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ABSTRACT  

Mine site management, monitoring and restoration are important, long term 

environmental activities that are needed in many regions of the UK and around the world. 

This project characterised the nature and level of contamination at a former coal mining 

site in Staffordshire, UK, that was partially restored and is currently used for agriculture 

and recreation but which was understood to still have problems of mine-affected soils, 

sediment and water. The characterisation included analysing elemental contents, the 

mobility and fractionation of meta(loid)s in soils using single (CaCl2) and sequential (BCR) 

extraction methods, metal content in soil solution, the total and dissolved fraction of 

meta(loid)s (0.45µm filtered) in water, and testing ecotoxicology of mining impacted water 

using the crustacean Daphnia magna. The characterisation results revealed probable Al 

toxicity and Ca, K and Mg deficiency in the mine-affected soils as well as potential Co, Fe, 

Mn, Ni and Zn toxicity risks in soils and water. The aquatic sediment was found to have 

elevated concentrations of elements associated with mining pollution, such as Fe. The 

aquatic toxicity tests revealed the stream waters to be hostile to crustaceans (100% 

mortality was observed in many samples), while measurements of turbidity, elemental 

concentrations and other water quality parameters indicated that the stream was now 

uninhabitable by fish. The characterisation work identified likely points of mine drainage 

input to the stream and thus established a basis to build further hydrological investigations 

upon. The soils of the most severely impacted positions in the area, which were apparent 

mining drainage upwelling or seep points, were shown to be in need of remediation if they 

were to be rendered useful for agricultural or other purposes. A soil remediation trial was 

thus embarked upon.  
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Iron and Aluminium water treatment residuals (Fe-WTR and Al-WTR), by-products of 

drinking water clarification, are generated in vast quantities around the world and have 

potential beneficial uses in environmental applications (e.g. soil remediation). This study 

first successfully demonstrated metal (Pb and Zn) sorption and retention capacity of WTRs 

in batch experiments (single metal and in combination), from the point of view of verifying 

their capacity for immobilising potentially toxic elements in treated soils, and then 

investigated directly WTR-based remediation potential for the soils at the site through 

conducting a series of laboratory trials on field collected soils. Remediation trial treatments 

comprised non-amended controls, Al-WTR, Fe-WTR and lime amendments (10% w/w), with 

subsequent outcomes for soil properties (e.g. pH), plant yield, earthworm survival, tissue 

element concentrations and soil solution chemistry all assessed. Effects of a wetting-drying 

cycle on subsequent plant yield, earthworm survival, and element uptake were also 

examined to investigate longer term aspects. The remediation trials revealed that WTRs 

generated significant improvements in pH, plant yield and element content, earthworm 

survival, and soil solution properties that were comparable to, and in some cases better 

than, those achieved by liming. These positive effects generally persisted after a wetting-

drying cycle. Importantly, the WTRs applied to less impacted reference soils also showed 

quality indicator improvements or maintenance of good conditions. The remediation trials 

were therefore highly successful and provide strong evidence that field trials, which are the 

next logical step, should be conducted to examine the remediation benefits of adding WTRs 

to mining impacted soils at the field scale.  
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1 Introduction and literature review: 

1.1 Mining as a current and historic source of significant environmental 

pollution 

Lives rely directly or indirectly on a healthy, clean environment. The quality of water, air 

and soil are of essential importance, but there are many pressures that threaten it. One of 

those pressures is the pollution legacy of mines.  

Mining activities, especially those concerning base coal and metal ores, are an important 

economic source for people all over the world. For example, it has been estimated that coal 

still supplies 41% of global electricity generation and directly employs 7 million people, 

according to the Society for Mining and Metal Exploration (2012). 

On the other hand, mining can have many negative environmental impacts. Some of them 

are immediately obvious such as the initial radical land use change and associated future 

land use restrictions post mine closure, the total removal of vegetation, and waste 

management requirements. Air pollution impacts can include dust generation and dispersal 

as well as toxic components that contribute to smog and haze impairing visibility and 

causing human health issues linked to respiratory tract damage (Aneja et al., 2012, Marcus, 

1997).  

Hydrological impacts of mines are less often appreciated including that river abstractions 

or diversions can occur during mining operations (which affect flow regimes) and 

expansion, or the collapse of mining shafts in the subsurface can create alternative flow 

paths and therefore affect aquifer recharge and connectivity (Larson and Powell, 1986). 

The topography of the land surface in mined areas can be affected even by underground 
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operations through subsidence that can occur following underground mining (Jung et al., 

2007)  

Environmental damage can arise from mining accidents, such as the disastrous collapse of 

a mine spoil tip in Aberfan in Wales (Taylor, 1971), leaking of cyanide from gold mining near 

Baia Mare (Michnea and Gherhes, 2001), and tailing dam failure, 32 tone m3 of tailing, was 

recorded in Sanmarco, Brazil, in December 2015. That slurry resulted in polluting North 

Gualaxo River, Carmel River, and Rio Doce over 663 Km, destroying 15 Km2 of land along 

the rivers and cutting residents off from potable water supply (Espindola et al., 2019). 

Significant environmental and health concerns linked with coal mining (and mining more 

generally) can occur that cannot be ignored, including the release of elements that can 

build up to potentially toxic levels in soil and water and biota because elements may spread 

from mining operations to the pedosphere, biosphere, atmosphere, and hydrosphere and 

consequently cause environmental effects (Lottermoser, 2010). 

A common impact that will be examined closely in this PhD study is the discoloration and 

pollution of streams and/or river beds, such as what happened in the Fal Estuary in England, 

in which orange layers of metal-bearing iron hydroxides were established (Banks et al., 

1997, Hudson-Edwards et al., 2008a). This mine drainage (see next section) is a major issue 

with coal and ore mines. These all have clear environmental and socio-economic 

consequences.  

1.1.1 Mine drainage and ochre deposits in water and sediment 

Water is actively managed during mine operations, through pumping out, drains or other 

mechanisms to prevent water build up and submergence of ore and coal seams. However, 

upon cessation of mining such water management steps are typically discontinued, 
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allowing water to build up which may eventually seep or burst out and enter surface or 

ground water. Abandoned mines, of which there are many in the UK and elsewhere around 

the world, therefore are a common source of water pollution. The water draining from 

mines is often very acidic (~pH 2 or lower) (Johnson and Hallberg, 2003), because of the 

chemical processes occurring when exposed sulphide bearing minerals are oxidised and 

dissolved. This process includes the following reactions:  

1. Oxidation reactions involving the sulphide of soluble and insoluble pyrite minerals 

by catalysing of acidophilic microbial microbes (Nordstrom and Southam, 1997, Schippers, 

2004) in combination with the gas oxygen in air or in the water. The oxidation process 

generates acidity and water-soluble ions (Chen et al., 2014, Jacobs et al., 2014) as 

represented in chemical Equation 1-1. 

 
𝐹𝑒𝑆2 +  

7

2
 𝑂2(𝑔)

+ 𝐻2𝑂(𝑙)

→   Fe(𝑎𝑞)
2+ +  2SO4

2−
(𝑎𝑞)

+  2H(𝑎𝑞)
+  

Equation 1-1 

At mine abandonment, water pumping ceases so water levels gradually increase inside 

shafts and this can dissolve solubilised ions. Consequently, the water becomes acidic. 

Therefore many metals are capable of undergoing hydrolysis, and the level of oxygen can 

also be low (Price, 2005).  

2. Further oxidation of ferrous iron into ferric iron can easily happen (see Equation 

1-2) when adequate oxygen is dissolved in water or once the water is exposed to enough 

atmospheric oxygen such as when groundwater discharges at the surface (Mayes et al., 

2008). 
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 4Fe(𝑎𝑞)
2+ + O2(𝑔)

+ 4H(𝑎𝑞)
+ → 4Fe(𝑎𝑞)

3+ + 2H2𝑂(𝑙) Equation 1-2 

 

Iron-oxidizing bacteria can increase the rate of ferrous oxidation by a factor of a million 

times (Singer and Stumm, 1970, Nordstrom and Southam, 1997, Schippers, 2004). This 

oxidation can lead to “ochre” formation, where the oxidised iron now in a ferric state 

precipitates out as an orange coloured solid. According to Younger and Wolkersdorfer 

(2004), this precipitation of ferric ions means that the ferrous ions then predominate as the 

remaining dissolved iron species in the minewater discharges and receiving waters, i.e. 

because the pH of surface water in catchments is usually about neutral  and in this 

condition the solubility of ferric ion is very low.  

3. The ochre deposits start appearing when ferric iron hydrolyses to introduce the 

ferric hydroxide precipitates, as shown Equation 1-3. 

 2Fe(𝑎𝑞)
3+ + 6H2O(𝑙) ↔ 2Fe(OH)3(𝑠)

+ 6 H(𝑎𝑞)
+  Equation 1-3 

This is a reversible precipitation-dissolution reaction that acts as a source or sink of ferric 

ions. This reaction also raises the chemical oxygen demand of the water and possibly 

decreases the pH of watercourses receiving mine water (Mayes et al., 2008). 

Simultaneous processes can occur with the first step when pH of mine waters is less than 

4.5. The sulphide of pyrite can be oxidized by the ferric iron (Equation 1-4) much faster than 

the oxygen and more rapidly than oxygen oxidizes the ferrous iron (Nordstrom, 1982; 

Jacobs et al., 2014) so that the reaction shown in Equation 1-2 is known to be the rate-

limiting step in pyrite oxidation. 
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FeS2(𝑠)
+ 14Fe(𝑎𝑞)

3+ + 8H2O(𝑙)

→ 15Fe(𝑎𝑞)
2+ + 2SO4

2−
(𝑎𝑞)

+ 16 H(𝑎𝑞)
+  

Equation 1-4 

Ochre deposits in rivers are now common problems in coal and metal mining areas in the 

UK and around the world, e.g. the River Don in South Yorkshire (Amisah and Cowx, 2000) , 

the River Gaunless in the northeast of England (Mayes et al., 2008) and in the River 

Akagawa and the River Kitakami in northern Japan(Sasaki et al., 2005). 

As stated above, while mine water drainage is often acidic, this is not always the case. 

Neutral mine drainage (NMD), with pH typically 6–8, also occurs and can arise in two ways; 

i) alkaline components of host rock or surrounding soil (e.g., carbonates or hydroxides) 

neutralize the acidity of acid mine drainage emerging from sulphide ores (Shahhosseini et 

al., 2017), or ii) the drainage originates from non-sulphide ores or minerals (e.g., oxides, 

halides, carbonates, borates, etc.) that do not generate acidity in leach water (Bright and 

Sandys, 2016, Younger, 2000). Both forms of neutral drainage occur in the UK and can have 

detrimental impacts on the quality of receiving water and on ecology (Younger, 2000). 

Dissolution of some minerals such as carbonate and aluminosilicate in the host rocks 

neutralizes the acidity produced by pyrite or marcasite (Nordstrom, 2011). Examples for 

neutral drainage where ores contain insufficient  amounts of  pyrite for the drainage to be 

acidic are Cligga Head Mine, Perranporth, Perranzabuloe, Cornwall, England, UK, in which 

the mine waters have near-neutral pH (6.5), (Palumbo-Roe and Colman, 2010), and the 

Frongoch mine site in mid Wales in which the pH values are closer to neutrality (Bearcock 

et al., 2010). In Northern Pennines mines, low amounts of pyrite, coupled with large 

quantities of acid-buffering minerals, e.g., carbonate rock, make mine waters with a neutral 

pH (Palumbo-Roe and Colman, 2010). 
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1.1.2 Impacts on biota from mining related metals and metalloids in water 

The environmental impacts of the ochre formations described above are many and include 

accumulation of ochre on fish gills, which leads to damage to the gills. A study carried out 

by Larsen and Olsen (1950 as cited in Jones, 2013) to investigate the impact of iron-rich 

mining wastes on some fish showed that accumulations of ochre occurred on the gills of 

the dead fish (suggesting that ochre deposition had played a role in the death of the fish). 

They thought that the ochre precipitate on the fish gill prevents oxygen exchange between 

blood vessels on lamellae with water, resulting in respiratory distress and then fish death. 

Ochre suspended particles are also known to cause a pronounced turbidity (Johnston et al., 

2008). According to Utne-Palm (2002), elevated turbidity in water scatters the light, 

decreases clarity and so interferes with detection of prey. The mechanism is thought to 

include that scattering of light leads to a degrading of the target’s brightness and, as a 

result, it impacts on the contrast between prey and background. This phenomenon impairs 

the ability of both predators and prey to detect each other. Although a turbid environment 

may offer fish larvae some protection from predators, it can still cause them respiratory 

problems and is not optimum for adult predatory fish and thus, as a consequence,  

increased turbidity can cause structural changes in a fish community. This may play an 

important role in the distribution of species. This explains observed changes in diversity of 

species and consequently changes in community structure as a function of turbidity (see 

below). 

According to Younger and Wolkersdorfer (2004), in receiving watercourses heavy loadings 

of suspended sediments can be caused by ochre particle formations. These particles 

decrease light penetration which leads to inhibition of photosynthesis, which negatively 
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impacts the primary producers such as submerged higher plants, algae and various 

organisms in the periphyton in aquatic ecosystems. Consequently, it decreases the 

availability of food for the macroinvertebrate community and for the fish population that 

feeds on them.  Furthermore, ochre particles contribute to the disruption of mating and 

territorial behaviour patterns, which rely highly on visual cues and subsequently affect 

strongly the reproduction, abundance, and population size (Younger and Wolkersdorfer, 

2004). 

Ferruginous minewaters, which typically cause major ochre precipitation upon mixing with 

surface water and/or oxidation, can cause smothering of fish and invertebrate eggs in the 

sediment. Ochre particles smother the interstitial pore space of permeable sediment fines 

or the gravel beds where the eggs are laid, and as a consequence the passage of oxygenated 

water to the eggs is inhibited (Mayes et al., 2008). For example, there was a large decrease 

in salmon in the water column in the Pelenna catchment in south Wales which happened 

due to smothering of salmonid spawning areas because of excess iron (ochre) particulates 

formation and sedimentation (Edwards and Maidens, 1995). 

 In addition to the problems associated with iron and ochre formation, other metals and 

metalloids including lead, zinc, copper, chromium, cadmium and arsenic are known to 

reach levels in mining affected rivers that are harmful to the environment. 

In surficial water samples of mine-affected sites (pH 1.5-3.5) from Aljustrel mining region, 

Portugal, high metal concentrations of Pb (136 μg/L), Cu (68,795 μg/L), Cd (455 μg/L), Zn 

(264,377 μg/L), and As 6,837 μg/L  were found which have potential direct and indirect 

impacts on the diversity in diatom communities (Luís et al., 2009). 



22 
 

In Korea, a study done by Lee et al. (2005) showed that the mean concentrations of As, Cd, 

and Zn in stream waters of the Songcheon abandoned mine areas were 246 µg/l, 161 µg/l 

and 3899 µg/l, respectively. The levels of As and Cd in drinking water were 10 and 4 times, 

respectively, greater than those considered safe. Additionally, the cancer risk posed by As 

for exposed individuals through the drinking water pathway was 5 times greater than that 

stipulated for regulatory purposes. 

The Iron Mountain Mine activity in California, USA, led to increases in the concentration of 

zinc in the surface water. Many of the samples exceed the toxicity limits of US-EPA for zinc 

(Seal II et al., 1998). 

According to the UK Environment Agency (2012), metal pollution (mainly Fe, Cd, Pb and Zn) 

from abandoned mines is a widespread issue in England and Wales and is responsible for 

8% of the water bodies that fail to achieve good ecological and chemical status under the 

Water Framework Directive (WFD). For example, the concentrations of cadmium and zinc 

in Carnon river, England, exceeded the environmental quality standards (EQS) by several 

hundred times. The river was muted and aquatic life was not generally abundant (Morris 

et al., 2003). 

In an Australian study of the ecological impacts of metals mine effluents on the benthic 

macroinvertebrates in the South Esk River, Tasmania, even at 80 km downstream from the 

source of the metals negative impact was observed. Relative composition of the fauna 

drifting reveals that the numbers of the helminthid beetles and baetid mayflies were lower 

in the contaminated section of the river. The relative number (number collected per 24 h 

at a flow rate of 1 m3/s) of Baetidae: Baetis baddamsae decreased from 500 (above the 

source of the metals) to about 150 (below source of the metals); and Helminthidae: 
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Austrolimnius sp. (adults) reduced from 300 (above the source of the metals) to less than 

100 (below source of the metals) (Norris et al., 1982). 

Historic mining within the Leadhills area, Scotland, has heavily affected the Glengonnar 

Water. The levels of Cd, Pb and Zn in the water body exceed the environmental quality 

standards and have caused abnormalities and related effects on fish, such as the 

appearance of blackened tails of trout (Salmo trutta) which is a sign of chronic lead toxicity 

(SEPA, 2011). 

Waste rock and untreated water from the chromite mines in Sukinda, India, pollute local 

water supplies with hexavalent chromium as well as the air and soils. Not only it is highly 

toxic to plants and animals but also causes human health problems such as infertility and 

birth defects are common in the workers and inhabitants; in addition locals suffer from 

increased prevalence of gastrointestinal bleeding, tuberculosis, and asthma (Das and 

Mishra, 2008, Iyer and Mastorakis, 2010, Das and Singh, 2011). 

High concentrations of heavy metals, especially dissolved Cu (e.g. 3.4 μM) were found in 

the aquatic environment in the Copperbelt area in Zambia. This is attributed to the mining 

and smelting operations in the region. The high Cu concentrations measured could affect 

humans, livestock and wildlife living in the area (Ikenaka et al., 2010, Pettersson and Ingri, 

2001). 

In the case of acid mine drainage, low pH itself can have negative impacts on biota. Most 

species have a defined pH tolerance range, which, if exceeded, can cause damage to tissues 

and/or biological functions. A high concentration of H+ ion in mineral soils can be toxic to 

plants; in addition to that, it can adversely impact ion transport mechanisms across cell 
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membranes like membrane-bound ATPases (Shabala, 2017). Low pH affects the salmonid 

fishes in particular; the main effects are on mucous secretion ability and gill structure and 

ion and acid–base regulatory mechanisms at the gills, all of which have potential severe 

negative effects on organism fitness (McDonald, 1983, Wood, 2017). In the case of plants 

growing in mine impacted soils or sediments where the pH is decreased, the excess of 

hydrogen ions causes the general effect sometimes referred to as Proton rhizotoxicity (i.e. 

proton induced toxicity of substrate in the immediate vicinity of roots). This adversely 

affects root growth in many plants and applies its toxic consequences through disturbing 

the antioxidant defense system, damaging the plasma membrane H+-ATPase activity, 

damaging the metabolic process, decreasing the nutrient availability by changing solubity 

and mobility of nutrients, and yielding damaging reactive oxygen species (Borhannuddin 

Bhuyan et al., 2019). There are many examples of those effects; e.g. Erica andevalensis and 

Erica australis were adversely affected by low pH (Oliva et al., 2018). 

 

1.1.3 Accumulation of metals and metalloids in soils linked to mining 

Soils in mining areas can become contaminated through aerial deposition of dusts, use of 

contaminated water for irrigation, surface water flow across exposed ores and mine tailings 

that subsequently enters soils, or subsurface percolation bringing contaminated water to 

soils. These have environmental and human health impacts and many cases have been 

described in the literature. 

According to a reconnaissance study by Reuer et al. (2012), metal mining and smelting over 

80 years had led to a significant lead and arsenic contamination of soils in the area. They 

found that the depositional history of metal aerosols from the La Oroya smelter in Peru has 
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made a significant contribution to the level of high contaminants 1,658 ppm As, 127 ppm 

Cd and 3,177 ppm Pb. The high soil Pb and As levels are potential causes of serious health 

problems, according to the exposure and dose-response modeling performed and 

therefore are in need of remediation. 

Irrigation water polluted by mine drainage of the Wanshan mining area in Guizhou 

Province, China, has contaminated important rice paddy soils. Total mercury THg and Cd 

ranged up to 130 (mg/kg) and 1.3 (mg/Kg) respectively from non-rhizosphere paddy soils 

near the mine. In brown rice, THg and Cd (mg/kg) were 0.21 and 0.47, respectively. 

Assessment of the health risks of consuming the rice from the area has concluded that 

there is a potential threat to human health (Li et al., 2014). 

In Mae Tao, northwest Thailand, a study into mining contaminated paddy soils by 

Kosolsaksakul et al. (2014) found that there is a strong relationship between soil cadmium 

concentrations [up to 200 mg/kg] and rice grain Cd (0.05– 8.00 mg/kg). They thought that 

fine clay particles bearing Cd are being transferred especially during the rainy season onto 

the paddy fields, which are irrigated from creek and canal waters impacted by a large zinc 

mine. Consequently, locals suffer from kidney as well as other problems because of the Cd 

levels in rice. 

High leachability of metals in the acidic conditions of mine water discharges or run-off has 

been shown to facilitate the spread of metals into rivers and onto soils. One study showed 

Cu at 10371 μg/l, Zn 44900 μg/l, Cr 489 μg/. and Pb 1587 μg/l in the extremely low pH (~2) 

tailings water samples from north-west of a gold-silver enrichment plant at Mitsero, Cyprus 

(Lortzie et al., 2015). The dominant contaminant transport mechanism in the area was 

shown to be fluvial in nature, in addition to a degree of chemical weathering/precipitation, 
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but not aeolian. It has been argued that the high leachability combined with pH~2 water 

may generate toxic runoff during storm events, which could lead to the destruction of 

aquatic life, crops, and livestock in the surrounding environment (Kostarelos et al., 2015). 

Mine wastes mainly include wastes rocks, tailings, and mine water. Flooding can mobilise 

and redistribute mine wastes both laterally and vertically within a soil profile and into and 

along a river or floodplain. As an  example, such flooding events transferred and dispersed 

a large amount of material from the mine heaps  close to the Xiropotamos stream, which 

passes through an region of Mn mines located adjacent to the Drama district in Macedonia, 

northern Greece. The heaps material was highly contaminated by As, Pb, Cu, Zn, Cd, and 

Mn, all of which were dispersed to the western edge of the Drama plain and around the 

Xiropotamos river course, with soils covering an area of about 50 to 200m laterally found 

to have a black colour as well as contamination because of the input of mine wastes 

(Sofianska et al., 2008, Sofianska and Michailidis, 2013, Sofianska and Michailidis, 2016). 

1.2 Forms of metals and metalloids in water 

1.2.1 Total, dissolved and particulate fractions 

Mobility and toxicity of metal(loid)s in surface water are affected by the physical forms and 

chemical species in which the element is found (Namieśnik and Rabajczyk, 2010), so it is 

essential to understand what is meant by terms like dissolved and particulate. 

Metals and metalloids can exist in surface water in various forms or fractions. Forms in 

water and are often described in terms of being in dissolved or particulate (Namieśnik and 

Rabajczyk, 2010). Combining the dissolved and particulate contents gives the total amount 

for any given element across all forms (Abbott and Price, 2014). 
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Dissolved forms include free cations such as Ca2+, Fe2+, Al3+, Ag+, or organometallics, for 

instance, Hg(CH3)2, B(C2H5)3, Al(C2H5)3, or complexes with dissolved organic matter, or 

inorganic complexes for example Zn(OH)4
2+, Au(CN)2

-, Ca(P2O7)2-. Typically, dissolved 

concentrations are defined as the concentration in solution after filtering through 0.45 µm 

pore size membranes (Stumm and Bilinski, 1973). 

Particulate forms can be solid metal compounds formed by weathering of minerals. Metals 

in particulate form can also be precipitated sulphide oxides, silicates, hydroxides or 

carbonates. Particulate metal forms also include cations sorbed to organic matter and 

mineral sediments (Namieśnik and Rabajczyk, 2010). 

Colloids are finer particles with diameters that are less than 0.45 µm and so they exist in 

samples that have been filtered through 0.45µm filters, i.e. in the fraction considered by 

convention to be the dissolved component or phase. Colloidal metals refer to metals 

dispersed on/within colloids. They are highly mobile and remain suspended in water and 

are mobilized by water movement (Caspers, 1981). Colloidal metal forms are important 

because metals bound to colloids might not be readily available to organisms, or on the 

other hand colloids might mobilise metals in solution bring them into contact with 

organisms (Bradl, 2004). 

 

1.2.2 Influence of water pH, Eh, hardness and organic matter concentration on 

element toxicity 

The role of water chemistry in influencing element mobility and toxicity has already been 

alluded to in relation to ochre formation (see above), but the importance of these water 

quality parameters need to be fully appreciated. 
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Water pH in particular is a key variable for metal behaviour in the environment. Changing 

the pH affects heavy metal solubility (as shown in Equation 1-5, Equation 1-6 and Equation 

1-7), and so the metal speciation which impacts the bioavailability and thus ecotoxicity (van 

Leeuwen and Vermeire, 2007). 

 M𝑛+ + H2O ↔ [M(𝐻2O)6 ]
𝑛+ Equation 1-5 

[M(𝐻2O)6 ]Hydrated Metals
𝑛+ + H2O

↔ [M(𝐻2𝑂)5𝑂𝐻]low−solubility polyhydroxides
𝑛−1 + 𝐻3𝑂+ Equation 1-6 

[M(𝐻2𝑂)5𝑂𝐻]𝑛−1 + H2O

↔ [M(𝐻2𝑂)4𝑂𝐻2]low−solubility polyhydroxides
𝑛−2 + 𝐻3𝑂+ Equation 1-7 

where M is a mono or polyvalent cation (e.g., Fe3+, Zn2+, Mn2+ and Cr3+); n is the number of 

positive charges on the cation; and the number of water molecules in the innermost 

hydration shell is with a maximum of 6 for most cations. Note that Equation 1-7 will 

continue up to n times, not all of the metal ions will necessarily be precipitated out as solid 

and some will remain in solution (van Leeuwen and Vermeire, 2007). 

Water molecules form a hydration shell around dissolved metal cations (Foy, 2000) and this 

also influences their behaviour. The availability of cation forming heavy metals (which are 

the great majority) is therefore increased at low pH levels because of the greater solubility 

of the metal. The pH can also have indirect impacts on toxic metal solubility, mobility and 

availability through its effects on other parameters such as organic matter and nutrients 

(Ripley and Redmann, 1995). The pH also has an effect on the functionality of some ligands 

and thus on their ability to form complexes with the metals; for instance COO- becomes 

non-functional as a metal binding site by coordination with a hydrogen ion (COOH). This 
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means that the H+ is a competitor with the metals for such coordination sites and affects 

inorganic as well as organometallic interaction. This gives further explanation as to why 

metal cations become more soluble and more available at low pH; the additional H+ in 

solution occupy binding sites on solids that might otherwise bind metals, keeping more of 

the metals in solution. Examples for how pH affects metal binding and solubility have been 

provided for Cu (Stumm and Morgan, 1970), Cd (Morel et al., 1973) and Fe (Hem, 1985). 

According to Benjamin and Leckie (1981), there is a rapid change of adsorption capacity as 

a function of pH and concentrations of adsorbent and adsorbate. The order of sorption of 

metals on humic acids is affected by the pH; a study done by Kerndorff and Schnitzer (1980) 

showed sharp rises in sorption efficiencies with a pH increase from 2 to 6.  

The pH and redox potential significantly control the relative stabilities of different metal-

containing minerals and the order of metal solubility (Krumbein and Garrels, 1952). For 

example; under high Eh (i.e. very oxidising conditions), the ferric hydroxide precipitate is 

highly insoluble while under low Eh (or reducing) conditions the iron is reduced to ferrous 

iron, and its affinity to precipitate as the sulphide is low compared to many other elements 

(Elder, 1988). The redox potential also affects concentrations of dissolved components 

such as sulphide that can in turn control or influence precipitate formation, and so at 

reducing conditions the sulphides are of prime importance whereas in oxidising waters the 

oxides are one of the major precipitates (Berner, 1981). 

The ionization state of metals can change based on the proton activity (pH) and the redox 

state of the metals can vary based on the electron activity (Eh) simultaneously, so the 

speciation is a sensitivity to both redox potential and pH in a net effect. A metal speciation 

distribution across different forms for iron is presented Figure 1-1, called a pourbaix or Eh-
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pH diagram. It is based on the fact that metal speciation is simultaneously sensitive to (i.e. 

influenced by) both Eh and pH. This double variable distribution diagram is used to describe 

the speciation of iron among various oxidized and reduced as well as protonated and 

deprotonated conditions (Hem and Cropper, 1960). 

The low Eh means reducing condition while high Eh means oxidizing condition. Each region 

is characterised by a particular range of Eh-pH and indicates the species that has highest 

concentration as a function of the Eh-pH variables of an aqueous electrochemical system. 

The lines, which are calculated according to the Nernst equation or and equilibrium 

constants, refer to boundaries of a region of the dominant ion (Hem and Cropper, 1960).  

As displayed in Figure 1-1, iron solubility is very low under a condition of pH above 4 with 

moderate oxidation where FeOH may precipitate, as well as a condition of very low Eh at a 

broad range of pH in the presence of S, resulting in precipitation of S- . Under low pH (i.e. 

pH<2) the iron is comparatively soluble as free Fe 2+ under very low Eh conditions or 

complexes of F3+ under high Eh condition (Hem and Cropper, 1960). 
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Figure 1-1: Pourbaix diagram for 1 M iron solutions (Hem and Cropper, 1960) 

According to O'Connor and Kester (1975), high water hardness exerts significant control on 

metal speciation. It is commonly thought that the degree of water hardness impacts the 

toxicity by forming insoluble carbonates or by adsorption on calcium carbonate, especially 

for the mixing zone (Prosi, 1981). The complexation and adsorption presumably are 

affected by some major ions, especially magnesium and calcium, by competing with trace 

metals for surface binding sites, including those on fish gills and other biotic surfaces 

(Millward and Moore, 1982). Furthermore, a study carried out by Oduleye (1976) showed 

that the permeability of cell membranes to solutes seem to be controlled by some alkaline-

earth ions, particularly calcium. Consequently, it has been repeatedly reported that there 

are decreases in metal toxicity which are attributable to increases in water hardness 

(Howarth and Sprague, 1978, Dunlop and Chapman, 1981, Stendahl and Sprague, 1982). 
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Charged dissolved organic matter present in water can act as ligands that can form some 

complexes and compounds with some of the metals. The organic matters have effects on 

the solubility of metals by controlling or influencing the solubility product, which can be 

represented by the equilibrium reactions (see Equation 1-8-Equation 1-11) (Elder, 1988). 

 MA𝑛(𝑠)
↔ M2+ + nA−2/𝑛 Equation 1-8 

 𝐾𝑠𝑝 = [M2+][A]𝑛 Equation 1-9 

Where M is a divalent metal; A is an anion e.g. (OH-, CO3
2-

, or S-), Ksp is solubility product. 

In presence of charged dissolved organic ligands (L), side complexation reaction can occur 

between the ligands (competing ligand) and the free metals ions (Equation 1-10), however, 

this side complexation reaction forces more still dissolution. Theoretically, this would end 

with equilibrium not only comply with solubility product constant of the solid phase of 

metals but also comply with stability constant of organic matters-metals complexes. 

 M𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1−8
2+ + L ↔ ML(𝑎𝑞) Equation 1-10 

 𝐾𝑠 =
[𝑀𝐿(𝑎𝑞)]

[M2+][𝐿]
 Equation 1-11 

where Ks is stability constant. 

Similarly, presence of charged dissolved organic ligands (L) can compete with metals sorbed 

on sorbing surface, metals complexed with ligands and also with sorbing surface to ligands 

or even with other system constituents. The results of this competition would be based on 

the concentration of these reactants and based on relative association constants of the 

complexes (Elder, 1988). Davis and Leckie (1978 as cited in Elder, 1988) observed that some 
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ligands such as glutamic acid and ethylene diamine can adsorb in a particular configuration 

in which binding sites directed outward toward the solution are strongly able to bind the 

metal. Contrary to this, some ligands such as picolinic acid or salicylic acid form complexes 

in such a way that functional groups involved in the surface bonding of metals are not 

available, leaving no binding sites available for metal ions. So the extent and even the trend 

of the influence of organic ligands on metal speciation is variable and depends on factors 

such as pH, Eh, metal concentration, organic matter concentration and type of organic 

matter present. 

1.2.3 Environmental quality standards for mining related metal(oid)s in water 

In recognition of the potential harmful effects of mining related pollutants in waters, 

environmental quality standards (EQS) have been developed to identify threshold 

concentrations below which no adverse effects are expected. Different regions have 

different EQS and associated regulations, but in the European Union (including the UK) the 

EQS are established under the Water Framework Directive (WFD; European Commission, 

2000). The EQS for the various elements that are relevant to mining pollution in water are 

briefly outlined in Table 1-1 below, with all EQS values stated being those set down in the 

Water Framework Directive (Standards and Classification) Directions (England and Wales) 

2015. 

Table 1-1: Environmental Quality Standards (EQS) for selected mining pollution related elements 
(WFD standards England and Wales (2015). 

Element Concentration (µg/l) Application detail 

Arsenic 
(As) 

50 

A mean (long term average of monitoring) applying 
to freshwater considering only the dissolved 
fraction obtained by filtration through a 0.45 µm 
filter. 
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Cadmium 
(Cd) 

≤0.08; ≤0.45 (Class 1) 

0.08; 0.45 (Class 2) 

0.09; 0.6 (Class 3) 

0.15; 0.9 (Class 4) 

0.25; 1.5 (Class 5) 

The EQS for Cd are determined according to water 
hardness class, in CaCO3 equivalents. The first (left) 
values are set as means (long term average of 
monitoring) applying to freshwater. The second 
(right) values are separate EQS set as the maximum 
allowable concentration in freshwater. The water 
hardness classes are: Class 1: < 40 mg/l, Class 2: 40 
to < 50 mg/l, Class 3: 50 to < 100 mg/l, Class 4: 100 
to < 200 mg/l and Class 5: ≥ 200 mg/l). 

Chromium 
(Cr) III 

4.7; 32 

The value 4.7 is the EQS set as a mean (long term 
average of monitoring) applying to freshwater. The 
value 32 is a separate EQS set as the maximum 
value that the 95th percentile of monitoring data 
can reach and still comply.  These values are EQS 
specific for the III (+3) valence state of Cr. 

Chromium 
(Cr) VI 

3.4 
A mean (long term average of monitoring) applying 
to freshwater. This is an EQS specific for the VI (+6) 
valence state of Cr. 

Iron (Fe) 1000 
Applies to all surface waters, considering total 
concentration. 

Lead (Pb) 1.2; 14 

The value 1.2 is the EQS set as a mean (long term 
average of monitoring) applying to freshwater. The 
value 14 is a separate EQS set as the maximum 
allowable concentration in freshwater. Both values 
apply to dissolved, bioavailable concentrations of 
Pb as calculated using the bioavailability calculator 
tool developed for the UKTAG*. 

Zinc (Zn) 10.9 

A mean (long term average of monitoring) applying 
to freshwater that is set for dissolved ‘bioavailable’ 
metal and to which the ambient background 
concentration should be added. The bioavailable 
fraction is calculated using the bioavailability 
calculator tool developed for the UKTAG*. The 
ambient background concentration for the Stoke-
on-Trent area (Humber basin/catchment area) is 
2.9 µg/l.   

* UKTAG = UK Technical Advisory Group; see  

https://www.wfduk.org/tagged/bioavailability-assessment-tool.  
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1.3 Forms of metals in soils and sediments 

1.3.1 Inner and outer sphere complexes and ‘Total’ vs 'available' metals  

Metals and metalloids are present in soils and sediments from natural sources as well as 

from pollution inputs and they occur in multiple forms. They can be associated with the 

mineral solids, the organic solids (or both), and be present in soil porewater. Metals can be 

directly bound to surfaces or be bound via intervening molecules or ions.  

Water molecules can readily act as ligands to bond or complex with most types of 

multivalent cations in the soil solution to form aquo-complexes, hence water can play an 

important role in interactions between ions and soil surfaces.  When there is one or more 

water molecules inter-posed between the functional group binding site of soil and the 

metal cation this is described as an outer-sphere surface complex (Tabatabai et al., 2005). 

When there is no intervening water molecule but rather a direct bond between ion and soil 

surface this is referred to as  inner-sphere surface complexes, which typically involve a 

covalent or ionic bond strongly connecting metal(loid) ions with the electron-donating 

group in the soil surface such as oxygen or hydroxide groups (Stumm, 1995). Electrostatic 

bonding mechanism is proposed as the main driver in outer-sphere surface complexes, so 

they are less stable than inner-sphere complexes that necessarily involve either ionic or 

covalent bonding or some combination of the two (Johnston et al., 2002). This has 

significance for how mobile or available a metal(loid) is in the soil system, with those bound 

by outer-sphere complexation being held less strongly than those held by inner-sphere 

binding. 

The total metal(liod) content refers to the sum of free and bound metal form in the soil. 

Total metal contents of soils therefore indicate the degree of contamination, but not 
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necessarily the risk (as not all metals will be available to organisms, see later). Typically, 

digestion processes of soil sample are used to release the metals in acid solution and after 

that the samples are analysed by one of many analytical techniques to determine the total 

metal content. Several procedures are described by the United States Environmental 

Protection Agency (USEPA) such as 3050, 3050B, 3051B and 3052 methods, which all have 

subtle variations in specifications and operation conditions and the recommended 

analytical technique but all follow the same overall process of acid digestion and analysis. 

Spectrometry, chromatography, and colorimetry are analytical techniques that are used to 

determine the total metal(liod) concentration in digest solutions (Sparks, 2003).  

The ability to speciate metal-contaminated soils is critical in predicting mobility and 

bioavailability of the metals and enhancing the remediation of contaminated soil. Although 

total metal contents of soils indicate the degree of contamination, it reveals no information 

on speciation or availability. Chemical extraction techniques, such as sequential 

extractions, provide useful information on quantities of metals species and/or their 

associations with certain soil components (Sparks, 2003). 

1.3.2 Associations in soil fractions: selective & sequential extractions; soil 

porewater 

The fraction of soil with which metals and metalloids are associated can strongly influence 

how readily they dissolve and come into soil solution and/or are accessible by plants and 

other organisms. Understanding these associations can help to reveal how available the 

elements are. For this reason, there have been many procedures and schemes designed to 

estimate the available metal concentrations and to determine the associations of metals 

within soils. 
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Soil porewater is often used as a measure of the available metal and metalloids (e.g. Lock 

and Janssen, 2001), while single solution extracts have also been widely used to quantify 

the elements in a soil sample that can be easily shifted into solution and are therefore 

readily available. Common single solution extractants include neutral salts such as 0.001M 

or 0.01M CaCl2 (e.g. (Degryse et al., 2007, Houben et al., 2013, Wendling et al., 2009) or 

organic chelators such as ethylene diamine tetra acetic acid (EDTA) (Kim et al., 2003). 

Multiple or sequential extraction schemes have been developed to determine associations 

of elements across multiple soil fractions. Common schemes include the following: 

The Tessier procedure includes five steps (Tessier et al., 1979). The steps in this scheme 

include determining the fractions of exchangeable, bound to carbonates, bound to iron and 

manganese oxides, bound to organic matter and the final step is residual. The problem is 

the comparability of the metals contents results of the exchangeable and carbonates 

bound forms that are considered to be the most important bioavailability and that means 

there is a problem with the precision (Ure et al., 1993). Frentiu et al. (2008) found poorer 

reproducibility of Pb extraction due to a great variance in the mineralogical structure of 

soil. The steps in this scheme are shown in Table 1-2. 

The Community Bureau of Reference BCR procedure has achieved a harmonization to the 

extractants and procedures for chemical speciation (or fractionation) of elements in soils 

and sediments. Certified standard soils have been prepared which are used for making 

certification of their EDTA and acetic acid extractable contents of some heavy metals; 

consequently, they can help to make agreed sequential extraction procedure (Ure et al., 

1993). However, in the second step of the BCR scheme, the concentration of the extractant, 

the pH of the extracting solution and the speed of the centrifugation is not optimum for all 
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elements and this can have a negative effect on the reproducibility and extractability 

especially for Cr, Cu and Pb extraction (Gwendy, 1996, Rauret et al., 1999, Quevauviller, 

2002). The steps in this scheme are shown in Table 1-3. 

The Maiz extraction procedure includes three steps, targeting the so-called mobile, 

mobilisable and residual fractions. A significant time saving was accomplished by using this 

method compared with e.g. the BCR approach (Maiz et al., 1997). However, there was a 

difficulty to perform a direct comparison between the result of this method with Tessier 

and BCR procedures because each method uses particular extractants with specific 

concentrations (Zimmerman and Weindorf, 2010), and this may be the reason why the 

Maiz method has not been widely used in soil studies. The steps in this scheme are shown 

in Table 1-4. The Geological Survey of Canada (GSC) procedure includes specifically 

targeting the Fe and Mn oxide fractions within the amorphous oxyhydroxides and 

crystalline oxides (Gwendy, 1996). The chemical reactivity of amorphous iron 

oxyhydroxides [Fe (OH)3 .nH2O] is more than crystalline forms. The procedure uses the 

similarity of the chemical properties and ionic radius of Fe and Mn to target both metals in 

their oxides. This results in the extraction of amorphous iron oxyhydroxides, together with 

that of manganese oxides (Gwendy, 1996). This sequential extraction scheme achieves a 

good precision for a given test soil, with the range 2-10% RSD typically reported. However, 

metals bound to the organic fraction are potentially underestimated because they are 

extracted after the extraction of the amorphous compounds and Mn oxides. This is because 

the reagent involved, hydroxylamine, is also able to extract some metals bound to the 

organic matter (Benitez and Dubois, 1999). The steps in this scheme are shown in Table 

1-5. 
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The modified GCS Benitez-Dubois procedure includes six steps for exchangeable, 

carbonate, organic matter, Mn-oxides and amorphous compounds, Fe-oxides and residual 

fractions. It also uses a different order in the extraction reagents, with the reagent targeting 

the organic matter being moved in the sequence to before the step that targets Mn-oxide 

bound metals so to avoid the problem of underestimating the organic bound fraction 

(Benitez and Dubois, 1999). However, the selectivity of extractant is still not high. This is 

because part of the metals bound to organic matter can again be dissolved by the 

hydroxylamine reagent. Neither Na4P2O7, nor H2O2/HNO3, have been shown to be optimum 

extracting reagents in the procedure for organic bound metals. The reasons are that 

Na4P2O7 is unable to dissolve some organic matter forms, while H2O2/HNO3 can dissolve 

other mineral phases, for instance, some sulphide compounds (Benitez and Dubois, 1999). 

The steps in this scheme are shown in Table 1-6. 

Therefore, no single or sequential extraction procedure can be considered as ideal for every 

investigation, and thus a decision needs to be made in each investigation about the most 

appropriate and useful approach. All of the schemes produce operationally defined 

fractions rather than truly reflecting the target fraction, which must always be kept in mind. 

The decision about which extraction procedure to employ in a particular investigation 

therefore must be based on considerations such as the principal soil fraction(s) of interest, 

the speed (and thus time and expense) of the procedure, the compatibility of extractant 

reagents with available analysis equipment, and the comparability of the results with those 

from other studies. The last point, comparability, is one of the main reasons why the BCR 

and, to a lesser extent, the Tessier schemes remain very widely used and reported. 
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Table 1-2: Tessier sequential extraction scheme, OAc symbols to CH3COO. 

Steps Fraction label Reagent 

1 Exchangeable 1M MgCl2 at pH 7 

2 Bound to Carbonates 1M NaOAc adjusted to pH 5.0 with HOAc 

3 Bound to Fe and Mn Oxides 0.04 M NH2OH.HCl in 25% HOAc 

4 Bound to organic matter HNO3+H2O2 then 3.2 M NH4OAc in 20% HNO3 

5 Residual Metals HF-HClO4 

 

Table 1-3: BCR sequential extraction scheme, OAc symbols to CH3COO. 

Steps Fraction label Reagent 

1 Exchangeable and Bound to 
Carbonates 

0.11 M HOAc 

2 Bound to Fe and Mn Oxides 0.5 M NH2OH.HCl at pH 1.5 with HNO3 

3 Bound to organic matter H2O2 then 1.0 M NH4OAc 

4 Residual Metals. Aqua regia 

 

Table 1-4: Maiz extraction scheme, TEA symbols triethanolamine and DTPA symbols diethylene 
triamine pentaacetic acid.  

Steps Fraction label Reagent 

1 mobile 0.01 M CaCl2 

2 mobilisable 0.005 M DTPA+0.01M CaCl2+0.1 M TEA at pH 7.3 

3 Residual Metals. Aqua regia 

 

Table 1-5: GSC sequential extraction scheme, OAc symbols to CH3COO. 

Steps Fraction label Reagent 

1 Adsorbed, Exchangeable, and 
carbonate 

1.0 M NaOAc adjusted to pH 5, 
conduct a second leach with 1.0 M 
NaOAc 

2 Amorphous Fe, Mn oxyhydroxide 0.25 M NH2OH.HCl in 0.05 M HCl 
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3 Crystalline Fe, Mn oxyhydroxide 1 M NH2OH.HCl in in 25% HOAc 

4 Oxidisable (organic matter and 
sulphide fractions) 

0.75 g of KClO3, 12 M HCl, 4 M HNO3 

5 Residual Metals. 12 M HCl, 16 M HNO3 

 

Table 1-6: Modified GCS Benitez-Dubois sequential extraction scheme, OAc symbols to CH3COO. 

Steps Fraction label Reagent 

1 Exchangeable 0.1 M NaNO3 

2 Adsorbed 1M NaOAc in pH 5, with HOAc 

3 Bound to organic matter 0.1 M Na4P2O7 

4 Amorphous Fe, Mn Oxyhydroxides 0.25M NH2OH.HCl in 0.5 M HCl 

5 Crystalline Oxyhydroxides 1M NH2OH.HCl in 25% HOAc 

6 Residual Metals. HF, HNO3, HClO4 

 

In addition to determining associations and fractionations by extractions, direct 

observation methods can also be employed such as molecular fluorescence spectroscopy, 

Infrared spectroscopy IR, X-ray diffraction and, synchrotron X-ray methods. The X-ray 

Absorption Near-Edge Structure spectroscopy (XANES) is a technique used to obtain 

information about the local structure around a specific a metal. Minkina et al. (2019) 

investigated the local structure of Haplic Chernozem saturated with Cu2+ and Pb2+ ions 

using X-ray absorption spectroscopy (XANES). They determined the mechanism of Cu2+ and 

Pb2+ ions interaction with soil phases and the nature of bonds formed by metal atoms. 

However, as with other methods of assessing element or mineral associations, the 

mentioned direct techniques may introduce artifacts due to sample alterations; 

additionally, their detection limits are often far above the background concentrations of 
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the metals contained in the soils (Sparks, 2017). Molecular fluorescence spectroscopy and 

Infrared spectroscopy IR methods are limited to those compounds that fluoresce or have 

IR active bonds, while the XRD is limited to crystalline forms (D'amore et al., 2005). 

 

1.3.3 Importance of texture, pH, Eh, and organic matter for metal forms & 

availability 

The texture, pH, oxidation-reduction potential (Eh) and organic matter content of soils are 

very important in determining how readily soil elements come into soil solution.  

The effect of soil texture on metal solubility in soils is best expressed in terms of the 

partition of soils into clay, silt and sand portions which are in turn defined according to 

particle size fractions of the soil (Qian et al., 1996). These components are significant 

adsorption surfaces for heavy metals in the soils. According to Andersson (1979), clay soil 

holds a high amount of metals when compared to sandy soil because of the increased 

surface area (i.e. potential binding area) of the much smaller clay sized particles and 

because of the greater charge density on clay particles; for example, the adsorption of lead 

and other metals to the soil components separately can be ranked as clay > silt > sand. 

The high surface area given by clay for adsorption results in the accumulation of metal in 

the clay fraction and metals are naturally part of clay minerals, being within the clay lattice, 

but adsorbed metals on clay minerals can also become occluded in the clay lattice over 

time. This can complicate distinction of whether metals are adsorbed to or bound within 

clay. A high degree of extractability is found in sand fractions of the soil and this can be 

because of the low surface binding strength of these fractions for the metals (Qian et al., 

1996). 
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Soil pH is considered the master variable concerning metal behaviour in soil systems 

(McBride, 1994) and is the most important factor affecting metal speciation in soils (Sposito 

et al., 1982). Generally, increasing pH results in increasing  cation binding over a pH range 

of 1 to 2 units called adsorption edge (Davis and Hayes, 1986) while anion adsorption tends 

to decrease with increasing pH. According to Yin et al. (1996), the solubility of metals may 

increase at higher pH despite this, due to increasing binding with dissolved organic matters 

(DOM) which can mobilise metals in soil; the solubility of solid organic matter can increase 

as the pH increases (You et al., 1999). The mechanism behind the increased binding of 

cations at higher pH is that increasing pH leads to creating more deprotonated sites on soil 

solids and then metals in solution can react at these sites. In addition, the proton 

competition for fixed charge sites is less at higher pH values (Selim and Sparks, 2001). At 

high pH, metals may simply precipitate out of solution onto soil solids (Barrow, 1986). 

Redox reactions in soils are controlled by the aqueous free electron activity (Sposito, 1983). 

Redox potentials in dry, well-aerated soils are typically high (e.g. an Eh>300 mV), while Eh 

of soils prone to waterlogging and rich-organic matter soils are low (e.g. an Eh<300 mV) 

(Evans, 1989). Several impacts have been recorded at different Eh. Sims and Patrick (1978), 

found decreasing in the concentration of soluble Zn in the soil pore water at low Eh (0-150) 

mV. Reducing of metal sulphates to insoluble sulphide occurs at low Eh<170 mV by acting 

of bacteria (Bauld, 1986, Sposito and Page, 1984) as cited by (Clark et al., 1997); contrary, 

sulphide minerals are normally oxidised to sulphates at higher Eh levels(Evans, 1989). The 

exchangeable forms of some metals in particular cases increase at low Eh (Bjerre and 

Schierup, 1985). Chuan et al. (1996) thought that under reducing conditions, the solubility 

of Pb, Cd and Zn in soils increase because of dissolution of Fe–Mn oxyhydroxides which 
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lead to release of adsorbed metals as a mechanism. Therefore several effects occur for Eh 

simultaneously with pH on the metal form in the soil (John and Leventhal, 1995), which is 

logical considering that pH and Eh are linked as shown in the full version of the Nernst 

equation (Stumm and Morgan, 2012) (see Equation 1-12 and Equation 1-13). 

 

 𝑎M𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑑 + 𝑚𝐻+ + 𝑧𝑒−  ↔ 𝑏𝑀𝑟𝑒𝑑𝑢𝑐𝑒𝑑 + 𝐻2𝑂 Equation 1-12 

 E = E0 +
0.0591

𝑧
 𝑙𝑜𝑔

[M𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑑]𝑎

[M𝑟𝑒𝑑𝑢𝑐𝑒𝑑]𝑏
−  

𝑚

𝑧
0.0591𝑝𝐻 Equation 1-13 

 

Organic matter has an important influence on metal binding although the amount of 

binding by organic matter is small compared to that of clay in mineral soils typically used 

for agriculture (Zimdahl and Skogerboe, 1977). This is not the case in organic matter rich 

soils or peat soils (i.e. soils with organic matter >30%), as in these soils organic matter can 

bind more metals than the clay components. The tendency of metals to bind with organic 

components in both the solid and solution phases of soil are very significant in metal 

binding by organic matter (Rieuwerts et al., 1998). Metals may form complexes with ligands 

which have varying affinities for adsorption onto the soil surface, in addition complexation 

of metals with solid phase organic matter, as well as complexes of metals with low 

molecular weight organic components for example fulvic acids (Rieuwerts et al., 1998). As 

a consequence, organic matters are an important factor in the mobilisation of metals in 

soil. The retention of metals by organic matter seems to involve both adsorption and 

complexation; specifically inner sphere reactions may happen in addition to ion exchange 

(Evans, 1989). 
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1.3.4 Soil guideline levels, thresholds or PNECs for appropriate metal(oid)s 

Guidelines and regulations for metal/metalloids in soils are limited and are disputed (and 

this is even more so for sediment), but some thresholds have been determined. 

The UK Environment Agency recognised the need to develop assessment criteria to protect 

soil and organisms live in it, therefore, soil screening values (SSVs) were proposed to assess 

the ecological risk for soil contamination. The UK Environment Agency defined SSVs as 

“concentrations of chemical substances found in soils below which there [were] not 

expected to be any adverse effects on wildlife such as birds, mammals, plants and soil 

invertebrates, or on the microbial functioning of soils.’ (Ian Martin, 2017). 

