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Abstract 

Background 

Primary care electronic health records (EHR) capture real life patterns of healthcare utilisation 

over time. This provides the opportunity to estimate the effect of allopurinol on long term 

outcomes in people with gout. However, use of such data gives rise to confounding by 

indication which may change over time, a major impediment in treatment effect estimation. 

Methods 

A cohort of patients consulting for gout between 1997-2002 and not previously prescribed 

urate-lowering drugs were identified from the Clinical Practice Research Datalink GOLD and 

were followed up until the end of 2014. Effect of allopurinol vs. non-use was evaluated on 

reaching target serum urate (SU) level ≤360μmol/L, mortality, healthcare utilisation, vascular 

and renal diseases.  

Three statistical approaches with differing complexities and assumptions imposed were 

considered: (1) baseline measurement of allopurinol and covariates with confounding 

controlled for using propensity score (PS) subclassification; (2) extending the methods in (1) 

to repeated measures where allopurinol and covariates were measured yearly; (3) using 

marginal structural models (MSM) within the repeated measures set-up. Survival models 

estimated hazard ratios with 95% confidence intervals. Robustness of estimated treatment 

effects to unmeasured confounding was evaluated.   

Results 

16,876 patients were eligible for analysis (mean age (standard deviation) 62 (14.1) years, 77% 

male). Baseline analysis found allopurinol was associated with higher chance of reaching 

target SU level (2.32 (1.97, 2.74)) and fewer gout consultations (0.70 (0.65, 0.75)), and with 
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increased risk of mortality (1.10 (1.03, 1.17)), gout hospitalisation (1.82 (1.64, 2.02)), coronary 

heart disease (1.11 (1.02, 1.21)), and renal disease (1.19 (1.10, 1.28)).  

In the repeated measures setting, issues with poor performance of PS estimation were 

identified in both time-varying PS subclassification and MSM. These were resolved by allowing 

associations between covariates and initiation and continuation of allopurinol to differ in 

MSM; larger treatment effect estimates were obtained for most outcomes compared with 

baseline analysis and statistical significance was lost for mortality. The treatment effect 

estimates for target SU level and gout hospitalisation were likely to be robust to unmeasured 

confounding however, unmeasured confounding may explain away the treatment effects for 

coronary heart disease and renal disease. 

Conclusion 

Fitting complex models to EHR is challenging and consideration needs to be given to both 

clinical and statistical assumptions made during data preparation and analysis. Associations of 

allopurinol with adverse outcomes persisted, regardless of statistical approach used. This may 

be due to remaining residual confounding and/or because allopurinol dosage and adherence 

is suboptimal in primary care. Nevertheless, the treatment effect estimates obtain are 

relevant to UK primary care and provide evidence that managing gout in the long term needs 

to be improved.  
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1 Introduction and aims 

1.1 Estimation of treatment effect: RCTs versus observational 

studies 

Randomised controlled trials (RCTs) are considered to be the gold standard to infer causal 

effectiveness of treatment on outcome. Randomisation ensures observed and unobserved 

patient characteristics are balanced across treatment groups thus, any differences observed 

in outcome may be attributed to treatment. RCTs however often face a range of limitations 

and restrictions. They cannot address clinical questions where randomisation is unfeasible or 

interventions are potentially harmful; they typically specify strict inclusion and exclusion 

criteria, meaning that clinically important subgroups (such as those with comorbidity or the 

oldest age) may be ignored; they may be inappropriate for assessment of rare events or long-

term outcomes, for example death; furthermore they may be subject to financial constraints 

and other practical and ethical issues (Sanson-Fisher et al., 2007, Black, 1996). Therefore, RCTs 

cannot support all treatment decisions and consequently many decisions are based on sub-

optimal evidence or clinical based practice, knowledge and consensus (Frieden, 2017). 

Another drawback of RCTs is their reliance on the intention-to-treat principle which assumes 

that once patients are randomly assigned to treatment, they actually received that treatment 

as intended and patient characteristics remained balanced across the treatment groups 

(Hernán and Hernández-Díaz, 2012). However, in practice, observing treatment on a single 

occasion (or time-invariant treatment) does not match real life clinical management where 

treatment varies over time. For example, the treatment given at presentation of a symptom 

or morbidity may be varied later as the condition progresses or improves, or side effects arise 

which may lead to non-compliance with the treatment. 
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Observational data collected on large populations over a long period of time have the 

potential to overcome such shortfalls of RCTs and provide estimates of benefits and harms of 

treatment in real life clinical settings. The increasing availability of data gathered and coded 

electronically in the course of routine health care contacts, provides the opportunity to follow 

a patient’s course of illness from first presentation to long-term outcome and to assess the 

effect of treatment on outcome. For example, the Clinical Practice Research Datalink (CPRD), 

a database of primary care electronic health records (EHR), provides clinical records for up to 

30 years for approximately 8.5 million patients; it has been used to estimate treatment 

outcomes for a range of health conditions such as assessing the effect of metformin use on 

risk of developing cancer (Farmer et al., 2019) and kidney morbidity on adverse cardiovascular 

events (Currie et al., 2019). Therefore, EHR potentially allow us to study the outcomes of real-

life patterns of healthcare use and prescribing that varies over time; they further allow us to 

study both rare and long-term outcomes, thus increasing generalisability particularly as 

diverse patient populations and wider spectrum of disease severity that may otherwise be 

excluded are available. Furthermore, using EHR in research is a relatively cheap way to study 

treatment effect without investing considerable time collecting data (Patorno et al., 2013). 

 

1.2 Confounding by indication 

Confounding, defined as a spurious association between treatment and outcome due to a 

third variable that is associated with both, is prevented through randomisation in RCTs 

however, it is a major area of concern for researchers using observational data to estimate 

outcomes of healthcare. Treatment decisions may be influenced by many pre-treatment 

characteristics (covariates), such as severity of the disease or comorbidity, which may also be 

associated with subsequent outcomes, in which case such covariates are termed confounders. 
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RCTs remove this “confounding by indication” by ensuring treatment allocation cannot be 

influenced by such prognostic covariates beyond chance hence enabling outcomes to be 

directly comparable between treatment groups, with any differences attributable to effects 

of treatment. In observational studies, in contrast, any systematic differences in covariates 

between treatment groups mean that differences in outcome could be the result of either 

treatment effect or differences in covariates, or both. 

Conducting observational studies to the same level of academic rigor as RCTs by minimising 

confounding effects can lead to comparable treatments effects with RCTs. Anglemyer et al. 

(2014) conducted a Cochrane review of 14 systematic reviews and methodological reviews of 

reviews published between 1990 and 2013; each review compared the effect of treatment 

between RCTs and observational studies (cohort and case-control studies). On average, no 

significant differences in treatment effect were found, even when separately comparing 

cohort and case-control studies with RCTs, and when stratifying by non-pharmacological and 

pharmacological interventions. Discrepancies in treatment effect were found between RCTs 

and observational studies included in three reviews, two of which may be due to insufficient 

control of confounding. Similar findings was observed in an earlier review that found little 

evidence that treatment effect estimates differed between observational and RCTs (Benson 

and Hartz, 2000). 

Multivariable regression modelling, which involves fitting a statistical model to estimate the 

association between a dependent variable (outcome) and one or more independent variables 

(treatment and covariates), is a popular approach used to account for observed confounders, 

but this approach has various drawbacks. For example, different regression models are subject 

to specific model assumptions which often go untested in practice. Furthermore, the 

estimated treatment effect would be biased if there is major imbalance in covariates between 

treatment groups and/or treatment effect varies across values of covariates (D'Agostino and 
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Kwan, 1995). Often, no attempt is made to ensure treatment groups are comparable by 

assessing whether the distribution of covariates is similar (adequate overlap) between 

treatment groups. Regression models will extrapolate data to cover areas where there is no 

overlap in incomparable groups. Matching may somewhat alleviate this problem by pairing 

treated patients with untreated patients on one or more covariates. This ensures adequate 

overlap between treatment groups as unmatched patients are excluded from analysis. 

However, matching may be limited as the number of covariates it is possible to match for is 

restricted by sample size.  

As was stated earlier, in real life treatment is likely to vary over time. Furthermore, the 

covariates that influence choice of treatment and outcome may also change over time, giving 

rise to time-varying confounding as time-varying covariates are associated with both outcome 

and time-varying treatment. Estimating the overall treatment effect whilst accounting for 

time-varying covariates is complex. The key issue is that time-varying covariates also behave 

as mediators as they are affected by past treatment and are therefore on the causal pathway 

between treatment and outcome. This is illustrated in Figure 1.1 with treatment 𝐴 and a single 

covariate 𝑋 measured at three time points, assuming no unmeasured (or unobserved) 

covariates. The red arrows indicate when covariates act as mediators. At time point 1, 

covariates are adjusted for in regression modelling ensuring treatment groups are 

comparable. However, at time point 2, covariates and treatment are updated modifying the 

risk of outcome across treatment groups, meaning that treatment groups are now 

incomparable thus introducing residual confounding. A dilemma arises whether covariates at 

time point 2 need to be adjusted for, as this adjustment would remove the effect of treatment 

at time point 1 on outcome. The same issue applies at time point 3 when adjusting for these 

covariates would remove the effect of treatment at time point 2. Use of standard regression 
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models, for example the time-varying Cox model, in such instances may yield biased treatment 

effects thus their use is not recommended (Hernan et al., 2000, Robins et al., 2000). 

Figure 1.1: Time-varying covariates affected by past treatment use 

 

 

1.3 Estimation of treatment effect: Propensity score 

An approach that avoids issues encountered in multivariable regression, and has gained 

widely in popularity over the last two decades, is propensity score (PS) methodology, originally 

formulated by Rosenbaum and Rubin (1983). The approach has been recommended for use 

in observational studies using EHR estimating effectiveness of treatment (Stuart et al., 2013a, 

Brookhart et al., 2010b). The attractiveness of this approach lies in the PS acting as a balancing 

score so that treatment groups homogeneous in PS have similar distribution of covariates, 

thus removing some of the bias due to confounding by indication before considering outcome 

and estimating treatment effect. Information from several covariates is collapsed into a single 
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score (the PS) which reflects the probability of a patient receiving treatment given these 

covariates. Once PS has been adjusted for in the analysis of treatment effect via matching, 

subclassification or weighting, any differences in outcome can be attributed to treatment 

assuming there is no unmeasured confounding.  

The PS approach has widely been investigated and applied, however predominantly in 

scenarios where treatment is observed only once. In this instance, two systematic reviews 

have found that there was no difference in findings relating to effect of type of surgery on a 

range of outcomes between RCTs and PS-based analyses using observational data (Kuss et al., 

2011, Lonjon et al., 2014).  

In repeated measures design, a common approach to estimating effect of time-varying 

treatment is via one of Robins’ G-methods  (Robins, 1986, Robins et al., 2000, Robins et al., 

1992), for example G-computation formula, however this approach assumes specification of 

the entire covariate history. Alternatively, one may use inverse probability of treatment (i.e., 

inverse PS) weighting (IPTW) of marginal structural models (MSM) (Robins 2000). Similar to 

PS, the probability of receiving treatment is estimated over time given treatment and 

covariate histories which are then converted to time-varying inverse probability of treatment 

weights. The weights reflect by how much observations are under-represented or over-

represented in the study sample compared to the pseudo-population where there are no 

confounding effects. The treatment effect is then estimated in the pseudo- (or weighted) 

population. MSM are being increasingly used in EHR in various clinical areas such as diabetes 

(Gamble et al., 2017, Farmer et al., 2019), chronic kidney disease (Anderson et al., 2015) and 

gout (Desai et al., 2018). 

In terms of more direct extension of the PS methodology as originally specified, Leon (2011b) 

estimated PS over time accounting for changing treatment status and covariates. 

Observations are then stratified into subclasses based on the PS, with treatment groups 
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comparable within each subclass. Treatment effects are estimated within each subclass and 

are then pooled. The authors mostly applied this method to the evaluation of ordinal doses of 

antidepressants in mental illness using a small number of time points (Leon et al., 2001, Leon 

et al., 2003); there are very few applications in other settings.  

However, most of these approaches have been restricted in complexity to the case where all 

patients are observed at common discrete time points. This of course may be unrealistic in 

many clinical set-ups and is suboptimal for exploring treatment behaviour of individuals as 

represented by continually collected data such as that in CPRD where covariate and treatment 

observation time points differ between patients. Therefore, on one hand, EHR provide real 

life patterns of covariate, treatment and outcome data, but on the other hand lead to 

potentially complex analyses.  

Performance and comparison of the different PS methods could be assessed under various 

scenarios via a simulation study. Some examples of existing simulation studies in this field 

include identifying the optimal PS matching approach (Austin, 2009b, Austin, 2011b, Austin, 

2014), assessment of performance of time-varying PS subclassification in the estimation of 

treatment effect on different types of outcome data (Leon and Hedeker, 2005, Leon and 

Hedeker, 2007a, Leon, 2011b), and assessment of performance of different types of weights 

in reducing variability in the estimated treatment effect in MSM (Xiao et al., 2010). Ideally, the 

data generated in a simulation study should reflect the type of data observed in real life to 

assess how statistical models may perform in practice. Most existing relevant simulation 

studies have explored model performance under simple study designs with typically a small 

number of repeated measures or considered treatment at one time point. It is currently 

unclear what sort of data management and computational challenges may be encountered 

when applying PS based methods in large and complex observational studies, such as those 

based on EHR data. In order to design an informative simulation study, it would be necessary 
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to know what these challenges may be. This could be investigated by first applying different 

PS based approaches in analysis of real data, to give an indication of the model 

implementation challenges, types of observed treatment patterns, strength of plausible 

associations between covariates and treatment/outcome etc, all of which could subsequently 

inform a thorough simulation study. A simulation study was therefore considered to be 

outside the scope of this PhD project.  

This PhD project will use gout as an exemplar to explore these issues.  

 

1.4 Effectiveness of allopurinol in gout 

Gout is the most common type of inflammatory arthritis. In the UK population, prevalence 

and incidence is reported to be 2.49% and 1.77 cases per 1,000 person-years respectively in 

2012. Both prevalence and incidence increase with age and is higher in males than in females 

(Kuo et al., 2015b). 

The key risk factor for gout is persistent hyperuricaemia causing monosodium urate (MSU) 

crystals to form and deposit in and around the joints; this leads to various clinical 

manifestations. The most common manifestation is the self-limiting painful flares of joint 

inflammation and swelling, typically seen in the first metatarsophalangeal joint, that lasts up 

to two weeks. If hyperuricaemia is not treated, subsequent flares often become more 

frequent, last longer, and may affect different joints. Over a long period of time, chronic gouty 

arthritis develops where joint inflammation becomes persistent due to recurrent flares; 

subcutaneous tophaceous deposits, crystals compressed with debris from the inflammatory 

response, harden and cause further joint damage. Consequently, all this leads to irreversible 

joint damage, pain, and disability (Roddy et al., 2013, Chandratre et al., 2018, NICE, 2018a). 
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Gout is often treated in primary care. The British Society for Rheumatology (BSR) (Jordan et 

al., 2007b, Hui et al., 2017) and the European League Against Rheumatism (EULAR) (Zhang et 

al., 2006a, Richette et al., 2017) have published guidelines for the management of gout. Long-

term management involves urate-lowering therapy (ULT) with a treat-to-target strategy to 

lower serum urate (SU) levels to below the threshold of urate saturation to prevent the 

formation of new crystals and allow deposited crystals to dissolve and tophi to shrink; the aim 

of ULT is to prevent flares and ‘cure’ the patient of gout. The BSR guidelines recommend an 

initial target SU level ≤300µmol/L that can be relaxed to ≤360µmol/L once the patient no 

longer has tophi and flares; the same target levels are recommended by the EULAR guidelines 

but those with severe gout are recommended to have a lower target of ≤300µmol/L. ULT 

involves addressing modifiable risk factors for hyperuricaemia, for example diet and 

medication use, and taking urate-lowering drugs. Allopurinol, a xanthine oxidase inhibitor, 

works by decreasing SU production and is the first line drug treatment. The BSR guidelines 

state patients with comorbidities associated with gout (renal impairment and hypertension) 

and those with more severe gout (recurrent flares, tophi, chronic gouty arthritis, and joint 

damage) should be offered allopurinol. Allopurinol treatment is recommended to be life-long. 

Allopurinol was developed for the treatment of gout over 50 years ago however, only a few 

RCTs have investigated its effectiveness. Seth et al. (2014) conducted a Cochrane review in 

2014 evaluating the effect and safety of allopurinol in chronic gout. Eleven RCTs were 

identified with eight studies comparing allopurinol with other urate-lowering or uricosuric 

drugs. The review highlighted a lack of high quality RCTs due to small samples and attrition 

bias. Studies were limited up to 52 weeks follow-up and employed strict inclusion and 

exclusion criteria, for example only including patients with severe hyperuricaemia or excluding 

patients with renal impairment, which may limit their generalisability to the majority of 

patients with gout (Becker et al., 2005, Schumacher et al., 2008, Becker et al., 2010). More 
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recently, larger RCTs with more than 6,000 participants have been undertaken, however, strict 

inclusion and exclusion criteria were still used (White et al., 2018, MacDonald et al., 2014), 

and length of follow-up remained limited to around three years. One RCT generalisable to the 

UK gout population compared the efficacy of nurse-led care with usual general practitioner 

(GP)-led care on reaching primary outcome, target SU level ≤360µmol/L, with ULT; within 

nurse-led care, all participants were treated with allopurinol at baseline and had reductions in 

number and size of tophi, number of flares, reduction in SU level with increased number of 

patients reaching target SU level (≤300µmol/L and ≤360µmol/L), and improved physical health 

over two years (Doherty et al., 2018).   

Despite the availability of guidelines, management of gout is often suboptimal and that 

uptake, adherence, and persistence to ULT are often poor. Various studies have shown only 

30-40% of patients with gout were ever prescribed ULT, of which the majority were prescribed 

allopurinol dose ≤300mg/day (Cottrell et al., 2013, Roddy et al., 2007b, Clarson et al., 2017). 

The majority of patients with indications for ULT were not prescribed ULT; at diagnosis 44% of 

patients had indications for ULT of whom <1% were prescribed ULT (Kuo et al., 2014). Once 

patients had started allopurinol, 39% stopped treatment after a year; 64% of these restarted 

treatment within five years. Median patient time of allopurinol adherence (time covered with 

a prescription) was 67% (Scheepers et al., 2018). Consequently, only up to 40% of patients 

reach target SU level (Cottrell et al., 2013) hence approximately <1 in 10 patients are `cured’. 

Gout is managed ineffectively for a number of reasons including lack of GP training, focus on 

treating flares only, underestimation of the long-term effects of gout, lack of patient and 

practitioner understanding of gout pathogenesis, and the benefits and role of ULT (Doherty et 

al., 2012). 

Estimating the effect of allopurinol using EHR is challenging. Confounding by indication is likely 

to be present as guidelines suggest patients with poorer health should be prescribed 
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allopurinol however, in practice this is often not realised. Allopurinol treatment is time-varying 

with patients often stopping and restarting treatment over time, with each treatment choice 

being influenced by time-varying and time-invariant covariates measured up to that time 

point. 

Around the time when this PhD project was conceptualised in 2013, there were a few existing 

EHR based studies evaluating the effect of allopurinol in gout using PS methodology; 

compared with those not using allopurinol, allopurinol users were found to have an increased 

risk of severe cutaneous adverse reactions although the study was not limited to patients with 

gout (Kim et al., 2013a); Wei et al. (2011) reported no difference in risk of cardiovascular 

events between allopurinol users and non-users of ULT however, this study too was not 

restricted to gout. There was a general lack of consideration of a wider range of outcomes, in 

particular renal and cardiovascular diseases. 

Since then, EHR observational studies evaluating the effect of allopurinol on different 

outcomes have been on the increase, for example mortality (Dubreuil et al., 2015, Kuo et al., 

2015a), chronic kidney disease (Roughley et al., 2018, Vargas-Santos et al., 2018), and vascular 

diseases (Sultan et al., 2019); three of these studies used PS matching (Dubreuil et al., 2015, 

Kuo et al., 2015a, Vargas-Santos et al., 2018). However, these studies evaluated the effect of 

initiating allopurinol treatment thus ignoring time-varying confounding.  

One issue frequently encountered in EHR studies using time-to-outcome data is immortal time 

bias, defined as, a period of follow-up time during which outcome cannot occur. This can arise 

during the period from study entry to prescription of treatment. The landmark method 

overcomes this issue by designating a period of time from study entry (the landmark period) 

to determine treatment status; follow-up commences after the landmark period in patients 

who did not have outcome up until then. This method has frequently been used in EHR studies 

in the evaluation of effectiveness of allopurinol (Sultan et al., 2018, Kuo et al., 2015a, Roughley 
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et al., 2018). However, the disadvantage of the landmark method is that it can potentially 

misclassify treated patients as untreated if the landmark period is too short, or exclude too 

many patients who had outcome occurring early on if the landmark period is too long (Dafni, 

2011). Alternatively, to reduce misclassification bias from patients starting allopurinol many 

years from the start of follow-up, follow-up may instead be assumed to start when allopurinol 

was first prescribed (Sultan et al., 2019, Vargas-Santos et al., 2018, Dubreuil et al., 2015). 

However, these studies assumed patients did not change treatment status during follow-up.  

Some studies may alternatively perform per-protocol analysis where analysis only includes 

patients who adhered to treatment. For example, Vargas-Santos et al. (2018) censored patient 

follow-up time when allopurinol treatment had stopped or changed. However, this may 

introduce selection bias if the reasons for stopping or changing allopurinol treatment, for 

example may have potentially experienced an adverse reaction to allopurinol or no longer had 

gout flares, is associated with outcome (Hernán and Hernández-Díaz, 2012).  

None of these studies evaluated the effect of allopurinol on outcome when patients initiate, 

stop and restart treatment in the presence of time-varying confounding. Therefore, an 

observational study based on EHR is both needed and timely to investigate the realistic effect 

of allopurinol use versus non-allopurinol use over a long period of time on a range of 

outcomes. CPRD is one of the largest UK databases of primary care EHR and is thus an ideal 

data-source given that gout is generally diagnosed and managed in primary care.   

As explained above, bias due to confounding by indication is a major impediment to valid 

assessment of treatment effect based on observational data. Use of PS and MSM 

methodologies will allow causal inferences to be made provided careful consideration is given 

to the study design, data manipulation and choice of covariates to adjust for. Naturally, not all 

important covariates will be measured or even observable, such as adherence of allopurinol 

uptake and genetic factors, thus some residual confounding will remain. Often, no attempts 
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are made to understand the extent to which residual confounding can impact treatment effect 

estimation.  

To our knowledge, these methodologies have rarely been used to estimate effect of time-

varying allopurinol use and never in EHR setting in the UK.  

 

1.5 Thesis aims and overview 

This PhD aims to approach estimation of allopurinol effect using observational EHR data in a 

comprehensive and thorough manner. From a clinical aspect, this will be achieved by 

considering a wide range of outcomes in patients with gout, relaxing exclusion criteria, and 

stratifying analyses on severity of SU levels and renal disease.  

From a statistical aspect, allowance will be made for time-varying allopurinol use and time-

varying covariates thus giving rise to repeated measures data structure within which both PS 

and inverse probability treatment weights and subsequently treatment effect will be 

estimated. Robustness of allopurinol treatment effect estimates to missing data and omission 

of important covariates will be tested. Comparisons of methodology and results will be made 

between PS and MSM.  

The clinical objectives are:  

1) To examine the effect of allopurinol versus not taking allopurinol on reaching target 

SU level ≤360µmol/L, the primary outcome. Secondary outcomes are all-cause 

mortality; gout hospital admission; joint replacement; and gout comorbidities 

(cerebrovascular, coronary heart, peripheral vascular diseases and renal disease). 

2) Repeat objective 1 stratified on baseline levels of SU level (above and below 

480μmol/L) and on presence of renal disease to assess whether effect of allopurinol 

varies by severity of SU level or renal disease. 
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The statistical objectives which will be addressed within objectives 1 and 2 above are to 

compare and contrast: 

3) The effect of including time-varying covariates in addition to baseline covariates in PS 

subclassification on treatment effect. 

4) Compare and contrast estimation of treatment effect from time-varying PS 

subclassification from objective 3 to MSM. 

5) To examine the sensitivity of treatment effect estimates obtained in objective 1 to 

missing data and omission of covariates (with varying degree of strength of association 

with outcome and/or treatment) from modelling of treatment assignment to address 

the impact of unobserved covariates. 

A brief description of each chapter is given below. 

Chapter 2: Gout 

A description of the clinical characteristics, risk factors, prognosis, and diagnosis of gout is 

given. Short- and long-term management of gout is discussed and the extent to which patients 

are prescribed allopurinol and remain on treatment.  

Chapter 3: A narrative review of observational studies evaluating the effect of allopurinol in 

gout 

A systematic search to identify all published observational studies evaluating the effect of 

allopurinol in gout. A narrative review of the eligible studies summarised the study design, 

adjustment for confounding, sources of data, definition of allopurinol exposure, and outcomes 

used. The findings from the review will identify the extent of use of EHR in evaluation of 

allopurinol effect as well as highlight methodological limitations of existing studies and where 

possible methodological improvements can be made.  

Chapter 4: Data source and study sample 
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How the population-based cohort study is set up, how the study sample is defined, and the 

definitions for allopurinol use, covariates, and outcomes from electronic primary care medical 

records in CPRD are provided. 

Chapter 5: Propensity scores and marginal structural models 

The concept of the casual inference framework and advantages and disadvantages of common 

methods used to control for confounding are discussed. Reasons why PS and MSM 

methodologies are chosen to control for confounding is justified. Further details on how to fit 

such models are described.      

Chapter 6: Statistical analysis plan 

The four methods applied to CPRD data in estimating treatment effect of allopurinol are 

described. The first two methods focussed on PS subclassification performed at a single point 

in time and then repeatedly over time; description of covariate selection for PS estimation, 

how the number of subclasses are determined, and assessment for balance and treatment 

effect estimation are provided. The third and fourth methods focussed on MSM and the 

assumption regarding associations between treatment and covariates are stated; initially it is 

assumed that the reasons for prescription of treatment are the same amongst patients 

initiating and continuing with treatment, and subsequently these reasons are then allowed to 

differ.  

Chapters 7: Effect of allopurinol: time-invariant PS subclassification 

Treatment effect estimates are presented after using PS subclassification at a single time point 

to control for confounding. This chapter addresses all the clinical objectives.  

Chapter 8: Effect of allopurinol: time-varying PS subclassification 

Similar to chapter 7, treatment effect estimates are presented after using time-varying PS 

subclassification.  
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Chapter 9: Modelling simple mechanisms of allopurinol via MSM 

Reasons for treatment are assumed not to differ between patients initiating and continuing 

treatment. This assumption led to unreliable treatment effect estimates. Results from various 

methods employed to improve weight estimation are presented. Outcome considered is all-

cause mortality.   

Chapter 10: Modelling complex mechanisms of allopurinol via MSM 

Treatment effect estimates are presented after using MSM allowing reasons for prescription 

of treatment to differ amongst patients initiating and continuing with treatment.  

Chapter 11: Discussion 

The final chapter describes the overall conclusions, strengths and limitations of the 

methodologies, and further advancements required.  
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2 Gout 

The aim of this chapter is to provide background information about gout that is of relevance 

to this thesis. An overview of clinical manifestations, risk factors, and poor outcomes is 

provided. Diagnosis of gout, management, and implementation of management for gout is 

described.  

 

2.1 Hyperuricaemia, crystal formation and clinical presentation 

The development and progression of gout is viewed as three overarching disease states 

(Bursill et al., 2019). These include the pre-clinical state, gout flare and advanced gout 

manifestations, which are now briefly described. 

Pre-clinical state 

Asymptomatic hyperuricaemia with monosodium urate (MSU) crystal deposition precedes 

gout (Choi et al., 2005). Uric acid is the end product of the degradation of purines, nucleotide 

bases which are a key component of DNA. Uric acid largely exists in its ionised form, urate, at 

physiological pH and temperature. Urate level is dependent upon endogenous purine 

metabolism, dietary intake of purine rich food, and rate of excretion via the kidneys and gut. 

In 90% of cases hyperuricaemia results from renal under-excretion of urate, and in the 10% of 

cases a combination of urate underexcretion and overproduction (Choi et al., 2005). MSU 

crystal formation occurs when the urate level persistently exceeds 380μmol/L; the synovial 

fluid becomes supersaturated with urate causing MSU crystals to form and deposit in the 

surrounding cartilage, bone, and tissues (Seegmiller, 1965, Loeb, 1972).  
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Gout flare 

The most common clinical manifestation of gout is occurrence of episodic flares. Gout flares 

occur from shedding of crystals from the deposits into the joint space eliciting an inflammatory 

response at the joint site. The gout flare has distinct characteristics of reaching peak 

inflammation within 24 hours of onset accompanied by swelling, tenderness, and excruciating 

pain in the affected joint that resolves itself within one to two weeks (Roddy et al., 2013). Gout 

is frequently monoarticular and typically affects the lower limb with the majority of flares 

occurring in the first metatarsophalangeal joint. Other joints frequently involved include the 

mid-foot, ankle and knee, and less frequently the upper limbs and fingers (Roddy, 2011). 

After the gout flare has resolved, the patient enters the inter-critical period and generally 

remains symptom free until the next flare. Despite being symptom free, if hyperuricaemia is 

not treated, crystals continue to form and cause low persistent inflammation with the majority 

of patients having a second flare within two years (Yu and Gutman, 1961). Subsequent flares 

become more frequent, last longer, and more joints become involved (oligoarticular (affecting 

2-4 joints) or polyarticular gout (≥5 joints)), and may affect also the upper limbs (Dalbeth et 

al., 2016). 

Advanced gout manifestations 

Untreated hyperuricaemia over a number of years may lead to chronic gouty arthritis, tophi, 

and bone erosion in some patients. Joint inflammation becomes persistent due to crystals 

causing inflammation from recurrent flares and low-level inflammation during the inter-

critical period.  

Crystals harden and compress forming tophaceous deposits mainly in subcutaneous and 

periarticular areas such as fingers, toes, knees, olecranon processes, Achilles’ tendons, and 
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helix of the ears. Subcutaneous tophi are typically pain free. They may have a white to yellow 

appearance and are asymmetrically shaped (Roddy, 2011, Dalbeth et al., 2016).  

A combination of synovial hypertrophy from chronic inflammation, gout flares, and tophi 

presence and size leads to irreversible structural joint damage (Wu et al., 2019) and poor 

health-related quality of life (Khanna et al., 2012c). Bone erosion is dominantly due to tophi 

infiltrating into the bone (Dalbeth et al., 2016). 

 

2.2 Diagnosis 

The European League Against Rheumatism (EULAR) have published guidelines on how gout 

should be diagnosed (Zhang et al., 2006b, Richette et al., 2020). The definitive diagnosis of 

gout involves joint aspiration of synovial fluid or tophi for microscopic examination of MSU 

crystals. The procedure can be performed during a gout flare or during the inter-critical period 

between flares (Roddy et al., 2013). Joint aspiration is rarely performed in primary care which 

may be due to lack of facilities or expertise (Underwood, 2006, Kienhorst et al., 2014).  

In practice, diagnosis is often based on clinical signs and symptoms. Clinical features of gout 

and hyperuricaemia are highly suggestive but not specific for gout. Consequently, gout can be 

misdiagnosed. Gout can be mistaken for a flare of osteoarthritis in the 1st MTP joint in the 

presence of hyperuricaemia or pseudo-gout, a type of arthritis resulting from deposits of 

calcium pyrophosphate crystals (Sturrock, 2000). Joint aspiration should be undertaken if 

diagnosis of the inflamed joints is unclear. 
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2.3 Risk factors for gout 

2.3.1 Hyperuricaemia 

Longitudinal population-based studies have long established the association between 

hyperuricaemia (elevated serum urate (SU) level) and gout. These studies have shown higher 

levels of SU are associated with greater risk of incident gout (Campion et al., 1987), with 

incidence being higher in men compared to women (Bhole et al., 2010). Similarly, 

hyperuricaemia was found to increase the risk of recurrent gout flares (Trifiro et al., 2013). 

More recently, Dalbeth et al. (2018) pooled participants from four large cohort studies, and 

showed the cumulative incidence of gout over 15 years was 1.1% in patients with SU <6mg/dL 

but 49% in patients with SU level ≥10mg/dL. Figure 2.1 illustrates the percentage of patients 

remaining gout free over time based on different SU categories (Dalbeth et al., 2018). 

Figure 2.1: Kaplan-Meier plot showing the percentage of participants who were gout-free 

over the follow-up period, based on baseline SU categories in mg/dL 

 
Reproduced from Relationship between serum urate concentration and clinically evident incident gout: an 
individual participant data analysis, Dalbeth et al, vol. 77, pg. 1048-1052, 2018, with permission from BMJ 
Publishing Group Ltd. The American system measured SU level as mg/dL; 6.0mg/dL is equivalent to 360μmol/L; 
7.0mg/dL is equivalent to 420μmol/L; 8.0mg/dL is equivalent to 480μmol/L; 9.0mg/dL is equivalent to 
540μmol/L; 10.0mg/dL is equivalent to 600μmol/L. 

 

Not all individuals with hyperuricaemia go on to develop gout with prevalence of 

hyperuricaemia (20%) being higher than the prevalence of gout (3.9%) (Chen-Xu et al., 2019).  
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2.3.2 Demographics  

In the UK population in 2012, both prevalence and incidence of gout increased with increasing 

age, and were higher in males than in females (Figure 2.2) (Kuo et al., 2015b). 

Figure 2.2: Age-specific prevalence (A) and incidence (B) of gout in 2012  

 
Reproduced from Rising burden of gout in the UK but continuing suboptimal management: a nationwide 

population study, Kuo et al, vol. 74, pg. 661-667, 2015, with permission from BMJ Publishing Group Ltd. (Blue: 

men; red: women; green: total; dotted lines show 95% confidence bounds) 

 

Gout has historically been associated with male sex however prevalence and incidence of gout 

has increased over time in both males and females. In females, prevalence and incidence rises 

after menopause. Hak et al. (2010) found amongst menopausal women, that those taking 

hormone replacement therapy had lower risk of gout than non-users. Oestrogen aids urate 
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renal excretion (Nicholls et al., 1973) and once women stop producing oestrogen, SU levels 

begin to rise and consequently the risk of gout increases.  

Historically, gout was perceived to be associated with socioeconomic privilege and frequently 

referred to as the ‘disease of kings’. Contemporary studies have otherwise shown the opposite 

to be true; gout is both more common and more severe with greater deprivation. Prevalence 

of gout was higher in a more deprived English town (4.8%) compared with an English town 

that was considered less deprived (3.9%) (Gardner et al., 1982). Further education (odds ratio 

(OR) 0.54 (95% CI: 0.36, 0.81)) and low area-level deprivation determined by the Index of 

Multiple Deprivation (OR 0.71 (95% CI: 0.51, 0.98)) were associated with lower risk of having 

≥2 flares in the preceding 12 months. Although deprivation does not have a direct impact on 

SU levels, it is linked to poorer health and greater number of visits to the general practitioner 

(GP), and may contribute to delayed consultation and reluctance to acknowledge having gout 

(Bowen-Davies et al., 2018). 

 

2.3.3 Diet 

Most urate is produced due to the process of aging and the associated increased cell death in 

the human body however, urate is also produced by the metabolism of purines found in the 

diet.  

Li et al. (2018) performed a systematic review and meta-analysis of dietary factors and risk of 

incident gout (19 prospective cohort and cross-sectional studies). Red meat, seafood, alcohol 

consumption, and fructose sweetened soft drinks increased risk of incident gout. On the other 

hand, dairy products, soy foods, high-purine vegetables, and coffee consumption were 

protective against gout. Another study had shown higher vitamin C consumption yielded 

lower risk of gout (Choi et al., 2009).  
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Studies have also investigated whether dietary factors trigger recurrent gout flares. Two case-

cross over studies had found greater alcohol consumption was associated with greater odds 

of flares (Neogi et al., 2014), whereas greater cherry consumption was associated with lower 

odds (Zhang et al., 2012).  

 

2.3.4 Genetics 

Gout tends to cluster within families, implying that it may be related to lifestyle and genetic 

factors. Genome-wide association studies had found a large number of genes involved in the 

development of hyperuricaemia and gout. The majority of these genes are involved with renal 

function where urate is under excreted. The heritability, defined as the percentage variance 

of phenotype that is explained by inherited genetic variants, can be estimated by studying the 

phenotypic correlation between related individuals (Major et al., 2018). The heritability of SU 

levels and gout in Europeans was estimated to be between 27% and 41% (Köttgen et al., 2013) 

and approximately 30% (Cadzow et al., 2017), respectively.  

 

2.3.5 Metabolic syndrome 

The association between gout and the metabolic syndrome is well known with several large 

studies evaluating these associations (Roddy and Choi, 2014). There are various definitions for 

the metabolic syndrome but they all share the same comorbidities of obesity, hypertension, 

dyslipidaemia, and either or both hyperinsulinaemia or hyperglycaemia (Eckel et al., 2005).  

Prevalence of the metabolic syndrome and its individual components was higher in patients 

with gout compared with those without (Choi et al., 2007). 
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A systematic review and meta-analysis of 11 cohort studies found obesity (risk ratio (RR) 2.24 

(95% CI: 1.76, 2.86)) and hypertension (RR 2.11 (95% CI: 1.64, 2.72)) doubled the risk of 

incident gout (Evans et al., 2018).  

Risk of gout differs in patients pre- and post-diagnosis of diabetes. Studies have shown SU 

level is higher in prediabetes vs. non-diabetics (Herman and Goldbourt, 1982) and increases 

with HbA1c levels (Choi and Ford, 2008); this is explained by high insulin levels impairing renal 

urate excretion leading to hyperuricaemia (Ter Maaten et al., 1997). Conversely, analysis of 

primary care medical records has shown uncomplicated and complicated diabetes lowers the 

risk of incident gout (OR 0.90 (95% CI: 0.85, 0.96) and (OR 0.87 (95% CI: 0.76, 1.00), 

respectively) compared with not having diabetes (Kuo et al., 2016b), and lowers the risk of 

recurrent flare (hazard ratio (HR) 0.92 (95% CI: 0.85, 0.99)) (Rothenbacher et al., 2011). The 

negative association between diabetes and gout may be explained by high glucose levels in 

the urine (glycosuria) leading to increased urine volume (polyuria) and  enhanced urate 

excretion, lowering SU levels (Cook et al., 1986).  

 

2.3.6 Chronic kidney disease 

The association between chronic kidney disease (CKD) and gout is well established. A Clinical 

Practice Research Database (CPRD) study found renal disease was associated with incident 

gout (OR 6.63 (95% CI: 5.18, 8.48) (Kuo et al., 2016b). This is due to impaired kidney function 

leading to reduced urate excretion and increased risk of hyperuricaemia and gout.  

Conversely, various studies have shown that gout is associated with incident CKD. A meta-

analysis study of three cross-sectional studies found that compared to patients without gout, 

those with gout had increased odds (OR 2.41 (95% CI: 1.86, 3.11)) of CKD stage ≥3 (Roughley 

et al., 2015); two studies in CPRD found gout was associated with increased risk of advanced 
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CKD (HR 1.29 (95% CI: 1.23, 1.35)) and its components including end stage kidney disease, 

estimated glomerular filtration rate <10 mL/min/1.73m2, and doubling of serum creatinine 

from baseline (Stack et al., 2019), and incident renal disease (Kuo et al., 2016b). The risk of 

renal disease is higher in patients with gout than those without due to comorbid hypertension 

and diabetes, hyperuricaemia, chronic inflammation, and non-steroidal anti-inflammatory 

drug (NSAID) use (Roughley et al., 2018). 

Although high SU levels have been shown to be associated with kidney disease (Li et al., 2014), 

recent studies have suggested SU level may not have a causal relationship. Randomised 

controlled trials (RCTs) have demonstrated urate-lowering therapies (ULTs) do not slow the  

rate of kidney function decline (Badve et al., 2011, Badve et al., 2020, Kimura et al., 2018, 

Doria et al., 2020) whilst Mendelian randomisation studies have shown no effect of SU level 

on CKD (Jordan et al., 2019).    

 

2.3.7 Osteoarthritis 

There is limited evidence osteoarthritis is a possible risk factor for gout, under the mechanism 

that MSU crystals deposit more easily in osteoarthritic joints (Ma and Leung, 2017). A cross-

sectional study found flares at a particular joint were associated with presence of 

osteoarthritis within that joint (OR 7.94 (95% CI: 6.27, 10.05)), with statistically significant 

associations found at the 1st metatarsophalangeal joint, mid-foot, knee and distal 

interphalangeal joints in those with gout (Roddy et al., 2007a). An analysis of CPRD data found 

osteoarthritis was associated with incident gout (OR 1.27 (95% CI: 1.20, 1.34)) (Kuo et al., 

2016b).  

As stated in Section 2.1, joint damage may occur in gout. A small cross-sectional study had 

found presence of tophi over 5mm at a particular joint was associated with bone erosion 
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within that joint, and there is a positive strong correlation between tophi size and the degree 

of erosion (McQueen et al., 2014). A cohort study using data from CPRD had shown prevalence 

of total joint replacement was higher in people with gout than those without (2.61% vs. 1.76%) 

(Kuo et al., 2018). Given osteoarthritis is the largest risk factor for joint replacement and 

predisposes gout, gout is therefore a risk factor for joint replacement.   

 

2.3.8 Medications 

Antihypertensives are widely used to treat hypertension and thus have protective effects 

against myocardial infarction and strokes. However, diuretics (thiazides and loop diuretics), 

used to treatment hypertension and heart failure, commonly cause hyperuricaemia and gout 

(Pascual and Perdiguero, 2006). A systematic review and meta-analysis of three cohort studies 

found diuretic use increased the risk of developing gout (RR 2.39 (95% CI: 1.57, 3.65)) (Evans 

et al., 2018). Choi et al. (2012) evaluated the risk of various antihypertensives on incident gout 

in a large case-control study using primary care electronic health records (EHR) from The 

Health Improvement Network (THIN) database. Current prescriptions of calcium channel 

blockers and losartan had lower odds of gout yielding OR 0.87 (95% CI: 0.82, 0.93) and 0.81 

(95% CI: 0.70 to 0.94) respectively. On the other hand, diuretics (OR 2.36 (95% CI: 2.21, 2.52)), 

beta-blockers (OR 1.48 (95% CI: 1.40, 1.57)), angiotensin converting enzyme inhibitors (OR 

1.24 (95% CI: 1.17, 1.32)) and other non-losartan angiotensin II receptor blockers (OR 1.29 

(95% CI: 1.16 to 1.43)) had greater odds of gout compared with non-use.  

Aspirin, a blood thinning drug, lowers urate excretion when used in lower cardioprotective 

doses whereas high anti-inflammatory doses have the opposite effect of increasing urate 

excretion. A case-crossover study found low dose aspirin increased odds of recurrent gout 

flares compared with no use in the last two days (OR 1.81 (95% CI: 1.20, 2.51)). The odds of 
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recurrent gout flares were higher with lower aspirin doses compared with non-aspirin use 

(Zhang et al., 2014). However, since gout is associated with cardiovascular disease, the 

cardioprotective effects of low dose aspirin are thought to outweigh its slight effect to 

increase urate levels.  

 

2.4 Long-term outcomes from gout 

Gout increases the risk of poor outcomes over a long period of time, particularly 

cardiovascular and renal diseases. This may partly be attributed to poor management of 

hyperuricaemia, as hyperuricaemia has been verified as an independent risk factor of 

cardiovascular and renal diseases (Gaffo et al., 2009). Persistent inflammation may also play 

a role.  

Several studies analysing primary care medical records from CPRD have shown gout increased 

the risk of various vascular diseases, genitourinary diseases, and comorbidities (Table 2.1). 

Gout is associated with many poor outcomes and unsurprisingly, is also associated with a 

greater risk of premature mortality. Using Swedish medical records, compared with non-gout 

patients, those with gout were found to be at increased risk of death due to cardiovascular 

disease (HR 1.27 (95% CI: 1.22, 1.33)), renal disease (HR 1.78 (95% CI: 1.34, 2.35)), and diseases 

of the digestive system (HR: 1.56 (95% CI: 1.34, 1.83)) (Vargas-Santos et al., 2019).  
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Table 2.1: Summary of the findings from previous studies of gout outcomes undertaken in 
CPRD 

Outcomes Overall 
HR (95% CI) 

Men 
HR (95% CI) 

Women 
HR (95% CI) 

Vascular diseases    

Any vascular disease (Clarson et al., 2015) -  1.06 (1.01, 1.12)  1.25 (1.15, 1.35) 

   Any coronary heart disease -  1.08 (1.01, 1.15)  1.25 (1.12, 1.39) 

      Angina  -  1.02 (0.92, 1.13)  1.28 (1.09, 1.51) 

      Myocardial infarction -  1.12 (1.00, 1.27)  0.97 (0.77, 1.22) 

   Any cerebrovascular disease -  0.95 (0.83, 1.09)  1.17 (0.99, 1.38) 

      Transient ischaemic attack -  1.02 (0.88, 1.18)  1.26 (1.05, 1.53) 

      Cerebrovascular attack -  0.93 (0.81, 1.06)  1.34 (1.15, 1.57) 

      Peripheral vascular disease -  1.18 (1.01, 1.38)  1.89 (1.50, 2.38) 

Atrial fibrillation (Kuo et al., 2016a)  1.09 (1.03, 1.16) 1.09 (1.01, 1.16) 1.12 (1.02, 1.24) 

Venous thromboembolism (Sultan et al., 2019)  1.25 (1.15, 1.35)  1.20 (1.09, 1.33)  1.32 (1.14, 1.52) 

Cardiac arrhythmias (Kuo et al., 2016b) 1.59 (1.48, 1.70) - - 

Congestive heart failure (Kuo et al., 2016b) 1.81 (1.65, 1.98) - - 

Valvular heart disease (Kuo et al., 2016b) 1.80 (1.60, 2.04) - - 

Chronic pulmonary disease 1.10 (1.02, 1.18) - - 

Genitourinary diseases    

Chronic kidney disease (Roughley et al., 2018)  1.78 (1.70, 1.85)  1.78 (1.69, 1.87)  1.79 (1.66, 1.93) 

Renal disease (Kuo et al., 2016b) 3.18 (2.88, 3.50) - - 

Urolithiasis (Kuo et al., 2016b) 1.26 (1.02, 1.55) - - 

Comorbidities    

Hypertension (Kuo et al., 2016b) 1.51 (1.43, 1.58) - - 

Hyperlipidaemia (Kuo et al., 2016b) 1.40 (1.31, 1.50) - - 

Hypothyroidism (Kuo et al., 2016b) 1.46 (1.32, 1.61) - - 

Osteoarthritis (Kuo et al., 2016b) 1.45 (1.35, 1.54) - - 

Depression (Kuo et al., 2016b) 1.19 (1.12, 1.26) - - 

Other    

Erectile dysfunction (Abdul Sultan et al., 2017) -  1.31 (1.24, 1.40) - 

Joint replacement (Kuo et al., 2018) 1.14 (1.05, 1.22) - - 

Fractures (Sultan et al., 2018) 0.97 (0.92, 1.02) - - 

HR: Hazard ratio; CI: Confidence interval 

 

 

2.5 Management of gout 

Various organisations had published guidelines on the management of gout flares and chronic 

gouty arthritis. The British Society of Rheumatology (BSR) published guidelines in 2007 (Jordan 

et al., 2007b) and later updated the guidelines in 2017 (Hui et al., 2017). The European League 

Against Rheumatism (EULAR) published guidelines in 2006 (Zhang et al., 2006a) and updated 

them in 2016 (Richette et al., 2017). The American College of Rheumatology (ACR) published 

guidelines in 2012 (Khanna et al., 2012a, Khanna et al., 2012b) and updated in 2020 (FitzGerald 

et al., 2020).  
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The more recent guidelines (BSR 2017, EULAR 2016 and ACR 2020) emphasised the need to 

educate patients to understand the causes and consequences of gout and hyperuricaemia, 

the importance of ULT, associated comorbidities, and required lifestyle changes.  

 

2.5.1 Treatment of gout flares 

Treatment of flares aims to rapidly reduce pain and swelling. Commonly prescribed 

pharmacological treatments are NSAIDS, colchicine, and corticosteroids. Choice of treatment 

is dependent upon comorbidity, risk of side effects, and patient preference. 

NSAIDS are the most frequently prescribed medication for flares (Roddy et al., 2010). All 

guidelines recommend quick-acting NSAIDS at full dose, co-prescribed with gastro-protective 

drugs. Several RCTs have demonstrated the efficacy of NSAIDS in the treatment of flares 

(Khanna et al., 2014). There is little difference in anti-inflammatory effect between NSAIDS 

and there is no evidence any one NSAID is superior to another (Roddy et al., 2013). NSAIDS 

are prescribed with caution in patients with vascular diseases, impaired renal or liver function, 

and gastro-intestinal problems (for example, ulceration and haemorrhage) (NICE, 2019). 

Low dose colchicine, the second most used drug (Roddy et al., 2010), is an effective treatment 

that rapidly reduces pain and inflammation. Despite its effectiveness, adverse events of 

diarrhoea, nausea and vomiting are common (Terkeltaub et al., 2010, Ahern et al., 1987). 

A RCT compared the effect of naproxen versus low-dose colchicine on treating flares. No 

difference in change of pain scores over seven days were found between the two treatments 

although, naproxen use had fewer side effects, less analgesic use, and lower overall cost 

(aggregate of drug, GP, nurse, emergency GP, A&E and intervention costs) than colchicine use 

(Roddy et al., 2019).  
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Corticosteroids are not often used in primary care (Roddy et al., 2010) but they are an 

alternative in patients who have contraindications to NSAIDS and colchicine. In RCTs, 

prednisolone, an oral corticosteroid, was equally effective as NSAIDS in reducing pain scores 

(Janssens et al., 2008, Man et al., 2007). More recent guidelines (ACR 2012, BSR 2017, and 

EULAR 2016) recommended the use of combination therapy of NSAIDS, colchicine with 

corticosteroids when monotherapy was not sufficient to resolve a severe flare or flares 

affected were polyarticular. 

Similarly, analgesics such as paracetamol and codeine are not often prescribed to treat flares 

(Roddy et al., 2010) but are recommended to be used as clinical adjuncts if pain is not 

adequately controlled when taking NSAIDS or colchicine (Jordan et al., 2007b). 

   

2.5.2 Urate-lowering drugs 

Gout is a consequence of crystal deposition due to hyperuricaemia. The plausible treatment 

of gout is to lower SU level below the urate saturation threshold of 380μmol/L (Roddy et al., 

2013, Seegmiller, 1965, Loeb, 1972). This allows deposited MSU crystals and tophi to dissolve 

away and prevent new crystals from forming, thus preventing flares. A patient is considered 

‘cured’ of gout if they are crystal and tophi free and had no flares, typically after two years of 

treatment (Roddy et al., 2013). The management guidelines for ULT are summarised in Table 

2.2. 

The treat-to-target concept is the cornerstone of ULT and has been adopted across most 

guidelines. EULAR 2006 and 2016 guidelines recommend SU level should be lowered to a 

target of ≤360μmol/L, with the 2016 guidelines stating a lower target of <300μmol/L may be 

needed in those with severe gout. BSR 2007 opted for a stricter target of <300μmol/L which 

was upheld in the 2017 guidelines, but with a further recommendation that once the patient 
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is in clinical remission, the target can be relaxed and SU maintained below ≤360μmol/L. This 

target allows SU level to be well below the saturation point allowing for fluctuations in SU 

level without increasing the risk of flares. Similarly, ACR 2012 opted for target SU level 

≤360μmol/L but also recommended a lower target of <300μmol/L that may be needed to 

rapidly improve signs and symptoms in those with severe gout. 

Xanthine oxidase inhibitors target the metabolism of purine by preventing the degradation of 

hypoxanthine to uric acid, thus lowering SU level. Allopurinol is the most commonly used 

xanthine oxidase inhibitor in ULT. Another xanthine oxidase inhibitor febuxostat, was 

approved by NICE in 2009 for use in patients who are intolerant of allopurinol.  

Uricosuric drugs raise excretion of uric acid in the urine thus lowering SU level. Guidelines 

recommend using either benzbromarone, sulfinpyrazone and probenecid. Off-label drugs with 

mild uricosuric properties for gout are also considered in patients with comorbidities. These 

drugs include fenofibrate and losartan for the treatment of hyperlipidaemia and hypertension, 

respectively. Recently, a new uricosuric drug, lesinurad, co-prescribed with a xanthine oxidase 

inhibitor has marketing authorisation for treating hyperuricaemia in adults with gout provided 

the standalone xanthine oxidase inhibitor failed to lower SU level to target, however the drug 

does not have approval for use in the UK from the National Institute for Health and Care 

Excellence (NICE, 2018b).  

The initial phases of ULT and titration increases the risk of flares. Although such flares are 

unwanted, they are an indication that SU level is decreasing and crystal dissolution occurring, 

and are markers of successful treatment (Roddy et al., 2013). To prevent such flares, anti-

inflammatory prophylaxis can be co-prescribed with ULT. Guidelines recommend to either 

prescribe low dose colchicine or NSAIDS if not contradicted.  
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Uricosurics are uncommonly used in the UK and account for <1% of patients prescribed gout 

treatment in primary care practices (Annemans et al., 2008). Scarce use of uricosurics may be 

because allopurinol is an effective drug, allopurinol intolerance is uncommon, and febuxostat 

is available as an alternative when allopurinol is not tolerated. Probenecid and 

benzbromarone are unlicensed drugs and are only prescribed by rheumatologists within 

secondary care. Uricosurics should not be prescribed for over-producers of urate or in CKD, 

and benzbromarone carries a severe risk of hepatotoxicity (Hui et al., 2017). 

Checking whether patients reach and maintain SU target, particularly during ULT initiation and 

titration, requires frequent SU monitoring. BSR 2007 guidelines state SU level should be 

monitored monthly during allopurinol titration and then yearly after SU target has been 

obtained. However in practice, measuring SU level is variable; an audit of a UK primary care 

practice found only 22% of patients with gout had SU measured in the last year, with that 

figure rising to 34% amongst allopurinol users (Cottrell et al., 2013).   
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Table 2.2: Comparison of guidelines in the long-term management of gout 

BSR 2007  
(Jordan et al., 2007b) 

BSR 2017  
(Hui et al., 2017) 

EULAR 2006  
(Zhang et al., 2006a) 

EULAR 2016  
(Richette et al., 2017) 

ACR 2012  
(Khanna et al., 2012a) 

ACR 2020 
(FitzGerald et al., 2020) 

Who to start treatment in  
No comorbidities and had 
first flare, consider ULT 
after recurrence of flares 
within 1 year 
 
In patients with 
comorbidity, consider ULT: 

• Visible tophi 

• Renal insufficiency 

• Uric acid stones 

• Prescribed diuretics 

ULT offered to all patients & 
particularly advised in those 
with: 

• ≥2 flares in a year 

• Tophi 

• Chronic gouty arthritis 

• Joint damage 

• Renal impairment 

• History of urolithiasis 

• Diuretic use 

• Young age 

Severe established gout: 

• Recurrent flares 

• Gouty arthropathy  

• Tophi 

• Radiographic changes of 
gout 

• Multiple joint 
involvement 

• Uric acid nephrolithiasis  

Considered and discussed in 
all patients, particularly if:  

• ≥2 flares per year 

• Tophi 

• Urate arthropathy 
and/or renal stones 

• Young age <40 years 

• SU level >480μmol/L 

• Renal impairment 

• Hypertension 

• Ischaemic heart disease 

• Heart failure 

ULT indicated in:  

• ≥2 flares annually 

• Tophi 

• CKD stage 2 or worse 

• Past urolithiasis 

ULT indicated in: 

• ≥2 flares annually 

• ≥1 subcutaneous tophi 

• Radiographic damage 

• Previously experienced 
>1 flare but had 
infrequent flares (<2 
flares per year) 

• First flare and CKD stage 
≥3, SU >9mg/dL, or 
urolithiasis 

SU level 

• Target and maintain at 
<300μmol/L 

• Target SU level should be 
reached within 4 weeks 

• Measure SU every 3 
months for the first year, 
then annually including 
creatinine level 

• Target <300μmol/L 

• Maintain <360μmol/L 
once SU level is stable 

• Target and maintain at 
≤360μmol/L 

• Target and maintain at 
<360μmol/L 

• <300μmol/L in severe 
gout (tophi, chronic 
arthropathy, frequent 
flares) 

• <3mg/dL not 
recommended in the 
long term 

• Minimum target 
≤360μmol/L 

• Lower target of <5mg/dL 
may be needed to 
improve signs and 
symptoms of gout 

• Treatment is indefinite 
 
 

• Target and maintain at 
<6mg/dL 

When to start treatment 

1-2 weeks after flare has 
ended 

• After flare has ended 

• Can start during a flare if 
appropriate timing 
cannot be found 

Not stated Not stated Can start during a flare 
provided anti-inflammatory 
medication has already 
been initiated 

Can start during a flare 
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BSR 2007  
(Jordan et al., 2007b) 

BSR 2017  
(Hui et al., 2017) 

EULAR 2006  
(Zhang et al., 2006a) 

EULAR 2016  
(Richette et al., 2017) 

ACR 2012  
(Khanna et al., 2012a) 

ACR 2020 
(FitzGerald et al., 2020) 

Allopurinol  
First line drug 

• Start at 50-100mg/day 

• Increase by 50-100mg 
every few weeks until 
target SU level reached 

• Maximum dose 900mg 

• Lower dose according to 
impaired renal function 

• Rare life-threatening side 
effects 

• Co-prescribe with 
benzbromarone to 
reduce SU level further 

First line drug 

• Start at 50-100mg/day 

• Increase by 100mg every 
4 weeks until target SU 
level reached 

• Maximum dose 900mg 

• Increase by 50mg in 
patients with renal 
impairment 

• Associated with rare side 
effects 

• Should not be given to 
patients with a positive 
screening for HLA-
B*5801 

• Co-prescribe with 
uricosuric if target SU 
level not reached 

Appropriate long term ULD 

• Starting dose of 
100mg/day 

• Increase by 100mg every 
2-4 weeks if needed 

• Adjust dose in renal 
impaired patients 

• May cause life-
threatening AHS 

First line ULT 

• Start at low dose 
100mg/day 

• Titrate upwards by 
100mg every 2-4 weeks 
until target SU level 
reached 

• Adjust dose according to 
renal function 

• Co-prescribe with 
uricosuric if allopurinol 
alone is unsuccessful in 
reaching SU target 

First line drug 

• Start at ≤100mg OD 

• Start at 50mg in CKD 
stage 4 or worse 

• Titrate every 2-5 weeks 

• Maximum dose 
800ng/day 

• Monitored every 2-5 
weeks during titration 

• Once SU level achieved, 
monitored every 6 
months 

• Risk of AHS 

• Prescribe in patients 
intolerant to febuxostat 

• If target SU level not 
met, co-prescribe with 
one uricosuric as second 
line approach 

First line drug 

• Starting dose 
≤100mg/day, and at 
lower doses for those 
with CKD stage ≥3 

• Subsequent titration 

• In patients with prior 
allergic response to 
allopurinol and cannot be 
treated with other ULT, 
allopurinol 
desensitisation is an 
option 

• Screen for HLA-B*5801 in 
patients of Southeast 
Asian descent and 
African American 
patients 

Febuxostat  
 Second line drug in patients 

• Contraindicated to 
allopurinol 

• Renal impairment that 
prevents increased 
allopurinol dose to reach 
SU level 

• Starting dose 80mg/day, 
increase after 4 weeks to 
120mg/day if necessary 
to reach target SU level  

 Prescribe febuxostat if 
patients: 

• Cannot achieve SU target 

• Intolerant to allopurinol, 
especially in patients 
with impaired renal 
function 

First line drug  

• Upward titration 

• Maximum dose 
80mg/day 

• Prescribe in patients 
intolerant to allopurinol 

• If target SU level not 
met, co-prescribe with 
one uricosuric as second 
line approach 

Second line drug 

• Cannot achieve target 
using allopurinol 

• Starting dose ≤40mg/day 
and subsequent titration 

• Not to be prescribed in 
patients with a new or 
history of cardiovascular 
event 
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BSR 2007  
(Jordan et al., 2007b) 

BSR 2017  
(Hui et al., 2017) 

EULAR 2006  
(Zhang et al., 2006a) 

EULAR 2016  
(Richette et al., 2017) 

ACR 2012 
(Khanna et al., 2012a, 
Khanna et al., 2012b) 

ACR 2020 
(FitzGerald et al., 2020) 

Uricosurics  
Prescribed in patients: 

• Intolerant to allopurinol 

• Under-excretes urate 

• Not over producers of 
urate 

• With normal renal 
function, prescribe 
sulphinpyrazone or 
probenecid 

• With mild-to-moderate 
renal insufficiency, 
prescribe 
benzbromarone 

Prescribed in patients: 

• Intolerant to allopurinol 
and febuxostat 

• With normal-mild 
impaired renal function, 
prescribe sulfinpyrazone 
or probenecid 

• With mild-moderate 
impaired renal function, 
prescribe benzbromarone 

• Contraindicated in those 
with urolithiasis or 
severe renal impairment 

Uricosuric drugs are an 
alternative:  

• With normal renal 
function, prescribe 
sulfinpyrazone or 
probenecid  

• with mild-to-moderate 
renal insufficiency , 
prescribe 
benzbromarone  

• Contraindicated in 
patients with urolithiasis 

 

Uricosuric drugs are an 
alternative: 

• If target SU level not 
reached on allopurinol 
alone 

• If intolerant to 
allopurinol 

• Benzbromarone is more 
potent than probenecid 

• Benzbromarone 
prescribed in patients 
with renal impairment 

Prescribed in patients:   

• Intolerant to allopurinol 
or febuxostat 

• With normal renal 
function, prescribe 
probenecid 

• Contraindications in 
patients who 
overproduce urate or 
have a history of 
urolithiasis 

• Consider fenofibrate and 
losartan 

Alterative in patients who 
cannot have allopurinol or 
febuxostat: 

• Prescribe low dose 
probenecid with 
subsequent titration 

Prophylaxis  
Following initiation of 
allopurinol or uricosuric 
drugs, consider: 

• Colchicine 0.5mg BD for 
maximum 6 months 

• NSAID or coxibs in those 
intolerant of colchicine, 
provided no 
contraindications, for a 
maximum of 6 weeks 

Following ULT initiation or 
up-titration, consider: 

• Colchicine 500μg BD up 
to 6 months 

• Low dose NSAID or 
coxibs with gastro-
protection if there are no 
contraindications 

• Lose-dose colchicine 
adjusted for renal-
disease is safer than low 
dose NSAID 

During the first months of 
ULT, consider: 

• Colchicine 0.5-1mg/day 

• NSAID with gastro-
protection if required 

• Benefits and harms need 
to be considered for both 
drugs 

In the first 6 months of ULT, 
consider: 

• Colchicine 0.5-1mg/day 

• Reduce dose in patients 
with renal impairment 

• Potential neurotoxicity 
and/or muscular toxicity 
in renal impairment or 
statin treatment 

• Alternatively use low 
dose NSAID 

After initiating ULT, 
consider: 

• Colchicine 0.5-0.6mg/day 

• Low dose NSAID with 
gastro-protection 

• Prescribe prednisolone If 
NSAID and colchicine not 
tolerated/indicated  

• Continue for >6 months, 
or 3/6 months once SU 
target reached and 
absence/presence of 
tophi 

Strongly recommends 
prophylaxis for 3-6 months 

• Colchicine 

• NSAIDS 

• Prednisolone   

CKD: Chronic kidney disease; Coxibs: Cyclooxygenase II inhibitors; NSAIDS: Non-steroidal anti-inflammatory drugs; SU: Serum urate; ULT: Urate-lowering therapy
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Modification of lifestyle and diet, and the management of comorbidities are adjunct measures 

in ULT. Patient education is required to improve diet and lifestyle. Guidelines recommend that 

patients should reduce consumption of alcohol and foods rich in purine and fructose, where 

excessive, although the evidence that these are effective management strategies is sparse. 

 

2.5.3 Indications for urate-lowering therapy 

Indication for ULT differs across guidelines (Table 2.2). Early guidelines (BSR 2007, EULAR 

2006) recommended that allopurinol should be used in patients with established gout. Despite 

these guidelines, uptake of ULT is poor. Analysis of primary care medical records from CPRD 

of patients with incident gout in 1997-2010 found 44% of patients at diagnosis had indications 

for ULT of whom, <1% were prescribed ULT. At 5 years from diagnosis, 86% of patients were 

indicated for treatment but only 30% were prescribed ULT (Kuo et al., 2014). This builds upon 

previous estimates that between 25% and 56% of patients were on ULT (Kuo et al., 2015b, 

Roddy et al., 2007b, Cottrell et al., 2013, Annemans et al., 2008). The majority of patients on 

ULT would be prescribed allopurinol (Cottrell et al., 2013). 

ULT prescription was more common in people with indications for ULT (recurrent flares, tophi, 

CKD, diuretic use etc.) apart from urolithiasis. Other factors associated with receiving ULT 

were male sex, higher deprivation, and higher Charlson comorbidity score (a summary 

measure of 17 diagnostic categories representing a person’s severity of health) (Charlson et 

al., 1994, Deyo et al., 1992, Kuo et al., 2014). 

Clarson et al. (2017) investigated factors influencing initiation of allopurinol. Only 40% of 

patients were prescribed allopurinol. Median time to first allopurinol prescription was 8 

months. Similarly to Kuo et al. (2014), CKD, diuretic use, and tophi were associated with 

increased likelihood of allopurinol prescription. In addition, patients with urolithiasis, two or 
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more gout consultations in the preceding 12 months, and who were overweight were more 

likely to be prescribed allopurinol. Conversely, males and those with increased Charlson 

comorbidity score were less likely to be prescribed allopurinol. Charlson score at diagnosis 

was higher in those who received allopurinol suggesting that people with comorbidity were 

more likely to receive allopurinol. 

Allopurinol is recommended across all guidelines to be taken daily starting at the low dose of 

up to 100mg and to be titrated upwards by 100mg every 2-4 weeks until target SU level is 

reached. This approach is not applied in most allopurinol users. Cottrell et al. (2013) found 

only 62% of allopurinol users were correctly prescribed a starting dose of 100mg, with 32% 

prescribed 300mg, and titration was not performed in 57% of allopurinol users. Annemans et 

al. (2008) found the most common average daily dose was 200-300mg in 63% of patients 

followed by 50-100mg in 21% of patients; only a minority of patients (2%) were prescribed 

>300mg.  

 

2.5.4 Adherence to allopurinol 

Allopurinol treatment is intended to be life-long however it is well known prescribing of 

allopurinol is suboptimal.  

Kuo et al. (2015b) evaluated the proportion of days (covered) (PDC) patients were prescribed 

ULT during each year of follow-up from diagnosis within CPRD. Adherence to treatment (PDC 

≥80%) improved over time from 28% in 1997 to 39% in 2012, although overall adherence was 

still poor.  

Also within CPRD, Scheepers et al. (2018) published a more comprehensive study evaluating 

persistence and adherence to allopurinol among patients diagnosed between 1987-2014 with 

gout. Median time to non-persistence (defined as no allopurinol prescription for at least 90 
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days) was 1,029 days. Non-persistence increased over time (Figure 2.3) with 39% stopping 

allopurinol at 1 year and 57% at 5 years. PDC was moderate with median 67% of patient 

observation time had a prescription for allopurinol. Of patients who stopped allopurinol, 57% 

restarted treatment and median time to restarting treatment was 643 days (Figure 2.4). Non-

persistence (52%) and PDC (mean 49%) was poor in this group of patients (Scheepers et al., 

2018).  

Figure 2.3: Kaplan-Meier curve for persistence (90-day gap) to treatment with allopurinol 
medication in the total study sample 

 

Scheepers et al, Medication adherence among gout patients initiated allopurinol: a retrospective cohort study in 
the Clinical Practice Research Datalink (CPRD), Rheumatology, 2018, vol. 57, issue no. 9, pgs. 1641-1650, by 
permission of Oxford University Press 
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Figure 2.4: Probability of restarting treatment over time 

 

Scheepers et al, Medication adherence among gout patients initiated allopurinol: a retrospective cohort study in 
the Clinical Practice Research Datalink (CPRD), Rheumatology, 2018, vol. 57, issue no. 9, pgs. 1641-1650, by 
permission of Oxford University Press 

  

A systematic review conducted in 2013 evaluated adherence to allopurinol (De Vera et al., 

2014). The systematic review found non-adherence was high in other countries (US, New 

Zealand, Israel, Netherlands and Spain); PDC ranged from 17-36% in three studies which were 

lower than 39-57% in the UK studies.  

Scheepers et al. (2018) found factors associated with non-persistence and non-adherence 

(PDC <80%) were female sex, smoking, and greater number of primary care consultations. 

Whereas factors associated with persistence and adherence of allopurinol use were older age, 

higher BMI, ex-smoking, alcohol consumption, more recent initiation of allopurinol, initiation 

of treatment within 90 days of diagnosis, prescribed anti-hypertensive treatment, diagnosis 
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of dementia, diabetes, and dyslipidaemia. This is comparable to the systematic review which 

found among the six included studies that older patients and those with hypertension were 

consistently reported to have higher adherence. Furthermore, occurrence of flares, absence 

of tophi and incident gout were associated with lower adherence (De Vera et al., 2014). An 

analysis of Swedish health records further found reduced kidney function was associated with 

non-adherence (Dehlin et al., 2017).   

 

2.6 Summary  

This chapter introduced gout, the condition of interest for this thesis. Epidemiological research 

has identified risk factors for gout and long-term consequences of gout. Organisations had 

published how gout should be diagnosed and managed.  

Since the main aim of this thesis is to investigate the effectiveness of allopurinol using 

observational EHR data, the next chapter will describe a narrative review which will examine 

how published observational studies of the effectiveness of allopurinol have accounted for 

confounding in their analysis.   
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3 A narrative review of observational studies evaluating 

the effect of allopurinol in gout  

3.1 Objectives 

The objective of this chapter was to perform a narrative review of observational studies 

assessing the effects of allopurinol in the treatment of gout, and to establish the range of 

study designs and statistical methods used to control for confounding variables in the 

published literature. 

 

3.2 Literature search strategy and data extraction 

A literature review protocol (Appendix A) was developed specifying details relating to search 

strategy and study selection process in order to optimise identification of relevant studies.  

Throughout the literature review process, assistance was sought from the designated 

departmental systematic literature review support team when needed, and attendance of the 

departmental systematic literature review workshop.  

Search terms were compiled from guidance from the supervisory team and the search was 

conducted in five databases (AgeLine, CINAHL, EMBASE, MEDLINE, and Web of Science) from 

the date of inception to 4th October 2014, for full-text articles published in English. The search 

terms ‘Gout’ and ‘Allopurinol’ or equivalent e.g., ‘podagra’ and brand names for allopurinol, 

were searched for in the title and abstract; the full search strategy for MEDLINE is given in 

Appendix B. The search strategy was broad to include any outcome and any comparator group 

including different drugs, dosage of allopurinol, or a non-pharmacological intervention.  

The inclusion criteria were:  
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• articles evaluating the effectiveness of allopurinol (versus any comparator group) on 

any outcome in patients with gout  

• observational studies of any design including: cross-sectional, cohort, case-control, 

and case-crossover studies 

The exclusion criteria were:  

• studies without a comparator group 

• randomised controlled trials 

• studies undertaken exclusively in children aged <18 years 

• non-published material/grey literature 

Screening of search results (titles, abstracts, and full texts) using pre-defined inclusion and 

exclusion criteria, was performed independently by one reviewer (T Rathod-Mistry (TRM)) 

with a subsample screened by two independent reviewers (M Blagojevic-Bucknall (MBB)/E 

Roddy (ER)). Originally, articles not published in English were included however approximately 

half of eligible titles with no abstracts (n≅200) came from non-English journals. Due to time 

constraints, articles not published in English were excluded. Further articles were excluded if 

the entire study sample under analysis did not have gout, for example studies with mixed 

populations where people with hyperuricaemia but not gout were included alongside people 

with gout, or if there was contamination of treatment groups such that the exposure group 

contained participants taking any anti-gout medication, for example allopurinol or 

probenecid. To ensure eligible articles were not missed from the search strategy, the 

references of the eligible articles were manually screened. Reviewers ER and MBB screened 

titles that had no abstract; any disagreements were resolved by retrieving full text and 

discussion.  
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Data extracted from eligible articles were: study design that may have been used to control 

for confounding; setting and source of data; sample size used in analysis and length of follow-

up period; gout outcomes; how exposure to allopurinol, dosage, and treatment duration were 

recorded and analysed; statistical models used to adjust for confounding variables; how 

unmeasured confounding and missing data were handled. Treatment effect estimates were 

not extracted as meta-analysis and meta-regression were not performed as the aim was to 

conduct a narrative review of the methods that were used to control for confounding. 

Extracted data was entered into a pre-tested Excel spreadsheet devised with supervisors’ 

guidance. Data extraction was performed independently by TRM. Uncertainties concerning 

data extraction were discussed with ER and MBB. The following characteristics of the included 

studies were described narratively: study design, methods used to adjust for confounding, 

exposure to allopurinol, data sources, and gout outcomes. 

 

3.3 Description of included articles 

The search of databases yielded 8,195 records, 2,562 of which were duplicates. The exclusion 

criteria were applied to the remaining 5,633 titles, and subsequently to 1,153 abstracts, and 

then 209 full-text articles. Reasons for exclusion can be found in Figure 3.1. Thirty-five studies 

met the inclusion criteria. Manual reference checks of eligible articles yielded no further 

articles. One known eligible article was not identified by the database search as it was 

published ahead of print and was included. A total of 36 articles were therefore reviewed. 
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Figure 3.1 Systematic review flow chart 

 

Appendix C summarises the data extracted of the 36 articles. Study designs used to estimate 

the effects of allopurinol were: 

• Cohort studies (n=20) 

• Cross-sectional studies (n=11) 

• Case-control studies (n=3) 

• Case-crossover studies (n=2) 

 

8,195 records 

identified 

5,633 records for title 

screening 

1,153 records for 

abstract screening 

209 records for full 

text screening 

36 eligible articles 

Title screening exclusions (N=4,480) 
 
Non-English (1,253) 
Animal studies (105) 
Children studies (50) 
Not on the gout population (1,821)  
Narrative reviews (466)  
Randomised controlled trials (86)  
Case reports/qualitative studies (204)  
Not evaluating the effectiveness of allopurinol (495) 
 

Abstract screening exclusions (N=944) 
 

Conference abstracts (177) 
Animal studies (7) 
Children studies (1) 
Not on the gout population (34) 
Narrative reviews (266) 
Randomised controlled trials (85) 
Case reports (164) 
Not evaluating the effectiveness of allopurinol (210)  
 

Full-text screening exclusions (N=174) 
 

Non-English (1) 
Not on the gout population (27) 
Narrative reviews (16) 
Randomised controlled trials (13) 
Case reports (18) 
Not evaluating the effectiveness of allopurinol (99) 

 

2,562 duplicate records 



62 
 

3.4 Accounting for confounding in study design 

Cohort study  

Cohort design, which has the potential to infer causality as the temporal ordering of treatment 

and outcome is known, was the most popular study design. Two studies controlled for 

covariates via the study design. Kok et al. (2014) created a matched cohort between 

allopurinol users and non-users matching on seven baseline variables to make the two 

treatment groups similar. Despite initially finding 12,563 allopurinol users, only 20% were 

matched to a non-user. The number of valid matches was limited by its sample size and the 

number of covariates to match on. The incident user cohort study design of Dubreuil et al. 

(2015) improved upon the previous study by using propensity score (PS) matching that was 

conditional on a greater number of covariates (24), and more allopurinol users were matched 

to non-users (85%). One cohort study was nested within a case-control study design although 

no further details were given on how matching was performed (Alvarez-Nemegyei et al., 

2005). The other 16 studies did not use matching and simply assembled a cohort of patients 

with gout to follow-up. 

Cross sectional study  

Cross-sectional was the second most commonly used study design. As exposure to allopurinol 

and outcome is collected at a single time-point or over a short period of time, causality cannot 

be inferred as the temporal order between exposure and outcome is unknown, therefore only 

an association can be estimated. 

Case-control study  

A common misconception within case-control studies is that matching removes confounding 

of the matched covariates. Matching ensures outcome groups, rather than treatment groups, 

are comparable on the matching covariates however this may underestimate the treatment 
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effect as cases and controls may become too similar with regards to the distribution of 

treatment. The primary reason to match on covariates is to improve precision in the effect 

estimates upon adjustment for the matched covariates (Pearce, 2016).Three studies used a 

case-control study design however none of these studies adjusted for the matching covariates 

in treatment effect estimation. Thanassoulis et al. (2010) case-control study was nested within 

a cohort study, with cases and controls matched on calendar day of admission to the cohort 

allowing equal follow-up periods between matched sets of cases and controls. Both Hutton et 

al. (2009) and Stamp et al. (2012) had matched on demographics, with Stamp et al. (2012) also 

matching on diuretics and renal function.  

Case-crossover study  

Two studies, Zhang et al. (2012) and Neogi et al. (2014), used a case-crossover study design. 

Case-crossover studies are typically used to investigate intermittent exposures with short-

term effects on the risk of an acute outcome. The key advantage of case-crossover studies is 

that they allow cases to serve as their own control with individuals crossing between periods 

of exposure and non-exposure, thus eliminating confounding of individual characteristics that 

remain constant over time e.g., sex. However, within-individual confounding can remain when 

individual characteristics change over time e.g., medication use, thus requiring further 

analysis. Case-crossover studies are ideally used for a short follow-up period to minimise time-

varying confounding. 

 

3.5 Sources of data 

Data was collected from three sources: national administrative databases of routinely 

collected electronic health records (EHR) (n=9); medical record data collected from individual 



64 
 

or few rheumatology clinics and hospitals (n=22); recruiting patients from the general 

population (n=5).  

Administrative databases 

National administrative health care databases contain EHR for claims for services, procedures, 

and drugs for health insurance programs. Studies based on such data were most frequently 

based in the USA (Halpern et al., 2009, Hatoum et al., 2014, Kim et al., 2013b, Pandya et al., 

2011), with three other studies conducted in Taiwan (Kok et al., 2014), Canada (Thanassoulis 

et al., 2010) and New Zealand (Stamp et al., 2012). Use of such data allow large longitudinal 

studies to be conducted; six studies had sample sizes ranged from 1,768 to 35,577 patients 

and median follow-up ranged from 0.2 to 5.25 years. Furthermore, such data allowed one 

study to evaluate the effect of allopurinol on a rare outcome, allopurinol hypersensitivity 

syndrome (Stamp et al., 2012). Although administrative databases can be largely 

representative of the general population, there is less detailed clinical information in the form 

of free text, and generalisability may be limited if health care systems only cover those with 

health insurance; such patients may be healthier, more affluent, and more likely to be 

employed (Schneeweiss and Avorn, 2005).  

Two studies used data from The Health Improvement Network database (THIN) which hold 

records of 11.1 million patients from 562 primary care practices in the UK, covering 6.2% of 

the population. Dubreuil et al. (2015) and Rothenbacher et al. (2011) were able to analyse a 

large sample of 9,590 and 6,795 patients respectively however, the associated length of follow 

up was short (2.9 years and 6 months respectively).  

Rheumatology clinics and hospitals 

Twenty-two studies either reviewed medical records or recruited patients who underwent 

clinical assessments to collect data from rheumatology clinics or hospitals. These studies 
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tended to be small with sample sizes ranging from 31 to 1,288. Patients attending 

rheumatology clinics or hospitals may be more likely to have severe gout and more 

comorbidities, therefore results obtained from these studies may not be generalisable to the 

general population; on the other hand, diagnosis of gout is more likely to have been definite 

and may allow more covariates to be measured that may not be available in administrative 

databases.   

General population  

These studies recruited gout patients from the general population and collected data from 

questionnaires, medical record review and/or clinical assessment. Alternative study designs 

were used such as the case-crossover design used in two studies (Neogi et al., 2006, Zhang et 

al., 2012). These studies tended to be small with sample sizes ranged from 57 to 290 

participants although two studies were quite large with up to 724 participants. A disadvantage 

of using questionnaire data is that responses may be inaccurate if participants do not respond 

with introspective ability and honesty.  

 

3.6 Gout outcomes 

The 36 eligible studies reported association of allopurinol with various outcomes. Shown in 

Table 3.1, outcomes considered could be grouped into seven categories with the most number 

of studies frequently reporting SU level (n=14), gout flare (n=6), and cardiovascular outcome 

(n=4). Although many of the key outcomes relevant to gout were considered, actual time to 

occurrence of outcome was only taken into account in four studies (SU level <360µmol/L; 

various cardiovascular diseases; gout flare; all-cause mortality).  
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Table 3.1: Outcomes measured 

Outcome 
category 

Number of 
studies evaluating 

outcome 
Outcome (number of times analysed) 

SU level 14 
SU level (11); time to or attained SU level <360µmol/L (9); 
clearance or urinary excretion of urate/uric acid level (7) 

Gout flare 6 
Frequency of gout flares (3); occurrence of gout flare (3); time to 
gout flare (1) 

Vascular 
outcome 

4 

Cardiovascular event or sudden death due to cardiac causes (1); 
heart failure re-admission or all-cause mortality (1); myocardial 
infarction (1). 
 
Time to cardiovascular outcome requiring hospitalisation (1); 
coronary heart disease (1); stroke (1), hypertensive heart disease 
(1), heart failure (1), other cardiovascular disorders (1) 

Reactions to 
allopurinol use 

5 
Adverse event (1); allopurinol hypersensitivity syndrome (1); 
oxypurinol level (3); 

Renal disease 5 
Chronic kidney disease (1); clearance of creatinine (2); renal failure 
(1); Serum cystatin C concentration (1) 

Tophi 3 
Diameter of tophi (1); presence of tophi (2); time until tophi 
resolution (1); velocity of reduction in tophi (1) 

Urolithiasis 2 Stone composition (11); stone formation (1); 

Other 4 
Hospital admission (1); MSK physical disability (1); time to all-cause 
mortality (1); urinary pH (1); urinary volume (1)  

MSK: Musculoskeletal; SU: Serum urate.  

 

3.7 Exposure to allopurinol 

All 36 studies recorded allopurinol use at baseline therefore estimating the effect of initiating 

treatment. Five studies had taken into account the duration spent on allopurinol in different 

ways. Dubreuil et al. (2015) performed sensitivity analyses truncating follow-up at 1, 2 and 3 

years of follow-up to address the potential of patients discontinuing treatment although that 

study did not report the number of patients who actually discontinued treatment. Kim et al. 

(2013b) censored follow-up time when patients discontinued allopurinol use which was 

accounted for in modelling effect of allopurinol, and also stratified analysis by the number of 

days (<30, 31-90, 91-120 days) spent on allopurinol. Mak et al. (2009) adjusted for number of 
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years allopurinol was taken for in a regression model. Thanassoulis et al. (2010) compared 

outcome amongst non-users to those on allopurinol for less or more than 30 days in regression 

modelling. 

