotationally induced instabilities all include an on/off

criterion, which is one of the reasons why the diffusion coefficients sometimes show sharp

discontinuities instead of being continuous. Whether these criteria are all needed, and

whether we can reduce their influence on stellar models is an urgent question.

The models presented in the result chapters occupy a small but important part of the

possible parameter space. Therefore, performing a study over a bigger parameter space

including an additional, artificial viscosity to study the effect of rotation on all (low-mass)

AGB stars could be the next step. As each mass and metallicity regime has its own

set of computational challenges and observational constraints, calculating a large set of

models will require extensive literature review and code testing. Furthermore, the missing

process is also active in massive stars (see e.g. Suijs et al. 2008) and tests are required to

understand the mass dependence of the missing process of angular momentum transport.

Within this landscape there are many open questions left to investigate on the topic of

rotation models. For example:

• How does the extra transport of angular momentum in combination with

thermohaline mixing influence the results of Charbonnel & Lagarde (2010);

Lagarde et al. (2011) on surface abundances pre-AGB?

• What is the effect of the extra transport of angular momentum on the large

discrepancy between rotating and non-rotating models in the HRD tracks of the

GENEC as presented by Ekström et al. (2012)?

• Several of the rotating models presented in Chapter 4 and 5 undergo a (very)

late thermal pulses, which have never been studied in rotating stellar evolution
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models. Do these pulses mix chemical elements and do they transport angular

momentum?

Some open questions concerning the non-rotating stellar evolution models are:

• Can we use 3D-hydrodynamical simulations to determine the dominant process

responsible for creating the 13C-pocket?

• Some of the input physics can be updated (mass-loss, initial abundances, αMLT).

How will the comparison change between the s-process models and the s-process

observations after these updates have been included?

Other possible studies concerning different mass regimes include:

• Is the effect on the s-process production of slowing down the core rotation rates

the same at all metallicities?

• What is the effect of the extra transport of angular momentum on the detailed

nucleosynthesis in higher mass AGBs and massive stars?

• In particular what is the effect of the extra transport of angular momentum on

the s-process in low Z, high mass stars (Frischknecht et al. 2016; Limongi &

Chieffi 2018; Choplin et al. 2018)? Will it still take place?

Finding a physical mechanism to slow down the core rotation rate that matches all the

defined constraints should be the priority, as using a physical process would allow for

more detailed analysis of surface abundances and s-process production. For example, I

could then check if the outliers in the data set of stardust grains and Ba stars could be

reached with rotating AGB models.

Therefore, in the near future I plan to focus on understanding and testing the TSF-

dynamo as introduced in Section 6.4, as continuation of the study presented in Chapter

4. The first results are shown in Fig. 7.1, where I show the core and surface rotation

rates of three models: one with the TS-dynamo (labelled as ‘TS’), and two with the

TSF-dynamo with αTSF=1 (‘TSF’) and 4 (‘TSF αTSF = 4’) respectively. The top panel
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shows the individual rotation rates, and the bottom panel shows their ratio. The figure

includes the core and surface rotation rates of the seven core He burning stars determined

by Deheuvels et al. (2015). As already shown in Chapter 4, the TS-dynamo is unable

to reach the asteroseismically obtained rotation rates. The TSF-dynamo with αTSF=4

however is able to reach the observed values in both panels in Fig. 7.1. The lack of

differential rotation in the earlier evolutionary phases will likely cause problems when

comparing this model to those asteroseismically obtained data points, as discussed in

Section 6.4.

These results were preliminary results of this study. In the time between the submission of

this thesis and the acceptance of it, I finished the study and published the results in A&A

634, L16. The publication includes the comparison between the predicted and observed

white dwarf rotation rates, which show that the models including the TSF-dynamo

that match the rotation rates of core He burning stars from Deheuvels et al. (2015)

do not match the white dwarfs rotation rates of Hermes et al. (2017) and vice versa.