Soil predicted no effect concentration (PNEC) is a concentration in the soil below which a 

chemical or element is not anticipated to cause harm to the terrestrial ecosystem. PNEC or 

soil screening values can be used as a trigger value to prompt evaluation of the potential 

for environmental risk; i.e. concentrations above these values may indicate that an 

ecological risk is posed by the element concerned. Site-specific soil PNECs can be generated 

for Co, Pb, Ni, Cu and Zn using a spreadsheet that has recently been developed by the 

consulting company Assessing Risks of Chemicals consulting (ARCHE) and measured site-

specific soil properties (ARCHE, 2014). The spreadsheet calculator can then be used to 

calculate the potentially affected fraction (PAF) of soil organisms as well as the Risk 

Characterisation Ratio (RCR, i.e. measured concentration/PNEC) for those metals in 

relation to the test soils.Non-site-specific screening levels for Cd, As, Fe and Mn for 

different protection goals are shown in Table 1-7. 
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Table 1-7: Non-site-specific screening levels for Cd, As, Fe and Mn for different protection goals 

Element ESSL* 
(mg/kg) 

Goal of protection Reference 

Cd 0.77 Wildlife-Avian (EPA, 2005b) 

Cd 0.36 Wildlife-Mammalian (EPA, 2005b) 

As 60 Earthworm (Efroymson et al., 1997) 

As 50 Plant on grassland areas (BBodSch, 1999). 

Fe 200 Soil microorganisms and 
microbial processes 

(Efroymson et al., 1997) 

Mn 100 Soil microorganisms and 
microbial processes 

(Efroymson et al., 1997) 

Mn 220 Plants (EPA, 2007) 

Mn 450 Soil invertebrates (EPA, 2007) 

* ESSL = Ecological soil screening level. 

1.4 Remediation of water impacted by mines 

A number of approaches have been used to remediate mining impacted waters. A popular 

and successful approach is to channel mine drainage into lagoons and reed beds to 

promote removal of the suspended sediment and metals prior to entry into a river. Table 

1-8 lists some examples of successful reed bed treatments (Brown et al., 2002). 

The reed bed lagoon system works by performing some process. The land is planted with 

reeds which slow the flow and allow iron to oxidise, hydrolyse and precipitate in a 'natural' 

environment. Filtration of minewater within the soil and subsoil as well as through the reed 

stem bases and roots occur. Ochre becomes confined and stays within the reed filter, while 

the resulting low-particle water flows onwards. A Second process is settlement of the 

particles formed during first step by moving the particles downward to the ground of the 

reed bed (Wiseman, 2002). Reed bed systems can be highly successful, with another 
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example being Mouse Water in South Lanarkshire, Scotland, where inflowing iron 

concentrations above 25 mg/l were reduced to below 1 mg/l (Johnston et al., 2008). One 

limitation, however, is that reed beds require considerable land area to be available for 

them to be constructed and implemented (e.g. 8400 m2 for the Mouse Water example). 

Table 1-8: Successful reed bed treatments schemes for mine waters 

treatment system 
location 

minewater type type of system year of 
completion 

Acomb, Northumberland 

  

net alkaline drift 
minewater* 

settlement lagoons 
and reed beds 

2001 

 

Blaenavon, Gwent neutral pH deep coal 
minewater 

surface flow 
wetland 

2001 

Polkemmet, West 
Lothian 

deep minewater, 
pumped 

 

hydrogen peroxide 
addition, 
settlement and 
reed beds 

1999 

 

Wheal Jane, Cornwall 

 

acidic metal mine 
drainage 

Aerobic reed beds, 
anaerobic cells and 
rock filters. 

1994 

Old Meadows, Bacup, 
Lancashire 

acidic drift mine 
discharge 

pH adjustment with 
NAOH , settlement 
lagoons and reed 
bed 

1999 

*Net Alkaline minewater is characterised by fact that the total alkalinity>total acidity 
(Hedin et al., 1994). 

Although iron has often been the focus of mine water treatment processes such as the 

cases described above, the other contaminants outlined in Table 1-1 (e.g. As, Cd, Cr, Pb, Zn, 

and additional contaminants) are of concern and remediation efforts also target these. The 

treatments for Fe do remove these elements also to a greater or lesser degree, and there 

are some additional treatments in use or testing. For example, As removal from acid mine 

drainage by encouraging activity of sulphate reducing bacteria has been demonstrated 
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(Serrano and Leiva, 2017), while nano-metal oxides have proven effective for removal of 

Cd and other metals from waste water via adsorption (Kumar and Chawla, 2014). 

Contamination of water and soil by Cd relesed from Zn mines has also been a major 

problem in some areas, such as north west Thailand, and this has caused harmful impacts 

to human health and the environment and has triggered remediation trials using biochar 

(Kosolsaksakul et al., 2018, Kosolsaksakul et al., 2014). 

 

1.5 Remediation of soils impacted by mines 

Soils impacted by mining related pollution (e.g. those described in section 1.3) need to be 

remediated to render them less of a risk to human health and the environment. The success 

of any remediation will depend on both the extent of the pollution and on the desired end 

use of the site. That is, a site to be used for agriculture or human dwellings requires a much 

higher level of remediation and restoration than a site to be used as a parkland or as an 

industrial site. The intended end use therefore needs to be considered in any remediation 

strategy (Wagner et al., 2016). However, regardless of the end use, there are some 

common issues that need to be addressed in the remediation process of any mining 

impacted site, including the issue of making the surface soil suitable for some use. Some of 

the more widely used remediation strategies are outlined in the following sections. 

1.5.1 Soil removal or capping 

For small areas, contaminated soils can be removed and placed in special landfills, but more 

typically contaminated soils or mining wastes are capped with a lining material such as clay  

and then ‘clean soils’ are placed over top (Guide, 2009).  
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What materials are available at or near the site as well as the toxicity of the material to be 

capped are very important in choosing the type of cap. The kinds of cover or cap can be 

divided broadly into categories of simple, composite and complex. Simple cover comprises 

optimally 30 cm of soil obtained at/near the site. The cap should be graded to a gentle 

slope to encourage runoff, and should be sufficiently compacted. The roughness of the 

surface of the slope should enhance vegetation, and not promote pooling of water and it 

should be vegetated by seed sowing or direct planting once it is in place (Lottermoser, 

2010). Composite covers include at least two layers of various soil types. The lower layer 

lying next to the waste rock or tailings is characterized by fine-grained, high density and 

low permeability (e.g. clay material). It prevents water from the surface from seeping into 

the contaminated pile and forming acid drainage, while the upper layer is formed of a 

coarser material and its density is lower (e.g. soil/rock layer which holds moisture and 

encourages plant growth, as well as avoids erosion). The upper layer should be vegetated 

once it is in place (Hutchison and Ellison, 1992). Complex cover contains interlayered 

synthetic filter fabrics and fine and coarse material. Examples for synthetic geomembrane 

liner are polyester geotextile, polypropylene geotextile, polyolefin geomembranes and 

Sodium bentonite geosynthetic clay liner (GCL).  The idea behind this cap is also to block 

water infiltration into the reactive material below as well as to encourage plant growth on 

the top (Bill Owens, 2002).  

Ideally, at least for mines operated in recent times and in the future, the clean soils would 

come from the site originally; i.e. after having been removed and stored prior to the main 

mining operations starting. However, this can be problematic depending on budget and 

local conditions, as it has been noted that restored mining sites often have poor soil fertility 
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because of the inability to preserve local, removed topsoil securely during the mining 

process (Ghose, 2004). It may also be that significant variations happen in the chemical and 

physical nature of the wider land system due to the disturbance of the overburden that is 

caused by surface mining (Rai et al., 2011). Soils may therefore alternatively be imported 

from elsewhere. Soil fertility issues still often need to be addressed in such remediation 

measures, with pH and organic matter being important factors. Organic matter is an 

important source of nutrients and influences soil structure, while an optimum pH of ~ 6.5 

maximises nutrients availability levels and minimises toxic metal availability to plants. As 

discussed earlier, the pH controls the plant growth by its influence on the solubility of the 

chemical parameters such as nutrients (Harris et al., 1996).   

 

1.5.2 Soil phytoremediation 

In cases where capping or other remediation approaches are not viable or available, an 

approach of phytoremediation may be considered. Much research has been undertaken 

into phytoremediation of mining contaminated soils. 

Phytoremediation is a plant-based remediation approach in which the toxic wastes are 

stabilized and/or concentrated and extracted from the soil by certain plants. Plants that 

are able to extract and concentrate high levels of pollutants are called hyperaccumulators 

(i.e. plants that can assimilate unusually high levels of metals) (McIntyre, 2003). 

Phytoremediation can be considered to have five strategies; phytoextraction, 

phytodegradation, phytostabilisation, phytovolatilization, and rhizofiltration. However, the 

commercially important strategies to date are only phytoextraction, rhizofiltration, and 

phytostabilization (Thakur et al., 2016, Salt et al., 1995). 
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In the phytoextraction process, particular plants called hyperaccumulators uptake some 

toxic ions from soil; toxic ions are directly translocated into the plant biomass through the 

roots (Cornish et al., 1995). By relatively inexpensive ways, the harvested plant parts can 

be combusted and disposed of as small amounts of ash and some elements can be 

recovered through extraction procedures if they are commercial valuable. The best 

candidates for phytoextraction are plants which have a sizable ground biomass and that 

can be harvested several times a season to eliminate toxic elements from the site (Brown, 

1995). 

Degradation of some contaminants can occur certain plants with the help of enzymes 

produced by the plants and plant-associated microorganisms (Singh and Singh, 2019). 

Phytostabilisation is the process by which the growth of plants, particularly their roots, 

stabilises waste mounds or contaminated soil. This prevents or reduces wind and water 

erosion of the contaminated materials and thus inhibits their further distribution within 

the environment. Plants that are tolerant to high element concentrations are suitable for 

this, regardless of whether they are hyperaccumulators. Plants vary in the internal 

mechanisms that allow them to cope with elevated levels of contaminants. Typical 

processes involve enzyme activity followed by storing of contaminants in plant vacuoles or 

exclusion from uptake (Pilon-Smits and Freeman, 2006, Champagne, 2007). 

Phytovolatilization is an elimination pathway in which some contaminants can be removed 

by some plants. For example, Cattail was found to be a suitable species to completely 

removed Se from the aqueous system (Nattrass et al., 2019). 



52 
 

Some contaminants can be absorbed and accumulated in the rhizosphere using plant roots. 

This process is called rhizofiltration. For example, Zea mays was found to have a high 

potential for concentrated of the Mercury metal (Benavides et al., 2018). 

Phytoremediation has been successfully employed at sites with contaminated soils or static 

water. For example, lead concentration in surface soil in Bayonne, New Jersey, USA 

decreased by grown three crops (harvested after six weeks) of Brassica juncea from 2,300 

to 420 mg/kg (Henry, 2000), another example, in Dorchester site, Boston, USA Pb 

concentration was reduced from 984 to 644 mg/kg in surface soil, after three crops of 

(harvested after six weeks) Brassica juncea (Blaylock, 2000). Many plants are inserted in 

Table 1-9 the table below have proven to be successful at toxic waste sites. 

Table 1-9: List of some hyperaccumulators plants. 

Plant species  Metal Metal 
accumulation  

mg /kg 

Reference 

Alyssum corsicum  Ni 18100 (Li et al., 2003) 

Schima superba  Mn 62412.3 (Yang et al., 2008) 

Azolla pinnata  Cd  310 - 740 (Rai, 2008) 

Euphorbia 
cheiradenia  

Pb 1138 (Chehregani and Malayeri, 
2007) 

Pteris vittata.  As 

Cr 

8331 

20675 

(Ma et al., 2001) 

(Kalve et al., 2011) 

P. cretica As  2200–303 (Zhao et al., 2002) 
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Eleocharis acicularis Zn 

Cu 

As 

Cd 

14200 

20200 

1740  

239  

(Sakakibara et al., 2011) 

 

The efficiency of a plant for phytoextraction, i.e. the capacity of the plant to accumulate 

metal, and its viability/limitations for phytoremediation depend on some factors 

corresponding to each specific plant such as Extraction Coefficient; Translocation Factor TF, 

Bioaccumulation Factor BAF, the level of metal uptake of hyperaccumulating plant to a 

certain metal compared with non-hyperaccumulating plant grown in the contaminated soil,  

(Ali et al., 2013, Rascio and Navari-Izzo, 2011). 

Translocation factor (TF) of metals from root to different parts of plant was defined as ratio 

of metals in plant shoot to that in plant root The values of TF >1 for a metal indicate 

sufficient metal translocation of that metal from root to shoot of a certain plant. Extraction 

Coefficient refers to as ratio of total metals in plant to that in soil, hyperaccumulating plant 

uptake should be also sufficient, it should be higher than the total metal concentration in 

the soil i.e. the value of Extraction Coefficient greater than one. Or, as an alternative, the 

used hyperaccumulating plant at least should hyperaccumulate an equivalent to the 

phytoavailable mount of the contaminant. Therefore, the bioaccumulation Factor BAF, 

which was described as ratio of total metals in plant to the bioavailable in soil, should be 

greater than one (Khaokaew and Landrot, 2015). The threshold concentration for defining 

hyperaccumulation by a plant is generally 2 or 3 orders of magnitude greater than that of 

most species growing on “normal” soils and at least one order of magnitude greater than 
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the usual range found in other plants from metal-enriched soils (Neilson and Rajakaruna, 

2015). 

Furthermore, the resistance of the plant to different types of environmental stress, that is 

the survival rate of plant species up to the final harvest day, is an important factor. The 

hyperaccumulating plants that have high survival rates up until the final harvest day are 

likely to be the most efficient for treating the impacted fields. The numbers of harvest 

repeats required to remove a target metal from most impacted fields are affected by the 

planting densities and biomass of the plants (Khaokaew and Landrot, 2015). 

1.5.3 Immobilisation of metal(oid)s 

An alternative approach to removing metals by phytoremediation or by soil removal is to 

immobilise metals in place within soils. In this approach the aim is not to remove them but 

to restrict their mobility and availability to the point that they are no longer 

environmentally active and therefore no longer a risk to ecosystem health (Bolan et al., 

2014). A number of materials have been/ are being trialled for this approach, including red 

mud (a bauxite processing residue), hematite, biochar, drinking water treatment residuals 

(WTR) and zeolites (e.g. Gibbons and Gagnon (2011); Garau et al. (2007); Garau et al. 

(2014); Makris et al. (2009); Silvetti et al. (2014)). The successes of the immobilisation 

treatments, however, have been inconsistent. For example, the long-term efficiency of 

gravel sludge, a waste product of the gravel industry, with red mud, that have been trialled 

for immobilising Cd, Pb, and Zn in contaminated arable soils close to a former Pb/Zn 

smelter, appeared to be a realistic and practical measure for the mentioned land and it is 

best in combination with metal-excluding cultivars (Friesl-Hanl et al., 2009). A study carried 

out by Garau et al. (2014) aimed to evaluate effectiveness of amendments at stabilising As, 
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Cd, Cu, Pb and Zn in a sub-alkaline contaminated soil, with the amendments including red 

mud (RM), hematite (Fe2O3), an iron-rich water treatment residual (Fe-WTR) and 

amorphous Al hydroxide (Al-OH). The authors found that all the amendments except RM 

immobilised As whilst only Al-OH immobilised the heavy metals examined. In another study 

was carried out by Kumpiene et al. (2013), As-contaminated soil was treated with Fe 

without combination and in combination with peat, biosolids from sewage sludge, coal fly 

ash, or gypsum. Soil amendment with only iron showed 99 % efficiency for As 

immobilization, but only down to a 50 cm depth. The risk of As dissolution was substantially 

increased as a result of the slightly reduced soil conditions in deeper layers. The soil 

amendments Fe combined with peat was best that reduced dissolved As in soil solution to 

what was considered as the safe levels (Kumpiene et al., 2013).  

The effects of these amendments on soil properties and processes (including microbial 

processes) have not been fully explored. However, the addition of organic amendments 

can increase enzyme activity such as urease, phenylboronic acid-protease, β-glucosidase, 

alkaline phosphatase and arylsulphatase (Park et al., 2011). Kumpiene et al. (2009) found 

that the amendment combination also helped soil recovery from contamination through 

increased sustained plant growth, soil enzyme activity, and microbial biomass and 

respiration (all of which are indicative of increased soil fertility and microbial function).  

Even after ten years of the treatment by the fly ash, which has a long-term neutralizing 

capacity, the pH of the treated soil stayed neutral rather than decreasing to pre-treatment 

low pH levels (Bolan et al., 2014). This indicates that in-situ immobilisation with 

amendments such as these can be a potential long term resolution to a soil contamination 

problem. 
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1.5.4 Using ecotoxicology to assess impacts and remediation success of 

contaminants in water and soil 

Ecotoxicology is the study of the harmful influence of contaminants upon ecosystems and 

includes influences on the individuals and consequential influences at the levels of 

population and above (Walker et al., 2016). A dose-response relationship, that is, the 

relationship between the adverse effect on living organisms as a result of exposure to a 

chemical and its concentration, is of central importance in both toxicology and 

ecotoxicology. It is based on the concept that a chemical (or substance) is poisonous only 

when its concentration rises high enough to cause harm (Walker et al., 2016). This approach 

can also be used to assess toxicity (harm) of mining impacted water or soil, i.e. the mine 

contamination can be evaluated through its ecotoxicity. Ecotoxicity testing can be carried 

out with terrestrial organisms or aquatic organisms, depending on the environmental 

media that is thought or known to be contaminated. For terrestrial assays with a focus on 

soil environments, commonly employed test organisms include  plants such as ryegrass and 

soil dwelling  invertebrates including earthworms, springtails, and other beneficial 

arthropods. Toxicity testing with aquatic organisms, i.e. to test toxicity of impacted aquatic 

environments, can be conducted to assess impacts arising from direct absorption of 

contaminants from water or tests concerned with sediment toxicity (Valavanidis and 

Vlachogianna, 2015). Common aqatic test organisms are crustaceans such as Daphnia 

(water fleas) and fish such as rainbow trout (Oncorhynchus mykiss).  

Several ways are used as an endpoint in testing the toxicity. The most commonly recognised 

measure of ecotoxicity tests (test endpoint) is lethality (i.e. death), which can be quantified 

by e.g. the median lethal concentration or ‘LC50’. However, more sensitive and subtle 

endpoints are also important and are routinely used. Behavioural effects of a chemical on 
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reproductive, biochemical, and physiological processes are also used as measures of 

toxicity, with the endpoint quantified as the concentration causing the median  the median 

adverse response or decreasing the biological response by 50% (known as the  ‘EC50’). It is 

thought that population drops may be the result of sublethal, such as growth, instead of 

the lethal effects of chemicals (Council, 2014). The methods mainly depend on exposing a 

certain living organism to different concentrations of contaminants and observed the 

impact on the organism. The collected data from this method is used to extrapolate the 

concentration of the contaminant that lead to an adverse impact, such as mortal, sublethal 

effects, such as those on growth and reproduction of the organism. The method can also 

be used in an approach of  exposing a selected test organism to effluent or waste at 

different dilution levels and observe its toxicity or the hostility of the resulting environment 

to the test organism (Walker et al., 2016). This has been done successfully to assess the 

toxicity of mining waste effluents to rainbow trout (Gerhardt, 1998). 

The success of the soil remediation process can also be assessed through ecotoxicological 

testing, for example, Yoon et al. (2019) examined weight increase, mortality, and 

bioaccumulation of heavy metal in the earthworm (Eisenia fetida) to assess remediation of 

heavy metal polluted soil by applying limestone, acid mine drainage sludge, and steel slag 

with varied application ratio (1, 3, 5%). 

Similarly, ecotoxicological approaches can have an essential role as an indicator in 

quantifying the risks of metals to biota before and after remediation of metals 

contaminated water. Chalkley et al. (2019) applied Macroalgae as spatial and temporal 

bioindicators of coastal metal pollution following remediation and diversion of acid mine 

drainage. 
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The ecotoxicological approaches based on the use of biomonitors and biomarkers 

(particularly biomarkers that are highly specific for a metal) are valuable for knowing the 

exposure and possible effects of that metal. This is a significant reason for utilizing 

biomarkers in environmental risk assessment; for example, Araujo et al. (2019) studied 

bioaccumulation and morphological of lead on inhibition of aminolaevulinic acid 

dehydratase (ALAD).  

 

1.6 Conclusions and knowledge gaps  

This literature review has indicated the current state of understanding on this topic. It has 

aimed to identify the key processes leading to contamination from mining areas and the 

factors that control contaminant metals and metalloids in the soil and water environments. 

The literature review has identified the following research gaps:  

1.6.1 Previously under-researched location of the study 

Few studies have examined the metal contamination in mining-affected sites at 

Staffordshire. Bradley and Cox (1986), (1987) studied the distribution and partitioning of 

base metals contamination at historic mining area in North Staffordshire. However, the 

researchers sampled the floodplain soils, which have a different scenario from that in this 

study. Mehra et al. (1999) examined the distribution and bioavailability of metals in soils in 

the vicinity of a copper works in Staffordshire, UK. The researchers investigated soil 

contamination of only Cd, Cu, and Zn. The contamination source was through aerial 

deposition, not through acid (or other) mine drainage as the case in this study. The 

literature review indicates that no previous research has investigated the metal 

contamination in the study site (Parrot’s Drumble, in Talke Pits in Kidsgrove, Staffordshire). 
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Therefore, what the extent and the nature of the contamination in Parrot’s Drumble, Talke 

Pits area is unknown and considered as a contextual research gap, which is crucial for 

monitoring and restoration of this area. 

1.6.2 Unknown extent of environmental impact  

Although the study site has not been the subject of scientific investigation, it is clear to 

agricultural and recreational users of the area that an ongoing environmental impact exists 

and that this is likely linked to the former mining activities conducted there. The extent and 

environmental implications of that impact therefore need to be determined and 

understood in order for best management practises to be identified and implemented.  

 As previously mentioned in the literature review, when oxidation of sulphide-minerals 

occurs, acid mine derange is generated. The acid mine derange is characterised by low pH 

and high concentrations of metal(loid)s, therefore the study site may have high levels of 

metal contaminants in its soils and waters and they may also have adversely low pH. 

However, several factors, which vary from site-to-site, can have a significant impact on the 

acidity of any mine drainage or seepage generated and on the processes that govern metals 

contamination in the mining-affected area. Of those factors, the available amount of 

oxygen and water and the mineralogy of local rock material at the site are important to 

determine when developing an understanding of mining legacy impacts and  the metals 

contamination (Akcil and Koldas, 2006). In a former Pb and Zn mining in North Yorkshire, 

UK, carbonate-rich rocks reacted with and neutralized the acidity generated by sulphide 

oxidation (Jones et al., 2013). While issues of acid and other polluting forms of mine 

drainage were a major problem at the Wheal Jane mine, Cornwall, UK (Whitehead and 

Neal, 2005). As Mulligan and Yong (2004) stated, metals can be fixed onto different 
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minerals through different mechanisms, for example, Co and Zn can embed in hexagonal 

cavities of Montmorillonite while Zn, Cd, Cu, and Pb adsorb onto illite through 

chemisorption at edges mechanism. Consequently, every mining impacted site is unique to 

some degree in terms of the factors of underlying geology, ore type, resource extracted, 

closure activities (if any), over bearing soil type and hydrology, and therefore too the extent 

and nature of the associated risk. Therefore, to get precise knowledge about the nature 

and extent of mining-impact at the study site, there is a need for characterising the location 

across all of these aspects and particularly in terms of contaminant metals(loid)s and their 

toxicity. 

1.6.3 Pooling characterisation tools for evaluating the contamination in mine-

affected sites  

It is crucially important to understand what the problems are or what makes the water and 

soils in the mining-affected sites ecologically vulnerable. There is a need for assessing the 

contamination to understand the scenario  

Ecotoxicology deals with toxicological impacts on ecology caused by chemicals or 

conditions. Assessment of contaminated sites, long term monitoring programs, remedial 

action plans, and assessment of the success of remediation processes all require or can be 

enhanced by, the use of ecotoxicity and bioaccumulation tests. Furthermore, limit values 

designed to protect ecology and ecosystems (e.g., ecological screening levels values) for 

some chemicals have been derived by some environmental agencies based on 

ecotoxicology tests. A potential risk is posed by a metal (or other substance) when the  

water contain higher levels than their ecological limit value. Ecotoxicity tests can include 

assays for microorganisms, plants, invertebrates and vertebrates (Plants et al., 2009). 

However,  the mining-affected sites can pose a risk to a nearby aquatic ecosystem. The risk 



61 
 

can be assessed by the evaluation of the physical and chemicals parameters of water 

(Jørgensen et al., 2015). However, when aquatic animals are exposed to a toxic mixture, 

one toxin may increase (antagonism) or decrease (synergism) the effect of another, or the 

combined effects may be merely additive (Parker, 1979, Damasceno et al., 2017). 

Therefore, evaluation of the risks posed by of contamination, based only on physical-

chemical indicators without examining aquatic biota cannot provide a precise 

understanding of the extent of the problems and thus gives an incomplete picture of the 

needs regarding remediation options. The risks must  also be assessed by evaluation of the 

biological indicators (Beane et al., 2016).  

A highly controllable and precise method to assess biological indicators is through 

ecotoxicity tests,e.g., using Daphnia Magna to assess toxiticy of assess toxiticy of mining-

affected water samples. This directly indicates toxicity to individuals and also can provide 

useful information related to the population and to the health of the entire  aquatic 

ecosystem (Norberg-King et al., 2018). However, such ecotoxicity tests evaluate the toxicity 

of  mining impacted environments considering effect as total from of all pollutants 

contained. That is, identification of the primary toxicant(s) in effluent or drainage (or soil) 

cannot be achieved using such ecotoxicity tests alone but rather a combination of 

ecotoxicity tests and environmental contaminant chemical characterisation is needed.  

The literature review has identified the research questions that need to be addressed when 

investigating a site that is potentially affected by a mining history and when evaluating how 

best to remediate such a site if required. This includes determining: the current levels of 

the metal(loid)s in the soil, soil pore water and surface water at the site; the bioavailability 

of the metal(loid)s and their mobility (i.e., whether they are easily shifted into soil solution 
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and are therefore readily mobile and available); the fraction within the soil solids that the 

contaminants are bound to (i.e., speciation/fractionation); toxicity of soils and waters at 

the affected sites to organisms that are important for ecosystem functions; and identifiying 

the appropriate remediation options according to the information generated and the 

specific site conditions.  

Quantification of the intensity of enrichment or accumulation of metals on surface soils is 

one of the approaches for assessing metals contamination in soil. The approach compares 

the measured pseudo-total content of the examined metal at the contaminated site with 

that of the background levels of that metal at the nearby uncontaminated area. 

Environmental indexes such as Enrichment Factor, and geo-accumulation index detailed in 

Manta et al. (2002) and Okedeyi et al. (2014), are used in this approach. However, this 

approach provides no information about the mobility or bioavailability of metals, which is 

essential in assessing the contamination risk at the study site. Therefore, it should be 

accompanied by other tools. 

Description of the mobility of metals (i.e., whether they are easily shifted into soil solution 

and are therefore readily mobile and available) is crucial in the evaluation of the 

environmental risks of metal in soils in addition to assess the success of metal-

contaminated soils remediation. The metals mobility varies with differing metals 

distribution in the soil constituents, as described in section 1.3.2. Researchers use 

sequential extractions procedures to understand metals fractionation. The metal 

speciation (or fractionation) determined via the BCR sequential extraction procedure has 

been and is still being used widely (Ure et al., 1993, Asmoay et al., 2019). 
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As shown in Figure 1-2, the bioaccumulation of metals, metals content in soil solution and 

metals toxicity test are linked together (Harmsen, 2008). Methods to measure or predict 

the bioavailable fraction of metals are based on either chemical extraction or mechanistic 

modelling, see Figure 1-3, (Kim et al., 2015).  

Metals phytoavailability can be examined using single extractants such as 0.01 M CaCl2 that 

simulates the natural soil solution (Barber, 1984, Marković et al., 2018, Houba et al., 2000). 

In terms of the potential for pollutant transition from soil to plant on agricultural land, 

trigger values were developed and used under Germany’s Federal Soil Protection Act for 

extracted metal(loid)s. These values have been set concerning the growth weakening of 

cultivated plants (BBodSch, 1999). Although single extraction is widely employed in studies 

of soil contamination assessment, there is still a need to use another method to investigate 

the risk of contamination for protection each of soil organisms. 

 

Figure 1-2: Relation between chemical and biological assays and bioaccumulation (Harmsen, 2008). 
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Figure 1-3: Summary of the most commonly used methods for measuring the bioavailable fraction 
for plants from soils (Kim et al., 2015). 

 

Site-specific soil PNEC calculator has developed by the consulting company Assessing Risks 

of Chemicals consulting, ARCHE (ARCHE, 2014) As described in 1.3.4, pseudo-total metal 

concentrations in the contaminated soil, uncontaminated background levels of that metal, 

soil pH, organic carbon%, clay % and effective cation exchange capacity (eCEC, cmole/kg) 

can be used to predict soil-specific ecotoxicological threshold concentrations (expressed as 

pseudo-total metal concentrations in soil mg/kg dry weight). The calculator generates a 

PNEC, estimates the potentially affected fraction (PAF) of soil organisms, and calculates the 

Risk Characterisation Ratio (RCR, i.e., measured concentration/site-specific PNEC). 

However, this approach benefits for few metals, which are Cd, Co, Cu, Pb, Mo, Ni, and Zn, 

also, this approach reveals no information about the mobility and the distribution of metals 

in soil constituents and thus needs combination with biotic measurements and soil 

porewater measurements that do indicate mobility. 
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To conclude, the site contamination knowledge gap needs to be examined by assessing the 

metals enrichment index based on the pseudo-total metal content, examining the metals 

fractionation, studying the phytoavailability using CaCl2 extractant, examining the metals 

in soil solution, and assessing the Risk Assessment Ratio. 

The literature review has also highlighted that there is no universally applicable single 

approach to investigating and remediating a site that is impacted by previous mining 

activities but that, rather, there are a variety of options available that must be considered 

and carefully decided upon. It is also clear that any final approach adopted will likely only 

be arrived at through trial and error in order to determine the most appropriate 

measurements, tests, and remediation strategies. 

1.6.4 Evaluation of remediation sites options 

The literature review has also identified the research questions that need to be addressed 

when evaluating how best to remediate such a site if required. 

Soil washing methods including both chemical methods, e.g., using chelating agents or 

physical methods, e.g., attrition scrubbing and wet-screening (Liu et al., 2018). They are not 

preferable in the study site because they generate secondary waste products that require 

additional hazardous waste treatments. 

Bolan et al. (2014) reviewed the remediation of heavy metal(loid)s contaminated soils 

through manipulating the bioavailability utilizing a range of soil amendments. The 

amendments are either mobilising the metal(loid)s, e.g., chelating and desorbing agents or 

immobilising the metal(loid)s, e.g., precipitating agents and sorbent materials. A mobilising 

amendment increases the mobility and the bioavailability for a contaminant, while an 

immobilising amendment decreases the mobility and the bioavailability for a certain 
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contaminant. Remediation of the mining-affected site in this study by applying mobilising 

amendments with the aid of plant uptake and soil wash is not a preferable option for the 

study site because cattle are grazing in part of the land and there is a risk of metal 

accumulation in the cattle. Therefore, in this study, remediation of the study site will be 

through using immobilising agents.  

The need for plentiful, active, low-cost materials for use in mine site remediation has, 

therefore, stimulated interest in finding new applications for readily available by-products 

that might otherwise simply be discarded; in this study, the utility of using water treatment 

residuals (WTRs) in the remediation of mining-impacted soils will be tested. The most 

common soil application of WTRs reported in the literature to date has been as a general 

amendment and as a means to limit P mobility in over-fertilised or otherwise over-enriched 

soils (Oliver et al., 2011). While several studies have investigated their effects on some of 

soil microbes following soil amendment with WTRs (e.g., Garau et al. (2014), very few, if 

any, have examined the influence of WTR application on plants, earthworms, and soil 

solution chemistry in mining-affected soils after the application. This is a gap in current 

understanding of the benefits of using these materials in mining-affected soils, especially 

considering that plants and earthworms are widely recognized as essential ecosystem 

factors.  
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2 Study Locations, aims and objectives 

2.1 Site history, geography, current use and concerns 

Coal mining has a long history in Staffordshire, England, dating back to the 13th century 

but with most of the large scale extraction occurring in the 19th and 20th century (Coal 

Mining in North Staffordshire, nd, Talke Info, 2008). The location of the present study is a 

nature reserve (called Parrot’s Drumble) owned by Staffordshire County Council that is in 

a restored coal mining area. The region is in the heart of the coal mining area of the English 

Midlands (Figure 2-1). The location is in the borough of Newcastle-under-Lyme, very near 

to Talke Pits (Figure 2-2). This area previously had multiple collieries and related activities 

(Table 2-1, and Figure 2-2). 
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Figure 2-1: Coal map of the British Isles, showing the Staffordshire fields at point 14 (Northern Mine 
Research Society, n.d. available from http://www.nmrs.org.uk). 

 

 

 

 

 

 

 

http://www.nmrs.org.uk/
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Table 2-1: Location and years of operation of some important coal mines near the study site 

Mine 
Coordinates 

(Easting/Northing) Years of operation 

Talk-o'-th'-Hill E 382305 N 352730 1855-1940 

Jamage E 382218 N 351670 1910-1925 

Jamage Main E 382575 N 351670 1910-1925 

Jamage Footrail E 382635 N 351495 1915-1922 

Rookery E 381678 N 351685 1855-1900 

Talke Green No.5 E 381875 N 353065 1930-1953 

New Peacock Hay E 383355 N 351965 1955-1970 

Bignall Hill E 382234 N 351673 1855-1900 

Wedgewood E 382550 N 351176 1947-1980 

Mitchell’s Wood E 383455 N 351355 1945-1960 

Apedale E 382250 N 348440 1855-1969 

Silverdale E 381348 N 346742 1855-1998 
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Figure 2-2: Map showing locations of former mine sites near the study location. It is from 1951-
1953, Using: EDINA Digimap Ordnance Survey Service, <http://digimap.edina.ac.uk/>, Created: Jan 
2017. It shows location of study area (Parrot’s Drumble Reserve) in relation to Talke o’ th’ Hill 
Colliery and Carbon Works. Rookery and Jamage Colleries are also visible. 

 

Other industries, in addition to coal mining and processing, were also in operation in this 

region. Talke oil works included two retorts that opened around 1865. Moreover, it was 

reported that two blast furnaces, which were owned by North Staffordshire Coal and Iron 

Company, were fully operational to produce pig iron from the coal, coke, and ironstone 

(Oliver, 2005). Furthermore, it is also assumed that the two retorts operated to produce oil 

which was used in coke ovens, blast furnaces and a brick works in Talke. These activities 

may also contribute to a pollution legacy for the area. Figure 2-2 showing the location of 

the study area and its proximity to Talke o’ th’ Hill Colliery and Carbon Works.  
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Topographically, the study area lies in Kidsgrove east to Dunkirk and near to Talke Pits 

(Figure 2-3). Most of this land is over 150 m AOD with the highest ground reaching over 

165 m AOD. There is a considerable range of elevation (185 m AOD) in the north and the 

east of it. 

 

Figure 2-3: Topographic map shows the contour lines of the study area. Updated June 2016. Using: 
EDINA Digimap Ordnance Survey Service, Master Map® Topography Layer, 
<http://digimap.edina.ac.uk/>, downloaded on Jan 2017. 
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The superficial deposits of the study area and surrounding region are described as Till 

derived from erosion of material by the moving ice of a glacier, Alluvium containing sand 

with clay and gravel, and Peat which is an accumulation of partly decayed plants or organic 

matter (Figure 2-4).  

 

 

Figure 2-4: Superficial deposits map of the study area and surrounds. Updated:  June 2011, BGS, 
Using: EDINA Geology Digimap Service, <http://digimap.edina.ac.uk>, downloaded: Jan.2017. 

 

According to (Rees and Wilson, 1998) the bedrock geology description of study area is 

Pennine Middle Coal Measures Formation.  
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The Coal Measures comprise  

• claystones,  

• mudstones, 

• siltstones,  

• sandstones,  

• ironstones,  

• coals and  

• rare limestones. 

They were deposited in delta or alluvial plain settings in the Pennine Basin. The formation 

thickness is up to 600m thick across the North Staffordshire Coalfield. Many faults seem 

clear from the bedrock map of the study area (Figure 2-5). Blackband and clayband 

ironstones a sedimentary rock occur in the coal measures formation of the area. The ore 

minerals in the area that are commonly known are: 

• Lead sulphide known as galena PbS. 

• Zinc sulphide known as sphalerite. 
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Figure 2-5: Bedrock map of the study area. Updated:  June 2011, BGS, Using: EDINA Geology 
Digimap Service, <http://digimap.edina.ac.uk>, downloaded: Jan.2017. 

 

According to the Climate-data website, the area experiences significant rainfall throughout 

the year even during the driest months. Precipitation averages 858 mm and the 

temperature averages 8.8 °C (Climate-data, 2014).  

After the closure of the mines in the area, site restoration was by back-filling, capping and 

covering with topsoil. Across the region, restored sites became used for agriculture, 

grassland, and commercial operations including industry. The specific location of this study, 

Parrot’s Drumble Reserve, is used for recreation (e.g. dog walking and hiking) and is 

immediately bounded by pasture land grazed by cattle. A water course runs through the 

reserve, entering at the eastern end via a poorly defined culvert beneath the A500 road 
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and then flowing east to west. At points along the water course the water often appears 

orange (Figure 2.7), suggesting the possibility that ochre (precipitated iron) is accumulating 

that may originate from seepage from mine spoil material (i.e. acid mine drainage). This 

has potentially major consequences for the ecology of the stream. The watercourse is not 

large enough to warrant monitoring under the Water Framework Directive by the 

Environment Agency and therefore the quality of this water has not been previously 

monitored or evaluated. 

Although the stream is not subject to regular water quality monitoring and classification by 

the Environment Agency under the Water Framework Directive (WFD), on account of its 

modest size, the site is within the North West River Basin District of England which alone 

has over a dozen waterbody locations that do not meet the criteria for good status because 

of pollution from abandoned mines (Environment Agency Catchment Data Explorer). 

Similarly, the adjacent River Basin District of Humber, which encompasses Stoke on Trent, 

has more than 30 waterbodies monitored under WFD that have poor classifications linked 

to abandoned mines (Environment Agency Catchment Data Explorer). 
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Figure 2-6: Water in the Parrot’s Drumble with indications of iron precipitation and possible water 
quality problems (photo taken in July 2014 by I.W. Oliver). 

 

In addition to potential water quality issues, the soils surrounding the Drumble show 

indications in places that they may be adversely affected by contamination linked to the 

previous mining activities of the area (i.e. bare patches with poor or no growth of plants; 

Figure 2-7). The direct cause is unknown, but the problem may be linked to possible mine 

slag heap deposits that were poorly disposed of or to seepage or upwelling of water that 

percolates through mine spoil or other materials beneath. The existence of some spoil 

materials (i.e. slag heaps) are known in the area, as shown in maps dating from the 1960s 

(Figure 2-8). The impacted soil means less grass production than would otherwise be 

possible and therefore this limits the agricultural productivity of the area (i.e. reduced 

grazing capacity). 
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Figure 2-7: Areas of soil apparently impacted by previous mining related use of the area. The upper 
panel shows the area designated as Seepage Point 2 and the lower panel the area designated 
Seepage Point 3 (see descriptions later). 



78 
 

 

Figure 2-8: Map from the 1960s showing location of a known mine slag heap in the field 
immediately south of the study site. The slag heap is in the lower part of the image, above (and in 
line with) the middle of the scale. Note that in the electronic version of the map is created using: 
EDINA Geology Digimap Service, <http://digimap.edina.ac.uk>, downloaded: Jan.2016. 

 

The extent of the contamination of soil, sediment and water at the site, and the ecological 

and agronomic implications of it, are not currently known and therefore investigations of 

these environmental media need to be made. To achieve that, sites along the Parrot’s 

Drumble Reserve have been selected for an initial sampling and analysis campaign Figure 

2-9.  

The sampling was designed to investigate and evaluate the range of sites observed in the 

location, i.e. water upstream and downstream of suspected points of contaminant entry, 

seemingly unafected soils, and bare/ damaged areas of soil potentially affected by mining 

spoil hotspots and/or seepage and upwelling of water moving through mining spoil at 

Slag heap 
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depth. The sampling points were therefore selected to correspond with the conceptual 

model of the site that was conceived to visualise the likely factors that led to the current 

situation (Figure 2-10). 

 

 

Figure 2-9: Map (aerial photograph) shows selected sites for the sampling of water, sediment and 
soil, including a soil reference site (Ref 1) where grass grows well and soil appears normal. Note 
Stream site 1 is just out of map coverage. The road visible is the A500. 
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Figure 2-10: Conceptual model of the site. Cross-section (idealised) to indicate likely water movement and possible pathways  of contaminants dispersion 
from old mining waste and debris to soil and stream. 
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2.2 Aims and objectives 

2.2.1 Aims 

Generally, acid or neutral mine drainage, fluvial deposition, and spoil material movement 

can all result in contamination of restored or partially restored coal mine areas. Added to 

this, the area experiences typical UK weathering cycles and so serves as a good model site 

for mining-affected soils across the UK and more widely across temperate Europe. 

Therefore, this site is highly representative of restored or partially restored coal mines in 

England, wider Europe and other temperate zones and thus development of an approach 

for its characterisation and assessment for remediation has wide implications in terms of 

serving as a model to apply elsewhere. The aims of the project are to: 

I. Characterize the study sites in terms of metal and metalloid contaminants 

in the stream water, stream sediment and soil. 

II. Quantify and assess the significance of the level of any contamination. 

III. Attempt to identify the positions where the water becomes more polluted. 

IV.  Determine the forms and associations of contaminants in soil and water. 

V.  Examine the potential for site soil remediation using novel amendments. 

2.2.2 Objectives 

I. To determine and assess water quality along the stream by examining 

turbidity, pH, dissolved (0.45 µm) and total element concentrations. And to 

assess sediment pseudo total element concentrations along the stream 

II. To determine total (aqua regia extractable) element contents in soil and 

determine element associations using the BCR sequential extraction 

scheme. This will include soil from the damaged areas (seep points) and 

reference points away from damaged areas.   
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III. To examine the toxicity of the soil and water samples using ecotoxicology 

methods including earthworm survival tests (e.g. OECD 207 Earthworm 

Acute Toxicity Test for soils) and Daphnia magna assays (e.g. OECD 202 

Daphnia Acute Immobilisation Test for waters). 

IV. To assess the capacity for using water treatment residuals to ameliorate the 

contaminated soil to make it more fit for plant growth and other biological 

activity.  
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3 Evaluation of soil contamination 

3.1 Introduction 

Metal pollution of soils is a common issue in many mining-affected areas. Bioavailability, 

mobility, and toxicity of metals in the soil are controlled or influenced by soil biological (i.e., 

bacterial properties), physical (i.e., soil texture) and chemical (i.e., soil pH) properties and 

chemical properties of the various metals present. Key processes such as ion exchange, 

adsorption and desorption, complexation, precipitation and dissolution, oxidation-

reduction, diffusion and migration, metal competition, biological immobilization and 

mobilization, and plant uptake can all have influence. Soil properties such as soil pH, 

moisture content, organic matter content, and particle size distribution (texture) can all 

directly or indirectly affect these processes (Alamgir, 2016). For example, organic matters 

contain ligands or functional groups which have an affinity to form complexes with metals. 

The metals bind strongly to the ligand and consequently that can decrease the 

concentration of the free metal ion in soil solution (Bolan et al., 2014). However, increasing 

the solubility of OM might lead to mobilisation of the associated metals (Gangloff et al., 

2014). Therefore, it is important to assess the physicochemical properties of soil to 

understand the extent and the context of the contamination of metals.  

The degree of metals contamination, pollution or enrichment in terrestrial environment 

has been evaluated based on the level of the examined metal in the soil compared with the 

uncontaminated background levels of that metal at that area. Enrichment factor, detailed 

in Manta et al. (2002), and geo-accumulation index, described in Okedeyi et al. (2014), are 

used for quantifying the presence and intensity of enrichment or accumulation of a metal 

on surface soils, or to assess the overall site-specific pollution as the pollution load index 
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(PLI), explained in Onwuka et al. (2018). The calculated numerical results can be interpreted 

based on their fit within categorises from unpolluted to very strongly polluted intensity, as 

detailed in Manta et al. (2002), Okedeyi et al. (2014), and Onwuka et al. (2018). 

Recently, the available ecotoxicity data and bioavailability models for metals were used in 

a flexible framework for the derivation of environmental quality standards or guidelines in 

soil. Soil-specific ecotoxicological threshold concentrations for the metals Cd, Co, Cu, Pb, 

Mo, Ni and Zn, expressed as pseudo-total metal concentrations in soil (mg/kg dry weight), 

can be derived using measured soil properties and the site specific soil PNEC calculator 

developed by the consulting company Assessing Risks of Chemicals consulting, ARCHE  

(ARCHE, 2014) described in the literature review (chapter 1). The calculator generates a 

PNEC, estimates the potentially affected fraction (PAF) of soil organisms and calculates the 

Risk Characterisation Ratio (RCR, i.e. measured concentration/site-specific PNEC) for those 

metals in relation to the test soils. The required input data are the measured pseudo-total 

metal concentrations in the soil, uncontaminated background levels of that metal, soil pH, 

organic carbon%, clay % and effective cation exchange capacity (eCEC, cmole/kg).  

Understanding the mobility and bioavailability of the metals is important for the evaluation 

of metal-contaminated soils. Metals in contaminated soils can be distributed in 

exchangeable fraction, reducible fraction, and oxidisable fraction and residual fraction. 

Sequential extractions can be utilised to provide useful information on quantities of metals 

distributed with those phases. The metal speciation (or fractionation) determined via the 

BCR sequential extraction procedure has been, and is still being, used widely to evaluate 

the environmental risks due to mobility and availability of the different forms of the metals 

in the soils (Ure et al., 1993, Asmoay et al., 2019). As introduced in the literature review 
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(section 1.3.2), such sequential extraction schemes have their limitations, e.g DeVivo et al. 

(2017) found that during extraction procedures, readsorption and redistribution of metals 

can occur among soil constituents. Nevertheless, as concluded in their review titled Is there 

a future for sequential chemical extraction?,  Bacon and Davidson (2008) concluded that 

the sequential extraction approach is still an excellent option to get a better understanding 

of metals distribution amongst soil constituents. 

Single extractants are also widely used to assess mobility and availability; Barber (1984), 

Houba et al.(2000), and Marković et al. (2018) found that the phytoavailability of metals 

was  related to the amounts extractable by a reagent that simulates the natural soil solution 

such as 0.01 M CaCl2 . Indeed, it has been argued that metal(loid)s content within the 

extractable fraction determined by a dilute neutral salt solution can be more useful than 

the BCR scheme fractions (or equivalent) in terms of prediction of bioavailability because 

the latter does not directly correspond to the available content as seen by organisms 

exposed to elements via the soil solution (Ahnstrom and Parker, 2001). Nevertheless, both 

single and sequential extractions are widely employed in studies of bioavailability and soil 

assessment.  

Paquin et al. (2002) described the inter-relationships of chemistry, physiology and 

toxicology. Toxicity of a metal to an organism occurs when an excessive amount of metal 

ions bind to specific receptor sites, so-called biotic ligands. The chemistry of soil solution 

plays an important role in the toxicity. Ligands in the soil solution such as carbonate and 

natural dissolved organic matter compete with biotic ligands to take up the metal ions; for 

example, fewer metal ions would bind to biotic ligands in contact with soil solution that has 

high organic matter content compared with one that has low organic matter content and, 
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consequently, there would be less metal toxicity in that solution for a given metal 

concentration. Another aspect of importance of the chemistry of soil solution lies in the 

competition that occurs between positive ions such as H+, Ca2+, Mg2+ and potentially toxic 

cationic metals for binding sites on the biotic ligands. For example, less metal ions would 

bind to biotic ligands in contact with soil solution that has high Ca2+ content compared with 

one that has low Ca2+ content and, consequently, there would be less metal toxicity in that 

solution. Furthermore, comparing the measured element content in soil solution with what 

has been reported in the literature for metals contaminated soil can also provide a clue as 

to whether metals contamination is evident at a site. 

3.1.1 Aims and objectives 

The management, monitoring and restoration of former coal mines are important, long 

term environmental activities that are a pressing concern in many regions and countries 

around the world. Contamination at coal mines, whether they are not yet restored or 

partially restored or fully restored, generally occurs as a result of acid or neutral mine 

drainage, fluvial deposition, and spoil material movement. The aim of the study was to 

characterise the nature and extent of contamination at a restored coal mining area in 

Staffordshire which, because the area experiences typical UK weathering cycles, would 

serve as a good model to understand what may occur in mining-affected soils across the 

UK and more widely across temperate Europe. 

Therefore, the objectives were:  

1. To characterise the study site in terms of physicochemical properties of the soil by 

determining the soil pH, soil organic matter and soil particle size distribution. 
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2. To quantify and assess the significance of the metal(loid)s contaminants in the soil 

by determining total (aqua regia extractable) element contents in the soil which are 

going to be used to assess the level of accumulation of metals in the soils as well as 

going to be used in combination with some soil properties to predicted soil-specific 

ecotoxicological threshold concentrations for the some of the metals. 

3. To assess the forms and associations of contaminants in soils using the BCR 

sequential extraction scheme as well as to evaluate the potential bioavailabilty of 

contaminants in soil based on CaCl2-extractable metals contents and, in addition, 

soil solution metals contents. This will include soil from the damaged areas (seep 

points) and reference points away from damaged areas. 

 

3.2 Methods 

3.2.1 Soil sampling 

The characterisation of mine-effected areas starts by designing a sampling programme 

which focuses on locating points and determining sample quantity, proper methods of 

collecting, containing, storing and transporting samples. The sample collection strategy in 

this study was designed according to ISO 10381-1 (ISO, 2002).  

Soil samples were collected from five sites that were thought to have been exposed to 

varying levels of acid mine drainage (AMD) or other mining impacts arising from the site’s 

coal mining history. They include three areas seemingly vulnerable to seepages (as 

evidenced by lack of vegetation cover and discoloured soil, see figure 2-8 in the previous 

chapter), and two sites that seem in a good ecological condition that were sampled as 

reference positions. Within each of the seepage impacted areas, samples were collected 
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from different zones to assess and capture variability. The relative positions of the sampling 

points are shown in Figure 3-1.  Approximately 1 kg of each soil sample was collected with 

a trowel from the ~10cm surface depth and placed in a plastic zip-lock bag for 

transportation to the laboratory.  After soil samples were delivered they were air dried and 

ground to <2 mm and put in polyethylene containers pending further experimentation and 

analyses.  

 

Figure 3-1: Map of the sampling points; Seep 1, 2 and 3 appeared to be zones impacted by some 
type of mine water seepage while Ref 1 and 2 were selected as reference points that appeared less 
(or not) impacted. 
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3.2.2 Basic soil physicochemical properties 

3.2.2.1  Soil moisture content 

Soil water or moisture content refers to the water which might be evaporated by heating 

the soil at 105±5 °C. The thermogravimetric method was used to analyse the moisture 

content percent. It is based on removing soil moisture by oven-drying of soil samples that 

were placed in crucibles at a constant temperature of 105 °C for 24 hours; moisture content 

(%) is computed from the sample weight before and after drying using a five-decimal place 

balance (Smith, 2000). 

3.2.2.2 Soil pH 

Soil pH is a measurement of the acidity and alkalinity in soils. Aqueous solutions were 

prepared according to ISO-10390 (ISO, 2005), where a portion from each soil sample (as a 

volume ~5 ml) was placed in a 50 mL centrifuge tube, 25 ml of deionized water added and 

then shaken for ~1h on a rotating shaker after which the sample was allowed to stand for 

one hour. The pH value was measured in the supernatant solution using a Jenway 3510 pH 

probe and meter that was calibrated at the begging and every five measurements using pH 

4 and 7 buffer solutions at about 20 °C. 

3.2.2.3 Soil organic matter content and organic carbon 

Carbon can exist in soils as carbonate or bicarbonate or other mineral forms, as elemental 

organic carbon such as in charcoal, graphite, or coal, or as humus which is organic residues 

of plants, animals, and microorganisms as well as the little-changed (fresh) organic residues 

of soil biota. Soil organic carbon content can be stated as the percentage of total C or can 

be figured from the soil organic matter content based on the widely used assumption that 

organic carbon forms 58 % of soil organic matter. Soil organic matter percentage (SOM%) 

was determined by mass loss on ignition (LOI), where oven dry samples were placed in a 
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muffle furnace at 400 °C for at least 4h and the reduction in mass (attributed to ignition of 

organic matter) determined by weighing before and after.  

The procedure included the following steps (Nelson and Sommers, 1996).  

