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Abstract 

The human microbiome plays a vital role in both health and disease. The evolution of 

molecular techniques to characterise entire microbiome communities has renewed interest 

in the involvement of microorganisms in the pathogenesis of Rheumatoid arthritis (RA). In 

this thesis, 16S and ITS amplicon sequencing were used to characterise bacterial and 

fungal DNA present in a range of human and mouse samples. Firstly, characterisation of 

the microbiome present in blood samples obtained from human RA, ankylosing spondylitis, 

and psoriatic arthritis patients was carried out, relative to healthy controls. Results revealed 

that the bacterial population in the serum of RA patients was distinct from the healthy state. 

Through the analysis of paired RA patient blood taken before and three months after 

treatment, partial microbiome normalisation was identified and was particularly evident in 

seronegative arthritis patients. Next, the presence and identity of bacterial and fungal 

communities were investigated in samples of synovial fluid obtained from human RA 

patients and healthy controls. Our findings revealed that the synovial fluid microbiome of 

RA could be distinguished from control.  

Further, IL6, IL71A, IL22, IL23 were elevated in the blood and synovial fluid of RA subjects. 

The association of IL6 with bacteria and fungi microbiome was observed in the RA synovial 

fluid. Finally, a characterisation of the bacterial community members presents in the stool, 

urine, synovial fluid, blood, and serum from collagen-induced arthritis (CIA) and control 

mouse samples were undertaken. Here, we demonstrated that the bacterial community in 

CIA stool samples was distinct from the control. 

These data propose that the human blood and synovial fluid microbiome and gut 

microbiome of the mice is modulated by disease status (RA) and therefore have the 
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potential to serve as a novel biomarker in RA pathogenesis and treatment response. 

Further, studies are required to investigate these initial findings. 
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1 Literature Review 

 

1.1 Introduction 

 

Rheumatoid arthritis (RA) is a common inflammatory condition, the pathogenesis of which 

remains unclear. The microbiota has been implicated in the aetiology of rheumatoid 

arthritis with the first reports dating in the 19th century when Wohlmann and Bannatyne 

proposed the presence of Mycobacteria in the joints and suggested that these may be 

responsible for the inflammation observed (Yeoh et al., 2013). The development of 

molecular techniques to characterise entire microbiome communities has renewed interest 

in the involvement of microorganisms in the pathogenesis of RA.  

By the end of 2007, the Human Microbiome Project (HMP) was initiated through the 

National Institutes of Health (NIH) to obtain a better comprehension of the sophisticated 

biological interactions between commensal microorganisms and the human body. One 

such way is via utilising revolutionary culture-independent technology, such as 16S rRNA 

gene sequencing (Gevers et al., 2012). The specialists in the HMP set out to accomplish 

two key points: 

1) Determination of the microbial populations which are found in different sites of the 

human body such as the gut, oral, and others.  

2) Investigation of the role of the microbiome in human health and illness (Scher and 

Abramson, 2011).  

In this literature review, the pathogenic mechanisms behind RA will be described, and the 

role of the microbiome in the development and progression of RA will be discussed. 
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1.2 Rheumatoid Arthritis 

 

1.2.1 Definition, symptoms, epidemiology, and aetiology 

 

RA is one of the most common chronic inflammatory disorders. It initially impacts the joints 

and is manifested in pain, stiffness, synovial membrane inflammation, hyperplasia of the 

synovial lining and overactivation of osteoclasts, followed by the destruction of joint bone 

and cartilage (Liu, 2018) (Figure 1-1).  

 It is a systemic disease affecting not only the joints but other organs as well, most often 

the lung, pleura, pericardium, and skin (Liu, 2018). The signs of RA are the systemic loss 

of regulation of immune system distinguished via either acute or chronic inflammatory 

response, in which the immune system mainly attacks the joints of the body leading to 

tissue pathology and clinical illness (Liu, 2018). 

It impacts approximately 1% of the world's population. Around 400,000 people in the 

United Kingdom have RA, and about 58 million people suffer from RA all over the world. 

Globally, the highest prevalence rates are seen in peoples of the Pima Native Americans, 

where prevalence is up to 10 times higher than those of most population groups have been 

identified. The disease affects both sexes, and to be twice as common in women (Liu, 

2018).    

The mortality rates of arthritic patients are higher than the healthy population (Beirith, Ikino 

and Pereira, 2013). There are three notable factors as to why RA patients die prematurely, 

as well as evidence to suggest the reasons behind the expansion of the mortality gap 

between RA and healthy patients. The first is the correlation between immune dysfunction 

and systemic inflammation with RA, as these seem to accelerate and promote mortality 
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(Gabriel, 2008). The second is that RA patients do not seem to receive optimum health 

care and preventive care (Gabriel, 2008). The third is that RA patients have a higher risk of 

different comorbid severe conditions and tend to experience worse results following the 

incidence of these diseases (Gabriel, 2008). 

 

 

Figure 1-1 Schematic illustration of a healthy joint and RA joint. A normal joint (a) in 

comparison to a joint influenced with RA (b) with classical characteristics of the condition: 
joint location narrowing, hyperplasia and immune cell infiltration of the synovial membrane 
( Strand, Kimberly and Isaacs, 2007). 

 

Its aetiology is not entirely understood, but genetics and microbial dysbiosis factors both 

contribute. The fundamental cause of RA is inherited factors, which is credited for 

approximately 50 per cent of the risk components for RA (McInnes and Schett, 2011). Twin 

investigations are a source of proof of this, and there have been investigations that 

demonstrated the increased rates of RA among identical twins, approximately from 15% to 

30%, while the rate of RA in fraternal twins is significantly lower at 5% (McInnes and 

Schett, 2011). This has been credited to the presence of the 
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Human Leukocyte Antigen (HLA) genotype [also known major histocompatibility complex 

(MHC)] in RA patients. The HLA system encodes membrane proteins on antigen-

presenting cells (APC) that display antigen peptides to T lymphocytes, and initiate the 

adaptive immune response. The HLA genes can be classified into three classes (IIII), 

where class I and II are involved in cell-mediated immune responses. In contrast, class III 

genes encode proteins regulating immune responses, such as tumour necrosis factor 

(TNF), complement proteins (C2, C4), and heat shock proteins (Smolen et al., 2007). 

Notably, the HLA genotype is associated with the development of RA, such as the HLA-

DBR1 (alleles contain a common sequence of amino acids at position 70-74 of the HLA-

DRβ chain (QKRRA or QRRAA or RRRAA) within the third hypervariable region of the 

HLA-DRB1 molecule, which considers a part pivotally essential for peptide binding 

between antigen-presenting cells such as dendritic cells and T cells) (Smolen et al., 2007; 

Actor and Actor, 2012). Another example of the effect of hereditary components in RA 

patients is peptidyl arginine deiminase type IV (PADI4). This is a human protein which 

encodes enzymes responsible for the alteration of arginine to citrulline residues. Other 

examples include polymorphisms in protein tyrosine phosphatase N22 (PTPN22), a human 

protein which is found primarily in lymphoid tissues and is involved in a number of 

signalling pathways related to the immune response, and activator of transcription 4 

(STAT4), a protein which is associated with IFN-γ production in response to IL-12 and the 

evolution of Th1 cells from naive CD4+ T cells (Bacon et al., 1995; Cloutier and Veillette, 

1999; Suzuki et al., 2003; Kaplan, 2005; Choy, 2012). 

Of interest to this research is another factor that causes RA: microbial dysbiosis. This has 

been proposed to cause RA in many research studies (QuanQiu Wang and Xu, 2019), but 

the proof is not yet decisive. The assumption that microorganisms cause RA has been 

circulating for more than seven decades (Scher and Abramson, 2011), yet the evidence is 
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lacking. It is suggested that microbiota can be shown to affect arthritic patients directly and 

that these microorganisms have virulence agents which allow the initiation of an immune 

response in joints (Rajappan, Joseph and Paul, 2015).  

 

1.2.2 Pathophysiology and mechanisms underlying disease process 

 

RA aetiology is complex due to the high number of human cells involved in RA 

pathogenesis. This includes the innate and adaptive immune cells, and resident cells of the 

joints, such as dendritic cells, macrophages, T cells, and B cells, play vital roles in RA 

pathogenesis. These cells can either reside in the blood or synovium (Lubberts, 2010). 

Furthermore, there are a number of pro-inflammatory cytokines implicated in the 

pathogenesis of RA, such as interleukin-1 (IL-1), tumour necrosis factor α (TNFα), and 

interleukin-6 (IL-6), which all function to stimulate the inflammatory response in the 

synovial tissue (Lundy et al., 2007; Lubberts, 2010). 

 It is thought that an autoantigen such as microbial DNA is taken up by antigen-presenting 

cells, prototypically dendritic cells, leading to stimulation of the innate immune system, 

which includes IL-6, IL-23, and transforming growth factor-beta production and also T cells 

(and thus adding the adaptive immune response) through respective antigen presentation, 

and costimulation (Riedhammer and Weissert, 2015). The involvement of the shared 

epitope SE) ( a 5-aa sequence motif in the third allelic hypervariable region of the HLA-

DRβ chain) proposed that either particularly arthritogenic peptides bind with high affinity to 

these but not another HLA molecules or that an arthritogenic T cell repertoire is selected by 

the shared epitope (Korn et al., 2009). These activated T cells, formerly believed to be Th1 

(gamma interferon production) cells, are currently thought to belong to the Th17 family (IL-
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17 production) and insufficiently controlled by regulatory T cells in RA patients (Korn et al., 

2009). They, in turn, stimulate macrophages and produce B cell help (Korn et al., 2009). 

These events presumably happen partly centrally and partially within the synovial 

membrane in which the cells have moved. Stimulated macrophages produce pro-

inflammatory cytokines such as IL-1, IL-6 and TNF alpha (Derksen, Huizinga and van der 

Woude, 2017). Activated B cells in RA generate autoantibodies which, after forming 

immune complexes, which bind to Fc- and complement receptors and consequently 

increase macrophage cytokine-producing (Derksen, Huizinga, and van der Woude, 2017). 

In parallel, fibroblast-like synovial cells (FLS) become stimulated and generate 

inflammatory mediators (Yap et al., 2018). Indeed, fibroblast-like synovial cells may 

represent an important role, since (1) these cells may "travel" into the blood from one joint 

to other joints, thus spreading RA (Lefèvre et al., 2009), and (2) mesenchymal 

overexpression of TNF is adequate to drive all aspects of destructive arthritis (Blüml et al., 

2010). 

Taken collectively, all these events cause the inflammation of the synovial. The 

inflammatory response is a result of the production of pro-inflammatory cytokines such as 

IL-6 and TNF, as evidenced by clinical trials and therapies that target IL-6 and TNF 

(Mackay and Rose, 2014). Additionally, IL-1 has been observed to play a secondary role. 

Consequently, other mediators of inflammation, such as small molecules (like 

prostaglandins), various chemokines, metalloproteinases, are produced and increase the 

inflammatory response, which clinically present as localised joint swelling and pain 

(Mackay and Rose, 2014). 

Through whichever way the detailed events result (i.e., whether the innate immune 

reactivity, T or B cell stimulation are predominant), the mechanisms eventually lead to an 

increase of inflammatory cells inside the synovial membrane; the inflamed synovial 
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membrane transforms into an autonomous "semi malignant" tissue (pannus) leading to 

damage of bone and cartilage (Mackay and Rose, 2014). Bone damage is mediated via 

osteoclasts activated inside the synovial membrane at places adjacent to bone. While 

osteoclast cell differentiation and activation are pivotally reliant on, pro-inflammatory 

cytokines induce the production and activity of osteoclasts, and also receptor activator of 

NFκB (RANK) and its ligand (RANKL)(Mackay and Rose, 2014). Further, cartilage 

destruction seems to occur mainly by the direct action of metalloproteinases excreted 

inside the joint on the cartilage matrix or through the activation of chondrocytes via 

cytokines and following matrix degradation (Mackay and Rose, 2014). The hypothesis is 

predicted for the mechanism of RA is shown in Figure 1-2. 
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Figure 1-2 Hypothesis is predicted for the mechanism of RA. Several resident cells of 

the human body participate in the RA, such as innate immune cells as (dendritic cells and 

macrophages), and also resident cells of the joints, for example, such as chondrocytes and 

fibrocytes cells. Furthermore, pro-inflammatory cytokines (tumor necrosis factor α (TNFα), 

interleukin-1 (IL-1), and interleukin-6 (IL-6) function in the pathogenesis of RA. The main T 

cell class in RA is TH17 that participate in the evolution of RA through secreting IL-17, 

which stimulate the bone damage by activating osteoclast cells with receptor activator of 

nuclear factor kappa-B ligand (RANKL) (RANKL binds to RANK expressed by osteoclasts 

and osteoclast precursors to stimulate osteoclast differentiation) resulting in bone erosion. 

Moreover, this interleukin activates several cells like macrophages and fibroblast cells to 

bring about inflammation of joints. Furthermore, IL-17 stimulates macrophages and 

chondrocytes to damage of the cartilage. Additionally, it motivates B cells to produce 

autoantibodies, such as a rheumatoid factor (Komatsu and Takayanagi, 2012). 
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1.2.3 Classification of Rheumatoid Arthritis 

 

Clinical signs of RA vary depending on the involved joints and the condition stage. In order 

to facilitate the consistent identification of patients, classification criteria have been 

developed. Table 1.1 summaries the 1987 American Rheumatism Association revised 

criteria for RA classification. Until recently, RA diagnosis should have four or more of these 

criteria and must be present for at least six weeks to exclude another differential diagnosis 

of arthritis such as osteoarthritis and connective tissue arthritis (Arnett et al., 1988). 

Although these criteria present the gold standard for condition definition, they may have 

significant limitations in allowing earlier RA classification. Therefore, a joint working group 

have updated these criteria; the 2010 American College of Rheumatology /European 

League Against Rheumatism (2010 ACR/EULAR) criteria are designed to aid the 

identification of patients who would benefit from early intervention, as presented in Table 

1.2 (Villeneuve, Nam, and Emery, 2010). A patient with synovitis, not explained by another 

disorder, and which meets these initial criteria with a score of ≥6/10 can be classified as 

having "definite RA." 

 

. 
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Table 1-1 1987 American College of Rheumatology Revised Criteria for rheumatoid 
arthritis adapted from (Arnett et al., 1988) 
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Table 1-2 2010 American College of Rheumatology/European League Against 
Rheumatism classification criteria for rheumatoid arthritis adapted from Villeneuve, 
Nam, and Emery, 2010. 
 
 

 

RF = rheumatoid factor; ACPA = anti-citrullinated protein; CRP = C-reactive protein; ESR = 

erythrocyte sedimentation rate 
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1.2.4 Diagnosis of Rheumatoid Arthritis, therapy, and treatment 

 

RA diagnosis depends mainly on the history of patients, imaging such as x-ray and 

laboratory techniques such as serological tests (Sommer et al., 2005).  For example, 

antibodies appearance, such as the antibody RF (most generally immunoglobulin M 

directed versus the constant fragment section of the immunoglobulin G protein).  

Further to RF, a variety of other autoantibodies have been historically correlated with RA. 

Of these, the most significant were antibodies binding to keratin (anti-keratin antibodies), 

and the so-called anti-perinuclear factor (APF) (NIENHUIS and MANDEMA, 1964), later 

identified as antibodies to filaggrin, a keratin-binding structural protein (Sebbag et al., 

1995). As filaggrin is not expressed in the joint, further research into the valid antigenic 

target of these autoantibodies eventually led to the historic discovery that their real goal 

was, in fact, citrullinated proteins (Schellekens et al., 1998; Girbal-Neuhauser et al., 1999). 

These autoantibodies are now collectively referred to as anti-citrullinated protein antibodies 

(ACPAs) or also known as anti-CCP. The cyclic citrullinated peptide (CCP) test, which was 

the first commercially available assay for ACPA positivity, was based on cyclic citrullinated 

filaggrin-derived peptides (Schellekens et al., 2000). However, the second generation CCP 

test (CCP2) currently used in many clinics use a combination of synthetic citrullinated 

peptide epitopes derived from a phage display library to provide an optimal combination of 

sensitivity and specificity for diagnosing RA (Van Venrooij and Zendman, 2008). Notably, 

the CCP2 peptide does not contain sequences derived from human proteins. 

Serological surveys have noted that 69% of arthritis patients are positive for RF, and 67% 

of these patients carry ANTI-CCP (Shmerling and Delbanco, 1991; Lindqvist et al., 2005; 

Coenen et al., 2007). There are other laboratory tests such as complete blood tests, C- 
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reactive protein, and erythrocyte sedimentation rate that helps to obtain an indicator for an 

early stage of RA (SOX and LIANG, 1986). 

Much research has gone into not only to diagnose RA early but also to produce therapy 

that will enable the (1) reduction of pain, (2) decrease of the inflammatory response in the 

joints, (3) inhibit or delay of joint destruction, and (4) minimise disability of patients, 

maximising their mobility and ability to lead a healthy life. RA treatments such as 

analgesics (painkillers such as ibuprofen or naproxen) and non-steroidal anti-inflammatory 

drugs (NSAIDs) are used to reduce pain and stiffness of joints. NSAIDs act on blocking an 

enzyme called cyclooxygenase (COX) from making hormone-like chemicals, which are 

called prostaglandins. Prostaglandins are one of the body's most significant contributors to 

inflammation (Dixit, Bhardwaj, and Sharma, 2012). 

 Furthermore, disease-modifying antirheumatic drugs (DMARDs) assist in lessening 

inflammation and pain of joints and in inhibiting continuous joint destruction. DMARDs are 

commonly utilised in the treatment of RA and can be classified into two groups: 

1) Conventional DMARDs such as methotrexate (MTX) remains the standard first-line 

DMARD in RA, which inhibits the enzymes involved in purine metabolism, leading to the 

increase of adenosine, which causes inhibition of T cells and B cells activation and 

suppression of intercellular adhesion molecule expression by T cells (Smolen et al., 2020). 

Also, MTX works to inhibit the binding of IL 1-beta to its cell surface receptor. Other 

commonly used conventional DMARDS are leflunomide, which inhibits the reproduction of 

rapidly dividing cells, especially lymphocytes , via inhibiting the mitochondrial 

enzyme dihydroorotate dehydrogenase (DHODH), which plays a vital role in the de 

novo synthesis of uridine monophosphate (rUMP), which is required for the synthesis of 

DNA and RNA, hydroxy-chloroquine that reduces the activation of dendritic cells and the 

https://www.versusarthritis.org/about-arthritis/treatments/drugs/ibuprofen/
https://en.wikipedia.org/wiki/Lymphocytes
https://en.wikipedia.org/wiki/Dihydroorotate_dehydrogenase
https://en.wikipedia.org/wiki/Uridine_monophosphate
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inflammatory process by decreasing toll-like receptor signalling. Sulfasalazine has 

antibacterial, immunosuppressive, and anti-inflammatory effects (Smolen et al., 2014, 

2020).  

2) Biological DMARDs primarily targeting inflammatory cytokines, the most common of 

these have been biologicals inhibiting anti-tumour necrosis factor (TNF), including 

adalimumab, Infliximab, etanercept, certolizumab, and golimumab (Smolen et al., 2020). In 

the patient's refractory to anti-TNF, B-cell reduction through the anti-CD20 antibody 

rituximab can be useful. Other biologicals include tocilizumab, which targets the 

Interleukin-6 receptor, Anakinra, which targets the IL-1 receptor (Smolen et al., 2014, 

2020). 

Recently, there is a combination of two types of DMARDs to RA treatment. For example, 

using one of the conventional DMARDs as Methotrexate with others from biological 

DMARDs, for example, rituximab to RA therapy (Smolen et al., 2014, 2020). Such 

examples are many and aim to reduce symptoms of RA so that the patient can lead a 

healthy life. 

 

1.2.5 Ankylosing spondylitis, and psoriatic arthritis  

 

Ankylosing spondylitis and psoriatic arthritis belong to a group of inflammatory diseases 

known as the spondyloarthritides (Au et al., 2017). Ankylosing spondylitis (AS) is a 

persistent autoimmune condition distinguished via the inflammation of the peripheral joints, 

the axial skeleton, and the attachments of enthuses and ligaments (C. et al., 2017). RA 

and ankylosing spondylitis are chronic and progressive inflammatory joint diseases that 

https://en.wikipedia.org/wiki/Immunosuppressive
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lead to joint destruction and functional disability (Barczyńska et al., 2015). The clinical 

signs of RA and ankylosing spondylitis differ in several ways. The age of onset in RA is 

much older, with an average beginning of 40–50 years compared with 28 years in 

ankylosing spondylitis, and with a female predominance (3:1) compared with the male 

dominance in ankylosing spondylitis (van der Horst-Bruinsma et al., 2009; Barczyńska et 

al., 2015). The genetic association with HLA alleles is more effective in AS, with an HLA-

B27 antigen in 95% of the patients in comparison to RA, with 60% HLA DR1 or DR4 

positives (van der Horst-Bruinsma et al., 2009; Azevedo and Buiar, 2013). The type and 

localisation of AS, the arthritis is mainly localised in the spine, and sacroiliac joints with an 

oligoarthritis of the larger joints (hips, knees, shoulders), whereas in RA is peripheral 

polyarthritis in RA, particularly with the involvement of feet and hands. Radiographic 

imaging of RA patients identifies bone resorption with erosive alterations in contrast with an 

ankylosing disease where bone formation with vertebral syndesmophytes is present (van 

der Horst-Bruinsma et al., 2009). Extra-articular manifestations can occur in both 

conditions, but again these manifestations differ in the heart (pericarditis in RA, conduction 

disturbances in AS), the eye (keratoconjunctivitis sicca and scleritis in RA, versus anterior 

uveitis in AS), lungs (pleural lesions or nodules in RA and fibrosis in AS) and gut (peptic 

ulcers in RA and colitis in AS) (van der Horst-Bruinsma et al., 2009). Both conditions 

respond well to therapy with NSAIDs; however, DMARDs, which are very significant in RA, 

have limited value in AS. TNF alfa blocking drugs, but, found a high efficacy in both 

conditions (van der Horst-Bruinsma et al., 2009). 

Psoriatic arthritis (PA) is a persistent inflammatory joint disorder observed strongly 

combined with chronic inflammatory skin condition psoriasis (Gilis et al., 2018). Both RA 

and psoriatic arthritis are prevalent, persistent inflammatory conditions; both are 

distinguished via pain and swelling in the joints and have significant systemic 
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manifestations (Villeneuve et al., 2013; Verheul et al., 2015; Zabotti et al., 2016). If not 

diagnosed and treated early, both can lead to joint damage with loss of function. For this 

reason, early diagnosis is essential to determine curative strategies that will optimise 

clinical and radiographic outcomes(Gladman, 2015).  

RA and psoriatic arthritis have critical differences in radiographic findings, clinical 

presentation, comorbidities, and pathogenesis to differentiate between these common 

forms of chronic inflammatory arthritis (Merola, Espinoza and Fleischmann, 2018). Joint 

involvement is typically, but not always, asymmetric in psoriatic arthritis, while it is 

predominantly symmetric in RA (Merola, Espinoza and Fleischmann, 2018). Cervical spine 

involvements, and bone erosions, without new bone growth, are characteristic of RA, while 

axial spine involvement, nail dystrophy, and psoriasis are distinctive of psoriatic arthritis 

(Merola, Espinoza and Fleischmann, 2018). Psoriatic arthritis patients typically have 

seronegative test results for cyclic citrullinated peptide antibodies and rheumatoid factor, 

while roughly 80% of RA patients have positive findings for CCP and RF antibodies 

(Merola, Espinoza and Fleischmann, 2018). 

 

 

 

 

 

 

 



18 
 

1.3 Immune cells  

As an autoimmune illness, dendritic cells, macrophages, T cells, and B cells play crucial 

roles in the pathogenesis of RA. These cells can either exist in the synovium or peripheral 

blood. Dendritic cells, along with macrophages and B cells, can present antigen to T cells, 

and therefore perform a pivotal role in the evolution of innate and adaptive immune 

responses (Yap et al., 2018). Activated macrophages secrete a variety of cytokines and 

chemokines to maintain the inflammation in the joints. In RA, the central function of T cells 

is to stimulate macrophages and fibroblasts and modify them into tissue-destructive cells 

(Yap et al., 2018). However, B cells secrete physiologically critical proteins such as RF, 

ACPA, and pro-inflammatory cytokines that are involved in promoting RA. B cells also 

mediate T cell activation by the expression of co-stimulatory molecules (Yap et al., 2018). 

This part provides detailed information on how different immune cells participate in RA 

pathogenesis. 

 

1.3.1 Innate immune cells  

 

Innate immune cells are the primary barrier to preserving human body homeostasis by 

tolerating the commensal bacteria and enhancing immunity to pathogenic species (Chen 

and Kasper, 2014).  

One of these cells is dendritic cells, which are located in tissues that are in contact with the 

external environment, such as the gut, skin, and the inner lining of, nose, and lungs 

(Rescigno, 2011). They are professional antigen-presenting cells. Their primary role is to 

process antigen material and present it on the cell surface on the T cells of the immune 

system. They function as messengers connecting the innate and the adaptive immune 
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systems (Wculek et al., 2019). Before finding foreign antigen, dendritic cells express low 

levels of MHC II protein and co-stimulatory molecules on their cell surface. These 

immature dendritic cells are ineffective at presenting antigen to T cells  (Wculek et al., 

2019). Once a dendritic cell's pattern-recognition receptors recognise a pathogen-

associated molecular pattern, the antigen is phagocytosed, and the dendritic cell then 

becomes stimulated, upregulating the expression of MHC II protein (Wculek et al., 2019). It 

additionally upregulates several co-stimulatory molecules required for T cell activation, 

including CD40 and B7. The latter can interact with CD28 on the surface of a CD4+ T cell 

(Wculek et al., 2019). The dendritic cell is then a fully mature professional antigen-

presenting cell (Wculek et al., 2019). 

 Plasmacytoid and myeloid dendritic cells represent the two main dendritic cells subsets 

and can be identified based on their expression of surface markers, morphology, and 

function (Canavan et al., 2015). They can also be located in an immature state in the 

blood. Once activated, they move to the lymph nodes where they interact with B cells and 

T cells to initiate and also shape the adaptive immune response (Sarkar and Fox, 2005). It 

was reported that the dendritic cells possessed the unique capacity to stimulate naive T 

lymphocytes through their first contact with an antigen (Pan et al., 2017). According to 

several studies, dendritic cells play an important role in RA patients, and the primary 

mechanism is the initiation and maintenance of inflammation via presenting antigens to 

autoreactive T cell (Sarkar and Fox, 2005; Pan et al., 2017; Yap et al., 2018). 

Dendritic cells have been observed in synovium and joint fluid in RA, usually at the centre 

of a cluster of T cells. These dendritic cells express MHC II, the co-stimulatory molecules 

CD40, CD80, CD86, adhesion molecules such as dendritic Cell-Specific Intercellular 

adhesion molecule-3-Grabbing Non-integrin and chemokine receptors such as the CC-

chemokine receptor 7 (Sarkar and Fox, 2005). Dendritic cells can polarise T cells into Th1 
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or Th2 phenotypes based on the cytokine environment. Th1 responses are initiated in the 

context of IL-12 and IL-23. The cytokine milieu of the RA synovium promotes dendritic cell 

differentiation and role that could lead to autoantigen presentation to T cell (Sarkar and 

Fox, 2005; Yap et al., 2018). 

In the intestine, dendritic cells differentiate a wide range of microbiota by specific sensing 

receptors, for instance, toll-like receptors (TLRs) (Chabot et al., 2006). Presently there is 

some evidence to indicate that there are some TLRs subtypes implicated in the disease 

severity within animal models of rheumatoid arthritis, for instance, TLR4 (Abdollahi-

Roodsaz et al., 2012). It should be noted that dendritic cells in an active stage can excrete 

cytokines and chemokines, which involve IL-6 and IL-23 that are associated with the 

migration of dendritic cells and inflammation (Wesa and Galy, 2002). Furthermore, 

dendritic cells in the gut regulate gut-specific IgA output to inhibit microbial contact with the 

linings of the intestinal epithelial cells (Suzuki et al., 2007). 

Macrophages are also thought to be involved in RA pathogenesis. These cells are 

fundamental cellular components of the innate immune system, together with osteoclasts 

and myeloid dendritic cells, which are derived from myelomonocytic origins (Gierut, 

Perlman, and North, 2010). Macrophages distinguish from blood monocytes and have 

fundamental roles in tissues as phagocytes of attacking pathogens and as scavengers of 

apoptotic debris (Gierut, Perlman and North, 2010). Activated macrophages have two 

distinct phenotypes associated with different stimuli: M1 (classically activated) and M2 

(alternatively activated) (Laria et al., 2016). M1 macrophages secrete high levels of pro-

inflammatory cytokines such as TNF, IL-1β, reactive nitrogen, and oxygen intermediates 

eliminating microorganisms and tumour cells; however, M2 macrophages are included in 

the resolution of inflammation by decreased production of pro-inflammatory cytokines, 

phagocytosis of apoptotic neutrophils, and increased synthesis of mediators critical in 
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tissue remodelling, angiogenesis, and wound repair (Laria et al., 2016; Siouti and 

Andreakos, 2019). 

Macrophages are consistently present in synovial tissue. Most of these immune cells 

reside within the tissues in a resting state under normal conditions (Yap et al., 2018). 

Nevertheless, in an inflamed joint of RA, they control the excretion of pro-inflammatory 

cytokines and damaging enzymes that are linked to inflammatory responses and 

consequently leading to joint damage (Raimund W. Kinne et al., 2000; Yap et al., 2018). 

Other than generating cytokines and enzymes, macrophage also mediates multiple RA-

related biological processes such as fibroblast proliferation, recruitment of lymphocytes, 

angiogenesis, cartilage damage, and joint erosion (Raimund W. Kinne et al., 2000; Yap et 

al., 2018). Similar to dendritic cells and B cells, macrophages act as antigen-presenting 

cells. They are found to express high levels of  HLA-DR and leukocyte adhesion 

molecules, which allow macrophage to participate in T cells activation alongside B-cells 

(Schlegel et al., 2013; Yap et al., 2018). The macrophage-mediated T cell activation results 

in the generation of effector T-cells and expression of resulting pro-inflammatory mediators 

such as IL-1α, and IL-1β which enhance the RA pathogenesis (Bondeson et al., 2006; 

Siouti and Andreakos, 2019). 

In the gut, macrophages are found in considerable numbers in the lower gastrointestinal 

tract (both small and large intestines) and are considered to guard the gastrointestinal 

systems. The primary function of this type of cell is connecting with stray microorganisms; 

for example, members of the microbiota that have broken the barrier of epithelial cells 

(Cruz et al., 2007). The resident microorganisms are phagocytosed and quickly killed by 

circulating macrophages. These macrophages utilise mechanisms that involve the 

generation of reactive oxygen species and antimicrobial protein (Cruz et al., 2007). 

Moreover, gut macrophages function rehabilitation of the epithelial cell boundary after 
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microbial infection or injury (Reid et al., 2011). Rebuilding this site following injury is 

essential to prevent microbial infiltration and sepsis in such a microbe-laden environment 

(Pull et al., 2005). Macrophage stimulation in the inflamed synovium is associated with the 

severity of arthritic illness (Raimund W Kinne et al., 2000). 

1.3.2 Adaptive immunity 

 

1.3.2.1 T cells 

 

T cells are one of the main components of the cell-mediated immune response. They are 

essential in hosting an immune response against pathogens. T cells play a significant role 

in defence against intracellular pathogens such as intracellular bacteria, and in immunity to 

extracellular pathogens through activation of B cells and the subsequent production of 

antibodies(Levinson, 2014; Marshall et al., 2018). The antigen-presenting cells process the 

antigen and display it as an MHC molecule on its cell surface. T cells then recognise the 

antigen-MHC complex through T cell receptors and become activated (Marshall et al., 

2018). After stimulation, the T cells produce cytokines to directly attack pathogen cells and 

enable the growth of more T cells. Some T cells will become memory T cells in preparation 

for future infections, and others become cytotoxic T cells to attack virus-containing cells 

(Levinson, 2014; Marshall et al., 2018).   

Extensive research has been carried out in an attempt to explain the role of T cells in RA, 

particularly the T-cell activation (Meednu et al., 2016). T cells can be stimulated through 

different cell types, including dendritic cells, macrophages, and B cells. Although the 

specific roles of T cells in RA are not entirely understood, increasing evidence suggests 

that CD4+ T cells are particularly crucial in RA pathogenesis. Through the stimulation of T-
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cells, CD4+ T-cells interact with MHC II molecules as well as co-stimulating molecules, for 

instance, CD28, which is expressed on the surface of antigen-presenting cells (Podojil and 

Miller, 2009). The role of CD4+ T-cells in the inflammation of RA was established through 

its connection with the specific MHC-II alleles, HLA-DR4 containing similar amino acid 

motifs in the third hypervariable region of DRB-chain. This reaction then leads to a more 

aggressive form of RA (Cope, 2008). Further to cell-to-cell interaction, contemporary 

pieces of evidence also propose that CD4+ T-helper cells principally participate in the RA 

pathogenesis by the excretion of chemokines and cytokines such as IL-17, IL-21, IL-22, 

and IL-23. These cells are significant immune modulators in cell-mediated immunity 

(Meednu et al., 2016). 

T-cell subsets, for instance, type 1 T-helper (Th1) cells, are highly stimulated in RA, and 

they excrete pro-inflammatory cytokines, for example, IFN-gamma, TNF-α, and IL-2 

(Meednu et al., 2016).  Besides, Th1 cells stimulate macrophages to function as antigen-

presenting cells to present MHC-II molecules to the T cells (Cope, 2008). Other types of 

CD4+ T-cells are Th17, and regulatory T (Treg) cells perform fundamental roles in the 

pathogenesis of RA (Alunno et al., 2015). Th17 cells excrete IL-17, which activates the 

stimulation of pro-inflammatory cytokines, chemokines, and matrix metalloproteinases 

(Alunno et al., 2015). Th17 cells migrate into synovial tissue and participate in the bone 

destruction in arthritis through upregulating receptor activator of nuclear factor-kappa‐Β 

ligand (RANKL) on synovial fibroblasts as well as inducing local inflammation. Activated 

Fibroblast-like synoviocytes (FLSs) secrete various inflammatory mediators to recruit and 

expand different inflammatory immune cells. Researchers on the origin of Th17 cells in 

inflammation have shed light on the pathogenic conversion of Foxp3+ T cells (Komatsu 

and Takayanagi, 2018). Th17 cells converted from Foxp3+ T cells (ex Foxp3 Th17 cells) 

contain the most potent osteoclastogenic T cell subset in inflammatory bone loss. It has 



24 
 

been proposed that osteoclastogenic T cells may have developed originally to stop a local 

infection in periodontitis via inducing tooth loss. Besides, Th17 cells also participate in the 

RA pathogenesis through modulating antibody function (Komatsu and Takayanagi, 2018). 

Antibodies and immune complexes have attracted considerable attention for their direct 

role in osteoclastogenesis, and a specific T cell subset in joints was observed to be 

involved in B cell antibody production (Komatsu and Takayanagi, 2018). 

In the past, a higher number of Th17 and higher expression levels of IL-17 have been 

consistently identified in the serum of RA patients' serum in comparison to healthy people 

(Al-Saadany et al., 2016). Several investigations observed that both serum IL-17 and 

circulating Th-17 cells are associated with RA illness activity. Of record, mast cells and 

macrophages are also principal sources of IL-17 as well as to Th-17 cells (Elhewala et al., 

2015). IL-17 activates the production of IL-6, IL-8, vascular endothelial growth factor-A 

(VEGF-A), Matrix metalloproteinase-1, and Matrix metalloproteinase-2 in RA synovial 

fibroblasts (Gaffen, 2009b). Some studies have revealed that IL-17 participated in synovial 

neoangiogenesis, pannus growth, and osteoclastogenesis (Gaffen, 2009b).  

Another hand, CD4+CD25+ Treg cells mainly inhibit autoimmunity via suppressing 

autoreactive lymphocytes mediated via transforming growth factor-beta and IL-10 (Cooles, 

Isaacs, and Anderson, 2013). Nevertheless, Tregs merely function in suppressing the 

proliferation of effector T cells but failed to suppress pro-inflammatory cytokines such as IL-

6 and TNF-α produced from monocytes and activated T-cells (Boissier et al., 2009). The 

same group also showed that the use of Infliximab, an anti-TNF-α, could return the Treg 

activity to prevent inflammatory cytokine generation. Treg cells have been consistently 

found in the blood and synovial fluid of RA patients (Morita et al., 2016). However, the 

percentage of Treg cells in RA patients relative to healthy people is highly questionable. 

Similarly, contradictory findings have also been detected in RA patients when Tregs cell 
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percentage was associated with multiple clinical features, for instance, condition duration, 

age, sex, CRP, RF, and ESR (Yap et al., 2018). 

Another sort of CD4+ type 2 T-helper (Th2) cells play pivotal roles in B-cell stimulation and 

immunoglobulin (Ig) class switching to IgE, and excretion anti-inflammatory cytokines, 

instance, IL-4 and IL-5 (Schulze-Koops and Kalden, 2001). 

A noteworthily, T-cells also play a crucial role in activating B cell responses and antibody 

generation, which consequently participates in RA pathogenesis (Rao, 2018). T follicular 

helper cells are the predominant T cell population that combines with B cells typically within 

inflamed peripheral tissues and the follicles of secondary lymphoid organs (Rao, 2018). 

Typically, T follicular helper cells present B cell-helper phenotype through highly 

expressing B-cell lymphoma 6 protein (Bcl6), C-X-C Motif Chemokine Receptor 5 ( 

CXCR5), chemokine C-X-C motif ligand 13 (CXCL13), IL-21, and Programmed cell death 

protein 1 (Rao et al., 2017; Rao, 2018). Interestingly, there is a distinct B cell-helper T-cell 

population, known as T peripheral helper (Tph) cells, which do not express CXCR5 and 

only express a modest level of Bcl6 in RA synovium. These CXCR5−PD-1hi Tph cells, 

once activated, excrete CXCL13 to recruit B cells for IL-21 production and help in B cell 

survival, proliferation, and maturation (Rao, 2018). 

Taken together, many T cells and the respective effector pathways contribute to arthritis 

disorder by primarily mediating the ongoing inflammatory process. Th-1 cells that mainly 

secrete pro-inflammatory cytokines were thought to be the central cells causing RA. 

Following the identification of other T cell subtypes and their function in RA, for example, 

Th-17, Treg cells, and Th-2, as discussed above, it is evident that RA pathogenesis is 

much more intricate. This improved our understanding of RA and has an essential 

influence on condition treatment and management. 
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Intestinal T cells are frequently found in the lamina propria of the gut and are a vital 

element of the adaptive immune system. Based on activation, naïve CD4+ T cells can 

distinguish into four fundamental categories: T helper 1 (Th1), T helper 2 (Th2), regulatory 

T cells, and T helper (Th17) (Wu and Wu, 2012). Their expression of different cytokines 

differentiates these different CD4+ T cell types and transcription factors (Figure 1-3). The 

correct balance and regulation of T-cell categories are a critical component in identifying 

one's health situation. For instance, Th2 cells play a significant part in inhibiting parasitic 

infections, while Th1 cells are essential for the host response to intracellular pathogens 

(Wu and Wu, 2012). It is thought that the imbalance of T helper reactions can cause 

diseases, such as the Th2 reaction has been associated with allergic responses. 

On the other hand, the Th1 and Th17 responses have been correlated with chronic 

inflammatory illnesses. The regulatory T cell is an essential factor of immunological 

tolerance; its impairment in the function could result in chronic inflammatory illnesses (Wu 

and Wu, 2012). 
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Figure 1-3 Resident bacteria stimulate the diversity of CD4+T cells. Naïve CD4+T 

cells can distinguish into four main cell sorts: T helper 1 (Th1), T helper 2 (Th2), regulatory 

T, and T helper (Th17) cells. Once distinguished, each lineage excretes a specific cytokine, 

as revealed in the image. Th1 cells play a crucial part in removing intracellular bacterial 

infections; however, the vital role of Th2 is to inhibit parasite infection. Tregs cells play in 

regulating the immune reaction. Besides, Th17 cells play a fundamental role in regulating 

infection. Moreover, each subtype differentiation needs the stimulus of a transcription 

factor that is distinctive to each ancestry. The sort of microbiome classes has been 

observed to stimulate a specific T cell distinction pathway (Wu and Wu, 2012). 

 

It has been shown that the intestinal microbiota plays a valuable function in the CD4+ T 

cell maturation, both internal and external, to the gut. Consequently, there is a noteworthy 

reduction in the quantity of CD4+ cells in the lamina propria and significantly decreased 

immunoglobulin A in germ-free rats (Macpherson, Geuking, and McCoy, 2005; Chen and 

Kasper, 2014). Furthermore, GF animals were noted to have an imbalance of Th1/Th2: 

their immunological reaction is biased to the Th2 response. Moreover, lymph nodes and 

spleen of germ-free rats show deficiency as well, such as the absence of lymphocyte 
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zones in these microorganisms (Mazmanian et al., 2005). Recent investigations have also 

revealed a correlation between particular bacterial sorts with the evolution of specific T-cell 

species. Segmented filamentous bacteria (SFB) were observed to be a potent inducer of 

Th17 cells in the lamina propria of the gut (Gaboriau-Routhiau et al., 2009; Ivanov et al., 

2009a). Ivanov and colleagues demonstrated that the insertion of segmented filamentous 

bacteria (SFB) into GF rats brought about the elevation of Th17 cells in the intestinal 

mucosa of the gut (Ivanov et al., 2009a). In the mouse intestine, the existence of SFB has 

appeared to induce the evolution of Th17 cells, which has a vital role in autoimmune 

illnesses, for example, arthritis (Wu et al., 2010), experimental autoimmune 

encephalomyelitis (Lee et al., 2011), and colitis (Stepankova et al., 2007). A current survey 

elegantly showed the particular labelling and following of intestinal white blood cells. It was 

demonstrated that these cells move to and from the gut in a normal condition (Morton et 

al., 2014).  

Additionally, intestinal Th17 cells migration in arthritic K/BxN rats was examined and 

showed that the Th17 cells, which are derived from the gut, terminate in the spleen. The 

part of the intestine-derived Th17 cells found in the spleen associated with the serum level 

of autoantibodies that cause autoimmune disease (Morton et al., 2014). This is the primary 

research that exhibits that the intestinal Th17 cells can participate in autoimmune arthritis. 

However, there are some investigations proposed that the intestinal microbiota plays a 

significant part in conserving the stability among pro- and anti-inflammatory T cells, 

consequently maintaining gut homeostasis. For instance, the introduction of Bacteroides 

fragilis in GF rodents has been found to excite the correct expansion of the immune 

system. Settlement of mice with B. fragilis motivates Tregs and limits a 2, 4, and 6- 

trinitrobenzene sulfonic acid (TNBS-) growth that stimulates colitis (Round and 

Mazmanian, 2010). Moreover, another survey presents evidence that the settlement of 
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mice with microbiota that belongs to the Clostridium class also brought about the Tregs 

activation (Atarashi et al., 2011). Additionally, the establishment of young rats with a 

mixture of Clostridium class brought about defence against dextran sodium sulfate- (DSS-) 

induced colitis (Atarashi et al., 2011).  

Gut CD8+ T cells are predominantly shown in the intestinal mucosa. A low quantity and 

declined cytotoxicity of these cells in germ-free rats suggest that microbial signals are 

crucial in preserving the capacity and number of the gut CD8+ T cells (Imaoka et al., 1996; 

Kawaguchi-Miyashita et al., 1996; Helgeland et al., 2004). These deficiencies may be due 

to the weakened clonal growth of gut CD8+ cells in murine. Even though not needed for 

forming the collection of systemic CD8+ T-cell, the intestinal microbiome functions function 

an imperative part in adopting CD8+ T cells to alter different peripheral blood immune cells, 

such as plasmacytoid DCs, marginal zone B cells and invariant natural killer T cells 

(Fujiwara et al., 2008; Wei et al., 2008). 

 

1.3.2.2 B cells 

 

B cells are lymphocytes that are a vital part of the adaptive immune system. They have a 

protein on the outer surface membrane known as a 'B cell receptor.' This receptor allows B 

cells to bind to a specific antigen. B cells perform three essential functions: (1) they 

differentiate into plasma cells and make antibodies against antigens, (2) they play the role 

of antigen-presenting cells to helper T cells, and (3) they develop into memory B cells after 

activation by antigen interaction (Gupta et al., 2017).B cells play a significant role in the RA 

pathogenesis. They express RF and ACPA, two proteins that have been demonstrated to 

participate in immune complex production and complement stimulation in the joints 
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(Silverman and Carson, 2003; Bugatti et al., 2014). B cells both respond to and produce 

the cytokines (including tumour necrosis factor-α, interleukin (IL)-1, IL-6, and IL-17A), and 

chemokines that promote leukocyte infiltration into the joints, synovial hyperplasia, and 

angiogenesis. B cells also can act as antigen-presenting cells and can induce T cell 

activation through the expression of co-stimulatory molecules (Wajid Ali Khan and Ali 

Khan, 2019). Furthermore, pro-inflammatory cytokines and receptor activator of nuclear 

factor ligand (RANKL) generated via activated B cells, macrophages, T cells, and synovial 

fibroblasts increase the differentiation and stimulation of osteoclasts, leading to resorption 

of bone tissue (Bugatti et al., 2014).  

Besides, the contribution of B cells in bone homeostasis is recommended by the 

recognition that autoantibodies recognising citrullinated vimentin can enhance the 

differentiation of mononuclear cells to osteoclasts (Bugatti et al., 2014). 

Vimentin is a cytoskeleton intermediate filament protein found in cells of mesenchymal 

origin, including endothelial cells, leukocytes, and smooth muscle cells (Eriksson et al., 

2009). It is subjected to citrullination through peptidyl arginine deiminase under high 

calcium concentrations, which can happen during macrophage apoptosis. Citrullinated 

vimentin has been determined to have a vital role in the generation of ACPAs (Asaga, 

Yamada, and Senshu, 1998; Soós et al., 2007). ACPA against citrullinated proteins, such 

as vimentin, have been found to highly specific markers for RA and other autoimmune 

conditions (Soós et al., 2007). Besides, B cells can be immunoregulatory via the provision 

of IL-10 and other mechanisms yet to be explained (Kalampokis, Yoshizaki and Tedder, 

2013). 

Researches have revealed that the use of an anti-CD20 monoclonal antibody in RA 

reduces circulating B cells, producing an improvement in illness activity for up to 1 year 
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(Kneitz, Wilhelm, and Tony, 2004). It is thus evident that B cells perform a pivotal role in 

the RA pathophysiology and therefore warrant further investigation being a therapeutic 

target. 

T cell‐dependent B cell generation of antibodies has been associated with microbial 

antigen exposure, microbial antigens, and metabolites, such as short‐chain fatty acids, 

actively enhance plasma B cell differentiation in both systemic and mucosal locations (Kim 

et al., 2016). IgA serves as the primary form of secretory antibody identified at the mucosal 

surface. It thus plays a significant function in maintaining intestinal homeostasis (Mantis, 

Rol, and Corthésy, 2011). Possible mechanisms include binding and prevention of uptake 

of microbial antigens in the lumen, bacterial disruptions and agglutination, neutralisation of 

pathogenic bacterial toxins, and stimulation of growing bacteria (Zhao and Elson, 2018). 

Various mechanisms have been proposed to explain the establishment of mutualism 

between secretory IgA and intestinal microbiota. Secretory IgA can enhance members of 

the microbiota, such as Bacteroides thetaiotaomicron, to decrease the expression of 

pro‐inflammatory surface epitopes (Peterson et al., 2007). Coating of some luminal 

bacteria via secretory IgA guides microorganisms entrance into the Peyer's patches, where 

a germinal centre response is produced, and a positive loop of antigen‐specific IgA 

production is established (Fransen et al., 2015). Microbial antigen identification mediated 

via various MHC repertoires additionally contributes to modified IgA repertoires, which in 

turn changes microbiota composition in the intestine (Kubinak et al., 2015). 