Eighteen studies modelled the effect of allopurinol dose on outcome in different ways. Five 

studies evaluated the effect of giving a higher or lower than recommended dose of allopurinol 

on outcome based on creatinine level (Dalbeth et al., 2006, Stamp et al., 2000, Stamp et al., 

2011b, Stamp et al., 2012, Vazquez-Mellado et al., 2001). One study stratified analysis by dose 

(Perez-Ruiz et al., 1998). The remaining studies adjusted for dose in regression models or 

compared the distribution of dose between those who had or did not have outcome.  

Zhang et al. (2012) and Neogi et al. (2014) were the only two studies to have collected 

information on allopurinol use every three months however, allopurinol use was not modelled 

as time-varying as conditional logistic regression was performed. Hatoum et al. (2014) 

reported the number of patients who changed treatment from allopurinol to febuxostat and 

vice versa however treatment was not modelled as time-varying. Six studies stated not 

accounting for adherence or compliance to allopurinol was a study limitation. 

 

3.8 Adjustment for confounding variables in analysis 

Apart from controlling for covariates via the study design (described in Section 3.4), covariates 

can also be adjusted for in subsequent analysis via the outcome model. Twenty studies did 

not adjust for confounding variables in their analysis whereas 13 studies did; three studies 

performed both unadjusted and adjusted analyses.  
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Unadjusted analyses 

Statistical tests used to determine if an association between allopurinol exposure and 

outcome exists without adjusting for covariates were:   

• Analysis of variance, Mann Whitney U test, Wilcoxon independent groups test, and T-

test (n=17 studies) 

• Chi-square test/Fisher’s test (n=14 studies) 

• Regression models, more specifically linear regression, Cox regression and mixed 

effects linear model (n=3 studies) 

• Likelihood ratio test (n=1 study) 

• Mantel-Haenszel odds ratio (n=1 study) 

The chi-square test/Fisher’s test, Mann Whitney-u test, analysis of variance, and the likelihood 

ratio test only determine if a treatment effect between allopurinol exposure and outcome 

exists at a pre-defined significance level, typically at 5%. These statistical tests do not inform 

the magnitude and direction of the treatment effect. On the other hand, the t-test, regression 

models, and the Mantel-Haenszel odds ratio estimates the magnitude and direction of the 

actual treatment effect and the associated standard error. Treatment effect estimates were 

expected to be biased due to no adjustment for covariates.  

Adjusted analyses 

Types of regression models used to determine if an association between allopurinol exposure 

and outcome existed whilst adjusting for covariates were:   

• Logistic regression (n=5 studies) 

• Conditional logistic regression (n=4 studies) 

• Cox regression (n=3 studies) 

• Linear regression (n=3 studies) 
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• Poisson regression (n=1 study)  

The disadvantages of using regression models are that the number of covariates that can be 

adjusted for may be limited by the study sample size, and model regression assumptions are 

imposed.  

A wide range of covariates that were controlled for are listed in Table 3.2. The covariates 

encountered can be grouped into five general categories: demographics, medication use, 

comorbidities, health care utilisation, and lifestyle factors. The most commonly controlled 

confounding variables were age (n=13), sex (n=12), and SU level (n=9). The median number of 

confounding variables adjusted or matched on was seven, ranging between one and 29. 

The majority of studies had at least controlled for demographics and comorbidities, with 

lifestyle factors rarely being adjusted for. Cardiovascular and renal diseases, either measured 

in the form of biomarkers, use of medications, or diagnosis, were often adjusted for in 

analysis. It is possible that adjusting for information on gout and healthcare utilisation may 

have indirectly adjusted for severity of gout and general health. 

All studies but two adjusted for confounding variables at baseline with the assumption that 

covariates were time-invariant. This assumption may not hold especially if the follow-up 

period is long, as patients may have new diagnoses, severity of gout may worsen or lessen, or 

there may be changes in lifestyle and other covariates. Although the two case-crossover 

studies by Zhang et al. (2012) and Neogi et al. (2014) collected information on confounding 

variables every three months for a year, subsequent analysis did not take this into account. 

All studies performed complete case analysis i.e., patients with missing covariate data were 

excluded from analysis, as their primary analysis; no studies looked at the sensitivity of missing 

data. Fifteen studies acknowledged treatment effects may be biased due to unmeasured 

confounding. 
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Table 3.2: Confounding variables controlled for via the study design or statistical analysis   

Category 
(no. of studies) 

Sub-category 
(no. of studies) 

 
Confounding variables (no. of studies) 
 

Demographics 
(n=14) 

- Age (13); sex (12); ethnicity (5); index date (3) 

Medication use 
(n=8) 

Gout medications 
(n=6) 

NSAIDS (6); colchicine (2); benzbromarone (1); 
corticosteroids (1); coxibs (1); intra-articular steroids 
(1); intravenous steroids (1); opioids (1); oral steroids 
(1) 

Cardiovascular 
medications 
(n=8) 

ACE inhibitors (4); ARBs (3); aspirin (2); beta-blockers 
(4); calcium channel blockers (2); diuretics (8); 
fibrates (2); hydrochlorothiazide (3); losartan (2); 
statins (3); antiplatelet agents (1); anticoagulants (1); 
aldosterone antagonists (1);  

Other  
(n=1) 

Insulin (1) 

Comorbidities  
(n=13) 

Heart disease 
(n=9) 

Atrial fibrillation (1); cardiovascular disease (3); 
diseases of the heart (1); heart failure (1); 
hypertension (7); ischaemic heart disease (2); 
myocardial infarction (1); stroke (1) 
 
Biomarkers: C-reactive protein (1); erythrocyte 
sediment rate (1)    

Lipodystrophic 
disorders 
(n=8) 

Disorders of lipid metabolism (1); dyslipidaemia (1); 
hyperlipidaemia (3) 
 
Biomarkers: Cholesterol (2); high density lipoprotein 
cholesterol (2); lipoprotein cholesterol (1); 
triglyceride (1) 

Renal disease 
(n=11) 

Chronic kidney disease (2); chronic renal failure (2); 
diseases of the urinary system (1); renal function (1); 
renal stones (1); stage of chronic kidney disease (1); 
stage of renal function (1); uremia (1); confidence to 
keep SU under control (1) 
 
Biochemical tests/biomarkers of renal function: 
Creatinine clearance (2); glomerular filtration rate 
(2); serum creatinine level (1) 

Other 
(n=8) 

Body mass index (4); COPD (1); Charlson comorbidity 
index (4); comorbidity index (1), diabetes (6); gastric 
ulcer (1); non-traumatic joint disorders (1); obesity 
(1) 
 
Biomarkers: Albumin level (2)  

Gout characteristics 
Gout 
(n=9) 

Duration of gout (1); tophi (2); year of gout diagnosis 
(1) 
Biomarkers: Serum urate level (9) 

Healthcare utilisation 
(n=6) 

- 

Cardiac procedures (1); emergency room visits (1); 
hospitalisations (1); prescription drugs (1); office 
visits (1); primary care practice visits (4); gout 
consultations (1) rheumatology visits (1); speciality of 
prescribing physician (1) 

Lifestyle factors 
(n=3) 

- 
Alcohol consumption (3); cherry intake (1);  
purine intake (2); smoking status (1) 

ACE: Angiotensin-converting enzyme; ARBs: Angiotensin II receptor blockers; COPD: Chronic obstructive 
pulmonary disorder; NSAIDS: Non-steroidal anti-inflammatory drugs. 
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3.9 Implications for the PhD project 

This narrative review systematically identified and assessed 36 observational studies that had 

evaluated the effect of allopurinol on gout outcomes.  

 

3.9.1 Strengths and limitations 

The key strengths of this literature review were that a systematic search was performed and 

in addition the references of eligible articles were manually checked to identify all 

observational studies evaluating the treatment effect of allopurinol in gout. Additional 

reviewers had screened a subsample of the search results and reviewed data extraction 

separately.  

It is possible that eligible articles could have been missed if they were published ahead of print 

but not identified by the database search; regression analysis adjusted for allopurinol but was 

not reported in the abstract due to lack of association with outcome; treatment effectiveness 

analysis was performed in a different population, say hyperuricaemia, and as a sensitivity 

analysis restricted analysis to patients with gout but this not reported in the abstract. 

Furthermore, some articles may have been eligible from the 1,253 articles published in 

languages other than English that were excluded. Cross validation was not performed, 

potentially increasing the chance of missing eligible articles and data extraction errors. 

This literature review highlighted possible improvements that can be made in the approach 

taken to estimate effect of allopurinol, and these are now briefly summarised. 
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3.9.2 Time-varying confounding 

Control for confounding could be improved in the majority of studies. Under half of the 36 

eligible studies controlled for baseline confounding; the remaining studies ignored 

confounding issues thus potentially yielding biased treatment effect estimates. Confounding 

was mostly controlled for using regression models. Only one study used PS matching to create 

comparable treatment groups. No studies attempted to model for time-varying treatment or 

covariates although few studies acknowledged that ignoring time-varying allopurinol use, 

adherence and compliance to treatment were limitations of the study. Fifteen studies 

acknowledged that residual confounding was likely owing to unmeasured confounding 

variables and lack of randomisation however, no attempt was made to revise the estimated 

treatment estimates to take this into account. Across studies, a wide range of covariates were 

considered however within studies, the median number of confounding variables adjusted or 

matched on was seven and ranged between one and 29. 

As explained in Section 2.5.4, adherence to allopurinol is poor and changes over time. In 

addition to time-varying treatment, time-varying confounding will also exist. Indications for 

allopurinol are likely to vary over time as flares become more frequent and may last longer 

and affect more joints, chronic gouty arthritis, tophi and bone erosion may develop in 

untreated patients.  

None of these studies have assessed such time-varying nature of indication for allopurinol nor 

its effect on outcome.  

 

3.9.3 Electronic health records 

Large EHR databases are increasingly being used for health research (Schneeweiss and Avorn, 

2005). Several studies analysed data from administrative databases for health insurance 
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programs mostly based in the USA. Only two studies had used primary care data from THIN 

that represents 6.2% of the UK population. As stated in Section 1.1, the advantages of using 

such data are that their large size is generalisable to the population of interest and represents 

routine primary care.  

No study had evaluated the effect of allopurinol on gout outcomes using primary care medical 

records from the Clinical Practice Research Datalink (CPRD). CPRD is comparable with THIN as 

both databases recruit practices that use the management software Vision (that records 

medical record data) thus there is considerable overlap in their patient pools. CPRD is 

representative of 8% of the UK population and allows linkage to more secondary databases 

such as Hospital Episode Statistics data. Since gout is primarily managed in primary care it was 

surprising to not see more studies using this data source. 

 

3.9.4 Allopurinol exposure 

Exposure to allopurinol was measured in different ways. Studies had either compared the 

effect of allopurinol use vs. non-use, amount of time taking allopurinol, or differing allopurinol 

doses. 

In practice, the recommended starting dose of allopurinol is 100mg daily which is gradually 

titrated upwards by 100mg every 2-4 weeks in order to lower SU levels below 360µmol/L 

(Zhang et al., 2006a); dosages greater than 300mg are needed to meet this target in over half 

of patients (Khanna et al., 2012a). Furthermore, allopurinol dosage needs to be adjusted for 

in patients with renal impairment (Khanna et al., 2012a). In practice, allopurinol dose is often 

not titrated and patients may remain on their starting dose (Cottrell et al., 2013). As stated 

above in Section 3.9.2, in addition to dose potentially changing over time, indications for 

treatment, and adherence to treatment may also change over time.  
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Definition of allopurinol will be dependent upon how in practice one could model time-varying 

treatment in the presence of time-varying confounding.  

 

3.9.5 Outcomes 

Gout is widely known to be associated with comorbidity particularly with vascular and renal 

diseases. Unsurprisingly, studies evaluating the effectiveness of allopurinol have considered a 

wide range of outcomes however only mortality and gout flares have been considered so far 

in studies undertaken using data from primary care medical records. Primary care EHR provide 

an opportunity to observe a wide range of outcomes that can take many years after diagnosis 

to develop. Therefore, a high quality observational study using data from a large primary care 

EHR database, such as CPRD, to evaluate the effect of allopurinol on such outcomes is needed. 

A retrospective cohort study is the ideal observational study design to evaluate effectiveness 

of allopurinol using EHR data as it would allow calculation of incidence rates or the relative 

risk of multiple outcomes between the treatment groups. The advantage of using EHR data is 

that the outcomes of interest are routinely collected and available for analysis; prospectively 

collecting data is not feasible due to very long follow-up required for some outcomes, such as 

death, to occur.  

Outcomes of interest in this thesis are target SU level, mortality, vascular and renal diseases, 

health care contacts for gout in primary and secondary care, and joint replacement. Reasons 

why these outcomes were chosen, and limitations of existing studies identified from this 

review are described below. 

Target SU level 

As explained in Section 2.3.1, hyperuricaemia is a primary risk factor for gout and reducing SU 

level is the most important treatment objective (Section 2.5.2). Thus, reaching target SU level 
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≤360μmol/L, as recommended by EULAR (Zhang et al., 2006a), was considered the primary 

outcome. 

This review identified SU level as the most frequently evaluated outcome. Eight studies had 

evaluated the effect of allopurinol on attaining target SU ≤360μmol/L. Studies had found the 

median time to achieve target was 37 weeks (Lim et al., 2012), target SU level was reached by 

29-41% of allopurinol users by 6 months and 48-72% by 12-24 months (Lim et al., 2012, 

Hatoum et al., 2014), and attaining target was more commonly achieved in those taking 

allopurinol than non-users (Dalbeth et al., 2006, Roddy et al., 2007b) and in those with higher 

doses (Pandya et al., 2011).   

No high quality study exists comparing the effects of allopurinol use with non-use on the time 

to achieve target SU level using primary care EHR databases. Only cross-sectional studies had 

compared allopurinol use vs. non-use but cannot infer causal effects (Dalbeth et al., 2006, 

Dalbeth et al., 2012, Roddy et al., 2007b), whilst cohort studies had used febuxostat or 

uricosuric drugs as the comparator group (Hatoum et al., 2014, Perez-Ruiz et al., 1998, Stamp 

et al., 2011b). Two studies that had used EHR from large administrative databases were based 

in the USA (Hatoum et al., 2014, Pandya et al., 2011), with the majority of studies conducted 

in non-UK rheumatology/hospitals; only one small cross-sectional study had recruited people 

from the general UK population (Roddy et al., 2007b). Few studies had adjusted for baseline 

covariates (Dalbeth et al., 2012, Hatoum et al., 2014, Pandya et al., 2011) however no studies 

had modelled time-varying treatment or covariates.  

All-cause mortality 

Gout is known to be associated with premature mortality (Lottmann et al., 2012) with 

common causes of death being vascular disease (particularly from coronary heart disease, 

stroke and heart failure), endocrine and metabolic diseases (mostly diabetes), and kidney 
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disease (Kuo et al., 2011). Interest is in whether allopurinol use is protective against premature 

morality in people with gout. 

This review identified one high quality cohort study using data from THIN (a UK primary care 

EHR database) that had evaluated the effect of allopurinol on time to all-cause mortality and 

had shown allopurinol use was protective. Although this study had used PS matching to create 

comparable treatment groups on several covariates, information was lacking on how PS was 

performed and the assessment of comparability of treatment groups. To address the potential 

for allopurinol users to discontinue treatment, that study had used a suboptimal approach 

censoring patient follow-up at 1, 2, and 3 years after treatment initiation (Dubreuil et al., 

2015), when a better approach would have been to model allopurinol use as time-varying.  

Further investigation is needed whether modelling allopurinol as time-varying yields similar 

conclusions, and to perform statistical analysis in a more rigorous manner ensuring PS analysis 

performed well.  

Vascular diseases 

Gout has been shown to be associated with coronary heart disease and peripheral vascular 

disease among men and women, and associated with cerebrovascular disease among women 

(Clarson et al., 2015). A systematic review conducted in 2013 had shown there is limited 

evidence allopurinol reduces risk of cardiovascular disease (Fleeman et al., 2014) thus a need 

for higher quality studies is needed.  

The second most commonly evaluated outcome as identified by the review in this chapter was 

vascular disease which covered a range of conditions such as myocardial infarction and stroke. 

Two studies had used administrative databases of EHR to evaluate effectiveness of allopurinol. 

One matched cohort study found allopurinol users had an overall increased risk of any 
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cardiovascular event, and had separate increased risks for coronary heart disease, 

hypertensive heart disease and heart failure than non-users but no association was observed 

for stroke (Kok et al., 2014). Conversely, a case-control study nested within a cohort found 

allopurinol use had reduced odds of heart failure readmission/death than non-users 

(Thanassoulis et al., 2010). Despite using EHR data, median follow-up was short ranging from 

2 to 5 years in the two studies. Two other studies had considered myocardial infarction and 

cardiovascular event or death however they were of cross-sectional design and did not adjust 

for any covariates. 

No studies had evaluated effect of treatment on vascular disease including peripheral vascular 

disease using UK primary care EHR data especially modelling allopurinol and covariates as 

time-varying.  

Renal disease 

As seen in Section 2.3.6, the association of renal disease and gout is widely known to be bi-

directional. Few studies had evaluated the effectiveness of allopurinol on renal disease using 

various outcome definitions, with one systematic review showing there is limited evidence 

allopurinol reduces risk of renal disease (Fleeman et al., 2014).  

Five small studies based in rheumatology clinics or hospitals, had evaluated the effect of 

allopurinol on renal disease were identified in this review. Various definitions for renal disease 

were used including chronic kidney disease and creatinine clearance. Four of these studies 

had found no association between allopurinol use and renal disease (Alvarez-Nemegyei et al., 

2005, Cheyoe et al., 2012, Perez-Ruiz et al., 1998, Perez-Ruiz et al., 2010). One study had found 

allopurinol users had worse renal function than non-users, and was the only study to use non-

allopurinol use as the comparator group (Choe et al., 2010). Follow-up in the two cohort 



78 
 

studies were short of approximately one year and did not adjust for any covariates (Perez-Ruiz 

et al., 1998, Perez-Ruiz et al., 2010). 

Overall effectiveness of allopurinol on renal disease is limited with mixed results on presence 

of association being reported, suboptimal methods, did not model allopurinol and covariates 

as time-varying, and not had used UK primary care EHR data.  

Health care contacts for gout 

Few studies had evaluated frequency of gout flares within EHR data and hospital admissions. 

A large cohort study of an administrative data containing health insurance claims found 

allopurinol users had a higher (adjusted) rate of claims of gout flares than colchicine users 

over a short follow-up period of less than a year; follow-up was short as it was censored when 

patients discontinued treatment (Kim et al., 2013b). A small hospital based cohort study used 

clinical interviews to ascertain the frequency of flares treated with either colchicine or 

corticosteroids over a 15 month period; that study found longer periods of allopurinol use was 

not associated with the number of gout flares (Mak et al., 2009). One small case-control study 

found allopurinol use compared with non-use, and lower doses were associated with 

recurrent hospital admission during a 12-month period over five years (Hutton et al., 2009). 

Evidence is lacking on whether allopurinol use leads to reduced number of primary care 

consultations for gout-related hospitalisations.   

Joint replacement 

As described in Section 2.3.7, osteoarthritis has been shown to be associated with gout flares 

within a joint. People with gout may be at an increased risk of joint replacement as 

osteoarthritis is the main reason for patients to undergo this procedure. This review had found 

no studies had evaluated whether allopurinol use was associated with joint replacement.  
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3.9.6 Effectiveness of allopurinol in subgroups 

One of the clinical objectives of this PhD project is to evaluate effectiveness of allopurinol 

stratified by presence of renal disease and severity of hyperuricaemia. No studies have 

evaluated effectiveness of allopurinol within these clinically important subgroups. 

 

3.10 Conclusions 

To conclude, this chapter presents a narrative review of observational studies of the 

effectiveness of allopurinol. Common limitations of these studies were that none modelled 

allopurinol use as time-varying, and often studies did not even control for baseline covariates. 

The majority of studies were non-UK based and frequently set in rheumatology clinics and 

hospitals. Only a few studies were based in the UK and used primary care data. The next 

chapter will describe how a UK EHR database (CPRD) will be used to address some of the 

limitations identified from this review.   
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4 Data source and study sample 

Preparing electronic primary care medical records for research is a complex task. This chapter 

describes the data source used in this PhD project as well as data preparation and 

management procedures. More specifically, the objectives for this chapter are to: 

1) Describe the data source, namely the Clinical Practice Research Datalink (CPRD). 

2) Define and describe how the study sample was derived. 

3) Define the start and end dates of follow-up. 

4) Define outcomes, treatment, and covariates. 

 

4.1 Primary care electronic health record databases 

In the UK, gout is largely managed in primary care with annual consultation prevalence of 

4.7/1,000 in 2007 (Elliot et al., 2009). As identified from Chapter 3, there are a lack of studies 

using large EHR databases evaluating effectiveness of allopurinol in gout. For this PhD project, 

data from CPRD was utilised, as CPRD is the largest, well established UK primary care database, 

has been validated the most, and has been used in over 2,500 publications.  

CPRD (GOLD) contains anonymised, routinely collected research quality medical records 

spanning from 1987 to the present time, jointly supported by the Medicines and Healthcare 

products Regulatory Agency and National Institute for Health Research. The database holds 

medical records on over 11.3 million residents registered with over 674 UK primary care 

practices. Over 95% of the population is registered with a primary care practice (Lawrenson 

et al., 1999). Active patients who are alive and currently registered, represent 6.9% (4.4 million 

patients) of the UK general population and are similar in terms of age (although there may be 

some under-representation in younger age groups), sex, and ethnicity. However, CPRD may 

not be representative of all practices as CPRD practices tend to be larger than the national 
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average (Herrett et al., 2015, Campbell et al., 2013). CPRD GOLD collects data from practices 

that use the management software Vision which records medical record data however, Vision 

is only used by 9% of English practices compared to more popular systems such as EMIS (56%) 

and SystmOne (34%). There are geographical differences; Vision practices are predominantly 

based in London, South of England, greater Manchester, and Birmingham and are under-

represented in the North and East of England (Kontopantelis et al., 2018). Furthermore, many 

Vision practices have migrated to EMIS from 2014 resulting in patient follow-up being 

censored. 

Data available in CPRD include demographic details, lifestyle factors, consultations, 

prescriptions, referrals, death, and other data available via linked datasets, such as the Index 

of Multiple Deprivation (IMD) data, Office of National Statistics (ONS) mortality data, and 

Hospital Episode Statistics (HES) records. Data entries such as diagnoses, symptoms and 

processes of care are recorded and stored as Read codes and prescribed drugs stored 

according to their British National Formulary equivalent product code. The Quality and 

Outcomes Framework (QOF) was introduced in 2004 and aimed to improve quality of care by 

financially incentivising general practitioners (GPs) to record and monitor patient health, thus 

patient data had become more complete over time, for example, smoking status (Doran et al., 

2011). The accuracy and completeness of the CPRD data has been validated extensively 

(Herrett et al., 2010). In the UK, the GP is responsible for the majority of patients’ medical 

care, including referral to specialist care, illness prevention and co-ordination of healthcare 

following hospitalization, and other medical events, making CPRD an ideal data source for 

assessing the impact of allopurinol on long term outcomes in patients with gout. 

Approval for access to anonymised medical records was obtained by the Independent 

Scientific Advisory Committee (ISAC). The ISAC approval number is 14_163 and the ISAC 

application form is in Appendix D. Primary care medical records were obtained in January 2015 
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with linkage obtained in July 2015. Details of the relevant data required for this thesis are 

given in Table 4.1.  

All patients were assigned a unique patient identification number thus linking each patient’s 

medical history across different aspects of care. Dates were provided when patients first 

registered with the practice, at each point of contact with primary care, and if applicable when 

the patient left the practice.   

Table 4.1: Relevant information obtained from CPRD 

Category Data collected 

Patient details Demographics: Year of birth, sex, primary care practice 

Registration details: date of first registration, date and reason of transfer out 
of primary care practice, date of death 

Primary care practice details Region where the primary care practice is located, date of last data collection, 
last known date data is checked to be of research quality 

Clinical details Recorded medical codes and date of symptoms, signs, and diagnoses and the 
date they occurred 

Referrals Recorded medical codes and date of patient referrals to secondary care such 
as hospitals and specialist care centres 

Additional information Various information supporting medical codes on height, weight, body mass 
index, alcohol consumption and smoking status 

Test results Results of pathology tests ordered. Serum urate levels were of interest only.  

Prescriptions Recorded product codes and date of prescription including schedules and 
issues for repeat prescriptions, dosage, and instructions on how to take the 
therapy 

Index of multiple deprivation Categorisation of the Index of Multiple Deprivation 2004 into quintiles, deciles 
and twentiles where the patient resides 

ONS mortality Date and cause of death 

Hospital episode statistics Recorded ICD-10 codes of reason for inpatient and day case admissions to 
hospital and date of discharge 

ONS: Office of National Statistics 

Details of the patient consultation were recorded in various formats. Clinical symptoms, signs, 

and diagnoses were entered via Read codes. The Read code system is a standard clinical coding 

system used by GPs where a Read code describes the clinical (or Read) term of the main reason 

for the patient’s consultation. Read codes have a hierarchical structure where the first 

character indicates the chapter, for example a class of conditions, and subsequent characters 

are subchapters, grouping similar conditions, until the disease itself has been specified. For 
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example, the Read code for Gout is C34 where ‘C’ denotes all endocrine, nutritional, metabolic 

and immunity disorders; within this, ‘3’ denotes other metabolic and immunity disorders; 

within this, ‘4’ denotes gout. Subchapters of C34 identify different types and causes of gout; 

for example, C345 identifies gout due to impairment of renal function. For certain Read codes, 

additional information may be entered into the structured data area in to provide complete 

information; for example, the Read term 'O/E Blood Pressure Reading', the actual blood 

pressure reading needs to be recorded. Each distinct Read code was assigned a unique 

numeric medical code derived by CPRD in order to retrieve necessary details.  

Gemscript is a coding system based on the NHS dictionary of medicine and devices used by 

GPs to manage prescription of therapies. Each distinct Gemscript therapy was assigned a 

unique numerical product code within CPRD, which were used to retrieve therapy events.  

ONS mortality and HES data were coded using the International Classification of Diseases (ICD) 

system version 10. Similar to the Read code system, the ICD-10 codes have a hierarchical 

structure. For example, the ICD-10 code for gout is M10; the first character ‘M’ refers to 

conditions of the musculoskeletal system and connective tissue and the number ‘10’ refers to 

gout. 

Primary care medical records are considered to be accurate in terms of the information they 

contain. A systematic review of 212 publications validated 183 different diagnoses in CPRD 

(formally known as the General Practice Research Datalink (GPRD)) and had shown the median 

89% of cases were confirmed using additional internal or external information (Herrett et al., 

2010). With regards to a diagnosis of gout, a GPRD study has shown that among patients 

recorded as having gout and were prescribed gout medication (allopurinol, colchicine, 

probenecid, indomethacin, or other NSAIDS), 86% were confirmed as having gout; in addition 

if a patient had a high serum urate (SU) level, 100% were confirmed as having gout (Meier and 

Jick, 1997). Data are also considered complete with 87% of diagnoses recorded on the 
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database from 58 UK primary care practices (Jick et al., 1991). Disadvantages of using primary 

care medical records are that patients only present the illness they want to treat to their GP 

thus mild cases may not present, data quality across GPs and practices may vary although 

practices are required to have good quality data in order to contribute to CPRD, variable 

recording of lifestyle factors such as body mass index (BMI), alcohol consumption, diet, and 

smoking status, and loss of follow-up if patients moved practice.  

 

4.2 Study design and population 

A retrospective cohort study design was used. The study sample consisted of patients 

consulting for gout between the 1st January 1997 and the 31st December 2002. Patients who 

were under 18 years of age at their first gout consultation within this period were excluded. 

This would have resulted in minimal exclusions as gout is rare in patients younger than 20 

years with 5.11 patients consulting for gout per 100,000 patients in this age group (estimate 

was derived from CPRD) (Kuo et al., 2015b). This five-year period was chosen as CPRD linkage 

to HES was available from 1997 onwards and allowed patients to have a sufficiently long 

follow-up period of a maximum of 18 years. This five-year period was chosen as there was a 

sufficient number of consulters for gout needed to adequately power analyses to detect 

treatment effect (see Section 4.5). 

For each patient, the date of start of the follow-up (known as the index date), was defined as 

the first consultation for gout in the period 1st January 1997 to 31st December 2002 and had 

no prescription for allopurinol or uricosuric drugs in the two years prior to consultation. If the 

patient was prescribed allopurinol or uricosuric drugs (sulfinpyrazone, probenecid or 

benzbromarone, definitions can be found in Section 4.4.4) in the two years prior to their gout 

consultation, a cycle occurred where the subsequent gout consultation, up until the end of 
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2002, was identified and checked for any prescription (regardless of dosage and duration) for 

allopurinol and uricosuric drugs in the two years beforehand. This was repeated until a gout 

consultation was identified as the index date or the patient was excluded if no index date was 

found. The study sample contained a mixture of prevalent and incident consulters for gout. 

This was to ensure previous effects of allopurinol and uricosuric prescription did not have an 

impact on estimating treatment effect. Febuxostat was licensed for use in 2009 hence it was 

not required to consider this drug when selecting the index date. Figure 4.1 illustrates this 

process. 

Practices had to have consented to linkage to the HES, ONS mortality, and IMD databases to 

be included in this study. Patient-level IMD measured in 2004 was available for England-based 

practices but was not available for Wales, Scotland, and Northern Ireland. Therefore, patients 

registered to non-England based practices were excluded and findings may not be 

generalisable to the rest of the UK. Patients had to have been registered with their practice 

for at least two years prior to their gout consultation and had to have at least one year of 

follow-up time. 

The latest date of follow-up was defined as the minimum of the date of transfer out of the 

practice, practice last data collection (December 2014), CPRD derived date of death and ONS 

date of death (see Section 4.4.1 for further details on recording of death).  

Patients were followed up from their index date and follow-up ended if one of the five 

scenarios occurred first: (1) the outcome of interest, (2) prescribed sulfinpyrazone, 

probenecid, benzbromarone or febuxostat; this allowed one to evaluate the effect of 

allopurinol without interference from the effect of these drugs, (3) transferred out of practice, 

(4) last data collection (31st December 2014), or (5) death.  
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Figure 4.1: Selection of the index date 

 

The code lists identifying gout is listed in Section 4.4.4, allopurinol is listed in Section 4.4.2, 

and uricosuric drugs and febuxostat are listed in Section 4.4.4.  
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4.3 The landmark method 

4.3.1 Time-invariant treatment and covariates 

In practice, allopurinol can be prescribed many years after a gout diagnosis (Kuo et al., 2014). 

The time period prior to prescription of allopurinol needs to be adequately handled in analysis 

otherwise the treatment effect may suffer from immortal time bias. Immortal time bias is 

defined as a period of follow-up where outcome cannot be considered to occur. For example, 

using death as a outcome, for allopurinol users survival time would commence upon 

prescription for allopurinol thus death cannot be considered to occur prior to date of 

prescription and patients are considered ‘immortal’; in non-users such a requirement that 

does not apply as survival time starts from study entry. Allopurinol users would accrue survival 

time waiting for treatment and consequently appear to live longer than non-users biasing 

treatment effect (Lévesque et al., 2010, Dafni, 2011). 

To overcome this issue, one approach is the landmark method that was implemented for this 

study. A time point after the index date (i.e., the landmark date) was chosen allowing 

allopurinol treatment to be determined using prescriptions from the index date up until and 

including, the landmark date (i.e., the landmark period). Follow-up commenced from the 

landmark date for both allopurinol users and non-users ensuring that outcome was dependent 

on treatment status at the landmark date. Patients who had the outcome during the landmark 

period were excluded and non-users who were prescribed allopurinol after the landmark date, 

a change in treatment status, was ignored in the analysis. 

The landmark method is best used in situations where outcome is unlikely to occur early on 

during follow-up but the likelihood of being treated early on was high. Given the range of 

outcomes with some likely to occur early on, for example gout consultation, and some likely 

to occur later, for example cerebrovascular disease, the primary analysis was conducted using 
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a one-year landmark period. Sensitivity analysis using a two-year landmark period was then 

performed to evaluate robustness of treatment effects against misclassification of treatment. 

There is a balance between lessening misclassification of treatment status and excluding too 

many patients who had the outcome prior to the landmark date leading to a loss of power. 

Furthermore, Kuo et al. (2014) had shown of the patients who received urate-lowering 

therapy (ULT), most had received treatment within 5 years. The landmark method is illustrated 

in Figure 4.2. Patients prescribed three or more months of allopurinol were deemed 

allopurinol users (treatment definition can be found in Section 4.4.2). To ensure temporal 

ordering, covariates were measured in the interval prior to the index date (the baseline 

period).  

Figure 4.2: The landmark method at 1 and 2 years 

 

Several studies had used the landmark method for treatment effect estimation. For example, 

Kuo et al. (2015a) evaluated the effect of allopurinol on all-cause mortality in the gout 

population, and Hsiang et al. (2015) evaluated the effect of statins on death in patients with 

hepatitis.  
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Within each landmark period, if a patient was prescribed ≥3 months of allopurinol, they would be classed 

as an allopurinol user otherwise classed as a non-user. Follow-up would commence from the landmark 

date. As the length of the landmark period increases, more patients would be classified as allopurinol 

users but less patients would be analysed due to increased number of patients having outcome in the 

landmark period. 
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4.3.2 Time-varying treatment and covariates 

To capture changes in treatment and covariates over time, follow-up time was divided into 

discrete intervals. As medical record collection is not set-up for research, data will not be 

measured repeatedly at set time periods that one may be able to control in a prospective 

cohort study. Data is only collected when patients need to consult their GP, and data of 

interest will be measured at different times. For example, a patient presenting with gout for 

the first time may be recorded as gout, but SU level measurements and screening for 

comorbidities may occur later. It is anticipated there will be missing data over time.   

The length of intervals needs to capture how frequently data is recorded but not to have too 

many intervals such that analyses are not cumbersome and computationally intensive. SU 

level is the key confounding variable as it is a strong indication for allopurinol use. Guidelines 

suggest this should be measured every 6 months from treatment and thereafter yearly (Jordan 

et al., 2007b). Initial interval length considered was 6 months however when proceeding with 

time-varying PS subclassification analysis (Section 6.3), fitting of multi-level logistic models did 

not converge or had taken a long time to converge. Given SU level was mostly missing and had 

to be treated as time-invariant, and the majority of covariates whose status could only change 

once thus repeated measures were mostly static (see Section 4.4.3), one-year intervals were 

instead chosen.  

Within each interval during follow-up, covariates, treatment, and outcome were repeatedly 

measured. Patients had a baseline interval (the period prior to the index date) with follow-up 

represented by at least two intervals. The number of intervals did not succeed the maximum 

follow-up time. 

To establish temporal ordering between covariates, treatment, and outcome, covariates 

measured in the previous interval were used to predict treatment in the current interval. Then 
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treatment was used to predict outcome in the subsequent interval. This is illustrated in Figure 

4.3; covariates measured in the last two intervals and treatment measured in the last interval 

of follow-up were not required as outcome was not recorded in subsequent intervals. This is 

an extension of the landmark method with the interval for covariates and treatment 

repeatedly created over time.  

Figure 4.3: Temporal ordering of covariates, allopurinol treatment and outcome 

 

Longer intervals were considered as a sensitivity analysis, for example two years. However, 

due to the way temporal ordering was imposed, covariates used to predict treatment may 

have occurred at the most four years ago; covariates measured in the same interval as 

treatment were more likely to have stronger associations. Therefore, longer intervals as a 

sensitivity analysis was not considered.  

 

4.4 Definitions of outcomes, treatment, covariates and other 

Definitions for most outcomes, covariates, and treatment were based on Read codes or 

Gemscript codes. To identify all relevant codes a process was undertaken: 

1) Code lists were identified from previous published work using medical record data 

undertaken in Primary Care Centre Versus Arthritis, Keele University. 
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2) An online clinical codes repository (clinicalcodes.org (Springate et al., 2014)) was 

used to identify further codes. 

3) Read codes under the highest subchapter from codes identified in (1) and (2) were 

searched for using the CPRD medical browser; the drug substance names were 

searched for using CPRD product browser. 

4) The lists of consolidated codes were then reviewed and finalised by two GPs and a 

rheumatologist where applicable.  

In some instances, vascular and renal diseases were both covariates and outcome; the same 

Read codes were used to define both in this instance. Table 4.2 lists the source of studies 

whose Read code lists were available and were potentially used in this PhD project.   
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Table 4.2: Source of Read codes and Gemscript codes 

Comorbidities Source for Read codes 

Anxiety Burton et al. (2013), Prior et al. (2015), Walters et al. (2012) 
Depression Kontopantelis et al. (2012), Burton et al. (2013), Prior et al. (2015), Rait et al. 

(2009) 
Cerebrovascular disease PCC (2012), Reilly et al. (2015), Kontopantelis et al. (2014), Khan et al. (2010), 

Clarson et al. (2015) 
Coronary heart disease Bhattarai et al. (2012), Doran et al. (2011), Hawkins et al. (2013), Horsfield 

(2004), PCC (2012), Khan et al. (2010), Reeves et al. (2014), Reilly et al. (2015), 
Parisi et al. (2015), Kontopantelis et al. (2015b), Kontopantelis et al. (2015a), 
Kontopantelis et al. (2014), Clarson et al. (2015), Roughley et al. (2018) 

Type I and II diabetes Khan et al. (2010), Kontopantelis et al. (2014), Kontopantelis et al. (2015b), 
Kontopantelis et al. (2015a), PCC (2012), Reilly et al. (2015), Reeves et al. 
(2014), Clarson et al. (2015), Roughley et al. (2018), Horsfield (2004) 

Gout consultation Clarson et al. (2015), Chandratre et al. (2018) 
Hyperlipidaemia Clarson et al. (2015), Roughley et al. (2018) 
Hypertension Horsfield (2004), PCC (2012), Doran et al. (2011), Kontopantelis et al. (2015b), 

Kontopantelis et al. (2015a), Reeves et al. (2014), Clarson et al. (2015), 
Roughley et al. (2018) 

Hip or knee joint replacement Culliford et al. (2015) 
Osteoarthritis  Kontopantelis et al. (2015a), Reilly et al. (2015) 
Peripheral vascular disease Doran et al. (2011), Khan et al. (2010), PCC (2012), Clarson et al. (2015), 

Roughley et al. (2018) 
Renal disease Doran et al. (2011), Reilly et al. (2015), PCC (2012), Kontopantelis et al. 

(2015b), Khan et al. (2010), Clarson et al. (2015), Roughley et al. (2018) 

Lifestyle factors  

Body mass index (Clarson et al., 2015, Doran et al., 2011, Reeves et al., 2014, Stocks et al., 2015, 
Fairhurst et al., 2014); 

Alcohol consumption Fairhurst et al. (2014). 

Smoking status (Clarson et al., 2015, Doran et al., 2011, Fairhurst et al., 2014, Kontopantelis 
et al., 2014, Kontopantelis et al., 2015b, Reeves et al., 2014, Springate et al., 
2015, Stocks et al., 2015). 

Medications Source for Gemscript codes 

Allopurinol Clarson et al. (2017) 
Analgesics Bedson et al. (2013) 
Colchicine Clarson et al. (2015) 
Diuretics Clarson et al. (2015), Kontopantelis et al. (2015b), Springate et al. (2015), 

Stocks et al. (2015) 
NSAIDS Bedson et al. (2013), Clarson et al. (2015) 

NSAIDS: Non-steroidal anti-inflammatory drugs 

 

4.4.1 Outcomes 

The choice of which outcomes to analyse was previously described in Section 3.9.5. The 

primary outcome was time taken to reach target SU level ≤360µmol/L for the first time. 

Patients were eligible for this analysis if they had a baseline measurement (as defined in 

Section 4.4.3.3) that was above target (>360μmol/L), and SU level was measured during 

follow-up. If patients did not reach target, follow-up was censored at the last date of measured 

SU level. 
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The range of time to first secondary outcomes measured during follow-up that were 

considered is listed in Table 4.3. With the exception of repeated gout consultations, patients 

were excluded from analysis if they had outcome in the baseline period or if follow-up ended 

during the landmark period. For repeated gout consultations, consultations that occurred 

during the landmark period were ignored as it was expected a large proportion of patients 

would consult during this period.  

Table 4.3: Primary and secondary outcomes 

Primary outcome 

   Target SU level ≤360µmol/L 

Secondary outcomes 

   All-cause mortality 
   Repeated gout consultations 
   Gout hospitalisation 
   Hip or knee joint replacement 
   Cerebrovascular disease 
   Coronary heart disease 
   Peripheral vascular disease 
   Renal disease 

SU: Serum urate 

The definition of outcomes is described below.  

Target SU level 

SU level and its units were not consistently recorded as implausible values, duplicate entries, 

and a range of units used were observed in the data. Based on the raw data, the following 

process was undertaken to remove implausible data and to standardise it to one set of units, 

μmol/L, that is commonly used in the UK.  

1) Only one SU level per date per patient was allowed: 

i. Duplicates in terms of patient identifier, SU level, unit of measurement, and 

date of measurement were removed. 

ii. If there were two or more different measurement recorded on the same date, 

implausible values were removed. If the different measurements appeared to 

be plausible, one measurement was retained at random. 
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2) To standardise SU measurements, for each recorded unit of measurement: 

i. The distribution of the SU levels was checked. 

ii. SU levels were then categorised based on the location of the gaps in the 

distribution.  

iii. If it was believed the wrong units was recorded within a category, a more 

appropriate unit was chosen based on the distribution of SU levels recorded in 

other units. 

iv. If there were less than 20 observations within a category, the patient’s history 

of SU level was checked to determine plausibility of SU levels and its units.  

The results of standardising SU levels can be found in Appendix E. 

All-cause mortality 

Date of death was recorded in two ways within CPRD, (1) date the patient transferred out of 

the practice due to death and (2) CPRD derived date of death based on an algorithm. When 

the practice is notified that a patient had died, the relevant Read code for death is entered in 

the patient’s medical history alongside with information on date and cause of death. The 

patient’s registration status would be changed to ‘transferred out’ with death being the 

reason; the date of transfer is often after the actual date of death. Due to this delay, CPRD 

developed an algorithm to identify records of death to estimate the date the patient had died. 

Date of death was defined to be the earliest of (1) the transferred out of practice date due to 

death, (2) date of death or date of recording information on death, and (3) date when Read 

code for death was recorded.  

A more accurate date of death was obtained from ONS mortality data. It is a legal requirement 

to register all deaths in England to the General Register Office with a medical certificate 

completed by the medical practitioner establishing the cause of death. Deaths should be 
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registered within five days from the date of death however late registration can occur for up 

to a number of years if the cause of death is not known, for example, deaths referred to 

coroners. Data is validated to ensure data is entered correctly. Death registration data was 

collected from 01/01/1998 up until 30/04/2014.  

Most deaths recorded in the ONS are also recorded in CPRD however, there may be small 

differences in the recording of the exact date of death in CPRD; this difference had become 

smaller over time (Gallagher et al., 2019).   

Date of death was defined as the earliest date recorded from either CPRD based on its 

algorithm or from ONS. 

Gout hospitalisation 

A hospitalisation due to a gout was defined using HES via ICD-10 codes. The list of codes is 

shown in Table 4.4. As not all patients would have a record for any hospitalisation, it was 

assumed they were not hospitalised due to gout.  

Table 4.4: ICD-10 codes for gout hospitalisation 

ICD-10 code Description 

M10 Gout 

M10.0 Idiopathic gout 

M10.1 Lead-induced gout 

M10.2 Drug-induced gout 

M10.3 Gout due to impairment of renal function 

M10.4 Other secondary gout 

M10.9 Gout, unspecified 

 

Repeated gout consultations 

This was defined as any consultation for gout. The Read codes used to define gout in Section 

4.2 was also used to define gout consultations; Read codes can be found in Table 4.10 Section 

4.4.4. 
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Vascular diseases 

Coronary heart disease, also known as ischaemic heart disease or coronary artery disease, is 

caused by build-up of fatty deposits in the arteries around the heart and restricting blood flow 

to the heart. Common symptoms are angina (chest pain) and myocardial infarction (heart 

attack). Read codes identified patients with angina and myocardial infarction, as well as 

surgery for treatment such as angioplasty and coronary artery bypass graft. 

Cerebrovascular disease refers to disorders of the brain where the blood flow is affected. Read 

codes identified the different types of cerebrovascular disease including stroke (such as 

haemorrhage and transient ischaemic attack), aneurysm, embolism, thrombosis, and carotid 

artery stenosis.  

Peripheral vascular (or arterial) disease is caused by fatty deposits in the arteries restricting 

blood supply to the leg muscles. Read codes identified symptoms include intermittent 

claudication and ischaemic legs, foot and toes, and surgical treatment including peripheral 

bypass surgery.  

Renal disease 

The ability of kidneys to filter and excrete waste (for example creatinine) and excess fluids 

from the blood becomes impaired over time. Read codes identified those with chronic kidney 

disease (stages 1-5), or acute or chronic renal failure.   

Joint replacement 

Read codes identified total hip and knee joint replacement (arthroplasty), a major surgery that 

replaces the damaged joint with a prosthetic.  
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4.4.2 Allopurinol 

All prescriptions for allopurinol during follow-up were identified along with date of 

prescription, drug quantity, numeric daily dose, and number of days of prescription. 

Allopurinol was analysed as a binary variable (allopurinol use vs. non-use). Various definitions 

of allopurinol use had been used in medical record studies. Kuo et al. (2015a) had used a six-

month prescription of allopurinol during the one-year landmark period; Dubreuil et al. (2015) 

had used any prescription for allopurinol during a six-month period; Rothenbacher et al. 

(2011) had used any prescription of allopurinol within 30 days of gout diagnosis.  

Choice of length of allopurinol prescription is dependent on how long patients adhered with 

treatment. Kuo et al. (2015b) defined adherence as the proportion of days covered (PDC) with 

a prescription of ULT (majority of prescriptions is for allopurinol) over a one-year period using 

data from CPRD. In 2012, 39% adhered with treatment (PDC >80%), 42% partially adhered 

(PDC 20-79%), and 17% were not adherent (PDC <20%). In 1997, 28% of ULT patients adhered 

with treatment and approximately 50% were partially adherent. 

For this PhD project, it was assumed non-adherent allopurinol users were unlikely to observe 

treatment effects on long-term outcomes, whereas partially and adherent patients are more 

likely to observe treatment effects. Given 20% PDC is equivalent to 73 days in a year, and 

prescription of allopurinol is either given for one, two, or three months, patients with a total 

of three or more non-consecutive months of allopurinol prescription were deemed allopurinol 

users, whereas those with no prescription or had less than three months of allopurinol 

prescription were deemed non-users.  

When allopurinol use was time-invariant, prescriptions of allopurinol during the one-year 

landmark period was used to determine treatment status. For the two-year landmark period, 

patients were required to have a three-month prescription in the first year or second year of 
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follow-up to be deemed as an allopurinol user. When allopurinol use was time-varying, 

prescriptions within a one-year intervals was used to determine treatment status. Repeatedly 

measuring allopurinol status in this way captured when patients were prescribed and not 

prescribed allopurinol. Hypothetical scenarios where patients were classed as allopurinol or 

non-users within a time interval is illustrated in Figure 4.4.  

Figure 4.4: Examples of how patients were classed as allopurinol users and non-users within 
an interval 
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Scenario A: Patient was prescribed allopurinol at 2 months for a duration of three months 

with no further prescriptions. Classed as an allopurinol user for this time interval. 

Scenario B: Patient was prescribed allopurinol at 2 and 9 months for a duration of 2 

months each. The total time period on allopurinol was 4 months. Classed as an allopurinol 

user for this time interval. 

Scenario C: Patient was prescribed allopurinol at 2 months for a duration of 2 months. As 

the period being on allopurinol was less than 3 months, this patient was classed as a non-

allopurinol user for this time interval. 
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The Gemscript code and its associated product codes for prescription of allopurinol were 

obtained from Clarson et al. (2015) study. To identify any further relevant codes, using the 

product browser supplied by CPRD, search terms of ‘allopurinol’ and brand names for 

allopurinol were searched for. The list of product codes used to identify prescription of 

allopurinol is given in Table 4.5. 

Table 4.5: Products codes for prescription of allopurinol 

Product code Gemscript code Product name 

76 59735020 Allopurinol 300mg tablets 

368 52350020 Zyloric 100mg tablets (Aspen Pharma Trading Ltd) 

413 59734020 Allopurinol 100mg tablets 

5182 74888020 Xanthomax 100 tablets (Ashbourne Pharmaceuticals Ltd) 

7805 53508020 Zyloric 300mg tablets (Aspen Pharma Trading Ltd) 

11975 88998020 Allopurinol 100mg/5ml sugar free oral suspension 

13467 48562020 Caplenal 300mg tablets (Teva UK Ltd) 

17255 58338020 Hamarin 300 Tablet (Roche Products Ltd) 

19037 74889020 Xanthomax 300 tablets (Ashbourne Pharmaceuticals Ltd) 

19201 48380020 Allopurinol 100mg tablets (IVAX Pharmaceuticals UK Ltd) 

23368 58335020 Hamarin 100 Tablet (Nicholas Laboratories Ltd) 

24215 48561020 Caplenal 100mg tablets (Teva UK Ltd) 

30768 48366020 Allopurinol 100mg tablets (A A H Pharmaceuticals Ltd) 

33484 56807020 Allopurinol 100mg tablets (Actavis UK Ltd) 

34005 53683020 Allopurinol 300mg tablets (Teva UK Ltd) 

34278 48367020 Allopurinol 300mg tablets (A A H Pharmaceuticals Ltd) 

34566 60172020 Allopurinol 300mg tablets (Generics (UK) Ltd) 

34573 48371020 Allopurinol 300mg tablets (Wockhardt UK Ltd) 

34711 60171020 Allopurinol 100mg tablets (Generics (UK) Ltd) 

34930 48370020 Allopurinol 100mg tablets (Wockhardt UK Ltd) 

34947 55358020 Allopurinol 100mg Tablet (Lagap) 

41520 48381020 Allopurinol 300mg tablets (IVAX Pharmaceuticals UK Ltd) 

41541 53684020 Allopurinol 100mg tablets (Teva UK Ltd) 

41612 56808020 Allopurinol 300mg tablets (Actavis UK Ltd) 

41664 48362020 Allopurinol 100mg Tablet (Celltech Pharma Europe Ltd) 

44239 60082020 Cosuric 100mg Tablet (DDSA Pharmaceuticals Ltd) 

44240 60083020 Cosuric 300mg Tablet (DDSA Pharmaceuticals Ltd) 

45352 48390020 Allopurinol 300mg tablets (Ranbaxy (UK) Ltd) 

46941 55359020 Allopurinol 300mg Tablet (Lagap) 

52409 18891020 Allopurinol 100mg/5ml oral suspension 

54139 18907020 Allopurinol 300mg/5ml oral suspension 

 

To calculate the duration of time the patient was on allopurinol, the start and end date of 

prescription needed to be determined. The start date of prescription was assumed to be the 

date when prescription was entered into the Vision system, however the end date of 
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prescription was not recorded. Although number of days related to each prescription can be 

recorded, this is not a required field thus was mostly missing (94% of all prescriptions).  

Duration was therefore calculated by dividing drug quantity by daily dose which was more 

complete. For example, if the prescription quantity is 56 tablets and the daily dosage is 2, then 

duration of prescription would be 28 days. However, it was observed daily dose and quantity 

may also be missing as some patients may be instructed to take treatment ‘as needed’ or ‘as 

directed’ and values were found to be implausible.  

Based on the observed data, rules were derived how to impute missing and implausible data. 

Implausible daily dose was defined as those with values <0.5 and >6, or equal to 0.75 and 2.25 

after seeking guidance from a GP. Implausible drug quantity was defined as a prescription that 

would last less than a month (for example quantities less than multiples of 28 and 30) with 

the exception of values 7, 14 and 100 as they appeared to be frequently used.   

Imputation of missing and implausible values across all patients 

1) If daily dose was missing, the most common daily dose was taken for that particular 

drug quantity only if it was extremely unlikely another daily dose could have been 

used.   

2) If daily dose was missing, daily dose from the previous prescription was used if drug 

quantity was the same.  

3) If drug quantity was missing, drug quantity from the previous prescription was used if 

daily dose was the same. 

4) If drug quantity and daily dose were both missing, the duration of the previous 

prescription was taken. 

5) If duration was still missing or greater than 30 days (as the majority of durations was 

for a month), it was assumed duration was for 28 days instead.  
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The distribution of quantity of drugs and numeric daily dose before and after imputing data is 

shown in 0. The date the prescription stopped was thus calculated by adding the duration of 

prescription to the start date of the prescription. Using this information, patients were 

determined as either allopurinol user or non-user as described above. The distribution of 

numeric daily dose and quantity of drugs before and after imputing for missing data is shown 

in Appendix F.  

 

4.4.3 Covariates 

Covariates considered for time-invariant and time-varying analyses is listed in Table 4.6 and 

covered a range of demographics, comorbidities, medication usage and lifestyle factors.  

Table 4.6: Covariates 

 Time-invariant 
analysis 

Time-varying analysis 

Demographics   

Age X Time-varying: increased yearly 
Sex X Time-invariant 
Deprivation X Time-invariant 

Comorbidities   

Anxiety X Time-varying: status changed once 

Depression X Time-varying: status changed once 
Cerebrovascular disease X Time-varying: status changed once 
Coronary heart disease X Time-varying: status changed once 
Type II and I diabetes X Time-varying: status changed once 
Gout consultation N/A Time-varying: status may change multiple times 
Hyperlipidaemia X Time-varying: status changed once 
Hypertension X Time-varying: status changed once 
Osteoarthritis  X Time-varying: status changed once 
Peripheral vascular disease X Time-varying: status changed once 
Renal disease X Time-varying: status changed once 

Lifestyle   

Alcohol consumption X Time-varying: status changed once 
Body mass index X Time-varying: status may change multiple times 
Smoking status X Time-varying: status changed once 
Serum urate X Time-invariant 

Medication use   

Analgesics X Time-varying: status may change multiple times 
Colchicine X Time-varying: status may change multiple times 
Diuretics X Time-varying: status may change multiple times 
NSAIDS X Time-varying: status may change multiple times 
Cumulative allopurinol use (years) N/A Time-varying: status can only increase in value 

Year of follow-up N/A Time-varying: increased yearly 

NSAIDS: Non-steroidal anti-inflammatory drugs 
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All time-invariant covariates, with the exception of lifestyle factors (see below), were 

measured in the two years prior to the index date.  

With the exception of sex, deprivation and SU level, covariates were then considered time-

varying measured in the two years prior to the index date (with the exception of lifestyle 

factors, see below) and then in one-year intervals after the index date until follow-up ended.  

Selection of covariates were chosen on the basis that they are indications for treatment and 

risk factors for gout or poor outcomes due to gout. Genetics and diet is not recorded in CPRD 

hence is considered as unmeasured confounders.  

Definition of covariates is described below. 

 

4.4.3.1 Demographics 

Only the patient’s year of birth was obtained from CPRD. It was therefore assumed patients 

were born on the 1st January. Time-invariant age was calculated on the index date. Time-

varying age was calculated at the start of each interval. Age was treated as a continuous 

covariate.  

The IMD measures relative deprivation for small areas (known as lower layer super output 

areas) in England at the patient level. Each area is ranked from 1 being the most deprived area 

to 32,844 being the least deprived area with the ranking based on seven domains: income; 

employment; health deprivation and disability; education, skills and training; barriers, housing 

and services; crime; living environment. IMD is updated every few years and CPRD provided 

deprivation measure based on quintile, deciles and twentile scores based on the rank; 

deprivation measures were published in 2004 that had used data between 1997 and 2003. 

Deprivation measured in 2004 was used as this measure was the closest time point to the 

baseline period. Twentile scores were used for analysis rather than deciles and quintiles as it 
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retained the most information after categorisation of ranks. Deprivation was treated as a 

continuous covariate.  

 

4.4.3.2 Comorbidities and medication use 

For comorbidities defined by Read codes, absence of the code was assumed to imply absence 

of the relevant diagnosis. Thus, by default there were no missing data in these measures. 

Similarly, for drug use covariates, defined via Gemscript codes, absence of the code implied 

that a patient had not been prescribed the relevant medication. Thus, in this instance too, 

missing data were non-applicable. 

For all time-varying comorbidities, except for gout consultation, once the patient was 

diagnosed with the comorbidity, they were assumed to have that comorbidity for the rest of 

follow-up. 

In defining analgesics, topical analgesics were excluded as it was believed they have little pain-

relieving effects for the gout flare. NSAIDS were also not included as they were considered as 

a separate covariate.  

In defining NSAIDS, topical NSAIDS were excluded as it was believed they have little pain-

relieving effects for the gout flare. Unlicensed NSAIDS were also considered s drugs can fall in 

and out of fashion for treating gout flares.  

Time-invariant gout consultation was not considered as adjustment for this covariate may 

partially adjust out the treatment effect. Patient index date was based on consulting for gout 

between 1997 and 2002 and was not prescribed allopurinol in the two years prior to 

consultation. In prevalent gout cases, adjusting for previous gout consultation may introduce 

the effect of allopurinol as that previous gout consultation was not chosen due to being 

prescribed allopurinol in the last two years. In treatment effect estimation, part of the effect 
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would be adjusted for. Therefore, it was assumed patients did not consult for gout in the two 

years prior to index date.  

 

4.4.3.3 Lifestyle factors 

As part of management of gout, GPs give general advice regarding making healthier lifestyle 

choices (stop smoking and reduce alcohol intake) and to lose weight. This information may be 

missing as consultations tend to be short (approximately 10 minutes) thus not all relevant data 

may be entered with the most important aspects of the consultation recorded. As the study 

sample contains prevalent and incident patients with gout, it is possible in prevalent cases the 

two-year period prior to the index date may not be long enough to capture these details when 

they may have been recorded when the patient was first diagnosed with gout. Patients with 

more severe gout may be more likely to have lifestyle factors recorded than less severe cases. 

Missingness may arise as healthier patients are less likely to consult their GP if they do not 

have gout flares.  

Body mass index 

Measurements of weight, height and BMI were obtained. For time-invariant BMI, initially the 

most recent BMI was taken in the two years prior to the index date however there was 

substantial missing data with only 30% of patients with a record. On further investigation, a 

total of 10,660 patients (63%) had a measurement recorded prior to the index date however 

some measurements were recorded up to 13 years prior. To minimise missing data, the most 

recent measurement was taken during this 13-year period (Table 4.7); the median (IQR) 

number of years prior to the index date in which weight or BMI was recorded was 2.13 (0.65, 

4.51) years; 50% of measurements were recorded within five years of the index date.  
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Table 4.7: Number of eligible patients (n=16,876) with recorded weight and BMI prior to the 
index date 

Period prior to index date N (%) 

2 years 4,981 (30) 

5 years  8,356 (50) 

10 years 10,519 (62) 

13 years 10,669 (63) 

 

Height, weight and BMI underwent a process of cleaning outlined by Bhaskaran et al. (2013) 

to remove implausible values and to calculate BMI. Further details of this process can be found 

in Appendix G. BMI was then categorised as normal weight (BMI<25), overweight (BMI 25-30), 

and obese (BMI 30+).  

To further minimise missing data Read codes for BMI were utilised. The Read codes had to 

differentiate between BMI of normal weight (<25kg/m2), overweight (25-30kg/m2), and obese 

(≥30kg/m2). 

Alcohol consumption 

Alcohol consumption was recorded as non-, current- or ex- drinker; additional information on 

start and stop dates of drinking and units of alcohol consumed per week were recorded as 

well. Recording of alcohol consumption in CPRD is a blunt measure as it is often recorded as 

non-, current- or ex-drinker. The number of units consumed is not often recorded (Stewart et 

al., 2017) and thus it was not possible to accurately distinguish between light, moderate and 

heavy drinkers. 

Similarly to BMI, missing data was substantial in the two years prior to the index date (Table 

4.8), therefore the most recent record was taken over the 13 year period prior to the index 

date. The median (IQR) number of years in which alcohol consumption was recorded prior to 

the index date was 3.05 (1.17, 5.50). 
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Table 4.8: Number of eligible patients (n=16,876) with recorded alcohol consumption prior 
to the index date 

Period prior to index date N (%) 

2 years 3,467 (21) 

5 years  7,222 (43) 

10 years 10,131 (60) 

13 years 10,344 (61) 

 

To further minimise missing data, Read codes for alcohol consumption were obtained. The 

relevant Read Codes contained information on the patient’s drinking status if they are a 

current, ex-, or non-drinker. 

When considering alcohol consumption as a time-varying covariate, a record of ex-drinker was 

only plausible after a record of current drinker however GPs interchangeably use ex-drinkers 

and non-drinkers. Therefore, alcohol consumption was categorised as never- and ever- 

drinkers. The never drinkers consisted of non-drinkers provided there was no earlier record of 

ex- or current drinker. The ever-drinkers consisted of current- and ex- drinkers. This 

classification can be used over time as patients can switch from never drinker to ever drinker 

but not from ever drinker to never drinker.  

Smoking status 

Similarly to alcohol consumption, smoking status was recorded as either non-, current- or ex-

smoker with additional information on how many cigarettes smoked per day and the start and 

stop dates of smoking. Substantial missing data was observed in the two years prior to the 

index date (Table 4.9), therefore the most recent record was taken over the 13-year period 

prior to the index date. The median (IQR) number of years in which smoking status was 

recorded prior to the index date was 2.62 (0.94, 5.19). 
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Table 4.9: Number of eligible patients (n=16,876) with recorded smoking status prior to the 
index date 

Period prior to index date N (%) 

2 years 4,590 (27) 

5 years  8,336 (49) 

10 years 11,068 (66) 

13 years 11,283 (67) 

 

To further minimise missing data, Read codes for smoking status was obtained. The relevant 

Read Codes contained information on the patient’s smoking status if they are a current 

smoker, ex-smoker, or non-smoker. 

Recording of ex-smokers is under-utilised by GPs (Booth et al., 2013) and ex-smokers and non-

smokers may be used interchangeably. Therefore, smoking status was categorised as never 

smoker and ever smoker. Never smokers consisted of non-smokers who did not have a 

previous record of ex- or current smoker. Ever-smokers consisted of non- and ex- smokers. 

This classification can be used over time as patients can switch from never smoker to ever 

smoker but not from ever smoker to never smoker.  

SU level 

The cleaning of SU level was already described above in Section 4.4.1. 

Preference was for SU to be measured as a time-varying covariate as SU level is a strong 

indication for treatment and is associated with various outcomes such as vascular and renal 

diseases. On inspection of data, missing data was substantial in the two years prior to the 

index date which remained consistent over time. Therefore, SU was only considered time-

invariant.  

SU recorded more than two years prior to the index date could not be used as patients may 

have been prescribed allopurinol or uricosuric drugs which may have influenced SU level.  
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Therefore, within allopurinol users (identified in the one-year landmark period), the most 

recent SU level was taken prior to prescription of allopurinol up to one year after the index 

date. In non-users, the most recent SU level was taken up to one year after the index date.  

In the primary outcome analysis (time to achieve target SU level ≤360 µmol/L), SU level was 

considered as a continuous covariate as there was no missing data. In the analysis of 

secondary outcomes, SU level was dichotomised such that patients with SU ≤360µmol/L were 

considered to have had reached target SU level, and patients with SU >360µmol/L were 

considered not to have had reached target SU level. 

Cumulative years of allopurinol use 

Previous level of exposure to allopurinol was considered as a time-varying covariate. As this 

covariate was measured in each year of follow-up, it was defined as the cumulative previous 

number of one-year periods in which the patient was exposed to allopurinol; this covariate 

will simply be referred to as cumulative allopurinol use.  

 

4.4.4 Other definitions 

The list of Read codes for gout consultations is shown in Table 4.10. The consultation for gout 

can be for any reason.  
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Table 4.10: Medical codes for gout consultation 

Medical code Read term 

709 Gout 

2857 Gouty arthritis 

3759 H/O: gout 

4440 Gouty tophi of other sites 

9162 Renal stone - uric acid 

9874 Gouty tophi of hand 

10080 Gouty arthropathy 

11462 Idiopathic gout 

12594 Gouty arthritis NOS 

14996 Initial gout assessment 

16475 Gout monitoring 

17284 O/E - auricle of ear -,phi 

21687 Gout due, impairment of renal function 

24153 Gout NOS 

27521 Other specified gouty manifestation NOS 

28999 Other specified gouty manifestation 

29561 Pre-treatment uric acid level 

29658 Joints gout affected 

34006 Date gout treatment started 

34105 Gout treatment changed 

35660 Follow-up gout assessment 

35664 Gouty arthritis of the ankle and foot 

36481 Gouty tophi of ear 

43646 Date gout treatment stopped 

43744 Uric acid nepolithiasis 

44566 Drug-induced gout 

45465 Gouty arthritis of the forearm 

49775 Gouty arthritis of the lower leg 

50067 Gouty iritis 

52101 Gouty arthritis of the hand 

52103 Gout drug side effects 

52117 Gout monitoring NOS 

52969 Gouty nepopathy 

57334 Gouty tophi of heart 

58064 Gouty arthritis of multiple sites 

58746 Gout associated problems 

59344 Gouty neuritis 

60541 Gouty arthritis of other specified site 

61145 Gouty nepopathy NOS 

68209 Date of last gout attack 

72471 Gouty arthritis of the shoulder region 

93677 Gouty arthritis of toe 

93689 Gouty tophi of heart 

97539 Gouty arthritis of the upper arm 
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Benzbromarone and febuxostat 

As there was no available code list for benzbromarone, Gemscript codes were searched for 

within the CPRD product browser using the search term ‘benzbromarone’. Similarly for 

febuxostat, search terms of ‘febuxostat’ and ‘Adenuric’ identified Gemscript codes.  

Probenecid 

The product codes for probenecid were obtained from Clarson et al. (2015) and in addition, 

the terms ‘probenecid’ and ‘Benemid’ were searched for within the product browser under 

product name and drug substance name. 

Sulfinpyrazone 

The product codes for sulfinpyrazone were obtained from Clarson et al. (2015) and in addition, 

the terms ‘sulfinpyrazone’ and ‘Anturan’ were searched for within the product browser under 

product name and drug substance name. 

 

4.5 Power calculation 

A feasibility count was undertaken to ensure there was sufficient number of patients 

consulting for gout between 1997 and 2002, and there was sufficient sample size and power 

to detect reasonable treatment effect.   

It is assumed that the total CPRD annual registered population is 5.5 million patients and that 

approximately 50% of practices contributing to CPRD have consented to linkage to HES, 

deprivation and ONS mortality. This yields relevant annual population of approximately 2.75 

million. It is estimated that 70,000 of these will have gout, based on the latest figure for 

prevalence of gout as 2.5% (Kuo et al., 2015b). 
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Between 1st January 1997 and 31st December 2002, 33,538 patients aged 18 years and over 

had a Read code for gout and were registered with their practice for at least two years prior. 

To determine the number of patients prescribed allopurinol, the landmark method described 

in Section 4.3.1 was used. The number of patients prescribed allopurinol is listed in Table 4.11. 

Approximately half these patients would have linkage.  

Table 4.11: Number of patients prescribed allopurinol 

Landmark period Prescribed allopurinol 
N=33,538 

N (%) 

Prescribed allopurinol in patients with 
linkage 

N=16,769 
N (%) 

1 year 10,266 (30.61) 5,133 (30.61) 
2 years 11,648 (34.74) 5,824 (34.73) 

 

The primary outcome was SU level ≤360μmol/L. Based on a single small study, 77% of those 

on allopurinol are expected to reach this threshold as opposed to 25% of those not taking 

allopurinol (Roddy et al., 2007b). Secondary outcome of recurrent gout consultations had not 

been compared between treatment groups however, a nationwide population based study 

found 22% of newly diagnosed patients with gout prescribed with allopurinol had a recurrent 

gout attack within a year compared to 14% of non-users, which patients would consult for the 

GP for (Trifiro et al., 2013). Sample size and power calculations could not be performed taking 

into account time to outcome due to lack of studies. Therefore, calculations were based on 

the proportions of outcome between treatment groups.  

Assuming 90% power with 5% significance and allocation ratio of two (as approximately 33% 

of patients were prescribed allopurinol (Table 4.11)), Table 4.12 shows the total number of 

patients required to detect a difference in proportion (percentage) in outcome (target SU level 

and recurrent gout flare) between treatment groups. The proportion of patients having 

outcome in the treatment groups was based on the above figures, which then varied if a 

smaller or larger proportion of outcome was to be observed. A maximum of 1,128 patients 
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were needed assuming proportion of 45% and 36% reached target SU level in allopurinol users 

and non-users respectively; a maximum of 3,753 patients were needed assuming proportion 

of 30% and 35% of recurrent flare in allopurinol users and non-users respectively. 

Table 4.12: Total number of patients required to detect a difference in proportions in 
outcome between treatment groups 

Outcome  

Target SU level Allopurinol non-users 

Allopurinol users 15% 25% 35% 
45% 105 261 1,128 
55% 63 120 288 
65% 42 69 126 
75% 27 42 23 

Recurrent gout flare Allopurinol non-users 

Allopurinol users 5% 15% 25% 
10% 1,278 2,088 306 
20% 216 2,703 3,312 
30% 99 357 3,753 
40% 60 144 453 

 

Across the 1- and 2-year landmark periods, the power to detect a difference of proportion in 

outcome (using the same proportions in Table 4.12) between allopurinol users and non-users 

was almost 100%.   

The five-year period was sufficient to yield sufficient number of consulters for gout and was 

adequate to power analyses potentially across a range of outcomes.  

 

4.6 Summary 

This chapter describes how the retrospective cohort study was set up using primary care 

medical records from CPRD. The study sample was defined, how time-invariant and time-

varying covariates and treatment would be measured over time, definitions of outcomes, 

allopurinol, and covariates, and sample size and power calculations were provided.   

The next chapter aims to describe the statistical models used that will estimate treatment 

effects.   
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5 Propensity scores and marginal structural models 

Observational studies are often used to estimate the causal effect of treatment on outcome. 

In such studies, controlling for confounding can be challenging and is one of the most 

important aspects in estimating valid treatment effect.  

This chapter introduces the conceptual framework and the assumptions required to estimate 

casual effect. An overview of possible approaches to control for time-invariant and time-

varying confounding is discussed, and methods applied to estimate effect of allopurinol on 

outcomes in patients with gout in this PhD project described.  

 

5.1 Causal inference in observational studies 

Neyman (1923) developed a conceptual framework to investigate causality in the context of 

randomised controlled trials (RCTs) which was later extended to observational studies by 

Rubin (1974). 

Consider a binary treatment 𝐴 (1 if treated and 0 if untreated) and binary outcome 𝑌 (1 if 

outcome occurred and 0 if outcome did not occur). Let 𝑌𝑎 denote two potential (or 

counterfactual) outcomes, 𝑌𝑎=1 if treated and 𝑌𝑎=0 if untreated. The idea is to compare the 

same patient under two different treatments at baseline and effect of treatment on outcome 

measured during follow-up; the difference in outcome is attributable to treatment (Equation 

5.1).  

 𝑌𝑎=1 − 𝑌𝑎=0 5.1 

 

In reality, both outcomes cannot be observed as the patient is either treated or untreated 

therefore, patient specific treatment effect cannot be calculated. Instead, the average causal 
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effect is estimated at the population level. Let 𝐸[Ya=1] and 𝐸[Ya=0] be the expected value of 

outcome in treated and untreated patients respectively. The average treatment effect (ATE) 

is then defined in Equation 5.2. For a binary outcome, 𝐸[Y𝑎] represents the probability of 

outcome 𝑝𝑟[𝑌𝑎 = 1] therefore, Equation 5.2 represents the risk difference; alternatively, the 

risk ratio or odds ratio could be derived. For continuous outcome, Equation 5.2 represents the 

average difference in outcome.  

 𝐸[𝑌𝑎=1] − 𝐸[𝑌𝑎=0] 5.2 

 

So far above, treatment at a single time point was considered. In a repeated measures setting 

treatment is measured repeatedly over time. Consider time-varying treatment 𝐴𝑡 measured 

at time 𝑡; 𝑡 can be measured in continuous or discrete time (for example every year). 𝐴𝑡 = 1 

if patient was treated at time 𝑡 and 𝐴𝑡 = 0 if patient was untreated at time 𝑡. Let treatment 

history be denoted as 𝐴̅𝑡 = (𝐴0, 𝐴1, … . , 𝐴𝑡). The number of treatment histories can become 

large as there can be as many as 2𝑡combinations. Each treatment history has an associated 

outcome measured at the end of follow-up thus there will be 2𝑡 outcomes for each patient of 

which only one will be observed. For simplicity, two treatment histories are often compared 

in practice. For example, never treated history 𝐴̅ = (0, 0, … , 0) is often compared with always 

treated history 𝐴̅ = (1, 1, … , 1). The ATE is defined as the difference in expected outcome 

value between any two treatment histories (Equation 5.3) (Robins et al., 2000). 

 𝐸[𝑌𝑎̅] − 𝐸[𝑌𝑎′̅̅ ̅] 5.3 

 

On the other hand, outcome can be measured repeatedly at each time point. The difference 

in expected value between treatment groups is measured at time 𝑡 (Equation 5.4) (Robins et 

al., 1999).  
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 𝐸[𝑌𝑎𝑡=1] − 𝐸[𝑌𝑎𝑡=0] 5.4 

 

However, the above definitions (Equations 5.2, 5.3 and 5.4) relies on potential outcomes, i.e., 

only one outcome will be observed by the patient. Causal inference is underpinned by finding 

the best substitute patients who in all ways are similar to the observed patients apart from 

treatment, in an attempt to observe potential outcomes. Randomisation is the gold standard 

approach as each patient is randomly assigned to treatment hence it is due to chance whether 

potential outcomes are observed or not. A key consequence of randomisation is that the 

treatment groups are exchangeable, meaning it does not matter which particular group 

received treatment of interest, the results will be the same regardless. 

Another definition of treatment effect is the average treatment effect for the treated (ATET) 

which restricts attention to the subgroup of the population who received treatment. The 

causal effect in this subpopulation is the average difference in outcome between treated and 

untreated patients (Equation 5.5).        

 𝐸[𝑌𝑎𝑡=1 − 𝑌𝑎𝑡=0] | 𝐴 = 1  5.5 

 

In an RCT, the ATE and ATET estimates coincide as the treated population will on average be 

the same as the overall population due to randomisation. Whereas in an observational study 

in the absence of randomisation, the treated and overall populations on average are likely to 

differ thus the two estimates are unlikely to coincide (Austin, 2011a). In this PhD project the 

ATE is of interest.  
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5.2 Fundamental assumptions 

In observational studies, assignment of treatment is influenced by patient and other (for 

example, hospital level) covariates. Causal inference is determined by viewing the 

observational study as a ‘conditionally randomised study’ provided the following assumptions 

are met (Hernán and Robins, 2020, Cole and Hernan, 2008): 

Consistency: Treatment is unique and well defined thus has the same effect on the 

patient regardless of how the patient received treatment. Consistency is not met when 

treatment is not well defined, such as having multiple versions of treatment with 

differing effects on outcome e.g., various treatment doses unaccounted for in analysis.  

Exchangeability: Treated and untreated patients are exchangeable if the treated 

patients were instead untreated, they would on average have the same outcome if 

they were treated, and vice versa, conditional on a set of observed covariates. 

Positivity: Patients’ probability of being assigned to each treatment group, conditional 

on observed covariates, is greater than zero. 

Correct model specification: The regression model used to obtain the associations 

between covariates, treatment, and outcome needs to be specified correctly, for 

example, using the correct functional form for continuous covariates.  

The estimated ATE (in Equations 5.2, 5.3 and 5.4) is either considered to be conditional or 

marginal. A conditional effect is the average effect of treatment at the patient level. A 

marginal effect is the average treatment effect at the population level. When observed and 

unobserved confounding effects are absent, the conditional and marginal effects are the 

same. 

The challenge in estimating causal treatment effect is that treatment assignment is not 

random leading to poor exchangeability between treated and untreated patients. The 
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treatment groups may be dissimilar and some patients may be guaranteed to receive 

treatment, violating the exchangeability and positivity assumptions respectively. 

The lack of exchangeability is otherwise known as confounding that biases treatment effect. 

Within a healthcare setting, confounding may arise from clinical decisions, known as 

confounding by indication. This is where assignment of treatment is based on covariates such 

as patient health status and prognosis, the clinician’s past experience with the treatment, or 

the willingness of the patient to take the medication as prescribed. As a result, patients 

prescribed treatment will often differ (for example be more severely ill or have more 

comorbidities) from patients not prescribed treatment; if these covariates also predict 

outcome, confounding by indication is present.  

The structure of confounding in the simplest case is represented in Figure 5.1 where a single 

covariate and treatment are measured at one time point. Figure 5.1 shows the casual effect 

of 𝐴 on 𝑌 however, this association is confounded by observed covariate 𝑋; this induces 

additional association between 𝐴 and 𝑌 from the confounding effect of 𝑋 on 𝐴 and 𝑌 

(represented by the black arrows). Although covariates can be controlled for in treatment 

effect estimation, unmeasured covariates cannot be controlled for. In practice, assumption of 

no unmeasured confounding is often made, i.e., no association between 𝑈 and 𝐴 illustrated 

by the dashed green arrow in Figure 5.1. 
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Figure 5.1: Illustration of confounding: treatment and covariate measured at a single time 
point  

 

In a repeated measures set-up, confounding is observed at all time points and the strength of 

confounding effect may vary over time, which may be due to, for example, patient attrition, 

missing data, and noncompliance with or changing treatment. A covariate 𝑋𝑡 measured at 

time 𝑡, is a time-varying confounder if its value changes over time and predicts future 

treatment and outcome. If past treatment also predicts 𝑋𝑡, time-varying confounding is 

affected by prior treatment.  

Time-varying associations between covariates and treatment are essentially as depicted in 

Figure 5.1 but repeated over time. Figure 5.2 illustrates an example using three time points 

(𝑡 = 0, 1, 2), but by analogy this can be extended to include further time points. As in Figure 

5.1, the assumption of no unmeasured confounding is illustrated by dashed green arrows. In 

addition, treatment 𝐴𝑡 and a single covariate 𝑋𝑡 at time 𝑡, predict subsequent treatment and 

covariate (represented by the black arrows). Covariate 𝑋1 is a time-varying confounder as it 

predicts treatment 𝐴1 and outcome 𝑌, but is associated with past treatment 𝐴0 thus mediates 

the association between 𝐴0 and 𝑌. Similarly, 𝑋2 is a time-varying confounder as is predicts 𝐴2 

and 𝑌, but is also associated with 𝐴1, thus mediates the association between 𝐴1 and 𝑌. 

X   A   Y 

A: Treatment; X: Observed covariate; U: Unmeasured covariate; Y: Outcome 
          Association between A, X and Y; 
          Association between U and A is assumed not to exist 

U 
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Adjustment for covariates that have a dual role of confounders and mediators in regression 

models will bias the estimated treatment effect as the effect of previous treatment on 

outcome will be adjusted out (Robins et al., 2000).  

Figure 5.2: Illustration of confounding: treatment and covariates measured at multiple time 
points 

 

 

5.3 Common methods to control for confounding 

Choice of methodology adopted to control for confounding will depend on different aspects 

of the study, such as the available sample size and number of observed covariates, complexity 

of the data, whether control of time-invariant or time-varying confounding is of interest, 

analyst’s preferences and expertise, and available software.  

𝐴𝑡: Treatment; 𝑋𝑡: Observed covariate; 𝑈𝑡: Unobserved covariate; 𝑌: Outcome 

          Association between 𝑋𝑡, 𝐴𝑡, and 𝑌  
          Association between 𝑈𝑡 and 𝐴𝑡 is assumed not to exist 
          𝑋𝑡 is on the causal pathway between 𝐴𝑡−1and 𝑌 

 

X
0
 X

1
 X

2
 

A
0
 A

1
 A

2
 

Y 

U0 U1 U2 
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This section outlines some of the most common approaches that are used in practice to 

control for confounding, and furthermore, rationale is provided why propensity score (PS) 

subclassification and marginal structural models (MSM) were chosen to estimate treatment 

effectiveness of allopurinol using the Clinical Practice Research Datalink (CPRD). 

 

5.3.1 Subclassification and matching 

Subclassifying involves placing patients into homogenous mutually exclusive subclasses based 

on the values of observed covariates of interest. Difference in outcome between the treated 

and untreated patients is calculated in each subclass, then averaged across all subclasses. 

However, as the number of covariates considered increases the sample size within each 

subclass would decrease rapidly or become zero, depending on the sample size and 

distribution of covariates (Anderson et al., 1980). 

In matching, a treated patient is matched to 𝑛 untreated patients based on them having the 

same values of observed covariates of interest thus ensuring comparability of treatment 

groups. There are several decisions that need to be made in order to perform matching. These 

include choice of covariates to match on; whether to match on the exact same covariate value 

(exact matching) or to match on similar covariate values within a predefined caliper width 

(interval matching); and specifying the number of untreated patients to be matched to a 

treated patient. Treatment effect is subsequently estimated in the matched sample with 

patients who are not matched are excluded from the analysis. An obvious disadvantage is that 

there is an increasing difficulty in finding matches for each of the treated patients as the 

number of covariates included in the matching process increases (Anderson et al., 1980, 

Greenland and Morgenstern, 1990). 
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5.3.2 Generalised linear models 

Generalised linear model (GLM) is the most common method used to quantify the effect of 

treatment on outcome adjusting for covariates. GLM refers to a larger class of models 

including linear, logistic, and Poisson regression among others. Let 𝑿 = 𝑋0, 𝑋1, 𝑋2, … , 𝑋𝐾 be a 

vector of covariates with 𝑋0 = 1 and 𝜷 = 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝐾 is a vector of unknown regression 

parameters to be estimated. For treatment 𝐴, the regression parameter to be estimated is 

denoted 𝛼. The GLM consists of two components: (1) the linear predictor (or function) of 

treatment and covariates (Equation 5.6), and (2) the link function 𝑔[. ] that transforms the 

expectation of outcome to the linear predictor (Equation 5.7).  

 
𝐸(𝑌|𝐴, 𝑿) = 𝛼𝐴 + ∑ 𝜷𝑘𝑿𝑘

𝐾

𝑘=0

 5.6 

 
𝑔[𝐸(𝑌|𝐴, 𝑿)] = 𝛼𝐴 + ∑ 𝜷𝑘𝑿𝑘

𝑝

𝑘=0

 5.7 

 

The specification of 𝑔[. ] will depend on the distribution of the outcome; for example, for a 

binary outcome, the link function is a logit function 𝑔[𝐸(𝑌|𝐴, 𝑿)] = 𝑙𝑜𝑔 [
𝐸(𝑌|𝐴,𝑿)

1−𝐸(𝑌|𝐴,𝑿)
] and for a 

Poisson count distributed outcome it is 𝑔[𝐸(𝑌|𝐴, 𝑿)] = 𝑙𝑜𝑔[𝐸(𝑌|𝐴, 𝑿)].  

If the GLM is specified correctly such that all relevant covariates are included in 𝑿, and the 

assumptions associated with the outcome distribution are met, an unbiased conditional 

estimate of the ATE can be obtained (Austin et al., 2007b). 