1. Recording the weight of furnace -dried crucibles, 

2. Adding soil samples (that had been already air-dried, ground, sieved to 2 mm then 

105 °C oven-dried) to the crucible, 

3. Recording accurately in sensitive balance the weight of crucible with sample 

‘’weight 105’’,  

4. Igniting samples in a muffle furnace at 400 °C for >4 (max. 16 hours), 

5. Obtaining the weight of furnace-dried sample ‘’weight 400’’  

6. Calculating the LOI content of the samples using Equation 3-1. 

𝐿𝑜𝑠𝑠 𝑜𝑓 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛% =
𝑊𝑒𝑖𝑔ℎ𝑡 105 − 𝑊𝑒𝑖𝑔ℎ𝑡 400

𝑊𝑒𝑖𝑔ℎ𝑡 105 − 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑚𝑎𝑠𝑠
∗ 100 Equation 3-1 

 

3.2.2.4 Soil particle size distribution 

Splitting of the soil mineral parts into different size fractions and determination of the 

proportion of these fractions is the principle of soil particle-size distribution studies. Sand, 

silt, and clay content of a soil determine it textural type according to the textural triangle 

Figure 3-2.  

The laser diffraction method was used to determine the soil particle-size distribution. 

Following combustion in the muffle furnace to remove organic matter, the soil samples 

were further prepared by adding sodium hexa-metaphosphate (Calgon) liquid (50g/l) as 
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dispersant solution to help disaggregation and dispersion. Samples were then allowed to 

soak in the calgon solution for at least 24h. Analyses of particle size distributions were done 

with Beckman Coulter LS 230 Particle Size Analyser, which measures particles from 0.04-

2000 μm. 

 

 

Figure 3-2: The textural triangle (Brady and Weil, 2013) 
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3.2.2.5 Calculation of Effective Cation Exchange Capacity 

Cation exchange capacity (CEC) is the total capacity of a soil to hold positively exchangeable 

cations by electrostatic force. It measures negatively charged sites on the surface of clay 

minerals and organic matter. It is important because it influences the soil's ability to 

maintain essential nutrients, other metals, and provides a buffer against soil acidification 

(Sharma et al., 2015). Cation exchange capacity CEC of soil is often measured at a buffered 

pH, usually pH 7 or pH 8.2 (e.g. US EPA method 9081), but which may not adequately reflect 

the natural pH for all soil samples. However, cation exchange capacity can be estimated at 

the measured soil pH; that is the so-called effective cation exchange capacity (eCEC) of 

soils. According to the study by Helling et al. (1964), as cited by McGrath and Zhao (2006), 

eCEC can be calculated based on organic matter, clay content percentages and pH of the 

soil as shown in Equation 3-2. 

𝑒𝐶𝐸𝐶
(
𝑐𝑚𝑜𝑙𝑒

𝐾𝑔
)

= (30 + 4.4𝑝𝐻) ∗
𝐶𝑙𝑎𝑦 % 

100
+ (−59 + 51𝑝𝐻) ∗

𝑂𝐶 % 

100
 Equation 3-2 

 

3.2.3 Soil pseudo-total element concentrations  

3.2.3.1 Method refinement procedures 

Initial measurements for soil element concentrations via concentrated HNO3 digestion and 

ICP-OES analysis were inconsistent and therefore a method evaluation and refinement 

process were conducted to optimise the procedure for the available equipment. This 

involved a range of digestion method variations performed on a certified standard 

reference soil (CRM033 Loamy Sand Soil; Trace Metals - Loamy Sand 10, Sigma-Aldrich) and 

selected site samples.  
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The first approach (termed approach 1) trialled involved digestions carried out according 

to EPA 3051 by adding 10 ml of trace metal grade nitric acid to about 0.4 g (accurate mass 

recorded) of soil samples in Teflon microwave vessels that were then sealed and placed in 

the microwave system (Mars 6). After cooling, the vessel contents were decanted to 

beakers (acid washed), dried down to near dryness on a hot plate, then made up to 20 ml 

and filtered via 0.45 micron syringe filters. Filtered solutions were analysed by ICP-OES 

(Vista MPS ICP-OES) using settings shown in Table 3.1.  

The second digestion approach (approach 2) used reverse aqua regia (6 ml nitric acid and 

2 ml hydrochloric acid, both trace metal grade, with 2 ml de-ionised water also added as 

per guidance from MARS 6 manufacturers) rather than using only HNO3. The operating 

conditions of the microwave digestion system were also changed by setting the power at 

1200 W. However, adjusting the power setting of the microwave made little difference to 

the temperature, as under both settings the desired temperature of 180°C was achieved 

and maintained. After microwave digestion, the samples were processed and analysed as 

per the first approach (i.e. dried down on a hotplate then taken up to 20 mL, filtered at 

0.45 µm and analysed by ICP-OES).   

The third digestion approach (approach 3) also used reverse aqua regia and the same 

microwave conditions, however the post digestion treatment was altered such that the soil 

digest solution of each sample was divided into two parts. One part (in what was termed 

approach 3b) was diluted by ten times using 2% HNO3, filtered at 0.45 µm and then 

analysed by ICP-MS (Perkin Elmer NexION 300D), while the other part of the digestion 

solution (termed approach 3a) was transferred to a beaker, dried down on a hot plate to 
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near dryness, diluted to 20 ml by 2% HNO3 and then filtered (0.45 µm) and analysed by ICP-

OES.  

The fourth digestion approach (approach 4) was designed to evaluate any errors introduced 

in the first protocol during the drying down step, so involved digestion with nitric acid alone 

but with no dry down step. This fourth approach therefore involved adding 10 ml nitric acid 

(trace metal grade), microwaving as per previous, transfer of the digest solutions to beakers 

and dilution with 2% HNO3 to 20 ml, filtering (0.45 µm) via syringe filters and placing in the 

refrigerator pending analysis via ICP-MS.  

For all ICP-OE analysis runs, mixed calibration standard solutions (100, 50, 25, 10, 5, 2, 1, 

0.5 mg/l) were prepared by combining appropriate volumes of the stock solutions in 2% 

HNO3 matrix that were used immediately or stored briefly in the fridge before analysis. 

These standards were checked in term of possible impurities present or spectral 

interferences. Calibrations blanks were used to establish the analytical calibration curve 

and instrument detection limits for each element of interest, which were determined by 

multiples of the standard deviation of the concentration determined for three replicates of 

method reagent blanks. The operation conditions were set for the ICP-OES as describe in 

Table 3-1. 

Table 3-1: The operation conditions were set for the ICP-OES 

Parameter Setting Parameter Setting 

Read time 20 S Replicates 3 

Sample uptake delay 35 S Rinse time 3 S 

Stabilization time 10 S RF power 1.4 KW 

Fast pump 80 rpm Nebulizer flow 0.70 L/min 
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Plasma flow 12.0 L/min Aux flow 1.0 L/min 

Viewing height 8 mm 

 

The results of analysis following the various digestion procedures on the certified reference 

soil are displayed in Table 3-2 to Table 3-6. All tests were done in 3-5 replicates, hence the 

table shows mean ± standard deviation, recovery percent and relative standard deviation 

(RSD). NR refers to not reported. 

The recovery percent (i.e. measured concentration as a percentage of certified 

concentration) was used as an indicator for the accuracy while the relative standard 

deviation percent was used as an indicator for the precision of analysis of metal(loid)s in 

soil samples, and together the data were used to identify the best digestion and analysis 

approach for the elements of interest. 

Comparison of approach 1 and approach 4 is made in order to assess the benefit of not 

doing the dry-down step following a nitric acid only digestion. The recovery percentages of 

Ca, Cd, Fe, Mg, Pb and Zn using approach 1 were better than that using approach 4. While 

the recovery percentages of Cr and Cu were better in approach 4 than that by approach 1. 

There was not a significant improvement in recovery of As when digested in approach 4 

from that in approach 1. High relative standard deviation percentage RSD% was noted in 

the analysis of Co using approach 1, indicating unacceptable precision, therefore accurate 

comparison cannot be done between approach 1 and 4 for that element (see Table 3-2, to 

Table 3-6). 

In order to assess benefit from doing a dry-down step or instead direct dilution, when using 

reverse aqua-regia as digestion solutions, a comparison between the data from approach 
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3a and that from 3b was carried out. The recovery percentages of As, Cd, Co, Cr, Cu and Zn 

using approach 3b (direct dilution) were better than that using approach 3a, while the 

recovery % of Pb in approach 3a was better than that by approach 3b. There was not a big 

difference in recovery of Ca, Fe, Mn and Mg when digested in approach 3b from that in 

approach 3a, see Table 3-2, to Table 3-6. 

To assess the performances of HNO3 or reverse aqua-regia as digestion solutions, the 

following comparison will be useful. The value of recovery % of As, Cd, Cr, Cu, Mn and Zn 

using approach 3b (reverse aqua regia) were greater than that using approach 1 (nitric acid 

only). Comparison of RSD% and recovery % values of Co when using approach 1 and 3b, 

approach 3b seems more successful (accurate) than approach 1. The recovery % of Ca and 

Mn using approach 1 were better than that using approach 3b, however, the differences 

were not substantial; the recovery % using approach 1 and 3b were for Mg 102% and 93% 

respectively and for Ca were 93% and 75%, respectively. The data indicates that the 

recovery percentages of Fe using approach 1, 3a, 3b were all relatively similar. The recovery 

percentages of Cr and Mn using approach 3a were better than that using approach 1, while 

the recovery % of Cd and digested in approach 1 better than that by approach 3a. There 

was not a big difference in recovery of Al, As, Ca, Cu, Fe, Mg, Pb and Zn when digested in 

approach 1 from that in approach 3a, see Table 3-2, to Table 3-6. 

For each element, there are several line emission spectra which provide different 

sensitivity, linear ranges and detection limits; they are produced by different wavelengths. 

Selection of an appropriate wavelength depends on factors such as sensitivity and the 

concentration of the element in solution, and the presence or absence of any interference. 

For some elements in this study, e.g. Cd, detection capability is a major performance 
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attribute that must be considered and therefore the wavelength which has highest 

sensitivity is required. By contrast, elements at higher concentrations such as Al, Fe and Ca, 

the lines with lower sensitivity are needed to be chosen to maximize the concentration 

range over which they can be calibrated and measured. However, the problem is that these 

lines can have interferences. To avoid the overwhelming correction process,  the procedure 

that has been used in this study includes choosing 2 or 3 wavelengths for each element 

(e.g. 238.204, 239.562 and 259.940 nm for iron), inspecting visually the shape of emission 

peaks (symmetric, Gaussian) for the data collected and examining for interferences (e.g. 

the spectra of cobalt 238.892 nm suffered from Fe interference); lines deemed unsuitable 

were eliminated from further consideration (e.g. line 228.803nm for cadmium, which 

appeared to have a significant  interference from arsenic) (EPA, 2014). 

The energy and stability of plasma are affected by plasma operating conditions such 

as radio-frequency power, plasma gas flow, auxiliary gas flow, pump speed, sample delay, 

stabilization time, rinse time, replicate time and number of replicates. Each of these 

parameters were set to improve results and to achieve maximum intensities (Charles and 

Fredeen, 1997). 

Certified reference solutions of all elements of interest have been analysed to check the 

validity of the analytical method.  To reduce memory interferences a 5% nitric acid rinse 

blank has been utilised for flushing the nebulizer and instrument uptake system between 

samples, standards, and check solutions (EPA, 2014).  

While many analytical quality control steps were implemented (see below), an internal 

standard calibration method was not used for metal determination in digested soil 

samples. This is not unusual for soil element determinations using ICP-OES/MS due to the 
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often unavailability of suitable internal standard elements, complicated metal chemistry in 

aqueous solution, and undefined sample matrix. Here, an internal standard calibration 

Iridium solution was initially tried for metal determination in soil samples but it did not 

succeed because of Iridium being present within the samples. Instead, quality assurance 

was achieved via use of certified standard solutions  used to make the calibration curves, 

in addition to other different external certified standard solutions that were analysed as 

samples within sample runs. The calibration curves were repeated every teen samples and 

were compared by plotting them together every single run. When calibration curves did  

not correspond closely, which indicated a degree of instrument drift,  the data were not 

used but rather samples were reanalysed with new standards. 

The conclusion drawn from the method refinement procedures was that the best digestion 

and analysis approach for the key elements of interest at the study site was 3b.  The primary 

factors deciding that was the accuracy for elements As, Ca, Cd, Co, Cr, Cu , Fe, Mg, Mn and 

Zn relative to the certified standard soil, repeatability of the results and minimisation of the 

number of steps (i.e. to avoid introduction of contaminants). 
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Table 3-2: Total element concentrations of As, Cd and Co for certified reference soil CRM033 Loamy Sand determined via different digestion 
method variations (mean mg/kg ± standard deviation, n = 3-5), Note: the choice of emission line for each element is fully explained in the 
pages of text that above the tables. Approach 1) HNO3, 800 W, Dry down; measured by ICP-OES. Approach 2) reverse aqua-regia, 1600 W, Dry 
down; measured by ICP-OES. Approach 3a) reverse aqua-regia, 800 W, Dry down; measured by ICP-OES. Approach 3b) reverse aqua-regia, 
800 W, Direct dilute; measured by ICP-MS. Approach 4) HNO3, 800 W, without dry down, Direct dilute; measured by ICP-MS. 

Approach 1 Approach 2 Approach 3a Approach 3b Approach 4 

Elemen
t 

Recover
y% 

RSD% 
Recovery

% 
RSD% 

Recover
y% 

RSD% 
Elemen

t 
Recove

ry% 
RSD% 

Elemen
t 

Recove
ry% 

RSD% 

As-188 78 11 64 2 88 9 

As-75 90 8 As -75 83 9 

As-197 87 18 86 11 82 11 

Cd-214 82 10 54 10 56 9 

Cd-111 83 6 Cd -111 64 9 

Cd-226 82 11 55 10 59 8 

Co-238 126 67 40 18 22 15 Co-59 93 7 Co-59 85 10 
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Table 3-3: Total element concentrations of Cr and Cu for certified reference soil CRM033 Loamy Sand determined via different digestion method variations 
(mean mg/kg ± SD, n = 3-5). Note: the choice of emission line for each element is fully explained in the pages of text that above the tables. . Approach 1) 
HNO3, 800 W, Dry down; measured by ICP-OES. Approach 2) reverse aqua-regia, 1600 W, Dry down; measured by ICP-OES. Approach 3a) reverse aqua-
regia, 800 W, Dry down; measured by ICP-OES. Approach 3b) reverse aqua-regia, 800 W, Direct dilute; measured by ICP-MS. Approach 4) HNO3, 800 W, 
without dry down, Direct dilute; measured by ICP-MS. 

Approach 1 Approach 2 Approach 3a Approach 3b Approach 4 

Elemen
t 

Recover
y% 

RSD% 
Recover

y% 
RSD% 

Recover
y% 

RSD% 
Elemen

t 
Recover

y% 
RSD% 

Elemen
t 

Recover
y% 

RSD% 

Cr-205 53 9 45 11 38 7 

Cr-52 91 7 Cr-52 67 10 

Cr-267 27 24 42 11 36 9 

Cu-324 77 2 64 7 71 9 

Cu-63 99 7 Cu-63 95 19 

Cu-327 78 2 64 7 71 9 
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Table 3-4: Total element concentrations of Fe and Mn for certified reference soil CRM033 Loamy Sand determined via different digestion method variations 
(mean mg/kg ± standard deviation, n = 3-5), NR means not reporting. Note: the choice of emission line for each element is fully explained in the pages of 
text that above the tables. . Approach 1) HNO3, 800 W, Dry down; measured by ICP-OES. Approach 2) reverse aqua-regia, 1600 W, Dry down; measured by 
ICP-OES. Approach 3a) reverse aqua-regia, 800 W, Dry down; measured by ICP-OES. Approach 3b) reverse aqua-regia, 800 W, Direct dilute; measured by 
ICP-MS. Approach 4) HNO3, 800 W, without dry down, Direct dilute; measured by ICP-MS. 

 

Approach 1 Approach 2 Approach 3a Approach 3b Approach 4 

Elemen
t 

Recove
ry% 

RSD% 
Recove

ry% 
RSD% 

Recove
ry% 

RSD% 
Elemen

t 
Recove

ry% 
RSD% 

Elemen
t 

Recove
ry% 

RSD% 

Fe-238 77 5 66 7 79 4 Fe-238 69 4 Fe-238 27 12 

Fe-239 78 5 67 7 79 4 Fe-239 69 3 Fe-239 27 10 

Fe-259 78 6 67 7 78 4 Fe-259 70 3 Fe-259 28 10 

Mn-
257 

13 12 52 6 74 23 
Mn-
257 

70 11 
Mn-
257 

NR NR 

Mn-
259 

16 9 54 7 77 21 
Mn-
259 

76 11 
Mn-
259 

NR NR 



102 
 

Table 3-5: Total element concentrations of Pb and Zn for certified reference soil CRM033 Loamy Sand determined via different digestion method variations 
(mean mg/kg ± standard deviation, n = 3-5). Note: the choice of emission line for each element is fully explained in the pages of text that above the tables. 
Approach 1) HNO3, 800 W, Dry down; measured by ICP-OES. Approach 2) reverse aqua-regia, 1600 W, Dry down; measured by ICP-OES. Approach 3a) 
reverse aqua-regia, 800 W, Dry down; measured by ICP-OES. Approach 3b) reverse aqua-regia, 800 W, Direct dilute; measured by ICP-MS. Approach 4) 
HNO3, 800 W, without dry down, Direct dilute; measured by ICP-MS. 

 

Approach 1 Approach 2 Approach 3a Approach 3b Approach 4 

Elemen
t 

Recover
y% 

RSD% 
Recover

y% 
RSD% 

Recover
y% 

RSD% 
Elemen

t 
Recover

y% 
RSD% 

Elemen
t 

Recover
y% 

RSD% 

Pb-182 61 9 79 11 82 11 

Pb-208 66 7 Pb-208 56 7 

Pb-220 77 9 66 12 66 9 

Zn-330 85 2 49 10 69 7 

Zn-66 87 5 Zn-66 60 7 

Zn-334 87 15 66 13 72 2 
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Table 3-6: Total element concentrations of Al, Ca and Mg for certified reference soil CRM033 Loamy Sand determined via different digestion method 
variations (mean mg/kg ± standard deviation, n = 3-5), NR = not reported. Note: the choice of emission line for each element is fully explained in the pages 
of text that above the tables. Approach 1) HNO3, 800 W, Dry down; measured by ICP-OES. Approach 2) reverse aqua-regia, 1600 W, Dry down; measured 
by ICP-OES. Approach 3a) reverse aqua-regia, 800 W, Dry down; measured by ICP-OES. Approach 3b) reverse aqua-regia, 800 W, Direct dilute; measured 
by ICP-MS. Approach 4) HNO3, 800 W, without dry down, Direct dilute; measured by ICP-MS. 

 

Approach 1 Approach 2 Approach 3a Approach 3b Approach 4 

Elemen
t 

Recover
y% 

RSD% 
Recover

y% 
RSD% 

Recover
y% 

RSD% 
Elemen

t 
Recover

y% 
RSD% 

Elemen
t 

Recover
y% 

RSD% 

Al  237 73 47 53 13 72 9  NR NR  NR NR 

Al 396 73 48 59 13 71 9  NR NR  NR NR 

Ca 396 93 8 71 8 83 5 Ca 396 75 5 Ca 396. 77 1 

Ca 422 94 11 68 11 78 8 Ca 422 66 2 Ca 422 64 2 

Mg 279 102 4 63 9 94 13 Mg 279 93 9 Mg 279 92 7 

Mg 383 100 4 63 11 87 9 Mg 383 73 8 Mg 383 77 14 
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3.2.3.2 Evaluation of the Soil Contamination using Geo-accumulation index 

(Igeo) 

Geo-accumulation index (Igeo) has been used to estimate the metal(loid)s contamination 

in sediments and soils by Barbieri (2016) and Dung et al.(2013). This can be calculated by 

comparing the measured pseudo-total metal(loid)s contents in the present study with 

median ambient background concentration (MABC) of them for soil in England. The 

Equation 3-3 was used to calculate the load of the metal(loid)s in the soils Müller (1981). 

𝐼𝑔𝑒𝑜 = log2

Element concentration in test soil 

1.5 ∗ background concentration
 Equation 3-3 

 

The MABC of some heavy metal(loid)s in England for a sandy-loam soil comparable to that 

of the sites of the present study have been published in the National soil inventory by 

McGrath and Zhao (2006) as shown in Table 3-7. The background concentration of arsenic, 

which was not recorded in that inventory, is 14.1 mg/kg according to statistical summary 

of As in topsoil at Stoke-on-Trent by British Geological Survey and Department for 

Environment Food and Rural Affairs report (Ander et al., 2011). 

Table 3-7: Median ambient background concentration MABC (mg/Kg) for comparable soils in 
England according to McGrath and Zhao (2006). 

Element Cd Co Cr Cu Ni Pb Zn 

concentration (mg/Kg) 0.5 7.1 27.4 14.7 15.9 36 65 

 

The Igeo index values here have been calculated using the mean of each measured element 

concentration for the sample sites and MABC. The resulting I geo values have been 
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interpreted using the seven-category scale as shown in Table 3-8 which is published by 

Müller (1981) as cited in Barbieri (2016). 

Table 3-8: I geo-accumulation scales Müller (1981). 

Class  Value Soil quality 

0  Igeo ≤ 0 not accumulated 

1  0< Igeo <1 not accumulated to moderately accumulated 

2  1< Igeo <2 Moderately accumulated 

3  2< Igeo <3 Moderately to heavily accumulated 

4  3< Igeo <4 Heavily accumulated 

5  4< Igeo <5 Heavily to extremely accumulated 

6  Igeo ≥ 5 Extremely accumulated 

 

3.2.3.3 Prediction of ecological risks of metals based on site-specific properties 

Soil predicted no effect concentration (PNEC) values can be used as a trigger value to 

evaluate the potential for environmental risk. PNEC is the concentration of a certain 

element below which no ecological risk is anticipated. Site-specific soil PNECs were  

generated for Co, Pb, Ni, Cu and Zn using the calculator from the consulting company 

Assessing Risks of Chemicals consulting (ARCHE) and measured site-specific soil properties 

(ARCHE, 2014), as outlined in the introduction.  

3.2.4 Metal(loid)s fractionation using BCR scheme and CaCl2- extractable 

contents of metal(loid)s in soil 

3.2.4.1 BCR three-step sequential extraction procedure 

The BCR three-step sequential extraction procedure which is described by Quevauviller et 

al. (1997) is followed to determine bound forms of trace metals in soil samples. As with all 

sequential extraction schemes, the fractions identified by the BCR scheme are 
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operationally defined by the reagent and the order of reagents used. However, even so, 

identifying which fractions metals are associated with is useful because it does provide a 

relative measure of availability as well as facilitating comparisons with the many other 

studies that have employed the BCR scheme. The steps in the scheme are described below 

(Quevauviller et al., 1997). 

Step 1 (exchangeable fraction):  

Air-dried soil samples (1 g) were treated with 40 ml 0.11 M acetic acid (pH 2.8) in 50 ml 

centrifuge tubes and the samples shaken on a mechanical shaker for 16 h at room 

temperature, centrifuged (3,000 rpm, 15 min), the supernatant decanted  and filtered (0.45 

µm). The filtrate aliquots were stored in the fridge until analysing them by ICP-OES or ICP-

MS for measuring the elements of interest. The solid residues were washed with 10 mL of 

de-ionised water, shaken for 15 min, centrifuged (3,000 rpm, 15 min) and the supernatant 

discarded. 

Step 2 (reducible fraction):  

40 ml 0.1 M hydroxylamine hydrochloride, acidified to pH 2 with nitric acid, was added to 

the residues from the exchangeable fraction step and then at room temperature were 

shaken for 16 h followed by centrifuging and filtering them as in the first step. The filtrate 

aliquots were stored in the fridge until analysing them by ICP-OES or ICP-MS. The residues 

also were washed with water as in step 1. 

Step 3 (oxidisable fraction): 

The residues from step 2 were cautiously treated with 10 ml 35% hydrogen peroxide, acid-

stabilised with nitric acid to pH 2-3. The contents were digested at room temperature with 
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occasional shaking. Then, in a water bath, at about 85 °C, the digestion was continued and 

the volume was lowered to approximately 2 ml by additional heating of the uncapped tube. 

Then, an extra 10 ml of hydrogen peroxide was added, the tubes were again heated to 

about 85 °C, the volume reduced to approximately 2 ml and allowed to cool. Then 50 ml 

1M ammonium acetate solution was added to the cool residue, shaken for 16 h at room 

temperature and then they were centrifuged, transferred and filtered as in steps 1 and 2. 

The filtrate aliquots were stored in the fridge until analysing them by ICP-OES or ICP-MS. 

The residues were washed with water as in steps 1 and 2. 

Step 4 (residual fraction):  

The residues from step 3 were subjected to acid digestion for an internal check on the 

procedure, as recommended in the literature (Rauret et al., 2000) and reverse aqua regia 

reagent was used for the digestion. This additional step allows a mass balance to be 

assessed (i.e. sum of all BCR fractions can be compared to the total element concentration 

previously determined in a separate digested sample). Blank reagent samples were also 

analysed in each extraction step. 

The BCR scheme was carried out on samples from Ref. 1 and Ref. 2 (i.e. sites in apparent 

good ecological condition and used as reference positions) and two of the sites vulnerable 

to seepages, namely seep 1 and seep 3. It was originally intended to do BCR on seeps 1, 2 

and 3 and Ref 1 sites, but a handling error (a mistake) resulted in the Ref 1 and Ref 2 and 

seeps 1 and 3 being subjected to the BCR scheme. By the time this error was identified it 

was no longer practical to complete the BCR on seep 2 (ICP instrument access being the 

main limitation at the time). 
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3.2.4.2 CaCl2- extractable contents of metal(loid)s in soil 

According to Menzies et al. (2007) neutral salt extractants (such as 0.01 M CaCl2 and 0.1 M 

NaNO3) provide the most useful prediction of bioavailability of metals for plants. Extraction 

of the chemical elements from the soil using calcium chloride, at a 1:10 soil: extracting 

reagent ratio, can to some extent mimic the availability of metals to plants via the soil 

solution. This is because a 0.01M CaCl2 solution has the same approximate ionic strength 

as soil solution and because Ca is often a major cation present in soils and soil solutions 

(Houba et al. 2000). In the extraction step conducted here, 2 g of air-dried soil samples 

were treated with 20 ml of 0.01 M CaCl2 solution in 50 ml polyethylene tubes and then 

shaken; using an end over end shaker at room temperature, for at least 2 h (Houba et al. 

2000). Samples were then centrifuged for at least 10 minutes at about 1,800 rpm. The 

supernatants were filtered via 0.45 µm syringe filter and after the clear supernatants were 

transferred into test tubes and 0.1 ml 1 M HCl (high purity) was added to them to prevent 

growth of bacteria and also to prevent elemental adsorption to the containers as well. The 

acidified supernatant aliquots were stored in a refrigerator until determination of the 

element concentrations using ICP-OES and ICP-MS.  

The samples extracted by 0.01M CaCl2 were Ref 1 and Ref 2 (in good ecological condition 

as reference positions) and seeps 1, 2 and 3. A minimum of two replicates were conducted 

for each. 

3.2.5 Soil solution element concentrations 

Immediately after the soil samples were transferred to zip-lock plastic bags and transported 

to the laboratory, two subsamples for each site were placed into 50 mL centrifuge tubes 

and centrifuged at ~ 4000 rpm for 20 minutes, after which the supernatant soil solution 

was removed and filtered through a syringe filter with aperture 0.45 μm (Di Bonito et al., 
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2008). The soil solution samples for each site were acidified to pH < 2 with high purity HCl 

(Primar plus, Fisher) and then were analysed by ICP-MS (Perkin Elmer NexION 300D x).  This 

procedure successfully yielded soil solution for only a small number of samples, because of 

the dryness of the samples at time of collection; hence an additional process was 

conducted to generate simulated soil solution for the samples. Following a commonly 

applied approach (Ardestani and van Gestel, 2013, Ma et al., 2006), simulated soil solution 

was extracted from the soil samples by adding deionized water at 100% of water holding 

capacity for 3 days and then extracting via centrifugation after which samples were filtered 

and acidified as above. 

 

3.3 Results and discussion 

3.3.1 Basic soil physicochemical properties 

3.3.1.1 Soil moisture, soil organic matter (SOM %) and organic carbon (SOC %) 

As shown in Table 3-9, the soil moisture content of air dried samples ranged from 2.17 to 

9.62 %, while organic matter content ranged between 7.26 and 39.01 %. Soil organic carbon 

(SOC) was calculated from soil organic matter values  and the assumption that 58 % of soil 

organic matter is organic carbon (Perie and Ouimet, 2008).  

It is apparent that the soil moisture at seep 1 and Ref. 2 is significantly higher than that at 

Ref. 1, seep 2 and seep 3. The moisture content in the soil depends on some soil properties, 

they are the particle-size distribution, the dry bulk density, and the carbon content 

(Vereecken et al., 1989). Therefore, the variances in the soil moisture content might be 

related to those properties. There was a significant positive correlation between moisture 

% and SOC% (Pearson correlation of Moisture % and SOC% = 0.793; P-Value = 0.000), this 
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might be a reason for moisture findings. In various extents, the soil moisture content affects 

the adsorption of elements on the soil surface, which in turn can modify the bioavailability 

of toxic and nutrient elements. The amount of soil moisture affects the bringing of 

dissolved nutrient elements (e.g., Ca, K, N, and P) to plant roots (Brady and Weil, 2013). Soil 

fauna can also be impacted by soil moisture, (Verhoef and Nagelkerke, 1977, Kaczmarek, 

1975) found that behaviour and survival of Collembola as well as population size were 

influenced by soil moisture. 

Figure 3-3 and Table 3-9 show that SOM% and SOC% at Ref. 2 (i.e. the site with vegetation 

immediately next to the bare area) was significantly higher than that at the rest of the sites 

(p<0.0001, Tukey's multiple comparisons test) while there was not any significant 

difference between SOM% and SOC% at Seep 3 and at Ref. 1 (p=0.99, Tukey's multiple 

comparisons test). 

Factors such as topography, soil moisture and water saturation, salinity and acidity, 

vegetation and biomass production and drainage affect the soil organic matter (Bot and 

Benites, 2005). According to Emmett et al.(2010), SOM% in the general area of the study 

site typically ranged between 10% and 20%. The current study found low SOC% at seep 2 

and seep 3 (un-vegetated sites) comparison with that at Ref. 2 site. One unanticipated 

finding was that SOC% at Ref 1 site (vegetated site) is lower than that at Ref. 2, seep 1 and 

seep 2, the reason is not clear. The possible explanation for these high findings might be 

related to the presence of coal residuals in the seep samples (which would burn off during 

the ignition process and therefore give an elevated SOM% result because of lost mass) or, 

in the case of Ref 2, might be related to soil moisture content (i.e. better moisture retention 

can encourage more growth in this vegetated area). The latter can be drawn from the 



111 
 

positive correlation between SOC% and soil moisture content. Several reports on 

comparable sites have shown that the metals toxicity was decreased due to some soil 

organic matter (Beesley et al., 2014, Ondrasek et al., 2018).  

Table 3-9: Mean of soil moisture, SOM% and SOC% ±SEM. 

sample label Moisture% SOM% SOC% 

Ref.1 3.95±1.10 7.65±0.38 4.44±0.22 

Seep 1 9.62±1.54 27.63±0.57 16.02±0.33 

Ref. 2 8.23±0.11 39±0.2 22.62±0.12 

Seep 2 5.11±0.98 21.51±0.54 12.47±0.31 

Seep 3 2.17±0.25 8.19±0.44 4.75±0.25 
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Figure 3-3: Percentages for soil moisture, SOM and SOC at study sites, error bars show standard 
deviation (SD). 
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3.3.1.2 Soil pH 

Low pH was dominant in the study sites except at the two fully vegetated points of Ref. 1 

and Ref. 2, which had pH values ~5.9 and 6.3 respectively compared with all of the seep 

sites whose pH was <3 (Table 3-10). From Table 3-10 and Figure 3-4, it is evident that the 

soil pH at Ref. 1 and Ref. 2 are significantly higher than that at seep 1, seep 2 and seep 3 

(p<0.05, Dunn's multiple comparisons test). It is clear that soil pH at seep 1, seep 2 and 

seep 3 is not significantly different amongst these sites as confirmed by statistical 

assessment (p >0.9999 Dunn's multiple comparisons test). According to Emmett et al. 

(2010) soil pH in this general area of England typical ranged between 6.0 and 6.5, hence 

the seep sites have been impacted by something that has led to their lower pH values. 

These results seem to be consistent with those of Dybowska et al. (2005) who studied soils 

from a mining site in Devon, UK, and found the soil pH ranged from 2.9 to 6.8 and also in 

agreement with those obtained by Bradley and Cox (1986) who found that soil pH values 

from a mining site elsewhere in Staffordshire, UK, were between 2.6 and 7.3.  

According to U.S. Environmental Protection Agency (2003), if the soil pH of a site is less 

than 5.5 aluminium is known as a contaminant of potential concern (COPC) therefore it 

seems clear that only sites Ref. 1 and Ref. 2 can be considered safe regarding aluminium 

ecotoxicity (see Figure 3-4 ). Very high H+ activity can be toxic to plants, another effect is 

that it can affect membrane-bound ATPases which in turn can affect transport mechanisms 

of ions across membranes (Shabala, 2017).  

Negative and positive charges such as those associated with allophane, 1:1-type clays, iron 

and aluminum oxides, and humus are soil pH-dependent, therefore, soil cation exchange 

capacity changes with the soil pH changes, and at low pH the soil cation exchange capacity 



114 
 

decreases since exchangeable nutrient cations are displaced by H+ ions. Iron and aluminium 

ions and some other toxic metals are more bioavailable at low pH in the acidic soils (Brady 

and Weil, 2013). 

Table 3-10: Mean ± SD (n≥3) of soil pH for the study sites. 

Ref.1 Seep 1 Ref. 2 Seep 2 Seep 3 

5.91±0.23 2.91±0.08 6.28±0.05 2.87±0.41 2.73±0.08 
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Figure 3-4: Soil pH for the study sites, illustrating the potential issue in the study soils of aluminium 
toxicity that can occur in soils with a soil pH less than 5.5. The US-EPA identifies Al as a contaminant 
of potential concern (COPC) in such situations (EPA, 2003). 

 

3.3.1.3 Soil particle size distribution 

The percentages of clay, silt and sand at the study sites ranged from 1.04 to 3.62, 5.19 to 

14.26 and 82.10 to 93.67 respectively, as shown in Table 3-11. As show in Figure 3-5, 

although the clay percentages were low across the soils, the values at seep 1 and seep 2 

were greater than that at Ref. 1, Ref. 2 and seep 3. There were not identifiable differences 
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in the clay content at Ref. 1, Ref. 2 and seep 3. The clay content at seep 1 is significantly 

greater than that at seep 2 (p<0.05, Tukey's multiple comparisons test). It is clear from 

Figure 3-5 that silt content at Ref. 1 and seep 3 is significantly lower than that the rest of 

sites (p<0.05, Dunn's multiple comparisons test). It can be seen that the percentages of 

sand content at study sites were high across all locations. Even so, there were identifiable 

differences; the sand content at Ref. 1 and at seep 3 were greater than that at the rest of 

the sites whilst the lowest sand content were at Ref. 2 and at seep 1 sites (p<0.05, Brown-

Forsythe test followed by Benjamini, Krieger and Yekutieli test). Soil texture is majorly 

impacted by the types of the weathering which take place within the mineral content of 

that soil. For example, soils are likely to be richer in clay, when chemical weathering 

dominates (Earle, 2018), this might be a reason for that differences.  

Table 3-11: Mean of fractions persentage (n≥3) ± SD at the study sites. 

             Site 

Fraction% 
Ref.1 Seep 1 Ref. 2 Seep 2 Seep 3 

Clay% 1.08±0.05 3.63±0.18 1.29±0.19 2.04±0.52 1.16±0.14 

Silt% 7.43±0.22 11.13±0.12 14.26±0.22 9.30±1.84 5.29±0.20 

Sand% 91.52±0.25 85.26±3.45 87.60±0.22 88.71±2.18 93.57±0.22 

 

The results of this study indicate that soil texture is classified as sandy-loam and that is in 

line with what has been published by Emmett et al. (2010) for the soil texture in the same 

geographic area. The retention of metals in soil by both adsorption reactions and  

precipitation reactions can strongly be affected by the charged surfaces of soil particles 

particularly clay particles (Evans, 1989). According to the findings found by Smolders and 

co-workers (2003), it is expected, regarding the clay content, that the metal toxicity 
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threshold in soil seep 1 to be more than that at seep 2 and at seep 3. In other words, seep 

1 can be considered as a less sensitive soil and the amount of the metal to reach the toxic 

level in seep 1 soil is thus expected to be greater than that at seep 2 and at seep 3. 

Regarding the influence of texture on the nutrients available for the plant, the nutrient-

holding capacity is known to increase by a small increase of clay particles because of a large 

surface area provided by clay particles (Moore and Bradley, 2018). Therefore, even small 

differences can be important. 
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Figure 3-5: Comparison of mean of clay content, silt content and sand content at sites, error bars 
represent SD, (n≥3). 

3.3.1.4 The calculated effective Cation Exchange Capacity 

The effective cation exchange capacity (eCEC) values of soils were calculated based on the 

study by Helling et al. (1964), using Equation 3-2 as described in section 3.2.2.5. The eCEC 

is related to the variation in soil pH, organic matter and clay content within the samples. 

Table 3-12 shows calculated soil eCECs. Figure 3-6 shows a comparison of eCEC at the study 

sites. It is clear that eCEC at Ref. 2 is greater than that at the rest of sites. It can be seen 

that eCEC at Seep 3 soils is significantly lower than that at the rest of sites (p<0.05, Tukey's 

multiple comparisons test). These data should be interpreted with some caution, however, 

because of a possible uncertainty of the soil organic carbon data linked to coal fragment 

residues (as stated in section 3.3.1). It seems clear that the eCEC values at the un-vegetated 

soils decrease in order Seep 1> Seep 2> Seep 3, and this is related to the differences in soil 

pH, organic matter and clay content within those samples.  

 Table 3-12: Mean (cmol/Kg) of eCEC for study sites ± SD, (n≥3). 

Ref. 1 Seep 1 Ref. 2 Seep 2 Seep 3 

11.06±0.70 16.14±0.69 59.55±0.19 11.47±3.01 4.20±0.43 
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Figure 3-6: Mean of eCEC at study sites, error bars show SD from the mean, (n≥3). 

The number of cation adsorption sites in the soil depends on eCEC value (Robertson, 1999). 

Strong correlations between toxicity thresholds for a number of metals and effective cation 

exchange capacity as function of clay%, soil pH and organic matter, have been revealed by 

a many researchers such as Smolders et al. (2003), Smolders et al. (2004a), Oorts et al. 

(2006) and Rooney et al. (2006).  

According to work done by Smolders et al. (2009), the soil can be classified as a high, 

median and weak sensitive soils depending on the effective cation exchange capacity eCEC, 

pH, organic carbon (OC) percentage and clay percentage of soil as shown in Table 3-13. 

Comparison of the soil properties at the study site with the mentioned classification criteria 

indicates that all the seep soils investigated in the present study are considered as highly 

sensitive to metals toxicity based primarily on their pH and organic carbon content. The 

Ref.1 and Ref. 2 soil sites would fall within the weakly and median sensitive soil groups, 

respectively. Therefore, it is expected that the metal toxicity threshold in soil at seep 3, 

seep 2 and seep 1 would be less than that at Ref. 2;  in other words, the amount of the 

metal to reach the toxic level in Ref. 2 soil is expected to be greater than that at seep 3, 

seep 2 and at seep 1.  

Table 3-13: High, median and weak sensitive soil groups based on soil properties as mention in 
(Smolders et al., 2009). 

Soil class Soil eCEC (cmole/ kg) Soil pH Soil OC% Soil clay% 

Highly sensitive 4 4.5 1 5 

Median sensitive 15 5.5 2.9 15 

Weakly sensitive 35 7 12 30 
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3.3.2 Soil pseudo-total element concentrations 

The pseudo-total (aqua regia digested) element concentrations varied widely amongst the 

soil samples, as shown in Table 3-14. Variances in factors such as parent material of the 

soil, soil texture, chemistry and regime of water in the soil, soil microbiology activities, 

growing crop in the soil, rate of element leaching in the soil can all cause significant 

variances in metal(loid)s concentrations in soil because those factors impact 

immobilisation/ mobilisation processes (Bolan et al., 2014). Generally, the concentration of 

Al, Ca, Cd, Cr, Co, Cu, Fe, Mn, Ni, and Zn in the soils at seep 1, 2 and 3 are significantly less 

than that at Ref. 1 and Ref. 2 soils. This might be related to leaching of those elements with 

acid mine drainage at the seep points. As Ceto and Mahmud (2000) comment, the dissolved 

metal(loid)s can migrate from the soils to the local water bodies, so those soils might be 

eroded and washed to stream water. RoyChowdhury et al. (2015) state that the plants' root 

systems protect the soils against erosion and leaching, this might be a reason why the 

reference samples from vegetated soils Ref. 1 and Ref. 2 contain grater metals than seep 

1, 2 and 3 (i.e. the seep soils lack vegetation and thus have no protection from plant roots).  

The enrichment of metal(loid)s in soil can be estimated based on comparison of their 

measured concentrations with the known background levels, using enrichment indexes 

such as geo-accumulation. 
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Table 3-14: Pseudo total element concentrations for metal(loid)s in soils examined. Values are 
means (n=3) ± SD, B.D refers to below limit of detection. 

            Site 

Element 
Ref. 1 Seep 1 Ref. 2 Seep 2 Seep 3 

Al% 0.71±0.07 0.35±0.20 0.54±0.05 0.28±0.13 0.39±0.06 

As mg/kg 7.14±0.78 18.95±3.47 42.21±0.71 34.21±10.90 10.99±1.28 

Ca% 0.27±0.03 0.07±0.01 0.62±0.02 0.28±0.27 0.08±0.03 

Cd mg/kg 0.99±0.45 0.28±0.01 1.60±0.13 0.22±0.10 B.D 

Co mg/kg 4.80±0.20 2.17±0.92 25.54±0.40 3.54±0.52 2.93±0.43 

Cr mg/kg 11.93±0.64 3.51±0.95 9.59±0.10 4.91±1.68 10.86±0.86 

Cu mg/kg 14.57±0.86 33.48±5.03 106.60±10.19 23.55±9.95 8.00±0.72 

Fe% 1.22±0.06 7.10±1.55 2.20±0.12 6.06±2.11 4.28±0.78 

K% 0.31±0.36 0.50±0.20 0.21±0.12 0.30±0.12 0.12±0.04 

Mg% 0.23±0.02 0.01±0.01 0.09±0.01 0.06±0.03 0.17±0.03 

Mn mg/kg 183±16.98 168.70±20.61 892.4±59.90 143.3±25.48 152.2±37.78 

Ni mg/kg 12.35±0.45 4.98±3.51 58.23±1.60 7.87±2.70 10.12±6.48 

Pb mg/kg 24.04±1.25 56.18±5.98 97.19±2.05 36.16±17.29 20.58±2.40 

Zn mg/kg 54.06±3.80 15.25±4.63 81.36±2.66 24.33±15.9 27.79±5.32 

 

3.3.2.1 Evaluation of the Soil Contamination using geo-accumulation index (Igeo) 

Geo-accumulation index (Igeo) was calculated by comparing the measured pseudo-total 

metal(loid)s contents in the present study with median ambient background concentration 

(MABC) of them for soil in England. The Igeo index values here have been calculated using 

the mean of each measured element concentration for the sample sites and the MABC. The 

resulting Igeo values have been interpreted using the seven-category scale as shown in 

Table 3-7, detailed in section 3.2.3.2, and the results are shown in Table 3-15. 
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It can be seen that As, Co, Cr, Cu, Ni, Pb and Zn fall in class 0 in Ref.1 which means there 

has been no substantial accumulation beyond background in Ref.1 soil, while Cd in Ref.1 

was within the not accumulated to moderately accumulated range. In seep 1 soil, the 

results of Igeo of As, Cd, Co, Cr, Ni and Zn were within not accumulated range. The data 

indicate that Cu and Pb were within not accumulated to moderately accumulated range. 

Moderately accumulated were indicated for Cd, Cu, and Ni in Ref.2 soil. In this site, the data 

also showed moderate to heavy Cu accumulation occurred, while there were no Cr and Zn 

accumulation. As and Pb were within not accumulated to moderately accumulated range. 

The Igeo value of As and Cu in seep 2 fall in the not accumulated to moderately 

accumulated class, while Cd, Co, Cr, Ni, Pb and Zn in seep 2 were within the not 

accumulated range. In seep 3, As, Cd, Co, Cr, Cu, Ni, Pb and Zn fall in the not accumulated 

range. 

The vegetated soils (Ref.1 and Ref.2), for some elements, had more accumulation than 

unvegetated soils (seep 1, 2 and 3). As noted in the previous section, a possible explanation 

for this might be that leaching of those elements with acid mine drainage occurred in seep 

1, 2 and 3 (as had been suggested elsewhere, e.g. (Ceto and Mahmud, 2000) compared 

with Ref.1 and Ref.2 soils. One issue emerging from these findings relate to leaching of 

metals from seeps soils to local stream water affecting the aquatic biota, while another 

issue might be a rise in metals accumulation in plant tissue in nearby soils if mobile metals 

migrate there, which might lead to metals accumulation in livestock living there. 

The risk of metal to the soil biota, however, cannot be determined depending only on the 

comparison with the background concentrations; therefore, prediction of ecological risks 
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of some metals based on the predicted site-specific soil PNEC at the study sites will be the 

next step. 

Table 3-15: Igeo-accumulation index classes for As, Cd, Co, Cr, Cu, Ni, Pb and Zn at study sites, 

           Site 

Element 

Ref. 1 Seep 1 Ref. 2 Seep 2 Seep 3 

As 0 0 1 1 0 

Cd 1 0 2 0 0 

Co 0 0 2 0 0 

Cr 0 0 0 0 0 

Cu 0 1 3 1 0 

Ni 0 0 2 0 0 

Pb 0 1 1 0 0 

Zn 0 0 0 0 0 

 

3.3.2.2 Prediction of ecological risks from metals at the study sites 

Site-specific soil PNECs and Risk Characterisation Ratio (RCR) for Co, Pb, Ni, Cu and Zn were 

calculated using a spreadsheet (ARCHE, 2014) for all sites. Table 3-16 shows that there are 

potential risks of Zn and Ni at seep 3. Although no such site specific PNEC calculator has 

been developed for other elements, initial screening for Cd, As, Fe and Mn can be done by 

comparing pseudo-total concentrations in this study with non-site-specific ecological soil 

screening levels (ESSL) which have been published in the literature as shown in Table 3-17. 

RCR for these elements have been calculated and presented in Table 3-18.  

Values of RCR for Cd at Ref. 1 and Ref. 2 soils indicate that there are potential risks of Cd 

for avian and mammalian organisms. Chronic oral exposure of avian and mammals to Cd 

can be a problem (Beyer, 2000). Mammals can accumulate Cd concentrations in some of 
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their organs such as kidneys. Świergosz et al. (1998) found that 54% mortality of bank voles 

at accumulated about 40 mg/kg of renal Cd from dietary exposure. Furthermore, 

bioaccumulation of Cd between trophic levels of terrestrial food chains has been found in 

many studies  (Baudrot et al., 2018). 

Based on values of predicted RCR, high-risk by Fe and Mn at all studied soils for soil 

microbiome and microbial function are expected. The influence might be on the processes 

of nodulation and nitrogen fixation, or the process of developing of the root-nodule 

bacteria in the root zone (Alexander, 1980). This means that size or activity of some of the 

microbial communities might be affected by the Mn and Fe. For example, Mn might affect 

soil symbiotic nitrogen fixing bacteria, aerobic- heterotrophic bacterial and actinomycetes 

as it was found in some studies (Ahmad et al., 2005). 

The data also suggest that Mn likely poses a toxic risk for soil invertebrates and plants at 

Ref. 2 soil. Although the concentrations of Mn and Fe were not as high in the seep soils, 

their lower pH may result in toxicity issues. The solubility of Mn and Fe increase at pH less 

than 5.5, consequently Mn and Fe can become easily phytoavailable (Kabata-Pendias, 

2010). This can lead to a decrease in plant growth which is attributed to the resulting 

chlorosis from excessive metal exposure (Foy et al., 1998). 

Assessments of total or pseudo-total element concentrations relative to generic or site-

specific PNECs can, however, only indicate potential risks. To examine risks more closely, 

the mobility and bioavailability of the elements need to be investigated (and this is 

investigated in later parts of the study). 
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Table 3-16: Risk Characterisation Ratio RCR (mean ±SD) and potentially affected fraction PAF % of 
soil organisms for Co, Cu, Ni, Pb and Zn at study sites. 

                  Site 
Element 

Ref. 1 Seep1 Ref. 2 Seep2 Seep3 

Co 
RCR 0.23±0.01 0.05±0.01 0.17±0.01 0.18±0.04 0.55±0.18 

PAF 0 0 0 0.2 2.1 

Cu 
RCR 0.26±0.01 0.36±0.18 0.64±0.01 0.39±0.23 0.32±0.04 

PAF 0 0.8 1.7 2.7 0.4 

Ni 
RCR 0.47±0.01 0.08±0.04 0.34±0.07 0.32±0.08 1.36±0.83 

PAF 0.6 0 0.2 1.6 10.3 

Pb 
RCR 0.10±0.01 0.17±0.01 0.18±0.03 0.21±0.03 0.26±0.02 

PAF 0 0.1 0.1 0.6 0.5 

Zn 
RCR 0.39±0.04 0.12±0.02 0.24±0.05 0.23±0.06 1.05±0.08 

PAF 0.4 0 0.1 1.2 4.9 

 

Table 3-17: Non-site-specific screening levels ESSL (mg/kg for Cd, As, Fe and Mn for different 
protection goals  

Element ESSL Goal of protection Reference 

As 60 Earthworm (Efroymson et al., 1997) 

As 50 Plant on grassland areas (BBodSch, 1999). 

Cd 0.77 Wildlife-Avian* (EPA, 2005a) 

Cd 0.36 Wildlife-Mammalian* (EPA, 2005a) 

Fe 200 Soil microorganisms and microbial 
processes 

(Efroymson et al., 1997) 

Mn 100 Soil microorganisms and microbial 
processes 

(Efroymson et al., 1997) 

Mn 220 Plants (EPA, 2007) 

Mn 450 Soil invertebrates (EPA, 2007) 
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* For clarity, it is stated that these values are for soil and not for concentrations in food sources of 
the birds and mammals (see cited reference for details) 

 

Table 3-18: RCR for Cd, Fe, As and Mn for several protection goals at study sites 

                            Site          

RCR-Element 
Ref. 1 Seep 1 Ref. 2 Seep2 Seep3 

RCR-Cd Wildlife-Avian 
1.29 

±0.58 

0.37 

±0.02 

2.08 

±0.21 

0.28 

±0.15 
N.R 

RCR-Cd-Wildlife-

Mammalian 

2.75 

±1.25 

0.78 

±0.04 

4.45 

±0.44 

0.60 

±0.31 
N.R 

RCR-As earthworm 
0.12 

±0.02 

0.34 

±0.05 

0.70 

±0.01 

0.62 

±0.20 

0.19 

±0.01 

RCR-As Plant 
0.14 

±0.03 

0.40 

±0.06 

0.84 

±0.02 

0.74 

±0.24 

0.22 

±0.00 

RCR-Fe Soil microorganisms 

and microbial processes 

61.00 

±3.00 

355.00 

±77.01 

110.00 

±6.02 

303.00 

±105.05 

214.00 

±39.06 

RCR-Mn-soil Microbiome & 

microbial processes 

1.83 

±0.18 

1.67 

±0.26 

8.92 

±1.00 

1.49 

±0.34 

1.38 

±0.22 

RCR-Mn Plant 
0.83 

±0.08 

0.76 

±0.12 

4.05 

±0.51 

0.68 

±0.16 

0.63 

±0.10 

RCR-Mn soil invertebrates 
0.41 

±0.04 

0.37 

±0.06 

1.98 

±0.17 

0.33 

±0.08 

0.31 

±0.05 

 

3.3.3 Metals fractionation of soils, extractable contents of metals in soils and 

metal(loid)s contents in soil solution. 

3.3.3.1 Metals fractionation in soil using BCR scheme  

Fractionation of Ni, As, Cd, Co, Cr, Cu, Al, Fe, Mn, Pb, Zn, Ca, and Mg in soils was studied 

using Community Bureau of Reference (BCR) sequential extraction scheme (Ure et al., 

1993). It provides information about the potential bioavailability and mobility of elements 
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in the studied soils by attempting to determine the amounts of each element that are 

associated with various target soil fractions. Each successive step in the BCR scheme uses 

a more aggressive chemical reagent so that overall the scheme can identify elements that 

are in easily mobile through to resistant (or residual) fractions. The first fraction has been 

defined as targeting the most readily bioavailable and the most mobile forms of elements 

in soil and it is intended to represent the weakly bound (at cation-exchange sites) and that 

bound to carbonates. Step two of the BCR includes metal(loid)s associated to iron and 

manganese oxides that at low soil pH can be mobilised. Organic-bound metals are targeted 

by the third BCR step which are stable unless under strong oxidising environment. The final 

step includes silicates and residual oxides phase which are considered immobile. For 

simplicity of representation, elements found at lower than the limit of detection (using ICP-

OES) were treated as zero. 