Therefore, the final conclusion of my publication is that the TSF-dynamo is also not the

sole solution for the missing process in the transport of angular momentum in stars.
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Figure 7.1: Comparison between core and surface rotation rate of models including the TS- or
TSF-dynamo, as continuation of the models shown in Chapter 4. The data points
are the seven core He burning stars as determined in Deheuvels et al. (2015). As
discussed in Chapter 4, the model including the TS-dynamo (‘TS’) is unable to
reach the data points, but the model including the TSF-dynamo with αTSF=4
(‘TSF αTSF = 4’) is able to do so. The black dots indicate the time spend in the
core He burning phase by the models, each spaced by 10% of the total duration
starting at the 10% mark and ending with the 100% mark (the dots located on
the most left and right, respectively). These dots show that these models spend
most of their time during this evolutionary phase close to the observed rotation
rates. Figures from den Hartogh (in prep).
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A Derivation of the differential equations for
the mixing of chemical elements and trans-
port of angular momentum

A.1 Mixing of chemical elements

The derivation of the equation for mixing of chemical elements starts with the continuity

equation of a conserved quantity:

∂ρ

∂t
+∇ · j = 0 (A.1)

where t is time, ρ the density of quantity q, and j the flux of quantity q, which can

also be written as j = ρu where u is the velocity of the flow of q. In this instance, I am

interested in a diffusive flow and I can write the relation between relative velocity Vi of a

particle i and diffusion coefficient D as:

Vi = −D
Xi

∇Xi (A.2)

where Xi is the mass fraction of particle i. The minus sign enters the equation as the

mass fraction and velocity increase in opposite directions. As I am deriving an expression

for in a 1 dimensional code, I can consider this as a 1 dimensional problem and replace

the ∇ by 1
r2

∂
∂r

(r2). Here I am considering mixing of chemical elements, for which I use a

number density ni.

Putting Eqs.A.1 and A.2 together with the expression for the number density gives:

∂ni

∂t
= −∇(niVi) (A.3)

= − 1

r2

∂

∂r

[
−r2ni

D

Xi

∂Xi

∂r

]
(A.4)

As ni can be written as ni = ρXi

Ai
mH, where ni is the number density of particle i, Ai the

atomic weight expressed in unit of proton mass mH, I obtain:

∂

∂t
(ρXi) =

1

r2

∂

∂r

(
ρr2D

∂Xi

∂r

)
(A.5)
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Which is almost Eq.2.8, except that the ρ is still in the time derivative. However, I can

move it outwards as when I sum over all elements ΣiXi=1, then Eq.A.5 is:

∂

∂t
(ρ ∗ 1) =

1

r2

∂

∂r

(
ρr2D

∂

∂r
(1)

)
= 0 (A.6)

When using:
∂

∂r
= 4πr2ρ

∂

∂m
, (A.7)

Eq. A.5 can be rewritten as:

ρ
∂

∂t
(Xi) =

4πr2ρ

r2

∂

∂m

(
4πr2ρ2r2D

∂Xi

∂m

)
(A.8)

and thus:
∂

∂t
(Xi) =

∂

∂m

(
(4πr2ρ)2D

∂Xi

∂m

)
(A.9)

(A.10)

Which is Eq.2.8, as the second term at the right side of the equal side in Eq.2.8 simply

account for the nuclear burning by reactions creating and destroying particle i.

A.2 Transport of angular momentum

The derivation of the equation for transport of angular momentum stars with finding a

relation between torqueM and the time derivative of angular momentum L. Torque is

the product of a force F and the distance s between the axis of rotation and the line of

action of the force F:

F =
d

dt
(mv) (A.11)

working on an object with the mass m that is moving at velocity v. The torque L then is:

M = s× F

= s× d

dt
(mv) (A.12)

The angular momentum L is defined as:

L = s×mv (A.13)
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The absolute time derivative of L is:

d

dt
L =

d

dt
(s×mv)

=
d

dt
s×mv + s× d

dt
(mv)

= m (v × v)︸ ︷︷ ︸
=0

+s× d

dt
(mv)