GLM however may produce unreliable treatment effect estimates in a range of situations. For 

example, issues are encountered when the model is over-fitted, i.e., when the number of 

included covariates is large compared to the number of observations and rate of outcome; 

this can lead to certain combinations of covariates not being observed in the study sample 
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and poor comparability between treatment groups. Consequently, the estimated regression 

parameters are extrapolated. The fact that outcome is always modelled when determining 

which covariates to adjust for increases the risk of model over-fitting. Furthermore, model 

assumptions often go untested in practice, particularly as the number of covariates increases.   

 

5.3.3 Propensity scores 

Rosenbaum and Rubin (1983) introduced the notion of PS. Their seminal paper described the 

theory and application of PS to estimate treatment effect in observational studies accounting 

for confounding effects from observed covariates. Since then, PS methodology has become a 

popular choice for treatment effect estimation, and extensions of the standard PS 

methodology have been examined via both simulation studies and real data, including for 

example comparisons with traditional multivariable regression models (Shah et al., 2005), 

assessment of different PS adjustment methods, choice of covariates for inclusion in PS 

(Austin et al., 2007a), extensions to treatments of non-binary form (Imai and van Dyk, 2004), 

development within Bayesian framework (McCandless et al., 2009), as well as estimation of 

time-varying PS when treatment and confounding variables are time-varying (e.g., risk set 

matching (Li et al., 2001, Lu, 2005)) and although developed separately MSM (Robins et al., 

2000)). 

PS methodology makes two core assumptions, (1) the ignorable treatment assignment 

assumption, and (2) the stable unit treatment value assumption (SUTVA). These two 

assumptions are a mixture of the exchangeability, consistency and positivity assumptions 

described in Section 5.2 above. 
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The ignorable treatment assumption implies that treatment assignment 𝐴 and potential 

outcomes 𝑌𝑎=1 and 𝑌𝑎=0 are conditionally independent given covariates 𝑋 (exchangeability) 

and that each patient has a positive probability of receiving each treatment (positivity). 

SUTVA is made up of two assumptions. Firstly, it is assumed that the potential outcome of a 

patient who received treatment would remain the same regardless of how treatment was 

assigned to that patient and regardless of treatment assignment to other patients, essentially 

ruling out interference between patients and effect of treatment assignment (i.e., association 

between covariates and treatment) on outcome. Secondly, it is assumed that treatment is well 

defined such that there is only one version of treatment; there cannot be various versions of 

treatment, such as different doses of treatment that are unaccounted for in statistical analyses  

(Rubin, 1980, Rubin, 1986). The SUTVA assumption includes the consistency assumption 

above.  

PS is a balancing score 𝑒(𝑿), defined as the probability that lies between 0 and 1 of receiving 

treatment conditional on observed covariates 𝑿 (Equation 5.8).  

 𝑒(𝑿) = 𝑝𝑟(𝐴 = 1 | 𝑿), 0 < 𝑒(𝑿) < 1 5.8 

 

In RCTs the PS is known as it is based on the allocation ratio. Due to randomisation the PS is 

conditional on covariates 𝑽 which consists of both observed (𝑿) and unobserved (𝑼) 

covariates and all patients have a non-zero probability of receiving each treatment. Also, 

treatment assignment 𝐴 is independent of outcome 𝑌 given covariates 𝑽 (Equation 5.9).   

 

 𝑒(𝑽) = 𝑝𝑟(𝐴 = 1 | 𝑽), 0 < 𝑒(𝑽) < 1 

5.9 

 𝑌 ⫫ A | 𝑽 
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These properties do not hold in observational studies hence, at best, 𝑒(𝑿) can be estimated, 

often using logistic regression in the case of a binary treatment. Treatment assignment is 

assumed to be strongly ignorable if 𝑽 = 𝑿, i.e., all relevant covariates are included in 𝑽 and 

there is no unmeasured confounding. It follows that if treatment assignment is strongly 

ignorable given 𝑿 then it is strongly ignorable given the balancing score (i.e., the PS) as it is a 

function of 𝑿. On this basis 𝑌 is independent of treatment assignment given the PS (Equation 

5.10). 

  𝑌 ⫫ A | 𝑒(𝑿) 

5.10 

 0 < 𝑝𝑟[𝐴 = 1| 𝑒(𝑿)] < 1 

 

At a specific PS value, the distribution of PS would be the same amongst treated and untreated 

patients although specific covariate values will differ. Here, the PS balances covariates 

between treated and untreated patients. Consequently, direct adjustment for PS in a 

regression model, subclassification and matching on PS, and inverse probability treatment 

weighting (IPTW) would produce unbiased estimate of the treatment effect. 

The most straightforward method of using estimated PS is to include it as a covariate in the 

regression model estimating the association between treatment and outcome (with 

conditional treatment effect estimated (Austin, 2013, Austin et al., 2007b). Such direct model 

adjustment approach is the only method to model the association between PS and outcome 

and requires that association to be correctly modelled.  

Subclassification on the correctly specified and estimated PS divides treated and untreated 

patients into 𝐽 subclasses based on percentiles of the PS distribution; thus each subclass would 

have equal number of patients. The treatment effect is calculated within each subclass 

generating subclass specific estimates of the treatment effect which can then be pooled 
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generating an overall conditional ATE estimate weighted by the inverse of the treatment 

effect’s standard error. 

PS matching involves matching each treated patient to 𝑛 untreated patients based on having 

the same or similar PS. Consequently, within the matched sample the distribution of 

covariates is similar between the treatment groups. Subsequently comparison of outcomes 

between the treatment groups would yield a marginal ATE estimate that is less biased and 

more precise (i.e., smaller standard error) compared to estimate based on an unmatched 

sample. There are several decisions that need to be made to perform matching and there are 

ample simulation studies providing guidance. These include: choosing the most 

appropriate/suitable matching algorithm, with popular choices including the nearest 

neighbour matching and optimal matching (Austin, 2014); specifying the number of untreated 

patients to be matched to a treated patient (Austin, 2010); specifying caliper width (or the 

range) within which the PS must fall in order to be considered a valid match (Austin, 2009b, 

Austin, 2011b); and choosing whether matching is performed with or without replacement 

(Austin, 2014).   

Rosenbaum (1987) introduced IPTW as a form of model-based direct standardisation. IPTW 

belongs to a larger class of MSM used to estimate treatment effect in the presence of time-

varying treatment and time-varying covariates that are affected by prior treatment (Robins et 

al., 2000). The weight is defined as the inverse of the probability of receiving treatment that 

the patient was given (or observed). For a treated patient, their weight is simply the inverse 

of their PS; for an untreated patient, their weight is the inverse of the PS subtracted from one 

(Equation 5.11). 

 
𝑤 =

𝐴

𝑒(𝑿)
+

1 − 𝐴

1 − 𝑒(𝑿)
 5.11 
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The weight value determines the number of times a patient is represented in the pseudo-

population. Intuitively, untreated patients with high probability of treatment, and treated 

patients with low probability of treatment will be assigned larger weights. Using weights in 

analysis reweights the treated and untreated groups up to the population level making them 

representative of the population, where there is no association between covariates and 

treatment, thus allowing marginal ATE to be estimated.  

Different PS methods have various advantages and disadvantages. Direct adjustment for PS in 

the outcome model is the simplest approach however it is generally not considered in practice 

because it does not allow one to assess comparability nor create comparable treatment 

groups. Matching is a popular approach however, as mentioned above, several decisions need 

to be made during the modelling process and treatment effect estimates may be dependent 

on these different choices. Furthermore, generalisability of findings may be affected if many 

patients are discarded due to lack of good matches. If poor matches are found in matching, 

alternative approaches are IPTW and subclassification that analyses all patients. With 

subclassification on PS, one has to ensure that each subclass has high enough sample size in 

both treatment groups, while considering that bias in treatment effect estimate is reduced 

the greater the number of subclasses used. One methodological consideration of IPTW is the 

estimation of extreme weights from very small PS; such weights may bias and increase the 

variability of the estimated treatment effect. 

These different PS approaches estimate either conditional or marginal treatment effects. 

Direct PS adjustment and PS subclassification allows one to estimate patient-level treatment 

effect conditional on PS (subclasses); whereas PS matching and IPTW allows one to estimate 

a marginal treatment effect at the population level.  

PS methodology is an appealing approach as it is inherently a more natural method of 

mimicking RCT design compared to traditional regression models. PS approaches avoid the 



127 
 

use of covariates themselves to achieve comparable treatment groups, thus minimising the 

effect of model selection and over-fitting sometimes seen in regression models.  

 

5.3.4 Controlling for time-varying confounding 

Conventional statistical methods such as time-varying Cox regression (Fisher and Lin, 1999, 

Cox, 1972) and generalised estimating equations (GEE) regression (Zeger et al., 1988) are used 

to model longitudinal data where treatment and covariates (and also outcome) may be 

observed repeatedly over time. The time-varying Cox model compares the risk of outcome 

between treatment groups and re-evaluates that risk with each change to treatment status. 

GEE regression, an extension of GLM, accounts for the correlation between repeated 

measurements within a patient and estimates the population average effect of treatment. To 

naively adjust for time-varying confounding variables and past treatment will estimate biased 

treatment effect (as previously shown in Figure 5.2) (Robins et al., 2000, Cole et al., 2005).  

MSM, parametric G-computation formula and G-estimation, collectively known as G-methods 

(with ‘G’ standing for `generalised’), were specifically developed to estimate time-varying 

treatment effect in the presence of time-varying confounding.   

More direct approaches of utilising PS estimated over time in matching and subclassification 

have also been proposed. 

Some of these different methods are briefly described below, and further outline of the 

associated advantages and disadvantages is provided in Section 5.3.5.  

Marginal Structural models 

Robins et al. (2000) developed a class of casual models known as MSM that directly models 

counterfactual outcomes. MSM are termed “marginal” because they use the joint distribution 

of treatment and covariates via IPTW to estimate a weighted treatment effect on outcome 



128 
 

across all time points i.e., treatment effect is unconditional on covariates. They are termed 

“structural”, as they were originally developed within the context of economic and social 

sciences, where historically models estimating causal associations are referred to as 

structural. 

Fitting MSM is a two-step process. The first step involves correctly specifying the PS model 

such that the patient’s probability of receiving observed treatment at time 𝑡, given their 

treatment and covariate history up to that point, is estimated and subsequently used to 

estimate weights. Various weights can be estimated. The simplest are unstabilised weights 

defined in Equation 5.12, where 𝐴̅𝑡 represents treatment history up to and including time 𝑡 −

1; 𝑿̅𝑡 represents covariate history (of time-varying and time-invariant covariates) up and 

including time 𝑡 − 1. 

 
𝑊 = ∏

1

𝑝𝑟(𝐴𝑡|𝐴̅𝑡 , 𝑿̅𝑡)

𝑇

𝑡=0

 5.12 

 

The second step uses the estimated weights to reweight the study sample to create a pseudo-

population such that the association between covariates and treatment no longer exists thus 

removing effects of confounding from treatment effect estimation. 

G-computation formula 

The G-computation formula, introduced by (Robins, 1986), compares outcomes under 

different treatment histories as if they were derived from a randomised study, i.e., outcome 

that would have been observed if all patients in the study sample followed a particular 

treatment history. G-computation calculates the expectation of outcome for a particular 

treatment history by the sum over all covariates, the probability of outcome conditional on 
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treatment and covariate histories, and the probability of covariate conditional on treatment 

and covariate histories (Equation 5.13). 

 
𝐸[𝑌(𝐴̅)] = ∑[𝐸(𝑌|𝐴̅, 𝑋̅)

𝑋

 ∏ 𝑝𝑟(𝑋𝑡|𝐴̅𝑡−1, 𝑋̅𝑡−1)]

𝑇

𝑡=0

 5.13 

  

G-computation is performed in two stages. Firstly, the associations between outcome, 

treatment and covariates are modelled using GLM thus estimating the joint distribution of 

outcome and covariates. Secondly, the estimated joint distributions are then used to simulate 

the risk of outcome at each time point under hypothetical treatments to be compared (Daniel 

et al., 2011, Daniel et al., 2013). 

G-estimation of structural nested models 

Structural nested models (SNM) estimate the effect of treatment conditional on different 

values of a time-varying effect modifier. An effect modifier is when a covariate increases or 

decreases the effect of treatment. Typically, effect modifiers are included in GLM by fitting an 

interaction term between treatment and covariate. SNM estimates the average effects of 

treatment at each time point as a function of effect moderators prior to that time point 

(Robins et al., 1992).  

There are different types of SNM based on the distribution of outcome; for continuous 

outcome there is the structural nested mean models and for time-to-event outcomes the 

structural nested failure time model.  

Risk set matching 

Li et al. (2001) proposed balanced risk set matching that minimises imbalance between 

treatment groups on specified covariates. A patient receiving treatment at time 𝑡 is matched 

to 𝑛 patients with a similar history of covariates but who has not received treatment up to 
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time 𝑡. Rather than matching on several covariates, Lu (2005) proposed matching on the PS 

instead. The PS is estimated via the Cox proportional hazards (PH) model for the instantaneous 

probability of receiving treatment given covariate history. Various matching algorithms exist 

including sequential matching and simultaneous pair matching (Lu, 2005). Matching on the 

prognostic score is another approach (Smith and Schaubel, 2015). Treatment effect estimation 

is subsequently performed on the matched sample. 

Time-varying PS subclassification 

As previously stated in Section 1.3, Leon (2011b) extended PS subclassification to the repeated 

measures setting. Leon (2011b) estimated PS over time by estimating the probability of 

treatment given covariates at each time point using multilevel logistic regression. 

Observations are then stratified into subclasses based on the PS, typically using quintiles, with 

treatment groups comparable within each subclass. As the PS can vary within a patient over 

time, patients may contribute observations to more than one subclass, for example if gout 

becomes worse propensity for treatment may increase. Treatment effects are then estimated 

within each subclass using the complementary log-log model and pooled. More detail on this 

approach is given in Section 5.4.5.1. 

 

5.3.5 Methods used in the PhD project 

Some of the most common approaches used to control for time-varying confounding have 

been described above. The implementation of any of these methods will be complicated by 

the large number of follow-up time points and large sample size, which are likely to be seen 

in studies using CPRD. Furthermore, availability of suitable and easy to use software is also an 

issue that hinders a more widespread application of these approaches in practice. For 

example, Daniel et al. (2013) discuss various limitations of G-methods and report that 
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implementation of these methods computationally intensive and not widely available in 

standard software.  

G-computation models the association between all covariates which can become burdensome 

if the number of covariates is large; CPRD offers the opportunity for large number of covariates 

to be explored. Furthermore, G-computation models the effect of treatment history on 

outcome. Within CPRD, there will be many treatment histories of allopurinol; some patients 

may never start treatment, whilst others may start and remain on treatment, or discontinue 

and restart treatment (Scheepers et al., 2018). Therefore, evaluating effect of all treatment 

histories on outcome may not be feasible or practical. It would be easier if effect of treatment 

was evaluated over a short period of time, say a few years. However in relation to the topic of 

this PhD project, only a small proportion of patients with gout would be prescribed urate-

lowering therapy shortly from diagnosis (Kuo et al., 2014), which may result in a small number 

of patients with distinct treatment histories in the few years post diagnosis. It was only more 

recently that it was shown the length of time patients adhered with allopurinol treatment 

using CPRD data (Scheepers et al., 2018) that may have aided this decision.  

Out of the three G-methods, MSM are the most commonly used method and is considered 

the gold standard for modelling time-varying treatment effect in the presence of time-varying 

confounding. MSM are considered for use in this PhD project as they can be fitted using 

standard software, such as Stata, and the procedure behind them is more intuitive to other G-

methods. Furthermore, the risk of model misspecification is smaller as only two models are 

fitted (one to model the multivariable association between covariates and treatment, and the 

other to model the effect of treatment on outcome), compared with G-computation which 

fits a separate model for each covariate. The disadvantage of MSM is that weights can become 

extremely large due to near violations of the positivity assumption, i.e., PS is close to zero thus 

taking the inverse yields large weights. Large weights often occur if too many covariates are 



132 
 

used in the estimation of PS, which may result in combinations of covariates having small PS 

i.e., only a few patients with very low PS actually receive treatment. Large weights can become 

amplified in patients with long follow-up times due to cumulative multiplication of small PS 

over time. Use of stabilised and basic weights, and truncating weights may prevent this 

(described further in Section 5.5.5.1).  

A common issue across GLM, matching and subclassification on the covariates is that they are 

susceptible to poor model fit when the number of covariates is large, the study sample and 

number of outcomes is not large enough for all relevant covariates to be adjusted for. PS 

methodology aims to overcome the most common issues encountered in these three 

approaches. PS methods are easily understood and widely used with matching being the most 

popular method. However, it is currently unclear how straightforward it would be to 

implement any methods based on direct extension of PS to complex electronic health records 

(EHR) data involving repeated measures of treatment and covariates. Risk set matching (Lu, 

2005), as described above, is restricted to the simple setting of comparing patients that were 

never treated to those that initiated treatment, who share similar PS; this approach ignores 

the issue of treatment adherence, and may be impracticable to find valid matches. A less 

restrictive approach would be to use time-varying PS subclassification proposed by Leon 

(2011b). This method is considered for use in this PhD project as it allows patients to 

repeatedly initiate and discontinue treatment over time, stratification attempts to achieve 

approximately homogenous subclasses where matching on the same PS may be infeasible,      
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5.4 Time-invariant PS subclassification 

This section describes components of the analysis taken to specify, estimate and assess the 

PS, and how it may be used via subclassification and in subsequent estimation of treatment 

effect. 

 

5.4.1 Propensity score estimation 

Logistic (or logit) regression is the most frequently used model to estimate PS in the case of 

binary treatment. A systematic literature review conducted in 2004 found 47 out of 48 

research articles relating to PS used logistic regression (Weitzen et al., 2004). Logistic 

regression is given in Equation 5.14 and allows control for multiple covariates through the 

regression component. The estimated regression coefficients measuring the association 

between treatment 𝐴 and baseline covariates 𝑿 are measured on the logit scale. For each 

patient, their linear prediction on the logit scale is converted into the probability of treatment 

i.e., the PS, that ranges from 0 to 1 (Equation 5.15).  

 𝑙𝑛 [
𝑝𝑟(𝐴 = 1)

1 − 𝑝𝑟(𝐴 = 1)
] = ∑ 𝛽𝑘𝑿𝑘

𝐾

𝑘=0

 5.14 

 𝑝𝑟(𝐴 = 1|𝑿) =  
𝑒𝑥𝑝(∑ 𝛽𝑘𝑿𝑘

𝐾
𝑘=0 )

1 + exp (∑ 𝛽𝑘𝑿𝑘
𝐾
𝑘=0 )

 5.15 

 

5.4.2 Covariate specification  

Ideally covariate selection should be pre-specified based on prior clinical knowledge on the 

associations between covariates, treatment, and outcome. In reality this knowledge may be 

limited or unknown. Alternatively, statistical tests on the associations between covariates and 

treatment and outcome are used and covariate selection is based on pre-specified criteria.  
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General consensus is to include all covariates associated with outcome in the PS model (Austin 

et al., 2007a, Cuong, 2013, Rubin and Thomas, 1996). Brookhart et al. (2006) performed a 

simulation study and had shown all covariates associated with outcome, regardless of their 

association with treatment, should be included in the PS model; inclusion of covariates only 

associated with outcome in addition to confounding variables (covariates associated with both 

outcome and treatment) was found to have higher precision of the treatment effect without 

affecting bias. Inclusion of covariates only associated with treatment were found to lower 

precision of the treatment effect although bias was unaffected.  

Consideration of including interaction terms and functional form specification via higher order 

linear or non-linear terms for continuous covariates is needed. Rosenbaum and Rubin (1984) 

and similarly Dehejia and Wahba (1999) suggested including such terms if balance was not 

achieved on the main effects of covariates. Assessment for balance is described further in 

Section 5.4.4. 

Attempts to improve PS prediction are discouraged as goodness-of-fit tests and discrimination 

tests do not necessarily yield the best PS model that improves balance between treatment 

groups, and may lead to lack of common support (Brookhart et al., 2006, Westreich et al., 

2011, Patrick et al., 2011, Weitzen et al., 2005). 

 

5.4.3 Number of subclasses 

Subclassification on the correctly specified estimated PS divides treated and untreated 

patients into 𝐽 subclasses based on percentiles of the PS distribution thus all subclasses would 

have equal number of patients. Patients within each subclass will have similar distribution of 

covariates. There is no general consensus on the optimal number of subclasses. Cochran 

(1968) had shown a 90% reduction in bias in the treatment effect when patients were divided 

into quintiles, i.e., five subclasses on the distribution of a continuous covariate. Rosenbaum 
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and Rubin (1984) showed that this finding is still applicable when patients were spilt into five 

subclasses based on the PS distribution. Thus, it has become standard practice for studies to 

use five subclasses. This is not of course an optimal approach across board, as the number of 

subclasses is dependent on sample size, covariate balance, and associated bias reduction in 

the treatment effect.  

Various simulation studies have shown increasing the number of subclasses reduces bias in 

the treatment effect as the distribution of covariates within subclasses become more 

homogenous (Lunceford and Davidian, 2004, Hullsiek and Louis, 2002, Neuhäuser et al., 2018). 

However, the trade-off is that variance may increase due to smaller sample size in subclasses 

(Lunceford and Davidian, 2004). Hullsiek and Louis (2002) recommend that a large number of 

subclasses as possible should be used (until subclass-specific treatment effects can no longer 

be estimated) in order to achieve maximal bias reduction, this study as well as Neuhäuser et 

al. (2018) demonstrated the use of more than five subclasses led to much smaller reductions 

in bias. 

Note however that despite subclassification removing a significant amount of bias from 

confounding effects, some residual confounding is expected to remain as each subclass would 

contain a range of PS, thus small imbalances in distribution of covariates between the 

treatment groups is expected to remain (Rosenbaum and Rubin, 1983). Lunceford and 

Davidian (2004) suggested to fit regression analysis evaluating the effect of treatment on 

outcome adjusted for covariates within each subclass to further reduce within-subclass 

confounding.   

 

5.4.4 Common support and covariate balance evaluation 

In evaluating covariate balance, two checks are undertaken:  
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1) Common support, to assess whether the distribution of PS overlaps between the 

treated and untreated groups. 

2) Covariate balance, to assess whether the distribution of covariates is similar across the 

treated and untreated groups after PS subclassification. 

If adequate common support and covariate balance has been achieved, the treatment groups 

are assumed comparable. Evaluation of common support and covariate balance can be 

assessed either graphically or descriptively. Austin (2009a) outlines different methods that can 

be used to evaluate covariate balance. 

Common support 

Once PS is estimated, common support is evaluated before and after PS subclassification. This 

involves assessing the amount of non-overlap between treatment groups. This can be 

investigated using box plots with descriptive summaries e.g., minimum, first quartile, median, 

third quartile, and maximum values, or using kernel density plots e.g., histograms. Where 

there is overlap on the PS distribution, this implies similarity of PS between treated and 

untreated patients. Often it is assumed treated patients would have higher PS than untreated 

patients, and untreated patients would have lower PS than treated patients. If there is little 

overlap at the tails (i.e., the lower and upper ends) of the PS distribution, this suggests there 

could be a combination of covariate values that are not shared between treated and untreated 

patients. In case of such poor covariate balance in the tails of the PS distribution, it may be 

sensible to remove these patients, a process known as trimming, prior to outcome analysis 

(Patorno et al., 2013). However, trimming may lead to the study sample no longer being 

representative of the population it was derived from. 

After PS subclassification, each subclass requires a sufficient number of treated and untreated 

patients with outcome occurring in both treatment groups to enable calculation of subclass-
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specific treatment effects. In subclasses that only contain either treated or untreated patients 

there would be no common support and the treatment effect cannot be estimated within that 

subclass. Similarly, treatment effect cannot be estimated if outcome did not occur within a 

treatment group. Common support can be improved by reducing the number of subclasses 

however, covariate balance may decrease within subclasses because the range of PS would 

increase (Stuart, 2010). 

Covariate balance 

Covariate balance is usually evaluated using standardised mean difference (SMD), also known 

as standardised bias. SMD is used to compare means and proportions in units of the pooled 

standard deviation across the treatment groups. SMD is evaluated before and after PS 

subclassification to investigate whether SMD reduces in size for each covariate. SMD is not 

influenced by sample size and allows covariates measured in different units to be compared 

to one another on the same scale. The formula to calculate SMD for continuous covariates is 

shown in Equation 5.16 where 𝑥̅ is the mean and 𝑠 is the standard deviation of the covariate 

in each treatment group.  

 (𝑥̅𝑡𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑥̅𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

√𝑠𝑡𝑟𝑒𝑎𝑡𝑒𝑑
2 + 𝑠𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑

2

2

 
5.16 

 

SMD for binary covariates can be derived using Equation 5.17 where 𝑝̂ is the proportion of 

covariate of interest in each treatment group (Austin, 2009a).  

 (𝑝̂𝑡𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑝̂𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

√𝑝̂𝑡𝑟𝑒𝑎𝑡𝑒𝑑(1 − 𝑝̂𝑡𝑟𝑒𝑎𝑡𝑒𝑑) + 𝑝̂𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑(1 − 𝑝̂𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑)
2

 
5.17 
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No acceptable size of SMD has been suggested however, a common rule of thumb is SMD 

larger than 0.10 indicates imbalance on the covariate (Austin, 2011a). Other studies have used 

a more relaxed criterion of 0.25 (Stuart, 2010, Stuart and Rubin, 2008). Ho et al. (2017) argued 

covariates with stronger associations with outcome need better balance than covariates with 

weaker associations.  

After PS subclassification, subclass-specific balance should be evaluated for each covariate 

and then averaged across all the subclasses, weighted by the proportion of patients in each 

subclass from the total study sample (Harder et al., 2010). 

There are many other measures of covariate balance such as the variance ratio for continuous 

covariates (Austin, 2009a), and use of prognostic scores to ensure the risk of outcome is similar 

between the treatment groups (Stuart et al., 2013b). The use Kolmogorov-Smirnov test 

statistic and t-tests are discouraged as these measures are dependent on sample size and 

small imbalances are likely to be found statistically significant due to increased power in larger 

datasets (Austin, 2009a, Imai, 2008). If large number of covariates are entered into the PS 

model, multiple testing would be rife and subjected to type I error. Covariate balance was 

assessed using SMD in this PhD project.  

 

5.4.5 Treatment effect estimation 

Once covariate balance has been achieved, treatment effect estimation can proceed. 

Treatment effects are estimated within each subclass by comparing outcome directly between 

the treatment groups. Subclass-specific estimates are derived using GLM which may also 

adjust for covariates to account for residual differences between treatment groups (Equation 

5.6 and Equation 5.7). The subclass-specific treatment estimates 𝑎𝑗 are pooled as the sum of 
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weighted subclass-specific treatment estimates (Equation 5.18). The pooled weighted 

variance 𝑠2 is shown in Equation 5.19.  

 

𝑎 = ∑ 𝑤𝑗𝑎𝑗

𝐽

𝑗=1

 

5.18 

 

𝑠2 = ∑ 𝑤𝑗
2𝑠𝑗

2

𝐽

𝑗=1

 

5.19 

 

Two methods are commonly used to weight subclass-specific estimates. Firstly, one could 

weight by the subclass-specific sample size, which involves calculation of subclass-specific 

weight 𝑤𝑗 as shown in Equation 5.20, where 𝑁 is the total number of patients and 𝑁𝑗 is the 

number of patients in subclass 𝑗.   

 
𝑤𝑗 =

𝑁𝑗

𝑁
 

5.20 

 

However, given that each subclass would have approximately the same number of patients, 

each subclass would have the same, or very similar, weight (Rosenbaum and Rubin, 1984, 

Cochran, 1968). Note that this may not always be the case, if for example two (or more) 

subclasses are collapsed into one due to low number of treated or untreated patients within 

particular subclasses. 

Secondly, treatment effect estimates may be weighted by the inverse variance, with the 

Mantel-Haenszel (MH) method (Mantel and Haenszel, 1959, Mantel, 1963) being commonly 

used. The weights are represented as the inverse of the estimated variance of the subclass-

specific treatment effect (Equation 5.21).  
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𝑤𝑗 =

1
𝑠𝑗

2

∑
1
𝑠𝑗

2
𝐽
𝑗=1

⁄  5.21 

  

The advantage of using inverse variance weights is that subclass-specific estimates with larger 

variance would have smaller weights thus contributing less to the overall treatment effect 

estimate.  

Rudolph et al. (2016) simulation study had shown that using inverse variance weights 

outperformed weighting by the sample size in PS subclassification but only when treatment 

effects across the subclasses are homogenous. When the treatment effect varied across 

subclasses, the weighting by sample size performed better, especially if over 10 subclasses 

were used. In this PhD project, both approaches were utilised, as appropriate. 

The assumption of constant treatment effects across subclasses can be verified using all 

observations from all subclasses. A GLM model initially regresses outcome on treatment and 

the PS subclasses. The incremental contribution of the interaction term between PS subclasses 

and treatment is then tested using the likelihood ratio test (LRT) by comparing the -2 

difference in log-likelihood of the GLM models with and without the interaction. An 

insignificant test would indicate that the effect of treatment does not vary significantly 

between subclasses, hence results can be pooled. If however the LRT is significant, this would 

indicate that the treatment effect varies across subclasses and the subclass-specific estimates 

should be reported, alongside with the distribution of covariates (Leon, 2011b).  

One should note that differences between treatment groups may remain within PS subclasses 

and may be difficult to achieve balance on particular covariates, even after increasing the 

number of PS and re-estimating PS. One solution would be to adjust for imbalanced covariates 

within subclass-specific treatment effect estimation. However, the number of covariates to 
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adjust for may be restricted by sample size and frequency of outcome (Vittinghoff and 

McCulloch, 2006). One should aim to achieve balance for the majority of covariates prior to 

adjusting for them.  

 

5.4.5.1 Survival analysis 

Survival analysis, the method of interest to estimate treatment effectiveness in this PhD 

project, is the analysis of times from some time origin (such as baseline) to occurrence of 

outcome of interest, for example death.  

Survival data, though inherently continuous, cannot be processed in the usual manner based 

on assumed normality, due to their tendency to follow non-symmetrical distributions and a 

substantial proportion of survival times are usually censored. Censored observations are those 

that have not been fully observed, and this can take the form of right, left or interval censoring. 

Such observations cannot be ignored as they carry potentially important information about 

the effect of treatment and covariates. The form of censoring that is easiest to model, and 

occurs most commonly, is right censoring. An observation is right censored if at the end of 

study, say 𝑡𝑐, the exact survival time, 𝑡 , is not known and all we can state is that 𝑡 > 𝑡𝑐. This 

may occur if, for example, a patient is lost in the follow-up period or the outcome of interest 

has not been observed at the end of the study.  

Left censoring is rare and occurs when the outcome is observed prior to the start of study; 

interval censoring occurs when the outcome is observed between two specified time points.  

Only right censoring was considered in this PhD project. Furthermore, it was assumed that the 

censoring mechanism is non-informative, i.e., the censoring is not related to any factors 

associated with the actual survival time.  
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There are three key functions of interest; the survival function, probability density function, 

and hazard function, which are now defined: Let 𝑇 be a non-negative random variable 

denoting survival time. The survival function 𝑆(𝑡) measures the proportion of patients who 

have not experienced outcome beyond time 𝑡 (Equation 5.22).  

 𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) 5.22 

 

The survival function is a monotone, non-increasing function with boundary conditions 

𝑆(0) = 1 and 𝑆(∞) = 0. The probability density function 𝑓(𝑡) is the unconditional probability 

of outcome occurring before time 𝑡 (Equation 5.23). 

 
𝑓(𝑡) = lim

Δt→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + Δt)

Δt
  5.23 

 

The hazard function ℎ(𝑡) is defined in Equation 5.24 and can be rewritten as the ratio between 

the probability density function and survival function. 

 
ℎ(𝑡) = lim

Δt→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + Δt | 𝑇 ≥ 𝑡)

Δt
=

𝑓(𝑡)

𝑆(𝑡)
 5.24  

 

So ℎ(𝑡)Δt is approximately the probability that the outcome occurs in the interval (𝑡, 𝑡 + Δt) 

given that the patient has not experienced outcome up to time t. Thus ℎ(𝑡) is a conditional 

function and can also be thought of as the risk of outcome occurring immediately after t. Note 

that ℎ(𝑡) is a rate, not a proportion, so it can take on any value between zero and infinity. 

ℎ(𝑡) can assume many different forms (increasing, decreasing or monotone over time) and is 

useful in explaining the way in which the risk of an outcome changes over time.  
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5.4.5.2 Cox proportional hazards model 

Cox survival model (Cox, 1972) is used in this thesis and its properties are summarised in this 

section. The hazard rate ℎ(𝑡) is given in Equation 5.25: 𝑿 = 𝑋0, 𝑋1, 𝑋2, … , 𝑋𝐾 is a vector of 

covariates with 𝑋0 = 1, and 𝜷 = 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝐾 is a vector of unknown regression 

parameters to be estimated; for treatment 𝐴, the regression parameter to be estimated is 

denoted 𝛼; and ℎ0(𝑡) > 0 is some arbitrary function of time, also known as the baseline 

hazard function, describing the risk when 𝐴 = 0. ℎ0(𝑡) represents a reference point that 

depends on time, just as the intercept denotes a reference point in other types of regression 

models. Cox regression parameters are estimated using the partial likelihood, which depends 

only on the parameters of interest. 

 
ℎ(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝛼𝐴 + ∑ 𝜷𝑘𝑿𝑘

𝐾

𝑘=0

) 5.25 

 

The hazard ratio between two treatment groups when all covariates are fixed is simply 

𝑒𝑥𝑝(α), interpreted as the relative risk of outcome.   

This model is termed PH because the hazard ratio for two patients with time-invariant 

covariates is constant over time and has a relative risk interpretation. The Cox model is 

therefore a semi-parametric model because the exact form of ℎ0(𝑡) is left unspecified and a 

strong assumption of proportionality of hazards is made. It is this semi-parametric property of 

the Cox model that has made it the most popular model used in survival analysis when there 

is doubt about correct parametric specification. Note that specification of ℎ0(𝑡) in Equation 

5.25 would lead to parametric models, such as Weibull.  

It is important that the PH assumption is tested if the Cox model is to be used; there are 

numerous methods of doing this, both numerically and graphically. Schoenfeld residuals, 

defined as the difference between the observed covariate value minus its expected value for 
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that patient at its failure time, are commonly used to assess the PH assumption. The residuals 

are independent of time, therefore plotting the residuals against time would have a random 

pattern. Also, one can test whether the slope is equal to zero in a linear regression model of 

the Schoenfeld residuals on time. If the p-value <0.05, the slope is not equal to zero and 

indicates deviation from PH and the log-hazard ratio changes over time (Grambsch and 

Therneau, 1994).  

Alternatively, the Kaplan-Meier survival curves (or survival times) can be plotted for each 

treatment (or covariate) group (Sedgwick, 2014). If the two survival curves crossover, it 

indicates violation of the PH assumption. Violation of the PH assumption may be resolved by 

including an interaction term between the particular covariate and time in the Cox model.  

 

5.4.5.3 Anderson & Gill method 

The Cox PH model considers time to a single outcome but cannot be used in the case of 

repeated outcome (Andersen and Gill, 1982). The Anderson and Gill model is a common 

method used in the analysis of repeated outcome and is a simple extension of the Cox PH 

model. The Anderson and Gill model assumes repeated outcomes times are independent to 

one another and ignores the order of occurrence of the outcomes. Therefore, the hazard of 

experiencing an outcome at time 𝑡, is the same regardless if outcome occurred previously. 

Each recurrent outcome is assumed to follow the Cox PH model (Equation 5.25).  

 

5.5 Time-varying PS subclassification 

Leon et al. (2001) extended the approach of PS subclassification to the setting of repeated 

treatment and covariates over time. In theory, time-varying covariates and time-varying 

treatment may be measured in continuous time thus it is possible to know the exact date 
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when covariate and treatment status change, such as in EHR where patient observations are 

recorded continuously. This would allow PS to be estimated and updated at each change of 

covariate and treatment status. However, in practice, this set-up may yield an unwieldly large 

dataset; consequently, issues with fitting an effective PS model would arise due to large 

number of repeated measurements for each patient, and potentially high correlations 

between repeated measurements resulting from lack of change between a high proportion of 

time points. Calculating the PS in this way is computationally intensive. As a compromise, 

treatment and covariate values may be ascertained in pre-set time intervals, but the specifics 

would be dependent on the length of follow-up and clinical relevance. Such discrete time 

approach commonly assumes treatment and covariates do not change within an interval. It is 

therefore important, as well as challenging, that both the ease of statistical modelling and 

clinical relevance are considered when making decisions about the width of time intervals.  

Published methods of subclassifying patients on time-dependent PS usually assume such 

discrete time. For example, in Leon et al. (2003) study, patients were followed up semi-

annually for the first five years and annually thereafter up to 20 years. Follow-up was divided 

into intervals of variable length corresponding to which treatment intensity the patient was 

prescribed; median number of intervals of 8 (range 1, 65) per patient. Thus, a patient had a 

mixture of discrete intervals taking various treatment intensity. This created a two-level 

hierarchical data structure with repeated measurements (level 1) clustered within a patient 

(level 2).  

Since their initial paper, subsequent publications by Leon et al. have shown the methodology 

evolve. Various simulations studies have evaluated the performance of time-varying PS 

subclassification in various settings; this method is capable of adjusting for time-varying 

covariates and estimating unbiased treatment effect for survival outcomes (Leon and 

Hedeker, 2005), continuous outcomes (Leon and Hedeker, 2007a) and repeated binary 
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outcomes (Leon, 2011b). Leon et al. (2012b) also proposed full matching, a type of 

subclassification. This involves creating a series of matched sets, where a matched set contains 

at least one treated interval and one untreated interval that have the same PS.    

Application of these methods have commonly been applied to the evaluation of anti-

depressants on outcome (Leon et al., 2001, Leon et al., 2003, Leon et al., 2011, Leon, 2011b) 

but has received little attention elsewhere.  

 

5.5.1 Propensity score estimation 

Following specification of hierarchical data structure as described above, PS needs to be 

estimated in each time interval. 

Use of logistic regression as specified in Section 5.4.1 and Equation 5.14 would be erroneous 

as the model would make an unrealistic assumption that repeated measurements within a 

patient are independent given covariates. Instead, mixed effects (also termed multi-level) 

models can be used to analyse such hierarchical data where the variability in outcome is 

attributable to both repeated measurements within patients and between patients (Rabe-

Hesketh and Skrondal, 2012). Mixed effects models incorporate both fixed and random 

effects. Leon et al. (2001) used such models, specifically random intercept ordinal logistic 

regression model, to estimate PS for each dose of treatment (ordinal treatment dose) over 

time. For binary treatment, random intercept logistic regression would be used. 

Extending Rosenbaum and Rubin (1983) notation to the repeated measures set-up, the PS at 

time 𝑡 is defined in Equation 5.26; 𝑟 is the patient-specific random intercept that is assumed 

to be normally distributed with mean zero and variance 𝜎𝑟
2 and 𝑿̅𝑡 denotes covariate history 

(that include time-invariant and time-varying covariates) up to and including time 𝑡 − 1 to 

ensure temporal ordering between covariates and treatment.  
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 𝑒(𝑿̅𝑡, 𝑟) = 𝑝𝑟(𝐴𝑡 = 1 | 𝑿̅𝑡, 𝑟), 0 < 𝑒(𝑿̅𝑡, 𝑟) < 1 5.26 

 

The random intercept logistic regression model is specified in Equation 5.27 which is an 

extension of Equation 5.14; it now estimates the probability of treatment at time 𝑡 given the 

random intercept and covariate history. 

 𝑙𝑛 [
𝑃(𝐴𝑡 = 1)

1 − 𝑃(𝐴𝑡 = 1)
] = ∑ 𝛽𝑘𝑿̅𝑡𝑘 + 𝑟

𝐾

𝑘=0

 5.27 

 𝑝𝑟(𝐴𝑡 = 1|𝑿̅𝑡) =  
exp (∑ 𝛽𝑘𝑿̅𝑡𝑘

𝐾
𝑘=0 + 𝑟)

1 + exp (∑ 𝛽𝑘𝑿̅𝑡𝑘
𝐾
𝑘=0 + 𝑟)

 5.28 

 

Within a patient, PS can change over time due to time-varying covariates included in 𝑿̅. The 

random intercept can be thought of as patient-specific regression coefficient; inclusion of the 

random intercept in PS estimation allows each patient to have a separate intercept so the PS 

at baseline (𝑡 = 0) would be higher or lower compared to the estimated intercept 𝑏0. 

Measurements within patients may be correlated, which is accounted for in mixed models via 

𝜎𝑟
2. The estimation of the covariance structure is usually performed under certain specific 

structure assumptions. Independent, exchangeable, and unstructured covariance structures 

are commonly used in practice. The independent structure is the most simplistic and assumes 

repeated measurements within a patient are independent. The exchangeable structure 

assumes correlations between subsequent measurements are the same, irrespective of time. 

The least restrictive is the unstructured structure where all correlations are assumed to be 

different. In practice, there is no strict rule on which covariance structure is optimal, and in 

this PhD project, various options have been considered.  

 



148 
 

5.5.2 Covariate specification 

As discussed in Section 5.4.2, covariates associated with outcome should be included in 

estimation of the PS at a single time point. However, it is unclear whether the same applies in 

the case of estimation time-varying PS.  

In a repeated treatment and covariates setting, Leon and Hedeker (2007b) performed a 

simulation study on the impact of a misspecified PS model in treatment effect estimation. That 

study found omitting confounding variables from the PS model yielded biased treatment 

effects. Omitting continuous time-varying confounding variable increased bias the most 

followed by time-varying binary confounding variables, and then baseline confounding 

variables. Leon and Hedeker (2007b) also found omitting a confounding variable in PS 

estimation that were highly correlated with other confounding variables yielded less bias 

compared with omitting a confounding variable with lower correlation. Therefore, it was 

suggested to adjust for time in treatment effect estimation to lessen the impact of omitting a 

time-varying confounding variable in PS estimation to the extent that confounding variable is 

associated with time.   

Many of Leon’s research articles hypothesised that the included covariates in the PS were 

associated with treatment however, there was no discussion whether these covariates were 

also associated with outcome (Leon et al., 2003, Leon et al., 2001, Leon, 2011a). This differs 

to time-invariant PS where Brookhart et al. (2006) simulation study suggested all covariates 

associated with outcome should be included in PS estimation (Section 5.4.2).  

As described above, the PS at time 𝑡 is estimated using covariate history, therefore the PS 

should contain lagged covariates representing covariate values in earlier time intervals. For 

example, Leon et al. (2003) included history of disease (e.g., prior number of episodes), 

trajectory of symptom severity prior to treatment (stable, increasing, decreasing), and prior 
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treatment use in the PS model. Leon and Hedeker (2007a) recommended including time as a 

covariate in the PS model if it was hypothesized there was temporal trend in being treated.  

 

5.5.3 Number of subclasses 

Once PS are estimated within intervals, the intervals are then divided into subclasses 𝐽 based 

on the PS distribution leading to equal or very similar number of intervals in each subclass. A 

patient may contribute to multiple subclasses if their PS changes over time.  

Similarly to PS subclassification at a single time point (Section 5.4.3), many studies had used 

quintiles based on the time-varying PS distribution (Leon et al., 2001, Leon et al., 2003, Leon 

and Hedeker, 2005). Later studies by Leon and Hedeker (2007a) and Leon (2011b) performed 

simulation studies and determined that between four and five subclasses were required to 

remove 80-90% of bias in the treatment effect in this repeated measures setting. They noted 

that statistical power decreased as more subclasses were used; these studies did not consider 

more than five subclasses.  

As previously noted in Section 5.4.3, the number of subclasses is dependent on sample size, 

covariate balance, and bias reduction in the treatment effect when PS is performed at 

baseline. Logically the same is assumed here.  

 

5.5.4 Common support and covariate balance evaluation 

Similarly to PS subclassification at a single time point (Section 5.4.4), common support is 

evaluated before and after PS subclassification. It is first necessary to check there is sufficient 

number of treated and untreated intervals with outcome occurring in both treatment groups 

to enable calculation of subclass-specific treatment effects. There is no consensus on the 

minimum number of observations needed within a cell. Leon et al. (2001) and Leon et al. 
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(2003) had a minimum of 4% for each treatment within a subclass in their analyses whilst Leon 

and Hedeker (2007a) suggests a minimum of 5-10 observations in each cell of the PS subclass 

and treatment contingency table. 

Covariate balance was assessed before and after PS subclassification. Leon and Hedeker 

(2007a) and Leon (2011b) assessed balance by using mixed models to regress treatment on 

each covariate (that was included in the PS model) individually; the estimated regression 

coefficient and statistical significance was noted for each covariate. Subsequently, each mixed 

model was adjusted for PS subclasses. If the addition of the PS subclasses to the model 

attenuated the regression coefficient for the covariate towards the null and had become 

statistically insignificant, then it was assumed that balance was achieved on that covariate. If 

balance was not achieved on that covariate, it was adjusted for in the estimation of subclass-

specific treatment effect.  

Note however that as stated above in Section 5.4.4, use of significance testing for covariate 

imbalance is dependent upon sample size and its use is discouraged as small imbalances are 

likely to be found statistically significant due to increased power in larger datasets, for 

example when using CPRD (Austin, 2009a, Imai, 2008); intuitively the same applies here. 

Therefore, assessment of change in the covariate regression coefficient alone is better placed 

to ascertain whether balance was achieved. 

A more appropriate approach to examining the magnitude of imbalance after PS 

subclassification would be to use SMD as described in Section 5.4.4. In the repeated measures 

setting, covariates measured in each interval would contribute to calculating SMD that 

assumed the repeated measurements were independent; 𝑥̅ in Equation 5.16 represents the 

mean covariate across all intervals, and 𝑝̂ in Equation 5.17 represents the proportion of the 

covariate of interest across all intervals. Any covariates which were not successfully balanced 
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across treatment groups should be adjusted for when estimating subclass-specific treatment 

effects. 

 

5.5.5 Treatment effect estimation 

Once balance has been achieved, evaluation of treatment effect can proceed. There are two 

key ways in which PS subclasses can be accounted for in treatment effect estimation. Firstly, 

one could directly adjust for the PS subclasses as covariate in the outcome model that 

estimates the overall association between treatment and outcome (Leon et al., 2001). 

Alternatively, subclass-specific treatment effect estimates could be obtained and pooled via 

the MH method as described in Section 5.4.5 using Equations 5.18, 5.19 and 5.21. To enable 

pooling, the assumption of homogeneity of treatment effects across subclasses would first 

need to be tested, as explained before.  

 

5.5.5.1 Discrete-time survival model 

Discrete time survival models can be used when continuous time line is split into intervals, 

thus several patients would share the same analysis time (Cox, 1972). Each interval contains 

occurrence of outcome which allows one to model the probability that outcome occurred in 

each interval, conditional that the outcome had occurred until then (Rabe-Hesketh and 

Skrondal, 2012).  

The survival function in discrete time at time 𝑡𝑗  is defined as the probability that survival time 

𝑇 is greater than 𝑡𝑗, or in other words the probability of not having outcome by time 𝑡𝑗 

(Equation 5.29). 
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𝑆(𝑡𝑗) = 𝑝𝑟[𝑇 ≥ 𝑡𝑗] = ∑ 𝑓(𝑡𝑗)

∞

𝑘=𝑗

 

𝑓(𝑡𝑗) = 𝑝𝑟[𝑇 = 𝑡𝑗] 

 5.29 

 

The hazard of failure (outcome) is defined as the probability of failure at time 𝑡𝑗 given that the 

patient has not had outcome to that point (Equation 5.30). 

 
ℎ(𝑡𝑗) = 𝑝𝑟[𝑇 = 𝑡𝑗|𝑇 ≥ 𝑡𝑗] =

𝑓(𝑡𝑗)

𝑆(𝑡𝑗)
  5.30 

 

The survival function can be written in terms of the hazard function of all previous time points 

such that at time 𝑡𝑗, a patient cannot have outcome at time 𝑡1, 𝑡2, up until 𝑡𝑗−1 (Equation 5.31). 

Equation 5.31 is equivalent to the survival function in continuous time (Equation 5.22).  

 𝑆(𝑡𝑗) = [1 − ℎ(𝑡1)][1 − ℎ(𝑡2)], … , [1 − ℎ(𝑡𝑗−1)]  5.31 

 

If continuous time is divided into discrete intervals with constant hazard within each interval, 

the Cox PH model is analogous to the binomial regression model with a complementary log-

log link (Equation 5.32). Complementary log-log regression allows one to estimate the hazard 

ratio in discrete time, and are the same as if the Cox model was fitted in continuous time and 

assumes PH. In the case of time-varying treatment, the PH assumption does not need to be 

satisfied as the hazard function is estimated within each interval. As treatment changes over 

time, the association between treatment and outcome estimated within each interval may 

differ across intervals, therefore the PH assumption may not be satisfied. Interval-specific 

treatment effect estimates are pooled together to obtain an overall estimate. 
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ln[−ln (1 − ℎ(𝑡𝑗)] = 𝛼𝐴 + ∑ 𝜷𝑘𝑿𝑘

𝐾

𝑘=0

 5.32 

 

One should note that this particular model does not account for duration of time within an 

interval and simply models whether outcome had occurred in each interval. To account for 

repeated correlated intervals within a patient, one can include patient-specific random 

intercept 𝑟 (as previously described in Section 5.5.1) to Equation 5.32, and shown in Equation 

5.33 (Hedeker et al., 2000, Rabe-Hesketh and Skrondal, 2012, Austin, 2017).  

  
ln[−ln (1 − ℎ(𝑡𝑗)] = 𝛼𝐴 + ∑ 𝜷𝑘𝑿𝑘 + 𝑟

𝐾

𝑘=0

 5.33 

 

The random intercept complementary log-log regression model has frequently been used to 

estimate subclass-specific treatment effects after time-varying PS subclassification (Leon, 

2011b, Leon, 2011a, Leon et al., 2012a).  

 

5.6 Marginal structural models 

As stated in Section 5.3.4, MSM are used to model the effect of time-varying treatment on 

potential outcomes in the presence of time-varying confounding effects (Robins, 2000). At the 

start of this PhD project (in 2013), very few EHR studies had used MSM to estimate treatment 

effect however, its use has increased since; examples include warfarin use and risk of bleeding 

using GPRD data (Platt et al., 2012), effectiveness of beta-blockers on mortality using GPRD 

data (Delaney et al., 2009), and bisphosphonates use and risk of infection using claims data 

(Xue et al., 2017). 
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Two modelling steps are involved in MSM. The first step requires the correct specification of 

the PS model for estimation of weights; the second step uses the estimated weights to create 

a pseudo-population (where there is no confounding) within which an unbiased treatment 

effect can be estimated. 

Time-varying covariates and treatment can be measured in either continuous or discrete time. 

The same data structure as described for time-varying PS subclassification in Section 5.4.5.1 is 

assumed; treatment and covariates are measured repeatedly in pre-set time intervals creating 

a two-level hierarchical data structure with repeated measurements (level 1) clustered within 

a patient (level 2).  

 

5.6.1 Weight estimation 

The purpose of weights is to balance the distribution of covariates across the treatment 

groups in the pseudo-population in all time intervals. Weights 𝑤𝑡 are assigned to each time 

interval 𝑡 resulting in time-varying weights. As previously described in Section 5.3.3, the 

weights reflect by how much observations are under-represented or over-represented in the 

study sample compared to the pseudo-population in the absence of no confounding. The ideal 

properties of the weight distribution are mean equal to 1, normally distributed, and a narrow 

range at all time points. In practice, this may not be feasible if the number of time points is 

large, therefore the overall weight distribution can be examined instead (Cole and Hernan, 

2008).  

Section 5.3.4 described the estimation of unstabilised weights (Equation 5.12). The 

distribution of unstabilised weights is likely to be skewed, with mean weight is likely to deviate 

from one substantially and have large variance, inflated by the presence of extremely large 

weights. The mean and standard deviation of weights with minimum and maximum weight 
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values should be reported. These issues are indications that the positivity assumption is 

violated (i.e., PS is very close to zero), the PS model could be misspecified (Cole and Hernan, 

2008) or that residual confounding may be present (Jackson, 2016). 

Using the intervals as the unit of analysis, pooled logistic regression is used to estimate PS in 

each interval, given baseline and time-varying covariates (Fewell et al., 2004). Logistic 

regression is ‘pooled’ as a patient contributes multiple times to the model which pools 

treatment and covariates across intervals into a single sample however, the model does not 

account for when treatment and covariates occur within an interval (Ngwa et al., 2016).  

Stabilised weights 

Robins (2000) recommended the use of stabilised weights, a modification of unstabilised 

weights. The formula for stabilised weights is shown in Equation 5.34. The numerator of the 

stabilised weight is the probability of observed treatment conditional on past treatment 

history 𝐴̅𝑡 (treatment history up to and including time 𝑡 − 1) and time-invariant covariates 𝒁. 

𝒁 is a subset of 𝑿 that includes both time-invariant and time-varying covariates. The 

denominator of the stabilised weight is the same as the denominator of the unstabilised 

weight.  

 
𝑠𝑤𝑖 = ∏

𝑝𝑟(𝐴𝑡|𝐴̅𝑡, 𝒁)

𝑝𝑟(𝐴𝑡|𝐴̅𝑡, 𝑿̅𝑡)

𝑇

𝑡=0

 5.34 

 

By including treatment history and baseline covariates in the numerator and denominator, 

the stabilised weights reflect the incremental effect of time-varying covariates on the 

probability of treatment independently of other covariates (Equation 5.34). Therefore, the 

stabilised weights are less variable and skewed, with smaller variance and range, with mean 

weight closer to one, than unstabilised weights. Stabilised weights tend to decrease over time 
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as the denominator accounts for time-varying covariates the probabilities should be on 

average higher (as more recent covariate status would have stronger association with 

treatment than time-invariant covariates) than the probabilities in the numerator for each 

time interval (Xiao et al., 2010). Use of stabilised weights also mean the estimated treatment 

effect would be more precise than using unstabilised weights. The disadvantage of stabilised 

weights is that confounding would remain from baseline covariates and treatment history due 

to its inclusion in the numerator; in the pseudo-population as treatment is only randomised 

within levels of the time-invariant covariates and treatment history, one needs to adjust for 

these covariates in the outcome model estimating treatment effect  (Cole and Hernan, 2008). 

Alternatively, one could estimate basic stabilised weights where the numerator is the 

proportion of treated patients at time 𝑡 (Equation 5.35). Similarly, basic stabilised weights are 

less variable than unstabilised weights and leads to more precision in the estimated treatment 

effect. Use of basic stabilised weights avoids the need to condition on treatment history and 

baseline covariates in the outcome model (Talbot et al., 2015).  

 
𝑏𝑠𝑤𝑖 = ∏

𝑝𝑟(𝐴𝑡)

𝑝𝑟(𝐴𝑡|𝐴̅𝑡, 𝑋̅𝑡)

𝑇

𝑡=0

 5.35 

 

The PS for the numerator and denominator for all types of weights are estimated separately 

via pooled logistic regression models. 

Normalised weights 

Distribution of stabilised weights may still be undesirable if the mean deviates from one and 

the variance is large. Xiao et al. (2010) proposed normalised weights that ensure the mean 

weight of one in all intervals; weights would be less extreme resulting in reduced variability of 

weights. Both stabilised and unstabilised weights can be normalised. Calculation of normalised 
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unstabilised weights 𝑛𝑤𝑖 is shown in Equation 5.36 where 𝑁(𝑡) is the total number of patients 

in interval 𝑡 and 𝑅(𝑡) is the number of patients at risk of outcome in interval 𝑡. Calculation of 

normalised stabilised weights is shown in Equation 5.37. 

 
𝑛𝑤𝑖 =

𝑤𝑖𝑁(𝑡)

∑ 𝑤𝑖(𝑡)𝑖∈𝑅(𝑡)
 5.36 

 
𝑛𝑠𝑤𝑖 =

𝑠𝑤𝑖𝑁(𝑡)

∑ 𝑠𝑤𝑖(𝑡)𝑖∈𝑅(𝑡)
 5.37 

 

Xiao et al. (2010) performed a simulation study evaluating effect of different weights on 

treatment effect estimation. Unstabilised weights yielded the largest standard error of the 

treatment effect whilst use of stabilised weights significantly reduced standard error as 

expected. Use of normalised weights (both unstabilised and stabilised) yielded the smallest 

standard errors of the treatment effect. 

Censoring weights 

Longitudinal studies may be susceptible to selection bias due to loss of follow-up. If patients 

were censored prior to outcome occurring, for example if they died, bias in the treatment 

effect is introduced if covariates differ between censored patients and those who remain in 

the study and when these covariates are also associated with outcome. 

Censoring can be viewed as a time-varying confounding variable. Censoring weights are 

defined as the probability of being censored at each time point given time-varying and time-

invariant covariates. Censoring weights reweight the study sample and create a pseudo-

population where censoring did not occur. Multiplying treatment weights with censoring 

weights at each time point creates a pseudo-population where there is no loss of follow-up 

and no confounding. 
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Weight truncation 

Extreme weights may persist in some situations, regardless of which weight estimation 

approach is used. There are a few approaches that can be adopted to reduce such persistent 

extreme weights. One could remove covariates from the PS model that are weakly associated 

with outcome and cause extreme weights however, this may not always be possible if all 

covariates are strongly associated with outcome. Another approach is exclusion of 

observations that have large weights (known as trimming) however, one would need to define 

a threshold at which weight is considered high enough for an observation to be removed; 

furthermore, generalisability of the sample may be compromised.  

The most common approach is weight truncation. Truncation involves setting the value of 

weights greater than and lower than a certain percentile cut-off to the values of these 

percentiles cut-off points. As the weights are progressively truncated, the treatment effect 

estimate progressively becomes more biased however the standard error reduces. Typically, 

weights are truncated at 1% and 99% of their distribution and typically removes the majority 

of extreme weights (Cole and Hernan, 2008). Cole and Hernan (2008) described weight 

truncation as the trade-off between bias and precision in the treatment effect.  

There is little guidance in the optimal level of truncation. Xiao et al. (2013) suggested the 

optimal level of truncation should be based on minimising the mean squared error (MSE, 

defined as the mean squared difference between the estimated and actual values). A 

simulation study showed truncating weights fixed at 99.5% and 99% percentiles performed 

similarly in terms of bias and variance on the treatment effect with truncation based on MSE 

(Xiao et al., 2013).   
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5.6.2 Intention-to-treat, per-protocol, and as-treated principles 

Weight estimation is dependent on whether treatment effect is estimated under the 

intention-to-treat, per-protocol, or as treated principles. For this PhD project, interest is in 

estimating the actual effect of treatment via as-treated analysis.  

 

5.6.2.1 Intention-to-treat 

Intention-to-treat analysis assumes that once a patient has initiated treatment they remain 

on that treatment throughout the rest of follow-up, therefore the effect of initiating 

treatment is estimated (Cole and Hernan, 2008). Intention-to-treat approach is most 

appropriate in situations where treatment adherence after initiation is low. Weight estimation 

would be simplified as covariates associated with treatment initiation only need to be 

considered as the assumption of exchangeability applies up to treatment initiation; weights 

are estimated up until treatment is initiated, thereafter the probability of treatment is 

assigned a value of one for the remainder of the follow-up.  

 

5.6.2.2 Per-protocol analysis 

The magnitude of the treatment effect estimate and its precision resulting from intention-to-

treat analysis is dependent on whether patients adhered with treatment. Per-protocol 

analysis may be performed by restricting analysis to patients who adhered with treatment by 

censoring patient follow-up time at the point they stop treatment. This artificial censoring may 

be dependent on covariates and outcome and is a type of selection bias. Analysis would have 

to account for both confounding by indication and confounding from selection bias by 

estimating weights separately when patients initiate treatment and when patients continue 

with treatment (Yang et al., 2014, Danaei et al., 2013, Yang et al., 2015b).   

 



160 
 

5.6.2.3 As-treated analysis 

As-treated analysis is where patients are analysed according to whether they receive 

treatment or not. This approach estimates the actual treatment effect. Different scenarios 

may occur where patients (1) may never initiate treatment, (2) initiate and remain on 

treatment until the end of follow-up, (3) discontinue treatment once initiated, (4) initiate, 

discontinue and then restart treatment; treatment discontinuation and/or restarting 

treatment may occur repeatedly. This scenario is expected to be seen within CPRD data.  

Weight estimation becomes more complex as weights would need to be estimated separately 

if confounding effects were found to differ for each scenario. Studies rarely consider these 

complexities of as-treated analyses and assume the effect of confounding variables are the 

same for all scenarios (Yang et al., 2014).  

Yang et al. (2014) conducted a systematic review identifying pharmaco-epidemiologic studies 

published in 2012 that attempted to account for patients not adhering with treatment. The 

authors extracted information from 20 eligible studies and found eight studies conducted as-

treated analyses, six intention-to-treat analyses, and three per-protocol analyses. 

Yang et al. (2015b) performed a simulation study comparing impact on treatment effect 

estimate when weight estimation was considered under four different scenarios: (1) 

intention-to-treat analysis, (2) acknowledged confounding effects differed between patients 

initiating treatment and patients continuing treatment, with two separate weights estimated, 

(3) confounding variables had the same effect on initiating treatment and continuing 

treatment, and (4) only time-invariant confounding variables were considered.  

Approach 1 performed poorly in the presence of non-adherence and when treatment effect 

was non null; bias increased approximately by 1% for each 1% increase in the proportion of 

patients discontinuing treatment. Standard error of the treatment effect was larger compared 

with the other approaches. Approach 1 should only be used if adherence to treatment is high.  
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Incorrectly assuming confounding effects are the same for patients initiating and continuing 

treatment (approach 3), resulted in biased treatment effect due to incomplete control of 

confounding effects. Modelling weights separately for treatment initiation and adherence 

(approach 2) yielded unbiased treatment effect and lower standard errors compared with 

other approaches. Approach 4 was found to estimate biased treatment effect with larger 

standard errors than the other three approaches.   

A limitation of Yang et al. (2015b) study is that it assumed only two time points and only a 

continuous outcome was considered. Graffeo et al. (2018) simulation study focused on 

estimating weights for patients who repeatedly initiated and discontinued treatment with 

time-to-event outcome. Weights were estimated in continuous time using Cox regression 

models. The authors found that bias in the treatment effect reduced when weights were 

modelled separately for treatment initiation and discontinuation compared with an intention-

to-treat analysis.  

 

5.6.3 Covariate specification 

Yang et al. (2014) systematic review of pharmaco-epidemiological studies that used MSM 

found studies generally selected covariates based on either previous knowledge or using 

statistical criterion. Within MSM, Lefebvre et al. (2008) performed a simulation study and 

found the PS model should include covariates that are associated with outcome to increase 

precision in the estimated treatment effect however, including covariates that were only 

associated with treatment increased bias and standard error in the estimated treatment 

effect. These findings were similar to what Brookhart et al. (2006) found in estimating time-

invariant PS (Section 5.4.2) although inclusion of covariates only associated with treatment 

did not affect bias.  
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As discussed for time-varying PS subclassification approach, the PS estimation is conditional 

on covariate history therefore, the PS model should contain lagged covariates representing 

covariate values in earlier time intervals (Robins et al., 2000). Neugebauer et al. (2007) 

proposed history restricted MSM where a shorter history of covariates is considered assuming 

it adequately captures covariate history. The PS model needs to adjust for treatment history; 

this can be achieved by including a counter of previous treatment as a covariate (Graffeo et 

al., 2018).  

The functional form of covariates needs to modelled accurately. Cole and Hernan (2008) found 

modelling continuous covariates as categorical variables affected the bias-variance trade-off 

in the treatment effect. As the number of categories for a continuous covariate increased, this 

led to better control of confounding (as more information on the covariate was available). 

However, the standard error of the treatment effect estimate increased which may have 

resulted from increased range and standard deviation of weights, mean weight deviating from 

one, and a small number of patients that have a certain combination of covariates.  

Instead, one could directly model continuous covariates as a non-linear function as it reduces 

the number of parameters estimated by assuming the intercept is a smooth function thus 

avoiding the need to categorise covariate, and better control for confounding without 

assuming linearity.  

Cole and Hernan (2008) recommended the use of restricted cubic regression splines. 

Regression splines offers a way to examine the functional form of expected treatment with a 

function of the linear predictor, where a spline is a smoothed curve. The amount of 

smoothness is dependent on the number of parameters (or degrees of freedom (df)) used by 

the spline. Estimation of one parameter for the covariate uses up one df thus imposes 

linearity. Estimation of two parameters for the covariate uses up two df and so on. Increasing 

the number of parameters allows one to capture more complicated trends. The number and 



163 
 

location of knots need to be specified; a knot is where two regression splines meet; knots are 

commonly placed at the 5% and 95% percentiles of the distribution (Rutherford et al., 2015).  

Alternatively, one could model non-linear functions using fractional polynomials (FP). This is 

where covariate 𝑋 is transformed to 𝑋𝑝 where 𝑝 is chosen from a set of candidates 

{– 2, – 1, – 0.5, 0, 0.5, 1, 2, 3}, where 𝑋0 denotes the logarithm of 𝑋; this is a first degree FP. To 

model more complex non-linear functions, second degree FP where the covariate is 

represented by two power transformations (𝑝 and 𝑞) can be fitted. The linear predictor takes 

the form 𝛽𝑜 + 𝛽1𝑋𝑝 + 𝛽2𝑋𝑞 or 𝛽𝑜 + 𝛽1𝑋𝑝 + 𝛽2𝑋𝑝log (𝑋) when 𝑝 = 𝑞. The best fitting 

combination of powers is the regression model that has the lowest deviance (defined as twice 

the negative log likelihood). Only a small number of power transformations for 𝑝 was 

considered as they offer considerable flexibility to capture non-linear patterns, and inclusion 

of other powers, for example 𝑝=-3, may yield extreme observations and small improvement 

in model fit (Royston et al., 1999). 

A simulation study had shown that failure to correctly model the functional form of a time-

varying covariate resulted in bias due to imbalance in that covariate between treatment 

groups. Both FP and regression splines performed well yielding small bias in the treatment 

effect (Kyle et al., 2019).  

 

5.6.4 Covariate balance evaluation 

The purpose of weighting is to ensure balance is achieved on history of treatment and 

covariates between treatment groups at each time point. Assessment of balance is often 

ignored in MSM (Vandecandelaere et al., 2016).  

SMD as described in Section 5.4.4 and defined in Equations 5.14 and 5.15 can be used to assess 

balance for covariates included in the PS model between treatment groups at each time point. 
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Various rules of thumb had been used to define imbalance for MSM. Vandecandelaere et al. 

(2016) considered SMD greater than 0.25 as unacceptable imbalance between treatment 

groups; SMD greater than 0.10 has also been used as a cut off to indicate imbalance 

(Lavikainen et al., 2016). Jackson (2016) used trellis plots that illustrated SMD of covariates for 

each pattern of treatment history e.g., SMD between treatment groups at time point 3 is 

evaluated for covariates measured at baseline, first, second and third time points. Assessing 

balance in this way can become cumbersome particularly if the follow-up is long and if there 

are more than two treatment regimes. 

Unlike PS subclassification, common support of weights between treatment groups is not a 

requirement as balance can still be achieved even if there is little overlap in the weight 

distributions of treated and untreated patients.  

 

5.6.5 Treatment effect estimation 

MSM allow one to correctly estimate the effect of time-varying treatment in the presence of 

time-varying confounding variables that are affected by past treatment. They estimate the 

treatment effect that is composed of the direct effect of current treatment on outcome 

(where treatment is not mediated through covariates) and past treatment effect that is 

mediated through covariates on outcome. In this thesis, marginal structural Cox model is used 

to estimate treatment effect. 

 

5.6.5.1 Marginal Structural Cox model 

The marginal structural Cox model is specified in Equation 5.38 where 𝐴̅𝑡 denotes treatment 

history up to time 𝑡, 𝑇𝐴̅ represents patient time to outcome had they followed a particular 
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treatment history 𝛼 is the regression parameter to be estimated for treatment history, and 

𝑔(. ) is some function of treatment history.  

 ℎ𝑇𝐴̅
(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝 (𝛼𝑔(𝐴̅𝑡)) 5.38 

 

Specification of 𝑔(. ) allows one to estimate different treatment effect estimates. One can 

evaluate the effect of all treatment histories on outcome; this is known as a saturated MSM. 

There would be 2𝑇 treatment histories, therefore saturated MSM model would be complex to 

fit if the number of intervals is large. Alternatively, the effect of treatment at each time point 

could be estimated, which too may be complex if the number of time points is large. Effects 

of particular treatment regimens (never treated vs. always treated), or a summary measure 

of treatment, for example total number of treatment occurrences over time, could be 

evaluated.  

However, use of summary measures to capture exposure to treatment may not be optimal; 

an assumption would be made that effect of allopurinol among those who are continuously 

treated (without periods of discontinued use) is the same as the effect of allopurinol among 

patients with the same total number of periods they were treated in but who also had periods 

of discontinued treatment. Furthermore, it would also be assumed that total past treatment 

has the same effect on outcome regardless of how long ago that treatment was given.  

Hernan et al. (2000) estimated the effect of current treatment at each time point on outcome 

in intention-to-treat analysis. Equation 5.38 becomes Equation 5.39 to reflect estimation of 

current treatment effect.  

 ℎ𝑇𝐴̅
(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝 (𝑎𝐴) 5.39 
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In this thesis, focus was on estimating current treatment use via as-treated analyses thereby 

estimating the effect of actual treatment. However, as allopurinol use is intermittent, this 

approach would  implicitly assume that there is no cumulative effect of treatment on outcome 

i.e., it does not model the effect of past treatment that is mediated through covariates on 

outcome, only the direct effect (not mediated through covariates) is modelled (Yang et al., 

2014).   

Hernan et al. (2000) used weighted pooled logistic regression on discrete time data to 

approximate the weighted Cox model, mainly due to software constraints that did not allow 

for use of time-varying weights with the Cox model. Fitting MSM in this way is popular 

however, fitting the marginal structural Cox model in this way may lead to biased treatment 

effect when outcome is frequent as shown in a simulation study (Xiao et al., 2010). It has been 

shown that marginal structural Cox model should be fit directly using the Cox model, which is 

possible in R software (Xiao et al., 2010, van der Wal and Geskus, 2011).  

Robust standard errors of the treatment effect estimates should be obtained, in order to 

account for repeated measurements within a patient introduced from the weights (Hernan et 

al., 2000).  

 

5.7 Summary 

In summary, this chapter gave an overview of statistical methods that could be used to control 

for confounding. Baseline and time-varying PS subclassification and MSM are the methods of 

choice that will be applied to the estimation of effect of allopurinol on outcome using data 

from CPRD. The next chapter describes how these models were applied to CPRD data 

described in Chapter 4.  
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6 Statistical analysis plan 

This chapter describes the specifics of how PS methods outlined in Chapter 5 were applied to 

CPRD data described in Chapter 4. Four statistical approaches to control for confounding were 

considered: time-invariant (or baseline) propensity score (PS) subclassification (Section 6.2);  

time-varying PS subclassification (Section 6.3); marginal structural models (MSM) assuming 

simple associations between treatment and covariates (Section 6.4); MSM assuming complex 

associations between treatment and covariates (Section 6.5). 

For each method, the main analysis was to evaluate the effectiveness of allopurinol on a range 

of gout outcomes. Various sensitivity analyses were conducted within each method to assess 

robustness of estimated treatment effects.  

Time-invariant PS subclassification 

1) To evaluate whether the effectiveness of allopurinol differs between patients with and 

without renal disease. 

2) To evaluate whether the effectiveness of allopurinol differs between patients with 

severe (>480μmol/L) and non-severe hyperuricaemia. 

3) Assess the impact of missing data, unmeasured confounding and landmark period on 

treatment effect estimation. 

Time-varying PS subclassification 

1) Assess the impact of missing data on treatment effect estimation. 

Simple mechanisms of allopurinol use via MSM 

1) Assess the impact of normalised weights, weight truncation, truncating follow-up, and 

performing intention-to-treat analysis, on treatment effect estimation. 
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Complex mechanisms of allopurinol use via MSM 

1) Assess the impact of different PS models, weight truncation, missing data, and 

unmeasured confounding on treatment effect estimates.  

 

6.1 Missing data 

As seen in Chapter 4, missing data was present for body mass index (BMI), alcohol 

consumption, smoking status, and serum urate (SU) level. When these covariates were 

assumed time-invariant, the missing indicator method (MIM) was utilised which sets missing 

values to a fixed value (indicating missingness) creating an extra dummy variable.  

When BMI, alcohol consumption, and smoking status were considered time-varying, first, the 

MIM approach was applied from start of follow-up (if missing) until these covariates were 

measured. Secondly, the last observation carried forward (LOCF) approach was used. This 

approach was adopted for primary analysis in favour of complete case analysis to preserve 

sample size. Use of the MIM within PS based methods ensures that the distribution of the 

missingness category is balanced across the treatment groups (Rosenbaum and Rubin, 1984).  

Use of these methods (MIM and LOCF) were used first to understand the data and any issues 

that may arise from modelling that data.  

 

6.2 Time-invariant PS subclassification 

6.2.1 Description of study sample 

The primary analysis utilised a one year-landmark period (Section 4.3.1). The number of 

patients consulting for gout and meeting the inclusion and exclusion criteria were described 

in a flow diagram. Description of baseline covariates, overall and stratified by treatment status 
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were provided. Assessment of covariate balance was determined using standardised mean 

difference (SMD) (Section 5.4.4).  

 

6.2.2 Propensity score model 

Logistic regression was used to estimate the propensity of treatment at baseline. The general 

consensus is to include all covariates into the logistic model if they are associated with 

outcome (Austin et al., 2007a, Cuong, 2013, Rubin and Thomas, 1996) (Section 5.4.2). 

Covariates were chosen based on statistical significance or clinical justification. To determine 

statistical significance, univariable Cox proportional hazards (PH) models were used to 

determine the association between each covariate and time to outcome. Statistical 

significance was achieved when p-value <0.05. Covariates that have previously been shown to 

be associated with outcome were also included in PS estimation, regardless of statistical 

significance: age, sex, deprivation, renal disease, colchicine, non-steroidal anti-inflammatory 

drugs (NSAIDS), diuretics, and SU level. 

The initial PS model included main effects of covariates and assumed continuous covariates 

had a linear trend with the log odds of the PS. The distribution of PS was visually compared 

between the treatment groups to assess overlap in the tails of PS distribution. If there was 

considerable non-overlap, these patients were removed prior to PS subclassification. 

Patients were then stratified into five mutually exclusive subclasses based on the quintiles of 

the PS. Overall SMD for each covariate across the subclasses was calculated. If overall SMD 

>0.10 in any of the covariates indicating imbalance between treatment groups, two 

approaches were considered to improve balance: (1) increasing the number of subclasses 

(Section 5.4.3), (2) re-estimating the PS including interactions between imbalanced covariates 

and/or non-linear terms for continuous imbalanced covariates. A cycle may occur where 
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overall SMD are continually assessed for each additional subclass or change to the PS model. 

Once overall SMD <0.10 across subclasses, covariate balance was considered to be achieved 

overall however, imbalance may remain within subclasses. Therefore, SMD was evaluated for 

all covariates within a subclass and any covariates with SMD >0.10 were adjusted for in the 

outcome analysis.  

 

6.2.3 Estimating treatment effect 

Cox PH regression was used to estimate the effect of allopurinol on time to first outcome. For 

repeated gout consultations, the Anderson & Gill method was used (Section 5.4.5). 

The Cox PH model was fitted within each subclass to obtain subclass-specific hazard ratios 

(HR) and the associated robust standard errors, from which 95% confidence intervals (CI) were 

obtained. The HRs from each subclass were pooled together using the Mantel-Haenszel 

method if subclass-specific HRs were deemed to be homogenous, i.e., not statistically 

significantly different from each other (p-value <0.05), otherwise HRs were weighted by the 

inverse of the subclass-specific sample size if they are non-constant. 

For outcomes where subclass-specific HRs were not homogenous, the estimated pooled HR, 

alongside with subclass-specific HRs and description of subclasses were presented for each 

subclass.  

Departure from non-proportionality of hazards was assessed within each subclass (Section 

5.4.5.2).  
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6.2.4 Sensitivity and stratified analyses 

6.2.4.1 Stratification by renal disease 

The one-year landmark analyses were stratified by presence of renal disease at baseline for 

all outcomes. Patients who did not have renal disease at baseline and went on to develop 

renal disease during the landmark period were removed from analysis. Patients who 

developed renal disease during follow-up had their follow-up censored at that date. The same 

set of covariates (with the exception of renal disease) was used to estimate PS as in the 

primary analysis.   

 

6.2.4.2 Stratification by severity of hyperuricaemia 

The one-year landmark analyses were stratified by severity of hyperuricaemia at baseline for 

all outcomes. Patients had severe hyperuricaemia if SU level was above 480µmol/L. Patients 

had non-severe hyperuricaemia is SU level was between 361-480µmol/L. Patients with SU 

<360µmol/L or no baseline information were removed from analysis. For the analysis of 

secondary outcomes, as SU level was infrequently measured over time, patients were not 

censored when SU level reached target. The same set of covariates (with the exception of SU 

level) was used to estimate PS as in the primary analysis.   

 

6.2.4.3 Two-year landmark period 

The landmark period was extended to two years to evaluate robustness of treatment effect 

estimates when more patients were classified as allopurinol users (Section 4.3.1). Patients 

with less than two years of follow-up were removed from analysis and follow-up commenced 

two years after the index date. Same set of covariates was used to estimate PS as in the 

primary analysis. Patients were classed as an allopurinol user if they had a three-month 

prescription in the first or second year of follow-up during the two-year landmark period.  
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6.2.4.4 Unmeasured confounding 

The core assumption in treatment effect estimation is that there is no unmeasured 

confounding. In practice this is unlikely to be plausible especially with retrospective data 

collection where one cannot choose which covariates to measure. Therefore, there will be 

residual confounding in the treatment effect estimate. There are a large number of 

approaches one could use to evaluate the impact of unmeasured confounding (Streeter et al., 

2017, Uddin et al., 2016).  

For time-invariant PS subclassification, impact of an unmeasured binary covariate (or a vector 

of binary covariates) on treatment effect estimation was assessed for outcomes target SU 

level and mortality. The method by Lin et al. (1998) was used for ease of use and has been 

previously used in other CPRD studies (Blagojevic-Bucknall et al., 2019).  

This is where the association between the unmeasured covariate and outcome was based on 

the hazard ratio (𝑂𝐻𝑅) between observed covariates and outcome. Prevalence of 

unmeasured covariate is (𝑃1) and non-users (𝑃0).  

The estimated adjusted hazard ratio (𝐻𝑅∗) from the one-year landmark analysis was 

corrected for the unmeasured covariate. The formula used for correction is shown in Equation 

6.1. 

 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐻𝑅 = 𝐻𝑅∗ − 𝑙𝑛

𝑂𝐻𝑅 𝑥 𝑃1 + (1 − 𝑃1)

𝑂𝐻𝑅 𝑥 𝑃0 + (1 − 𝑃0)
 

6.1 

 

The standard error from the adjusted hazard ratio was assumed to be the same for the 

corrected hazard ratio.  
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6.2.4.5 Missing data 

The main analysis was performed using the MIM. Creating a separate category to group all 

observations with missing data on a particular covariate may result in grouping of dissimilar 

measurements; this in turn may lead to incomplete control of confounding effects from 

covariates with missing data. Complete case analysis was performed by restricting analysis to 

patients who had complete data on the lifestyle factors (BMI, smoking status, alcohol 

consumption, and SU level (for secondary outcomes)) excepting a much smaller sample size 

and reduced power although, it does not address the robustness of treatment effect estimates 

against missing data. This sensitivity analysis was performed for the primary outcome target 

SU level and mortality.  

 

6.3 Time-varying PS subclassification 

6.3.1 Descriptive statistics 

Using the repeated measures structure described in Section 4.3.2, covariates were described 

over time by providing descriptive statistics at baseline and in each year of follow-up.  

Using intervals as the unit of analysis, the distribution of covariates was described stratified 

by treatment, and SMD to assess covariate balance was calculated. The following 

characteristics of treatment patterns were described: the proportion of patients prescribed 

allopurinol at each time point, the number of times patients initiated and discontinued 

treatment; year of follow-up in which initiating and discontinuation of treatment occurred in; 

number of consecutive intervals in which patients were treated. 
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6.3.2 Propensity score model 

The PS for each patient in each interval was estimated using mixed-effects logistic regression 

model with a random intercept (Section 5.5.1). Similarly to time-invariant PS subclassification, 

covariates were included in the PS model if they are associated with outcome based on 

statistical significance or clinical justification. The initial PS model contained main effects of all 

covariates and linear terms for continuous covariates. To determine statistical significance, 

univariable complementary log-log regression model were used to determine the association 

between each covariate and outcome. Statistical significance was achieved when p-value 

<0.05. Covariates that have previously been shown to be associated with outcome were also 

included in PS estimation regardless of statistical significance: age, sex, deprivation, renal 

disease, colchicine, NSAIDS, diuretics, SU level, gout consultation, cumulative allopurinol use, 

and follow-up time were included in the model regardless of significance. 

During PS estimation, lack of common support was identified as an issue for all outcomes. The 

process followed to maximise common support for each outcome is summarised in Figure 6.1. 

With each modification of the PS model, common support was evaluated. Common support 

was assessed by calculating the total of (1) the number of allopurinol intervals for which the 

PS is above the maximum value of PS from the non-allopurinol intervals and (2) the number 

of non-allopurinol intervals for which the PS is below the minimum value of PS from the 

allopurinol intervals.  
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Figure 6.1: Process of selecting the best PS model 

 
FP1: Fractional polynomials of dimension 1; Fractional polynomials of dimension 2 

PS model specification 1 was the initial PS model as described above.  

Non-linear transformations of continuous covariates (age, deprivation, SU level (if applicable), 

cumulative allopurinol use, and follow-up time) via fractional polynomials (FP) were next 

considered. The set of power transformations considered was described in Section 5.6.3. In 

PS model specification 2, all the continuous covariates were replaced with FP1 terms 

(fractional polynomial terms of dimension 1). In PS model specification 3, all the continuous 

covariates were replaced with FP2 terms (fractional polynomial terms of dimension 2). The 

FP1 and FP2 terms that best modelled the association between a continuous covariate and 

outcome was identified and included in the PS model. For each covariate, the best FP1 term 

was identified by fitting a complementary log-log regression model between each FP1 term 

and outcome. The model that yielded the lowest deviance indicated the best FP1 term; 

deviance was defined as twice the negative log-likelihood. Next, the same process was used 

Specification 
1

•Main effects model including linear terms for continuous covariates

Specification 
2

•Replace all continuous covariates with FP1

Specification 
3

•Replace all continuous covariates with FP2

Specification 
4

•Next, for each covariate identify if FP1 or linear terms improves PS estimation more than using FP2 
terms

•Perform backwards selection to identify problematic covariates 

Specification 
5

•Perform forwards selection of two-way and three-way interaction terms to identify any interaction 
terms that improves PS estimation
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to identify the best FP2 terms for each covariate. Restricted cubic splines were initially 

considered however due to high collinearity they were not used. 