Findings of fractionation of some metal(loid)s in soils collected from Ref.1 site, which is 

vegetated soil, are shown in Table 3-19 as individual mean concentrations of fractions and 

in Figure 3-7 as the percentages of individual fractions. It can be seen that Ni, Al, Cr, Cu, Fe, 

Pb and Zn are found to be dominantly within the non-labile phase.  At this site, Ca and Mg 

labile fractions are at dramatically high concentrations (1953.58 mg/kg and 203.00 mg/kg, 

respectively). There is a significant labile fraction of As and Mn (40%, 6.8 mg/kg and 30%, 

69.2 mg/kg respectively) at this is site. Although there is a high percentage of Co in the 

labile fraction, in reality this represents a small total amount at less than 1 mg/kg.  

 

 



128 
 

Table 3-19: Individual BCR fractions concentrations of metal(loid)s extracted from Ref.1 site; based 
on the mean ± SD; (mg/kg dried basis). 

       Fraction 
Element  

Exchangeable Reducible Oxidisable Residual 

Al 57.82±5.37 513.07±10.93 359.26±4.10 6799.07±542.73 

As 6.80±0.56 6.60±0.78 7.47±4.97 3.87±0.61 

Ca 1953.58±30.43 537.13±1.24 36.07±1.32 50.57±2.85 

Cd 0.00±0.00 0.67±0.71 0.00±0.00 0.40±0.01 

Co 0.98±0.07 0.00±0.00 0.00±0.00 0.00±0.00 

Cr 1.46±0.21 3.87±1.77 1.11±0.09 11.87±1.29 

Cu 0.66±0.02 0.00±0.00 0.00±0.00 9.21±1.70 

Fe 251.80±1.41 2372.10±246 1821.33±98.55 22462.33±2362.33 

Mg 203.72±3.29 69.07±20.58 109.41±16.67 1017.15±44.17 

Mn 69.21±3.68 44.09±1.75 25.29±10.20 93.87±4.89 

Ni 0.00±0.00 5.04 ±1.94 4.17 ±NR 19.60±2.40 

Pb 3.87±0.61 7.25±4.83 2.85±0.31 61.40±24.04 

Zn 1.40±0.28 5.72±3.47 0.00±0.00 87.47±7.86 

 

 

Figure 3-7: Percentages of individual fractions of some metal(loid)s extracted from Ref.1 site. 
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The results of fractionation of some metal(loid)s in soils at seep 1 site, which is unvegetated 

soil, are presented in Table 3-20 as individual mean concentrations of fractions and in 

Figure 3-8 as percentages of individual fractions. It is clear that Al, As Cd, Co, Cr, Cu, Fe, Pb 

and Zn distribute within non-labile (residual) fractions. Interestingly, the labile fraction of 

Mn and As are significant, representing 43% and 26% of totals and with concentrations of 

59.00 mg/kg and 8.80 mg/kg, respectively. There is a small percentage of the respective 

total amounts of Al and Fe in the labile fraction (16% and 0.1% respectively), however, it 

should be noted that those small percentages of the total represent great amounts (200.00 

mg/kg and 257.00 mg/kg respectively). 

Table 3-20: Individual BCR fractions concentrations of some metal(loid)s extracted from seep 1 site; 
based on the mean ± SD; (mg/kg dried basis). 

       Fraction 
Element  

Exchangeable Reducible Oxidisable Residual 

Al 200.37±1.84 226.39±12.74 163.11±0.00 3458.20±728.32 

As 8.80±2.26 2.28±0.00 10.22±1.61 15.60±0.40 

Ca 736.80±24.46 55.92±3.71 9.36±0.69 18.36±3.87 

Cd 0.13±0.02 0.00±0.00 0.00±0.00 3.50±0.21 

Co 0.27±0.004 0.00±0.00 0.00±0.00 9.20±0.40 

Cr 0.32±0.05 1.09±NR 0.16±NR 5.01±0.81 

Cu 6.71±0.14 1.20±NR 0.00±0.00 60.53±1.22 

Fe 257.00±2.55 14878.07±32.60 38760.00±2870.76 209600.80±1455.43 

Mg 37.49±0.25 0.00±0.00 1.46±0.21 35.40±2.81 

Mn 59.00± NR 5.31±3.16 42.13±5.24 59.01±3.11 

Ni 0.00±0.00 0.00±0.00 20.16±4.17 8.93±1.85 

Pb 3.40±0.28 0.00±0.00 5.93±0.71 77.20±2.83 

Zn 2.0±1.13 1.63±NR 0.00±0.00 90.27±13.79 
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Figure 3-8: Percentages of individual fractions of the interested metal(loid)s extracted from seep 1 
site 
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Cu 2.70±0.05 51.56±7.94 50.67±5.46 54.93±7.89 

Fe 248.40±NR 6976.33±1097.50 12706.67±1314.74 36607.33±2815.79 

Mg 340.05±4.94 93.41±2.41 75.50±10.55 182.04±15.87 

Mn 396.79±7.75 782.58±12.31 65.70±26.59 118.81±36.20 

Ni 3.90±0.70 24.39±3.62 3.99±1.82 38.66±3.49 

Pb 4.53±0.46 31.85±1.03 8.01±.92 76.80±9.05 

Zn 4.20±0.28 25.09±1.16 7.25±1.20 124.00±21.51 

 

 

Figure 3-9: Percentages of individual fractions of metal(loid)s extracted from Ref. 2 site. 
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447.60 mg/kg respectively. Interestingly, the majority of Cu is found to be associated with 

exchangeable and reducible fractions (7% and 63%, respectively).  

Table 3-22: Individual BCR fractions concentrations of some metal(loid)s extracted from seep 3 site 
soil; based on the mean ± SD; (mg/kg dried basis). 

        Fraction 
Element 

Exchangeable Reducible Oxidisable Residual 

Al 57.44±1.87 223.46±31.62 211.76±9.20 6763.07±664.80 

As 0.40±0.06 6.70±0.85 0.00±0.00 8.27±1.22 

Ca 502.27±6.03 95.42±6.47 5.55±1.21 24.09±2.13 

Cd 0.00±0.00 0.00±0.00 0.00±0.00 2.80±0.01 

Co 0.74±0.09 0.00±0.00 0.00±0.00 3.20±0.01 

Cr 0.90±0.12 0.00±0.00 1.18±0.16 12.40±0.81 

Cu 0.68±0.06 6.34±1.08 0.00±0.00 7.01±0.04 

Fe 447.60±67.88 5878.32±148.19 19346.67±563.01 98627.60±1740.11 

Mg 162.18±3.67 26.64±4.34 39.05±0.26 909.04±42.29 

Mn 22.51±0.67 5.06±NR 9.25±NR 102.80±1.06 

Ni 0.00±0.00 1.48±0.21 0.00±0 16.93±2.03 

Pb 3.20±2.12 0.00±0.00 4.38±0.52 36.40±0.57 

Zn 2.40±2.55 6.54±NR 0.00±0.00 84.53±12.37 
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Figure 3-10: Percentages of individual fractions of some metal(loid)s with extracted from seep 3 
site. 
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Table 3-23: Risk assessment code (RAC) index of some metal(loid)s based on BCR fraction 1 as a 
percentage of total 

                 Site    
Element  

Ref. 1 Seep 1 Ref. 2 Seep  3 

Al  1% 5% 1% 1% 

As  39% 29% 9% 3% 

Ca  76% 90% 64% 80% 

Cd  0% 4% 0% 0% 

Co  100% 3% 31% 19% 

Cr  8% 5% 11% 6% 

Cu  7% 10% 2% 7% 

Fe  1% 0% 0% 0% 

Mg  15% 51% 48% 14% 

Mn  30% 43% 29% 16% 

Ni  0% 0% 5% 0% 

Pb  5% 4% 4% 7% 

Zn  2% 1% 3% 3% 

 

The BCR extraction results can also be probed by examining what has been referred to as 

the potential mobility fraction (PMF) in soil; PMF is the summation of BCR1+BCR2+BCR3 

(Rinklebe and Shaheen, 2014). What is interesting in the data shown in Table 3-24, is that 

PMF for Cu at seep 1 and seep 3 sites might mean that the sources of these metals are of 

acid mine weathering origin since the natural originated metal(liod)s distribute mostly 

within silicates and residual phase. 
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Table 3-24: The potential mobility fraction (PMF) of some metal(loid)s based on sum of BCR 
fractions 1-3 as percentage of total  

              Site 
Element 

Ref. 1 Seep 1 Ref. 2 Seep 3 

Al  12% 15% 30% 7% 

As  78% 38% 53% 46% 

Ca  98% 98% 99% 96% 

Cd  63% 4% 0% 0% 

Co  100% 3% 100% 19% 

Cr  35% 24% 28% 14% 

Cu  7% 10% 59% 70% 

Fe  17% 20% 35% 21% 

Mg  25% 51% 74% 20% 

Mn  60% 57% 91% 26% 

Ni  32% 69% 46% 8% 

Pb  19% 11% 37% 17% 

Zn  8% 3% 23% 10% 

 

The order of metal(loid)s mobility in sites in term of the percentage of total in labile BCR1 

fraction were:  

In Ref. 1 site Ni=Cd<Al=Fe<Zn<Pb<Cu<Cr<Mn<As<Co. 

In seep 1site Ni=Fe< Zn< Co< Cd=Pb< Cr=Al< Cu< As< Mn. 

In Ref. 2 site Cd=Fe< Al< Cu< Zn< Pb< Ni< As< Cr< Mn< Co. 

In seep 3 site Ni=Cd=Fe< Al< Zn< As< Cr< Cu=Pb< Mn< Co. 

The mobility of metal(loid)s are governed by their interactions with microorganisms, 

organic matter, phyllosilicates and variable charge minerals. Those factors are different in 
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the studied heterogeneous soils and these lead to variances in the order of mobility of 

metal(loid)s (Caporale and Violante, 2016). 

In general, Al, Cr, Cd, Co, Fe, Ni, Pb and Zn are within the non-labile phase, this possibly 

related to the nature of the adsorption of those elements to edge sites of phyllosilicates, in 

which those elements chemically bind to SiOH or AlOH groups in phyllosilicates (Sparks, 

2013, Sparks and Ginder‐Vogel, 2013).  

An exception of that is Co in Ref.2 site in which part of Co was weakly bound. Gál et al. 

(2008) stated that during weathering processes, Co is mobilised relatively readily. Co is 

susceptible to oxidation-reduction reactions and involved in dissolution–precipitation 

processes in the soil (Barker and Pilbeam, 2015). Below pH 7 outer-sphere surface Co 

complexes (weakly bound) onto some soil component were found (Woodward et al., 2018, 

O’Day et al., 1994). Palit et al. (1994),Alloway (2012),Gál et al. (2008) stated that adsorption 

and coprecipitation of Co occur with MnO2. Weathering of the Mn-bearing minerals 

consequently impact Co mobility. 

Exchangeable arsenic concentration in Ref.1, seep 1 and Ref. 2 sites were in agreement 

with work by Catalano et al. (2008). They found that arsenic can be attached to some soil 

component in a way which is easy to desorb. Again, those are not only important for 

potential stream water and groundwater contamination (Ceto and Mahmud, 2000) but also 

pose risk for soil biota (USEPA, 2003).  

A high Mn proportion was found in the labile fraction in Ref. 1, seep 1 and Ref. 2 sites, and 

this might be related to the fact that when oxidation of sulphide minerals occur, Mn-

bearing minerals dissolve and then Mn ions replaced the Mg and Ca ion on the exchange 
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sites in soils (Goulding, 2016). As Khattak and Page (2017) comment, in many studies, the 

electron spin resonance spectroscopy data have suggested that Mn2+ is adsorbed to clay 

minerals through outer-sphere complexation mechanisms. Those are important for 

potential groundwater and stream water contamination (Tiankao and Chotpantarat, 2018, 

McMahon et al., 2018) as well as a potential risk for soil biota (Wu et al., 2015). 

Comparison among the labile fractions of the elements at the four sites could be useful to 

assess the potential bioavailable and mobile elements that could be at a level of concern, 

Table 3-25.  

Table 3-25: Comparison among the labile fractions (0.11M acetic acid extractable) of the elements 
at four sites, the data is presented as mean (mg/kg) ± SD. 

        Fraction 
Element 

Ref.1 seep 1  Ref. 2 seep 3  

Ni 0.00±0.00 0.00±0.00 3.90±0.70 0.00±0.00 

Al 57.82±5.37 200.37±1.84 88.22±0.93 57.44±1.87 

As 6.80±0.56 8.80±2.26 6.80±0.56 6.40±1.41 

Cd 0.00±0.00 0.13±0.02 0.00±0.00 0.00±0.00 

Co 0.98±0.07 0.27±0.004 5.10±0.24 0.74±0.09 

Cr 1.46±0.21 0.32±0.05 1.58±0.04 0.90±0.12 

Cu 0.66±0.02 6.71±0.14 2.70±0.05 0.68±0.06 

Fe 251.80±1.41 257.00±2.55 248.40±28.00 447.60±67.88 

Mn 69.21±3.68 59.00±7.21 396.79±7.75 22.51±0.67 

Pb 3.87±0.61 3.40±0.28 4.53±0.46 3.20±2.12 

Zn 1.40±0.28 2.0±1.13 4.20±0.28 2.40±2.55 

Ca 1953.58±30.43 736.80±24.46 4964.17±60.32 502.27±6.03 

Mg 203.72±3.29 37.49±0.25 340.05±4.94 162.18±3.67 

 



138 
 

As a consequence of the oxidation of sulphide minerals, the Al-bearing minerals then Fe-

bearing minerals in the soil are dissolved after that Al3+ and Fe2+ ions replace the 

exchangeable base cations such as Ca, Mg, K through the cation exchange process 

(Goulding, 2016). This would be an explanation for increase of exchangeable Al 

concentration at seep 1 which is about 4 and 2 times greater than that at Ref. 1 and Ref. 2, 

respectively, similarly, the increase of exchangeable Fe concentration at seep 3 which is 

about 2 times greater than that at Ref. 1 and Ref. 2. This can be therefore, supporting for 

the findings of potential Al toxicity in seep 1 that was mentioned in section 3.3.1.2 and 

findings of the potential risk of Fe in seep 3 site in section 3.3.2.2. 

Ca and Mg at Ref. 2 and Ref. 1 sites are considerably higher than those at seep 1 and seep 

3 sites. Cover plant act as a phytostabilization in Ref. 2 and Ref. 1 sites, which leads to a 

reduction of Ca and Mg losing via erosion and leaching (Chibuike and Obiora, 2014), 

whereas, in seep 1 and seep 3 Ca and Mg might be washed to the nearby stream by 

rainwater or upwelling seepage. 

The exchangeable concentrations of Ni, Co, Mn, Pb and Zn at Ref. 2 site are greater than 

those at the rest of the sites; however, higher soil pH in this site as well as the amount of 

the exchangeable Ca and Mg might be a reason for enhancing the soil condition and 

reducing the toxicity of metals present. Furthermore, metal(loid)s may have both 

antagonistic and synergistic interactions in terms of toxic effects, for example, the 

antagonistic effects of Ca on trace elements such as Cd, Pb, and Ni as well as the 

antagonistic effects of Fe on Zn, Mn, and Co (Kabata-Pendias, 2010). Similarly, Al toxicity is 

decreased by the presence of Mg (Rengel et al., 2016). However, such possible antagonistic 

or synergistic effects on toxicity cannot be evaluated just by extraction methods, but rather 
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by the use of direct measurements of toxicity such as by using plants or other test 

organisms (as is addressed later in this study). 

The recovery percentages, or element mass balances, were computed by comparing the 

sum of all BCR fractions with the pseudo-total element concentrations previously 

determined using reverse aqua regia ( for Ref.1, seep 1, Ref. 2 and seep 3 soils) as shown 

in Table 3-26. There are good recoveries for Al, As, Cd (for Ref.1 and Ref. 2), Cr, Cu (except 

for soil Ref.1), Mn, Ca and Mg. Recoveries for Pb and Fe were high but still mostly within a 

factor of 2 of the pseudo-totals. The inconsistent recovery for Ni, Co, Zn, Pb and Fe, 

together with the relatively tight precision for the BCR fractions and the previous pseudo-

total concentration measurements, show how heterogeneous the soils at the sites can be 

for those elements. This heterogeneity therefore should be taken into account when 

evaluating the sites and considering any remediation or management recommendations.  

The chemical sequential extraction methods, e.g., BCR scheme, can bring the individual 

geochemical phases into the solution at the experimentally defined stages. Based on the 

findings of this study, an evaluation of the general chemical extraction methods and 

particularly of the BCR procedure will be presented hereafter.  

Certified reference materials (CRMs) with certified extractable contents are commercially 

available and their use can provide additional confidence in the extraction procedure and 

analytical measurements, however they are problematic and often prohibitively expensive 

because they cover only a limited range of elements and are often in a matrix that is not a 

precise match for the environmental samples under study (e.g. CRM BCR701 is a lake bed 

sediment matrix). For these reasons they were not used in the present study. Even with the 

use of such CRMs there is often still the issue of suboptimal recovery of elements across 
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the sequential extraction steps relative to the previously determined total element 

concentration (Horvath et al., 2010), and the reasons can vary. Depending on the soil types, 

readsorption, and redistribution of metals bound at exchangeable, carbonate, Fe, Mn 

oxide, and organic fractions can occur onto the other solid geochemical phases during 

sequential extraction (Shan and Chen, 1993).  

The reagents can even create and expose new surfaces within residual solid phase 

materials that can bind elements more strongly and prevent their solubiisation, potentially 

even resisting strong mineral acids. Natural heterogeneity of environmental samples is also 

a factor. Nevertheless, use of sequential extraction techniques such as BCR does provide 

highly useful insight into the relative distribution of elements across increasingly 

recalcitrant soil components and therefore provides information about likely mobility and 

potential bioavailability. That is, they can be a reasonable screening tool for estimating the 

mobilizable pool of elements in soils. Although these extractions do have limitations and 

cannot directly be 100% related to the bioavailability of elements as experienced by plant 

roots or soil dwelling invertebrates and microbes, the findings can be utilized for assessing 

the risk, e.g. using risk assessment code RAC, and as an indication and point of relative 

comparison. 

Concerning the difficulties of achieving quality control of the sequential extraction method, 

it can not be considered as a completely precise, specific, and efficient tool to quantify 

metals partitioning for all the complex soil systems without accompanying another 

assessment tool. 
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Table 3-26: Recoveries percentage (mass balances of BCR fractions sum relative to pseudo-total 
element concentrations previously determined) of elements at the four sites 

                Site 
Element 

Ref.1 Seep1 Ref.2 Seep3 

Al 69% 69% 73% 81% 

As 79% 141% 143% 137% 

Ca 103% 140% 124% 110% 

Cd 90% >150% 75% NR 

Co 20% >150% 64% 28% 

Cr 96% 61% 90% 74% 

Cu 35% 81% 92% 126% 

Fe >150% >150% >150% >150% 

Mg 66% 93% 106% 90% 

Mn 95% 104% 138% 66% 

Ni 41% >150% 63% 8% 

Pb >150% >150% >150% >150% 

Zn >150% >150% >150% >150% 

 

3.3.3.2 CaCl2-extractable contents of metal(loid)s in soil 

The extractable metal(loid)s fraction determined by a dilute neutral salt solution have been 

said to be more correlated than the BCR scheme fractions (or equivalent) with 

phytoavailability (Ahnstrom and Parker, 2001). The idea of Barber (1984) of using an 

extractant which simulates the natural soil solution for predicting the metals’ 

phytoavailability was further developed by Houba et al. (2000). Common neutral salts 

extractants are CaCl2, MgCl2, Sr(NO3)2, and NH4NO3. They offer a good indication of 

metal(loid)s availability to the plant (Kabata-Pendias, 2004, Menzies et al., 2007).  
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In terms of the potential for pollutant transition from soil to plant on agricultural land, 

trigger values were developed and used under Germany’s Federal Soil Protection Act for  

extracted metal(loid)s (using neutral salt reagents and thus similar to some extent to what 

have been used in this study), as shown in Table 3-27. These values have been set with 

regard to growth weakening of cultivated plants (BBodSch, 1999). 

 

Table 3-27: Trigger values, mg/kg, for As, Cu, Ni and Zn using ammonium nitrate extract as 
employed under the German Federal Soil Protection Act. 

Element Trigger value mg/kg 

Arsenic 0.4 

Copper 1 

Nickel 1.5 

Zinc 2 

 

The concentration of metal(loid)s extractable using 0.01M CaCl2-extractant are presented 

in Table 3-28. It is apparent from the table that concentrations of Al-extractable and Fe-

extractable at seep 1, seep 2 and seep 3 were considerably higher than those at Ref 1 and 

Ref. 2 which were less than the detection limit using ICP-OES for Al and less than 1 mg/kg 

for Fe. Similarly, Mn content is considerably high at seep 2 and seep 3, those results might 

be related to replacing of Ca ions from the extractant with Al, Fe and Mn which are weakly 

bound to the ions exchange site in the soil as described in Goulding (2016). Hume et al. 

(1988) found that 0.02M CaCl2-extractable Al contents of less than 3.3 mg/kg were unlikely 

to affect white clover. CaCl2-extractable Al content in seep 1, seep 2 and seep 3 are quite 

greater than 3.3 mg/kg, based on that, Al phytotoxicity is likely in those sites. Duncan (2012) 
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stated that CaCl2-extractable Mn levels that are associated with Mn toxicity occurred as 

low as 10 mg/kg when Al-extractable amounts were greater than 1.80 mg/kg. 

From the table (3-28), it can be seen that the extractable Co content at seep 2 and seep 3 

were significantly higher than those at the rest of the sites, which might be attributed to 

low soil pH mobilising the Co and this might cause concern to soil biota (Barker and Pilbeam, 

2015). 

Closer inspection of the table shows an increase in Pb content at seep 2 relative to other 

sites but statistically, that was not significant. Those values were higher than what has been 

found in a study by Pueyo et al. (2004) which were below the detection limit in three sandy 

loam soils that contained 96.00, 245.00 and 403.00 mg Pb/kg aqua regia extractable 

contents that are greater than European range of maximum allowable concentrations 

MAC1. 

Statistical tests reveal that Zn concentration in sites seep 1, seep 2 and seep 3 were 

significantly higher than those at the rest of sites. The values of extractable Zn content in 

the present study were within the range of those found in a study done by Pueyo et al. 

(2004). They examined the concentration of Zn-extractable in three sandy loam soils 

(contain 776.00, 911.00 and 1248.00 mg Zn/kg (extracted using aqua regia which are 

greater than the Netherlands intervention limits2) and the extractable Zn contents were 

2.5, 0.31 and 0.29 mg/kg. However, compared with the trigger value which developed and 

 
1 As describe in  KABATA-PENDIAS, A. 2010. Trace elements in soils and plants, CRC press. 

2 PRONK, J. 2000. Circular on target values and intervention values for soil remediation. 
Ministry of Housing, Spatial Planning and Environment Rep. No. DBO, 1999226863. 
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used under Germany’s Federal Soil Protection Act for extracted Zn, there is not risk for Zn 

transition from soil to plant, Table 3-27 and Table 3-28.  

Cu CaCl2-extractable contents were greatest at seep 1 and seep 2 sites. Extractable Cu 

contents were also examined by Pueyo et al. (2004). Three sandy loam soils contained 

278.00, 214.00, 308.00 mg Cu/kg (extracted using aqua regia which are greater than the 

Netherlands intervention limits) have Cu CaCl2-extractable 0.13, 0.11, and 0.14 mg/kg 

respectively, those were less than that measured on seep 1, seep 2 and seep 3 in this study. 

Compared with the trigger value which based on Germany’s Federal Soil Protection Act for 

extracted Cu, there is potential risk for Cu transition from soil to plant at seep 1 and seep 

2, Table 3-27 and Table 3-28. 

Extractable Ni contents were greatest at seep 1 and seep 2 sites, and if compared with the 

trigger value for neutral salt extractable Ni used under Germany’s Federal Soil Protection 

Act there is potential risk for Ni transition from soil to plant at seep 2 (Table 3-27 and Table 

3-28). Interestingly, Mg content is considerably low at seep 1 and seep 3. It might be 

possible that, if plants could be made to grow here through a remediation step, Mg 

deficiency may occur because of this. The long-term Mg depletion of soils as a consequence 

of Mg leaching due to the chemical weathering processes in which the soil cation exchange 

sites were saturated with H+ ions and resulting Mg leaching has been noted elsewhere 

(Gransee and Führs, 2013).  
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Table 3-28: The concentration (mg/Kg) of some metal(loid)s using CaCl2-extractant, the data is 
presented as mean ± SD, B.D refers to bellow limit of the detection, N.R refers to not. 

       Sites 

Element 
Ref. 1 Seep 1 Ref. 2 Seep 2 Seep 3 

Al B.D 91.42±0.68 B.D 71.94±0.39 40.19±0.46 

Co 0.03±0.03 0.12±0.02 B.D 0.98±0.07 0.13±0.08 

Cd 0.010±0.002 B.D B.D B.D B.D 

Cr 0.003±0.001 B.D B.D B.D B.D 

Cu 0.07±0.01 1.40±0.04 0.33±0.01 1.64±0.05 0.31±0.07 

Fe 0.48±0.06 11.58±0.36 0.50±0.11 124.13±3.38 82.34±1.38 

Ni 0.09±0.01 0.36±0.00 0.25±0 1.91±0.05 0.24±0.00 

Mn 3.28±0.07 3.25±0.12 5.93±0.08 34.65±0.52 29.34±0.51 

Zn 0.71±0.03 1±0.01 0.67±0 1.42±0.07 1.20±0.04 

Pb 1.10±0.10 0.87±0.65 1.03±0.34 1.56±0.40 1.11±0.25 

As 0.12±0.01 0.09±0.00 0.09±0.00 0.11±0.00 0.07±0.01 

Mg 173.98±3.84 35.33±0.79 208.34±2.59 200.1±4.43 160.5±16.42 

 

3.3.3.3 Soil solution metal(loid)s contents 

Dissolved metals in the soil solution are the most easily available form of metals to soil 

biota (Hamon et al., 1995, Lorenz et al., 1997, Sauve et al., 2000). It is considered as an 

indication of the actual mobility of metal(loid)s (Cappuyns and Swennen, 2008). 

Concentrations in the directly obtained soil solutions, to the extent that they could be 

determined, are shown in Table 3-29, while concentrations measured in the simulated soil 

solutions are shown in Table 3-30 and Table 3-31. Average natural abundance of some 

metal(loid)s in soil solution have been cited by Wolt (1994) in µmol/l which have been 

converted to be µg/l as presented in Table 3-32 for comparison. Corresponding values for 

other elements have been estimated by Kabata-Pendias (2010), Table 3-33. 
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Table 3-29: Mean concentration (mg/l or µg/l ) ± SD of Al, Fe, Mn, Ca and Mg content in directly 
obtained soil solution samples, B.D refers to bellow limit of the detection, N.R refers to not reported 
(i.e. soil solution was not obtained). 

              Site 
Element 

Ref. 1 Seep1 Ref. 2 Seep 2 Seep 3 

Al mg/l N.R N.R N.R 4.91±0.38 54.56±0 

Fe mg/l N.R N.R N.R 396.03±46.27 363.35±56.21 

Mn mg/l N.R N.R N.R 24.37±0.26 37.46±0.10 

Ca mg/l N.R N.R N.R 517.23± 8.53 290±28.6 

Mg mg/l N.R N.R N.R N.R 309.03±3.54 

Cd µg/l N.R N.R N.R 18.00±0.92 50±6.16 

Cr µg/l N.R N.R 0.12±0.05 21.73±6.03 5.37±0.02 

Cu µg/l N.R N.R N.R B.D 42.50±3.54 

Pb µg/l N.R N.R 1.28±0.36 4.88±1.56 3.89±0.93 

Zn µg/l N.R N.R N.R 44.50±3.93 207.80±15.30 

As µg/l N.R N.R 2.12±0.14 3.04±0.29 N.R 

 

Table 3-30: Mean concentration (mg/l) ± standard error of K, Fe, Mn, Ca and Mg content in 
simulated soil solution samples. 

            Site 
Element 

Seep 1 Seep 2 Seep 3 

Ca 201.21±17.68 247.4±0.62 251.37±1.8 

Fe 913.32±240.74 327.42±76.24 395.29±109.75 

K 8.32±2.38 254.96±18.65 51.57±3.42 

Mg 93.96±7.18 261.17±1.73 231.68±1.31 

Mn 9.99±0.76 69.24±3.66 45.49±1.75 
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Table 3-31: Mean (µg/l) ± standard error of Cr, Cu, As, Pb, Cd, Co, Ni and Zn content in simulated 
soil solution samples. 

             Site 
Element 

Seep 1 Seep2 Seep 3 

Cr 3.54±0.67 1.25±0.1 17.19±4.08 

Cu 48.52±16.21 8.48±2.49 24.58±11.12 

As 2.86±0.29 19.68±5.82 12.24±1.56 

Pb 0.54±0.2 4.86±1.43 5.69±1.45 

Cd 5.89±2.61 1.57±0.98 11.21±5.64 

Co 99.76±10.87 550.27±94.01 538.89±63.46 

Ni 962.35±73.95 2425.22±350.76 2289.93±261.57 

Zn 1182.15±188.66 1453.84±482.68 2420.86±666.62 

 

Table 3-32: Average natural abundance of some metal(loid)s in soil solution in µmol/l after Wolt 
(1994), which have been converted to be in µg/l. 

Element µmol/l µg/l 

As 0.01 0.75 

Cd 0.04 4.50 

Cr 0.01 0.52 

Cu 1.00 63.55 

Pb 0.005 1.04 

Zn 0.08 7.30 

 

Table 3-33: Arithmetic means of trace elements concentration (μg/L) in soil solution obtained by 
centrifugation for acid sandy and sandy contaminated soils after Kabata-Pendias (2010). 

Element Acid Sandy, pH (2.5-4) Sandy, pH (4-4.5) 

Fe 2223 1000 

Mn 5965 8000 
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A comparison of studied metal(loid)s content in simulated soil solution from the soils of the 

present study with the typical values described in the literature and shown in Table 3-32 

and Table 3-33 indicate that the levels of most elements in soil solutions of the study site 

are elevated, even though the total concentrations in the soil solid may not be considered 

high. This provides one measure of the relative risk of most elements present. However, 

the toxicity of elements can be soil and organism specific. For example, based on Al3+ 

thresholds in soil solution, (Poschenrieder et al., 2008) plant species can be classified in 

terms of their Al resistance: very sensitive < 0.03 mg/l e.g. Bromus wildenowii; sensitive 

0.03–0.05 mg/l e.g. Poa pratensis; moderately sensitive 0.05–0.14 mg/l e.g. Dactylis 

glomerata; tolerant> 0.14 mg/l e.g. Phaseolus vulgaris and highly tolerant> 0.81 mg/l e.g. 

Agrostis tenuis. Thus specific tests are needed to fully assess the environmental toxicity of 

the site in terms of habitability for soil organisms. 

The concentrations of metals released in solution are quite significant for a number of the 

elements investigated. Fluxes of those metals from soil to soil solution and to other soil 

compartments can pose a risk to soil organisms as well as affecting  soil biochemical 

processes. For example, the concentrations of Ni in all seep location soil solutions were 

well above the level reported as the 10% effect concentration (EC10) for inhibiting root 

elongation in barley seedlings (i.e. 200 µg/L; (Zhang et al., 2013b), while the concentrations 

of Zn were an order of magnitude above EC20 soil porewater concentrations determined 

for the microbial functions of soil nitrification and maize residue respiration (Smolders et 

al. 2004). Similarly, the concentrations of Cd were above the EC5 value for reproduction 

(number of juveniles produced) of the springtail Folsomia candida in one particularly 

sensitive soil (~1 µg/L; (Bur et al., 2010) and the Pb concentrations were approaching the 
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EC50 values determined for reproduction of the earthworm Eisenia fetida in 7 European 

soils (the most sensitive soil EC50 value was ~15 µg/L; (Lanno et al., 2019), meaning that 

the concentrations of these elements would impair plant, microbial and invertebrate 

development in the soils of the study site.  There are also wider ecosystem and food chain 

implications, as any organisms that are able to become established in the seep soils of the 

site would pass on any assimilated contaminants to consumers higher up the food chain. 

Furthermore, surface water and groundwater can be affected by those contaminants if 

they move through the soils, which has potential environmental and human health (i.e. 

groundwater as a drinking water source) implications. 

 

3.4 Chapter conclusions  

The aims of the chapter: 

In many regions and countries around the world, long term environmental legacies of 

former coal mines are a pressing concern. In this investigation, the aim was to characterise 

the study site in terms of soil physicochemical properties, the significance of the 

metal(loid)s contaminants in the soil, and the forms and associations of contaminants in 

soils sampled from the damaged areas (seep points) compared with those from reference 

points away from damaged areas. 

The main findings: 

Soil property assessments have identified aluminium toxicity related to low soil pH (less 

than 5.5) as a likely major problem in seep 1, seep 2, and seep 3 sites; moreover, the 

findings indicate that these soils are highly sensitive to metals toxicity because of their low 
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pH and eCEC, while Ref.1 and Ref. 2 soil sites were placed in the weakly and median 

sensitive soil groups respectively.  

The pseudo-total element contents, when assessed using the geo-accumulation index 

approach indicate that As, Cd, Co, Cr, Ni, and Zn were within the not accumulated range in 

seep 1, seep 2, and seep 3, while higher accumulations were found in Ref. 1 and Ref. 2, 

which is concerning because leaching of metals with rainwater or mine seepage from seeps 

soils to local stream water is likely which in turn could be affecting the aquatic biota. 

Furthermore, comparison of the measured contents with the predicted soil-specific 

ecotoxicological threshold concentrations or with non-soil-specific ecotoxicological 

threshold concentrations for some of the metal(loid)s indicate that potential risk of Zn and 

Ni in seep 3, risk of Cd for avian and mammals in Ref. 1 and Ref. 2, and potential risk of Mn 

and Fe in all sites. 

The BCR fractionation data has shown that, in general, most metals in the studied sites 

were dominantly found within the non-labile phase, except Mn, As, and Co, which might 

pose risks either to surface/ground waters or to soil biota. High concentrations of 

exchangeable Al, Mn, Fe as well as low Ca and Mg are likely to pose risks in some seep sites. 

The results of the assessment of CaCl2-extractable metals contents revealed that seep 1, 

seep 2, and seep 3 soils have high extractable Al and Fe contents compared with Ref.1 and 

Ref.2. Similarly, soil in seep 2 and seep 3 sites also have considerably high extractable Mn 

contents; this might be attributed to chemical weathering of minerals contained Al, Fe, and 

Mn. Furthermore, a comparison of extractable Cu, Co, Pb, and Zn contents in this study 

with extractable Cu, Co, Pb, and Zn contents of some contaminated soils, there is a possible 

posed a risk to some soil organisms. The Concentration of Mg in seep 1 soil would suggest 



151 
 

a possible risk of Mg deficiency. Those findings might cause concern for the soil biota. The 

soil solution data has shown that the levels of most elements in soil solutions of the study 

site were, in general, greater than the typical values described in the literature which might 

indicate the relative risk of As, Cr, Cu, Cd, Co, Fe, Mn, Ni, Pb, and Zn, but it is recognised 

that the toxicity of metal(loid)s in many cases are soil-specific and organism-specific and so 

further assessment is warranted. 

Therefore, to summarise, the main potential problems with the soils of the seep sites (i.e., 

soils in which plants cannot seem to grow in the field) might be the low soil pH and the 

associated Al, Fe, and Mn toxicity in addition to Ca and Mg deficiency as well as possibly 

Co, Cu, Pb, and Zn toxicity. 

The implications of the study: 

The results of the refinement study of pseudo-total metal content analysis methods 

indicate that dilution of the digested solution of soil samples followed by direct analysis 

provides a more precise and consistent result that  is an environmentally friendly and time-

saving alternative to drying down the digested solution of soil samples option.  

In relation to assessment of soils at the site, in general, it seems that oxidation of sulphide 

minerals leading to a decrease in soil pH is the main contributor to the ecological 

vulnerability in the area. That highlights the importance of monitoring and controlling the 

sulphide oxidation and resulting low pH of the exposed soils and also the need for a 

remediation strategy that particularly targets the most severely impacted seep sites. Also, 

these findings have significant implications for the understanding of how the pattern of the 

mining contamination may occur in the restored or partially restored coal mining area. 
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Furthermore, the results of this research support the idea of  focusing on bioavailable-

based assessment tools for evaluating soil contamination instead of the bulk metals 

content-based assessment tools that are commonly relied upon. Finally, these data suggest 

that comprehensive, precise assessment of mine contamination and protection of an 

ecosystem in the mining-affected area can be achieved through combining data from 

various assessment tools. 

The significance of the findings or contribution: 

The findings of the refinement study of metal analysis in soils will be of interest to all 

researchers who are analysing metals in soil samples and who want to achieve more precise 

data with fewer interefences and fewer procedural steps. In terms of the site study, the 

findings highlight the importance of longer term monitoring and assessment of abandoned 

mine sites and the continued environmental implications of sulphide oxidation and related 

processes. The findings also show the need for effective remediation of mining sites. This 

can have importance for mining related laws and policies in terms of  contributing to 

developing best practices required for good environmental stewardship within the mining 

sector. Understanding the pattern of the mining contamination provided in this study  is 

also useful for environmental protection agencies as a possible scenario of mining 

contamination in similar situations (i.e. a case study with relevance to other sites). 

Furthermore, focusing on bioavailable-based assessment tool instead of the bulk metals 

content-based assessment tool, and combining data from various assessment tools may 

also be important for environmental protection agencies to ensure successful protection 

of the ecosystem at mining areas. 
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Limitations: 

Examining the chemistry alone cannot capture important factors potentially in effect such 

as synergistic, antagonistic and additive effects of multiple metals stressors; assessments 

that include living organisms are needed for that. Thus, there is a need to test the toxicity 

of the soils using living organisms, which is addressed in subsequent chapters. It is also 

important to recognise that this is the first investigation of the site and thus a conceptual 

model of likely contaminat dispersion patterns was developed based on theories in order 

to design the sampling approach. A more comprehensive investigation of the hydrology of 

the site (both surface and subsurface flows) would greatly inform further development of 

conceptual moels of contaminant movement pathways. Nevertheless, despite its 

limitations, the study certainly adds to the understanding of the nature and the extent of 

the contamination in the study site.  

Recommendation: 

A key policy priority in the mining sector should, therefore, be to plan for the long-term 

care of mining-affected areas. 
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4 Evaluation of water quality, aquatic ecotoxicology and 

sediment contamination  

4.1 Introduction 

4.1.1 Important water quality parameters 

A healthy catchment or riverine environment has good water quality that is fit for multiple 

uses and which provides suitable habitat for a range of wildlife. According to the Water 

Framework Directive 60/EC (2000) of the European Union, the quality of the surface water 

can be studied and assessed through determining both the chemical status and ecological 

status. The biological quality, hydromorphological quality, and physico-chemical quality are 

all considered and assessed against standards when determining the ecological status 

(Munné, 2006). 

Hydromorphological elements such as the assessment of depth fluctuations, channel 

patterns, and dynamics of flow are a part of the ecological status of the aquatic system 

because they influence such things as the habitats and conditions (niches) available to 

organisms (Munné, 2006). Chemical quality aspects such as Dissolved Oxygen (DO) are also 

important as most aquatic organisms need to access some oxygen via the water and so  to 

be of good status the DO should be at an adequate level in order to support the aquatic 

life. Several factors such as biochemical activity, chemical and physical factors (i.e. 

turbulence of flow and the temperature of the water) affect the level of the dissolved 

oxygen in surface water. The fish absorb DO via their gills and many fish require the 

concentration to be >3 mg/l (Vaquer-Sunyer and Duarte, 2008). The DO is also necessary 

for the decomposition process of the organic materials (such as the residues of dead 

organisms) in water. These materials are broken down by other microorganisms (called the 
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decomposers). The decomposers consume the DO during the decomposition process 

(Dugan, 2012), hence suitable DO is an essential component of a healthy river environment. 

Physical water quality elements, as alluded to above, comprise parameters such as 

temperature, turbidity, suspended solid, colour, odour and taste. Temperature affects 

some important parameters such as the dissolved oxygen through its influence of the 

oxygen solubility as well as its impact on the rate of growth of aquatic microorganism and 

as a consequence affects the level of DO. Temperature also affects the nutrient content 

through its effect on the growth rate of cyanobacteria (Philippe Quevauviller, 2008). 

The chemical characteristics include parameters such as inorganic minerals, organic 

materials, radionuclides, dissolved gases, state of acidification which is indicated by pH and 

alkalinity, and the state of nutrients like total phosphorus, soluble reactive phosphorus, 

total nitrogen, nitrogen-NO3, nitrogen-NO2, nitrogen-NH4 (Carr and Neary, 2008). 

Chemical status along with ecological status needs to be assessed to characterise the status 

of the aquatic systems. The chemical quality can be assessed by comparing with 

environmental quality standards set down in the Water Framework Directive; the 

standards can vary in format for different parameters, but typically are set either as 

maximum allowable concentrations or as maximum annual average concentrations 

permitted for particular water contaminants.  

4.1.2 Importance of sediment quality 

The sediment can be defined as relatively heterogeneous materials which include organic, 

inorganic and detrital particles which in the end will settle on the bed of a water body 

(Burton, 2018). 
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It is essential to study the sediment quality if one is to form an overall understanding of the 

status of the aquatic environment because in many cases, most contaminants bind in 

different nature to the particles of the sediments. The sediments can be considered either 

as acute or chronic sources of contaminants to the surrounding water or to other sediment 

components and thus can directly impact the sedimentary environment and organisms 

within it. The dangers posed to sedimentary organisms can occur by exposure to the 

contaminated sediment as well as the contaminated sediment pore water. Furthermore, 

dangers can occur to wildlife and humans by exposure via these sedimentary organisms 

(Burton, 2018), e.g. via food chain propagation of contaminants. 

Determination of element concentrations in sediments via acid digestion and analysis (i.e. 

pseudo-total content) and comparison with the ambient element content can indicate the 

gross contamination level. However, it is widely recognised that the hazardousness of 

metal contamination to sedimentary biota is not necessarily reflected accurately based on 

the content of the pseudo-total contaminants alone. The biologically available content of 

the metals is a more reliable indication of the immediate threat than the pseudo-total 

content for assessing the sediment toxicity to biota. Therefore, combining the 

measurements of total element content (i.e. the total potential toxic load of an element) 

with the bioavailable content or with the outcome of toxicity tests on organisms is 

considered a more accurate and robust way to assess the sediment quality (Greenstein et 

al., 2013). 

Several methods can be used to provide information about the sediment quality, one way 

is by assessment of the freshwater community structure. Toxicity tests of freshwater 

sediments can be a method to assess the toxicity of sediment for fish, plankton, amphibian 
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and macrophyte. Hazards of contaminated sediments can be also assessed using 

biomarkers (i.e. protein, enzyme or genetic markers) (Martın-Dıaz et al., 2004). Field 

assessment of contaminants and their impacts is also routinely accomplished using benthic 

or epibenthic invertebrates surveys (i.e. presence/absence and or abundance/diversity of 

certain groups with varying sensitivities to contaminants, e.g. (Byrne et al., 2013), and these 

are considered a successful technique for evaluation of contaminated sediment (Diepens 

et al., 2014). 

4.1.3 Use of ecotoxicology to evaluate water quality 

Understanding the toxic effect of unsafe substances on the aquatic environment can be 

gained from ecological toxicology (ecotoxicology) studies. These studies can be performed 

in a laboratory and typically include studying the toxic effects that occur with set ranges of 

concentrations of the substance of interest. Alternatively, rather than creating different 

concentrations of a test substance and measuring toxic effects that arise, samples of water 

from a suspected contaminated site can be brought into the laboratory and be tested for 

their toxicity to organisms. Ecotoxicology studies can also be performed under a variety of 

ecological conditions in complex field ecosystems which can be distinguished from the 

more common laboratory studies by being referred to as field-base ecotoxicology studies. 

Ecotoxicology laboratory tests are useful for several aspects, these are shown in  Figure 4-1, 

(Chapman, 1995). 

The tests that measure lethality to aquatic organisms usually within 24 hours are called 

acute toxicity tests while the chronic aquatic toxicity tests are used to measure sub-lethal 

and lethal impacts over a partial life cycle or life cycle of organisms so they provide 
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information about the possible long-term impacts of contamination (Posthuma et al., 

2001). 

 

Figure 4-1: Applications of ecotoxicology laboratory tests, (Chapman, 1995). 

4.1.4 Aims and objectives 

The aims of this study, therefore, were to: 

1. Characterise the study site in terms of metal and metalloid contaminants in the 

water and sediment. 

2. Quantify and assess the significance of the level of any contamination. 

3. Attempt to identify the positions where the water and sediment become more 

polluted. 

4. Assess aquatic ecotoxicology with Daphnia in water. 

Therefore, the objectives were set as:  

1. Examining water quality along the stream by measuring turbidity, pH, dissolved 

(0.45 µm filtered) and total element concentrations of the collected water samples.  
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2. Determining the total (aqua regia extractable) element contents of sediment 

samples collected from the affected areas (crossing point and downstream) and 

from a reference point before affected area (upstream).   

3. Testing the toxicity of the stream water samples using ecotoxicology method 

including Daphnia magna assays (OECD 202 Daphnia Acute Immobilisation Test for 

waters). 

4.2 Methods  

4.2.1 Water sampling and analysis for pH, turbidity and total element 

concentrations 

4.2.1.1 Sampling 

Stream water samples were collected to study the water quality of a mine-affected stream 

in a restored coal mining area in Staffordshire, UK. As shown in the map in Figure 4-2, three 

sites along the stream were sampled. The first point is from the stream before it comes into 

proximity or contact with the area of suspected seepage from the coal mining area which 

was detailed in chapter three (i.e. site 1 is the upstream location); the second point is where 

the stream appears to meet or be influenced by the seepage point (it is also the crossing 

point for the stream and so is referred to as crossing point, see Figure 4-3; the third point 

was approximately 200 m (downstream) from the second point and was selected to assess 

continued influence of the seepages downstream. 

The design of sampling programmes and sampling techniques of water samples were done 

based on the guidance detailed in ISO 5667-1 (ISO, 2006). The water sampling process was 

performed in selected locations from specific sites while factors such as the depth and time 

of sampling were as constant as possible according to ISO 5667-6 (ISO, 2014). The sampling 
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protocol involved multiple samples collected in polypropylene bottles that were pre-rinsed 

three times with stream water prior to sample collection. The bottles were completely filled 

to minimise head space and any gas interactions. The samples were stored and transported 

within 2 hours to the laboratory according to ISO 5667-3 (ISO, 2018). Water samples were 

collected, as described, on multiple occasions: samples collected in November 2016 were 

analysed for dissolved content of Cr, Ca, Fe, K, Mg, Mn, P, Zn and for total content of Al, Ca, 

Cd, Cr, Fe, Mg, Mn, P, Pb. Samples collected in May 2017 were analysed for pH, turbidity, 

dissolved content of As, Cr, Co, Cu, Ca, Fe, Mg, Mn, Ni, P, Zn and for total content of As, Co, 

Cr, Cu, Fe, Mg, Mn, Ni, P as well as aquatic ecotoxicology test with Daphnia.  Samples 

collected in August 2018 were analysed for pH, DO, EC and total dissolved solids, dissolved 

content of As, Co, Cu, Fe, K, Mg, Mn, Ni, Zn and  total content of Al, Ca, Co, Cu, Fe, K, Mg, 

Mn, Ni as well as aquatic ecotoxicology test with Daphnia. 

 

Figure 4-2: Location map shows the position of the tested stream water samples and sediments 
samples. In the top right corner, the study area have been shown as a black dot within Staffordshire 
county.   

 

Crossing 
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Upstream 
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Figure 4-3: View of the stream at the Crossing Point (site 2), near the first seepage point, where the 
water is visibly more coloured than upstream. 

 

4.2.1.2 Stream water pH  

The water pH value is always important to determine because high and low pH values can 

cause toxicity, directly or indirectly, for aquatic organisms.  Water pH values can indicate 

the corrosive properties of an aquatic environment. 

The method is based on measuring the potential variance of an electrochemical cell which 

involves two half-cells, one of them is a selective electrode for measuring the hydrogen ion 

activity and a reference electrode is the other (Buck et al., 1985).  

Measuring the activity of hydrogen ions in a solution is done according to ISO 10523:2008 

(DIN, 2012). Approximately 5 ml of stream water, from the collected samples, were placed 

in a sample vial and then the pH values were read after stabilization of the values at 

approximately 20 °C. Precision to two decimal places were recorded for each 

measurement. The Jenway 3510 pH (probe and meter) used for the analysis was calibrated 



162 
 

at the beginning and after five measurements using the pH 4 and 7 buffer solutions at 

approximately 20 °C. 

4.2.1.3 Turbidity  

The turbidity of the samples were analysed either in the field or as soon as possible back in 

the laboratory using a portable Hannah Turbidimeter which had been fully calibrated 

previously in accordance with ISO 7027-1 (ISO, 2016 ). The measurements were recorded 

as nephelometric turbidity units (NTU).  

4.2.1.4 Dissolved Oxygen, Electrical Conductivity and Total Dissolved Solids 

The dissolved oxygen (DO), electrical conductivity (EC) and total dissolved solids (TDS) were 

measured on site using a Hanna multi-parameter probe which had been calibrated 

previously. The DO measurements were recorded as a percentage of total saturation, the 

EC measurements were recorded in units of µS/cm, and the TDS was recorded in mg/l. 

Water temperature was also measured using the Hannah multi-probe. 

4.2.1.5 Dissolved element and total element concentrations 

Collected stream water samples were filtered using 0.45 micron filter syringes then 

acidified using high purity grade nitric acid (i.e. Primar Plus trace analysis). Samples were 

then kept in a refrigerator for analysis of dissolved element concentration using ICP-MS 

Perkin Elmer NexION 300D and Vista MPS ICP-OES (EPA, 1994). 

For total elements, a 20 ml aliquot of homogenised (but not filtered) water sample was 

quantitatively transferred to an acid-cleaned microwave digestion vessel to which 2 ml of 

concentrated nitric acid and 0.5 ml concentrated hydrochloric acid (both high purity grade) 

were added in the fume hood. Samples were digested, transferred to plastic tubes and then 

analysed for element content via ICP-MS (EPA, 1994).  
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4.2.1.6 Aquatic ecotoxicology assays with Daphnia  

The scientific classification of Daphnia magna is that it belongs to Animalia kingdom, 

Arthropod phylum, Daphniidae family, Daphnia genus (Gheju et al., 2006) . Daphnia magna 

has a wide distribution covering fresh and brackish waters across much of the Northern 

Hemisphere. It forms an important part of many food-webs and is also a popular fish food. 

They have been used extensively in ecotoxicology because they are easy to breed and 

maintain and are very sensitive to toxic chemicals and other water impurities. Therefore, 

in this study the water quality at the sites was assessed biologically using Daphnia magna 

as the test species.   

The upstream, crossing point, and downstream sites as well as water from a clean 

Reference point were tested. Five replicates (n=5) were tested from each site, with 10 

Daphnia placed in a 150 ml container for each replicate according to protocol OECD 222 

(OECD, 2016). To determine mortality at the end of the test period, according to the 

protocol, when the test container is gently agitated the Daphnia should be able to swim 

within 15 seconds otherwise they are considered as having died. Mortality percentage of 

Daphnia magna at crossing point and downstream samples were compared with that at 

upstream. The validity of the tests was considered confirmed by the 90% survival rate in 

the control (a clean reference site) samples. 

4.2.2 Sampling and analysis of the sediment samples 

Stream sediment samples were collected to study the extent of the metal(loid)s dispersion 

in the study area. The design of sampling programmes and sampling techniques of water 

sediment samples were done in accordance with ISO 5667-12 (ISO, 2017). Sampling 

preservation and handling of sediment samples were carried out in accordance with  the 

method ISO 5667-15 (ISO, 2009). The sampling involved scooping out sediment using 
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stainless steel scoops and transferring them to separate zip-lock sealable plastic bags. 

Samples were taken to the laboratory and were dried, ground finely and homogenised 

(within each separate sample) by hand. Total element contents of sediment samples were 

determined via microwave assisted acid digestion (reverse aqua regia, high purity acids) 

and analysis by ICP-OES and, where necessary, ICP-MS. Certified reference materials were 

used to test the recovery of the acid digestion process.      