= s× d

dt
(mv) (A.14)

And thus:

M =
d

dt
L (A.15)

Now that the relation is defined, I continue with deriving expressions for both sides. I

start with the time derivative of L.
In spherical coordinates the distance s can be expressed as s = r sin(θ). Also, the orbital

angular velocity Ω is defined as:

Ω =
r× v

r2
(A.16)

Therefore, I can rewrite Eq. A.14:

d

dt
L =

d

dt
(s×mv)

= m
d

dt

(
r2 sin2(θ)Ω

)
(A.17)

and thus: L =
(
r2 sin2(θ)Ω

)
(A.18)

The mass derivative of L then is (using dm = ρ · dV ):

dL
dm

= r2 sin2(θ)Ω

dL = ρr2 sin2(θ)Ω · dV
= ρr2 sin2(θ)Ω · r2 sin(θ)dθdϕdr (A.19)
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With Eq.A.17 the time derivative of the angular momentum in Lagrangian coordinates

can then be written as 1

ρ
d

dt
(L) = ρ

d

dt

(
r2 sin2(θ)Ω

)
Mr
· r2 sin(θ)dθdϕdr (A.20)

This equation expresses the temporal changes of angular momentum of a volume element

in an Eulerian coordinate system.

Now I move to deriving the left hand side of Eq.A.15. In stars torque results in shear

between different layers. The shear stress is given:

τ(u) = ν∇ · v (A.21)

and τ(u) =
F

A
(A.22)

where ν is the viscosity. This gives a force per unit area of

dF = dAν∇ · u (A.23)

The change of force of a volume element over a distance d` = (dr, rdθ, r sin(θ)dϕ) is(
∂

∂r
dFr +

∂

r∂θ
dFθ +

∂

r sin(θ)∂ϕ
dFϕ

)
d`

≡ ∇ · dFd`
= ∇ · (dAν∇ · u) d` (A.24)

which is equal to the torque due to shear. In spherical coordinates Eq.A.24 can be written

as:

∇ · dFd` =
1

r2

∂

∂r

(
r2 sin(θ)dθdϕν

1

r2

∂

∂r
ur

)
dr · êr

+
1

r sin(θ)

∂

∂θ

(
r sin(θ)drdϕ · ν 1

r sin(θ)

∂

∂θ
uθ

)
· rdθ · êθ (A.25)

1The volume can be considered continuous and steady and can therefore be moved out of the time
derivative.
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where symmetry in êϕ is assumed.

Combining Eqs.A.20 and A.24 in Eq.A.15, an equation for the change of angular

momentum is recovered:

d

dt
L =M (A.26)

d

dt
L = ρ

d

dt

(
r2 sin2(θ)Ω

)
Mr
· r2 sin(θ)dθdϕdr (A.27)

M =
1

r2

∂

∂r

(
r2 sin(θ)dθdϕν

1

r2

∂

∂r
vr

)
dr · êr

+
1

r sin(θ)

∂

∂θ

(
r sin(θ)drdϕ · ν 1

r sin(θ)

∂

∂θ
vθ

)
· rdθ · êθ (A.28)

This can be simplified to

ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr
· r2 sin(θ)

=
1

r2

∂

∂r

(
sin(θ)ν

∂

∂r
· ur
)
· êr +

1

r sin(θ)

∂

∂θ

(
ν
∂

∂θ
· uθ
)
· êθ (A.29)

If in Eq.A.29 only the radial transport is considered one can further simplify:

d

dt

(
r2 sin2(θ)Ω

)
Mr

=
1

ρr4 sin(θ)

∂

∂r

(
sin(θ)ν

∂

∂r
· vr
)
· êr

=
1

ρr4

∂

∂r

(
ν
∂

∂r
vr

)
· êr (A.30)

The left hand side of Eq.A.30 can be rewritten as:

d

dt

(
r2 sin2(θ)Ω

)
Mr

=
d

dt
(r2 sin2(θ))MrΩ + r2 sin2(θ)

d

dt
(Ω)Mr (A.31)