In specification 4, for each covariate, it was identified whether its main effect, FP1 term or FP2 

terms improved common support the most. Starting with PS model specification 3, three PS 

models were fitted where age was entered into the PS model as FP2 terms, then FP1 term, 

then as a linear term. The PS model that improved common support the most from model 

specification 3 was retained. This process was then repeated for the remaining continuous 

covariates until common support no longer improved. Next, backwards selection was 

performed removing one covariate from the model at a time to identify if there were 

problematic covariates that caused lack of common support.  

In specification 5, there is the possibility that two-way interaction terms between covariates 

may improve common support. Interaction terms were considered for covariates included in 

the PS model except for non-linear continuous covariates. Interaction terms were only 

included in the PS model if it was associated with outcome. This was determined by fitting a 

complementary log-log model between outcome and any two covariates. The incremental 

contribution of the interaction term between the two covariates is then tested using the 

likelihood ratio test (LRT) by comparing the -2 difference in log-likelihood of the GLM models 

with and without the interaction. An insignificant test would indicate that that the interaction 

term is not associated with outcome thus cannot be included in the PS model. A significant 

test, p-value <0.05, indicates that the interaction term is associated with outcome thus may 

be considered to be included in the PS model. Once the relevant interaction terms were 

identified, each interaction term was fitted to the PS model specification 3, and common 

support was assessed. The interaction term that reduced lack of support the most was 

retained. The process was then repeated finding the next interaction term that reduced the 
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lack of common support the most, and so on. The same process was then repeated for three-

way interaction terms. 

Once this process was completed, the final PS model was estimated and the distribution of 

estimated PS was compared between the treatment groups. 

Observations in each interval were initially stratified into quintiles based on the distribution 

of the PS. Subsequently, overall SMD for each covariate was calculated across the subclasses; 

if overall SMD was >0.10 for any covariate then the number of subclasses was increased until 

overall SMD was achieved. Once the number of subclasses was selected such that overall SMD 

is <0.10 for all covariates, SMD for each covariate was then evaluated within each subclass; 

covariates that had SMD >0.10 were adjusted for in subclass-specific treatment effect 

estimation.  

 

6.3.3 Estimating treatment effect 

The treatment effect was evaluated separately in each subclass by fitting a complementary 

log-log regression model (Section 5.5.5), regressing outcome on allopurinol and follow-up 

time; covariates where imbalance remained between treatment groups were adjusted for as 

well. Treatment effects were presented as HRs and the associated robust standard errors to 

account for clustering of patients within a subclass, from which 95% CI were obtained.  

Subclass-specific hazard ratios were pooled together using the MH method. If the assumption 

of homogenous treatment effect across subclasses could not be verified, the subclass-class 

specific HRs were presented alongside with a summary of covariates of that subclass.  

In case inclusion of random intercept in the complementary log-log model due to non-

convergence of the model, robust standard errors were used to account for repeated 

measurements within patients. 
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6.3.4 Sensitivity analysis: missing data 

Sensitivity analyses to missing data was performed. Similarly to baseline PS subclassification, 

treatment effect estimates from using the MIM and LOCF were compared to treatment effect 

estimates from complete case analysis.. Complete case analysis was restricted to patients who 

had complete data on the lifestyle factors (BMI, smoking status, alcohol consumption, and SU 

level (for secondary outcomes) in all follow-up intervals. This sensitivity analysis was 

performed for the primary outcome target SU level and mortality. 

 

6.4 Simple mechanisms of allopurinol use via MSM 

Initial weight estimation assumed the associations between covariates and treatment 

initiation and continuation were the same. However, the estimated weights were extreme 

and skewed therefore, this analysis was restricted to the outcome mortality to demonstrate 

the difficulty in estimating weights with a reasonable distribution and its impact on treatment 

effect estimation.  

 

6.4.1 Propensity score model 

The pooled logistic regression model was used to estimate PS conditional on treatment history 

and covariates measured in the previous year, assuming it adequately captures covariate 

history; therefore, lagged covariates were not considered. Estimated PS contributed to the 

denominator in the estimation of stabilised weights. Covariates that were statistically 

significantly associated with outcome (previously assessed using the univariable 

complementary log-log model) and associated with treatment (assessed using the univariable 

random intercept logistic model), were included in the PS model if p-value <0.05.   
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The process of selecting a PS model was described in Section 6.3.2, Figure 6.1. Inclusion of 

non-linear terms for continuous covariates via FP and interaction terms were included in the 

PS model if it reduced the standard deviation (SD) of weights. Any problematic covariates that 

cause large weight variability were removed from the PS model.  

For the numerator of the stabilised weight, the PS was conditional on baseline covariates (sex, 

deprivation, baseline SU level) and treatment history i.e., cumulative allopurinol use.   

Covariate balance was assessed for each covariate in each year of follow-up using SMD in the 

weighted study sample; intervals were then pooled together to obtain an overall SMD.  

 

6.4.2 Estimating treatment effect 

The treatment effect on mortality was evaluated using the weighted Cox PH regression model 

(Section 5.6.5). Due to the use of stabilised weights, the Cox model adjusted for baseline 

covariates (SU level, sex and deprivation) and cumulative allopurinol use. HRs with robust 

standard errors, for possible misspecification of the PS model and the Cox model, with 95% CI 

were presented.   

 

6.4.3 Sensitivity analyses 

In addition to the process of finding a suitable PS model, other methods were used to reduce 

extreme weights as described below.  
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6.4.3.1 Normalised weights 

The stabilised weights were normalised such that the mean weight was 1 at each time point. 

Covariate imbalance and treatment effect were re-evaluated weighting the study sample 

using normalised weights. 

 

6.4.3.2 Truncating weights 

Weight truncation was performed on both the stabilised and normalised weights to remove 

extreme weights that may be influential on the estimated treatment effect. The weights were 

truncated at between 1% and 10% percentiles of its distribution. SMD and treatment effect 

were re-evaluated based on the truncated weights.  

 

6.4.3.3 Truncated follow-up 

Due to the long follow-up period that is observed in using EHR data, potentially differences in 

covariate distribution between treatment groups may increase over time (as assessed using 

SMD). Extreme weights may also be present due to cumulatively multiplying large 

probabilities of treatment over time. Follow-up was therefore truncated at the point prior to 

severe covariate imbalance when SMD >0.25. Treatment effect and SMD were re-evaluated. 

 

6.4.3.4 Intention-to-treat analysis 

So far, analyses considered treatment as an intermittent time-varying treatment with weights 

estimated in each year of follow-up, thus estimating the effect of actual treatment. Estimated 

treatment effect was compared with estimates derived under the intention-to-treat principle 

to assess whether the issues encountered in estimating actual treatment effect persisted 

when estimating the effect of initiating treatment.  
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6.5 Complex MSM 

In this analysis, associations between covariates and treatment initiation and continuation 

were allowed to differ in PS estimation.  

 

6.5.1 Revisiting the repeated measures dataset and descriptive statistics 

Previously in Section 6.4, only one PS model (for the denominator of weight) was used to 

estimate the probability of treatment. Here, two PS models were fitted, one that estimated 

the probability of initiating treatment, and the second estimated the probability of continuing 

with treatment. Within the repeated measures dataset, to identify which intervals correspond 

to covariates that were associated with initiating and continuing treatment, intervals were 

stratified by allopurinol use in the previous interval. This approach had previously been used 

by Cook et al. (2012), Xiao et al. (2014), and Yang et al. (2015a). 

Table 6.1 illustrates how this stratification would appear for four hypothetical patients who 

(1) never initiated allopurinol, (2) initiated allopurinol and remained on allopurinol until the 

end of follow-up, (3) initiated allopurinol and then discontinued allopurinol, (4) initiated and 

then discontinued allopurinol, and subsequently restarted and stopped allopurinol. 
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Table 6.1: Example: initiation and continuation of allopurinol use 

Patient 
identifier 

Follow-up 
time (years) 

Allopurinol 
use 

Allopurinol 
use in the 
previous 

year 

Initiates 
allopurinol 

Continues 
allopurinol 

use 

1 1 0 0 0 N/A 
1 2 0 0 0 N/A 
1 3 0 0 0 N/A 

2 1 0 0 0 N/A 
2 2 1 0 1 N/A 
2 3 1 1 N/A 1 
2 4 1 1 N/A 1 

3 1 0 0 0 N/A 
3 2 0 0 0 N/A 
3 3 1 0 1 N/A 
3 4 1 1 N/A 1 
3 5 1 1 N/A 1 
3 6 0 1 N/A 0 
3 7 0 0 0 N/A 

4 1 0 0 0 N/A 
4 2 1 0 1 N/A 
4 3 1 1 N/A 1 
4 4 1 1 N/A 1 
4 5 1 1 N/A 1 
4 6 0 1 N/A 0 
4 7 0 0 0 N/A 
4 8 1 0 1 N/A 
4 9 1 1 N/A 1 
4 10 0 1 N/A 0 
4 11 1 0 1 N/A 
4 12 0 1 N/A 0 

0: No; 1: Yes; N/A: Not applicable 

The example dataset contains patient identifier (first column), year of follow-up (second 

column), prescription of allopurinol (third column), and allopurinol use in the previous year 

(fourth column). The fifth column identifies when non-users initiated treatment. The sixth 

column identifies when on-going allopurinol users discontinued treatment. 

Patient 1 is followed-up for three years and is never prescribed allopurinol, hence only 

contributes to column 5. Patient 2 is followed up for four years, initiates treatment in year 2 

and remains on allopurinol in years 3 and 4; years 1 and 2 contribute to column 5 and years 3 

and 4 contribute to column 6. Patient 3 is followed-up for 7 years, initiates allopurinol in year 

3 and discontinues allopurinol in year 6 for the remainder of the follow-up; years 1-3 and 7 

contribute to column 5 and years 4-6 contribute to column 6. Patient identifier 4 is followed-
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up for 12 years, initiate allopurinol in years 2, 8 and 11 and discontinue allopurinol in years 6, 

10 and 12. 

Covariates were described at the time of allopurinol initiation compared with non-use, and 

allopurinol continuation compared with discontinuation alongside with evaluating SMD of 

covariates between treatment groups. Unadjusted associations of covariates with allopurinol 

initiation and continuation were estimated using the random intercept logistic model.  

 

6.5.2 Propensity score model 

The probability of observing treatment given covariates (denominator of weights) was 

estimated separately for those initiating allopurinol and those continuing with allopurinol.  

The probability of initiating allopurinol was estimated in non-users up to and including the 

year they initiated treatment or until the end of follow-up if they were never treated. Some 

patients initiated treatment multiple times; for simplicity, it was assumed the differences in 

covariates between non-users and those initiating allopurinol for the first time were similar to 

the differences between non-users who may previously have had treatment and those 

restarting allopurinol accepting that some residual confounding may remain; otherwise 

separate PS models would have to be fitted for these scenarios too.  

The probability of continuing with allopurinol (those prescribed allopurinol in the previous 

year), was estimated in allopurinol users up to and including the year they discontinued 

treatment or until the end of follow-up if they remained on treatment. Similarly, it was 

assumed differences in covariates between those continuing allopurinol and those 

discontinuing allopurinol for the first time were similar to the differences between patients 

restarting and remaining on allopurinol and discontinuing treatment again accepting that 

residual confounding may remain.  
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Once PS were estimated, stabilised weights were initially estimated across the whole study 

sample; if the distribution of weights was not skewed, mean weight did not deviate from one, 

and did not have large weights, basic weights were instead estimated.  

The process of selecting a PS model was described in Section 6.3.2, Figure 6.1. Inclusion of 

non-linear terms for continuous covariates via FP and interaction terms were included in the 

PS model if it reduced the SD of weights. Any problematic covariates that caused large weight 

variability were removed from the PS model. The same covariates were included in both PS 

models in estimating probability of initiating and continuing treatment.   

Once PS were estimated weights were derived, SMD for each covariate was evaluated in the 

weighted study sample at each time point and then overall. 

 

6.5.3 Estimating treatment effect 

Treatment effect was estimated using the weighted Cox regression model; HR with 95% CI 

based on robust standard errors were presented.  

Covariate imbalance was assessed between treatment groups in each year of follow-up, and 

then overall. If overall SMD was greater than 0.10, that covariate was adjusted for in the Cox 

model.  

 

6.5.4 Sensitivity analyses 

In addition to the process of finding a suitable PS model, other methods were used to reduce 

extreme weights as described below.   
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6.5.4.1 Weight truncation 

Weights were truncated by 0.5% centile of its distribution. Larger truncation e.g., 1% was not 

considered as 0.5% truncation was sufficient to remove extreme weights. Treatment effects 

were re-estimated using the truncated weights.  

 

6.5.4.2 Unmeasured confounding 

More recently, a different method in measuring the impact of unmeasured confounding on 

treatment effect estimation was introduced, known as E-values (Mathur et al., 2018, 

VanderWeele and Ding, 2017). E-values are attractive to use as they can be applied to various 

situations where treatment estimate can be the HR, odds ratio, rate ratio etc. derived from 

various GLM, and software to estimate E-values is widely available. 

Therefore, E-values were computed for complex MSM. E-values are measured on the risk ratio 

(RR) scale to assess how strong the association between an unmeasured confounding variable 

with treatment and outcome needs to be in order to explain away the treatment effect 

conditional on the observed covariates; therefore, an E-value of 1 indicates there are no 

unmeasured covariates. E-values were computed against the statistically significant treatment 

effects estimated from the main analysis without adjustment for imbalanced covariates. To 

assess the likelihood of such an unmeasured confounding variable to exist, unadjusted RRs 

between observed covariates with outcome, allopurinol initiation and allopurinol 

continuation were estimated using generalised linear models with Poisson distribution and 

log link. If the E-value was outside the range of observed RRs then there is some evidence 

unmeasured confounding is unlikely to explain away the treatment effect. Otherwise, if the E-

value was within the range of observed RRs this suggests there is some evidence unmeasured 

confounding may be present and potentially explain away the treatment effect.  
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For rare outcomes where the prevalence of outcome is <15% at the end of follow-up, when 

the estimated HR is greater than 1, the formula to estimate E-value is given in Equation 6.2. 

When the HR is less than 1, the formula is given in Equation 6.3. 

 𝐸 𝑣𝑎𝑙𝑢𝑒 = 𝐻𝑅 + √𝐻𝑅(𝐻𝑅 − 1) 6.2 

 

 𝐻𝑅∗ = 1/𝐻𝑅 

𝐸 𝑣𝑎𝑙𝑢𝑒 = 𝐻𝑅∗ + √𝐻𝑅∗(𝐻𝑅∗ − 1) 

6.3 

 

For more common outcomes where the prevalence of outcome is between 15-85% at the end 

of follow-up, the estimated HR is first transformed according to Equation 6.4 before 

calculating E-values in Equations 6.2 and 6.3.  

 
𝐻𝑅∗ =

1 − 0.5√𝐻𝑅

1 − 0.5
√ 1

𝐻𝑅

 6.4 

 

 

6.6 Summary 

This chapter described the statistical analysis plan that addressed the clinical objectives of this 

thesis, and how statistical methods were applied to CPRD data to address confounding by 

indication. 

All analyses were performed in Stata v15 except for the weighted Cox model that was 

performed in R v3.6.2.  

 

  



187 
 

7 Effect of allopurinol: time-invariant PS subclassification 

This chapter described the study sample that was obtained from Clinical Practice Research 

Database (CPRD). Allopurinol use and covariates were considered time-invariant, thus 

propensity score (PS) was estimated at baseline.  

 

7.1 Study sample 

Medical records were extracted from CPRD in January 2015. The extract identified 32,814 

patients consulting for gout between the 1st January 1997 and the 31st December 2002, 

registered for at least two years with their practice, and aged at least 18 years. From this initial 

cohort 16,876 patients were eligible. Figure 7.1 shows the number of patients excluded and 

reasons for exclusion.  

Figure 7.1: Study sample flow chart  

 
*Had linkage to either one or two secondary databases (Index of Multiple Deprivation, Hospital Episodes 
Statistics, or the Office of National Statistics mortality data) 

 

Consulted for gout between 1997-2002, registered with 
practice for at least two years, and aged ≥18years

32,814

20,385

17,960

Eligible study sample

16,876

Missing deprivation score (35)

Less than one year follow-up (1,049)

Urate-lowering and uricosuric drugs 
prescribed two years prior to the gout 

consultation (2,425, of which 2,380 had 
prescription for allopurinol)

Partial linkage* (264)

No linkage (12,165) 



188 
 

Median follow-up was 10.7 years (interquartile range (IQR) 5.7, 13.3 years) contributing 

163,607 person-years of follow-up time. The distribution of follow-up duration is given in 

Figure 7.2. Specific reasons for patient end of follow-up were as follows: last date of practice 

data collection (48%, n=8,141); death (29%, n=4,976); transferred out of practice (21%, 

n=3,583); prescribed either sulfinpyrazone, probenecid, or febuxostat (1%, n=176); none were 

prescribed benzbromarone. 

As seen in Figure 7.2, there were a large number of patients (n=3,763) whose follow-up ended 

between 13 and 16 post index date due to a large number of practices leaving CPRD following 

a change in software systems from Vision to EMIS.  

Figure 7.2: Distribution of follow-up duration 

 

Patients were registered with 275 practices with a median (IQR) 49 (21, 99) patients (with 

gout) per practice. Over half of the patients were registered with practices located in the North 

West (16%, n=2,612), South West (12%, n=2,147), and East (13%, n=2,313) of England, and 

the West Midlands (15%, n=2,652). The least number of patients were registered with 

practices located in the North East of England (3%, n=571) and the East Midlands (4%, n=777). 

The baseline covariates for the study sample are described in Table 7.1. The majority were 
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male (77%) and mean (standard deviation (SD)) age was 62.1 (14.7) years. The three most 

prevalent comorbidities were hypertension (19%), coronary heart disease (13%), and 

osteoarthritis (7%). A small proportion of patients (6%) had an acceptable level of serum urate 

(SU) (360≤µmol/L). Patients were often prescribed pain relief (non-steroidal anti-

inflammatory drugs (NSAIDS) (48%) and analgesics (33%)) and diuretics (36%). At least 30% of 

patients had missing data in lifestyle factors.  

Table 7.1: Baseline covariates of study sample (N=16,876) 

Demographics N (%) 

Age (Mean (SD), range 18, 101) 62.1 (14.7) 
Sex  
   Male 12,995 (77) 
   Female 3,881 (23) 
Deprivation (Mean (SD), range 1, 20) 9.1 (5.5) 

Comorbidities  

Anxiety 672 (4) 
Depression 842 (5) 
Cerebrovascular disease 407 (2) 
Coronary heart disease 2,167 (13) 
Diabetes  1,047 (6) 
Hyperlipidaemia 783 (5) 
Hypertension 3,137 (19) 
Osteoarthritis  1,106 (7) 
Peripheral vascular disease 257 (2) 
Renal disease 217 (1) 

Lifestyle factors  

Alcohol consumption  
   Ever drinker 9,488 (56) 
   Never drinker 856 (5) 
   Missing 6,532 (39) 
Body mass index  
   Normal weight 2,517 (15) 
   Overweight 4,933 (29) 
   Obese 3,219 (19) 
   Missing 6,207 (37) 
Smoking status  
   Ever smoker 6,436 (38) 
   Never smoker 4,847 (29) 
   Missing 5,593 (33) 
SU level  
   ≤360µmol/L 951 (6) 
   >360µmol/L 6,062 (36) 
   Missing 9,863 (58) 

Medication use  

Analgesics 5,578 (33) 
Colchicine 389 (2) 
Diuretics 6,142 (36) 
NSAIDS 8,024 (48) 

NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 

 



190 
 

Appendix H presents comparison of baseline covariates of the whole study sample with each 

subset of that sample which contains patients who were eligible for each outcome analysis; 

each outcome analysis was restricted to patients who did not have incident outcome during 

the first year of follow-up. Generally, covariates were similar across the subsets with a few 

exceptions. Patients eligible for the analysis of target SU level consisted of 10% (N=1,742) of 

the study sample; this subset of patients was younger and were prescribed analgesics and 

NSAIDS more than the whole study sample.  

The median time to reaching target SU level was 3.5 years. Median time to occurrence of 

outcome is listed in Table 7.2.  

Table 7.2: Median time (years) until occurrence of first outcome 

Outcome Median (Interquartile range) 

Target SU level 3.5 (1.4, 7.1) 

Mortality 5.1 (2.3, 8.4) 

Gout consultation 1.9 (0.7, 4.1) 

Gout hospitalisation 6.8 (3.4, 9.7) 

Joint replacement 5.3 (2.6, 8.2) 

Cerebrovascular disease 4.5 (2.0, 8.2) 

Coronary heart disease 3.3 (1.4, 6.5) 

Peripheral vascular disease 4.3 (1.8, 7.7) 

Renal disease 5.5 (3.7, 7.6) 

SU: Serum urate 

 

7.2 Patient characteristics by allopurinol treatment 

Large differences between the treatment groups were observed where standardised mean 

difference (SMD) was >0.10 (Table 7.3). Allopurinol users had higher prevalence of coronary 

heart disease (SMD=0.11), renal disease (0.12), and were prescribed analgesics (0.19), 

colchicine (0.13), diuretics (0.25), and NSAIDS (0.30) more than non-users. The prevalence of 

missing data between treatment groups were similar for alcohol consumption, body mass 

index (BMI), and smoking status.  
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The largest difference between treatment groups was observed for baseline SU level. 

Allopurinol users had a higher prevalence of having a baseline SU level above target 

(>360μmol/L) (0.39) than non-users however, had lower prevalence of missing data (-0.27).  

Table 7.3: Baseline covariates by allopurinol treatment: whole study sample (N=16,876) 

 
No allopurinol 

N=12,919 
Allopurinol 

N=3,957 
SMD 

Demographics    

Age (Mean (SD)) 61.8 (14.8) 62.9 (14.5) 0.08 
Sex: Female 2,919 (23) 962 (24) 0.04 
Deprivation (Mean (SD)) 9.0 (5.5) 9.6 (5.7) 0.10 

Comorbidities    

Anxiety 529 (4) 143 (4) -0.03 
Depression 654 (5) 188 (5) -0.01 
Cerebrovascular disease 294 (2) 113 (3) 0.04 
Coronary heart disease 1,544 (12) 623 (16) 0.11 
Diabetes  754 (6) 293 (7) 0.06 
Hyperlipidaemia 599 (5) 184 (5) <0.01 
Hypertension 2,362 (18) 775 (20) 0.03 
Osteoarthritis  772 (6) 334 (8) 0.10 
Peripheral vascular disease 179 (1) 78 (2) 0.05 
Renal disease 121 (1) 96 (2) 0.12 

Lifestyle factors    

Alcohol consumption    
   Ever drinker 7,328 (57) 2,160 (55) -0.04 
   Never drinker 663 (5) 193 (5) -0.01 
   Missing 4,928 (38) 1,604 (41) 0.05 
Body mass index    
   Normal 2,021 (16) 496 (13) -0.09 
   Overweight 3,829 (30) 1,104 (28) -0.04 
   Obese 2,358 (18) 861 (22) 0.09 
   Missing 4,711 (36) 1,496 (38) 0.03 
Smoking status    
   Ever smoker 4,945 (38) 1,491 (38) -0.01 
   Never smoker 3,776 (29) 1,071 (27) -0.05 
   Missing 4,198 (32) 1,395 (35) 0.06 
SU level    
   ≤360µmol/L 897 (7) 54 (1) -0.28 
   >360µmol/L 4,064 (31) 1,998 (50) 0.39 
   Missing 7,958 (62) 1,905 (48) -0.27 

Medication use    

Analgesics 3,992 (31) 1,586 (40) 0.19 
Colchicine 232 (2) 157 (4) 0.13 
Diuretics 4,339 (34) 1,803 (46) 0.25 
NSAIDS 5,689 (44) 2,335 (59) 0.30 

N (%) were presented unless otherwise stated; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard 
deviation; SMD: Standardised mean difference; SU: Serum urate 
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7.3 Propensity score model 

As previously stated in Section 6.2.2, choice of covariates to be included in the PS model was 

based on clinical justification and a statistically significant association between outcome and 

covariate. Covariates used to estimate PS for each outcome analysis are shown in Table 7.4. 

Age, sex, deprivation, renal disease, colchicine use, NSAIDS, diuretics, and baseline SU level 

were included in the PS model regardless of statistical significance a priori.  

Anxiety was not associated with any of the outcomes and therefore was not included in 

estimation of PS. Depression was only associated with repeated gout consultations. The 

majority of demographics, comorbidities, lifestyle factors and medication usage were 

associated with most outcomes. The least number of covariates were associated with target 

SU level which may be due to a lower sample size than analysis of other outcomes. Alcohol 

consumption was not associated with gout hospitalisation or joint replacement but was 

included in the PS model regardless due to its effect on SU level (Section 2.3.3). 
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Table 7.4: Covariates entered into the PS model for each outcome 

Baseline covariate Target SU 
level 

N=1,742 

Mortality 
N=16,876 

Repeated 
gout 

consultations 
N=16,876 

Gout 
hospitalisation 

N=14,087 

Joint 
replacement 

N=16,644 

Cerebrovascular 
disease 

N=16,253 

Coronary 
heart disease 

N= 14,063 

Peripheral 
vascular 
disease 

N=16,519 

Renal disease 
N=16,508 

Demographics          

Age X X X X X X X X X 
Sex X X X X X X X X X 
Deprivation  X X X X X X X X X 

Comorbidities          

Anxiety          
Depression   X       
Cerebrovascular disease  X X X X  X X X 
Coronary heart disease X X X X X X  X X 
Diabetes   X X X  X X X X 
Hyperlipidaemia X  X   X X X X 
Hypertension  X  X X X X X X 
Osteoarthritis   X  X X X X X X 
Peripheral vascular disease  X X   X X  X 
Renal disease X X X X X X X X  

Lifestyle factors          

Alcohol consumption X X X X X X X X X 
Body mass index X X X X X X X X X 
Smoking status X X X X  X X X X 
SU level X X X X X X X X X 

Medication use          

Analgesics X X X X X X X X X 
Colchicine X X X X X X X X X 
Diuretics X X X X X X X X X 
NSAIDS X X X X X X X X X 

X: Covariate entered into the PS model; Green cell: Covariate was associated with outcome (p<0.05); Red cell: Covariate was not associated with outcome (p≥0.05); Black cell: Not applicable; 
NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SU: Serum urate
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7.4 Propensity score distribution 

Across all outcome analyses, there was considerable overlap of PS between the treatment 

groups. For example, in the analysis of target SU level, PS for non-users ranged from 0.08 to 

0.80 and for allopurinol users 0.14 to 0.88; the distribution of PS is illustrated in Figure 7.3. 

Four patients were outside the region of common support therefore the non-overlap of PS 

between treatment groups was considered minimal and these patients were not removed. 

Distribution of PS by treatment for the secondary outcomes is given in (Appendix I). 

Figure 7.3: Distribution of PS by treatment status in the analysis of target SU level 

 
Dotted lines indicate at which value of the PS subclasses were created; PS: Propensity score 

Within all outcome analyses, five PS subclasses were created and within each subclass there 

were sufficient number of patients in both treatment groups. Furthermore, within each 

treatment group, in each subclass, outcome had occurred (Table 7.5).  

Within all outcome analyses, although five subclasses were deemed sufficient to achieve 

overall complete covariate balance between treatment groups across subclasses with SMD 

<0.10 (Table 7.6), imbalance in some covariates remained within subclasses thus these were 
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subsequently adjusted for in treatment effect estimation. For example, in the analysis of 

target SU level, imbalance remained for the following covariates: age (subclass 1, 2, 3), 

deprivation (subclass 4, 5), coronary heart disease (subclass 1, 3, 4, 5), hyperlipidaemia 

(subclass 1, 2), renal disease (subclass 2, 3, 4, 5), alcohol consumption (subclass 3, 4), smoking 

status (subclass 1, 5), BMI (subclass 2, 3, 4), SU level (subclass 1, 2, 5), analgesics (subclass 3), 

colchicine (subclass 1, 2, 3, 4, 5), diuretics (subclass 3, 4, 5).   

For the secondary outcome analyses, subclass 1 had the most number of imbalanced 

covariates (up to a maximum of five covariates including sex, alcohol consumption, BMI, 

NSAIDS, and baseline SU level) whereas balance was achieved on all covariates in subclasses 

4 and 5 (Appendix I).  

Increasing the number of subclasses or including interaction terms between imbalanced 

covariates did not improve balance within subclasses (data not shown).   
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Table 7.5: Distribution of patients across PS subclasses by treatment and outcome 

Outcome 
No allopurinol 

N (%) 
Allopurinol 

N (%) 

Target SU level 
SU target not met 

N=789 
SU target met 

N=386 
Total  

N=1,175 
SU target not met  

N=246 
SU target met 

N=321 
Total  

N=567 

Subclass 1 193 (24) 99 (26) 292 (25) 23 (9) 34 (11) 57 (10) 
Subclass 2 181 (23) 80 (21) 261 (22) 31 (13) 56 (17) 87 (15) 
Subclass 3 165 (21) 74 (19) 239 (20) 56 (23) 54 (17) 110 (19) 
Subclass 4 130 (16) 75 (19) 205 (17) 61 (25) 82 (26) 143 (25) 
Subclass 5 120 (15) 58 (15) 178 (15) 75 (30) 95 (30) 170 (30) 

Mortality 
Alive 

N=9,260 
Died 

N=3,659 
Total 

N=12,919 
Alive 

N=2,640 
Died 

N=1,317 
Total 

N=3,957 

Subclass 1 2,413 (26) 654 (18) 3,067 (24) 236 (9) 73 (6) 309 (8) 
Subclass 2 1,951 (21) 842 (23) 2,793 (22) 404 (15) 178 (14) 582 (15) 
Subclass 3 2,012 (22) 643 (18) 2,655 (21) 540 (20) 180 (14) 720 (18) 
Subclass 4 1,528 (17) 833 (23) 2,361 (18) 642 (24) 372 (28) 1,014 (26) 
Subclass 5 1,356 (15) 687 (19) 2,043 (16) 818 (31) 514 (39) 1,332 (34) 

Repeated gout 
consultations 

Never consulted 
N=5,787 

   Consulted ≥1 times 
N=7,132 

Total 
N=12,919 

Never consulted 
N=2,193 

   Consulted ≥1 times 
N=1,764 

Total 
N=3,957 

Subclass 1 1,744 (30) 1,319 (18) 3,063 (24) 173 (8) 140 (8) 140 (8) 
Subclass 2 1,247 (22) 1,552 (22) 2,799 (22) 320 (15) 256 (15) 256 (15) 
Subclass 3 1,038 (18) 1,610 (23) 2,648 (21) 371 (17) 356 (20) 356 (20) 
Subclass 4 968 (17) 1,416 (20) 2,384 (18) 571 (26) 420 (24) 420 (24) 
Subclass 5 790 (14) 1,235 (17) 2,025 (16) 758 (35) 592 (34) 592 (34) 

Gout Hospitalisation 
No 

N=9,546 
Yes 

N=1,283 
Total 

N=10,829 
No 

N=2,569 
Yes 

N=689 
Total 

N=3,258 

Subclass 1 2,370 (25) 198 (15) 2,568 (24) 199 (8) 51 (7) 250 (8) 
Subclass 2 2,065 (22) 267 (21) 2,332 (22) 383 (15) 102 (15) 485 (15) 
Subclass 3 1,928 (20) 284 (22) 2,212 (20) 484 (19) 122 (18) 606 (19) 
Subclass 4 1,726 (18) 269 (20) 1,995 (18) 647 (25) 175 (25) 822 (25) 
Subclass 5 1,457 (15) 265 (21) 1,722 (16) 856 (33) 239 (35) 1,095 (34) 

PS: Propensity score; SU: Serum urate 
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Table 7.5 continued: 

Outcome No allopurinol Allopurinol 

Joint Replacement No: N=12,008 Yes: N=744 Total: N=12,752 No: N=3,621 Yes: N=271 Total: N=3,892 

Subclass 1 2,876 (24) 151 (20) 3,027 (24) 290 (8) 12 (4) 302 (8) 
Subclass 2 2,607 (22) 152 (20) 2,759 (22) 534 (15) 36 (13) 570 (15) 
Subclass 3 2,462 (21) 150 (20) 2,612 (20) 666 (18) 51 (19) 717 (18) 
Subclass 4 2,185 (18) 151 (20) 2,336 (18) 920 (25) 73 (27) 993 (26) 
Subclass 5 1,878 (16) 140 (19) 2,018 (16) 1,211 (33) 99 (37) 1,310 (34) 

Cerebrovascular disease No: N=11,273 Yes: N=1,195 Total: N=12,468 No: N=3,428 Yes: N=357 Total: N=3,785 

Subclass 1 2,681 (24) 277 (23) 2,958 (24) 268 (8) 25 (7) 293 (8) 
Subclass 2 2,413 (21) 278 (23) 2,691 (22) 501 (15) 59 (17) 560 (15) 
Subclass 3 2,345 (21) 209 (17) 2,554 (20) 652 (19) 44 (12) 696 (18) 
Subclass 4 2,048 (18) 249 (21) 2,297 (18) 861 (25) 93 (26) 954 (25) 
Subclass 5 1,786 (16) 182 (15) 1,968 (16) 1,146 (33) 136 (38) 1,282 (34) 

Coronary heart disease No: N=8,675 Yes: N=2,228 Total: N=10,903 No: N=2,438 Yes: N=722 Total: N=3,160 

Subclass 1 2,086 (24) 475 (21) 2,561 (23) 196 (8) 56 (8) 252 (8) 
Subclass 2 1,864 (21) 501 (22) 2,365 (22) 351 (14) 97 (13) 448 (14) 
Subclass 3 1,778 (21) 436 (20) 2,214 (20) 485 (20) 113 (16) 598 (19) 
Subclass 4 1,555 (18) 459 (21) 2,014 (18) 604 (25) 195 (27) 799 (25) 
Subclass 5 1,392 (16) 357 (16) 1,749 (16) 802 (33) 261 (36) 1,063 (34) 

Peripheral vascular disease No: N=12,186 Yes: N=480 Total: N=12,666 No: N=3,698 Yes: N=155 Total: N=3,853 

Subclass 1 2,910 (24) 92 (19) 3,002 (24) 289 (8) 14 (9) 303 (8) 
Subclass 2 2,636 (22) 102 (21) 2,738 (22) 548 (15) 17 (11) 565 (15) 
Subclass 3 2,494 (20) 92 (19) 2,586 (20) 695 (19) 23 (15) 718 (19) 
Subclass 4 2,238 (18) 102 (21) 2,340 (18) 926 (25) 38 (25) 964 (25) 
Subclass 5 1,908 (16) 92 (19) 2,000 (16) 1,240 (34) 63 (41) 1,303 (34) 

Renal disease No: N=9,867 Yes: N=2,864 Total: N=12,731 No: N=2,716 Yes: N=1,061 Total: N=3,777 

Subclass 1 2,490 (25) 516 (18) 3,006 (24) 232 (9) 64 (6) 296 (8) 
Subclass 2 2,151 (22) 595 (21) 2,746 (22) 432 (16) 124 (12) 556 (15) 
Subclass 3 2,050 (21) 544 (19) 2,594 (20) 544 (20) 163 (15) 707 (19) 
Subclass 4 1,727 (18) 622 (22) 2,349 (18) 660 (24) 293 (28) 953 (25) 
Subclass 5 1,449 (15) 587 (21) 2,036 (16) 848 (31) 417 (39) 1,265 (33) 
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Table 7.6: Overall SMD across PS subclasses 

Outcome 
Target SU 

level 
Mortality 

Repeated gout 
consultations 

Gout 
hospitalisation 

Joint 
replacement 

Cerebrovascular 
disease 

Coronary 
heart disease 

Peripheral 
vascular 
disease 

Renal 
disease 

Demographics          

Age 0.02 0.01 0.01 0.01 <0.01 0.01 0.02 0.01 0.01 
Sex: Female 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 
Deprivation <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 

Comorbidities          

Anxiety - - - - - - - - - 
Depression - - <0.01 - - - - - - 
Cerebrovascular disease - <0.01 <0.01 <0.01 <0.01 - 0.01 <0.01 <0.01 
Coronary heart disease 0.02 0.02 0.01 0.01 0.02 0.02 - 0.02 0.02 
Diabetes  - 0.01 <0.01 0.01 - 0.01 0.01 0.01 0.01 
Hyperlipidaemia 0.01 - <0.01 - - <0.01 <0.01 <0.01 <0.01 
Hypertension - <0.01 - <0.01 <0.01 <0.01 0.01 <0.01 <0.01 
Osteoarthritis  - 0.01 - 0.01 <0.01 0.01 0.01 0.01 0.01 
Peripheral vascular 
disease 

- 0.01 0.01 - - 0.01 <0.01 - <0.01 

Renal disease 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 - 

Lifestyle factors          

Alcohol consumptiona 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
Body mass indexa 0.01 0.01 0.01 0.01 0.01 <0.01 0.01 0.01 0.01 
Smoking statusa -0.01 <0.01 <0.01 <0.01 - -0.01 <0.01 <0.01 <0.01 
SU levela 0.08b -0.09 -0.09 0.02 -0.08 <0.01 -0.08 -0.08 -0.08 

Medication use          

Analgesics 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
Colchicine 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 
Diuretics 0.03 0.02 <0.01 0.02 0.02 0.02 0.03 0.02 0.02 
NSAIDS -0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 0.01 

aFor categorical variables, the largest SMD was presented; bSU level was a continuous covariate; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SMD: Standardised 
mean difference; SU: Serum urate
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7.5 Treatment effect analysis 

7.5.1 Landmark one-year analysis 

For each outcome analysis, subclass-specific treatment effect estimates were pooled and are 

presented in Table 7.7 alongside with unadjusted treatment effect (hazard ratio (HR) with 95% 

confidence interval (CI)) and distribution of outcome across treatment groups.  

For the majority of outcomes, the subclass-specific treatment effect estimates were 

homogeneous across subclasses as judged by the likelihood ratio test, which showed that 

including an interaction term between allopurinol and PS subclasses in addition to their main 

effects did not improve model fit (p-value >0.05). Allopurinol use was associated with higher 

chance of reaching target SU level (HR 2.32 (95% CI: 1.97, 2.74)), and increased risk of 

premature mortality (1.10 (1.03, 1.17)), coronary heart disease (1.11 (1.02, 1.21)) and renal 

disease (1.19 (1.10, 1.28)) (Table 7.7). 

The subclass-specific treatment effect estimates for repeated gout consultations and gout 

hospitalisation were not homogeneous across subclasses (p<0.001 and p=0.007 respectively). 

The pooled estimates were therefore weighted by the inverse of the sample size and 

presented in Table 7.7, and subclass-specific treatment estimates are presented in Table 7.8 

and Table 7.9 respectively alongside with description of covariates.   

The pooled treatment effect showed that allopurinol was associated with fewer gout 

consultations (0.70 (0.65, 0.75)). Within subclass 5 (highest propensity for allopurinol), 

allopurinol was found to have the strongest protective effect against repeated gout 

consultations (0.60 (0.53, 0.67)); patients in that subclass were older, had higher prevalence 

of females, coronary heart disease, hypertension, obesity, and were also more likely to be 

prescribed analgesics, diuretics and NSAIDS than subclass 2 in which, allopurinol was found to 
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have the weakest protective effect (0.81 (0.68, 0.97)). Most patients in subclass 5 had a 

recorded baseline SU level, which was above 360μmol/L (Table 7.8).  

The pooled treatment effect also showed that allopurinol was associated with increased risk 

of gout hospitalisation (1.82 (1.64, 2.02)). In Table 7.9, the highest risk of gout hospitalisation 

was observed in subclass 1 (2.46 (1.78, 3.40)). Patients in subclass 1 were slightly younger and 

resided in less deprived areas, had lower prevalence of coronary heart disease, osteoarthritis, 

analgesics, diuretics and NSAIDS use, and were more likely to be an ever drinker, never smoker 

and have normal-overweight BMI value, compared with patients in subclass 5 in which 

allopurinol users had the lowest risk of gout hospitalisation (1.46 (1.23, 1.74)). 

Test for proportional hazards (PH) failed for allopurinol in the outcome analyses of target SU 

level, repeated gout consultations and renal disease in unadjusted Cox models. On graphical 

inspection of the Schoenfeld residuals plotted over time (presented in Appendix J), the log-HR 

was constant i.e., had a zero slope, until towards the end of follow-up where its direction 

changed from being constant to either increasing or decreasing. The change in HR may 

indicate that the lessening effect of treatment was due to a small number of patients with the 

longest follow-up times. Given the PH was satisfied for the majority of follow-up, and the 

Kaplan-Meier plots had shown no crossover of survival functions between the two treatment 

groups (graphs not shown), it was assumed overall, that the PH assumption was satisfied.  

After PS subclassification, the PH assumption for allopurinol was met in the majority of 

subclasses for all outcome analyses with the following exceptions. For mortality, the PH 

assumption failed in one subclass; for repeated gout consultations the PH assumption failed 

in three subclasses; for renal disease the PH assumption failed in two subclasses. As above, on 

further inspection of the Schoenfeld residuals the decrease in log-HR towards the end of 

follow-up was due to a small number of patients with the longest follow-up times (Appendix 
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J). Kaplan-Meier plots had shown no crossover of survival functions between the two 

treatment groups (graphs not shown). Therefore, it was assumed the PH assumption was 

satisfied.  

Table 7.7: Estimated treatment effect of allopurinol on outcome (1 year landmark analysis) 

Outcome 
No allopurinol 

N (%) 
Allopurinol 

N (%) 

Unadjusted 
Hazard ratio (95% CI) 

Standard error 

Adjusted 
Hazard Ratio (95% CI) 

Standard error 

SU level     

   Target level not met 789 (67) 246 (43) 2.27 (1.96, 2.64) 
0.17 

2.32 (1.97, 2.74) 
0.19    Target level met 386 (33) 321 (57) 

Mortality     

   Alive 9,260 (72) 2,640 (67) 1.23 (1.15, 1.31) 
0.04 

1.10 (1.03, 1.17) 
0.04    Died 3,659 (28) 1,317 (33) 

Repeated gout consultations     

   Never consulted 5,787 (45) 2,193 (55) 0.75 (0.70, 0.80) 
0.03 

0.70 (0.65, 0.75)* 
0.03    Consulted at least once 7,132 (55) 1,764 (45) 

Gout hospitalisation     

   No 9,546 (88) 2,569 (79) 1.97 (1.80, 2.17) 
0.09 

1.82 (1.64, 2.02)* 
0.10    Yes 1,283 (12) 689 (21) 

Joint replacement     

   No 12,008 (94) 3,621 (93) 1.26 (1.10, 1.45) 
0.09 

1.15 (0.99, 1.32) 
0.08    Yes 744 (6) 271 (7) 

Cerebrovascular disease     

   No 11,273 (90) 3,428 (91) 1.03 (0.91, 1.16) 
0.06 

0.98 (0.87, 1.11) 
0.06    Yes 1,195 (10) 357 (9) 

Coronary heart disease     

   Yes 8,675 (80) 2,438 (77) 1.16 (1.07, 1.26) 
0.05 

1.11 (1.02, 1.21) 
0.05    No 2,228 (20) 722 (23) 

Peripheral vascular disease     

   No 12,186 (96) 3,698 (96) 1.10 (0.92, 1.32) 
0.10 

1.01 (0.84, 1.22) 
0.10    Yes 480 (4) 155 (4) 

Renal disease     

   No 9,867 (78) 2,716 (72) 1.36 (1.27, 1.46) 
0.05 

1.19 (1.10, 1.28) 
0.04    Yes 2,864 (23) 1,061 (28) 

*Subclass-specific treatment effect estimates were not homogenous; CI: Confidence interval; SU: Serum urate 
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Table 7.8: Estimated treatment effect of allopurinol on repeated gout consultations and 
distribution of covariates within each PS subclass  

 
Subclass 1  
N=3,376 

Subclass 2 
N=3,375 

Subclass 3 
N=3,375 

Subclass 4 
N=3,375 

Subclass 5 
N=3,375 

HR (95% CI) 
Standard error 

0.75 (0.62, 0.92) 
0.08 

0.81 (0.68, 0.97) 
0.07 

0.76 (0.65, 0.88) 
0.06 

0.62 (0.54, 0.71) 
0.04 

0.60 (0.53, 0.67) 
0.03 

Demographics      

Age (Mean (SD)) 59.8 (14.0) 62.0 (15.2) 59.6 (14.4) 64.8 (14.9) 64.1 (14.4) 
Sex: Female 788 (23) 674 (20) 545 (16) 910 (27) 964 (29) 
Deprivation 
(Mean (SD)) 

7.6 (5.1) 8.8 (5.5) 9.2 (5.4) 9.3 (5.5) 10.7 (5.6) 

Comorbidities      

Anxiety 136 (4) 155 (5) 113 (3) 125 (4) 143 (4) 
Depression 199 (6) 177 (5) 162 (5) 154 (5) 150 (4) 
Cerebrovascular 
disease 

47 (1) 
66 (2) 68 (2) 92 (3) 134 (4) 

Coronary heart 
disease 

213 (6) 
306 (9) 381 (11) 495 (15) 772 (23) 

Diabetes  143 (4) 155 (5) 176 (5) 211 (6) 362 (11) 
Hyperlipidaemia 155 (5) 171 (5) 122 (4) 167 (5) 168 (5) 
Hypertension 387 (11) 578 (17) 489 (14) 812 (24) 871 (26) 
Osteoarthritis  127 (4) 139 (4) 175 (5) 276 (8) 389 (12) 
Peripheral 
vascular disease 

23 (1) 
25 (1) 40 (1) 73 (2) 96 (3) 

Renal disease NA (<1) NA (0) 9 (<1) 42 (1) 162 (5) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 2,089 (62) 1,997 (59) 1,838 (54) 1,863 (55) 1,701 (50) 
   Never drinker 194 (6) 192 (6) 123 (4) 203 (6) 144 (4) 
   Missing 1,093 (32) 1,186 (35) 1,414 (42) 1,309 (39) 1,530 (45) 
Body mass 
index 

     

   Normal 772 (23) 659 (20) 382 (11) 433 (13) 271 (8) 
   Overweight 1,107 (33) 1,089 (32) 934 (28) 1,013 (30) 790 (23) 
   Obese 447 (13) 457 (14) 665 (20) 684 (20) 966 (29) 
   Missing 1,050 (31) 1,170 (35) 1,394 (41) 1,245 (37) 1,348 (40) 
Smoking status      
   Ever smoker 1,423 (42) 1,263 (37) 1,158 (34) 1,312 (39) 1,280 (38) 
   Never smoker 1,119 (33) 1,097 (33) 964 (29) 934 (28) 733 (22) 
   Missing 834 (25) 1,015 (30) 1,253 (37) 1,129 (33) 1,362 (40) 
SU level      
   ≤360µmol/L 944 (28) 7 (<1) 0 (0) 0 (0) 0 (0) 
   >360µmol/L 0 (0) 258 (8) 1,073 (32) 1,778 (53) 2,953 (87) 
   Missing 2,432 (72) 3,110 (92) 2,302 (68) 1,597 (47) 422 (13) 

Medication use      

Analgesics 526 (16) 730 (22) 1,011 (30) 1,420 (42) 1,891 (56) 
Colchicine 8 (<1) 12 (<1) 26 (1) 78 (2) 265 (8) 
Diuretics 389 (12) 1,080 (32) 743 (22) 1,952 (58) 2,075 (61) 
NSAIDS 292 (9) 942 (28) 1,765 (52) 2,066 (61) 2,862 (85) 

N (%) presented unless otherwise stated; CI: Confidence interval; NA: Cannot report cell counts with less than 
five events; HR: Hazard ratio; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: 
Standard deviation; SU: Serum urate 
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Table 7.9: Estimated treatment effect of allopurinol on gout hospitalisation and distribution 
of covariates within each PS subclass  

 
Subclass 1 
N=2,818 

Subclass 2 
N=2,817 

Subclass 3 
N=2,818 

Subclass 4 
N=2,817 

Subclass 5 
N=2,817 

HR (95% CI) 
Standard error 

2.46 (1.78, 3.40) 
0.40 

1.98 (1.57, 2.49) 
0.23 

1.60 (1.29, 1.98) 
0.17 

1.75 (1.44, 2.11) 
0.17 

1.46 (1.23, 1.74) 
0.13 

Demographics      

Age (Mean (SD)) 62.5 (13.6) 63.9 (14.8) 62.0 (14.0) 65.3 (14.7) 64.1 (14.2) 
Sex: Female 722 (26) 591 (21) 548 (19) 785 (28) 829 (29) 
Deprivation 
(Mean (SD)) 

7.8 (5.1) 9.0 (5.4) 9.3 (5.4) 9.6 (5.6) 10.5 (5.6) 

Comorbidities      

Anxiety 108 (4) 117 (4) 123 (4) 103 (4) 135 (5) 
Depression 140 (5) 133 (5) 157 (6) 148 (5) 171 (6) 
Cerebrovascular 
disease 31 (1) 58 (2) 66 (2) 88 (3) 126 (4) 
Coronary heart 
disease 213 (8) 301 (11) 354 (13) 441 (16) 627 (22) 
Diabetes  158 (6) 165 (6) 149 (5) 213 (8) 262 (9) 
Hyperlipidaemia 122 (4) 131 (5) 126 (4) 150 (5) 158 (6) 
Hypertension 478 (17) 578 (21) 463 (16) 640 (23) 599 (21) 
Osteoarthritis  107 (4) 99 (4) 178 (6) 246 (9) 381 (14) 
Peripheral 
vascular disease 31 (1) 44 (2) 50 (2) 54 (2) 61 (2) 
Renal disease NA (<1) NA (0) 18 (1) 39 (1) 127 (5) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 1,782 (63) 1,615 (57) 1,640 (58) 1,516 (54) 1,440 (51) 
   Never drinker 190 (7) 175 (6) 140 (5) 159 (6) 113 (4) 
   Missing 846 (30) 1,027 (36) 1,038 (37) 1,142 (41) 1,264 (45) 
Body mass index      
   Normal 678 (24) 504 (18) 412 (15) 324 (12) 253 (9) 
   Overweight 927 (33) 884 (31) 858 (30) 821 (29) 695 (25) 
   Obese 381 (14) 423 (15) 519 (18) 618 (22) 803 (29) 
   Missing 832 (30) 1,006 (36) 1,029 (37) 1,054 (37) 1,066 (38) 
Smoking status      
   Ever smoker 1,236 (44) 1,047 (37) 1,074 (38) 1,060 (38) 1,115 (40) 
   Never smoker 961 (34) 904 (32) 844 (30) 760 (27) 569 (20) 
   Missing 621 (22) 866 (31) 900 (32) 997 (35) 1,133 (40) 
SU level      
   ≤360µmol/L 811 (29) NA (<1) 0 (0) 0 (0) 0 (0) 
   >360µmol/L 0 (0) 98 (3) 779 (28) 1,591 (56) 2,555 (91) 
   Missing 2,007 (71) 2,716 (96) 2,039 (72) 1,226 (44) 262 (9) 

Medication use      

Analgesics 544 (19) 727 (26) 972 (34) 1,229 (44) 1,545 (55) 
Colchicine 8 (<1) 8 (<1) 27 (1) 65 (2) 235 (8) 
Diuretics 339 (12) 991 (35) 787 (28) 1,648 (59) 1,714 (61) 
NSAIDS 359 (13) 901 (32) 1,635 (58) 1,564 (56) 2,365 (84) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell 
counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity Score; SD: 
Standard deviation; SU: Serum urate 
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7.5.2 Treatment effect stratified by presence of renal disease 

Of the study sample (n=16,876), 217 patients had renal disease at baseline. In patients with 

no renal disease, allopurinol users had higher prevalence of SU being recorded, the SU level 

being ≥360μmol/L, and were more likely to be prescribed analgesics, colchicine, diuretics and 

NSAIDS than non-users (SMD >0.10). In addition to the imbalanced covariates identified in 

patients with no renal disease, in patients with renal disease more differences were observed 

between the treatment groups with SMD >0.10 for BMI distribution, never smokers, and 

cerebrovascular disease, and peripheral vascular disease (Table 7.10). 

PS subclassification was performed in patients with no renal disease. Mean and range of PS 

was similar between treatment groups indicating common support. Five subclasses were 

sufficient to achieve overall covariate balance across subclasses although some imbalance 

remained within subclasses. As in the main analysis, subclass 1 observed the most number of 

imbalanced covariates (Table 7.11).   

PS subclassification could not be performed in patients with renal disease due to insufficient 

sample size and low frequency of occurrence of outcomes. For example, for mortality, five 

subclasses were sufficient to achieve overall balance in covariates across subclasses. However, 

this meant there were approximately 43 patients in each of the five subclasses, there was 

substantial imbalance in the majority of covariates within a subclass, and outcome did not 

occur within treatment groups in certain subclasses. Adjustment for all imbalanced covariates 

in estimating subclass-specific treatment effect was not possible due to small number of 

deaths in that subclass. Therefore, PS subclassification was not used. Instead, multivariable 

Cox regression adjusted for covariates that were originally included in the PS model. Given the 

low frequency of occurrence of outcome for gout hospitalisation, cerebrovascular disease, 

and coronary heart disease, the Cox model only adjusted for age, sex and BMI. Due to an even 
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lower frequency of occurrence of outcome for target SU level, joint replacement, and 

peripheral vascular disease, unadjusted HRs were presented. 

Table 7.10: Baseline covariates stratified by renal disease 

 
No renal disease 

N=16,508 
Renal disease 

N=217 

Baseline covariates 
No allopurinol 

N=12,731 
Allopurinol 

N=3,777 
No allopurinol 

N=121 
Allopurinol 

N=96 

Demographics     

Age (Mean (SD)) 61.7 (14.8) 62.5 (14.5) 70.8 (13.4) 72 (12.4) 
Sex: Female 2,860 (22) 892 (24) 40 (33) 36 (38) 
Deprivation (Mean (SD)) 9.0 (5.5) 9.5 (5.7) 10.5 (5.3) 10.4 (5.3) 

Comorbidities     

Anxiety 522 (4) 140 (4) NA (3) NA (2) 
Depression 645 (5) 180 (5) NA (2) NA (4) 
Cerebrovascular disease 291 (2) 105 (3) NA (1) 5 (5) 
Coronary heart disease 1,491 (12) 573 (15) 33 (27) 24 (25) 
Diabetes  715 (6) 252 (7) 25 (21) 20 (21) 
Hyperlipidaemia 580 (5) 164 (4) 9 (7) 9 (9) 
Hypertension 2,301 (18) 726 (19) 42 (35) 32 (33) 
Osteoarthritis  755 (6) 313 (8) 11 (9) 10 (10) 
Peripheral vascular disease 170 (1) 63 (2) 5 (4) 12 (13) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 7,216 (57) 2,068 (55) 69 (57) 51 (53) 
   Never drinker 650 (5) 179 (5) 8 (7) 6 (6) 
   Missing 4,865 (38) 1,530 (41) 44 (36) 39 (41) 
Body mass index     
   Normal 1,986 (16) 469 (12) 22 (18) 20 (21) 
   Overweight 3,773 (30) 1,052 (28) 38 (31) 27 (28) 
   Obese 2,321 (18) 808 (21) 22 (18) 23 (24) 
   Missing 4,651 (37) 1,448 (38) 39 (32) 26 (27) 
Smoking status     
   Ever smoker 4,863 (38) 1,418 (38) 53 (44) 39 (41) 
   Never smoker 3,717 (29) 1,012 (27) 32 (26) 33 (34) 
   Missing 4,151 (33) 1,347 (36) 36 (30) 24 (25) 
SU level     
   ≤360µmol/L 893 (7) 53 (1) NA (2) NA (1) 
   >360µmol/L 3,990 (31) 1,904 (50) 51 (42) 52 (54) 
   Missing 7,848 (62) 1,820 (48) 68 (56) 43 (45) 

Medication use     

Analgesic 3,891 (31) 1,480 (39) 62 (51) 61 (64) 
Colchicine 224 (2) 143 (4) 8 (7) 8 (8) 
Diuretic 4,207 (33) 1,648 (44) 85 (70) 85 (89) 
NSAIDS 5,613 (44) 2,241 (59) 45 (37) 45 (47) 

N (%) presented unless otherwise stated; Cells highlighted in yellow indicate standardised mean difference >0.10; 
NA: Cannot report cell counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: 
Standard deviation; SU: Serum urate 
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Table 7.11: Distribution of PS subclasses in patients with no renal disease 

Outcome 
PS mean (range) 

Allopurinol 
No allopurinol 

Number of 
subclassesa 

Smallest cellb Imbalanced covariates (SMD >0.10) 

Target SU level 
0.30 (0.08, 0.81) 
0.36 (0.13, 0.83) 

5 
51/506 
(10%) 

S1: Age, sex, coronary heart disease, 
hyperlipidaemia, alcohol consumption, 
smoking status, SU level, analgesics 
S2: Sex, hyperlipidaemia, alcohol 
consumption, BMI, smoking status, SU 
level, diuretics 
S3: Age, coronary heart disease, 
alcohol consumption, BMI, smoking 
status, diuretics 
S4: Coronary heart disease, alcohol 
consumption, BMI, NSAIDS 
S5: Sex, BMI 

Mortality 
0.21 (0.02, 0.71) 
0.28 (0.03, 0.72) 

5 
299/3,777 

(8%) 

S1: Sex, alcohol consumption, BMI, SU 
level, colchicine 
S2: Sex, deprivation, BMI, NSAIDS 
S4: Sex 

Repeated gout 
consultations 

0.21 (0.03, 0.71) 
0.28 (0.03, 0.72) 

5 
304/3,777 

(8%) 

S1: Sex, alcohol consumption, BMI, SU 
level 
S2: Deprivation, NSAIDS 

Gout 
hospitalisation 

0.21 (0.02, 0.71) 
0.27 (0.03, 0.72) 

5 
246/3,116 

(8%) 

S1: Sex, alcohol consumption, BMI, SU 
level,  
S2: Sex, BMI, NSAIDS 
S3: Alcohol consumption 
S4: Colchicine 

Joint 
replacement 

0.21 (0.03, 0.70) 
0.28 (0.03, 0.69) 

5 
297/3,720 

(8%) 

S1: Sex, alcohol consumption, BMI, 
smoking status, SU level 
S2: NSAIDS 

Cerebrovascular 
disease 

0.21 (0.02, 0.70) 
0.28 (0.03, 0.67) 

5 
287/3,621 

(8%) 

S1: Sex, alcohol consumption, BMI, SU 
level, colchicine 
S2: Deprivation 
S3: SU level 
S4: Sex 

Coronary heart 
disease 

0.21 (0.02, 0.70) 
0.27 (0.04, 0.69) 

5 
245/3,050 

(8%) 

S1: Sex, cerebrovascular disease, BMI, 
SU level, colchicine 
S2: Deprivation, BMI 
S3: Alcohol consumption 

Peripheral 
vascular disease 

0.21 (0.02, 0.71) 
0.28 (0.03, 0.72) 

5 
292/3,690 

(8%) 

S1: Sex, alcohol consumption, BMI, SU 
level, colchicine 
S2: BMI 
S3: SU level 

aNumber of subclasses needed to achieve overall covariate balance across subclasses; bSmallest cell defined as 
the number of allopurinol users within a subclass; BMI: Body mass index; NSAIDS: Non-steroidal anti-
inflammatory drugs; PS: Propensity score; S: Subclass; SMD: Standardised mean difference; SU: Serum urate 
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Table 7.12 provides the estimated treatment effect for each outcome stratified by presence 

of renal disease. In patients with no renal disease, allopurinol had a higher chance of reaching 

target SU level (2.26 (1.89, 2.71)), fewer gout consultations (0.71 (0.66, 0.76)), higher risk of 

gout hospitalisation (1.86 (1.65, 2.09)) and undergoing joint replacement (1.24 (1.06, 1.46)).  

Subclass-specific treatment effects estimates are reported in Table 7.13 and Table 7.14 for 

repeated gout consultations and gout hospitalisation respectively, as the subclass-specific 

treatment effect estimates were not homogenous. As in the main analysis (Section 7.5.1), 

within subclass 5, allopurinol was found to have the strongest protective effect against 

repeated gout consultations (0.56 (0.50, 0.63)). Within subclass 1, allopurinol was found to 

have the highest risk of gout hospitalisation (2.96 (2.09, 4.20)).  

In patients with renal disease, allopurinol use was not associated with any of the outcomes. 

Although not statistically significant, adjusted analyses had shown allopurinol may be 

protective against premature mortality (0.83 (0.57, 1.21)) and repeated gout consultations 

(0.58 (0.34, 0.97)), but may have higher risk of gout hospitalisation (1.48 (0.79, 2.80)), 

cerebrovascular disease (1.20 (0.57, 2.53)), and coronary heart disease (1.16 (0.55, 2.43)).   
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Table 7.12: Estimated treatment effect of allopurinol stratified by renal disease 

 No renal disease Renal disease 

 
No 

allopurinol 
Allopurinol 

Unadjusted 
Hazard ratio (95% CI) 

Standard error 

Adjusted 
Hazard Ratio (95% CI) 

Standard error 

No 
allopurinol 

Allopurinol 
Unadjusted 

Hazard ratio (95% CI) 
Standard error 

Adjusted 
Hazard Ratio (95% CI) 

Standard error 

SU level         
   Target SU level not met 743 (69) 233 (46) 2.27 (1.92, 2.67)a 

0.19 
2.26 (1.89, 2.71)a 

0.21 
9 (64) 10 (71) 0.81 (0.22, 2.94) 

0.53 
N/A 

   Target SU level met 333 (31) 273 (54) 5 (36) NA (28) 
Mortality         
   Alive 10,194 (80) 3,000 (79) 1.10 (1.02, 1.19) 

0.05 
1.02 (0.94, 1.11) 

0.04 
41 (34) 27 (28) 1.18 (0.86, 1.63)  

0.19 
0.83 (0.57, 1.21) 

0.16    Dead 2,537 (20) 777 (21) 80 (66) 69 (72) 
Repeated gout 
consultations 

        

   Never consulted 6,022 (47) 2,193 (58) 0.75 (0.70, 0.80)a 
0.03 

0.71 (0.66, 0.76)ab 
0.03 

60 (50) 66 (69) 0.65 (0.40, 1.04)a 
0.16 

0.58 (0.34, 0.97)a 
0.15    Consulted at least once 6,709 (53) 1,584 (42) 61 (50) 30 (31) 

Gout hospitalisation         
   No 9,720 (91) 2,642 (85) 1.95 (1.75, 2.18) 

0.11 
1.86 (1.65, 2.09)ab 

0.11 
95 (83) 59 (78) 1.53 (0.80, 2.94) 

0.51 
1.48 (0.79, 2.80)c 

0.48    Yes 934 (9) 474 (15) 19 (17) 17 (22) 
Joint replacement         
   No 11,938 (95) 3,493 (94) 1.33 (1.14, 1.54) 

0.10 
1.24 (1.06, 1.46) 

0.10 
115 (97) 88 (97) 1.04 (0.24, 4.49) 

0.78 
N/A 

   Yes 628 (5) 227 (6) NA (3) NA (3) 
Cerebrovascular disease         
   No 11,334 (92) 3,357 (93) 1.00 (0.87, 1.14) 

0.07 
0.96 (0.83, 1.11) 

0.07 
103 (879) 71 (83) 1.34 (0.66, 2.73) 

0.42 
1.20 (0.57, 2.53)c 

0.46    Yes 955 (8) 264 (7) 15 (13) 15 (17) 
Coronary heart disease         
   No 8,788 (82) 2,447 (80) 1.13 (1.03, 1.24) 

0.05 
1.10 (1.00, 1.20) 

0.05 
64 (77) 46 (77) 1.17 (0.58, 2.34) 

0.41 
1.16 (0.55, 2.43)c 

0.44    Yes 1,992 (18) 603 (20) 19 (23) 14 (23) 
Peripheral vascular disease         
   No 12,099 (97) 3,582 (97) 0.99 (0.80, 1.23) 

0.11 
0.94 (0.75, 1.17) 

0.11 

107 (93) 76 (93) 1.11 (0.39, 3.15) 
0.59 

N/A 
   Yes 391 (3) 108 (3) 8 (7) 6 (7) 

aStatistical test for the proportional hazards assumption failed, however change in treatment effect was represented by a small number of patients with the longest follow-up times, and 
there was no cross-over of survival functions from treatment groups. Therefore, the proportional hazards assumption was satisfied. bSubclass-specific treatment effects were homogenous; 
cAdjusted for age, sex, BMI;  N/A: Adjusted Cox model not fitted due to small number of outcomes; CI: Confidence interval; NA: Cannot report cell counts with less than five events; SU: 
Serum urate
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Table 7.13: Estimated PS subclass-specific treatment effect of allopurinol on repeated gout 
consultations in those with no renal disease 

 
Subclass 1  
N=3,302 

Subclass 2 
N=3,302 

Subclass 3 
N=3,301 

Subclass 4 
N=3,302 

Subclass 5 
N=3,301 

HR (95% CI) 
Standard error 

0.80 (0.65, 0.98) 
0.08 

0.83 (0.69, 1.00) 
0.08 

0.69 (0.60, 0.81) 
0.05 

0.68 (0.58, 0.79) 
0.05 

0.56 (0.50, 0.63) 
0.03 

Demographics      

Age (Mean (SD)) 59.6 (13.8) 62.9 (15.4) 59.0 (14.1) 64.9 (15.0) 62.9 (14.4) 
Sex: Female 751 (23) 711 (22) 498 (15) 914 (28) 878 (27) 
Deprivation 
(Mean (SD)) 

7.3 (5.0) 9.0 (5.7) 9.0 (5.3) 9.6 (5.6) 10.5 (5.6) 

Comorbidities      

Anxiety 132 (4) 146 (4) 108 (3) 140 (4) 136 (4) 
Depression 190 (6) 191 (6) 139 (4) 160 (5) 145 (4) 
Cerebrovascular 
disease 43 (1) 74 (2) 64 (2) 84 (3) 131 (4) 
Coronary heart 
disease 189 (6) 335 (10) 331 (10) 501 (15) 708 (21) 
Diabetes  142 (4) 170 (5) 153 (5) 210 (6) 292 (9) 
Hyperlipidaemia 163 (5) 172 (5) 107 (3) 168 (5) 134 (4) 
Hypertension 356 (11) 631 (19) 411 (12) 803 (24) 826 (25) 
Osteoarthritis  121 (4) 137 (4) 179 (5) 271 (8) 360 (11) 
Peripheral 
vascular disease 26 (1) 31 (1) 35 (1) 67 (2) 74 (2) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 1,790 (54) 1,854 (56) 1,861 (56) 1,862 (56) 1,917 (58) 
   Never drinker 156 (5) 173 (5) 128 (4) 203 (6) 169 (5) 
   Missing 1,356 (41) 1,275 (39) 1,312 (40) 1,237 (37) 1,215 (37) 
Body mass 
index 

     

   Normal 638 (19) 568 (17) 456 (14) 434 (13) 359 (11) 
   Overweight 944 (29) 994 (30) 959 (29) 1,026 (31) 902 (27) 
   Obese 443 (13) 499 (15) 585 (18) 689 (21) 913 (28) 
   Missing 1,277 (39) 1,241 (38) 1,301 (39) 1,153 (35) 1,127 (34) 
Smoking status      
   Ever smoker 1,181 (36) 1,181 (36) 1,175 (36) 1,283 (39) 1,461 (44) 
   Never smoker 988 (30) 1,031 (31) 977 (30) 960 (29) 773 (23) 
   Missing 1,133 (34) 1,090 (33) 1,149 (35) 1,059 (32) 1,067 (32) 
SU level      
   ≤360µmol/L 940 (28) 6 (<1) 0 (0) 0 (0) 0 (0) 
   >360µmol/L 0 (0) 139 (4) 1,095 (33) 1,666 (50) 2,994 (91) 
   Missing 2,362 (72) 3,157 (96) 2,206 (67) 1,636 (50) 307 (9) 

Medication use      

Analgesics 450 (14) 823 (25) 847 (26) 1,487 (45) 1,764 (53) 
Colchicine 7 (<1) 12 (<1) 23 (1) 71 (2) 254 (8) 
Diuretics 255 (8) 1,214 (37) 583 (18) 1,967 (60) 1,836 (56) 
NSAIDS 387 (12) 821 (25) 1,795 (54) 1,970 (60) 2,881 (87) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NSAIDS: Non-steroidal anti-
inflammatory drugs; PS: Propensity score; SD: Standard deviation; SU: Serum urate 
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Table 7.14: Estimated PS subclass-specific treatment effect of allopurinol on gout 
hospitalisation in those with no renal disease 

 
Subclass 1  
N=2,755 

Subclass 2 
N=2,753 

Subclass 3 
N=2,754 

Subclass 4 
N=2,754 

Subclass 5 
N=2,754 

HR (95% CI) 
Standard error 

2.96 (2.09, 4.20) 
0.53 

1.82 (1.38, 2.40) 
0.26 

1.64 (1.28, 2.10) 
0.21 

1.69 (1.34, 2.13) 
0.20 

1.47 (1.19, 1.82) 
0.16 

Demographics      

Age (Mean (SD)) 62.7 (13.6) 63.6 (14.9) 62.4 (13.8) 64.7 (14.8) 63.6 (14.1) 
Sex: Female 722 (26) 579 (21) 539 (20) 757 (27) 765 (28) 
Deprivation 
(Mean (SD)) 

7.8 (5.2) 9.1 (5.4) 9.1 (5.4) 9.8 (5.6) 10.4 (5.6) 

Comorbidities      

Anxiety 106 (4) 116 (4) 113 (4) 111 (4) 130 (5) 
Depression 139 (5) 129 (5) 149 (5) 148 (5) 169 (6) 
Cerebrovascular 
disease 30 (1) 64 (2) 65 (2) 83 (3) 118 (4) 
Coronary heart 
disease 202 (7) 298 (11) 327 (12) 431 (16) 592 (21) 
Diabetes  158 (6) 166 (6) 140 (5) 190 (7) 226 (8) 
Hyperlipidaemia 119 (4) 128 (5) 120 (4) 144 (5) 144 (5) 
Hypertension 470 (17) 555 (20) 461 (17) 605 (22) 575 (21) 
Osteoarthritis  103 (4) 100 (4) 182 (7) 231 (8) 359 (13) 
Peripheral 
vascular disease 31 (1) 39 (1) 48 (2) 51 (2) 50 (2) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 1,741 (63) 1,553 (56) 1,636 (59) 1,457 (53) 1,428 (52) 
   Never drinker 196 (7) 168 (6) 134 (5) 151 (5) 105 (4) 
   Missing 818 (30) 1,032 (37) 984 (36) 1,146 (42) 1,221 (44) 
Body mass 
index 

     

   Normal 678 (25) 483 (18) 405 (15) 305 (11) 246 (9) 
   Overweight 912 (33) 835 (30) 868 (32) 795 (29) 681 (25) 
   Obese 378 (14) 426 (15) 508 (18) 595 (22) 759 (28) 
   Missing 787 (29) 1,009 (37) 973 (35) 1,059 (38) 1,068 (39) 
Smoking status      
   Ever smoker 1,226 (45) 1,005 (37) 1,067 (39) 1,013 (37) 1,086 (39) 
   Never smoker 949 (34) 868 (32) 849 (31) 722 (26) 548 (20) 
   Missing 580 (21) 880 (32) 838 (30) 1,019 (37) 1,120 (41) 
SU level      
   ≤360µmol/L 805 (29) NA (0) 0 (0) 0 (0) 0 (0) 
   >360µmol/L 0 (0) 75 (3) 719 (26) 1,544 (56) 2,541 (92) 
   Missing 1,950 (71) 2,674 (97) 2,035 (74) 1,210 (44) 213 (8) 

Medication use      

Analgesics 528 (19) 722 (26) 927 (34) 1,202 (44) 1,459 (53) 
Colchicine 7 (<1) 8 (0) 28 (1) 64 (2) 220 (8) 
Diuretics 355 (13) 994 (36) 744 (27) 1,569 (57) 1,571 (57) 
NSAIDS 352 (13) 799 (29) 1,684 (61) 1,486 (54) 2,359 (86) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell 
counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: 
Standard deviation; SU: Serum urate 
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7.5.3 Treatment effect stratified by severity of hyperuricaemia 

Of the study sample (n=16,876), 3,160 patients had non-severe hyperuricaemia and 2,902 had 

severe hyperuricaemia. Among patients with non-severe hyperuricaemia, allopurinol users 

were older and more likely to be female, reside in a more deprived area, have osteoarthritis, 

and be prescribed analgesics, diuretics and NSAIDS than non-users (SMD >0.10). In patients 

with severe hyperuricaemia, allopurinol users had higher prevalence of osteoarthritis and 

were more likely to be prescribed analgesics, diuretics and NSAIDS than non-users (SMD 

>0.10) (Table 7.15).   

PS subclassification for each outcome in non-severe and severe hyperuricaemic groups was 

performed. Table 7.16 and Table 7.17 shows the mean and range of PS were similar between 

treatment groups indicating common support between treatment groups in non-severe and 

severe hyperuricaemic groups respectively. In both stratified analyses, five subclasses were 

sufficient to achieve overall balance for the majority of covariates however, imbalance 

remained within subclasses. In patients with non-severe hyperuricaemia, there were a greater 

number of imbalanced covariates within subclasses compared with patients with severe 

hyperuricaemia (Table 7.16 and Table 7.17 respectively). In the analysis of peripheral vascular 

disease, in patients with severe hyperuricaemia, use of four or five subclasses led to no 

occurrence of outcome in subclass 1 (the lowest PS), thus this subclass could not be used in 

outcome analysis as treatment effect could not be estimated. Therefore, three PS subclasses 

were created which still achieved overall covariate balance across subclasses.    
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Table 7.15: Baseline characteristics stratified by severity of hyperuricaemia 

 
Non-severe hyperuricaemia  

(360-480μmol/L) 
N=3,160 

Severe hyperuricaemia 
(>480μmol/L) 

N=2,902 

Baseline covariates 
No allopurinol 

N=2,432 
Allopurinol use 

N=728 
No allopurinol 

N=1,632 
Allopurinol 

N=1,270 

Demographics     

Age (Mean (SD)) 61.3 (13.7) 63.0 (13.0) 61.5 (16.0) 63.1 (15.3) 
Sex: Female 443 (18) 195 (27) 385 (24) 322 (25) 
Deprivation (Mean (SD)) 8.6 (5.4) 9.9 (5.8) 9.1 (5.5) 9.6 (5.7) 

Comorbidities     

Anxiety 92 (4) 26 (4) 64 (4) 52 (4) 
Depression 113 (5) 36 (5) 72 (4) 63 (5) 
Cerebrovascular disease 54 (2) 10 (1) 38 (2) 44 (3) 
Coronary heart disease 280 (12) 96 (13) 255 (16) 237 (19) 
Diabetes  118 (5) 37 (5) 116 (7) 122 (10) 
Hyperlipidaemia 107 (4) 29 (4) 85 (5) 73 (6) 
Hypertension 479 (20) 155 (21) 354 (22) 293 (23) 
Osteoarthritis  146 (6) 69 (9) 95 (6) 115 (9) 
Peripheral vascular disease 29 (1) 16 (2) 25 (2) 25 (2) 
Renal disease 14 (1) 10 (1) 37 (2) 42 (3) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 1,401 (58) 400 (55) 930 (57) 727 (57) 
   Never drinker 82 (3) 31 (4) 80 (5) 54 (4) 
   Missing 949 (39) 297 (41) 622 (38) 489 (39) 
Body mass index     
   Normal 316 (13) 98 (13) 202 (12) 147 (12) 
   Overweight 777 (32) 194 (27) 477 (29) 370 (29) 
   Obese 474 (19) 164 (23) 377 (23) 302 (24) 
   Missing 865 (36) 272 (37) 576 (35) 451 (36) 
Smoking status     
   Ever smoker 1,025 (42) 301 (41) 739 (45) 557 (44) 
   Never smoker 599 (25) 171 (23) 380 (23) 281 (22) 
   Missing 808 (33) 256 (35) 513 (31) 432 (34) 

Medication use     

Analgesic 684 (28) 278 (38) 539 (33) 550 (43) 
Colchicine 47 (2) 26 (4) 48 (3) 53 (4) 
Diuretic 789 (32) 275 (38) 783 (48) 682 (54) 
NSAIDS 1,099 (45) 422 (58) 781 (48) 761 (60) 

N (%) presented unless otherwise stated; Cells highlighted in yellow indicate SMD >0.10; NSAIDS: Non-steroidal 
anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 
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Table 7.16: Distribution of PS subclasses in patients with non-severe hyperuricaemia  

 PS Mean (range) 
Allopurinol 

No allopurinol 

Number of 
PS 

subclassesa 

Smallest 
cellb 

Imbalanced covariates (SMD>0.10) 

Target SU level 
0.23 (0.05, 0.57) 
0.27 (0.09, 0.58) 

5 
19/195 
(10%) 

S1: Age, deprivation, coronary heart disease, renal disease, alcohol consumption, smoking status, analgesics, 
colchicine, diuretics 
S2: Age, coronary heart disease, hyperlipidaemia, renal disease, alcohol consumption, BMI, SU level, analgesics, 
diuretics 
S3: Age, sex, coronary heart disease, hyperlipidaemia, alcohol consumption, BMI, SU level, diuretics, 
S4: Age, sex, coronary heart disease, alcohol consumption, BMI, smoking status, SU level, analgesics, diuretics 
S5: Age, deprivation, hyperlipidaemia, BMI,  

Mortality 
0.22 (0.07, 0.64) 
0.26 (0.08, 0.62) 

5 
72/728 
(10%) 

S1: Sex, diabetes, hypertension, osteoarthritis, alcohol consumption, smoking status, analgesics, NSAIDS 
S2: Deprivation, coronary heart disease, hypertension, renal disease, alcohol consumption, BMI, analgesics, NSAIDS 
S3: age, osteoarthritis, peripheral vascular disease, BMI, smoking status, analgesics, NSAIDS 
S4: cerebrovascular disease, hypertension, alcohol consumption, BMI, smoking status, colchicine  
S5: Hypertension 

Repeated gout 
consultations 

0.22 (0.07, 0.64) 
0.26 (0.08, 0.63) 

5 
69/728 

(9%) 

S1: Sex, diabetes, alcohol consumption, smoking status, analgesics 
S2: Deprivation, depression, coronary heart disease, hyperlipidaemia, renal disease, alcohol consumption, analgesics, 
colchicine 
S3: Peripheral vascular disease, smoking status, analgesics 
S4: Depression, renal disease, BMI, smoking status 

Gout 
hospitalisation 

0.23 (0.07, 0.55) 
0.26 (0.09, 0.64) 

5 
62/626 
(9.90%) 

S1: Sex, diabetes, hypertension, osteoarthritis, alcohol consumption, smoking status, analgesics, NSAIDS 
S2: Age, deprivation, cerebrovascular disease, coronary heart disease, osteoarthritis, alcohol consumption, BMI, 
analgesics, NSAIDS 
S3: BMI, smoking status, analgesics 
S4: Age, deprivation, cerebrovascular disease, renal disease, alcohol consumption 
S5: Deprivation, cerebrovascular disease, alcohol consumption, analgesics 
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Table 7.16 continued: 

Joint 
replacement 

0.22 (0.07, 0.59) 
0.25 (0.08, 0.61) 

5 
74/715 
(10%) 

S1: Sex, osteoarthritis, alcohol consumption, smoking status, analgesics, diuretics 
S2: Deprivation, coronary heart disease, hypertension, osteoarthritis, renal disease, alcohol consumption, BMI, 
analgesics, NSAIDS 
S3: osteoarthritis, smoking status, analgesics, NSAIDS 
S4: BMI 
S5: Hypertension 

Cerebrovascular 
disease 

0.22 (0.10, 0.60) 
0.26 (0.11, 0.59) 

5 
70/709 

(9%) 

S1: Sex, hypertension, alcohol consumption, smoking status, analgesics, diuretics, NSAIDS 
S2: Coronary heart disease, alcohol consumption, smoking status, analgesics 
S3: osteoarthritis, alcohol consumption, BMI, smoking status, analgesics, colchicine 
S4: Deprivation, diabetes, renal disease, alcohol consumption, BMI, smoking status 
S5: Hypertension, BMI, analgesics 

Coronary heart 
disease 

0.22 (0.07, 0.60) 
0.25 (0.10, 0.51) 

5 
58/595 
(10%) 

S1: Sex, deprivation, diabetes, hyperlipidaemia, hypertension, peripheral vascular disease, alcohol consumption, 
BMI, smoking status, analgesics, diuretics 
S2: Alcohol consumption, BMI, analgesics 
S3: Sex, cerebrovascular disease, osteoarthritis, renal disease, alcohol consumption, BMI, smoking status, analgesics 
S4: Deprivation, alcohol consumption, BMI, smoking status, NSAIDS 
S5: Hypertension 

Peripheral 
vascular disease 

0.22 (0.06, 0.60) 
0.25 (0.07, 0.63) 

5 
67/706 

(9%) 

S1: Sex, deprivation, diabetes, hyperlipidaemia, osteoarthritis, alcohol consumption, smoking status, analgesics, 
NSAIDS 
S2: Sex, coronary heart disease, hypertension, alcohol consumption, smoking status, analgesics 
S3: Coronary heart disease, diabetes, osteoarthritis, alcohol consumption, smoking status, analgesics 
S4: Deprivation, hypertension, smoking status 
S5: Hypertension, analgesics 

Renal disease 
0.22 (0.05, 0.62) 
0.25 (0.08, 0.55) 

5 
70/713 
(10%) 

S1: Sex, deprivation, diabetes, hypertension, osteoarthritis, alcohol consumption, smoking status, analgesics 
S2: Sex, deprivation, coronary heart disease, analgesics, NSAIDS 
S3: Age, analgesics, deprivation, smoking status 
S4: Deprivation, smoking status 
S5: Hypertension, smoking status 

 aNumber of subclasses needed to achieve overall balance across subclasses; bSmallest cell defined as the number of allopurinol users within a subclass; BMI: Body mass index; NSAIDS: 
Non-steroidal anti-inflammatory drugs; PS: Propensity score; S: Subclass; SMD: Standardised mean difference; SU: Serum urate 
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Table 7.17: Distribution of PS subclasses in patients with severe hyperuricaemia  

 PS Mean (range) 
Allopurinol 

No allopurinol 

Number of 
PS 

subclassesa 

Smallest 
cellb 

Imbalanced covariates (SMD>0.10) 

Target SU level 
0.39 (0.17, 0.82) 
0.43 (0.23, 0.89) 

5 
51/372 
(14%) 

S1: Age, sex, alcohol consumption, BMI, smoking status, SU level, analgesics, colchicine, diuretics,  
S2: Sex, deprivation, smoking status, analgesics, colchicine, diuretics 
S3: Age, hyperlipidaemia, alcohol consumption, smoking status, colchicine 
S4: Deprivation, renal disease, alcohol consumption, BMI, smoking status 
S5: Hyperlipidaemia, renal disease, alcohol consumption, BMI, smoking status 

Mortality 
0.42 (0.24, 0.74) 
0.46 (0.25, 0.76) 

5 
171/1,270 

(13%) 

S1: osteoarthritis, alcohol consumption, smoking status 
S2: Diabetes, BMI, diuretics, NSAIDS 
S3: Peripheral vascular disease, diuretics 
S4: Smoking status 
S5: BMI, smoking status 

Repeated gout 
consultations 

0.42 (0.24, 0.72) 
0.46 (0.24, 0.77) 

5 
173/1,270 

(14%) 

S1: Sex, smoking status, diuretics 
S2: Diabetes, BMI, diuretics 
S3: Depression, coronary heart disease 
S4: Smoking status, diuretics  
S5: Smoking status 

Gout 
hospitalisation 

0.42 (0.25, 0.71) 
0.45 (0.24, 0.75) 

5 
145/1,036 

(14$) 

S1: osteoarthritis, BMI, smoking status, NSAIDS 
S2: Diabetes, renal disease, BMI, NSAIDS 
S3: Cerebrovascular disease, coronary heart disease 
S4: Age, cerebrovascular disease, alcohol consumption 
S5: Deprivation, renal disease 

Joint 
replacement 

0.43 (0.25, 0.71) 
0.46 (0.24, 0.71) 

5 
164/1,254 

(13%) 

S1: Coronary heart disease, hypertension, alcohol consumption, smoking status, analgesics, NSAIDS 
S2: BMI 
S3: Sex, coronary heart disease 
S4: osteoarthritis, alcohol consumption, smoking status 
S5: Smoking status 

Cerebrovascular 
disease 

0.42 (0.23, 0.73) 
0.45 (0.26, 0.69) 

5 
164/1,210 

(14%) 

S1: Sex, coronary heart disease, hyperlipidaemia, osteoarthritis, renal disease, smoking status, diuretics 
S2: BMI. Diuretics 
S3: BMI, analgesics  
S4: Alcohol consumption, BMI, Smoking status, diuretics 
S5: BMI, smoking status 
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Table 7.17 continued: 

Coronary heart 
disease 

0.41 (0.21, 0.75) 
0.45 (0.22, 0.77) 

5 
126/972 

(13%) 

S1: Sex, diabetes, hyperlipidaemia, osteoarthritis, peripheral vascular disease, alcohol consumption, BMI, smoking 
status, colchicine 
S2: Renal disease, diuretics 
S3: Age, diabetes, peripheral vascular disease 
S4: Age, sex, cerebrovascular disease, diabetes, alcohol consumption, BMI, colchicine, diuretics, NSAIDS 
S5: Cerebrovascular disease, hyperlipidaemia  

Peripheral 
vascular disease 

0.42 (0.23, 0.74) 
0.46 (0.23, 0.74) 

3 
305/1,231 

(25%) 
S1: Smoking status, diuretics 

Renal disease 
0.41 (0.24, 0.72) 
0.45 (0.24, 0.71) 

5 
161/1,191 

(14%) 

S1: osteoarthritis, alcohol consumption, smoking status, diuretics 
S3: Coronary heart disease 
S4: Age, diabetes, BMI, smoking status, diuretics 
S5: NSAIDS 

aNumber of propensity score subclasses needed to achieve overall balance across subclasses; bSmallest cell defined as the number of allopurinol users within a subclass; BMI: Body mass 
index; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; S: Subclass; SMD: Standardised mean difference; SU: Serum urate 
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Table 7.18 gives the estimated treatment effect for each outcome stratified by severity of 

hyperuricaemia. Treatment effect estimates for target SU level was greater in patients with 

non-severe hyperuricaemia than those with severe hyperuricaemia (HR 2.83 vs. 2.20). In 

patients with non-severe hyperuricaemia, allopurinol had a higher risk of joint replacement 

(1.37 (1.10, 1.84)) and coronary heart disease (1.27 (1.04, 1.55)) than non-users. Pooled effect 

of allopurinol across subclasses had fewer gout consultations with effect sizes that were 

similar across the stratified groups. Risk of gout hospitalisation was higher amongst allopurinol 

users in patients with non-hyperuricaemia (1.61 (1.24, 2.08)) but no association was observed 

in patients with severe hyperuricaemia.    