4.3 Results and Discussion 

4.3.1 Results of the Water samples (pH, turbidity, DO, EC and Total Dissolved 

Solids, temperature, dissolved elements, total element and aquatic 

ecotoxicology assays) 

4.3.1.1 Water pH 

The stream water pH was measured in May 2017 and August 2018. Within each site, the 

pH was quite consistent across the two time periods, but the crossing Point and 

downstream locations had lower pH than the upstream location (Figure 4-4). The 

differences between upstream and the other sites were significant according to an ANOVA, 

Brown-Forsythe Test of Variances (p = <0.0001) for both sampling periods. Although there 

are differences, at all sites and at all times the pH was within the range of 6 to 9, which is 

the target range for ‘Good status’ under the WFD (Water Framework Directive (Standards 

and Classification) Directions (England and Wales) 2015). However, the standards are 

intended to be applied to year-long (i.e. monthly measurement across a whole year) data 

sets and so it might still be possible that the pH dips below this good status range at certain 

times of year (e.g. possibly during low rainfall periods when a larger proportion of the flow 

comes from below ground upsurges). The pH of the stream is far healthier than the values 

reported for untreated streams impacted by acid mine drainage; e.g. the Ely Creek 
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watershed (Lee County, VA, USA) had pH < 3 prior to remediation work, after which it had 

risen to 7.1 (Simon et al., 2006). Taken together, such comparisons indicate that the pH of 

the stream in the present study, if the measurements reflect average conditions, is not 

likely to present an environmental problem.  
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Figure 4-4: Mean of water pH and the error bars represent the standard deviation of the mean. 

 

4.3.1.2 Turbidity 

It is clear that the turbidity increased significantly at the crossing point and downstream 

sites compared with the turbidity value at upstream (Figure 4-5). There is no current 

turbidity quality standard for UK rivers under the WFD, but there has been a substantial 

amount of work done elsewhere toward determining indicative thresholds. According to 

benchmarks based on works by Newcombe and Macdonald (1991) and Newcombe and 

Jensen (1996), the upstream turbidity value of ~400 NTU may already make the stream 

water unsuitable for prolonged residence of freshwater fish. For example, when fish are 

exposed to that level of NTU value for a period of days, it is likely that effects including 
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increased respiration, reduced feeding, and avoidance behaviour will be observed, while if 

the period of exposure extended to several weeks then more severe effects such as delayed 

hatching and reduced growth would occur. The turbidity was even higher at the crossing 

point and downstream (~1500 NTU and ~800 NTU, respectively, Figure 5), and was at levels 

that could induce death in fish if exposure extended to a period of months (Newcombe and 

MacDonald, 1991). Therefore, the turbidity at the crossing point and downstream location 

would make the sites unable to sustain a population of fish.    
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Figure 4-5: Mean of the water turbidity measured on 15-5-2017, the error bars represent the 
standard deviation of the mean. 

4.3.1.3 Dissolved Oxygen 

There were significant increases in the mean of the dissolved oxygen percentages at 

crossing point and downstream sites comparison with that at upstream site (ANOVA, p< 

0.05) (Figure 4-6). This may be linked to the higher turbulence the water experiences as it 

flows over a small cascade near the crossing point. The EQS for dissolved oxygen used in 

England under the WFD is a 10th percentile of monitored values being above 60% 
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saturation, meaning that the upstream point would not meet the EQS if the values 

observed here were typical throughout the year. However, the DO of the crossing point 

and the downstream location would meet the EQS.   
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Figure 4-6: Mean of the dissolved oxygen percentage, error bars represent the SD of the mean. 

 

4.3.1.4 Electrical Conductivity, Total Dissolved Solids and Temperature 

The electrical conductivity (EC) and total dissolved solid values in the crossing point site 

were more than double those observed upstream, while the downstream site also had 

substantially higher values than upstream, see Figure 4-7 and Figure 4-8.  This suggests 

some level of input arising from the seepage points that may have negative impacts on 

ecology. For example, the US EPA advises that EC values above 500 µs/cm may render the 

water unsuitable for fish and certain important invertebrates; all three sites of this study 

exceed this value with the crossing point exceeding it by more than three-fold and the 

downstream site by almost three-fold. The temperature (Figure 4-9) was fairly uniform and 

unremarkable across sites at ~13°C and so was considered not to pose any problem.     
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Figure 4-7: Mean of electrical conductivity and error bars represent the standard deviation of the 
mean. 
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Figure 4-8: Mean of total dissolved solid and error bars represent the standard deviation of the 
mean. 
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Figure 4-9: Mean temperature of the stream water in the study sites (°C) and error bars represent 
standard deviation of the mean. 

 

4.3.1.5 Dissolved elements concentrations 

Water samples were collected three times during the study for element analysis.  Important 

elements are presented and discussed individually in turn below, but the overall general 

finding was that the concentrations of dissolved Zn, Fe, Mn, Mg and Ca at the crossing point 

and downstream sites were significantly higher than that at the upstream site, indicating 

some level of input along the stream and likely coming from the seepage points. 

Contrastingly, the concentrations of dissolved Cr and P at the crossing point and 

downstream sites were significantly less than that in the upstream site, possibly indicating 

sorption to or precipitation into sediments. 

For As, at all locations and on all occasions it was measured, the concentration values were 

below 1.5 µg/l, and were mostly < 1.0 µg/l (Figure 4-10). This is in line with typical 

background concentrations reported for England (10th percentile values for various rivers 
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ranged 0.50 – 2.00 µg/l (Peters et al., 2012). Environmental quality standard (EQS) for As 

under the WFD, moreover, is set as a dissolved (filtration through a 0.45 µm filter) 

concentration of 50 µg/l (WFD-UK, 2015). This EQS is set as the mean of long term average 

of monitoring and so, if the values recorded in this study are representative, then the EQS 

would be comfortably met at the study site. Therefore, because all the As concentration 

values observed are substantially below the As EQS value, adverse effects attributable to 

dissolved As are not expected to arise at the study site. The variance of As content with 

different time of sampling (Figure 4-10) might be related to something simple such as 

dilution by rainfall. 
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Figure 4-10: Mean of the As dissolved concentration in stream water collected from study sites, 
error bars represent SD of the mean. Samples were collected in 12/5/2017 and 8/8/2018. 

 

For Cr (Figure 4-11), all concentrations measured were below 0.5 µg/l with a number of 

samples having been below the limit of detection. Water Framework Directive standards 

in England and Wales (2015) establish specific EQS values that are set as a mean (long term 
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average of monitoring) for each common valence state of Cr. The EQS 4.7 µg/l value is 

specific for the trivalent state of Cr and the EQS 3.4 µg/l is specific for the hexavalent state 

of Cr. The species (oxidation state) specific values recognise the increased toxicity of 

hexavalent Cr compared with trivalent Cr. Here, the Cr concentrations could not be 

speciated and so represent total dissolved Cr. However, because both EQS values are far 

greater than the total dissolved Cr concentrations determined for the collected samples, 

consequently there is no need for measuring the trivalent and hexavalent Cr content 

individually because the measured total dissolved concentrations easily meet both EQS 

values. Although having little ecological importance, it was noted that, for samples 

collected on 2016, the dissolved Cr concentrations at crossing point and downstream sites 

were less than that at upstream site while for samples collected on 2017 there was 

detected amounts of Cr only for the downstream site Figure 4-11. 

On both occasions when water was analysed for cobalt (Co), the concentrations of the 

dissolved Co at the crossing point and downstream sites were greater than that at 

upstream site (AOVA, Brown-Forsythe test, P value<0.0001; Figure 4-12). The crossing point 

had concentrations above 15 µg/l, whereas the upstream site had values of ~7 µg/l and ~2 

µg/l on the two sampling times respectively. There is no EQS established for Co under 

current WFD monitoring and classification, however, guideline values are established in 

Canada and can be used for comparison. The Canadian Federal Water Quality Guideline 

(FWQG) for Co is set to a value dependent on water hardness, ranging from 0.78 µg/l (for 

hardness at 52 mg/l) to 1.8 µg/l (for hardness at 396 mg/l), and was established following 

a review of ecotoxicology data (Canada Department of the Environment, 2017). Using this 

Canadian FWQG as a point of reference, the data for the stream studied here indicates that 
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there is a risk of Co toxicity to aquatic biota, particularly at the crossing point where the 

concentration was ~10 times above the guideline value. 

Site-specific water predicted no effect concentration (PNECs) can be generated for Cu, Zn, 

Ni and Mn using a spreadsheet tool sometimes referred to as the Metal Bioavailability 

Assessment Tool (M-BAT) that has recently been developed by United Kingdom Technical 

Advisory Group (UKTAG) and key measured or estimated site-specific water properties of 

pH, Ca and dissolved organic matter (DOC) (WFD-UKTAG, 2014). The spreadsheet calculator 

can then be used to calculate the site-specific PNEC Dissolved (µg/l) of Zn, Cu, Ni and Mn 

(µg/l) and bioavailable concentration (µg/l) of those elements as well as the Risk 

Characterisation Ratio (RCR, i.e. measured concentration/PNEC) for those metals in 

relation to the test water samples. It was not possible to measure DOC in this study so the 

default assumed DOC value for the English Midlands (Trent) of 4.2 mg/l, as recommended 

by the Water Framework Directive-United Kingdom Technical Advisory Group (2012) was 

used. The water pH was not measured for samples collected in 2016, alternatively, water 

pH values in 2017 were used (this is more appropriate to avoid overestimated of toxicity, 

since pH values in 2017 were higher than pH in 2018 ) for the prediction of site-specific 

PNEC Dissolved Cu, Mn, Zn and Ni in 2016. Ca content was not measured for samples 

collected in 2017, so the values for Ca content in 2018 were used for prediction of site-

specific PNEC Dissolved Cu, Mn, Zn and Ni 2017.  

The Cu concentration was always < 3 µg/l (Figure 4-13). The EQS for Cu under the WFD is 

set for 1 µg/l ‘bioavailable Cu’ and so the site specific PNEC value derived by the tool is 

calculated with consideration of bioavailability (i.e. the M-BAT calculates a dissolved Cu 

concentration that would result in a ‘bioavailable Cu’ concentration at that site that is 
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equivalent to the 1 µg/l ‘bioavailable Cu’ EQS). The site specific PNECs for Cu, serving as 

EQS for samples collected in 2016, 2017 and 2018, were calculated and are shown in Table 

4-1. The results indicate that the levels of Cu observed at the sites are unlikely to pose any 

ecological threat to water species. 

Table 4-1: Site-specific Cu PNEC (µg/l), as dissolved Cu, mean ± SD for each of sites samples collected 
in 2016, 2017 and 2018 

           Year    
Site 

2016 2017 2018 

Upstream 17.28±0.12 17.38±0.1 15.87±0.04 

Crossing point 5.17±0.31 5.17±0.31 6.17±0.17 

Downstream 11.32±0.24 11.32±0.24 9.58±0.39 

 

As show in Figure 4-14, Figure 4-16 and Figure 4-17, there were significant increases of Ca, 

Mg and K dissolved concentrations in crossing point and downstream sites compared with 

Ca, Mg and K dissolved concentrations in upstream. 

On the three occasions that water samples were measured for dissolved Fe, the samples 

from the upstream location had very low or undetectable Fe (Figure 4-15). At the crossing 

point, however, this rose to between 70 and 150 mg/l indicating inputs of Fe at or near this 

location, most likely from around the seep point following mine drainage processes 

described in earlier chapters. The downstream site had values below 50 mg/l, suggesting 

that precipitation had removed some of the Fe from the dissolved phase by the time the 

water reached that point. Environmental quality standards (EQS) for Fe are somewhat 

confused, with no EQS for Fe appearing in the current WFD Directions for England and 

Wales (WFD-UK, 2015) but with a value of 1.0 mg/l dissolved Fe listed in the Water 

Framework Directive (Standards and Classification) Directions (England and Wales) (2015). 
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An EQS of 1.0 mg/l dissolved Fe is also listed in the current Scottish equivalent directions 

(SEPA, 2019). On top of this, the WFD UK TAG also proposed an EQS of 0.016 mg/l dissolved 

Fe (Maycock et al., 2007). Clearly, the dissolved Fe at the crossing point was far higher 

(more than 100 times) than the old EQS and was many orders of magnitude above the UK 

TAG’s proposed lower EQS. This would indicate that there is a potential risk to aquatic 

organisms posed by the concentrations of Fe at the crossing point and, to a lesser degree, 

at the downstream site, see Figure 4-15.  

There were increasing Mn dissolved concentrations at crossing point and downstream sites 

compared with that at upstream site (i.e. ≥4 mg/l compared with ~2 mg/l; Figure 4-18). Site 

specific PNEC values calculated with the M-BAT for Mn, for use as EQS for samples collected 

in 2016, 2017 and 2018, were predicted, see Table 4-2. The RCR values mostly were greater 

than 1 for samples collected in 2016, 2017 and 2018, and this would suggest that the Mn 

concentration in the water of the upstream, crossing point and downstream locations could 

potentially pose a threat of Mn toxicity to aquatic species, Table 4-3. 

 

Table 4-2: Site-specific Mn PNEC (µg/l), as dissolved Mn, mean ± SD for each of sites samples 
collected in 2016, 2017 and 2018 

           Year    
Site 

2016 2017 2018 

Upstream 1499.09±32.41 1499.09±32.4 1976.04±13.52 

Crossing point 3459.26±301.95 4663.3±23.96 4665.29±23.97 

Downstream 3539.82±47.35 3603±106.79 4173.22±27.56 
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Table 4-3: Mean ±SD of Risk Characterisation Ratio RCR for Mn samples collected in 2016, 2017 and 
2018. 

            Year  
Site 

2016 2017 2018 

Upstream 1.69±0.05 1.85±0.10 1.10±0.01 

Crossing point 1.39±0.29 1.05±0.03 1.83±0.01 

Downstream 1.08±0.23 0.93±0.03 1.40±0.01 

 

Ni dissolved concentrations at crossing point and downstream sites were increased 

compared with that at upstream site (Figure 4-19). Site specific PNEC values for Ni 

calculated with the M-BAT for use as EQS for samples collected in 2016, 2017 and 2018 

were predicted, see Table 4-4. The RCR values at crossing point were greater than 1 for 

samples collected in 2017 and 2018, and this would suggest that the Ni concentration in 

the water of the crossing point location is a potential threat of causing Ni toxicity to aquatic 

species, see Table 4-5. 

Table 4-4: Site-specific Ni PNEC (µg/l), as dissolved Ni, mean ± SD for each of sites samples collected 
in 2016, 2017 and 2018 

             Year      
Site 

2016 2017 2018 

Upstream 20.09±0.31 19.81±0.12 21.38±0.04 

crossing point 32.53±0 32.53±0 32.53±0 

Downstream 25.01±0.19 25.01±0.19 32.53±0 
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Table 4-5: Mean ±SD of Risk Characterisation Ratio RCR for Ni samples collected in 2016, 2017 and 
2018. N.R refers to not reported because the dissolved Ni in samples collected in 2016 could not be 
measured.  

               Year 
Site 

2016 2017 2018 

Upstream N.R 0.39±0.00 0.18±0.09 

Crossing point N.R 1.27±0.03 1.49±0.02 

Downstream N.R 0.90±0.03 0.83±0.02 

 

Environmental quality standard (EQS) of Zn in waters has been reported to be 10.9 µg/l 

‘bioavailable’ Zn plus the ambient background concentration (WFD Standards Directions 

for England and Wales 2015). What this means in reality, as explained in the UKTAG 

guidance for WFD (UKTAG 2014) is that the mean (long term average of monitoring) 

dissolved Zn value is determined and the ambient background concentration is subtracted 

from that mean before it is used in the RCR assessment using the site specific PNEC. The 

EQS for Zn includes consideration of the background concentration while the EQS for other 

metals do not because Zn is considered a special case because it is ubiquitous and is 

commonly naturally at much higher concentrations than that observed for other metals 

(UKTAG 2014).  According to WFD standards England and Wales (2015), the ambient 

background Zn concentration for the Stoke-on-Trent area (Humber basin/catchment area) 

is 2.9 µg/l. Site specific PNEC values for Zn calculated with the M-BAT, to serve as EQS for 

samples collected in 2016, 2017 and 2018, were predicted, see Table 4-6. Based on the 

outcomes from the RCR determined by the M-BAT calculations, a potential risk is posed by 

Zn in the aquatic environment at crossing point and downstream since the RCR values were 

greater than 1 for samples collected in 2017 and 2018, sees Table 4-7. 
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Table 4-6: Site-specific Zn PNEC (µg/l), as dissolved Zn, mean ± SD for each of sites samples collected 
in 2016, 2017 and 2018 

             Year     
Site 

2016 2017 2018 

Upstream 23.34±0.07 23.5±0.04 23.07±0.01 

Crossing point 21.31±0.44 21.63±0.11 21.92±0.04 

Downstream 22.75±0.08 22.92±0.04 22.61±0.07 

 

Table 4-7: Mean ± SD of Risk Characterisation Ratio RCR for Zn samples collected in 2016, 2017 and 
2018. N.R refers to not reported because the dissolved of Zn in Upstream location in 2018 were 
undetectable. 

             Year   
Site 

2016 2017 2018 

Upstream 0.06±0.07 0.83±0.36 N.R 

Crossing point 0.6±0.49 1.4±0.04 2.26±0.03 

Downstream 0.34±0.22 1.15±0.2 3.12±0.08 

 

For phosphorus (P), the concentrations were low (<0.1 mg/l) during the December 

sampling period but were higher (0.20-0.25 mg/l; Figure 4-20) when sampled in May, 

possibly reflecting a build up towards the summer P peaks commonly observed in UK rivers 

(e.g. (Bowes et al., 2003). The way that EQS for P in rivers is set under the WFD has been 

changed in recent years, with a system now in place that determines a river-specific P EQS 

based on a calculation that factors in river typology and on-site ecology (diatom and 

macrophyte). This makes it difficult to establish the correct EQS and would require 

information not available here. However, the previous set of EQS set under WFD and 

implemented in England had a more straightforward approach for P EQS in rivers, and 

under that previous regulation the appropriate EQS would be an annual average P 

concentration of 0.12 mg/l for this type of stream (Ryder and Bennett, 2010). Although only 
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two sampling periods were undertaken, it would appear likely that the P in the river would 

meet or be close to meeting this annual average EQS and thus P would not be considered 

as a major problem in the stream at the study site. 
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Figure 4-11: Mean of Cr dissolved concentration in stream water collected from study sites, error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 12/5/2017 
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Figure 4-12: Mean of Co dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 12/5/2017 and 8/8/2018 
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Figure 4-13: Mean of Cu dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 12/5/2017 and 8/8/2018 
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Figure 4-14: Mean of Ca dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 12/5/2017. 



180 
 

up s tre a m c ro s s ing  p o int d o w ns tre a m
0

5 0

1 0 0

1 5 0

2 0 0

Fe
 ( 

m
g/

l)

7 /1 2 /2 0 1 6

1 2 /5 /2 0 1 7

8 /8 /2 0 1 8

S tu d y  s ite s
 

Figure 4-15: Mean of Fe dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 
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Figure 4-16: Mean of K dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 8/8/2018. 
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Figure 4-17: Mean of Mg dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 
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Figure 4-18: Mean of Mn dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 
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Figure 4-19: Mean of Ni dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 12/5/2017 and 8/8/2018. 
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Figure 4-20: Mean of P dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 12/5/2017. 
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Figure 4-21: Mean of Zn dissolved concentration in stream water collected from study sites; error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 

 

4.3.1.6 Total elements in stream water  

The total recoverable concentrations of the Al, As, Zn, Ni, Co, Cd, Fe, Mn, K, Mg and Ca at 

the crossing point and some of them also in downstream sites were significantly higher 

than that in the upstream site, whereas the total recoverable concentrations of Cr, Cu and 

P at crossing point and downstream sites were significantly less than that in the upstream 

site (Figure 4-22 to Figure 4-34). Although EQS for these elements are set for the dissolved 

(< 0.45 µm) fraction, examining the total amount allows an understanding of the total load 

and allows an assessment of the distribution between dissolved and particulate phases. 

This is important for understanding how the elements are distributed through the system. 

Table 4-8 summarises this by displaying the total concentration and the proportions in the 

dissolved and particulate phases for each element. 

Al was mostly in the particulate phase at all sites and Al proportions were consistent across 

the sites. This is consistent with the known solubility of Al, which is very limited at the pH 

observed in the stream water compared with waters of lower pH. Similar findings have 
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been reported in former mining areas elsewhere; e.g. in the Animas River watershed in 

Colorado, USA, which was an area of intensive mining activity, the streams with pH <4 had 

the majority of their Al and associated metals in the dissolved phase while in other streams 

with higher pH (e.g. 6.35 in Mineral Creek) the Al was mostly or entirely in the colloidal and 

particulate phase (Church et al., 1997).  

Proportions of Ni were mostly in the dissolved phase for the samples collected in 2017. 

Similarly, the proportions of Ca were mostly in the dissolved phase for the samples 

collected in 2016 but, contrastingly, they were mostly in the particulate phase for the 

samples collected in 2018. This might be simply related to very low input of Ca from the 

seep area on that occasion. Proportions of Cr were mostly in the dissolved phase for the 

samples collected in 2016. Likewise, the proportions of Co were mostly in the dissolved 

phase for the samples collected in 2017. Contrastingly, the particulate phase was the 

dominant form in the samples collected in 2017 for Cr and 2018 for Co, see Table 4-8.  For 

Cr, this variability in dominant phase may reflect different speciation and associations with 

differing levels of turbidity and DOC, as has been shown for Cr in surface and groundwaters 

of ore processing affected areas such as parts of Glasgow (Farmer et al., 2002). However, 

it may also just be a quirk of the rather low concentrations observed here at the study site 

(e.g. typically <2 mg/l and often less than 1 mg/l).    

Fe was more strongly associated with the dissolved forms at the crossing point for the 

samples collected in 2016 and 2017, while the proportions of Fe were more strongly 

associated with particulate forms at all sites for the samples collected in 2018. The 

proportions of Fe were more evenly spread between the two phases in downstream site 

for the samples collected in 2017. Considering the elevated concentrations of Fe observed 
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here, as is typical for mining impacted areas, it was anticipated that the majority of the Fe 

would be in the particulate phase. This is more common because Fe tends to precipitate 

out as Fe3+ particulates such as oxides and hydroxides when the water has sufficient 

dissolved oxygen and the pH is above ~4 or 5 (Pulford and Flowers, 2006), which gives a 

characteristic ‘ochre’ formation in mining impacted rivers. Nevertheless, at the present 

study site there was still a substantial amount of particulate Fe that would contribute to 

the high turbidity at the crossing point site and would have implications for fish in terms of 

gill blockage, prey obscuration and stomach problems following inadvertent ingestion. 

Proportions of Mg and Mn were mostly in the dissolved phase for the samples collected in 

2016 and 2017 at all sites but, in contrast, they were mostly in the particulate phase for the 

samples collected in 2018 at all sites Table 4-8. The change in dominance for Mn might be 

associated with the shifts in the proportions of particulate Fe observed, as Mn can often 

become associated with Fe. Other studies in mining impacted catchments have reported a 

dominance of Mn in the dissolved phase (e.g. Church et al. (1997), Kimball et al. (1995), 

thus the results of the present study are partially in line with such results.   

The particulate forms of Zn in water from upstream were the dominant form in 2016, 2017 

and 2018. Proportions of Zn were mostly in the dissolved phase for the samples collected 

in 2016 at crossing point and downstream sites; contrastingly Zn was mostly in the 

particulate phase for the samples collected in 2017 at crossing point and downstream sites. 

Zn was more strongly associated with the particulate forms at the crossing point for the 

samples collected in 2018; while, Zn was more evenly spread between the two phases in 

downstream site for the samples collected in 2018, see Table 4-8. A shifting distribution of 

Zn between the dissolved and particulate phase is a common observation in mining 
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impacted streams, with the shifts often being linked to inputs and within-stream processes. 

For example, an investigation of the Glengonnar Water river in Scotland (SEPA, 2011) found 

that fresh inputs from mining sources had high proportions of dissolved Zn but that there 

was in increase in particulate Zn downstream, possibly because of precipitation or complex 

formation with river water constituents. The variation observed amongst the sites and 

sampling periods in the present study may also reflect different proportions of input 

sources and changing levels of binding agents in the stream at different times.     

Arsenic (As) was mostly in the particulate phase (i.e. always > 70%) for the samples 

collected in 2017 at all sites, but with a clear increase in the particulates proportion beyond 

the upstream site, i.e. upstream had 74% while crossing point and downstream sites had 

>94% of As in the particulate phase. The increase might be due to the increased Fe 

concentrations that are evident at the crossing point site, perhaps with an oxidation of As 

form being involved. Pb was mainly associated with particulate forms at all sites for the 

samples collected in 2016. This is commonly the case for Pb because of its strong affiliation 

with organic matter and tendency to precipitate. Domination of particulate Pb is routinely 

observed in pristine river environments (e.g. in peat catchments; Graham et al. (2006) as 

well as in mining contaminated river environments (e.g. SEPA ( 2011).    

P was more evenly spread between the two phases in upstream site for the samples 

collected in 2016 however; P became more strongly associated with dissolved forms at the 

crossing point and downstream site for the samples collected in 2017. It is possible that 

inputs from the agricultural fields adjacent to the crossing point and downstream site 

contributed to the dissolved P observed. Cu was mostly in the particulate phase for the 

samples collected in 2017 at upstream and crossing point sites. However, the dissolved 
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concentration of P and Cu in downstream site for the samples collected in 2017 were 

greater than the respective total concentrations which, logically, cannot be the true 

situation. This odd result is likely to be related to the majority of the Cu and P at this location 

having been in the dissolved phase but that the level of error from analytical techniques 

was not able to discern consistent amounts, especially when the amount of these elements 

was quite low (e.g. <0.21 mg/l for P; see Table 4-8). 
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Table 4-8: Total element concentrations and particulate / dissolved phase distribution of water samples collected from different locations (upstream, crossing 
point and downstream) and sampled on different times (2016, 2017 and 2018). 

2016 

Element 

Total % Particulate % Dissolved 

upstream 
crossing 

point 
Downstream Upstream 

crossing 
point 

downstream upstream 
crossing 

point 
downstream 

Al mg/l 0.18 1.09 0.11 100.00 99.46 100.00 0.00 0.54 0.00 

Ca mg/l 96.30 158.42 156.07 7.00 6.25 6.26 93.00 93.75 93.74 

Cr µg/l 0.56 0.24 0.22 14.03 30.64 23.97 85.97 69.36 76.03 

Fe mg/l 4.37 117.42 13.01 99.92 31.00 71.43 0.08 69.00 28.57 

Mg mg/l 16.04 39.62 35.08 0.00 0.00 0.00 100.00 100.00 100.00 

Mn mg/l 2.11 4.09 2.58 0.00 0.00 0.00 100.00 100.00 100.00 

P mg/l 0.08 0.00 0.00 53.81 0.00 0.00 46.19 0.00 0.00 

Pb µg/l 0.23 0.07 0.08 100.00 100.00 100.00 0.00 0.00 0.00 

Zn µg/l 4.00 3.98 3.38 86.74 0.00 0.00 13.26 100.00 100.00 



189 
 

2017 

Element Total % Particulate % Dissolved 

upstream crossing 
point 

downstream Upstream crossing 
point 

downstream upstream crossing 
point 

downstream 

Al mg/l 0.29 2.32 0.11 100.00 100.00 100.00 0.00 0.00   0.00 

As µg/l 5.31 8.50 16.65 74.13 94.47 96.61 25.87 5.53 3.39 

Co  µg/l 10.50 25.66 12.12 34.24 26.98 28.53 65.76 73.02 71.47 

Cr  µg/l 2.59 1.36 1.45 100.00 100.00 100.00 0.00 0.00 0.00 

Cu µg/l 7.39 3.59 2.10 64.55 75.50 0.00 35.45 24.50 120.93 

Fe  mg/l 8.40 85.61 16.03 90.12 8.04 51.25 9.88 91.96 48.75 

Mg mg/l 10.96 34.67 31.22 0.00 0.00 0.00 100.00 100.00 100.00 

Mn mg/l 2.31 3.76 2.64 0.00 0.00 0.00 100.00 100.00 100.00 

Ni µg/l 12.82 54.66 31.08 39.67 24.52 27.84 60.33 75.48 72.16 

P  mg/l 1.94 0.25 0.21 87.76 0.00 0.00 12.24 101.92 107.94 

Zn µg/l 176.01 179.09 145.88 88.98 82.86 81.36 11.02 17.14 18.64 
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2018 

Element Total % Particulate % Dissolved 

upstream 
2018 

crossing 
point 

downstream Upstream crossing 
point 

downstream upstream crossing 
point 

downstream 

Al  mg/l 0.37 3.76 0.24 85.40 98.50 80.23 14.60 1.50 19.77 

Ca mg/l 393.36 670.14 657.48 75.47 70.48 72.41 24.53 29.52 27.59 

Co µg/l 5.49 63.21 27.17 73.98 71.05 67.30 26.02 28.95 32.70 

Fe  mg/l 15.69 588.47 42.82 86.60 74.75 74.91 13.40 25.25 25.09 

K mg/ l 18.19 43.66 40.96 62.57 68.13 69.50 37.43 31.87 30.50 

Mg mg/l 96.09 291.77 249.17 74.10 74.49 75.79 25.90 25.51 24.21 

Mn mg/l 8.28 29.56 21.77 73.82 71.12 73.06 26.18 28.88 26.94 

Ni µg/l 37.15 148.82 87.11 89.13 67.42 68.90 10.87 32.58 31.10 

Zn µg/l 61.19 145.62 149.64 100.00 65.52 52.18 0.00 34.48 47.82 
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Figure 4-22: Total recoverable metals of Al  in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 8/8/2018. 
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Figure 4-23: Total recoverable metals of As  in stream water collected from study sites, mean,error 
bars represent SD of mean. Samples were collected in 12/5/2017. 

 



192 
 

ups tre a m c ro s s ing  po in t do w ns tre a m
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

C
a 

(m
g/

l)

7 /1 2 /2 0 1 6

8 /8 /2 0 1 8

S tu d y  s ite s
 

Figure 4-24: Total recoverable metals of Ca in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 8/8/2018. 
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Figure 4-25: Total recoverable metals of Co in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 12/5/2017 and 8/8/2018. 
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Figure 4-26: Total recoverable metals of Cr in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 12/5/2017. 
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Figure 4-27: Total recoverable metals of Cu in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 12/5/2017 and 8/8/2018. 

 



194 
 

ups tre a m c ro s s ing  po in t do w ns tre a m
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

Fe
 ( 

m
g/

l)

7 /1 2 /2 0 1 6

1 2 /5 /2 0 1 7

8 /8 /2 0 1 8

S tu d y  s ite s
 

Figure 4-28: Total recoverable metals of Fe in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 
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Figure 4-29: Total recoverable metals of K in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 8/8/2018. 

 



195 
 

u p s tre a m c ro s s in g  p o in t d o w n s tre a m
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

M
g 

(m
g/

l)

7 /1 2 /2 0 1 6

1 2 /5 /2 0 1 7

8 /8 /2 0 1 8

S tu d y  s ite s
 

Figure 4-30: Total recoverable metals of Mg in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 
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Figure 4-31: Total recoverable metals of Mn in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017 and 8/8/2018. 

 



196 
 

u p s tre a m c ro s s in g  p o in t d o w n s tre a m
0

5 0

1 0 0

1 5 0

2 0 0

N
i (

µg
/l)

1 2 /5 /2 0 1 7

8 /8 /2 0 1 8

S tu d y  s ite s
 

Figure 4-32: Total recoverable metals of Ni in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 12/5/2017 and 8/8/2018. 
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Figure 4-33: Total recoverable metals of P in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016 and 12/5/2017. 
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Figure 4-34: Total recoverable metals of Pb in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016. 
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Figure 4-35: Total recoverable metals of Zn in stream water collected from study sites, mean, error 
bars represent SD of mean. Samples were collected in 7/12/2016, 12/5/2017, and 8/8/2018. 
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4.3.1.7 Aquatic ecotoxicology assays with Daphnia  

The Daphnia was used to directly study the toxicity of the whole stream water without 

filtration. Not filtering was important because Daphnia are exposed to the dissolved form 

of the contaminants and to the particulate forms, e.g. from contact and dietary 

assimilation, in the field. Daphnia are also useful for examining the overall toxicity of the 

aquatic system because the concentrations in the water are likely to be in equilibrium with 

those in the sediment (at least during low flow periods).  

The mortality percentage of Daphnia magna exposed to stream water for 24h and 48h, 

respectively, for the 2016 sampling and testing are shown in Figure 4-36 and Figure 4-37. 

Consistently, the mortality percentages of Daphnia magna were 100% at crossing point 

site, showing that the water here is entirely hostile to small crustaceans. The mortality was 

lower (at ca. 40-55%) for the other two sites and the differences were statistically 

significant (p<0.05). This indicates that the water was less toxic at these locations but still 

induced substantial mortality.   
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Figure 4-36: Mortality percentage of Daphnia magna exposed to streamwater sites within 24 hours 
in 2016. 
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Figure 4-37: Mortality percentage of Daphnia magna exposed to streamwater sites within 48 hours 
in 2016. 

 

The mortality percentage of Daphnia magna exposed to streamwater sites for 24h and 48h, 

respectively, for the 2018 sampling and testing are shown in Figure 4-38 and Figure 4-39. 

Again, the highest mortality by far (100%) was observed in water from the crossing point, 

confirming that the water here is extremely hostile to Daphnia and, presumably, other 

similar crustaceans and invertebrates. The toxicity (mortality) observed for the upstream 

water was similar to that observed in the 2016 testing, but that in the downstream water 

was much higher in 2018 than it was in 2016 (i.e. ~70-90%). This suggests that at some 

times of year or in some periods of time the upwelling discharges from the seepage area 

adjacent to the crossing point or other related inputs in the area exert an increased toxicity 

that persists downstream, whereas at other times the increased negative impacts do not 

persist that far downstream. This variation in persistence of increased toxicity to Daphnia 

is likely caused by the changing level of dominance of inputs from the seepage points that 

could be linked to relative flow level of the stream, or to amount of rainfall dilution, or to 

the level of groundwater seepage input or some other factor not identified. It is important 
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to note that the control samples run in parallel showed <10% mortality (data not shown) 

and so the assay met the validity criteria and can be considered to show toxicity at the 

study sites. Other studies have similarly used assays with Daphnia or similar zooplankton 

to evaluate toxicity of rivers influenced by mining history (Balistrieri et al., 2007), some of 

which have concluded that particular metal or non-metal elements might have been the 

primary toxicant responsible for the mortality observed while others concluded that it was 

likely a mixtures effect. Here, either case is possible because a number of elements were 

determined to have concentrations above guideline thresholds (as discussed in previous 

sections). It is also possible that the turbidity, EC and TDS of the study sites may have had 

a major negative impact on Daphnia because zooplankton have been shown to be sensitive 

to these parameters at levels approximating those observed here (van Dam et al., 2014, 

Chapman and McPherson, 2016). 
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Figure 4-38: Mortality percentage of Daphnia magna exposed to streamwater sites within 24 hours 
in 2018. 
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Figure 4-39: Mortality percentage of Daphnia magna exposed to streamwater sites within 48 hours 
in 2018. 

 

4.3.2 The pseudo-total element concentrations of sediment 

 

Table 4-9 shows the pseudo-total element concentration; it is clear that there is an increase 

in the Al and Fe content (ANOVA p <0.05) in the crossing points and downstream sites 

compared with upstream site, while the concentrations of As, Co and Mn were decreased 

in the crossing points and downstream sites compared with upstream site.  

The concentrations of Cr, Cu, Ni, Pb and Zn in downstream site were greater than that at 

upstream and crossing point sites. 

The increase in Al and Fe concentration, in particular, would be consistent with the 

suspected inputs of mine drainage/ upwell water at or near the seep area in close proximity 

to the crossing point. The numbers would suggest that while Al (and also Cu and Mg) takes 

some time and distance downstream to precipitate out of water and into the sediment (i.e. 

the concentration is even higher downstream), Fe precipitates out more evenly resulting in 

a steady concentration range from the crossing point to the downstream point. The 
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precipitation of Fe, in what is sometimes called ‘ochre’ deposits, can have negative impacts 

on aquatic life such as changing the surface and the texture of the substrate (or even fully 

coating it) which can reduce suitability for egg laying and incubation (for fish and 

invertebrates) and for plant growth (Mayes et al., 2008).  

 

Table 4-9: Mean of pseudo-total element concentration ± MES  

             Site 
Element 

Upstream Crossing point Downstream 

Al% 1.64±0.26 3.74±0.34* 15.33±0.18* 

As mg/kg 42.19±1.05 31.73±2.69* 38.76±0.66 

Ca mg/kg 166.22±4.37 216.46±4.64* 786.33±10.82* 

Co mg/kg 11.87±0.83 2.34±0.06* 6.38±0.08* 

Cr mg/kg 16.26±0.91 12.83±0.81* 19.97±0.38* 

Cu mg/kg 15.72±0.57 14.04±0.33* 51.16±0.41* 

Fe% 0.32±0.00 5.37±0.15* 5.41±0.03* 

Mg mg/kg 100.65±5.45 103.82±9.3 240.49±3.58* 

Mn mg/kg 2473.28±202.81 207.53±8.44* 697.66±13.06* 

Ni mg/kg 16.31±1.1 6.24±0.16 17.18±0.21 

Pb mg/kg 13.38±0.58 13.34±0.59 24.81±0.03 

Zn mg/kg 68.47±3.54 42.26±1.63* 113.04±1.21* 

* Significantly different from upstream location 

The geo-accumulation index (I geo) has been used to estimate the relative metal(loid)s 

contamination in sediments by Barbieri (2016) and Dung et al.(2013). This can be calculated 

for the sites investigated here by comparing the measured pseudo-total metal(loid)s 

contents in the crossing point (C crossing point.) or downstream site (C downstream.) with 

concentration of them for sediment from upstream site (C upstream). 
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The calculation of geo-accumulation index were based on Equation 4-1 and the resulting I 

geo values have been interpreted using the seven-category scale as shown in Table 4-10 

which is published by Müller (1981). The results indicate that Cu in sediments of the 

downstream site would be considered to fall in the moderately burdened class. The Al 

outcomes in downstream site were within the moderately to heavily loaded class, 

furthermore, geo-accumulation index findings revealed that Fe in both crossing point and 

downstream sites would fall in the heavily loaded class, whilst the results for the rest of 

elements fall within practically unloaded class at the concerned sites.  

 

Igeo = log 2(
(Ccrossing point.) or (Cdownstream.)

(1.5 ∗ Cupstream)
 ) Equation 4-1 

 

Table 4-10: I geo-accumulation scales (obtained from Müller (1981). 

Class Value Sediment quality 

0 I geo ≤ 0 practically unloaded 

1 0< I geo -1 unloaded to moderately burdened 

2 1< I geo- 2 moderately burdened 

3 2< I geo -3 moderately - heavily loaded 

4 3< I geo -4 heavily loaded 

5 4< I geo -5 strong – overburdened 

6 I geo ≥ 5 Overburdened 
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Table 4-11: Geo-accumulation index (Igeo) of elements in sediments. 

                  Site                 
Element 

Crossing point Downstream 

I geo of Cr -0.93±0.05 -0.29±0.09 

I geo of Mn -4.15±0.15 -2.4±0.15 

I geo of Co -2.92±0.12 -1.47±0.15 

I geo of Ni -1.97±0.1 -0.5±0.14 

I geo of Cu -0.75±0.09 1.12±0.07 

I geo of Zn -1.28±0.05 0.14±0.1 

I geo of As -1.01±0.16 -0.71±0.02 

I geo of Pb -0.59±0.04 0.31±0.1 

I geo of Al 0.62±0.59 2.67±0.36 

I geo of Fe 3.47±0.08 3.49±0.03 

 

However, whilst informative and useful, I geo values reveal only relative contaminant loads 

based on total element concentrations and so are linked to (and limited by) the point of 

reference. Moreover, those values do not directly inform about the level of the bioavailable 

and toxic components of the element in the sediment (as it is well established that not the 

entire amount of an element in sediment is ecologically relevant). 

To address the risks that might be posed by the elements for the sedimentary biota, 

sediment screening level thresholds that are used by environmental agencies in various 

parts of the world can be used because these have been based on ecotoxicity evidence (i.e. 

biological assessments of bioavailability and toxicity). 

The threshold effect levels (TELs), the concentration at or below which adverse effects are 

expected only rarely (MacDonald et al., 2000), for Aluminium in sediment for Hyalella 
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azteca (a shrimp-like amphipod crustacean that is widespread and abundant) has been 

reported by the Assessment & Remediation of Contaminated Sediments (ARCS) Program 

of the US EPA (1993) to be 2.55% w/w. This indicates that there is a potential for negative 

effects on sediment organisms from Al at the crossing point and downstream site. 

Arsenic contents of sediment in all of the studied sites were >30 mg/kg and so were greater 

than the Sediment Screening Benchmark for arsenic of 9.8 mg/kg which has been published 

by the US EPA (2006). The As concentrations in the sediment at all the sites were also above 

the Predicted effect level (PEL) of 17 mg/kg, which is the lower limit of the range of 

concentrations associated with adverse biological effects, that is used in the guidelines of 

Canadian Council of Ministers of the Environment (CCME, 2001). This same PEL value has 

also been considered in draft freshwater sediment quality guidelines in England and Wales 

(Hudson-Edwards et al., 2008b). This would indicate a potential toxicity problem for aquatic 

sediment dwelling biota from As in the sediment of this former mining area.  

The Cu concentrations ranged from ~15 mg/kg at the upstream and crossing point sites to 

~51 mg/kg at the downstream site.  The TEL for Cu, once considered by the Environment 

Agency as a draft sediment quality guideline but not finally implemented, has been stated 

as 37 mg/kg whereas the PEL has been stated as 197 mg/kg (Hudson-Edwards et al., 2008b). 

This would suggest that the Cu concentration in the sediment of the upstream and crossing 

point locations poses no direct threat of toxicity, whereas that in the sediment of the 

downstream location falls between the value that would not be expected to cause adverse 

effects and the value that would be expected to cause harm. Therefore, while not a definite 

danger, the Cu concentration in the downstream location could potentially cause a risk to 

sediment dwelling biota.   
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The Mn concentration was notable because it was highest, by far, at the upstream site 

(2473 mg/kg), with lower values at the crossing point (207 mg/kg) and downstream site 

(698 mg/kg). This suggests that any input of Mn from the seepage points are not the only 

source of Mn entering the stream and that the sediment load is high upstream. The natural 

background level of Mn can be variable in different rivers and can be quite high (e.g. 400 

mg/kg, (Buchman, 2008), however the concentrations observed at the upstream and 

downstream sites exceed the TEL threshold for H. azteca of 630 mg/kg reported by the 

ARCS program (Ingersoll et al., 1996). This indicates a potential risk of Mn toxicity to 

sediment dwelling organisms at these sites.  

By contrast, the concentrations of Ni at the three sites were all below 18 mg/kg Table 4-9, 

which happens to be the TEL for Ni and is well below the PEL of 36 mg/kg (Buchman, 2008). 

This means that Ni is unlikely to pose any ecological threat to sediment species. For Zn, 

upstream and crossing point concentrations were below 70 mg/kg and so are below any 

relevant TEL or PEL values, however the downstream concentration of 113 mg/kg is above 

the 98 mg/kg TEL determined for H. azteca (Ingersoll et al., 1996). The Zn value is, however, 

still below the general TEL (123 mg/kg) and the PEL (315 mg/kg) for sediment dwellers 

reported by Buchman (2008), so any negative effects from Zn to sediment dwellers is likely 

to be minimal.  
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4.4 Chapter conclusions 

The aims of the chapter: 

Long term environmental legacies of former coal mines are a pressing concern in many 

regions and countries around the world. The stream adjacent to the former mining area , 

which was thought to have been exposed to varying levels of acid mine drainage (AMD) or 

other mining impacts arising from the site’s coal mining history, was seemingly vulnerable 

to seepage as evidenced by discoloured water. This chapter aimed to characterise and 

evaluate the water and sediment contamination at three sites. 

The main findings: 

The findings of this investigation have led to the following understandings:  analysis of the 

physical parameters of stream water showed that a high level of the turbidity, electrical 

conductivity, and total dissolved solids at the crossing point and downstream location 

would make the sites unable to sustain a population of fish.   

The dissolved concentrations of Fe, Mn, Ni, and Co were above EQS or other guidelines, 

thereby posing a serious potential threat to ecological integrity, and the increases were 

apparently mainly linked to inputs at or near the seeps at the Crossing point. Zn was also 

above quality standards to a small degree. 

Al was mostly in particulate form, and this was consistent over time and location, and the 

particulate phase was also the main phase for As, Pb, and Cu. This has implications for any 

filter-feeding organisms and will contribute to the deterioration of sediment quality when 

deposited. Geo-accumulation index findings suggest that Fe was heavily loaded in both 

crossing point and downstream, while other important outcomes from the geo-
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accumulation index are that Al and Cu were moderately-heavily loaded and moderately 

loaded, respectively. Further continued deterioration of sediment quality from seepage 

inputs is therefore an ongoing concerning. 

Comparing the measured pseudo-total elements concentrations in sediment samples with 

the threshold effect levels (TELs), there is a potential for negative effects on sediment 

organisms from Al, As and Mn at the crossing point and downstream site. 

The results from the Daphnia ecotoxicology test confirm that the sites are hostile to aquatic 

life, particularly the crossing point (100% mortality). This makes it difficult for any type of 

aquatic ecosystem to develop here because crustaceans are a vital link in the food chain of 

aquatic systems.The implications of the study: 

These findings have significant implications for the understanding of how mining-affected 

areas can pose an ongoing risk of metals contamination to the adjacent aquatic 

environment. Also, the data suggest that the sources of contamination seem to be diffuse 

pollution from the seepage area and this provides additional justification for conducting 

future hydrological studies at the site and at similar sites in the wider region where only 

limited mine-site restoration attempts were made. The conclusions regarding the stream 

being uninhabitable by fish also has wider implications in terms of restricting species 

dispersion options across the region and indicating that this entire part of the stream is not 

able to function as a fish refuge or as a source for repopulating fish that have become 

absent elsewhere. Furthermore, the results of this chapter suggest that a more 

comprehensive and robust assessment of the contaminant impacts on the aquatic 

environment can be achieved through accompanying chemical characterisation of water 

and sediment with a biological assessment via e.g. an ecotoxicological assay with important 
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crustaceans such as Daphnia. Together, such a combined approach would give a much 

better understanding of the implications of the measured parameters and their 

consequences for the environment.  

The significance of the findings: 

The findings will be of interest to environmental agencies for effective river basin 

management and the remediation and restoration of mining-impacted river systems. The 

findings of this study will also be of interest to researchers who wanted to do future 

research into examining aquatic communities in examining the impacts of mine water 

contamination on the study site. That is, the multi-component approach developed here 

that covers chemical and physical characterisation of the site as well as biological 

assessment will be of interest to researchers as a method for understanding the actual 

parameter or process that might be driving the ecotoxicity. 

Limitations: 

Examining subterranean sources and flow pathways (i.e., shallow and deeper groundwater 

upwellings and movement, and hyporheic zone exchanges, etc., via wells and lysimeters) 

was beyond the capacity of the project, which was the first examination of the site and thus 

was restricted to a certain scale. Also, it is unfortunate that the study did not include 

measurement or estimation of flow rates or periodic flow volumes to make calculations of 

contaminant loads possible. It is unfortunate that in this study, no speciation analysis was 

possible. That is a limitation because speciation is essential for assessing the relative 

toxicities of Cr and As in water, and of these and other elements in sediment.  

Notwithstanding these limitations, the study has clearly demonstrated that the stream is 
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impacted and that  mining-affected land immediately adjacent to it is overwhelmingly likely 

to form a large proportion of the source of that impact. 

Further work: 

Further work needs to be done on the metals partitioning in the sediments to establish 

whether the metals are bound to exchangeable and reducible sediment fractions (i.e. the 

components that would more readily release elements to water and therefore have more 

profound environmental implications). Examining metals partitioning in the sediments is 

also important to predict whether the sediment could potentially be additional sources of 

contamination to stream water when changing hydrochemistry occurs, e.g., due to changes 

in ionic strength or the oxidation events in water because of flood/drought events or inputs 

from storm flows or even through changes in activity of microbes brought about by climate 

change. Also, further work needs to be done to determine the speciation of chromium 

forms and Arsenic forms in the stream water, as this has important implications for toxicity. 

Additionally, as indicated above, greater characterisation of hydrological pathways and 

flows within and around the site are needed to more fully understand contaminant 

dispersion mechanisms.  Further work should also focus on remediation strategies for the 

stream. 

Recommendations: 

The combined approach of chemical and physical characterisation as well as biological 

assessment of sites should be adopted more broadly for investigation of stream and river 

quality. Some environmental protection agencies do a combined approach in certain areas 

but it needs to be adopted more widely by those types of organisations and other 
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researchers to ensure a comprehensive investigation or assessment is made. For this site 

and others like it with similar histories, the future work described above should be enacted. 
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5 Soil ecotoxicity assessments and remediation trials with Water 

Treatment Residuals 

5.1 Introduction 

Resource extraction (mining) and use of the obtained materials has been a fundamental 

part of human history and a crucial process in the development of nations and 

technologies. The extraction of coal, for example, largely powered what is thought of as 

the Industrial Revolution (Reed, 2002) and provided economic stimulus and employment 

for vast numbers of people. For example, at the peak of coal mining activity in the UK (ca. 

1913), a million people were directly employed across 1600 active mines producing ~300 

million tonnes of coal per year (Johnston et al., 2008).  

However, despite its importance and contributions, coal mining has left a legacy of 

pollution in many parts of the world that continues to cause environmental concerns. This 

can particularly be the case at old or abandoned mines that pre-date modern effective 

environmental controls. Mine spoil, waste rock and other solid and liquid wastes are 

generated during coal extraction and processing and all can become future sources of soil 

and water pollution in the surrounding environment. Thus acid or neutral mine drainage, 

aerial or fluvial movement and deposition of spoil materials and other mechanisms can all 

result in wider contamination of former mine areas. Often this contamination arises 

because sulphide minerals in the solid phases react with oxygen and water to produce 

sulphuric acid and in turn, dissolve potential toxic elements (PTEs) from the solid phase of 

minerals and soil. The pH of any receiving soil and water can also be impacted, affecting 

the mobility and toxicity of PTEs. Indeed, PTEs at elevated concentrations arising from 
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mining activities can adversely affect soil and aquatic biota communities, habitat and 

ecosystems (e.g. (Anawar, 2015, Kostarelos et al., 2015). 

The adsorption technique, which is accumulation of molecules or ions called adsorbate 

onto surface call adsorbents, has environment uses. The uses include treatment of 

deterioration of water quality of lakes, dams and rivers using biological activated carbon 

for reduction of soluble organic matter and ammonium nitrogen in water sources,  

treatment of ground water contaminated with volatile organic carbon compounds such as 

tetrachloroethylene and/or trichloroethylene  using a combination of stripping and 

adsorption processes, or removal and recovery of nutrients such as ammonium and 

phosphate ions from wastewater by activated carbon in aqueous phase (Suzuki, 1996). 

Adsorbates placed into soil could similarly bind and retain contaminants, reducing their 

mobility and bioavailability to organisms and therefore reducing the negative impacts they 

have on the environment. 

Remediation and restoration of mining impacted areas has become a major undertaking, 

with many different approaches and options available. The cost, long-term effectiveness/ 

permanence, and commercial availability of remediating materials must be considered 

when planning a remediation effort, as must the public general acceptance of them and 

their capacity to deal with potentially high metal concentrations that may have 

considerable toxicity and mobility. The remediation approach adopted must therefore 

consider all such points and strike a balance (Abdullahi, 2015). The need for plentiful, 

effective, low cost materials for use in mine site remediation has therefore stimulated 

interest in finding additional uses for readily available by-products that might otherwise 
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simply be discarded; in this chapter the utility of using water treatment residuals (WTRs) in 

the remediation of mining impacted soils is tested. 

The most common method of clarifying raw water sources for drinking is to add metal salts 

(usually aluminium or iron based) to coagulate and flocculate impurities and remove them 

via settling and sedimentation. This process generates a sludge or residue material (water 

treatment residuals, WTRs) that comprise the removed impurities and the 

reaction/precipitation products of the added metal salts (Howe et al., 2012). 