Due to physical proximity, the intestinal microbiota dramatically affects the production of 

intestinal IgA (Talham et al., 1999). The reduction of intestinal microbial activation results in 

fewer numbers of IgA+ plasma cells in the intestine and decreased abundance of IgA 

(Lécuyer et al., 2014). This is possible because of the compromised development of 
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isolated lymphoid tissues – a major site for T cell‐independent IgA production (Tsuji et al., 

2008). Segmented filamentous bacteria potently boosts T‐cell‐independent IgA production 

via activation of postnatal development of isolated lymphoid tissues and tertiary lymphoid 

tissue in the gastrointestinal tract (Talham et al., 1999; Lécuyer et al., 2014). A part of 

antimicrobial IgA in the intestine is polyreactive and produced from this high‐capacity 

low‐affinity pathway (Zhao and Elson, 2018).  Nevertheless, the majority of intestinal IgA is 

T cell‐dependent, especially that directed at microbial proteins and is a member of a 

low‐capacity and high‐affinity pathway. Here T‐dependent IgA mainly happens in the 

payer's patches through B cells interacting with antigen‐loaded dendritic cells into a 

chemokine Receptor CCR6-Dependent manner (Macpherson and Uhr, 2004; Reboldi et 

al., 2016). 

Microorganisms such as segment filament bacteria and Mucispirillum sp. capable of 

adhering to epithelial cells are potent inducers of T‐cell‐dependent IgA (Bunker et al., 

2015), presumably through activated uptake of their antigens into dendritic cells. 

IgA‐producing B cells home to the intestinal lamina propria, where IgA is generated and 

then moved across the epithelium into the intestinal lumen through polymeric 

immunoglobulin receptor expressed on the basolateral side of epithelial cells (Song et al., 

1994). Polymeric immunoglobulin receptor deficiency leads to the abrogation of IgM and 

IgA transcytosis, resulting in increased serum IgG antibodies against intestinal 

commensals and pathogens, showing the crucial role of secretory antibodies in limiting 

systemic exposure to microbial antigens (Zhao and Elson, 2018). 

Although investigated for several decades, the role of intestinal microbiota in IgA induction 

was intensely studied in the past few years (Kau et al., 2015; Viladomiu et al., 2017). 

Further, it has been found that colonisation of germ-free (GF) mice with IgA‐coated 
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bacteria from inflammatory bowel patients exacerbated dextran sulphate sodium‐induced 

colitis (Palm et al., 2014). Moreover, Enrichment of Enterobacteriaceae taxa was 

distinguished with high IgA coating in Crohn's patients‐linked spondyloarthritis and 

diet‐dependent enteropathy, respectively (Kau et al., 2015; Viladomiu et al., 2017). 

Intestinal some IgG subclasses and IgM and also associated with gut microbiota, the 

majority of which are excited through the T‐cell‐independent pathway (Ehrenstein and 

Notley, 2010; Koch et al., 2016). Surprisingly, an increasing amount of IgG2b and IgG3 

have been found in the secretory compartment in the intestine as well. The production of 

these antibodies is reliant on Toll‐like receptor signalling via B cells (Koch et al., 2016). 

Moreover, IgM+ plasma cells in the human gut secrete IgM antibodies that assist retain a 

different community of commensals in the mucus layer in synergy with IgA (Zhao and 

Elson, 2018). The IgD isotype is rare compared with other antibody isotypes. Still, recently 

it was shown that IgD class switch recombination happens preferentially in mucosal places 

and is reliant on a diversified intestinal microbiota (Choi et al., 2017). 

 

1.3.2.3 Natural killer T cells 

 

Natural killer T (NKT) cells are differentiated by an invariant T cell receptor expression, 

Vα24Jα18 in human beings and the orthologous Vα14Jα18 in murine. NKT cells identify 

microbial glycolipid components presented by the non-classical MHC member, CD. It has 

been found that NKT cells and gamma delta T cells are fast responders to antigenic 

stimulation and are able of generating a variety of immunoregulatory cytokines (Baxter et 

al., 1997; Akbari et al., 2003; Bendelac, Savage and Teyton, 2007). Inside the gut, NKT 

cells are defensive in Th1-mediated models of inflammatory bowel disease (Heller et al., 
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2002). In recent times, it has been demonstrated that microbial stimuli of NKT cells in the 

mice gut influence NKT cell phenotypic and functional development (Wingender et al., 

2012). This indicates that NKT cells perform protective roles in arthritis models (Coppieters 

et al., 2007) and spondyloarthropathy (Jacques et al., 2010).  

The consequences of several surveys (Yanagihara et al., 1999; Aggarwal, Sharma and 

Bhatnagar, 2013, 2014) were shown that NKT cells and NK cells numbers are remarkably 

decreased in the peripheral blood of arthritis patients. Obtaining information is proposed 

that a reduction of NKT cells and NK cells numbers can bring about to the increased illness 

activity and joint damage as well as bone destruction in rheumatoid arthritis. 

 

1.3.2.4 Gamma delta T cells 

 

There are many cells considered a link between innate and adaptive immunity, for 

example, gamma delta cells. They are found in massive quantities in intestinal mucosa in 

comparison with their rate in other areas such as the spleen or lymph nodes (50% to 1,5%) 

(Wu and Wu, 2012). There are many functions for gamma delta T cells as bearing various 

antigen receptor particles (TCR) on their cell surfaces and have numerous features of the 

innate immune system cells, which include Toll-like receptors, the main innate immunity 

receptors expression, and dectin-1 (Mokuno et al., 2000; Martin et al., 2009). The response 

of gamma delta T cells to the microbiome is caused by a dectin-1 receptor which identified 

microbial beta-glucans (Evans et al., 2011). Furthermore, gamma delta T cells secrete a 

fibroblast growth factor that functions an essential role in changing the intestinal epithelial 

growth (Boismenu and Havran, 1994).  
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It is believed that modification of the quantity of gamma delta T cell or the capacity might, 

subsequently, have a critical impact on the health of the intestine (Wu and Wu, 2012). 

Even though resident microorganism’s loss has a limited impact on the numbers and 

gamma delta T cells properties, the cytolytic vitality of gamma delta T cells was decreased 

in GF murine. It is suggested that the microbiome plays an important function in preserving 

the gamma delta capacity. They are a powerful maker of inflammatory cytokines, for 

instance, IL-17, TNF-α, and IFN-γ (Lockhart, Green and Flynn, 2006; Shibata et al., 2007). 

Gamma delta T cells also are capable of producing disease in the collagen produced 

arthritis model (Roark et al., 2007). It should be recalled that an increase of gamma delta T 

cells in synovial fluids and peripheral blood of arthritis patients in comparison with healthy 

control subjects (Gaur, Misra and Aggarwal, 2015). In addition, an elevated level of IL-17 is 

produced by gamma delta T cells in patients who have ankylosing spondylitis (Kenna et al., 

2012). 

 

1.3.2.5 Mucosal-associated invariant T cells (MAIT) 

 

These cells are an innate-like T cells group that are plentiful in a human intestine, blood 

and liver and excrete a range of proinflammatory cytokines like IL-17 and IFN-γ in reaction 

to antigenic stimuli (Gold et al., 2010; Le Bourhis et al., 2010; Dusseaux et al., 2011). As 

NKT cells, MAIT cells carry an invariant T cell receptor (Vα7.2 in human beings) that 

distinguishes antigen presented via the non-classical MHC as molecule MR1 (Treiner et 

al., 2003). 

MR1-related mucosal-associated invariant T (MAIT) cells differentiate vitamin B 

metabolites, which are produced by a wide range of microbiota (Howson, Salio and 



36 
 

Cerundolo, 2015). For example, bacterial and fungal communities (Cella et al., 2009; 

Buonocore et al., 2010). Recent studies have detected that the rate of MAIT cells was 

decreased in arthritis patients, in comparison with healthy controls, proposing that MAIT 

cells might play a significant protective role, which prevents from the progression and 

development of rheumatoid arthritis (Cho et al., 2014). 

 

1.3.2.6 Cytokines 

 

1.3.2.6.1 IL-6 

 

IL6 is one of the most prevalent cytokines presents in both the blood and joints of patients 

with active RA. It has been shown that in the synovial joints, IL6 is generated via 

fibroblasts, endothelial cells, synoviocytes, monocytes, and lymphocytes (Hirano et al., 

1988; Guerne et al., 1989; Kishimoto, 1992). Higher concentrations of IL6 and IL6 receptor 

(IL6R) have been observed in the serum of RA patients compared with healthy control 

subjects, further in synovial fluid than serum, reflecting local generating through the 

rheumatoid synovium (Hirano et al., 1988; Houssiau et al., 1988; Swaak et al., 1988). 

Serum IL6 level associated with and radiological joint damage and illness activity. 

However, another study found the lowering of IL-6 levels through the first twelve months of 

DMARDs therapy to be the prognostic marker used for clinical outcomes in RA patients 

(Straub et al., 1997). Synovial fluid with high concentrations of IL 6 activates osteoclast, 

and the level of activation associates with joint destruction in these patients (Kotake et al., 

2009). Though, the specific pathogenic part of IL6 in RA is arguable due to IL6 has both 

anti-inflammatory and proinflammatory characteristics in vitro. Furthermore, IL-6 has been 
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associated with illness states such as obesity and diabetes when chronically increased. 

Forming a relationship between IL-6 and microbial diversity or abundance may establish 

new avenues for clinical therapy or develop diagnostic evaluations (Cooper et al., 2016). It 

has been revealed that lactic acid bacteria (such as Lactococcus, and Bifidobacterium) 

stimulate the production of interleukin-6 (IL-6) (Miettinen, Vuopio-Varkila and Varkila, 

1996). Further, IL-6 is produced via oral bacteria, for example, S. gorgonii,  

Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, S. sanguinis and 

Inactivated Streptococcus mitis  in both human healthy and atherosclerotic patients (Pessi 

et al., 2015). Moreover, Proteases excreted through the fungal microbiome, such as 

Aspergillus fumigatus activates the IL-6 production (Borger et al., 1999). 

 

1.3.2.6.2  IL-17 

 

IL-17 is defined as a proinflammatory cytokine generated by human T cells as T helper 17, 

however, a significant part of the IL-17 released by innate immune cells such as INKT cells 

and gamma delta T cells through an inflammatory reaction in response to pathogens, 

stress or injury (Cua and Tato, 2010). IL-17 has been appeared to be generated 4-8 hrs 

following a bacterial pathogen (Takatori et al., 2008; Kobori et al., 2010). Innate immune 

cells that produce IL-17 have been observed to colonise mostly in the gut, the skin, and 

mucosal tissues, and play as the primary line of resistance against pathogens. 

Furthermore, they enhance neutrophils and cytokines recruitment that are generated by 

epithelial cells for defensive immunity and, additionally,  physiological process regulation, 

for instance, angiogenesis and tight epithelial junctions (Cua and Tato, 2010). The 

distinguishing feature of the innate immune reaction is its fast response to the microbial 
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pathogens by excreting components that mobilise significant quantities of neutrophils by 

elevating IL-1, IL-6 and tumour necrosis factor (TNF) activation, which enhance tissue 

penetration, which is critical for dynamic and fast monitoring of microbial infection (Cua and 

Tato, 2010).  

There are some studies demonstrated that raised levels of IL-17 and its receptor is shown 

in rheumatoid arthritis synovia and tissue cells, and IL-17 can enhance the degradation of 

murine models joint (Chabaud et al., 1998; Kotake et al., 1999; Ziolkowska et al., 2000; Cai 

et al., 2001; Honorati et al., 2001). 

It shows that there is a link between the physiological characteristics of gut microbiota and 

stimulation of IL-17A in a physiological manner to the inhibition of pro-inflammatory-based 

illnesses and also to fight against other microbes. Thus, changes in gut microbiota 

population can be related to the pathologic expression of IL-17A and then the stimulation of 

pro-inflammatory-based illnesses (Douzandeh-Mobarrez and Kariminik, 2017). For 

example, pathologic expression of IL-17A was associated with the increased number of 

SFB bacteria (Gaboriau-Routhiau et al., 2009; Ivanov et al., 2009a). Moreover, gut 

microbiota population characteristic can be regarded as vital factors for determining the 

pathological or physiological features of Th17. For example, some proofs approve that 

adherence bacteria stimulate Th17 variation more efficiently than other microbiomes 

(Atarashi et al., 2015). The bacteria which has superantigenic, for example, 

Staphylococcus aureus, are identified as critical candidates for the introduction of 

pathological roles of Th17 in the mucosal immune response (Islander et al., 2010). 

 

 



39 
 

1.3.2.6.3  IL-22 

 

It has been noticed that IL-22 plays an essential role in the inflammation, host defence, and 

tissue homeostasis, and also, the IL-22-IL-22R pathway contributes to regulating 

inflammation, tissue repair, and immunity (Sonnenberg, Fouser and Artis, 2011). IL-22 is 

expressed by immune cells existing underneath the epithelium and is induced via 

microorganisms present in the gut. IL-22 catalyses the epithelial cells through the IL-

22RA1–IL-10R2 receptor complex stimulating alterations in the expression of genes 

included in the preservation of epithelial barrier integrity, with an assortment of functions in 

pathogens resistance, for instance, tight junction fortification, the secretion of a broad 

range of bactericidal compounds, and mucus layer changes and hydration. These 

mechanisms of pathogen resistance, in turn, impact the composition of microbiota 

communities and generate an environment that eliminates pathogens (Schreiber, Arasteh 

and Lawley, 2015). Recently, da Rocha et al. have shown that an increased Serum IL-22 in 

RA Patients with association with disease Activity (da Rocha et al., 2012a). 

It has been noted that segmented filamentous bacteria can induce IL-22 expression in the 

gut of mice (Kolwijck and van de Veerdonk, 2014). Further, Aspergillus is a potent inducer 

of the cytokine IL‐22, which induces defensins (proteins identified in human, animals, and 

plants and their function as antimicrobial peptides which are active against bacteria and 

fungi) which may affect the pulmonary microbiome composition (Kolwijck and van de 

Veerdonk, 2014). 
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1.3.2.6.4 IL-23  

 

IL-23 plays a fundamental role in maintaining the intestinal homeostasis via inducing to 

secrete antimicrobial proteins as defensins, which limit the connection between microbiota 

and intestinal epithelial cells (Mease, 2015). IL-23 also is a part of a fascinating collection 

of cytokines that plays a crucial role in chronic inflammatory illnesses development as 

rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and psoriasis (Mease, 2015). 

It is hypothesised that in hereditarily predisposed people, exogenous and endogenous 

inducement, for example, changes in the commensals, microbial antigens, immunologic 

modulation, and biomechanical stress, might result in an escalated presence of cytokines 

as IL-23, which in turn motivate the induction and differentiation of TH17 and other immune 

cells, which are a part of the innate immune system that elicit adaptive immune activities 

and inflammatory autoimmune illnesses (Mease, 2015). IL-23 produces IL-17a, IL-17F, IL-

6, and TNF-alpha. TH17 activated by the IL-23, which in turn promotes osteoclast 

development by IL-17 production, which stimulates receptor activator of NF-kappa B ligand 

and then bone destruction of arthritic patients (H. ‐R. Kim et al., 2007; Wendling, 2008). 

Sato and co-works observed that the mRNA expression of RANKL associates with that of 

IL-23 in synovial tissues of arthritic patients. In RA, IL-23 level associates with IL-17 levels 

in the synovial fluid as well as with IL-17 and TNF-levels in the serum (Sato et al., 2006). It 

has been shown that IL-23 activates gut microbiota dysbiosis related to susceptibility to 

spondyloarthritis and ileitis in ZAP-70 mutant SKG mice (Rehaume et al., 2017). 
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1.4 Microbiome 

 

1.4.1 General introduction 

 

The term “microbiome” describes the genetic material of all microorganisms (bacteria, 

fungi, viruses, and protozoa) that reside within and on our bodies. Conversely, the term 

“microbiota” refers specifically to the viable microorganisms that are found within these 

populations (Marchesi and Ravel, 2015). Whilst previous estimates state that the number 

of microbial cells present in our microbiota exceeded our own by a factor of ten, current 

estimates are more conservative and suggest that the number of bacterial cells in the 

human body is roughly equal to the number of human cells, representing a mass of 

approximately 0.2 kg (Sender, Fuchs and Milo, 2016). In either case, the microbiota 

represents a significant source of non-host biological material. It is further well established 

that continuous dynamic interactions between the resident microbiota and the human body 

occur, and that these interactions are required for the maintenance of normal physiology 

(Choy, 2012). Resident microorganisms obtain from their host a steady source of nutrients, 

protection, transport, and a stable environment. Simultaneously, they afford various 

advantages to the host by protecting against infection and colonisation of pathogenic 

microorganisms, producing substances such as enzymes and vitamin K that support 

digestion and nutrition, and by modulating the activity and development of the immune 

system (Choy, 2012). 

It should be noted that numerous of these microorganisms are innocuous, as well as 

fundamental to the host health. However, others can bring about diseases, and are in this 

way, considered pathogens (Relman and Falkow, 2001). Many factors have been reported 
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to influence the human microbiota. These include age, diet, sex hormones, taking 

medications, travel, and another disease (D’Argenio and Salvatore, 2015). 

 

1.4.2 Microbiome changes in diseases 

 

Until recently, human microbiology was dependent on the identification of single microbes, 

for instance, bacteria, fungi, and viruses, often isolated from patients with acute or chronic 

infections. Novel culture-independent molecular biochemical analyses (genomics, 

metabolomics, transcriptomics, proteomics) now enable to the identification and 

classification of diverse microbial populations in a given ecosystem (microbiota), such as 

the gut and other distal niches, to evaluate all genomes in these ecosystems (microbiome) 

as well as their gene products (Blum, 2017). These analyses showed that each individual 

has its microbiota that performs a role in health, such as in immunity, biosynthesis of 

vitamins or steroid hormones, neurological signalling, as well as the metabolism of drugs. 

Besides, they significantly provided a new understanding of the role of the microbiome in 

the pathogenesis of a wide range of human illnesses such as RA. It is predicted that these 

new insights will translate into diagnostic, therapeutic, and preventive perspectives in the 

context of personalised/precision medicine (Blum, 2017). 

In this section, we critically review and summarise literature reports on the change of 

microbiome and mechanisms involved in the progress and development of major human 

diseases, which include ankylosing spondylitis, psoriatic arthritis, obesity, diabetes, 

atherosclerotic, Inflammatory bowel disease,  gout, and cancer. 
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1.4.2.1 Ankylosing spondylitis, and psoriatic arthritis 

 

Patients with ankylosing spondylitis have been shown to have a distinct gut microbial 

signature in comparison to healthy people, with a higher abundance of Ruminococcaceae,  

Bacteroidaceae, Lachnospiraceae,  Rikenellaceae, and Porphyromonadaceae,  and lower 

abundance of Prevotellaceae and Veillonellaceae (Costello et al., 2015). Further, another 

study by Zhou and his workers identified that AS-enriched species, including Prevotella 

copri, Parabacteroides distasonis, Eubacterium siraeum, Bacteroides coprophilus, and 

Acidaminococcus fermentans (Zhou et al., 2020). Pathway analysis showed elevated 

lipopolysaccharide biosynthesis, oxidative phosphorylation, and glycosaminoglycan 

degradation in the AS intestinal microbiome. Microbial signatures of AS gut selected by the 

random forest model exhibited high distinguishing accuracy (Zhou et al., 2020). Some 

characteristic signatures associated with autoimmunity, such as Bacteroides fragilis, were 

also observed. Lastly, in vitro experiments demonstrated an increased amount of IFN-γ 

producing cells triggered through a bacterial peptide of AS-enriched species, mimicking 

type II collagen (Zhou et al., 2020).   

These results collectively show that the intestinal microbiome was perturbed in untreated 

AS patients with diagnostic potential, and some AS-enriched species might be triggers of 

autoimmunity via molecular mimicry. Additionally, different inflammatory arthritis shared 

some characteristic microbial signatures. 

The intestinal microbiome is also altered in psoriatic arthritis, in which there is overall 

decreased diversity marked by a lower abundance of Pseudobutyrivibrio, Coprococcus, 

Akkermansia, and Ruminococcus, which correlates with higher concentrations of secretory 

IgA and lower concentrations of receptor activator of nuclear factor κ-B ligand as well as 
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decreased concentrations of the medium-chain fatty acids (MCFAs) hexanoate and 

heptanoate (Scher et al., 2015a). Interestingly, Akkermansia and Ruminococcus are both 

mucin degrading gut bacteria that produce SCFAs and are essential for intestinal 

homeostasis. 

 

1.4.2.2 Obesity 

 

Obesity is a multifactorial condition resulting in the excessive increase of adipose tissue. 

The gut microbiome is known to protect gut mucosa permeability and to control the 

fermentation and absorption of dietary polysaccharides, possibly explaining its significance 

in the regulation of fat accumulation and the resultant obesity (Muscogiuri et al., 2019). 

Recent research into the role of the intestinal microbiome in obesity has revealed some 

fascinating links. One study investigating this link examined the gut microbiome in obese 

and lean mice and human subjects (Ley et al., 2005; Ley, 2010). They found that the 

relative abundance of two dominant types of bacteria, Firmicutes and Bacteroidetes, was 

different in obese and lean subjects. They further investigated the effect of this difference 

in intestinal microbiota in mice. Changes in the gastrointestinal microbiota that affect 

metabolism were detected, and the microbiome in obese mice was found to harvest more 

energy from food than their lean counterparts (Turnbaugh et al., 2006). The authors 

additionally saw that this effect could be transmitted. Colonising lean mice with microbiota 

from obese individuals significantly increased total body fat. This study indicates that the 

gut microbiome plays a vital role in obesity (Ley et al., 2005; Turnbaugh et al., 2006). It 

reveals that changes in the intestinal microbiome have a significant impact on metabolic 

function. 
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The suggested mechanisms by which the intestinal microbiota could contribute to the 

pathogenesis of obesity include a high abundance of bacteria that ferment carbohydrates, 

leading to increased rates of short-chain fatty acid biosynthesis, providing an additional 

source of energy for the host, that is ultimately stored as lipids or glucose (Muscogiuri et 

al., 2019). 

 

1.4.2.3 Diabetes mellitus  

 

In 2016, the World Health Organization (WHO) expanded the predominance of diabetic 

disease from current levels to 592 million (12%) in 2035 (WHO, 2016), becoming the third 

major illness after cancer and cardiovascular disease. 

By using genetically engineered diabetic mice (non‐obese diabetic, NOD‐mice), bacteria in 

the phylum Bacteroidetes (including S24‐7, Prevotella, and unclassified Bacteriodales) 

have been demonstrated to protect against the development of type I diabetes potentially. 

In contrast, increased levels of members of the Firmicutes phylum, i.e., Ruminococcus, 

Lachnospiraceae, and Oscillospira, were associated with disease development (Krych et 

al., 2015). Moreover, through re‐deriving NOD‐mice as germ‐free, the impact of microbiota 

on diabetes development was assessed (Greiner et al., 2014). Results showed that the 

absence of microbiota increased inflammation in the islets of Langerhans in the pancreas 

(insulitis) and decreased glycemic control. At the same time, diabetes incidence was not 

affected (Greiner et al., 2014). Only a few studies on the gut microbiota have so far been 

conducted in humans with type I diabetes. In human researchers compared the intestinal 

microbiome of children aged 1−5years with age‐matched healthy controls and identified 

that children with diabetes had a higher abundance of the combined levels of the phylum 
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Bacteroidetes and the class Bacilli (De Goffau et al., 2014). Healthy children had higher 

levels of Clostridium cluster IV and XIVa (De Goffau et al., 2014). This is in contrast to the 

NOD mouse experiments and shows important species‐differences in host‐microbiome 

interactions. 

Regarding bacterial metabolites, healthy children had an increased abundance of 

butyrate‐producing bacteria (De Goffau et al., 2014). Type I diabetic children were also 

characterised through increased intestinal microbial diversity (De Goffau et al., 2014). This 

is interesting, as obese and type II diabetic adults generally have lower gut microbial 

diversity, which may point towards a complex age‐related dynamic of the intestinal 

microbiota development. 

The type II diabetic microbiome has lower species diversity and a lower abundance of 

butyrate‐producing bacteria, such as Faecalibacterium prausnitzii (Qin et al., 2012; Le 

Chatelier et al., 2013; Remely et al., 2014). Also, Clostridium cluster IV and subcluster 

XIVa are lower in type II diabetics as compared to lean non‐diabetic individuals (Sasaki et 

al., 2013). Besides, a higher abundance of lactic acid bacteria and Bifidobacteria were 

observed (Sasaki et al., 2013; Remely et al., 2014). Lactic acid bacteria are usually 

regarded as beneficial, and the relevance of this finding is presently not known. One might 

speculate whether people with type II diabetes consume a diet with a higher content of 

sugar, which may promote the growth of carbohydrate-utilising bacteria, such as 

bifidobacteria and lactobacilli (Markowiak and Ślizewska, 2017). This illustrates the need 

for causative studies to delineate which bacterial species in the intestine cause insulin 

resistance and which bacteria are merely found as a consequence of an unhealthy diet. 

When performing comparative microbiota studies of healthy versus diseased states in 

humans, careful documentation of dietary patterns is vital for the interpretation of results. 
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1.4.2.4 Atherosclerosis 

 

The intestinal microbial composition in healthy people was characterised by increased 

levels of Eubacterium and Roseburia, while patients with atherosclerosis had increased 

abundance of Collinsella (Karlsson et al., 2012). Additional studies have also revealed 

changes in the intestinal microbiota of atherosclerosis patients, as well as the presence of 

bacterial DNA in atherosclerotic plaques (Koren et al., 2010). Hence, bacteria may 

influence atherogenesis in several ways, including the reproduction of pro‐ or 

anti‐atherogenic metabolites, inflammation in plaques, and by modulation of cholesterol 

metabolism through bile acids (Sayin et al., 2013). Interestingly, the use of probiotic 

bacteria has shown efficacy in the prevention of atherosclerosis in animal models (Chen et 

al., 2013), and can decrease biomarkers for cardiovascular risk in humans (Naruszewicz et 

al., 2002). It remains to be elucidated whether it will be possible to prevent cardiovascular 

events in humans utilising targeted microbial modulations. 

 

1.4.2.5 Inflammatory bowel disease 

 

It is frequently associated with a state of dysbiosis accompanied through a shift towards an 

elevated abundance of microbes capable of coping with oxidative stress with a notable 

increase in facultative anaerobic bacteria of the Enterobacteriaceae family. Ruminococcus 

gnavus abundance is also observed to be elevated in inflammatory bowel disease, and 

certain strains may have evolved to thrive in inflammatory bowel disease intestinal 

environment by mechanisms of oxidative stress responses (Hall et al., 2017). Antibiotic 
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usage during pregnancy, but not during infantile age, is positively associated with an 

elevated risk of developing very early onset inflammatory bowel disease and may be 

attributed to alterations in the gut microbiome (Örtqvist et al., 2019). 

Lactobacillus gasseri SF1138 strain probiotic has been shown to exhibit anti-inflammatory 

effects in mice models of colitis. It can maintain gut barrier integrity, proposing its protective 

role against the progression of inflammatory intestinal diseases (Ding et al., 2019). 

Interestingly, L. gasseri SF1138 does not modulate the dysbiotic microbiome composition 

seen in colitis and is suspected of secreting molecules that interact with intestinal cells to 

protect from inflammation (Di Luccia et al., 2018). 

The approach of tungstate-mediated editing of the intestinal microbiome can lessen the 

severity of intestinal inflammation through inhibiting molybdenum-cofactor-dependent 

microbial respiratory pathways expressed in specific bacterial populations. They are 

operational only during episodes of inflammation without significant changes to the 

microbiome composition (Zhu et al., 2018). 

 

1.4.2.6 Gout  

 

It is a genetic or acquired metabolic disorder with symptoms of severe joint pain with 

swelling caused by the increase of uric acid synthesis produced from purine metabolic 

abnormalities (Zhou et al., 2014). 

The intestinal microbiomes of patients with gout have been observed to be dysregulated in 

comparison to healthy individuals, with an elevated abundance of opportunistic pathogens, 

and similar enrichment was also shown in auto-immune diseases (Shao et al., 2017). 

Bacteroides caccase and Bacteroides xylanisolvens were also found in higher abundance 
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in gout patients, whereas F. prausnitzii and Bifidobacterium pseudocatenulatum were seen 

in lower abundance. 

The Microbial Index of Gout, based on the relative abundance of 17 bacterial markers, was 

suggested as a new method of diagnosis for gout and produced a higher accuracy of 

88.9% correlated to conventional blood uric acid tests (Guo et al., 2016). 

 

1.4.2.7 Cancer 

 

Some microbiome taxa, such as Clostridium and Bacteroides, have been associated with 

an expansion in tumour growth rate (Jahani-Sherafat et al., 2018). In contrast, other taxa, 

such as Bifidobacteria and Lactobacillus, are known to prevent tumour formation (Goulet et 

al., 2019). As of December 2017, there was preliminary and indirect evidence that the 

intestinal microbiome might mediate response to programmed cell death protein 1 (PD-1) 

inhibitors; the mechanism was unknown (Syn et al., 2017). 
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1.4.3 Microbial niches  

The resident microbiota is found in different locations in the human body, for example, the 

gut, oral, and female reproductive system. The distribution of human microbiome locations 

is revealed in Figure 1-4.  

 

 

Figure 1-4 “Genus- and phylum-level classification of Bacteria colonising a human 

body.” Each body location is colonised by a particular bacterial taxonomy allocation (Grice 
and Segre, 2012). 

 

 

The most abundant microbial community in the human body resides in the intestine. The 

human gastrointestinal tract contains more than 500 microbial species and roughly 1014 

bacterial cells (Haller, 2018). Dominant bacterial genera encountered in the various 

sections of the gastrointestinal tract are observed in Figure 1-5.  
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The anaerobic bacteria, consisting of mainly Lactobacillus, Bacteroides, Clostridium, 

Porphyromonas, and Bifidobacterium, are dominant species in the gut microbiota (Bäckhed 

et al., 2005).  However, the microbiome undergoes dynamic changes during the human life 

span. The alteration of the intestinal microbiome during the human life span is shown 

in Figure 1-6.  

The first gut microorganism’s colonisation in humans starts during childbirth when the new 

baby is exposed to microbiota in the vaginal canal of the mother. Various studies propose 

that infants born through cesarean section are at a higher risk of non-communicable 

conditions (illnesses that are not transmitted immediately from one individual to another) 

than infants born by vaginal delivery (Stinson, Payne, and Keelan, 2018).  

The large worldwide disparity is found in C-section rates, highest rates being documented 

in Latin America and the Caribbean region (40.5%), followed by Northern America (32.3%), 

Oceania (31.1%), Europe (25%), Asia (19.2%) and Africa (7.3%) (Singh, Hashmi and 

Swain, 2018). 

 In specific, epidemiological surveys have associated Cesarean birth with raised 

proportions of autoimmune diseases, obesity, asthma, and allergies (Stinson, Payne and 

Keelan, 2018). The way of birth has also been correlated with the variation of the infant 

microbiota, which is bypassed in cesarean births, and this abnormal colonisation of the 

first-life microbiota is the mediator of later-life negative results noted in infants born by 

cesarean birth (Dominguez-Bello et al., 2010, Stinson, Payne and Keelan, 2018).  

The study by Dominguez-Bello found C-section infants harboured bacterial populations 

similar to those found on the skin surface, predominated by Staphylococcus, 

Propionibacterium spp, and Corynebacterium. However, vaginally delivered infants 

acquired bacterial communities resembling their maternal vaginal microbiota, 
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predominated by Prevotella, Lactobacillus, and Sneathia spp. These results establish an 

essential baseline for studies tracking the human microbiome’s successional evolution in 

various body habitats following different delivery modes, and their linked impacts on baby 

health (Dominguez-Bello et al., 2010). Furthermore, it has been shown that Infants born via 

cesarean section had lower numbers of Bacteroides and Bifidobacteria and also found that 

cesarean deliveries infants were more often colonised by Clostridium difficile in comparison 

to vaginally born infants  (Stinson, Payne and Keelan, 2018). 

This has led to the increase using the vaginal seeding technique (the transmission of fluid 

from a mother’s vagina containing the vaginal microbiota and swabbing by a cotton gauze 

or a cotton swab it over the skin, mouth, and nose of cesarean-delivered infants) to 

encourage the colonisation of a healthy microbiota of infants (Stinson, Payne and Keelan, 

2018). Despite a high level of interest in the non-scientific literature, a relative absence of 

scientific analysis remains. Vaginal seeding has recently been shown to change the 

microbiota of caesarean born infants to resemble a community more like that of the 

vaginally delivered (Dominguez-Bello et al., 2016). Nevertheless, although differences 

appear on the microbial level, there remains a need to show this affects health outcomes, 

and further high-quality research is needed. There have been some concerns regarding 

the safety of this practice (Cunnington et al., 2016). The potential transfer of pathogenic 

organisms (such as Group B Streptococci), via vaginal seeding increases the risk of early-

onset sepsis, and additional concerns remain regarding the transmission of viruses like 

HIV and Herpes simplex (Cunnington et al., 2016). However, valid these concerns may be, 

it is unlikely that it provides a significantly higher risk than if the infant were to be born 

through vaginal delivery. Until more data is available, it is not very easy to say with any 

certainty. When assessing infants after delivery, it will be necessary for clear 
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documentation of vaginal seeding to ensure paediatricians are aware of exposure to 

vaginal organisms. 

From that point, microbiota colonisation contributes to the shaping of the immune system 

cells of individuals (Milani et al., 2017). Host microbiota evolution may be affected by 

genetic factors. A non-obese diabetic rodent model shows this. These mice are protected 

from type 1 diabetes development. It seems that a lack of MYD88 (protein is activated by 

Toll-like receptor 4 stimulation that drives the expression of the inflammatory gene resulting 

in proinflammatory cytokine induction of the adaptive immune system) in non-obese 

diabetic (NOD) mice may bring about increased the Bacteroidetes taxon production, which 

in turn act to activate T regulatory T cells that inhibit inflammatory T cells activation such as 

T helper17 cells, sequentially, prevent autoimmune diseases formation such as diabetes  

(Maslowski and Mackay, 2011). Furthermore, the intestinal microbiota in the first years of 

life is determined by numerous variables such as mother weight, mother breast milk, the 

way of delivery, and the structure of the maternal microbiome (Isolauri, 2012; Urbaniak, 

Burton and Reid, 2012).  

The cavity of the mouth in human beings is the second-largest microbial reservoir following 

the intestine. More than 700 microbial species in the oral cavity are identified by molecular 

biological technologies such as 16S ribosomal RNA techniques (Nibali and Henderson, 

2016). 95% of which belong to the phyla Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria, Fusobacteria, and Spirochaetes (Nibali and Henderson, 2016). Other phyla 

consistently detected are Synergistes and Chloroflexi (Nibali and Henderson, 2016). 

Predominant microbial communities within different sites of the oral and oropharyngeal 

region were shown in Figure 1-7. 



54 
 

The pulmonary microbiome populations consist of a complex diversity of microorganisms 

present in the lower respiratory tract, especially on the epithelial surfaces and the mucous 

layer. These microbiomes compose of microbial communities such as bacteria and fungi. 

The bacterial population of the microbiota has been more investigated. It contains a core of 

nine genera: Prevotella, Pseudomonas, Megasphaera, Sphingomonas, Acinetobacter, 

Veillonella, Streptococcus, Staphylococcus, Porphyromonas, and Fusobacterium (Hilty et 

al., 2010; Erb-Downward et al., 2011; Beck, Young and Huffnagle, 2012; Scher et al., 

2016).  

The nasal microbiome was identified to be predominantly Actinobacteria, Firmicutes, and 

Proteobacteria, with Propionibacteriaceae and Corynebacteriaceae being the most 

frequent Actinobacteria families, while Staphylococcus aureus and S. epidermidis are the 

important Firmicutes (Bassis et al., 2014; C. M. Liu et al., 2015). The pulmonary 

microbiome receives increasing attention regarding its possible role in the development of 

RA (Scher et al., 2016), but more research is required for definite answers. 

The estimation of the number of species existing on skin microbiome has been radically 

changed by the use of 16S ribosomal RNA to distinguish microbial species found on skin 

samples direct from their genetic material. Earlier such identifying had depended upon 

microbiological culture upon which several types of microbiota did not grow and thus were 

hidden to science (Grice et al., 2009; Byrd, Belkaid and Segre, 2018). Staphylococcus 

aureus and Staphylococcus epidermidis were predominant in cultural studies (Elizabeth A. 

Grice et al., 2008). Nevertheless, 16S ribosomal RNA research identifies that while 

common, these species make up only 5% of skin microbiota. Though, skin type provides a 

rich and diverse habitat for microbiota. Several come from three phyla: Actinobacteria 

(51.8%), Firmicutes (24.4%), and Proteobacteria (16.5%) (Elizabeth A. Grice et al., 2008). 
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In contrast to other human microbiome communities, which typically display a high degree 

of diversity under healthy steady-state conditions, the vaginal microbiome is generally 

dominated by one of the Lactobacillus species L. iners, L. crispatus, L. gasseri, or L. 

jensenii. However, more diverse communities with higher numbers of anaerobic bacteria 

also can be found. It seems to be stable during reproductive age but is strongly influenced 

by human behaviour (e.g., hygiene, contraception) and ethnic group membership (Ravel et 

al., 2011). The production of lactic acid by vaginal bacteria causes low vaginal pH. In 

recent years, attention to the vaginal microbiome was boosted by studies suggesting it a 

prominent role in shaping the microbiomes of the sterile newborn. Still, improved evidence 

suggests that differences in the microbiomes correlating with the mode of delivery may be 

instead caused by the medical conditions leading to the caesarean section (Chu et al., 

2017). 

 

 

Figure 1-5 Dominant bacterial genera encountered in the various sections of the human 

gut (Haller, 2018). 
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Figure 1-6 changing of the gut microbiome was detected in all human life span. The 

predominant gut bacteria in new-born and baby are Actinobacteria and Bacteroides phyla 
in the toddler. However, the dominant bacterial species in adult and older people is the 
Firmicutes phylum (Hippe et al., 2015). 
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Figure 1-7 Predominant compositions of bacteria colonise the different sites of the 

oral and oropharyngeal region (Lim et al., 2017). 
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1.4.4 Rheumatoid arthritis and dysbiosis 

 

Several studies have noted that the dysbiosis linked with the human inflammatory disease 

in different body sites utilising a variety of molecular and biochemical approaches. RA has 

been associated with dysbiosis of the gastrointestinal tract, oral cavity, lung, urinary tract, 

and synovial fluid in a variety of studies. 

 

1.4.4.1 Gut microbiome and RA 

 

The significance of the gut microbiome in arthritic disorders was identified when specific 

microbes were associated with the evolution of reactive arthritis. Findings demonstrated 

that the synovial tissue of arthritis patients contains a specific microbial DNA such as E 

coli, Staphylococcus epidermidis, and Propionibacterium acnes (Karen E. Kempsell et al., 

2000; Taneja, 2014). 

The importance of a meta-taxonomic approach is to characterise distant microbial niches 

through the analysis of microbial nucleic acids and to detect dysbiosis in these niches, 

which may affect the immune system, which could be a biomarker for RA diagnosis and 

treatment. However, it is necessary to point out to perform culture experiments, especially 

at the time when the laboratory is running aerobic and anaerobic cultures for other studies 

to detect viable colonies of living microbes, which may affect the immune system. 

It is worth mentioning that the changed numbers of the intestinal microbiome can influence 

the whole immune system in the intestine with the following modification in the systemic 

immune system (Eerola et al., 1994). In the primary finding to demonstrate the relationship 
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between the microbiome and RA, the fatty acids of gastrointestinal bacteria were analysed 

to show that arthritic patients with erosive illness differed from healthy individuals (Eerola et 

al., 1994). In the following study, faecal materials from arthritis patients were examined by 

16S ribosomal RNA sequencing of bacteria utilising the reverse transcription-polymerase 

chain reaction (rt PCR). This result showed that patients who suffer rheumatoid arthritis 

have a low abundance of Bacteroides and Bifidobacterium bacterial genera in comparison 

with healthy controls, proposing dysbiosis (an imbalance of bacteria in the gut) as these 

are the predominant genera in individuals (Vaahtovuo et al., 2008). On the other hand, the 

data were based on only a small population, and further confirmation is required. However, 

the faecal microbiome might not reflect the whole microbial of the intestine. 

Scher and co-workers (Scher et al., 2013) tested stool specimens of new-onset arthritis 

patients and healthy individuals utilising the sequence 16S ribosomal RNA of faecal 

microbiota. The results found that the Prevotella copri abundance with Bacteroides 

absence in new-onset arthritis patients was different, proposing P. copri may be 

pathogenic.  Pathogenicity of P. Copri was explained by the immune response generated 

by the DR-presentation of a 27-kD protein from P. copri, which could stimulate T-helper-

cell 1 (Th1) responses in untreated RA patients (Taneja, 2014). The interesting point of this 

study is that the proportional abundance of P. Corpi associated with the human leukocyte 

antigen (HLA) alleles presence that shares the sequence of the third Hypervariable region 

is known “rheumatoid epitope” proposing a change in the gut microbiome before the 

clinical phenotype appearance. The inflammation in rheumatoid arthritis starts considerably 

before the actual beginning of the disease (Taneja, 2014). These investigations, combined 

with humanised rodent, propose that the  Major Histocompatibility Complex (MHC) genes  

(a group of genes that code for proteins presents on the surfaces of cells that assist the 

immune system in recognising foreign substances, MHC proteins are identified in all higher 
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vertebrates, In humans, the complex is also known as the human leukocyte antigen 

(HLA)), play a fundamental part in the bacterial flora settlement in the intestine and 

consequently indirectly determining the pro-inflammatory conditions in the intestine 

(Taneja, 2014). Additionally, the probability that RA patients are taking drugs that can 

regulate their gut microbiome before being observed in a clinic is high  (Taneja, 2014).  

Zhang and his colleagues (Zhang et al., 2015) showed that the dysbiosis of the gut 

microbiome of arthritic patients; however, it was partially resolved after RA therapy with 

methotrexate (MTX). The patients who showed improvement after MTX treatment had an 

abundance of microbial linkage groups (MLGs) similar to healthy control samples. 

Prevotella maculosa revealed an increased abundance in the healthy control group, as well 

as in patients who noted improvement following treatment. Furthermore, after MTX 

therapy, in the gut microbiome, MLGs, including Veillonella was abundant in RA patients 

but showed a decrease after MTX therapy, proposing that MTX therapy could change the 

intestinal microbiome patients with RA. This proposes that MTX treatment has the potential 

to turn a ‘diseased’ microbiome toward a ‘healthy’ microbiome. (Zhang et al., 2015). 

Recently, Jubair et al. noted that gut dysbiosis triggers collagen-induced arthritis by 

mucosal immune responses. Dysbiosis and mucosal inflammation lead to the development 

of the CIA (Jubair et al., 2018). Therapy with antibiotics such as ampicillin, neomycin, 

vancomycin, and metronidazole was found to decrease the illness severity, as well as 

serum inflammatory cytokine and the levels of anti-type II collagen antibodies. Accordingly, 

specific gut commensal microbiota is sufficient to produce arthritis in rats (Jubair et al., 

2018). 

A North American survey of chronic RA patients indicated RA patients to be low in stool 

Faecalibacterium and increase rare bacteria such as Eggerthella and Collinsella (Chen et 

al., 2016).  
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The study via Wu et al. (Wu et al., 2017) found that the gut of RA  patients was associated 

with significantly increased levels of  Prevotella copri, Bacteroides, Paraprevotella, 

Porphyromonadaceae, and Phascolarctobacterium and significantly decreased levels of  

Faecalibacterium, Roseburia, Subdoligranulum, Ruminococcus, Pseudobutyrivibrio, and 

Carnobacteriumgroup when compared those with controls.  

Recently, it has been shown that the composition and diversity of the microbiome of 

patients with RA differed from those in healthy control people in China. An increase 

in Escherichia-Shigella and Bacteroides combined with decreases in Lactobacillus, 

Odoribacter, Alloprevotella, and Enterobacter appear to be characteristic of RA in patients 

from Shanghai, China (Sun et al., 2019). Besides, spearman correlation analysis of 

physiological blood measures of RA identified those bacterial genera such as 

Ruminococcus and Dorea were positively associated with RF-IgA and anti-CCP antibodies 

(Sun et al., 2019). Further, Prevotella-2 and Alloprevotella were positively associated with 

C-reactive protein and, Alloprevotella and Parabacteroides were positively associated with 

the erythrocyte sedimentation rate, both biomarkers of inflammation. These results suggest 

that the gut microbiota may participate in RA development through interactions with the 

host immune system (Sun et al., 2019). 

Furthermore, elevated levels of antibodies directed towards specific intestinal microbiome 

antigens in rheumatoid arthritis patients propose a pathogenic relationship among these 

microbes and rheumatoid arthritis (Scher and Abramson, 2011). 

It has suggested that inflammation of the joints may be caused by the exposure of 

genetically susceptible individuals, who have the human leukocyte antigen - B27, to 

degraded products of the gut bacteria. It is suggested that this exposure occurs locally in 

the joints (Taneja, 2014). 
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Bacterial ingredients from Salmonella, Shigella, Yersinia, and Campylobacter are well-

characterised triggers for HLA-B27- associated reactive arthritis (Lin et al., 2014). Cross-

reactivity between monoclonal antibodies to HLA B27 and specific Gram-negative bacteria 

has been published (Rosenbaum and Davey, 2011). There is also sequence homology 

between a nitrogenase from some bacteria such as Klebsiella and HLA-B27, although the 

importance of these results has been debated (Yang et al., 2016). Raising HLA-B27 

transgenic rodents in a germ-free environment limited both intestine and joint inflammation 

that otherwise spontaneously happens in these rodents (Van De Wiele et al., 2016). The 

subsequent studies revealed that mono-association of HLA-B27 transgenic mice 

with Bacteroides vulgatus in a germ-free environment was sufficient to re-establish colitis in 

these rodents (Van De Wiele et al., 2016).  A number of studies have shown marked 

effects of HLA-B27 on innate immunity and host defence in vitro, including effects on the 

bacterial invasion of cells, intracellular signalling, intracellular persistence, and cytokine 

production (Penttinen et al., 2004; Sahlberg et al., 2007; Ruuska et al., 2013). Recent 

evidence proposes that innate immune expansion (dendritic cells or macrophages) and 

Th17 activation via HLA -B27 molecules may precede the development of microbiome 

dysbiosis and intestinal inflammation in HLA -B27 transgenic mouse model (Gill et al., 

2018). 

Penttinen et al. (Penttinen et al., 2004) noted that HLA-B27- transfected monocytes had 

enhanced inflammatory responses to lipopolysaccharide located on bacterial cell walls. 

Furthermore, disease-prone HLA-B27 transgenic rats show a variety of dendritic cell 

abnormalities (Fert et al., 2008; Dhaenens et al., 2009), including disrupted trafficking of 

dendritic cells from the intestinal tracts to the mesenteric lymph nodes (Utriainen et al., 

2012). It is likely that a dysregulated immune response in HLA-B27 individuals alters the 
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composition of the intestinal microbiome, and that in turn, the modified gut microbiota 

participates in disease pathogenesis. 

It is worth mentioning that the presence of microbial cell wall products which are present in 

arthritic joints and the changed numbers of intestinal bacteria can influence the immune 

system in the intestine with the following modification in the systemic immune system 

(Eerola et al., 1994; Grard et al., 2001; Vaahtovuo et al., 2008). 

The nature of the gut microbiota determines the reservoir of lipopolysaccharide (LPS), 

which is capable of migrating from the intestine into the circulation, where it participates in 

the inflammation. It is acknowledged that lipopolysaccharides are the main endotoxin 

components of Gram-negative bacterial cell walls (Jubair et al., 2018).  