Table 7.19 and Table 7.20 show subclass specific treatment effect estimates for repeated gout 

consultations in patients with non-severe and severe hyperuricaemia respectively as the 

treatment effect estimates were not homogenous across subclasses. In non-severe 

hyperuricaemic patients, within subclass 2, allopurinol use was found to have the strongest 

protective effect against repeated gout consultations (0.48 (0.35, 0.66)); these patients 

resided in less deprived areas and had lower prevalence of females, coronary heart disease, 

hypertension, osteoarthritis and obesity, had higher prevalence of ever drinker, overweight 

BMI, ever smoker, and prescribed analgesics, colchicine, diuretics and NSAIDS less than 

subclass 5, in which, allopurinol was found to have the least protective treatment effect (0.75 

(0.57, 0.98)). In contrast, among severe hyperuricaemic patients, within subclass 5, allopurinol 

use was found to have the strongest protective effect against repeated gout consultations 

(0.44 (0.34, 0.57)) compared to subclass 2, in which, allopurinol was found to have the least 

protective treatment effect (0.69 (0.51, 0.93)). 

Table 7.21 gives subclass specific treatment effect estimates for gout hospitalisation in 

patients with non-severe hyperuricaemia only as the treatment effect estimates were not 

homogenous across subclasses. No association was observed between allopurinol use and 
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gout hospitalisation in subclasses 1, 2 and 4. In subclasses 3 and 5, allopurinol use doubled the 

risk of gout hospitalisation (2.08 (1.26, 3.44) and 2.90 (1.86, 4.53) respectively). In patients 

with severe hyperuricaemia, there was no association between allopurinol and gout 

hospitalisation (1.09 (0.91, 1.31)).  
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Table 7.18: Treatment effect of allopurinol stratified by severity of hyperuricaemia 

aStatistical test for the proportional hazards assumption failed, however change in treatment effect was represented by a small number of patients with the longest follow-up times, and there was 
no cross-over of survival functions for treatment groups. Therefore, the proportional hazards assumption was satisfied. bSubclass-specific treatment effects were not homogenous; CI: Confidence 
intervals; HR: Hazard ratio; SU: Serum urate

 Non-severe hyperuricaemia Severe hyperuricaemia 

 
No 

allopurinol 
Allopurinol 

Unadjusted 
HR ratio (95% CI) 

Standard error 

Adjusted 
HR Ratio (95% CI) 

Standard error 

No 
allopurinol 

Allopurinol 
Unadjusted 
HR (95% CI) 

Standard error 

Adjusted 
HR (95% CI) 

Standard error 

SU level         
   Not reached target 419 (67) 74 (38) 2.42 (1.92, 3.05) 

0.28 
2.83 (2.17, 3.68) 

0.38 
370 (68) 172 (46) 2.17 (1.77, 2.66) 

0.23 
2.20 (1.76, 2.75) 

0.25    Reached target 209 (33) 121 (62) 177 (32) 200 (54) 
Mortality         
   Alive 1,880 (77) 543 (75) 1.10 (0.93, 1.29) 

0.09 
0.93 (0.79, 1.11) 

0.08 
1,125 (69) 828 (65) 1.13 (1.00, 1.29) 

0.07 
0.96 (0.84, 1.09) 

0.06    Dead 552 (23) 185 (25) 507 (31) 442 (35) 
Repeated gout consultations         
   Never consulted 1,727 (52) 433 (55) 0.74 (0.65, 0.84)a 

0.05 
0.60 (0.53, 0.69)ab 

0.04 
503 (31) 694 (55) 0.57 (0.51, 0.64)a 

0.03 
0.57 (0.51, 0.64)ab 

0.03    Consulted at least once 1,602 (48) 349 (45) 1,129 (69) 576 (45) 
Gout hospitalisation         
   No 1,784 (89) 505 (81) 1.79 (1.44, 2.24) 

0.20 
1.61 (1.24, 2.08)b 

0.21 
1,103 (81) 816 (79) 1.18 (0.99, 1.42) 

0.11 
1.09 (0.91, 1.31) 

0.10    Yes 223 (11) 121 (19) 251 (19) 220 (21) 
Joint replacement         
   No 2,263 (94) 650 (91) 1.55 (1.15, 2.08) 

0.23 
1.37 (1.01, 1.84) 

0.21 
1,525 (95) 1,177 (94) 1.30 (0.95, 1.78) 

0.21 
1.08 (0.77, 1.51) 

0.18    Yes 142 (6) 65 (9) 78 (5) 77 (6) 
Cerebrovascular disease         
   No 2,151 (91) 631 (89) 1.26 (0.97, 1.63) 

0.17 
1.26 (0.96, 1.65) 

0.17 
1,452 (93) 1,100 (91) 1.26 (0.97, 1.64) 

0.17 
1.04 (0.79, 1.37)a 

0.15    Yes 206 (9) 78 (11) 115 (7) 110 (9) 
Coronary heart disease         
   No 1,663 (81) 455 (76) 1.24 (1.02, 1.50) 

0.12 
1.27 (1.04, 1.55) 

0.13 
1,016 (79) 753 (77) 1.08 (0.90, 1.29) 

0.10 
1.01 (0.83, 1.21) 

0.10    Yes 396 (19) 140 (24) 274 (21) 219 (23) 
Peripheral vascular disease         
   No 2,298 (96) 682 (97) 0.86 (0.55, 1.35) 

0.20 
0.76 (0.48, 1.21)a 

0.18 
1,542 (97) 1,186 (96) 1.22 (0.82, 1.84)a 

0.25 
1.02 (0.67, 1.57) 

0.22    Yes 92 (4) 24 (3) 48 (3) 45 (4) 
Renal disease          
   No 1,847 (77) 516 (72) 1.21 (1.03, 1.43)a 

0.10 
1.06 (0.90, 1.25)a 

0.09 
1,113 (70) 797 (67) 1.15 (1.01, 1.32) 

0.08 
1.05 (0.91, 1.20)a 

0.07    Yes 561 (23) 197 (27) 469 (30) 394 (33) 
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Table 7.19: Estimated PS subclass-specific treatment effect of allopurinol on repeated gout 
consultations in patients with non-severe hyperuricaemia 

 
Subclass 1  

N=632 
Subclass 2 

N=632 
Subclass 3 

N=632 
Subclass 4 

N=632 
Subclass 5 

N=632 

HR (95% CI) 
Standard error 

0.65 (0.48, 0.89) 
0.11 

0.48 (0.35, 0.66) 
0.08 

0.66 (0.49, 0.89) 
0.10 

0.52 (0.39, 0.68) 
0.07 

0.75 (0.57, 0.98) 
0.10 

Demographics      

Age (Mean (SD)) 56.5 (13.0) 59.8 (13.4) 60.7 (13.5) 63.7 (13.2) 67.8 (12.1) 
Sex: Female 9 (1) 48 (8) 82 (13.0) 158 (25) 341 (54.0) 
Deprivation 
(Mean (SD)) 

4.6 (3.3) 7.9 (4.6) 8.2 (5.5) 10.4 (5.1) 13.3 (4.9) 

Comorbidities      

Anxiety 21 (3) 18 (3) 21 (3) 24 (4) 34 (5) 
Depression 27 (4) 28 (4) 27 (4) 29 (5) 38 (6) 
Cerebrovascular 
disease 37 (6) 12 (2) 7 (1) 8 (1) 0 (0) 
Coronary heart 
disease 42 (7) 60 (9) 83 (13) 80 (13) 111 (18) 
Diabetes  35 (6) 17 (3) 34 (5) 29 (5) 40 (6) 
Hyperlipidaemia 27 (4) 39 (6) 24 (4) 27 (4) 19 (3) 
Hypertension 105 (17) 103 (16) 129 (20) 119 (19) 178 (28) 
Osteoarthritis  8 (1) 21 (3) 30 (5) 55 (9) 101 (16) 
Peripheral 
vascular disease 0 (0) NA (<1) NA (<1) 7 (1) 33 (5) 
Renal disease 0 (0) NA (<1) NA (<1) NA (<1) 21 (3) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 434 (69) 376 (59) 343 (54) 328 (52) 320 (51) 
   Never drinker 9 (1) 11 (2) 23 (4) 23 (4) 47 (7) 
   Missing 189 (30) 245 (39) 266 (42) 281 (44) 265 (42) 
Body mass 
index 

     

   Normal 78 (12) 78 (12) 82 (13) 90 (14) 86 (14) 
   Overweight 325 (51) 241 (38) 174 (28) 121 (19) 110 (17) 
   Obese 78 (12) 100 (16) 116 (18) 139 (22) 205 (32) 
   Missing 151 (24) 213 (34) 260 (41) 282 (45) 231 (37) 
Smoking status      
   Ever smoker 276 (44) 284 (45) 270 (43) 253 (40) 243 (38) 
   Never smoker 199 (31) 152 (24) 132 (21) 134 (21) 153 (24) 
   Missing 157 (25) 196 (31) 230 (36) 245 (39) 236 (37) 

Medication use      

Analgesics 32 (5) 85 (13) 163 (26) 257 (41) 425 (67) 
Colchicine 0 (0) NA (<1) 6 (1) 14 (2) 52 (8) 
Diuretics 135 (21) 169 (27) 186 (29) 223 (35) 351 (56) 
NSAIDS 19 (3) 146 (23) 357 (56) 449 (71) 550 (87) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell 
counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: 
Standard deviation 

 

 

  

 

 



221 
 

Table 7.20: Estimated PS subclass-specific treatment effect of allopurinol on repeated gout 
consultations and distribution of covariates in patients with severe hyperuricaemia 

 
Subclass 1  

N=581 
Subclass 2 

N=580 
Subclass 3 

N=581 
Subclass 4 

N=580 
Subclass 5 

N=580 

HR (95% CI) 
Standard error 

0.64 (0.49, 0.85) 
0.09 

0.69 (0.51, 0.93) 
0.11 

0.49 (0.38, 0.61) 
0.06 

0.65 (0.51, 0.83) 
0.08 

0.44 (0.34, 0.57) 
0.06 

Demographics      

Age (Mean (SD)) 55.8 (14.8) 62.2 (16.0) 60.6 (16.2) 64.2 (15.3) 69.2 (12.9) 
Sex: Female 107 (18) 125 (22) 125 (22) 160 (28) 190 (33) 
Deprivation 
(Mean (SD)) 

7.4 (5.1) 8.6 (5.6) 9.0 (5.4) 10.2 (5.5) 11.2 (5.6) 

Comorbidities      

Anxiety 19 (3) 17 (3) 16 (3) 28 (5) 36 (6) 
Depression 23 (4) 17 (3) 24 (4) 23 (4) 48 (8) 
Cerebrovascular 
disease 0 (0) NA (<1) 14 (2) 20 (3) 46 (8) 
Coronary heart 
disease 36 (6) 84 (14) 80 (14) 116 (20) 176 (30) 
Diabetes  9 (2) 30 (5) 29 (5) 52 (9) 118 (20) 
Hyperlipidaemia 25 (4) 23 (4) 31 (5) 32 (6) 47 (8) 
Hypertension 101 (17) 128 (22) 116 (20) 136 (23) 166 (29) 
Osteoarthritis  11 (2) 18 (3) 41 (7) 55 (9) 85 (15) 
Peripheral 
vascular disease NA (<1) 10 (2) 6 (1) 10 (2) 22 (4) 
Renal disease NA (<1) 12 (2) 5 (1) 16 (3) 45 (8) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 327 (56) 318 (55) 364 (63) 313 (54) 335 (58) 
   Never drinker 41 (7) 37 (6) 16 (3) 24 (4) 16 (3) 
   Missing 213 (37) 225 (39) 201 (35) 243 (42) 229 (39) 
Body mass 
index 

     

   Normal 89 (15) 75 (13) 64 (11) 67 (12) 54 (9) 
   Overweight 175 (30) 176 (30) 171 (29) 159 (27) 166 (29) 
   Obese 126 (22) 125 (22) 146 (25) 116 (20) 166 (29) 
   Missing 191 (33) 204 (35) 200 (34) 238 (41) 194 (33) 
Smoking status      
   Ever smoker 285 (49) 277 (48) 255 (44) 248 (43) 231 (40) 
   Never smoker 159 (27) 138 (24) 146 (25) 106 (18) 112 (19) 
   Missing 137 (24) 165 (28) 180 (31) 226 (39) 237 (41) 

Medication use      

Analgesics 11 (2) 134 (23) 174 (30) 267 (46) 503 (87) 
Colchicine NA (<1) 12 (2) 13 (2) 13 (2) 61 (11) 
Diuretics 162 (28) 282 (49) 250 (43) 331 (57) 440 (76) 
NSAIDS NA (<1) 161 (28) 372 (64) 469 (81) 538 (93) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell 
counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: 
Standard deviation 
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Table 7.21: Estimated PS subclass-specific treatment effect of allopurinol on gout 
hospitalisation in patients with non-severe hyperuricaemia 

 
Subclass 1  

N=527 
Subclass 2 

N=527 
Subclass 3 

N=526 
Subclass 4 

N=527 
Subclass 5 

N=526 

HR (95% CI) 
Standard error 

1.69 (0.80, 3.58) 
0.65 

0.83 (0.43, 1.57) 
0.27 

2.08 (1.26, 3.44) 
0.53 

1.27 (0.80, 2.03) 
0.30 

2.90 (1.86, 4.53) 
0.66 

Demographics      

Age (Mean (SD)) 61.1 (12.6) 62.8 (12.9) 62.2 (13.3) 63.8 (12.9) 66.5 (12.9) 
Sex: Female 20 (4) 66 (13) 85 (16) 138 (26) 266 (51) 
Deprivation 
(Mean (SD)) 

5.2 (3.6) 7.9 (4.8) 8.6 (5.4) 10.2 (5.3) 13.6 (4.6) 

Comorbidities      

Anxiety 15 (3) 20 (4) 20 (4) 18 (3) 30 (6) 
Depression 18 (3) 20 (4) 32 (6) 20 (4) 38 (7) 
Cerebrovascular 
disease 34 (6) 14 (3) NA (1) NA (1) NA (0) 
Coronary heart 
disease 46 (9) 61 (12) 67 (13) 81 (15) 92 (17) 
Diabetes  37 (7) 26 (5) 35 (7) 21 (4) 26 (5) 
Hyperlipidaemia 26 (5) 21 (4) 27 (5) 19 (4) 21 (4) 
Hypertension 132 (25) 112 (21) 110 (21) 94 (18) 114 (22) 
Osteoarthritis  5 (1) 13 (2) 27 (5) 41 (8) 110 (21) 
Peripheral 
vascular disease NA (<1) 6 (1) 14 (3) 6 (1) 13 (2) 
Renal disease 0 (0) 0 (0) NA (<1) NA (1) 18 (3) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 378 (72) 320 (61) 300 (57) 276 (52) 230 (44) 
   Never drinker 9 (2) 12 (2) 17 (3) 17 (3) 45 (9) 
   Missing 140 (27) 195 (37) 209 (40) 234 (44) 251 (48) 
Body mass 
index 

     

   Normal 50 (9) 74 (14) 73 (14) 64 (12) 83 (16) 
   Overweight 273 (52) 194 (37) 149 (28) 112 (21) 88 (17) 
   Obese 93 (18) 91 (17) 103 (20) 118 (22) 143 (27) 
   Missing 111 (21) 168 (32) 201 (38) 233 (44) 212 (40) 
Smoking status      
   Ever smoker 275 (52) 239 (45) 230 (44) 213 (40) 178 (34) 
   Never smoker 156 (30) 138 (26) 120 (23) 107 (20) 104 (20) 
   Missing 96 (18) 150 (28) 176 (33) 207 (39) 244 (46) 

Medication use      

Analgesics 41 (8) 118 (22) 161 (31) 228 (43) 334 (63) 
Colchicine NA (<1) 7 (1) 10 (2) 15 (3) 32 (6) 
Diuretics 156 (30) 166 (31) 172 (33) 196 (37) 269 (51) 
NSAIDS 9 (2) 119 (23) 286 (54) 396 (75) 487 (93) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell counts 
with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: Standard 
deviation; SU: Serum urate 
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7.6 Sensitivity analyses 

7.6.1 Treatment effect using two-year landmark period 

For this analysis, 15,873 patients had a minimum of two years follow-up. During this period 

28% of patients were prescribed allopurinol. Table 7.22 describes the distribution of baseline 

covariates between treatment groups. Similarly to the one-year landmark analysis (main 

analysis), allopurinol users resided in more deprived areas and had higher prevalence of 

recorded SU level and SU level above target (>360μmol/L), and were prescribed colchicine, 

diuretics, NSAIDS and analgesics more than non-users. 

After PS estimation, the distribution of PS was similar between treatment groups (Table 7.23). 

Within most outcome analyses, five subclasses were sufficient to achieve overall balance for 

all covariates across subclasses although imbalance remained on some covariates within 

subclasses; the number of imbalanced covariates within subclasses were similar to what was 

found in the main analysis. In the analysis of cerebrovascular disease, six subclasses were 

required to achieve overall covariate balance compared with the main analysis that required 

five subclasses.  
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Table 7.22: Baseline covariates by treatment: two-year landmark period 

 
No allopurinol 

N=11,360 
Allopurinol 

N=4,513 
SMD 

Demographics    

Age (Mean (SD)) 61.4 (14.6) 62.2 (14.4) 0.05 
Sex: Female 2,557 (23) 1,051 (23) 0.02 
Deprivation (Mean (SD)) 8.9 (5.5) 9.5 (5.6) 0.11 

Comorbidities    

Anxiety 452 (4) 163 (4) -0.02 
Depression 554 (5) 225 (5) 0.001 
Cerebrovascular disease 244 (2) 119 (3) 0.03 
Coronary heart disease 1,295 (11) 678 (15) 0.10 
Diabetes  641 (6) 307 (7) 0.05 
Hyperlipidaemia 529 (5) 222 (5) 0.01 
Hypertension 2,078 (18) 888 (20) 0.04 
Osteoarthritis  678 (6) 361 (8) 0.08 
Peripheral vascular disease 150 (1) 74 (2) 0.03 
Renal disease 86 (1) 91 (2) 0.10 

Lifestyle factors    

Alcohol consumption    
   Ever drinker 6,434 (57) 2,495 (55) -0.03 
   Never drinker 570 (5) 221 (5) -0.01 
   Missing 4,356 (38) 1,797 (40) 0.03 
Body mass index    
   Normal 1,790 (16) 554 (12) -0.10 
   Overweight 3,363 (30) 1,303 (29) -0.02 
   Obese 2,081 (18) 955 (21) 0.07 
   Missing 4,126 (36) 1,701 (38) 0.03 
Smoking status    
   Ever smoker 4,330 (38) 1,708 (38) -0.01 
   Never smoker 3,327 (29) 1,224 (27) -0.05 
   Missing 3,703 (33) 1,581 (35) 0.05 
SU level    
   ≤360µmol/L 846 (7) 64 (1) -0.30 
   >360µmol/L 3,505 (31) 2,229 (49) 0.39 
   Missing 7,009 (62) 2,220 (49) -0.25 

Medication use    

Analgesics 3,378 (30) 1,761 (39) 0.20 
Colchicine 177 (2) 179 (4) 0.15 
Diuretics 3,638 (32) 1,963 (43) 0.24 
NSAIDS 4,967 (44) 2,627 (58) 0.29 

N (%) were presented unless otherwise stated; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard 
deviation; SMD: Standardised mean difference; SU: Serum urate 
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Table 7.23: Distribution of PS subclasses for the two year landmark period 

Outcome 
PS Mean (range) 

Allopurinol 
No allopurinol 

Number of 
subclassesa 

Smallest cellb Imbalanced covariates (SMD>0.10) 

Target SU level 
0.33 (0.10, 0.82) 
0.42 (0.13, 0.91) 

5 
83/298 
(28%) 

S1: Age, sex, coronary heart disease, 
renal disease, alcohol consumption, 
BMI, smoking status, analgesics 
S2: SU level, colchicine, NSAIDS 
S3: Coronary heart disease, 
hyperlipidaemia, BMI, SU level, 
colchicine 
S4: Age, hyperlipidaemia, renal 
disease, NSAIDS 
S5: Sex, coronary heart disease, SU 
level, colchicine, NSAIDS 

Mortality 
0.26 (0.03, 0.79) 
0.34 (0.04, 0.82) 

5 
376/4,513 

(8%) 

S1: Sex, SU level 
S2: NSAIDS 
S4: Sex 

Repeated gout 
consultations 

0.26 (0.03, 0.77) 
0.34 (0.04, 0.81) 

5 
377/4,513 

(8%) 
S1: Sex, SU level 
S4: SU level 

Gout 
hospitalisation 

0.26 (0.03, 0.78) 
0.33 (0.04, 0.80) 

5 
312/3,687 

(8%) 

S1: Sex, SU level 
S2: Sex, NSAIDS 
S3: Alcohol consumption 
S4: Sex 

Joint 
replacement 

0.26 (0.03, 0.79) 
0.34 (0.04, 0.82) 

5 
366/4,417 

(8%) 
S1: Sex, SU level 
S4: SU level  

Cerebrovascular 
disease 

0.26 (0.03, 0.78) 
0.33 (0.04, 0.79) 

6 
291/4,281 

(7%) 

S1: Sex, SU level, colchicine 
S2: BMI, NSAIDS 
S5: Sex 

Coronary heart 
disease 

0.25 (0.03, 0.76) 
0.32 (0.04, 0.79) 

5 
308/3,464 

(9%) 

S1: Sex, SU level 
S3: Alcohol consumption 
S4: Sex, SU level 

Peripheral 
vascular disease 

0.27 (0.03, 0.79) 
0.34 (0.04, 0.81) 

5 
369/4,380 

(8%) 
S1: Sex, SU level 

Renal disease 
0.26 (0.03, 0.78) 
0.33 (0.04, 0.79) 

5 
363/4,273 

(9%) 

S1: Sex, SU level 
S2: NSAIDS 
S4: SU level 

aNumber of subclasses needed to achieve overall covariate balance across subclasses; bSmallest cell defined as 
the number of allopurinol users within a subclass; BMI: Body mass index; NSAIDS: Non-steroidal anti-
inflammatory drugs; PS: Propensity score; S: Subclass; SD: Standard deviation; SMD: Standardised mean 
difference; SU: Serum urate 

 

The treatment effect estimate was obtained for each outcome as shown in Table 7.24. 

Allopurinol had greater chance of reaching target SU level (2.15 (1.79, 2.58)), and higher risk 

of premature mortality (1.11 (1.04, 1.18)), and renal disease (1.20 (1.11, 1.29)); these 

treatment effect estimates and standard errors were similar to what was estimated in the 

main analysis. Both this analysis (two-year landmark period) and the main analysis found 

allopurinol increased risk of joint replacement but the effect was greater in the two-year 

landmark period (HR 1.27 vs. 1.15).   
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The subclass-specific treatment effect estimates were not homogenous across subclasses for 

repeated gout consultations and gout hospitalisation; these estimates are presented in Table 

7.25 and Table 7.26 respectively. 

Similarly as the main analysis, all subclasses had shown allopurinol was protective against 

repeated gout consultations, with subclass 5 found to have the strongest protective effect. 

However, the subclass-specific treatment effects were closer to the null than the main 

analysis.  

Within all subclasses, allopurinol increased the risk of gout hospitalisation with the strongest 

effect observed in subclass 1. Compared with the main analysis, the subclass-specific 

treatment effects were greater across all subclasses. Pooled HRs were larger in this analysis 

compared with the main analysis (2.05 vs. 1.82). 
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Table 7.24: Treatment effect of allopurinol using two-year landmark period 

Outcome 
No allopurinol Allopurinol 

Unadjusted 
Hazard ratio (95% CI) 

Standard error 

Adjusted 
Hazard Ratio (95% CI) 

Standard error 

Target SU level     

   Target level not met 655 (69) 265 (49) 2.11 (1.79, 2.49) 
0.18 

2.15 (1.79, 2.58) 
0.20    Target level met 298 (31) 273 (51) 

Mortality     

   Alive 8,353 (74) 3,115 (69) 1.23 (1.15, 1.31) 
0.040 

1.11 (1.04, 1.18) 
0.04    Died 3,007 (26) 1,398 (31) 

Repeated gout 
consultations 

    

   Never consulted 5,428 (48) 2,548 (56) 0.83 (0.79, 0.88) 
0.02 

0.77 (0.73, 0.82)ab 
0.02    Consulted at least once 5,932 (52) 1,965 (44) 

Gout hospitalisation     

   No 8,444 (89) 2,894 (78) 2.23 (2.03, 2.45) 
0.11 

2.05 (1.86, 2.27)ab 
0.11    Yes 1,031 (11) 793 (22) 

Joint replacement     

   No 10,531 (94) 4,111 (93) 1.34 (1.17, 1.53) 
0.09 

1.27 (1.10, 1.46) 
0.09    Yes 615 (6) 306 (7) 

Cerebrovascular disease     

   No 9,904 (91) 3,905 (91) 1.03 (0.91, 1.16) 
0.06 

1.00 (0.87, 1.14) 
0.06    Yes 972 (9) 376 (9) 

Coronary heart disease     

   Yes 7,622 (82) 2,778 (80) 1.12 (1.02, 1.22) 
0.05 

1.10 (1.00, 1.20)a 
0.05    No 1,709 (18) 686 (20) 

Peripheral vascular disease     

   No 10,726 (97) 4,208 (96) 1.25 (1.04, 1.50) 
0.12 

1.16 (0.96, 1.40) 
0.11    Yes 366 (3) 172 (4) 

Renal disease     

   No 8,598 (77) 3,060 (72) 1.34 (1.25, 1.44)a 
0.05 

1.20 (1.11, 1.29)a 
0.04    Yes 2,564 (23) 1,213 (28) 

aStatistical test for the proportional hazards assumption failed, however change in treatment effect was 
represented by a small number of patients with the longest follow-up times, and there was no cross-over of 
survival functions from treatment groups. Therefore, the proportional hazards assumption was satisfied; 
bSubclass specific treatment effects were not homogenous across subclasses; CI: Confidence interval; SU: Serum 
urate  
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Table 7.25: Estimated PS subclass-specific treatment effect of allopurinol on repeated gout 
consultations and distribution of covariates 

 
Subclass 1  
N=3,175 

Subclass 2 
N=3,175 

Subclass 3 
N=3,174 

Subclass 4 
N=3,175 

Subclass 5 
N=3,174 

HR (95% CI) 
Standard error 

0.85 (0.72, 1.00) 
0.07 

0.83 (0.73, 0.94) 
0.05 

0.83 (0.73, 0.94) 
0.05 

0.69 (0.62, 0.78) 
0.04 

0.68 (0.62, 0.76) 
0.04 

Demographics      

Age (Mean (SD)) 60.3 (13.7) 61.6 (15.0) 59.4 (14.1) 63.7 (14.9) 63.2 (14.4) 
Sex: Female 779 (25) 639 (20) 517 (16) 812 (26) 861 (27) 
Deprivation 
(Mean (SD)) 

7.5 (5.1) 8.6 (5.4) 9.2 (5.4) 9.4 (5.6) 10.8 (5.6) 

Comorbidities      

Anxiety 114 (4) 136 (4) 517 (16) 110 (3) 141 (4) 
Depression 158 (5) 146 (5) 114 (4) 139 (4) 170 (5) 
Cerebrovascular 
disease 46 (1) 54 (2) 166 (5) 86 (3) 115 (4) 
Coronary heart 
disease 191 (6) 273 (9) 62 (2) 455 (14) 713 (22) 
Diabetes  150 (5) 142 (4) 341 (11) 192 (6) 304 (10) 
Hyperlipidaemia 138 (4) 147 (5) 160 (5) 153 (5) 181 (6) 
Hypertension 361 (11) 559 (18) 132 (4) 742 (23) 844 (27) 
Osteoarthritis  123 (4) 131 (4) 460 (14) 254 (8) 360 (11) 
Peripheral 
vascular disease 27 (1) 29 (1) 171 (5) 63 (2) 68 (2) 
Renal disease NA (<1) NA (<1) 37 (1) 24 (1) 143 (5) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 1,904 (60) 1,844 (58) 1,746 (55) 1,775 (56) 1,660 (52) 
   Never drinker 172 (5) 170 (5) 122 (4) 179 (6) 148 (5) 
   Missing 1,099 (35) 1,161 (37) 1,306 (41) 1,221 (38) 1,366 (43) 
Body mass 
index 

     

   Normal 756 (24) 616 (19) 362 (11) 369 (12) 241 (8) 
   Overweight 975 (31) 969 (31) 925 (29) 987 (31) 810 (26) 
   Obese 451 (14) 474 (15) 598 (19) 663 (21) 850 (27) 
   Missing 993 (31) 1,116 (35) 1,289 (41) 1,156 (36) 1,273 (40) 
Smoking status      
   Ever smoker 1,297 (41) 1,182 (37) 1,108 (35) 1,219 (38) 1,232 (39) 
   Never smoker 1,057 (33) 1,022 (32) 908 (29) 884 (28) 680 (21) 
   Missing 821 (26) 971 (31) 1,158 (36) 1,072 (34) 1,262 (40) 
SU level      
   ≤360µmol/L 903 (28) 7 (<1) 0 (0) 0 (0) 0 (0) 
   >360µmol/L 0 (0) 281 (9) 1,017 (32) 1,702 (54) 2,734 (86) 
   Missing 2,272 (72) 2,887 (91) 2,157 (68) 1,473 (46) 440 (14) 

Medication use      

Analgesics 473 (15) 617 (19) 925 (29) 1,321 (42) 1,803 (57) 
Colchicine 6 (<1) 7 (<1) 16 (1) 48 (2) 279 (9) 
Diuretics 291 (9) 916 (29) 734 (23) 1,715 (54) 1,945 (61) 
NSAIDS 380 (12) 913 (29) 1,640 (52) 1,988 (63) 2,673 (84) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell 
counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: 
Standard deviation; SU: Serum urate 
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Table 7.26: Estimated PS subclass-specific treatment effect of allopurinol on gout 
hospitalisation and distribution of covariates 

 
Subclass 1  
N=2,634 

Subclass 2 
N=2,631 

Subclass 3 
N=2,633 

Subclass 4 
N=2,632 

Subclass 5 
N=2,632 

HR (95% CI) 
Standard error 

2.82 (2.10, 3.79) 
0.42 

2.04 (1.63, 2.56) 
0.24 

1.75 (1.42, 2.16) 
0.19 

2.02 (1.67, 2.45) 
0.20 

1.79 (1.49, 2.16) 
0.17 

Demographics      

Age (Mean (SD)) 63.2 (13.1) 62.9 (14.8) 61.9 (13.7) 64.1 (14.7) 63.4 (14.1) 
Sex: Female 726 (28) 545 (21) 524 (20) 700 (27) 710 (27) 
Deprivation 
(Mean (SD)) 

7.8 (5.1) 8.9 (5.4) 9.3 (5.4) 9.6 (5.6) 10.6 (5.6) 

Comorbidities      

Anxiety 94 (4) 111 (4) 101 (4) 104 (4) 119 (5) 
Depression 128 (5) 123 (5) 135 (5) 136 (5) 163 (6) 
Cerebrovascular 
disease 36 (1) 53 (2) 56 (2) 79 (3) 103 (4) 
Coronary heart 
disease 194 (7) 242 (9) 323 (12) 393 (15) 611 (23) 
Diabetes  159 (6) 150 (6) 154 (6) 176 (7) 216 (8) 
Hyperlipidaemia 116 (4) 126 (5) 121 (5) 138 (5) 153 (6) 
Hypertension 445 (17) 533 (20) 442 (17) 596 (23) 578 (22) 
Osteoarthritis  114 (4) 119 (5) 159 (6) 235 (9) 318 (12) 
Peripheral 
vascular disease 30 (1) 32 (1) 39 (1) 51 (2) 56 (2) 
Renal disease NA (<1) NA (<1) 13 (<1) 26 (1) 106 (4) 

Lifestyle factors      

Alcohol 
consumption 

     

   Ever drinker 1,593 (60) 1,527 (58) 1,504 (57) 1,441 (55) 1,409 (54) 
   Never drinker 160 (6) 157 (6) 118 (4) 160 (6) 119 (5) 
   Missing 881 (33) 947 (36) 1,011 (38) 1,031 (39) 1,104 (42) 
Body mass 
index 

     

   Normal 680 (26) 477 (18) 371 (14) 272 (10) 706 (27) 
   Overweight 812 (31) 821 (31) 795 (30) 810 (31) 210 (8) 
   Obese 359 (14) 407 (15) 498 (19) 580 (22) 725 (28) 
   Missing 783 (30) 926 (35) 969 (37) 970 (37) 991 (38) 
Smoking status      
   Ever smoker 1,112 (42) 982 (37) 991 (38) 1,016 (39) 1,053 (40) 
   Never smoker 886 (34) 869 (33) 763 (29) 713 (27) 538 (20) 
   Missing 636 (24) 780 (30) 879 (33) 903 (34) 1,041 (40) 
SU level      
   ≤360µmol/L 772 (29) 5 (<1) 0 (0) 0 (0) 0 (0) 
   >360µmol/L 0 (0) 141 (5) 714 (27) 1,506 (57) 2,352 (89) 
   Missing 1,862 (71) 2,485 (94) 1,919 (73) 1,126 (43) 280 (11) 

Medication use      

Analgesics 509 (19) 619 (24) 903 (34) 1,111 (42) 1,440 (55) 
Colchicine 5 (<1) 5 (<1) 13 (<1) 45 (2) 241 (9) 
Diuretics 318 (12) 818 (31) 755 (29) 1,441 (55) 1,621 (62) 
NSAIDS 356 (14) 857 (33) 1,512 (57) 1,515 (58) 2,172 (83) 

N (%) presented unless otherwise stated; CI: Confidence interval; HR: Hazard ratio; NA: Cannot report cell 
counts with less than five events; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: 
Standard deviation; SU: Serum urate 
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7.6.2 Impact of omission of confounding variables 

The effect of omission of a single unmeasured binary confounding variable was evaluated for 

target SU level and mortality. The prevalence of the confounding variable amongst allopurinol 

users and non-users, and its strength of association with outcome, are unknown. To obtain 

prevalence and association estimates that can be seen as representing plausible scenarios 

which could be assumed for an unmeasured binary confounding variable, prevalence of each 

observed covariate amongst allopurinol users and non-users and its association (HR) with 

outcome were calculated.  

In the analysis of target SU level, the estimated unadjusted HR between observed covariates 

and target SU level ranged between 0.84 and 1.63, with peripheral vascular disease having the 

largest association thus, it was assumed the association between an unmeasured confounding 

variable and target SU level could be represented by a HR of 1.63. Prevalence of covariates 

ranged from 2% to 66% in allopurinol users, and 1% to 60% in non-users. As seen in Table 7.27 

(and previously in Table 7.7), the effect of allopurinol on target SU level assuming no 

unmeasured confounding was HR 2.32 (1.97, 2.74).  In the presence of an unmeasured 

confounding variable, as the prevalence of the unmeasured confounding variable increased 

amongst allopurinol users but remained fixed in non-users, the estimated HR corrected for 

unmeasured confounding decreased but remained statistically significant; the smallest HR 

observed was 1.95 (1.35, 2.84).  

In the analysis of mortality, the estimated unadjusted HRs between observed covariates and 

mortality ranged from 0.89 to 3.87, with renal disease having the largest association. The 

unmeasured confounding variable was assumed to have a more conservative HR of 1.45, the 

median HR of observed HRs. Prevalence of any covariate ranged from 1% to 59% in allopurinol 

users and 1% to 56% in non-users. As seen in Table 7.28, allopurinol use was associated with 

greater risk of premature mortality assuming no unmeasured confounding (HR (1.10 (1.03, 
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1.17)). As the prevalence of the unmeasured confounding variable increased amongst 

allopurinol users but remained fixed in non-users, the estimated HR corrected for unmeasured 

confounding decreased and lost statistical significance. However, as the difference in 

prevalence of the unmeasured confounding variable had become larger between treatment 

groups, potentially, allopurinol may be protective against premature mortality with the 

smallest HR of 0.83 (0.76, 0.89).  

Table 7.27: Effect of omitted confounding on treatment effect of allopurinol on target SU 
level 

 Prevalence of unmeasured cofounding variable among non-users 

Prevalence of 
unmeasured 
confounding variable 
among allopurinol users 

0% 10% 30% 50% 

0% 2.32 (1.97, 2.74)    

10% 2.26 (1.56, 3.28) 2.32 (1.97, 2.74)   

30% 2.15 (1.48, 3.12) 2.21 (1.52, 3.20) 2.32 (1.97, 2.74)  

50% 2.05 (1.41, 2.97) 2.11 (1.45, 3.06) 2.22 (1.53, 3.22) 2.32 (1.97, 2.74) 

70%  1.95 (1.35, 2.84) 2.02 (1.39, 2.93) 2.13 (1.47, 3.09) 2.23 (1.54, 3.23) 

Hazard ratios (95% confidence interval) are presented; SU: Serum urate 

 

Table 7.28: Effect of omitted confounding on treatment effect of allopurinol on mortality 

 Prevalence of unmeasured confounding variable among non-users 

Prevalence of 
unmeasured 
confounding variable 
among allopurinol users 

0% 10% 30% 50% 

0% 1.10 (1.03, 1.17)    

10% 1.06 (0.98, 1.14) 1.10 (1.03, 1.17)   

30% 0.97 (0.90, 1.05) 1.02 (0.94, 1.10) 1.10 (1.03, 1.17)  

50% 0.90 (0.83, 0.97) 0.94 (0.87, 1.02) 1.02 (0.95, 1.11) 1.10 (1.03, 1.17) 

70%  0.83 (0.76, 0.89) 0.87 (0.80, 0.94) 0.95 (0.88, 1.03) 1.03 (0.95, 1.11) 

Hazard ratios (95% confidence interval) are presented 

 

7.6.3 Impact of missing data 

The landmark 1-year analysis was repeated by performing complete case analysis for 

outcomes target SU level and mortality. For target SU level, 52% (N=909) had complete data 

and for mortality 21% (N=3,609) had complete data.  
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Table 7.29 describes the distribution of covariates by treatment. In patients eligible for target 

SU level outcome analysis, allopurinol users were older, had higher prevalence of coronary 

heart disease, renal disease, overweight BMI, prescriptions for analgesics and colchicine, 

different BMI distribution, and had higher mean SU level than non-users where SMD >0.10. 

Compared with the main analysis, this analysis found SMD >0.10 for coronary heart disease, 

renal disease, and BMI that were previously below 0.10. 

For patients eligible for mortality outcome analysis, in addition to the differences identified 

above, allopurinol users resided in more deprived areas, had higher prevalence of 

osteoarthritis, obesity, and were prescribed diuretics and NSAIDS more than non-users. This 

analysis found SMD >0.10 for age, osteoarthritis, and BMI that were not previously seen in the 

main analysis.    
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Table 7.29: Distribution of covariates by treatment for target SU level and mortality 

 Target SU Mortality 

 
No allopurinol 

N=622 
Allopurinol 

N=287 
No allopurinol 

N=2,583 
Allopurinol 

N=1,026 

Demographics     

Age (Mean (SD)) 59.1 (13.7) 61.3 (13.9) 61.3 (14.1) 63.7 (13.9) 
Sex: Female 134 (22) 67 (23) 678 (26) 287 (28) 
Deprivation (Mean (SD)) 9.1 (5.4) 9.3 (6.0) 9.1 (5.5) 9.8 (5.8) 

Comorbidities     

Anxiety 26 (4) 11 (4) 122 (5) 43 (4) 
Depression 34 (5) 20 (7) 131 (5) 66 (6) 
Cerebrovascular disease 12 (2) 10 (3) 62 (2) 28 (3) 
Coronary heart disease 97 (16) 61 (21) 418 (16) 228 (22) 
Diabetes  50 (8) 20 (7) 179 (7) 97 (9) 
Hyperlipidaemia 40 (6) 21 (7) 168 (7) 65 (6) 
Hypertension 168 (27) 75 (26) 625 (24) 275 (27) 
Osteoarthritis  41 (7) 30 (10) 167 (6) 103 (10) 
Peripheral vascular disease 8 (1) 7 (2) 35 (1) 25 (2) 
Renal disease 10 (2) 11 (4) 29 (1) 30 (3) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 586 (94) 274 (95) 2399 (93) 960 (94) 
   Never drinker 36 (6) 13 (5) 184 (7) 66 (6) 
Body mass index     
   Normal 99 (16) 55 (19) 610 (24) 211 (21) 
   Overweight 313 (50) 128 (45) 1229 (48) 464 (45) 
   Obese 210 (34) 104 (36) 744 (29) 351 (34) 
Smoking status     
   Ever smoker 385 (62) 183 (64) 1619 (63) 654 (64) 
   Never smoker 237 (38) 104 (36) 964 (37) 372 (36) 
SU level 486.0 (13.7)* 526.6 (83.5)*   
   ≤360µmol/L - - 485 (19) 17 (2) 
   >360µmol/L - - 2,098 (81) 1,009 (98) 

Medication use     

Analgesics 219 (35) 126 (44) 829 (32) 465 (45) 
Colchicine 21 (3) 17 (6) 52 (2) 36 (4) 
Diuretics 244 (39) 123 (43) 1,002 (39) 519 (51) 
NSAIDS 377 (61) 178 (62) 1,158 (45) 612 (60) 

N (%) presented unless otherwise stated; Cells highlighted in yellow indicated standardised mean difference 
>0.10; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 

 

After PS estimation, the mean and range of PS were similar between treatment groups 

indicating adequate common support. Five and six subclasses were required to achieve overall 

balance for all covariates across subclasses for the analyses of target SU level and mortality 

respectively; previously in the main analysis five subclasses were sufficient to achieve overall 

covariate balance for both outcomes.  
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Compared with the main analysis, more covariates were imbalanced within subclasses (Table 

7.30). For example, for mortality, in the main analysis covariate imbalance was observed only 

in subclasses 1 and 2 whereas in this analysis, covariate imbalance was observed across all 

subclasses.  

Table 7.30: Distribution of PS subclasses 

Outcome 
PS Mean (range) 

Allopurinol 
No allopurinol 

Number of 
PS 

subclassesa 
Smallest cellb Imbalanced covariates 

Target SU level 
0.29 (0.09, 0.85) 
0.37 (0.12, 0.90) 

5 
52/224 
(23%) 

S1: Age, deprivation, alcohol 
consumption, BMI, smoking status, SU 
level, analgesics, diuretics, NSAIDS 
S2: Renal disease, alcohol 
consumption, BMI, smoking status, 
colchicine, diuretics 
S3: Age, hyperlipidaemia, BMI, 
smoking status, SU level, analgesics, 
colchicine, diuretics 
S4: Coronary heart disease, renal 
disease, BMI, smoking status, diuretics 
S5: Deprivation, coronary heart 
disease, hyperlipidaemia, renal 
disease, smoking status, SU level, 
diuretics, NSAIDS 

Mortality 
0.35 (0.02, 0.75) 
0.26 (0.01, 0.69) 

6 
30/1,026 

(3%) 

S1: Sex, deprivation, cerebrovascular 
disease, coronary heart disease, 
hypertension, peripheral vascular 
disease, alcohol consumption, BMI, 
smoking status, SU level, analgesics, 
colchicine, diuretics 
S2: Smoking status, analgesics 
S3: Smoking status, NSAIDS 
S4: Peripheral vascular disease, 
colchicine, NSAIDS 
S5: Deprivation, coronary heart 
disease 
S6: Smoking status 

aNumber of propensity score subclasses needed to achieve overall balance across subclasses; bSmallest cell 
defined as the number of allopurinol users within a subclass; BMI: Body mass index; NSAIDS: Non-steroidal anti-
inflammatory drugs; PS: Propensity score; SD: Standard deviation; S: Subclass; SU: Serum urate 

 

Treatment effect estimated for target SU level and mortality is shown in Table 7.31. For target 

SU level, compared with the main analysis, the estimated treatment effect was lower (2.02 vs. 

2.32), although the HR remained over two and statistical significance persisted. As expected, 

the standard error had increased due to decreased sample size (0.24 vs. 0.19).  
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Treatment effect estimated for mortality was also lower (1.07 vs. 1.10) and lost statistical 

significance which may be due to increased standard error from a reduced sample size (0.08 

vs. 0.04)  

Table 7.31: Treatment effect of allopurinol on outcome (1-year landmark analysis): complete 
case analysis 

Outcome 
No allopurinol 

N (%) 
Allopurinol 

N (%) 

Unadjusted 
Hazard ratio (95% CI) 

Standard error 

Adjusted 
Hazard Ratio (95% CI) 

Standard error 

SU level     

   Target level not met 398 (64) 126 (44) 
2.15 (1.75, 2.64) 

0.23 
2.02 (1.60, 2.53) 

0.24 
   Target level met 224 (36) 161 (56) 

Mortality     

   Alive 1,953 (76) 698 (68) 
1.36 (1.19, 1.55) 

0.09 
1.07 (0.93, 1.23) 

0.08 
   Died 630 (24) 328 (32) 

CI: Confidence interval; SU: Serum urate 

 

7.7 Summary 

This chapter aimed to estimate the long-term effect of allopurinol, measured at baseline, on 

various outcomes, whilst adjusting for baseline covariates via PS subclassification. Allopurinol 

use had higher chance of reaching target SU level and fewer gout consultations in primary 

care, and had higher risk of premature mortality, gout hospitalisation, coronary heart disease 

and renal disease. The magnitude and direction of treatment effects persisted when extending 

the landmark period to two years. Treatment effect estimate for target SU level was robust to 

unmeasured confounding, and was in the same direction when complete case analysis was 

performed. In contrast, for mortality, treatment effect may potentially be protective of 

premature mortality in the presence of unmeasured confounding, and no association was 

observed in complete case analysis.  
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7.7.1 Comparison with published studies 

Target SU level 

As expected, allopurinol users were more likely to reach target SU level than non-users. This 

finding persisted within patients with no renal disease and regardless of severity of 

hyperuricaemia. It was found that SU levels were not frequently measured and patients who 

had SU level measured at baseline and during follow-up differed from the whole study sample.  

No studies using large EHR databases have evaluated the effect of allopurinol on reaching 

target SU level however, few small non-EHR suboptimal studies had done so; general 

consensus across these studies were that allopurinol use (vs. no use) and increasing 

allopurinol dose were associated with reaching target (Dalbeth et al., 2006, Dalbeth et al., 

2012, Pandya et al., 2011). 

A randomised controlled trial (RCT) compared the efficacy of nurse-led care with usual general 

practitioner (GP)-led care on reaching primary outcome, target SU level ≤360µmol/L, with 

urate-lowering therapy (ULT). In nurse-led care, the majority of participants were treated with 

allopurinol and over 90% achieved target compared with only 30% in usual GP-led care 

(Doherty et al., 2018). Findings from this PhD found 57% of allopurinol users (comparable to 

the GP led-care) reached target which was higher than the 30% observed in that RCT. This may 

be due to differing covariate distributions of the study sample, for example, participants 

recruited to the RCT tended to be older, and had a higher prevalence of males, obesity, and 

comorbidities thus may have had more severe gout than the study sample from this PhD.   

Mortality 

Allopurinol use was found to be weakly associated with premature mortality and statistical 

significance was lost when results were stratified by presence of renal disease and severity of 

hyperuricaemia. 
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Kuo et al. (2015a) CPRD study had used the one-year landmark period, the same as this PhD. 

They found allopurinol use was not associated with mortality. Key differences between Kuo et 

al. (2015a) and this PhD are adjustment for more covariates within PS estimation, such the 

Charlson comorbidity index (Charlson et al., 1987), and prescriptions for aspirin and lipid 

lowering drugs; covariates being measured over a longer period of five years prior to the index 

date; the study sample was restricted to patients with a new diagnosis of gout; the definition 

of allopurinol use required a six-month prescription rather than three months; use of PS 

matching to create comparable treatment groups resulting in analysing a smaller study sample 

and larger standard error in the treatment effect; a lower prevalence of missing data in 

lifestyle factors. The results from this PhD also differed to a recent systematic review of four 

cohort EHR studies in gout that found no association between allopurinol use and mortality 

(Hay et al., 2020).  

As stated above, there is the possibility that weak unmeasured confounding may nullify the 

treatment effect and thus, results would be similar to the treatment effects obtained from 

Kuo et al. (2015a) CPRD study and the systematic review.  

Repeated gout consultations  

Allopurinol users were less likely to consult for gout in primary care compared to non-users. 

Few case-cross over studies have shown allopurinol use was associated with less flares (Neogi 

et al., 2014, Zhang et al., 2012, Zhang et al., 2014). As allopurinol users were also more 

successful in lowering their SU levels to target, this had likely resulted in the long-term fall in 

the number of gout flares thus leading to fewer consultations.  

A limitation of this analysis was that consultations occurring in the landmark period were 

ignored which may be problematic for patients initiating allopurinol who may have had more 
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consultations in the short term in monitoring SU level and titrating allopurinol dose which may 

have led to a stronger protective HR.  

Doherty et al. (2018) RCT found within nurse-led care, the number of participants reporting 

two or more flares had reduced from 80% at baseline to 8% two years later, whilst in GP-led 

care it had reduced from 80% to 24%. This is the same conclusion obtained in this PhD, that 

the number of primary care gout consultations had reduced over time amongst allopurinol 

users.   

Gout hospitalisation 

Allopurinol was found to be associated with increased risk of gout hospitalisation. One 

possible reason could be that when patients initiate allopurinol or dose increases, they are at 

an increased short-term risk of flares due to partial crystal dissolution that may require 

hospital treatment. Over the long term, risk of flares (and hospitalisations) should decrease as 

allopurinol users reach target SU level and crystal dissolution is complete preventing 

occurrence of flares. Indeed, one small case-control study using hospital records in New 

Zealand found patients who were hospitalised were less likely to be on allopurinol and those 

who were on allopurinol had lower doses. Furthermore, colchicine prophylaxis (to prevent 

flares) was less likely to be used in hospitalised patients compared to non-hospitalised 

patients (Hutton et al., 2009). Similarly, a Swedish study found a small proportion of patients, 

between 19%-27%, received ULT in the six months prior to hospitalisation (Dehlin and 

Jacobsson, 2018).  

Possible reasons why allopurinol users were at increased risk of hospitalisation may be due to 

suboptimal management of ULT and when allopurinol treatment was measured. In the UK, 

prophylactic treatment is often not prescribed and allopurinol dose is inadequate (due to 

failure in titrating allopurinol dose) to lower SU level to target (Roddy et al., 2007b, Cottrell et 
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al., 2013). As suggested by Hutton et al. (2009), these are factors for greater risk of 

hospitalisation. Patients with a prescription for allopurinol was only captured in the one-year 

landmark period. The analysis did not account for patients whose dose may have increased 

(potentially after the landmark period) thus increasing the risk of flares; patients who were 

prescribed allopurinol after the landmark period potentially attributing protective effects of 

allopurinol to non-users; nor accounted for prophylactic treatment.  

Joint replacement 

No association between allopurinol use and joint replacement at the hip or knee was found. 

Similar findings of no association between cumulative daily dose of ULT with joint replacement 

were observed within CPRD and the Taiwan National Health Insurance Database using a 

nested case-control study amongst incident gout (Kuo et al., 2018). 

Gout is an independent risk factor for joint replacement as irreversible joint damage may 

occur from chronic gouty arthritis, tophi, and bone erosion. Osteoarthritis is the most common 

reason for patients undergoing joint replacement. It has been shown osteoarthritic joints are 

more susceptible to flares (Roddy et al., 2007a) and frequency of osteoarthritis is higher 

amongst patients diagnosed with gout than those without gout (Kuo et al., 2016b). Therefore, 

it was expected allopurinol use would lower SU levels to target and prevent continuing joint 

damage. However, the lack of association may be due to inadequate dose of allopurinol, failing 

to lower SU level to target (Roddy et al., 2007b, Cottrell et al., 2013), and non-adherence to 

allopurinol (Scheepers et al., 2018) which results in continuing flares and joint damage from 

crystal deposition.  

Cerebrovascular disease 

No association between allopurinol use and cerebrovascular disease was found in this thesis. 

The same observation was found in a matched cohort study using insurance claims from 
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Taiwan with a higher estimated HR of 1.18 (0.95, 1.47) (Kok et al., 2014). That study contained 

patients with higher prevalence of comorbidities such as hypertension, diabetes, and 

hyperlipidaemia, and used different methods to control for confounding by matching 

allopurinol users with non-users, and had considered other covariates such as atrial 

fibrillation, uraemia, and gastric ulcer.   

Coronary heart disease 

Allopurinol use was found to be increase the risk of coronary heart disease. Many studies have 

evaluated the risk of allopurinol on cardiovascular disease but definitions of outcome varied. 

An incident user study using American insurance claims records found compared to previous 

allopurinol users, current users were less likely to be hospitalized due to myocardial infarction 

or stroke in patients with both gout and diabetes (Singh et al., 2017). A matched cohort study 

using insurance claims from Taiwan found allopurinol users were at an increased risk of 

coronary heart disease (HR 1.41 (1.10, 1.79)) (Kok et al., 2014). Kok et al. (2014) estimated 

higher HR than this thesis which may be due to using a different data source and control for 

confounding variables. In contrast, a large population-based case-control study using a 

Spanish primary care database, and a cohort study using American insurance claims data had 

found allopurinol use, and longer duration of treatment (over 180 days) were protective of 

myocardial infarction (de Abajo et al., 2015, Singh and Yu, 2016). 

Large RCTs have provided conflicting evidence of the effects of febuxostat vs. allopurinol on 

cardiovascular safety. The CARES trial had shown all-cause and cardiovascular mortality was 

higher amongst febuxostat users (White et al., 2018), whilst the FAST trial had shown there 

was no association (Mackenzie et al., 2020). The differences in study findings could be 

attributed to recruiting from different populations, febuxostat dose, and attrition bias. It is 

unclear why febuxostat increases cardiovascular risk and the observed effect in the CARES trial 



241 
 

may be due to allopurinol use having a protective effect (Choi et al., 2018). However, this PhD 

project found allopurinol use (vs. non-use) increased risk of mortality and coronary heart 

disease but did not examine effects of febuxostat. A limitation is that unmeasured 

confounding may be present. An ongoing ALL-HEART RCT will conclusively decide if allopurinol 

vs. non-use increases cardiovascular risk (Mackenzie et al., 2016).        

Peripheral vascular disease 

This thesis had shown there is no association between allopurinol use and peripheral vascular 

disease with the estimated HR close to null. A cohort study using American insurance claims 

found allopurinol use was protective against peripheral arterial disease (HR 0.85 (0.79, 0.93)) 

and those who were on allopurinol for >2 years the HR decreased to 0.75 (0.63, 0.89) 

compared to non-users (Singh and Cleveland, 2018a). Reasons for differing results could be 

due to using data collected in the USA; that study adjusted for confounding variables not 

considered in this thesis (race, Charlson-Romano score, beta blockers, ACE inhibitors, statins) 

but this thesis adjusted for more confounding variables overall.  

Renal disease 

This thesis found allopurinol use increased the risk of renal disease. Few studies have 

evaluated the effect of allopurinol on renal disease. Roughley et al. (2018) employed the one-

year landmark method using data from CPRD. That study found no association between 6-

month use of ULT (99% allopurinol prescription) with chronic kidney disease stage ≥3 (HR 1.09 

(95% CI 0.99, 1.18)). That HR was smaller than the HR estimated in this thesis; this may be due 

to the definition of outcome as that study looked at a more severe renal disease than this 

thesis plus that study adjusted for more confounding variables (myocardial infarction, 

systemic lupus erythematosus, rheumatoid arthritis, heart failure, and hospitalisations). 

Furthermore, that study had higher prevalence of hypertension as they had used prescription 
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data, and higher prevalence of renal disease due to use of estimated glomerular filtration rate 

as opposed to using Read codes to define those comorbidities in this PhD; this suggest using 

Read codes were underused.   

Vargas-Santos et al. (2018) used a time-stratified PS matched cohort study using data from 

THIN. They found allopurinol use of 300mg or more per day was protective against developing 

chronic renal disease stage ≥3 with HR of 0.87 (0.77, 0.97). Sensitivity analysis restricting 

patients not changing treatment status over time yielded lower HR (0.83 (0.72, 0.95). Strong 

assumptions on missing data were made as those with no serum creatinine or no Read code 

for chronic kidney disease stage 2 were considered to have normal kidney function. However, 

after using multiple imputation the protective effect of allopurinol was borderline statistically 

significant (0.92 (0.84, 1.00)). The difference in findings is because that study based allopurinol 

use on higher dose of 300mg which would expect to have more of an effect. In this thesis dose 

was not considered however given that a previous UK primary care study found 58% of 

patients remained on their starting dose of 100mg (Cottrell et al., 2013), it suggests a 

protective effect was not found due to suboptimal dosing.  

 

7.7.2 Strengths and limitations 

Simple strategies were utilised to allow estimation of the effect of allopurinol. Use of the 

landmark method was advantageous in that all patients were allowed a fixed period of time 

to be prescribed allopurinol that was not dependent upon length of follow-up time. PS 

subclassification is a straightforward and intuitive approach that divides patients into 

homogenous subclasses with patients having similar distribution of covariates and allows one 

to estimate subclass-class specific treatment effects. Despite the advantages of these 

approaches, some limitations were encountered.  
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Propensity score subclassification 

PS subclassification performed fairly well ensuring overall balance of covariates between 

treatment groups across subclasses was satisfied. However, within subclasses, balance was 

not achieved on all covariates. Intuitively a greater number of subclasses would create more 

homogenous subclasses however this was not found in this analysis with imbalance remaining 

when up to 10 subclasses were used. Furthermore, one would expect more imbalanced 

covariates to be observed in subclasses containing a wider range of PS, however the opposite 

was found in this analysis.  

PS subclassification was restricted by small sample size as seen when stratifying analyses by 

presence of renal disease. Only a small proportion of patients had renal disease and 

consequently outcome was infrequent. Dividing patients into PS subclasses was not possible 

as outcome had not occurred in some subclasses thus treatment effect could not be 

estimated. Where estimation was possible, corresponding standard errors were large due to 

small sample sizes. Treatment effect estimates were not comparable in patients with and 

without renal disease due to differing baseline covariates and sample size. 

Despite these issues, overall PS subclassification estimated treatment effects that were 

comparable with previous studies.  

Misclassification of treatment status 

Determining landmark period is a balance between retaining sample size by not excluding too 

many patients with short follow-up and capturing patients prescribed allopurinol. A landmark 

period of one year was chosen for the main analysis with a sensitivity analysis extending the 

landmark period to two years. The one- and two- year landmark periods identified 3,957 and 

4,513 allopurinol users, respectively. However, misclassification of treatment was present as 

a total of 7,767 patients were prescribed allopurinol at any time during follow-up. Potentially, 
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treatment effect estimates may be biased although treatment effect estimates from the one- 

and two- year landmark periods yielded similar HRs.  

Infrequent recording of SU level 

BSR guidelines state SU level should be monitored monthly during allopurinol titration and 

thereafter yearly once SU target has been obtained (Jordan et al., 2007b). Recording of SU 

level was low with nearly 60% of the study sample not having a measurement at baseline, 

although these patients had yet to start allopurinol which may be reason why SU was not 

measured. However, the number of patients having a follow-up SU measurement was low 

(29%). Recording of SU in practice is variable.     

Defining gout hospitalisation 

Gout hospitalisation was defined using inpatient Hospital Episodes Statistics data. Each 

hospitalisation may have up to 20 diagnoses recorded on the same date however, the primary 

reason for hospitalisation was not recorded. Although all patients had a diagnosis of gout 

within primary care, it cannot be differentiated if hospitalisation after diagnosis was attributed 

to gout or was recorded as a comorbidity within the reason for hospitalisation.       

Residual confounding 

This PhD had found allopurinol was associated with increased risk of many poor outcomes 

when it was expected that allopurinol may be protective or to observe no association. This 

may be due to residual confounding from unobserved covariates such as diet and severity of 

gout, but also from incomplete adjustment for covariates with missing data, and 

misclassification of comorbidities, for example basing hypertension solely on Read codes 

rather than prescription data for antihypertensives. 
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7.7.3 Conclusions 

PS subclassification with the landmark analysis was a useful method to estimate the long-term 

effect of allopurinol on outcome. The greatest limitation was ignoring changes in treatment 

status after the landmark period. Therefore, advanced modelling strategies was required to 

model changes in allopurinol use over time. The next chapter accommodates this by 

estimating PS scores over time for time-varying allopurinol use and using PS subclassification 

to create homogenous subclasses prior to treatment effect estimation.  
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8 Effect of allopurinol: time-varying PS subclassification 

8.1 Study sample 

As shown in Chapter 7, the eligible study sample contained 16,876 patients. After dividing 

follow-up time into one-year intervals (or one-year follow-up periods), resulting in a maximum 

of 18 intervals per patient. Between all patients, there were a total of 155,331 intervals 

(16,876 baseline intervals and 138,544 follow-up intervals). Median (interquartile range (IQR)) 

number of follow-up intervals per patient was 11 (6, 14). 

Table 8.1 describes how the distribution of covariates changed from baseline to the last 

available follow-up interval. Prevalence of comorbidities increased from baseline with the 

largest increases observed in hypertension (+31%), renal disease (+19%), and hyperlipidaemia 

(+18%). Lifestyle factors were more likely to be recorded over time with increased prevalence 

of ever drinkers (+24%), ever smokers (+28%), and across all body mass index (BMI) categories 

(6-10%). There was a small increase in prevalence of prescription for colchicine and analgesics 

but prescription for non-steroidal anti-inflammatory drugs (NSAIDS) had a small decrease. 

Appendix K describes the distribution of covariates over time in each year of follow-up.   
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Table 8.1: Covariates at baseline and end of follow-up (N=16,876) 

Demographics Baseline End of follow-up 

Age (Mean (SD)) 62.1 (14.7) 70.3 (13.9) 
Sex   
   Male 12,995 (77) 12,995 (77) 
   Female 3,881 (23) 3,881 (23) 
Deprivation (Mean (SD)) 9.1 (5.5) 9.1 (5.5) 

Comorbidities   

Anxiety 672 (4) 2,202 (13) 
Depression 842 (5) 2,838 (17) 
Cerebrovascular disease 407 (2) 1,636 (10) 
Coronary heart disease 2,167 (13) 5,132 (30) 
Diabetes  1,047 (6) 3,391 (20) 
Hyperlipidaemia 783 (5) 3,923 (23) 
Hypertension 3,137 (19) 8,370 (50) 
Osteoarthritis  1,106 (7) 4,204 (25) 
Peripheral vascular disease 257 (2) 826 (5) 
Renal disease 217 (1) 3,449 (20) 

Lifestyle factors   

Alcohol consumption   
   Ever drinker 9,488 (56) 13,472 (80) 
   Never drinker 856 (5) 838 (5) 
   Missing 6,532 (39) 2,566 (15) 
Body mass index   
   Normal weight 2,517 (15) 3,483 (21) 
   Overweight 4,933 (29) 6,011 (36) 
   Obese 3,219 (19) 4,973 (29) 
   Missing 6,207 (37) 2,409 (14) 
Smoking status   
   Ever smoker 6,436 (38) 11,070 (66) 
   Never smoker 4,847 (29) 4,619 (27) 
   Missing 5,593 (33) 1,187 (7) 
SU level   
   ≤360µmol/L 951 (6) 951 (6) 
   >360µmol/L 6,062 (36) 6,062 (36) 
   Missing 9,863 (58) 9,863 (58) 

Medication use   

Analgesics 5,578 (33) 6,644 (39) 
Colchicine 389 (2) 1,030 (6) 
Diuretics 6,142 (36) 6,189 (37) 
NSAIDS 8,024 (48) 5,881 (35) 

Number (%) presented unless otherwise stated; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard 
deviation; SU: Serum urate 

 

 

8.2 Patterns of allopurinol use over time 

Table 8.2 shows the proportion of patients prescribed a total of three months prescription for 

allopurinol in each year of follow-up. The percentage of patients prescribed allopurinol was 

no higher than 44% in any year.   
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Table 8.2: Number of patients prescribed allopurinol over time 

Follow-up year 
No allopurinol 

N (%) 
Allopurinol 

N (%) 
Total 

1 12,919 (77) 3,957 (23) 16,876 

2 12,124 (77) 3,749 (24) 15,873 

3 11,175 (75) 3,713 (25) 14,888 

4 10,303 (73) 3,730 (27) 14,033 

5 9,515 (72) 3,692 (28) 13,207 

6 8,783 (71) 3,608 (29) 12,391 

7 8,082 (69) 3,575 (31) 11,657 

8 7,339 (68) 3,438 (32) 10,777 

9 6,644 (67) 3,289 (33) 9,933 

10 6,059 (66) 3,069 (34) 9,128 

11 5,312 (65) 2,814 (35) 8,126 

12 4,437 (64) 2,481 (36) 6,918 

13 2,990 (63) 1,774 (37) 4,764 

14 1,930 (61) 1,229 (39) 3,159 

15 1,180 (58) 839 (42) 2,019 

16 619 (562) 488 (44) 1,107 

17 273 (57) 202 (43) 475 

 

Overall, 7,767 (46%) patients initiated allopurinol and 9,109 (54%) were never prescribed 

allopurinol. Figure 8.1 illustrates the cumulative percentage of patients initiating treatment 

over time. 3,957 (23%) patients initiated allopurinol in the first year of follow-up. This 

cumulatively increased to 4,773 (28%) and 5,328 (32%) by the second and third year, 

respectively.  

Figure 8.1: Cumulative percentage of patients prescribed allopurinol over time 
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Next it was explored whether patients were continuously prescribed allopurinol over time. Of 

all allopurinol users, 60% (n=4,696) remained on treatment until the end of follow-up and 40% 

(n=3,071) discontinued treatment. Of patients who discontinued treatment, 43% (n=1,341) 

resumed treatment. The majority of allopurinol users initiated treatment once (82%, 

n=6,426); and those stopping treatment had only stopped once (82%, n=2,507); a small 

proportion of patients repeatedly initiated and discontinued treatment (Table 8.3). 

Table 8.3: Number of times patients repeatedly initiated and discontinued treatment 

Number of times Initiated allopurinol 
N=7,767 

N (%) 

Discontinued allopurinol 
N=3,071 

N (%) 

1 6,426 (83) 2,507 (82) 
2 1,078 (14) 452 (15) 
3 218 (3) 98 (3) 
4 38 (<1) 11 (<1) 
5 NA (<1) NA (<1) 
6 NA (<1) NA (<1) 

NA: Cannot report cell counts with less than five events 

 

Table 8.4: Frequency and timing of allopurinol initiation 

 Number of times allopurinol was initiated, N (%) 

Follow-up year 1: N=7,767 2: N=1,341 3: N=263 4: N=45 5: N=7 6: N=NA 

1 3,957 (51) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
2 816 (11) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
3 555 (7) 139 (10) 0 (0) 0 (0) 0 (0) 0 (0) 
4 491 (6) 157 (12) 0 (0) 0 (0) 0 (0) 0 (0) 
5 393 (5) 141 (11) 8 (3) 0 (0) 0 (0) 0 (0) 
6 275 (4) 171 (13) 16 (6) 0 (0) 0 (0) 0 (0) 
7 288 (4) 131 (10) 28 (11) 0 (0) 0 (0) 0 (0) 
8 226 (3) 117 (9) 35 (13) NA (2) 0 (0) 0 (0) 
9 202 (3) 114 (9) 35 (13) NA (4) 0 (0) 0 (0) 
10 136 (2) 84 (6) 26 (9) 9 (20) 0 (0) 0 (0) 
11 133 (2) 90 (7) 27 (10) 8 (18) NA (29) 0 (0) 
12 119 (2) 62 (5) 35 (13) 9 (20) NA (14) 0 (0) 
13 66 (1) 57 (4) 20 (8) 7 (16) NA (14) 0 (0) 
14 53 (1) 38 (3) 13 (5) 5 (11) NA (43) NA (33) 
15 37 (<1) 20 (1) 13 (5) NA (4) 0 (0) 0 (0) 
16 17 (<1) 18 (1) 6 (2) NA (2) 0 (0) NA (33) 
17 NA (<1) NA (<1) NA (<1) NA (2) 0 (0) NA (33) 

NA: Cannot report cell counts with less than five events 

As shown in Table 8.4, 51% (n=3,957) of allopurinol users were prescribed treatment for the 

first time in the first follow-up interval; the proportion of patients initiating allopurinol 
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dwindled over time. 54% (n=739) of allopurinol users who initiated treatment for the second 

time (after discontinuation) were between three and seven years of follow-up.  

From Table 8.5, 25% (n=764) of allopurinol users discontinued treatment for the first time in 

the second year of follow-up. Between 5 and 11 years of follow-up, approximately 10% of 

patients discontinued allopurinol for the second time in each year of follow-up.   

Table 8.5: Frequency and timing of allopurinol discontinuation 

 Number of times allopurinol was discontinued, N (%) 

Follow-up 
year 

1 
N=3,071 

2 
N=564 

3 
N=112 

4 
N=14 

5 
N=NA 

6 
N=NA 

2 764 (25) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
3 455 (15) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
4 351 (11) 31 (6) 0 (0) 0 (0) 0 (0) 0 (0) 
5 285 (9) 62 (11) 0 (0) 0 (0) 0 (0) 0 (0) 
6 238 (8) 79 (14) NA (1) 0 (0) 0 (0) 0 (0) 
7 195 (6) 69 (12) 10 (9) 0 (0) 0 (0) 0 (0) 
8 183 (6) 57 (10) 10 (9) 0 (0) 0 (0) 0 (0) 
9 160 (5) 56 (10) 18 (16) 0 (0) 0 (0) 0 (0) 
10 132 (4) 60 (11) 17 (15) NA (21) 0 (0) 0 (0) 
11 97 (3) 59 (10) 18 (16) NA (21) 0 (0) 0 (0) 
12 88 (3) 36 (6) 11 (10) NA (14) NA (33) 0 (0) 
13 54 (2) 23 (4) 13 (12) NA (21) 0 (0) 0 (0) 
14 30 (1) 16 (3) 5 (4) NA (7) 0 (0) 0 (0) 
15 23 (1) 8 (1) 8 (7) NA (7) NA (33) 0 (0) 
16 11 (<1) NA (1) NA (1) NA (7) NA (33) NA (100) 
17 5 (<1) 5 (1) 0 (0) 0 (0) 0 (0) 0 (0) 

NA: Cannot report cell counts with less than five events 

 

The median (IQR) number of consecutive years patients were prescribed allopurinol for was 

five (2, 9) years. 
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8.3 Patient characteristics by allopurinol treatment 

Table 8.6 describes and compares the distribution of covariates between intervals where 

patients were prescribed and not prescribed allopurinol.   

Table 8.6: Distribution of covariates by treatment (N=16,876) 

Covariates 
Non-allopurinol 

intervals 
N=109,684 

Allopurinol 
intervals 
N=45,647 

SMD 

Demographics    

Age (Mean (SD)) 64.5 (14.0) 65.54 (13.29) 0.08 
Sex: Female 23,908 (22) 8,346 (18) -0.09 
Deprivation (Mean (SD)) 8.9 (5.5) 9.24 (5.61) 0.06 

Comorbidities    

Anxiety 10,965 (10) 4,495 (10) -0.01 
Depression 13,440 (12) 5,448 (12) -0.01 
Cerebrovascular disease 5,861 (5) 2,868 (6) 0.04 
Coronary heart disease 23,046 (21) 12,302 (27) 0.14 
Diabetes  14,337 (13) 7,557 (17) 0.09 
Gout consultation 13,832 (13) 9,338 (20) 0.21 
Hyperlipidaemia 18,126 (17) 9,426 (21) 0.10 
Hypertension 41,426 (38) 21,323 (47) 0.18 
Osteoarthritis  18,931 (17) 9,592 (21) 0.09 
Peripheral vascular disease 3,057 (3) 1,456 (3) 0.02 
Renal disease 8,774 (8) 6,807 (15) 0.22 

Lifestyle factors    

Alcohol consumption    
   Ever drinker 81,194 (74) 35,485 (78) 0.09 
   Never drinker 5,044 (5) 1,911 (4) -0.02 
   Missing 23,446 (21) 8,251 (18) -0.08 
Body mass index    
   Normal 20,361 (19) 6,241 (14) -0.13 
   Overweight 38,511 (35) 16,400 (36) 0.02 
   Obese 28,438 (26) 15,283 (33) 0.17 
   Missing 22,374 (20) 7,723 (17) -0.09 
Smoking status    
   Ever smoker 63,245 (58) 28,277 (62) 0.09 
   Never smoker 31,793 (29) 12,477 (27) -0.04 
   Missing 14,646 (13) 4,893 (11) -0.08 
SU level    
   ≤360µmol/L 8,468 (8) 637 (1) -0.31 
   >360µmol/L 34,192 (31) 20,804 (46) 0.30 
   Missing 67,024 (61) 24,206 (53) -0.16 

Medication use    

Analgesics 32,443 (30) 16,550 (36) 0.14 
Colchicine 4,398 (4) 3,681 (8) 0.17 
Diuretics 29,088 (27) 16,073 (35) 0.19 
NSAIDS 46,698 (43) 20,095 (44) 0.03 
Cumulative allopurinol use, years (Mean (SD)) 0.3 (1.2) 4.0 (3.5) 1.41 

Number (%) presented unless otherwise stated; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard 
deviation; SMD: Standardised mean difference; SU: Serum urate 
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Within intervals, large differences between the treatment groups were observed where 

standardised mean difference (SMD) was >0.10 (Table 8.6). Patients within allopurinol 

intervals had higher prevalence of coronary heart disease (SMD=0.14), gout consultation 

(0.21), hypertension (0.18), renal disease (0.22), obese (0.17), serum urate (SU) level above 

target (0.30), and had more prescriptions for analgesics (0.14), colchicine (0.17), and diuretics 

(0.19) than non-users within intervals. Allopurinol users were also previously on allopurinol 

for a longer period of time than non-users (4 years vs. 0.34 years). 

  

8.4 Propensity score model and distribution 

Covariates used to estimate propensity score (PS) for each outcome analysis are shown in 

Table 8.7. Covariates were included in PS estimation regardless of statistical significance: age, 

sex, deprivation, renal disease, colchicine, NSAIDS, diuretics, SU level, gout consultation, 

cumulative allopurinol use and follow-up time.  

Covariates that were significantly associated with outcome, determined via the univariable 

complementary log-log regression model, were also included in the PS model. Gout 

consultation was only associated with outcomes gout hospitalisation, coronary heart disease, 

and renal disease. Generally, the majority of demographics, comorbidities, lifestyle factors 

and medication usage were associated with most outcomes. Cumulative allopurinol use and 

follow-up time was not associated with peripheral vascular disease.  
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Table 8.7: Covariates entered into the PS model for each outcome analysis 

Outcomes Target SU 
level 

N=1,742 

Mortality 
N=16,876 

Gout 
hospitalisation 

N=14,087 

Joint 
replacement 

N=16,644 

Cerebrovascular 
disease 

N=16,253 

Coronary 
heart disease 

N=14,063 

Peripheral 
vascular disease 

N=16,519 

Renal disease 
N=16,508 

Demographics         

Age X X X X X X X X 
Sex X X X X X X X X 
Deprivation X X X X X X X X 

Comorbidities         

Anxiety   X   X   
Depression  X    X  X 
Cerebrovascular disease  X X X  X X X 
Coronary heart disease X X X X X  X X 
Diabetes  X X X  X X X X 
Gout consultation X X X X X X X X 
Hyperlipidaemia X  X  X X X X 
Hypertension  X X X X X X X 
Osteoarthritis  X X X X X X X 
Peripheral vascular disease  X X  X X  X 
Renal disease X X X X X X X  

Lifestyle factors         

Alcohol consumption X X X X X X X X 
Body mass index X X X X X X X X 
Smoking status X X X X X X X X 
SU level X X X X X X X X 

Medication use         

Analgesics X X X X X X X X 
Colchicine X X X X X X X X 
Diuretics X X X X X X X X 
NSAIDS X X X X X X X X 
Cumulative allopurinol use X X X X X X X X 
Follow-up time X X X X X X X X 

X: Covariate was entered into the propensity score model; Green cell: Covariate was associated with outcome (p<0.05); Red cell: Covariate was not associated with outcome (p≥0.05); Black 
cell: Not applicable; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SU: Serum urate 
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The initial main effects PS model (specification 1) with linear terms for continuous covariates 

was fitted to estimate PS for each outcome analysis. For the analysis of target SU level, 

distribution of PS was skewed and differed between treatment groups (Figure 8.2); median 

(IQR) PS was 0.01 (0.01, 0.10) and 0.87 (0.55, 0.97) for non-allopurinol and allopurinol 

intervals, respectively. 53% (n=3,721) of non-allopurinol intervals and 12% (n=361) of 

allopurinol intervals (total 41%, n=4,082) were outside the PS region of common support 

(Table 8.8). Common support improved by considering fractional polynomial terms of 

dimension 2 (FP2) terms for follow-up time and FP1 terms for age, baseline SU level and 

cumulative allopurinol use (specification 4). Backwards selection identified baseline SU level 

as a potential problematic covariate; omitting this covariate reduced lack of common support 

from 21% to 15% (Table 8.9) however, this covariate was retained as adding two interactions 

to the PS model (colchicine*smoking status and BMI*gout consultation) improved common 

support by approximately the same amount (specification 6) (Table 8.8). Specification 6 was 

chosen as the final PS model as adding another interaction term to the PS model did not 

further improve common support. The distribution of the final estimated PS is shown in Figure 

8.2. Despite the improvement in common support, the distribution of PS by treatment status 

was not similar between treatment groups. 
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Figure 8.2: Distribution of PS by treatment 
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Table 8.8: PS model specification and degree of common support 

Outcome: Target SU level 
Propensity score model specification 

Median propensity score (IQR) 
(Range) 

Number of intervals outside the region of common 
support 

No allopurinol Allopurinol 
No allopurinol 

N=7,052 
Allopurinol 

N=2,975 
Overall 

N=10,027 

1 
Main effects model 
+ linear terms for age, deprivation, SU level, cumulative allopurinol use, 
follow-up time 

0.01 (0.01, 0.10) 
(<0.01, 0.98) 

0.87 (0.55, 0.97) 
(0.02, 0.99) 

3,721 (53%) 361 (12%) 4,082 (41%) 

2 
Main effects model 
+ FP1 terms for age(-2), deprivation(3), SU level(2), cumulative allopurinol 
use(0.5), follow-up time(3) 

0.02 (0.01, 0.11) 
(0.02, 0.98) 

0.86 (0.55, 0.96) 
(0.02, 0.99) 

3,341 (47%) 300 (10%) 3,641 (36%) 

3 
Main effects model 
+ FP2 terms for age(0.5, 3), deprivation (1, 2), SU level(-2, -2), cumulative 
allopurinol use(0.5, 3), follow-up time(-0.5, 3) 

0.04 (0.02, 0.12) 
(<0.01, 0.95) 

0.83 (0.52, 0.94) 
(0.02, 0.99) 

1,754 (25%) 646 (22%) 2,400 (24%) 

4 

Main effects model 
+ FP2 terms follow-up time(-0.5, 3) 
+ FP1 terms for age(-2), SU level(2), cumulative allopurinol use(0.5) 
+ linear terms deprivation 

0.04 (0.02, 0.12) 
(<0.01, 0.99) 

0.82 (0.52, 0.94) 
(0.02, 0.99) 

2,062 (29%) 82 (3%) 2,144 (22%) 

5 

Main effects model 
+ FP2 terms follow-up time(-0.5, 3) 
+ FP1 terms for age(-2), SU level(2), cumulative allopurinol use(0.5) 
+ linear terms deprivation 
+ colchicine*smoking status 

0.04 (0.02, 0.12) 
(<0.01, 0.99) 

0.82 (0.52, 0.94) 
(0.02, 0.99) 

1,803 (26%) 85 (3%) 1,888 (18%) 

6 

Main effects model 
+ FP2 terms follow-up time(-0.5, 3) 
+ FP1 terms for age(-2), SU level(2), cumulative allopurinol use(0.5) 
+ linear terms deprivation 
+ colchicine*smoking status 
+ BMI*gout consultation 

0.03 (0.02, 0.12) 
(<0.01, 0.99) 

0.83 (0.51, 0.94) 
(0.01, 0.99) 

1,405 (20%) 60 (2%) 1,465 (15%) 
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Table 8.8 continued: 

7 

Main effects model 
+ FP2 terms follow-up time(-0.5, 3) 
+ FP1 terms for age(-2), SU level(2), cumulative allopurinol use(0.5) 
+ linear terms deprivation 
+ colchicine*smoking status 
+ BMI*gout consultation 
+ colchicine use*gout consultation 

0.04 (0.02, 0.12) 
(<0.01, 0.99) 

0.83 (0.52, 0.94) 
(0.01, 0.99) 

1,398 (22%) 55 (3%) 1,453 (16%) 

Specification highlighted in green was the chosen propensity score model; Values in brackets (column 2) indicate which fractional polynomial terms were used; BMI: Body mass index; FP1: 
Fractional polynomials of dimension 1; FP2: Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score; SU: Serum urate 
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Similar findings were observed for secondary outcomes with relevant results tables presented 

in Appendix L. For all secondary outcome analyses, the initial main effects PS model 

(specification 1) highlighted the distribution of PS differed between treatment groups 

(illustrated in Appendix L). Approximately 50% of intervals were outside the PS region of 

common support. Common support improved considerably when FP terms were considered 

for continuous covariates: for the analysis of mortality, lack of common support reduced from 

49% (based on specification 1) to 19% (based on specification 4); gout hospitalisation (from 

54% to 19%); joint replacement (from 50% to 15%); peripheral vascular disease (from 50% to 

15%); and renal disease (from 54% to 20%). There was a minor improvement in common 

support in the analysis of coronary heart disease when including FP terms for continuous 

covariates in the PS model however, no improvement was observed for cerebrovascular 

disease. Despite these improvements in common support, the distribution of PS remained 

skewed and were different between treatment groups.  