When aluminium or iron coagulant adds to the water, they react with natural or 

supplemented alkalinity of the water and producing aluminium or iron hydroxide 

respectively. Typical constituents and properties of partially dried water treatment 

residuals (WTRs) are shown in Table 5-1, compiled from (Babatunde and Zhao, 2007, 

Castaldi et al., 2014, Lombi et al., 2010, Ulén et al., 2012, Wang et al., 2012) 

Table 5-1: Typical constituents and properties of partially dried water treatment residuals (WTRs) ( 
compiled from (Babatunde and Zhao, 2007, Castaldi et al., 2014, Lombi et al., 2010, Ulén et al., 
2012, Wang et al., 2012)). 

Al % Fe % Ca % Mn % Pb mg/kg Zn mg/kg Organic matter % pH 

4 – 18 1 - 10 0.4 – 2 0.04 - 1 3 - 16 5 - 60 20 – 30 6.5- 8.0 

 
Millions of tons of WTRs are produced every year all over the world (Basibuyuk and Kalat, 

2004). According to Henderson et al (2009) the United Kingdom uses 138,000 tonnes of 

aluminium-based salts (generating what can be referred to as Al-WTR) and 181,000 tonnes 

from ferric-based salts (Fe-WTR), while the USA generates more than 2 million tons of WTRs 

every day (Prakash and SenGupta, 2003). WTRs are considered as an inert waste under the 

European Union Council Directive 99/31/EC (1999), as cited in Keeley et al. (2014), and can 

be used as construction materials such as for ceramics and bricks (Goldbold et al., 2003) 

and for geotechnical works materials (Carvalho and Antas, 2005). Another use that has 



215 
 

been proven successful is as the main substrate in constructed reedbeds for waste water 

filtration (Zhao et al., 2011). A portion of the generated WTRs can also be recycled as 

coagulant (Keeley et al., 2014).  

Other studies have demonstrated that WTRs can be used as an inexpensive adsorbent for 

the removal of As, Co, Hg and perchlorate from water and wastewater (Jiao et al., 2017, 

Ociński et al., 2016, Makris et al., 2006, Hovsepyan and Bonzongo, 2009) and to remove Cr, 

Cd and Pb from landfill leachate (Mohammed et al., 2016). Chiang et al (2012) found that 

adsorption of Cd, Co, Ni, Pb, and Zn in contaminated sediments using WTRs performed 

significantly better than goethite. Disposal of WTRs via application to soil has also become 

more common, and Zhao et al. (2015) found that WTRs can be used as a suitable soil 

amendment to avoid glyphosate contamination of marine ecosystems by improving the 

glyphosate retention capacity in soils. The most common soil application of WTRs reported 

in the literature to date has been as a general amendment and as a means to limit P mobility 

in over-fertlised or otherwise over-enriched soils (Oliver et al., 2011). 

Beneficial use of WTRs is therefore an attractive option that offers financial advantages and 

facilitates development of a more circular economy with greater levels of materials 

recycling. The use of WTRs in the remediation of mining and metal contaminated soils has 

yet to be comprehensively investigated. Moreover, while a number of studies have 

investigated their effects on soil microbes following soil amendment with WTRs (e.g., Garau 

et al. (2014)), very few, if any, have examined the influence of WTR application on plants, 

earthworms, and soil solution chemistry in mining-affected soils. This is a gap in current 

understanding of the risks and benefits of using these materials in mining-affected soils, 
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especially considering that plants and earthworms are widely recognized as essential 

ecosystem factors.  

Soil ecotoxicology deals with toxicological impacts on soil ecology caused by chemicals or 

conditions. Assessment of contaminated sites, long term monitoring programs, remedial 

action plans, assessment of the success of remediation processes, and approving 

registration requests of a new chemical substance all require, or can be enhanced by, the 

use of soil toxicity (ecotoxicity) and bioaccumulation tests. Furthermore, soil limit values 

designed to protect ecology and ecosystems (so-called ecological soil screening levels 

values) for some chemicals have been derived by some environmental agencies such as 

those in the United States, Australia and the Netherlands and the derivation of the soil 

screening level values were based on ecotoxicology tests. A potential risk is posed by a 

metal (or other substance) when the soil contains higher levels than its ecological soil 

screening level value. Soil ecotoxicity tests can include assays for soil microorganisms, 

terrestrial plants, terrestrial invertebrates and terrestrial vertebrates (Plants et al., 2009)  

5.1.1 Aims and objectives 

The aims of the study, therefore, were: 1) to investigate the adsorption and retention by 

two types of WTRs (one generated at a plant using Al salts, Al-WTRs, and the other 

generated from use of Fe salts, Fe-WTRs) of two important metals, Pb and Zn, that are often 

present as contaminants in waters and wastes, and 2) to assess the remediation of mining 

contaminated soil using two types of WTRs from central England, UK.  

A set of objectives were therefore set to achieve the aims. 1) Adsorption and retention of 

Pb abd Zn were tested both singularly and in combination, the latter in order to assess 

effects of cation adsorption competition. Adsorption isotherms were also fitted to the data 
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in order to describe and examine the adsorption processes; 2) examining improvements in 

soil and soil porewater chemical properties as well as improvements in plant growth and 

earthworm survival in mining influenced soil amended with WTRs as a remediation 

measure. 

5.2 Methods 

5.2.1 Water treatment residuals and soils – source and preparation 

Water Treatment Residuals (WTRs) from two water treatment plants in Staffordshire, 

England, were provided by Severn Trent Water. One plant primarily uses Al salts and the 

other Fe-based salts, generating what is designated here as Al-WTRs and Fe-WTRs, 

respectively. According to the results from a previous project carried out on the same 

materials by Howells et al. (2018), the properties of Al-WTRs once dry were pH 7.34 ± 0.06, 

Al content 11.64 ± 1.08% w/w, organic matter (OM) content 28.0 ± 0.1% w/w, Fe 

0.91 ± 0.08% w/w and those of Fe-WTRs were pH 7.37 ± 0.01, Fe 17.69 ± 0.19% w/w, OM 

25.9 ± 0.2% w/w, and Al 0.71 ± 0.12% w/w. The WTRs were dried at 30°C until stable mass 

and were ground to pass a 2 mm sieve.  

Soil samples were collected from a restored coal mining site in Staffordshire, England 

(Figure 5-1), that is now used partly as a nature reserve and partly for cattle grazing. The 

site is in the heart of the coal mining area of the English Midlands, a region in which 

hundreds of small mines and several large ones had been worked over the centuries. At 

various points around the site there are large patches of bare soil where no, or very little, 

vegetation grows (Figure 5-1), suggesting that the mining legacy at the site still impacts the 

soil either through remaining contamination hotspots or through upwelling or percolation 

of mining affected near-surface groundwater. Soil samples from the top 15 cm depth (~8 
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kg total) were collected from each of 3 such bare points (or ‘seeps’) that were ~200 m to 

300 m apart. The samples were stored in sealed plastic containers and transported to the 

laboratory where they were air dried and ground to pass a 2 mm sieve. Samples collected 

from within a particular seep point were bulked and homogenised for use in the 

experiments. 

 

 

Figure 5-1: Soil sample collection general location in Staffordshire, England (inset maps) and 
example of the bare soil ‘seep’ points (main image). 

 

Loss on ignition (≥4h at 450°C) was used to determine organic matter content (Nelson and 

Sommers, 1996) , and pH was determined in 0.001M CaCl2 extracts (1:5 solid: solution) 

using a Jenway 3510 pH meter and probe.   
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5.2.2 Drinking water treatment residuals (WTRs) for adsorption and retention of 

lead and zinc both singularly and in combination 

5.2.2.1 Determining adsorption capacity for Zn and Pb  

Following commonly employed batch exchange procedures for determining adsorption 

capacity of a substance, 2.0 g WTR samples were equilibrated with 20 mL solutions with Pb 

or Zn concentrations of 10, 50, 100, 200, 300, or 400 mg/l (3 replicates for each WTR type 

at each concentration). Samples were equilibrated via end-over-end shaking (40 rpm; 20°C) 

for 24h, which is generally recognised as sufficient time to  establish equilibrium (e.g. (Coles 

and Yong, 2006). Equilibration was immediately followed by centrifugation, filtration using 

0.45 µm syringe filters, acidification with a drop of trace analysis grade concentrated nitric 

acid (PrimarPlus) and then analysis for metals using ICP-OES (e.g. as per (Dada et al., 2012).  

Concentrations determined in the equilibrium solutions were used to calculate amounts of 

metal adsorbed to WTRs and the data were further examined through constructing 

Henry's, Langmuir, Freundlich, Temkin, Dubinin-Radushkevich adsorption isotherms 

models, as outlined below in Table 5-2. Equation 5-1, which was reported by Vanderborght 

and Van Griekenm (1977), was used to calculate the quantity of sorbate retained by a unit 

of mass of the sorbent Qe
ads (mg/g). 

𝑄𝑒 = [(𝐶0 − 𝐶𝑒
𝑎𝑑𝑠) ∗ 𝑉]/𝑚 Equation 5-1 

Where C0 = the initial solution concentration before adsorption; Ce
ads = the concentration 

at adsorption equilibrium; V = Volume of the adsorbate, and m = the mass of WTRs in 

kilograms.  
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The adsorbed amount of Zn or Pb from each of Al-WTR and Fe-WTR can be expressed as 

adsorption percentage, see Equation 5-2 which is ratio of the mass of adsorbed ions at 

adsorption equilibrium from each WTR to initial mass of adsorbate ions (OECD, 2000). 

Adsorption % =
(C0−C𝑒

𝑎𝑑𝑠)∗V

(𝐶0∗V)
* 100% Equation 5-2 

 

At its simplest, adsorption of a metal (or other substance) from solution into solid can be 

expressed as Henry's adsorption isotherm, with KH typically denoted as Henry's adsorption 

constant (units of L/g). However, adsorption onto a solid across a wide concentration range 

is not typically constant. In order to understand some of the adsorption characteristics of 

Zn and Pb into WTRs, the experimental data were fitted to Henry's, Langmuir, Freundlich, 

Temkin and Dubinin-Radushkevich (D-R) linerised equations. Those adsorption isotherm 

equations were described elsewhere (Dada et al., 2012, Yildirim, 2006).  

From a fitted Langmuir isotherm one can calculate the Qm value, which refers to the 

maximum monolayer coverage capacity (mg/g) onto the adsorbent assuming that the 

binding energy of the sites are homogenous, and can also determine the b value which is 

the term used for the Langmuir isotherm constant (L/mg) (Dada et al., 2012, Bonilla-

Petriciolet et al., 2017, Foo and Hameed, 2010). 

According to the Temkin isotherm, the heat of the adsorption for all adsorbates decreases 

linearly as the amount of the adsorbed materials on the sorbent increases. An important 

calculated parameter for this isotherm is often designated the B value, which is the 

constant related to heat of sorption (J/mol); the AT value is the Temkin isotherm 



221 
 

equilibrium constant (l/g) (Dada et al., 2012, Bonilla-Petriciolet et al., 2017, Foo and 

Hameed, 2010). 

The adsorptions into a heterogeneous surface with a Gaussian energy distribution can also 

be described by applying DR model. The DR isotherm is based on the theory of volume 

filling of micropores. The Qs value determined by this isotherm model is the theoretical 

isotherm saturation capacity (mg/g), and parameter Ɛ (kJ) is equal to the difference 

between the chemical potentials of the adsorbate in the state of normal liquid and the 

adsorbed state at the same temperature. In the Dubinin–Radushkevich constant, 

adsorption free energy is related to the derived Kad constant (Dada et al., 2012, Bonilla-

Petriciolet et al., 2017, Foo and Hameed, 2010). 

For adsorptions onto adsorbents for which the distribution of heat of adsorption of binding 

sites is not or cannot be assumed to be uniform, the Freundlich isotherm model is often 

used. It is a widely applied isotherm for describing adsorption characteristics and generates 

the following parameters and constants: 1/n, which is dimensionless and is a function of 

the strength of the adsorption; and Kf is the Freundlich isotherm constant (with units of mg 

1-(1/n).g-1.L(1/n)) (Dada et al., 2012, Bonilla-Petriciolet et al., 2017, Foo and Hameed, 2010). 

Although widely used for the purpose, determining characteristics of adsorption processes 

based on comparison of Freundlich Kf values can be problematic when 1/n values are not 

the same or Ce
ads ≠1 because the units of Kf will be different (Chen et al., 1999). To address 

this, Chen et al. (1999) proposed a unified adsorption variable (Ku
ads) to unify the unit of 

Kf
ads to be L/g. The Ku

ads is the slope of the isotherm at any value of Ce
ads or Qe

ads, and can 

be calculated over a range of Ce
ads or Qe

ads using Kf
ads and 1/n using Equation 5-3 or Equation 

5-4. Therefore Ku
ads was also calculated in the present study. 
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K𝑢
𝑎𝑑𝑠 = K𝑓

𝑎𝑑𝑠/𝐶e
𝑎𝑑𝑠 (𝑛−1)/𝑛

 Equation 5-3 

 

K𝑢
𝑎𝑑𝑠 = K𝑓

𝑎𝑑𝑠 𝑛/𝑄𝑒𝑎𝑑𝑠 𝑛−1 Equation 5-4 

 

Thermodynamic data such as the standard adsorption energy can be obtained from 

Langmuir and Temkin equation, see Equation 5-5. 

K = 𝑒−𝛥𝐺𝑎𝑑𝑠
0 /𝑅𝑇  Equation 5-5 

Table 5-2: Linear and non-linear isotherm equation as described in (Dada et al., 2012, Yildirim, 
2006). 

Model Non-linear equation  Linear equation  

D-R Qe=(QS)*exp (-Kad*Ɛ2) Ln(Qe)=ln(QS)- Kad*Ɛ^2  

Freundlich  Qe=Kf*(Ce)^(1/n) Qe=Kf*(Ce)^(1/n) 

Henry's  ------ Qe= KH *Ce 

Langmuir  Qe=(b*Qm*Ce)/(1+b* Ce) 1/Qe=(1/Qm))+[(1/( Qm *b)*(1/ Ce)] 

Temkin  Qe=B*ln(AT*Ce) Qe= B*ln(AT)+B*ln(Ce) 

(D-R) refers to Dubinin-Radushkevich  

5.2.2.2 Desorption of Pb and Zn 

The desorbability of Zn and Pb bound to Al-WTR and Fe-WTR was determined in batch 

desorption experiments to determine the degree of reversibility of adsorption by the Al-

WTR and Fe-WTR materials. That is, to determine how well they retain the pollutant metals 

after exposure to clean solution.  
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Desorption experiments were conducted on the 2 g samples after removal of the 

supernatant following the initial equilibration process described above for the adsorption 

experiment. In order to facilitate accurate desorption measurements, i.e. to allow any 

metals remaining entrained in the WTRs after solution removal to be fully accounted and 

adjusted for, the mass of each tube had been recorded (for WTRs and tube) before adding 

Pb or Zn solution in the sorption experiment and was recorded again at the end of the batch 

adsorption equilibrium experiments (i.e. after centrifugation and solution removal). The 

difference in mass enabled calculation of the remaining volume of solution within each 

tube and this, together with the measured concentrations of metals in the removed 

solution, allowed calculation of the amount of entrained metals in that remaining solution.  

For desorption, the removed supernatant was replaced by fresh 0.001 M CaCl2 solution and 

the samples were shaken (40 rpm; 20°C) again for 24 hours, which was immediately 

followed by centrifugation, filtration using 0.45 µm syringe filters and then analysis for 

metals using ICP-OES. Concentrations measured in the 0.001 M CaCl2 desorption 

supernatant solutions are Ce
des values and were adjusted for the calculated amounts of 

entrained metals remaining from the initial sorption solution. 

The desorbed amount of Zn or Pb from each of Al-WTR and Fe-WTR can be expressed as 

desorption percentage, see Equation 5-6 which is ratio of the net of desorbed ions 

concentration from each WTR to concentration of adsorbed ions on each WTR at 

adsorption equilibrium (OECD, 2000). 

desorption % =
(C𝑒

𝑑𝑒𝑠∗V)

(C𝑜∗V)−(C𝑒
  𝑎𝑑𝑠∗𝑉)

* 100% Equation 5-6 
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5.2.2.3 The competitive adsorption of Zn-Pb ions 

In addition to separate adsorption experiments with Zn and Pb individually, adsorption 

experiments with Zn mixed with Pb were conducted to examine competitive adsorption. 

The experiments were carried out as described above but with solution concertation of 10 

mg/l (both Pb and Zn) and 50 mg/l (both Pb and Zn). 

5.2.3 Remediation of contaminated soils using water treatment residuals 

5.2.3.1 Plant growth trial  

Soil from each of the three seep collection points were amended separately with 10% Al-

WTR w/w or 10% Fe-WTR w/w, or 10% agricultural lime w/w (total solid mass 250 g). 

Controls, i.e. with no amendment, were also established. All treatments and controls were 

prepared in triplicate (n=3). Every individual replicate was prepared separately (as opposed 

to large batch mixing and splitting) to ensure a consistent addition rate was achieved across 

treatments and replicates. Once prepared, each soil sample was placed into a separate 

plastic plant pot (~0.25 L). The addition rate of 10% w/w was selected as it was thought to 

represent the upper limit of what might realistically be used in a remediation scenario but 

still avoid the worst of the reductions in available soil phosphorus reported at rates of WTR 

application above this level by Dayton and Basta (2001). The agricultural lime treatment 

was included to allow an assessment as to whether any improvements observed were 

mainly attributable to pH increases anticipated to be brought about by WTR addition.  

Ultrapure water was added (60% of water holding capacity; determined by soaking and 

allowing draining and calculating water retained) to all samples and moisture was 

maintained every day by watering to mass using ultrapure water. 1.5 g of Perennial ryegrass 

(Lolium perenne) seeds that had been moistened were added to the top of the soil followed 
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by adding vermiculite (1 g) in order to decrease loss from evaporation. To allow full access 

to natural light, the pots were placed in an un-heated incubator next to a large window. 

The growth periods were 4 weeks in November and January in the UK. The humidity inside 

the incubator was maintained by placing 100 ml of ultrapure water in a glass beaker inside 

the incubator. At 28 days after sowing, shoots were removed by cutting at the surface with 

scissors and were dried at 65-70 ᵒC in an oven for 48 hours followed by recording mass of 

dry weights. 

Once dry mass was recorded, samples were cut into small pieces with scissors and digested 

in nitric acid (Yilmaz, 2007). In this method about 0.4 g of dry plant material is placed in the 

digestion vessel then 10 ml of high purity concentrated (16 M) HNO3 is added and the 

digestion is carried out using a CEM-MARS 6 microwave (CEM Corporation Mathews, NC, 

USA). This procedure achieved complete digestion and dissolution of the plant samples (i.e. 

no visible residue). The digest solutions were transferred to centrifuge tubes, made up to 

20 ml with 0.1% HNO3, and filtered through a 0.45 µm syringe filter into plastic vials. 

Nutrients and heavy metals concentrations were analysed using ICP-MS/OES. In each batch 

of analyses a blank sample was carried out for quality control, and certified reference 

solutions were used for calibration standards. All acids used were of high purity grade (i.e. 

Primar Plus trace analysis).  

5.2.3.2 Earthworm survival trial  

The earthworm survival assay was conducted in accordance with OECD protocol 222. 

Treatments and controls (i.e. 0 %, 10% Al-WTR, 10% Fe-WTR or 10% lime, n=3, replicates 

mixed individually) were prepared separately but in an identical manner to those described 

above for the plant test.  Once prepared, control or treatment soils were placed in plastic 
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containers (approximately 0.35L) for the earthworm assay. Four ‘procedural controls’ were 

also prepared from a pristine soil collected from pasture land on Keele campus, in order to 

verify that the earthworm assay design and conditions met the validity criteria of the OECD 

222 protocol (viz. adult mortality ≤10% in negative controls; this criterion was achieved and 

thus the assay was validated). Ultrapure water was added (60% of water holding capacity) 

to all samples and maintained every day (using ultrapure water). Then 5 adult Eisenia fetida 

earthworms were weighed and added to each container. Oatmeal, about 2 g, was added 

as a food source. Cling film was used to cover the containers to prevent escape and was 

pierced to facilitate air flow. Oatmeal was added every week. After 4 weeks survival was 

determined and living worms were allowed to depurate for a day then rinsed with ultrapure 

water, then patted dry, weighed and frozen. To determine element contents, the worms 

were dried at 70-100 ᵒC for 48 hours in borosilicate glass beakers, weighed and then 

digested in 10 ml of HNO3 (Primar Plus trace analysis). The digest solutions then were 

transferred to a centrifuge tube and made up to 20 ml with 0.1% HNO3. The solutions were 

filtered through a 0.45 µm syringe filter into a plastic vial. Nutrients and heavy metals 

concentrations were analysed using ICP-MS/OES. 

5.2.3.3 Simulated soil solution investigation 

After the earthworm survival experiment, the soils were saturated with ultrapure water 

and allowed to stand for ~ 3 days in order to generate simulated soil porewater (Ardestani 

and van Gestel, 2013, Ma et al., 2006). Soil solution was then extracted from each pot by 

centrifugation for 20 minutes at 3500 rpm. The resulting extracted solutions were filtered 

using 0.45 μm syringe filters then acidified with 0.1 mL concentrated HNO3 and kept cold 

at 4°C until the solutions were analysed using ICP-MS/OES. 
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Examinations of the effects of a wetting-drying cycle on plant yield, earthworm survival, 

and element uptake in amended and non-amended soils were also carried out. After 

completion of the plant and earthworm trials and the simulated soil solution generation, 

all of the samples were subjected to a wet-dry cycle to investigate the effects of such on 

plants and earthworms in the treated soils (i.e. simulating longer term effects in the field). 

Each individual replicate was dried at 25 ᵒC in an oven for one week followed by re-grinding 

and homogenisation and determination of remaining water content (a small subsample 

was also removed for determination of soil pH following treatments). Ultrapure water was 

added to re-establish moisture content at 60% of water holding capacity and samples were 

allowed to equilibrate for a few days before the plant and earthworm trials were repeated 

following the same protocols described above.  

5.2.3.4 Statistical analyses 

Statistical assessment of differences amongst treatments and controls were conducted via 

T-tests and ANOVA, when underlying assumptions of the tests were met (i.e. normality of 

distribution), or via Mann-Whitney tests if necessary. All statistical assessments were 

conducted using GraphPad Prism software. 

5.3 Results 

5.3.1 Drinking water treatment residuals (WTRs) for adsorption and retention of 

lead and zinc both singularly and in combination 

5.3.1.1 Adsorption Capacity of WTRs for Zn and Pb 

Adsorption of both Pb and Zn was very high at all concentrations tested and on both types 

of WTRs, with the maximum amounts adsorbed at the highest solution concentrations 
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imposed (400 mg/l) equating to 4025 mg/kg for Pb and 3579 mg/kg for Zn on Al-WTRs 

(Table 5-3 and Figure 5-2). For Fe-WTRs it was 3980 mg/kg for Pb and 3579 mg/kg for Zn 

(Table 5-3 and Figure 5-2). Indeed, in all tested concentrations adsorption was >92% (thus 

explaining the very similar maximum adsorption values). Moreover, the realised Zn and Pb 

adsorption capacities of the Al-WTR and Fe-WTR increased lineary with increasing initial 

concentration of adsorbate (C0), as shown in Figure 5-2, indicating that adsorption maxima 

had not been reached for either WTR type (Table 5-3 and Figure 5-2). 

Adsorption isotherms of Zn and Pb ions in a mono-metal system on Fe-WTR and Al-WTR 

were created (see Figure 5-3). The shapes of isotherms for adsorption of Zn into both WTRs, 

as well as Pb into Fe-WTR, are similar to the type I isotherm (i.e. asymptotic towards a 

maximum, suggesting adsorption is limited to a single monolayer on the surface) while the 

shape of Pb adsorption isotherm into Al-WTRs is similar to the Henry isotherm (i.e. linear) 

(Lowell et al., 2012). 

Table 5-3: Range of adsored amount Qe (mg/kg) and range of adsorption % for Zn and Pb ions in a 
mono-metal system on Fe-WTR and Al-WTR. 

Test Range Qe (mg/kg) Range of adsorption % 

Zn on Al-WTR 86.92- 3579.28 97-93 

Zn on Fe-WTR 86.92-3579.77 97-92 

Pb on Al-WTR 104.90-4025.50 97-100 

Pb on Fe-WTR 103.20-3980.20 96-99 
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Figure 5-2: Effect of initial (C0) concentration on Zn, Pb adsorption capacity of Al-WTR and Fe-WTR. 

 

 

Figure 5-3: Adsorption isotherms in a mono-metal system for: Al-WTR with Zn, Al-WTR with Pb, Fe-
WTR with Zn and Fe-WTR with Pb. Isotherms constructed using Equation 5-1. Qe is quantity of 
sorbate retained by a unit of mass of the sorbent; Ce is the concentration at the equilibrium. 
The ICP-OES detection limit for Zn was 0.27 (mg/l) and for Pb was 0.1 (mg/l). 

 

The experimental data reveal that the maximum monolayer coverage capacity (Qm) of the 

Zn adsorption onto Fe-WTR and Al-WTR from Langmuir Isotherm models were 4.38mg/g 

and 4.68 mg/g, respectively, and that the Langmuir isotherm constants (b) were 0.13 L/mg 

for Zn adsorption into both Fe-WTR and Al-WTR Table 5-4. Adjusted R-squared, R2(adj), 
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values were 0.92 and 0.86 for Zn+Fe-WTRs and Zn+Al-WTRs respectively, indicating  that 

the adsorption data fitted well to the Langmuir Isotherm model. However, the 

experimental data of the Pb adsorption onto Fe-WTR and Al-WTR did not fit the Langmuir 

Isotherm model (see Table 5-5). 

From Freundlich isotherms, the 1/n values of Zn adsorption onto Fe-WTR and Al-WTR were 

0.68 and 0.74 respectively (Table 5-4), while 1/n values for Pb adsorption onto Fe-WTR 

were 0.87 while the model did not fit the equilibrium adsorption data for Pb onto Al-WTR. 

The values of R2(adj) indicate that the Freundlich isotherm did describe the majority of the 

data accurately, having ranged between 0.86-0.87 (see Table 5-4 and Table 5-5) while for 

Pb adsorption onto Fe-WTR it was 0.56. In order to facilitate better comparison of the Kf 

values when the 1/n values are different, Ku values (its unit being L/kg) were calculated 

over a range of Ce values, see Equation 5-3, to unify the unit of Kf (Chen et al., 1999). The 

Ku values (l/g) of Zn adsorption onto Fe-WTR and Al-WTR ranged 0.70-0.15 and 0.69-0.21 

respectively, from lower to higher initial concentration, respectively. Ku values (l/g) of Pb 

adsorption onto Fe-WTR ranged 1.65-1.06 a, from lower to higher initial concentration, see 

Table 5-6. 

From the Temkin model, the Timken equilibrium constant AT values of Zn adsorption onto 

Fe-WTR and Al-WTR were 3.50 l/g and 3.32 l/g respectively and the adjusted R-squared was 

0.97 for both, while AT values of Pb adsorption onto Fe-WTR and Al-WTR were 6.50 l/g and 

2.99 l/g respectively and the adjusted R-squared was 0.77 and 0.74 respectively (Table 5-4 

and Table 5-5). The standard Gibbs free energy of the adsorption can be calculated using 

Equation 5-5. Based on the Temkin constant AT, the standard Gibbs free energy of Zn 

adsorption onto Fe-WTR and Al-WTR were -13.24 and -13.11 kJ/mol, respectively; and of 



231 
 

Pb adsorption onto Fe-WTR and Al-WTR were -17.56 and -15.67 kJ/mol respectively. These 

results indicate that Pb adsorption with more negative values is more easily adsorbed on 

WTRs than Zn. 

Based on D-R equation, theoretical isotherm saturation capacity values were 2.34 and 2.31 

(mg/g), for Zn adsorption onto Fe-WTR and Al-WTR respectively, while values were 

calculated as 2.82 and 6.08 (mg/g) for Pb adsorption onto Fe-WTR and Al-WTR respectively. 

The values of the adjusted R-squared indicate that the D-R isotherm did describe the data 

accurately having ranged between 0.91-0.94 (see Table 5-4 and Table 5-5), except that for 

Pb adsorption onto Fe-WTR was only 0.60. 

 

Table 5-4: Isotherms constants and correlation coefficient for adsorption of Zn with Fe-WTR and Zn 
with Al-WTR. 

Zn adsorption into Fe-WTR Zn adsorption into Al-WTR 

D-R isotherm D-R isotherm 

Qs (mg/g) Kad (mol2/kJ2) R2(adj) Qs(mg/g) Kad (mol2/kJ2) R2(adj) 

2.34 0.23 0.94 2.31 0.24 0.93 

Freundlich Freundlich 

Kf(mg 1-(1/n).g-1.L(1/n)) 1/n R2(adj) Kf(mg 1-(1/n).g-1.L(1/n)) 1/n R2(adj) 

0.46 0.68 0.87 0.49 0.74 0.86 

Henry’s isotherm: Henry’s isotherm: 

KH (l/g) R2 (adj) KH (l/g) R2(adj) 

0.1046 0.85 0.13 0.81 

Langmuir isotherm: Langmuir isotherm: 

Qm (mg/g) b (L/mg) R2(adj) Qm (mg/g) b (L/mg) R2(adj) 

4.38 0.13 0.92 4.68 0.13 0.86 
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Temkin isotherm: Temkin isotherm: 

AT(l/g) ΔG°=-RT*lnAT R2 (adj.) AT(l/g) ΔG°=-RT*lnAT R2 (adj) 

3.50 -13.24 0.98 3.32 -13.11 0.98 

 

Table 5-5: Isotherms constants and correlation coefficient for adsorption of Pb with Fe-WTR and Pb 
with Al-WTR. 

Pb adsorption into Fe-WTR Pb adsorption into Al-WTR 

D-R isotherm D-R isotherm 

Qs (mg/g) Kad (mol2/kJ2) R2(adj) Qs (mg/g) Kad (mol2/kJ2) R2(adj) 

2.82 0.13 0.60 6.08 0.336 0.93 

Freundlich Freundlich 

Kf(mg 1-(1/n).g-1.L(1/n)) 1/n R2(adj) Kf(mg 1-(1/n).g-1.L(1/n)) 1/n R2(adj) 

1.34 0.871 0.56 N.F N.F N.F 

Henry’s isotherm: Henry’s isotherm: 

KH (l/g) R2 (adj) KH (l/g) R2 (adj) 

0.541 0.60 3.469 0.77 

Langmuir isotherm: Langmuir isotherm: 

Qm (mg/g) b (L/mg) R2(adj) Qm (mg/g) b (L/mg) R2(adj) 

N.F N.F N.F N.F N.F N.F 

Temkin isotherm: Temkin isotherm: 

AT(l/g) ΔG°=-RT*lnAT R2(adj) AT(l/g) ΔG°=-RT*lnAT R2(adj) 

6.50 -17.56 0.78 2.99 -15.67 0.74 

N.F the experimental data does not fit the linear equation. 
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Table 5-6: Ku (l/g) for adsorption of Zn on Al-WTR and on Fe-WTR and Pb on Fe-WTR; calculated 
over a range of Ce values, see Equation 5-3. 

Fe-WTR +Zn Al-WTR +Zn Fe-WTR +Pb 

Ce mg/l Ku L/g Ce mg/l Ku L/g Ce 
mg/l 

Ku L/g 

0.07 0.70±0.00 0.01 0.69±0.00 0.23 1.65±0.16 

0.39 0.59±0.01 0.06 0.57±0.03 0.45 1.49±0.05 

1.18 0.44±0.01 0.31 0.47±0.01 0.45 1.49±0.03 

5.87 0.26±0.01 3.85 0.37±0.01 0.46 1.48±0.03 

13.98 0.20±0.01 11.40 0.26±0.01 1.06 1.33±0.01 

30.73 0.15±0.00 23.54 0.21±0.01 5.99 1.06±0.00 

Ku values for adsorption of Pb on Al-WTR could not be calculated because whose 
experimental data did not fit the Freundlich linear equation. 

 

5.3.1.2 The competitive adsorption/ desorption of Zn-Pb ions 

The removal efficiency (% adsorption) of Pb and Zn when in a competitive adsorption 

situation is given in Table 5-7. The removal efficiency was 100% for Pb and almost 100% 

(>98%) for Zn, showing that the WTRs had a high capacity for adsorbing both metals when 

present together but demonstrating that the Pb ions presented a marginally higher affinity 

for the cationic adsorption sites of the Al-WTR and Fe-WTR than that for Zn ions Table 5-7. 

A similar pattern was evident in the desorption findings in which no Pb was detectably 

released from either WTR while only a very small percentage of adsorbed Zn (0.03% - 

3.92%) was released, thus also indicating a higher affinity and/or binding of Pb for the 

cationic adsorption sites of the Al-WTR and Fe-WTR than that for Zn ions Table 5-8. 
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Table 5-7: Adsorption percentage (%) of Zn(II) and Pb(II) when in solution together. 

Solution concentration (mg/l) Pb + Al-WTR Zn + Al-WTR Pb+ Fe-
WTR 

Zn + Fe-
WTR 

10Pb+10 Zn 100±0.00 98.35±0.22 100±0.00 99.89±0.01 

50Pb+50 Zn 100±0.00 99.72±0.04 100±0.00 98.87±0.02 

 

 

Table 5-8: Desorption percentage (% of adsorbed metal released)  of Zn(II) and Pb(II) when in 
solution together. 

Solution concentration (mg/l) Pb + Al-WTR Zn + Al-WTR Pb+ Fe-
WTR 

Zn + Fe-
WTR 

10Pb+10 Zn 0.00±0.00 3.92±0.01 0.00±0.00 0.44±0.00 

50Pb+50 Zn 0.00±0.00 2.57±0.00 0.00±0.00 0.03±0.00 

 

5.3.1.3 Desorption of Pb and Zn (single element) 

The desorption percentage (based on the percentage of adsorbed metal extractable using 

fresh 0.001M CaCl2) of both Pb and Zn were very low at all concentrations tested and on 

both types of WTRs. The desorption percentages from WTRs originally exposed to 400 mg/l 

metal solutions, and from which had adsorbed  4029 mg/kg for Pb and 3579 mg/kg for Zn 

in the case of Al-WTRs, were 0.23 ±0.06% and 1.26±0.03% for Pb and Zn respectively for 

the Al-WTRs.  Samples of Al-WTRs subjected to the lowest initial concentration of Pb and 

Zn, i.e. 10 mg/l, and which had  adsorbed 105 mg/kg for Pb and 87 mg/kg for Zn, had 

desorption percentage values of 6.24 ±1.23% and 7.10±2.77% for Pb and Zn respectively 

(Table 5-9). 

For the Fe-WTRs, desorption percentages for samples subjected to initial concentration of 

Pb and Zn of 400 mg/l (which had adsorbed 3980 mg/kg for Pb and 3580 mg/kg for Zn) 
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were 0.00 ±0.00 % and 0.36±0.06% respectively. For Fe-WTR samples subjected to the 

lowest initial concentration of Pb and Zn, i.e. 10 mg/l, which produced adsorbed amounts 

of 103 mg/kg for Pb and 87 mg/kg for Zn, the desorption percentages were 0.02 ±0.00% 

and 2.24±1.56% for Pb and Zn respectively (Table 5-9). This again shows that both types of 

WTRs have high capacity for binding and retaining metals. 

Table 5-9: Desorption percentages (% of adsorbed metal released) for Zn and Pb ions in a mono-
metal system on Fe-WTR and Al-WTR. 

Initial 
solution 
conc. in 

adsorption 
step (mg/l) 

Fe-WTR +Zn Al-WTR +Zn Fe-WTR +Pb Al-WTR +Pb 

Desorbed 

mean % 

SD Desorbed 

mean % 

SD Desorbed 

mean % 

SD Desorbed 

mean % 

SD 

10 2.24 1.56 7.10 2.77 0.02 0.00 6.24 1.23 

50 0.86 0.19 1.31 0.56 0.00 0.00 1.35 0.01 

100 0.45 0.08 0.77 0.16 0.00 0.00 0.82 0.21 

200 0.26 0.03 1.40 0.12 0.00 0.00 0.45 0.06 

300 0.26 0.03 1.22 0.01 0.00 0.00 0.31 0.03 

400 0.36 0.06 1.26 0.03 0.00 0.00 0.23 0.06 

 

5.3.2 Remediation of contaminated soils using water treatment residuals 

5.3.2.1 Soil pH and organic matter (OM) effects 

Despite the high organic matter content of the WTRs (typically 28% in the Al-WTR and 26% 

in the Fe-WTR), their addition at 10% w/w had a negligible impact on the total organic 

matter percentage of the soils determined by loss on ignition as shown in Table 5-10. This 

is likely due to the mining-impacted soils still having the presence of small coal fragments 

that were combusted during the organic matter content measurement. Addition of lime 

did decrease the overall organic matter content of the soil as the lime contained no organic 
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matter. However, WTR treatment had a profound effect on soil pH, see Table 5-10, with 

statistically significant increases from pH<4 in the untreated controls to generally pH>4 in 

treated soils. Both Al-WTRs and Fe-WTRs significantly increased the pH, with no consistent 

pattern as to which raised the pH more. The pH buffering capacity of the soils, calculated 

based on response to lime addition, were shown to vary (Table 5-11), and this enabled 

examination of the lime equivalent value of WTRs in the various soils. The lime equivalent 

of WTRs was calculated using slope of the line equation shown in Table, with the slope of 

the WTRs equation divided by the slope of the corresponding lime equation. The WTR/lime 

equivalent values were different among the seep soils. 

Table 5-10: Mean of organic matter content (%) and pH of untreated and treated soils, plus 
buffering capacity of the soils calculated from response to lime addition.  

 

Soil 

Non-
amended 

(control) 

Al-WTR 
amended 

Fe-WTR 
amended 

Lime 
amended 

Buffering 
capacity# 

 ----------------------------- Organic matter (%) ----------------------------- 

Seep 1 32.09±0.31 32.88±0.18 32.18±0.26 8.17±0.19* n/a 

Seep 2 27.92±0.23 26.62±0.27* 24.95±0.88 22.48±0.4* n/a 

Seep 3 8.11±0.3 8.99±0.1 8.23±0.09 5.14±0.06* n/a 

 --------------------------------------    pH    -------------------------------------- 

Seep 1 3.28±0.02* 4.38±0.06* 3.80±0.02* 6.36±0.04* 21400±0.00 

Seep 2 3.83±0.06* 5.67±0.10* 6.01±0.05* 6.88±0.03* 32700±0.00 

Seep 3 3.40±0.01* 5.23±0.06* 5.42±0.02* 7.15±0.06* 26600±0.00 

*Significantly different from non-amended (α 0.05); #based on lime addition and measured 
pH, with units: mg CaCO3/kg soil/pH unit; n/a = not applicable. 
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Table 5-11: The approxmate WTR/lime equivalent calculated from pH measured in the 0% addition 
and 10% addition of WTR treatments. 

Soil  
label 

Amendment 
type 

Soil pH line equation Slope WTR/lime 

Equivalent 0% 
addition 

10% 
addition 

Seep 
1 

Al-WTR 3.28 
±0.02 

4.38±0.06* pH = 11*Al-WTR% 
+ 2.85 

11 0.24 

Fe-WTR 3.28 
±0.02 

3.80±0.02* pH = 7.5*Fe-
WTR% + 2.85 

7.5 0.17 

Lime 3.28 
±0.02 

6.36±0.04* pH = 45.2*lime% 
+ 2.85 

45.2 1.00 

Seep 
2 

Al-WTR 3.83 
±0.06 

5.67±0.10* pH = 18.7*Al-
WTR% + 3.89 

18.7 0.61 

Fe-WTR 3.83 
±0.06 

6.01±0.05* pH = 21.7*Fe-
WTR%+ 3.89 

21.7 0.71 

Lime 3.83 
±0.06 

6.88±0.03* pH = 30.7*lime% 
+ 3.81 

30.7 1.00 

Seep 
3 

Al-WTR 3.40 
±0.01 

5.23±0.06* pH= 18.9*Al-
WTR% + 3.41 

18.9 0.50 

Fe-WTR 3.40 
±0.01 

5.42±0.02* pH = 20.4*Fe-
WTR% + 3.39 

20.4 0.54 

Lime 3.40 
±0.01 

7.15±0.06* pH = 37.5*lime% 
+ 3.41 

37.5 1.00 

 

5.3.2.2 Plant yield and element concentrations 

The increase in dry mass of plant growth in all amended soils was statistically significant in 

comparison with that of non-amended control soil in both the initial plant growth trial and 

the trial following a wet-dry cycle Table 5-12. In the initial trial the highest masses were 

found at Fe-WTR amended soils which were 238%, 136% and 215% of that in non-amended 

control soils in seep 1, seep 2 and seep 3, respectively. The increase in dry mass of plant 

growth in Al-WTR and lime amended soils was almost the same. In the trial following the 
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wet-dry cycle, the yield increases achieved with Al-WTR, Fe-WTR and lime treatments were 

similar Table 5-12. 

Table 5-12: Mean of dry plant mass per pot in grams (g)± standard devation (SD) of the mean, at 
original plant trial yield and following wet-dry cycle. 

Site Non-amended Al-WTR Fe-WTR Lime 

---------------------------------------Original plant trial yield---------------------------------------- 

Seep 1 0.18±0.02 0.34±0.00* 0.43±0.00* 0.35±0.00* 

Seep 2 0.36±0.00 0.47±0.00* 0.49±0.00* 0.42±0.00* 

Seep 3 0.20±0.01 0.35±0.01* 0.43±0.01* 0.36±0.00* 

---------------------------------------Yield following wet-dry cycle---------------------------------- 

Seep 1 0.35±0.01 0.45±0.01* 0.48±0.01* 0.58±0.01* 

Seep 2 0.38±0.00 0.46±0.02* 0.51±0.01* 0.47±0.00* 

Seep 3 0.32±0.02 0.42±0.01* 0.43±0.00* 0.43±0.01* 

*Significantly different from non-amended (α 0.05) 

The elements content in plant tissues from the initial plant growth trial is shown in Table 

5-13, there is significant decrease in Al assimilation in all seeps after applying Fe-WTR and 

Al-WTR and lime. As shown in Table 5-13, there were significant decreases in arsenic 

assimilation by all amendments addition in seep 3, while the decreases in arsenic 

assimilation by all amendments addition were not significant in seep 2. There were non-

significant increases in arsenic content in plants grown in amended soil from seep 1 

compared with that grown in non-amended seep 1 soil. It can be seen from Table 5-13 that 

Ca, Mg and K assimilation increased significantly in all study sites after applying each of the 

used amendments. Analysis of Cd concentrations reveals detectable amounts only in the 

plant grown in non-amended soil from seep 2 and seep 3, that were 0.06±0.05 mg/kg and 
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0.07±0.05 mg/kg respectively, while there were no detectable levels of Cd in the plant 

grown in amended soils from seeps 2 and 3.  

The statistical tests did not reveal a significant difference in the Co assimilation between 

the groups. What is interesting about Cr content in the plants is that Fe-WTR, Al-WTR and 

lime significantly decreased Cr uptake only in seeps 3, while the differences are not 

significant in seeps 2 and 1 after applying any of the used amendments. It is apparent from 

Table 5-13 that Cu assimilation increased significantly in all study sites after applying each 

of the used amendments. Regarding Fe assimilation, for seep 1 and 2 there was no 

significant difference, however, the mean of Fe assimilation was highest in the control 

compared with all treatments. In seep 3 there was a statistically significant reduction after 

applying the treatments. 

What stands out in the data of Mn content in the plant is that Mn assimilation was 

increased in seep 1 by a factor of almost 7 by Al-WTR and Fe-WTR treatments, while not 

being increased in lime amendment. Ni assimilation was significantly decreased in seeps 2 

and 3 by Fe-WTR addition and lime addition, while, only in seep 2 there was a significant 

decrease in Ni assimilation by applying Al-WTR. It seems clear that P contents in ryegrass 

leaves grown in amended soils from seeps 1 and 3 were significantly or almost significantly 

greater than that at non-amended soil, whereas, significant decreases were observed in P 

content after applying the amendments for the soil from seep 2. It can be seen that both 

Fe-WTR and Al-WTR significantly decreased Pb assimilation in all seeps. S assimilation was 

significantly increased by adding Al-WTR and lime in all sites except in seep 3 for which the 

increase is not statistically significant. Conversely, there were significant decreases of S 

uptake from all seep soils using Fe-WTR amendment. Zn assimilation was significantly 
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decreased by each of the amendments in all seep sites except seep 1, where no significant 

differences were identified. 

Table 5-13: Mean of element content in plant tissue (mg/kg) or % w/w ± SEM, from the initial plant 
growth trial. 

Element Soil 
Non-amended 

control 
Al-WTR Fe-WTR Lime 

Al 

Seep 1 176.02±6.64 44.02±1.38* 51.81±5.98* 78.85±1.22* 

Seep 2 67.79±7.02 38.52±3.23# 33.23±0.58# 35.42±1.39# 

Seep 3 602.69±24.15 30.05±0.07* 32.49±0.06* 37.03±4.13* 

As 

Seep 1 0.14±0 1.31±1.12 0.98±0.65 0.28±0.05 

Seep 2 0.34±0.05 0.32±0.04 0.29±0.03 0.28±0.07 

Seep 3 0.27±0.09 0.10±0.01* 0.08±0.00* 0.09±0.01* 

Ca% 

Seep 1 0.15±0.00 0.78±0.02* 1.17±0.01* 0.89±0.00* 

Seep 2 0.30±0.00 0.55±0.00* 0.67±0.01* 0.64±0.05* 

Seep 3 0.27±0.00 0.85±0.00* 1.31±0.06* 1.26±0.09* 

Cd 

Seep 1 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

Seep 2 0.06±0.05 0.00±0.00 0.00±0.00 0.00±0.00 

Seep 3 0.07±0.05 0.00±0.00 0.00±0.00 0.01±0.01 

Co 

Seep 1 0.55±0.01 0.20±0.00* 0.51±0.02 0.1±0.00* 

Seep 2 9.2±0.33 1.02±0.00* 1.3±0.09* 1.19±0.08* 

Seep 3 9.54±0.43 0.45±0.00* 0.63±0.01* 0.74±0.00* 

Cr 

Seep 1 1.37±0.24 1.4±0.13 1.32±0.15 3.87±2.7 

Seep 2 1.03±0.14 1.2±0.10 1.2±0.00 1.03±0.17 

Seep 3 2.47±0.30 1.31±0.12* 1.03±0.15* 0.75±0.06* 

Cu 

Seep 1 11.61±0.67 15.62±0.11* 13.5±0.42* 14.15±0.11* 

Seep 2 11.85±0.2 15.85±0.32* 14.54±0.09* 13.57±0.53* 

Seep 3 10.81±0.41 13.05±0.36* 12.41±0.61* 13.11±0.16* 

Fe Seep 1 522.19±37.11 179.24±22.02* 402.85±62.03 230.48±12.76* 
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Seep 2 205.91±29.87 135.75±2.97 132.07±3.75 102.17±3.29 

Seep 3 1446.76±59.51 112.64±1.82* 112.82±1.39* 104.5±4.34* 

K% 

Seep 1 0.56±0.03 0.79±0.02* 0.94±0.02* 1.57±0.35* 

Seep 2 2.39±0.03 3.52±0.01* 3.13±0.01* 3.68±0.01* 

Seep 3 1.44±0.00 2.04±0.05* 2.31±0.14* 2.95±0.15* 

Mg% 

Seep 1 0.16±0.00 0.30±0.01* 0.32±0.00* 0.20±0.00* 

Seep 2 0.34±0.00 0.38±0.00* 0.36±0.00* 0.24±0.00* 

Seep 3 0.32±0.01 0.36±0.00 0.42±0.00# 0.24±0.01 

Mn 

Seep 1 45.3±0.43 339.45±8.32* 286.02±11.36* 60.17±3.26* 

Seep 2 372.05±0.51 283.03±3.45* 190.21±5.69* 101.89±2.05* 

Seep 3 298.41±4.85 342.40±4.48* 247.23±1.92* 125.34±7.93* 

Ni 

Seep 1 9.59±0.82 7.10±0.31 7.24±0.16 5.33±0.10 

Seep 2 37.33±2.17 28.24±1.66* 13.71±1.13* 6.59±0.17* 

Seep 3 28.98±5.54 14.92±2.5 7.55±0.35* 7.09±0.34* 

P% 

Seep 1 0.80±0.05 1.14±0.01* 0.95±0.01# 0.99±0.03 

Seep 2 0.97±0.01 0.79±0.01* 0.72±0.01* 0.74±0.01* 

Seep 3 0.61±0.03 0.88±0.02* 0.77±0.04* 0.82±0.00* 

Pb 

Seep 1 0.71±0.08 0.65±0.20* 0.58±0.03* 1.33±0.48 

Seep 2 0.65±0.17 0.26±0.02* 0.27±0.03* 0.32±0.05 

Seep 3 0.39±0.06 0.09±0.02* 0.09±0.01* 0.35±0.23 

S% 

Seep 1 2.61±0.03 3.65±0.06* 2.39±0.03* 4.12±0.13* 

Seep 2 4.82±0.13 5.89±0.05* 2.73±0.15* 5.17±0.09* 

Seep 3 4.44±0.09 4.57±0.23 2.71±0.05* 4.97±0.07# 

Zn 

Seep 1 74.22±4.89 65.05±4.79 53.6±1.28 45.91±0.24# 

Seep 2 72±1.09 59.99±0.31* 53.9±1.24* 61.88±0.58* 

Seep 3 79.54±1.67 52.66±0.40* 48.12±1.55* 49.42±0.31* 

*Significantly different from non-amended (α 0.05) and # almost significantly different 
from non-amended (P less than 0.06). 
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The elements content in plant tissues in the trial following the wet-dry cycle (Table 5-14) 

reveal that again there was significant decreases in Al assimilation in all seeps after applying 

Fe-WTR and Al-WTR and lime. One-way ANOVA revealed that there was a significant 

decrease in As assimilation by Al-WTR addition, Fe-WTR addition and lime addition in all 

seeps, unlike in the initial plant test in which As concentrations were only decreased for 

seep 3. Consistent with the first plant trial, it can be seen from Table 5-14 that Ca, Mg and 

K assimilations increased significantly in all study sites after applying each of the used 

amendments, except Ca assimilation was not significantly increased in seep 3 after lime 

addition. The statistical tests did not reveal a significant difference in the Co assimilation 

between the groups but the mean of Co assimilation was highest in the non-amended 

compared with all treatments in seeps 2 and 3. Cr content in plant growth in Fe-WTR, Al-

WTR and lime amended soils was significantly decreased in seeps 3, while the differences 

are not significant in seep 2 and 1 using Al-WTR and Fe-WTR amendments. Lime addition 

significantly decreased Cr uptake only in seeps 1 and 3. 

It is apparent that Cu assimilation increased significantly in plants grown in Seep 1 and 3 

soils amended with any and all of the amendments, but in seep 2 the increase was only 

significant with Fe-WTR treatment. One-way ANOVA indicated that there was no significant 

difference among the mean of Fe assimilation among groups, except that in seep 1 

amended by Al-WTR and in seep 3 amended by lime were significantly less than the non-

amended groups. Mn assimilation was significantly increased in seep 1 and seep 3 

amended by Al-WTR and Fe-WTR, but conversely was significantly decreased in seep 2 

when amended with either. There was a significant decrease in Mn uptake in plant growth 

in lime amendment soil in all seep soils.  
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Ni assimilation was significantly decreased by Al-WTR addition, Fe-WTR addition and lime 

addition in all seeps except in seep 1 with Al-WTR addition. Unlike in the first plant test, P 

contents in ryegrass leaves grown in amended soils from seep 1 and 3 were not significantly 

incresed from that at non-amended soil and instead there was no difference. However, 

consistent with the first test, significant decreases were observed in P content after 

applying the amendments for the soil from seep 2. Al-WTR and lime treatments 

significantly decreased Pb assimilation in seep 1 and 3 relative to untreated soils. Fe-WTR 

treatment significantly decreased Pb assimilation in seep 1, while, the decrease is not 

significant in seeps 2 and 3. The mean of Pb assimilation was highest in the non-amended 

compared with all treatments.  

S assimilation was increased by adding Al-WTR but this was not statistically significant. S 

assimilation was increased by adding Fe-WTR, this increase was almost significant in seep 

1, not significant in seep 2 and significant seep 3. There was no statistically significant 

difference in S assimilation in the lime amended group in seeps 2 and 3 whereas S 

assimilation in the lime amended group in seep 1 were significantly greater than that in 

non-amended. It seems that Zn assimilation in Ryegrass plant in Fe-WTR amended soil were 

significantly increased in seep 1 and 3 while the increase was not significant in seep 2. There 

was a significant increase in Zn assimilation only in seep 1 by adding Al-WTR, conversely, 

on seep 1 the Zn assimilation was decreased significantly by adding lime. There were no 

significant differences in Zn assimilation in seep 2 and 3 amended by Al-WTR and lime. 
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Table 5-14: Mean of element concentrations in plant following a wet/dry cycle (mg/kg)±SEM, in the 
trial following the wet-dry cycle. 