When again using:
∂

∂r
= 4πr2ρ

∂

∂m
(A.32)

The right hand side of Eq.A.30 can be rewritten:

1

ρr4

∂

∂r

(
ν
∂

∂r
vr

)
=

4πr2ρ

ρr4

∂

∂m

(
4πr2ρν

∂

∂m
vr

)
(A.33)
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When combining the rewritten left and right side of Eq.A.30, I get:

dΩ

dt

∣∣∣∣
Mr

=
1

r2 sin2(θ)

∂

∂m

(
(4π)2r2ρν

∂

∂m
vr

)
− Ω

r2 sin2(θ)

d

dt
(r2 sin2(θ))Mr (A.34)

by substituting i = 2
3
r2 and multiplying the first term on the right side with ρ

ρ
=ρ4/3πr3

m

(=1), I obtain Eq.2.33

A.3 Derivation GENEC implementation

In the GENEC code, an advective term is also included in the equation for the transport

of angular momentum. Here I show where this term originates from, but the complete

derivation of Eq.A.38 is not given.

The time derivative in Eq. A.20 can be rewritten to:

ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr

=
d

dt

(
ρr2 sin2(θ)Ω

)
Mr
− r2 sin2(θ)Ω

d

dt
(ρ)Mr

=
∂

∂t

(
ρr2 sin2(θ)Ω

)
r

+ u∇ ·
(
ρr2 sin2(θ)Ω

)
− r2 sin2(θ)Ω

∂

∂t
(ρ)r − r2 sin2(θ)Ω · u · ∇ρ (A.35)

Using the continuity equation,

∂

∂t
ρ = −∇ · (vρ) (A.36)

one can write

− ∂

∂t
ρ− v · ∇ρ = ∇ · (vρ)− v · ∇ρ

= ρ∇ · v. (A.37)

With this, the two last terms of the right hand side of Eq.A.35 can be further simplified,
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ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr

=
∂

∂t

(
ρr2 sin2(θ)Ω

)
r

+ v∇ ·
(
ρr2 sin2(θ)Ω

)
+ ρr2 sin2(θ)Ω∇v

=
∂

∂t

(
ρr2 sin2(θ)Ω

)
r

+∇
(
ρr2 sin2(θ)Ω · v

)
(A.38)

Combining Eqs.(A.15), (A.38) and (A.24), an equation for the change of angular momen-

tum is recovered, but now also including an advective term (the second term on the right

side of the equal sign in Eq. A.38).

This term could be added to this equation and not to Eq. 2.8, as Ω is a vector and ni is

not.
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B Input files

B.1 Inlist

&star_job

create_pre_main_sequence_model = .true.

change_net = .true.

new_net_name = ’agb.net’

set_uniform_initial_xa_from_file = .true.

file_for_uniform_xa = ’falk_xa.list.agb’

set_rates_preference = .true. ! for use by net + rates modules

new_rates_preference = 1

! 1 = NACRE rates -- this is the default

! 2 = jina reaclib rates -- to match jina where possible

set_rate_c12ag = ’Kunz’ ! empty string means ignore this control

! one of ’NACRE’, ’jina reaclib’, ’Kunz’, or ’CF88’

! note: original CF88 rate is actually multiplied by 1.7 as in Timmes’ rates

set_rate_n14pg = ’jina reaclib’ ! empty string means ignore this control

! one of ’NACRE’, ’jina reaclib’, or ’CF88’

set_rate_3a = ’jina reaclib’ ! empty string means ignore this control

! one of ’NACRE’, ’jina reaclib’, or ’CF88

use_se_output = .true.
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change_rotation_flag = .false.

new_rotation_flag = .false.

!change_D_omega_flag = .true.