Backwards selection did not identify a single covariate that considerably worsened common 

support. From Table 8.9, in the analysis for mortality, removing SU level from the PS model 

improved lack of common support from 19% to 16%. The largest improvement in common 

support was seen in the analysis for joint replacement, where lack of common support 

reduced from 15% to 6% when SU level was omitted from the PS model. At this stage, no 

covariates were omitted from the PS model as they were deemed strong confounding 

variables based on clinical grounds. 

Inclusion of two-way interaction terms that were associated with outcome and improved 

common support, were included in the PS score model (Appendix L). For example, in the 

analysis for mortality, including four interaction terms (baseline SU level*NSAIDS, baseline SU 

level*hypertension, diuretics*sex, and alcohol consumption*sex) improved lack of common 

support from 19% to 7%. For the other secondary outcomes, up to three interaction terms 
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were included in the PS model with the exception of in the analyses of cerebrovascular disease 

and coronary heart disease, where no interaction terms were found to improve common 

support.  

Although three-way interaction terms were considered in the PS model, none considerably 

improved common support more than using two-way interaction terms, thus they were no 

longer considered.  

Table 8.10 shows which interaction terms and FP terms for continuous covariates were 

included in the final PS model for each outcome analysis. Table 8.11 summarises and 

compares the degree of common support from the main effects model (specification 1) 

compared with the final PS model, which shows despite improvements in lack of common 

support, the distribution of PS remained skewed and differed between treatment groups 

across all outcomes (also shown graphically in Appendix L). 

Table 8.9: Backwards selection to identify problematic covariates 

Outcome 

Number of intervals 
outside the region of 

common support  

(PS model 
specification 4) 

Number of intervals 
outside the region of 

common support after 
omitting problematic 
covariate from the PS 

model 

Omitted covariate 

SU level 2,144 (22%) 1,546 (15%) Baseline SU level 

Mortality 29,137 (19%) 24,565 (16%) Baseline SU level 

Gout hospitalisation 23,075 (19%) 20,459 (17%) Colchicine 

Joint replacement 22,340 (15%) 9,858 (7%) Baseline SU level 

Cerebrovascular disease 72,178 (50%) 72,199 (50%) Follow-up time 

Coronary heart disease 58,791 (50%) 58,490 (50%) Follow-up time 

Peripheral vascular disease 21,827 (15%) 24,574 (16%) Sex 

Renal disease 26,735 (20%) 16,096 (12%) NSAIDS 

PS: Propensity score; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SU: Serum urate 
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Table 8.10: Addition of fractional polynomial terms and interactions to the main effects PS 
model 

Outcome Fractional polynomial terms Interaction terms 

Target SU level 

age(-2) 
Baseline SU level(2) 
cumulative allopurinol use(0.5) 

follow-up time(-0.5, 3) 

colchicine*smoking status  
colchicine*gout consultation 

Mortality 
age(3, 3) 

deprivation(-2, -1) 
cumulative allopurinol use(0.5) 

SU level*NSAIDS 
SU level*hypertension 
diuretics*sex 
alcohol consumption*sex 

Gout hospitalisation 

age(-2 3) 

deprivation (3, 3) 
cumulative allopurinol use(-0.5, 0) 
follow-up time(0.5) 

SU level*NSAIDS 
renal disease*gout consultation 
diuretics*sex 

Joint replacement 
age(2, 3) 

cumulative allopurinol use(0.5) 
follow-up time(-2) 

colchicine*coronary heart disease 
BMI*osteoarthritis  
alcohol consumption*gout consultation 

Cerebrovascular disease N/A N/A 

Coronary heart disease 
age(2, 2) 
deprivation (-2, -2)  
follow-up time(-2, -0.5) 

N/A 

Peripheral vascular disease 
follow-up time(-0.5, 3) 

age(-2) 

cumulative allopurinol use(0.5) 
smoking status*diuretics 

Renal disease 
cumulative allopurinol use(0.5) 

follow-up time(-2) 
SU level*colchicine 

BMI: Body mass index; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SU: Serum urate  
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Table 8.11: Comparison of degree of common support between PS models 

Outcome 
Number of intervals outside the region of common 

support: Main effects PS model (Specification 1) 
Number of intervals outside the region of common 

support: Final PS model 

Distribution of propensity scores from the 
final PS model 
Median (IQR) 

(Range) 

 No allopurinol Allopurinol Overall No allopurinol Allopurinol Overall No allopurinol Allopurinol 

Target SU level 3,721 (53%) 361 (12%) 4,082 (41%) 1,405 (20%) 60 (2%) 1,465 (15%) 
0.03 (0.02, 0.12) 

(0.003, 0.99) 
0.83 (0.51, 0.94) 

(0.01, 0.99) 

Mortality 76,177 (69%) 702 (2%) 76,879 (49%) 10,584 (10%) 683 (1%) 11,267 (7%) 
0.01 (0.01, 0.06) 

(2*10-4, 0.99) 
0.92 (0.68, 0.98) 

(0.003, 0.99) 

Gout hospitalisation 63,658 (72%) 2,026 (6%) 65,684 (54%) 7,048 (8%) 2,409 (7%) 9,457 (8%) 
0.01 (0.01, 0.04) 

(2*10-4, 0.99) 
0.92 (0.69, 0.98) 

(0.003, 0.99) 

Joint replacement 72,043 (67%) 2,542 (6%) 74,585 (50%) 15,979 (15%) 771 (2%) 16,750 (11%) 
0.01 (0.007, 0.061) 

(5*10-4, 0.99) 
0.91 (0.69, 0.97) 

(0.005, 0.99) 

Cerebrovascular disease 71,857 (70%) 1,069 (3%) 72,926 (50%) 70,628 (69) 756 (2%) 71,384 (49%) 
0.003 (0.002, 0.05) 

(1*10-5, 0.99) 
0.93 (0.66, 0.99) 

(0.01, 0.99) 

Coronary heart disease 58,716 (70%) 364 (1%) 59,080 (51%) 58,257 (69%) 534 (2%) 58,791 (50%) 
0.003 (0.002, 0.05) 

(7*10-5, 0.99) 
0.92 (0.64, 0.98) 

(0.009, 0.99) 

Peripheral vascular disease 74,245 (70%) 1,079 (2%) 75,324 (50%) 21,456 (20%) 371 (1%) 21,827 (15%) 
0.02 (0.01, 0.07) 

(6*10-4, 0.99) 
0.91 (0.67, 0.97) 

(0.01, 0.99) 

Renal disease 71,622 (73%) 1,871 (5%) 73,493 (54%) 21,211 (22%) 766 (2%) 21,977 (16%) 
0.01 (0.01, 0.05) 

(4*10-4, 0.99) 
0.91 (0.68, 0.97) 

(0.01, 0.99) 

IQR: Interquartile range; PS: Propensity score; SU: Serum urate 
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8.5 Number of propensity score subclasses 

In the analysis of target SU level, four PS subclasses achieved overall covariate balance across 

subclasses, whilst increasing the number the subclasses (≥5) resulted in imbalance for 

cumulative allopurinol use and baseline SU level. As the PS distribution was skewed and 

differed between treatment groups, in the first subclass no outcome was observed within 

allopurinol intervals (Table 8.12 and Table 8.13). However, four PS subclasses were retained 

for treatment effect estimation as 75% of intervals from 99% of patients would be utilised, 

compared with say five subclasses, where a lower number of intervals (60%) from a lower 

number of patients (77%) would be utilised. Within subclasses, there were large differences 

in covariates between treatment groups where SMD >0.10; subclasses 2 and 4 had at least 11 

imbalanced covariates whereas subclass 3 only had two (Table 8.15).  

Within all secondary outcome analyses, use of four PS subclasses resulted in no occurrence of 

outcome within allopurinol intervals in subclass 1. Increasing the number of subclasses up to 

seven, generally resulted in fewer intervals and patients that would be utilised in treatment 

effect estimation (Appendix M). However, for some outcomes, a larger number of subclasses 

were required as overall covariate balance across subclasses was not achieved when using 

four PS subclasses. Choice of number of PS subclasses was based on achieving overall 

covariate balance across subclasses and maximising the number of intervals and patients that 

would be used in treatment effect estimation.  

Four subclasses were sufficient to achieve overall covariate balance across subclasses for the 

analyses of mortality and joint replacement. For the analysis of renal disease, although overall 

covariate balance was achieved using five subclasses, six subclasses were chosen instead as a 

greater number of intervals and patients would be utilised in treatment effect estimation; 

similarly for all other outcome analyses, five subclasses achieved overall covariate balance and 
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would utilise a greater number intervals and patients in treatment effect estimation than 

using four subclasses, or that use of four subclasses did not achieve overall covariate balance. 

In the analysis of cerebrovascular disease, five PS subclasses were created however, outcome 

did not occur in subclasses 1 and 2 within allopurinol intervals. The distribution of outcome 

and treatment across PS subclasses is shown in Table 8.13. Table 8.14 shows the overall SMD 

for each covariate across subclasses, and that overall covariate balance was achieved.  

Covariate imbalance within each subclass were identified and listed in Table 8.15. Generally, 

across all outcome analyses, the subclass with the lowest PS observed the most number of 

imbalanced covariates. The most frequently observed imbalanced covariates within 

subclasses across all outcomes were gout consultation (n=18), age (n=17), diuretics (n=15), 

colchicine (n=14), NSAIDS (n=12), and cumulative allopurinol use (n=11).   
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Table 8.12: Occurrence of outcome within PS subclasses 

Propensity score 
range 

Reached target SU 
level in non-allopurinol 

intervals 
N (%) 

N=247 

Reached target SU 
level in allopurinol 

Intervals 
N (%) 

N=460 

Number to be 
analysed in 

treatment effect 
analysis 

Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariates 

(SMD>0.10)b 

4 subclasses     

 1: <0.01, 0.02   81 (33) 0 (0) 
7,520 (75) 
1,729 (99) 

Overall balance 
achieved 

 2: 0.02, 0.09   108 (44) 16 (3) 
 3: 0.09, 0.53   43 (17) 104 (23) 
 4: 0.53, 0.99   15 (6) 340 (74) 

5 subclasses     

 1: <0.01, 0.02   58 (23) 0 (0) 

6,016 (60) 
1,339 (77) 

Cumulative 
allopurinol use 

 2: 0.02, 0.05   88 (36) 0 (0) 
 3: 0.05, 0.18   66 (27) 53 (12) 
 4: 0.18, 0.69   26 (11) 142 (31) 
 5: 0.69, 0.99   9 (4) 265 (58) 

6 subclasses     

 1: <0.01, 0.02   49 (20) 0 (0) 

6,684 (67) 
1,595 (92) 

SU level; 
Cumulative 

allopurinol use 

 2: 0.02, 0.03   73 (30) 0 (0) 
 3: 0.03, 0.09   67 (27) 16 (3) 
 4: 0.09, 0.29   35 (14) 55 (12) 
 5: 0.29, 0.79   20 (8) 169 (37) 
 6: 0.79, 0.99   3 (1) 220 (48) 

7 subclasses     

 1: <0.01, 0.01   43 (17) 0 (0) 

5,729 (57) 
1,236 (71) 

SU level; 
Cumulative 

allopurinol use 

 2: 0.01, 0.02   53 (21) 0 (0) 
 3: 0.02, 0.05   60 (24) 0 (0) 
 4: 0.05, 0.15   51 (21) 44 (10) 
 5: 0.15, 0.42  23 (9) 42 (9) 
 6: 0.42, 0.85  14 (6) 183 (40) 
 7: 0.85, 0.99   3 (1) 191 (42) 

Propensity score subclassification was performed on 10,027 intervals from 1,742 patients. Results highlighted in 
green indicated the number of subclasses used for treatment effect estimation. aAt least one interval from the 
patient would be included in outcome analysis; bOverall SMD was assessed in subclasses with outcome occurring 
in both non-allopurinol and allopurinol intervals; PS: Propensity score; SMD: Standardised mean difference; SU: 
Serum urate 
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Table 8.13: Distribution of outcome and treatment across PS subclasses 

Outcome Non-allopurinol intervals  
N(%) 

Allopurinol intervals 
N (%) 

Target SU level 
SU target not met: 

N=6,805 
SU target met: 

N=247 
Total:  

N=7,052 
SU target not met:  

N=2,515 
SU target met: 

N=460 
Total:  

N=2,975 

Subclass 1 2,424 (36) 81 (33) 2,505 (36) 2 (0) 0 (0) 2 (0) 
Subclass 2 2,305 (34) 108 (44) 2,413 (34) 78 (3) 16 (3) 94 (3) 
Subclass 3 1,791 (26) 43 (17) 1,834 (26) 569 (23) 104 (23) 673 (23) 
Subclass 4 285 (4) 15 (6) 300 (4) 1,866 (74) 340 (74) 2,206 (74) 

Mortality Alive: N=106,338 Died: N=3,346 Total: N=109,684 Alive: N=44,017 Died: N=1,630 Total: N=45,647 

Subclass 1 37,799 (36) 1,029 (31) 38,828 (35) 5 (0) 0 (0) 5 (0) 
Subclass 2 36,748 (35) 1,311 (39) 38,059 (35) 761 (2) 13 (1) 774 (2) 
Subclass 3 29,094 (27) 857 (26) 29,951 (27) 8,537 (19) 345 (21) 8,882 (19) 
Subclass 4 2697 (3) 149 (4) 2,846 (3) 34,714 (79) 1,272 (78) 35,986 (79) 

Gout hospitalisation No: N=87,694 Yes: N=923 Total: N=88,617 No: N=32,402 Yes: N=1,049 Total: N=33,451 

Subclass 1 24,268 (23) 143 (4) 24,411 (22) 3 (0) 0 (0) 3 (0) 
Subclass 2 24,062 (23) 231 (7) 24,293 (22) 120 (0) 1 (0) 121 (0) 
Subclass 3 22,441 (21) 341 (10) 22,782 (21) 1,589 (4) 42 (3) 1,631 (4) 
Subclass 4 16,009 (15) 169 (5) 16,178 (15) 7,999 (18) 237 (15) 8,236 (18) 
Subclass 5 914 (1) 39 (1) 953 (1) 22,691 (52) 769 (47) 23,460 (51) 

Joint replacement No: N=104,135 Yes: N=692 Total: N=104,827 No: N=42,731 Yes: N=323 Total: N=43,054 

Subclass 1 36,770 (35) 194 (28) 36,964 (35) 7 (<1) 0 (0) 7 (<1) 
Subclass 2 36,030 (35) 311 (45) 36,341 (35) 628 (1) 1 (<1) 629 (1) 
Subclass 3 28,456 (27) 161 (23) 28,617 (27) 8,319 (19) 34 (11) 8,353 (19) 
Subclass 4 2,879 (3) 26 (4) 2,905 (3) 33,777 (79) 288 (89) 34,065 (79) 
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Table 8.13 continued: 

 Non-allopurinol intervals 
N (%) 

Allopurinol intervals 
N (%) 

Cerebrovascular disease No: N=101,655 Yes: N=1,114 Total: N=102,769 No: N=41,901 Yes: N=438 Total: N=42,339 

Subclass 1 28,918 (28) 104 (9) 29,022 (28) 0 (0) 0 (0) 0 (0) 
Subclass 2 28,689 (28) 333 (30) 29,022 (28) 0 (0) 0 (0) 0 (0) 
Subclass 3 26,597 (26) 594 (53) 27,191 (26) 1,822 (4) 8 (2) 1,830 (4) 
Subclass 4 16,356 (16) 69 (6) 16,425 (16) 12,494 (30) 103 (24) 12,597 (30) 
Subclass 5 1,095 (1) 14 (1) 1,109 (1) 27,585 (66) 327 (75) 27,912 (66) 

Coronary heart disease No: N=82,268 Yes: N=2,080 Total: N=84,348 No: N=31,438 Yes: N=870 Total: N=32,308 

Subclass 1 23,132 (28) 200 (10) 23,332 (28) 0 (0) 0 (0) 0 (0) 
Subclass 2 22,801 (28) 530 (25) 23,331 (28) 0 (0) 0 (0) 0 (0) 
Subclass 3 21,044 (26) 1,168 (56) 22,212 (26) 1,107 (4) 12 (1) 1,119 (3) 
Subclass 4 14,086 (17) 143 (7) 14,229 (17) 8,916 (28) 186 (21) 9,102 (28) 
Subclass 5 1,205 (1) 39 (2) 1,244 (1) 21,415 (68) 672 (77) 22,087 (68) 

Peripheral vascular disease No: N=105,741 Yes: N=432 Total: N=106,173 No: N=43,775 Yes: N=203 Total: N=43,978 

Subclass 1 29,936 (28) 93 (22) 30,029 (28) 2 (0) 0 (0) 2 (0) 
Subclass 2 29,674 (28) 141 (33) 29,815 (28) 214 (0) 1 (0) 215 (0) 
Subclass 3 27,411 (26) 153 (35) 27,564 (26) 2,454 (6) 12 (6) 2,466 (6) 
Subclass 4 17,503 (17) 40 (9) 17,543 (17) 12,437 (28) 50 (25) 12,487 (28) 
Subclass 5 1,217 (1) 5 (1) 1,222 (1) 28,668 (65) 140 (69) 28,808 (66) 

Renal disease No: N=96,077 Yes: N=2,541 Total: N=98,618 No: N=35,986 Yes: N=1,384 Total: N=37,370 

Subclass 1 22,210 (23) 454 (18) 22,664 (23) 1 (0) 0 (0) 1 (0) 
Subclass 2 21,937 (23) 712 (28) 22,649 (23) 16 (0) 0 (0) 16 (0) 
Subclass 3 21,530 (22) 800 (31) 22,330 (23) 328 (1) 6 (0) 334 (1) 
Subclass 4 19,378 (20) 311 (12) 19,689 (20) 2,888 (8) 88 (6) 2,976 (8) 
Subclass 5 10,417 (11) 227 (9) 10,644 (11) 11,676 (32) 345 (25) 12,021 (32) 
Subclass 6 605 (1) 37 (1) 642 (1) 21,077 (59) 945 (68) 22,022 (59) 

PS: Propensity score; SU: Serum urate 
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Table 8.14: Overall SMD after PS subclassification 

 Target SU 
level 

Mortality 
Gout 

hospitalisation 
Joint 

replacement 
Cerebrovascular 

disease 
Coronary heart 

disease 
Peripheral 

vascular disease 
Renal 

disease 

Demographics         

Age -0.04 0.01a -0.01a 0.01a 0.01 0.03a -0.03 0.06 
Sex: Female 0.01 0.02 0.03 0.02 0.01 0.01 0.02 0.036 
Deprivation -0.02 -0.01a <0.01 <0.01 -0.01 <0.01 <0.01 -0.01 

Comorbidities         

Anxiety - - 0.01 - - 0.02 - - 
Depression - 0.01 - - - 0.02 - 0.01 
Cerebrovascular disease - 0.01 0.01 0.01 - 0.01 0.02 0.01 
Coronary heart disease 0.01 <0.01 <0.01 0.01 <0.01 - 0.01 0.02 
Diabetes  0.02 0.01 <0.01 - 0.01 0.02 0.01 0.02 
Gout consultation -0.03 0.01 0.01 0.02 0.02 0.01 -0.01 -0.03 
Hyperlipidaemia 0.02 - <0.01 - 0.01 0.01 0.01 0.02 
Hypertension - 0.01 -0.01 0.01 0.02 0.02 0.01 0.02 
Osteoarthritis  - <0.01 0.01 0.01 0.01 0.02 0.02 0.02 
Peripheral vascular disease - <0.01 <0.01 - 0.01 0.01 - 0.01 
Renal disease <0.01 <0.01 <0.01 0.01 0.02 0.01 0.02 - 

Lifestyle factors         

Alcohol consumptiona -0.02 0.02 0.01 0.02 -0.03 -0.03 -0.01 -0.02 
Body mass indexa -0.03 0.01 0.02 -0.02 -0.03 -0.03 -0.02 -0.02 
Smoking statusa 0.04 <0.01 -0.01 -0.01 -0.03 -0.04 0.02 -0.02 
SU levela -0.07b 0.04 -0.02 0.04 -0.05 -0.04 0.04 0.04 

Medication use         

Analgesics -0.02 <0.01 0.02 -0.01 <0.01 0.01 0.03 0.02 
Colchicine -0.03 <0.01 0.01 -0.01 0.01 <0.01 <0.01 -0.01 
Diuretics 0.01 0.01 0.01 -0.01 -0.02 <0.01 0.02 0.01 
NSAIDS -0.05 <0.01 -0.01 -0.02 -0.02 <0.01 -0.03 -0.04 
Cumulative allopurinol use -0.05 0.05 -0.04a 0.08 0.08 0.08 0.02 -0.05 
Interaction terms -0.06a -0.03a 0.02 0.01 - - 0.02 -0.01 

aLargest standardised difference presented; bContinuous covariate; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SMD: Standardised mean difference; SU: Serum 
urate 
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Table 8.15: Imbalanced covariates within each PS subclass 

Outcome Imbalanced covariates (SMD >0.10) 

Target SU level S2: Age, coronary heart disease, hyperlipidaemia, alcohol consumption, BMI, 
smoking status, SU level, analgesics, diuretics, NSAIDS, cumulative allopurinol 
use, colchicine*gout consultation 
S3: Smoking status, cumulative allopurinol use 
S4: Age, gout consultation, BMI, SU level, analgesics, colchicine, diuretics, 
NSAIDS, cumulative allopurinol use, colchicine*smoking status, 
colchicine*gout consultation 

Mortality S2: Age, cerebrovascular disease, coronary heart disease, gout consultation, 
hypertension, analgesics, colchicine, diuretics, NSAIDS, cumulative allopurinol 
use, SU level*NSAIDS, diuretics*sex 
S3: Gout consultation 
S4: Age, gout consultation, colchicine, diuretics, NSAIDS, SU level*NSAIDS 

Gout hospitalisation S2: Age, deprivation, cerebrovascular disease, coronary heart disease, gout 
consultation, hypertension, peripheral vascular disease renal disease, 
analgesics, colchicine, diuretics, alcohol consumption, SU level, SU 
level*NSAIDS, diuretics*sex 
S3: Age, coronary heart disease, diuretics, cumulative allopurinol use 
S5: Age, diabetes, gout consultation, renal disease, colchicine, NSAIDS, SU 
level*NSAIDS, renal disease*gout consultation 

Joint replacement S2: Age, sex, cerebrovascular disease, coronary heart disease, gout 
consultation, osteoarthritis, analgesics, diuretics, NSAIDS, alcohol 
consumption, SU level 
S3: Gout consultation 
S4: Age, gout consultation, colchicine, NSAIDS 

Cerebrovascular disease S3: Age, coronary heart disease, diabetes, gout consultation, 
hyperlipidaemia, hypertension, osteoarthritis, renal disease, analgesics, 
colchicine, diuretics, alcohol consumption, smoking status, SU level, BMI 
S4: Gout consultation, smoking status, cumulative allopurinol use 
S5: Gout consultation, osteoarthritis, renal disease, colchicine, NSAIDS, 
cumulative allopurinol use, smoking status 

Coronary heart disease S3: Age, cerebrovascular disease, diabetes, gout consultation, hypertension, 
hyperlipidaemia, osteoarthritis, renal disease, analgesics, colchicine, 
diuretics, smoking status, SU level, BMI 
S4: Cumulative allopurinol use 
S5: Age, gout consultation, colchicine, diuretics, NSAIDS 

Peripheral vascular 
disease 

S3: Sex, deprivation, cerebrovascular disease, coronary heart disease, gout 
consultation, hyperlipidaemia, analgesics, colchicine, diuretics, NSAIDS, 
alcohol consumption, smoking status, SU level, BMI, smoking status*diuretics 
S4: Cumulative allopurinol use 
S5: Age, diabetes, gout consultation, renal disease, colchicine, diuretics, 
NSAIDS, cumulative allopurinol use 

Renal disease S3: Age, depression, cerebrovascular disease, coronary heart disease, gout 
consultation, analgesics, colchicine, diuretics, NSAIDS, alcohol consumption, 
BMI, SU level, smoking status, SU level*colchicine, 
S4: Age, diuretics, cumulative allopurinol use 
S5: Age 
S6: Age, diabetes, gout consultation, colchicine, diuretics, NSAIDS, smoking 
status, cumulative allopurinol use, SU level*colchicine 

BMI: Body mass index; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; S: Subclass; SMD: 

Standardised mean difference; SU: Serum urate 
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8.6 Treatment effect estimation  

Originally, the complementary log-log model with a random intercept was used to estimate 

subclass-specific treatment effects however, not all models had converged, due to adjustment 

for follow-up time in the model or certain imbalanced covariates. Therefore, the random 

intercept was omitted, and robust standard errors accounting for clustering of repeated 

measurements from patients was utilised.   

For half the outcomes (target SU level, mortality, joint replacement, peripheral vascular disease, 

the subclass-specific treatment effect estimates were homogenous. Allopurinol was associated 

with greater chance of reaching target SU level (4.89 (3.76, 6.37)) and increased risk of peripheral 

vascular disease (2.04 (1.39, 2.99)), however no association was observed for mortality and joint 

replacement (Table 8.16).  

The subclass-specific treatment effect estimates for gout hospitalisation (Table 8.17), 

cerebrovascular disease (Table 8.18), coronary heart disease (Table 8.19), and renal disease 

(Table 8.20) were not homogenous, therefore are presented individually alongside with a 

summary of covariates.  

Allopurinol increased the risk of gout hospitalisation in subclasses 3 and 4. Patients in subclass 4 

had a larger treatment effect estimate (2.70 (2.22, 3.29)), and these patients in these intervals 

had fewer prescriptions for diuretics and was previously on allopurinol for a longer period than 

those in subclass 3 who had a lower treatment effect (1.84 (1.34, 2.51)).  

Within subclass 3, allopurinol was protective against cerebrovascular disease (0.21 (0.11, 0.44)) 

and coronary heart disease (0.21 (0.11, 0.38)), in contrast with subclass 4 where allopurinol had 

increased risk of cerebrovascular disease (1.73 (1.26, 1.38)) and coronary heart disease 1.99 (1.58, 
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2.50)). In both outcomes, the distribution of covariates between subclasses 3 and 4 were similar 

but intervals in subclass 3 were older and had higher prevalence of SU level >360μmol/L, 

prescription for diuretics, and patients were previously on allopurinol for a shorter period of time 

than subclass 4. 

Allopurinol use increased the risk of renal disease in subclass 4 (2.03 (1.61, 1.34)) whereas its use 

was protective in subclass 6 (0.58 (0.42, 0.81)). Subclass 6 contained intervals from patients who 

were older, resided in less deprived areas, and had higher prevalence of coronary heart disease, 

hypertension, ever smokers, ever drinkers, obesity, and fewer prescriptions for NSAIDS, and 

previously prescribed allopurinol for a longer period than intervals in subclass 4.  

Table 8.16: Effect of allopurinol on outcome 

 

Non-
allopurinol 
intervals 

N (%) 

Allopurinol 
intervals 

N (%) 

Unadjusted 
Hazard ratio (95% CI) 

Standard error 

PS subclassification 
Hazard ratio (95% CI) 

Standard error 

Target SU level     

   Not reached target 4,381 (96) 2,513 (85) 4.57 (3.80, 5.48) 
0.43 

4.89 (3.76, 6.37) 
0.66    Reached target 166 (4) 460 (15) 

Mortality     

   Alive 68,539 (97) 44,012 (96) 1.15 (1.08, 1.23) 
0.04 

0.97 (0.88, 1.08) 
0.05    Death 2,317 (3) 1,630 (4) 

Gout hospitalisation     

   No 63,426 (99) 32,399 (97) 2.21 (2.01, 2.44) 
0.11 

* 
   Yes 780 (1) 1,049 (3) 

Joint replacement     

   No 67,365 (99) 42,724 (99) 1.01 (0.87, 1.16) 
0.07 

0.77 (0.59, 1.01) 
0.11    Yes 498 (1) 323 (1) 

Cerebrovascular disease     

   No 44,048 (98) 41,901 (99) 0.73 (0.65, 0.83) 
0.05 

* 
   Yes 677 (2) 438 (1) 

Coronary heart disease     

   No 36,335 (96) 31,438 (97) 0.85 (0.78, 0.92) 
0.04 

* 
   Yes 1,350 (4) 870 (3) 

Peripheral vascular disease     

   No 75,805 (99) 43,773 (99) 1.16 (0.97, 1.38) 
0.11 

2.04 (1.39, 2.99) 
0.40   Yes 339 (1) 203 (1) 

Renal disease     

   No 51,930 (97) 35,969 (96) 1.21 (1.12, 1.31) 
0.05 

* 
   Yes 1,375 (3) 1,384 (4) 

*Subclass-specific treatment effects were not homogenous. Therefore they were not pooled; CI: Confidence interval; 
SU: Serum urate 
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Table 8.17: Estimated treatment effect of allopurinol on gout hospitalisation and distribution of 
covariates within each PS subclass 

 
Subclass 2 
N=24,414 

Subclass 3 
N=24,413 

Subclass 4 
N=24,414 

Subclass 5 
N=24,413 

Hazard ratio (95% CI) 
Standard error 

0.69 (0.11, 4.20) 
0.64 

1.84 (1.34, 2.51) 
0.29 

2.70 (2.22, 3.29) 
0.27 

0.94 (0.61, 1.16) 
0.14 

Demographics     

Age* 66.1 (13.8) 65.9 (13.7) 63.8 (13.6) 67.2 (12.6) 
Sex: Female 5,149 (21) 4,960 (20) 4,291 (18) 4,888 (20) 
Deprivation* 9.1 (5.5) 9.2 (5.5) 9.3 (5.5) 9.3 (5.5) 

Comorbidities     

Anxiety 2,241 (9) 1,712 (7) 2,215 (9) 2,495 (10) 
Depression 2,914 (12) 2,218 (9) 2,638 (11) 3,123 (13) 
Cerebrovascular disease 1,610 (7) 1,127 (5) 1,045 (4) 1,698 (7) 
Coronary heart disease 5,948 (24) 5,324 (22) 5,016 (21) 7,630 (31) 
Diabetes 3,374 (14) 2,550 (10) 2,888 (12) 4,508 (18) 
Gout consultation 2,147 (9) 4,510 (18) 5,876 (24) 4,729 (19) 
Hyperlipidaemia 4,132 (17) 3,000 (12) 3,879 (16) 5,411 (22) 
Hypertension 9,677 (40) 8,580 (35) 9,317 (38) 12,395 (51) 
Osteoarthritis  4,360 (18) 3,521 (14) 4,356 (18) 5,666 (23) 
Peripheral vascular disease 759 (3) 613 (3) 575 (2) 901 (4) 
Renal disease 1,981 (8) 1,447 (6) 2,122 (9) 4,094 (17) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 18,442 (76) 16,246 (67) 17,998 (74) 19,318 (79) 
   Never drinker 1,207 (5) 1,138 (5) 974 (4) 1,144 (5) 
   Missing 4,765 (20) 7,029 (29) 5,442 (22) 3,951 (16) 
Body mass index     
   Normal  4,467 (18) 3,301 (14) 3,394 (14) 3,310 (14) 
   Overweight 8,714 (36) 8,296 (34) 8,784 (36) 9,137 (37) 
   Obese 6,578 (27) 6,151 (25) 7,035 (29) 8,522 (35) 
   Missing 4,655 (19) 6,665 (27) 5,201 (21) 3,444 (14) 
Smoking status     
   Ever smoker 14,598 (60) 12,525 (51) 13,648 (56) 15,920 (65) 
   Never smoker 6,968 (29) 6,671 (27) 6,974 (29) 6,276 (26) 
   Missing 2,848 (12) 5,217 (21) 3,792 (16) 2,217 (9) 
SU level     
   ≤360µmol/L 304 (1) 248 (1) 388 (2) 294 (1) 
   >360µmol/L 7,268 (30) 10,535 (43) 10,422 (43) 11,575 (47) 
   Missing 16,842 (69) 13,630 (56) 13,604 (56) 12,544 (51) 

Medication use     

Analgesics 7,569 (31) 8,645 (35) 8,172 (33) 9,470 (39) 
Colchicine 469 (2) 1,585 (6) 2105 (9) 1862 (8) 
Diuretics 7,316 (30) 10,049 (41) 7,205 (30) 9,528 (39) 
NSAIDS 9,667 (40) 14,156 (58) 13,767 (56) 9,776 (40) 
Cumulative allopurinol use* 0 (0) 0.1 (0.3) 1.21 (1.65) 4.9 (3.3) 

Number and percentage presented unless otherwise stated; *Mean (Standard deviation) presented for continuous 
covariates; Unit of analysis is intervals; CI: Confidence interval; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: 
Propensity score; SU: Serum urate 
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Table 8.18: Estimated treatment effect of allopurinol on cerebrovascular disease and distribution 
of covariates within each PS subclass 

 
Subclass 3 
N=29,021 

Subclass 4 
N=29,022 

Subclass 5 
N=29,021 

Hazard ratio (95% CI) 
Standard error 

0.21 (0.11, 0.44) 
0.08 

1.73 (1.26, 1.38) 
0.28 

0.80 (0.47, 1.37) 
0.22 

Demographics    

Age* 65.1 (14.1) 61.8 (13.7) 66.1 (12.8) 
Sex: Female 5,099 (18) 4,176 (14) 5,564 (19) 
Deprivation* 9.3 (5.5) 9.1 (5.6) 9.3 (5.6) 

Comorbidities    

Anxiety 2,539 (9) 2,598 (9) 2,789 (10) 
Depression 3,122 (11) 3,153 (11) 3,456 (12) 
Coronary heart disease 6,880 (24) 5,620 (19) 8,159 (28) 
Diabetes 3,791 (13) 3,403 (12) 5,091 (18) 
Gout consultation 6,612 (23) 8,027 (28) 4,981 (17) 
Hyperlipidaemia 4,769 (16) 4,803 (17) 6,240 (22) 
Hypertension 11,728 (40) 11,336 (39) 14,045 (48) 
Osteoarthritis  5,131 (18) 5,101 (18) 6,452 (22) 
Peripheral vascular disease 772 (3) 511 (2) 890 (3) 
Renal disease 2,768 (10) 2,815 (10) 4,516 (16) 

Lifestyle factors    

Alcohol consumption    
   Ever drinker 21,221 (73) 22,248 (77) 22,551 (78) 
   Never drinker 1,144 (4) 1,003 (3) 1,293 (4) 
   Missing 6,656 (23) 5,771 (20) 5,177 (18) 
Body mass index    
   Normal  3,987 (14) 3,901 (13) 3,762 (13) 
   Overweight 10,334 (36) 10,464 (36) 10,331 (36) 
   Obese 8,350 (29) 8,966 (31) 10,230 (35) 
   Missing 6,350 (22) 5,691 (20) 4,698 (16) 
Smoking status    
   Ever smoker 16,605 (57) 16,582 (57) 18,240 (63) 
   Never smoker 8,230 (28) 8,608 (30) 7,815 (27) 
   Missing 4,186 (14) 3,832 (13) 2,966 (10) 
SU level    
   ≤360µmol/L 356 (1) 412 (1) 363 (1) 
   >360µmol/L 14,712 (51) 12,022 (41) 13,859 (48) 
   Missing 13,953 (48) 16,588 (57) 14,799 (51) 

Medication use    

Analgesics 9,530 (33) 8,695 (30) 10,909 (38) 
Colchicine 2,005 (7) 2,840 (10) 2,080 (7) 
Diuretics 10,284 (35) 7,378 (25) 10,938 (38) 
NSAIDS 15,858 (55) 16,510 (57) 11,429 (39) 
Cumulative allopurinol use* 0.2 (0.5) 1.5 (1.7) 5.2 (3.5) 

Number and percentage presented unless otherwise stated; *Mean (Standard deviation) presented for continuous 
covariates; Unit of analysis is intervals; CI: Confidence interval; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: 
Propensity score; SU: Serum urate 
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Table 8.19: Estimated treatment effect of allopurinol on coronary heart disease and distribution 
of covariates within each PS subclass 

 
Subclass 3 
N=23,331 

Subclass 4 
N=23,331 

Subclass 5 
N=23,331 

Hazard ratio (95% CI) 
Standard error 

0.21 (0.11, 0.38) 
0.06 

1.99 (1.58, 2.50) 
0.23 

0.84 (0.61, 1.19) 
0.14 

Demographics    

Age* 63.4 (13.9) 60.1 (13.8) 64.0 (13.0) 
Sex: Female 3,946 (17) 3,099 (13) 4,056 (17) 
Deprivation* 9.1 (5.5) 9.1 (5.6) 9.2 (5.6) 

Comorbidities    

Anxiety 1,998 (9) 2,027 (9) 2,187 (9) 
Depression 2,001 (9) 2,447 (10) 2,601 (11) 
Cerebrovascular disease 997 (4) 701 (3) 1,077 (5) 
Diabetes 2,490 (11) 2,150 (9) 3,293 (14) 
Gout consultation 5,048 (22) 6,315 (27) 4,295 (18) 
Hyperlipidaemia 3,340 (14) 2,928 (13) 3,979 (17) 
Hypertension 8,915 (38) 7,944 (34) 10,369 (44) 
Osteoarthritis  3,694 (16) 3,593 (15) 4,549 (19) 
PVD 256 (1) 322 (1) 436 (2) 
Renal disease 1,698 (7) 1,742 (7) 2,922 (13) 

Lifestyle factors    

Alcohol consumption    
   Ever drinker 16,397 (70) 17,432 (75) 17,317 (74) 
   Never drinker 809 (3) 644 (3) 943 (4) 
   Missing 6,125 (26) 5,255 (23) 5,071 (22) 
Body mass index    
   Normal  2,862 (12) 3,100 (13) 2,821 (12) 
   Overweight 8,013 (34) 8,083 (35) 7,946 (34) 
   Obese 6,638 (28) 6,688 (29) 7,901 (34) 
   Missing 5,818 (25) 5,460 (23) 4,663 (20) 
Smoking status    
   Ever smoker 12,424 (53) 12,410 (53) 13,480 (58) 
   Never smoker 7,079 (30) 7,397 (32) 6,929 (30) 
   Missing 3,828 (16) 3,524 (15) 2,922 (13) 
SU level    
   ≤360µmol/L 241 (1) 329 (1) 290 (1) 
   >360µmol/L 12,078 (52) 9,547 (41) 10,872 (47) 
   Missing 11,012 (47) 13,455 (58) 12,169 (52) 

Medication use    

Analgesics 6,949 (30) 6,110 (26) 7,691 (33) 
Colchicine 1,373 (6) 2,036 (9) 1,642 (7) 
Diuretics 7,069 (30) 4,573 (20) 6,944 (30) 
NSAIDS 12,961 (56) 13,456 (58) 9,855 (42) 
Cumulative allopurinol use* 0.2 (0.4) 1.3 (1.6) 4.9 (3.5) 

Number and percentage presented unless otherwise stated; *Mean (Standard deviation) presented for continuous 
covariates; Unit of analysis is intervals; CI: Confidence interval; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: 
Propensity score; SU: Serum urate 
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Table 8.20: Estimated treatment effect of allopurinol on renal disease and distribution of 
covariates within each PS subclass 

 
Subclass 3 
N=22,664 

Subclass 4 
N=22,665 

Subclass 5 
N=22,665 

Subclass 6 
N=22,664 

Hazard ratio (95% CI) 
Standard error 

0.46 (0.21, 1.00) 
0.18 

2.03 (1.61, 2.56) 
0.24 

1.14 (0.97, 1.34) 
0.09 

0.58 (0.42, 0.81) 
0.10 

Demographics     

Age* 64.0 (14.2) 61.8 (13.9) 61.0 (13.6) 64.8 (12.3) 
Sex: Female 4,169 (18.4) 3,531 (16) 3,218 (14) 3,695 (16) 
Deprivation* 8.9 (5.5) 9.1 (5.5) 9.3 (5.6) 5.4 (3.3) 

Comorbidities     

Anxiety 1,487 (7) 1,775 (8) 1,844 (8) 2,351 (10) 
Depression 1,624 (7) 1,977 (9) 2,314 (10) 2,719 (12) 
Cerebrovascular disease 979 (4) 781 (3) 803 (4) 1,269 (6) 
Coronary heart disease 4,568 (20) 3,922 (17) 3,850 (17) 6,044 (27) 
Diabetes 2,105 (9) 2,056 (9) 2,121 (9) 3,652 (16) 
Gout consultation 5,009 (22) 3,932 (17) 6,715 (30) 4,076 (18) 
Hyperlipidaemia 2,747 (12) 2,695 (12) 3,134 (14) 4,672 (21) 
Hypertension 7,498 (33) 7,049 (31) 7,630 (34) 10,531 (46) 
Osteoarthritis  2,982 (13) 3,021 (13) 3,245 (14) 4,841 (21) 
Peripheral vascular disease 443 (2) 425 (2) 394 (2) 610 (3) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 15,547 (69) 15,860 (70) 16,595 (73) 17,997 (79) 
   Never drinker 985 (4) 805 (4) 737 (3) 861 (4) 
   Missing 6,132 (27) 6,000 (26) 5,333 (24) 3,806 (17) 
Body mass index     
   Normal  3,468 (15) 3,073 (14) 2,931 (13) 2,842 (13) 
   Overweight 7,592 (33) 7,561 (33) 7,899 (35) 8,246 (36) 
   Obese 5,576 (25) 5,966 (26) 6,529 (29) 7,974 (35) 
   Missing 6,028 (27) 6,065 (27) 5,306 (23) 3,602 (16) 
Smoking status     
   Ever smoker 11,394 (50) 11,753 (52) 12,034 (53) 14,389 (63) 
   Never smoker 6,721 (30) 6,567 (29) 6,702 (30) 6,192 (27) 
   Missing 4,549 (20) 4,345 (19) 3,929 (17) 2,083 (9) 
SU level     
   ≤360µmol/L 174 (1) 389 (2) 308 (1) 255 (1) 
   >360µmol/L 8,187 (36) 9,885 (44) 9,773 (43) 10,582 (47) 
   Missing 14,303 (63) 12,391 (55) 12,584 (56) 11,827 (52) 

Medication use     

Analgesics 6,720 (30) 6,598 (29) 6,810 (30) 7,841 (35) 
Colchicine 1,059 (5) 1,369 (6) 2,189 (10) 1,532 (7) 
Diuretics 7,411 (33) 6,784 (30) 5,861 (26) 7,306 (32) 
NSAIDS 13,744 (61) 12,600 (56) 13,525 (60) 9,193 (41) 
Cumulative allopurinol use* 0.002 (0.05) 0.3 (0.6) 1.6 (1.8) 5.4 (3.3) 

Number and percentage presented unless otherwise stated; *Mean (Standard deviation) presented for continuous 
covariates; Unit of analysis is intervals; CI: Confidence interval; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: 
Propensity score; SU: Serum urate 
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8.6.1 Comparison of included and excluded intervals 

As intervals were excluded from outcome analysis due to no occurrence of outcome in the 

subclass(es) with the lowest PS amongst allopurinol intervals, the distribution of covariates were 

compared between these excluded intervals, and intervals that were included in outcome 

analysis. This was performed for target SU level, mortality, and coronary heart disease (as that 

analysis excluded the most number of intervals) (Table 8.21).  

For the analysis of target SU level, 75% of intervals were used in treatment effect estimation. 

Intervals that were excluded from outcome analysis included older patients, less likely to reside 

in poorer areas, and had lower prevalence of gout consultation and prescription for NSAIDS, 

higher prevalence of ever smokers, lower mean baseline SU level and cumulative allopurinol use, 

than intervals that were included for analysis.  

For the analysis of mortality, 75% of intervals were used in treatment effect estimation but in the 

analysis of coronary heart disease fewer intervals were analysed (60%). For both outcomes, 

excluded intervals contained more patients that were female, residing in poorer areas, had higher 

prevalence of normal BMI and SU level <360μmol/L, had lower prevalence of gout consultation, 

and fewer prescriptions for diuretics and NSAIDS, than intervals included for analysis. Similar 

comparisons between excluded and included intervals were also found in the analyses of gout 

hospitalisation, cerebrovascular disease, and renal disease (data not shown).   
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Table 8.21: Generalisability of results 

Outcome Target SU level Mortality Coronary heart disease 

 
Excluded intervals 

N=2,507 
Included intervals 

N=7,520 
Excluded intervals 

N=38,333 
Included intervals 

N=116,498 
Excluded intervals 

N=46,663 
Included intervals 

N=69,993 

Demographics     ,  

Age (Mean (SD)) 63.1 (13.2) 60.5 (14.0) 65.4 (14.3) 64.6 (13.7) 62.4 (14.3) 62.5 (13.7) 
Sex: Female 559 (22) 1,362 (18) 11,354 (29) 20,900 (18) 12,185 (26) 11,101 (16) 
Deprivation (Mean (SD)) 8.5 (5.1) 9.2 (5.7) 8.1 (5.5) 9.1 (5.5) 8.7 (5.5) 9.1 (5.6) 

Comorbidities       

Anxiety 225 (9) 483 (6) 5,486 (14) 9974 (9) 4,811 (10) 6,212 (9) 
Depression 262 (10) 593 (8) 7,026 (18) 11,862 (10) 6,232 (13) 7,049 (10) 
Cerebrovascular disease 124 (5) 208 (3) 2,481 (6) 6,248 (5) 1,594 (3) 2,775 (4) 
Coronary heart disease 561 (22) 1,456 (19) 8,310 (21) 27,038 (23) - - 
Diabetes 322 (13) 788 (10) 6,304 (16) 15,590 (13) 5,097 (11) 7,933 (11) 
Gout consultation 270 (11) 1,770 (24) 807 (2) 22,363 (19) 1,635 (4) 15,658 (22) 
Hyperlipidaemia 485 (19) 930 (12) 7,935 (20) 19,617 (17) 5,159 (11) 10,247 (15) 
Hypertension 1,036 (41) 2,513 (33) 15,597 (40) 47,152 (40) 13,279 (28) 27,228 (39) 
Osteoarthritis  474 (19) 1,110 (15) 8,105 (21) 20,418 (18) 6,854 (15) 11,836 (17) 
Peripheral vascular disease 65 (3) 142 (2) 1,342 (3) 3,171 (3) 1,019 (2) 1,014 (1) 
Renal disease 166 (7) 606 (8) 3,560 (9) 12,021 (10) 2,073 (4) 6,362 (9) 
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Table 8.21 continued: 

Lifestyle factors       

Alcohol consumption       
   Ever drinker 1,878 (75) 5,554 (74) 30,800 (79) 85,879 (74) 32,812 (70) 51,146 (73) 
   Never drinker 134 (5) 305 (4) 2,165 (6) 4,790 (4) 2,508 (5) 2,396 (3) 
   Missing 495 (20) 1,661 (22) 5,868 (15) 25,829 (22) 11,343 (24) 16,451 (24) 
Body mass index       
   Normal  424 (17) 900 (12) 9,980 (26) 16,622 (14) 10,324 (22) 8,783 (13) 
   Overweight 860 (34) 2,565 (34) 14,101 (36) 40,810 (35) 15,225 (33) 24,042 (34) 
   Obese 823 (33) 2,324 (31) 9,474 (24) 34,247 (29) 10,105 (22) 21,227 (30) 
   Missing 400 (16) 1,731 (23) 5,278 (14) 24,819 (21) 11,009 (24) 15,941 (23) 
Smoking status       
   Ever smoker 1,570 (63) 4,242 (56) 25,195 (65) 66,327 (57) 24,863 (53) 38,314 (55) 
   Never smoker 754 (30) 2,050 (27) 11,337 (29) 32,933 (28) 14,717 (32) 21,405 (31) 
   Missing 183 (7) 1,228 (16) 2,301 (6) 17,238 (15) 7,083 (15) 10,274 (15) 
SU level (Mean (SD)) 454.3 (49.8) 504.5 (2.0)     
   ≤360µmol/L - - 7,719 (20) 1,386 (1) 6,147 (13) 860 (1) 
   >360µmol/L - - 5,833 (15) 49,163 (42) 7,701 (17) 32,497 (46) 
   Missing - - 25,281 (65) 65,949 (57) 32,815 (70) 36,636 (52) 

Medication use       

Analgesics 634 (25) 2,393 (32) 10,439 (27) 38,554 (33) 11,132 (24) 20,750 (30) 
Colchicine 36 (1) 712 (9) 254 (1) 7,825 (7) 418 (1) 5,051 (7) 
Diuretics 517 (21) 2,282 (30) 6,330 (16) 38,831 (33) 8,281 (18) 18,586 (27) 
NSAIDS 1,044 (42) 4,306 (57) 9,005 (23) 57,788 (50) 15,510 (33) 36,272 (52) 
Cumulative allopurinol use (Mean (SD)) 0 (0) 1.2 (2.0) 0 (0) 1.9 (3.0) 0 (0) 2.1 (3.0) 

Number of percentage presented unless otherwise stated; NSAIDS: Non-steroidal-anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 
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8.7  Sensitivity analysis: impact of missing data 

The main analysis was repeated by performing complete case analysis in the analysis of target SU 

level and mortality. For target SU level, 52% (N=909) had complete data and for mortality 21% 

(N=3,609) had complete data.  

In the analysis of target SU level, allopurinol intervals had higher prevalence of coronary heart 

disease, gout consultation, renal disease, had higher mean baseline SU level, more prescriptions 

for analgesics, diuretics and NSAIDS, and longer mean cumulative allopurinol use than non-

allopurinol intervals, where SMD >0.10 (Table 8.22). This analysis identified the same imbalanced 

covariates as the main analysis but had also found imbalance in coronary heart disease and 

colchicine between treatment groups.  

For mortality, allopurinol intervals contained patients who were older, had higher prevalence of 

coronary heart disease, diabetes, gout consultation, hypertension, renal disease, obesity, SU level 

>360μmol/L, more prescriptions for analgesics, colchicine and diuretics, and longer mean 

previous cumulative allopurinol use than non-allopurinol intervals where SMD >0.10 (Table 8.22). 

Approximately the same number of imbalanced covariates identified here was also observed in 

the main analysis, albeit with larger SMD.   

Distribution of PS between treatment groups is shown in Table 8.23 alongside with the number 

of subclasses required to achieve overall covariate balance across subclasses, and imbalanced 

covariates that remained within subclasses.  

As the main analysis, subclass 1 had no occurrence of either outcome amongst allopurinol 

intervals thus that subclass was excluded from treatment effect estimation. In the analysis of 

target SU level, four PS subclasses were sufficient to achieve overall covariate balance between 
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treatment groups across subclasses. Within subclasses, there were a higher number of 

imbalanced covariates than was observed in the main analysis. For example, in subclass 3, age 

was now imbalanced between treatment groups when previously it was balanced in the main 

analysis.  

For mortality, six subclasses were required to achieve overall covariate balance, whereas in the 

main analysis five subclasses were sufficient. In contrast, this analysis found a fewer number of 

imbalanced covariates between treatment groups within subclasses compared with the main 

analysis. For example, in subclass 2, in this analysis there were 7 imbalanced covariates compared 

with 12 in the main analysis.  

The estimated HRs are presented in Table 8.24. Allopurinol use had higher chance of reaching 

target SU level (5.31 (3.67, 7.67)), and the estimated HR was larger than the HR estimated in the 

main analysis (5.31 vs. 4.89). On the other hand, no association was observed between allopurinol 

and mortality (1.12 (0.89, 1.41)), the same conclusion reached in the main analysis, although 

estimated HR was larger (1.12 vs. 0.97).  

Standard errors were larger in this analysis compared with the main analysis due to smaller 

sample size (target SU level: 1.00 vs. 0.66; mortality: 0.13 vs. 0.05).  
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Table 8.22: Distribution of covariates by treatment for target SU level and mortality 

 Target SU level Mortality 

 
Non-allopurinol 

intervals 
N=3,674 

Allopurinol 
intervals 
N=287 

No allopurinol 
N=21,946 

Allopurinol 
N=1,026 

Demographics     

Age (Mean (SD)) 61.0 (13.5)  61.8 (13.4) 64.4 (13.6) 66.2 (12.9) 
Sex: Female 731 (20) 303 (20) 5,732 (26) 2,466 (23) 
Deprivation (Mean (SD)) 9.0 (5.5) 9.4 (5.9) 9.1 (5.6) 9.5 (5.8) 

Comorbidities     

Anxiety 299 (8) 132 (9) 2508 (11) 1247 (11) 
Depression 365 (10) 117 (8) 2751 (13) 1542 (14) 
Cerebrovascular disease 116 (3) 49 (3) 1123 (5) 784 (7) 
Coronary heart disease 827 (23) 436 (28) 5805 (26) 3608 (33) 
Diabetes  473 (13) 218 (14) 3340 (15) 2164 (20) 
Gout consultation 683 (19) 378 (25) 2949 (13) 2215 (20) 
Hyperlipidaemia 668 (18) 241 (16) 4479 (20) 2554 (23) 
Hypertension 1494 (41) 629 (41) 9484 (43) 5763 (53) 
Osteoarthritis  572 (16) 294 (19) 4260 (19) 2601 (24) 
Peripheral vascular disease 107 (3) 44 (3) 627 (3) 443 (4) 
Renal disease 250 (7) 178 (12) 2097 (10) 1902 (17) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 3490 (95) 1475 (96) 20811 (95) 10583 (97) 
   Never drinker 184 (5) 59 (4) 1135 (5) 360 (3) 
Body mass index     
   Normal 686 (19) 238 (16) 5074 (23) 1892 (17) 
   Overweight 1663 (45) 695 (45) 9731 (44) 4636 (42) 
   Obese 1325 (36) 601 (39) 7141 (33) 4415 (40) 
Smoking status     
   Ever smoker 2507 (68) 1008 (66) 15765 (72) 8150 (74) 
   Never smoker 1167 (32) 526 (34) 6181 (28) 2793 (26) 
SU level 484.4 (65.3)* 514.2 (76.3)*   
   ≤360µmol/L - - 4477 (20) 324 (3) 
   >360µmol/L - - 17469 (80) 10619 (97) 

Medication use     

Analgesics 1116 (30) 587 (38) 7096 (32) 4474 (41) 
Colchicine 233 (6) 188 (12) 994 (5) 926 (8) 
Diuretics 1032 (28) 550 (36) 6162 (28) 4263 (39) 
NSAIDS 1925 (52) 827 (54) 9083 (41) 4764 (44) 
Cumulative allopurinol use 0.3 (0.8) 2.2 (2.5) 0.4 (1.2) 4.0 (3.4) 

N (%) presented unless otherwise stated; Cells highlighted in yellow indicate SMD >0.10; NSAIDS: Non-steroidal anti-
inflammatory drugs; SD: Standard deviation; SU: Serum urate 
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Table 8.23: Distribution of PS, number of subclasses and imbalanced covariates within PS 
subclasses 

Outcome 
PS Median (Range) 

Allopurinol 
No allopurinol 

Number of 
subclassesa 

Smallest cellb Imbalanced covariates (SMD >0.10) 

Target SU level 
0.03 (<0.01, 0.97) 
0.82 (<0.01, 0.99) 

4 
2/1,534 
(<1%) 

S1: N/A 
S2: Deprivation, diabetes, 
hyperlipidaemia, renal disease, alcohol 
consumption, BMI, smoking status, SU 
level, analgesics, diuretics, NSAIDS, 
cumulative allopurinol use 
S3: Age, smoking status, cumulative 
allopurinol use 
S4: Age, sex, deprivation, diabetes, 
gout consultation, BMI, smoking 
status, SU level, analgesics, colchicine, 
NSAIDS 

Mortality 
0.35 (0.02, 0.75) 
0.26 (0.01, 0.69) 

6 
30/1,026 

(3%) 

S1: N/A 
S2: Age, coronary heart disease, 
diabetes, gout consultation, 
hypertension, diuretics, SU level 
S3: Gout consultation, SU level 
S4: Gout consultation, renal disease, 
analgesics, colchicine, SU level  

N/A: Balance not evaluated as this subclass was not used in treatment effect estimation due to no occurrence of 
outcome within allopurinol intervals; BMI: Body mass index; NSAIDS: Non-steroidal anti-inflammatory drugs; S: 
Subclass; PS: Propensity score; SU: Serum urate 

 

Table 8.24: Treatment effect estimation in complete case analysis 

Outcome 
No allopurinol 

N (%) 
Allopurinol 

N (%) 

Unadjusted 
Hazard ratio (95% CI) 

Standard error 

Adjusted 
Hazard Ratio (95% CI) 

Standard error 

SU level     

   Target level not met 2,281 (96) 1,285 (84) 
4.51 (3.51, 5.79) 

0.58 
5.31 (3.67, 7.67) 

1.00 
   Target level met 93 (4) 247 (16) 

Mortality     

   Alive 13,323 (97) 10,554 (96) 
1.25 (1.08, 1.44) 

0.09 
1.12 (0.89, 1.41) 

0.13 
   Died 401 (3) 388 (4) 

CI: Confidence interval; SU: Serum urate 
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8.8 Summary 

Use of time-varying PS subclassification had shown allopurinol increased the chance of reaching 

target SU level and increased risk of peripheral vascular disease. Treatment effect estimates for 

gout hospitalisation, cerebrovascular disease, coronary heart disease, and renal disease differed 

across PS subclasses; allopurinol was either shown to be protective and/or increased the risk of 

adverse outcome in certain subclasses. Although treatment effect estimates for target SU level 

and mortality from complete case analysis and the main analysis had the same conclusions, the 

magnitude of effects differed.  

 

8.8.1 Comparison with baseline PS subclassification 

Compared with treating allopurinol as a time-invariant measure, accounting for its possible 

change in the follow-up resulted in doubling of the HR for target SU level and peripheral vascular 

disease. As allopurinol has a direct effect on SU level, patients who may have reached target SU 

level later on during follow-up may have been due to being prescribed allopurinol near that time, 

which would not have been captured in baseline analysis. Correctly attributing reaching target SU 

to patients prescribed allopurinol later on, may have caused the estimated HR to increase. It is 

less clear why treatment effect had doubled for peripheral vascular disease. Increase in treatment 

effect of this magnitude was not observed for the other outcomes. For both outcomes, standard 

errors were much larger in time-varying PS subclassification than in baseline analysis.  

Treatment effect was almost borderline statistically significant for joint replacement in both 

baseline and time-varying PS subclassification however, the direction of the HRs differed (1.15 in 

baseline analysis vs. 0.77 in time-varying analysis). There is the possibility that over time, as 
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patients continue taking allopurinol, their SU level decreases promoting crystal dissolution and 

tophi clearance, which may prevent further joint damage.  

Time-varying PS subclassification had shown allopurinol use was not associated with premature 

mortality. The estimated HR was closer to the null value than the HR estimated from baseline PS 

subclassification, with both methods yielding similar standard errors. 

A greater number of outcomes (gout hospitalisation, cerebrovascular disease, coronary heart 

disease, and renal disease), had subclass-specific treatment effect estimates that were not 

homogenous across subclasses, unlike baseline analysis where subclass-specific treatment effect 

estimates were not homogenous for gout hospitalisation only. Within time-varying PS 

subclassification, allopurinol was shown to be both protective and increases the risk of coronary 

heart disease and peripheral vascular disease, whereas in baseline analysis allopurinol increased 

the risk of coronary heart disease. Allopurinol was associated with gout hospitalisation in two of 

the four subclasses with estimated HR ranging between 1.84 – 2.70, that had similar magnitude 

as the HRs obtained from baseline analysis that ranged between 1.46 – 2.46.  

 

8.8.2 Strengths and limitations 

The strength of PS subclassification is that in theory it is a straightforward and intuitive approach 

to apply. However, in practice, issues were encountered that were not apparent when baseline 

PS subclassification was performed.  

The main issue was that the positivity assumption was near violated, i.e., the PS were extremely 

close to zero, for the majority of non-users thus the PS distribution was heavily skewed; this was 

not observed for allopurinol users, hence common support was poor. Treatment effect estimation 
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could not be performed in the first subclass (indicating low propensity of treatment) as it 

contained a small number of allopurinol users who did not have any of the outcomes. Use of 

interaction terms and non-linear terms in PS modelling improved common support however, the 

PS distribution remained skewed and dissimilar between treatment groups. Alternative 

approaches to increase the number of outcomes within allopurinol intervals in the first subclass 

by removing patients outside of the regions of common support prior to subclassification, or 

creating PS subclasses based on the PS distribution for allopurinol intervals only, did not work 

(data not shown).  

Use of random intercepts in PS estimation may have been one reason for near violation of the 

positivity assumption. It is known that random effects logistic model has better discrimination 

ability (i.e., higher and lower PS estimated for allopurinol users and non-users respectively) than 

logistic regression omitting random effects (Bouwmeester et al., 2013). This discrimination may 

result in no overlap of PS between treatment groups and lead to large standard errors in 

treatment effect estimation. As an exploratory analysis (data not shown), omitting random 

intercept in PS estimation caused the PS distribution to be normally distributed in both allopurinol 

users and non-users. 

The optimal approach suggested by Leon (2011b) is to account for clustering effects of repeated 

measurements in PS estimation and treatment effect estimation via random effects. However, 

random effects in outcome analysis could not be used as the complementary log-log model did 

not converge. Therefore, random effects were omitted and robust standard errors accounting for 

clustering effects were instead estimated. Omitting random effects from PS estimation as well as 

in outcome analysis may potentially bias treatment effect (Leite, 2016, Li et al., 2013).  
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Due to poor common support and with some subclasses omitted from outcome analysis, 

generalisability of results was affected. Generally, observations excluded from analysis appeared 

to be from healthier patients as they had lower prevalence of gout consultations and 

hypertension, less prescriptions for diuretics and NSAIDS, and SU level was acceptable (<360 

μmol/L). These patients did not all the indications for allopurinol treatment which may be why 

their PS were close to zero.  

 

8.8.3 Conclusions 

To conclude, PS subclassification did not perform well in this dataset. There was poor common 

support resulting in observations removed from outcome analysis affecting generalisability, and 

not all of patient follow-up was modelled in outcome analysis which is far from ideal.  

Alternative methods such as MSM were fitted in the next chapter to see how well fitting these 

models work in practice.  
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9 Modelling simple mechanisms of allopurinol via MSM 

In this chapter, marginal structural models (MSM) were used to model the effect of treatment on 

outcome accounting for treatment and covariate histories. It was assumed the association 

between covariates and treatment were constant regardless of treatment history i.e., whether 

patients were initiating or continuing with treatment. As alluded to in Section 6.4, making this 

assumption led to MSM not performing well. Therefore, analysis approach and results are 

presented, for demonstration purposes, for mortality only. The study sample described in Section 

8.1 was used in this chapter.  

 

9.1 Associations between covariates, allopurinol, and mortality 

Table 9.1 shows the associations between covariates, treatment, and outcome. The majority of 

covariates with the exception of anxiety, gout consultation and hyperlipidaemia were associated 

with mortality. Diuretic use had the strongest association (hazard ratio (HR) 4.13), followed by 

renal disease (3.34), and cerebrovascular and peripheral vascular diseases (3.01). All covariates 

apart from non-steroidal anti-inflammatory drugs (NSAIDS) were strongly associated with 

allopurinol with odds ratios (OR) ranging from 0.25 to 3.93, with serum urate (SU) level having 

the largest association (OR 254.80). Covariates that were associated with both mortality and 

allopurinol were included in the propensity score (PS) model.  

Standardised mean difference (SMD) for covariates between treatment groups in each interval 

and overall are shown in Table 9.2. The majority of covariates were imbalanced between 

treatment groups in at least one follow-up interval (SMD >0.10) with the exception of anxiety, 

depression, cerebrovascular disease and peripheral vascular disease. The largest differences 
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between treatment groups over time was observed for cumulative allopurinol use and baseline 

SU level with SMD >0.25 indicating severe imbalance.  

Table 9.1: Associations between covariates, allopurinol, and outcome 

 Association with  
mortality 

HR (95% CI) 

Association with 
allopurinol 
OR (95% CI) 

Covariates 
considered for 

weight estimation 

Demographics    

Age 1.10 (1.10, 1.10) 1.12 (1.12, 1.13) X 
Sex: Female 1.73 (1.63, 1.84) 0.59 (0.50, 0.70) X 
Deprivation 1.02 (1.01, 1.02) 1.03 (1.02, 1.05) X 

Comorbidities    

Anxiety 1.04 (0.95, 1.15) 2.61 (2.31, 2.95)  
Depression 1.27 (1.17, 1.38) 1.91 (1.71, 2.13) X 
Cerebrovascular disease 3.01 (2.78, 3.26) 2.76 (2.39, 3.20) X 
Coronary heart disease 2.31 (2.18, 2.45) 3.52 (3.22, 3.85) X 
Diabetes  1.68 (1.57, 1.80) 2.70 (2.46, 2.98) X 
Gout consultation 1.01 (0.93, 1.09) 2.03 (1.93, 2.13)  
Hyperlipidaemia 1.00 (0.93, 1.08) 3.33 (3.07, 3.62)  
Hypertension 1.25 (1.18, 1.33) 3.56 (3.33, 3.80) X 
Osteoarthritis  1.50 (1.40, 1.60) 3.04 (2.79, 3.31) X 
Peripheral vascular disease 3.01 (2.71, 3.33) 2.44 (1.98, 2.99) X 
Renal disease 3.34 (3.10, 3.59) 3.93 (3.63, 4.27) X 

Lifestyle factors    

Alcohol consumption   X 
   Ever drinker 1.00 1.00  
   Never drinker 1.90 (1.71, 2.11) 0.44 (0.37, 0.54)  
   Missing 1.11 (1.03, 1.19) 0.36 (0.33, 0.39)  
Body mass index   X 
   Normal 1.00 1.00  
   Overweight 0.57 (0.53, 0.62) 1.30 (1.18, 1.42)  
   Obese 0.44 (0.40, 0.48) 2.14 (1.92, 2.40)  
   Missing 0.64 (0.60, 0.70) 0.52 (0.46, 0.58)  
Smoking status   X 
   Ever smoker 1.00 1.00  
   Never smoker 0.84 (0.79, 0.90) 0.47 (0.43, 0.51)  
   Missing 0.84 (0.76, 0.92) 0.25 (0.23, 0.27)  
SU level   X 
   ≤360µmol/L 1.00 1.00  
   >360µmol/L 1.46 (1.26, 1.69) 254.80 (175.30, 370.35)  
   Missing 1.61 (1.41, 1.89) 43.92 (30.53, 63.19)  

Medication use    

Analgesics 2.49 (2.36, 2.63) 1.59 (1.50, 1.68) X 
Colchicine 1.53 (1.38, 1.70) 3.00 (2.76, 3.26) X 
Diuretics 4.13 (3.90, 4.38) 1.94 (1.81, 2.08) X 
NSAIDS 0.66 (0.62, 0.70) 1.01 (0.97, 1.06) X 
Cumulative allopurinol use 1.02 (1.01, 1.04) 1.45 (1.43, 1.46) X 

CI: confidence interval; HR: Hazard ratio; NSAIDS: Non-steroidal anti-inflammatory drugs; OR: Odds ratio; SD: 

Standard deviation; SU: Serum urate; X indicates which covariates were associated with both mortality and 

allopurinol, thus were included in the propensity score model.  
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Table 9.2: SMD for each covariate between treatment groups over time 

Follow-up 
year 

Age Sex Deprivation Anxiety Depression 
Cerebrovascular 

disease 
Coronary 

heart disease 
Diabetes 

Gout 
consultation 

Hyperlipidaemia 

1 0.08 0.04 0.11 -0.02 -0.01 0.04 0.11 0.06  <0.01 

2 0.11 0.02 0.09 -0.01 0.01 0.05 0.15 0.09 0.70 0.05 

3 0.09 -0.02 0.08 -0.03 0.02 0.04 0.16 0.08 0.36 0.05 

4 0.07 -0.04 0.07 -0.02 <0.01 0.02 0.14 0.07 0.29 0.03 

5 0.06 -0.06 0.07 -0.03 -0.03 0.03 0.13 0.08 0.23 0.07 

6 0.06 -0.06 0.05 -0.04 -0.03 0.03 0.11 0.08 0.18 0.06 

7 0.03 -0.09 0.04 -0.04 -0.05 0.01 0.10 0.07 0.16 0.05 

8 0.04 -0.13 0.03 -0.04 -0.08 <0.01 0.12 0.06 0.14 0.06 

9 0.03 -0.14 0.03 -0.05 -0.08 0.04 0.10 0.06 0.13 0.06 

10 0.01 -0.14 0.03 -0.06 -0.09 0.04 0.10 0.07 0.09 0.07 

11 0.01 -0.16 0.02 -0.05 -0.08 <0.01 0.09 0.05 0.09 0.07 

12 -0.02 -0.17 0.02 -0.04 -0.08 0.01 0.09 0.02 0.08 0.07 

13 -0.08 -0.19 0.04 -0.07 -0.07 -0.04 0.04 0.03 0.07 0.07 

14 -0.06 -0.23 0.06 -0.04 -0.05 <0.01 0.07 0.03 0.14 0.07 

15 -0.10 -0.24 0.08 <0.01 -0.04 <0.01 0.09 0.03 0.16 0.07 

16 -0.06 -0.29 0.12 0.02 -0.02 0.09 0.13 0.10 0.17 0.12 

17 -0.11 -0.26 0.29 0.07 -0.06 0.09 0.20 0.14 0.12 0.13 

Overall 0.08 -0.09 0.06 -0.01 -0.01 0.04 0.14 0.10 0.21 0.11 
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Table 9.2 continued: 

     Alcohol consumption Body mass index 

Follow-
up year 

Hypertension Osteoarthritis  
Peripheral 

vascular disease 
Renal 

disease 
Ever 

drinker 
Never 

drinker 
Missing Normal Overweight Obese Missing 

1 0.03 0.10 0.05 0.12 0.04 0.02 -0.05 0.01 -0.01 0.09 -0.07 

2 0.08 0.09 0.03 0.17 0.06 0.03 -0.07 0.03 -0.03 0.11 -0.09 

3 0.09 0.08 0.03 0.17 0.10 0.02 -0.10 0.06 -0.05 0.14 -0.13 

4 0.11 0.07 0.01 0.18 0.07 0.02 -0.08 0.05 -0.06 0.12 -0.10 

5 0.13 0.06 <0.01 0.18 0.09 -0.02 -0.08 0.03 -0.09 0.14 -0.09 

6 0.13 0.05 0.02 0.19 0.08 0.01 -0.08 0.03 -0.10 0.16 -0.12 

7 0.15 0.03 0.01 0.20 0.09 <0.01 -0.10 0.03 -0.11 0.15 -0.11 

8 0.17 0.04 <0.01 0.18 0.11 -0.04 -0.09 0.04 -0.13 0.16 -0.12 

9 0.17 0.04 0.01 0.20 0.11 -0.04 -0.10 0.05 -0.16 0.17 -0.12 

10 0.16 0.04 <0.01 0.18 0.11 -0.04 -0.10 0.01 -0.16 0.18 -0.10 

11 0.14 0.04 0.01 0.17 0.12 -0.06 -0.10 0.02 -0.16 0.15 -0.07 

12 0.16 0.03 -0.01 0.17 0.11 -0.05 -0.09 0.01 -0.16 0.15 -0.06 

13 0.14 0.04 -0.01 0.19 0.14 -0.06 -0.12 0.01 -0.20 0.18 -0.06 

14 0.14 0.04 0.02 0.18 0.19 -0.07 -0.17 0.01 -0.25 0.22 -0.08 

15 0.16 0.07 0.06 0.11 0.20 -0.08 -0.18 -0.01 -0.25 0.23 -0.05 

16 0.20 0.10 0.10 0.13 0.21 -0.07 -0.20 0.07 -0.30 0.23 -0.12 

17 0.23 0.14 0.06 0.14 0.40 -0.10 -0.39 <0.01 -0.25 0.32 -0.26 

Overall 0.18 0.10 0.02 0.22 0.18 -0.02 0.17 0.07 -0.09 0.19 -0.18 
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Table 9.2 continued:  

 Smoking status SU level     

Follow-up 
year 

Ever 
smoker 

Never 
smoker 

Missing ≤360µmol/L >360µmol/L Missing Analgesics Colchicine Diuretics NSAIDS 
Cumulative 

allopurinol use 

1 0.03 -0.05 0.02 -0.28 0.39 -0.27 0.19 0.13 0.25 0.30 - 

2 0.08 -0.05 -0.03 -0.29 0.35 -0.23 0.23 0.30 0.28 -0.03 2.12 

3 0.06 -0.02 -0.04 -0.30 0.32 -0.19 0.19 0.25 0.24 0.24 2.35 

4 0.04 -0.03 -0.01 -0.31 0.31 -0.18 0.16 0.20 0.22 0.13 2.29 

5 0.05 -0.02 -0.04 -0.31 0.30 -0.16 0.14 0.20 0.23 0.09 2.32 

6 0.07 -0.04 -0.05 -0.32 0.29 -0.15 0.15 0.18 0.22 0.05 2.38 

7 0.06 -0.02 -0.06 -0.30 0.28 -0.14 0.14 0.14 0.22 0.04 2.31 

8 0.05 -0.02 -0.08 -0.33 0.30 -0.15 0.10 0.12 0.18 0.01 2.31 

9 0.08 -0.04 -0.11 -0.34 0.29 -0.14 0.11 0.14 0.17 -0.02 2.28 

10 0.06 -0.02 -0.12 -0.33 0.30 -0.16 0.07 0.13 0.16 -0.02 2.30 

11 0.07 -0.05 -0.08 -0.33 0.28 -0.13 0.06 0.08 0.18 -0.01 2.26 

12 0.07 -0.05 -0.10 -0.33 0.31 -0.16 0.08 0.13 0.15 -0.01 2.23 

13 0.08 -0.06 -0.10 -0.31 0.29 -0.15 0.12 0.12 0.12 0.02 2.30 

14 0.12 -0.10 -0.09 -0.32 0.30 -0.15 0.10 0.14 0.10 0.02 2.24 

15 0.14 -0.12 -0.11 -0.27 0.27 -0.14 0.04 0.16 0.06 <0.01 2.13 

16 0.18 -0.14 -0.17 -0.15 0.25 -0.18 0.10 0.16 0.06 -0.11 2.05 

17 0.27 -0.21 -0.23 -0.14 0.24 -0.19 <0.01 -0.02 0.07 -0.23 2.13 

Overall 0.13 -0.04 -0.13 -0.31 0.30 -0.16 0.14 0.17 0.19 0.03 1.41 

Yellow cells indicate absolute SMD >0.10; Red cells indicate absolute SMD >0.25; NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: Standardised mean difference; SU: 

Serum urate 
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9.2 Propensity score model and treatment effect estimation 

The PS main effects model initially included main effects of covariates and linear functional form 

of continuous covariates. Unstabilised weights had an extremely skewed distribution with mean 

(standard deviation (SD)) 4.64*1012 (1.16*1015), median (interquartile range (IQR)) 3.04 (1.83, 

26.20), and range 1.03, 3.95*1017. Consequently, stabilised weights were estimated instead. 

Figure 9.1 illustrates the distribution of the stabilised weights that was less skewed than 

unstabilised weights (but was still skewed), with mean (SD) weight 1.60 (55.9), median (IQR) 1.0 

(0.6, 1.2), and range 4*10-5 to 20,893.76. For the first ten years of follow-up, mean weight was 

approximately 1 and SD was constant, but after 10 years of follow-up, mean weight and SD 

increased. In contrast, the median weight was initially approximately 1 for the first few years of 

follow-up, and thereafter decreased over time with the IQR widening (Table 9.3).  

Figure 9.1: Distribution of stabilised weights 
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Table 9.3: Distribution of estimated weights over time 

Follow-up 
interval 

Mean (SD) Median (IQR) Range 

1 0.98 (0.21) 1.04 (1.00, 1.09) 0.21, 1.80 
2 1.02 (0.41) 1.09 (0.95, 1.24) 0.06, 3.09 
3 1.03 (0.49) 1.09 (0.86, 1.28) 0.02, 5.47 
4 1.02 (0.54) 1.07 (0.70, 1.27) 0.01, 6.71 
5 1.00 (0.59) 1.03 (0.64, 1.25) 0.01, 11.67 
6 0.98 (0.67) 0.98 (0.61, 1.21) 0.01, 24.61 
7 0.97 (0.70) 0.93 (0.59, 1.16) 0.01, 13.57 
8 0.98 (0.84) 0.86 (0.57, 1.11) 0.01, 14.29 
9 1.01 (1.12) 0.80 (0.53, 1.07) 0.01, 25.43 
10 1.09 (1.70) 0.74 (0.48, 1.02) 0.01, 53.69 
11 1.29 (3.35) 0.67 (0.44, 0.98) 0.01, 194.56 
12 1.68 (5.86) 0.62 (0.39, 0.95) 2.35*10-3, 280.06 
13 2.37 (9.62) 0.57 (0.35, 0.92) 6.00*10-4, 276.42 
14 3.30 (15.04) 0.52 (0.32, 0.91) 1.36*10-4, 369.68 
15 6.75 (38.45) 0.47 (0.30, 1.01) 1.62*10-4, 875.40 
16 17.17 (176.03) 0.43 (0.28, 1.17) 1.89*10-4, 5469.65 
17 73.99 (967.43) 0.39 (0.21, 1.31) 3.50*10-5, 20893.76 

IQR: Interquartile range; SD: Standard deviation 

 

The unadjusted HR in the unweighted study sample was 1.19 (1.12, 1.26) with standard error 

0.03. The treatment effect was then estimated in the weighted study sample and had shown 

allopurinol reduced risk of premature mortality by 22%; treatment effect was then adjusted for 

baseline covariates and cumulative allopurinol use, and there was little change in the estimated 

HR however standard error increased from 0.20 to 0.34 (Table 9.4).  

Weights were re-estimated by restricting the PS model to only include covariates with SMD > 0.10 

in at least half the follow-up intervals (Table 9.2). These covariates were sex, coronary heart 

disease, hypertension, renal disease, body mass index (BMI), baseline SU level, analgesics, 

colchicine, diuretics and cumulative allopurinol use. Compared with the main effects PS model, 

variability of weights was smaller although extreme weights remained; estimated HR was more 

conservative and standard error was smaller.  
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Table 9.4: Distribution of weights and treatment effect of allopurinol 

PS model 
Mean (SD)  

Range  
Median (IQR)  

Unadjusted MSM  
HR (95% CI) 

Standard error 

*Adjusted MSM  
HR (95% CI) 

Standard error 

Main effects model 
1.55 (55.90) 

3.50, 20893.76 
1.00 (0.55, 1.17) 

0.78 (0.52, 1.15) 
0.20 

0.77 (0.39, 1.51) 
0.34 

Restricted main 
effects model 

1.44 (16.33) 
4.88*10-5, 4468.60 

1.00 (0.56, 1.16) 
0.77 (0.60, 0.97) 

0.12 
0.85 (0.55, 1.31) 

0.22 

Main effects propensity score model included age, sex, deprivation, depression, cerebrovascular disease, coronary 

heart disease, diabetes, hypertension, osteoarthritis, peripheral vascular disease, renal disease, alcohol 

consumption, BMI, smoking status, baseline SU level, analgesics, colchicine, diuretics, NSAIDS, and cumulative 

allopurinol use; Restricted main effects model included sex, coronary heart disease, hypertension, renal disease, BMI, 

baseline SU level, analgesics, colchicine, diuretics and previous cumulative allopurinol use; *Adjusted for cumulative 

allopurinol use and baseline covariates; CI: Confidence interval; HR: Hazard ratio; IQR: Interquartile range; MSM: 

Marginal structural models; SD: standard deviation 

 

Based on the main effects PS model, attempts were made to reduce the variability of weights, 

i.e., reducing standard deviation. Inclusion of fractional polynomial (FP) terms for continuous 

covariates and interaction terms were considered, and whether there were problematic 

covariates that increased weight variability.  

 

9.2.1 Fractional polynomials 

Non-linear functions of continuous covariates were included in the PS model (Table 9.5). Use of 

FP1 terms (model specification 2) lowered weight SD to 4.31 from 55.90 that was obtained from 

the model specification 1 (the main effects PS model with linear terms). Use of FP2 terms (model 

specification 3) yielded higher weight SD of 40.06. Model specification 4 identified cumulative 

allopurinol use with FP2 terms and linear terms for the remaining continuous covariates reduced 

SD of weights the most (3.69). Despite improvements in reducing weight variability, extreme 

weights remained present although they were considerably smaller. 

The estimated HRs differed across the different PS model specifications. Compared with model 

specification 1, model specification 4 estimated a stronger unadjusted HR (0.68 vs. 0.78) and had 

the smallest standard error (0.08 vs. 0.20). Adjustment for baseline covariates and cumulative 



294 
 

allopurinol use in the Cox model estimated similar HRs as the unadjusted HR in model 

specifications 1 and 2 however, in model specifications 3 and 4, the HRs had become stronger. 