There is evidence for significant involvement of lipopolysaccharide shed by dormant and 

resuscitating bacteria as underpinning the chronic inflammation characteristic of a variety 

of conditions and proposed that LPS may play a role in the RA pathogenesis (Kell and 

Pretorius, 2015).  

 It is known that lipopolysaccharide stimulates the CIA. The systemic injection of LPS from 

S. typhimurium, S. enteritidis, and K. pneumoniae resulted in the stimulation of CIA in mice 

that was associated with the increased production of IgG2a antibodies and anti-CII IgG as 

well as the enhanced secretion of cytokines including IL-1β, IL-12, IFN-γ, and TNF-α. 

Therefore, LPS may play a role in the exacerbation of RA disease (Yoshino and Ohsawa, 

2000). It also has found by another study by Tanaka et al. to have marked increases in the 

degree of expression of mRNA of inflammatory mediators such as interleukin (IL) ‐1β, 

tumour necrosis factor-alpha (TNF‐α), and macrophage inflammatory protein‐2 (MIP-2)  in 

their arthritis paws and of serum anti‐CII antibody concentration before the start of arthritic 

conditions induced through LPS injection (Tanaka et al., 2013). The gene expression was 
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quick and continuous after the direct activation of nuclear factor κB. The amounts of mRNA 

of TNF‐α, IL‐1β, and MIP‐2, as well as of matrix metalloproteinases and the receptor 

activator of nuclear factor κB ligand, increased with the development of arthritis, associated 

positively with clinical severity and corresponded with histopathological changes (Tanaka 

et al., 2013). Furthermore, anti‐TNF‐α neutralising antibody inhibited the development of 

LPS‐accelerated CIA, and a single injection of recombinant mouse TNF‐α induced 

increases in anti‐CII antibody concentrations, suggesting that TNF‐α may contribute to the 

development of arthritis through both initiations of inflammation and production of 

autoantibodies (Tanaka et al., 2013). This indicates that the exacerbation of RA via LPS is 

associated with the rapid and continuous production of inflammatory mediators and 

autoantibodies.  

A recent study reported that the systemic diffusion of bacterial lipopolysaccharide positively 

associated with joint inflammatory response and the severity of joint degradation (Drago et 

al., 2019). LPS can also be concentrated into the synovial fluids and upregulate specific 

pro-inflammatory cytokines. These immunological factors can have a vital role in the 

pathogenesis of arthritis, particularly in RA (Drago et al., 2019).   

 

Other components derived from pathogens can cause or potentiate arthritis in animal 

models. For instance, peptidoglycan extracts from the bacterial cell wall of Streptococcus, 

Lactobacillus Bifidobacterium, and Collinsella can induce chronic arthritis in certain 

susceptible rat strains (Yinshi Yue, 2013). Peptidoglycan, a bacterial cell wall component, 

is a potent arthritogenic. It can stimulate lymphocytes and induce the production of 

cytokines and polyclonal autoantibodies, including RF in vivo using animal models and 
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vitro utilising cell culture systems (Yinshi Yue, 2013). Further, bacterial lipopolysaccharide 

potentiates type II collagen-induced arthritis in mice (Yinshi Yue, 2013). 

It has been established that intestinal bacterial cell wall offcasts are associated with RA. 

Intestinal microorganisms continuously shed peptidoglycans from their cell walls as they 

grow and divide, and these offcast molecules can cross the gut barrier and enter the 

circulatory system (Huang et al., 2019). Huang and co-workers developed an anti-

muramyl-l-alanine-isoglutamine (MDP) antibody termed 2E7. This antibody enabled them 

to quantify and neutralise serum peptidoglycan via targeting MDP, a conserved structure 

within peptidoglycan. Utilising 2E7, the researchers proved the presence of MDP in the 

blood of all but 4 of the 340 healthy people tested, albeit at varying concentrations (Huang 

et al., 2019). 

Interestingly, serum concentrations of MDP were higher in patients with rheumatoid 

arthritis (n=84) than in healthy people, proposing a link to the RA system (Huang et al., 

2019). Increasing the concentration of MDP in mice utilising an osmotic pump exacerbated 

collagen-induced arthritis (CIA) matched with the healthy subject, whereas administering 

2E7 to decrease the concentration of MDP in mice lessened CIA severity compared with 

giving a control antibody (Huang et al., 2019). In the Collagen Antibody-Induced Arthritis 

(CAIA) model, administration of 2E7 before the initiation of disease almost completely 

inhibited the development of arthritis. Earlier studies have determined that MDP is 

recognised by the pattern recognition receptor NOD2, which triggers proinflammatory 

signalling pathways. Accordingly, 2E7 was unable to prevent CAIA in mice that lacked 

NOD2, suggesting that neutralisation of MDP by 2E7 ameliorated arthritis by reducing 

NOD2 signalling (Huang et al., 2019).  

The gut microorganisms can bind toll-like receptors (TLRs) and nod-like receptors to 

stimulate the immune system, as well as produce metabolites called short-chain fatty acids 
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that can directly interact with the host (Mcdonald and Nunez, 2005; Hasegawa et al., 2006; 

Reichardt et al., 2014). Well-Balanced microorganisms maintain immune 

responses through interaction with intestinal epithelial cells, which helps to maintain a 

tolerant state within the gut. To date, research has confirmed that the gut microbiome has 

a profound connection with the host immune system and illness (Belkaid and Hand, 2014). 

 In genetically predisposed individuals, antibiotic exposure, environmental factors like 

inappropriate diet can cause dysbiosis in the gut microbiota resulting in the expansion of 

contraction of certain species of a genus (Taneja, 2014; Mikkelsen, Allin and Knop, 2016). 

An alteration to a single bacterial taxon and/or the whole community leads to an imbalance 

between the pathobiome and the symbiome immune responses with a breakdown of self-

immune tolerance, prompting several autoimmune diseases such as RA (Mohammed and 

Elmakhzangy, 2017). For example, mono-colonisation of a germ-free mouse with a single 

gut-microbiome “segmented filamentous bacterium is sufficient to produce fully functional 

TH17 cells that generate proinflammatory cytokines IL-17 and drive the onset of arthritis. 

The segmented filamentous bacterium upregulates the producing of acute-phase isoforms 

of serum amyloid A in the ileum, which can act on dendritic cells from the small intestinal 

lamina propria to provoke Th17 differentiation (Ivanov et al., 2009b; Wu et al., 2010). 

Moreover, mono-colonisation with Lactobacillus bifidus in IL-1 receptor antagonist 

knockout mice resulted in the rapid onset of arthritis, which was dependent on Toll-like 

receptor activation via L. bifidus. The arthritis onset was preventable through promoting a 

germ-free environment (Abdollahi-Roodsaz et al., 2008). Besides, colonisation of the mice 

intestine with Prevotella copri can enhance experimental dextran sulphate sodium-induced 

colitis, which can initiate a proinflammatory drive in human arthritis. The Prevotella 

copri genome encodes phosphoadenosine phosphosulfate reductase, an oxidoreductase 

that contributes to the production of thioredoxin. Thioredoxin is a cellular reducing catalyst 

https://en.wikipedia.org/wiki/Antibiotic
https://www.sciencedirect.com/topics/medicine-and-dentistry/dysbiosis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/intestine-flora
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induced via oxidative stress and is involved in the redox regulation of transcription factors 

such as NF-kappa B. Thioredoxin has been widely involved in the pathogenesis of RA with 

significantly increased concentrations observed in both serum and synovial fluid of RA 

(Yoshida et al., 1999; Mohammed and Elmakhzangy, 2017). Further, commensal 

microorganisms can secrete large amounts of adenosine 51-triphosphate that can 

stimulate a unique subset of lamina propria cells, CD70highCD11clow cells. The D70high 

CD11clow subset cells could express Th17-inducing molecules, for instances, transforming-

growth-factor, IL-6, and IL-23, and produce Th17 differentiation (Mohammed and 

Elmakhzangy, 2017). 

 

The classical assertion that RA lacks a microbial component stems from the generalised 

inability of microbiologists to see microbial colonies on artificial media when synovium 

samples from RA patients are subjected to microbiological culture. Such assessments 

crudely characterise organisms as “alive” or “dead” (or possibly more accurately, present 

or not present) based upon this colony-forming ability, yet do not routinely identify the 

potential for the existence of viable-non culturable bacteria (Hammad, Liyanapathirana and 

Tonge, 2019). 

 Moreover, extensive evidence now provides for the presence of free bacterial DNA or 

RNA, and viable-non culturable bacteria in affected joints, leaving the possibility of; 

1) Microbial DNA found within the bloodstream translocates from the gut, a process termed 

atopobiosis, followed by killing these microorganisms by an immune cell known as a 

phagocyte leaving only the DNA following the passage of cell-free microbial nucleic acid to 

the synovium via the circulatory system (as evidenced by the simultaneous presence in 

both fluids).  
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2) Whole viable bacterial translocation is followed by a state of dormancy due to activation 

of the immune system or to unfavourable environmental conditions (Hammad, 

Liyanapathirana and Tonge, 2019). 

 

 With relevance to the primary approach, it is well confirmed that the immune system could 

distinguish self from non-self-nucleic acid (DNA and RNA) in the human blood and synovial 

fluid via specific pattern recognition receptions (Chi and Flavell, 2008) and that TLR9 

recognises foreign DNA, and RNA is identified via TLR3 on immune cells, producing in the 

upregulation of various pro-inflammatory cytokines such as TNF alpha, and IL-6, which are 

associated with RA (Atianand and Fitzgerald, 2013; Castañeda-Delgado et al., 2017). With 

importance to the latter scenario, dormant microorganism’s cells or viable-non culturable 

bacteria may colonise the joints of RA patients, unidentified by routine culture, whilst 

retaining the ability to shed inflammatory agents such as lipopolysaccharide (LPS) and 

other antigenic components (Pretorius et al., 2017). It showed that bacterial LPS could 

activate many of the common RA-associated cytokines, for instance, TNFα, the IL-1 family, 

IL-6, IL-12 family, and IL-15 (Rossol et al., 2011; Li et al., 2014). 

While detailed studies of the gut and other niches dysbiosis have been performed in RA 

patients, however, previous studies of these sites have yielded interesting perturbations 

that appear to associate with disease presence. Studies of the other human microbiomes 

are absent (significantly including the blood), and to date, no study has attempted to link 

microbiome changes across discrete sites. The novel aspect of the blood work is to find 

microbiome signatures in the blood.  

Wiest and co-workers suggested that the gut microbiome may enter the blood from the gut 

by three approaches (See Figure 1-8). Firstly, via dendritic cells, which are not reliant on 

the reduced tight junction (An intercellular barrier between epithelial cells within the gut that 
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is vital to the role of the physical intestinal barrier, regulating the paracellular passage of 

various substances including water, ions, solutes across the intestinal epithelium). 

Secondly, microorganisms may enter the blood through the inflamed or damaged 

epithelium with a defective epithelial wall. Finally, by microfold cells (M-cells) which lie on 

top of Peyer’s patches and function as specialised cells providing entrance of microbial 

components to antigen-presenting cells (Wiest, Lawson and Geuking, 2014)  

As microbiome dysbiosis in distal niches such as the gut has been well represented in RA 

disease, and the blood microbiome is prophesied to be derived from microbial translocation 

from other body habitats, it is highly expected that the development of RA would have a 

significant influence on the blood microbiome composition given that microbial dysbiosis is 

a well-described hallmark of RA disease. No publications on RA disease and alterations in 

the blood microbiome have been published to date, barring the published work resulting 

from this thesis (Hammad et al., 2020). 

The association of RA state with alterations in the blood microbiome are likely to reflect 

microbial dysbiosis at distant body sites. Characterisation of the blood microbiome, 

therefore, offers potential opportunities for novel biomarker and therapeutic developments. 
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Figure 1-8 Members of the gut microbiome may enter the blood from their place of 

habitation. By three approaches; firstly, via dendritic cells, which are not reliant on the 
reduced tight junction. Secondly, the microbiome may enter the blood through the inflamed 
or damaged epithelium with a defective epithelial wall, finally, by microfold cell (M-cells), 
which lie on top of Peyer’s patches and function as specialised cells providing entrance of 
microbial components to antigen-presenting cells. Furthermore, three different levels of 
barriers (I–III) against bacterial translocation are observed: (I) lumen and secretory 
component (e.g., inner and outer mucus layer, antimicrobial peptides) of the intestinal 
barrier; (II) mechanical epithelial barrier and the gut-associated lymphatic tissue beneath 
with response elements to bacterial translocation (e.g., TNF and other pro-inflammatory 
cytokines) and autonomic nervous system; (III) systemic immune system as the third 
barrier in case of spreading of bacteria (l products) beyond the mesenteric lymph nodes 
including hematogenous (portal venous) and lymphatic (ductus thoracicus) way of delivery. 
TNF, tumour necrosis factor; APC, antigen-presenting cell; PRR, pattern recognition 
receptors  (Wiest, Lawson and Geuking, 2014). 
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1.4.4.2 Oral microbiome and RA 

 

According to several studies, the commensal bacteria are implicated in the aetiology of 

periodontitis (gum illnesses) (Löe, Theilade, and Jensen, 1965)  and tooth decay (van 

Houte, 1994). Furthermore, they may also play a significant part in the pathogenesis of 

some autoimmune illnesses, for example, RA (Zhang et al., 2015), diabetes (Genco et al., 

2005), and arteriosclerotic vascular disease (Scannapieco, Bush, and Paju, 2003). It is 

interesting to note that the rate of tooth loss and inflammation of the tissue around the 

teeth of arthritis patients are higher than healthy people (de Pablo, Dietrich, and 

McAlindon, 2008). Moreover, the severity of gum disease has been positively associated 

with RA disease activity (Choi et al., 2016). It should be mentioned that human leukocyte 

antigen (HLA) genes are associated explicitly with arthritis disease and periodontal disease 

as HLA-DRB1 locus. The primary HLA marker for both illnesses is the HLA-DRB1 locus 

(gene belongs to the MHC class II gene, which supplies instructions for generating a 

protein that existent on the surface of specific immune cells) (Zhang et al., 2015). 

There are some findings to indicate that the treatment of people who have periodontal 

illnesses seems to bring about the decreased activity of the disease in arthritis patients 

(Ortiz et al., 2009). Periodontal diseases are prevalent oral inflammatory illnesses that 

occur in response to bacterial plaque biofilms such as Aggregatibacter 

actinomycetemcomitans and Porphyromonas gingivalis, which cause damage to the 

periodontal ligament, the gingiva (gums), and alveolar bone (Cheng, Meade and Devine, 

2017). RA and Periodontal diseases detect some pathogenic similarities, for instance,  the 

immune response of the host which leads to inflammation of soft tissue with after that, hard 

tissue damage, and specific risk factors, involving obesity and smoking, though several 
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studies only reveal associations at specific stages of illness aetiology (Cheng, Meade and 

Devine, 2017). 

Recently, DNA of oral bacteria, for instance, Prevotella intermedia (P. intermedia), 

Porphyromonas gingivalis (P. gingivalis), and Tannerella forsythia (T. forsythia) with other 

oral pathogens, such as Prevotella nigrescens, and Treponema denticola and 

Fusobacterium nucleatum have been identified in the synovial fluid of arthritis patients and 

some spondyloarthritis patients. Moreover, increased levels of antibodies directed against 

some periodontal bacteria such as T. forsythia,  P. intermedia, and  P. gingivalis have been 

revealed in both the serum and synovial fluid of arthritis patients (Karen E. Kempsell et al., 

2000; Moen et al., 2005; Loyola-Rodriguez et al., 2010; Témoin et al., 2012a). 

The oral microbiome can enhance immunological reactions via several mechanisms. One 

of these mechanisms is used by P. gingivalis that is a gram-negative bacterium that is 

found in the gingival clefts of people who bear inflammatory response in the gum as well as 

in healthy people. This microorganism has the capacity to release peptidyl arginine 

deiminase (PAD) that brings about the citrullination (the alteration of the amino acid 

arginine in a protein into the amino acid citrulline that can excite the immune system to 

release autoantibodies which take part in the pathogenesis of autoimmune illness such as 

RA) (du Teil Espina et al., 2019). Zhang et al. analysed salivary and dental samples of 

arthritic patients that identified a dysbiotic oral microbiome relative to healthy subjects. 

They also have been observed that Haemophilus species, which were low in the oral of RA 

patients, and which negatively linked with autoantibodies compared to RA. In contrast, the 

Lactobacillus salivarus was increased in both salivary and dental samples of arthritis 

patients and positively associated with illness activity (Zhang et al., 2015). 
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The study by Lopez-Oliva et al. also characterised the oral microbiome in periodontally 

healthy people with or without rheumatoid arthritis (Lopez-Oliva et al., 2018). The study 

showed that the proportion of Prevotella is prominent in the oral microbiome of RA patients 

than healthy populations and, similarly to a study by Scher et al., Leptotrichia spp., 

proposing a possible significant role for these two pathogens in the induction of RA (Scher 

et al., 2012; Lopez-Oliva et al., 2018). Further, Cryptobacterium curtum was found as the 

dominant species in arthritis patients (Lopez-Oliva et al., 2018). This is of importance 

notably due to C. curtum ability of citrullinating free arginine via the arginine deiminase 

pathway. Still, Antibodies to Citrullinated Protein Antigens (ACPAs) target citrullinated 

proteins, and not free citrulline. It has additionally been indicated that the synovial fluid of 

arthritis patients has antibodies directed against heat shock proteins of P. Intermediate and 

Prevotella nigrescens, and these antibodies might cause an immune response in RA 

condition (Yoshida et al., 2001; Témoin et al., 2012a). The oral microbiome can invade the 

blood circulation as a consequence of bacteremia (microbiome presence in the 

bloodstream), and this frequently occurs the following chewing or after tooth brushing and 

dental procedures such as periodontal probing or ultrasonic scaling (Kinane et al., 2005; 

Forner et al., 2006). It is believed that the oral microbiota colonises an assortment of tooth 

surfaces, including gingival cleft fissures and smooth surfaces resulting in dental plaque 

formation (Loyola-Rodriguez et al., 2010). On contact with this tissue-based immune 

system, it causes tissue cell mobilisation and producing IL-1, IL-6, and TNF-a, following 

tissue damage by activating matrix metalloproteinases (MMPs) production (a group of 

enzymes which act to degrade helical fibrillar collagen found in teeth, cartilage, and bone) 

(Loyola-Rodriguez et al., 2010). Therefore, it is plausible that the oral microbiome might 

reach distant locations of the human body and be implicated in the pathogenesis of 

diseases such as autoimmune diseases. 
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1.4.4.3 Blood microbiome and RA 

 

Many normal resident microbiotas are opportunistic pathogens and have the potential to 

induce disease if there is a break in resistance of the host. The breach of resistance 

barriers enables microbiota to overpopulate their usual habitat and also penetrate areas of 

the body that they are not usually located (Burd and Westblade, 2017). Recent studies 

have further revealed that evidence of the microbiome (generally at the nucleic acid level) 

is detectable in the circulatory system, and purports that this is the result of 

microorganisms (or parts thereof) moving from their usual place of habitation such as the 

gut, oral cavity, respiratory tract into the blood; a process termed atopobiosis (Potgieter et 

al.,2015). 

It is almost universally accepted that the circulatory system of healthy humans is sterile 

based upon our general inability to detect proliferating microorganisms (Potgieter et al., 

2015). However, there are exceptions to this belief, with a number of studies reporting the 

presence of proliferating organisms in the circulation of apparently healthy subjects  

(Granfors et al., 1998; Nikkari et al., 2001; Damgaard et al., 2015; Païssé et al., 2016; 

Gosiewski et al., 2017). The identification of microorganisms or their components and or 

products in human blood, such as lipopolysaccharide utilising culture or immunological 

assays, is evidence of the existence of these microorganisms in blood, albeit scarce (Burd 

and Westblade, 2017). However, culture-positive bacteremia following tooth brushing and 

oral irrigation devices is well appreciated (Berger et al., 1974; Maharaj, Coovadia, and 

Vayej, 2012). Suggesting, the transient presence of organisms within the circulation is well-

tolerated in the healthy host.  Besides, numerous investigations report the detection of 

bacterial 16s rRNA sequences in human blood samples in health and various diseases 

(diabetes, obesity, cardiovascular disease, atherosclerosis and in Kawasaki disease) 
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(Amar et al., 2011, 2013; Vajro, Paolella and Fasano, 2013; Trøseid et al., 2014; Abe et al., 

2015). These studies pose various questions around the nature of their existence and their 

function in health and illness and also support the notion that bacteria can circulate in the 

blood circulation of well-appearing humans, even if transiently.  

The human gut is semi-permeable. It is composed of one layer of intestinal epithelial cells, 

which constitute a physical boundary that isolates the bowel cavity from the lamina propria. 

The Intestinal epithelial cells excrete specific elements as mucin, anti-microbial peptides 

(AMP), which include defensins, lysosomes, lectins, lipocalins, and cathelicidins that 

function to prevent any disturbances in the gut (Wehkamp et al., 2008; Koslowski et al., 

2010; Maloy and Powrie, 2011). It is believed that the secretion of these elements into 

intestinal crypts limits contact between the microbiome and epithelial cells, and 

subsequently, the lamina propria (Wehkamp et al., 2008; Maloy and Powrie, 2011). 

Moreover, the intestinal epithelial cells contain specialised cells, such as microfold cells (M 

cells) and enteroendocrine cells. The function of M cells is to allow for transport the 

microbiome from luminal crypts to Peyer’s patches. However, the enteroendocrine cells 

excrete different hormones, such as serotonin that works on the nervous systems in 

response to harm components produced by bacteria (Schuijt et al., 2013).  

Beneath intestinal epithelial cells, the lamina propria carries many immune cells for both 

innate and adaptive immunity, for example, T cells, macrophages, and dendritic cells. 

Furthermore, the intestinal epithelial cells and some immune cells such as dendritic cells 

and macrophages have receptors as known as Toll-like receptors on their surfaces to 

sense breaking of the boundary of the gut or invasion of the bacteria (Figure 1-9).The 

alimentary canal is an essential location for connecting the microbiome with the immune 

system as well as home to a large number and complicated community of commensal 

microorganisms. The balance of intestinal microbiota is requisite for the health of the 
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intestine. Moreover, at an early stage, the intestinal microbes assist in sculpting the human 

immune system. The immune system incompleteness in new babies and under germ-free 

environments lets us know that resident microbiota perform a vital role in shaping the 

immune system of the host (Ivanov et al., 2009a; Duan et al., 2010). 

It has been suggested that an imbalance might cause autoimmune diseases in the 

commensal microbiota in the gut. The physical barriers of the intestine and the innate and 

adaptive immune system components of the host function to regulate gastrointestinal 

homeostasis and to react to a microbiome disturbance in the intestine.  

Gut homeostasis requires dynamic crosstalk among commensal microorganisms, intestinal 

epithelial cells, and the local immune cells while at the same time is thought to have an 

impact on the production and development of some illnesses (including chronic 

inflammatory diseases) (Artis, 2008; Hooper and Macpherson, 2010). The leaky intestine 

idea includes passive motion and infiltration of particles, including food and bacteria 

through the bowel lining cavity to the lamina propria  (Morris et al., 1991). The inflammation 

is shown in some autoimmune diseases such as rheumatoid arthritis may be induced by 

the elevated permeability of the bowel wall cavity to the gastrointestinal microbial and their 

particular substances, particularly, toxins produced by bacteria (MARTÍNEZ-GONZÁLEZ et 

al., 1994)  although this result is not consistent with surveys. 

One confusing variable in chronic inflammatory disease investigations is that numerous 

patients are taking NSAIDs treatments, which are drugs that induce elevated permeability 

of the intestinal lining, for instance, Aspirin, Ibuprofen, Diclofenac (Bjarnason and 

Takeuchi, 2009). Morris and co-workers found that the increased permeability of the small 

gut in patients who carry rheumatoid arthritis or ankylosing spondylitis in comparison with 

healthy subjects (Mielants et al., 1992). Conversely, Mielants and co-workers observed 
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elevated permeability of the small intestinal lining of autoimmune diseases patients, for 

example, Rheumatoid arthritis, ankylosing spondylitis and also elevated gut permeability 

was shown in ankylosing spondylitis patients not taking NSAIDs treatment, however, 

cannot exclude NSAIDs utilise as a reason  (Morris et al., 1991). 

It has not yet been whether blood-borne bacteria are exploiting a viable ecological niche, or 

whether they are transient residents in the circulatory system (Potgieter et al., 2015). 

It has been hypothesised that the microbiome translocation may occur from the gut, oral 

cavity, and other known sites of dysbiosis, to the circulatory system, and specific 

microbiome can change immune status in some diseases such as RA, AS, and PA. The 

microbiome of distant sites may be able to access the circulatory system via various 

routes. For example, members of the gut microbiome may enter the blood from their place 

of habitation by three approaches (See Figure 1-8); firstly, via dendritic cells that underlie 

the epithelium may open tight junctions between epithelial cells, transferring processes 

inside the lumen that directly sample microbes; lamina propria dendritic cells compromise 

two different subsets: CD103CX3CR1+ DCs (with characteristics of macrophages, 

promoting TNF-production and development of Th1/Th17 T cells) and CD103+ CX3CR1 

DCs (which include the development of regulatory T cells)  (Potgieter et al., 2015; Castillo 

et al., 2019). Secondly, microorganisms may enter the blood through the inflamed or 

damaged epithelium with a defective epithelial wall by interaction with antigenic material in 

underlyingtissue. In this case, TLRs of antigen-presenting cells such as macrophages and 

dendritic cells are capable of identifying the microbial community. In arthritic conditions, the 

TLR pathway may amplify the abnormal crosstalk existing between antigen-presenting 

cells, T cells, and B cells, resulting in the generation of high amounts of pro-inflammatory 

cytokines, local detection of antibodies including RF and ACPA, and the expansion of 

autoreactive lymphocytes. After that, persistent immune activation can lead to FLS 
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hyperplasia, complement activation, and neutrophil recruitment leading to cartilage and 

bone destruction (Arleevskaya et al., 2019). Finally, through M-cells, which lie on top of 

Peyer’s patches and function as specialised cells providing entrance of microbial 

components to antigen-presenting cells  (Potgieter et al., 2015; Castillo et al., 2019). 

Peyer’s patches are small masses of lymphoid tissues located in the mucous membrane 

lining of the gut, are distributed along the small intestines with numbers of 100–200 in 

people. They contain different immune cells, including dendritic cells, macrophages, T 

cells, and B cells (Neutra, Frey and Kraehenbuhl, 1996; Kobayashi et al., 2019). They are 

a significant part of the immune system in the intestine through monitoring intestinal 

microorganism’s communities and inhibiting the growth of pathogenic microbial populations 

in the gut (Makala, Suzuki, and Nagasawa, 2002; Kobayashi et al., 2019). Antigens from 

microorganisms in the intestine are absorbed by endocytosis (the cellular process in which 

substances are brought into the cell) via microfold cells covering the surface of Peyer’s 

patches. These antigens are moved on to the lymphoid tissue, where they are ingested 

through macrophages and also presented to T lymphocytes, and B lymphocytes (Makala, 

Suzuki, and Nagasawa, 2002). When presented with pathogenic antigens, lymphocytes 

trigger the immune response via producing pathogen-specific antibodies such as IgA, 

turning into pathogen-killing cytotoxic T lymphocytes, and moving through lymphatic 

vessels to lymph nodes to alert the other cells of the immune system. The human body 

then prepares a full body-wide immune reaction to the pathogen before it can reach 

beyond the gut (Makala, Suzuki, and Nagasawa, 2002).  

Utilising the K/BxN autoimmune arthritis model showed that Peyer's patches T follicular 

helper cells were crucial for intestine commensal segmented filamentous bacteria-induced 

systemic arthritis (Teng et al., 2016; Kobayashi et al., 2019). It determined that segmented 

filamentous bacteria, via driving differentiation and passage of Peyer’s patches T follicular 
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helper cells into systemic sites, increased systemic T follicular helper cell and auto-

antibody responses that exacerbated arthritis (Teng et al., 2016). Segmented filamentous 

bacteria-induced Peyer’s patches T follicular helper cell differentiation by limiting the 

access of interleukin 2 to CD4+ T cells, thereby enhancing T follicular helper cell master 

regulator Bcl-6 (master Regulator of the germinal centre reaction and a critical oncogene in 

B Cell Lymphomagenesis) in a dendritic cell-dependent manner (Teng et al., 2016). These 

findings demonstrate that intestinal microbiota remotely regulated a systemic illness via 

driving the induction and egress of gut T follicular helper cells (Teng et al., 2016). 

Furthermore, Clostridia-related Gram-positive bacteria that adhere strictly to Peyer’s 

patches in the gut and can excite the immune response via inducing IgA secretion and 

stimulating B cells. These microorganisms are essential for the development of 

autoimmunity in the murine K/BxN arthritis model, and the utilise of antibiotics inhibits the 

progression of arthritis (Horta-Baas et al., 2017). 

In response to bacterial translocation, intestinal epithelial cells secrete chemokines that 

induce the recruitment of dendritic cells to the mucosa. Once activated mature intestinal 

dendritic cells can induce and prime mucosal T and B cells, eventually shaping the 

adaptive mucosal immune system. Following maturation, the T and B cells are moved into 

the bloodstream and, due to surface expression of the appropriate homing markers, home 

back to reside inside the lamina propria. Microbial antigens presented to B cells produce a 

commensal-specific IgA response that helps to prevent the commensals from straying 

beyond the intestinal mucosa (Wiest, Lawson and Geuking, 2014). 

Moreover, the oral microbiome could invade the blood circulation as a consequence of 

chewing, after tooth brushing, or following dental procedures such as periodontal probing 

or ultrasonic scaling (Kinane et al., 2005; Forner et al., 2006). It is believed that the oral 

microbiota colonises an assortment of oral surfaces, including gingival cleft fissures and 
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smooth surfaces, resulting in dental plaque formation (Loyola-Rodriguez et al., 2010). On 

contact with this tissue-based immune system, it causes tissue cell mobilisation and 

producing IL-1, IL-6, and TNF-a, following tissue damage by activating matrix 

metalloproteinases (MMPs) production (a group of enzymes which act to degrade helical 

fibrillar collagen found in teeth, cartilage, and bone) (Loyola-Rodriguez et al., 2010). 

Therefore, it is plausible that the oral microbiome might reach distant locations of the 

human body. Besides, the skin is extensively colonies and is susceptible to incision and 

consequently represents a large surface area through that such microbes might translocate 

into the blood circulation system (Depcik-Smith, Hay and Brecher, 2001).   
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Figure 1-9 Intestinal epithelial cells are packed together, making a tight junction, and 

controlling the flow of luminal substances. These cells excrete specific elements such 
as mucin, anti-microbial peptides (AMP), which include defensins, lysosomes, lectins, 
lipocalins, and cathelicidins that are significant to prevent any disturbances in the 
alimentary canal. It is believed that the secretion of these particles into intestinal crypts is 
brought about to limit the contact of microbiome inside epithelial cells and to inhibit arriving 
the gastrointestinal microbiota from the intestinal lumen to epithelial cells and lamina 
propria. Beneath intestinal epithelial cells, the lamina propria carries many immune cells for 
both innate and adaptive immunity, for example, T cells, macrophages, and dendritic cells. 
Furthermore, the intestinal epithelial cells and some immune cells such as dendritic cells 
and macrophages have receptors as known as Toll-like receptors on their surfaces to 
sense breaking of the boundary of the gut or invasion of the bacteria (Costello et al., 2013). 
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1.4.4.4 Microbiome in other tissue sites 

 

The pulmonary mucosa comprises its own set of microbiotas that may be altered in illness 

conditions. Importance in the role of the pulmonary microbiota has newly risen in RA 

(Segal et al., 2013). It has been proposed that, by continuous exposure to bacterial 

antigens, the respiratory tract may be the potential location of the first events that promote 

RA initiation and development (Karlson and Deane, 2012; Catrina et al., 2014). Distal 

airway microbiome dysbiosis was identified in treatment-naive patients with RA, and the 

results similar to those seen in sarcoid lung inflammation. This population disorder, which 

is associated with systemic and local autoimmune/inflammatory alterations, could be yet 

another possible initiating cause for rheumatoid arthritis in some instances (Scher et al., 

2016). 

The urogenital tract microbiome dysbiosis was also observed by Ebringer et al. noted that 

the increased isolation rate of P. mirabilis from the urine of the female more than male 

patients with RA and in RA patients as a whole in comparison with healthy individuals 

(Ebringer and Rashid, 2006). 

Under normal physiological conditions, the synovial space is expected to be sterile. The 

existence of microorganisms results in a septic arthritis diagnosis, a disease considered as 

a real medical emergency (Ross, 2017). Several studies have been noted that bacteria or 

bacteria-derived products were identified in the synovial fluid from patients with RA and 

healthy people (Garrard et al., 2001b; Moen et al., 2006; Martinez-Martinez et al., 2009; 

Ogrendik, 2009; Témoin et al., 2012b; Reichert et al., 2013). Interestingly, these studies 

predominating identify the most the microorganisms originated from the oral cavity, and 

these observations are accompanied via proofs showing the existence of DNAs of these 
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microorganisms and/or antibodies directed against the originating organism in the 

circulatory system (Moen et al., 2003, 2006; Lundberg et al., 2008; Martinez-Martinez et 

al., 2009; Ogrendik, 2009; Hitchon et al., 2010). Based on these findings, bacteria / 

bacterial nucleic acid may spread the synovial space by blood (as appeared by its 

concurrent existence in synovial fluid and blood fluids). Moreover, the inflammatory 

environment of the synovial tissues may help the trapping of these bacterial DNA and 

increase their apparent concentration in this site (Moen et al., 2006). 

Recently, the study by Zhao et al., 2018) has been noted that the existence of genera 

Bacteroides and Porphyromonas in both synovial tissues and synovial fluid of rheumatoid 

arthritis and osteoarthritis samples. Further, Comamonas, Kocuria, Agrobacterium, 

Rhodoplanes, and Meiothermuswere are abundant in RA synovial tissues. However, 

Bacteroides uniformis, Phascolarctobacterium, Rhodotorula mucilaginosa, Atopobium, 

Rothia, Turicibacter, Megasphaera, Haemophilus parainfluenzae, Leptotrichia, Bacteroides 

fragilis, Streptococcus, and Porphyromonas were dominant in synovial tissues of 

osteoarthritis. Moreover, the abundance of  Prevotella copri, Haemophilus parainfluenzae, 

Veillonella dispar,  and Treponema amylovorum increased in synovial fluid of rheumatoid 

arthritis relative to osteoarthritis synovial fluid; however, the increase of Bacteroides 

caccae was detected in the synovial fluid of osteoarthritis compared with Rheumatoid 

arthritis (Zhao et al., 2018a).  

This study proves the presence of bacterial DNA in synovial and synovial tissue samples 

from RA and osteoarthritis lesions and reveals potential correlations with the degree of 

illness. RA and osteoarthritis are discriminated via progressive destruction of cartilage and 

bone plus dysregulation of synovial function (Témoin et al., 2012a). Osteoarthritis arises 

from the damage of articular cartilage caused by physical injury and is consequently 

affected via a variety of intrinsic (for instance, genetic, immunologic, or cellular) agents 
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(Témoin et al., 2012a). The osteoarthritis synovial layer also shows an inflammatory 

component, although less notable than in RA (Témoin et al., 2012a). 

A common pathological characteristic of RA and osteoarthritis is a synovial inflammatory 

response (Zhao et al., 2018b). In early arthritis, it is difficult to clinically differentiate 

between RA and OA using histopathological and imaging techniques (Zhao et al., 2018b). 

Therefore DNA fragments of the microbiome that assembles in the synovial offer a 

differentiating characteristic between synovial tissues of osteoarthritis and synovial tissues 

of RA. 

 

1.4.5 Mouse studies in Autoimmune/inflammatory disorders 

 

The mouse is prevalent in human research because they are low-priced, has a short life 

span, and is anatomically similar to human beings in several respects, particularly the 

intestinal tract. 

Numerous animal studies have observed that intestinal microbiota functions a substantial 

role in arthritis evolution. It has been revealed that a correlation between certain bacterial 

species with the evolution of specific T-cell types. Segmented filamentous bacteria (SFB), 

the gut microbiota of animals such as rodents, were observed to be a potent inducer of 

Th17 cells in the lamina propria of the mice gut (Gaboriau-Routhiau et al., 2009; Ivanov et 

al., 2009a). Ivanov and his colleagues (Ivanov et al., 2009a) demonstrated that the 

insertion of segmented filamentous bacteria into germ-free K/BxN mice brought about the 

elevation of Th17 cells in the intestinal mucosa of the gut.  In the mice intestine, the 

existence of SFB has appeared to induce the evolution of Th17 cells, which has the critical 
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role in autoimmune illnesses, for example, arthritis (Wu et al., 2010), experimental 

autoimmune encephalomyelitis (Lee et al., 2011), and colitis (Stepankova et al., 2007). 

These results propose that specific gut microbiota is capable of promoting a particular 

subclass of th-cell that resulted in the evolution of autoimmune arthritis. 

 Further, it has been shown that SKG mouse strains did not evolve arthritis under a germ-

free (GF) environment (Wu et al., 2010); however, they develop arthritis into conventional 

conditions. Moreover, the colonisation of germ-free SKG mice with P. copri and a fungal 

injection were sufficient to simulate arthritis (Maeda and Takeda, 2017).  

SKG mouse strains, a new genetic model of RA, in which arthritis development is attributed 

to a missense mutation in the T cell receptor signalling adaptor molecule Zeta-chain-

associated protein kinase (ZAP-70) (a protein generally expressed near the surface 

membrane of T cells), leading to a defective adverse selection in the thymus and the 

secrete of autoreactive T cells (Maeda and Takeda, 2017).  

Interleukin-1 receptor antagonist knock-out mice observed autoimmune T cell-mediated 

arthritis by exposure to a specific pathogen-free environment. At the same time, they did 

not develop arthritis when housed in a germ-free condition (Rogier et al., 2017). However, 

the colonisation of commensal strains of the genus Lactobacillus in these mice prompted 

arthritis by stimulation of Toll-like receptor (TLR2 and TLR4) (Immune receptors found on 

the membranes of leukocytes such as dendritic cells, macrophages which function a vital 

role in the innate immune system) (Rogier et al., 2017). 
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1.4.6 16S ribosomal RNA 

 

16S ribosomal RNA (rRNA) is a component of prokaryotic DNA that exists in all bacteria 

and Archaea. A 16S rRNA sequence is utilised to distinguish between microorganisms 

across all main phyla of bacteria and to classify strains down to species level (Woese, 

1987). The using of 16S rRNA gene sequences to investigate bacterial taxonomy and 

phylogeny has been via far the common housekeeping genetic marker utilised for several 

causes. These reasons involve (i) its existence in all bacteria; (ii) the role of the 16S rRNA 

gene over time has not altered, proposing that random sequence variations are a more 

accurate measure of time (evolution); and (iii) the size of 16S rRNA gene is large sufficient 

for informatics purposes (Janda and Abbott, 2007). 

 Bacterial 16S rRNA genes comprise nine “hypervariable regions” (V1 – V9) that show 

significant sequence variety among various bacteria. The 16S rRNA V4 gene has been 

highly recommended as the gold standard for profiling of human microbiome such as the 

gut, blood and others via several studies (Qin et al., 2010; Lozupone et al., 2013; Santiago 

et al., 2016; Gloor et al., 2018; Wu et al., 2018; Whittle et al., 2019). 

16S rRNA gene sequence analysis is a powerful technique for finding and characterisation 

members of microbial populations. The bacterial16S gene is ~1,550 bp long, which 

contains variable nucleotide sequences that are genus- or species-specific and highly 

conserved. PCR primers targeting the conserved nucleotide sequences of rRNA amplify 

variable regions of the 16S gene (Relman, 1999). Bacterial communities can be 

recognised through sequences analysis of the PCR products followed via comparing these 

sequences with identified sequences found in a database  (Clarridge, 2004). 
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The technique is proper for utilising where the range of pathogens expected to exist is wide 

and where microorganisms’ specific PCRs are unsuitable. Further, it can be utilised to 

identify bacteria that are difficult to grow or be applied to samples of post-antibiotic therapy 

(Relman and Falkow, 1992; Brouqui and Raoult, 2001; Harris et al., 2002). Others have 

utilised this approach on joint fluid, cerebrospinal fluid, tissue, and pus (Hartley and Harris, 

2003). 

 

1.4.7 ITS2 

The internal transcribed spacer 2 (ITS2) region of nuclear ribosomal is considered as a 

marker to characterise the composition and diversity of fungal populations because it has a 

number of valued characteristics, for instance, the ease of its amplification, sufficient 

variability to identify even closely related species, and the availability of conserved regions 

for designing universal primers (Baldwin et al., 1995). The utilising of the Ribosomal DNA 

gene to identify fungal populations is depended on the finding of conserved sequences in 

5.8S rDNA and 28S rDNA, which can amplify the ITS2 region between those two genes. 

PCR with fungal-specific primers that target the conserved sequences of 5.8S and 28S 

rDNA result in the respective amplification of specific regions of the species that vary in 

length and sequence of the amplicon in according to the species (Turenne et al., 1999). 

ITS2 of the fungal population were reported to be useful for the identification and 

characterisation of medically necessary fungal composition which are isolated from human 

clinical samples such as blood, synovial fluid, stool, oral smears, vaginal swab, skin, and 

rectal swab (Park et al., 2000; Carr et al., 2005; Huang et al., 2006; Hrabovský and 

Siegfried, 2009; Nica et al., 2010; Liu, 2011; Gade et al., 2013; Op De Beeck et al., 2014; 

Allender et al., 2018; Jayasudha et al., 2018). 
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1.4.8 Potential mechanisms of microbial populations in RA 

pathophysiology 

 

The involvement of microbes in the pathophysiology of RA is supported through several 

complementary pieces of evidence from independent reports, and many of them propose a 

potential incriminatory role of the microbial papulations from classical niches such as the 

gut, oral and others in the pathogenesis of RA.  

Potential mechanisms linking intestinal microbial community and RA include: 

1) Microbial translocation from the gut niche into the bloodstream, a process termed 

atopobiosis, followed by killing these microorganisms by an immune cell known as a 

phagocyte leaving only the DNA following that the microbial nucleic acid may reach the 

synovium through the blood (as evidenced by the simultaneous presence in both fluids) 

(Hernandez, 2017). With relevance to this approach, it is well confirmed that the immune 

system could distinguish self from non-self-nucleic acid (DNA and RNA) in the human 

blood and synovial fluid via specific pattern recognition receptions (Chi and Flavell, 2008) 

and that TLR9 recognises foreign DNA, and RNA is identified via TLR3 on immune cells, 

producing in the upregulation of various pro-inflammatory cytokines such as TNF alpha, 

and IL-6, which are associated with RA (Atianand and Fitzgerald, 2013; Castañeda-

Delgado et al., 2017). 

2) Microbial translocation is followed by a state of dormancy due to activation of the 

immune system or to unfavourable environmental conditions. With importance to this 

scenario, dormant microorganism’s cells or viable-non culturable bacteria may colonise the 

joints of RA patients, unidentified by routine culture, whilst retaining the ability to shed 

inflammatory agents such as lipopolysaccharide (LPS) and other antigenic components 
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(Pretorius et al., 2017). The circulating LPS is best understood in terms of its effect on 

bone and joint health. Lipopolysaccharide is an endotoxin from the cell wall of 

gram‐negative bacteria. Through activation of immune cells of the host, pro‐inflammatory 

factors are formed, and these can lead to severe inflammation (Nibali and Henderson, 

2016). Pro‐inflammatory signalling pathways are induced via binding to specific surface 

receptors (e.g., TLR4) (Nibali and Henderson, 2016). This will activate multiple signalling 

pathways (such as nuclear factor‐κB (NF‐κB), the phosphatidylinositol 3‐kinase 

(PI‐3K)/protein kinase B (Akt), and mitogen‐activated protein kinase (MAPK) (Nibali and 

Henderson, 2016). The NF‐kB is activated in synovial fluid, which plays a vital role in 

cartilage damage (Nibali and Henderson, 2016). NF‐kB is involved in the control of many 

genes that are generally activated during adhesion, cell cycle, apoptosis, infection, 

survival, and in the inflammation process and, therefore, in the production of TNF‐α, IL‐1β,  

IL‐6, matrix metalloproteinases, and cyclooxygenase‐2 (COX‐2) (Nibali and Henderson, 

2016).   

3) Immune cells at the gut endothelium are in constant contact with the gut microbiota. 

Dendritic cell processes extending through the gut endothelium respond to the presence of 

the gut microbiota through secretion of factors that lead to changes in gut microbial 

populations and other immune cells (Hernandez, 2017). Additionally, microbes within the 

gut secrete factors such as short-chain fatty acids that can mediate the activity of T cells, 

thereby reducing local inflammation. Immune cell response to the gut microbiota may lead 

to the secretion of pro- or anti-inflammatory factors and/or the migration of activated 

immune cells to the systemic circulation and eventually to the bone and the synovium 

(Hernandez, 2017). 

The oral microbiome can enhance immunological reactions via several mechanisms. The 

oral microbiome can invade the blood circulation as a consequence of bacteremia 
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(microbiome presence in the bloodstream), and this frequently occurs the following 

chewing or after tooth brushing and dental procedures such as periodontal probing or 

ultrasonic scaling (Kinane et al., 2005; Forner et al., 2006). It is believed that the oral 

microbiota colonises an assortment of tooth surfaces, including gingival cleft fissures and 

smooth surfaces, resulting in dental plaque formation (Loyola-Rodriguez et al., 2010). In 

contact with this tissue-based immune system, it causes tissue cell mobilisation and 

producing IL-1, IL-6, and TNF-a, following tissue damage by activating matrix 

metalloproteinases (MMPs) production  (Loyola-Rodriguez et al., 2010). Therefore, it is 

plausible that the oral microbiome might reach distant locations such as the blood and 

synovium of the human body and be implicated in the pathogenesis of RA. 

Moreover, another mechanism is used by some oral microbiota, such as P. gingivalis. It is 

a Gram-negative bacterium that is found in the gingival clefts of people who induce an 

inflammatory response in the gum as well as in healthy people. This microorganism has 

the capacity to release peptidyl arginine deiminase (PAD) that brings about the 

citrullination that can excite the immune system to release autoantibodies such as ACPAs, 

which take part in the pathogenesis of RA (du Teil Espina et al., 2019). 

The urinary microbial community can enhance immunological reactions in RA via Proteus 

species. It has been found that a “shared epitope” EQR (K) RAA shows “molecular 

mimicry” with the related sequence ESRRAL found in Proteus hemolysis (Pretorius et al., 

2017). Further, Proteus urease contains a sequence IRRET, which has “molecular 

mimicry” with the related LRREI found in collagen XI of hyaline cartilage (Pretorius et al., 

2017). Besides, Proteus sequences in hemolysin and urease as well as the self-antigens, 

HLA-DR1/4 and collagen XI, each contain an arginine doublet, thereby providing a 

substrate for peptidyl arginine deiminase to give rise to citrulline, which is the main 



91 
 

antigenic component of CCP, antibodies to which are seen in early cases of RA (Pretorius 

et al., 2017). 

 

 It was revealed that the accumulation of supraglottic pathogens (e.g., Prophyromonas, 

Prevotella sp) in the lungs were associated with airway inflammation. Perhaps the lung is 

thus involved in the process of citrullination and thus autoimmunity in RA (Nibali and 

Henderson, 2016). 
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1.5      Aims and Objectives 

 

Research aims are to: 

1- To investigate the association of blood dysbiosis with rheumatoid arthritis, 

ankylosing spondylitis, and psoriatic arthritis diseases.  

2- To examine the association of dysbiosis in synovial fluid with rheumatoid arthritis. 

3-  To link dysbiosis in multiple microbiome niches in the collagen-induced arthritis 

model following the induction of experimental RA. 

The project approach is to use a combination of human patient samples with diseases and 

a mouse model of collagen-induced arthritis. This aim will be achieved through the 

following three objectives: 

1- Characterisation of the blood microbiome of patients with rheumatoid arthritis, 

ankylosing spondylitis, and psoriatic arthritis, relative to a number of healthy control 

subjects. 