!new_D_omega_flag = .true.

new_surface_rotation_v = 250.0 ! km/s

set_near_zams_surface_rotation_v_steps = 10

/ ! end of star_job namelist

&controls

initial_mass = 2.0

initial_z = 0.01d0

mixing_length_alpha = 1.73

!operator_coupling_choice = 0

0 -- fully coupled

! some logistics

!max_model_number = 5001 ! negative means no maximum

!stop_at_TP = True

photo_interval = 500

profile_interval = 10

max_num_profile_models = 100000 ! maximum number of saved profiles
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history_interval = 1

terminal_interval = 10

write_header_frequency = 10

! mesh

max_allowed_nz = 10000 ! maximum number of grid points allowed

! resolve the C13 pockets

xa_function_species(1) = ’h1’ ! name of nuclide as defined in chem_def

xa_function_weight(1) = 20

xa_function_param(1) = 1d-9

xa_function_species(2) = ’he4’ ! name of nuclide as defined in chem_def

xa_function_weight(2) = 10

xa_function_param(2) = 1d-4

xa_function_species(3) = ’c13’ ! name of nuclide as defined in chem_def

xa_function_weight(3) = 25

xa_function_param(3) = 3d-10

xa_function_species(4) = ’n14’ ! name of nuclide as defined in chem_def

xa_function_weight(4) = 25

xa_function_param(4) = 5d-9

omega_function_weight = 50

! timesteps

! general

varcontrol_target = 5d-5

! this is the target value for relative variation in the structure from one

! model to the next. The default timestep adjustment is to increase or

! reduce the timestep depending on whether the actual variation was
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! smaller or greater than this value.

delta_lgRho_cntr_limit = 0.05

delta_lgRho_cntr_hard_limit = 0.1

delta_lgT_cntr_limit = 0.01

delta_lgT_cntr_hard_limit = 0.02

delta_lgTeff_limit = 0.01

delta_lgTeff_hard_limit = 0.02

delta_lgL_limit = 0.1

delta_lgL_hard_limit = 0.2

! TP

delta_lgL_He_limit = 0.01 ! for TP resolution

!delta_lgL_He_hard_limit = 0.05

lgL_He_drop_factor = 0.5

lgL_He_burn_min = 2.0 ! ignore changes in lgL_He if value

! is less than this

dH_limit_min_H = 1.e-2

dH_limit = 0.1

dH_div_H_limit_min_H = 1d-5

dH_div_H_limit = 0.5

dHe_limit_min_He = 1.e-2

dHe_limit = 0.1
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dHe_div_He_limit_min_He = 1d-5

dHe_div_He_limit = 0.5

! Overshooting

mass_for_overshoot_full_on = 1.8 ! Msun units

mass_for_overshoot_full_off = 1.1 ! Msun units

!mass_for_overshoot_full_off = 0.9 ! Msun units

overshoot_f_above_burn_h_core = 0.014

overshoot_f_above_burn_h_shell = 0.014

overshoot_f_below_burn_h_shell = 0.014

overshoot_f0_above_burn_h_core = 0.014

overshoot_f0_above_burn_h_shell = 0.014

overshoot_f0_below_burn_h_shell = 0.014

! C13 pocket

overshoot_below_noburn_shell_factor = 1

! He-shell flash convection zone

!ovr_below_burn_he_shell_factor = 0.5714

! atmosphere option

which_atm_option = ’simple_photosphere’

! mass loss

cool_wind_RGB_scheme = ’Reimers’

cool_wind_AGB_scheme = ’Blocker’

RGB_to_AGB_wind_switch = 1d-4

Reimers_scaling_factor = 0.5d0

Blocker_scaling_factor = 0.01d0
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! rotation

skip_rotation_in_convection_zones =.true.

am_D_mix_factor = 0.03333333333333333d00

am_nu_addition_omega = 1d6

D_DSI_factor = 0.0

D_SH_factor = 0.0

D_SSI_factor = 1.0

D_ES_factor = 1.0

D_GSF_factor = 0.0

D_ST_factor = 0.0

smooth_D_DSI = 0

smooth_D_SH = 0

smooth_D_SSI = 0

smooth_D_ES = 0

smooth_D_GSF = 0

smooth_D_ST = 0

smooth_nu_ST = 0

angsmt_D_DSI = 0.0d0

angsmt_D_SH = 0.0d0

angsmt_D_SSI = 0.0d0

angsmt_D_ES = 0.0d0

angsmt_D_GSF = 0.0d0

angsmt_D_ST = 0.0d0

angsmt_nu_ST = 0.0d0

angsml = 1d-3
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! opacities

use_Type2_opacities = .true.