Element Soil 
Non-

amended 
Al-WTR Fe-WTR Lime 

Al 

Seep 1 61.69±4.2 28.47±6.68* 10.68±0.05* 38.34±7.47 

Seep 2 20.02±2.31 11.12±1.09* 3.57±0.60* 5.24±0.45* 

Seep 3 153.7±4.69 9.65±0.83* 7.98±0.32* 8.09±1.76* 

As 

Seep 1 0.06±0.01 0.03±0.00* 0.03±0.00* 0.04±0.00* 

Seep 2 0.25±0.01 0.12±0.02* 0.06±0.00* 0.07±0.00* 

Seep 3 0.1±0.00 0.07±0.00* 0.06±0.00* 0.08±0.00* 

Ca% 

Seep 1 0.13±0.00 0.65±0.00* 0.69±0.00* 0.76±0.03* 

Seep 2 0.26±0.01 0.55±0.02* 0.49±0.02* 0.57±0.01* 

Seep 3 0.21±0.00 0.65±0.00* 0.68±0.00* 0.07±0.00* 

Co 

Seep 1 0.31±0.00 0.13±0.00* 0.53±0.00* 0.04±0.00* 

Seep 2 5.22±0.16 0.14±0.00* 0.58±0.03* 0.58±0.01* 

Seep 3 3.29±0.03 0.02±0.01* 0.28±0.01* 0.29±0.03* 

Cr 

Seep 1 1.24±0.21 1.05±0.20 0.97±0.05 0.76±0.05* 

Seep 2 1.25±0.17 0.98±0.10 1.01±0.05 1.15±0.10 

Seep 3 1.97±0.14 1.53±0.20* 1.31±0.18* 1.08±0.06* 

Cu 

Seep 1 8.85±0.32 12.11±0.38* 15.36±0.1* 10.53±0.28* 

Seep 2 10.73±0.32 11.43±0.13 11.87±0.14* 10.88±0.00 

Seep 3 8.03±0.25 11.32±0.14* 11.94±0.01* 9.85±0.37* 

Fe 

Seep 1 349.56±40.16 131.61±18.23* 133.41±8.53* 132.63±1.92* 

Seep 2 91.61±14.26 91.54±3.74 65.38±1.01 57.01±0.21 

Seep 3 79.4±2.34 71.8±3.19 77.21±0.56 62.09±0.75* 

K% 

Seep 1 1.00±0.02 1.65±0.00* 1.82±0.03* 2.82±0.26* 

Seep 2 1.84±0.10 3.65±0.12* 3.74±0.10* 3.67±0.03* 

Seep 3 1.44±0.04 2.16±0.11* 2.62±0.01* 1.66±0.34 
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Mg% 

Seep 1 0.15±0.00 0.26±0.00* 0.31±0.00* 0.17±0.00* 

Seep 2 0.29±0.01 0.32±0.01 0.23±0.00# 0.19±0.00# 

Seep 3 0.17±0.00 0.27±0.00* 0.26±0.00* 0.20±0.00* 

Mn 

Seep 1 52.27±2.37 286.86±0.26* 327.51±11.33* 34.17±2.2* 

Seep 2 274.84±5.33 274.21±11.87 153.35±3.67* 76.48±2.15* 

Seep 3 104.7±0.06 243.71±2.4* 234.15±0.67* 71.48±0.27* 

Ni 

Seep 1 7.1±0.31 5.33±0.1* 6.23±0.28 3.51±0.34* 

Seep 2 28.24±1.66 6.59±0.17* 6.58±0.46* 6.82±0.54* 

Seep 3 14.92±1.77 7.09±0.24* 6.57±0.08* 5.77±0.27* 

P% 

Seep 1 1.14±0.01 1.21±0.05 1.15±0.02 1.06±0.04 

Seep 2 1.38±0.02 1.01±0.04* 0.86±0.01* 0.87±0.01* 

Seep 3 1.07±0.02 1.12±0.02 1.07±0.02 0.92±0.01 

Pb 

Seep 1 0.37±0.02 0.14±0.03* 0.08±0.00* 0.08±0.01* 

Seep 2 0.11±0.01 0.07±0.01 0.06±0.01 0.03±0.00 

Seep 3 0.11±0.00 0.05±0.00* 0.08±0.02 0.04±0.00* 

S% 

Seep 1 2.17±0.04 2.93±0.04 3.57±0.16# 4.11±0.35* 

Seep 2 3.69±0.05 4.07±0.22 4.10±0.11 3.31±0.05 

Seep 3 2.92±0.06 3.19±0.05 3.75±0.11* 2.92±0.21 

Zn 

Seep 1 42.51±0.34 51.22±1.31* 64.45±1.53* 27.7±1.47* 

Seep 2 54.16±1.36 54.47±1.01 55.63±1.51 53.12±1.19 

Seep 3 48.3±0.32 47.5±0.54 58.77±0.43* 43.14±1.7 

*Significantly different from non-amended (α 0.05) 

5.3.2.3 Earthworm trial (survival and element uptake)  

Survival percentages of earthworms were high in the procedural control soil samples 

(91±4%), meeting the validity criteria of the protocol (data not shown). In the initial 

earthworm trial, there was no survival (100% mortality) of earthworms in the non-



246 
 

amended seep soils (Table 5-15). The highest survival percentages (100%) were observed 

in lime amended soils in all seep soils. Survival rates were significantly increased in Al-WTR 

and Fe-WTR treatments of seep 1 soil, with values of 80% and 40% respectively. In seep 2, 

the mean of survival percentage by Al-WTR addition and Fe-WTR addition also increased, 

to 53.33±29.05 and 20.0±11.54 respectively. A high survival rate of 85%±9.57, with 

significant differences from untreated control (ANOVA p>0.05), was observed in Fe-WTR 

treated seep 3 soil, but no improvement was found for seep 3 soil amended with Al-WTRs. 

In the second trial, i.e. following the wet-dry cycle, it seems that overall the general pattern 

was similar in that treatment with WTRs or lime greatly increased survival of earthworms. 

The exception is that in the post wetting-drying cycle trial all worms died in Seep 1 soil, the 

reason for which is not clear and warrants further investigation. There is a possibility that 

the wet/dry cycle (and possibly the re-grinding that followed), triggered the release of a 

toxic component and/or otherwise altered the conditions in seep 1 soils rendering them 

too hostile for the earthworms. 

 Table 5-15: Earthworm survival percentage (mean±SE). 

Site Non-amended Al-WTR Fe-WTR Lime 

-----------------------Survival percentages of earthworms in Original trial-------------------- 

Seep 1 0.00±0.00 80±8.16* 40±8.16* 100±0.00 

Seep 2 0.00±0.00 53.33±29.05 20±11.54 100±0.00 

Seep 3 0.00±0.00 0.00±0.00 85±9.57* 100±0.00 

--------------Survival percentages of earthworms in the trial after wet-dry cycle---------- 

Seep 1 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

Seep 2 13.33±13.33 80±20.00≠ 100±0.00* 93.33±6.66* 

Seep 3 0.00±0.00 60±20.00 100±0.00* 100±0.00* 

*Significantly different from non-amended P value < 0.05; ≠ P value = 0.06. 
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Table 5-16 shows the water content of worms recovered from the soil samples from the 

initial trial. It seems clear that the surviving earthworms were in good health condition with 

rather consistent water contents, which can be another good indicator that adding these 

amendments enhances the soil condition. 

Table 5-16: Water content (% w/w) of worms from the initial trial. 

Treatment  Al-WTR Fe-WTR Lime 

Seep 1 82%* 85% 88% 

Seep 1 86% 83% 87% 

Seep 1 84% 82% 86% 

Seep 2 N.A# N.A 85% 

Seep 2 87% 80% 87% 

Seep 2 86% 86% 84% 

Seep 3 N.A  71% 86% 

Seep 3 N.A  93% 86% 

Seep 3 N.A  84% 84% 

Mean Mean 85.0% Mean 83.2% Mean 86.4% 

*Note that individual replicate values are shown because the non-survival in some 
replicates could otherwise distort the data presentation. # N.A. represents not available. 
Not determinable because there were no surviving earthworms. 

Elemental analysis of earthworms was, by definition, restricted to those treatments from 

which earthworms were recovered. There were no surviving earthworms in the non-

amended seep soils and therefore there are no values for the measured elements from 

those samples. This means it is not possible to compare element uptake in treated vs non-

treated seep soils. Table 5-17 therefore shows element concentrations in earthworms from 

the amended samples only. 
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Analysis of Variance was tried between the three amended groups within each trial, where 

data were sufficient and met the background assumptions of normality, etc. However, the 

amount of viable data limited this approach, as did the variability across replicates, and so 

most of the results of the analysis of variance between amended groups were not 

significant except in a few cases. Nevertheless, some patterns appeared; in both trials the 

addition of Al-WTRs resulted in higher mean Al concentrations than were observed in the 

other treatments (where data is available to directly compare, Table 5-17 and Table 5-18), 

indicating that a portion of the Al in the WTRs was bioavailable. The increase in Fe in Fe-

WTR amended samples was much less distinct, and only apparent in the tissues of 

earthworms from the trial post wetting / drying. Unsurprisingly, in both trials, the addition 

of lime increased the Ca concentrations in earthworms.  

Table 5-17: Mean of element contents in earthworm tissue (mg/kg or µg/kg, as indicated) ± SEM. 

Element Site Al-WTR Fe-WTR Lime 

Al 
mg/kg 

Seep 1 290.20±181.381 33.55±8.5 121.18±27.44 

Seep 2 603.78±178.56 380.14±350.26 207.64±34.56 

Seep 3 N.R 431.02±60.62* 227.96±75.37 

As 
µg/kg 

Seep 1 B.D 3.69±3.69 4.16±2.2 

Seep 2 11.14±3.84 B.D B.D 

Seep 3 N.R B.D 4.24±3.03 

Ca 
mg/kg 

Seep 1 1693.03±144.99 1890.22±258.86 6166.19±698.69 

Seep 2 1989.83±231.28 10148.77±9234.85 8106.78±1048.33 

Seep 3 N.R 2796.43±386.15 6776.81±2625.36 

Co 
µg/kg 

Seep 1 6.19±1.49 18.63±7.85 1.92 

Seep 2 1.24 2.01±0.42 2.86±1.75 

Seep 3 N.R 4.16±1.41 1.11±0.49 
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Cr 
µg/kg 

Seep 1 4.79±2.88 27.19±8.36 B.D 

Seep 2 B.D B.D 4.29 

Seep 3 N.R 2.77±1.18 B/D 

Cu 
µg/kg 

Seep 1 19.9±1.87 40.22±12.45 15.23±2.96 

Seep 2 12.15±2.29 6.12±2.62 10.27±0.27 

Seep 3 N.R 9.59±1.64 4.53±1.14 

Fe 
mg/kg 

Seep 1 6585.79±4833.78 1252.11±274.93 10250.5±2544.85 

Seep 2 3722.8±722.61 7767.2±N.R 6317.71±714.82 

Seep 3 N.R 8657.76±779* 3387.83±461.58 

K mg/kg Seep 1 7045.24±111.77 7283.72±651.26 6417.23±389.89 

Seep 2 6613.93±583.44 9074.32±4198.43 6364.92±449.61 

Seep 3 N.R 6087.23±614.85 4995.38±1066.11 

Mg 
mg/kg 

Seep 1 462.09±55.9 319.04±83.49 402.33±7.96 

Seep 2 427.44±18.73 797.64±651.12 613.38±48.3 

Seep 3 N.R 663.44±56.87 499±125.48 

Mn 
mg/kg 

 

Seep 1 28.78±10.11 31.59±7.48 5.55±1.68 

Seep 2 17.56±3.5 19.16±9.05 21.13±1.98 

Seep 3 N.R 40.69±4.46* 13.94±0.46 

Ni 
µg/kg 

Seep 1 1.91±0.88 8.3±4.18 1.55±0.92 

Seep 2 0.93±0.93 B.D 2.99±0.97 

Seep 3 N.R 3.22±1.37 0.64±0.34 

Pb 
µg/kg 

Seep 1 4.26±1.6 2.86±1.95 4.16±0.5 

Seep 2 1.21±0.33 9.4±3.45 10.64±2.88 

Seep 3 N.R 4.71±1.33 3.68±1.88 

Zn 
µg/kg 

Seep 1 75.63±6.54 105.7±29.35 55.77±5.33 

Seep 2 56.79±9.2 133.67±9.3 66.95±6.22 

Seep 3 N.R 72.51±10.84 49.04±7.46 
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*significantly different (p<0.05) from Al-WTR. B.D refers to below detection, N.R represents 
not reported because no earthworms survived hence element analysis was not possible. 

 

 

Table 5-18: Mean of element concentrations in earthworm tissue following a wet/dry cycle (mg/kg 
or µg/kg, as indicated)±SEM 

Element Site  Al-WTR Fe-WTR Lime 

Al mg/lkg Seep 1 N.R N.R N.R 

Seep 2 1329.26±616.13 574.27±36.27* 218.4±8.28* 

Seep 3 723.61±602.8 499.96±167.28 217.56±53.55 

As µg/kg Seep 1 N.R N.R N.R 

Seep 2 0.50±0.17 0.58±0.06 0.46±0.25 

Seep 3 0.46±0.04 0.5±0.18 0.63±0.10 

Ca mg/kg Seep 1 N.R N.R N.R 

Seep 2 4382.54±147.7 4721.19±335.89 6652.13±663.48 

Seep 3 3015.1±510.68 3276.77±330.02 5410.34±478.9 

Cd µg/kg Seep 1 N.R N.R N.R 

Seep 2 6.21±1.99 0.58±0.58 6.2±5.05 

Seep 3 1.58±1.58 0.87±0.87 0.00±0.00 

Co µg/kg Seep 1 N.R N.R N.R 

Seep 2 2.43±2.43 0.00±0.00 4.05±4.05 

Seep 3 1.58±1.58 0.87±0.87 0±0 

Cr µg/kg Seep 1 N.R N.R N.R 

Seep 2 2.88±1.44 0.00±0.00 7.07±5.5 

Seep 3 5.77±2.96 3.64±2.30 2.80±0.61 

Cu µg/kg Seep 1 N.R N.R N.R 

Seep 2 18.15±1.42 9.96±0.67 1.4±1.4* 

Seep 3 1.77±1.77 2.08±2.08 0.00±0.00 
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Fe mg/kg Seep 1 N.R N.R N.R 

Seep 2 9057.67±2929.46 19533.93±1566.92* 6112.58±724.09* 

Seep 3 2263.22±1511.04 6572.04±973.25 2398.69±445.07 

K mg/kg Seep 1 N.R N.R N.R 

Seep 2 5963.13±515.11 5727.94±182.75 63387.02±29159.54 

Seep 3 103125.32±19210.66 95517.02±7713.3 80982.49±3675 

Mg mg/kg Seep 1 N.R N.R N.R 

Seep 2 720.48±35.26 654.05±35.24 608.54±49.09 

Seep 3 659.04±9.72 823.98±39.18 630.43±39.39 

Mn 
mg/kg 

 

Seep 1 N.R N.R N.R 

Seep 2 59.29±10.38 98.47±5.38* 30.37±5.82* 

Seep 3 32.92±4.37* 48.41±7.24 12.85±1.61* 

Ni µg/kg Seep 1 N.R N.R N.R 

Seep 2 7.72±2.16 1.83±0.59 3.5±3.5 

Seep 3 1.58±1.58 0.87±0.87 0.00±0.00 

Pb µg/kg Seep 1 N.R N.R N.R 

Seep 2 10.12±2.27 7.21±1.39 7.44±5.58 

Seep 3 2.39±2.06 1.58±1.39 0.73±0.73 

Zn µg/kg Seep 1 N.R N.R N.R 

Seep 2 N.R N.R N.R 

Seep 3 N.R N.R N.R 

*significantly different (p<0.05) from Al-WTR 

5.3.2.4 Simulated soil solutions–element concentrations 

Element concentrations in simulated soil solutions are shown in Table 5-19. It can be seen 

that all treatments significantly reduced the soil solution Al concentration, with Fe-WTRs 

and lime being the most effective. The As concentrations were marginally increased in seep 
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1 soil following Al-WTRs and Fe-WTRs amendment, but were more substantially increased 

by lime treatment. The other seep soils did not have significantly different As 

concentrations in their soil solutions following treatment. The WTR treatments significantly 

reduced Cd concentrations in Seep 3 solutions, from ~11 µg/l to <0.25 µg/l, but had 

negligible influence on the other seeps (which had much lower initial Cd concentrations). 

The concentrations of Co were generally greatly reduced by all amendments, except in the 

case of seep 1 amended with Fe-WTRs which had a significant increase from ~100 to 330 

µg/l. Fe, Ni and Zn concentrations were all generally reduced by each of the treatments 

whereas K was increased in every case, with the degree of change rather variable amongst 

the treatments and amongst the various seep soils (Table 15-9). Addition of the 

amendments generally decreased the concentration of Pb or had no effect, except for the 

lime treatment in seep 1 which resulted in a much higher concentration than in the 

untreated sample (i.e. ~161 µg/l vs < 1 µg/l).  

Table 5-19: Mean of element concentrations (µg/l or mg/l) in simulated soil solutions, 

Element Site Non-amended Al-WTR Fe-WTR Lime 

Al mg/l 

 

Seep 1 154.39±44.36 54.07±8.32 6.96±2.93* 1.05±0.21* 

Seep 2  3.38±1.6 0.3±0.20# 0.07±0.00# 0.06±0.00# 

Seep 3 34.85±11.27 0.22±0.05# 0.07±0.00# N.R 

As µg/l Seep 1 2.86±0.21 3.54±0.38* 4.09±0.2* 12.2±0.44* 

Seep 2  19.68±5.82 12.61±1.95 7.5±2.61 6.52±0.87 

Seep 3 12.24±1.56 23.63±6.94 9.98±2.1 N.R 

Ca mg/l 

 

Seep 1 201.21±12.5 240.54±3.86 236.57±1.16 231.88±0.25 

Seep 2  247.4±0.44 253.53±1.78* 252.09±1.78* 268.72±0.94* 

Seep 3 251.37±1.27 249.96±8.46 269.41±0.25* N.R 

Cd µg/l Seep 1 5.89±2.61 2.78±0.28 7.35±3.87 0.02±0.15 
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 Seep 2  1.57±0.98 0.00±0.00 0.00±0.00 0±0 

Seep 3 11.21±3.98 0.22±0.16* 0.00±0.00* N.R 

Co µg/l 

 

Seep 1 99.76±7.68 48.45±4.03* 331.76±58.07* 0.36±0.17* 

Seep 2  550.27±66.48 10.07±2.04* 40.37±9.32* 0.02±0.01* 

Seep 3 538.89±63.46 4.39±0.9* 47.7±2.36* N.R 

Cr µg/l 

 

Seep 1 3.54±0.67 4.99±0.91 7.37±1.82 0.29±0.16 

Seep 2  1.24±0.07 0.00±0.00 0.00±0.00 0.00±0.00 

Seep 3 17.19±2.89 2.18±0.41 0.58±0.02 N.R 

Cu µg/l 

 

Seep 1 48.52±16.21 28.31±2.04 39.23±11.73 81.42±21.19 

Seep 2  8.48±2.49 3.47±0.92 2.85±0.61 1.44±0.37* 

Seep 3 24.58±11.12 3.01±0.79 1.94±0.5* N.R 

Fe mg/l Seep 1 913.32±170.23 96.87±16.85* 670.15±289.76 205.83±76.54# 

Seep 2  327.42±53.91 61.15±10.27* 65.79±2.67* 0.00±0.00* 

Seep 3 395.29±77.6 42.92±15.15* 95.95±12.85* N.R 

K mg/l Seep 1 8.32±1.68 555.48±45.13* 156.91±43.92* 5546.39±131.27* 

Seep 2  254.96±18.65 446.62±41.31* 408.81±21.69* 327.97±14.73* 

Seep 3 51.57±2.42 151.84±21.42* 142.12±9.94* N.R 

Mg 
mg/l 

Seep 1 93.96±5.07 135.79±2.51* 159.31±6.54* 98.81±8.98 

Seep 2  261.17±1.73 198.12±12.67* 209.06±13.46* 124.05±5.09* 

Seep 3 231.68±0.92 140.76±14.93* 158.72±1.56* N.R 

Mn 
mg/l 

 

Seep 1 9.99±0.76 60.7±2.85 114.25±16.69 0.23±0.04 

Seep 2  68.9±2.61 17.97±2.98* 27.66±4.21* 0.17±0.01* 

Seep 3 45.49±1.75 18.18±7* 32.43±0.62* N.R 

Ni µg/l 

 

Seep 1 962.35±73.95 124.46±13.33* 501.59±176.86* 6.06±1.65* 

Seep 2  2425.22±248.02 22.03±2.79* 53.76±10* 11.06±0.29* 

Seep 3 2289.93±261.57 36.55±6.7* 76.06±6.44* N.R 

Pb µg/l Seep 1 0.54±0.2 0.83±0.57 0.79±0.35 161.05±89.51 
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 Seep 2  4.86±1.01 2.67±1.59 0.47±0.14* 0.8±0.32* 

Seep 3 5.69±1.03 1.09±0.34* 0.31±0.13* N.R 

Zn µg/l 

 

Seep 1 1182.15±133.4 415.46±43.32* 1128.03±342.36 26.76±1.57* 

Seep 2  1453.84±341.3 25.2±2.19* 50.12±12.78* 6.19±0.9* 

Seep 3 2420.86±471.37 27.39±2.48* 46.97±3.62* N.R 

≠ P value = 0.06, * P value < 0.05 (indicating significant difference from non-amended 

control), N.R. = not reported due to sample loss.  

5.4 Discussion 

5.4.1 Adsorption and desorption 

The first step in this study sought to determine the adsorption characteristics of Zn and Pb 

on WTRs, in the context of prior studies such as Chiang et al. (2012) and Hua et al. (2015) 

who had noted the potential utility and importance of WTRs in immobilising some metal 

contaminants. Successful immobilisation of potentially toxic elements in contaminated soil 

would limit their ecological impacts and thus addition of WTRs could be a cheap and 

effective way to ameliorate mining contaminated soils, therefore determining their 

sorption and retention capacity is important to assess this beneficial use. 

The maximum realised sorption under the conditions imposed in the experiment were 

4025 mg/kg and 3980 mg/kg for Pb on Al-WTRs and Fe-WTRs respectively while for Zn the 

maximum was 3579 mg/kg on each of Al-WTRs and Fe-WTRs. This did not reflect maximum 

potential sorption capacities (see theoretical sorption capacity calculations and related 

discussion below), but does provide definitive values of directly measured sorption that 

adds to the growing literature on WTR sorption (e.g. (Chiang et al., 2012, Zhou and Haynes, 

2011, Silvetti et al., 2015), all of which points toward strong Pb and Zn sorption. It is 

interesting that the Al-WTRs and the Fe-WTRs both performed equally at sorbing Zn, 
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whereas the study by Chiang et al. (2012) found that Fe-WTRs outperformed Al-WTRs in 

this regard. This might be due to other differences between the plants from where Chiang 

and partners obtained their WTRs, i.e. different raw water characteristics and/or different 

supporting electrolytes or levels of lime added during water treatment, which could have 

made a greater difference between their WTRs beyond just that created from Al vs Fe 

coagulants.   

The Zn adsorption isotherms (Figure 5-3) clearly indicated a high affinity of both WTR 

materials for this metal. However, although there was a very high adsorption efficiency 

across the entire range of concentrations imposed (always >93%,Table 5-3), there was a 

relative decrease in the adsorption efficiency at higher concentrations which, based on the 

Temkin model, might be attributed to  a process in which the heat of adsorption of all the 

molecules in the layer decreases linearly with increase in the coverage of WTRs surface due 

to adsorbent–adsorbate interactions (Bonilla-Petriciolet et al., 2017). It could also be simply 

due to, presumably, a decrease in the reaming available adsorbing sites as the amount of 

surface-bound Zn increases. It is also possible that a combination of these factors was at 

work. 

The shapes of the isotherms for adsorption of Zn onto both WTRs, as well as Pb onto Fe-

WTRs, are similar to the type I isotherm. This behaviour is similar to that of microporous 

materials with small width pores which prevents multilayer adsorption (Lowell et al., 2012), 

as this consequently limits the amount adsorbed. The nature of the pores within WTRs was 

examined in part by research done by Makris et al. (2004), who noticed that the carbon 

dioxide gas adsorption (232 picometers) was greater than that of N2 (370 picometers) 

suggesting steric restriction of N2 diffusion by narrow micropore openings. If WTRs typically 
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have micropores of this scale, steric restriction might be the reason that   multilayer 

adsorption is potentially prevented on WTRs because zinc hydrated ionic radius was 

calculated to be 430 picometers (Oter and Akcay, 2007) and lead hydrated Ionic radius was 

calculated to be 401 picometers, see Table 5-21 (Petrella et al., 2017).  

The shape of Pb adsorption isotherm onto Al-WTRs is similar to the Henry (linear) isotherm 

which is valid for low surface saturation coverages (Qe/Qm) (e.g. at (Qe/Qm)less than 0.1). 

This suggests that for Pb the Al-WTRs had a great reserve capacity for further adsorption. 

It is known that Pb has more affinity for organic matter than that of Zn, based on a typical 

affinity sequence of organic matter for metals (at pH 5) (McBride, 1989), however the 

organic matter (OM) contents of the two WTRs were similar (28% and 26% by mass) and 

so it seems unlikely any differences in the OM% can account for the different shaped 

isotherms. A chemical precipitation / fixation process might have been involved, as has 

been indicated in studies with rock surfaces employing scanning electron microscope with 

Energy Dispersive X-Ray Spectroscopy (Németh et al., 2016). It was noticed that heavy 

metals were precipitated (as hydroxide form) from test solutions on the surface of host 

rock minerals (calcite, volcanic glass) and within pores. Such a process may similarly happen 

on the surfaces of WTRs and the degree to which it occurs might be influenced by their 

constituents (i.e. Al-WTRs vs Fe-WTRs). However, as high adsorption was observed with 

both WTRs used in the present study it is possible that a chemical precipitation might 

contribute to the high removal of both Pb and Zn in the case of both WTR types in addition 

to the adsorption processes. In relation to that, it is worth noting that based on values of 

standard electrode potential E° for Pb and Al in an electrochemical series, reduction 

reactions of the Pb could possibly occur in the presence of Al. Such a process would result 
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in tight binding of Pb to the surface that would not be easily dislodged (i.e. strong 

retention).  

The experimental data for adsorption of Zn onto WTRs did fitt D-R model better than 

Langmuir model, and the experimental data for adsorption of Pb onto WTRs did not fit 

Langmuir model, therefore, the maximum adsorption capacity will be calculated based on 

D-R equation. As alluded to above, theoretical isotherm saturation capacity values were 

greater for Pb (viz. 2.82 mg/g on Fe-WTRs and 6.08 mg/g on Al-WTRs) than for Zn (2.34 and 

2.31 mg/g, respectively). Hydrated cationic radius for the metal ions play an important role 

in the adsorption capacity; for example, the radius of the hydrated ions can limit its passing 

to the pores of the adsorbent if it is bigger than the radius of pores. Oter and Akcay (2007) 

found that the adsorption capacity of Pb onto a Zeolite is greater than that of  Zn and they 

had attributed their findings to that Pb has the smaller hydrated cationic radius than 

hydrated cationic radius for Zn. If that was applied to the present study,  it may be that Pb 

can pass more easily through the pores of Al-WTRs than Zn and that might be part of the 

explanation for the higher adsorption maximum. Both WTR presumably are microporous 

material as were inferred form the adsorption isotherms of Zn into both WTR types. 

There might be another explanation linked to differences in surface areas, even though 

WTRs in general are considered to have high specific surface areas. For example, as 

Mohammed et al. (2016) found in a survey of WTRs from 14  plants in the UK,  the mean 

specific surface areas were 327.9 ± 115.50 m2/g and 184.8 ± 95.21 m2/g for Al-WTR and Fe-

WTR respectively. The specific surface area affects the number of binding sites (Segalini et 

al., 2012) and so the differences in the theoretical sorption capacity and the shape of the 

isotherm for Pb onto Al-WTRs might be linked to a higher specific surface area.  
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The maximum capacity determined from D-R Isotherm model in the present study were 

compared with those for Zn and Pb adsorption capacities of some other comparable 

adsorbents reported in the literature (see Table 5-20). It is interesting to note that Fe-WTR 

and Al-WTR have Qm values for Zn greater than that of chemically modified Pinus Pinaster 

bark, Chlorella minutissima, Carbon aerogel, Hazelnut shells, tannic acid immobilized 

activated carbon, Low rank Turkish coal, and sugar beat pulp, but Fe-WTR and Al-WTR have 

Qm values for Zn that were less than that of Low-grade phosphate and Fly ash. Al-WTR has 

Qm for Pb greater than that of Activated carbon and chemically modified Pinus Pinaster bark 

and Fe-WTR has Qm for Pb greater than that of chemically modified Pinus Pinaster bark. 

Both Al-WTR and Fe-WTR have Qm for Pb less than that of Goethite, Hematite, and Chlorella 

minutissima. These comparisons reveal the potential of WTRs for environmental 

applications because the WTRs are in great abundance and have adsorption capacities 

better than some renewable materials such as pine bark and have values approaching 

those (if slightly lower) of important finite geological resources such as goethite which 

require much extraction and processing.  

Table 5-20: The maximum monolayer coverage capacity (mg/g) for Zn using Langmuir Isotherm 
model for this study in compared with that of others in the literatures. Qm calculated using Langmuir 
Isotherm; 1/n calculated using Freundlich isotherm model. 

Sorbent material Reference Zn  Pb 

Qm 1/n Qm 1/n 

Low-grade phosphate (Kandah, 2004) 10.32 0.57   

Sugar beat pulp  (Pehlivan et al., 
2006) 

0.18 0.99 

 

  

Fly ash (Pehlivan et al., 
2006) 

11.11 0.94   
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Low rank Turkish coal (Karabulut et al., 
2000) 

1.66    

Tannic acid immobilized 
activated carbon 

(Üçer et al., 2006) 1.23 0.36   

Hazelnut shells (Cimino et al., 2000) 1.78 0.52   

Carbon aerogel (Meena et al., 2005) 1.18 0.67   

Activated carbon (Teles de 
Vasconcelos and 
Gonzalez Beca, 
1994) 

- - 2.95 - 

Chlorella minutissima (Roy et al., 1993) 0.78  9.74  

Goethite (McKenzie, 1980)   10.57  

Hematite (McKenzie, 1980)   11.19  

Rice hulls (Roy et al., 1993)   11.4  

Chemically modified Pinus 
Pinaster bark 

(Vazquez et al., 
1994) 

1.18 0.58 1.59 0.27 

Fe-WTR This study 2.34*  2.82*  

Al-WTR This study 2.31*  6.08*  

*calculated using D-R Isotherm. 

Generally, adsorption is accompanied by a decrease in the residual forces of the surface 

onto which something is being adsorbed. This implies that some energy is released when 

the adsorbate bonds to the surface and that the change in enthalpy is negative for each 

adsorption process. The degree of freedom of the adsorbate decreases upon adsorption 

which means that the change in the entropy is also negative for the process. It is known 

that for any thermodynamic process to be spontaneous the Gibbs free energy must be 

negative: ΔG=ΔH-TΔS. The value of ΔG can be negative if ΔH is sufficiently negative since –

TΔS is positive for the adsorption process (Dada et al., 2012, Yildirim, 2006). Bearing this in 

mind, using the Temkin model (which was the best fitting model for adsorption of Zn onto 
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both WTRs as well as for Pb onto Fe-WTRs), the Free energy of the process can be 

calculated. That is, applying the Temkin adsorption constant in the classical Van’t Hoff 

equation can calculate standard Gibbs free energy for the process. Standard Gibbs free 

energy values for adsorption of Zn onto Fe-WTR and Al-WTR were -13.24 and -13.11, 

respectively, while for adsorption of Pb onto Fe-WTR and Al-WTR were -17.56 and -15.67, 

respectively. Generally, the ΔG (NOT ΔG°) value of physisorption is in the range of 0 to −20 

kJ/mol (Húmpola et al., 2013) and this does not necessarily indicate that the processes are 

physiosorption because the calculated values represent standard Gibbs free energy value 

not the Gibbs free energy, see Equation 5-7 to Equation 5-9. These findings also indicate 

that the processes were spontaneous and the processes were thermodynamically 

favourable. 

ΔG =  ΔG° + RT ∗ ln(𝑋) Equation 5-7 

 

ΔG = −RT ∗ ln(𝐾𝑒𝑞) + 𝑅𝑇 ∗ ln(𝑋) Equation 5-8 

 

ΔG =  RT ∗ ln(𝑋/𝐾𝑒𝑞) Equation 5-9 

Where X refers to mass action quotient (the values of products and reactants that are 

present before the adsorption reaction) before equilibrium has been reached. 

The removal efficiency (% adsorption) of the competitive adsorption of Zn-Pb ions test (as 

was presented in Table 5-7) demonstrated that the Pb ions presented a higher affinity for 

the cationic binding sites of the Al-WTR and Fe-WTR than that for Zn ions. The difference 
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in adsorption percentages was not a big difference but nevertheless it might be related to 

the metal ions’ properties. For example, difference in electronegativity, free energy of 

hydration and hydrated radii of the metal ions, the differences between which were 

discussed above, might be responsible for the small difference in selectivity observed in 

this study, see Table 5-21. For example, Üçer et al., (2006) observed a difference in 

adsorption of Cu2+ compared with that for Cd2+ on tannic acid activated carbon and they 

attributed those findings to the difference in electronegativity of the metal ions. Lo et al. 

(2012) found a similar trend for adsorption of Cu and Cd onto bamboo activated carbon. 

 

Table 5-21: Data on ionic radii, hydrated radii, hydration energy and electronegativity. 

Metal Ionic radius  

(Pecometer)a 

Hydrated 
radius  

(Pecometer)b 

Hydration 
energy 

(kJ/mol) 

Electronegativity 

Pb2+ 119 405 -1481 2.33 

Zn2+ 74 430 -2046 1.65 

Ca 106 348 -1577 1.00 

a From (Shannon, 1976). b From (Nightingale Jr, 1959). c From (Lide, 2016). 

It may be that the ions with the greatest charge density (ratio of charge to ionic radius) or 

the most electronegative is first adsorbed and if there are still available sites, then the lower 

charge density or lower electronegative ion is adsorbed in sequence. The order of the 

electronegativity for the studied metal ions was Pb(2.33)> Zn(1.65), see Table 5-21, and this 

might also be part of the reason for the adsorption of the Pb being more than that for Zn. 

Allen and Brown (2000) thought that the competition of metal ions were a function of one 

or all of the following parameters: electronegativity, ionic radii and hydration capacity. 
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When a hydrated ion is subjected to electrostatic interactions, the rate of the solvent 

exchange between the hydration shells of an ion and the bulk of the water is determined 

by two factors. They are the ligand field stabilization and the electric field of the ion. The 

electric field is the charge density around the ion which is the ratio of the charge of the ion 

to its radius. The electric field determines the rate of the solvent exchange in a way that 

the larger the field strength, the slower the exchange (Marcus, 1988, Burgess, 1999). Based 

on the data in Table 5-21 the charge density around Zn2+ is greater than that around Pb2+, 

therefore, the exchange of solvent (H2O) around Pb is faster than that along to Zn, and this 

is another potential explanatory factor for the adsorption of the Pb being slightly more than 

that for Zn. 

Desorption of Pb and Zn  

As alluded to previously in chapter 1, metal cations contact with adsorbent surface sites 

either through an electrostatic bond of low energy called outer-sphere complex or through 

a stronger ionic or covalent bond directly with a surface functional group energy called 

inner-sphere complex. The latter can be monodentate when a ligand e.g. oxygen on the 

surface donate a single pair of electrons to a metal atom and can be bidentate when two 

ligands on the surface are bound to the metal (Sparks, 2003). Quantitatively important 

inner sphere complexes have been directly noticed for adsorption of Pb to Al, Fe and Mn 

(hydr)oxides as well as for Zn to Al, Fe and Mn (hydr)oxides in the literature, as shown in 

Table 5-22. Therefore, the very low percentages of desorption (CaCl2-extractable) observed 

might be attributed to the formation of inner-sphere Zn and Pb complexes that tightly bind 

them.  
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In the presence of a ligand such as SO4
2-, CO3

2-, can occur in which the ligand is between 

the surface functional group and the metal, acting as a bridge in a so-called ternary 

complex. When this occurs the solubility of metals and ligand drop below those expected 

from either adsorption or precipitation alone (Roberts et al., 2005), thus the ligands present 

in the WTRs would also enhance the sorption and retention. Adsorption of Pb onto 

Goethite in presence of SO4
2– at pH 3–7 were researched by Ostergren et al. (2000) (2000a). 

Based on X-ray absorption fine structure (XAFS), Attenuated total reflection Fourier-

transform infrared (ATR-FTIR) data, they found inner-sphere bidentate binding due to 

ternary complex formation. Such a process may similarly happen here and might be a 

reason for very low percentages of desorption (CaCl2-extractable). 

Inner-sphere bidentate was noticed Zn to Alumina powders as well as mixed metal–Al 

hydroxide surface precipitates were observed at 7–8.2 using XAFS (Trainor et al., 2000). 

Such a process may similarly happen here and might be a reason for very low percentages 

of desorption (CaCl2-extractable). 

Table 5-22: Mechanisms of Pb and Zn adsorption to Al, Fe and Mn (hydr)oxides 

Metal-Adsorbent Adsorbent mechanism PH Analytical 
techniques. 

Reference 

Pb to γ-Al2O3  Inner-sphere 
monodentate 
mononuclear 

6 XAFS (Chisholm-
Brause et al., 
1990) 

Pb to γ-Al2O3 Inner sphere bidenate, 
Surface polymers 

6.5 XAFS (Strawn et al., 
1998) 

Pb to Al2O3 
powders  

  

Inner-sphere 
bidentate 
mononuclear and 
Dimeric surface 
complexes 

6 and 7 XAFS (Bargar et al., 
1997a) 
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Pb to Goethite 
and hematite  

Inner-sphere 
bidentate  

6–8 XAFS (Bargar et al., 
1997b) 

Pb to Goethite  Inner-sphere Variable XAFS (Roe et al., 
1991)) 

Pb to Ferrihydrite  Inner-sphere 
bidentate 

5 XAFS (Scheinost et 
al., 2001) 

Pb to Birnessite  Inner-sphere 
mononuclear 

3.5 XAFS (Matocha et 
al., 2001) 

Pb to Manganite  

 

Inner-sphere 
mononuclear 

6.7 XAFS Matocha et al. 
(2001) 

Pb to 
Montmorillonite 

Inner-sphere  6.77 XAFS Matocha et al. 
(2001) 

Zn to Alumina 
powders  

 

Inner-sphere 
bidentate 

Mixed metal–Al 
hydroxide 

surface precipitates 

7–8.2 XAFS (Trainor et al., 
2000)  

Zn to Manganite -  

 

Multinuclear hydroxo 
complexes or Zn-
hydroxide phases 

6.17–
9.87 

XAFS (Bochatay and 
Persson, 
2000) 

Zn to Al, Fe and 
Mn (hydr)oxides 
oxides 

Inner-sphere 
adsorption complexes 

3.2 XAFS, 

 XRD and 

 EM 

(Roberts et 
al., 2002) 

Zn to Al2O3 inner-sphere mode 
(mononuclear 
bidentate complexes ) 
to edges of AlO6 
octahedra 

6 and 7 XAFS (Bargar et al., 
1997a)  

 

5.4.2 Effects of WTR addition on soil characteristics 

Addition of the WTR amendments resulted in negligible or marginal differences in total 

organic matter (OM) content of the tested soils as determined by loss on ignition (LOI). 
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However, the LOI method does not indicate the ecological importance of the OM 

determined and does not distinguish ecologically active OM from combustible materials 

left behind from a coal mining history. Therefore, total OM is not the only consideration, 

for example, humic acids can immobilise Cr, Pb, Cd, and Cu by binding them (Alvarenga et 

al., 2009, O'Dell et al., 2007, Song and Greenway, 2004, Walker et al., 2004) while other 

organic forms may mobilise them. Therefore, alteration of the distribution and availability 

of metal(loid)s in soil can result from addition of organic amendments directly or indirectly. 

This can depend on the type of soil, metal(loid) or on amendment properties e.g pH, CEC, 

EC, and moisture content (Walker et al., 2004, Bernal et al., 2007, Shuman, 1999). 

In this study the WTRs raised soil pH by 0.5 to >2 units. The liming effect of Al-WTRs were 

different from that of Fe-WTRs and this might be related to some chemical properties such 

as bicarbonate concentration, hydroxide content, surface reactivity and cation exchange 

capacity. The soil pH neutralizing capacity of Al-WTR and also Fe-WTR were different in 

each of the seep soils, which can be attributed to differing buffering capacities of the seep 

soils but might also reflect variation in the buffering capacity of WTRs themselves, as 

Howells et al. (2018) found. Heil and Barbarick (1989) found that neutralizing capacity of 

Fe-WTR was different from that of Al-WTR as well as their effectiveness as liming agent 

were different within different soils. The soil’s ability to resist the change in pH (soil 

buffering capacities) is the key factor. This finding is corroborated by that of Van Rensburg 

and Morgenthal (2003) in which WTRs were effectively utilised as a neutralizing agent for 

acid-generating mine waste. 
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5.4.3 Plant yield and element concentrations 

The premise of this part of the study was that WTRs have the ability to be an adsorbent for 

some chemical components present in contaminated soil that can have a stressing effect 

on the plants, and also that WTR addition could raise pH in acidic soils. The WTRs indeed 

raised soil pH, consequently increasing the phytoavailability of certain essential 

macronutrients (Üçer et al., 2006) as well as decreasing the bioavailable amounts of 

potentially toxic elements such as Al (see Table 5-13). All amendments raised plant yields, 

with a fair degree of consistency. Interestingly, the yields in the non-treated control 

samples were higher in the second trial (after wet/dry cycle) than in the first, raising the 

possibility that the wet/dry step may have leached out some contaminant or acidic 

components and made the seep soils more acceptable for plant growth. Such a process has 

itself been used in some commercial remediation efforts, where it is referred to as soil 

washing. This is more widely done for soils contaminated with industrial solvents, 

petroleum products and other organic chemicals rather than for soils contaminated with 

metals, and it involves using water and various additives (depending on the main 

contaminants present) to scrub excavated soil and replace it after washing and sieving, 

often with removal of the fine fraction where much of the contaminants are retained.  Of 

course, this remediation strategy requires soil excavation and treatment and so is very 

expensive, and the removal of the fine fraction can also change the texture of the soil which 

may limit some future uses. It also leaves the removed, contaminated fine fraction as a 

waste material which then requires secure disposal. These aspects limit its appeal as a 

remediation method. A good review of cases where metal contaminated soils were treated 

with soil washing was presented by Dermont et al. (2008).    
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A mining soil remediation trial was carried out by Alvarenga et al. (2009) using sewage 

sludge, municipal solid waste compost and garden waste compost on a very comparable, 

highly acidic, pH 3.7-4.1, sandy loam soil. A comparison of the plant growth increases 

observed in the present study, as shown in Table 5-12, with those reported in Alvarenga et 

al. (2009), Table 5-23, indicates that the WTRs achieved better plant yield increases than 

that by sewage sludge and garden waste compost in all sites except at seep 2, while plant 

growth percentage increase reached using municipal solid waste compost was greater in 

that study compared to that reached by WTRs in the present study except for plant growth 

achieved using Fe-WTR at seep 1, which was the same as that using municipal solid waste 

compost. This indicates that WTRs are equally as good as, and in some cases even more 

effective than, these other readily available recovered wastes/resources in terms of 

restoring soils to a condition where plant growth is possible and is enhanced.  

Table 5-23: Relative growth (% relative to control) in the literature for similar mining soil 
remediation trials using sewage sludge, municipal solid waste compost and garden waste compost 
(Alvarenga et al., 2009). 

Organic amendment  Relative growth (%) 

10% (100 Mg/ ha) of sewage sludge 118±7a 

10% (100 Mg/ ha) of municipal solid waste compost 238±49cd 

10% (100 Mg/ ha) of garden waste compost 158±13ab 

 

Increases in the plant yields are likely to mean that there is an increase in the amounts of 

C, H, N and O, as these elements constitute about 99% of the total composition of plants 

(Prasad, 2013). It is useful to compare the measured concentration of elements in the 
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tested plants with the concentrations generally considered to be at a deficient level and at 

a toxic level for Perennial ryegrass (Lolium perenne) (Reuter and Robinson, 1997).  

The critical value of P for Ryegrass is 0.34 %w/w, and all treatments and non-amended 

controls had P concentrations above this hence P deficiency would not likely have been a 

problem in any of the plants. It was noteworthy that all amendments increased P in seep 1 

and seep 3 plants (e.g. from 0.8% to 1.14% w/w for Al-WTRs in seep 1; Table 5-13), but all 

amendments decreased P in seep 2 plants (e.g. from 0.97% to 0.72% w/w for Fe-WTRs). In 

the second trial, after wetting/drying, a similar result was obtained in that P was only 

decreased (and only by a small amount) in the seep 2 treated soils. This decrease in seep 2 

plant P is in agreement with what has been reported on occasions (and what has sometimes 

been the main aim in some situations) following application of WTRs, i.e. to immobilise 

excess P in soils by ligand exchange mechanisms (Makris et al., 2004). This immobilisation 

has caused excessive restriction of P availability in some studies (e.g.(Elliott and Dempsey, 

1991, Lucas et al., 1994, Lombi et al., 2010), but has not been observed universally. This 

inconsistency of effect on soil P is likely intertwined with the effects WTRs have on soil pH, 

because altering soil pH itself has an impact on P availability with maximum plant available 

P usually occurring within the pH range of ~6.3-7.5 (Weil, 2016). Added to this, the 

chemistry of mining-affected soil might be different from that which have been studied 

previously (i.e. mostly agricultural soils) and therefore the increase in the P assimilation 

noticed at seep 1 and 3 might be related to other aspects associated with mining soils. 

There is a need for further examination of the P assimilation in plants grown in mining-

affected soil. 
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At all seeps and in both the first and second plant trial, K uptakes in amended groups were 

higher than that in non-amended soils. This is important because K is a key plant nutrient 

vital for many aspects of plant physiology. Even so, despite the increase, plants in seep 1 

still had K levels within the deficiency range of less than 1.7% w/w (Reuter and Robinson, 

1997). For seep 3, all amendments resulted in plants moving from within the K deficiency 

range into the K sufficient range, while all seep 2 plants were also in the sufficient range 

(including controls). Ca uptake in all amended groups in the first trial and all amended 

groups except seep 3 lime treated soil in the second trial was  higher than that in non-

amended groups; this might be attributed to increases in the Ca phytoavailability as a result 

of enhancing soil pH. Lower than 0.2 % of Ca is reported as deficient value, thus Ca 

deficiency effects might occur in non-amended seep 1 soil. Ca is not considered to have a 

directly toxic effect on plants so the considerable amounts of Ca often present in WTRs 

should note pose any risks of toxicity. 

The deficiency range for Mg in grass tissues is considered to be anything below 0.13% w/w 

(Reuter and Robinson, 1997), a value above which all plants had in the trials (including non-

amended controls). For the first plant trial, WTR amendments increased plant Mg further 

into the sufficient range for all seeps, while lime only resulted in an increase for seep 1 

plants and to a decrease in seep 2 plants. This would seem to indicate that the WTRs 

provide some plant available Mg that is not present in the lime. The second trial had a more 

variable pattern, but differences were rather minor. 

Sulphur uptakes in Al-WTR amended groups were higher than that at non-amended groups. 

A ligand exchange between SO4 2- and OH- has been detailed when hydration of Al-WTR 

occurs, see Equation 5-10 (Upadhyayula et al., 2009). This might be the reason for 
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increasing of S assimilation as due to increasing the S phytoavailable level of the element. 

In contrast, S uptakes in Fe-WTR amended groups were lower than that at non-amended 

groups. Adsorption of sulphide on Fe-WTR has been expected to occur due to ligand 

exchange and oxidization mechanisms (Wang and Pei, 2012). Lower than 0.22% w/w of S is 

reported as deficient value for ryegrass (Reuter and Robinson, 1997), so even with the 

variable effects on S concentrations observed an S deficiency effect is not likely. 

≡ 𝐴𝑙)2 − 𝑆𝑂4 + 2𝐻𝑂 − 𝐻 ⇌ 2 ≡ 𝐴𝑙 − 𝑂𝐻 + 𝑆𝑂4
2− + 2𝐻+ Equation 5-10 

The Cu concentration in plant tissues generally increased by a modest amount in all 

treatments and seeps in the first plant trial, and in the second trial a similar patter emerged 

except that increases were not observed for seep 2 in the Al-WTRs and lime treatments. 

An increase in plant Cu being observed across all treatments and not just with WTRs is 

potentially indicative of the increase being partly associated with the pH increase in the 

soils following application of the amendments because, although Cu2+ ions are more mobile 

at lower pH (Cavallaro and McBride, 1980, Sauvé et al., 1997), it is known that organic 

matter induced mobilisation of Cu is maximised at more neutral pH. However, a number of 

the samples showed greater increases in plant Cu following WTR treatments than lime 

treatments, which suggests that the WTRs might act as a source of this micronutrient. 

Shahin et al. (2019) have studied adsorption of copper ions onto WTRs and related 

processes and they suggested that Cu associated with low molecular weight organic 

components can be released during decay of biota residues in WTRs and so that process 

may greatly increase the availability of Cu to plants. This supports the idea that WTRs might 

be a source of Cu micronutrient and may give part of the reason for the increase of Cu 

assimilation at the amended groups. It should be noted that greater than 21 mg/kg of Cu is 
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reported as being the toxic threshold value for ryegrass (Reuter and Robinson, 1997), so 

even with the increases observed in the treatments Cu toxicity is not likely to arise when 

WTRs are used to treat soils in this way. 

At all seeps in the first plant trial, Fe uptake in amended groups was less than that in non-

amended soils, this suggests that the soil pH governs the Fe mobility, however, plant 

metabolism controls on Fe uptake might be also a reason for the decrease (i.e. healthier 

plants can better regulate their Fe uptake). The second trial had a little variable pattern, 

but differences were rather minor. Importantly, lower than 40 mg/kg of Fe is reported as a 

deficient value and so it is not likely that the decreases in plant Fe observed here pose any 

risk of Fe deficiency (Reuter and Robinson, 1997). 

Mn uptake increased for seep 1 plants in both trials amended with both WTRs. This would 

seem to indicate that the WTRs provide some plant available Mn. Variable patterns were 

observed in seep 2 and 3 in both trials. This inconsistency of effect on Mn is likely 

intertwined with interactions between Mn and other trace metals, for examples, 

antagonism interaction between Mn and iron (Alvarez-Tinaut et al., 1980), and antagonism 

between Mn and Ca, K, Mg, Na, N, and P (Kabata-Pendias, 2010). Added to this, other 

factors such as redox processes (Marschner, 1988) and interactions between roots and 

microorganisms (Marschner and Rengel, 2005) might also impact Mn phytoavailability. 

Greater than 1110 mg/kg of Mn is toxic value, which is much higher than the concentrations 

observed here, so Mn toxicity is not expected in these soils following WTRs application. 

In the first trial, Zn assimilations in all amendments soils were decreased in all soils, this 

was expected as a result of decreasing the Zn availability due to enhancing the soil pH and 

also to the ability of WTR to adsorb Zn. Interestingly, Zn uptake in nonamended soils 
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samples was decreased in the second trial (after wet/dry cycle) compared with that in the 

first trial, raising the possibility that the wet/dry step may have leached out Zn from the 

control soils. A similar trend for Zn assimilations was observed in lime amended treatments 

in the second trial (after wet/dry cycle). While, in the second trial, Zn assimilations were 

increased in most WTRs amended soil, this suggests that WTRs contain Zn which would be 

available as a result of wet/dry cycle. Lower than 10 mg/kg of Zn is reported as deficient 

value, therefore, Zn deficiency effect is not likely in the cases of decreasing Zn content to 

the levels observed here.  Metabolic and/or nonmetabolic process within plants, which are 

affected by plant health status, might also contribute to increases (or decreases) in uptake 

because that process can moderate and control Zn uptake. There is a need for further 

examination the impact of the wet/dry cycle on the Zn assimilation. 

The Pb concentration in plant tissues is shown in Table 5-13. The significant decreasing in 

Pb assimilation (by applying Al-WTR in seep 1 and 3 and by applying Fe-WTR in seep 1) were 

expected because the high affinity of Al-WTR and Fe-WTR for adsorption of Pb, as shown 

in adsorption percentage values in Table 5-7. Binding Pb to the oxyhydroxide or organic 

components in WTRs might contribute in decreasing the phytoavailable concentration of 

Pb which consequently could decrease the Pb plant uptake. 