Model specification 4 was retained (as estimated weights were the least variable) and backwards 

selection was performed to identify problematic covariates in PS estimation.     
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Table 9.5: Distribution of weights and re-estimation of treatment effect of allopurinol 

 
PS model specification 

Mean (SD) 
weight 

Median (IQR) 
weight 

Weight range 
Unadjusted MSM  

HR (95% CI) 
Standard error 

*Adjusted MSM  
HR (95% CI) 

Standard error 

1 Main effects model 
+ linear terms for age, deprivation, cumulative 
allopurinol use, follow-up time 

1.55 (55.90) 1.00 (0.55, 1.17) 3.55*10-5, 20893.76 
0.78 (0.52, 1.15) 

0.20 
0.77 (0.39, 1.51) 

0.34 

2 Main effects model 
+ FP1 terms for deprivation(0), cumulative allopurinol 
use(-2) 

+ linear terms for age, follow-up time 

1.40 (4.31) 0.87 (0.65, 1.16) 9.11*10-7, 437.06 
0.64 (0.53, 0.78) 

0.10 
0.63 (0.52, 0.76) 

0.10 

3 Main effects model 
+ FP2 terms for deprivation(-2, 1), cumulative 
allopurinol use(-2, -1), age(3, 3), follow-up time(-1, 0) 

1.40 (40.06) 0.95 (0.68, 1.15) 8.46*10-5, 13064.98 
0.80 (0.67, 0.97) 

0.09 
0.47 (0.58, 0.94) 

0.13 

4 Main effects model 
+ linear terms for age, deprivation, follow-up time 
+ cumulative allopurinol use(-2, -1) 

1.12 (3.69) 0.97 (0.83, 1.10) 5.07*10-4, 730.51 
0.68 (0.58, 0.79) 

0.08 
0.57 (0.44, 0.72) 

0.13 

*Adjusted for cumulative allopurinol use and baseline covariates. Values in brackets (column 2) indicated the fractional polynomial terms used in PS model specification; CI: 
confidence interval; FP1: fractional polynomial terms of dimension 1; FP2: fractional polynomial terms of dimension 2; HR: Hazard ratio; IQR: Interquartile range; MSM: Marginal 
structural models; SD: Standard deviation
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9.2.2 Problematic covariates 

Backwards selection to identify problematic covariates was next undertaken, which involved by 

first removing covariates one by one from the PS model and identifying which covariate reduced 

weight variability i.e., SD, the most. That covariate was then removed the PS model, and the 

process was repeated to identify the next covariate that reduced weight variability the most, and 

so on.  

The weight distribution and treatment effect estimates are given in Table 9.6. Renal disease was 

identified as the most problematic covariate; omitting renal disease from the PS model resulted 

in a reduction in SD of weights from 3.69 to 2.19; unadjusted treatment effect estimate was closer 

to the null value (0.72 vs. 0.68) and its associated standard error decreased (0.06 vs. 0.08) 

compared with the PS model retaining renal disease; there was little change in the treatment 

effect and standard error when renal disease was adjusted for in the Cox model, and little change 

in HR when further adjusting for baseline covariates and cumulative allopurinol use, although 

standard error did increase.   

Depression was next removed from the PS model and the SD of weights further decreased to 

1.45; there was little change in the unadjusted treatment effect (0.71) but associated standard 

error decreased to 0.05. Once adjusted for depression, baseline covariates and cumulative 

allopurinol use in the Cox model, the estimated HR moved further away from the null value.   

Further removal of covariates from the PS model led to the mean weight moving closer towards 

1 and variability decreased. This resulted in HRs (unadjusted and adjusted) to move closer 

towards the null value and associated standard error decreased.  

The decision was made to retain all covariates in the PS model. Although renal disease improved 

weight estimation, continuing to remove covariates from the PS model still led to large 
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improvements in weight variability and it had become unclear which covariates should be 

removed from the PS model, whether one should solely remove renal disease, or to remove more 

covariates.  
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Table 9.6: Weight distribution and treatment effect estimation of allopurinol after removing problematic covariates from the PS model 

PS  model 
specification 

Covariates cumulatively 
removed from PS model 

Mean (SD) 
weight 

Median (IQR) 
weight 

Weight range 
Unadjusted MSM 

HR (95% CI) 
Standard error 

*Adjusted MSM 
HR (95% CI) 

Standard error 

**Adjusted MSM  
HR (95% CI) 

Standard error 

Main effects model 
+ linear terms for age, deprivation, follow-up 
time 
+ FP2 terms for cumulative allopurinol use(-2, -1) 

1.12 (3.69) 0.97 (0.83, 1.10) 5.07*10-4, 730.51 
0.68 (0.58, 0.79) 

0.08 
0.57 (0.44, 0.72) 

0.13 
0.57 (0.44, 0.72) 

0.13 

2 Renal disease 1.09 (2.19) 0.97 (0.83, 1.11) 1.91*10-3, 421.29 
0.72 (0.65, 0.81) 

0.06 
0.74 (0.66, 0.82) 

0.06 
0.71 (0.60, 0.85) 

0.10 

3 Depression 1.08 (1.45) 0.97 (0.83, 1.11) 1.91*10-3, 279.98 
0.71 (0.64, 0.79) 

0.05 
0.72 (0.65, 0.80) 

0.05 
0.67 (0.57, 0.80) 

0.09 

4 Analgesic use 1.07 (1.06) 0.97 (0.84, 1.11) 2.56*10-3, 136.42 
0.74 (0.67, 0.81) 

0.05 
0.75 (0.68, 0.82) 

0.05 
0.71 (0.62, 0.83) 

0.08 

5 Diuretic use 1.04 (0.84) 0.99 (0.88, 1.09) 7.70*10-3, 176.94 
0.91 (0.85, 0.98) 

0.04 
0.85 (0.79, 0.91) 

0.04 
0.84 (0.76, 0.93) 

0.05 

6 Colchicine use 1.04 (0.84) 0.99 (0.88, 1.09) 0.01, 176.94 
0.91 (0.85, 0.98) 

0.04 
0.85 (0.79, 0.91) 

0.04 
0.84 (0.76, 0.94) 

0.05 

7 Gout consultation 1.04 (0.56) 0.99 (0.89, 1.08) 0.01, 59.29 
0.93 (0.87, 0.99) 

0.04 
0.86 (0.80, 0.92) 

0.04 
0.86 (0.78, 0.94) 

0.05 

8 Body mass index 1.02 (0.40) 0.99 (0.90, 1.07) 0.02, 39.60 
0.92 (0.86, 0.99) 

0.03 
0.89 (0.83, 0.95) 

0.03 
0.87 (0.79, 0.95) 

0.05 

Values in brackets (column 1) indicated the fractional polynomial terms used; *Adjusted only for covariates that were cumulatively removed from the PS model; **Adjusted 
for covariates that were cumulatively removed from the PS model, cumulative allopurinol use and baseline variables; CI: confidence interval; FP2: fractional polynomial terms 
of dimension 2; HR: Hazard ratio; IQR: Interquartile range; MSM: Marginal structural models; PS: Propensity score; SD: standard deviation 
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9.2.3 Interaction terms 

From the previous section, no covariates were removed from the PS model (Table 9.7). Starting 

with the PS model specification 4, two-way interaction terms that improved SD of weights were 

next added to the PS model. Adding an interaction term between hypertension and gout 

consultation reduced SD of weight from 3.69 to 2.73. For each extra interaction term added to 

the PS model, mean weight moved closer to 1 and variability decreased.  

With each additional interaction term to the PS model, the unadjusted HR remained constant 

(0.6) however standard errors decreased from 0.08 to 0.05 after including nine interaction terms. 

The estimated adjusted HRs were lower (0.5) and standard errors were higher than unadjusted 

analyses regardless of which interaction terms were included in the PS model.  

The process was then repeated but including three way interactions to the PS model (specification 

4) (Table 9.8). Similarly, inclusion of a three-way interaction between alcohol consumption, 

diuretic use and colchicine use caused SD of the weights to decrease from 3.69 to 2.73. Further 

inclusion of interaction terms further reduced weight variability. Unadjusted and adjusted HRs 

were similar when adding further interaction terms to the PS model although standard errors did 

decrease. 

It was expected inclusion of one three-way interaction term would reduce weight variability more 

including one two-way interaction term. However, this was not the case as they both reduced SD 

of weights by the same amount. Including four three-way interaction terms yielded a higher SD 

for weight than including nine two-way interaction terms to the PS model (1.20 vs. 1.15). 

Therefore, three-way interaction terms were no longer considered.  

It was clear that regardless of including FP and interaction terms to the PS model, the weight 

distribution will remain skewed with mean deviating from one and presence of extreme weights.  
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The PS model that was next considered in sensitivity analyses included a two-way interaction 

term between hypertension and gout consultation.  
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Table 9.7: Forward selection of two-way interaction terms in PS model 

PS model 
specification 

Two-way interactions cumulatively 
added to the PS model 

Mean (SD) 
weight 

Median (IQR) 
weight 

Weight range 
Unadjusted MSM  

HR (95% CI) 
Standard error 

*Adjusted MSM 
HR (95% CI) 

Standard error 

Main effects model 
+ linear terms for age, deprivation, follow-up time 
+ FP2 terms for cumulative allopurinol use(-2, -1) 

1.12 (3.69) 0.97 (0.83, 1.10) 5.07*10-4, 730.51 
0.68 (0.58, 0.79) 

0.08 
0.57 (0.44, 0.72) 

0.13 

2 Hypertension*gout consultation 1.11 (2.73) 0.97 (0.83, 1.11) 4.54*10-4, 481.27 
0.67 (0.58, 0.77) 

0.07 
0.54 (0.43, 0.68) 

0.12 

3 Diuretic use*follow-up time 1.11 (2.36) 0.96 (0.82, 1.13) 7.83*10-4, 407.46 
0.66 (0.58, 0.75) 

0.07 
0.54 (0.44, 0.67) 

0.11 

4 Osteoarthritis *depression 1.10 (1.90) 0.96 (0.82, 1.13) 9.36*10-4, 332.88 
0.67 (0.59, 0.75) 

0.06 
0.55 (0.45, 0.67) 

0.10 

5 Alcohol consumption*colchicine use 1.10 (1.62) 0.96 (0.82, 1.13) 9.34*10-4, 271.55 
0.68 (0.62, 0.76) 

0.05 
0.58 (0.48, 0.69) 

0.09 

6 Body mass index*hypertension 1.10 (1.48) 0.96 (0.82, 1.13) 6.80*10-4, 195.02 
0.67 (0.61, 0.75) 

0.05 
0.56 (0.47, 0.67) 

0.09 

7 Gout consultation*follow-up time 1.09 (1.35) 0.96 (0.81, 1.13) 4.25*10-4, 177.21 
0.69 (0.61, 0.76) 

0.05 
0.59 (0.49, 0.69) 

0.09 

8 Hypertension*coronary heart disease 1.09 (1.25) 0.96 (0.81, 1.13) 6.54*10-4, 135.96 
0.69 (0.62, 0.76) 

0.05 
0.58 (0.49, 0.69) 

0.08 

9 Body mass index*depression 1.09 (1.19) 0.96 (0.81, 1.13) 6.89*10-4, 123.75 
0.69 (0.62, 0.76) 

0.05 
0.58 (0.49, 0.68) 

0.08 

10 Diuretic use*depression 1.09 (1.15) 0.96 (0.81, 1.13) 6.40*10-4, 134.29 
0.69 (0.63, 0.76) 

0.05 
0.58 (0.50, 0.69) 

0.08 

*Adjusted for baseline variables and cumulative allopurinol use; CI: Confidence interval; FP2: Fractional polynomial terms of dimension 2; HR: Hazard ratio; IQR: Interquartile 
range; MSM: Marginal structural models; PS: Propensity score; SD: Standard deviation 



302 
 

Table 9.8: Forward selection of three-way interaction terms in PS model 

PS model 
specification 

Three-way interactions cumulatively 
added to the PS model 

Mean (SD) 
weight 

Median (IQR) 
weight 

Weight range 
Unadjusted MSM  

HR (95% CI) 
Standard error 

*Adjusted MSM 
HR (95% CI) 

Standard error 

Main effects model 
+ linear terms for age, deprivation, follow-up time 
+ FP2 terms for cumulative allopurinol use(-2, -1) 

1.12 (3.69) 0.97 (0.83, 1.10) 5.07*10-4, 730.51 
0.68 (0.58, 0.79) 

0.08 
0.57 (0.44, 0.72) 

0.13 

2 
Alcohol consumption*diuretic 
use*colchicine use 

1.10 (2.26) 0.96 (0.82, 1.12) 8.34*10-4, 351.34 
0.69 (0.61, 0.77) 

0.06 
0.58 (0.47, 0.70) 

0.10 

3 
Analgesic use*depression*follow-up 
time 

1.10 (1.74) 0.96 (0.82, 1.12) 1.76*10-3, 247.41 
0.68 (0.61, 0.76) 

0.06 
0.58 (0.49, 0.69) 

0.09 

4 
Renal disease*osteoarthritis 
*depression 

1.09 (1.41) 0.96 (0.82, 1.12) 2.89*10-3, 185.45 
0.70 (0.64, 0.78) 

0.05 
0.61 (0.52, 0.72) 

0.08 

5 
Alcohol 
consumption*hypertension*gout 
consultation 

1.09 (1.20) 0.96 (0.82, 1.12) 1.46*10-3, 86.92 
0.70 (0.63, 0.77) 

0.05 
0.60 (0.52, 0.70) 

0.08 

*Adjusted for baseline variables and cumulative allopurinol use; CI: Confidence interval; FP2: Fractional polynomial terms of dimension 2; HR: Hazard ratio; IQR: Interquartile 
range; MSM: Marginal structural models; Propensity score; SD: Standard deviation 
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9.2.4 Assessment of covariate balance 

Covariate balance between treatment groups was evaluated for the PS model that included FP2 

terms for cumulative allopurinol use and one interaction term between hypertension and gout 

consultation. SMD was evaluated for each covariate between treatment groups in each year of 

follow-up and then overall (Table 9.9).  

There were large differences between treatment groups across the majority of covariates with 

SMD >0.25 in at least one interval except for peripheral vascular disease and renal disease. 

Compared with the unweighted study sample (Table 9.2), within many covariates, covariate 

balance between treatment groups had worsened in the weighted study sample when it was 

expected covariate balance would be achieved. For example, for coronary heart disease, SMD 

ranged from 0.04 to 0.20 in the unweighted study sample whereas in the weighted study sample, 

SMD ranged from 0.02 to 0.54. In contrast, for some covariates SMD had improved in the 

weighted study sample. For example, for renal disease, SMD ranged from 0.11 to 0.20 and 

covariate imbalance was present in all intervals in the unweighted study sample however, in the 

weighted study sample, SMD ranged from 0.01 to 0.19 with only four intervals that had 

differences between treatment groups.  

Covariate balance was also assessed by overall pooling intervals together. In the weighted study 

sample, 17 covariates were balanced between treatment groups (SMD<0.10), more than the 

number of balanced covariates in the unweighted study sample (13). There is some indication 

that overall balance between treatment groups had improved, but not within intervals.  

 

 



304 
 

Table 9.9: SMD over time in the weighted study sample 

Follow-up 
year 

Age Sex Deprivation Anxiety Depression 
Cerebrovascular 

disease 
Coronary 

heart disease 
Diabetes 

Gout 
consultation 

Hyperlipidaemia Hypertension 

1 -0.03 0.01 0.11 -0.02 0.01 0.02 0.02 0.03 - -0.02 -0.05 

2 -0.03 -0.01 0.10 0.00 0.05 0.02 0.03 0.04 0.53 0.02 0.00 

3 -0.06 -0.03 0.09 -0.02 0.06 0.00 0.02 0.02 0.23 0.02 -0.01 

4 -0.08 -0.04 0.08 -0.01 0.05 -0.02 -0.02 -0.01 0.20 0.00 0.01 

5 -0.10 -0.06 0.07 -0.01 0.02 -0.02 -0.05 -0.01 0.12 0.03 0.01 

6 -0.11 -0.05 0.06 -0.01 0.03 -0.02 -0.08 -0.02 0.06 0.00 -0.02 

7 -0.14 -0.07 0.05 0.01 0.04 -0.04 -0.12 -0.06 0.03 -0.02 -0.04 

8 -0.16 -0.10 0.04 0.00 0.03 -0.06 -0.14 -0.07 -0.01 -0.02 -0.06 

9 -0.21 -0.09 0.04 0.04 0.06 -0.03 -0.19 -0.11 -0.05 -0.02 -0.12 

10 -0.21 -0.07 0.03 0.05 0.08 -0.03 -0.23 -0.13 -0.12 -0.02 -0.17 

11 -0.22 -0.01 0.04 0.09 0.17 -0.06 -0.27 -0.18 -0.19 -0.01 -0.25 

12 -0.27 0.08 0.10 0.18 0.26 -0.05 -0.36 -0.24 -0.17 0.01 -0.24 

13 -0.36 0.13 0.18 0.33 0.42 -0.12 -0.48 -0.35 -0.30 -0.08 -0.28 

14 -0.42 0.27 0.03 0.50 0.59 -0.11 -0.41 -0.23 -0.23 -0.07 -0.25 

15 -0.52 0.64 0.00 0.92 0.98 -0.15 -0.29 -0.25 -0.17 0.02 -0.10 

16 -0.29 0.55 0.40 0.83 0.81 0.08 -0.54 -0.21 0.10 0.39 -0.16 

17 -0.38 -0.07 0.29 0.51 0.46 0.42 -0.35 -0.18 0.27 0.03 -0.43 

Overall -0.06 0.01 0.09 0.20 0.24 0.00 -0.11 -0.01 0.02 0.11 0.01 
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Table 9.9 continued: 

    Alcohol consumption Body mass index Smoking status 

Follow-
up year 

Osteoarthritis  
Peripheral 

vascular disease 
Renal 

disease 
Ever 

drinker 
Never 

drinker 
Missing Overweight 

Normal 
weight 

Obese Missing 
Ever 

smoker 

Never 

smoker 
Missing 

1 0.07 0.03 0.05 0.02 -0.06 0.01 0.03 0.03 -0.04 0.06 0.02 -0.07 0.05 

2 0.04 0.01 0.09 0.02 -0.09 0.02 0.04 0.04 -0.07 0.11 0.05 -0.16 0.09 

3 0.03 0.01 0.11 0.02 -0.12 0.05 0.02 0.06 -0.10 0.07 0.08 -0.16 0.11 

4 0.01 -0.02 0.07 0.02 -0.08 0.04 0.01 0.03 -0.06 0.01 0.08 -0.11 0.07 

5 0.00 -0.04 0.08 -0.02 -0.07 0.02 -0.01 0.03 -0.05 0.00 0.09 -0.11 0.08 

6 -0.02 -0.02 0.06 0.01 -0.07 0.03 0.00 0.03 -0.06 0.01 0.07 -0.12 0.06 

7 -0.05 -0.05 0.07 0.00 -0.07 0.02 0.02 0.00 -0.04 -0.02 0.07 -0.11 0.07 

8 -0.06 -0.06 0.07 -0.05 -0.05 0.03 0.05 -0.04 -0.03 -0.05 0.10 -0.11 0.07 

9 -0.08 -0.05 0.06 -0.03 -0.05 0.03 0.05 -0.07 -0.01 -0.07 0.10 -0.11 0.06 

10 -0.08 -0.07 0.05 -0.03 -0.04 -0.01 0.13 -0.10 0.02 -0.11 0.14 -0.13 0.05 

11 -0.10 -0.04 0.02 -0.01 -0.02 0.02 0.18 -0.20 0.05 -0.11 0.13 -0.07 0.02 

12 -0.08 -0.11 0.02 -0.03 -0.01 0.01 0.24 -0.24 0.05 -0.12 0.14 -0.09 0.02 

13 -0.09 -0.10 0.02 0.02 -0.04 -0.08 0.28 -0.21 0.09 -0.14 0.16 -0.08 0.02 

14 0.07 -0.09 -0.04 0.12 -0.05 0.12 0.29 -0.39 0.06 -0.24 0.26 -0.10 -0.04 

15 0.23 -0.06 -0.12 0.26 -0.08 0.14 0.56 -0.62 -0.02 -0.40 0.41 -0.08 -0.12 

16 0.47 -0.13 -0.19 0.46 -0.24 0.39 0.13 -0.46 -0.16 -0.45 0.48 -0.16 -0.19 

17 -0.12 -0.03 0.14 0.07 -0.20 0.53 0.16 -0.58 -0.20 0.00 0.03 -0.16 0.14 

Overall 0.10 -0.03 0.22 0.02 -0.23 0.11 0.15 -0.02 -0.21 0.08 0.10 -0.25 0.22 
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Table 9.9 continued: 

 SU level        

Follow-up 
year 

SU level 
≤360µmol/L 

SU level 
>360µmol/L 

SU level 
missing 

Analgesic Colchicine Diuretic NSAIDS 
Cumulative 

allopurinol use 
(FP2 term 1) 

Cumulative 
allopurinol use 

(FP2 term 2) 

Hypertension* 
Gout 

consultation 

1 -0.29 0.40 -0.27 0.05 0.07 0.02 0.27    

2 -0.29 0.33 -0.21 0.06 0.16 -0.02 -0.02 2.18 2.18 0.18 

3 -0.29 0.31 -0.18 0.02 0.15 -0.06 0.20 0.95 1.58 0.12 

4 -0.31 0.31 -0.18 0.00 0.11 -0.08 0.10 0.57 1.19 0.09 

5 -0.31 0.29 -0.15 -0.03 0.10 -0.10 0.04 0.39 0.96 0.06 

6 -0.31 0.28 -0.14 -0.04 0.05 -0.15 -0.01 0.29 0.82 0.02 

7 -0.29 0.26 -0.13 -0.07 0.02 -0.21 -0.02 0.14 0.64 0.02 

8 -0.31 0.29 -0.15 -0.15 -0.05 -0.30 -0.08 0.07 0.51 -0.01 

9 -0.31 0.28 -0.14 -0.20 -0.06 -0.40 -0.11 0.00 0.38 -0.08 

10 -0.28 0.25 -0.13 -0.24 -0.15 -0.46 -0.16 -0.06 0.27 -0.11 

11 -0.24 0.22 -0.11 -0.25 -0.24 -0.48 -0.16 -0.14 0.16 -0.20 

12 -0.20 0.27 -0.17 -0.30 -0.27 -0.58 -0.07 -0.22 0.02 -0.16 

13 -0.09 0.23 -0.18 -0.34 -0.35 -0.62 -0.10 -0.28 -0.13 -0.36 

14 -0.31 0.20 -0.08 -0.18 -0.26 -0.90 -0.12 -0.30 -0.22 -0.23 

15 -0.25 0.17 -0.08 -0.39 -0.11 -1.24 -0.12 -0.44 -0.53 -0.14 

16 -0.28 0.06 0.04 0.30 0.12 -0.84 -0.24 -0.37 -0.22 0.17 

17 -0.22 0.39 -0.33 -0.38 0.20 -0.46 -0.55 -0.44 -0.39 0.27 

Overall -0.28 0.24 -0.12 -0.06 -0.01 -0.30 -0.10 0.29 0.61 -0.01 

Yellow cells indicate absolute SMD >0.10; Red cells indicate absolute SMD >0.25; FP2: Fractional polynomial terms of dimension 2; NSAIDS: Non-steroidal anti-inflammatory 

drugs; SU: Serum urate; SMD: Standardised mean difference 
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Possible reasons for extreme weights 

A summary of covariates was described for observations with large weights. A small proportion 

of patients had weights larger than 20; 320 intervals from 121 patients had weights larger than 

10; 111 intervals from 43 patients had weights larger than 20.  

The distribution of covariates were compared across observations with: weights <10, weights >10, 

and weights >20 (Table 9.10). Compared to observations with weights <10, those with larger 

weights consisted of older patients, higher percentage of females, comorbidities (depression, 

diabetes, hypertension, osteoarthritis, renal disease), ever drinker, ever smoker, 

normal/overweight BMI, and higher percentage of prescription for analgesics and NSAIDS, as well 

as higher mean duration of cumulative allopurinol use.  

This suggests that larger weights were assigned to patients whose SU level was not measured, in 

worse health and in older females. It may that this combination of covariates has a very small 

propensity for treatment but actually received treatment thus resulting in large weights.  
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Table 9.10: Distribution and comparison of covariates in observations with large versus non-
large weights 

 Weight <10 
N=155,011 time 
intervals from 

16,876 patients 

Weight >10 
N=320 time 

intervals from 
121 patients 

Weight >20 
N=111 time 

intervals from 43 
patients 

Demographics    

Age (Mean (SD) 64.8 (13.8) 72.2 (10.8) 73.2 (9.5) 
Sex: Female 32,163 (21) 91 (28) 43 (39) 
Deprivation (Mean (SD)) 9.0 (5.5) 10.0 (5.4) 10.4 (5.7) 

Comorbidities    

Anxiety 15,378 (10) 82 (26) 40 (36) 
Depression 18,767 (12) 121 (38) 45 (41) 
Cerebrovascular disease 8,703 (6) 26 (8) 5 (5) 
Coronary heart disease 35,280 (23) 68 (21) 28 (25) 
Diabetes  21,801 (14) 93 (29) 37 (33) 
Gout consultation 23,130 (15) 40 (13) 17 (15) 
Hyperlipidaemia 27,442 (18) 110 (34) 43 (39) 
Hypertension 62,589 (40) 160 (50) 57 (51) 
Osteoarthritis  28,384 (18) 139 (43) 64 (58) 
Peripheral vascular disease 4,501 (3) 12 (4) 2 (2) 
Renal disease 15,469 (10) 112 (35) 45 (41) 

Lifestyle factors    

Alcohol consumption    
   Ever drinker 11,6382 (75) 297 (93) 105 (95) 
   Never drinker 6,942 (4) 13 (4) 6 (5) 
   Missing 31,687 (20) 10 (3) 0 (0) 
Body mass index    
   Normal weight 26,495 (17) 107 (33) 35 (32) 
   Overweight 54,779 (35) 132 (41) 48 (43) 
   Obese 43,646 (28) 75 (23) 27 (24) 
   Missing 30,091 (19) 6 (2) 1 (1) 
Smoking status ,   
   Ever smoker 91,263 (59) 259 (81) 91 (82) 
   Never smoker 44,212 (29) 58 (18) 20 (18) 
   Missing 19,536 (13) 3 (1) 0 (0) 
SU level    
   ≤360µmol/L 9,095 (6) 10 (3) 6 (5) 
   >360µmol/L 54,896 (35) 100 (31) 20 (18) 
   Missing 91,020 (59) 210 (66) 85 (77) 

Medication use    

Analgesic 48,850 (32) 143 (45) 61 (55) 
Colchicine 8,035 (5) 44 (14) 20 (18) 
Diuretic 45,060 (29) 101 (32) 39 (35) 
NSAIDS 66,728 (43) 65 (20) 19 (17) 
Cumulative allopurinol use (Mean (SD)) 1.4 (2.7) 8.6 (4.7) 8.9 (4.9) 
Allopurinol 45,437 (29) 210 (66) 79 (64.23) 

NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 
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9.3 Sensitivity analyses 

The previous section highlighted that modifying the PS model was unlikely to estimate a 

reasonable distribution of weights without large variability. Therefore, a range of sensitivity 

analyses were performed to assess whether treatment effect estimate was altered by considering 

normalised weights, weight truncation, truncating follow-up time, and performing intention-to-

treat analysis.  

The PS model main effects model with FP2 terms for cumulative allopurinol use and an interaction 

term between hypertension and gout consultation was selected to perform sensitivity analyses 

on.  

 

9.3.1 Normalised weights 

The estimated stabilised weights were normalised, i.e., the mean weight was forced to be one in 

all intervals. The normalised weight distribution was less skewed with decreased variability; 

normalised weights had SD of 1.53 compared with 2.73 from stabilised weights. Large weights 

were still present, although these were not as extreme as stabilised weights (Table 9.11). 

The estimated unadjusted HR was 0.71 (0.63, 0.80) which was closer to the null value and had 

smaller standard error compared with using stabilised weights (0.67 (0.58, 0.67)). The adjusted 

HR had a stronger protective effect of 0.58 and larger standard error of 0.10.  
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Table 9.11: Distribution of normalised weights 

Mean (SD) 
weight 

Median (IQR) weight Weight range 
Unadjusted MSM 

HR (95% CI) 
Standard error 

*Adjusted MSM 
HR (95% CI) 

Standard error 

1.00 (1.53) 0.94 (0.75, 1.06) 1.97*10-4, 218.04 
0.71 (0.63, 0.80) 

0.06 
0.58 (0.47, 0.71) 

0.10 

*Adjusted for baseline variables and cumulative allopurinol use; CI: Confidence interval; HR: Hazard ratio; IQR: 
Interquartile range; MSM: Marginal structural models; SD: Standard deviation 

 

 

9.3.2 Weight truncation 

In order to visualise the distribution of weights and why they may need to be truncated, the box 

plot of the log transformed stabilised and normalised weights over time is shown in Figure 9.2 

and Figure 9.3 respectively, illustrating the median (IQR) and range. The box plot highlights that 

both stabilised and normalised weights had become more dispersed over time.  

Figure 9.2: Distribution of stabilised weights over time 
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Figure 9.3: Distribution of normalised weights over time 

 

Truncating the stabilised weight distribution at 1% eliminated large weights, with the maximum 

value being 3.85 reduced from 481.27 when no truncation (0%) had taken place; SD of weights 

reduced to 0.49 from 2.73, and mean weight reduced to 1.04 from 1.11. The estimated 

unadjusted HR was closer to the null value (0.77 vs. 0.67) and standard error halved in size (0.04 

vs. 0.07). The estimated adjusted HR and standard error was similar to unadjusted results.  

Similar results were also obtained for normalised weights when distribution was truncated at 1%; 

weight variability decreased, and estimated HRs (unadjusted and adjusted) was closer to the null 

value with smaller standard error compared with no truncation (Table 9.12). 

Progressively increasing percentile at which truncation takes place (2%, 5% and 10%), there were 

small improvements in weight variability for both stabilised and normalised weights, with the 

estimated (unadjusted and adjusted) HRs moving closer towards the null whilst its standard error 

decreased. The estimated treatment effects when weighted by stabilised or normalised weights 

were similar.  
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Table 9.12: Distribution of truncated weights and its impact on treatment effect estimation of allopurinol 

 
Mean (SD) 

weight 
Median (IQR) 

weight 
Weight range 

Unadjusted MSM  
HR (95% CI) 

Standard error 

*Adjusted MSM  
HR (95% CI) 

Standard error 

% of truncated stabilised weights      

0% 1.11 (2.73) 0.97 (0.83, 1.11) 4.53*10-4, 481.27 
0.67 (0.58, 0.77) 

0.07 
0.54 (0.43, 0.68) 

0.12 

1%  1.04 (0.49) 0.97 (0.83, 1.11) 0.20, 3.85 
0.77 (0.72, 0.83) 

0.04 
0.72 (0.66, 0.80) 

0.05 

2% 1.03 (0.41) 0.97 (0.83, 1.11) 0.31, 2.71 
0.80 (0.74, 0.86) 

0.04 
0.76 (0.70, 0.84) 

0.05 

5% 1.00 (0.32) 0.97 (0.83, 1.11) 0.48, 1.84 
0.85 (0.79, 0.91) 

0.03 
0.83 (0.76, 0.91) 

0.04 

10%  0.99 (0.24) 0.97 (0.83, 1.11) 0.63, 1.44 
0.92 (0.86, 0.98) 

0.03 
0.90 (0.83, 0.98) 

0.04 

% of truncated normalised weights      

0% 1.00 (1.53) 0.94 (0.75, 1.06) 1.97*10-4, 218.04 
0.71 (0.63, 0.78) 

0.06 
0.58 (0.47, 0.71) 

0.10 

1% 1.00 (0.45) 0.95 (0.79, 1,08) 0.17, 3.84 
0.78 (0.73, 0.84) 

0.04 
0.73 (0.66, 0.81) 

0.05 

2% 1.00 (0.39) 0.96 (0.80, 1.09) 0.28, 2.70 
0.80 (0.75, 0.86) 

0.04 
0.77 (0.70, 0.84) 

0.05 

5% 1.00 (0.32) 0.97 (0.83, 1.10) 0.47, 1.84 
0.85 (0.79, 0.91) 

0.03 
0.83 (0.76, 0.90) 

0.04 

10%  1.00 (0.24) 0.97 (0.84, 1.12) 0.62, 1.49 
0.91 (0.86, 0.97) 

0.03 
0.90 (0.83, 0.98) 

0.04 

*Adjusted for cumulative allopurinol use and baseline covariates. CI: Confidence interval; HR: Hazard ratio; IQR: Interquartile range; MSM: Marginal structural models; SD: 
Standard deviation 
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Standardised mean difference 

SMD was evaluated for covariates between treatment groups in each year of follow-up. SMD was 

near identical when evaluated using stabilised and normalised weights, thus SMD was only 

presented for stabilised weights.  

Table 9.13 shows the number of intervals where SMD was greater than 0.25 for each covariate 

when weight truncation was performed at 0%, 1%, 2%, 5%, and 10%. When no truncation had 

taken place (0%), large differences (SMD>0.25) between treatment groups were observed in over 

half the follow-up intervals for baseline SU level, previous cumulative allopurinol use, diuretics, 

and renal disease; all covariates had large imbalance in at least one interval. Performing 1% 

weight truncation reduced the number of intervals in which SMD >0.25, for example, renal 

disease had the number of affected intervals halved (from 8 to 4). Covariates that had a few 

affected intervals when there was no truncation (for example BMI and hypertension) had no large 

differences between treatment groups when 1% weight truncation was performed. However, 

SMD remained persistently high for baseline SU level and previous cumulative allopurinol use 

performing 10% weight truncation. 

Table 9.14 shows for each covariate the number of intervals with SMD >0.10. When no truncation 

had taken place, over half the intervals had imbalance between treatment groups for baseline SU 

level, all medications, smoking status, age, coronary heart disease, gout consultation and renal 

disease. When 1% weight truncation was performed, the number of affected intervals had 

reduced for the majority of covariates (for example gout consultation, BMI, colchicine), however 

imbalance was still present. Weight truncation at 1% had little effect on reducing the number of 

the affected intervals for analgesics, diuretics, previous cumulative allopurinol use, SU level, age, 

and coronary heart disease. Substantial weight truncation at 10% had achieved balance for the 
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majority of covariates within intervals however, weight truncation did not improve balance for 

SU level, diuretics, previous cumulative allopurinol use, age, and sex.    

Table 9.13: Number of follow-up intervals where SMD >0.25 after weight truncation 

 Percentage of weight truncation 

  0% 1% 2% 5% 10% 

Demographics      

Age 6 6 6 5 1 
Sex: Female 3 2 4 2 2 
Deprivation 2 1 1 1 1 

Comorbidities      

Anxiety 5 0 0 0 0 
Depression 6 0 0 0 0 
Cerebrovascular disease 1 0 0 0 0 
Coronary heart disease 7 1 0 0 0 
Diabetes  1 0 0 0 0 
Gout consultation 3 1 1 1 2 
Hyperlipidaemia 1 0 0 0 0 
Hypertension 2 0 0 0 0 
Osteoarthritis  1 0 0 0 0 
Peripheral vascular disease 0 0 0 0 0 
Renal disease 8 4 2 0 0 

Lifestyle factors      

Alcohol consumption      
   Ever drinker 0 0 1 1 1 
   Never drinker 2 0 0 0 0 
   Missing 0 1 1 1 1 
Body mass index      
   Normal 2 0 0 0 0 
   Overweight 3 0 0 0 0 
   Obese 4 0 0 0 0 
   Missing 0 0 0 0 0 
Smoking status      
   Ever smoker 2 0 0 0 0 
   Never smoker 3 0 0 0 0 
   Missing 0 0 0 0 0 
SU level      
   ≤360µmol/L 12 16 15 15 15 
   >360µmol/L 12 17 17 17 17 
   Missing 2 1 1 1 1 

Medication use      

Analgesic 5 2 0 0 0 
Colchicine 3 0 0 0 0 
Diuretic 10 10 10 6 0 
NSAIDS 2 1 1 1 1 
Cumulative allopurinol use FP2 term 1 10 6 6 5 5 
Cumulative allopurinol use FP2 term 2 11 10 10 12 12 

Interactions      

Hypertension*gout consultation 2 0 0 0 0 

FP2: Fractional polynomial terms of dimension 2; NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: 

Standardised mean difference; SU: Serum urate 
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Table 9.14: Number of follow-up intervals where SMD >0.10 after weight truncation 

 Percentage of weight truncation 

  0% 1% 2% 5% 10% 

Demographics      

Age 12 12 12 12 11 
Sex: Female 5 10 10 11 11 
Deprivation 5 4 4 4 3 

Comorbidities      

Anxiety 6 3 2 2 1 
Depression 7 4 3 0 0 
Cerebrovascular disease 4 4 2 1 0 
Coronary heart disease 11 10 10 5 1 
Diabetes  9 7 6 1 0 
Gout consultation 12 4 4 4 6 
Hyperlipidaemia 1 0 0 0 0 
Hypertension 9 9 7 1 0 
Osteoarthritis  3 1 0 0 0 
Peripheral vascular disease 3 0 0 0 0 
Renal disease 9 9 8 6 4 

Lifestyle factors      

Alcohol consumption      
   Ever drinker 4 2 4 5 5 
   Never drinker 3 0 0 0 0 
   Missing 3 4 4 4 5 
Body mass index      
   Normal 4 0 0 0 0 
   Overweight 8 0 0 2 5 
   Obese 8 0 0 1 1 
   Missing 3 2 2 1 2 
Smoking status      
   Ever smoker 8 2 2 2 3 
   Never smoker 9 1 1 1 1 
   Missing 11 11 11 9 7 
SU level      
   ≤360µmol/L 16 17 17 17 17 
   >360µmol/L 16 17 17 17 17 
   Missing 14 17 17 17 17 

Medication use      

Analgesics 10 10 10 6 2 
Colchicine 11 5 5 5 6 
Diuretics 13 13 13 12 10 
NSAIDS 10 8 7 5 5 
Cumulative allopurinol use FP2 term 1 13 12 11 10 10 
Cumulative allopurinol use FP2 term 2 15 13 15 15 15 

Interaction terms      

Hypertension*gout consultation 10 3 2 3 4 

FP2: Fractional polynomial terms of dimension 2; NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: 

Standardised mean difference; SU: Serum urate 
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Overall, weight truncation at 1% was sufficient to remove large weights and to estimate a more 

precise treatment effect estimate and removed some severe covariate imbalance between 

treatment groups. However, greater weight truncation was required to achieve more 

comparable treatment groups within intervals however, this led to HRs moving closer to the null 

value with smaller standard errors.  

 

9.3.3 Truncating follow-up at 10 years 

For many covariates, differences between treatment groups increased over time particularly, 

after 10 years of follow-up (with SMD >0.25) for covariates such as age, coronary heart disease, 

diuretics etc. in the weighted study sample (Table 9.9). Baseline covariates were compared 

between patients with 10 or less years of follow-up with patients with more than 10 years of 

follow-up to understand if there were possible reasons for this (Table 9.15). Treatment effects 

were then re-estimated with follow-up truncated at 10 years (Table 9.16).  

Patients with ≤10 follow-up years were more likely to female (27% vs. 29%), were older (67 vs. 57 

years) and resided in poorer areas (9.4 vs. 8.9), and had a higher prevalence of coronary heart 

disease (17% vs. 10%), more prescriptions for analgesics (40% vs. 27%) and diuretics (48% vs. 26%) 

than patients with more than 10 years of follow-up.   

Truncating follow-up improved variability in both the stabilised and normalised weights and 

weights were less extreme. Unadjusted HRs of 0.7 were estimated however the adjusted HRs 

were lower of 0.5 when weighting the study sample using either stabilised or normalised weights 

(Table 9.16). 
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Table 9.15: Comparison of baseline covariates of patients with ≤10 years and >10 years of 
follow-up 

 ≤10 years of 
follow-up 
N=7,748 

>10 years of 
follow-up 
N=9,128 

Demographics   

Age (Mean (SD) 67.1 (15.1) 57.8 (13.0) 
Sex: Female 2,117 (27) 1,764 (19) 
Deprivation (Mean (SD)) 9.4 (5.5) 8.9 (5.5) 

Comorbidities   

Anxiety 312 (4) 360 (4) 
Depression 427 (6) 415 (5) 
Cerebrovascular disease 279 (4) 128 (1) 
Coronary heart disease 1,283 (17) 884 (10) 
Diabetes  624 (8) 423 (5) 
Hyperlipidaemia 347 (4) 436 (5) 
Hypertension 1,510 (19) 1,627 (18) 
Osteoarthritis  578 (7) 528 (6) 
Peripheral vascular disease 190 (2) 67 (1) 
Renal disease 164 (2) 53 (1) 

Lifestyle factors   

Alcohol consumption   
   Ever drinker 4,289 (55) 5,199 (57) 
   Never drinker 483 (6) 373 (4) 
   Missing 2,976 (38) 3,556 (39) 
Body mass index   
   Normal weight 1,314 (17) 1,203 (13) 
   Overweight 2,208 (28) 2,725 (30) 
   Obese 1,367 (18) 1,852 (20) 
   Missing 2,859 (37) 3,348 (37) 
Smoking status   
   Ever smoker 3,035 (39) 3,401 (37) 
   Never smoker 2,225 (29) 2,622 (29) 
   Missing 2,488 (32) 3,105 (34) 
SU level   
   ≤360µmol/L 409 (5) 542 (6) 
   >360µmol/L 2,767 (36) 3,295 (36) 
   Missing 4,572 (59) 5,291 (58) 

Medication use   

Analgesics 3,098 (40) 2,480 (27) 
Colchicine 214 (3) 175 (2) 
Diuretics 3,732 (48) 2,410 (26) 
NSAIDS 3,587 (46) 4,437 (49) 

NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 
 

Prior to truncating follow-up, SMD >0.25 was previously observed in the majority of covariates. 

Truncating follow-up improved SMD. Balance was achieved on 13 covariates compared to only 

one covariate beforehand. SMD >0.25 was observed for three covariates compared to 21 

covariates beforehand (Table 9.17). 
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Table 9.16: Effect of truncating follow-up on weight distribution and treatment effect estimation of allopurinol 

 
Mean (SD) 

weight 
Median (IQR) 

weight 
Weight range 

Unadjusted MSM 
HR (95% CI) 

Standard error 

*Adjusted MSM  
HR (95% CI) 

Standard error 

Stabilised weights      

All follow-up observed 1.11 (2.73) 0.97 (0.83, 1.11) 4.54*10-4, 481.27 
0.67 (0.58, 0.77) 

0.07 
0.54 (0.43, 0.68) 

0.12 

Follow-up truncated at 10 years 1.01 (0.78) 1.0 (0.85, 1.10) 0.03, 108.45 
0.75 (0.64, 0.87) 

0.08 
0.57 (0.42, 0.78) 

0.16 
Normalised weights      

All follow-up observed 1.00 (1.53) 0.94 (0.75, 1.06) 1.97*10-4, 218.04 
0.71 (0.63, 0.80) 

0.06 
0.58 (0.47, 0.71) 

0.10 

Follow-up truncated at 10 years 1.00 (0.72) 1.00 (0.82, 1.10) 0.02, 95.12 
0.76 (0.66, 0.88) 

0.07 
0.59 (0.44, 0.79) 

0.15 

*Adjusted for cumulative allopurinol use and baseline covariates CI: Confidence interval; HR: Hazard ratio; IQR: Interquartile range; MSM: Marginal structural models; SD: 

standard deviation 
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Table 9.17: Number of intervals where SMD was greater than 0.10 or 0.25 

 

NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: Standardised mean difference; SU: Serum urate 
 

 

 

 

 
 

All follow-up observed 
Follow-up truncated at 

10 years 

 
SMD 
>0.10 

SMD  
>0.25 

SMD  
>0.10 

SMD  
>0.25 

Demographics     

Age 13 1 4 0 
Sex: Female 8 3 2 0 
Deprivation 8 2 2 0 

Comorbidities     

Anxiety 4 1 0 0 
Depression 6 3 0 0 
Cerebrovascular disease 2 1 0 0 
Coronary heart disease 7 2 0 0 
Diabetes  3 2 0 0 
Gout consultation 12 3 7 1 
Hyperlipidaemia 3 2 0 0 
Hypertension 4 3 0 0 
Osteoarthritis  2 2 0 0 
Peripheral vascular disease 1 0 0 0 
Renal disease 7 2 0 0 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 2 0 0 0 
   Never drinker 0 0 0 0 
   Missing 2 0 0 0 
Body mass index     
   Overweight 4 1 0 0 
   Normal 4 2 0 0 
   Obese 1 0 0 0 
   Missing 2 0 0 0 
Smoking status     
   Ever smoker 5 3 0 0 
   Never smoker 5 3 0 0 
   Missing 6 0 1 0 
SU level     
   ≤360µmol/L 17 16 9 9 
   >360µmol/L 16 15 9 8 
   Missing 17 4 7 1 

Medication use     

Analgesics 8 2 2 0 
Colchicine 7 4 1 0 
Diuretics 11 6 3 0 
NSAIDS 9 2 5 0 
Cumulative allopurinol use 16 16 8 8 
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9.3.4 Intention-to-treat analysis 

MSM was modelled under the intention-to-treat principle in that the PS was estimated up to 

when patients first initiated treatment, thereafter the PS was assumed constant for the 

remainder of follow-up. Stabilised weights were estimated only.  

Assuming patients remained on treatment after initiation, the estimated weights had mean 

weight of 1 and variability was small. The unadjusted effect of initiating treatment yielded HR of 

1.06 (0.99, 1.13); the adjusted HR yielded similar HR with larger standard error (Table 9.18). 

Covariate imbalance between treatment groups did persist with differences observed across 

most intervals in gout consultation, target SU level, and cumulative allopurinol use (Table 9.19). 

The issues surrounding weight estimation (in terms of mean weight deviating from 1, presence of 

large weights, and large covariate imbalance between treatment groups) in as-treated analysis 

did not persist when performing intention-to-treat analysis. This suggests that estimating the PS 

after patients initiate treatment, may be more complex than initially considered.   
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Table 9.18: Weight estimation and treatment effect estimation of allopurinol under intention-to-treat analysis 

 
Mean (SD) 

weight 
Median (IQR) 

weight 
Weight range 

Unadjusted 
HR (95% CI) 

Standard error 

Unadjusted MSM 
HR (95% CI) 

Standard error 

*Adjusted MSM  
HR (95% CI) 

Standard error 

As-treated analysis 1.11 (2.73) 0.97 (0.83, 1.11) 4.54*10-4, 481.27 
1.19 (1.12, 1.26) 

0.03 
0.67 (0.58, 0.77) 

0.07 
0.54 (0.43, 0.68) 

0.12 

Intention-to-treat analysis 1.00 (0.55) 1.00 (0.70, 1.14) 0.12, 16.90 
1.19 (1.12, 1.26) 

0.03 
1.06 (0.99, 1.13) 

0.03 
1.06 (0.96, 1.17) 

0.05 

*Adjusted for cumulative allopurinol use and baseline covariates; CI: Confidence interval; HR: Hazard ratio; IQR: Interquartile range; MSM: Marginal structural models; SD: 

Standard deviation 
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Table 9.19: Number of intervals where SMD was greater than 0.10 or 0.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: Standardised mean difference; SU: Serum urate 

 

  

 
 

As-treated analysis 
Intention-to-treat 

analysis 

 
SMD 
>0.10 

SMD  
>0.25 

SMD 
>0.10 

SMD  
>0.25 

Demographics     

Age 13 1 4 0 
Sex: Female 8 3 11 4 
Deprivation 8 2 6 0 

Comorbidities     

Anxiety 4 1 0 0 
Depression 6 3 1 0 
Cerebrovascular disease 2 1 2 0 
Coronary heart disease 7 2 0 0 
Diabetes  3 2 0 0 
Gout consultation 12 3 16 16 
Hyperlipidaemia 3 2 2 0 
Hypertension 4 3 4 0 
Osteoarthritis  2 2 0 0 
Peripheral vascular disease 1 0 0 0 
Renal disease 7 2 4 0 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 2 0 10 0 
   Never drinker 0 0 4 0 
   Missing 2 0 6 0 
Body mass index     
   Normal 4 2 9 0 
   Overweight 4 1 1 0 
   Obese 1 0 10 1 
   Missing 2 0 1 0 
Smoking status     
   Ever smoker 5 3 3 0 
   Never smoker 5 3 1 0 
   Missing 6 0 7 0 
SU level     
   ≤360µmol/L 17 16 17 17 
   >360µmol/L 16 15 17 17 
   Missing 17 4 17 3 

Medication use     

Analgesics 8 2 1 0 
Colchicine 7 4 16 3 
Diuretics 11 6 5 0 
NSAIDS 9 2 12 0 
Cumulative allopurinol use 16 16 16 16 
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9.4 Summary 

Application of MSM had shown that allopurinol was strongly protective of premature mortality. 

The HRs estimated via as-treated analyses in this chapter ranged from 0.5 to 0.8. These estimates 

are somewhat lower than what has been reported in the existing literature. A systematic review 

and meta-analysis of three PS matched cohort studies using electronic health records (EHR) (two 

of which used UK primary care data) found no association between allopurinol and mortality in 

gout, reporting an overall HR of 0.80 (0.60, 1.05). Although Dubreuil et al. (2015) had found 

allopurinol use was protective of premature mortality, their reported HR 0.81 (0.70, 0.92) was 

closer to the null value of one.  It is unclear why exactly the analyses in this chapter provided 

lower estimates of allopurinol effect, but a possible reason could be differences in modelling 

approach. 

In this chapter several approaches were taken in an attempt to understand exactly the source of 

issues encountered in estimation of PS modelling. The PS main effects model resulted in the 

distribution of weights that was skewed, mean weight deviated from 1 and extreme weights were 

present. This was an indication the PS model was possibly misspecified. A logical approach was to 

attempt to reduce the extremeness of weights, thus inclusion of non-linear terms and interaction 

terms in the PS model was considered as a mitigation measure suggested by Cole and Hernan 

(2008). However, regardless of which covariates and their composites were included in the PS 

model, distribution of weights remained skewed and extreme weights persisted. The resulting 

HRs were wide ranging, from 0.5 to 0.8, and it remained unclear which, if any, of the PS models 

considered were specified correctly. These large HRs were not expected to be observed as 

treatment of gout is suboptimal in primary care, and patients are generally prescribed low 

dosages of allopurinol; if a protective effect were to be observed, it was expected the HR would 
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be much closer to the null value. Balance of covariates between treatment groups was assessed 

throughout and it was envisaged that there would be little imbalance in the weighted study 

sample. It transpired that this was not the case with imbalance in fact worse in the weighted than 

in the unweighted study sample.  

Various sensitivity analyses were conducted to evaluate how robust the main analysis treatment 

effect estimates were against approaches considered for weight variability reduction. Use of 

normalised weights and weight truncation improved the distribution of weights. The HRs 

remained strongly protective of premature mortality with unadjusted HR is the region of 0.7 and 

adjusted HR in the region of 0.5. Similarly, imbalance of covariates between treatment groups 

remained and only improved when substantial 10% percentile weight truncation was performed 

compared with 1%.  

Truncating follow-up at 10 years drastically improved balance over time although HRs remained 

strongly protective. It appears that in estimating the as-treated treatment effect, the best 

approach was to truncate follow-up prior to differences between treatment groups becoming 

very large in an attempt to achieve covariate balance. This approach is only feasible if one is 

confident that the estimated HR is plausible and estimating the long-term effect of treatment is 

maintained and clinically relevant.  

The HR estimated under the intention-to-treat principle lost statistical significance and was very 

close to the null value. Weight estimation (up to when patients initiated treatment) was more 

satisfactory than estimating weights in all follow-up intervals. This suggests that estimating PS 

after patients initiated treatment may be more complex. There is the possibility that the 

associations between covariates and initiating treatment may be different to the associations 
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between covariates and continuing with treatment which may explain why extreme weights were 

estimated in this analysis.  

To conclude, there are several modelling choices analysts can make while fitting MSM and this 

study has shown that treatment effect estimates and their precision will depend on specific 

choices made. Sensitivity to missing data and unmeasured confounding was not assessed as it is 

believed the associations between covariates and treatment was not modelled correctly.  

The next chapter considers modifications to weight estimation process, by allowing associations 

to differ between covariates and patients initiating allopurinol and between covariates and 

patients continuing with allopurinol.   
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10 Modelling complex mechanisms of allopurinol via MSM 

In Chapter 9, covariates were assumed to have the same association with initiation and 

continuation of allopurinol. However, this led to presence and persistence of extreme weights 

and skewed weight distribution, which in turn may have affected magnitude and precision of 

treatment effect estimates. In this chapter, this assumption was relaxed, and results from 

application of marginal structural models (MSM) when associations were allowed to differ in 

patients initiating and continuing with treatment are presented. 

Chapter 6, Section 6.5 described how the study sample described in Section 8.1 was essentially 

stratified by previous allopurinol use in the last year into two datasets for propensity score (PS) 

estimation; the first dataset contained observations that did not have allopurinol use in the 

previous interval, thus allowing one to estimate the probability of initiating allopurinol; the 

second dataset contained observations that did have allopurinol use in the previous interval, thus 

allowing one to estimate the probability of continuing treatment. After PS estimation, the 

datasets were combined together where weight estimation and treatment effect estimation 

proceeded.  

Analyses were performed for all outcomes.  

 

10.1 Covariates associated with initiation and continuation of 

allopurinol 

Table 10.1 describes the distribution of covariates between allopurinol users and non-users 

stratified by allopurinol use in the previous year; standardised mean difference (SMD) was 

presented that assessed covariate balance between non-users and patients initiating allopurinol 
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(in intervals that were not prescribed allopurinol in the previous year), and between patients who 

discontinued allopurinol and patients who continued with allopurinol (in intervals that were 

prescribed allopurinol in the previous year).  

In intervals that were not prescribed allopurinol in the previous year, patients initiating 

allopurinol were younger, and had a lower percentage of anxiety, depression, diabetes, gout 

consultation, hyperlipidaemia, hypertension, having baseline serum urate (SU) level ≥360μmol/L, 

lower percentage of ever drinkers, normal body mass index (BMI), ever smokers, and more 

prescriptions for analgesics, colchicine, diuretics, and non-steroidal anti-inflammatory drugs 

(NSAIDS) compared with non-users. 

In intervals that were prescribed allopurinol in the previous year, patients continuing with 

allopurinol were older, and had a higher percentage of coronary heart disease, diabetes, 

hyperlipidaemia, hypertension, osteoarthritis, renal disease, ever drinkers, obesity, ever smokers, 

lower percentage of gout consultation, more prescriptions for diuretics and fewer prescriptions 

for colchicine and NSAIDS, and had higher mean cumulative allopurinol use than patients 

discontinuing with allopurinol.   

The majority of covariates were associated with initiating and continuing allopurinol, although 

the direction of the odds ratio (ORs) differed. Older age, anxiety, cerebrovascular disease, 

diabetes, hyperlipidaemia, hypertension, osteoarthritis, and longer cumulative allopurinol use 

had increased odds of continuing with allopurinol (OR ranged from 1.04 to 2.15); in contrast, 

these same covariates had reduced odds of initiating allopurinol (OR ranged from 0.62 to 0.99).   

On the other hand, gout consultation, never smokers, and NSAID use had decreased odds of 

continuing allopurinol (OR ranged from 0.51 to 0.76) but had increased odds of initiating 

allopurinol (OR ranged from 1.21 to 2.17).  
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Renal disease was only associated with continuing allopurinol. Baseline SU level above target and 

colchicine use were only associated with initiating allopurinol.   
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Table 10.1: Distribution and association of covariates with initiating and continuing with allopurinol (n=16,876 patients) 

 Allopurinol non-users in the previous year Allopurinol users in the previous year 

 
Total number 

of intervals 
N=115,345 

Intervals not 
on allopurinol 

N=105,919 

Intervals 
initiated 

allopurinol 
N=9,426 

OR (SE) of 
initiating 

allopurinol 

Total number 
of intervals 
N=39,986 

Intervals 
discontinued 
allopurinol 

N=3,765 

Intervals 
continuing 

allopurinol use 
N=36,221 

OR (SE) of 
continuing 
allopurinol 

Demographics         

Age (Mean (SD)) 64.5 (14.0) 64.6 (14.0) 62.7 (14.2) 0.99 (<0.01)* 65.9 (13.2) 61.7 (14.7) 66.3 (12.9) 1.04 (<0.01)* 
Sex: Female 25,006 (22) 23,268 (22) 1,738 (18) 0.80 (0.04)* 7,248 (18) 640 (17) 6,608 (18) 1.06 (0.10) 
Deprivation (Mean (SD)) 8.9 (5.5) 8.9 (5.5) 9.3 (5.6) 1.02 (<0.01)* 9.2 (5.6) 9.5 (5.6) 9.2 (5.6) 0.99 (0.01) 

Comorbidities         

Anxiety 11,262 (10) 10,620 (10) 642 (7) 0.62 (0.04)* 4,198 (10) 345 (9) 3,853 (11) 1.27 (0.14)* 
Depression 13,795 (12) 13,008 (12) 787 (8) 0.57 (0.04)* 5,093 (13) 432 (11) 4,661 (13) 1.17 (0.11) 
Cerebrovascular disease 6,049 (5) 5,684 (5) 365 (4) 0.72 (0.06)* 2,680 (7) 177 (5) 2,503 (7) 1.67 (0.22)* 
Coronary heart disease 24,092 (21) 22,310 (21) 1,782 (19) 0.93 (0.04) 11,256 (28) 736 (20) 10,520 (29) 2.03 (0.15)* 
Diabetes  14,814 (13) 13,914 (13) 900 (10) 0.65 (0.04)* 7,080 (18) 423 (11) 6,657 (18) 2.00 (0.17)* 
Gout consultation 13,826 (12) 12,128 (11) 1,698 (18) 1.75 (0.06)* 9,344 (23) 1,704 (45) 7,640 (21) 0.54 (0.03)* 
Hyperlipidaemia 18,677 (16) 17,549 (17) 1,128 (12) 0.69 (0.04)* 8,875 (22) 577 (15) 8,298 (23) 2.04 (0.16)* 
Hypertension 43,002 (37) 40,033 (38) 2,969 (31) 0.76 (0.03)* 19,747 (49) 1,393 (37) 18,354 (51) 2.15 (0.13)* 
Osteoarthritis  19,522 (17) 18,237 (17) 1,285 (14) 0.76 (0.04)* 9,001 (23) 694 (18) 8,307 (23) 1.50 (0.12)* 
Peripheral vascular disease 3,166 (3) 2,964 (3) 202 (2) 0.70 (0.08)* 1,347 (3) 93 (2) 1,254 (3) 1.43 (0.26) 
Renal disease 9,043 (8) 8,368 (8) 675 (7) 1.05 (0.06) 6,538 (16) 406 (11) 6,132 (17) 1.85 (0.15)* 
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Table 10.1 continued: 

Lifestyle factors         

Alcohol consumption         
   Ever drinker 84,756 (73) 78,371 (74) 6,385 (68) 1.00 31,923 (80) 2,823 (75) 29,100 (80) 1.00 
   Never drinker 5,283 (5) 4,889 (5) 394 (4) 0.98 (0.09) 1,672 (4) 155 (4) 1,517 (4) 0.82 (0.13) 
   Missing 25,306 (22) 22,659 (21) 2,647 (28) 1.52 (0.06)* 6,391 (16) 787 (21) 5,604 (15) 0.60 (0.04)* 
Body mass index         
   Normal 21,085 (18) 19,818 (19) 1,267 (13) 1.00 5,517 (14) 543 (14) 4,974 (14) 1.00 
   Overweight 40,326 (35) 37,206 (35) 3,120 (33) 1.39 (0.08)* 14,585 (36) 1,305 (35) 13,280 (37) 1.11 (0.10) 
   Obese 29,812 (26) 27,330 (26) 2,482 (26) 1.61 (0.10)* 13,909 (35) 1,108 (29) 12,801 (35) 1.41 (0.14)* 
   Missing 24,122 (21) 21,565 (20) 2,557 (27) 2.00 (0.12)* 5,975 (15) 809 (21) 5,166 (14) 0.66 (0.07)* 
Smoking status         
   Ever smoker 65,783 (57) 61,109 (58) 4,674 (50) 1.00 25,739 (64) 2,136 (57) 23,603 (65) 1.00 
   Never smoker 33,394 (29) 30,683 (29) 2,711 (29) 1.21 (0.05)* 10,876 (27) 1,110 (29) 9,766 (27) 0.76 (0.05)* 
   Missing 16,168 (14) 14,127 (13) 2,041 (22) 1.88 (0.08)* 3,371 (8) 519 (14) 2,852 (8) 0.46 (0.04)* 
SU level         
   ≤360µmol/L 8,547 (7) 8,408 (8) 139 (1) 1.00 558 (1) 60 (2) 498 (1) 1.00 
   >360µmol/L 36,718 (32) 32,497 (31) 4,221 (45) 27.30 (3.84)* 18,278 (46) 1,695 (45) 16,583 (46) 1.72 (0.49) 
   Missing 70,080 (61) 65,014 (61) 5,066 (54) 11.11 (1.53)* 21,150 (53) 2,010 (53) 19,140 (53) 1.61 (0.46) 

Medication use         

Analgesics 34,382 (30) 31,151 (29) 3,231 (34) 1.35 (0.05)* 14,611 (37) 1,292 (34) 13,319 (37) 1.17 (0.06)* 
Colchicine 4,682 (4) 3,864 (4) 818 (9) 2.81 (0.16)* 3,397 (8) 534 (14) 2,863 (8) 0.89 (0.07) 
Diuretics 31,542 (27) 28,114 (27) 3,428 (36) 2.19 (0.08)* 13,619 (34) 974 (26) 12,645 (35) 1.74 (0.11)* 
NSAIDS 50,013 (43) 44,335 (42) 5,678 (60) 2.17 (0.06)* 16,780 (42) 2,363 (63) 14,417 (40) 0.51 (0.02)* 
Cumulative allopurinol use (Mean (SD)) 0.3 (1.0) 0.3 (1.0) 0.4 (1.3) 0.67 (0.01)* 4.8 (3.3) 2.9 (2.5) 4.9 (3.3) 1.21 (0.01)* 

Number (percentage) presented unless otherwise stated; Cells highlighted in yellow indicate SMD>0.10; *Statistically significant p-value <0.05; NSAIDS: Non-steroidal anti-

inflammatory drugs; SE: Standard error; SD: Standard deviation; Standardised mean difference; SU: Serum urate 
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10.2 Propensity score model 

Across all outcome analyses, the same covariates used to estimate PS in Chapter 8 for time-

varying PS subclassification (Table 8.7) was used to estimate the probability of initiating 

allopurinol and the probability of continuing allopurinol. To briefly recap, age, sex, deprivation, 

renal disease, colchicine, NSAIDS, diuretics, SU level, gout consultation, cumulative allopurinol 

use, and follow-up time were chosen to be in the PS models a priori. Covariates that were 

associated with outcome, by modelling the association between covariate and outcome via the 

complementary log-log model, were also included in the PS model if the p-value<0.05; generally, 

the majority of demographics, comorbidities, lifestyle factors and medication use were associated 

with most outcomes. In estimating the PS for initiating allopurinol and continuing allopurinol, the 

PS models considered main effects of all covariates and continuous covariates had a linear 

functional form, and this was considered as the main analysis. All covariates were entered into 

the PS model as main effects with linear functional form for continuous outcomes.  

Stabilised weights vs. basic weights 

After PS estimation, initially stabilised weights were derived using the whole study sample. The 

distribution of weights across all outcomes was satisfactory with mean close to 1, small standard 

deviation (SD), and narrow range. For example, in the analysis of target SU level, mean (SD) weight 

was 1.00 (0.44) with range 0.05 to 7.18; the distribution was not skewed as median (interquartile 

range (IQR)) was 1.02 (0.72, 1.15). Similar findings were also observed in the analyses of the 

secondary outcomes with the exception for morality, that had a larger weight range of <0.01 to 

188, although mean (SD) was 1 (0.99).  

As the stabilised weight distribution was satisfactory, basic weights were then derived and how it 

compared with stabilised weights. Across all outcomes, the basic weight distribution was 
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satisfactory with mean weight close to one although variability had increased compared with 

stabilised weights. For example, in the analysis of target SU level, basic weights had mean (SD) 

0.99 (0.68) with range <0.01 to 13.05. With the exception of mortality, similar findings were 

observed in secondary outcome analyses that basic weight variability was larger than stabilised 

weights, for example in the analysis of cerebrovascular disease, basic weights had mean (SD) 1.00 

(0.45) whereas for stabilised weights it was 1.00 (0.29). In the analysis of mortality, the opposite 

was found that the variability of basic weights was lower than stabilised weights (mean (SD) 1.00 

(0.81) vs. 1.00 (0.99)).  

The decision was taken to use basic weights for the main analysis. This was because the 

confounding effects of baseline covariates and treatment history were fully adjusted for within 

weight estimation, which was not the case for stabilised weights. Therefore, in treatment effect 

estimation, weighting the study sample using basic weights did not need to adjust for baseline 

covariates and treatment history in the Cox model, which would be required to do so if the study 

sample was weighted using stabilised weights.  

Assessment of covariate balance 

SMD evaluated covariate balance between treatment groups in each year of follow-up and overall 

in the weighted study sample. This was presented for the analysis for mortality (Table 10.2). For 

all other outcomes, overall SMD for each covariate was presented (Table 10.3).  

As observed in Table 10.2, covariate balance was achieved for deprivation and peripheral vascular 

disease across all intervals. Severe imbalance (SMD>0.25) between treatment groups was present 

for gout consultation and cumulative allopurinol use in the majority of intervals; colchicine was 

also imbalanced across the majority of intervals but was not as severe. For the remaining 
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covariates, balance tended to be achieved in the first 12 years of follow-up, with small imbalances 

(SMD≤0.25) appearing thereafter.  

From Table 10.3, overall covariate balance across time found covariate imbalance remained in 

the weighted study sample. Across all outcome analyses, the largest difference between 

treatment groups was observed for cumulative allopurinol use (SMD>0.76). Sex, deprivation, 

anxiety, depression, and NSAIDS were balanced between treatment groups, whereas small 

imbalance was observed for most lifestyle factors, renal disease, and hypertension.  
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Table 10.2: SMD over time in the weighted sample in analysis of mortality 

Follow-up 
year 

Age Sex Deprivation Anxiety Depression 
Cerebrovascular 

disease 
Coronary 

heart disease 
Diabetes 

Gout 
consultation 

Hyperlipidaemia Hypertension 

1 0.13 0.10 0.05 -0.02 0.01 0.06 0.08 0.09 - -0.01 0.03 

2 0.12 0.08 0.05 <0.01 0.03 0.06 0.09 0.09 0.70 0.04 0.07 

3 0.08 0.03 0.04 -0.02 0.04 0.03 0.08 0.07 0.33 0.04 0.06 

4 0.03 0.02 0.04 <0.01 0.04 <0.01 0.06 0.06 0.34 0.02 0.08 

5 0.03 0.02 0.03 0.01 0.01 0.03 0.06 0.07 0.29 0.10 0.10 

6 0.02 0.01 0.01 -0.01 0.02 0.03 0.03 0.06 0.25 0.07 0.08 

7 -0.02 -0.03 <0.01 0.01 0.01 0.02 <0.01 0.04 0.25 0.05 0.07 

8 -0.02 -0.10 -0.02 -0.01 -0.05 <0.01 0.02 0.04 0.26 0.04 0.08 

9 -0.02 -0.10 -0.03 -0.01 -0.06 0.04 0.01 0.03 0.26 0.04 0.10 

10 -0.05 -0.10 -0.03 -0.01 -0.09 0.03 0.01 0.02 0.28 0.06 0.07 

11 -0.06 -0.11 -0.03 -0.03 -0.09 -0.01 <0.01 -0.01 0.21 0.04 0.02 

12 -0.11 -0.11 -0.03 0.02 -0.01 0.03 -0.02 -0.09 0.25 0.07 0.02 

13 -0.17 -0.14 <0.01 0.10 0.08 -0.07 -0.07 -0.08 0.19 0.07 0.05 

14 -0.14 -0.24 0.07 0.19 0.19 -0.05 -0.06 -0.20 0.43 0.12 0.07 

15 -0.14 -0.33 0.03 0.10 0.09 0.04 -0.03 -0.14 0.40 0.04 -0.01 

16 -0.13 -0.35 0.09 0.04 -0.01 0.18 -0.07 -0.09 0.36 0.04 -0.09 

17 -0.29 -0.17 0.03 -0.25 -0.37 -0.06 -0.18 -0.14 0.42 0.06 -0.16 

Overall 0.08 -0.07 0.01 0.08 0.08 0.06 0.09 0.11 0.28 0.18 0.21 
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Table 10.2 continued: 

    Alcohol consumption Body mass index Smoking status 

Follow-
up year 

Osteoarthritis  
Peripheral 

vascular disease 
Renal 

disease 
Ever 

drinker 
Never 

drinker 
Missing Overweight 

Normal 
weight 

Obese Missing 
Ever 

smoker 

Never 

smoker 
Missing 

1 0.08 0.05 0.05 0.04 0.04 -0.05 0.02 0.04 0.05 -0.06 0.06 0.01 -0.06 

2 0.08 0.02 0.10 0.05 0.05 -0.07 0.02 0.02 0.06 -0.07 0.09 0.02 -0.10 

3 0.08 0.03 0.10 0.06 0.05 -0.08 0.05 <0.01 0.06 -0.09 0.05 0.04 -0.09 

4 0.06 <0.01 0.11 0.03 0.04 -0.05 0.04 -0.01 0.04 -0.06 0.01 0.02 -0.03 

5 0.05 <0.01 0.09 0.07 <0.01 -0.07 0.03 -0.04 0.06 -0.06 0.02 0.03 -0.07 

6 0.03 <0.01 0.07 0.05 0.01 -0.06 0.02 -0.03 0.10 -0.09 0.03 0.01 -0.07 

7 0.01 -0.02 0.09 0.06 0.01 -0.06 0.02 -0.04 0.09 -0.08 0.03 0.01 -0.09 

8 0.01 -0.03 0.06 0.08 -0.06 -0.05 0.04 -0.07 0.09 -0.10 0.02 0.03 -0.11 

9 0.03 -0.02 0.10 0.07 -0.04 -0.06 0.03 -0.09 0.09 -0.07 0.05 -0.01 -0.13 

10 0.02 -0.02 0.05 0.08 -0.03 -0.07 -0.01 -0.07 0.10 -0.06 <0.01 0.03 -0.10 

11 0.01 <0.01 0.01 0.08 -0.06 -0.05 0.02 -0.05 0.02 <0.01 0.03 -0.02 -0.06 

12 0.02 0.01 -0.01 0.06 -0.06 -0.04 <0.01 -0.02 <0.01 0.02 0.02 <0.01 -0.08 

13 -0.01 -0.01 -0.01 0.03 0.10 -0.10 0.03 -0.07 0.01 0.02 0.08 -0.06 -0.10 

14 0.04 -0.03 0.01 0.07 0.13 -0.18 <0.01 -0.13 0.09 0.01 0.07 -0.05 -0.10 

15 0.02 0.06 -0.21 0.24 -0.08 -0.23 0.08 -0.12 -0.03 0.09 0.13 -0.11 -0.12 

16 -0.03 -0.05 -0.23 0.21 0.07 -0.27 0.22 -0.08 -0.12 -0.06 0.18 -0.14 -0.17 

17 -0.08 0.08 -0.31 0.19 0.08 -0.25 -0.01 -0.09 0.07 0.02 0.10 -0.08 -0.14 

Overall 0.14 0.02 0.19 0.28 <0.01 -0.29 0.12 0.01 0.16 -0.28 0.21 <0.01 -0.29 
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Table 10.2 continued: 

 SU level      

Follow-up 
year 

SU level 
≤360µmol/L 

SU level 
>360µmol/L 

SU level 
missing 

Analgesic Colchicine Diuretic NSAIDS 
Cumulative 

allopurinol use 

1 -0.03 0.14 -0.12 0.07 <0.01 0.09 0.02 - 

2 -0.02 0.09 -0.07 0.14 0.22 0.10 -0.08 2.54 

3 <0.01 0.03 -0.03 0.08 0.19 0.05 0.18 2.24 

4 -0.01 0.02 -0.01 0.09 0.17 0.04 0.14 2.04 

5 0.03 -0.02 <0.01 0.04 0.17 0.03 0.09 1.90 

6 0.01 -0.03 0.02 0.07 0.16 0.03 0.07 1.92 

7 0.05 -0.06 0.03 0.05 0.13 0.03 0.05 1.72 

8 -0.04 -0.03 0.05 -0.02 0.12 -0.03 0.06 1.56 

9 -0.09 -0.03 0.07 -0.01 0.13 -0.02 0.04 1.43 

10 -0.07 -0.02 0.05 -0.05 0.14 -0.04 0.10 1.32 

11 -0.06 -0.05 0.08 -0.04 0.10 -0.05 0.09 1.15 

12 -0.05 0.01 0.01 -0.04 0.15 -0.09 0.10 1.00 

13 0.13 -0.03 -0.04 -0.07 0.17 -0.14 0.10 0.90 

14 0.24 -0.08 -0.06 -0.05 0.37 -0.18 0.20 0.72 

15 0.19 -0.10 -0.01 -0.07 0.28 -0.15 0.24 0.41 

16 0.17 -0.12 0.04 -0.09 0.41 -0.24 0.07 0.19 

17 -0.01 -0.30 0.30 -0.38 0.28 -0.55 0.10 <0.01 

Overall <0.01 -0.02 0.02 0.04 0.17 -0.04 <0.01 1.18 

Yellow cells indicate absolute SMD >0.10; Red cells indicate absolute SMD >0.25; NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: Standardised mean difference; SU: 

Serum urate 
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Table 10.3: Overall SMD in the weighted study sample 

Outcome 
Target SU 

level 
Mortality 

Gout 
hospitalisation 

Joint 
replacement 

Cerebrovascular 
disease 

Coronary 
heart disease 

Peripheral 
vascular 
disease 

Renal 
disease 

Demographics         

Age 0.01 0.08 0.10 0.14 0.14 0.11 0.14 0.08 
Sex: Female 0.02 -0.07 0.01 0.02 0.01 <0.01 0.01 -0.02 
Deprivation 0.05 0.01 0.04 0.06 0.06 0.06 0.06 0.06 

Comorbidities         

Anxiety 0.06 0.08 0.02 0.02 0.01 0.03 0.02 0.04 
Depression 0.01 0.08 0.01 <0.01 <0.01 0.03 <0.01 0.03 
Cerebrovascular disease 0.04 0.06 0.05 0.13  0.06 0.13 0.09 
Coronary heart disease -0.07 0.09 0.11 0.07 0.13  0.06 0.05 
Diabetes  0.08 0.10 0.10 0.08 0.11 0.09 0.11 0.08 
Gout consultation 0.28 0.29 0.22 0.22 0.22 0.25 0.22 0.24 
Hyperlipidaemia 0.06 0.18 0.06 0.10 0.09 0.09 0.09 0.07 
Hypertension 0.07 0.21 0.14 0.15 0.16 0.16 0.15 0.12 
Osteoarthritis  0.06 0.14 0.09 0.10 0.12 0.10 0.11 0.10 
Peripheral vascular disease -0.01 0.01 0.04 0.03 0.04 0.04  0.03 
Renal disease 0.10 0.19 0.20 0.22 0.22 0.18 0.22  

Lifestyle factors         

Alcohol consumptiona -0.19 -0.29 0.12 0.15 -0.15 0.14 0.15 0.14 
Body mass indexa -0.19 -0.28 0.12 0.15 -0.15 0.14 -0.15 0.13 
Smoking statusa -0.21 -0.29 0.10 0.11 0.12 0.10 0.11 0.10 
SU levela -0.01b 0.02 0.22 0.19 0.19 0.20 -0.13 0.19 

Medication use         

Analgesics 0.01 0.04 0.13 0.16 0.16 0.14 0.15 0.13 
Colchicine 0.12 0.17 0.15 0.16 0.16 0.16 0.15 0.16 
Diuretics -0.04 -0.04 0.15 0.18 0.17 0.12 0.17 0.12 
NSAIDS -0.03 <0.01 0.02 0.02 0.02 0.07 0.02 0.07 
Cumulative allopurinol use 0.76 1.10 1.24 1.24 1.25 1.19 1.26 1.20 

Cells highlighted in red indicate severe covariate balance with SMD>0.25; Cells highlighted in yellow indicate small covariate imbalance with SMD between 0.10 and 0.25; aFor 
categorical variables, the largest SMD was presented; bSU level was a continuous covariate; NSAIDS: Non-steroidal anti-inflammatory drugs; SMD: Standardised mean 
difference; SU: Serum urate. 
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10.3 Treatment effect estimation 

Treatment effect estimates were derived in the weighted study sample using basic weights 

(Table 10.4). Allopurinol use was strongly associated with reaching target SU level (HR 4.73 

(3.89, 5.76)) and increased risk of gout hospitalisation (2.66 (2.40, 2.94)), coronary heart 

disease (1.18 (1.09, 1.29)), and renal disease (1.42 (1.32, 1.53)). No association between 

allopurinol and mortality, joint replacement, cerebrovascular disease, and peripheral vascular 

disease were found.  

All treatment effect estimates were then adjusted for cumulative allopurinol use as there were 

large differences (SMD >0.25) between treatment groups; gout consultation was also adjusted 

for in the analysis of mortality as this covariate was largely imbalanced between treatment 

groups as well (SMD >0.25). Across all outcomes, adjusted HRs estimates either increased or 

decreased but the standard errors increased compared with unadjusted results. For example, 

for target SU level HR increased from 4.73 to 5.01 and standard error increased from 0.47 to 

0.57.  

Treatment effect estimates were then further adjusted for all covariates whose overall SMD 

>0.10. There was no/little change in HR for target SU level and mortality; HRs decreased 

further for gout hospitalisation (2.49 vs. 2.22), cerebrovascular disease (1.07 vs. 1.01), 

coronary heart disease (1.20 vs. 1.11), peripheral vascular disease (1.23 vs. 1.13); and renal 

disease (1.43 vs. 1.27).  
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Table 10.4: Treatment effect estimation of allopurinol 

Outcome 
No allopurinol 

N (%) 
Allopurinol 

N (%) 

Weight 
Mean (SD) 

Range 

Unadjusted 
HR (95% CI) 

Standard error 

Unadjusted MSM 
HR (95% CI) 

Standard error 

*Adjusted MSM  
HR (95% CI) 

Standard error 

**Adjusted MSM  
HR (95% CI) 

Standard error 

Target SU level   
0.99 (0.68) 

<0.01, 16.13 
4.63 (3.95, 5.42) 

0.37 
4.73 (3.89, 5.76) 

0.47 
5.01 (4.02, 6.25) 

0.57 
5.00 (4.00, 6.23) 

0.56 
   Not reached target 6,805 (96.5) 2,515 (84.5) 

   Reached target 247 (3.5) 460 (15.5) 

Mortality   
1.00 (0.81) 

<0.01, 85.67 
1.19 (1.12, 1.26) 

0.04 
0.96 (0.87, 1.06) 

0.05 
0.91 (0.80, 1.04) 

0.06 
0.93 (0.83, 1.06) 

0.06 
   Alive 106,338 (97.0) 44,017 (96.4) 

   Death 3.346 (3.1) 1.630 (3.6) 

Gout hospitalisation   
1.00 (0.41) 

<0.01, 16.99 
2.92 (2.67, 3.19) 

0.13 
2.66 (2.40, 2.94) 

0.14 
2.49 (2.15, 2.87) 

0.18 
2.22 (1.91, 2.58) 

0.17 
   No 87,694 (99.0) 32,402 (96.9) 

   Yes 923 (1.0) 1,049 (3.1) 

Joint replacement   
1.00 (0.46) 

<0.01, 26.40 
1.14 (0.99, 1.30) 

0.08 
1.14 (0.99, 1.32) 

0.08 
0.98 (0.81, 1.20) 

0.10 
0.93 (0.76, 1.13) 

0.09 
   No 104,135 (99.3) 42,731 (99.3) 

   Yes 692 (0.7) 323 (0.8) 

Cerebrovascular disease   
1.00 (0.45) 

<0.01, 23.86 
0.98 (0.88, 1.10) 

0.06 
1.03 (0.90, 1.19) 

0.07 
1.07 (0.87, 1.31) 

0.11 
1.01 (0.82, 1.25) 

0.11 
   No 101,655 (98.9) 41,901 (99.0) 

   Yes 1,114 (1.1) 438 (1.0) 

Coronary heart disease   
0.99 (0.51) 

<0.01, 31.06 
1.18 (1.09, 1.28) 

0.05 
1.18 (1.09, 1.29) 

0.05 
1.20 (1.08, 1.34) 

0.07 
1.11 (1.01, 1.23) 

0.06 
   No 82,268 (97.5) 31,438 (97.3) 

   Yes 2,080 (2.5) 870 (2.7) 

Peripheral vascular disease   
1.00 (0.45) 

<0.01, 25.55 
1.19 (1.01, 1.41) 

0.10 
1.20 (1.00, 1.44) 

0.11 
1.23 (0.95, 1.58) 

0.16 
1.13 (0.87, 1.46) 

0.15 
   No 105,741 (99.6) 43,775 (99.5) 

   Yes 432 (0.4) 203 (0.5) 

Renal disease   
0.99 (0.45) 

<0.01, 26.43 
1.42 (1.33, 1.52) 

0.05 
1.42 (1.32, 1.53) 

0.05 
1.43 (1.27, 1.61) 

0.08 
1.27 (1.13, 1.43) 

0.07 
   No 96,077 (97.4) 35,986 (96.3) 

   Yes 2,541 (2.6) 1,384 (3.7) 

*Adjusted for imbalanced covariates with SMD>0.25; **Adjusted for imbalanced covariates with SMD>0.10; HR: Hazard ratio; CI: Confidence interval; MSM: Marginal structural models; 

SU: Serum urate;
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10.4 Sensitivity analyses 

10.4.1 Various PS model specifications 

As previously seen in Chapter 9, treatment effect estimates may change depending on which 

covariates were included in the PS model. In this analysis, four different PS models were 

considered in addition to the PS model considered above: 

Model specification 1: Main effects PS model with linear terms for continuous covariates (as 

described above). 

Model specification 2: Main effects PS model with fractional polynomial terms of dimension 

2 (FP2) terms for continuous covariates. 

Model specification 3: Main effects PS model with fractional polynomials of dimension 1 (FP1) 

terms for continuous covariates. 

Model specification 4: Main effects PS model with FP terms that reduced weight variability 

the most. 

Model specification 5: Main effects PS model with FP terms and two-way interaction terms 

that reduced weight variability the most.  

Choice of FP terms and interactions terms was based on which terms reduced SD of weights 

the most. Appendix N shows the PS model specification that was used to estimate the 

probability of initiating allopurinol and the probability of continuing with allopurinol. For 

outcomes target SU level, coronary heart disease, gout hospitalisation, no interaction terms 

were identified that reduced the SD of weights.  