2- Characterisation of the synovial fluid microbiome of patients with rheumatoid 

arthritis in comparison to healthy control subjects.   

3- Characterisation of the gut, synovial fluid, urine, blood, and serum microbiome of 

mice with collagen-induced arthritis (CIA) and healthy controls subjects. 
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Chapter 2 
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2 Materials and methods 

 

2.1 Overview 

 

The methods and materials delineated in this section here were used in all studies detailed 

in this research. Any particular or different approaches that have been applied to specific 

analyses will be explained in the related chapters.  

 

2.2 Samples 

 

The following methods were applied to a series of studies including 1- Molecular 

characterisation and immunological analyses of the bacterial and fungal microbiome in the 

blood of RA both prior to and following treatment, ankylosing spondylitis, psoriatic arthritis, 

and healthy control subjects 2- Molecular characterisation and immunological analyses of 

the bacterial and fungal microbiome in the synovial fluid of rheumatoid arthritis patients and 

healthy control subjects 3- Molecular characterisation of the gut, synovial fluid, urine, 

blood, and serum of the bacterial microbiome in collagen-induced arthritis and controls 

mice subjects. 
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2.2.1 Human blood samples 

 

Serum samples from twenty rheumatoid arthritis patients were used for microbiome 

characterisation and immunological analyses. Samples were collected both before (RA V0) 

and three months following (RA V3) the instigation of treatment. Samples of serum were 

collected at the Haywood Hospital Trust under NREC 16/LO/0957, IRAS Project ID 

198240. Clinical details of RA patients are shown in Table-2.1. 

In addition to the RA patient serum, four plasma samples from patients with RA, four serum 

samples from ankylosing spondylitis (AS) patients, four serum and plasma samples from 

psoriatic arthritis (PA) patients, and four serum and plasma samples from healthy control 

subjects who were free from disease, were obtained to allow comparison among the 

different disease states. Clinical details of patients and healthy individuals are seen in 

Table-2.2. RA plasma, AS serum, PA plasma, and serum, as well as healthy control serum 

and plasma samples were obtained from Sera Laboratories Limited, UK. The authors 

obtained ethical approval (Keele University ERP3) and written informed consent to utilise 

the samples for the research reported herein. For plasma collection, whole blood was 

drawn, following alcohol cleansing of the skin surface, into EDTA containing tubes and 

stored on ice before centrifugation at 3,000 rpm for 5 minutes to obtain the plasma 

component following the samples were collected in fresh tubes and stored at -80oC. 

However, for serum collection, whole blood was drawn into fresh tubes and allowed to sit 

at room temperature for at least 30 minutes to ensure clotting and then centrifuged at 

3,000 rpm for 5 minutes to obtain serum. The serum was frozen at ‐80°C. After that, these 

samples were sent to Keele University for analysis. Preparation of the PCR reactions was 

carried out in sterile conditions applying an ultraviolet (UV) bench-top hood to decrease the 

chance of the reaction tubes and PCR reagents being exposed to contamination with 



96 
 

microorganisms, which present in the immediate environment. UV germicidal irradiation 

was also carried out by exposing the PCR tubes, PCR workspace, pipettes, PCR master 

mix, and molecular biology grade water to short-wavelength UV for 30 mins before use. 

Further, to having sterile environments and using UV germicidal irradiation, a negative 

control reaction (in which a human biofluid sample was replaced with UV-irradiated 

nuclease-free water) was included in each experiment to confirm that none of all reagents 

was contaminated with target DNA. 

 

Table 2-1 Clinical details of patients with RA are obtained from Haywood hospital  

STUDY ID RF/CCP status Drugs 

RA 135 Positive MTX monotherapy 

RA 138 Negative MTX/SSZ/HCQ 

RA 109  Negative MTX monotherapy 

RA 140 Negative MTX monotherapy 

RA 150 Negative MTX/SSZ/HCQ 

RA 151 Positive MTX 

RA 145 Positive MTX/SSZ/HCQ 

RA 139 Negative SSZ/HCQ 

RA 146 Positive MTX/HCQ 

RA 111 Negative MTX/HCQ 

RA 141 Positive MTX/SSZ/HCQ 

RA 115 Negative MTX/SSZ/HCQ 

RA 143 Negative MTX/SSZ/HCQ 

RA 103 Positive MTX/HCQ 

RA 113 Positive MTX 

RA 128 Positive MTX/SSZ/HCQ 

RA 116 Negative MTX/SSZ/HCQ 

RA 144 Negative MTX/SSZ/HCQ 

RA 112 Positive MTX 

RA 107 Negative MTX 

 

RF – Rheumatoid Factor, CCP – Anti cyclic citrullinated peptide, MTX – 

methotrexate, SSZ – sulphasalazine, HCQ -  hydroxychloroquine 
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Table 2-2 Clinical details of patients and healthy individuals are collected from sera 

Lab Company 

ID Samples Gender Age Diagnosis Medications 

BRH1095328 Plasma Male 73 Rheumatoid Arthritis (RA) Tramadol 50mg, Vitamin D 2000u, CA 

1000mg 

BRH1095329 Plasma Male 49 Rheumatoid Arthritis (RA) Methotrexate 20mg, Folic Acid 1mg, 

Naprosyn 375mg 

BRH1095330 Plasma Female 66 Rheumatoid Arthritis (RA) Methotrexate 15mg, Folic Acid 1mg 

BRH1095331 Plasma Female 73 Rheumatoid Arthritis (RA) Methotrexate 20mg, Folic Acid 

BRH1090908  Plasma Male 54 CONTROL NONE 

BRH1090909  Plasma Female 59 CONTROL NONE 

BRH1090910 K3 EDTA 

Plasma 

Female 53 CONTROL NONE 

BRH1090905  Serum Male 63 CONTROL NONE 

BRH1090906  Serum Male 62 CONTROL NONE 

BRH1090903  Serum Female 53 CONTROL NONE 

BRH1090904  Serum Female 62 CONTROL NONE 

BRH1095340 Serum Female 38 Ankylosing Spondylitis Methotrexate 

BRH1095341 Serum Male 63 Ankylosing Spondylitis Methotrexate 

BRH1095342 Serum Female 34 Ankylosing Spondylitis Methotrexate, Enbrel  

BRH1095343 Serum Male 38 Ankylosing Spondylitis Methotrexate;  Enbrel 

BRH1095344 Plasma Female 44 Psoriatic Arthritis Lisinopril-Hydrochlorothiazide 20-25mg, 

Amlodipine Besylate 5mg.  

BRH1095345 Plasma Female 57 Psoriatic Arthritis Enbrel 50mg/ml, Ibuprofen 600mg, 

Vicodin 7.5-750mg, Zithromax 250mg, 

Cephalexin 500mg,  

BRH1095346 Plasma Male 68 Psoriatic Arthritis Aspirin 81mg, Enbrel 50mg 

BRH1095347 Plasma Male 71 Psoriatic Arthritis Coreg 3.125mg, Zetia 10mg, 

Atorvastatin 40mg  

BRH1095348 Serum Female 69 Psoriatic Arthritis Januvia 100mg, Metoprolol 25mg, 

Potchlorer tabs 10mg, 

Chlordiaz/Clidinium Liborax 5/2.5 

BRH1095349 Serum Male 30 Psoriatic Arthritis Otyla 30mg, Lialda 4.8g 

BRH1095350 Serum Female 61 Psoriatic Arthritis SSZ 

BRH1095351 Serum Male 41 Psoriatic Arthritis Dovonex 
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2.2.2 Human synovial fluid samples 

 

Synovial fluid samples from sixteen Rheumatoid arthritis patients, and nine sex and BMI-

matched disease-free individuals were obtained for microbiome characterisation and 

immunological assessment. Synovial fluid was obtained via aspiration of the affected or 

healthy knee synovial fluid utilising a sterile needle and then transferred to a sterile 

microcentrifuge tube and stored at -80oC before further analysis. Samples were obtained 

from Sera Laboratories Limited. Features of the RA patients and healthy population are 

shown in Table-2.3. The Independent Investigational Review Board Inc. (BRI-0722) 

ethically approved sample collection by Sera Laboratories Limited from human donors 

giving informed written consent. Additionally, the ethical approval from Keele University 

Ethical Review Panel 3 was obtained for the study reported herein. All experiments were 

carried out according to relevant guidelines and regulations. 
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Table 2-3 Features of RA patients and healthy population are taken from Sera Lab 

Company 

 

Patient ID# Gender Age Diagnosis 

1339 Female 65 RA 

1340 Female 67 RA 

1341 Female 67 RA 

1342 Female 67 RA 

1343 Female 70 RA 

1344 Female 69 RA 

1345 Male 56 RA 

1346 Male 52 RA 

1347 Male 55 RA 

1348 Male 66 RA 

1349 Male 74 RA 

1350 Male 69 RA 

BRH1095336 Female 67 RA 

BRH1095337 Female 67 RA 

BRH1095338 Male 67 RA 

BRH1095339 Male 67 RA 

1351 Female 57 Healthy 

1352 Male 64 Healthy 

1353 Male 64 Healthy 

1354 Male 53 Healthy 

1355 Male 50 Healthy 

1356 Male 74 Healthy 

1357 Female 64 Healthy 

1358 Female 55 Healthy 

1359 Female 68 Healthy 
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2.2.3 Mice biological samples (stool, synovial fluid, urine, blood, and serum) 

 

Twenty DBA/1J mice aged eight weeks were procured from Charles Rivers (UK) and 

acclimatised for seven days before study commencement. DBA/1J mice were housed up to 

5 per cage in an individually ventilated cage with individual mice recognised through the tail 

marker. All mice were provided free access to a standard approved commercial diet and 

sterilised water throughout the study. The laboratory room was prepared under optimal 

conditions: 20‐24°C, 12h light/dark cycle, and 40‐70% humidity. Male DBA/1 mice (n=10) 

were injected with bovine type II collagen (Chondrex Cat No. 20021) in Complete Freund’s 

adjuvant (50 μl of 2 mg/ml emulsion with Complete Freund Adjuvant) (Chondrex Cat No. 

7009) intra-dermally in the tail on Day 1 and Day 21. 

Mean animal bodyweight, arthritic index, and hind paw thickness were checked three times 

per week. For control animals (n=10), Phosphate-buffered saline (PBS) was injected 

instead of bovine type II collagen.  

This work was performed by Axis Bioservices (UK), including the collected mouse samples 

and the indication RA in mouse subjects. All protocols to be used in generating arthritis 

have been approved by the Axis Bioservices Animal Welfare and Ethical Review Board, 

and all procedures are carried out under the guidelines of the Animal (Scientific 

Procedures) Act 1986. 
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The arthritic Index was measured for each animal three times per week during the study. 

This system is based on evidence of erythema and swelling with values indicative of the 

following:  

• Grade 1: mild, with skin slight redness or redness, and swelling in 1-2 toe joints 

• Grade 2: moderate, with slight redness and swelling in the feet, ankles, or foot pads 

• Grade 3: severe, with redness and significant swelling of the toes, feet, and joints 

• Grade 4: severe, with highly swollen and red feet, toes, and joints, in addition to stiffness 

and deformity (Zhang et al., 2019). 

As expected, control animals had an arthritic index of 0, indicative of no inflammation 

observed.  

 

2.2.3.1 Biological samples from the mouse study 

 

2.2.3.1.1  Blood Collection  

 

On sampling day (18 days posted the second injection when inflammation was 

satisfactory), animals were euthanised via carbon dioxide. Blood was collected via cardiac 

puncture. 250 μl blood was placed into tubes coated with lithium heparin to prevent blood 

clotting and stored at ‐20°C before shipment. The remaining blood was placed into an 

Eppendorf, allowed to sit at room temperature for at least 30 minutes to ensure clotting, 

and then centrifuged at 3,000 rpm for 5 minutes to obtain serum. The serum was frozen at 
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‐20°C before shipment to Keele University on dry ice. Samples obtained are from 

individual mice and are not pooled. 

 

2.2.3.1.2  Synovial fluid collection 

 

 On sampling day (18 days post the second injection), synovial fluid was collected via fine 

needle aspiration by locating the space between the paella and tibia and gently removing 

the fluid. Synovial fluid was flash-frozen and shipped to Keele University on dry ice. 

Samples obtained are from individual mice and are not pooled. 

 

2.2.3.1.3  Urine and faeces collection 

 

 On days 18 post second injection, urine, and faeces were collected via an adapted 

specimen collection cage. Samples were flash-frozen and shipped to Keele University on 

dry ice. Samples obtained are from individual mice and are not pooled. 

 

After collected faeces, synovial fluid, urine, blood, and serum samples in Axis Bioservices 

(UK), the samples were sent to Keele and frozen at ‐80°C. 
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2.3 Microbiome characterisation 

 

2.3.1 Microbiome characterisation of human blood and synovial fluid samples 

Laboratory procedures and experiments of human biological samples are shown in Figure 

Figure 2-1 

 

 

Figure 2-1 Flowchart of the Laboratory procedures and experiments of human 

biological samples 
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2.3.1.1 16S rRNA and ITS2 PCR 

 

The bacterial 16S rRNA and fungal ITS2 genes were amplified through direct PCR utilising 

the primers listed in Table 2-4. Direct PCR does not require a separate DNA extraction 

step, which has previously been suggested as a source of contaminants that affect all 

downstream applications. 

A first round of PCR of 16S V4 and ITS2 regions was carried out with four microliters of 

each human biofluid sample as the template in a final volume of 20 µl, which contained 10 

µl Phusion blood PCR buffer (Thermofisher), 0.4 µl (2 U) Phusion blood DNA polymerase, 

1µl of each primer (10uM) of bacterial 16S rRNA (16SV4_F and16SV4_R) and fungal ITS2 

genes (ITS2_F and ITS2_R), and 3.6 µl of UV-irradiated nuclease-free water. A negative 

control reaction (in which a human biofluid sample was replaced with UV-irradiated 

nuclease-free water) was included in each experiment to confirm that none of all reagents 

was contaminated with target DNA. A positive control (E Coli as the template) was also 

prepared in each experiment to ensure successful PCR amplification. The approximate 

amplicon sizes of first PCR for 16S V4 is ~295 bp (Ziesemer et al., 2015; Whittle et al., 

2019), and ITS2 ranged between 245-595bp (Bokulich and Mills, 2013; Hoggard et al., 

2018). 

16S V4 region was amplified with Schloss V4-F/V4-R via a touchdown PCR program, as 

follows an initial denaturation step performed at 98°C for 5 minutes, followed by 35 cycles 

of denaturation (98°C, 10 seconds), annealing (55°C, 5 seconds) and elongation (72°C, 

15 seconds), and a final extension of 7 minutes at 72°C. The protocol for the ITS2 gene 

amplification utilising ITS2-F/ ITS2-R was the same as utilised for the 16S rRNA PCR 

except increase the extension time from 15 seconds to 45 seconds. 
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Table 2-4 Primers used in this study 

 

Primer 
Name 

Primer Sequence (5’ – 3’) Length Annealing 
temperature  

16SV4_F GTGCCAGCMGCCGCGGTAA    

 

M= A or C 

19  

 

16SV4_R GGACTACHVGGGTWTCTAAT 

  

H= A or C or T 

V= A or C or G 

W= A or T 

 

 

20 55°C 

16SV4_XT

_F 

TCGTCGGCAGCGTCAGATGTGTATAAGAGAC

AGGTGCCAGCMGCCGCGGTAA 

 

52  

16SV4_XT

_R 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGA

CAGGGACTACHVGGGTWTCTAAT 

 

54 55°C 

ITS2_F GCATCGATGAAGAAC GCAGC 20  

ITS2_F TCCTCCGCTTATTGATATGC 20 55°C 

ITS2_XT_

F 

TCGTCGGCAGCGTCAGATGTGTATAAGAGAC

AG GCATCGATGAAGAACGCAGC 

53  

ITS2_XT_

R 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGA

CAG TCCTCCGCTTATTGATATGC 

 

54 55°C 
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2.3.1.2 DNA Gel electrophoresis 

 

Gel electrophoresis of 5ul of each PCR product was utilised to confirm successful 

amplification.  Briefly, a 2% w/v agarose gel was prepared using four agarose tablets 

(Thermo Fisher Scientific, UK) to 100 ml of 1X Tris-acetate-EDTA Buffer (TAE) containing 

a mixture of Tris base 40 mM, acetic acid 20 mM, and EDTA 1 mM (Thermo scientific, UK) 

according to manufacturer’s protocol and then heating the gel solution in a microwave until 

the agarose was completely dissolved. The gel solution was poured into a gel casting tray 

once the mixture was cooled down to about 60°C. One or two gel comb(s) were placed in 

the tray to produce the wells, and then the mixture was allowed to sit at room temperature 

for at least 60 minutes. 

Following gel preparation, adequate TAE buffer was added to cover the wells, and the tray 

and the comb were then removed. The loading samples were then made through mixing 

up 5 µl of the PCR sample with 1 µl of Gel Loading Dye, Purple (6X) (NEB, UK), which 

contains Ficoll® for brighter, tighter bands, and EDTA to stop enzymatic reactions. 

Subsequently, samples were applied, and to determine the size of the DNA fragment, a 

100 bp DNA ladder with a concentration of 500 µg/ml (consists of 12 blunt-ended DNA 

fragments between 100 and 1,517 bp) (NEB, UK) was used. The electrophoresis machine 

was set to run at 85 V for 60min. After that, the DNA was stained by ethidium bromide 

staining (EtBr) (Sigma, Gillingham, UK) for 15 minutes. In the final step, DNA bands were 

visualised by the UV transilluminator (G: Box Gel Image Analysis Systems, Syngene).  
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2.3.1.3 Clean-up of PCR product samples  

 

PCR Purification Kit (Qiagen, cat. no. 28004) was used to purify the remaining PCR 

product (15μl) from excess primer and PCR reagents according to the manufacturer's 

protocol. Briefly, one volume of PCR reaction was mixed to five volumes of PB buffer and 

vortexed. The mixture was applied to a QIAquick spin column that was placed in a fresh 2 

ml collection tube and then centrifuged for 1 minute at 13,000g, and the filtrate was 

discarded. After that, 0.75ml of PE wash buffer was applied to the QIAquick column and 

then centrifuged for 1 minute at 13,000g, and the filtrate was removed. The final step, 10µl 

of elution buffer EB was applied to the centre of the QIAquick column membrane, and the 

column was left to stand for 1 min to absorb all elution buffer inside the column and then 

centrifuged for 1 minute at 13,000g. The solutions were eluted in 10 μl Buffer EB (10 mM 

Tris·Cl, pH 8.5). A "kit control" was run together with this procedure and involved the 

purification of 15μl of UV irradiated nuclease-free water, again to ensure the kit used was 

free from contaminating DNA. Following the remainder was stored at - 20°C. Following 

standard agarose gel electrophoresis and staining with ethidium bromide to check to 

remove the excess primers from amplicons and to ensure from the presence of the 

resulting PCR products. 

 

2.3.1.4 Confirmation of the absence of All PCR negative reactions 

 

All PCR negative reactions were tested with high sensitivity DNA quantification utilising the 

Qubit 3.0 hsDNA kit (Invitrogen, UK) to ensure the non-appearance of any products of 

amplification in these controls. Briefly, the working solution was ready via diluting the Qubit 
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reagent 1:200 in Qubit buffer. This was initially set as a master mix adequate for a total of 

mixtures in addition to 2 standard tubes. The individual test tubes were ready in 500 ul 

PCR tubes according to Table-2.5 beneath. 

 

Table-2.5 Volumes for preparing a sample and standard test tubes for Qubit 3.0 

Volume Standard test tubes Sample test tubes 

The volume of working solution 190 μl 199 μl 

The volume of standard 10 μl 0 

The volume of the DNA sample 0 1 μl 

Total volume in each test tube 200 μl 200 μl 

 

After that, the test tubes were quickly vortexed and next incubated for two minutes at room 

temperature. Lastly, they were placed in a Qubit 3.0 Fluorometer to gain a concentration of 

ng/μl of each sample. 

 

2.3.1.5 Addition of Illumina XT tags 

 

In order to add XT_tagged primers, which help to facilitate Illumina MiSeq library 

preparation, The second PCR amplification was achieved in a total volume of 50 μl 

containing 10 µl of 5X Platinum Superfi Buffer, 1µl 10mM dNTP mixture, 0.5µl Platinum 

Super-Fi polymerase, 2.5 µl of 10 µM each 16SV4_XT_F and 16SV4_XT_R for bacterial 

16S or ITS2_XT_F and ITS2_XT_R for fungal ITS2, 5µL from the successful first-round 

PCR reaction and 38.5 µL of UV-irradiated nuclease-free water. PCR conditions of 

bacterial 16S and fungal ITS2 were as follows: 98C x 2mins, 7 x cycles, 98C x 10sec, and 
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72C x 20sec and 72C x 5mins. The approximate amplicon sizes of second PCR for 16S V4 

is ~355 bp, and ITS2 ranged between 300–650 bp. 

 

2.3.1.6 Clean-up of PCR product s using AMPure XP magnetic beads 

 

AMPure XP magnetic beads were utilised to purify the amplicon from primer dimers and 

excess PCR reagents. At a ratio of 0.8, beads to sample (v/v) were added. The mixture 

was mixed via pipetting and incubated for 1 min at room temperature to secure the binding 

of PCR products to the magnetic beads. Next quick centrifugation, the sample was put on 

a magnetic stand to isolate the magnetic beads from the supernatant and left until the 

solution was apparent. The supernatant was then removed without disturbing the beads, 

which contained the DNA targets. Following the beads were washed through adding 180 μl 

of 85% (v/v) ethanol (Sigma, UK) and then incubated at room temperature for 30 seconds 

prior carefully discarding the ethanol supernatant. The beads were then dried and eluted in 

20 μl of UV-irradiated nuclease-free water. The beads were then isolated using the 

magnetic stand, and the eluted DNA targets were isolated and stored at -20 °C. After that, 

the amplicons were quantified utilising the Qubit 3.0 high-sensitivity DNA kit (Invitrogen, 

UK) as described above.  
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2.3.2 Microbiome characterisation of Mice samples 

 

Laboratory procedures and experiments of mice's biological samples are shown in the 

flowchart (Figure 2-2). 

 

 

Figure 2-2 Flowchart of the Laboratory procedures and experiments of mice 

biological samples 
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2.3.2.1 DNA extraction of Mice samples  

 

A total of three extraction methods were utilised to extract bacterial DNA from mice 

biological samples which are DNeasy PowerSoil Kit (Qiagen, UK) for stool samples, 

DNeasy® Blood and Tissue Kit (Qiagen, UK) for blood and serum samples, and 

PureLink™ Microbiome DNA Purification Kit (Invitrogen) for urine samples. 

 

2.3.2.1.1 DNA extraction from stool samples 

 

DNeasy PowerSoil Kit was used to extract DNA from stool samples. Bacterial genomic 

DNA was extracted from 250mg mouse stool using the DNeasy PowerSoil Kit (Qiagen) 

following the manufacturer’s instructions. Briefly, 0.25 g of mice faecal sample was placed 

in the dry bead tube, which contains 750 μl of bead solution and briefly shaken. C1 solution 

was added, the specimens gently vortexed and incubated for 10 minutes at 65°C. 

Specimens were horizontally shaken for 10 min. Samples were then centrifuged for 1 min 

at 13,000 × g., the liquid moved to the fresh 2 ml collection tube, and the rest of the 

protocol continued as recommended via the manufacturer. DNA was eluted in 100 µl by 

C6 solution and stored at −20 °C. 
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2.3.2.1.2 DNA extraction from blood and serum samples 

 

 DNeasy® Blood and Tissue Kit was carried out to extract DNA from mouse blood and 

serum samples according to the manufacturer’s instructions for the kit. For each sample, 

100 ul of mouse blood sample (whole blood and serum) was placed in a clean 1.5 ml 

microcentrifuge tube. A volume of 20 µl proteinase K was added to each mouse blood 

sample and modified the volume to 220 µl by PBS. A volume of 200 µl Buffer AL was 

added and briefly vortexed, and then incubated for 10 min at 56°C. Next, 200 µl ethanol 

(96%) was added and thoroughly vortexed. A mixture was pipetted into a DNeasy® Mini 

Spin Columns located in a clean 2 ml collection tube and then centrifuged at 8000 rpm for 

1 min, and the collection tube and flow-through were discarded. The DNeasy® Mini Spin 

Column was transformed into a fresh 2 ml collection tube. Following 500 µl Buffer AW1 

was added and then centrifuged at 8000 rpm for 1 min and discarded flow-through and the 

collection tube. After that, 500 µl Buffer AW2 was added to the mixture, and then the tube 

centrifuged at full speed for 4 mins. After a volume of 100 µl Buffer, AE was directly 

pipetted onto the DNeasy membrane. The sample was incubated for 2 mins at room 

temperature and centrifuged 8000 rpm for 1 min and stored at −20 °C before analysis. 

 

2.3.2.1.3 DNA extraction from urine samples 

 

PureLink™ Microbiome DNA Purification Kit was used to extract DNA from urine samples. 

Urine samples were centrifuged at 13,000 × g for 10 min, the supernatant was discarded, 

and the pellets were stored until further processing. 800 µl of S1—Lysis Buffer was added 

to the pellets and briefly vortexed, and then transferred the mixture to the bead-beating 
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tube. 100 µl of S2—Lysis Enhancer was added and mixed through the vortex. The sample 

was then incubated at 65°C for 10 minutes. After that, Specimens were horizontally 

shaken for 10 min and Centrifuged at 13,000 × g for 2 minutes. 500 µl of the supernatant 

moved to the clean 2 ml collection tube. Following 900 µl of S4—Binding Buffer was added 

to the tube and vortexed briefly. The sample mixture was loaded onto a spin column-tube 

assembly and Centrifuged at 13,000 × g for 1 min, and the filtrate was discarded. The spin 

column was placed in a clean collection tube, and a volume 500 µl of S5—Wash buffer 

was added, and then centrifuged at 13,000 × g for 1 min. The flow-through was discarded 

and then centrifuged the spin column-tube assembly at 13,000 × g for 1 min. The spin 

column was placed in a clean tube. After a volume of 50 µl of S6—the elution Buffer was 

directly pipetted onto the spin membrane. The sample was incubated for 1 min at room 

temperature and centrifuged 8000 rpm for 1 min and stored at −20 °C. 

 

2.3.2.2 Amplification of 16S rRNA gene by Polymerase Chain Reaction 

 

2.3.2.2.1 16S rRNA gene PCR of mice faecal samples 

 

To produce 16S rRNA gene amplicons from mice feces samples, 5µl of DNA was used as 

a template in a 25μl reaction, with 2.5µl of 10X High Fidelity PCR Buffer, 1µl of 50 mM 

MgSO4, 0.5 µl of 10mM dNTP mixture, 0.1µl of Platinum Taq High Fidelity polymerase, 

0.5 µl of each primer (10uM) targeting 16SV4_F (5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT -3′) 

and 16SV4_R (5′- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3′), 
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and 14.9µl of the nuclease-free water that had been subject to 15 minutes UV-irradiation. 

Negative and positive control reactions were prepared. Amplification conditions involved an 

initial denaturation step at 98 centigrade for 5 minutes, followed by 30 cycles at 98 

centigrade 15 seconds, 55 centigrade for 5 seconds, with extension for 30 seconds at 72 

centigrade. Following electrophoretic separation of 5μl of each PCR product was applied, 

the remainder (20μl) was purified of primer dimers and PCR components utilizing AMPure 

XP magnetic beads (Agencourt) at a ratio of 0.8 beads to sample (v/v), eluted in 20μl of 

UV-irradiated nuclease-free water, and quantified using the Qubit 3.0 high-sensitivity DNA 

kit (Invitrogen). 

 

2.3.2.2.2 16S rRNA PCR of mice blood samples (whole blood and serum) 

 

The bacterial 16S rRNA was amplified by PCR utilising the primers listed in (Table 2.1). 

First PCR round utilising primers 16SV4_XT_F and 16SV4_XT_R. PCR was carried out in 

reactions containing 2µl of each DNA sample, 10µl 2X Phusion Master Mix, 1µl of each 

primer of (10uM) 16S rRNA, and 6 µl of the nuclease-free water that had been subject to 

15 min UV-irradiation, in a final volume of 20 µl. Negative and positive control reactions 

were prepared.  

Cycling conditions involved an initial denaturation step at 98°C for 5 min followed by 30 

cycles of 30 sec 98°C, 5-sec annealing at 55°C and 30-sec elongation at 72°C, followed 

by a final extension of 7 minutes at 72°C. Following electrophoretic separation of 5μl of 

each PCR product was used. The remainder PCR product (15μl) was purified from excess 

primer and PCR reagents using the QIAquick PCR Purification Kit. A “Kit control” was run 
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together with this procedure and included the purification of 15μl of UV irradiated nuclease-

free water, again to ensure the kit used was free from contaminating DNA. 

After this, PCR products were then purified utilising AMPure XP magnetic beads 

(Agencourt) at a ratio of 0.8 beads to sample (v/v), eluted in 20μl of UV-irradiated 

nuclease-free water, and quantified utilising the Qubit 3.0 high-sensitivity DNA Kit 

(Invitrogen). 

 

2.3.2.2.3 16S rRNA PCR of mice urine samples 

 

The first PCR round utilising primers 16SV4_F and 16SV4_R was carried out in reactions 

comprising 2µl of each DNA sample, 12.5µl GoTaq Green DNA (Promega), 2µl of each 

primer of (10uM) 16S rRNA, and 6.5µl of the nuclease-free water that had been subject to 

15 minutes UV-irradiation, in a final volume of 25 µl. Negative and positive control 

reactions were prepared. 

PCR reactions were carried out using the respective protocol: an initial denaturation step 

performed at 95°C for 2 minutes, followed by 35 cycles of denaturation (95°C, 30 

seconds), annealing (55°C, 30 seconds), and extension (73°C, 45 seconds), and a final 

elongation of 5 minutes at 73°C. 

Following electrophoretic separation of 5μl of each PCR product, the remainder (20μl) was 

purified to remove the excess primer and PCR components using the QIAquick PCR 

Purification Kit. A “Kit control” was run together with this process and involved the 

purification of 15μl of UV irradiated nuclease-free water, again to ensure the kit used was 

free from contaminating DNA. 
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The second round of PCR amplification was completed as described in (2.3.1.5). Following 

PCR products were purified utilising AMPure XP magnetic beads (Agencourt) at a ratio of 

0.8 beads to sample (v/v), eluted in 20μl of UV-irradiated nuclease-free water, and 

quantified utilising the Qubit 3.0 high-sensitivity DNA kit (Invitrogen). 

 

2.3.2.2.4 16S rRNA PCR of mice synovial fluid samples 

 

To generate 16S rRNA gene amplicons of mice SF samples, 4µl of DNA was used as a 

template in a 20μl reaction, 10µl Phusion blood PCR buffer (Thermofisher), 0.4µl (2 U) 

Phusion blood DNA polymerase, 1µl of each primer (10uM) targeting 16SV4_F 

(GTGCCAGCMGCCGCGGTAA-3′), and 16SV4_R (GGACTACHVGGGTWTCTAAT), and 

3.6µl of the nuclease-free water that had been subject to 15 minutes UV-irradiation. 

Negative and positive control reactions were prepared. After that, the electrophoretic 

separation of 5μl of each resulting PCR product was used. 

 

2.3.3 Sequencing Library preparation of human and mice samples 

 

Illumina indices and adapters were added to amplicon libraries for multiplexing utilising the 

Nextera DNA Library Kit (Illumina, FC-121-1031) protocol as per manufacturer’s 

instructions. The index adapter sequences on both ends of the amplicon were added by 

the PCR step, which facilitates double-index sequencing of clustered libraries on the 

Illumina sequencing schemes. 
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 The following amplicons were normalised utilising the Agilent Bioanalyzer and clustered 

for sequencing at a concentration of 2nM. To generate the needed complexity for 

sequencing, 20% PhiX was added to the amplicons for a final amplicon’s concentration of 

4 pM. 

 

2.3.3.1 Illumina MiSeq Sequencing 

 

Barcoded 16S and ITS2 amplicons were sequenced utilising the Illumina MiSeq 

sequencing system with a 250bp paired-end read metric. 

 

2.3.4 Bioinformatics of human and mice samples 

 

Before utilising the Nephele 16S / ITS paired-end QIIME pipeline, the fastq files were pre-

processed as follows; the Illumina adapter sequences were trimmed from the reads using 

Cutadapt version 1.2.1. The reads are further trimmed using Sickle version 1.200 with a 

minimum window quality score of 20 by sequencing company (Centre for Genomic 

Research -University of Liverpool, UK). Bioinformatic analysis was carried out utilising 

QIIME applied as a part of the Nephele 16S / ITS paired-end QIIME pipeline utilising open 

reference clustering against the SILVA database for bacteria and the ITS database for 

fungi at a sequence detect of 99%. Steps for data processing using QIIME for data 

obtained have been seen in Table-2.6.  

QIIME 16S rRNA and ITS2 pipeline parameters of processing step were Phred Quality 

Scores =19 (A Phred quality score is a measure of the quality of the identification of the 
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nucleobases produced by automated DNA sequencing such as Illumina. Minimum Phred 

quality score of 19 for Q20 (1 in 100 of incorrect base call) or better is recommended. The 

default is 19), Phred offset =33 (Phred Q scores are often represented as ASCII characters 

of base 33 and 64. Base 33 is the most common representation on modern sequencing 

platforms, while 64 on 454 and older Illumina. The default is base 33), and the 

maximum Ambiguous = 0 (Maximum number of produce bases (N) allowed in a sequence 

to retain it. This is applied after quality trimming and is total over combined paired-end 

reads if applicable. The default is 0. For join reads step, max bad run length=3 (Maximum 

number of consecutive low-quality base calls permitted before truncation, the default is 3), 

minimum overlap=10 (Minimum number of overlapped bases for the join of paired-end 

reads, the default is 10), and percent difference within overlap =25 (Maximum percentage 

of differences in the overlapped regions, the default is 25%) (Caporaso et al., 2010). 

 

Table 2-6 Steps for data processing using QIIME (Caporaso et al., 2010) 

1- Join forward and reverse short reads as contigs      

2- Dereplicate contig sequences     

3- Taxonomic assignment based on a selected database   

4- Identify and remove chimeric sequences       

5- Remove rare OTUs in the samples     

6- Detect differentially abundant features in samples     

7- Construct a phylogenetic tree     

8- Calculate various measures of diversity 



119 
 

 

2.3.5 Statistical analysis of microbiome population in biological samples of 

humans and mice 

 

The statistical significance of differences in the abundance of human blood individual 

microbiome among the RA, AS, PA, and control donors were determined by the Kruskal-

Wallis test, with correction for multiple testing via the original FDR method of Benjamini 

and Hochberg method. To identify differentially abundant bacterial species between pre- 

and post-treatment RA patients (RA V0 and RA V3), a Wilcoxon matched-pairs signed-

rank test was used.  Further, the statistical significance of differences in the abundance of 

bacteria and fungi taxa between the RA synovial fluid and control healthy subjects was 

determined by a Mann–Whitney U test, following in all cases, P ≤ 0.05 was considered 

statistically significant. Furthermore, the statistical significance of differences in the 

abundance of taxa in CIA mice relative to control was determined by a Mann–Whitney U 

test. It should be noted that all statistical methods were used for each taxon expressed as 

a percentage of the total taxa on a per-sample basis. In all cases, P ≤0.05 was considered 

statistically significant.  
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2.4 Cytokines detection 

 

2.4.1 Human Magnetic Luminex Screening Assay 

 

Serum, plasma, and synovial fluid cytokines were measured utilising a Human Magnetic 

Luminex Screening Assay following the manufacturer’s instructions (R&D Systems, 

Minneapolis, USA). Levels of IL-6, IL-17, IL-22, and IL-23 cytokines were analysed by the 

LXSAHM-04 kit. This work was done by labospace (Milano, Italy). Briefly, serum, plasma, 

and synovial fluid samples were centrifuged at 16,000 x g for four minutes. Prior to 

analysing, the serum, plasma, and synovial fluid samples were diluted in 1:2 ratios by 

adding 25 μl of the serum, plasma, and synovial fluid samples and 25 μl of Assay Buffer. 

The biofluids samples and standards were added to the wells Assay. After that, 50 μl of 

diluted Microparticle Cocktail was added to each well, and the plate assay was then closed 

and incubated at room temperature for 2 hours on a plate shaker (800 rpm). The following 

wells were washed by 100 μl Wash Buffer 3 times, and 50 μl of diluted Biotin-Antibody 

Cocktail was added to each well, and the plate was sealed and incubated at room 

temperature for 1 hour on a plate shaker (400 rpm). Again, the sample was washed by 

100ul Wash Buffer. After this, 50 μl of diluted Streptavidin-PE was added to each well and 

incubated for 30 minutes at room temperature on the plate shaker at 800 rpm. Next, the 

washing step with100ul Wash Buffer was repeated twice to ensure removing all the liquid 

from each well and incubated for two minutes at room temperature on the plate shaker at 

800 rpm. Within 90 minutes, the samples were read using Bio-Rad analyser. 

 

http://www.labospace.com/
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2.4.2 Statistical analysis 

 

The statistical significance of differences in cytokines levels of serum, and plasma samples 

among the RA, AS, PA, and control donors were determined by the Kruskal-Wallis test, 

with correction for multiple testing via the original FDR method of Benjamini and Hochberg 

method. Further, the statistical significance of differences in the cytokine’s levels of 

synovial fluid samples between the RA synovial fluid and control donors was determined 

by unpaired T-test, following in all cases, P ≤ 0.05 was considered statistically significant. 

The correlation between microbiome taxa and cytokine profiles concentrations were 

analysed via Spearman's correlation using GraphPad 8 software. 
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3 Characterisation of the blood microbiome of patients with 
rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis, 
and healthy control subjects 

 

3.1 Overview 

 

Mounting evidence propose that the composition and status of the blood microbiome may 

play a critical role in the pathogenesis of various diseases states (diabetes, cardiovascular 

disease, atherosclerosis, and in Kawasaki disease) (Amar et al., 2011, 2013; Vajro, 

Paolella and Fasano, 2013; Trøseid et al., 2014; Abe et al., 2015). These investigations 

pose various questions around the nature of their presence and their function in health and 

illness. Furthermore, it supports the concept that the microbiome can circulate in the blood 

circulation of well-appearing humans, even if transiently. Despite mounting evidence 

suggesting a pivotal role for dysbiosis in the initiation and development of RA, AS, PA 

illnesses, no study to date has investigated whether such translocation occurs in these 

highly prevalent disorders. I believe that these nucleic acids have leached from classical 

microbiome niches into the blood and may represent novel biomarkers for disease 

pathogenesis, hence the novelty of the study.  

This chapter aims to characterise the blood microbiome of patients with rheumatoid 

arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PA), relative to healthy 

control subjects. This will help to identify specific microbiome signatures associated with 

RA, AS, and PA illnesses, which may increase our understanding of pathogenesis and or 

reveal a pool of candidate biomarkers for further development. Hence, here, I also 

determine the correlation of inflammatory cytokines (IL-17-A, IL-22, IL23, and IL-6) with 

these inflammatory conditions. 
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3.2 Methods 

 

Methods for 16S rRNA and ITS2 PCR steps, Gel electrophoresis, DNA purification by 

Qiagen Purification Kit, Addition of Illumina XT tags, DNA purification by AMPure XP 

magnetic beads, DNA sequencing utilising an Illumina MiSeq and subsequent bioinformatic 

analysis, and further, detection of the IL-6, IL-17A, IL22, and IL-23 levels in the blood are 

detailed in the Methods chapter. 

 

3.3 Results 

 

3.3.1 Donor Population 

 

This study investigated the presence of bacterial and fungal DNA in a range of donated 

blood samples. A total of forty-four subjects were included in the study. Among these, 

twenty were obtained from Haywood hospital (Staffordshire, UK). All of them were 

diagnosed with rheumatoid arthritis and provided serum samples on their first visit (RA V0) 

and following (RA V3) the instigation of three months of treatment. In addition to the RA 

patient serum, four plasma samples from patients with RA, four serum samples from 

ankylosing spondylitis (AS) patients, four serum and four plasma samples from psoriatic 

arthritis (PA) patients, and four serum and four plasma samples were obtained from 

healthy volunteers who had no clinical symptoms of RA and others diseases which were 

obtained to allow comparison among the various disease states. All these samples were 

obtained from the Sera Laboratories Limited, UK. 
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3.3.2 16S rRNA PCR amplification 

 

We normalised the volume of serum and plasma at the point of PCR to 4ul from each 

sample. Normalisation step help to obtain consistent, reliable data when working with 

multiple samples. Following PCR as described in 2.3.1.1, bacterial 16S rRNA was detected 

in 90% of RA serum patients, which provided a total of seventeen paired samples for 

analysis (i.e., those subjects for which V0 and V3 data was available). In addition to the 

RA patient serum, bacterial 16S rRNA was found in 50% (2/4) of RA plasma samples, 

100% (4/4) of AS serum samples, 50% (2/4 of serum and 2/4 of plasma samples) PA 

patients, and 50 % (4/4 of serum, and 0/4 of plasma samples) healthy subjects providing a 

total of fourteen samples for analysis. Our various experimental negative controls (the 

negative controls of PCR experiments/ kit controls of purification step by PCR Purification 

Kit) constantly failed to generate a visible band after PCR and agarose gel electrophoresis. 

In addition, DNA quantification utilising the Qubit 3.0 high-sensitivity DNA kit (Invitrogen) 

confirmed the absence of DNA from the negative controls. The Qubit 3.0 high-sensitivity 

DNA kit is designed to be accurate for initial sample concentrations from 10 pg/µL; in the 

case of our negative control samples, zero values were obtained. As an additional 

precautionary measure, I reviewed the additional negative control reactions that were 

sequenced on the same run and at the same time as the samples mentioned here. One 

such sample produced mappable sequencing data (sample NEGF) and contained a small 

number of reads mapping to the genera Halomonas (6 reads), Corynebacterium 1 (64), 

Staphylococcus (24), Ralstonia (1726), Stenotrophomonas (460), Pseudomonas (276), 

and Ruminococcus (405), but predominately contained reads mapping to the genera 

Escherichia-Shigella* (2420), and Serratia* (18000). This was from another study but 

produced using the identical methodology to that used herein. 
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 Many of these taxa have been identified previously as contaminants of next-generation 

sequencing experiments (Laurence, Hatzis and Brash, 2014; Salter et al., 2014a) but a 

significant point herein, were either distinct from the taxa found within our samples or 

existent at much lower levels. To control for this possible source of contamination, we 

highlight any taxa that were found within sample NEGF at a level > 25% of the mean 

experimental sample level for example, on average, we require a likely contaminant to be 

seen at a level higher alternatively, equal to four times that detected in the negative control 

to recognise its presence as reliable. The utilisation of this method found Serratia, 

Escherichia-Shigella, Ralstonia and Ruminococcus as possible contaminants and 

discussion of these taxa will make reference to this fact.  

 

3.3.3 Characterisation of the circulating bacterial community via 16S rRNA 

sequencing 

 

The presence of microbial DNA in the human blood samples (serum and plasma) was 

assessed by way of PCR amplification and sequencing of the bacterial 16S rDNA gene, 

followed by bioinformatic analysis utilising QIIME (as shown in methods chapter, 2.3.4). 

Our first approach used Principal coordinates analysis (PCoA) to decrease the complexity 

of the data obtained and to visualise any apparent alterations in clustering among samples 

of different diseases types (Figure 3-1). Following ordination, it is noted that the clusters of 

RA serum samples separately to those from other biological samples (RA plasma, AS 

serum, serum and plasma of PA, and control serum samples). The results of the PCoA 

plots also point out that the types of microbiome present in the Sera Laboratories and 
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Haywood hospital samples are very different. There is also a wide spread of microbiome 

variation across the RA samples. 

 

 

 

  

 

Figure 3-1 PCoA plot produced by the use of weighted unifrac distance matrix of 16S 

rRNA for the serum of RA V0 (purple), and RA V3 (yellow) (RA V0 and RA V3 are 
taken from Haywood hospital samples), RA plasma (sky blue), AS serum (red), PA 
serum (green), PA plasma (orange) and control subjects (blue) (RA plasma, AS 
serum, PA serum and plasma, and control subjects serum from are obtained the 
Sera Laboratories) as determined through amplification and sequencing of 16S 
rRNA, variable region 4. Proportions of variation explained by the principal coordinates 
are designated on the axes. PCoA identified that the maximal variation was 54.76% (PC1), 
14.97 % (PC2) and, 8.64% (PC3). The microbiota of samples that appear in close 
proximity to each other is considered to have more similar microbiome communities. 
Following ordination, it is fascinating to note that the clusters of RA serum samples 
separately to those from other biological samples (RA plasma, AS serum, serum and 
plasma of PA, and control serum samples). The results of the PCoA plots also show that 
the types of microbiome present in the Sera Laboratories and Haywood hospital samples 
are very different. There is also a wide spread of microbiome variation across the RA 
serum samples. 
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3.3.4 Serum microbiome composition according to treatment response and 

seropositivity 

 

Principal Coordinate 1 represents > 50% of the total variation in the data set. Samples 

appeared to be clustering along this axis (X) with control samples clustered to the right, 

and RA samples clustered to the left. My supervisor Dr. Dan Tonge made the PCoA 

approach. Due to the paired nature of our RA cohort, we linked pre and post-treatment 

measurements within each patient (V0 and V3 revealed in pink and blue, respectively) via 

means of a black connecting line. For 13/17 pairs of samples, the microbial population 

observed to progress along Principal Coordinate 1 after treatment, proposing that the blood 

microbiome population in these samples turned to more similar to that of the healthy 

control / PA/AS cohort after treatment. 

 In order to examine this effect in more detail, we have seen the above coordination in light 

of the type of treatment (Figure 3-2) and RF/CCP status (Figure 3-3).  Of the 17 RA 

patients who had complete information associated with successful microbial analysis 

before and after treatment, six patients were prescribed methotrexate monotherapy (MTX), 

two patients’ methotrexate and hydroxychloroquine (MTX_HCQ), one patient methotrexate 

and sulphasalazine (MTX_SSZ), and eight patients received a mixture of all three drugs 

(MTX_HCQ_SSZ) (See Table-2.1 in methods chapter). Thirteen pairs of a sample that 

progressed toward the right along PC1 post-treatment came from patients treated with a 

variety of medications (MTX, MTX_HCQ, MTX_HCQ_SSZ, and MTX_SSZ). In addition, 

the four patients who did not progress in this direction also came from patients treated with 

a range of approaches (MTX, MTX_HCQ, MTX_HCQ_SSZ, and MTX_SSZ), proposing 

that the observed change in microbiome population was not affected by the treatment 

method. Conversely, of the 13 patients whom that progressed toward the right along with 
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PC1 post-treatment, ten (77%) patients had negative RF / CCP, and only three patients 

had positive RF / CCP. In contrast, 3 out of the 4 (75%) patients that did not progress 

towards the right post-treatment had RF/CCP positive. These data propose that the role of 

RF / CCP in modulating the microbiome response after the onset of treatment with those 

patients with RF / CCP negative RA more likely to progress toward a control/ PA/AS 

microbiome population than those who consider RF / CCP to be positive. 
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Figure 3-2 PCoA plot produced by the use of weighted unifrac distance matrix for 

RA V0 (pink), and RA V3 (blue), AS (mustard), PA (aqua), and control subjects 
(green). Distance matrix informed by amplification and sequencing of the 16S rRNA 
variable region 4, followed by the taxonomic assignment, whereas samples are 
labelled by treatment type. Where applicable, paired-samples (V0, V3) are linked through 
a black line. Proportions of variation explained by principal coordinates 1 and 2 are 
designated on the relevant axes. Variation explained by the PCoA axes of ordination was 
54.1% (PC1) and 15.5 % (PC2). 
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Figure 3‑3 PCoA plot produced by the use of weighted unifrac distance matrix for 

RA V0 (pink), and RA V3 (blue), PA (aqua), AS (mustard), and control subjects 
(green). Distance matrix informed by amplification and sequencing of the 16S rRNA 
variable region 4 followed by the taxonomic assignment, whereas samples are 
labelled by RF/CCP status. Where applicable, paired-samples (V0, V3) are linked through 
a black line. Proportions of variation explained by principal coordinates 1 and 2 are 
designated on the relevant axes. Variation explained by the PCoA axes of ordination was 
54.1% (PC1) and 15.5 % (PC2). 
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3.3.5 Bacterial Community Composition 

 

We do have a measure of total abundance and have absolute abundance data for every 

taxon - this is read count for each taxon. These are routinely considered in addition to the 

following; to compare samples with different sequencing depths, each taxon was 

expressed as a percentage of the total number of reads for that given sample.  