There was not significant difference in Cr uptake in seeps 1 and 2, while, Cr uptake 

decreased  in seeps 3 which might be attributed to an ability of WTRs to adsorb Cr  

(Mohammed et al., 2016). Added to this, Wang et al. (2014) found that the Cr leachability 

from WTR was less than 0.01 mg/l in pH greater than 4. 

In both trials, there were significant decreases in arsenic assimilation following Al-WTR 

addition, Fe-WTR addition and lime addition in seep 3,  in agreement with a previously 
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published study (Sarkar et al., 2007). That study demonstrated the effectiveness of WTRs 

in immobilizing As in As-contaminated soils. The differences were not significant in seep 1 

and 2 in all amendments in the first trial, however, after the wet/dry process, the decreases 

were significant in all seeps in all amendments. This suggests that the wet/dry process 

might be the reason for that, perhaps through exposing fresh surfaces on the WTRs or the 

lime that could better sorb As. 

In both trials, the observed decrease in Ni assimilation in all soils which were amended with 

WTRs might be attributed to immobilised Ni through adsorption onto WTRs, as has been 

detailed by Chiang et al (2012). Enhancing the soil pH would seem the reason for decrease 

Ni assimilation in lime amended soils in both trials, Table 5-13. Ma et al. (2013) found that 

increased soil pH lead to increases in the rate and extent of aging reactions of Ni in soil 

consequently decreasing Ni availability to plants. This might also partly explain decreases 

in the Ni uptake after wet/dry cycle. 

5.4.4 Earthworm survival and element uptake 

Survival of earthworms in non-amended control soils was zero in all seeps across both trials 

(pre- and post-wetting/drying cycle), with the exception of 13% survival in seep 2 control 

soil in the second test. This shows that the seep soils were very hostile to earthworms, with 

the low pH (~3.3-3.8) and likely associated Al toxicity being an important factor. Other 

studies have shown that Eisenia fetida can survive at pH 4 and are content at pH 5 if other 

soil factors are favourable (Spurgeon and Hopkin, 1996, Dominguez and Edwards, 2011), 

but here the soil was too acidic without amendment. It may also be that the soil had toxic 

components that needed neutralisation for earthworms to survive. The amendments, in 

general, greatly increased survival and this is likely to be primarily linked to the pH increase 
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they brought about. A similar finding was reported previously for acidic forest soils (Homan 

et al., 2016) in which soils at pH 3.1 had zero survival of species Lumbricus terrestris in 

laboratory tests but when the pH was raised with lime an increase in survival was achieved 

even with a modest increase to pH 3.7. The same study also reported field observations 

that included zero earthworms in the soil at pH 3.6 but an abundance of them in areas that 

had been limed so that the soil pH had reached 4.4. One investigation that examined 

remediation of Zn-Pb smelter contaminated soil found that only when biosolid 

amendments were mixed with lime did earthworm survival occur (100% mortality in non-

amended and biosolids only amended soil, but <10% mortality in biosolids+lime amended 

soil; (Conder et al., 2001). This illustrates the importance of pH and liming effect (either 

from lime or with amendments that have liming capacity). However, in the present study, 

despite good improvements in survival in treated seep 1 soil in the first trial, all seep 1 soils 

in the post wet/dry cycle test had zero survival. This raises the possibility that, with the 

chance of experimental artefacts or errors aside, the wet/dry cycle (and possibly the re-

grinding that followed), triggered the release of a toxic component in this seep soil and/or 

otherwise altered the conditions rendering them too hostile again for the earthworms. It 

is unlikely that the amendments caused the toxicity because it was not observed in the 

other seep soils and it has been shown that E. fetida are not affected by WTR application 

even at up to 20% w/w addition (Howells et al., 2018) .  

The treatments enabled earthworm survival in most cases and the water contents of the 

surviving earthworms closely approximated the 82% ± 7.7% that Hartenstein et al. (1980)  

identified as typical for the E. fetida species. This suggests that the treatments not only 



275 
 

facilitated survival, but also allowed the earthworms to be in a healthy condition in terms 

of moisture retention. 

Element contents of earthworms were highly variable between treatments, trials and, in 

some instances, amongst replicates. This makes interpretation challenging, as does the 

100% mortality in the non-treated seep soils which prevents evaluation of whether the 

treatments reduced the assimilation of potentially toxic elements (i.e. with no values for 

non-treated seep soils there is no baseline to compare with). However, concentrations 

observed can be evaluated using the wider literature. The Al concentrations determined in 

the surviving earthworms in the first trial in the present study were, in all cases except one, 

at or below 437 mg/kg, which was the concentration reported by Hartenstein et al. (1980)  

for E. fetida maintained in uncontaminated soils (the exception having been seep 2 soil 

treated with Al-WTRs, which had a mean Al concentration of 603 ± 181 mg/kg). The second 

trial, following the wet/dry cycle, generated higher earthworm Al concentrations in the Al-

WTR and the Fe-WTR treatments (~500 – 1330 mg/kg; Table 5-18), suggesting that the 

wet/dry and re-grinding process may have brought more Al into the bioavailable pool. 

However, although these values are above those reported as typical by Hartenstein et al. 

(1980) , even these values are below the ~1600 mg/kg value reported by Zhang et 

al.(2013a) for E. fetida maintained in a clean garden soil (a latosol) with a comparable pH 

of 4.3. This would indicate that the Al concentrations observed here in the treated soils 

were not too far removed from what might be expected in a normal soil with low pH.  

The greatest As concentration observed was ~11 µg/kg, having occurred in the first trial in 

earthworms from the seep 2 soil amended with Al-WTRs, however even this value is much 

lower than the 35 - 40 mg/kg reported as the level at which cocoon production was 
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decreased by 10% in E. fetida (Bustos et al., 2015). The As concentrations in the present 

study are also all lower than those reported for E. fetida earthworms subjected to 

experiments using contaminated soils from an old gas works (viz. ~20 mg/kg; (Gomez-Eyles 

et al., 2011). It would therefore seem that As is not at high toxicity levels in the surviving 

earthworms from the treated soils of the present study. 

For Cu, there was variation from near zero to 40 µg/kg in the first experiment but little 

evident pattern. In the second (post wetting/drying) experiment the earthworm tissues had 

generally lower Cu levels but again there was no clear pattern. The concentrations were 

within or below the typical Cu concentrations reported for compost-bred Eisenia fetida (i.e. 

22 – 812 mg/kg; Gunya et al. (2016) and therefore no toxicity from Cu is likely to have 

occurred. The Fe concentrations in earthworm tissues varied very widely, across 

treatments and across seep soils. Concentrations were equally high in lime and Fe-WTR 

treatments in the first experiment (up to 10000 mg/kg and 8600 mg/kg, respectively), but 

differed in the second experiment where the highest concentrations were noted in the Fe-

WTR treatment (19534 mg/kg for seep 2 soil). The concentrations in earthworms from all 

treatments were high compared to typical Fe values reported elsewhere for clean soils or 

composts (i.e. <1500 mg/kg; Gunya et al. (2016); Hartenstein et al. (1980), but it is difficult 

to determine whether the measured body burdens would have any negative effects and 

therefore this could be a direction for future research. The Mg, Mn, Ni and Pb 

concentrations were all within typical ranges observed in earthworms from clean 

environments (Langdon et al., 2005, Howells et al., 2018, Gunya et al., 2016), with e.g. 

typical Pb concentrations reported at up to 16.4 mg/kg for a related Eseinia species 

(Langdon et al., 2005). This indicates that the treatments did not facilitate assimilation of 
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these metals to unusual or dangerous levels.  The concentrations of Zn, where measured, 

were also consistent with values reported for control soils (e.g. 80 mg/kg; Howells et al 

2018) and thus excessive Zn uptake was not a problem experienced by the earthworms.   

The earthworm results were useful and allow evaluation of general earthworm and wider 

ecosystem health if these amendments were used for remediation of mining impacted 

soils, but the wide variability across the results do limit how definitive conclusions can be. 

This possibly reflects the variability of element uptake generally for earthworms and may 

indicate effects of other factor on the elements uptake in earthworms such as their 

digestion of soil and the effectiveness of depuration. It is also important that future studies 

examine metal uptake on earthworms using more replicates which can help in the power 

of statistical tests. 

5.4.5 Simulated soil solutions  

The premise of this part of the study was to examine the idea that WTRs have the ability to 

be an adsorbent for some chemical components present in the solution of contaminated 

soil and also that WTR addition could raise pH in acidic soils which in turn would modify 

(and generally decrease) the solubility of some elements. Together these processes would 

lead to reduced mobility and bioavailability for contaminants and therefore to 

improvements in the soil environment for biota. All treatments greatly reduced the soil 

solution Al concentration, often by orders of magnitude, and this was likely due to the 

increases in pH the amendments brought about. These decreases also matched up with the 

decreases in plant tissue Al observed in the treated seep soils, indicating that the 

amendments did reduce both mobility and bioavailability as was the aim. The soil solution 

Al concentrations observed in the untreated seeps was highest (154 mg/l) in seep 1, with 
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the values being similar to those observed in the subsoil of acid sulphate soils (pH 3.8 – 4.2) 

in Finland (e.g. 113 – 159 mg/l; Virtanen et al. (2014). The successful reduction of the Al 

concentrations observed following treatment, particularly with Fe-WTRs, might suggest 

that acid sulphate soils remediation measures could also benefit from incorporating 

addition of Fe-WTRs.        

Reduced root length effects for Lolium perenne (ryegrass) were observed by Hackett (1965) 

at 25 mg/l of Al solution at pH 3.5. Pavan and Bingham (1982) observed slight injuries on 

roots of coffee plants at Al concentration in solution of 1 mg/l, and what they termed 

medium or severe injuries at a concentration of 4 mg/l. Comparing the Al concentrations 

in the soil solutions of the untreated seep soils here (i.e. ~3.4 mg/l to 154 mg/l) with those 

levels determined by Pavan and Bingham would therefore lead to a conclusion that injuries 

to plant roots would likely occur to some degree in all the seeps (confirming the plant yield 

results discussed above) whereas seep 2 and 3 soils, once treated, would have Al 

concentrations in their soil solutions that were below the level causing injury. While seep 

1 soil did have a drastic reduction in soil solution Al concentrations following all types of 

treatment imposed, the levels appear to still be near to or above those that could start to 

cause plant root injury. This suggests that the treatments were only partially successful in 

seep 1 soil in relation to completely lowering the Al in the soil solution to ecologically 

unimportant levels. 

One estimate for an average natural abundance of As in soil solution is 0.75 µg/l (Wolt, 

1994), while concentrations reported to cause a 10% inhibition (EC10) in growth of 

cucumber (Cucumis sativa) ranged 2.2 µg/l to 697 µg/l across a selection of soils from 

Australia (Lamb et al., 2016). An example of increased arsenic in pore water of arsenic-
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contaminated soil is 430 μg/l from land impacted by mining activities at Mina Mónica 

(Madrid, Spain) (Beesley et al., 2013). In some cases, despite high total concentrations of 

As (131–202 mg/kg), pore water concentrations of As remained close to the limit of 

detection (ICP-MS) (Moreno-Jimenez et al., 2011), showing that other soil factors affect As 

mobility. Applications of Fe-WTRs (2.5% w/w) were found to decrease As in the porewaters 

of an As contaminated soil in Denmark (Nielsen et al., 2011), however, in the present study, 

concentrations were only reduced by the treatments in seep 2 and were actually increased 

in seep 1 (from 2.9 µg/l to 12.2 µg/l). A similar increase in porewater As was reported for 

soils amended with biochar, with the effect attributed to mobilisation by increases in 

dissolved organic carbon and pH (Beesley et al., 2010). Because As occurs as an oxyanion 

in the porewater environment (i.e. typically as arsenate or arsenite), its solubility can 

increase when the pH is brought up from acidic conditions to more neutral conditions as 

was the case when the treatments were added. Desorption (mobilisation) of arsenic can 

also occur in the presence of nutrient anions such as PO4
2-,CO3

2-,SO4
2-and Cl- (Violante et 

al., 2008), because of competition for binding places and displacement, so a similar case 

might be in effect here as the treatments can contribute nutrients to the soil. Nevertheless, 

the porewater As concentrations observed in the treated soils were very much at the lower 

end of the EC10 thresholds noted by Lamb et al. (2016).     

The increases in Ca in all treatments in all seeps suggest that the amendments provide Ca 

to the soil. The increases were within typical Ca levels in soil solution in acid soils which 

have been reported to range from 15.2 to 372 mg/l (Kamprath, 1978). The increase in 

element Ca in the soil solution has a corresponding increase in element Ca in the plants in 

all seeps in both trials. 



280 
 

The increase in Mg in both WTR treatments in seep 1 suggests that the WTR amendments 

can provide or release soluble Mg to the soil. Contrastingly, decreases in soil solution Mg 

were noted in all treatments in seep 2 and 3, showing that the effects on Mg are variable. 

Differences in the chemistry of seep 2 and 3 soils from seep 1 soil might led to Mg fixation 

, for example,   formation of Mg-silicates, immobilization of Mg in the interlayer of 

aluminous chlorites (Gransee and Fuhrs, 2013). Plant available Mg concentrations in the 

soil solutions have been reported to vary between 3 mg/l and 204 mg/l even in non-

contaminated soils (Barber, 1995), so the Mg contents observed in this study do not appear 

to present an environmental problem. 

Big increases in K in the soil solutions following all treatments in all seeps suggests that the 

amendments provide readily mobile K to the soil. The increase in element K in the soil 

solution has a corresponding increase in element K in the plants in all seeps in both trials. 

Considering that K is a very important element that is often added as a fertilizer 

component, this is likely to be viewed as another positive associated with these treatments. 

Wolt (1994) reported that the  natural abundance of Cd in soil solution can be up to 4.5 

µg/l, while the predicted no effect concentration for Cd (i.e. the amount at or below which 

there is no anticipated negative effects) in soil solution was determined to be in the range 

1.3 to 3.2 µg/l (de Vries et al., 2007). Statistical tests indicated that treatments did not 

significantly decrease the Cd in soil solution for seep 1 soil, but significant decreases were 

observed in seeps 2 and 3 and the resulting concentrations were less than 1 µg/l or below 

the limit of detection using ICP-MS in those soils. This means that the amendments lowered 

soil solution Cd in seeps 2 and 3 to levels considered to be unlikely to impact soil biota. It is 

also in agreement with the plant growth results, which found effectively zero bioavailable 
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Cd in the soils. The reduced pore water Cd in the treated soils is consistent with the high 

sorption capacity WTRs have shown for Cd, e.g. ~18000 mg/kg (Chiang et al., 2012). Silvetti 

et al. (2015) found that adsorption of Cd ion forms inner-sphere surface complexes with 

the inorganic and organic phases of WTRs, meaning that the sorption binding is likely to be 

strong and long lasting. This would suggest adsorption of Cd onto WTRs did occur here. 

Added to this, the increasing pH would likely result in increased adsorption of Cd by SOM 

(Kabata-Pendias, 2010). 

Generally in soils, Co is only slowly mobilised and low concentrations are expected in soil 

solution  with the concentration ranges typically between 0.3 and 87 μg/l (Kabata-Pendias, 

2010). In the present study, soil solution Co in non-treated seep 2 and 3 was much elevated 

above this typical range, with both having >500 μg/l. All treatments reduced the solution 

Co concentrations in these soils to <50 μg/l. Seep 1 soil had ~100 μg/l in the untreated state 

and this decreased to <50 μg/l following Al-WTR and lime treatments but increased to 331 

μg/l following Fe-WTR treatment. The results of the two plant growth trials discussed above 

showed a related pattern, with the Co in the plant tissues having decreased significantly in 

treated soils compared to untreated seep soils except in one case which was again seep 1 

soil treated with Fe-WTRs (for which there was no significant difference from the untreated 

seep soil in the first plant trial and a small relative increase in the second trial). The reason 

for the difference in Co mobility in this seep soil + Fe-WTR combination is unclear and it is 

difficult to provide a speculative explanation for other than perhaps something linked to a 

possibly different organic matter component present in the Fe-WTRs that is released when 

mixed with the seep 1 soil, as organic matter differences have been reported to have the 

potential to mobilise soil Co (Lange et al., 2016). This warrants further investigation on the 
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mechanisms involved because  it would be anticipated that Co in solution would be 

decreased following treatment and that the amendments would immobilise Co in the soil 

solution since WTRs have been shown to have the ability to adsorb Co (Chiang et al., 2012). 

Nevertheless, in all cases in the present study, the soil solution Co concentration was well 

below the No Observed Effect Concentration (NOEC, i.e. the highest concentration imposed 

in a toxicity test that shows no negative effect) reported previously for the springtail species 

Folsomia candida, which was stated as 62200 μg/l and 9440 μg/l respectively in the two 

soils in which it was determined (Lock et al., 2004). 

The average natural abundance of Cr in soil solution is 0.52 µg/l (Wolt, 1994) and all the 

untreated seep soils had concentrations above this typical amount. All treatments 

produced substantial decreases in seeps 2 and 3, which is likely to be related to adsorption 

of Cr onto the WTRs, which is in agreement with their Cr sorption capacity previously noted  

(Mohammed et al., 2016, Nielsen et al., 2011). In addition to this, the solubility of Cr(III) is 

known to decrease as solution pH is raised (Bartlett and Kimble, 1976). It is known that Cr 

is non-essential for plants (Hayat et al., 2012), so the decrease in the soil solution Cr 

concentration observed when seeps 2 and 3 were treated with the amendments is a good 

result. When seep 1 was treated no differences in soil solution Cr concentration resulted, 

the reason for which is unclear. 

Concentrations of Cu in soil solution commonly range from 0.5 to 135 μg/L, depending on 

measurement techniques used and on soil types (Kabata-Pendias, 2010), and therefore the 

concentrations observed here were not remarkable other than a partial trend towards 

decreasing with treatments in seeps 2 and 3. Any decreasing trend in soil solution Cu was 

not however sufficient to adversely affect plant uptake, because that had remained 
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unchanged or increased with the amendments as discussed above. Kabata-Pendias and 

Sadurski (2004) found that mobility of Cu is especially reduced by oxyhydroxide particles of 

Al, Mn, Fe, and by OM, so exposed surfaces of WTRs bearing those may have been 

responsible for the small decreases observed in some treatments. 

In very acid soils, Fe concentration in soil solution can exceed 2 mg/l (Kabata-Pendias, 2010) 

and it is  the soil pH that typically controls Fe content in soil solutions (Willard, 1979). 

Therefore, the observed decrease in Fe in the solutions of all amended seep soils is most 

likely related to enhancing the soil pH through the addition of the amendments. The 

decrease in Fe in the soil solutions had a corresponding decrease in element Fe content in 

the plants of some treated seeps, which is consistent with the well understood process of 

Fe being obtained by plants via the soil solution. However, because no evidence of induced 

chlorosis was visible (i.e. yellowing of tissues), the decreases in soil solution Fe were not 

linked to any negative effects. 

The complicated chemistry of Mn, which has common valence states of +2, +3, +4, +6 and 

+7, means that mobility of the element is heavily influenced by Eh–pH conditions as well as 

sorption processes which therefore effects  the Mn content of the soil solution (Willard, 

1979). Therefore, the observed decrease in Mn in all amended soil solutions in seeps 2 and 

3 is most likely related to enhancing the soil pH due to the addition of the amendments 

despite the possibility that the WTRs might be a source of available Mn (i.e. they have 

considerable Mn content). The decrease in Mn in some of the soil solutions did not have 

any consistent relationship with either increases or decreases in  Mn in the plants, 

reflecting the many complex processes that control Mn availability that include reduction 

of MnO2 forms and complexing by root exudates (Hodgson et al., 1965) coupled  with Fe 
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oxides interactions and microbiological soil activity that also  have impacts on redox of Mn 

compounds (Zajic, 1969). Because of this it is difficult to draw any firm conclusion on how 

the amendments will affect Mn in soil solutions. 

The concentration of Ni in solutions of untreated seep soils was 962 µg/l in seep 1, 2425 

µg/l in seep 2 and 2290 µg/l in seep 3, which are within the range of those reported for Ni 

contaminated soils from a Ni ore smelting region in Canada (mostly 120 – 28700 µg/l; Nolan 

et al. (2009) and for a set of European soils that had been deliberated dosed to a total Ni 

concentration expected to cause 10% reduction in plant growth (Ma et al., 2013). This 

would suggest that the levels of Ni in the solutions of the untreated seep soils would have 

probable negative effects on soil biota if not addressed. All treatments reduced the soil 

solution Ni, with lime achieving the greatest level of decrease which would indicate that 

the soil pH enhancement was the primary reason for the changes. Of the two WTR types, 

Al-WTRs achieved a greater reduction in the Ni concentrations. Previous work had shown 

the capacity of Fe-WTRs to sorb Ni from solution, with an addition rate in sediment of 250 

mg/g of Fe-WTR achieving a sediment porewater Ni decrease of more than 80% (Chiang et 

al., 2012). The decrease in Ni in the soil solution did have a corresponding decrease in 

element Ni in the plants for all amendments in all seep in both trials, indicating that the 

amendments were able to control the excess Ni in solution and render it less bioavailable. 

This is an important and a positive outcome in these seep soils which, in the untreated 

state, had soil solution Ni in the potentially toxic range. 

Pb is not known as an essential or as a beneficial element for any living organisms and 

therefor Pb deficiency is not a concern. The average natural abundance of Pb in soil solution 

has been estimated at 1.04 µg/l (Wolt, 1994) and a number of parameters such as soil pH, 
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CEC,  clay content,  CaCO3, organic matter content and Pb concentration govern Pb 

sorption-desorption processes in agricultural soils (Hooda and Alloway, 1998). The 

untreated seep soils had soil solution Pb concentrations (all <6 µg/l) that were below or 

marginally above the estimated typical background levels. One study (Zhang et al., 2019) 

showed that even in a very sensitive soil from Germany the concentration causing just a 

10% reduction in the reproduction (i.e. the reproduction EC10) of the Enchytraeus crypticus 

worm was 6 µg/l, while the EC10 vales in the other soils tested range 21 to 90 µg/l. This 

would suggest that the Pb soil solution concentrations in the seep soils would not pose any 

substantial risk to invertebrates. All amended seep 2 and 3 soils had lower Pb 

concentrations in soil solution than that of non-amended soil, which suggests that the 

amendments immobilized the Pb either directly by sorption or by their effect on pH. This 

was in agreement with the findings of the ability of Al- and Fe- WRTs to adsorb Pb from 

solution as it was found earlier in section 5.3.1.1. An exception to the decreased solution 

Pb was observed in seep 1 soil amended with lime, in which a large increase was observed. 

However, there was great variability amongst the replicates for that soil-treatment 

combination and so the result for it is questionable. It is possible that a contaminant was 

introduced during the analysis or that a particle of Pb had been incorporated into the 

portion of lime added.   

The average natural abundance of Zn in soil solution has been estimated at 7.3 µg/l (Wolt, 

1994) but it varies greatly and, generally, soil solution Zn concentrations rise fivefold per 

unit pH decrease. For example, a heathland soil from Belgium with a pH of 3.5 had a Zn soil 

solution concentration of 330 µg/l (Degryse et al., 2003) while a grassland soil from 

Rhydtalog in the UK with pH 4.8 had 1200 µg/l (Smolders et al., 2004b). Adsorption of Zn 
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onto pH-dependent binding sites of oxyhydroxides minerals and organic matter, as well as 

ion-exchange reactions on clay minerals at high Zn concentrations, are the main processes 

governing the Zn content in soil solution (Alloway, 2012). The effects of Zn in solution on 

soil biota can vary widely, with the EC10 values determined for microbial processes having 

been found to span 100 to 296000 µg/l in a broad set of European soils (data from Smolders 

et al. 2004). The Zn concentrations in the solutions of the untreated seep soils (1182 - 2420 

µg/l) were within this very wide range. The findings of the  Zn adsorption onto WTRs test 

discussed above ( section 5.3.1.1) were reflected again here in the soil solution results in 

that there was a clear decrease in Zn in the soil solution of amended soils with the exception 

of seep 1 amended with Fe-WTRs for which there was no significant change. Too much of 

a decrease in the soil solution Zn concentration would be undesirable because Zn is an 

important plant nutrient however, as discussed in previous sections, in the plant trial the 

amounts of Zn assimilated by plants was in the healthy range (i.e. no deficiency).  

5.5 Chapter conclusions 

The aims of the chapter: 

In this investigation, the aim were to investigate the adsorption and retention by two types 

of WTRs (one generated at a plant using Al salts, Al-WTRs, and the other generated from 

use of Fe salts, Fe-WTRs) of two important metals, Pb and Zn, that are often present as 

contaminants in waters and wastes, also to assess the remediation of mining contaminated 

soil using two types of WTRs from central England, UK. 

 

 



287 
 

Main findings: 

The investigation has shown that the two WTRs tested, one Al- and one Fe- based, had high 

sorption capacity for Pb and Zn both separately and in combination. Moreover, the WTRs 

retained the vast majority of the sorbed metals even through a desorption process. It was 

also shown that application of the WTRs to acidic soils impacted by former mining activities 

led to significant improvements in pH, plant yield and earthworm survival that were 

comparable to, or in some cases better than, those achieved by liming.  

The implications of the study: 

These findings indicate that the WTRs could be used successfully as soil amendments to 

immobilise contaminants and raise pH and could therefore be used as a cheap alternative 

to lime.  

The significance of the findings or contribution: 

The liming aspect may be of particular benefit to acidic soils, but only if the current 

regulations were adjusted to allow applications to land with soil pH less than 6. In general, 

the addition of WTRs also resulted in soil solution element concentrations being adjusted 

to and/or maintained at desirable or tolerable levels and therefore would enhance plant 

growth. The remediation method used for this mining-affected soil may be applied to other 

mining-affected soils elsewhere in the world. 

The findings will be of interest to environmental protection agencies and trade companies 

of removals Zn or Pb from contaminated water, sediments and soils. Using water treatment 

residuals for removal Pb and Zn contamination offers financial advantages and facilitates 

development of a more circular economy with greater levels of materials recycling. 
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Limitations: 

In the ecotoxicological test of soils using earthworms, the small sample size did not allow 

to increase statistical power and tease out more subtle effects. It is unfortunate that the 

study did not include assessment of the impact of adding WTRs on the soil microbiome 

and/ or soil microbiological functions, as these are also important aspects of soil health. 

Notwithstanding these limitations, the study suggests that WTRs can be used not just as a 

general soil amendment, but also as a low-cost alternative to agricultural lime for treating 

low pH soils. 

Recommendations: 

Further work is needed to fully understand the implications of adding WTRs on the soil 

microbiome and/ or soil microbiological functions as these are also important aspects of 

soil health. A natural progression of this work is to conduct field-scale trials of soil 

remediation with WTRs in the open environment and maintain them over a longer time 

frame, to further test the conclusion that current regulations restricting WTRs to soils with 

pH above 5 or 6 are overly conservative. The findings strongly recommend a 

reconsideration of the current regulations about applications of WTRs to land with soil pH 

less than 6. 
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6 General conclusions, study implications, study limitations, 

recommendations and future directions 

6.1 General conclusions 

In this thesis several environmental approaches have been considered and the main 

findings, of the analysed problems, will be briefly discussed in the following sections. 

6.1.1 Seep soils and stream water problems 

6.1.1.1 Soil acidity  

The result of soil properties evaluations indicates low soil pH in seep 1, seep 2 and seep 3 

soils. This has negative impacts on the soils, most importantly via probable Al toxicity to 

biota, low effective cation exchange capacity, and being highly sensitive to other metals 

toxicity and metal(loid)s dissolution. The soil ecotoxicological tests verify this hostility to 

life, with zero earthworm survival rate and very low plant yield in all seep soils. This acidity 

is likely generated as a result of sulphide minerals oxidation, a legacy of mining activity and 

exposed ores and wastes, which was described in chapter one. This means that the bare 

soils in this area are in need of remediation if they are to become productive and useful 

and to avoid being a potential source or flow path for pollution to the stream.   

6.1.1.2 Element toxicity to soil and water dwelling organisms 

In seep 1, seep 2 and seep 3 soils, the measured concentrations of easily mobile Al and Fe 

revealed by CaCl2-extractation were high, while the CaCl2-extractable amounts and soil 

solution concentrations of As, Cr, Cu, Cd, Co, Fe, Ni, Pb and Zn (i.e. mobile amounts) were 

all possibly in the toxic range based on comparison with known soil contamination sites 

reported in the literature.  The exchangeable fraction (BCR fractionation) also indicated 

potential toxicity in some seep soils from mobile As and Co as well as these other elements. 

Comparison of the measured pseudo-total contents with their predicted soil-specific 
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ecotoxicological threshold concentrations or with general ecotoxicological soil thresholds 

also indicated potential risk from some of the assessed metal(loid)s in some seep soils, e.g. 

Fe, Mn, Ni and Zn. The poor plant yields and 100% mortality of earthworms in untreated 

seep soils in the remediation trials (covered further below) confirm that the seep soils are 

very hostile to biota.  

The elevated soil element concentrations, and more importantly their high mobility,  are 

not only concerning to soil biota but also to organisms living in stream water and stream 

sediment, which would be the likely destination of the mobilised elements. Evidence for 

this risk was found in the high contents of both dissolved and particulate forms of certain 

metals in stream water and elevated total content in sediment samples collected from the 

crossing point and downstream sites. Low Daphnia survival percentages in the crossing 

point and downstream samples confirm that the water there is hostile to crustaceans, and 

it is likely that Al, Fe, and Mn toxicity, along with turbidity, are a part of the problem.   

Dissolved (0.45 µm filtered) concentrations of Co, Fe, Mn, Ni, and Zn in the stream here 

were all higher than regulatory EQS or other guidelines, further confirming that water 

quality here is posing a serious potential threat to ecological integrity. Besides, the data of 

particulate form of some metal(loid)s in both crossing point, and downstream suggests that 

Al, As, Cu, Fe, and Pb has implications for any filter-feeding organisms and contribute to 

the deterioration of sediments quality when deposited. Therefore, adverse effects on 

stream water and sediment organisms are likely.  
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6.1.1.3 Deficiency of Ca, K and Mg in soil due to leaching  

The BCR fractionation data has shown  low amounts of mobile (and so available) Ca and Mg 

in the seep sites compared with Ref.1 and Ref.2 soils, which indicated a potential for plant 

deficiencies in these elements (K also for seep 1). The plant (ryegrass) trials supported this 

possibility, with the ryegrass tissues grown in some of the seep soil sites being in the 

deficiency range for Ca and K. The interpretation for that is that as a consequence of 

sulphide minerals oxidation and creation of acidic conditions, the carbonate rocks or 

components in soil are dissolved and leached out from the seep soils through rainwater 

or/and seepage water, such that H+ and Al3+  eventually replace exchangeable base cations 

Ca2+, Mg2+, K+ and Na+. 

 

6.1.2 Using Water Treatment Residuals to amend mine impacted soils  

The adsorption study demonstrated the strong capacity for WTRs of both types to sorb and 

retain metals (Pb and Zn), even against a desorption step, and thus gave encouragement 

for their use in soil remediation from immobilising contaminants and rendering them less 

ecologically important. The remediation trial took that further and assessed the capacity 

for using water treatment residuals to ameliorate the contaminated soil to make it more 

fit for plant growth and other biological activity.  

As the findings showed, adding Al-WTR and Fe-WTR to seep soils led to a significant 

improvement (increase) in soil pH. The liming effect of WTRs is possibly attributed to 

chemical properties such as bicarbonate concentration, hydroxide content, surface 

reactivity and cation exchange capacity. As a consequence, plant yield and earthworm 

survival rates (by both Al-WTR and Fe-WTR) improved significantly in a manner similar to, 
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and in some cases better than, those achieved by liming. The element concentrations in 

soil solution and in plant tissues were adjusted to and/or maintained at desirable or 

tolerable levels following WTR application to soils, indicating an improvement in (and no 

negative effect on) ecological status of the soils. The plant and earthworm improvements 

were therefore probably achieved through a combination of inter-linked effects including 

soil pH increase (liming effect), reduction of contaminant mobility, and provision of 

nutrients by the WTRs. This is an important result and would logically lead to a 

recommendation that WTRs can be used not just as a general soil amendment for their 

organic matter content etc, but also as a low-cost alternative to agricultural lime for 

treating low pH soils. However, current regulations in the UK prohibit this, with restrictions 

in place that limit WTR application to soils with pH above 5 or 6 for fear of the Al content 

becoming mobilised. This study provides evidence to challenge that restriction because it 

has shown that mobile Al is reduced in low pH soils when treated with WTRs at quite high 

rates (10% w/w), and this reduced mobility remains the case even after a wetting and 

drying cycle. The next logical step would therefore be to assess this across a wider range of 

soils and over a longer time period (i.e. years to decades). 

6.2 Implications and significance of findings  

6.2.1 The implications of the refinement study of pseudo-total metal content  

The results of methodological development in this study indicate that dilution of the 

digested solution of soil samples provides more precise data and is an environmentally 

friendly and time-saving alternative to drying down the digested solution of soil samples 

option that is commonly used in studies of soil and sediment. These findings of the 

refinement study will be of interest to all researchers who are analysing metals in soil 

samples and want to achieve more precise data with fewer steps. It is clear that if fewer 
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steps are possible, without losing accuracy, then it is better because there are fewer points 

in the overall procedure where impurities can be inadvertently introduced and also 

because fewer laboratory consumables are used per sample (which means less waste 

generated by the laboratory). 

 

6.2.2 Mine waste and impact characterisation   

Characterisation of mine waste at an impacted site, whether it be in standing spoil heaps 

or spread within a contaminated soil, is critical when evaluating the current and likely 

future environmental impact. The mine waste can be an ongoing source of contamination 

that has profound implications for ecosystems and for human use of an area (e.g. for 

agriculture, recreation, conservation, industry or housing). 

This research demonstrates that acid generation can occur, which leads to reduced pH and 

solubilising of metals in soils at mining-affected areas which could have significant adverse 

effects on the environment. A lowering of pH, as identified here by the low pH of the soils 

in seep areas, indicates the buffering capacity of any minerals or components within the 

soil itself became exhausted, leaving the soils in the area highly susceptible to further pH 

decreases. Such processes result in leaching out of the base metals in the soil, which are 

important nutrients  required by biota including Ca, Mg, and K, and their replacement  with 

Al, , Fe and H on the exchangeable sites. The latter elements become available to soil biota 

instead of the required nutrients and therefore the soil is further impacted by loss of 

fertility. Those eventually may leach into the soil solution, groundwater, and potentially 

surface discharge into sensitive receiving waters. It is therefore necessary to examine the 

mine waste material present at a site in order to gauge the risks of acidic discharges arising 
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and also to assess the pH buffering capacity of other waste components or of the soil in 

order to determine the system’s capacity to withstand acidic inputs. The examining of 

waste materials or soils they are mixed within should include determination of total 

element (or pseudo total element) concentrations, the distribution of those elements 

within the solid phase and the concentrations in soil pore water. This is important to 

understand the likelihood of metals leaching out and of their mobility in the environment. 

Comparison of these measured values can then be made with threshold values of likely 

impact or with studies of other locations at which certain levels of concentration have 

caused harm. This would provide a framework for assessing the mining waste and the soil 

at any contaminated site. However, in terms of environmental regulation of mining impact 

sites, more work is needed in the development of robust and enforceable environmental 

quality standards for impacted soils so that site assessments are not just comparative (i.e. 

with guideline values or measurements elsewhere) but can also be conducted with a 

definitve ‘pass’ or ‘fail’ outcome. Such soil quality standards should go beyond simple total 

element concentration thresholds and should incorporate bioavailability measurements 

such as those used in the present study. This is important because it is the bioavailable, or 

ecologically active, concentrations of metals (or other elements) that have environmental 

impact. There are many technical difficulties involved in developing such bioavailability 

based soil quality standards, but the site specific predicted no effect concentrations 

(PNECs) used in this study show that progress is being made in this area and that the 

approach can be made to work. Eventually, it may be possible to develop well established 

soil quality standards based on bioavailability analogous to those already in place for 

assessing certain metals (e.g. Cu, Mn and Zn) in river water [see the Water Framework 

Directive (Standards and Classification) Directions (England and Wales) 2015].  
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Future research:  

The formation of acid or neutral mine drainage from a mining-affected area and its mixing 

with soils and surface or ground waters is a complex process and is one of the main 

potential mechanisms resulting in environmental impacts. It not only depends on chemistry 

but also depends on petrology and mineralogy, structural geology, geomorphology, 

surface-water and subsurface water hydrology, climatology, and microbiology. Therefore, 

for any site assessment where mining contamination is known or suspected, those factors 

should be included when assessing the contamination to get a better understanding of the 

situation and processes involved. Future research needs to build on the combined (but 

limited) approach employed here to develop a more comprehensive mine site and mine 

waste evaluation protocol that can be applied across sites.    

Reconsideration of the mining wastes as potential exploitable resources instead of wastes, 

with a view to apply modern biotechnologies to reuse, recycle, or recover energy from 

those wastes, would also be a fruitful area for further work. Reusing the mining wastes as 

construction materials (e.g. for the basis of roads or in cement products) would seem a 

possibility with little barriers. It may also become possible to recover rare minerals or 

elements that were previously not possible to extract using conventional mine material 

processing, and this too would promote recycling and the idea of gaining wealth from 

waste. 
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6.2.3 Water quality  

The wider contribution of this study: 

The study has provided further strong evidence that former mining sites can have a 

continued negative impact on water quality in adjacent or nearby areas. This particular case 

study example demonstrated impacts on water turbidity, salinity, pH, ochre formation, 

elevated element concentrations and the toxicity all of this can have on aquatic biota 

(measured here directly by using Daphnia). The wider implications are that not only does 

this particular site need to be remediated to minimise future water quality impacts but that 

all of the other former coal mining sites throughout the English Midlands and elsewhere 

need to be assessed for their remediation needs. It is clear from this study that ongoing 

monitoring is required in order to understand the extent of the continued impact, justifying 

the expense of monitoring mining impacted streams even if they are below the size 

threshold that means monitoring is required under the Water Framework Directive. It 

would seem that a region or nationwide monitoring scheme is needed to specifically assess 

mining impacted rivers that are otherwise missed by existing schemes (e.g. the WFD). Any 

such scheme  should adopt the multi-aspect approach employed in this study, i.e. chemical 

and physical characterisation of the water as well as biological assessments via crustacean 

or algae ecotoxicity assays or recording and assessment of any organisms observed in the 

water at the site (e.g. perhaps using methodology based on the biological monitoring 

working party score system,(Hawkes, 1998), that is used by some environmental regulatory 

organisations). That method would be a useful assessment approach to assess the 

contamination in water bodies around mine impacted areas elsewhere in the world. 
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Future research:  

Development of a multi-component assessment protocol for mining impacted streams 

should include identification of mining-impact sensitive aquatic invertebrates. To date, the 

available aquatic invertebrate scoring systems are based on tolerance to organic pollutants 

and low oxygen levels and so, while these are good for general assessment of aquatic 

ecosystem health, a system that reveals mining impacts specifically would be a valuable 

tool to develop. Also, at this study site and elsewhere, it is apparent that to properly 

monitor and unserstand the water contamination in the mining-affected areas the 

interaction between surface water and groundwater, which in turn depends on physical 

geography, geology, climatic conditions, precipitation, and evapotranspiration, should be 

determined. This would more directly identify contaminant input pathways to the streams.  

6.2.4 Sediment 

The wider contribution of this study: 

Both suspended and deposited sediments may pose a risk for Daphnia and other species 

of crustaceans as well as polychaetes,  bivalves and other aquatic invertebrates because 

they may switch between suspension-feeding and deposit-feeding depending on the 

supply of suspended particles in the near-bottom water. The bed sediment also importantly 

provides living space and breeding habitat for many aquatic invertebrates and therefore 

impacts from mining legacy on sediment through increased element concentration or 

alteration to texture caused by ochre or other deposits is of concern. The sediments 

assessed in this study showed As levels more than three fold above the screening level 

benchmark recommended by the USEPA, demonstrating that coal mine pollution can 
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include As contamination and accumulation in the sediments of nearby water bodies. This 

provides evidence to support urgent sediment assessment work in other closed and 

abandoned coal mines across the UK and other regions with similar geology where coal was 

previously mined. This study has also shown that while ochre (Fe oxide) deposits, which are 

well understood and frequently associated with coal mine pollution of rivers, occur near 

points of contaminant entry and so are readily identified, other elements such as Al, Cu and 

Mg may not be deposited immediately and therefore sediment pollution impacts from 

those elements may only arise at some distance downstream. This has important 

implications for assessment and management of mining impacted (or potentially impacted) 

rivers because monitoring points will need to include locations considerable distances 

downstream of suspected inputs.  

Future research: 

This study did not examine the associations of elements in stream sediment and so this 

should be done at this location in order to better understand the likelihood of release from 

the sediments. The same approach would apply at other locations because the possibility 

of the sediment acting as a soure of contaminant release would equally occur elsewhere. 

While toxicity of water was assessed with Daphnia experiments, no assessments of 

sediment toxicity were performed. Introducing a biotic toxicity assessment to 

investigations of this and other mining impacted stream sediments would be very beneficial 

as this would directly determine the threat to sediment dwelling organisms. Options would 

include the OECD 222 Sediment-Water Lumbriculus Toxicity Test, which exposes 

Lumbriculus variegatus (a sediment burrowing aquatic oligochaete worm) to contaminated 

sediment to determine impacts on growth and survival. Research should therefore focus 
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on incorporating both chemical and biological assessments of this type into a systematic 

and consistently applicable framework of sediment toxicity assessment. Development of 

environmental quality standards for sediment would also be an area for future research, 

because at present these are lacking and there are many questions as to the utility and 

robustness  of the limited number of  guideline values that are sometimes used. 

Development of such standards requires the collection of evidence demonstrating damage 

to ecosystems and then a policy decision on acceptable levels of risk so that standards can 

be used for assessment of stream sediments at mining-affected areas. 

6.2.5 Biota 

The wider contribution of this study: 

There are very few studies in the literature detailing investigations into the impacts of 

mining legacy on earthworms and other soil dwelling biota, therefore the evidence 

generated in the present study that shows earthworms can be used to examine toxicity of 

mining impacted soils is very useful and indicates an approach that can be used elsewhere. 

It also identifies wider problems in mining impacted soils; if earthworms are unable to 

inhabit them then all of the benefits and ecosystem services that earthworms provide (e.g. 

organic matter breakdown, nutrient release, soil mixing, aeration, creation of pore 

networks, etc) are lacking in these already damaged or impoverished soils. This suggests 

that earthworm surveys could form part of mining site evaluation and assessment 

protocols, i.e. to determine extent of impact and also to enable measurement of success 

of any soil remedation strategy subsequently implemented.  

The effects of pollutants on earthworms might be as a result of absorption and/or uptake 

of the chemicals across the worm body, through either body wall or by ingestion. 
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Recognising this, it would also be possible to incorporate an earthworm survival protocol 

(either via laboratory assays or release to the field) as part of a site-specific screening level 

assessment of a particular contaminant or set of contaminants. If a battery of assays was 

developed, they should not just assess  toxicity and survival of earthworms but also other 

important effects such as avoidance behavior, reproduction, and bioaccumulation; these 

points are also crucial in terms of establishment and viability of earthworm populations 

and thus overall soil health.  

The stream sites were unable to sustain a population of fish, as deermined by chemical and 

physical parameter assessment (including turbidity, electrical conductivity, and total 

dissolved solids), hence this project serves as a case study for how mining impacts can 

render a site uninhabitable by fish and so prevent development of a more complex and 

diverse aquatic ecosystem. It also has implications for disruption to fish dispersion along 

minor tributaries, which in some instances can be important. The success of any 

remediation work on making the area suitable for fish would thus also serve as an excellent 

case study of restoration.  

It is known Daphnia, and other species of crustaceans, polychaetes and bivalves, can switch 

between suspension-feeding and deposit-feeding depending on the supply of suspended 

particles in the water, therefore survivability of such aquatic invertebrates when exposed 

to mining impacted stream water gives a direct indication of toxicity. In addition, the 

dissolved and colloidal forms of contaminants in water can also be assimilated by these 

organisms and so assays utilising them as test subjects incorporates assessment of this 

exposure  pathway too. Therefore, protecting those organisms and assessment of the risk 

of contamination of them should also include a combination of independent lines of 
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evidence. For example, assess based on the content of dissolved metals and suspended 

particles metals as well as ecotoxicity test data. That is, as stated previously, a framework 

for assessing contamination and risks at mining impacted sites should include chemical 

parameter measurements and direct tests of toxicity using e.g. Daphnia for water 

compartment assessments. The present study’s multi-aspect approach can serve as an 

example of how that type of framework might be developed. 

Future research: 

For the particular site of the study further biota assessments should be done to determine 

the extent of toxicity of the water, sediment and soil to a wider range of species. This would 

help with establishing priorities for remediation (i.e. identifying the most sensitive groups 

and therefore the blocks to system recovery). However, while intense assessment of one 

site is useful for understanding that site and developing a bespoke remediation strategy for 

it, in reality the development of a generic framework that would be useable for assessing 

all mining impacted sites requires a limited number of key measurements and tests that 

can be done within a reasonable budget. Therefore, future research should aim to 

determine what biota based tests give the most useful and informative results so that a 

consistent basic set of assessments can be established; for example, it should determine 

whether the Daphnia assays used here are best for providing an aquatic toxicity evaluation 

or whether a sediment dwelling organism test would be better. Similarly, for soils it should 

be determined whether an earthworm survival test and an avoidance test provide 

sufficient information or whether other tests such as those with springtails (e.g. folsomia 

candida) are more useful. 
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6.2.6 Remediation  

The wider contribution of this study: 

Remediation of former mining sites and wider mining impacted areas is necessary in order 

to restore functioning habitats and ecosystems and also to prevent further dispersion of 

mining related contaminants. If remediation can be done using low cost or even freely 

available waste materials then it is more likely to be done, particularly in less economically 

advantaged regions and countries. The use of drinking water treatment residuals (WTRs) 

for remediation fits squarely in that space.  In general, the addition of WTRs to the mining 

impacted seep soils investigated in this study resulted in soil solution element 

concentrations being adjusted to and/or maintained at desirable or tolerable levels and, 

therefore, would enhance plant growth and so facilitate phytostabilisation of the soils. 

Moreover, the findings of the remediation study indicate that the WTRs could be used 

successfully as soil amendments to immobilise contaminants and raise pH and could, 

therefore, be used as a cheap alternative to lime for ameliorating soils with low pH. The 

liming capacity may therefore be of particular benefit to acidic soils, not only those that 

have become acidified through acid mine drainage inputs but also by any other means and 

so this study has shown that the remediation potential of WTRs goes beyond just improving 

mining impacted soils. However, this could  only be put into practise in the UK if the current 

regulations were adjusted to allow applications of WTRs to land with soil pH less than 6. 

Results such as those of this study can contribute to a re-evaluation of reguations and 

polocies on WTRs use. Therefore the work here will be of real interest to policy makers as 

well as to land managers and mining companies with responsibility for mine closure and 

site restoration. Clearly, the remediation method used for this mining-affected soil may be 
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applied to other mining-affected and otherwise metal and pH impacted soil elsewhere in 

the world. 

The findings of the adsorption part of the study will also be of interest to environmental 

protection agencies and trade companies of removals Zn or Pb from contaminated water, 

sediments, and soils. Using water treatment residuals for removal Pb and Zn contamination 

offers financial advantages and facilitates the development of a more circular economy 

with higher levels of materials recycling. 

Future research: 

Further work is needed to fully understand the implications of adding WTRs on the soil 

microbiome and/ or soil microbiological functions as these are also important aspects of 

soil health and were not investigated here. It would be necessary to confirm that large scale 

applications of WTRs do not impede natural microbial processes in soil. Laboratory 

investigations have shown that WTRs can maintain microbial function (Oliver et al. 2011), 

but demonstrating this in large scale field trials would provide greater reassurance and 

remove uncertainties. Therefore, a natural progression of this work is to conduct field-scale 

trials of soil remediation with WTRs in the open environment and maintain them over a 

longer time frame, to confirm no harm occurs to microbial functions and to further test the 

conclusion that current regulations restricting WTRs to soils with pH above 5 or 6 are overly 

conservative and restrictive. The findings strongly recommend a reconsideration of the 

current regulations about applications of WTRs to land with soil pH less than 6. 
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6.3 Study limitations 

As with any project, this study was subject to certain limitations. This study was the first 

scientific investigation ever conducted at the study site, and thus some aspects of the 

project were necessarily preliminary in nature. The approach was to characterise the soil, 

sediment, and water problems and to trial remediation of the soils.   

6.3.1 The limitations of the evaluation of soil contamination 

While the mining related contamination and its biological impacts were successfully 

identified, characterised and quantified in the impacted and reference soils, the precise 

mechanisms of contamination were not comprehensively determined. This was because 

examining subterranean sources and flow pathways (i.e. shallow and deeper groundwater 

upwellings and movement, and hyporheic zone exchanges, etc. , via wells and lysimeters) 

was beyond the capacity of the project. It would be necessary to exame these in order to 

quantify the discharge and acid solution generation rate below the surface and therefore 

enable a better understanding of the leaching of the contaminants from mining wastes and 

their total input to the soils, surface water and groundwater of the site. This is readily 

acknowledged and opens avenues for future research. 

6.3.2 The limitations of the characterisation of  water quality and sediment 

In addition to the limitations regarding not characerising subterranean sources and flow 

pathways of water (see previous subsection), it is unfortunate that the study did not include 

measurement or estimation of flow rates or periodic flow volumes to make calculations of 

contaminant loads possible, which are useful for understanding the total scale of 

contamination transported through the system (this would in turn allow for a regional and 

national remediation prioritisation process to be undertaken). The speciation of 

contaminants in the stream water and distribution or association within sedment 
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components were not determined and this too would be useful information for 

understanding toxicity risks to aquatic biota and the likelihood of element release from 

sediments and thus they have been identified as areas of future research. Notwithstanding 

these limitations, the study has definitively demonstrated that the mining-affected site 

continues to negatively impact the nearby stream and so warrants consideration for 

remediation. 

6.3.3 The limitations of the trial of soil remediation 

In the ecotoxicological test of soils using earthworms, the small sample size did not allow 

to increase statistical power and tease out more subtle effects. Unfortunately, the study 

did not include an assessment of the impact of adding WTRs on the soil microbiome and/ 

or soil microbiological functions, as these are also important aspects of soil health and so 

have been flagged (above) as future research priorities. Similarly, it would be useful to 

expand the range of test organisms utilised to include other earthworm species and species 

of other invertebrates such as springtails. The remediation trial must be concluded to have 

been successful, but it is acknowledged that it was conducted over a limited term period 

and in pots in a laboratory setting. A larger-scale field trial over a more extended period 

would add confidence to the conclusions. Notwithstanding these limitations, the study did 

show that WTRs can be used not just as a general soil amendment but also as a low-cost 

alternative to agricultural lime for treating low pH soils and for remediating minng 

impacted and contaminated soils. 
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6.3.4 Technical limitation 

Another limitation to acknowledge is the capability of the ICP-OES equipment available; a 

great deal of effort was exerted to maximise its utility, but even so, its limit of detection 

was higher than desirable.   

 

6.4 Recommendations Summary 

The findings of the study have answered the research questions it aimed to address; 

however, the project has raised new questions that should be investigated. Also, to gain a 

deeper understanding of, and even greater confidence in, the results of the study, it is 

recommended to: 

• Study the speciation of metal(loid)s as well as organic matters in stream water and 

soil solutions in the study area to define the ecotoxicity risks better. 

• Reperform the aquatic ecotoxicological tests with a larger number of replicates,  

addition rates (e.g. 7) and species to increase statistical power and tease out more 

subtle effects that the stream water has on biota.  

• Assess the distribution of contaminants in sediment components to determine the 

capacity for release back to water. 

• Directly assess the toxicity of the sediment via ecotoxicology assays in order to 

determine whether dreging and disposal should be considered.  

• Devise and implement a study to determine the hydrology of the site (using wells, 

lysimeters and related approaches) to define contaminant dispersion pathways 

from mine wastes to soil and to surface and ground water. 



307 
 

• Assess the impact of adding WTRs on the soil microbiome (i.e. assessing the suite 

of microbes present and their relative abundances) and/ or soil microbiological 

functions (i.e. decomposition rates, nitrification potential, and enzyme activity) in 

order to determine whether remediation with WTRs restores or enhances these in 

treated soil, as these are also important aspects of soil health. 

• Use more than one species of earthworm, covering more than one ecological type 

(i.e. the anecic earthworm species Lumbricus terrestris as well as the epigeic species 

Eisenia fetida), and other invertebrate species in future tests to examine effects 

across a broader range of species and life habits and to facilitate broader 

comparisons with other studies. 

• Conduct a policy and regulation review to determine whether remediation with 

WTRs of impacted soils with pH<6 should be permitted.      
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