Zbase = 0.010

kap_Type2_full_off_dZ = 0.00d0

kap_Type2_full_on_dZ = 0.00d0

kap_Type2_full_off_X = 0.749

kap_Type2_full_on_X = 0.748

/ ! end of controls namelist

B.2 Run_star_extra

Only the subroutines that are different from the default file are shown here.

subroutine data_for_extra_history_columns(id, id_extra, n, names, vals, ierr)

integer, intent(in) :: id, id_extra, n

character (len=maxlen_history_column_name) :: names(n)

real(dp) :: vals(n), ratio

integer, intent(out) :: ierr

type (star_info), pointer :: s

ierr = 0

call star_ptr(id, s, ierr)

if (ierr /= 0) return
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if (s% c_core_mass .ge. 0.01) then

s% xa_function_weight(1) = 20

s% am_nu_addition_omega = 0

write(*, *) ’artvisc=0’

endif

if (s% center_omega .ge. 0.0001) then

s% angsmt_D_ST = 0.2d0

s% angsmt_nu_ST = 0.2d0

s% angsml = 1d-3

endif

if (s% he_core_mass .ge. 0.00001) then

s% overshoot_f_above_nonburn_core = 0.014

s% overshoot_f_above_nonburn_shell = 0.014

s% overshoot_f_below_nonburn_shell = 0.014

s% overshoot_f_above_burn_he_core = 0.014

s% overshoot_f_above_burn_he_shell = 0.014

s% overshoot_f_below_burn_he_shell = 0.014

s% overshoot_f_above_burn_z_core = 0.014

s% overshoot_f_above_burn_z_shell = 0.014

s% overshoot_f_below_burn_z_shell = 0.014

s% overshoot_f0_above_nonburn_core = 0.014

s% overshoot_f0_above_nonburn_shell = 0.014

s% overshoot_f0_below_nonburn_shell = 0.014

s% overshoot_f0_above_burn_he_core = 0.014

s% overshoot_f0_above_burn_he_shell = 0.014

s% overshoot_f0_below_burn_he_shell = 0.014

s% overshoot_f0_above_burn_z_core = 0.014

s% overshoot_f0_above_burn_z_shell = 0.014
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s% overshoot_f0_below_burn_z_shell = 0.014

s% overshoot_D2_below_nonburn = 100000000000

s% overshoot_D2_below_burn_h = 100000000000

s% overshoot_D2_below_burn_he = 100000

s% overshoot_D2_below_burn_z = -0.0001

s% overshoot_f2_below_nonburn = 0.25

s% overshoot_f2_below_burn_h = 0.25

s% overshoot_f2_below_burn_he = 0.14

s% overshoot_f2_below_burn_z = -0.00001

s% dH_div_H_limit_min_H =1d-6

end if

ierr = 0

ratio=(s% surface_c12*4d0)/(s% surface_o16*3d0)

if ((ratio .ge. 1.15 ) .and. ( abs(s% Blocker_scaling_factor - 0.04 ) > 1d-4))...

...then

s% Blocker_scaling_factor=0.04

write(*, *) ’Change blocker massloss eta to’,s% Blocker_scaling_factor,’...

...at model ’,s% model_number,’ (if needed)’

end if

if ((ratio .le. 1.15 ) .and. (abs(s% Blocker_scaling_factor - 0.01 ) > 1d-4 ))...

...then

s% Blocker_scaling_factor=0.01

write(*, *) ’Change blocker massloss eta to’,s% Blocker_scaling_factor,’...

...at model ’,s% model_number,’ (if needed)’

end if

end subroutine data_for_extra_history_columns
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