It should be noted that we standardised the amount of biofluid used in the PCR reaction, 

and library normalization prior to sequencing (this standardizes each library in an 

equimolar concentration to ensure roughly the same sequencing depth per sample. Also, it 

is ensured that the sequencing depth was not limiting by undertaking a rarefaction 

analysis. This is standard practice and well-published.   

Another next-generation sequencing such as miRNA-seq also their genes expression 

account are expressed as a percentage of the total number of reads for that given sample. 

At the phylum level, our blood samples were dominated by Proteobacteria (46.1% of all 

bacterial DNA), followed by Firmicutes (30.8%), Actinobacteria (10.9%), and Bacteroidetes 

(10.5%). These results mirror previous studies (Amar et al., 2013; Païssé et al., 2016; Olde 

Loohuis et al., 2018; Whittle et al., 2019) and further support the notion of a core blood 

microbiome predominated by four key phyla.   

At the genus level, our RA serum samples were predominated by genera Halomonas 

(20.6%), Anaerococcus (7.4%), Pseudomonas (7.85%), Corynebacterium 1 (6.15%), 

Shewanella (6.1%) and Lachnospiraceae NK4A136 group (5.15%), as shown in Figure 3-

4. In contrast, control serum samples were predominated by the genera Corynebacterium 

(26.3%), Serratia* (17.10%), Streptococcus (9.1%), Pseudomonas (7.3%), Anaerococcus 

(5.0%), Staphylococcus (4.3%) and Achromobacter (4.0%). Many of these genera were 
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identified in the blood of healthy human donors as part of an entirely separate study 

(Whittle et al., 2018), albeit in differing proportions. Moreover, RA plasma samples were 

comprised genera Serratia* (34%), Corynebacterium 1 (18.6%), Pseudomonas (5.8%), 

Streptococcus (5.4%), Anaerococcus (4.9%), Achromobacter (4.3%) and Staphylococcus 

(3.6%). Furthermore, serum samples from AS patients contained the same core genera of 

control serum samples and were dominated by genera Serratia* (21.6%), Corynebacterium 

1 (26.3%), Achromobacter (7.8%), Pseudomonas (7.5%), Anaerococcus (5.0%), 

Streptococcus (4.7%), and Staphylococcus (3.3%). Circulating samples from our PA were 

comprised genera Corynebacterium 1 (17.75%), Serratia* (17.5%), Streptococcus (9.85%), 

Pseudomonas (7.2%), Anaerococcus (4.85%), Achromobacter (3.5%) and Staphylococcus 

(4.55%).  

*Potential contaminant present within a single negative control reaction at a level 

exceeding that showed in our experimental samples. 
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A-  

 

B-  

 

Figure 3-4 Relative abundance of the most abundant bacterial genera. Data are the 

relative abundance of the major bacterial taxa, characterized as having a mean abundance 
of >1%, in the serum of rheumatoid arthritis (RA V0, n = 18, and RA V3, n = 18), RA 
plasma, n=2, serum samples from ankylosing spondylitis (AS, n = 4), serum and plasma 
from psoriatic arthritis (PA serum, n =2, and PA plasma, n=2), and Control serum (Control, 
n = 4) samples as determined using amplification and sequencing of the 16S rRNA gene 
variable region 4. Data are mean abundance expressed as a percentage of the total 
bacterial sequence count. (A) Taxa data grouped by the condition of bacteria in the blood, 
and (B) Taxa individual sample data of bacteria in the blood. 
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Statistical analysis of those genera which represent at least 1% of any one experimental 

group was conducted utilising the Kruskal Wallis test. Seventeen taxa were significantly 

changed via illness status and are observed in Table 3-1. Post hoc analysis was carried 

out utilising the Benjamini-Hochberg correction for multiple comparisons in Graphpad prism 

version 8. 

 

Table 3-1 Taxa significantly changed via illness status. In this table, we compared 

the bacterial taxa in all diseased conditions (RA, AS, and PA) against healthy control 
subjects. Statistical analysis was conducted utilising the Kruskal Wallis test, 
followed by the Benjamini-Hochberg correction for multiple comparisons to identify 
the microbiome significantly shifted via the diseased condition 

N Taxonomy Kruskal 
Wallis 

PA serum 

FDR 

PA plasma 
FDR 

AS serum 
FDR 

RA 
plasma 
FDR 

RA V0 serum 
FDR 

RA V3 
serum 
FDR 

  P value P value P value P value P value P value P value 

1 D_5__Halomonas <0.0001 ns ns ns ns 0.009 0.034 

2 D_5__Shewanella <0.0001 ns ns ns ns 0.013 0.026 

3 D_5__Achromobacter <0.0001 ns ns ns ns 0.012 0.009 

4 D_5__Serratia* <0.0001 ns ns ns ns 0.016 0.016 

5 D_5__Corynebacterium 1 <0.0001 ns ns ns ns 0.001 0.003 

6 D_5__ Escherichia-Shigella* 0.0003 ns ns ns ns 0.039 0.015 

7 D_5__Streptococcus 0.001 ns ns ns ns 0.003 0.006 

8 D_5__Chryseobacterium 0.003 ns ns ns ns ns ns 

9 D_5__Staphylococcus 0.005 ns ns ns ns 0.02 ns 

10 D_5__Granulicatella 0.007 ns ns ns ns 0.01 0.02 

11 D_5__Gemella 0.009 ns ns ns ns 0.006 0.04 

12 D_5__Acinetobacter 0.01 ns ns ns ns ns ns 

13 D_5__Ruminococcaceae UCG-
014 

0.01 ns ns ns ns ns ns 

14 D_5__Turicella 0.013 ns ns ns ns ns ns 

15 D_5__Neisseria 0.019 ns ns ns ns ns ns 

16 D_5__Alistipes 0.02 ns ns ns ns ns ns 

17 D_5__Methylobacterium 0.042 ns ns ns ns ns ns 

* Taxa previously associated with contamination and identified within a single negative 
control reaction.  ns, not statistically significant, FDR, False Discovery Rates. 
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Statistical analysis identified that the abundance of the genus of Halomonas, and 

Shewanella, were significantly increased in the serum of RA patients (RA V0 and RAV3) in 

comparison to the healthy donor’s serum. In contrast, serum RA patients (RA V0 and 

RAV3) have significantly decreased in the abundance of genus Achromobacter, 

Escherichia-Shigella*, Serratia*, Corynebacterium 1, Streptococcus, Granulicatella, and 

Gemella relative to control subjects. Further, the abundance of genus Staphylococcus was 

decreased in naïve RA patients (RA V0) in comparison to control subjects (Figure 3-5, and 

Table 3-2). 

 

 

Table 3-2 Median relative abundance (SD) comparison between diseased and control 
subjects.  

Bacterial Genera 

Control-S 

Median 

(SD) 

AS-S 

Median 

(SD) 

PA -S  

Median 

(SD) 

PA-P 

Median 

(SD) 

RA-P 

Median 

(SD) 

RAV0-S 

Median 

(SD) 

RAV3-S 

Median 

(SD) 

Halomonas 0.65(0.31) 0.75(0.52) 0.65(0.21) 0.25(0.07) 0.3(0) 21.8(8.5) 16.8(7.7) 

Shewanella 0.3(0.18) 0.35(0.25) 0.15(0.07) 0(0) 0.05(0.07) 6.1(3) 5.1(2) 

Streptococcus 9 (3.2) 5(0.7) 15.1(10.1) 3.1(1.3) 5.3(1.2) 2.2(1.9) 3(1.3) 

Achromobacter 3.9(0.7) 6(7.3) 5.4(3.7) 2.7(1.7) 4.2(1.1) 0.2(0.5) 0.1(0.17) 

Escherichia-

Shigella* 0.9(0.3) 1(0.2) 0.6(0.14) 0.6(0.14) 0.85(0.6) 0.2 (0.3) 0.15(0.1) 

Corynebacterium 1 24.8 (6.3) 23.1(7.4) 14.1(0.2) 21.4(1.1) 18.6(0.1.4) 3(3.8) 4.9(4.7) 

Granulicatella 0.45(0.17) 0.35(0.18) 1.1(0.5) 0.1(0.14) 0.2(0) 0.1(0.14) 0.1 (0.13) 

Serratia* 14.5(4.3) 20.8(5.7) 20.8(2.3) 15.2(8.9) 34.4(8.8) 3.2(1.4) 2.8(1.4) 

Gemella  2 (1.2) 1(0.4) 1.9(0.2) 0.8(0.4) 0.8(0.3) 0.3(0.5) 0.7(1.3) 

Staphylococcus 4.4(1.5) 3.9(1.3) 4(1.2) 5.7(3.9) 3.6(0.3) 1.3(1.3) 2 (1.3) 
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Figure 3-5 Relative abundance of Halomonas, Shewanella, Streptococcus, 
Achromobacter, Escherichia-Shigella*, Corynebacterium 1, Serratia*, Granulicatella, 
Gemella, and Staphylococcus detected in the serum of rheumatoid arthritis (RA V0 
and RA V3), plasma RA, serum AS, serum and plasma PA and healthy control 
serum. Data determined through the amplification and sequencing of the 16S rRNA gene. 
The box and whiskers are showing the distribution of the data. The original FDR method of 
Benjamini and Hochberg showed the RA serum (RA V0 and RA V3) was associated with 
significantly increased of the abundance of the genus Halomoans, and Shewanella 
increased significantly decreased the abundance of genera Streptococcus, 
Achromobacter, Escherichia-Shigella*, Corynebacterium 1, Serratia*, Granulicatella, and 
Gemella relative to our healthy control subjects. Further, there was a significant decrease 
in genus staphylococcus in RA V0 relative to healthy control subjects. Data are median 
abundance expressed as a percentage of the total bacterial sequence count. *P < 0.05; 
**P < 0.01. 
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To further explore the results of our ordination, which suggested that the circulating 

microbiome of many of our RA patients moved closer towards the healthy control state 

post-treatment, I analysed the V0 and V3 data for all taxa, considering the paired nature of 

these observations. Wilcoxon Signed-Rank Test analysis revealed that members of the 

genera Haemophilus, Alloprevotella, Eremococcus, and Lachnospiraceae_UCG001 were 

significantly altered between V0 and V3 (Figure 3-6, and Table 3-3). 

 

 

Table 3-3 Median relative abundance (SD) comparison between RAV0 and RAV3 

subjects and also compared with control subjects   

 

Bacterial Genera 
Control-S 
Mean(SD) 

RAV0-S 
Mean(SD) 

RAV3-S 
Mean(SD) 

 Haemophilus 0.75(0.31) 0.3(0) 21.4(8.5) 

 Alloprevotella 0.3(0.18) 0.05(0.07) 6.3(3) 

 Eremococcus 9.3(3.2) 5.3(1.2) 2.7(1.9) 

  
Lachnospiraceae_UCG001  

4(0.7) 4.2(1.3) 0.37(0.5) 
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Figure 3-6 Relative abundance of Haemophilus, Alloprevotella, Eremococcus, and 

Lachnospiraceae_UGC-001 identified in the serum of rheumatoid arthritis patients 
(RA V0 and RA V3). Data determined by the amplification and sequencing of the 16S 
rRNA gene variable region. The abundance of Haemophilus, Alloprevotella, Eremococcus, 
and Lachnospiraceae_UGC-001 increased significantly in the serum of RA V3 relative to 
the serum of RA V0.  Data are median abundance expressed as a percentage of the total 
bacterial sequence count. *P < 0.05. 

 

 

 

 

 

 

3.3.6 ITS2 PCR amplification 
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Utilising PCR amplification, fungal ITS2 DNA was absent in the serum of RA patients (RA 

V0 and RA V3). However, ITS2 amplification, indicative of the presence of fungi, was 

detected in 1 of 4 (25%) plasma with RA, the serum of 3 of out 4 (75%) patients with AS, 2 

out of 4 (50%) PA plasma, 3 out of 4 (75%) PA serum, 3 out of 4 (75%) healthy control 

subjects’ serum, and 3 out of 4 (75%) in the plasma of healthy control. All experimental 

negative controls (the negative controls of PCR experiments/ kit controls of purification 

step by PCR Purification Kit) consistently failed to generate a visible band after PCR and 

agarose gel electrophoresis. Besides, DNA quantification utilising the Qubit 3.0 high-

sensitivity DNA kit (Invitrogen) confirmed this non-appearance. 

 

3.3.7 Characterisation of fungal populations via ITS2 sequencing of blood 

 

The existence of fungal DNA in the blood samples was assessed via way of PCR 

amplification and sequencing of the fungal ITS2 gene, followed by bioinformatic analysis 

using QIIME (as shown in Methods Chapter, 2.3.4).   

Principal coordinates analysis (PCoA) was used to reduce the complexity of the data 

obtained, and to visualise any obvious clustering among samples of different illness types 

(Figure 3-7). 
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Figure 3-7 Principal Coordinate Analysis plot informed by a Bray Curtis distance 

matrix of blood fungal community structure for control subjects’ serum (orange), 
control plasma (blue), arthritic patients’ plasma (yellow), AS serum (red), PA plasma 
(green), PA serum (purple) as assessed via amplification and sequencing of the ITS2 
gene. Proportions of variation explained by the principal coordinates are designated on the 
axes. PCoA identified that the maximal variation was 29.73% (PC1), 25.12% (PC2) and, 
10.9% (PC3). The microbiota of samples that appear in close proximity to each other is 
more similar in composition. 



143 
 

3.3.8 Fungal Community Composition  

 

At the phylum level, blood was identified to be predominated by members of the 

Basidiomycota RA plasma= 94.5%, AS serum 86.9%%, PA plasma= 94.6%, PA serum= 

90.2%, control serum= 93.5%, and control plasma= 80.4%) and Ascomycota (RA plasma= 

2.3%, AS serum= 2.0%, PA plasma= 2.1%, PA serum= 3.8%, control serum=4.9%, and 

control plasma=14.9%) phyla.  

At the genus level (Figure 3-8), our blood samples were dominated via by the genus 

Malassezia (RA plasma= 60.5%, AS serum= 61.9%, PA plasma= 85.4%, PA serum= 

73.5%, control serum=73.8%, and control plasma= 61.2%), followed by specific 

unclassified organisms belonging to the  classes Tremellomycetes (RA plasma= 0.0%, AS 

serum= 1.0%, PA plasma= 3.0%, PA serum= 12.2%, control serum=13.5%, and control 

plasma= 11.9%). To a lesser extent, the blood samples contained specific unclassified 

organisms belonging to the Malasseziales order (RA plasma= 0.0%, AS serum= 0.0%, PA 

plasma= 0.8%, PA serum= 3%, control serum=1.3%, and control plasma= 1.3%), and 

genus Kondoa (RA plasma= 16.6%, AS serum= 0.0%, PA plasma= 0%, PA serum= 0%, 

control serum=0%, and control plasma= 1.3%). Further, unclassified organisms belonging 

to the family Tremellales_fam_Incertae_sedis was identified only AS serum group (22.3%), 

and genus Rhizophydium (3.9%) detected in PA serum, however, genus Cladosporium 

identified in control group (control serum= 1.9% and control plasma= 3.1%  ( . The statistical 

analysis identified that the abundance of the fungal population was unaltered via illness 

condition. 
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A-  

 

B-  

 

 

Figure 3-8 Relative abundance of fungal genera identified within the blood. Data are 

the relative abundance of the major bacterial taxa, characterized as having a mean 
abundance of >1% of the total fungal content in any one experimental group, identified in 
the plasma of rheumatoid arthritis (RA plasma, n = 1), ankylosing spondylitis serum (AS 
serum, n = 3), psoriatic arthritis plasma  (PA plasma, n =2),  PA serum ( PA serum, n = 3), 
control serum (Control serum, n = 3),  and control plasma (Control plasma, n = 3), samples 
as determined using amplification and sequencing of the ITS2. Data are mean abundance 
expressed as a percentage of the total bacterial sequence count, which were created by 
QIIME pipeline. (A) Taxa data grouped by the condition of fungal in blood, and (B) Taxa 
individual sample data of fungal in blood. 
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3.3.9 Estimation of inflammatory cytokines in blood 

 

Serum and plasma levels of interleukin 6 (IL-6), 17A (IL-17A), 22 (IL-22), and 23 (IL-23) 

were measured using the Luminex system as described in the Methods section, 2.4.1. 

Levels of IL-6, IL-17, IL-22, and IL-23 were significantly elevated in serum and plasma of 

all patient groups and variables between disease conditions. We identified that serum and 

plasma levels of IL-6, IL-17, IL-22, and IL-23 were higher in RA patients relative to healthy 

controls. Moreover, IL-17, IL-6, and IL-23 were elevated in the serum of AS, serum, and 

plasma of PA patients compared to healthy subjects. Further, the level of IL-22 was 

significantly increased in serum and plasma PA patients relative to healthy controls (Figure 

3-9).  

Next, we investigated whether the plasma of RA patients have a different inflammatory 

status when compared to those with the RA serum V0 and V3, which may explain why the 

plasma RA did not cluster on bacterial microbiome analysis as expected in RA serum V0 

and V3. 

The Kruskal-Wallis test, with correction for multiple testing via the original FDR method of 

Benjamini and Hochberg method, revealed that the concentration of IL-6 was identified to 

be significantly decreased in the RA plasma patients  (RA plasma median (SD) = 30.9 

(7.7) pg/ml) in comparison to the RA serum V0 and V3 (RA serum V0 and V3 median 

(SD) = 59.6 (28) pg/ml, 55 (35) pg/ml respectively). However, all other levels of 

inflammatory markers were unchanged between the RA plasma and RA serum V0 and V3 

(Figure 3-10).  
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These results suggested that RA plasma were less inflamed when compared to RA serum 

V0, and V3 may clarify why the plasma RA did not cluster on bacterial microbiome analysis 

as expected in RA serum V0 and V3. 
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E- Plasma IL-6 
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Figure 3-9 levels of IL-6, IL-17, IL-22, and IL-23 detected in the serum of ankylosing 

spondylitis serum and plasma of psoriatic arthritis, RA serum (RAV0 and RAV3) and 
plasma, and the serum and plasma healthy control subjects. Human Magnetic 
Luminex Screening Assay determines data. The box and whiskers show the distribution 
of data. From A-D, IL-6, IL-17, IL-22, and IL-23 levels were markedly increased in serum of 
rheumatoid arthritis (RAV0 and RAV3) patients compare to healthy controls serum. 
Further, IL-6, IL-17, and IL-23 levels were elevated in the serum of AS patients in 
comparison to controls. In addition, IL-6, IL-17, IL-22, and IL-23 were elevated in the serum 
of PA patients compared to healthy subjects. From E-H, IL-6, IL-17, IL-22, and IL-23 levels 
were significantly higher in both psoriatic arthritis and rheumatoid arthritis patients than 
healthy control. Data are a median of cytokine levels (pg/ml). The statistical significance 
between groups was determined by the Kruskal-Wallis test, with correction for multiple 
testing via the original FDR method of Benjamini and Hochberg method. *P < 0.05, **P < 
0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 3-10 concentrations of IL-6, IL-17, IL-22, and IL-23 were identified in RA serum 

(RAV0 and RAV3) and plasma. Human Magnetic Luminex Screening Assay determines 
data. From A, the concentration of IL-6 was notably decreased in the plasma RA compared 
to the RA serum V0 and V3. B-D, There was no statistical difference in IL-17, IL-22, and IL-
23 concentrations between the RA plasma and RA serum V0 and V3. Data are a median of 
cytokine levels (pg/ml). The statistical significance between groups was determined by the 
Kruskal-Wallis test, with correction for multiple testing via the original FDR method of 
Benjamini and Hochberg method. *P < 0.05. 
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3.3.10 Changed cytokine responses in RA patients with alterations in taxonomic 

compositions of the serum microbiome 

 

We investigated whether genera significantly shifted via RA condition are correlated with 

increased specific inflammatory cytokine responses (IL-6, IL-17, IL-22, and IL23) to 

determine if taxa signatures are related to the degree of inflammation. The taxa include 

Halomonas, Shewanella, Streptococcus, Achromobacter, Escherichia-Shigella*, 

Corynebacterium 1, Serratia*, Granulicatella, Gemella, and Staphylococcus. 

Spearman’s rank correlation revealed that no such association was found to exist among 

Halomonas, Shewanella, Streptococcus, Achromobacter, Escherichia-Shigella*, 

Corynebacterium 1, Granulicatella, Gemella, and Staphylococcus with elevated 

inflammatory cytokines in the serum of RA patients. However, there was a negative 

correlation between Serratia* and the elevation of IL-22 concentration in the serum of 

patients with RA (r = -0.4, P = 0.03), See Table 3-, and Figure 3-11.   

We next investigated if the patients whose microbiome shifted following treatment had 

statistically different cytokine profiles (IL-6, IL-17, IL-22, and IL-23) to those whose 

microbiome did not shift the following treatment. T-test analysis found that no overall 

differences between the RA patients whose microbiome shifted following treatment and 

those whose microbiome did not shift the following treatment (Figure 3-12).  
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Table 3-4: Correlation of serum genera significantly changed via RA status with inflammatory 
cytokines (IL-6, IL-17, IL-22, and IL-23) is determined by Spearman’s rank correlation coefficient. 

Bacterial taxa vs. cytokine  Spearman's rank correlation P value 

Halomonas vs. IL-6 0.05 ns 

Halomonas vs. IL-17 0.07 ns 

Halomonas vs. IL-22 0.15 ns 

Halomonas vs. IL-23 0.08 ns 

Shewanella vs. IL-6 0.04 ns 

Shewanella vs. IL-17 -0.1 ns 

Shewanella vs. IL-22 -0.04 ns 

Shewanella vs. IL-23 -0.13 ns 

Streptococcus vs. IL-6 0.2 ns 

Streptococcus vs. IL-17 -0.13 ns 

Streptococcus vs. IL-22 0.08 ns 

Streptococcus vs. IL-23 -0.2 ns 

Achromobacter vs. IL-6 -0.03 ns 

Achromobacter vs. IL-17 -0.1 ns 

Achromobacter vs. IL-22 -0.01 ns 

Achromobacter vs. IL-23 -0.1 ns 

Escherichia-Shigella* vs. IL-6 -0.1 ns 

Escherichia-Shigella* vs. IL-17 -0.08 ns 

Escherichia-Shigella* vs. IL-22 -0.1 ns 

Escherichia-Shigella* vs. IL-23 -0.2 ns 

Corynebacterium 1 vs. IL-6 -0.01 ns 

Corynebacterium 1 vs. IL-17 -0.1 ns 

Corynebacterium 1 vs. IL-22 -0.09 ns 

Corynebacterium 1 vs. IL-23 -0.06 ns 

Granulicatella vs. IL-6 0.12 ns 

Granulicatella vs. IL-17 -0.2 ns 

Granulicatella vs. IL-22 -0.2 ns 

Granulicatella vs. IL-23 0.06 ns 

Serratia* vs. IL-6 -0.1 ns 

Serratia* vs. IL-17 0.3 ns 

Serratia* vs. IL-22 -0.4 0.03* 

Serratia* vs. IL-23 0.2 ns 

Gemmella vs. IL-6 0.09 ns 

Gemmella vs. IL-17 -0.05 ns 

Gemmella vs. IL-22 -0.03 ns 

Gemmella vs. IL-23 -0.05 ns 

Staphylococcus vs. IL-6 0.3 ns 

Staphylococcus vs. IL-17 -0.3 ns 

Staphylococcus vs. IL-22 0.2 ns 

Staphylococcus vs. IL-23 -0.2 ns 

ns= not statistically significant, *P < 0.05 
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Figure 3-11 Correlation between relative abundances of Serratia* and the elevation 

of IL-22 concentrations detected in the sera of patients with RA. Relative abundances 

of Serratia* negatively correlates with the elevation of IL-22 concentrations (r=-0.4, P=0.03) 

in the serum of patients with RA. Data were statistically analysed using the Spearman 

correlation test. The level of statistical significance was set at a 95% confidence interval (p 

< 0.05), and the statistical analysis was determined using Prism 8.0 software. *P < 0.05. 
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R.M.S.T RA patients whose microbiome shifted following treatment  
R.M.U.T RA patients whose microbiome unshifted following treatment  

 
Figure 3-12 Human Magnetic Luminex Screening Assay measured IL-6, IL-17, IL-22, 

and IL-23 levels in serum of the RA patients whose microbiome shifted after 

treatment, and those whose microbiome did not shift the following treatment. A-D, 

IL-6, IL-17, IL-22, and IL-23 levels were not significantly changed between the RA patients 

whose microbiome shifted following treatment and those whose microbiome did not shift 

the following treatment. Values represent the mean (SD) of cytokine levels (pg/ml). The 

statistical significance between groups was determined by T-test, ns= not statistically 

significant. 
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3.4 Discussion 

 

Emerging evidence suggests that microbiome dysbiosis in the gut, oral, lung, and urinary 

tract of RA patients may play a role in the initiation and development of RA illness. On the 

other hand, ankylosing spondylitis (AS) and psoriatic arthritis (PA) appear to have different 

pathogenesis as microbiome dysbiosis in the gut of patients with AS and PA was observed 

(Gilis et al., 2018).  

The existence of viable organisms in the blood of a human cohort is a continuingly 

controversial subject matter (Castillo et al., 2019). However, several studies have 

presented evidence for the presence of entire microorganisms utilising a range of different 

techniques (Whittle et al., 2019). Previous studies involving PCR-based methods have 

shown the existence of microbial DNA (Martinez-Martinez et al., 2009), while the 

uncertainty remains about the origin of the microbiome DNA detected in these studies 

(Hornung et al., 2019). It has been hypothesised that leaching of microbial DNA from 

classical microbial niches happen in both health and illness, and such alterations in the 

circulatory system mainly report upon the composition of classical niches (for instance, the 

gut and oral, See mechanisms in Chapter 1); this is known to be perturbed in illness 

(Loyola-Rodriguez et al., 2010; Potgieter et al., 2015). There is an alternative hypothesis 

that claims that the DNA found in the blood could originate either from a dormant or L form 

of bacteria (Kell and Pretorius, 2015; Markova, 2017).  

No information is available about the association blood dysbiosis and RA, AS, and PA 

illnesses. More research effort is required to line out the type changes in the blood 

microbiome and investigate how it does contribute to the RA, AS, and PA pathogenesis. To 

this end, we characterised the blood microbiome of patients with rheumatoid arthritis (RA), 
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ankylosing spondylitis (AS), and psoriatic arthritis (PA), in comparison with healthy control 

subjects, and we try to identify specific microbiome signatures associated to RA, AS, and 

PA illnesses. This evidently will increase our understanding of pathogenesis and or reveal 

a pool of candidate biomarkers for further development. Furthermore, we evaluated the 

correlation of inflammatory cytokines (IL-17-A, IL-22, IL23, and IL-6) with these 

inflammatory conditions, as it has been proved that these cytokines levels may increase 

within arthritic conditions. An example includes the increase in IL-6 in the serum of patients 

with RA (Srirangan and E. H. Choy, 2010; Yoshida and Tanaka, 2014a; Narazaki, Tanaka, 

and Kishimoto, 2017a; Boyapati et al., 2019).  Furthermore, our findings also showed how 

the microbiome changes post-treatment of RA patients.  

Principal coordinates analysis (PCoA) is ordination techniques, which is used to decrease 

the dimensionality of microbiome data sets so that a summary of the beta diversity 

relationships can be visualised in two- or three-dimensional scatterplots (Goodrich et al., 

2014). The PCoA, each of which explains a certain fraction of the variability, seen in the 

data set, are plotted to create a visual representation of the microbial population 

compositional differences among samples (Goodrich et al., 2014). Observations based on 

PCoA plots can be substantiated with statistical analyses that evaluate the clusters. 

 We used this technique to reduce the complex, multidimensional data for visualisation of 

patterns and to assess whether the blood microbial community could be differentiated 

between diseased disorders and healthy controls. 

Our findings of the PCoA plots identify that the types of microbiome present in the Sera 

Laboratories and Haywood hospital samples are very different. There is also a wide 

variation across the RA serum samples. 
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There are a number of reasons that could explain the differences in our sample sets, such 

as age, dietary patterns, and gender. 

Population-based studies have identified multiple factors that associate with the showed 

variation in the human microbiome composition. They include age, dietary patterns, 

gender, body mass index, disease state, and disease severity (Yatsunenko et al., 2012; 

Huang and Boushey, 2015; Mar et al., 2016; Nibali and Henderson, 2016; Kho and Lal, 

2018; Hasan and Yang, 2019). 

The age strongly affects human health, partly by modulating intestinal microbiome 

composition (Nagpal, Mainali, et al., 2018). Intestinal microbiota do not age per se, but the 

incidences of comorbidities associated with intestinal microbes tend to rise as the host 

grows older (Nagpal, Mainali, et al., 2018); even though it remains unclear whether 

microbiota modifications are cause or consequence of host ageing (Nagpal, Mainali, et al., 

2018). It is found that older people have a different intestinal microbiome profile in 

comparison to healthy people (Nagpal, Mainali, et al., 2018). Generally, the diversity of the 

gut microbiome and the carriage of commensals such as Bifidobacteria, 

Bacteroides, and lactobacilli are identified to be decreased, while the levels of opportunists 

such as C. perfringens, enterobacteria, and C. difficile are raised in the elderly (Nagpal, 

Mainali, et al., 2018). This variation could be attributed to several reasons associated with 

senescence, such as changed lifestyle, lesser mobility, dietary schedule, weakened 

immune strength, reduced intestinal and overall functionality, recurrent infections, changed 

gut morphology, and use of medications (Nagpal, Mainali, et al., 2018). 

It is well established that the diet can affect the human microbiome (Singh et al., 2017). 

Research on mice has revealed that shifting from a fiber-and antioxidant-rich 

Mediterranean nutrition to a Western diet heavy in fat and protein can change the 
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microbiome’s community within a day (Singh et al., 2017). Furthermore, diets high in sugar 

can reduce microbiome diversity within seven days—a change that has been associated 

with some inflammatory conditions such as diabetes (Singh et al., 2017). Researchers 

have also found that antibiotics or antibacterials can knock down or disrupt the human 

body’s microbiome in ways that could encourage disease (Langdon, Crook, and Dantas, 

2016). 

Gender is one of the significant variables influencing the microbiome, but the association 

has not yet been adequately examined. Although the results are inconsistent, a number of 

investigations have shown gender differences in the gut microbiome (Kim et al., 2020). 

In a USA research conducted on a mainly Caucasian people, the microbiome of the 

women was characterised via a lower abundance of phylum Bacteroidetes (Dominianni et 

al., 2015). Research in Italy revealed that the mucosa-associated microbiome was varied 

between men and women (Borgo et al., 2018). The mucosa-associated microbiome in 

women revealed a higher abundance of Streptococcaceae, Lactobacillales, Actinobacteria, 

Bifidobacterium, and unclassified Clostridia. At the species level, Bifidobacterium 

adolescentis was associated with the women and Gemmiger formicilis with the men (Borgo 

et al., 2018). 

Research of Chinese family members, which was conducted utilising group-specific DGGE 

profiling of Bacteroides taxa, a higher abundance of Bacteroides thetaiotaomicron was 

found in the men (Li et al., 2008). 

In a study conducted via four centres in Germany, France, Italy, and Sweden, a higher 

abundance of the Bacteroides-Prevotella taxa was identified in the men (Mueller et al., 

2006) 
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 In subgroup analysis, this gender difference in the gut microbiome was not found in 

healthy people, whereas it was evident in infected individuals with ten times more different 

microbial characteristics than that in healthy people (Singh and Manning, 2016). Besides 

the microbial structure and diversity, a recent study revealed that sex was associated with 

the functional gene richness of the colon (Zhernakova et al., 2016). 

Gut microbiota may differ between males and females, and that the grade of obesity may 

influence these differences. The divergence in intestinal microbiota observed between 

males and females might have a role in the definition of gender differences in the 

prevalence of metabolic and intestinal inflammatory conditions (Haro et al., 2016). The 

study by Haro et al. (Haro et al., 2016) proposes that the microbiome composition may 

differ between males and females and that the grade of obesity may influence these 

differences. The alteration in microbial community observed between men and women 

might have an influential role in the definition of gender differences in the prevalence of 

intestinal inflammatory and metabolic diseases (Haro et al., 2016). 

Gender differences in the evolution and presentation of different diseases have been 

known, but the associated mechanism is unclear (Danska, 2014a). Gender differences in 

the intestinal microbiome may play a role in the gender differences in conditions (Danska, 

2014a). 

The gender differences in the innate and adaptive immune systems are well understood 

(Klein and Flanagan, 2016). Receptors for sex hormones are expressed on most immune 

cells, and thus sex hormones may play a role in establishing the gender difference in the 

immune response (Elderman, de Vos and Faas, 2018). Because the gut microbiome 

interacts with the host immune system, it can be expected that the gender differences in 

the intestinal microbiome have some role in the gender differences in immunity (Fransen et 
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al., 2017). NOD mice exhibit spontaneous, immune-mediated loss of their pancreatic beta 

cells, producing in type 1 diabetes mellitus. A higher incidence of diabetes mellitus has 

been found in female SPF NOD mice than that of males (Yurkovetskiy et al., 2013). 

Interestingly, this sex difference was not shown in GF NOD mice. In contrast, it appeared 

again after the colonisation of gut microbiotas that are identified to be associated with the 

sex difference in SPF NOD mice (Yurkovetskiy et al., 2013). In research of patients with 

encephalomyelitis/chronic fatigue syndrome, another instance of an immune-related 

disease, there was no difference in the overall microbiome composition between the 

genders (Yurkovetskiy et al., 2013).  

Nevertheless, the abundance of Clostridium, Streptococcus, Lactobacillus, and 

Bifidobacterium, according to a specific symptom, are different between sexes (Wallis et 

al., 2016).  

Intestinal inflammation might also have gender differences about the gut microbiome. In a 

mouse model of colitis induced with 2, 4, 6-trinitrobenzene sulfonic acid, the males showed 

more severe colonic inflammation (Kozik et al., 2017). The FMT animal model of another 

study showed that female recipients lost significantly more weight after taking the male 

microbiome when compared to those with the weight after taking the female microbiota, 

proposing that the male microbiome caused more gut inflammation (Fransen et al., 2017). 

Probiotics also caused different inflammatory responses from female and male mice (Lee 

et al., 2017). In female Wistar mice presented to water avoidance stress, the administration 

of Lactobacillus farciminis significantly lowered the colonic mucosal mast cell count and 

decreased the levels of inflammatory cytokines only in the female mice (Lee et al., 2017). 

Besides, sex differences in response to probiotic Lactobacillus animalis NP-51 
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administration were recorded for cytokine responses, intestinal metabolic profiles, and 

intestinal microbiome in Mycobacterium-treated mice (Karunasena et al., 2014) 

It has been reported that the change of microbiome compositions are associated with the 

development of several human diseases such as RA, ankylosing spondylitis, psoriatic 

arthritis, and obesity (Ding et al., 2019). Further, the severity of some diseases such as 

RA, asthma, and obesity, contribute to exaggerated inflammatory and microbiome changes 

(Horta-Baas et al., 2017; Michalovich et al., 2019). 

Blood samples from 44 subjects were analysed in this study, and our analyses revealed 

the presence of a complex blood bacterial and fungal community in health and disease. At 

the phylum level, four key phyla dominated our blood samples; Proteobacteria, Firmicutes, 

Actinobacteria, and Bacteroidetes.  

These results mirror previous studies (Amar et al., 2013; Païssé et al., 2016; Olde Loohuis 

et al., 2018; Whittle et al., 2019) and further support the notion of a core blood microbiome 

predominated by four key phyla. Proportions of several genera found in this study have 

previously been found in the blood of healthy human subjects as part of a separate 

investigation (Whittle et al., 2019), although in differing proportions. Moreover, other 

investigations have also shown these genera in different proportions among both illnesses 

and healthy subjects.  

The genera Halomonas and Shewanella were selectively abundant in the serum of RA 

patients (RA V0 and RA V3) compared to control subjects. It has been seen that the ability 

of Halomonas species to grow at high salt concentrations. Recently, Halomonas has a role 

in a limited number of human infections, including dialysis-related (Kim, Lee, and Stevens, 

2013). Halomonas has been identified in a range variety of human samples including, the 

gut (Seck et al., 2016), bronchoalveolar lavage fluid (Sverrild et al., 2017), and skin of 
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healthy human (E. A. Grice et al., 2008), and also Halomonas found in the blood of 

vertebrates, including rodents (Cohen et al., 2015). It has also been detected in the 

synovial fluid of  Tunisian patients with reactive and undifferentiated arthritis (Siala et al., 

2008). 

Further, alterations in the abundance of genus Halomonas has been shown in 

bronchoalveolar lavage fluid of asthmatic patients with lower eosinophilic counts (Sverrild 

et al., 2017). Another study it has been observed that Halomonas was positively correlated 

with obesity in the gut microbiome of rodents (Waldram et al., 2009). Furthermore, 

identification of Halomonas in the salivary microbiome has been linked with inflammatory 

markers such as IL‐1β (Acharya et al., 2017a), which is a critical inflammatory cytokine 

also related to RA, supports the notion that Halomonas and inflammation are linked.  

However, Halomonas has been found as a potential contaminant due to its existence in 

negative control samples, which subject to sequencing  (Santiago et al., 2016; Whittle et 

al., 2019). It should be noted that only six reads mapping to the genus Halomonas were 

identified in the single negative control, which returned to sequence data, in comparison to 

a mean of 3500 reads found in our experimental samples; therefore, contamination with 

this taxon in our samples was not expected.  

Shewanella species are found in seawater, and are increasingly linked with human 

infections, and regarded as a reservoir for antimicrobial resistance. Many people infected 

with these microorganisms report prior exposure to seawater (Yousfi et al., 2017).  

Shewanella species colonise and survive in the human gut. These species are perturbed in 

the human gut microbiome in different physiological and illness conditions (Rojo et al., 

2017; Smid et al., 2018). Shewanella has been found in the blood microbiome of healthy 

people subjects too, in particular, associated with  RBCs (Païssé et al., 2016). 
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 Moreover, it has been reported that Shewanella causes soft tissue infection in patients 

with RA and diabetes (Tsai et al., 2008). Regardless of other studies finding the 

Shewanella genus as a potential contaminant, we found no evidence of such in our 

negative control reactions. 

 Interestingly, both genera Halomonas and Shewanella were identified to be elevated in RA 

patients and are salt tolerant.  

Furthermore, the abundances genera Halomonas with Shewanella microbiome were 

significantly higher in the gut of patients with inflammatory conditions, for example, 

Idiopathic pulmonary fibrosis (D’Alessandro-Gabazza et al., 2018), asthma  (Sverrild et al., 

2017), Keratitis (Jayasudha et al., 2018), and Uveitis (Jayasudha et al., 2018). 

Depended on the sodium permeation-changing ability of Shewanella (Wang et al., 2008), 

and the halophilic and pro-apoptotic properties of Halomonas (Martínez-Cánovas et al., 

2004; Ruiz-Ruiz et al., 2011; Sagar et al., 2013; D’Alessandro-Gabazza et al., 2018), it has 

hypothesised that the existence of Shewanella increases extracellular levels of salt by 

preventing intracellular passage of sodium and thereby generating a favourable 

microenvironment for growing Halomonas (D’Alessandro-Gabazza et al., 2018). 

These halophilic microorganisms excrete potent pro-apoptotic factors that may stimulate 

and consequently encourage increased apoptosis of alveolar epithelial cells (Ruiz-Ruiz et 

al., 2011; Sagar et al., 2013; D’Alessandro-Gabazza et al., 2018). Activated epithelial cells 

express several transforming growth factors, including TGF-β1, which may further activate 

the growth of Halomonas through increasing extracellular salt production through blocking 

of cell membrane expression of Na and Cl channels (Frank et al., 2003; Peters et al., 2014; 

Kabir et al., 2018). 
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Many researchers reported high expression of TGF-β1 and its inflammatory role in patients 

with asthma (Tirado-Rodriguez et al., 2014), Keratitis (Roux et al., 2016), Idiopathic 

pulmonary fibrosis (D’Alessandro-Gabazza et al., 2018), and Uveitis (Ooi et al., 2006). 

The following considerations support the eventual harmful role of a salty microenvironment 

in the pathophysiological situation of several inflammatory diseases such as Idiopathic 

pulmonary fibrosis: 

 (1) Increased circulating sodium chloride enhances TGF-β1 expression (Hovater and 

Sanders, 2012).  

(2) Salt reduces the protecting activity of mucin (Travis et al., 1999). The point that mucin, 

in turn, can prevent the adverse effects of salt (Travis et al., 1999) may clarify why 

Idiopathic pulmonary fibrosis patients with a common risk polymorphism in Mucin 5B 

(major gel-forming mucin in the lung that plays a fundamental role in mucociliary clearance 

and host defence), associated with increased mucin production, have significantly 

enhanced survival (Peljto et al., 2013).  

(3) Acute exacerbation of the condition in Idiopathic pulmonary fibrosis patients is apparent 

following diagnostic bronchoalveolar lavage methods in which a high volume of saline is 

utilised ((Sakamoto et al., 2012). 

Recently, Sodium Chloride microenvironment has been proposed as aggravates RA by 

Th17 Polarization present in the spleen of the CIA mouse through the induction of 

pathogenic CD4+ T helper cells that generate interleukin-17 (Th17 cells) (Jung et al., 

2019). 

Further, Liao et al. have found both Shewanella and Halomonas to be elevated in the gut 

microbiome of mice nourished with chondroitin sulphate (Liao et al., 2017). This has been 



163 
 

associated with gut inflammation and the inflammation of the joint, leading the authors to 

the assumption that the change in the intestinal microbiome participates in the pro-

inflammatory condition (Liao et al., 2017).  

 Moreover, D’Alessandro-Gabazza and his workers hypothesised that changes in sodium 

permeation due to the existence of Shewanella species stimulate the growth of Halomonas 

species (D’Alessandro-Gabazza et al., 2018). As a number of studies have identified these 

two genera to live together, our results cannot be disregarded as incidental or 

contaminants.  

Achromobacter, Escherichia/Shigella*, Serratia*, Corynebacterium-1, Streptococcus, 

Granulicatella, Staphylococcus, and Gemella were the genera significantly decreased in 

abundance in the serum of RA patients relative to control subjects. Achromobacter has 

been recently identified in the blood of asthmatic patients and healthy controls (Whittle et 

al., 2019). Recent studies have reported that Achromobacter and to a lesser extent 

Serratia* are considered as lymphoid tissue-resident commensal (LRC) bacteria in humans 

and animals (Tatro et al., 2014; Fung et al., 2016a). The LRC bacteria can control their 

growth out of IL-22 to regulate systemic inflammation (Fung et al., 2016b). Therefore, a 

decrease in these bacterial DNA in the serum of RA patients could be indicating a pro-

inflammatory condition. The genera Gemella, Granulicatella, and Streptococcus were 

found in the saliva of the healthy people subjects (Acharya et al., 2017b). It has been 

identified that the taxa Gemella, Granulicatella, and Streptococcus were significantly less 

abundant in the subgingival microbiome of RA patients (Lopez-Oliva et al., 2018), 

supported their presence in classical microbiome niches. Members of the genera 

Staphylococci and Corynebacterium are accepted as members of the normal human 

microbiome of the skin, oral cavity, and the gut. Recently, these genera have been 

identified in the blood of healthy people (Païssé et al., 2016). Therefore, their decrease, as 
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we have observed in the blood microbiome in serum RA patients, along with the other 

alterations mentioned above, indicates the occurrence of dysbiosis in these distant 

locations, reflected in the abundance of DNA that reaches the blood, and support notion 

blood microbiome may play a critical role in RA disease. 

 

One of the main findings of our study was that the serum microbiome of 13/17 patients with 

RA progressed towards the “healthy microbiome” after induction of treatment. The shift 

was not influenced by treatment modality. 

There provides evidence that the microbiome of various locations, such as the gut and oral 

does partly normalise with treatment in RA patients (Zhang et al., 2015; Picchianti-

Diamanti et al., 2018). However, another study by Beyer K. et al. (Beyer et al., 2018) found 

that there was no relationship between the microbiome diversity in the oral of RA patients 

and the use of DMARDs.  Several factors might be associated with this. It might have been 

due to different study designs, sampling locations, or techniques applied. While this effect 

was not linked with any one specific treatment modality, 3/4 of the patients with a ‘non-

responsive serum microbiome’ had seropositive RA, at the same time as the majority 

(77%) of those who responded were seronegative. Older studies have shown the alteration 

in oral and intestinal microbiome in RA patients when treated with MTX and Etanercept 

(Zhang et al., 2015; Picchianti-Diamanti et al., 2018). While several studies do not 

differentiate between treatment response and seropositivity, a recent study showed that 

seronegative RA might show a better response to treatment, supporting our results (Choi 

and Lee, 2018). Our results have shown that there was a better normalisation of the serum 

microbiome among the seronegative RA cohort. A recent study has shown the significance 

of the intestinal microbiome in drug metabolism. Increasing evidence proposes that 
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differences in the intestinal microbiome population may demonstrate individual drug 

responses (Zimmermann et al., 2019). 

These results have suggested that the microbiome of RA patients appeared to change 

following treatment. The shift was not influenced by treatment modality and, therefore, 

would seem more likely that the microbiome is reflective inflammatory status rather than 

microbiome being causative. Furthermore, the modulating the microbiome response 

following the commencement of treatment detected with those patients with RF/CCP 

negative RA more likely to progress toward a control microbiome community than those 

who are RF/CCP positive. 

In the main, the taxa found as disease or treatment responsive have been previously 

described as common inhabitants of the human microbiome, more commonly identified in 

the oral cavity and gut. The abundance of the genera Haemophilus, Alloprevotella, 

Eremococcus, and Lachnospiraceae_UGC-001 increased significantly with treatment and 

contributed to the normalisation of the microbiome. Haemophilus species are 

microorganisms that colonise in the human mucous membranes of the gut, mouth, upper 

respiratory tract, and vagina (Tortora, Case, and Funke, 2016). Haemophilus species have 

been indicated to be less abundant in the gut and oral microbiomes of RA patients relative 

to unrelated healthy control, and their abundance is partly normalised after treatment 

(Zhang et al., 2015; X. Wu et al., 2016). Lachnospiraceae UCG-001 belonging to the 

Lachnospiraceae family was found these taxa in previous human and animal investigations 

to be elevated in RA individuals (Liu et al., 2016; X. Wu et al., 2016). A significant Higher in 

genus Lachnospiraceae UCG-001 was indicated in the colon of Sirt3 knockout mice with a 

range broad antibiotic cocktail (ampicillin, vancomycin, metronidazole, and neomycin) 

compared to Sirt3 knockout mice without treatments (Zhang et al., 2018). Alloprevotella 

species were correlated with early RA independent of the severity of periodontitis (Wolff et 
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al., 2017), whereas we identified this taxon to be reduced in RA in comparison to the 

healthy condition. Genus Eremococcus has been previously identified in the genital tract of 

horses (Collins et al., 1999; Wittenbrink, 2012). 

Furthermore, Eremococcus has been seen in human blood (Lorenz, Mühl and Disqué, 

2015), while there is no link identified between Eremococcus and RA illness to date. 

However, our results were not in full agreement with enriched/depleted taxon indicated at 

different body locations in RA in previous studies; one must mention that our analyses are 

conducted in the blood, which possibly harbours microbial DNA from a range of niches. On 

this basis, these findings certainly warrant further studies. 

In considering the fungal microbiome, fungal ITS2 gene was not identified in the serum of 

RA patients (RA V0 and RA V3). However, the fungal ITS2 was detected in the serum of 3 

of out 4 (75%) patients with AS, 1 of 4 (25%) plasma with RA, 2 out of 4 (50%) PA plasma, 

3 out of 4 (75%) PA serum, 3 out of 4 (75%) healthy control subjects’ serum, and 3 out of 4 

(75%) in the plasma of healthy control subjects. The dominant fungal phyla in the blood of 

ITS2 were Basidiomycota and Ascomycota. These results are in agreement with another 

study which has found the Basidiomycota and Ascomycota phyla are predominant in the 

blood of healthy human subjects (Panaiotov, Filevski, Equestre, Nikolova, Kalfin and 

Panaiotov, 2018), and further support the notion of a core blood fungal microbiome 

predominated by two phyla. 

At the genus level, our blood samples were dominated by the genus Malassezia.  

Malassezia was abundant in the blood of diseased and healthy control volunteers.   

Malassezia is ubiquitously existent on human skin (Limon, Skalski and Underhill, 2017), 

gastrointestinal (Hallen-Adams and Suhr, 2017), and oral (Dupuy et al., 2014), and acts as 
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an opportunistic pathogen. We identified no statistically significant differences in the blood 

fungal population between diseased groups and healthy control subjects. 

Levels of IL-6, IL-17, IL-22, and IL-23 were abundantly present in serum and plasma of all 

patient groups and variable between illness conditions. We identified that serum and 

plasma levels of IL-6, IL-17, IL-22, and IL-23 are higher in RA patients relative to healthy 

controls. Interleukin 6 (IL-6) has a fundamental role in the pathophysiology of rheumatoid 

arthritis (RA). It is indicated in abundance in the serum and synovial fluid of RA patients, 

and the level associated with the illness activity and joint destruction (Srirangan and E. H. 

Choy, 2010; Yoshida and Tanaka, 2014a; Narazaki, Tanaka and Kishimoto, 2017a; 

Boyapati et al., 2019). IL-6 can stimulate synovitis and joint destruction via activation of 

osteoclast maturation, neutrophil migration, and vascular endothelial growth factor (VEGF)-

stimulated pannus proliferation (Srirangan and E. H. Choy, 2010). A transient synthesis of 

IL-6 has a role in host defence against infectious illnesses and tissue injuries via activation 

acute phase reactions and immunological and hematopoietic responses (Yoshida and 

Tanaka, 2014a). However, dysregulated persistent production of IL-6 could lead to the 

evolution of several immune-mediated illnesses. IL-6 may also be mediating many of the 

systematic manifestations of RA involving anaemia through hecipidin production, activation 

of the acute-phase reaction [including C-reactive protein (CRP)], and osteoporosis from its 

effect on osteoclasts (Srirangan and E. H. Choy, 2010). IL-6 may participate in the 

stimulation and maintenance of the autoimmune process via TH-17 differentiation and B-

cell maturation (Eto et al., 2011). 

IL-17 is the signature cytokine of the newly-defined “Th17” T helper cell population and has 

been associated with the pathogenesis of various inflammatory illnesses such as in RA 

(Gaffen, 2009a). The present study revealed a significantly higher level of serum and 

plasma IL-17A levels in RA patients than in healthy control subjects. The data revealed by 
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several authors in the literature agreed with our findings. Kohno et al. (Kohno et al., 2008) 

reported that the level of IL-17 gene expression in peripheral blood mononuclear cells from 

RA patients was considerably higher than healthy control subjects. Melis et al. (Melis et al., 

2010) found a high serum IL-17 level in RA patients. Moreover, serum IL-17 level was 

increased in RA patients relative to healthy controls (Metawi et al., 2011). Furthermore, 

studies in RA animal models, mammalian cell culture systems support a role for IL-17 in 

stimulating RA (Gaffen, 2009a). 

It has been indicated that IL-22 is elevated in the serum of RA patients and related to 

erosive illness and might serve as a marker for joint destruction in the RA cohort (da Rocha 

et al., 2012a; Jan Leipe, 2016). Further, elevated serum IL-22 allows discrimination 

between patients with different radiographic progression and also indicates a potential 

involvement of IL-22 in the pathophysiology of RA, mainly in patients with RF antibodies 

and long term illness (Leipe et al., 2011; da Rocha et al., 2012a; Jan Leipe, 2016). 

Several studies support the role of IL-23 in RA patients. For instance, Kim et al. identified 

that IL-23 levels in serum and synovial fluid are higher in RA patients than in OA patients 

or healthy controls, and IL-23 may be a valuable biomarker for the diagnosis of RA (H.-R. 

Kim et al., 2007). IL-23 is a proinflammatory cytokine that participates in the development 

and maintenance of Th17 cells in inflammatory autoimmune illnesses. Furthermore, IL-23 

affects the pathogenesis of inflammation and joint destruction by interaction with other 

cytokines; for instance, IL-17 and TNF-α (Yago et al., 2017). 

In our study, we have found that the levels of IL-17, IL-6, and IL-23 were elevated in the 

serum of AS, serum, and plasma of PA patients compared to healthy subjects. Further, the 

level of IL-22 was significantly increased in serum and plasma PA patients relative to 

healthy controls. This is in agreement with other studies (Yasumoto, Imayama and Hori, 
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1995; Elkayam et al., 2000; Mei et al., 2011; Chen et al., 2012; Ogata, Kumanogoh and 

Tanaka, 2012; Przepiera-Będzak, Fischer and Brzosko, 2015; W. Liu et al., 2015; Wang et 

al., 2017; Blauvelt and Chiricozzi, 2018). In our opinion, this confirms the previously 

proposed role of IL-6, IL-17, IL-6, and IL-23 in AS and PA. It will be essential to conduct 

further investigations on the possibility of utilising antibodies against these cytokines in 

selected AS and PA patients that may help to manage these illnesses. 

Relative abundances of Serratia* negatively correlates with the elevation of IL-22 

concentrations in the serum of patients with RA. 

As mentioned above, Serratia* has been found as lymphoid tissue-resident commensal 

bacteria in humans and animals (Fung, Artis, and Sonnenberg, 2014; Fung et al., 2016a). 

There was an association between lymphoid tissue-resident commensal bacteria and IL-22 

in regulating inflammatory response, whereas they control their growth through IL-22 

(Fung, Artis, and Sonnenberg, 2014; Fung et al., 2016a). Thus, a lower percentage of 

Serratia* may induce a high production of IL-22 in the serum of RA patients. 

There are many significant limitations in this study that could be addressed in future 

research. Firstly, the study used a small number of healthy control samples because of the 

small number of cohorts size were provided from our sources. A small control sample size 

may not provide sufficient statistical power to identify a difference between diseased and 

control groups (i.e., low power) (Hutchins et al., 2015). 

 Secondly, the control group subjects were obtained from a different lab to the V0/V3 data. 

The different locations of donors might lead to the different microbiome patterns seen (Shin 

et al., 2016). It is possible, therefore, that some differences in their microbiome 

composition could be explained by variables for which data were not available for our 
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procured material, differences in collection technique, or even the immediate environment 

at the time of collection. 

However, we strictly controlled all analytical parameters from the moment of sample 

acquisition; our sample cohorts also came as blood product samples in sterile tubes. 

Further, all samples were processed in parallel and in a randomised order to avoid the 

introduction of batch effects. 

 Additionally, factors that could affect the human microbiome, such as gender, age, and 

BMI, were not investigated, which might explain microbiome variation between the RA 

patient populations in PCoA. However, we could not be assessed entirely effect these 

factors on our patient's samples due to the lack of patient information from our source. 

We are aware that a range of factors changes the microbiome, and such analyses are 

highly sensitive to pre-analytical conditions. While we were unable to practically address 

these limitations herein given the retrospective nature of our study design, we support 

strongly for further prospective studies in this area, which control pre-analytical conditions 

inclusive of the sample collection phase. 

Through amplification and sequencing of the bacterial 16S rRNA and ITS2 genes, we 

describe the presence of a blood bacterial and fungal microbiome in patients with RA, AS, 

PA, and healthy control subjects. RA disease state is associated with bacterial blood 

dysbiosis, and a further, the bacterial microbiome of RA patients appeared to change 

following treatment. Moreover, the modulating the microbiome response following the 

commencement of treatment detected within those RA patients with RF/CCP negative 

rather than RF/CCP positive. 

In the main, the taxa identified as disease or treatment responsive have been previously 

described as common inhabitants of the human microbiome, more commonly observed in 
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the gut and oral cavity. These findings support our developing hypothesis that microbial 

DNA found within the blood translocates from more classical microbiome niches such as 

the gut, and oral those are undergoing disease association perturbation. These blood-

derived signatures may have significant utility as the disease. Further studies are required 

to investigate these preliminary findings. 

 

3.5 Conclusion 

This study reports that the presence of a blood microbiome in illnesses and health, and 

determine specific bacterial taxa altered in RA disease and following treatment. It is likely 

the microbiome originates from one of the classical microbiome niches (the gut, mouth, 

urogenital tract, skin) and reaches the circulation. We also identify the microbiome of RA 

patients appeared to normalise following treatment partially. These findings may have an 

essential use as disease biomarkers and propose this area warrants further investigation. 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

 

 

 

 

 

Chapter 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

 

4 Characterisation of the synovial fluid microbiome of RA and healthy 
control subjects  

 

4.1 Overview 

 

The presence of microbiome DNA in places usually considered to be sterile of the human 

body, such as synovial fluid, is a relatively new concept. It has long been hypothesised 

specific entire bacteria may be present in synovial fluid and could be implicated in RA, 

although the underlying mechanism remains unclear (Zhao et al., 2018a). A recent 

molecular study has indicated that there was bacterial dysbiosis of synovial fluid in RA 

patients (Zhao et al., 2018a). However, no information was available regarding fungal 

dysbiosis in RA synovial fluid. Such alterations in the synovial fluid have the potential to 

increase our disease understanding and further suggest that the microbiome may afford a 

valuable source of novel biomarkers and or novel targets for therapeutic modulation (Zhao 

et al., 2018a).  

In this chapter, I characterised the synovial fluid microbiome of RA patients and compared 

those to healthy control subjects. This allowed the assessment of any apparent changes in 

the bacterial or fungal populations identified in the context of key markers of inflammation 

in synovial fluid (IL-6, IL-17A, IL-22, and IL-23). Here, I investigated the presence of 

bacterial (via sequencing of the 16S rRNA gene) and fungal (via sequencing of the ITS2 

region) DNA in the synovial fluid of human RA patients and healthy control subjects using 

cutting-edge next-generation sequencing and bioinformatic techniques. Finally, I evaluated 

any apparent changes in the bacterial or fungal populations detected in the context of 

crucial markers of synovial inflammation (IL-6, IL-17A, IL-22, and IL-23).  
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4.2 Methods 

 

Chapter 4 provides the methods for 16S rRNA and ITS2 PCR step, Gel electrophoresis, 

DNA purification by Qiagen Purification Kit, Addition of Illumina XT tags, and DNA 

purification by AMPure XP magnetic beads. It also gave methods for DNA sequencing 

utilising an Illumina MiSeq and subsequent bioinformatic analysis and further assessment 

of the IL-6, IL-17A, IL22, and IL-23 concentration in synovial fluid (See Methods section).  

 

4.3 Results  

 

4.3.1 Clinical characteristics of cohorts and results of 16S rRNA and ITS2 PCR 

amplification 

 

Synovial fluid samples were obtained from 25 human donors. Of these, sixteen patients 

were diagnosed with rheumatoid arthritis, including eight males and eight females. The RA 

patients’ ages ranged from 52 to 74 years, with a mean of 65.3 years. Nine control synovial 

fluid samples were obtained from 5 males and 4 females. Their ages ranged from 50 to 68 

years with a mean 61 years. There were no significant differences in the ages of the two 

donors (Unpaired T-test; P = > 0.05).  

The utilisation of the PCR amplification showed that bacterial 16S DNA was detected in the 

synovial fluid of 14 out of 16 patients with RA (87.5%), and in 9 out of 9 (100%) healthy 

control subjects. ITS2 amplification, indicative of the presence of fungi, was detected in 12 

of 16 (75%) RA samples and 8 out of 9 (89%) healthy control samples, as shown in Table 
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4-1. Our various experimental negative controls of PCR experiments/ kit controls of 

purification step by PCR Purification Kit) constantly did not generate a visible band after 

PCR and agarose gel electrophoresis. In addition, DNA quantification utilising the Qubit 3.0 

high-sensitivity DNA kit (Invitrogen) confirmed this non-appearance. The Qubit 3.0 high-

sensitivity DNA kit is designed to be accurate for initial sample concentrations from 10 

pg/µl; in the case of our negative control samples, zero values were obtained. 
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Table 4-1 Features of RA patients and healthy population are taken from Sera Lab 

Company, and results of 16S rRNA and ITS2 PCR 

 

Patient ID# Gender Age Diagnosis 16S rRNA PCR ITS2 PCR 

1339 Female 65 RA + − 

1340 Female 67 RA + + 

1341 Female 67 RA + + 

1342 Female 67 RA + − 

1343 Female 70 RA + − 

1344 Female 69 RA + − 

1345 Male 56 RA + + 

1346 Male 52 RA + + 

1347 Male 55 RA + + 

1348 Male 66 RA + + 

1349 Male 74 RA + + 

1350 Male 69 RA + + 

BRH1095336 Female 67 RA + + 

BRH1095337 Female 67 RA − + 

BRH1095338 Male 67 RA − + 

BRH1095339 Male 67 RA + + 

1351 Female 57 Healthy + + 

1352 Male 64 Healthy + − 

1353 Male 64 Healthy + + 

1354 Male 53 Healthy + + 

1355 Male 50 Healthy + + 

1356 Male 74 Healthy + + 

1357 Female 64 Healthy + + 

1358 Female 55 Healthy + + 

1359 Female 68 Healthy + + 
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4.3.2 Estimation of inflammatory cytokines in synovial fluid 

 

Synovial fluid levels of interleukin 6 (IL-6), 17A (IL-17A), 22 (IL-22), and 23 (IL-23) were 

measured utilising the Luminex system as described in the methods and materials section 

in chapter 2. Mean interleukin concentrations in the synovial fluid of healthy control 

subjects and RA patients were significantly different, with cytokines present at higher levels 

in the RA synovial fluid in all cases (Figure 4-1). 
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Figure 4-1 Human Magnetic Luminex Screening Assay measured IL-6, IL-17, IL-22, 

and IL-23 levels in synovial fluid (SF) from RA patients and healthy controls. IL-6, IL-
17, IL-22, and IL-23 levels were increased in the synovial fluid of RA patients relative 
to the synovial fluid of healthy controls. Values represent the mean+SD of cytokine 
levels (pg/ml). The statistical significance between groups was determined by unpaired T-
test. ***P < 0.001, ****P < 0.0001. 
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4.3.3 Characterisation of Bacterial populations via 16S rRNA sequencing of 

synovial fluid 

 

The existence of bacterial DNA in synovial fluid was evaluated via PCR amplification and 
sequencing of the bacterial 16S rRNA gene, variable region 4. An average of 75,000 reads 
was produced for each of the samples (70,658 reads for RA, 80,533 reads for Control). 
Although the control samples produced more reads on average, this difference was not 
statistically significant (P = > 0.05). Principal coordinates analysis (PCoA) was carried out 
to reduce the complexity of the data obtained and to visualise any differences in bacterial 

structure between the two cohorts (Figure 4-2). There is a wide spread of microbiome 

variation across the RA synovial fluid samples. 

 

  

Figure 4-2 Principal Coordinate Analysis plot generated through a Bray Curtis 

distance matrix of bacterial 16S rRNA synovial fluid for control subjects (red) and 
arthritic patients (blue) as determined via amplification and sequencing of 16S rRNA 
gene variable region 4 (V4). Proportions of variation explained by the principal 
coordinates are designated on the axes. PCoA identified that the maximal variation was 
60.35% (PC1), 22.25% (PC2) and, 8.07% (PC3). The microbiome of samples that appear 
in close proximity to each other is more similar in composition. There is also a wide spread 
of microbiome variation across the RA synovial fluid samples. 

 

The results are shown at the phylum and genus levels. At the phylum level, Proteobacteria 

(81%) and Firmicutes (16.5%) are dominant members, and to a much lesser extent, 
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Actinobacteria (0.3%) and Bacteroidetes (0.1%). Although the most important phyla 

identified are similar to those of the blood microbiome (Whittle et al., 2019), they are 

existent in the synovial fluid at different levels, thus proposing a different community 

structure. 

At the genus level, our synovial fluid samples were dominated by the genus Pseudomonas 

(RA= 66.1%, Control= 80.6%), followed by the genus Enterococcus (RA= 11.4%, 

control=11.7%). To a lesser extent, the synovial fluid samples contained taxa of the 

Bacillales; Ambiguous_taxa; Ambiguous order (RA=7.4%, control = 4%), and 

Stenotrophomonas genus (RA= 4.2%, control= 1.5%).  Furthermore, the genera Raoultella 

(6.5%) and Bacillus (1.2%) were detected in RA synovial samples only (Figure 4-3). A 

Mann–Whitney U test identified the abundance of Raoultella as marginally significant; 

observed as an increase in RA synovial fluid samples in comparison to healthy populations 

(Table 4-2 and Figure 4-4).  
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A-  

 

 

B- 

 

Figure 4-3 Relative abundance of abundant bacterial genera detected in human synovial fluid. 

Bars show the relative abundance of the common bacterial taxa, characterized as having a mean 

abundance of >1%, in synovial fluid samples of rheumatoid arthritis (RA, n = 14) and control (Control, n 

= 9) samples as determined by amplification and sequencing of the 16S rRNA gene variable region 4. 

Data are mean abundance expressed as a percentage of the total bacterial sequence count. A- Taxa 

data grouped by condition and B- Taxa individual sample data. 
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Table 4-2 Statistical analysis of the relative abundances of common bacterial genera 

detected in the synovial fluid samples of healthy control and RA subjects, with 

expression levels >1%. Data are displayed as a median (SD). P values were 

determined by applying a two-tailed, Mann Whitney test using GraphPad Prism V8. P 

<= 0.05 was a statistically significant 

 

Taxa Control  

Median (SD) 

RA  

Median (SD) 

P value 

Order    

Bacillales;Ambiguous_taxa;Ambiguous_taxa 0  (14.4)  0.05  (24.5) 0.97 

Genus    

Stenotrophomonas 0.9 (4.5) 0.15 (7.1) 0.97 

Pseudomonas 73.6  (22.3) 60  (32) 0.30 

Raoultella 0  (0.1) 0  (8.7) 0.051 

Enterococcus 0.6  (13) 0.1  (15.2) 0.95 

Bacillus 0  (0) 0  (3.9) 0.99 
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Figure 4-4 Relative abundance of the genus Raoultella identified in the synovial fluid 

of healthy donors and rheumatoid arthritis patients as determined by amplification 

and sequencing of the 16S rRNA gene variable region. There was a marginally 

significant (p = 0.051) increase in the abundance of Raoultella in the synovial fluid of 

rheumatoid arthritis patients relative to healthy subjects. In fact, only genus Raoultella was 

existent in RA synovial fluid, absent in healthy control synovial fluid. Data are median 

abundance expressed as a percentage of the total bacterial sequence count. Statistical 

significance was determined by a Mann–Whitney U test with P < 0.05 considered 

significant. 
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4.3.3.1 Synovial fluid microbiome of patients with RA examined across gender 

 

 We examined whether the relative abundance of specific bacterial taxa (>1%) might differ 

among males (n=7) and females (n=7) RA patients, which might explain microbiome 

variability in the RA patient population in PCoA (Figure 4-2). 

PCoA was performed to reduce the complex, multidimensional data for visualisation of 

patterns and to assess whether the synovial fluid microbial community could be 

differentiated between men and women patients with RA. Following ordination, it was 

immediately apparent that the RA men samples clustered markedly further away from the 

women samples. These results propose that the bacterial population composition found in 

male RA patients' synovial fluid was more markedly different from that of women (Figure 4-

5).  

 

Figure 4-5 PCoA plot informed by weighted unifrac distance matrix for male (blue) 

and female (red) of patients with RA. Distance matrix was informed by amplification and 

sequencing of the 16S rRNA variable region 4, followed by a taxonomic assignment. 

Proportions of variation explained by the principal coordinates are designated on the axes. 

PCoA found that the maximal variation was 52.29 % (PC1), 30 % (PC2) and, 15.89 % 

(PC3). PCoA shows a clear difference in the microbiome composition between men and 

women patients with RA. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987042/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987042/figure/F1/
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A Mann–Whitney U test identified that the member of Enterococcus (P = 0.004), 

Stenotrophomonas (P = 0.002) genera were found almost exclusively in RA synovial fluid 

samples from men only compared to women. Further, the abundance of Raoultella as 

marginally significant; it was observed as an increase in males RA synovial fluid samples 

compared to females (Figure 4-6). These data suggested that differences exist between 

males and females synovial fluid microbiome populations of patients with RA. 
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Figure 4-6 Relative abundance of (A) Enterococcus, (B), Stenotrophomonas, and (C) 

Raoultella identified in men and women synovial fluid microbiome populations of 

patients with RA. Data determined through the amplification and sequencing of the 

16s rRNA V4. (A and B)  The abundance of the Enterococcus and Stenotrophomonas 

have been detected almost exclusively in RA synovial fluid samples from males only in 

comparison to females. (C) A borderline significant (p = 0.06) increase in the abundance of 

genus Raoultella was found in RA synovial fluid of males relative to females. Values 

represent the mean (SD) of abundance expressed as a percentage of the total bacterial 

sequence count. Statistical significance was determined by a Mann–Whitney U test with P 

< 0.05 considered significant, **P < 0.01. 
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4.3.3.2 Synovial fluid microbiome of patients with RA examined across age 

 

We next determined whether synovial fluid microbiome, represented by the bacteria, 

differed between aged ≤ 65 years, which are ranged age group from 52-65, n=4 and aged 

>65 years which are ranged age group from 66-74 years old, n=10 of RA patients 

populations, which may explain the microbiome variability in the RA population. PCoA was 

carried out to reduce the complex, multidimensional data for visualisation of microbiome 

patterns and to assess whether the synovial fluid microbial community could be 

differentiated between RA patients age ≤ 65 years and > 65 years (Figure 4-7).  

 

 

Figure 4-7 PCoA plot informed by weighted unifrac distance matrix for ≤ 65 (blue) 

and >65 years (red) of patients with RA. Distance matrix informed by amplification 

and sequencing of the 16S rRNA variable region 4, followed by a taxonomic 

assignment. Proportions of variation explained by the principal coordinates are designated 

on the axes. PCoA found that the maximal variation was 50.55 % (PC1), 32.3 % (PC2) 

and, 15.16 % (PC3). 
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A Mann–Whitney U test revealed that an abundance of Raoultella was significantly 

increased in RA patients with age ≤ 65 compared to RA patients with >65 (Figure 4-8). 
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Figure 4-8 Relative abundance of the genus Raoultella found in the synovial fluid 

with age ≤ 65 and >65 of RA patients as determined by amplification and sequencing 

of the 16S rRNA gene variable region. There was a significant increase in the 

abundance of Raoultella in RA synovial fluid with age ≤ 65 relative to age >65. Data are 

mean (SD) abundance expressed as a percentage of the total bacterial sequence count. 

Statistical significance was determined by a Mann–Whitney U test with P < 0.05 

considered significant. 
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4.3.3.3 The effect of age and gender on Raoultella genus in RA patients 

 

Analysis of the effect of gender and age on Raoultella abundance in patients with RA 

revealed that there was a borderline significant (p = 0.06, Mann Whitney test) increase in 

the abundance of genus Raoultella in RA synovial fluid of males in comparison to females 

(Figure 4-6.C). Further, an abundance of Raoultella was significantly (p≤ 0.05, Mann 

Whitney test) increased in RA patients with age ≤ 65 compared to RA patients with >65 

(Figure 4-8). These findings showed that increased Raoultella abundance of RA patients 

could be associated with male's gender and with age ≤ 65. 

 

 

4.3.3.4 Altered inflammatory cytokine responses in RA patients with alterations in 

taxonomic compositions of the Raoultella   

 

 

To investigate whether the presence of Raoutella in RA patients impacts on the 

inflammatory cytokines (IL-6, IL-17, IL-22, IL-23), an unpaired T-test was applied. An 

unpaired T-test indicates that there was no significant statistical difference in the 

production of inflammatory cytokines between RA patients with the presence of Raoutella 

and other RA patients with the absence of Raoutella (Table 4-3). This indicates that the 

concentrations of inflammatory cytokines were not affected by the presence of Raoutella in 

our RA patients. 
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Table 4-3 Comparison of IL-6, IL-17, IL-22, and IL-23 cytokine concentrations in RA 
patients samples, in which Raoultella presence and with RA patients samples, in 
which Raoultella absence. The data are represented as the mean (SD) of cytokine 
levels (pg/ml). The statistical significance between groups was determined by 
unpaired T-test. 

 

 

Inflammatory 

cytokines 

RA patients with 

Raoutella Mean(SD) 

mg/dl 

RA patients without 

Raoutella mean(SD) 

mg/dl 

P-Value 

IL-6 1061(331) 1755(1314) ns 

IL-17 62.5(16) 65.7(19.3) ns 

IL-22 898(367) 925(325) ns 

IL-23 344(77) 292(94) ns 

 

 

We next examined whether there are specific inflammatory cytokine responses associated 

with the relative abundances of Raoutella in RA patients. Spearman's rank correlation 

coefficient test found that the correlation was not observed between the concentrations of 

inflammatory cytokines and the abundance of Raoutella (Table 4-4). 

 

 

Table 4-4: Spearman’s rank correlation determines the correlation of synovial fluid 
Raoultella genus, which is significantly changed via RA status with inflammatory 
cytokines (IL-6, IL-17, IL-22, and IL-23). 

 

Raoultella taxa vs. cytokine  Spearman's rank correlation P value 

Raoultella vs. IL-6 -0.13 ns 

Raoultella vs. IL-17 -0.08 ns 

Raoultella vs. IL-22 -0.05 ns 

Raoultella vs. IL-23 0.2 ns 
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4.3.4 Inflammatory markers are modulated by bacterial microbiome PCoA cluster 

 

Based on the clustering of samples followed by PCoA (Figure 4-9), we examined whether 

the samples in “cluster 1” of RA patients had significantly different levels of inflammatory 

markers from the remaining samples as well as different bacterial communities.  

The important point here, IL-6 was a higher in PCoA cluster 1 (RA cluster 1 mean (SD) = 

2118 (1320) pg/ml) in comparison with the remaining samples (RA cluster 2 mean (SD) = 

962.4 (357.8) pg/ml), (unpaired T-test; P = 0.0348). However, all other levels of 

inflammatory markers were unchanged by PCoA cluster (P > = 0.05) (Figure 4-10). 
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Figure 4-9 Principal Coordinate Analysis plot generated from a Bray Curtis distance 

matrix of synovial fluid bacterial community structure for control subjects (red) and 
arthritic patients (blue), whereas the data points in each pane are sized according to 
the synovial level of IL-17A (A), IL-22 (B), IL-23 (C), and IL-6 (D). Data determined via 
amplification and sequencing of the 16S rRNA gene variable region 4 (V4). Proportions of 
variation explained by the principal coordinates are designated on the axes. PCoA found 
that the maximal variation was 62.2% (PC1), and 22.9% (PC2). The microbiome of 
samples that appear in close proximity to each other is more similar in composition. 
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Figure 4-10 Human Magnetic Luminex Screening Assay measured IL-6, IL-17, IL-22, 

and IL-23 levels in the synovial fluid of the bacterial RA clusters (cluster1 vs. 

cluster2).  A, the level of IL-6 was a significant increase in RA cluster1 relative to 

cluster2. B-D, IL-17, IL-22, and IL-23 levels were not significantly changed between RA 

cluster1 and cluster2. Values represent the mean+SD of cytokine levels (pg/ml). The 

statistical significance between groups was determined by unpaired T-test, *P < 0.05. 
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4.3.5 Characterisation of fungal populations via ITS2 sequencing of synovial fluid 

 

The existence of fungal DNA in synovial fluid was evaluated via PCR amplification and 

sequencing of the fungal ITS2 gene. Averages of 50,000 reads were produced for each of 

the samples (52,113 reads for RA, 49,929 reads for Control). Although the RA samples 

produced more reads on average, this difference was not statistically significant (P = > 

0.05). Principal coordinates analysis (PCoA) was performed to show the separation 

between the groups based upon their fungal population’s profile (Figure 4-11). 

 

 

Figure 4-11 Principal Coordinate Analysis plot generated a Bray Curtis distance 

matrix of fungal ITS2 synovial fluid for control subjects (red), and arthritic patients 
(blue) as determined via amplification and sequencing of ITS2 Proportions of 
variation explained by the principal coordinates are designated on the axes. PCoA 
found that the maximal variation was 30.27% (PC1), 19.92% (PC2) and, 11.07% (PC3). 
The microbiome of samples that appear in close proximity to each other is more similar in 
composition. 
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At the phylum level, synovial fluid was identified to be dominated by members of the 

Basidiomycota (50.4%) and Ascomycota (35.1%) phyla. At the genus level, our synovial 

fluid samples were predominated by the genus Malassezia, which accounted for 40.9% 

and 45.3% of the total bacterial sequence identified in the RA and controls donors, 

respectively. To a lesser extent, the synovial fluid samples also contained unclassified 

organism belonging to the classes Tremellomycetes (2.8%, 3%), Agaricomycetes (2.2%, 

3.2%), and genus Penicillium (0.7%, 15.2%). Moreover, members of the Hypocreales order 

(26.4%), and the genus Aspergillus (6.2%) were detected in RA synovial samples only. 

However, unclassified organisms belonging to the order Malasseziales (1.2%), genus 

Candida (11.9%), Pichia (8.9%), Cladosporium (5.1%), and debaryomyces (4.7%) were 

observed in control healthy subjects (Figure 4-12). 

A Mann–Whitney U test found that while the vast majority of the fungal population was 

unaltered via illness, select fungal taxa were differentially abundant or existent (Table 4-5 

and Figure 4-13). The member of the Hypocreales order (P = 0.012) and a member of the 

genus Aspergillus was identified almost exclusively in RA synovial fluid samples only (P = 

0.14 including all data, P = 0.057 excluding samples where <1% of reads mapped to this 

taxa). However, unclassified organisms belonging to the order Malasseziales (P = 0.002) 

and genus Cladosporium (P = 0.019) were found in control synovial fluid only. 
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A-  

 

B- 

 

 Figure 4-12 Relative abundance of abundant fungal genera in synovial fluid. The Bar 

shows the relative abundance of the common fungal taxa, characterised as having a mean 
abundance of >1%, in synovial fluid samples of rheumatoid arthritis (RA, n = 12) and 
Control (Control, n = 8) samples as determined by amplification and sequencing of the 
fungal ITS2 gene. Data are mean abundance expressed as a percentage of the total 
bacterial sequence. A- Taxa data grouped by condition and B- Taxa individual sample 
data. 
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Table 4-5 Statistical analysis of the relative abundances of common fungal genera 

detected in the synovial fluid samples of healthy control and RA subjects, with 

expression levels >1%. Data are a median (SD). P values were determined by 

applying a two-tailed, Mann Whitney test using GraphPad Prism V8, P <= 0.05 was 

considered statistically significant. 

 

Taxa Control abundance  

median (SD) 

RA abundance  

median (SD) 

P value 

Class 

   
Tremellomycetes _unidentified 1.6 (5.3) 1.9 (3.8) 0.98 

Agaricomycetes _unidentified 3.6 (2.8) 1 (3) 0.3 

Order 

   
Hypocreales_other_other 0 (0) 11 (24.6) 0.012 

Malasseziales _unidentified 1.6 (1.3) 0 (0.4) 0.002 

Genus 

   
Aspergillus 0 (0.3) 0.3 (12.4) 0.057 

Cladosporium 1.9 (9.3) 0 (0.1) 0.019 

Malassezia 58 (23) 47.7 (30) 0.8 

Penicillium 0.6 (0.8) 0 (24) 0.6 

Pichia 0 (6.4) 0 (0) 0.4 

Debaryomyces 0 (9.2) 0 (1.7) 0.7 

Candida 0 (22.4) 0 (0) 0.4 
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Figure 4-13 Relative abundance of (A) Hypocreales, (B), Aspergillus, (C) 

Malasseziales, and (D) Cladosporium found in the synovial fluid of rheumatoid 
arthritis patients and healthy control subjects. Data determined through the 
amplification and sequencing of the ITS2 gene. (A) The relative abundance of order 
Hypocreales was increased in the synovial fluid of RA patients compared with healthy 
control synovial fluid. (B) A borderline significant (p = 0.057) increase in the abundance of 
genus Aspergillus was identified in RA synovial fluid relative to healthy control synovial 
fluid. (C), and (D), The abundance of the unclassified organism belonging to the order 
Malasseziales and genus Cladosporium were significantly decreased in the synovial fluid 
of RA patients in comparison to the synovial fluid of healthy control subjects. Data are 
individual expression values expressed as a percentage of the total fungal read count in 
each sample. The statistical significance between groups was determined by a Mann–
Whitney U test where P ≤ 0.05. 
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4.3.5.1 The effect of age and gender on Hypocreales taxa in RA patients 

 

Analysis of the effect of gender and age on Hypocreales abundance in patients with RA 

identified that there was a borderline significant (p = 0.06, Mann Whitney test) increase in 

the abundance of Hypocreales in RA synovial fluid of males when compared those with 

females (Figure 4-14). 
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Figure 4-14 Relative abundance of Hypocreales found in men and women synovial 

fluid microbiome populations of patients with RA. Data determined through the 

amplification and sequencing of the ITS2. A borderline significant (p = 0.06) increase in the 

abundance of Hypocreales was identified in RA synovial fluid of males relative to females. 

The data are represented as the mean (SD) of abundance expressed as a percentage of 

the total fungal sequence count. Statistical significance was determined by a Mann–

Whitney U test with P < 0.05 considered significant. 
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Further, an abundance of Hypocreales was significantly (p≤ 0.01, Mann Whitney test) 

increased in RA patients with age ≤ 65 compared to RA patients with >65 (Figure 4-15). 

These findings showed that increased Hypocreales abundance of RA patients could be 

associated with male's gender and with age ≤ 65. 

 

 

Our results also showed that 5 out of 6 (83.3%) RA patients had elevated Hypocreales are 

the exact same patients identified with high Raoutella. Further, these patients are 

associated with the male gender. Moreover, there was a strong positive correlation 

between Hypocreales and Raoutella taxa in the synovial fluid of patients with RA 

(Spearman’s rank correlation = 0.7, P = 0.04) (Figure 4-16). 

 

These findings suggested that the male gender with RA is more susceptible to bacterial 

and fungal dysbiosis together, but not in the female. Therefore, the increase in Raoultella 

and Hypocreales in the RA male’s synovial fluid of the same patients could be a biomarker 

to diagnose better, monitor, and treat this group of arthritic patients. 
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Figure 4-15 Relative abundance of the Hypocreales taxa observed in the synovial 

fluid with age ≤ 65 and >65 of RA patients as determined by amplification and 

sequencing of the ITS2 gene. There was a significant increase in the abundance of 

Hypocreales in RA synovial fluid with age ≤ 65 compared to age >65. Data are mean (SD) 

abundance expressed as a percentage of the total fungal sequence count. A Mann–

Whitney U test determined statistical significance, **P < 0.01. 
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Figure 4-16 Correlation between the relative abundance 

of Raoutella and Hypocreales taxa identified in the synovial fluid of patients with 

RA. There was a strong positive correlation between the relative abundance 

of Raoutella and Hypocreales taxa detected in the synovial fluid of patients with RA. Data 

were statistically analysed using the Spearman correlation test. The level of statistical 

significance was set at a 95% confidence interval (p < 0.05), and the statistical analysis 

was determined using Prism 8.0 software. *P < 0.05. 
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4.3.5.2 Altered inflammatory cytokine responses in RA patients with alterations in 

taxonomic compositions of the Hypocreales 

 

 

To examine whether the presence of Hypocreales in RA patients impacts on the 

inflammatory cytokines (IL-6, IL-17, IL-22, IL-23), an unpaired T-test was applied (Table 4-

6). An unpaired T-test indicates that there was no significant statistical difference in the 

production of inflammatory cytokines between RA patients with the presence 

of Hypocreales and other RA patients with the absence of Hypocreales. This indicates that 

the concentrations of inflammatory cytokines were not affected by the presence 

of Hypocreales in our RA patients. 

 

Table 4-6: Comparison of IL-6, IL-17, IL-22, and IL-23 cytokine concentrations in RA 

patients samples, in which Hypocreales presence and with RA patients samples, in 

which Hypocreales absence. The data are represented as the mean (SD) of cytokine 

levels (pg/ml). The statistical significance between groups was determined by 

unpaired T-test. 

 

Inflammatory cytokines RA patients with Hypocreales 

Mean(SD) mg/dl 

RA patients without 

Hypocreales Mean(SD) 

mg/dl 

P-Value 

IL-6 1304(1065) 1851(1239) ns 

IL-17 64.7(16) 73.5(13) ns 

IL-22 893(336) 680(373) ns 

IL-23 342(91) 228(93) ns 
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We next examined whether there are specific inflammatory cytokine responses associated 

with the relative abundances of Hypocreales in RA patients. Spearman's rank correlation 

coefficient test found that the correlation was not observed between the concentrations of 

inflammatory cytokines and the abundance of Hypocreales (Table 4-7). 

 

 

Table 4-7: Spearman’s rank correlation determines the correlation of synovial fluid 
Hypocreales, which is significantly changed via RA status with inflammatory 
cytokines (IL-6, IL-17, IL-22, and IL-23). 

 

Hypocreales taxa vs. cytokine  Spearman's rank correlation P value 

Hypocreales vs. IL-6 -0.3 ns 

Hypocreales vs. IL-17 -0.3 ns 

Hypocreales vs. IL-22 0.3 ns 

Hypocreales vs. IL-23 0.5 ns 

 

 

4.3.6 Inflammatory markers are modulated by fungal microbiome PCoA cluster 

 

Based solely upon the clustering of samples observed following PCoA (Figure 4-17), we 

investigated whether samples in PCoA “cluster 1” of RA patients had significantly different 

inflammatory marker profiles, in addition to different fungal microbial populations.  

Interestingly, IL-6 was a higher in RA cluster 1 (RA cluster 1 mean (SD) = 2362 (1318) 

pg/ml) in comparison with the remaining samples (RA cluster 2 mean (SD) = 939 (399.6) 

pg/ml), (unpaired T- test; P = 0.02) (Figure 4-18), However, all other levels of 

inflammatory markers were unchanged by PCoA cluster (P > = 0.05). 
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Our observations also revealed that RA patients in cluster 1, Figure 4-16, are the same 

patients in cluster 1, Figure 4-9 (the patients in Cluster 1 are the same patients in both the 

bacterial and fungal microbiome papulations). In addition, RA patients in the boxed cluster 

1 are associated with female gender and age group with > 65 (aged 66–74).  

This indicates that RA samples in “cluster 1” for bacterial and fungal populations had 

significantly inflammatory marker level, which is IL-6, to the remaining RA samples. 

Moreover, RA microbiome cluster 1 is related to particular characteristics, such as the 

female gender and age group with > 65. 

Further, the patients in the boxed cluster 1 are the different patients, as in the patients 

discussed above who show differences in Figures 4.4 & 4.13.  
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Figure 4-17 Principal Coordinate Analysis plot generated from a Bray Curtis distance 

matrix of synovial fluid fungal community structure for control subjects (red) and 
arthritic patients(blue), whereas the data points in each pane are sized according to 
the synovial concentration of IL-17A (A), IL-22 (B), IL-23 (C), and IL-6 (D). Data 
determined by amplification and sequencing of the ITS2 gene. Proportions of variation 
explained by the principal coordinates are designated on the axes. PCoA found that the 
maximal variation was 30.6% (PC1), and 20.1%. The microbiome of samples that appear 
in close proximity to each other is more similar in composition. 
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Figure 4-18 Human Magnetic Luminex Screening Assay measured IL-6, IL-17, IL-22, 

and IL-23 levels in the synovial fluid of the fungal RA clusters (cluster1 vs. 

cluster2). A, level of IL-6 was a significant increase in RA cluster1 relative to cluster2. B-

D, IL-17, IL-22, and IL-23 levels were not significantly changed between RA cluster1 and 

cluster2. Values represent the mean (SD) of cytokine levels (pg/ml). The statistical 

significance between groups was determined by unpaired T-test, *P < 0.05. 

 

 

 



208 
 

4.4 Discussion 

 

4.4.1 Microbiome characterisation 

 

The microbiome is increasingly correlated with the aetiology of rheumatoid arthritis. 

Although most investigations have concentrated on faecal, oral, lung, and urine samples 

(Ebringer and Rashid, 2006; Vaahtovuo et al., 2008; Zhang et al., 2015; Liu et al., 2016; 

Scher et al., 2016; Wu et al., 2017; Lopez-Oliva et al., 2018), microenvironments inside the 

joints have not been systematically investigated. Recent studies have further revealed that 

evidence of the microbiome (generally at the nucleic acid level) is detectable in the 

synovial fluid of RA patients, and purports that this is the result of microorganisms (or parts 

thereof) moving from their usual place of the oral cavity into the synovial fluid (Karen E. 

Kempsell et al., 2000; Moen et al., 2006; Martinez-Martinez et al., 2009; Ogrendik, 2009; 

Témoin et al., 2012b; Reichert et al., 2013); a process termed atopobiosis (Potgieter et al., 

2015). Interestingly, these studies are accompanied by evidence demonstrating the 

existence of these DNAs and or antibodies directed against the originating microbiome in 

the blood (Moen et al., 2003, 2006; Lundberg et al., 2008; Martinez-Martinez et al., 2009; 

Ogrendik, 2009; Hitchon et al., 2010).   

Based on these results, we propose that microbiome / microbial DNA may spread in the 

synovial space through the blood (as demonstrated by their concurrent existence in both 

fluids). Extensive epidemiological and experimental evidence support that RA is caused by 

microbial; however, there is increasing evidence connecting the infection of the oral tissues 

with RA (Bartold et al., 2005; Forner et al., 2006; de Pablo et al., 2008; Scher et al., 2012; 

Brusca et al., 2014; Horliana et al., 2014; Koziel et al., 2014; Cheng et al., 2017; Zhao et 
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al., 2018). In addition, there is data to show the existence of microbial DNA from distant 

microbial ports such as our oral cavity in the synovial space (see above). Nevertheless, 

there has been a limited study of the bacterial population in this compartment (Zhao et al., 

2018a), and no characterisation of the fungal DNA existent in this site to date, and this 

adds to the novelty of this research. 

Here, we investigated the presence of bacterial and fungal DNA in the synovial fluid of 

rheumatoid arthritis (RA) patients and healthy control subjects through amplification and 

sequencing of the 16S rRNA V4 and ITS2 genes. Synovial fluid samples from 25 human 

donors were analysed in this investigation to provide an accurate description of the 

bacterial and fungal populations present in both RA patients and healthy subjects. It may 

also indicate that healthy subjects are at risk of developing RA because of the presence of 

a common microbial population in RA and healthy subjects.  

Investigations were done at both the phylum and genus levels. At the phylum level, our 

results showed that Proteobacteria and Firmicutes bacterial phyla dominate synovial fluid. 

These phyla were also found as the most abundant in the only available comparable study, 

despite the slightly different proportions (Zhao et al., 2018a).  

At the genus level, our synovial fluid samples were dominated by the genus Pseudomonas, 

which was the common genus to be detected in the study cohort, and has previously been 

found in the synovial fluid of RA patients (K. E. Kempsell et al., 2000; Yilmaz, Arslan and 

Mert, 2014; Olsen-Bergem et al., 2016). We identified that while the presence of the 

Raoultella genus in RA patients is the almost significant difference (at P = 0.051) between 

the RA patients and controls, other bacterial taxa present in RA and controls were almost 

identical.  



210 
 

Genus Raoultella is usually considered as an opportunistic bacterium that has been 

isolated from the human stool, synovial fluid, saliva, sputum, and blood samples (Lam and 

Salit, 2014; Bonnet et al., 2017; Sękowska, 2017). This is the first study to describe the 

genus Raoultella in RA synovial fluid samples; however, two common species can cause 

human infections: Raoultella ornithinolytica and Raoultella planticola. These are capable of 

causing infective arthritis (Seng et al., 2016; Venus, Vaithilingam and Bogoch, 2016; 

Bonnet et al., 2017; Levorova et al., 2017). Moreover, Raoultella is known as histamine 

generating bacteria that alter histidine to histamine because of their pyridoxal phosphate-

reliant on histidine decarboxylase (Kanki et al., 2002). Histamine is a pro-inflammatory 

molecule in the pathogenesis of RA, which is existent in RA blood, articular cartilage, 

synovial fluid, and synovial tissue (Kim et al., 2017). It has been shown that increased 

histamine in RA sera and synovial fluid (Kim et al., 2017).  Further, the genus Raoultella 

was isolated from the urine of RA patients, and the suggestion it causes urinary tract 

infection (Nakasone et al., 2015). It has been noticed that  Raoultella is associated with 

severe gastrointestinal infections; enteric translocation is regarded to be a likely approach 

of infection (Campos, Guimarães and Lovisolo, 2016). Raoultella genus may gain access 

to the synovial fluid from the above-mentioned infection sites, and it may also be 

responsible for the triggering of autoimmune reactions and causing RA. 

At the phylum level, synovial fluid was dominated by members of the Basidiomycota and 

Ascomycota fungal phyla. These two phyla were also identified to be dominant in the blood 

microbiome (Panaiotov, et al., 2018). Based on these findings, we suggest that fungi / 

fungal nucleic acid may reach the synovial location via the blood (as evidenced by their 

concurrent existence in both fluids). 

 At the genus level, synovial fluid samples were predominated by the genus Malassezia, 

which accounted for 40.9% and 45.3% of the total number of fungal sequences identified in 
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the RA and control donors, respectively. Differences in the structure of the fungal 

communities present in synovial fluid were consistently identified between RA patients and 

healthy controls. We have identified that the order Hypocreales was significantly more 

abundant in the synovial fluid of RA patients and absent from the synovial fluid of healthy 

control. The members of the order Hypocreales have been previously found in the oral 

cavity of healthy humans (Peters et al., 2017a) and identified to be ubiquitous in human 

blood (Beatty et al., 2014; Panaiotov et al.,  2018). Hypocreales may reach the synovial 

fluid from these sites. However, no reports directly associate Hypocreales with RA.  

Furthermore, a member of the genus Aspergillus was observed almost exclusively in RA 

synovial fluid samples only (P = 0.14, including all data, P = 0.057 excluding samples 

where <1% of reads mapped to this taxa). Aspergillus is present in the healthy human gut 

(Hallen-Adams and Suhr, 2016) and oral cavity (Ghannoum et al., 2010; Peters et al., 

2017b). In several studies have been found that  Aspergillus is a prevalent opportunistic 

pathogen of the lungs, particularly affecting immunocompromised individuals, and it causes 

a range of pulmonary conditions such as allergic bronchopulmonary disease and invasive 

pulmonary aspergillosis (Singh et al., 2003). It has been identified that the treatment with 

Adalimumab (an anti-TNF drug, which is utilized to treat some inflammatory diseases 

including rheumatoid arthritis) has been linked with various fungal infections, including 

Aspergillosis (Tsiodras et al., 2008; Manz et al., 2009; Salmon-Ceron et al., 2011; Kawaski 

et al., 2016; Ferrer et al., 2018).  

Adalimumab is a recombinant human immunoglobulin monoclonal antibody that attaches 

to the soluble and transmembrane form of TNF-α with high affinity, thus blocking the 

interaction of TNF-α with its receptors (Lim et al., 2018). TNF-α is not merely a mediator of 

inflammation yet also an integral part of the normal defence response against infection. It is 

included in the recruitment of inflammatory cells to the site of infection, induction of other 
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inflammatory cytokines, apoptosis, and cell activation (Kim et al., 2011). It has indicated 

that patients treated with TNF-α inhibitor such as Adalimumab have a decreased 

interferon-γ production and reduced expression of Toll-like receptor-4, which is important 

for the recognition of microorganisms via dendritic cells and phagocytes (Giles and Bathon, 

2004). Therefore, the use of Adalimumab is predicted to enhance susceptibility to fungal 

infections (Bakleh et al., 2005; Tsiodras et al., 2008; Kim et al., 2011; Kobak et al., 2014; 

Lim et al., 2018). 

Moreover, Serum Aspergillus galactomannan antigen levels are frequently increased in a 

nonspecific manner in RA patients (Horie et al., 2016). 

Relative abundances of unclassified organism belonging to the order Malasseziales and 

genus Cladosporium were significantly reduced in RA patients relative to healthy controls.  

Unclassified organism belonging to the order Malasseziales has been detected in the 

healthy human blood (Panaiotov, Filevski, Equestre, Nikolova, Kalfin and Panaiotov, 2018), 

gut (Hallen-Adams and Suhr, 2016), oral cavity, nares, and respiratory tract (Witherden et 

al., 2017). Furthermore, Malasseziales was identified to differ in abundance in the case of 

inflammatory bowel condition (Sokol et al., 2017; Witherden et al., 2017), proposing it may 

be responsive to an inflammatory environment. Cladosporium has been detected in the 

healthy human gut (Hallen-Adams and Suhr, 2016), and oral cavity (Peters et al., 2017b), 

and is encountered commonly in human clinical samples (Sandoval-Denis et al., 2015); 

thus, proof of Cladosporium DNA in the healthy patient is possibly not unexpected. That 

said, it’s absence from the synovial fluid of all RA patients may propose the changed fungal 

population in some distant microbial niche, which presents as a reduction in translocated 

Cladosporium DNA. These results all warrant further investigation. 
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Our results revealed that gender and age could be co-influence factors on the microbiome 

population in RA synovial fluid. The member of Enterococcus, Stenotrophomonas genera 

were found almost exclusively in RA synovial fluid samples from men only when compared 

those to women. Further, the abundance of Raoultella and Hypocreales as marginally 

significant; they are identified as an increase in males RA synovial fluid samples compared 

to females. Moreover, an abundance of Raoultella and Hypocreales were significantly 

increased in RA patients with age ≤ 65 compared to RA patients with >65. Most of these 

taxa have not been associated with gender and age before in human studies, with the 

notable exception of Raoultella, which was also increased in men in a recent study 

(Insenser et al., 2018). 

Gender and age are the significant variables influencing microbiome composition; several 

investigations have observed gender and age differences in microbiome diversity and 

composition (Yatsunenko et al., 2012; Jašarević, Morrison, and Bale, 2016; Martin et al., 

2016; Johnson, 2020). 

Gender differences in the evolution and presentation of different diseases, such as RA, 

have been known. However, the associated mechanism is unclear (Gomez et al., 2012; 

Danska, 2014; Bodkhe, Balakrishnan, and Taneja, 2019). Gender differences in the 

intestinal microbiome may play a role in the gender differences in illnesses (Danska, 2014). 

The gender differences in the innate and adaptive immune systems are well understood 

(Klein and Flanagan, 2016). Receptors for sex hormones are expressed on most immune 

cells. Thus sex hormones may play a role in establishing the gender difference in the 

immune response (Elderman, de Vos and Faas, 2018). Because the gut microbiome 

interacts with the host immune system, it can be expected that the gender differences in 

the intestinal microbiome have some role in the gender differences in immunity (Fransen et 
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al., 2017). Intestinal inflammation might also have gender differences about the gut 

microbiome. In a mouse model of colitis induced with 2, 4, 6-trinitrobenzene sulfonic acid, 

the males showed more severe colonic inflammation (Kozik et al., 2017). 

Probiotics also caused different inflammatory responses from female and male mice (Lee 

et al., 2017). In female Wistar mice presented to water avoidance stress, the administration 

of Lactobacillus farciminis significantly lowered the colonic mucosal mast cell count and 

decreased the levels of inflammatory cytokines only in the female mice (Lee et al., 2017). 

Besides, sex differences in response to probiotic Lactobacillus animalis NP-51 

administration were recorded for cytokine responses, intestinal metabolic profiles, and 

intestinal microbiome in Mycobacterium-treated mice (Karunasena et al., 2014). 

The FMT animal model of another study showed that female recipients lost significantly 

more weight after taking the male microbiome when compared to those with the weight 

after taking the female microbiota, proposing that the male microbiome caused more gut 

inflammation (Fransen et al., 2017). 

Age also alters the intestinal microbes, and then this may cause alteration anther human 

microbiota, such as the synovial fluid microbiome. This may occur because older people 

eat a less complicated diet and are expected to take multiple medications that may change 

the microbes in their intestine (Ghosh et al., 2020). Because of this, age may influence 

variations in intestinal microbes associated with illnesses(Ghosh et al., 2020). This 

highlights the need for studies that tease apart the importance of ageing-related and 

disease-related changes in the gastrointestinal microbiome(Ghosh et al., 2020). 

 Ghosh et al. (Ghosh et al., 2020) indicated that intestinal microbe variations associated 

with diseases might vary with a person’s age. The analysis compared the intestinal 

microbiomes of more than 2,500 people aged 20 to 89(Ghosh et al., 2020). This included 
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people with type 2 diabetes, inflammatory bowel disease, liver cirrhosis, colorectal cancer, 

and intestinal polyps(Ghosh et al., 2020). The study found that younger people gradually 

gain disease-associated intestinal microbes. In comparison, older people tend to lose the 

gut microbes, usually observe in a healthy intestine(Ghosh et al., 2020). Ghosh et al. 

(Ghosh et al., 2020) also found a set of gut microbes that were gained in several diseases 

and across age-groups. This set of microbiota was also associated with frailty in older 

individuals. The characteristics of the microbiota in this set are all distinguished to have 

detrimental impacts on human health (Ghosh et al., 2020). 

Several environmental factors, such as antibiotics, diet, smoking, stress, and geographical 

location, can influence both the microbiome diversity/composition and the arthritis 

onset/outcome(Diamanti et al., 2016; Bodkhe, Balakrishnan and Taneja, 2019b). The 

utilisation of antibiotics is a two-edged weapon: it kills both beneficial and pathological 

microbes indiscriminately, allowing the loss of intestinal microbiota or the so-called 

dysbiosis and increase of pathogenic microbiota (Hasan and Yang, 2019). Investigations 

on experimental mice have shown the administration of the antibiotic affected secondary 

bile acid and serotonin metabolism in the colon and producing in delayed intestinal motility 

through providing microbiota reduction (Ge et al., 2017; Hasan and Yang, 2019). 

Antibiotics disrupt the competitive exclusion machinery, a fundamental property by which 

microbiotas eliminate pathological microorganisms (Hasan and Yang, 2019). This 

disruption increases the growth of other pathogens, for instance, Clostridium difficile 

(Ramnani et al., 2012). Studies have recorded that clarithromycin and metronidazole 

(Jakobsson et al., 2010), clindamycin (Jernberg et al., 2007), and ciprofloxacin (Dethlefsen 

and Relman, 2011) influence the microbiota structure for a long time. 

The relevance of diet is suggested by the differences in the gut microbiota between 

geographically and lifestyle distant populations (Diamanti et al., 2016). In general, 
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individuals assuming a diet rich in animal proteins, simple sugars, and fats have a 

decreased diversity of intestinal microbiota with a predominance of Bacteroidetes taxa 

(Diamanti et al., 2016). Dietary intervention, fish oil, reduction in animal protein intake, 

among others, can modify microbiome diversity in the intestine, sometimes leading to a 

mild decrease of joint inflammation taxa (Diamanti et al., 2016). 

Smoking can impact on the gut, and periodontal microbial populations may represent risk 

factors for the development of RA (Huang and Shi, 2019). Few are the investigations that 

have investigated the impact of smoking on the composition of the gut microbiome. 

However, Biedermann et al. (Biedermann et al., 2013) have recently shown significant 

alterations after smoking cessation with an increase in  Actinobacteria and Firmicutes, 

accompanied by a decrease of Bacteroidetes. In PD, the effect of smoke on the 

microbiome is controversial. However, it has been identified that T. forsythia, P. gingivalis, 

Aggregatibacter actinomycetemcomitans, Parvimonas, and Treponema have a higher 

predominance on the oral of smokers relative to non-smokers subjects (Zambon et al., 

1996; Shchipkova, Nagaraja and Kumar, 2010; Jiang et al., 2020) 

It is understood that stress can alter the immune function and, consequently, autoimmune 

disorders through different serological and cellular pathways; a clinical role for stress in the 

onset and flares of patients with chronic arthritis has been recorded (Stojanovich and 

Marisavljevich, 2008; Diamanti et al., 2016). However, it requires to be better explained. 

The axis between the brain and immune system also involves the microbiota as 

established by investigations using several animal models and by the recent description of 

intestinal microbiota alterations in patients with depression and irritable bowel syndrome 

(Diamanti et al., 2016; Wang and Wang, 2016; Martin et al., 2018; Cheung et al., 2019). 
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The microbiome composition may differ by geographical location for several causes. 

Microbial and environmental pressures can change both the repertoire of bacterial species 

inhabiting the region and their abundance (Arrieta et al., 2014; Gupta, Paul and Dutta, 

2017; Hasan and Yang, 2019). Different ethnographic populations have distinct regional 

diets, genetic backgrounds, and cultural practices. Of course, resource-replete areas also 

have entrance to better hygiene and healthcare than developing nations (Arrieta et al., 

2014). Therefore, when investigations are designed to evaluate geographical differences in 

microbiome populations, any trends are attributable to a large body of varieties other than 

geographical separation (Arrieta et al., 2014). Still, comparisons between several 

developed and developing areas have provided some insight into which geography-

associated variables are the most reliable drivers of microbial diversity (Arrieta et al., 

2014). 

A comparison between continentally distinct populations led to the emergence of different 

types of population structures, driven by the composition of the Bacteroidetes phylum 

(Arumugam et al., 2011; Arrieta et al., 2014). The predominant genera identified French, 

Japanese, Danish, Spanish, Italian, and American individuals in the phylum being either 

Bacteroides or Prevotella or with a less pronounced Ruminococcus signature (De Filippo et 

al., 2010; Arrieta et al., 2014). 

A major limitation of the study we cannot compare synovial fluid profiles with blood/sera 

from chapter 3 because they are not the same patients to evaluate the effects of microbial 

dysbiosis at the blood on the synovial fluid microbiome. 
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4.4.2 Alterations synovial fluid cytokine levels in RA 

 

Numerous cytokines have been involved in RA pathology. Many have the possibility as 

markers in RA, particularly as their clinical utility is previously established in other illnesses 

and could be easily transferable to rheumatology (Burska, Boissinot, and Ponchel, 2014).  

Higher concentrations of IL6, IL-17-A, IL-22, and IL23 have been observed in the synovial 

fluid of RA patients compared with healthy control subjects. The data publicised by a 

number of authors in the literature agreed with our findings. Over-production of IL-6 was 

previously identified in synovial fluid and RA blood, and IL-6 levels were correlated with 

illness activity (Srirangan and D. E. H. Choy, 2010; Boyapati et al., 2019; Rajaei et al., 

2019). IL-6 has an essential role in the pathogenesis of RA, and current evidence indicates 

that the blockade of IL-6 is an effective treatment for patients with RA (McInnes, Buckley 

and Isaacs, 2016).  

IL-6 has a vital immunoregulatory role in adaptive immunity, acting at a checkpoint in 

regulatory T (TREG) cell pathways and the differentiation of naive T cells towards pro-

inflammatory TH17 cells (McInnes, Buckley and Isaacs, 2016). Matsumoto et al. 

(Matsumoto, Tsurumoto and Shindo, 2006) has identified that a positive correlation 

between the concentration of IL-6 in synovial fluids and the infiltration of the inflammation 

cells in synovial tissues, proposing IL-6 in the synovial fluid appears to be an excellent 

marker to reveal the infiltration of the inflammation cells in the synovial membrane. Sack et 

al. (Sack et al., 1993) showed that the synovial fluid IL-6 levels were associated with 

histological characteristics of chronic synovitis in RA. These results support the notion that 

IL-6 is an important cytokine for stimulating synovial inflammation.  
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Previous results found higher synovial fluid IL-17A levels in RA patients relative to healthy 

controls.  Synovial fluid levels of IL-17A could be utilized as a potential systemic biomarker 

for RA patients. Previous results found higher synovial fluid IL-17A levels in RA patients 

relative to healthy controls (Roşu et al., 2012; Elhewala et al., 2015). The archetypal 

proinflammatory T-cell cytokine, IL-17A, has multiple overlapping functions with both TNF 

and IL-6. IL-17A in synovial fluid of RA patients stimulates the release of proinflammatory 

cytokines (involving TNF, IL-1, and IL-6), chemokines (CXC-chemokine 8 and CC-

chemokines 2 and 3) and facilitating osteoclast activation and angiogenesis ( the formation 

of new blood vessels) (McInnes, Buckley and Isaacs, 2016). Therefore, Synovial fluid 

levels of IL-17A could be utilised as a potential systemic biomarker for RA patients.  

The IL-22 level in synovial fluid was higher in RA patients relative to healthy controls (da 

Rocha et al., 2012b; Xie, Wang, and Li, 2012). It has been found that levels of interleukin 

22 were elevated in RA patients relative to controls. Further, IL-22 levels associated with 

disease activity, rheumatoid factor positivity, was associated with higher levels of IL-22 in 

RA patients, and the existence of bone erosions was correlated with high IL-22 levels (da 

Rocha et al., 2012b). These results propose that IL-22 may be a biomarker for estimation 

of activity in RA, and IL-22 appears to be a possible therapeutic target for RA.L-23 levels in 

synovial fluid are high in RA patients (Yago et al., 2017), and IL-23 may be a beneficial 

biomarker for the diagnosis of RA. It has been known that systemic levels of IL-23 are 

strongly related to illness activity in RA (Melis et al., 2010). IL-23 is supposed to endorse 

the swelling and destruction of joints in patients with RA through two processes: (1) 

inflammation and (2) bone destruction. The mechanism of these two effects is caused by 

IL-23-induced stimulation of IL-17 (Yago et al., 2017). 

We identified that IL-6 levels were higher among a sub-cluster of the RA population defined 

according to the fungal and bacterial microbiome. IL-6 has been found to play a pivotal role 
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in the RA pathogenesis (Narazaki, Tanaka, and Kishimoto, 2017a). It is involved in the 

pathogenesis of the local joint illness and systemic manifestations (Srirangan and E. H. 

Choy, 2010; Yoshida and Tanaka, 2014b). The level of synovial fluid IL-6 has been seen 

associated with illness severity and activity (Matsumoto, Tsurumoto and Shindo, 2006; 

Rajaei et al., 2019). Fungal pathogen is known to activate IL-6 expression while the precise 

mechanism of initiation and persistent expression of IL-6 in RA patients is still being 

studied (Narazaki, Tanaka and Kishimoto, 2017a). In fungal pathogen-infected lesions, IL-6 

is generated via the activation of toll-like receptors (TLRs) on macrophages and dendritic 

cells with the TLR-recognising microbial components, which are known as pathogen-

associated molecular patterns (PAMPs). Various fungal populations are distinguished via 

cell-surface TLRs. This cell-surface induce IL-6 and other inflammatory cytokines (Kawai 

and Akira, 2010). An in vitro study identified that in response to auto-antigen more IL-17A, 

IL-6, and IL-23 were generated via naïve T cells cocultured with RA-microbiota activated 

dendritic cells than by T cells cocultured with healthy control-microbiota activated dendritic 

cells, proposing that dysbiosis of the microbiome may be involved in the pathogenesis in 

RA (Maeda et al., 2016). Furthermore, Th17 cells are fundamental in the immune response 

against fungal pathogens, and IL-6 is implicated in the differentiation of lymphocytes to 

Th17 cells  (Srirangan and E. H. Choy, 2010). This suggests that the variation in the fungal 

microbiome within RA patients might be associated with illness severity by an IL-6 – Th17 

mediated pathway. 

 

 



221 
 

4.5 Conclusion 

This study confirmed the existence of fungal and bacterial DNA in synovial fluid and 

determines that this is changed by disease condition (RA), as are other classical 

microbiome niches. It anticipated that the microbiome originates from one of the classical 

microbiome niches (the gut, mouth, urogenital tract, skin) and enters the blood, which acts 

as a conductor between their usual place of habitation and the synovial place. Gender and 

age could be co-influence factors on the microbiome population in RA synovial fluid. 
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Chapter 5 
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5 Molecular characterisation of the stool, synovial fluid, urine, blood, 
and serum of collagen-induced arthritis mouse model and healthy 
Control subjects 

 

5.1  Introduction 

 

Mouse and human are quite similar in physiology and anatomical structures, and this is 

one of the reasons why mouse models have been widely utilised in biomedical studies. 

Mainly, the intestinal tracts in both species are composed of anatomically similar organs 

(Hugenholtz and de Vos, 2018). Further, their low maintenance cost (relative to other 

mammalian experimental models), high reproductive mice, and short life cycle are valuable 

advantages of the mouse model (Nguyen et al., 2015). Steps on this journey require the 

characterisation of the current available RA models, the CIA being on a ubiquitous option. 

Collagen-induced arthritis (CIA) can be induced in DBA1 mice via high-quality collagen. 

CIA shares several similarities pathological and immunological features with human RA 

and has been extensively studied to explore pathogenesis as well as test candidate 

treatments (Brand et al., 2007). Clinical signs of CIA typically develop after the initial 

inoculation and appear as polyarthritis. This is the most prominent in the limbs and 

characterised by synovial inflammatory infiltration, bone and cartilage and erosion, and 

synovial hyperplasia similar to human RA (Asquith et al., 2009; Choudhary et al., 2018). 

This initiates an immune reaction directed towards collagen, including activation of T cells 

and B and antibody production. Antibodies distinguish collagen in the joints and stimulate 

the local autoimmune response, in which T cells, monocytes, granulocytes are attracted to 

the joints. This further fuels the inflammatory process, leading to the production of 

cytokines and inflammatory mediators (Choudhary et al., 2018).  
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Disease severity is expected to peak at approximately day 35, after which DBA/1 mice 

enter remission, marked by increased concentrations levels of serum IL‐10 and a 

subsequent lowering in pro‐inflammatory Th1 cytokine (Asquith et al., 2009).  

DBA/1j male mice and bovine CII was used to induce the collagen-induced arthritis model 

(Joosten and van den Berg, 2006). Male mice exhibit higher susceptibility relative to female 

mice (Joosten and van den Berg, 2006). Bulk quantities of bovine CII can be taken from 

articular cartilage slices obtained from a knee joint of 1–2-yr old cows (Asquith et al., 

2009). The onset of arthritis begins around days 25–28, often first affecting some digits of 

forepaws and hind, then spreading to multiple places in the paw, including the joint parts. 

Affected joints undergo devastating consequences (Asquith et al., 2009; Choudhary et al., 

2018). The commonly hypocellular synovium becomes infiltrated with immune cells 

(macrophages, neutrophils, T cells, and B cells) (Choudhary et al., 2018). This leads to the 

formation of pannus, a hyperplastic membrane of synoviocytes that shows a tissue-

invasive character, targeting bone and cartilage (Choudhary et al., 2018). Generation of 

matrix-degrading enzymes, which are generated by activated synoviocytes and 

chondrocytes, and infiltrating mononuclear cells such as neutrophils, destroy cartilage 

(Choudhary et al., 2018). 

In addition, nitric oxide generated by macrophages and synoviocytes induces the 

destruction of chondrocytes. Besides, a variety of cytokines and growth factors, including 

IL-1β, IL-17, TNF-α, and macrophage colony-stimulating factor generated by synoviocytes, 

T cells, B cells, and monocytes induce the expression of RANKL and bone erosion activity 

(Choudhary et al., 2018). 

Moreover, the production of osteoclasts are detected in the area of focal bone erosion in 

vivo in CIA mice, produces bone erosion. The synovial fluid, which usually contains few 
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cells, becomes highly infiltrated, predominantly with neutrophils (Choudhary et al., 2018). 

Together, these modifications result in decreased functioning of the joints characterised by 

pain and stiffness. 

Multiple cytokines have been involved in the pathogenesis of the CIA, such as TNF-alpha, 

IL-1beta, and IL-6 (Marinova-Mutafchieva et al., 1997). TNF-alpha-expressing cells were 

identified on day 1 of arthritic disease, whereas IL-1b-expressing cells were not shown until 

day 3 of disease, proposing that the expression of TNF alpha leads that of IL-1 (Marinova-

Mutafchieva et al., 1997). There was a progressive expansion in the number of TNF-alpha, 

IL-1beta, and IL-6-positive cells from day 1 to day 10 of disease, through which time IFN-

gamma production via CD4+T cells from draining lymph nodes decreased sharply 

(Marinova-Mutafchieva et al., 1997). 

IL-1beta and IL-6 levels, but not TNF-alpha in paw tissues significantly induced between 

day 14 and day 28 following collagen immunisation, when the disease was at a developed 

stage (Magari et al., 2004).  It was noted that treatment with a set of neutralising antibodies 

against both IL-1 alpha and IL-1 beta was still highly effective in established arthritis, 

decreasing both inflammation and also the progression of cartilage damage (Dinarello, 

Simon and Van Der Meer, 2012).  

Studies characterising of the CIA microbiome following the induction of RA are rare. Liu 

and co-workers (Liu et al., 2016) identified that the gut microbiome of CIA-susceptible and 

CIA-resistant mice were modified in a phenotype-specific manner resulting in illness 

induction. In addition, when the microbiota of CIA-susceptible mice colonised germ-free 

mice, it brought about a considerable increment in RA incidence and severity  (Liu et al., 

2016). Taken together, these facts, it is proposed that collagen therapy is not enough for 

establishing arthritis and highlights the role of contributing to the intestinal microbiome. In 
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this chapter, we attempted to characterise the gut, synovial fluid, urine, blood, and serum 

of CIA in comparison to controls mice subjects to confirm the gut dysbiosis, and then to 

endeavour in the same animals for signatures of these taxa in the blood, synovial fluid, and 

urine. This study was performed to link dysbiosis in multiple microbiome niches in the 

collagen-induced arthritis model following the induction of experimental RA. 

  

5.2 Methods 

 

Twenty mice in total, with an aged eight-week-old male, were used in this study. Between 

these, ten were from DBA1 mice with CIA (this model by immunisation with an emulsion of 

complete Freund's adjuvant and type II collagen (CII) in the tail on Day 1 and Day 21 

(Williams, 2007). For control animals (n=10), Phosphate-buffered saline (PBS) was 

injected instead of bovine type II collagen.  

Eighteen days posted the second injection when inflammation was satisfactory, the faeces, 

urine, synovial fluid, blood, and serum were collected from mice. 

Methods for DNA extraction step, 16S rRNA amplification, Gel electrophoresis, DNA 

purification by Qiagen Purification Kit, Addition of Illumina XT tags, DNA purification by 

AMPure XP magnetic beads, DNA sequencing utilising an Illumina MiSeq, and subsequent 

bioinformatic analysis were found in the Methods chapter.  
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5.3 Results 

 

5.3.1 Bodyweight, arthritic Index, and hind paw thickness 

 

Mean animal bodyweight, arthritic index, and hind paw thickness were checked three times 

per week. 

1-Bodyweight 

 

The body weights of all mice in the study were measured three times per week. No animal 

lost >10% of its body weight throughout the study period (Figure 5-1). The statistical 

analysis by T-test showed that there was a significantly reduced weight of CIA mice 

(P<0.01) in comparison to controls. Recently, Zhang and his co-works mentioned that the 

weight of CIA mice decreased significantly relative to healthy controls  (Zhihui Zhang et al., 

2019). Further, it has been observed that severe weight loss during the early RA period 

was linked with an increased subsequent mortality risk for RA patients (Sparks et al., 

2018). 
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Figure 5-1 Mean (SD) bodyweight of male DBA/1 mice with induced arthritis 

compared to control mice. Bodyweight (g) was monitored three times per week. n=10 for 
all groups. 



228 
 

2-Arthritic Index 

 

The arthritic Index of all mice in the study was measured three times per week. 

The statistical analysis by T-test revealed that the arthritis score was high in the CIA cohort 

(P<0.01) relative to controls. CIA induced animals were ranging within an arthritic index of 

3-4 (except for animal 1), indicative of severe inflammation and established arthritis 

(Figure 5-2).   
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Figure 5-2 Mean (SD) arthritic index of male DBA/1 mice induced arthritis compared 
to control mice. Paw thickness was measured three times per week. n=10 for all groups. 
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3-Hind Paw Thickness 

 

As an additional measurement of disease severity, the mean thickness of hind paws was 

measured for each animal three times per week. The statistical analysis by T-test found 

that Paw Thickness of male DBA/1 mice induced arthritis was increased significantly 

(P<0.01) compared to healthy controls. These measurements followed a similar pattern to 

that observed with the Arthritic Index (Figure 5-3).  
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Figure 5-3 Mean (SD) Paw Thickness (mm) of male DBA/1 mice induced arthritis 
compared to control mice. Paw thickness was measured three times per week. n=10 for 
all groups. 
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5.3.2 Characterisation of the intestinal bacteria in mice 

Eighteen days posted the second injection (terminal stage of an experiment), the faeces, 

was harvested from mice. 

 The characterisation of bacterial DNA in the mice stool was evaluated via PCR 

amplification and sequencing of the bacterial 16S rRNA gene, variable region 4. An 

average of 99,244.100 reads was generated for each of the samples; 103,120 reads in the 

CIA samples, and 95,368.2 reads in the Control samples. Although the CIA samples 

generated more reads on average, this difference was not statistically significant (P >= 

0.05), followed by bioinformatic analysis using QIIME (See 2.3.4). Our first approach used 

principal coordinates analysis (PCoA) to reduce the complexity of the data obtained and to 

immediately visualise any obvious clustering between the two experimental  

groups (Figure 5-4). 

 

Figure 5-4 PCoA plot informed by weighted unifrac distance matrix for CIA mice 

(blue) and untreated controls (red). Distance matrix was informed by amplification 

and sequencing of the 16S rRNA variable region 4, followed by a taxonomic 

assignment. Proportions of variation explained by the principal coordinates are designated 

on the axes. PCoA found that the maximal variation was 52.6% (PC1), 13.24% (PC2) and, 

11.07% (PC3). The microbiota of samples that appear in close proximity to each other is 

more similar in composition.  
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5.3.3 Microbiome Community Composition of faecal samples 

 

Our various experimental negative controls (the negative Controls of DNA extraction and 

purification step by PCR Purification Kits/ controls of PCR experiments) constantly failed to 

generate a visible band after PCR and agarose gel electrophoresis. Besides, DNA 

quantification utilising the Qubit 3.0 high-sensitivity DNA kit (Invitrogen), confirmed this 

absence of DNA from the negative controls. The Qubit 3.0 high-sensitivity DNA kit is 

designed to be accurate for initial sample concentrations from 10 pg/µl. However, 0 values 

were obtained. 

Our characterisation of the bacterial 16S rRNA present in the fecal samples found that the 

majority of bacterial 16S RNA belonged to the Firmicutes phylum (total relative abundance 

= 69.0%; Control mean = 68.4%; CIA mean =69.6%), and the Bacteroidetes phylum (total 

relative abundance = 29.4%, Control mean= 29.9%, CIA mean = 28.8%).  

At the genus level (Figure 5-5), fecal samples were predominated by an unidentified 

member of the Bacteroidales S24-7 group (CIA= 27.7%, Control = 28.9%), followed by 

genus Lachnospiraceae NK4A136 group (CIA = 18.8%, Control = 22.4%), and an 

unidentified member of the Lachnospiraceae (there were other Lachnospiraceae group 

taxa that were found, and identified the read numbers do not relate to that genus per 

sequene, but specific taxa within it) (CIA = 15%, Control = 13.1%). To a lesser extent, the 

faecal samples contained genera Lachnospiraceae UCG-001 (CIA = 8.7%, Control = 

6.3%),  Lactobacillus (CIA = 6.3%, Control = 7%),  Roseburia (RA = 4.5%, Control = 5.2%), 

Blautia (CIA = 1.8%, Control = 0.8%), Lachnoclostridium (CIA = 1.2%, Control = 1.4%), 

Ruminiclostridium (CIA = 1.4%, Control = 1%), Ruminococcaceae UCG-014 (CIA = 1%, 

Control = 1.2%), and Oscillibacter (CIA = 1.1%, Control = 0.9%). 
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A- 

 

B- 

 

 

Figure 5-5 Relative abundance of genera detected within faecal samples. Data are the 

relative abundance of the major bacterial taxa, characterized as having a mean abundance 
of >1% of the total bacteria content in any one experimental group, detected in the faeces 
of CIA mice (CIA, n = 10), and Control (Control, n = 10) samples as determined using 
amplification and sequencing of the 16S rRNA gene variable region 4. Data are mean 
abundance expressed as a percentage of the total bacterial sequence count. A- Taxa data 
grouped by condition and B- Taxa individual sample data. 

              Control                                                     CIA 
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The CIA and healthy controls data for all taxa were then analysed. We found that the CIA 

mice were associated with significantly increased levels of genera Acetatifactor, Alistipes, 

Blautia, Coprococcus 1, and Marvinbryantia and significantly decreased levels of genera 

[Eubacterium] ventriosum group, Ruminococcaceae UCG-005, Ruminococcus 1, and 

[Eubacterium] coprostanoligenes group when compared those with our untreated controls 

(Figure 5-6 and Table 5-1). 

 

Table 5-1 Taxa significantly are altered by disease status. Data are median (SD). 

P values were determined by applying a two-tailed, Mann Whitney test using 

GraphPad Prism V8. P ≤ 0.05 was considered statistically significant. 

Taxa Control 
abundance 
Median (SD) 

CIA 
abundance 
Median (SD) 

P value 

g__Acetatifactor 0.2 (0.19) 0.7 (0.6) 0.0002 

g__Alistipes 0 (0) 0.2 (0.8) 0.01 

g__Blautia 0.45 (0.8) 1.8 (1.1) 0.019 

g__Coprococcus 1 0.1 (0.03) 0.2 (0.1) 0.0007 

g__Marvinbryantia 0 (0.05) 0.1 (0.16) 0.005 

g__[Eubacterium] 
ventriosum group 

1 (0.4) 0.45 (0.15) 0.0007 

g__Ruminococcaceae 
UCG-005 

0.2 (0.06) 0.1 (0.04) 0.035 

g__Ruminococcus 1 0.2 (0.07) 0.05 (0.05) 0.0006 

g__[Eubacterium] 
coprostanoligenes 
group 

0.05 (0.09) 0 (0) 0.032 
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Figure 5- 6 Relative abundance of significantly changed taxa found in the mice 

faeces with collagen-induced arthritis and untreated controls. Data determined by the 
amplification and sequencing of the 16S rRNA gene variable region (V4). Data are a 
median abundance expressed as a percentage of the total bacterial sequence count. 
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5.3.3.1 The correlation between the gut microbiome genera associated with the CIA 

and loss of body weight 

 

Here, we investigated whether genera significantly associated CIA are correlated with 

changed body weight in the CIA at terminal microbiome measurements (Eighteen days 

posted the second injection) to determine if taxa signatures are related to body weight loss. 

The taxa include Acetatifactor, Blautia, Coprococcus 1, Marvinbryantia, Alistipes, 

Eubacterium ventriosum group, Eubacterium coprostanoligens, Ruminococcus 1, and 

Ruminococcaceae UCG-005. 

Spearman’s rank correlation revealed that no such association was found to exist among 

Acetatifactor, Blautia, Coprococcus 1, Marvinbryantia, Alistipes, Eubacterium ventriosum 

group, Eubacterium coprostanoligens, Ruminococcus 1, and Ruminococcaceae UCG-005 

with changed body weight in the CIA (Table 5-2). 

These data propose that there was no association between the gut dysbiosis in the CIA 

and body weight. 

 

Table 5-2: Spearman’s rank correlation coefficient determines the correlation of 
intestinal genera significantly associated with CIA status with the change of body 
weight 

Bacterial taxa vs. body weight  Spearman's rank correlation P value 

g__Acetatifactor vs. body weight -0.14 ns 

g__Alistipes vs. body weight 0.3 ns 

g__Blautia vs. body weight 0.08 ns 

g__Coprococcus 1 vs. body 
weight 

-0.08 ns 

g__Marvinbryantia vs. body weight 0.2 ns 

g__[Eubacterium] ventriosum 
group vs. body weight 

-0.02 ns 

g__Ruminococcaceae UCG-005 
vs. body weight 

0.39 ns 

g__Ruminococcus 1 vs. body 
weight 

0.4 ns 

g__[Eubacterium] 
coprostanoligenes group vs. body 
weight 

0.01 ns 
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5.3.4 Characterisation of the synovial fluid, urine, blood, and serum bacterial 

populations by 16S rRNA sequencing 

 

The characterisation of bacterial DNA in the synovial fluid, urine, blood, and serum was 

assessed by PCR amplification and sequencing of the bacterial 16S rRNA gene, variable 

region 4. Applying PCR amplification, bacterial 16S rRNA was absent in the synovial fluid 

of CIA and healthy controls mice. 

In mouse urine samples, bacterial 16S rRNA was found in 90% (9/10) of CIA and 100% 

(10/10) of controls mice samples. Further, there was amplification in negative kit control 

(DNA extraction kit control). 

In mouse blood samples, 16S rRNA was detected in 80% (8/10) of CIA and 90% (9/10) of 

controls mice samples. In mouse serum samples, 16S rRNA was found in all CIA and 

healthy controls samples. Moreover, a negative Kit control sample of DNA extraction kit for 

blood and serum produced a visible band during PCR steps. 

 

5.3.5 Bacterial Community Composition of urine 

 

At the phylum level, our urine samples were dominated by Proteobacteria (CIA= 58.8%, 

healthy controls=88.3%, and negative kit control= 92.7%), Firmicutes (CIA= 36.4%, healthy 

control=8.6%, and negative kit control= 4.8%). 

At the species level, our urine samples were dominated by the species Serratia sp. SBS 

(CIA= 51.4%, healthy control=80.2%, and negative kit control= 81.1%, followed by species 

Staphylococcus aureus (CIA= 14.4%, healthy control=1.4%, and negative kit control= 
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0.6%).To a lesser extent, the urine samples contained species bacterium N3a (CIA= 2.2%, 

healthy control=3%, and negative kit control= 3.8%) (See Figure 5-7). Form these findings; 

we can see the source of common microbial taxa produced from the urine of CIA and 

Controls were from PureLink™ Microbiome DNA Purification Kit, which was contaminated 

with species Serratia sp. SBS and bacterium N3a. Further, Staphylococcus aureus was 

more present in CIA than controls, with no statistically significant (P-value = 0.075) 

between two groups, and also the abundance Staphylococcus aureus in bacterial taxa of 

kit negative control was 0.6%. 

 

Figure 5-7 Relative abundance of bacterial taxa found within the urine mouse study. 

Data are the relative abundance of the most bacterial taxa, characterized as having a 

mean abundance of >1% of the total bacteria content in any one experimental group, 

detected in the urine of CIA, n = 9, healthy control, n = 10, and kit control, n =1 sample as 

determined using amplification and sequencing of the 16S rRNA gene variable region 4. 

Data are mean abundance expressed as a percentage of the total bacterial sequence 

count. 

                Control                                                          CIA                                                   Urine kit control 
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5.3.6 Bacterial Community Composition of blood 

 

At the phylum level, blood was identified to be dominated by members of the 

Actinobacteria (CIA= 29.5%, healthy control=35.4%, and negative kit control= 37.5%), 

Firmicutes (CIA= 30.5%, healthy control=30.7%, and negative kit control= 22.2%), 

Proteobacteria (CIA= 32.9%, healthy control=26.3%, and negative kit control= 35.2%) 

phyla. 

At the genus level, our blood samples were predominated by the genus Corynebacterium 

1, which accounted for 18.4%, 23%, and 24.8% of the total bacterial sequence detected in 

the CIA, healthy controls donors, and kit control respectively. Followed by the genera 

Streptococcus (CIA= 11.7%, healthy control=10.7%, and negative kit control= 7.3%), and 

Serratia (CIA= 11.4%, healthy control=10.9%, and negative kit control= 9.1%), 

Propionibacterium (CIA= 6%, healthy control = 6.9%, and negative kit control= 6.6%). To a 

lesser extent, the blood samples contained genera Staphylococcus (CIA= 3.5%, healthy 

control = 5.1%, and negative kit control= 3.1%), Acinetobacter (CIA= 4%, healthy control = 

2.9%, and negative kit control= 10.5%), and Enhydrobacter (CIA= 2.5%, healthy control = 

1.7%, and negative kit control= 1%) (See Figure 5-8). Form these results; we can see the 

source of common microbial taxa produced from the blood of CIA and controls were from 

DNeasy® Blood and Tissue Kit, which was contaminated with some bacterial taxa such 

genera Corynebacterium 1, Streptococcus, Serratia, Propionibacterium, Staphylococcus, 

Acinetobacter, and Enhydrobacter. 

javascript:gg('D_1__Actinobacteria');
javascript:gg('D_1__Firmicutes');
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Figure 5-8 Relative abundance of bacterial taxa found within the blood CIA mouse. 

Data are the relative abundance of the most bacterial genera, characterized as having a 
mean abundance of >1% of the total bacteria content in any one experimental group, 
detected in the blood of CIA, n = 8, healthy control, n = 9, and kit control, n =1 sample as 
determined utilising amplification and sequencing of the 16S rRNA gene. Data are mean 
abundance expressed as a percentage of the total bacterial sequence count. 
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5.3.7 Bacterial Community Composition of serum 

 

At the phylum level, our serum samples were predominated by Firmicutes (30.7%), 

Actinobacteria (26.9%), Bacteroidetes (20.7%), and Proteobacteria (18.9%).  

At the species level, our serum samples were predominated by an unidentified member of 

the Bacteroidales S24-7 group (CIA= 9.3%, healthy control= 26.5%, and negative kit 

control= 8.6%, and Corynebacterium 1 (CIA= 11.5%, healthy control=12.6%, and negative 

kit control= 13.6%). Followed by an unidentified member of the Propionibacterium (CIA= 

9.6%%, healthy control=3.7%, and negative kit control= 6.3%) and the species Serratia sp. 

SBS (CIA= 8.5%, healthy control=4.1%, and negative kit control= 5.6%) (See Figure 5-9). 

Form these findings we can show the source of common microbial taxa generated from the 

blood of CIA and controls were from DNeasy® Blood and Tissue Kit, which was 

contaminated with some bacterial taxa such an unidentified member of the Bacteroidales 

S24-7 group, Corynebacterium 1, Propionibacterium, and species Serratia sp. SBS.  
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Figure 5-9   Relative abundance of bacterial taxa found within the serum mouse 

study. Data are the relative abundance of the most bacterial taxa, characterized as having 

a mean abundance of >1% of the total bacteria content in any one experimental group, 

observed in the serum of CIA, n = 10, healthy controls, n = 10, and kit control, n =1 sample 

as determined utilising amplification and sequencing of the 16S rRNA gene variable region 

4. Data are mean abundance expressed as a percentage of the total bacterial sequence 

count. 
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5.3.8 Contaminated taxa in DNA extraction kits 

 

We provide an extensive list of possible contaminating taxa with expression levels >1% in 

DNA extraction kits in Table 5-3. 

Table 5-3 List of contaminant taxa found in sequenced negative kits controls 
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5.4 Discussion 

 

5.4.1 Characterisation of the intestinal microbiome of mice  

 

A growing body of evidence indicates that the intestinal microbiome has a role in the 

initiation and development of RA. Recently, mouse models have been utilised to 

investigate the interaction between host and microorganism in the intestinal microbiome, 

increasing the understanding of the pathological mechanism of RA and for the testing of 

new products for their anti-arthritic, which may help to improve arthritis condition  (Liu et al., 

2016). Despite the availability of data associated gut microbiome dysbiosis to CIA, there is 

a need to assess if there is a consistency in data, or if factors such as differences in 

induction methods would lead to a difference in these. To this end, we characterised the 

stool microbiome of collagen-induced arthritis mice as compared with healthy control mice 

to confirm the gut dysbiosis, and then to endeavour in the same animals for signatures of 

these taxa in the blood, synovial fluid, and urine. This study was performed to link 

dysbiosis in multiple microbiome niches in the collagen-induced arthritis model following 

the induction of experimental RA. 

. Pathophysiologic mechanisms via which intestinal microbiota contribute to the 

development of RA are complex; proposed mechanisms involve modifications in the 

permeability of gastrointestinal mucosal, stimulation of antigen-presenting cells via an 

impact on Toll-like receptors or NOD-like receptors, antigenic mimicry, the capability to 

generate citrullination of peptides via enzymatic action, development of T helper type 17-

mediated mucosal inflammation, and regulation of host immune system (producing T cell 

differentiation) (Horta-Baas,2017). 
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At the phylum level, our stool samples were dominated via two key phyla; Firmicutes and 

Bacteroidetes. These findings agreed with the previous study by Liu and co-workers (Liu et 

al., 2016) and further support the notion of a core stool microbiome of mice predominated 

by two key phyla. 

 We identified key taxa that appeared to be differentially present or abundant in mice with 

CIA or healthy controls. We found that the CIA mice were associated with significantly 

increased levels of genera Acetatifactor, Blautia, and Coprococcus 1, and Marvinbryantia 

when compared to those with healthy control mice. They are bacterial genera belonging to 

the family of Lachnospiraceae, which usually Inhabit in human and also mammalian 

gastrointestinal microbiota (Kanki and Grimes, 2012). It has been found that 

Lachnospiraceae can stimulate T-helper1 and T-helper17 polarisation and down-control T 

regulatory response (W. Wu et al., 2016). Furthermore, members of Lachnospiraceae also 

can enhance pathogenesis (Krych, & Hansen, 2015). It is well established that Increased 

Lachnospiraceae was increased in the gut of the RA  patients (X. Wu et al., 2016). 

Genus Acetatifactor was initially isolated from the gut of an obese mouse and maybe fed a 

high-fat diet (Lagkouvardos et al., 2016). 

Further, it has no deleterious effects on the normal abundance of Blautia in humans. 

However, several studies demonstrated that the abundance of genus Blautia was 

increased in many illnesses such as systemic lupus erythematosus, Crohn's disease, 

nonalcoholic fatty liver diseases, and irritable bowel syndrome (Qi et al., 2016; Luo et al., 

2018). Moreover, the study by Liu et al. (Liu et al., 2016) identified that there are 

differences in the intestinal microbiome composition between CIA-susceptible and CIA-

resistant mice, with a predominance of genera Acetatifactor, Blautia, and Coprococcus in 

arthritis mice. 
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We also identified that the bacterial genus Alistipes was more abundant in the CIA mice 

than in healthy mice. The genus Alistipes has been implicated in the pathogenesis of 

diseases such as diabetes (Qin et al., 2012), cancer (Fulbright, Ellermann and Arthur, 

2017), and cardiovascular disease (Wang et al., 2011). The associations are mediated via 

different pathways including affecting the mechanistic target of the rapamycin (mTOR) 

signalling pathway (mTOR is a kinase that regulates metabolism and cell growth in 

response to, growth factors, nutrients, and stress, and cellular energy) (Hall, 2008; Zheng 

et al., 2017). Contrary to our finding, it was previously observed that the genus Alistipes 

was less abundant in CIA-susceptible mice prior to arthritis onset than in CIA-resistant 

mice (Liu et al., 2016). 

Eubacterium ventriosum group, Eubacterium coprostanoligens, Ruminococcus 1, and 

Ruminococcaceae UCG-005 were present in significantly lower proportions in CIA subjects 

compared with healthy control subjects. Eubacterium is negatively associated with 

inflammatory markers (van den Munckhof et al., 2018). Further, Eubacterium is a beneficial 

microbe of gut bacteria, which involves several species that generate butyrate (Uematsu & 

Hoshino, 2003). Butyrate is observed as a substantial nutrient for intestinal epithelium 

cells, and it plays a fundamental role in normal development and the energy metabolism of 

these cells (Wong,  & Jenkins, 2006). Further, butyrate has a function as an anti-

inflammatory factor, through the inhibition of nuclear factor κB (NF-κB) activation in host 

colonic epithelial cells (Inan et al., 2000), which might be an outcome from the inhibition of 

Histone Deacetylases. NF-κB controls several cellular genes implicated in early immune-

inflammatory responses, such as IL-1b, IL-2, TNF-α, IL-6, cyclooxygenase-2 (COX-2), 

intercellular adhesion molecule-1 (ICAM-1), T cell receptor-α (TCR-α), vascular cellular 

adhesion molecule-1 (VCAM-1), and MHC class II molecule (Baeuerle and Henkel, 1994; 

Barnes and Karin, 1997; Jobin and Sartor, 2000). 
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Eubacterium ventriosum is more abundant in healthy populations of mice relative to colitic 

mice (Bibiloni, & Tannock, 2005). Eubacterium coprostanoligens is a cholesterol-reducing 

bacterium (Kriaa et al., 2019). These bacteria alter cholesterol into coprostanol that is not 

absorbed through the gastrointestinal system of the host, thereby leads to lower levels of 

cholesterol. Several pieces of evidence indicate that links high cholesterol levels in the 

human body to increased risk of RA in women (KASAI et al., 2016). We thus anticipate 

Eubacterium strains have several beneficial effects on human health and another 

prospective inhibitor of RA. 

Here we also have been shown that genus Ruminococcus was decreased in CIA mice 

subjects compared to healthy control subjects. Several Ruminococcus species, except R. 

gnavus, are reduced in some autoimmune diseases such as Crohn’s disease (Turesson et 

al., 2015). Interestingly; several Ruminococcus species are mucin-degrading microbes and 

substantial in maintaining intestine homeostasis, in particular, through the production of 

Short-chain fatty acids (SCFAs). SCFAs, in turn, enhance intestinal health, generating a 

stable environment for resistance to the pathogen and also a defence against colitis 

(Joossens et al., 2011). Our results in concordance with the recent studies, results of gut 

microbiome analysis, found that genus Ruminococcus was over-represented in healthy 

individuals when compared to those with  RA and Psoriatic arthritis patients (Smith et al., 

2013; Wu et al., 2017).  

Genus Ruminococcaceae UCG-005 also has been reported to be butyrate-generating 

bacteria that may protect healthy populations from chronic inflammation of the gut (Scher 

et al., 2015). Leonardo et al. reported that genus Ruminococcaceae UCG-005 was 

significantly associated with the gut of healthy subjects in comparison to ulcerative colitis 

(UC), pseudomembranous colitis (CDI) and Crohn’s disease (CD) (Mancabelli et al., 

2017).Our results also pointed out that dysbiosis of CIA mice at terminal microbiome 
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measurements are not correlated with body weight factor. These results mirror previous 

studies (Peters et al., 2018; Grembi et al., 2020).  

However, other studies found that the abundances of Acetatifactor, Marvinbryantia, 

and Alistipes were correlated with weight loss (Henning et al., 2018; Liu et al., 2019). 

However, the genera Blautia and Coprococcus were increased in overweight people 

(Castaner et al., 2018). Further, Eubacterium and Ruminococcus are associated with a 

significant improvement in weight control and metabolic and inflammatory parameters 

(Clarke et al., 2012; Abenavoli et al., 2019). This also supports the hypothesis that the 

association between weight and RA is mediated via the gastrointestinal microbiome.The 

major limitation of the study is the significant weight loss in the CIA mice, which could be 

attributed to the loss of appetite and decrease of the physical activity of mice after the 

onset of symptoms of the disease(Kwon et al., 2014). The change of weight in the CIA 

mice might impact on the microbiome composition in these animals during the induction of 

CIA. 

It has been found that the CIA group had a specific decrease in fat mass and muscle 

weight, and CIA development related to increased lipolysis (Na et al., 2017; Alabarse et al., 

2018).  Besides, in adjuvant-induced arthritis animal model, it also has found decreased fat 

mass relative to control (Martín et al., 2008; López-Menduiña et al., 2010; Hamaguchi et 

al., 2012; Alabarse et al., 2018). Martín et al. (Martín et al., 2008) propose that the 

mechanism is due to a reduction in white adipose mass are secondary to decreased 

adipose lipogenesis. Lopez-Menduina et al. (López-Menduiña et al., 2010) have found 

decreased body weight gain in adjuvant-induced arthritis animals, proposing an inhibitory 

effect of inflammation on body weight, in which diseased animals have a lower relative fat 

mass when compared those with pair-fed healthy mice. Given that the modification in the 

bodyweight mass can alter the microbiome (John et al., 2018). 
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This study indicated that the mouse intestinal microbiome of CIA subjects was different 

from that of healthy controls, evidenced by the changes in the genus taxonomic level, 

suggesting that the microbiome is associated with the CIA. Further studies are required to 

investigate whether the microbiome could be causative for RA. We suggest that 

characterised gut microbiome from the early stage, patients with RA, and CIA or other 

mouse arthritic models such as adjuvant arthritis model by 16s rRNA and ITS sequencing 

to identify the dysbiotic microbiome population in these subjects. Next, applying the faecal 

microbiota transplantation technique (the process of transplanting faecal bacteria from a 

donor into a recipient) to normalise the imbalance of intestinal microbiome community 

structure and examining whether this modification alters the disease process by measuring 

the disease severity and serum inflammatory cytokines such as IL-6, IL-17, IL-22, and IL-

23. 

 

5.4.2 Characterisation of synovial fluid, blood, and serum microbiome of mice 

 

In this part, we attempted to characterise synovial fluid, urine, blood, and serum in CIA and 

healthy controls. 

There was no bacterial DNA in all synovial fluid of CIA and healthy controls. Many 

properties of synovial fluid may specifically inhibit the detection of intra-articular bacteria 

via PCR amplification. Synovial fluids of animals may contain low bacterial DNA (Scharf et 

al., 2015). Older studies have hypothesised that leucocyte DNA may inhibit the detection of 

small amounts of bacterial DNA with some PCR protocols (PALMER and BERTONE, 

1994; Jordan and Durso, 2005; Bonilla et al., 2011; Scharf et al., 2015). 
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For the urine, blood, and serum of mice study, our findings presented here show that 

contamination with bacterial DNA or cells in negative kit control of DNA extraction kits, and 

that this contamination affects the results obtained from these the samples. Bacterial DNA 

contamination arising from DNA extraction kits may have an in particular massive impact 

when studying low-microbial biomass samples, for example, blood and urine, which may 

provide a low DNA for competing with it in reagents for amplification (Salter et al., 2014a; 

Glassing et al., 2016). Contaminating DNA has been reported from DNA extraction kits 

many times (Mohammadi et al., 2005; Shen, Rogelj and Kieft, 2006; Salter et al., 2014b; 

Glassing et al., 2016; Eisenhofer et al., 2019; Weyrich et al., 2019). Whilst it is potential 

that the suspect taxa are genuinely existent in these samples, in several conditions, they 

are biologically unexpected, for instance, Serratia associated bacteria that have been 

involved in human illness (Khanna, Khanna and Aggarwal, 2013; Fine et al., 2019; Gajdács 

et al., 2019).  

The bacterial taxa in Table 5.3 have been previously reported as contaminated bacterial 

taxa in DNA extraction kits (Salter et al., 2014a; Lauder et al., 2016a; Stinson, Keelan and 

Payne, 2019; Weyrich et al., 2019). These results have several limitations. Our findings do 

not rule out the presence of microbiome in urine, blood, and serum of mice samples, which 

must be an indication that we cannot utilise our results to differentiate urine, blood, and 

serum of mice samples from contamination kit controls.  

 

For future studies, the recommendations for the use of urine, blood, and serum microbiome 

samples and low biomass samples are as follows:  

1. Provided that it includes low biomass samples, at the beginning of the study, it is 

necessary to conduct some form of absolute abundance measure (here qPCR of 
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total copies of total 16S rRNA genes) to determine if samples of low biomass are 

in effect significant so that it is convenient. Precautions must be taken. 

2. Contaminated kit controls must be produced and analysed contemporaneously 

with low biomass samples. This is because some of the DNA extraction kits are 

reported to have diverse contaminants, and contamination may vary depending on 

the batch (Salter et al., 2014b; Weiss et al., 2014; Lauder et al., 2016b). Therefore, 

comparing unmatched samples and controls may result in erroneous differences.  

3. When working with low biomass samples such as urine and blood, it is best, to 

begin, with the null hypothesis that all samples study is contaminated only and ask 

if this concept can be rejected with this data.  

4. It would be useful when reviewing microbiome analysis; low biomass samples 

should be continuously requested so that authors report contamination controls; 

their techniques for rejecting the hypothesis that all samples have contamination 

only.  

5. Post hoc analysis, where the parent groups found no global difference, can be 

risky. Ideally, the results of any such analysis will be re-examined in an 

independent validation cohort. 
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5.5 Conclusion 

 

This study indicated that the mouse intestinal microbiome of CIA subjects was different 

from that of healthy controls in agreement with previous animals and human studies. Our 

findings demonstrated that some changes in the gut microbiome are associated with RA, 

evidenced by the changes in the genus taxonomic level. 
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Chapter 6 
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6 Research discussion and future work 

 

This chapter provides a general discussion of the findings of our research and discusses 

the novelty of the research in more detail. Here, I discuss my findings, from two 

perspectives; (1) Dysbiosis in blood and synovial fluid of RA patients and (2) 

Characterisation of stool, urine, synovial fluid, blood, and serum of mice with CIA and 

healthy controls. The following figure summarises what we have done to achieve our aims.  

 

 

 

Figure 6-1 A flow chart summarising our research 
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6.1 Dysbiosis in blood and synovial fluid of RA patients 

 

There is evidently a gap in research in the uncovering of how blood dysbiosis is associated 

with the development of Rheumatoid Arthritis (RA), Ankylosing Spondylitis (AS), and 

Psoriatic Arthritis (PA), as no data is available in the literature about this relation. This 

directed our studies and governed the steps taken in this research, permitting the 

investigation and development of a diagnostic tool for a pool of candidate biomarkers. The 

purpose was to understand the pathogenesis of RA. 

In this research, I have characterised the blood microbiome of patients with RA, AS, and 

PA, in comparison with healthy control subjects. I have also attempted to identify specific 

microbiome signatures to these illnesses and determined the correlation of inflammatory 

cytokines (IL-17-A, IL-22, IL23, and IL-6) levels with RA disease. Furthermore, I have 

attempted to show how the microbiome changes post-treatment of RA patients. One of the 

main results of the study shows that that out of 17 RA patients, 76.47% (13 patients) 

progressed towards the healthy microbiome after induction of treatment. This, in turn, 

reveals that dysbiosis is associated with RA. In addition, the results also showed a better 

normalisation of the serum microbiome among the seronegative RA cohort. While several 

studies do not differentiate between treatment response and seropositivity, a recent study 

showed that seronegative RA might show a better response to treatment (Choi and Lee, 

2018), supporting our findings. 

Another finding of significance is mentioned in Table 3-1. Here, all the microbiome 

alterations of RA patients indicate the occurrence of dysbiosis. The results here revealed 

that the genera Halomonas and Shewanella were significantly increased in the serum of 

RA patients (RA V0 and RA V3) relative to healthy controls. This finding suggests 
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thatRA has been associated with dysbiosis of the blood microbiome . This is a novel study 

on the relation of Halomonas and Shewanella presence in blood and RA pathogenesis.  

Further, Achromobacter, Escherichia/Shigella*, Serratia*, Corynebacterium-1, 

Streptococcus, Granulicatella, Staphylococcus, and Gemella were the genera significantly 

decreased in abundance in the serum of RA patients relative to control subjects. Therefore, 

their decrease, as we have observed in the blood microbiome in serum RA patients, along 

with the other alterations mentioned above, indicates the occurrence of dysbiosis in these 

distant locations. 

In considering the fungal microbiome, the fungal ITS2 gene was not seen in the serum of 

RA patients (RA V0 and RA V3). However, fungal ITS2 was detected in the serum of 

patients with AS, plasma with RA, serum, and plasma with PA, and plasma and serum of 

healthy control subjects. We found no statistically significant differences in the fungal blood 

population between diseased groups and healthy control subjects. 

The fundamental role of cytokines in the pathophysiology of RA was evident as there was 

a notable elevation of cytokines, IL-6, IL-17, IL-22, and IL-23 levels in the serum and 

plasma of RA patient, in comparison with healthy control. This indicated and supported the 

idea that such cytokines are associated with joint destruction (Srirangan and E. H. Choy, 

2010; Yoshida and Tanaka, 2014a; Narazaki, Tanaka and Kishimoto, 2017; Boyapati et al., 

2019). 

With respect to the association between RA and bacterial dysbiosis of synovial fluid, there 

has been very little research reported (Zhao et al., 2018), and to date, no data is available 

about fungal dysbiosis in the synovial fluid of RA patients. This provided us with the 

stepping platform to investigate the presence of bacterial and fungal DNA (by 16S and 

ITS2 respectively) in the synovial fluid of human RA patients in comparison to the healthy 
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control, using subjects utilising next-generation sequencing and bioinformatic techniques. 

In addition, we also compared the differences of the bacterial and fungal microbiome in 

synovial space with the level of selected cytokines in the synovial fluid. 

Our findings showed that Raoultella (p = 0.051) was more abundant in RA synovial fluid 

compared to healthy subjects. Two dominant species are able of causing infections in 

human: Raoultella ornithinolytica and Raoultella planticola, and are capable of causing 

infective arthritis (Seng et al., 2016; Venus et al., 2016; Bonnet et al., 2017; Levorova et 

al., 2017). It has been observed that Raoultella is associated with gut infections, and the 

possible cause of such infection was considered to be enteric translocation (Campos, 

Guimarães and Lovisolo, 2016). Raoultella genus may gain access to the synovial fluid 

from the above-mentioned infection locations, and it may also be responsible for the 

triggering of autoimmune responses and initiating RA.  

For fungal populations, Hypocreales (P = 0.012), and Aspergillus (P = 0.14 including all 

data, P = 0.057 excluding samples where <1% of reads mapped to this taxa) were more 

abundant in RA synovial fluid relative to healthy subjects. Hypocreales order and genus 

Aspergillus has been detected in different anatomical sites of the human body including the 

intestinal tract, oral cavity, and blood (Peters et al., 2017a, Beatty et al., 2014; Panaiotov et 

al., 2018, Ghannoum et al., 2010; Hallen-Adams and Suhr, 2017). These taxa may 

potentially reach the synovial fluid from these places and contribute to the pathogenesis of 

RA. 

Unclassified organisms belonging to the order Malasseziales (P = 0.002) and genus 

Cladosporium (P = 0.019) were less abundant of RA synovial fluid compared to healthy 

subjects. Malasseziales was found to vary in abundance in the case of inflammatory bowel 

disorder (Sokol et al., 2017; Witherden et al., 2017); suggesting it may be responsive to an 
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inflammatory environment. Cladosporium has been identified in the healthy human gut 

(Hallen-Adams and Suhr, 2017), and oral (Peters et al., 2017b), and is encountered 

commonly in human clinical samples (Sandoval-Denis et al., 2015). Further, gender and 

age could be co-influence factors on microbiome population in RA synovial fluid. 

Our results also provide evidence for the presence of bacterial and fungal DNA in 

classically sterile areas such as the blood and synovial fluid, leaving the possibility of: 

1) Microbial translocation from classical niches (e.g., the gut and oral) into the 

bloodstream, a process termed atopobiosis, followed by killing these 

microorganisms by an immune cell known as a phagocyte leaving only the DNA.  

2) The microbial nucleic acid may reach the synovial place through the blood (as 

evidenced by the simultaneous presence in both fluids).  

3) Microbial translocation followed by a state of dormancy due to activation of the 

immune system or to unfavourable environmental conditions 

 With relevance to the primary two approaches, it is well confirmed that the immune system 

could distinguish self from non-self-nucleic acid (DNA and RNA) in the human blood and 

synovial fluid via specific pattern recognition receptions (Chi and Flavell, 2008) and that 

TLR9 recognises foreign DNA, and RNA is identified via TLR3 on immune cells, producing 

in the upregulation of various pro-inflammatory cytokines such as TNF alpha, and IL-6, 

which are associated with RA (Atianand and Fitzgerald, 2013; Castañeda-Delgado et al., 

2017). With importance to the latter scenario, dormant microorganism’s cells may colonise 

the joints of RA patients, unidentified by routine culture, while maintaining the capability to 

stimulate an immune system by their lipopolysaccharide (LPS) and other antigenic 

components (Pretorius et al., 2017). It showed that bacterial LPS could activate many of 

the common RA-associated cytokines, for instance, TNFα, the IL-1 family, IL-6, IL-12 

family, and IL-15 (Rossol et al., 2011; Li et al., 2014). 
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Microbial translocation can be investigated by culture-independent technology, culture 

blood, and detection of LPS: 

A-     By culture-independent technology such as 16S rRNA and ITS genes 

sequencing- the translocation of microbial DNA from classical niches into the bloodstream 

could be examined in human by performing 16S rRNA and ITS2 sequencing on samples 

obtained from different body habitats for the same subjects, for example, the gut and oral 

with blood to identify origin the microbial DNA, which translocate into the blood. Further, 

the translocation of microbial DNA from classical niches into the blood could be 

investigated in mice by colonising known bacterial cultures into different body sites of the 

GF mice, for example, the gut, and oral and then applying 16S rRNA and ITS2 sequencing 

on samples obtained from different body habitats to determine which environments the 

known microbiota translocate to the following inoculation. 

 

Advantages of culture-independent technology: 

1- Culture-independent technology provides extensive and in-depth information about 

microbial communities on different sites of the human body. 

2- Allows investigation of information about microbial populations without culturing (Jo, 

Kennedy and Kong, 2016) 

Limitations: 

Although 16S rRNA and ITS genes sequencing are a potent tool to understand how the 

blood microbiome population is associated with RA, there are limitations. Generation of 

Chimera and the intrinsic error rate of sequencing are significant considerations (Jo, 

Kennedy and Kong, 2016). A chimera which is an artifact produced through the PCR 

process is a single sequence consisting of fragments from two or more different 
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sections(Jo, Kennedy and Kong, 2016). In later PCR cycles, Chimeras are thought to result 

when prematurely terminated amplicons are utilised as primers (Jo, Kennedy and Kong, 

2016). Both chimera and sequencing errors occur in nonsense sequences that may be 

incorrectly recognised as new species or incorrectly classified (Jo, Kennedy and Kong, 

2016). To order to address these technological limitations, algorithms that recognise and 

delete chimera sequences (e.g. UCHIME) and sequencing errors (e.g. denoising) have 

been used (Jo, Kennedy and Kong, 2016). 

 Yet another important challenge is distinguishing cause-and-effect associations. 16S 

rRNA and ITS genes sequencing capture microbial profiles at a specific moment in time 

(Jo, Kennedy and Kong, 2016). It is therefore difficult to determine that the changing 

microbial population caused the disease, or resulted from it. Thus, further hypothesis-

testing mechanistic examinations are needed (Jo, Kennedy and Kong, 2016). 

Further, 16S rRNA and ITS genes sequence result are relative rather than absolute, such 

that the actual quantity of a specific microbiome is unknown(Jo, Kennedy and Kong, 2016). 

While more direct and comprehensive than culture-based approaches, 16S rRNA and ITS 

genes sequencing also has biases: each 16S rRNA and ITS genes may not amplify with 

equal efficiency through PCR reactions due to differential primer affinity and GC content 

(Jo, Kennedy and Kong, 2016). Besides, taxonomy assignment is reliant on the 

completeness of reference databases. The quality and quantity of references define the 

accuracy and resolution of the taxonomic classification, and outcomes may differ 

depending upon the choice of the reference database (Jo, Kennedy and Kong, 2016). 

 

B- By using blood culture- the evidence of microbial translocation is also by the 

blood culture includes the detection of entire microbiota in cultures of the portal or 

peripheral blood from other distal niches such as the gut  (De Madaria et al., 
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2005). Aerobic and anaerobic blood culture bottles are continuously incubated at 

37°C for 5 days with 10ml of blood in BACTEC culture vials. All blood cultures with 

positive readings are additionally cultured into chocolate blood agar, Columbia 

blood agar, and CLED media. Isolates are detected by standard microbiological 

tests (De Madaria et al., 2005). 

 

Advantages of blood culture: 

Evaluated favourably in detecting growth, it is useful in small laboratories with a small 

workload, and cost-effective (William, 2012). 

 

Limitations: 

More false positives, the lower yield of anaerobes, and labour intensive required to inspect 

for growth visibly (William, 2012). 

 

C- By detection of LPS: lipopolysaccharide or Endotoxinis an essential and integral 

component of the external membrane of all Gram-negative bacteria and that induces 

bacterial translocation, for example, from the gut (Vaishnavi, 2013). Portal hypertension 

leads to intestinal sub-mucosal oedema that obstructs the protective integrity of the 

mucosal barrier and appears in an imbalance of the gut microflora, increased bacterial 

endotoxin-mediated mucosal injury and impaired mucosal defences. Detection of 

endotoxin from the blood is also a method to identify bacterial translocation (Vaishnavi, 

2013). The Limulus amoebocyte lysate assay identifies endotoxins in body fluids. LPS 

causes the clotting of extracts of amoebocytes of the horseshoe crab, Limulus polyphemus 

(Vaishnavi, 2013). Non-specific amidase and other inhibitors in human plasma, while, 

interferes with the results. Recently, two new quantitative endotoxin microplate assays 
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applying homogenous and heterogenous fluorescence phage recombinant technology and 

recombinant horseshoe crab factor C that eliminates sample inhibitory effects have 

become available (Vaishnavi, 2013). 

 

 

It would be interesting considering that Halomonas and Shewanella in the blood and 

Raoultella and Hypocreales in the synovial fluid are associated with RA. Furthermore, the 

composition of the microbiome such as Achromobacter, Corynebacterium-1, 

Streptococcus, and Gemella in the blood, and Malasseziales and Cladosporium in the 

synovial place may also have a protective role against the development of autoimmune 

conditions, as proposed by the presence of these microbial DNA from healthy individuals 

more than RA patients, for this, we hypothesised that differentially abundant microbiome 

genera in blood and synovial fluid could be used as markers for RA diagnosis. 

Regarding the cytokines investigated, the results here observed higher concentrations of 

IL6, IL-17-A, IL-22, and IL23 in the synovial fluid of RA patients relative to healthy control 

subjects. The data revealed by a number of authors in the literature agreed with our results 

(da ROCHA et al., 2012; Elhewala et al., 2015; Yago et al., 2017; Boyapati et al., 2019), 

showing further support to our findings. When looking into a detailed synthesis of our 

findings, we found that an IL-6 level was higher among a sub-cluster of the RA cohort 

defined according to the fungal and bacterial microbiome. This is supported by the fact that 

fungal pathogen is known to stimulate IL-6 expression (Narazaki, Tanaka and Kishimoto, 

2017b). Furthermore, Th17 cells are essential in the immune response against fungal 

pathogens, and IL-6 is implicated in the differentiation of lymphocytes to Th17 cells 

(Srirangan and D. E. H. Choy, 2010). This suggests that the variation in the microbiome 
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within RA patients might be associated with illness severity by an IL-6 – Th17 mediated 

pathway. 

In conclusion, we have described the characterisation of blood microbiomes of RA, AS and 

PA patients, compared to healthy control subjects, and examined the blood microbiomes 

as novel biomarkers for the pathogenesis of these illnesses. We identified specific 

microbiome signatures and determined the correlation of inflammatory cytokines relative to 

these diseases. Using precise and accurate methods of molecular techniques, including 

16S rRNA and ITS2 sequencing, the investigation of the present composition of bacterial 

and fungal DNA in the blood samples was possible. The novelty lies in the work we have 

done here on microbial DNA in the blood, in comparison to the more studied variation in 

the gut, oral, lung and urinary tract of RA patients. Furthermore, we have shown an 

increase in cytokines, such as IL-6 in the serum, in patients with arthritis conditions. What 

is interesting in this study is how results varied between the beginning of the diagnosis and 

after the induction of the microbiome and how it partly normalises the treatment of patients 

with RA. Furthermore, we described the characterisation of the synovial fluid microbiome of 

RA in comparison to healthy control subjects. This is also a relatively new concept and 

focusing on the fluid itself of both bacterial and fungal microbiome. 

 

 

6.2 Characterisation of stool, urine, synovial fluid, blood and serum of CIA and 

healthy control 

 

In this study, we worked with mice to enable the characterisation of stool, urine, blood and 

serum. This takes advantage of the similarity between mouse and human in physiology 
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and anatomical structures and provides a valid reason as to why mouse models have been 

widely utilised in biomedical studies. The advantages of mouse modelling are vast. 

Primarily, the intestinal tracts in both mice and humans are composed of anatomically 

similar organs (Hugenholtz and de Vos, 2018). Secondly, mice have a low maintenance 

cost, relative to other mammalian experimental models. Thirdly, mice have a high 

reproductive are and a short life cycle (Nguyen et al., 2015).  

In stool microbiome composition, the exception of a higher abundance of Actinobacteria in 

human, the phylum level microbiome population showed to be similar in mice and human, 

although the Firmicutes: Bacteroides ratio was slightly higher in human (Nagpal, Wang, et 

al., 2018). Such differences in the Firmicutes: Bacteriodetes ratio between human and 

mice could imply a limitation to the utilisation of these animal models since the 

communities of significant groups belonging to these phyla might not reflect the ratio 

typically observed in the gut of a healthy human. Nevertheless, these models may still 

provide a valuable area of study of human gut-related maladies, showing that the 

proportions of Firmicutes are usually found to be changed in patients with inflammatory 

conditions (Nagpal, Wang, et al., 2018). 

The characterisation of the current available RA models is required here with Collagen-

induced arthritis (CIA) being on a prevalent option. CIA can be induced in DBA1 mice via 

high-quality collagen. CIA shares several similarities pathological and immunological 

features with human RA and has been extensively studied to explore pathogenesis as well 

as test candidates treatments (Brand, Latham and Rosloniec, 2007b). There is an 

increasing appreciation of the role of the intestinal microbiome dysbiosis in the evolution of 

RA (Quanqiu Wang and Xu, 2019). Utilising the CIA mice model, we characterised the gut, 

blood, synovial fluid and urine microbiome of collagen-induced arthritis mice relative to 
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healthy control mice to link dysbiosis in multiple microbiome niches in the collagen-induced 

arthritis model following the induction of experimental RA. 

Our findings revealed that the genera Acetatifactor, Blautia, and Coprococcus 1, 

Marvinbryantia were more abundant in the CIA in comparison to healthy subjects. They are 

bacterial genera belonging to the family of Lachnospiraceae, which has been seen this 

taxon activate T-helper1 and T-helper17 polarisation and inhibit T regulatory reaction (W. 

Wu et al., 2016). It is well established that Increased Lachnospiraceae has previously been 

described in RA patients with different disease duration (X. Wu et al., 2016). Alistipes has 

been associated with the pathogenesis of autoimmune illnesses such as diabetes (Qin et 

al., 2012). 

The genera Eubacterium ventriosum group, Eubacterium coprostanoligens, Ruminococcus 

1, and Ruminococcaceae UCG-005 were more abundant of the CIA relative to healthy 

subjects. Eubacterium ventriosum has been indicated to be more prevalent in healthy mice 

compared to colitic mice (Bibiloni, & Tannock, 2005). Eubacterium coprostanoligens is a 

cholesterol-reducing bacterium (Kriaa et al., 2019).  Much research indicated that links high 

cholesterol levels in the human body to increased risk of RA in human (KASAI et al., 2016).  

The genera Ruminococcus and Ruminococcaceae UCG-005 have been reported to be 

significantly associated with intestinal tract of healthy subjects in comparison to different 

autoimmune conditions, for example, RA, Psoriatic arthritis, ulcerative colitis (UC), 

pseudomembranous colitis (CDI) and Crohn’s disease (CD) (Smith et al., 2013; Mancabelli 

et al., 2017; Wu et al., 2017). 

We also attempted to characterise synovial fluid, urine, blood, and serum in CIA and 

healthy controls. There was no bacterial DNA in all synovial fluid samples. The synovial 

fluid may contain a low number of bacteria and inhibitors substances such us leucocyte 
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DNA, which may inhibit DNA amplification by PCR (Palmer and bertonge, 1994; Jordan 

and Durso, 2005; Bonilla et al., 2011; Scharf et al., 2015). Our results presented here show 

that contamination with bacterial DNA in urine, blood and serum of mouse. Unfortunately, 

there was a contamination in the negative control of DNA extraction kits.  Contaminating 

DNA has been found in DNA extraction kits several times by many researchers 

(Mohammadi et al., 2005; Shen, Rogelj and Kieft, 2006; Salter et al., 2014b; Glassing et 

al., 2016; Eisenhofer et al., 2019; Weyrich et al., 2019). The bacterial taxa in Table 5.3 

have been previously identified as contaminated bacterial taxa in DNA extraction kits 

(Salter et al., 2014a; Lauder et al., 2016a; Stinson, Keelan and Payne, 2019; Weyrich et 

al., 2019).  

This contamination has affected our results; the sequence of bacterial DNA found in the 

test samples was identical with the sequence of DNA found in negative controls. We could 

not confirm whether there was a bacterial DNA in the tested samples, or it came from the 

contaminated kit. If these experiments would work, we could compare the outcome with 

what we found in human blood and synovial fluid to confirm that dysbiosis could be 

associated with RA.  
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6.3 Future work 

 

 In this work, a comprehensive study of the microbiome dysbiosis in RA human and animal 

has been presented. These data could be further expanded upon through a series of 

additional studies. 

Further work should include in chapter 3 using a larger cohort of control and RA subjects to 

determine whether the microbiome biomarkers found would remain significant in a larger 

group of subjects, thus increasing the validity of the suggested blood microbiome 

biomarkers. 

Moreover, it would also be useful to take blood samples from the same source. The 

different locations of donors might lead to the different microbiome patterns seen 

(Manasson, Blank and Scher, 2020). 

Additionally, study the influence of characteristics of the patient population such as age, 

sex, and diet on the blood microbiome (Manasson, Blank and Scher, 2020). These factors 

may likely influence indirectly on the microbiota composition of the circulatory. As this study 

was the first study to determine if a circulatory microbiome could be detected and 

characterised from blood samples, possible, these factors were not taken into account. 

Besides, our thought that the blood microbiome originates from one of the classical 

microbiome niches (the gut, mouth, urogenital tract, skin) and reaches the blood. However, 

in our study, only blood samples were obtained from the donors, and thus direct 

comparisons of the composition of the microbiome found in the different body places were 

not performed. In prospective studies, it would be valuable to take samples from various 

body sites such as gut, skin, oral, lung, with blood from the same donors to make 

comparisons of the microbiome at different body sites more useful to predict the likely 

source of the blood microbiome. 
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The culture technique will be used to detect the live microorganisms from distal niches 

such as the gut or oral microbiota into the blood. The portal or peripheral blood will be 

cultured. Aerobic and anaerobic blood culture bottles are continuously incubated at 37°C 

for 5 days with 10ml of blood in BACTEC culture vials. All blood cultures with positive 

readings are additionally cultured into chocolate blood agar, Columbia blood agar, and 

CLED media. Isolates are detected by standard microbiological tests (De Madaria et al., 

2005). 

 

For further work should include in chapter 4, it would also be useful to take the blood 

samples with synovial fluid samples from the same patients to able compare synovial fluid 

profiles with blood to evaluate the effects of microbial dysbiosis at the blood on the synovial 

fluid microbiome. 

Further, the culture technique will be used to detect the entire microorganisms in synovial 

fluid samples, as seen above. 

 In additional for chapter 5, we can use different approaches to extract DNA from various 

biological samples (blood, synovial fluid, and urine) from animal models such as using a 

Magnetic Bead DNA Isolation kit or even amplify 16s RNA amplicons using direct PCR with 

different systems, for example, a microFLOQ® swabs to avoid the source of contaminants, 

which has previously been seen with unconventional DNA extraction that affects all 

downstream applications (Ambers et al., 2018; Manasson, Blank and Scher, 2020). 

Our data support that there is an association of autoimmune disorder, particularly RA state, 

with microbiome dysbiosis in blood/tissues. Therefore, microbiome dysbiosis for 

autoimmune conditions offers potential opportunities for novel biomarker and therapeutic 

developments. 
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A number of studies and approaches will be required to confirm the cause and effects of 

the human microbiome on the development of RA. 

It will be useful to characterise gut microbiome from the early stage, patients with RA, and 

CIA or other mouse arthritic models such as the SCW model by 16s rRNA and ITS 

sequencing to identify the dysbiotic microbiome population in these subjects. Next, 

applying the faecal microbiota transplantation technique to normalise the imbalance of the 

intestinal microbiome community structure and examining whether this modification alters 

the disease process by measuring the disease severity and serum inflammatory cytokines 

such as IL-6, IL-17, IL-22, and IL-23. Further, the Germ-free mice model provides an 

excellent framework to explore the cause and effects of the human microbiome on the 

development of RA (Kostic, Howitt and Garrett, 2013). GF mice are the most commonly 

used animal models to study host-microbe interactions. GF mice are raised in sterile 

conditions, have no microorganisms living in them, and can be made gnotobiotic by 

colonisation with single microbial species, allowing the impact of specific organisms to be 

studied (Kostic, Howitt, and Garrett, 2013). It would be useful to apply the faecal microbiota 

transplantation from patients with RA, whose microbiome composition was confirmed by 

16S and ITS sequencing technique to germ-free mice. Then the mice will be evaluated for 

histological RA severity, and synovitis, gut permeability, and systemic inflammation.  

Moreover, it would be useful to investigate the inflammatory properties of microbiome taxa, 

which have identified increase in RA illness such as by culture theses microbiome with 

some immune cells such as dendritic and measure their inflammatory receptors would 

prove very interesting, particularly in conjunction with detailed RA pathogenesis 

investigation. 
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The rheumatology field has produced development with the potential to significantly affect 

the care of our patients. One instance is the developing field of pharmacomicrobiomics, 

which explains the effects that microbial modifications have on the action and toxicity of 

drugs (and vice versa) (Rizkallah, Saad and Aziz, 2012). For example, it has understood 

that the activation of sulfasalazine, a disease-modifying antirheumatic drug applied to treat 

inflammatory arthritis conditions, is reliant on the enzymatic cleavage via intestinal 

microbiota (Peppercorn and Goldman, 1972). This seems to further hold for methotrexate, 

which is understood to be metabolised through the gut microbiota in humans and mice 

(Valerino et al., 1972; Scher et al., 2020) and may produce off-target antibiotic outcomes 

(Nayak et al., 2019). 

In axial SpA, patients that respond to anti-TNF inhibitors show a more resilient 

pretreatment intestinal microbiome (Bazin et al., 2018); however, IL-17A inhibitors are 

associated with the expansion of gut C. albicans in a subgroup of patients with PsA/SpA 

(Manasson et al., 2020), and an increased the risk for or invasive candidiasis (Mease et al., 

2019).  

Additional development in pharmacomicrobiomics will lead towards personalised 

therapeutic strategies that are depended on patient microbiome characteristics, permitting 

for enhanced selection of medicines with the highest efficacy and lowest risk for toxicity 

(Scher et al., 2020). 

 

A different promising area of the current research is the research of targeted modulation of 

the microbiome to promote disease results, with the caveat that for most diseases, it is not 

yet clear whether microbial alterations contribute to illness pathogenesis or originate from 

the disease process itself. 
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It would be helpful to use the CIA model to show the effect of the microbiome in modulating 

RA progression. 16S rRNA and ITS sequencing will be performed to characterise the 

intestinal microbiome of DBA1 mice that will or will not produce RA after induction with 

collagen. After that, to determine whether the microbiome participates directly to RA 

progression, germ-free mice will be split into two groups, and one group will be colonised 

with microbiota from CIA-susceptible, and the other group will be colonised with microbiota 

from CIA- resistant mice by using faecal transplantation technique and will analyse the 

microbial community structures in each group. Following colonisation, mice will be induced 

with collagen II under germ-free conditions, as previously described in chapter 2, 2.3. 

Arthritic joints score will be examined by histopathology in germ-free mice after 

experimental RA in two groups to see arthritis incidence and severity in each group. 

One indirect way to change the microbiome is through diet, which can globally shape the 

microbial population composition. Nutrition may change RA symptoms by increasing 

antioxidant levels, affecting the patient's metabolic profile, but also by changing the 

microbiota of the intestine. The gut microbiome can shift rapidly to dietary perturbations 

(Derrien and Veiga, 2017).  Further, the gut microbiome is also included in the metabolism 

of some dietary ingredients and has the potential to alter circulating pro- or anti-

inflammatory mediators (Schroeder and Bäckhed, 2016). For instance, trimethylamine-N-

oxide, a pro-inflammatory metabolite that originates from carnitine and choline present in 

eggs, and red meat, is generated by Prevotella copri among other bacteria (Koeth et al., 

2013). An increased abundance of Prevotella copri was observed in new-onset untreated 

RA patients proposing P. copri may be pathogenic (Scher et al., 2013). Dietary fibre, other 

complex carbohydrates, and sugar alcohols found in fruits are prebiotics and might also be 

beneficial via promoting a healthy microbiome (Lyte et al., 2016). For example, microbial 

degradation of whole-grain complex carbohydrates increases short-chain fatty acids, which 
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were determined to be helpful to intestinal immune response (Bach Knudsen, 2015). 

Moreover, several foods have been identified as pro-inflammatory, including highly refined 

flours, gluten, dairy products (such as cheeses and milk), and red meat (Bustamante et al., 

2020). Some vegetables, such as eggplants, potatoes, and tomatoes, contain solanine, a 

glycoalkaloid, which was proposed to increase intestinal permeability and be detrimental 

for arthritogenic pathologies(Bustamante et al., 2020). 

On the other hand, other diets have been proposed to offer numerous health benefits, 

including long-chain omega-3 polyunsaturated FA (chia seeds, flaxseeds, fatty fish), 

monounsaturated FA (MUFA) (avocado, sesame), antioxidants, phytochemicals, 

flavonoids, vitamin D, fruits with enzymatic proteins such as black pepper and ginger 

(Bustamante et al., 2020). Few conclusive studies exist on the topic, but some trials 

looking at the Mediterranean and vegetarian diets have determined beneficial effects in RA 

(Kjeldsen-Kragh et al., 1991; Sköldstam, Hagfors, and Johansson, 2003). One of the 

investigations revealed that a diet trial with a Mediterranean diet presented a reduction in 

disease activity (DAS28) of 0.56 (p < 0.001) and in quality of life relative to the control diet 

(Sköldstam, Hagfors and Johansson, 2003). Fasting first and then eating a vegetarian diet 

for one year was helpful in RA, especially in terms of several swollen joints, stiffness, and 

CRP (Kjeldsen-Kragh et al., 1991). 

Obesity is associated with increased arthritis pain; weight loss may help improve arthritis 

symptoms. In psoriatic arthritis, which is strongly associated with metabolic syndrome and 

obesity, weight loss has also led to significant improvements in disease outcomes (Di 

Minno et al., 2014; Klingberg et al., 2019). The key to efficient weight loss may be to match 

nutrition and intestinal microbiota since recent investigations have observed that 

individuals with high Prevotella abundances in their intestinal microbiota lose more weight 
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on diets rich in fibre than people with low Prevotella abundances (Christensen et al., 2019). 

These results also support the link between dietary fibre intake 

and Prevotella abundances, further emphasising microbial enterotypes as likely biomarkers 

in the personalised diet for obesity management. 

Another approach relies on the use of probiotics, compounds that contain considered 

advantageous living organisms, and prebiotics, compounds that encourage the growth of 

beneficial microbes such as SCFAs (Bustamante et al., 2020). Probiotics containing 

Lactobacillus have been associated with ameliorations in RA condition activity score 

(Hatakka et al., 2003; Akkasheh et al., 2016; Asquith et al., 2017); however, Prebiotics 

have shown value in an animal model of SpA (Alipour et al., 2014). 

Another potential strategy, yoghurt contains a high number of types of beneficial bacteria 

such as Bifidobacterium and Lactobacillus, which may restore the dysbiosis in the gut 

(Bustamante et al., 2020). Both gut microbial species produce a variety of tryptophan 

catabolites, which are critical for intestinal homeostasis by decreasing intestinal 

permeability (Roager and Licht, 2018). Therefore, it could be a supportive treatment for 

RA. 

 

Several studies are indicating the positive effects of yoghurt consumption on human health. 

In particular, frequent consumption of yoghurt intake has been revealed to improve risk 

factors to lower the risk for dysbiosis and chronic kidney disease (Yacoub et al., 2016), to 

lower diabetes risk (Margolis et al., 2011), for cardiovascular disease (Ivey et al., 2011), 

and enhance the development of host immunity (Daliri and Lee, 2015). For example, 

research on the effects of Lactobacilli-containing yoghurt on the composition of gut 

microbiota of healthy people who ingested a daily course for twenty days showed 

modifications for two groups of bacteria (the C. coccoides-E. rectalei group, and 



273 
 

Bacteroides and Prevotella) (Uyeno, Sekiguchi and Kamagata, 2008). Different research 

determined that 4 weeks of probiotic yoghurt consumption via healthy individuals improved 

intestinal content of probiotic Lactobacilli and Bifidobacteria strains, however, not 

significantly changing microbial population structure (Filteau et al., 2013). Yoghurt 

consumption via children infected with Helicobacter pylori was determined to decrease the 

H. pylori load, restore an optimal Bifidobacterium⁄E. coli ratio and adjusted serum immune 

response (Yang and Sheu, 2012). 

The use of antibiotics can eliminate the live microbes from joints, but it has to be given by 

injection. The oral administration of antibiotics can promote gut dysbiosis and worsen the 

arthritic state (Khan et al., 2019; Wu et al., 2020). Classical microbiological culture will be 

carried out to determine whether the human synovial fluid samples of patients with RA 

contained any viable bacterial cells; for instance, those capable of proliferation. Following 

bacterial growth in the media, single colonies from each plate will be selected for 

identification by total 16S gene amplification and then Sanger sequencing. After 

identification of type live bacteria, antibiotic sensitivity methods will be performed to 

determine which antibiotic will be most successful in treating a live bacterium in vivo. 

As explained, a more invasive strategy that has produced promising outcomes is faecal 

microbiota transplantation (FMT), which directly alters microbial populations and their 

metabolites, and may directly or indirectly activate the host immune response. 

It will be helpful to characterise the gut microbiome from the early stage, CIA mouse model 

by 16s rRNA, and ITS sequencing to identify the dysbiotic microbiome population in these 

subjects. Next, applying the faecal microbiota transplantation from healthy control subjects 

to normalise the dysbiotic intestinal microbiome population and examining whether this 

alteration changes the CIA disease process. 
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FMT is the transfer of an entire microbial population from a healthy donor to a diseased 

recipient in order to modify the recipient’s microbial composition directly and confer a 

health benefit (Zhengxiao Zhang et al., 2019). The first known description of the use of 

faeces as therapy was characterised via the 4th century by Ge Hong in China for the 

treatment of diseased conditions, including diarrhoea (Mcilroy et al., 2019). In 1958, 

Eiseman and colleagues characterised the use of faecal enemas as a treatment for 

pseudomembranous colitis, considering the initiation of FMT into mainstream medicine 

(EISEMAN et al., 1958). The process involves typically first picking a donor without a family 

history of metabolic, autoimmune, and malignant diseases and examine for any potential 

pathogens. The faeces materials are then made by mixing with normal saline or water, 

next, a filtration step to eliminate any particulate matter. The mixture can be applied 

through a nasojejunal tube, nasogastric tube esophagogastroduodenoscopy, retention 

enema, or colonoscopy. Most clinical practice with FMT has been derived from treating 

recurrent or refractory Clostridium difficile infection (RCDI) (Smits et al., 2013). There is 

preliminary evidence to recommend that it may also offer the therapeutic potential for 

another disease, including inflammatory bowel disease (IBD), metabolic syndrome, and 

obesity (Szilagyi, 2020). 

Recent investigations have revealed that FMT is an effective treatment for RCDI, with a 

higher than 90% success rate and can be regarded as an antibiotic replacement for RCDI 

(McBeth and Dobner, 2019). Due to the satisfactory outcome of FMT for RCDI, European 

Association of Infectious Diseases, European Association of Clinical Microbiology, and the 

American Society of Gastroenterology had entered FMT in the treatment guidelines of 

RCDI during 2013 and 2014, sequentially (Surawicz et al., 2013; Debast et al., 2014). This 

has encouraged studies on FMT as a possible therapy for other microbial- associated 

conditions such as IBD. 
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Since Bennet (Bennet and Brinkman, 1989) published the first case of FMT for the 

treatment of ulcerative colitis (UC) in 1989, lots of case reports, case series, and, more 

recently, randomised, controlled trials had been published regarding studying the efficiency 

and safety of FMT for IBD. Sun et al. (Sun et al. 2016) recorded that the percentage of 

clinical remission in UC patients was 30.4%. Moayyedi et al. (Moayyedi et al., 2015) and 

Paramsothy et al. (Paramsothy et al., 2017) revealed that the rate of clinical remission in 

patients who treated FMT was higher than that of placebo.  

Shi et al. (Shi et al., 2016) revealed that 41.58% of patients with UC achieved clinical 

remission, and 65.28% achieved a clinical response. 

Further, a study published in JAMA in 2019 (Costello et al., 2019), including 73 patients 

with mild to moderate UC, produced promising outcomes. The number of patients who 

experienced steroid-free remission at week eight was higher in the group which was 

treated with FMT rather than in the control group (32% vs 9%, P = 0.03). The overall 

response was also higher in the FMT treatment group rather than in the control group (55% 

vs 23%, P = 0.007). 

A small double-blind, randomised, controlled research observed that faecal transplants 

from lean to obese (with metabolic syndrome) individuals produced in increased butyrate-

producing bacteria (Roseburia intestinalis), improved insulin sensitivity, and enhanced gut-

microbial diversity in the overweight recipients (Vrieze et al., 2012). 

While promising, the influence of FMT on long-term clinical endpoints needs to be 

explored. Further studies are also required to understand better the mechanisms through 

which changes in composition and function of the human microbiome affect disease 

processing for patients with inflammatory bowel disease, metabolic syndrome, and obesity 

(Zhengxiao Zhang et al., 2019). 
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However, it is necessary to understand that FMT has a number of major limitations. For 

example, we do not know the best way of delivery (oral or rectal), or the frequency of FMT 

required producing durable responses. Furthermore, we have not distinguished specific 

advantageous taxa that can certainly attenuate different autoimmune conditions(Wilson et 

al., 2019). Extensive donor testing is also needed to guarantee safety, as recent studies 

have shown transmission of drug-resistant organisms from donors to recipients (Borody, 

2019; DeFilipp et al., 2019). 
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8 Appendices  

 

A- Detection 16S rRNA by 16s rRNA v4 with XT tag Illumina primers in RA serum 
samples obtained from Heywood hospital cohort. 
 

 
 
 
 

B- Detection 16SrRNA by 16s rRNA v4 with XT tag Illumina primers in synovial fluid 
and plasma from RA, from serum samples from ankylosing spondylitis (AS) patients, 
serum and plasma samples from psoriatic arthritis (PA) patients, and serum from 
healthy control subjects obtained from sera lab cohort. 
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C- ITS2 primers did not detect fungal DNA in RA serum samples 
 
 
 

 
 
 
 
 

D- Detection ITS2 by ITS2 with XT tag Illumina primers in the samples obtained sera 
lab cohort (synovial fluid, plasma, and serum) which taken from diseased and 
healthy control subjects  
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E- Detection 16SrRNA by 16s rRNA v4 with XT tag Illumina primers in the synovial 
fluid of RA patients and healthy controls samples obtained from Sera lab cohort 
 
 

 
 
 

F- Detection ITS2 by ITS2 with XT tag Illumina primers in the synovial fluid of RA 

patients and healthy control samples obtained from Sera lab cohort 
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G- Detection 16S rRNA by 16s rRNA v4 with XT tag Illumina primers in the stool of 
CIA and healthy controls samples obtained from Axis Bioservices 
 

 
 
 
 

H- Detection 16S rRNA by 16s rRNA v4 with XT tag Illumina primers in the urine of 
CIA, healthy controls, samples obtained from Axis Bioservices. 
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I- 16s rRNA v4 primers did not see bacterial DNA in the synovial fluid of CIA 
and healthy controls subject 
 

 
 
 
 
 
 
 
 
 
 
 

J- Detection 16S rRNA by 16s rRNA v4 with XT tag Illumina primers in the blood of 

CIA, healthy controls, samples obtained from Axis Bioservices 
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K- Detection 16S rRNA by 16s rRNA v4 with XT tag Illumina primers in the serum of 
CIA, and healthy controls samples obtained from Axis Bioservices 
 

 
 

Figure 8.1 High throughput amplicon (16S and ITS) sequencing was used to identify 
the bacterial and fungal DNA in the biological samples of human and mouse 
subjects, Lanes M, represents a molecular weight marker (100bp). A, B Bacterial DNA 
was detected by PCR amplification in serum samples from R.A., ankylosing spondylitis, 
R.A. synovial fluid, and serum and plasma from psoriatic arthritis patients, and serum from 
healthy controls, for A, lane 1V0- 19V3 represent R.A. serum, lane N.P represents 
negative PCR reaction, for B lane 36 S.F and 39 S.F. represent R.A. synovial fluid, lane 
1RA.P, and 2RA.P represent R.A. plasma, the lane from 1AS.S- 4AS.S represent serum 
samples from ankylosing spondylitis, the lane from 1PA.S to 2PA.S represent serum and 
plasma samples from psoriatic arthritis patients, lane 1C.S - 4C.S represent serum 
samples from healthy controls, lane N.P represent negative PCR reaction. The results 
showed a successful bacterial 16S amplification in these samples, with expected bands 
=355bp. C, Lane from 1V0-20v3 represent the serum samples from R.A., lane N.P. and 
P.P. represent negative and positive PCR reaction, respectively. Our finding showed that 
ITS2 fungal `was not seen in the R.A. serum samples. D, lane 36 S.F to 39 S.F. represent 
R.A. synovial fluid, lane 1C.S to 3C. P represents serum and plasma from healthy controls, 
the lane from 1AS.S- 3AS.S represent serum samples from ankylosing spondylitis, lane 
1RA.P represent R.A. plasma, the lane from 1PA.P to 3PA.S represent serum and plasma 
samples from psoriatic arthritis patients, lane N.P represents negative PCR reaction. The 
results identified successful fungalITS2 amplification in these samples; with expected 
bands from 400bp to 500bp. E, the lane from 1339RA to 1350RA represent the synovial 
fluid from R.A. patients, lane 1351C to 1359C represent the synovial fluid from a healthy 
subject, lane N.P represents negative PCR reaction. The results identified successful 16S 
amplification in these samples; with expected band 355bp. F, the lane from 1340RA to 
1350RA represent the synovial fluid from R.A. patients, lane 1351C to 1359C represent the 
synovial fluid from a healthy subject, lane N.P represents negative PCR reaction. The 
results identified successful ITS2 amplification in these samples; with expected band 
400bp to 500bp. From G-K, the detection of 16S rRNA in the stool, urine, synovial fluid, 
blood and serum of CIA and controls, lanes from 16 to 25 represent CIA samples, lane 1 to 
10 represent controls samples. From G (stool samples) the results showed the successful 
16S amplification in these samples with no amplification in N.K. represent negative kit 
control. For H, J and K (urine, blood, and serum), the results found the successful 16S 
amplification in these samples with amplification in N.K. represent negative kit control. I, 
16S was not detected in the synovial fluid of CIA and controls subjects. 
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