Table 10.5 shows the distribution of the weights and the unadjusted treatment effect in the 

weighted study sample for each PS model. In comparison with model specification 1 (the main 

analysis), adding FP terms and/or interaction terms did not cause the mean weight to deviate 
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from one. However, for the majority of outcomes, except for mortality and gout 

hospitalisation, the SD of weight increased for model specification 2, for example for joint 

replacement, SD increased from 0.46 to 1.27.  

Treatment effects were then estimated. Note that these estimates were not adjusted for any 

covariates. For target SU level, estimated treatment effect differed slightly in model 

specifications 2-4 compared with the main analysis; estimated HRs were lower ranging 

between 4.60 and 4.69 compared with 4.73 obtained from the main analysis; standard errors 

were larger in model specifications 2 (SE=0.52) and 3 (SE=0.59) compared with the main 

analysis (SE=0.47), although model specification 4 yielded the same standard error (0.47).  

Similarly, for secondary outcomes, estimated treatment effects in model specifications 2-5 

differed slightly to the main analysis and standard errors were comparable to the main 

analysis. Overall, treatment effect estimates were robust the choice of PS model.  
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Table 10.5: Distribution of weights and treatment effect estimation of allopurinol 

 Model specification 1 Model specification 2 Model specification 3 Model specification 4 Model specification 5 

Target SU level      

Weight (mean (SD)) 0.99 (0.68) 1.00 (0.79) 1.00 (0.85) 0.99 (0.64) - 
MSM Hazard ratio (95% CI) 
Standard error 

4.73 (3.89, 5.76) 
0.47 

4.60 (3.69, 5.74) 
0.52 

4.69 (3.66, 6.00) 
0.59 

4.66 (3.82, 5.69) 
0.47 

 

Mortality      

Weight (mean (SD)) 1.00 (0.81) 1.01 (0.86) 1.01 (0.91) 0.99 (0.75) 0.99 (0.70) 
MSM Hazard ratio (95% CI) 
Standard error 

0.96 (0.87, 1.06) 
0.05 

0.98 (0.89, 1.08) 
0.05 

1.02 (0.92, 1.12) 
0.05 

1.02 (0.93, 1.11) 
0.05 

1.03 (0.95, 1.13) 
0.05 

Gout hospitalisation      

Weight (mean (SD)) 1.00 (0.41) 1.00 (0.42) 1.00 (0.46) 1.00 (0.41) - 
MSM Hazard ratio (95% CI) 
Standard error 

2.66 (2.40, 2.94) 
0.14 

2.70 (2.43, 3.00) 
0.14 

2.70 (2.43, 3.00) 
0.15 

2.67 (2.41, 2.95) 
0.14 

 

Joint replacement      

Weight (mean (SD)) 1.00 (0.46) 1.01 (1.27) 1.00 (0.50) 1.00 (0.45) 1.00 (0.44) 
MSM Hazard ratio (95% CI) 
Standard error 

1.14 (0.99, 1.32) 
0.08 

1.09 (0.93, 1.28) 
0.09 

1.06 (0.91, 1.24) 
0.08 

1.15 (0.99, 1.32) 
0.08 

1.15 (0.99, 1.32) 
0.08 

Cerebrovascular disease      

Weight (mean (SD)) 1.00 (0.45) 1.01 (1.34) 1.00 (0.50) 1.00 (0.45) 1.00 (0.44) 
MSM Hazard ratio (95% CI) 
Standard error 

1.03 (0.90, 1.19) 
0.07 

1.00 (0.87, 1.15) 
0.07 

0.99 (0.87, 1.12) 
0.06 

1.04 (0.91, 1.18) 
0.07 

1.03 (0.91, 1.18) 
0.07 

Coronary heart disease      

Weight (mean (SD)) 0.99 (0.51) 1.01 (1.38) 1.00 (0.53) 0.99 (0.51) - 
MSM Hazard ratio (95% CI) 
Standard error 

1.18 (1.09, 1.29) 
0.05 

1.12 (1.01, 1.23) 
0.06 

1.16 (1.06, 1.26) 
0.05 

1.16 (1.06, 1.26) 
0.05 

 

Peripheral vascular disease      

Weight (mean (SD)) 1.00 (0.45) 1.01 (1.42) 1.00 (0.50) 1.00 (0.45) 1.00 (0.44) 
MSM Hazard ratio (95% CI) 
Standard error 

1.20 (1.00, 1.44) 
0.11 

1.13 (0.94, 1.35) 
0.11 

1.13 (0.94, 1.36) 
0.11 

1.19 (1.00, 1.42) 
0.11 

1.18 (0.98, 1.41) 
0.11 

Renal disease      

Weight (mean (SD)) 0.99 (0.45) 1.01 (1.72) 0.99 (0.49) 0.99 (0.44) 0.99 (0.41) 
MSM Hazard ratio (95% CI) 
Standard error 

1.42 (1.32, 1.53) 
0.05 

1.33 (1.18, 1.49) 
0.08 

1.41 (1.30, 1.52) 
0.06 

1.39 (1.29, 1.51) 
0.06 

1.39 (1.29, 1.51) 
0.06 

CI: Confidence interval; SD: Standard deviation; SU: Serum urate 
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10.4.2 Weight truncation 

Sensitivity analysis was performed truncating weights at 0.5% of its percentile (Table 10.6). A 

low percentile was chosen as weights were not extreme. Across all outcome analyses, mean 

weight remained the same and SD decreased. For example, for mortality, the maximum 

weight value reduced from 85.67 to 4.57 and SD of weights reduced from 0.81 to 0.58. 

Estimated treatment effects using truncated weights changed very little compared to the main 

analysis and standard errors were very similar as well.  

Table 10.6: Distribution of truncated weights and its impact on treatment effect estimation 
of allopurinol 

 0% weight truncation 0.5% weight truncation 

Outcome 
Weight 

Mean (SD) 
Range 

MSM 
HR (95% CI) 

Standard error 

Weight 
Mean (SD) 

Range 

MSM 
HR (95% CI) 

Standard error 

Target SU level 
0.99 (0.68) 

<0.01, 16.13 
4.73 (3.89, 5.76) 

0.47 
0.98 (0.60) 
0.08, 4.25 

4.72 (3.91, 5.69) 
0.45 

Mortality 
1.00 (0.81) 

<0.01, 85.67 
0.96 (0.87, 1.06) 

0.05 
0.98 (0.58) 
0.05, 4.57 

1.04 (0.96, 1.13) 
0.04 

Gout hospitalisation 
1.00 (0.41) 

<0.01, 16.99 
2.66 (2.40, 2.94) 

0.14 
0.99 (0.33) 
0.14, 2.94 

2.65 (2.41, 2.93) 
0.13 

Joint replacement 
1.00 (0.46) 

<0.01, 26.40 
1.14 (0.99, 1.32) 

0.08 
0.99 (0.33) 
0.12, 2.82 

1.16 (1.00, 1.33) 
0.08 

Cerebrovascular disease 
1.00 (0.45) 

<0.01, 23.86 
1.03 (0.90, 1.19) 

0.07 
0.99 (0.34) 
0.10, 2.97 

1.01 (0.90, 1.14) 
0.06 

Coronary heart disease 
0.99 (0.51) 

<0.01, 31.06 
1.18 (1.09, 1.29) 

0.05 
0.99 (0.40) 
0.07, 3.42 

1.17 (1.07, 1.27) 
0.05 

Peripheral vascular disease 
1.00 (0.45) 

<0.01, 25.55 
1.20 (1.00, 1.44) 

0.11 
0.99 (0.34) 
0.13, 2.88 

1.19 (0.99, 1.42) 
0.11 

Renal disease 
0.99 (0.45) 

<0.01, 26.43 
1.42 (1.32, 1.53) 

0.05 
0.99 (0.32) 
0.09, 2.74 

1.40 (1.30, 1.50) 
0.05 

HR: Hazard ratio; MSM: Marginal structural models; SD: Standard deviation; SU: Serum urate 
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10.4.3 Missing data 

Complete case analysis was performed for all outcomes (Table 10.7). Missing data was present 

in alcohol consumption, BMI, smoking status, and SU level (SU level was only missing for 

secondary outcomes). For the analysis of target SU level, 52% of the study sample had 

complete data. For the secondary outcomes, approximately 20% of the study sample had 

complete data.  

Compared with the main analysis, weights estimated in complete case analysis were found to 

have mean weight of 1 although, they were more variable across most outcomes; for joint 

replacement, the weights had become large with the maximum weight value increasing to 

92.57 whilst for other outcomes (mortality, gout hospitalisation, and renal disease), the 

maximum weight value had decreased.  

Compared with the main analysis, the direction of HRs and statistical significance remained 

the same for two outcomes although the magnitude of HRs decreased; for target SU the HR 

reduced from 4.73 to 4.42 and for gout hospitalisation the HR reduced from 2.66 to 2.47.  The 

HR for coronary heart disease had reduced from 1.18 to 1.01 and lost statistical significance 

compared with the main analysis. The HRs for renal disease were similar between the main 

analysis and complete case analysis.  

Although allopurinol was not associated with four outcomes in the main analysis, the direction 

of the HRs changed in complete case analysis but remained insignificant for three of the 

outcomes; for mortality HR had changed from 0.96 to 1.28; for joint replacement the HR 

changed from 1.14 to 0.85; for cerebrovascular disease the HR had increased from 1.03 to 

1.92. In contrast, for peripheral vascular disease, the HR had doubled and had become 

statistically significant (2.44 (1.28, 4.67)).   
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As expected, due to reduced sample size, standard errors of all treatment effect estimates 

were larger compared to the main analysis. The largest increase in standard error was 

observed for target SU level (0.47 vs. 1.00) and cerebrovascular disease (0.07 vs. 0.86). 
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Table 10.7: Impact of missing data on treatment effect estimates of allopurinol 

Outcome Main analysis Complete case analysis 

 
Sample size 

Weight 
Mean (SD) 

Range 

Unadjusted 
HR (95% CI) 

Standard error 

Unadjusted MSM 
HR (95% CI) 

Standard error 
Sample size 

Weight 
Mean (SD) 

Range 

Unadjusted 
HR (95% CI) 

Standard error 

Unadjusted MSM 
HR (95% CI) 

Standard error 

Target SU level 1,742 
0.99 (0.68) 

<0.01, 16.13 
4.63 (3.95, 5.42) 

0.37 
4.73 (3.89, 5.76) 

0.47 
909 

1.00 (0.84) 
<0.01, 15.63 

4.32 (3.02, 6.18) 
0.79 

4.42 (2.84, 6.88) 
1.00 

Mortality 16,876 
1.00 (0.81) 

<0.01, 85.67 
1.19 (1.12, 1.26) 

0.04 
0.96 (0.87, 1.06) 

0.05 
3,609 

0.99 (1.10) 
<0.01, 39.93 

1.37 (1.11, 1.70) 
0.15 

1.28 (0.91, 1.80) 
0.22 

Gout 
hospitalisation 

14,087 
1.00 (0.41) 

<0.01, 16.99 
2.92 (2.67, 3.19) 

0.13 
2.66 (2.40, 2.94) 

0.14 
3,044 

0.99 (0.46) 
<0.01, 7.92 

2.72 (1.98, 3.74) 
0.44 

2.47 (1.70, 3.60) 
0.47 

Joint 
replacement 

16,644 
1.00 (0.46) 

<0.01, 26.40 
1.14 (0.99, 1.30) 

0.08 
1.14 (0.99, 1.32) 

0.08 
3,555 

1.00 (1.30) 
0.01, 92.57 

0.96 (0.59, 1.57) 
0.24 

0.85 (0.48, 1.50) 
0.25 

Cerebrovascular 
disease 

16,253 
1.00 (0.45) 

<0.01, 23.86 
0.98 (0.88, 1.10) 

0.06 
1.03 (0.90, 1.19) 

0.07 
3,473 

0.99 (0.67) 
0.01, 38.43 

1.10 (0.73, 1.65) 
0.23 

1.92 (0.79, 4.63) 
0.86 

Coronary heart 
disease 

14,063 
0.99 (0.51) 

<0.01, 31.06 
1.18 (1.09, 1.28) 

0.05 
1.18 (1.09, 1.29) 

0.05 
2,802 

0.99 (0.70) 
<0.01, 26.22 

1.09 (0.81, 1.46) 
0.16 

1.01 (0.70, 1.44) 
0.18 

Peripheral 
vascular disease 

16,519 
1.00 (0.45) 

<0.01, 25.55 
1.19 (1.01, 1.41) 

0.10 
1.20 (1.00, 1.44) 

0.11 
3,517 

1.00 (0.79) 
<0.01, 45.58 

2.41 (1.33, 4.39) 
0.74 

2.44 (1.28, 4.67) 
0.81 

Renal disease 16,508 
0.99 (0.45) 

<0.01, 26.43 
1.42 (1.33, 1.52) 

0.05 
1.42 (1.32, 1.53) 

0.05 
3,512 

0.99 (0.52) 
<0.01, 16.61 

1.61 (1.31, 1.97) 
0.17 

1.44 (1.10, 1.89) 
0.20 

CI: Confidence interval; SD: Standard deviation; HR: Hazard ratio; MSM: Marginal structural models; SU: Serum urate 
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10.4.4 Unmeasured confounding variables 

Sensitivity of treatment effect estimates (from the main analysis) against unmeasured 

confounding was assessed. E-values were derived which measures the minimum association 

required between an unmeasured confounding variable with treatment and outcome, to 

explain away (or nullify) the treatment effect; E-values were also calculated such that the 

confidence interval for the treatment effect estimate contains the null value. E-values are 

measured on the risk ratio (RR) scale.  

E-values were computed for target SU level, gout hospitalisation, coronary heart disease, and 

renal disease and are presented in Table 10.8. The largest association on the RR scale between 

a measured covariate with outcome, allopurinol initiation, and allopurinol continuation are 

also presented.  

For target SU level, to nullify the estimated HR of 4.73, an E-value of 5.15 was required and an 

E-value of 4.47 for the confidence interval to contain 1. The largest RR was observed between 

renal disease and outcome (RR 1.53); colchicine and allopurinol initiation (RR 1.61); gout 

consultation and allopurinol continuation (RR 1.61). As the E-values were larger than the 

observed RRs, it is unlikely an unmeasured confounding variable exists that is associated with 

both treatment and outcome with a RR of least 4.47, to cause the treatment effect estimate 

to lose statistical significance.  

Similarly for gout hospitalisation, an E-value of 4.76 was required to nullify the treatment 

effect estimate of 2.66, and an E-value of 4.23 in order for the confidence interval to contain 

1. The largest associations between any covariate with gout hospitalisation, allopurinol 

initiation, and allopurinol continuation ranged from 1.34 to 2.41. Therefore, as the E-value 

was outside of this range, it is unlikely a strong confounding variable exists that could cause 

the treatment effect estimate to lose statistical significance.   
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For coronary heart disease and renal disease, smaller E-values of 1.49 and 1.87 respectively, 

were required to nullify the estimated treatment effects; also, E-values of 1.32 and 1.72 

respectively, would be required to cause the confidence interval to include the null value. The 

RRs observed between covariate and outcome (coronary heart disease/renal disease), 

allopurinol initiation, and allopurinol continuation ranged from 1.39 to 3.31. Therefore, it is 

likely an unmeasured confounding variable exists that could cause the estimated treatment 

effects to lose statistical significance.   

Table 10.8: Assessment of unmeasured confounding using E-values 

Outcome 
MSM 

HR (95% CI) 
E-value 

RR (95% LCl) 

Largest RR 
between 

(covariate) 
and outcome 

Largest RR 
between 

(covariate) and 
allopurinol 
initiation 

Largest RR 
between 

(covariate) and 
allopurinol 

continuation 

Target SU 
level 

4.73 (3.89, 5.76) 5.15 (4.47) 
1.53  

(renal disease) 
1.61 

(colchicine use) 
1.22  

(gout consultation) 

Gout 
hospitalisation 

2.66 (2.40, 2.94) 4.76 (4.23) 
2.41 

(renal disease) 
2.25 

(colchicine use) 
1.34  

(NSAID use) 

Coronary 
heart disease 

1.18 (1.09, 1.29) 1.49 (1.32) 
2.29 

(diuretic use) 
2.32 

(colchicine use) 
1.41a 

(no hypertension) 

Renal disease 1.42 (1.32, 1.53) 1.87 (1.72) 
3.31 

(diuretic use) 
2.30 

(colchicine use) 
1.39a 

(no diabetes) 
aRR was <1.00 thus the inverse was taken and presented; HR: Hazard ratio; CI: Confidence interval; LCI: Lower 

bound of the confidence interval: MSM: Marginal structural models; RR: Risk ratio; SU: Serum urate 

 

 

10.5 Summary 

This chapter aimed to estimate the causal association between allopurinol use and long-term 

outcomes using MSM. In this analysis, the associations between covariates and treatment 

initiation and continuation were modelled separately.  

This analysis had shown allopurinol users had higher chance of reaching target SU level and 

had higher risk of gout hospitalisation, coronary heart disease and renal disease than non-

users. There was no evidence allopurinol use was associated with mortality, joint replacement, 

cerebrovascular disease, and peripheral vascular disease. The estimated treatment effects 

were robust to various PS model specifications and large weights, indicating that the PS 
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models were correctly specified. The treatment effect estimates from complete case analysis 

differed in terms of magnitude, direction, and statistical significance across outcomes, 

although this was primarily due to analysing a much smaller sample and selection bias.  

Treatment estimates for target SU level and gout hospitalisation were likely to be robust 

against unmeasured confounding as strong confounding variables would be required for the 

treatment estimates to lose statistical significance. However, the same cannot be said for 

coronary heart disease and renal disease that will require weak confounding to explain away 

the treatment effect estimates.  

Comparison with previous studies 

Although there are no comparable studies that had evaluated the time-varying effect of 

allopurinol on outcome, one study had evaluated the changes in SU level on outcome in gout 

using MSM (Desai et al., 2018). That study is of interest due to the direct effects of allopurinol 

on lowering SU level that are subsequently expected to lower the risk of poor outcome. Desai 

et al. (2018) found per 3 mg/dL reduction in SU level was not associated with cardiovascular 

disease (coronary heart and cerebrovascular diseases) (HR 1.01 (0.81, 1.27)) but was 

associated with renal function decline (HR 0.89 (95% CI 0.81, 0.98)). The HRs differed to the 

HRs estimated in this analysis but that could be due to differing outcome and exposure 

definitions, different study population (USA), data was obtained from health insurance claims, 

and included more covariates in PS estimation.  

Residual confounding 

In the main analysis, it was found in the weighted study sample covariate balance was not 

achieved for all covariates in all follow-up periods. Some residual confounding was expected 

as the associations between covariates and patients initiating treatment for the first time and 

patients resuming treatment were assumed to be the same when they may instead differ; the 
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same assumption was also made between patients discontinuing treatment for the first time 

versus those discontinuing treatment repeatedly. However, using separate PS models to allow 

these associations to differ may lead to larger standard error in the treatment effects (Platt et 

al., 2013). Other sources of residual confounding will be from incomplete adjustment for 

lifestyle factors due to missing data, unable to model SU level as a time-varying covariate as it 

was infrequently measured, and under reporting of hypertension and renal disease found in 

this dataset.  

Estimating the probability of initiating and continuing with allopurinol separately vastly 

improved the distribution of weights compared with weights estimated in Chapter 9.  

Estimated treatment effects were more in line with treatment effects estimated from baseline 

and time-invariant PS subclassification.  
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11 Discussion 

Electronic health records (EHR) enable real life patterns of drug prescribing and other aspects 

of healthcare to be captured over a long period of time. This in turn allows for the possibility 

of treatment effects to be estimated under conditions of time-varying treatment and 

covariates. However, this may give rise to time-varying confounding as covariates may predict 

future treatment and outcome over time. Controlling for time-varying covariates that are 

affected by past treatment can be challenging in practice as one may inadvertently adjust out 

the effect of treatment that is mediated through covariates, resulting in biased effects.  

The work presented in this thesis employed two advanced propensity score (PS) based 

approaches, namely PS subclassification and marginal structural models (MSM), to complex 

EHR data from the Clinical Practice Research Datalink (CPRD), to accurately estimate effects 

of allopurinol on a range of outcomes in patients with gout. Multiple clinical and statistical 

decisions have had to be made at various stages of data preparation and analysis. Sensitivity 

of the findings to various assumptions was assessed and some important implementation 

challenges have been identified.  

This chapter summarises key findings and highlights the strengths and limitations of this work. 

Potential future research and clinical implications are also discussed.  

 

11.1 Summary of key findings 

Literature review 

The literature review conducted in October 2014 was performed to identify published 

observational studies evaluating the effect of allopurinol on gout outcomes, and to establish 

the range of study designs and statistical methods used to control for confounding variables 
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(Chapter 3). The review highlighted a small number of studies that had used primary care EHR 

to evaluate effects of allopurinol. Studies tended to measure allopurinol and covariates at a 

single time point and the methods used to account for these covariates were generally 

suboptimal. No studies modelled time-varying allopurinol and covariates, nor had considered 

assessing sensitivity of treatment effect estimates to modelling assumptions made, such as 

absence of unobserved confounding. 

Given that considerable time has elapsed since the initial review was conducted and there 

have since been published studies highlighting the benefits of using EHR for research (Herrett 

et al., 2015), the literature review was updated in June 2020. A further 56 studies were 

identified that evaluated effect of allopurinol, of which five studies had used primary care EHR 

data (Abdul Sultan et al., 2017, Sultan et al., 2019, Sultan et al., 2018, Roughley et al., 2018, 

Vargas-Santos et al., 2018). Twenty-two studies analysed EHR from insurance claims. PS 

matching at baseline to create comparable treatment groups was used in 11 studies. One 

study had used inverse probability treatment weights that were estimated using generalised 

boosted regression models to account for confounding (Chung et al., 2019). Some studies had 

reported results for outcomes not considered in earlier similar studies, such as hepatoxicity 

(Lee et al., 2019), dementia (Singh and Cleveland, 2018b), cancer (Shih et al., 2017, Chen et 

al., 2016), erectile dysfunction (Abdul Sultan et al., 2017), and fracture (Sultan et al., 2018, 

Tzeng et al., 2016). Kang et al. (2019) had used competing risk models to account for the 

competing risk of death in the evaluation of non-fatal cardiovascular events. Few studies had 

censored patient follow-up when treatment status had changed (Vargas-Santos et al., 2018, 

Foody et al., 2017, Kang et al., 2019, Kim et al., 2018, Zhang et al., 2018). Although studies had 

stated unmeasured confounding was a limitation, no studies had formally re-estimated the 

treatment effect. 
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No studies were identified that used advanced methods to evaluate the time-varying effect of 

allopurinol on outcome in the presence of time-varying confounding. Hence, new findings 

from this thesis adds to the current literature.  

Baseline PS subclassification 

Chapter 7 estimated the conditional effect of initiating allopurinol on outcome using the one-

year landmark method. Initial descriptive statistics showed allopurinol users more commonly 

had SU level above target, coronary heart disease, and renal disease, and were prescribed 

pain relief and diuretics more compared to non-users. These differences between treatment 

groups suggested confounding by indication could be present. 

Baseline confounding was controlled by creating homogenous subclasses via PS 

subclassification and by adjusting for remaining imbalanced covariates in outcome analysis. 

PS subclassification was relatively straightforward to implement. Estimated PS distribution 

was satisfactory with adequate common support between treatment groups and balance was 

achieved for the majority of covariates within subclasses.  

Allopurinol was shown to be associated with higher chance of reaching target serum urate 

(SU) level ≤360μmol/L and fewer number of primary care gout consultations, while it also 

increased risk of premature mortality, gout hospitalisation, coronary heart disease, and renal 

disease compared with non-use. The magnitude of the effect of allopurinol differed across 

subclasses for gout consultations and gout hospitalisation. No association was observed 

between allopurinol and joint replacement, cerebrovascular disease, and peripheral vascular 

disease.  

Analyses were subsequently stratified by presence of renal disease and severe 

hyperuricaemia. It was not possible to reliably estimate treatment effect estimates among 

those with renal disease due to very low sample size. However, among those without renal 
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disease, allopurinol remained associated with higher chance of reaching target SU level and 

fewer number of primary care gout consultations, and increased risk of gout hospitalisation, 

coronary heart disease, and renal disease than non-use, and now also with a higher risk of 

joint replacement; the direction and magnitude of the hazard ratios were similar to the 

estimated hazard ratios in the whole study sample analysis. 

Allopurinol was associated with reaching target SU level, gout hospitalisation, joint 

replacement, coronary heart disease and fewer gout consultations in those with non-severe 

hyperuricaemia, but only reaching target SU level and fewer gout consultations in those with 

severe hyperuricaemia. 

The key limitation of baseline PS subclassification approach was that PS was estimated as the 

probability of allopurinol at baseline conditional on covariates at baseline, thus assuming that 

these measures remained constant throughout follow-up. These assumptions may be 

unrealistic; the one-year landmark method used for the main analyses did not capture the 

majority of patients consulting for gout that were prescribed allopurinol later on. Using a two-

year landmark period did not change treatment effect estimates substantially, suggesting that 

future similar studies analysing effect of allopurinol initiation following gout diagnosis should 

consider a longer landmark period. However, this simplistic approach provided a base set of 

results, against which estimates based on more elaborate methods could be compared.   

Time-varying PS subclassification 

Chapter 8 extended PS subclassification to a repeated measures setting that captured changes 

in allopurinol status and covariates over time, thus estimating the conditional effect of actual 

treatment. Descriptive analyses showed the prevalence of key comorbidities that are 

indications for allopurinol (renal disease and hypertension) had increased over time and to a 

smaller extent colchicine use although there was a reduction in prescriptions for NSAIDS. The 
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proportion of patients prescribed allopurinol was double that observed in the baseline 

analysis. It was also observed that once patients initiated allopurinol, 40% discontinued 

treatment, with nearly half of those patients subsequently restarting treatment. Differences 

in comorbidities between treatment groups identified in the baseline analysis were more 

pronounced and now included hypertension and obesity; differences in baseline SU level and 

medication use between treatment groups identified in baseline analysis persisted.    

There were several issues encountered during implementation of time-varying PS estimation. 

The initial model estimated PS that near violated the positivity assumption with values close 

to zero in the majority of non-allopurinol intervals in the subclass with the lowest propensity 

for allopurinol. This resulted in poor common support of PS between treatment groups with 

few allopurinol intervals found in the subclass with the lowest PS, and no occurrence of 

outcome in that subclass. Various modifications, such as inclusion of interaction terms and 

non-linear terms, and omission of covariates, were made to the PS model however none 

resolved the issue. Reducing the number of subclasses from five to four and/or removing 

patients outside the region of common support prior to subclassification, still resulted in very 

few allopurinol intervals in the first subclass and no occurrence of outcome. With regards to 

covariate balance, overall balance was achieved across subclasses however within subclasses, 

a number of covariates were not balanced and had to be adjusted for in subclass-specific 

treatment effect estimation. Modifications made to the PS model and increasing the number 

of subclasses did little to improve covariate balance.  

As a result, across all outcomes, the first subclass could not be used and was excluded from 

all outcome analyses. The implication of this was that not all repeated measurements from a 

patient were analysed. Intervals that were excluded contained observations from older 

patients and resided in less deprived areas, were female, had lower SU level, were less likely 
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to consult for gout, had fewer prescriptions for diuretics, and shorter mean duration of 

previous allopurinol use, than intervals that were included in analysis.  

In terms of the findings, allopurinol was found to be associated with increased chance of 

reaching target SU level, and increased risk of gout hospitalisation, coronary heart disease, 

peripheral vascular disease and renal disease.  

Compared with the baseline PS subclassification approach, some findings remained similar, 

however overall the estimated hazard ratios were different and standard errors were larger, 

to varying extent, across all outcomes. For example, the hazard ratios for target SU level and 

peripheral vascular disease doubled; effect of allopurinol on mortality lost statistical 

significance; cerebrovascular disease, coronary heart disease and renal disease now had 

treatment effects that varied across PS subclasses.  

Overall application of time-varying PS subclassification method did not perform well in 

estimating PS, and consequently in the outcome analysis stage. The primary reason is 

suspected to be the use of random intercept (used to account for within patient repeated 

measurements) in the PS estimated model. Use of random effects is known to have better 

discrimination ability (i.e., allopurinol users and non-users have higher and lower estimated 

PS respectively) than logistic regression without random effects (Bouwmeester et al., 2013), 

which may have been the reason for poor common support of PS between treatment groups. 

Random intercept terms had to be omitted from the estimation of subclass-specific treatment 

effects as models failed to converge successfully, potentially because adjustment for time 

component and/or adjustment for imbalanced covariates. Various specifications of variance-

covariance structure were considered, and none resolved the issue of non-convergence. 

Therefore, in the end, robust standard errors were estimated instead to allow for correlated 

repeated measurements of patients within subclasses. 
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Marginal structural models 

MSM were used to estimate the marginal treatment effect accounting for treatment and 

covariate histories. MSM were fitted under two different assumptions.  

In Chapter 9, naïve scenario was considered, where the direction and magnitude of 

associations between covariates and allopurinol initiation and continuation were assumed to 

be the same. Only mortality outcome was considered. The initial PS model yielded extremely 

large stabilised weights with mean weight deviating from one. Consequently, unexpectedly 

low magnitude of the estimated treatment effect was observed, indicating that allopurinol 

use was strongly protective of premature mortality (which was not observed in previous 

chapters), although the standard error was smaller than the corresponding standard error 

derived from time-varying PS subclassification but larger via than baseline PS subclassification.  

Although one primary care EHR study had shown allopurinol use was protective of premature 

mortality (Dubreuil et al., 2015), the estimated hazard ratios in this analysis was considerably 

lower and unexpected, as prescription for allopurinol dose is often low (100-300mg/day) and 

infrequently escalated to the optimal dose within primary care (Cottrell et al., 2013). Similar 

magnitude and direction of treatment effect estimates of allopurinol were also obtained for 

other secondary outcomes, though reporting of the results was restricted to mortality only in 

this analysis.  

Various modifications to PS models were made in an attempt to reduce weight variability. 

Inclusion of non-linear terms for continuous covariates yielded the largest increase in the 

hazard ratio, thus estimating an even stronger protective effect against premature mortality 

although, standard error did reduce. Cumulatively including interaction terms between 

covariates to the PS model resulted in a decrease in hazard ratio towards the null and 

reduction in standard error that was similar to the standard error estimated in baseline PS 
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subclassification approach. Regardless of the choice of PS model, imbalance appeared in all 

covariates and worsened over time; direct adjustment for these imbalanced covariates in 

outcome analysis generally led to the hazard ratio moving further away from the null and 

increased standard error. In all instances, allopurinol use remained protective of premature 

mortality.  

Various common approaches for reducing extremeness of weights were adopted. Using 

normalised weights and weight truncation for both stabilised and normalised weights yielded 

smaller hazard ratios that were closer to the null value, and smaller standard errors than the 

treatment effect estimates obtained from the main analysis. However, despite these remedial 

procedures, the issue of covariate imbalance between treatment groups remained, 

particularly after ten years of follow-up. When follow-up was truncated at 10 years, the 

treatment effect estimate moved closer to the null with a larger standard error compared with 

the main analysis. Notably, covariate balance was achieved over time; this may have been due 

to certain covariate combinations occurring after 10 years that may have been the cause of 

extreme weights initially observed not being captured. Furthermore, extreme weights that 

may have appeared in earlier follow-up were prevented to be cumulatively multiplied over a 

longer period that would have amplified extreme weights. Out of these various approaches 

used, weight truncation estimated the hazard ratios closest to the null and smallest standard 

errors although covariate balance could only be achieved with substantial weight truncation.   

Lastly, intention-to-treat analysis that estimated the effect of initiating allopurinol and 

assumed patients remained on treatment until the end of follow-up was performed. 

Estimated stabilised weights were more satisfactory as there were no extreme weights and 

mean weight did not deviate from one. Estimated treatment effects was comparable with 

baseline PS subclassification although the standard error was slightly larger. This suggests 

estimating weights after treatment initiation may be complex.      
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Overall, it was concluded that the PS model was likely misspecified, primarily because of the 

assumption that the associations between covariates and allopurinol initiation and 

continuation were the same. There appeared to be a trade-off between bias and precision of 

the estimated treatment effect; use of different approaches to reduce extreme weights 

generally led to treatment effect estimates that were close to the null value (indicating 

increase in bias), while standard error decreased (increased precision).  

In Chapter 10, the direction and magnitude of associations between covariates and allopurinol 

initiation and continuation were assumed to differ. This assumption was plausible as the 

associations between covariates and allopurinol continuation and discontinuation differed in 

magnitude, direction, and statistical significance. For example, hyperlipidaemia, hypertension, 

and diabetes had increased odds of continuing allopurinol compared with discontinuing 

allopurinol; in contrast, these same covariates had reduced odds of initiating allopurinol 

compared with non-use.  

Estimating PS separately for patients initiating and continuing allopurinol improved weight 

estimation; the estimated weight distribution was not skewed, mean weight was close to one, 

and extreme weights were not present. Outcome analysis showed that allopurinol was 

associated with higher chance of reaching target SU level, and increased risk of gout 

hospitalisation, coronary heart disease, and renal disease. As a sensitivity analysis, truncating 

weights by a small percentage resulted in very small changes in the hazard ratios and standard 

errors for all outcomes suggesting any larger weights (although not extreme) did not have an 

undue impact on treatment effect estimates. Imbalance remained in some covariates and 

these were adjusted for in the outcome analysis; adjustment for large imbalanced covariates 

caused small changes in treatment effect estimates and small increase in standard errors, 

except for target SU level where hazard ratio and standard error increased by a large amount.  
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Although not statistically significant, treatment effect estimate had shown allopurinol 

generally increased risk of premature mortality in contrast to Chapter 9, where allopurinol 

was protective of mortality and had larger standard error due to larger weight variability.   

Generally, similar conclusions regarding the effectiveness of allopurinol can be made based 

on application of MSM and time-varying PS subclassification approaches; allopurinol 

increased the chance of reaching target SU level, and increased risk of gout hospitalisation, 

coronary heart disease, and renal disease; however, PS subclassification had found allopurinol 

increased the risk of peripheral vascular disease as well. Magnitude of treatment effect 

estimates differed between the two methods; hazard ratios estimated from MSM were 

greater for target SU level and joint replacement, but smaller for peripheral vascular disease 

compared to estimates obtained via time-varying PS subclassification; as PS subclass-specific 

treatment effects could not be pooled for gout hospitalisation, cerebrovascular disease, 

coronary heart disease and renal disease, most estimates were smaller than the estimates in 

MSM, with the exception of one PS subclass that had greater estimates. Precision of treatment 

effect estimates resulting from MSM approach was generally smaller compared with time-

varying PS subclassification.   

Comparison of treatment effect estimates obtained from MSM and baseline PS 

subclassification (Chapter 7) are not comparable; MSM estimated the effect of actual 

treatment, whereas baseline PS subclassification estimate the effect of initiating treatment. 

Regardless, both methods found allopurinol increased the chance of reaching target SU level, 

and increased risk of gout hospitalisation, coronary heart disease, and renal disease. Notably, 

the largest difference observed between the two methods were that estimated hazard ratios 

for target SU level and gout hospitalisation in MSM were double of the hazard ratios obtained 

from baseline analysis, and also had larger standard errors. Overall, no reliable conclusions 

can be made regarding comparison of point and precision estimates between the two 
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methods as similarities and differences were dependent upon frequency of outcome events, 

consideration of time-invariant and time-varying treatment and covariates, and how soon 

outcome occurs after receiving treatment, and how confounding effects were accounted for. 

Missing data 

Missing data were present for body mass index, alcohol consumption, smoking status and 

baseline SU level. For the main analysis, the missing indicator method (MIM) and the last 

observation carried forward (LOCF) were utilised allowing the entire study sample to be 

analysed. Complete case analysis was performed restricting analysis to patients who did not 

have missing data in those covariates across all three methods to assess sensitivity of 

treatment effect estimates regarding target SU level and mortality in (baseline and time-

varying) PS subclassification, and then across all outcomes in MSM.  

In complete case analysis for target SU level, the estimated hazard ratio had reduced in 

baseline PS subclassification whereas in time-varying PS subclassification and MSM, the 

hazard ratios were greater than the hazard ratios obtained from analysing the whole study 

sample. However, significance of estimates of allopurinol effect remained throughout. In 

complete case analysis for mortality, hazard ratio resulting from baseline PS subclassification 

approach, had reduced compared to the hazard ratio estimated from analysing the whole 

study sample, and significance was lost. In contrast, hazard ratios obtained via time-varying 

PS subclassification and MSM increased in complete case analysis. Standard errors of 

treatment effect estimates across all three methods had increased as expected due to smaller 

sample available for analysis; however, the increase in standard error was the greatest in 

MSM, followed by time-varying PS subclassification and then baseline PS subclassification.  

Larger differences in treatment effect estimates obtained from complete case analysis and 

the whole study sample analysis was found in MSM and time-varying subclassification 
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compared with baseline PS subclassification. This may be due to using MIM over time with 

LOCF that may have biased treatment effect estimates more than using MIM at baseline. 

However, treatment effect estimates from complete case analysis may be biased due to 

analysing a more selective group of patients not representative of the whole study sample 

thus introducing selection bias.  

Complete case analysis was performed for the remaining outcomes in MSM only. Allopurinol 

remained associated with greater chance of reaching target SU level and greater risk of gout 

hospitalisation, peripheral vascular disease and renal disease; statistical significance was lost 

for coronary heart disease. Hazard ratios were smaller in complete case analysis for gout 

hospitalisation, joint replacement and coronary heart disease, and were larger for the 

remaining outcomes compared to the hazard ratios estimated in the whole study sample. As 

before, all standard errors were higher in complete case analysis.  

Unmeasured confounding 

PS-based methods make a strong assumption of no unmeasured confounding which in 

practice is unlikely to be satisfied. Impact of confounding was considered for baseline PS 

subclassification, for target SU level and mortality. In MSM, it was considered for outcomes 

that had statistically significant associations with allopurinol. Unmeasured confounding was 

not considered for time-varying PS subclassification as the approach had to exclude some 

repeated measurements within patients from analysis in treatment effect estimation. 

Therefore, differences in the treatment effect obtained in the main analysis compared with 

the revised treatment effect in the presence of unmeasured confounding will be attributed to 

both unmeasured confounding and residual confounding from exclusion of repeated 

measurements from analysis.   
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In baseline PS subclassification, treatment effect estimates were revised in light of an 

unmeasured binary covariate with differing prevalence rates within treatment groups using 

the approach by Lin et al. (1998). Regardless of the distribution of an unmeasured binary 

confounding variable with treatment, allopurinol use remained associated with increased 

chance of reaching target SU level; treatment effect estimate was robust to unmeasured 

confounding as the magnitude of the hazard ratio was smaller but remained large and 

statistically significant. However, for mortality, treatment effect estimate lost significance in 

the assumed presence of an unmeasured binary confounding variable that had small 

difference in prevalence rates between treatment groups. When the difference of prevalence 

rates of the unmeasured confounding variable was large between treatment groups, 

allopurinol was shown it could be protective of premature mortality. The disadvantage of this 

method is that it does not consider the association between an unmeasured confounding 

variable and outcome, and the standard error of treatment effect assumed to be constant.   

Within MSM, E-value approach to assessing unmeasured confounding was used. E-value 

quantifies the association (risk ratio) between an unmeasured confounding variable with 

treatment and outcome that would be required to explain away the treatment effect. As large 

hazard ratios were estimated for target SU level and gout hospitalisation in the main analysis, 

a strong association of at least 4 on the risk ratio scale between an unmeasured confounding 

variable and allopurinol would be required to explain away or nullify the hazard ratios; such 

an unmeasured confounding variable is unlikely to exist as the strongest observed association 

(risk ratio) between any covariate with allopurinol and outcome was 2.4. In contrast, for 

coronary heart disease and renal disease, as the estimated hazard ratios were smaller, a 

weaker association of at least 1.67 (risk ratio) between an unmeasured confounding variable 

with outcome and treatment was required to explain away the treatment effect; thus these 

estimates may be non-robust.  
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Evidently, generally larger estimated treatment effects require stronger unmeasured 

confounding variables to explain away the treatment effect. This thesis had considered strong 

confounding variables such as renal disease and baseline SU level thus finding another strong 

single confounding variable is unlikely; however, in the presence of cumulative confounding 

effects from two or more unmeasured confounding variables could potentially explain away 

small treatment effects.  

Comparison with previous research 

Published literature mostly considered allopurinol use at baseline thus the results are only 

comparable with baseline PS subclassification. As discussed in Section 7.7.1, there are few 

published EHR studies that had used comparable methods that were used in this thesis. 

Compared to published studies that had used EHR from CPRD and the one-year landmark 

method, estimated hazard ratios for mortality and renal disease in this thesis were larger and 

statistically significant although precision was similar (Kuo et al., 2015a, Roughley et al., 2018). 

Kuo et al. (2018) had used a case-control study design with CPRD data and concluded 

allopurinol use was not associated with joint replacement. One study using EHR from a Taiwan 

administrative database had concluded allopurinol increased risk of coronary heart disease 

but not cerebrovascular disease, the same conclusions derived in this thesis albeit with smaller 

hazard ratios and standard errors (Kok et al., 2014). In contrast, a study using EHR from an 

American administrative database had shown allopurinol was protective of peripheral 

vascular disease (Singh and Cleveland, 2018a), which was not verified in this thesis. No existing 

studies using EHR databases have evaluated outcomes target SU level, repeated gout 

consultations and gout hospitalisation. A RCT evaluating efficacy of nurse-led care vs. general 

practitioner (GP)-led care, found nurse-led care achieved greater number of patients achieving 

target SU level and reduced gout flares over two years than GP-led care (Doherty et al., 2018). 

Other smaller studies have shown allopurinol was associated with greater chance of reaching 
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target SU level (Dalbeth et al., 2006, Roddy et al., 2007b) and reduced flares potentially leading 

to fewer consultations (Neogi et al., 2014, Zhang et al., 2012, Zhang et al., 2014) the same 

conclusions as derived in this thesis. However, this thesis found allopurinol use was associated 

with higher risk of gout hospitalisation unlike a small study case-control study in New Zealand 

that found allopurinol use had lower odds of hospitalisation (Hutton et al., 2009).  

As stated above, no studies had evaluated the effect of time-varying allopurinol; few studies 

had censored follow-up when treatment had changed or switched treatment groups (Vargas-

Santos et al., 2018, Kim et al., 2013b). However, one study had evaluated the association 

between changes in SU level and risk of renal disease and cardiovascular disease in people 

with gout using MSM (Desai et al., 2018). This study is of relevance to this thesis as changes in 

SU level due to taking allopurinol were expected to have an effect of outcome. That study 

found reduction in SU level was associated with declining renal function but was not 

associated with cardiovascular disease.  

 

11.2 Strengths, limitations, and future research 

Strengths 

There are several strengths of the work presented in this thesis to note. This was the first 

retrospective cohort study that used complex methods to model time-varying treatment 

effect using a large UK primary care EHR database on a range of clinically important long-term 

outcomes in a heterogeneous group of patients with gout likely to be representative of those 

seen in day-to-day clinical practice. The study sample included incident and prevalent cases of 

gout to maximise generalisability of treatment effect estimates to the UK gout population.  
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Several aspects of how such data could be used for treatment-effectiveness research, 

particularly how to incorporate time dependency of covariates and treatment during data 

preparation, were discussed. Careful consideration was given to ensure temporal ordering 

between covariates, treatment and outcome across all methods employed, by using the 

landmark approach to define baseline period and subsequently splitting the follow-up into 

equally spaced intervals within which these measures can be ascertained. Initial baseline 

analysis employed the one-year landmark period which was extended to two years to capture 

more patients prescribed allopurinol. This extension made little difference to treatment effect 

estimates. Within time-varying PS subclassification, initially time was subdivided into six-

month intervals which were then extended to yearly intervals. Decision to use one-year 

intervals for measurement of covariates and treatment was based on achieving a balance 

between increased computational intensity, that would result from use of small intervals, and 

capturing the real-life frequency of treatment and covariate measurement as accurately as is 

practically feasible. 

The positivity assumption was plausible in the estimation of baseline PS however, was near 

violated when PS was estimated over time. Other core assumptions to infer causal treatment 

effects were generally deemed plausible; for the consistency assumption, i.e., that treatment 

was well defined, patients prescribed urate-lowering or uricosuric drugs in the two years prior 

to gout consultation were excluded to ensure there was no interference from the effect of 

those drugs and the effect of incident allopurinol use could then be evaluated. The plausibility 

of exchangeability and model misspecification were continually assessed. Various PS models 

were fitted to assess sensitivity of estimated treatment effects to these modelling variations.  

Furthermore, sensitivity analyses were conducted to assess robustness of treatments effects 

estimates to missing data and unmeasured confounding.  

Limitations and future work  
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This thesis had defined allopurinol use as a total of three months of allopurinol prescription in 

the landmark period for baseline analysis, and subsequently in each year of follow-up. 

Sensitivity analysis could have been performed using alternative definitions for treatment 

such as classifying allopurinol users as those with six or more months of prescription (Kuo et 

al., 2015a), and/or taking precise allopurinol dosage into account.  

As shown in this thesis, allopurinol use did not lead to protective effects against poor 

outcomes which may be due to suboptimal management of gout, such as patients not 

generally being prescribed a high enough allopurinol dose needed to reach target SU level 

(Cottrell et al., 2013) and discontinuation of treatment (Scheepers et al., 2018). Studies had 

shown higher allopurinol doses were protective of renal disease (Vargas-Santos et al., 2018), 

cardiovascular events (Kok et al., 2014), and greater chance of reaching target SU level (Rees 

et al., 2013). Further research could consider effectiveness of time-varying allopurinol dosages 

on outcome using MSM (Lipkovich et al., 2012).  

Future research could evaluate the direct effect of SU level on outcome to avoid the need to 

model suboptimal allopurinol dose. However, within CPRD, SU level was infrequently 

measured and the majority of patients who did have a recorded SU level was over 360μmol/L. 

If CPRD data was used for such an analysis, future work at the most can only consider SU level 

at baseline.  

Patients adhering with allopurinol for a longer period has been shown to be associated with 

reduced flares (Kim et al., 2013b). Future work could also include evaluation of effectiveness 

of different treatment regimens within MSM, such as continuous use of allopurinol for three 

years versus one year, or comparisons of effectiveness made between patients fully adhering 

with treatment versus those partially adhering versus those not treated. Sophisticated flexible 
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MSM could be used to determined how much cumulative exposure to allopurinol patients are 

required to have in order to see the benefits of treatment on outcome (Xiao et al., 2014).  

Other sensitivity analyses could have been performed to assess robustness of treatment effect 

estimates obtained in this study. For example, length of intervals in which covariates and 

treatment were repeatedly measured in the follow-up could have been varied. However as 

noted above, use of smaller intervals may lead to computational issues such as non-

convergence of regression models. Use of larger intervals on the other hand may be 

inappropriate if covariates are frequently measured, such as prescriptions; using ‘out-of-date’ 

information would have weaker associations with treatment and outcome than more recent 

measurements, thus confounding may not be adequately controlled for. Alternatively, one 

could have used unequal intervals where length of interval is based on the period the patient 

is on treatment, with the interval ending once treatment has changed or discontinued; this 

approach was used by Leon (2011a) and may be a solution to having a large number of 

intervals that may cause modelling issues.  

Correct model specification and positivity assumptions are two of the assumptions that PS 

methods are based on. In considering time-varying PS, estimated PS in non-allopurinol 

intervals were close to zero (in the subclass with the lowest PS) which subsequently led to 

presence of extreme weights in MSM, which indicate that the PS model may have been 

misspecified. In the initial application of MSM, incorrect model specification may have 

stemmed from the assumption that the influence of covariates was the same amongst those 

initiating and continuing with treatment when in fact, they had differed. Yang et al. (2015b) 

simulation study had shown modelling the complex mechanisms of treatment use estimated 

unbiased treatment effects although it was limited to two time points. Further work could 

extend this simulation study to include more time points.  
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Within time-varying PS subclassification, it was difficult to assess whether model 

misspecification had an impact on treatment effect. Attempts to improve common support of 

PS between treatment groups was largely unproductive; patients for whom common support 

improved after modifying the PS model ended up being excluded regardless due to small 

number of allopurinol users and no occurrence of outcome in the subclass corresponding to 

the lowest PS. A possible solution could be to estimate PS estimated separately for patients 

initiating and continuing with allopurinol, as this approach improve PS estimation in MSM. 

Simulation studies would be required to assess how well this approach would adequately 

control for confounding effects.   

In PS models, it was assumed the decision to treat was based on covariate values measured in 

the interval prior to treatment and previous cumulative exposure to treatment, and that 

covariates measured two or more years ago had no influence. In practice, GPs are likely to 

prescribe treatment based on cumulative effects of past treatment, covariate history, and 

patient response to treatment. However, the majority of time-varying covariates only changed 

value once, it was unlikely that adjustment for covariates observed in earlier intervals would 

be strongly associated with treatment. This is more likely to apply to covariates that change 

more frequently over time, such as prescription data; however, this was not explored in this 

thesis.   

PS methods make a strong assumption of no unmeasured confounding which in practice is 

unlikely to be satisfied. In this thesis, effects of confounding were minimised by considering a 

large number of clinically relevant covariates. Covariates that were not considered in this 

thesis may potentially be indications for allopurinol (or urate-lowering therapy more 

generally), include recurrent flares, tophi, chronic gouty arthritis, bone erosion, and 

urolithiasis (Hui et al., 2017, Richette et al., 2017). Patients with these indications are likely to 

have SU level above target, which in turn is associated with outcomes considered in this thesis, 
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for example renal disease (Desai et al., 2018). However, these measures are infrequently 

recorded in primary care (Kuo et al., 2014). Robustness of treatment effect estimates against 

unmeasured confounding was evaluated. An alternative method to account for unmeasured 

confounding is use of instrumental variables (IV). IV are used to remove the correlation of 

treatment with unmeasured covariates in the estimation of causal effects. For a covariate to 

be an IV, it needs to be associated with treatment, act on outcome through treatment, and be 

independent of the unmeasured covariate. Finding a covariate that satisfies the assumption 

of IV may be difficult although directed acyclic graphs may be helpful in identifying such an IV 

(Brookhart et al., 2010a). For example, the IV approach has been used to evaluate the 

associations of hyperuricaemia and gout with myocardial infarction. Multiple IVs were 

considered such as age, renal function, diuretic use, and the metabolic syndrome, which were 

assumed to affect outcome though hyperuricaemia and gout (Krishnan et al., 2006). 

Residual confounding may remain from incomplete adjustment of observed covariates. In this 

thesis the strongest confounding variables were considered to be SU level and renal disease. 

Ideally, SU level should have been treated as a time-varying covariate as it is a strong predictor 

for allopurinol and outcome. BSR and EULAR guidelines state SU levels should be monitored 

in line with titrating allopurinol dose, and ensuring patients reached target SU level (Jordan et 

al., 2007b, Hui et al., 2017). In practice, SU level was only measured at baseline, around the 

time of gout consultation for a small proportion of patients. Consequently, SU level is likely to 

have been imbalanced between treatment groups over time. Renal disease was treated as 

time-varying covariate assuming that once a patient was diagnosed with renal disease, they 

had it for the rest of follow-up. A more accurate measure could have been based on eGFR, a 

measure of renal function, to gauge severity of renal disease; unfortunately, eGFR was not 

measured routinely in clinical practice prior to 2004.  
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A large proportion of patients did not have complete data on lifestyle factors, perhaps due to 

intermitted recording of information when patients consult (Jordan et al., 2007a). This thesis 

had used the MIM and LOCF, however simulation studies have shown that use of these 

methods can bias estimates (Cook et al., 2004, Knol et al., 2010). As described above, complete 

case analysis had shown treatment effect estimates from baseline analysis were more robust 

to missing data than time-varying analyses.  

An alternate approach, multiple imputation (MI) by chained equations, could have been used 

to impute missing data. MI is a frequently used approach to deal with missing data, and has 

been adopted in PS literature; a systematic review of 167 studies that had used PS-based 

methods published between 2010 and 2017, found that found MI was used in 19% of these 

studies (Malla et al., 2018). However, it was only until recently simulation studies had shown 

PS estimation (at a single time point) and treatment effect analysis should be performed 

within each imputed data set separately prior to combining treatment effect estimates 

(Granger et al., 2019, Leyrat et al., 2019); and that MI provided unbiased estimates unlike 

complete case analysis (Leyrat et al., 2019) and MIM (Choi et al., 2019) (within the context of 

PS methods). Similarly, in MSM under the intention-to-treat principle, simulation studies had 

shown MI and inverse probability missing weights performed better than LOCF and complete 

case analysis as estimates were less biased (Vourli and Touloumi, 2015, Mojaverian et al., 

2015). For EHR where the number of follow-up time points is large, further MI approaches 

have been developed to impute missing data over time (Welch et al., 2014, Kontopantelis et 

al., 2017); however further research is required to assess in how well these methods work 

compared with complete case analysis, MIM and LOCF when estimating actual treatment 

effect via time-varying PS subclassification and MSM. Another issue to consider is that MI 

assumes that data are missing at random. This assumption may not hold in EHR databases as 

lifestyle factors are likely to be recorded if particular information is relevant to patient care. 
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Thus, missing data are more likely to be missing not at random. Indeed, one study had shown 

MI for smoking status and alcohol consumption using EHR data from THIN led to a higher 

proportion of current smokers and non-drinkers compared with other external databases, 

suggesting the missing at random assumption was not met (Marston et al., 2010). Due to the 

complexity and time taken fitting PS models in this thesis, MI unfortunately was not 

considered.  

Various sensitivity analyses that tested the assumptions made in outcome analysis could have 

been performed in this thesis. Non-informative censoring, i.e., each patient’s censoring time 

is independent to their outcome time, was assumed when implementing Cox models. 

Competing risks occur when a competing event such as death hinders or changes the risk of 

the outcome of interest being observed. These censored patients may systematically differ to 

uncensored patients introducing bias, for example censored patients due to death may be less 

healthy than uncensored patients. This assumption may not be plausible with an aging study 

sample, where increase in number of comorbidities and increased likelihood of death are 

observed. Competing risks models could have potentially been used with baseline PS 

approach, although it was only until recently a simulation study had shown how the two 

methods could be combined (Austin and Fine, 2019). Within MSM, use of censoring weights 

could be used to balance covariate distribution between censored and uncensored patients 

thus the pseudo-population would contain patients who had complete follow-up data. Future 

work could explore use of these two methods in treatment effect estimation.  

 

11.3 Implications and concluding remarks 

This thesis evaluated the effect of allopurinol in patients with gout on a range of clinically 

important long-term outcomes. Differing complexity of statistical models adjusting for 
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confounding were considered from simple baseline PS subclassification to time-varying PS 

subclassification and MSMs. Choice of statistical models used in this thesis is generally largely 

dependent on whether there is a priori belief that measured covariates are potentially time-

varying confounders affected by past treatment, adherence to treatment, and the type of 

effect one wants to estimate.  

Correctly modelling time-varying covariates that are affected by past treatment can be 

challenging. MSM remove the association between covariates and treatment therefore 

removing confounding effects; covariates are no longer on the causal pathway between past 

treatment and outcome, however the association between treatment history and outcome 

still exists as in the original population. This allows one to specifically estimate the overall 

unbiased marginal (or population average) effect of treatment on outcome i.e., the direct 

effect of current treatment. On the other hand, time-varying PS subclassification assumes past 

treatment and covariates are independent in order to estimate an unbiased treatment effect; 

within a PS subclass it only ensures the distribution of covariates and past treatment are 

balanced across treatment groups. Thus the two methods estimate differing effects of 

treatment that are only equivalent if all confounding has been removed, which is unlikely to 

be the case in practice. 

Studies that want to estimate the actual effect of treatment should be aware of the number 

of assumptions needed to infer casual effect. The largest challenge encountered in this PhD 

project was satisfying the two important assumptions of positivity and correct model 

specification. Incorrect PS model specification, that had led to near violation of the positivity 

assumption, may not necessarily be a result of the choice of covariates included in the PS 

model, but due to inadequately modelling the complex mechanism of the influence of 

covariates on treatment. Although the complexity of treatment use can be modelled within 
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MSM, it has not been shown whether the same can be achieved via time-varying PS 

subclassification.  

It seems plausible to suggest that extensive simulation studies are required to: assess whether 

unbiased estimates of treatment effects can be obtained when influence of covariates on 

treatment use varies over time; provide guidance on the optimal approach to imputation of 

missing time-varying covariates; investigate under which scenarios (considering for example 

sample size, omission of lagged covariates with various associations with treatment and 

outcome) PS model misspecification may lead to biased estimates; understand how accurately 

the time-varying PS subclassification estimates conditional treatment effect in the presence 

of covariates affected by past treatment, particularly if subclasses need to be excluded from 

analysis; assess the impact of length of time intervals used to convert continuous time line 

into discrete time measurements; rigorously compare various methods available for direct 

estimation of time-varying treatment effect, such as G-methods (G-computation and G-

estimation) (Danaei et al., 2013) and regression based models that directly adjust for covariate 

history (Achy-Brou et al., 2010, Keogh et al., 2018).   

Complex models (as described above and used in this thesis) for assessment of time-varying 

treatment effect are worth considering; insight is gained into how the mechanism of 

treatment assignment works in real life which would otherwise be ignored in the common 

intention-to-treat analysis approach. The magnitude of actual treatment effect is generally 

larger than the effect of initiating treatment, reflecting clinical practice that may otherwise be 

under-estimated. In this project, this was particularly found to be the case for target SU level 

and gout hospitalisation where the actual treatment effect was double the effect of initiating 

treatment. More generally, as-treated analysis is more likely to capture small effects of actual 

treatment effect than effects measured from intention-to-treat analysis. These models should 
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be applied in different populations using EHR data to gage how successful they are in practice 

more generally.  

To conclude, PS methodology is a valuable approach to control for confounding at baseline 

and over time. Time-varying PS subclassification is a direct extension of baseline PS 

subclassification and in theory is relatively easy to understand and implement, however in 

practice this was not the case. However, this method was found to be limited if common 

support of PS between treatment groups cannot be achieved. Alternatively, one could use 

MSM however analysts should be mindful that there are considerable practical challenges in 

ensuring correct specification of PS and outcome models, particularly when application is to 

complex EHR data. Use of either of these methods will rely on a large number of decisions that 

have to be based on both statistical and clinical arguments, including defining covariates and 

treatment in time-varying manner, selecting the most appropriate length of follow-up 

intervals and PS covariate selection procedure among others. Despite the number of 

considerations that needed to be made in using EHR for analysis and challenges encountered, 

EHR is valuable resource that is linked to a number of external health care databases, large 

number of covariates and outcomes recorded, and continual supply of patient and healthcare 

information that accurately represents what actually happens in practice which will inform 

what areas of healthcare needs improving.  

Allopurinol use was consistently associated with greater chance of reaching target SU level 

and fewer flares but greater risk of gout hospitalisation, coronary heart disease and renal 

disease. Firstly, these adverse effects of allopurinol could be explained by residual 

confounding by indication from unmeasured covariates, or incomplete adjustment of 

covariates with missing data or covariates that were under-reported. Secondly, the target SU 

level was reached by only 57% of allopurinol users suggesting that allopurinol dosing and/or 

adherence was sub-therapeutic and it is likely that the risk of these adverse outcomes would 
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have been lower if allopurinol treatment was more optimal. Despite these associations, GPs 

should continue to treat patients with gout should continue with allopurinol for the long-term 

benefits of complete crystal dissolution such as cessation of gout flares and resolution of tophi 

(Doherty et al., 2018).  
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13 Appendices 

 Literature review protocol 

 

Arthritis Research UK Primary Care Centre 

Systematic Review Protocol & Support Template 

This template is primarily intended to help you plan your review in a systematic way. A copy of this completed form will be available via the 

intranet to help others carrying out reviews in the future and to avoid duplicating work already undertaken in the Centre. Keeping a record 

of all the reviews will also assist in planning the work of the Centre and ensuring adequate methodological support. Not all the information 

will be relevant to every review. However, items can be adapted to fit the type of review that is being undertaken. 

Please complete the form in as much detail as possible for your review and email to Jo Jordan, j.jordan@cphc.keele.ac.uk  

Title of the review 
Statistical methods used to control for confounding in treatment effect estimation of 

allopurinol in gout: a literature review of observational studies 

First reviewer Trishna Rathod 

Team of reviewers N/A 

Supervisor/Project PI  Milisa Bucknall & Ed Roddy 

Clinical Portfolio Group Inflammatory arthritis 

Project title (if different from review 

title) 
N/A 

 

Support – please state if advice/training or personnel required at each stage 

SR overview 01/04/14 – Overall advice on the literature review protocol given by Jo Jordan 

Protocol development N/A 

Literature searching N/A 

Quality appraisal N/A 

Data Extraction N/A 

Synthesis N/A 

Writing up N/A 

 

1. Background to review 

Brief introduction to the subject of the review, including rationale for undertaking the review and overall aim 

Gout is the most prevalent type of inflammatory arthritis affecting 2.5% of the UK population. It is a chronic and progressive disease 

caused by elevated levels of serum urate in the blood leading to deposits of monosodium urate crystals in and around the joints. Gout 

is characterised as acute flares of severe pain and swelling at the affected joint site. Although there is no cure, current treatment aims 

to treat inflammation of the acute gout flare followed by urate-lowering therapy to prevent recurrent flares. 

The EULAR, BSR, and ACR have all published guidelines on the management of gout. They advocate allopurinol as the first line urate-

lowering drug of choice to treat chronic gout. Although allopurinol has been available since 1963, no randomised controlled trials (RCTs) 

have been conducted to establish its long-term efficacy. In recent RCTs determining the efficacy of newer urate-lowering drugs, 

allopurinol was used as the comparator group. The effect of allopurinol (vs. non- use) has been estimated from cohort studies. Cohort 

studies have established that allopurinol lowers serum urate level, reduces the frequency of gout flares, and is well-tolerated. 

Consequently, although allopurinol is recommended as the first line urate-lowering therapy, further evidence is needed of its long-term 

effect on a range of gout outcomes. 



 
 

401 
 

To infer a causal effect of allopurinol, the ignorable treatment assignment assumption needs to be satisfied i.e., conditional on 

participant characteristics (covariates), the assignment of study participants to binary treatment (allopurinol vs non-allopurinol) is 

independent of the outcome of non-allopurinol treatment and the outcome of the allopurinol treatment. In RCTs, this assumption holds 

as randomisation minimises differences of measured and unmeasured covariates between treatment groups. However, this assumption 

is not satisfied in observational studies as treatment assignment is dependent on measured covariates resulting in differences between 

the treatment groups, introducing confounding hence the causal effect is biased. 

Statistical methods in varying degrees of complexity have been used to control for confounding from measured covariates. Traditional 

methods of multivariable regression models, matching and stratification are commonly used to control for confounding. However, such 

methods are limited to the number to covariates that can be controlled for. Alternatively, propensity score (PS) methodology is not 

constricted by this and aims to estimate the treatment effect by accounting for covariates that predict treatment assignment thus 

balancing the observed covariates between the treatment groups. However, a pitfall of PS methodology (and traditional methods) is 

that not all confounders are known or measured. Instrumental variables, frailty and Bayesian models can account for the heterogeneity 

from unmeasured covariates. 

This literature review aims to identify the statistical methodologies used to model the effect of allopurinol in gout outcomes from 

observational studies. 

 

2. Specific objectives 

1) To describe the range of study designs and statistical methods used to control for confounding in modelling the effect of 

allopurinol on gout outcomes.  

2) To compare and contrast the suitability and the limitations of the statistical methods identified. 

 

3. Criteria for including studies in the review  

If the PICOS format does not fit the research question of interest, please split up the question into separate concepts and put one under 

each heading 

Population, or 

participants and 

conditions of interest 

 

Search terms for gout in title and abstract:  

1) MeSH term for gout 

2) Gout 

3) Gout* 

4) Podagra 

5) Arthragra 

6) Chiragra 

7) Toph* 

8) 1 or 2 or 3 or 4 or 5 or 6 or 7 

Interventions or 

exposures 

Search terms for allopurinol in title and abstract: 

9) Allopurinol (Check is mesh term for allopurinol is available) 

10) Xanthine oxidase inhibit* 

11) Urate-lowering 

12) Urate lowering 

13) Uric acid-lowering 

14) Uric acid lowering 

15) Uricostatic 

16) Abburic OR Abopur OR Acepurin OR Acifugan OR Acyprin OR Alfadiman OR Algut OR Alinol OR 

allo* OR Allpargin OR Allupol OR Allura* OR Alluri* OR Aloprim OR Alopur OR Aloral OR Alosfar 

OR Alpur* OR Aluline OR Aluprol OR Aluron OR Alzoprim OR Anurate OR Apnol OR Apo-Tinole 

OR Apronol OR Apulonga OR Apurin OR Apurol OR Arnol OR Arsol OR Artrex OR Arturic OR 

Atisuril OR Aurigen OR Benoxuric OR Be-Uric OR Bionol OR Biuricowas OR Bleminol OR Caplenal 

OR Capurate OR Cellidrin* OR Chinnol OR Ciploric OR Colpuril OR Comburic OR Cosuric OR 

Dabroson OR Darzune OR Desatura OR Docallopu OR Duovitan OR "dura AL" OR Elavil OR 

Embarin OR Epidropal OR Erloric OR Ethipurinol OR Etindrax OR Facilit OR Foligan OR Gealgica 

OR Gewapurol OR Gichtex OR Gotir OR Hamarin OR Harpagin OR Hexanurat OR Hycemia OR 

Isoric OR Jenapurinol OR Labopurinol OR Labypurol OR Lanolone OR Licoric OR Llanol OR Lonol 

OR Lop*ric OR Lopur* OR Loricid OR Lo-Uric OR Lysuron OR Marinol OR Medoric OR Mephanol 

OR Milurit OR Nilapur OR Novo-Purol OR Oloprim OR Petrazyc OR Ponuric OR Prinol OR Pritanol 

OR Progout OR Pureduct OR Puricemia OR Puricin OR Puricos OR Puride OR Purigan OR Purinase 

OR Purinol OR Purispec OR Puristen OR Puritenk OR Pyrazol OR Ranpuric OR Redurate OR Remid 

OR Reucid OR Rimapurinol OR Rinolic OR Sigapurol OR Sinoric OR Soluric OR Stradumel OR 

Suspendol OR Synol OR Synpurinol OR Talol OR Tipuric OR Trianol OR Tylonic OR Unizuric OR 

Uredimin OR Uribenz OR Urica* OR Uricemil OR Uricina OR Uricnol OR Urico* OR Urifugan OR 
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Urikoliz OR Urinol OR Uriprim OR Uripurinol OR Uritab OR Urobenyl OR Urogotan OR Uroplus 

OR Urosi OR Urosin OR Urozyl-SR OR Urtias OR Valeric OR Xandase OR Xanol OR Xanthomax OR 

Xanturic OR Xanurace OR Xuric-A OR "Z 300" OR Zilopur OR Zurim OR Zygout OR Zylapour OR 

Zylic OR Zylo* 

17)  9 or 10 or 11 or 12 or 13 or 14 or 16 

18) 8 and 17 

Comparisons or control 

groups 

Any comparator that may include:  

• Non-steroidal anti-inflammatory drugs 

• Corticosteroids 

• Colchicine 

• Febuxostat 

• Adrenocorticotrophic hormone 

• Interleukin-1 inhibitors (anakinra, canakinumab) 

• Pegloticase 

• Non-pharmacological intervention 

• Placebo 

• Different dose of allopurinol 

• Allopurinol in combination with another drug 

• Usual care 

• Uricosuric drugs (sulfinpyazone, probenecid, benzbromarone, losartan, fenfibrate, atorvastin, 

lefluomide) 

• No active intervention 

Note, these comparators will not be searched for. 

Outcomes of interest 

 

Any outcome that may include: 

• Pain 

• Joint impairment 

• Joint inflammation 

• Joint damage imaging 

• Serum urate levels 

• Acute gout flares 

• Tophus burden 

• Comorbidities 

• Activity limitations 

• Participation restrictions (e.g., employment) 

• Work disability 

• Healthcare utilisation 

• Cos 

• Patient utility 

• Patient/Physician global assessment 

• Patient global assessment of disease scales 

• Health Related Quality of Life 

• Acute phase markers  

• Adverse effects from allopurinol use: skin and subcutaneous tissue disorders such as rash, severe 

cutaneous adverse reactions (including Stevens-Johnson syndrome, toxic-epidermal necrolysis), 

and eosinophilia  

• Mortality 

• Oxypurinol concentrations 

• Any other medical conditions 

Note, these outcomes will not be searched for. 

Setting All settings   

Study designs Observational studies (cohort study, case-cohort study, cross sectional etc) 
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Statistical methods 

Statistical methods used to control for confounding: 

Propensity scores 

Regression models 

G estimation 

Frailty models 

Instrumental variables 

Stratification 

Matching 

 

4. Criteria for excluding studies not covered in inclusion criteria  

Any specific populations excluded, date range, language, whether abstracts or full text available, etc 

• Abstracts from grey literature (e.g., conferences) 

• Papers not written in English 

• Randomised trials 

• Unpublished material 

• Case reports of individual patients 

• Commentaries on articles 

• Letters to the editor 

• Paper is on the diagnosis/strategies/ guidelines in the treatment of gout 

• Prevalence studies 

• Narratives 

Studies on children (<18 years) 

 

5. Search methods 

Electronic databases 

Please list all databases that are to 

be searched and include the 

interface (eg NHS, EBSCO, etc) and 

date ranges searched for each 

Interface: NHS evidence 

https://www.evidence.nhs.uk/about-evidence-services/journals-and-databases 

CINAHL (1981 onwards) 

 

Interface: Ovidsp  

embASE: Excerpta Medica Database (1980 onwards) 

Medline: General medical database (1946 onwards) 

 

Interface: Web of Science 

http://www.keele.ac.uk/healthlibrary/find/medicaldatabaseskeele/Science citation index (1964 

onwards) 

Web of Science   

  

Interface: Ebsco 

http://www.keele.ac.uk/healthlibrary/find/medicaldatabaseskeele/ 

AgeLine (1978 onwards) 
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Other methods used for 

identifying relevant research  

ie contacting experts and 

reference checking 

Checking the reference list of the eligible studies identified. 

Journals hand searched 

If any are to be hand searched, 

please list which journals and date 

searched from, including a 

rationale.  

N/A 

 

6. Methods of review 

Details of methods 

Number of reviewers, how 

agreements to be reached and 

disagreements dealt with, etc. 

From each database, conduct the search and save the results into an appropriate file format. 

Import the files into Refworks and save the search results into a folder called ‘1. All studies’. 

Remove duplicates and save the remaining studies into a new folder called ‘2. Studies without 

duplicates’. 

The titles would be screened for eligibility. Eligible titles would be saved into a folder called ‘3. 

Eligible titles’  

Abstracts of the eligible titles would be obtained and screened for eligibility. Eligible abstracts 

would be saved into a folder called ‘4. Eligible abstracts’ 

The papers of the eligible abstracts would be obtained and screened. Eligible papers would be 

saved into a folder called ‘5. Eligible papers’  

Quality assessment 

Tools or checklists used with 

references or URLs 

Hierarchy on the quality of the study: 

• Systematic reviews of observational studies 

• Cohort and case control studies 

• Cross-sectional studies 

 

Hierarchy of statistical methods used to adjust for confounding: 

• Propensity scores and other novel methods (G estimation, instrumental variables, 

frailty models, Bayesian models) 

• Traditional methods (Regression models, stratification, matching) and 

sensitivity/subgroup analysis 

• No adjustment for confounding (descriptive statistics e.g., chi square tests) 

 

Hierarchy of type of outcome/treatment analysed: 

• Repeated measures (time-varying treatment/multiple outcomes) 

• Only analysed a single point in time 

 

Hierarchy of methods used to deal with missing data: 

• Multiple imputation 

• Last observation taken forward/single imputation/missing indicator method 

• Complete case analysis 
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Data extraction  

What information is to be collected 

on each included study. If databases 

or forms on Word or Excel are used 

and how this is recorded and by how 

many reviewers 

 

Narrative synthesis 

Details of what and how synthesis 

will be done 

 

Themes to be identified: 

• Study population (gout/ hyperuricaemia patients/severity of disease) 

• Study design (cohort/cross-sectional/case-control) 

• How data was collected (medical records/self-report questionnaires) 

• Sample size 

• Intervention (drug name, duration, dosage, mode of administration)  

• Comparator pharmacological intervention (drug name, duration, dosage, 

frequency, mode of administration)  

• Comparator of non-pharmacological intervention (description of intervention, 

duration, frequency)  

• Primary and secondary outcomes 

• Length of follow up period 

• Statistical methods used 

• Adjusted covariates to reduce confounding 

• Missing data 

• Any other novel techniques 

• Limitations of study 

This would be recorded in an excel file with the studies listed in a column and the themes across 

the row.  

Meta-analysis  

Details of what and how analysis and 

testing will be done. If no meta-

analysis is to be conducted, please 

give reason. 

The number of studies identified by this search is expected to be low. Combining results across 

the studies would be difficult as there are a wide range of gout outcomes and the statistical 

methods used may vary. 

Grading evidence 

System used, if any, such as GRADE 
N/A 

 

7. Presentation of results 

Additional material  

Summary tables, flowcharts, etc, to 

be included in the final paper 

The PRISMA flow chart would be used showing the total number of studies screened, assessed 

for eligibility, included in the review with reasons why the ineligible studies were excluded. 

In tables, describe the: 

Study characteristics 

Statistical methods 

Outputs from review  

Papers and target journals, 

conference presentations, reports, 

etc 

Results from this review is for the PhD. 

 

8. Timeline for review – when do you aim to complete each stage of the review 

Protocol 18th April 

Literature searching 21st April – 9th May 

Quality appraisal 

12th May – 30th May Data extraction 

Synthesis 

Writing up 2nd June – 31st June 
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 Search strategy in MEDLINE 

Table B1: MEDLINE search strategy 

Item  Search Terms 

1 exp Gout/ 
2 gout.ab. or gout.ti. 
3 gout$.ab. or gout$.ti. 
4 podagra.ab. or podagra.ti. 
5 artagra.ab. or artagra.ti. 
6 chiragra.ab. or chiragra.ti. 
7 toph$.ab. or,ph$.ti. 
8 1 or 2 or 3 or 4 or 5 or 6 or 7 
9 allopurinol.ab. or allopurinol.ti. 
10 xanthine oxidase inhibit$.ab. or xanthine oxidase inhibit$.ti. 
11 "urate-lowering therap$".ab. or "urate-lowering therap$".ti. 
12 urate lowering therap$.ab. or urate lowering therap$.ti. 
13 "urate-lowering drug$".ab. or "urate-lowering drug$".ti. 
14 urate lowering drug$.ab. or urate lowering drug$.ti. 
15 "uric acid-lowering therap$".ab. or "uric acid-lowering therap$".ti. 
16 uric acid lowering therap$.ab. or uric acid lowering therap$.ti. 
17 "uric acid-lowering drug$".ab. or "uric acid-lowering drug$".ti. 
18 uric acid lowering drug$.ab. or uric acid lowering drug$.ti. 
19 uricostatic.ab. or uricostatic.ti. 
20 (AL or Abburic or Abopur or Acepurin or Acifugan or Acyprin or Adenock or Ailural or Ailurial or Alfadiman or Algut or Aligout or Alinol or Allgoric or Allnol or Allo or Allo$ 

or Allpargin or Allupol or Allura$ or Alluri$ or Aloprim or Alopur or Alopurinol or Aloral or Aloric or Aloriv or Alosfar or Alositol or Alpur$ or Aluline or Aluprol or Alur or 
Alurid or Aluron or Alzoprim or Anoprolin or Anurate or Anzief or Apnol or Apo-Allopurinol or Apo-Tinole or Apronol or Apulonga or Apurin or Apurol or Arnol or Arsol or 
Artrex or Arturic or Atisuril or Aurigen).ab. 

21 (AL or Abburic or Abopur or Acepurin or Acifugan or Acyprin or Adenock or Ailural or Ailurial or Alfadiman or Algut or Aligout or Alinol or Allgoric or Allnol or Allo or Allo$ 
or Allpargin or Allupol or Allura$ or Alluri$ or Aloprim or Alopur or Alopurinol or Aloral or Aloric or Aloriv or Alosfar or Alositol or Alpur$ or Aluline or Aluprol or Alur or 
Alurid or Aluron or Alzoprim or Anoprolin or Anurate or Anzief or Apnol or Apo-Allopurinol or Apo-Tinole or Apronol or Apulonga or Apurin or Apurol or Arnol or Arsol or 
Artrex or Arturic or Atisuril or Aurigen).ti. 
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22 (Benoxuric or Be-Uric or Bionol or Biuricowas or Bleminol or Burin or Caplenal or Capurate or Cellidrin or Cellidrin$ or Chinnol or Ciploric or Colpuril or Comburic or 
Cosuric or Dabrosin or Dabroson or Darzune or Dertrifort or Desatura or Docallopu or Duovitan or Dura or Edorin or Elavil or Embarin or Epidropal or Epuric or Erloric or 
Ethipurinol or Etindrax or Facilit or Foligan or Gealgica or Geapur or Gewapurol or Gichtex or Gotax or Gotir or Gurik or Hamarin or Harpagin or Hexanurat or Hexanuret 
or Hycemia or Isoric or Jenapurinol or Ketanrift or Ketobun-A or Labopurinol or Labypurol or Lanolone or Ledopur or Licoric or Linogra or Llanol or Lodiric or Logout-SR or 
Lonol or Loporic or Lopric or Lopur$ or Loricid or Lo-Uric or Lysuron or Marinol or Medoric or Mephanol or Milurit or Miniplanor).ab. 

23 (Benoxuric or Be-Uric or Bionol or Biuricowas or Bleminol or Burin or Caplenal or Capurate or Cellidrin or Cellidrin$ or Chinnol or Ciploric or Colpuril or Comburic or 
Cosuric or Dabrosin or Dabroson or Darzune or Dertrifort or Desatura or Docallopu or Duovitan or Dura or Edorin or Elavil or Embarin or Epidropal or Epuric or Erloric or 
Ethipurinol or Etindrax or Facilit or Foligan or Gealgica or Geapur or Gewapurol or Gichtex or Gotax or Gotir or Gurik or Hamarin or Harpagin or Hexanurat or Hexanuret 
or Hycemia or Isoric or Jenapurinol or Ketanrift or Ketobun-A or Labopurinol or Labypurol or Lanolone or Ledopur or Licoric or Linogra or Llanol or Lodiric or Logout-SR or 
Lonol or Loporic or Lopric or Lopur$ or Loricid or Lo-Uric or Lysuron or Marinol or Medoric or Mephanol or Milurit or Miniplanor).ti. 

24 (Nektrohan or Nilapur or Novo-Purol or Oloprim or Orlu or Petrazyc or Piloric or Ponuric or Prinol or Pritanol or Progout or Pureduct or Puricemia or Puricin or Puricos or 
Puride or Purigan or Purinase or Purinol or Purispec or Puristen or Puritenk or Pyrazol or Ranpuric or Redurate or Remid or Reucid or Riball or Rimapurinol or Rinolic or 
Riva-Purinol or Satric or Sigapurol or Sinoric or Soluric or Stradumel or Suspendol or Swiloric or Synol or Synpurinol or Takanarumin or Talol or Tipuric or Trianol or 
Tylonic or Unizuric or Urbol or Uredimin or Uribenz or Urica or Urica$ or Uricemil or Uricina or Uricnol or Urico$ or Urifugan or Urikoliz or Urinol or Uriprim or Uripurinol 
or Uritab or Uritas or Urlo or Urobenyl or Urogotan or Urolit or Uroplus or Urosi or Urosin or Urozyl-SR or Urtias or Valeric or Xandase or Xanol or Xanthomax or Xanturat 
or Xanturic or Xanurace or Xuric-A or Z 300 or Zilopur or Z-Nol or Zurim or Zygout or Zylapour or Zylic or Zylo$ or Zyprinol or Zytol).ab. 

25 (Nektrohan or Nilapur or Novo-Purol or Oloprim or Orlu or Petrazyc or Piloric or Ponuric or Prinol or Pritanol or Progout or Pureduct or Puricemia or Puricin or Puricos or 
Puride or Purigan or Purinase or Purinol or Purispec or Puristen or Puritenk or Pyrazol or Ranpuric or Redurate or Remid or Reucid or Riball or Rimapurinol or Rinolic or 
Riva-Purinol or Satric or Sigapurol or Sinoric or Soluric or Stradumel or Suspendol or Swiloric or Synol or Synpurinol or Takanarumin or Talol or Tipuric or Trianol or 
Tylonic or Unizuric or Urbol or Uredimin or Uribenz or Urica or Urica$ or Uricemil or Uricina or Uricnol or Urico$ or Urifugan or Urikoliz or Urinol or Uriprim or Uripurinol 
or Uritab or Uritas or Urlo or Urobenyl or Urogotan or Urolit or Uroplus or Urosi or Urosin or Urozyl-SR or Urtias or Valeric or Xandase or Xanol or Xanthomax or Xanturat 
or Xanturic or Xanurace or Xuric-A or Z 300 or Zilopur or Z-Nol or Zurim or Zygout or Zylapour or Zylic or Zylo$ or Zyprinol or Zytol).ti. 

26 exp Allopurinol/ 
27 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 
28 8 and 27 
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 Literature review table 

Table C1: Summary of study design characteristics and outcomes considered 

Article, [Country] Study design Matching variables Setting & data source Length of follow-up 
Sample size 
for analysis 

Outcome 

Alvarez-Nemegyei et 
al. (2005), [Mexico] 

Cohort nested 
case-control 
cohort study 

Not stated Recruited from a 
hospital rheumatology 
clinic. Data collected 
via clinical assessment, 
patient interviews or 
the cohort database 

Followed up every six 
months 

90 Renal failure; MSK physical disability 

Azevedo et al. (2014), 
[Brazil] 

Cohort study N/A Medical record review 
from a rheumatology 
clinic 

Followed up every 
three months for 18 
months 

48 SU level 

Cheyoe et al. (2012), 
[Thailand] 

Cross-sectional 
study 

N/A Medical record review 
of a hospital 

N/A 154 Chronic kidney disease 

Choe et al. (2010), 
[South Korea] 

Cross-sectional 
study 

N/A Recruited from a 
hospital rheumatology 
clinic. Data collected 
via clinical assessment 

N/A 68 Serum cystatin C concentration 

Crittenden et al. 
(2012), [USA] 

Cross-sectional 
study 

N/A Medical record review 
of the New York 
Harbor Healthcare 
System from 3 
hospitals 

N/A 1,288 Myocardial infarction 
 
 

Dalbeth et al. (2006), 
[New Zealand] 

Cross-sectional 
study 

N/A Medical record review 
from rheumatology 
clinics 

N/A 214 - 227 Presence of tophi; SU level; SU level 
≤360μmol/L 
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Dalbeth et al. (2012), 
[New Zealand] 

Cross-sectional 
study 

N/A Recruited from 
community advertising 
and primary and 
secondary care clinics. 
Data collected via 
clinical assessment 

N/A 177 - 273 SU level <360μmol/L 
 

Dalbeth et al. (2013), 
[New Zealand] 

Cross-sectional 
study 

N/A Recruited from 
community advertising 
and primary and 
secondary care clinics. 
Data collected via 
clinical assessment 

N/A 290 Presence of tophi 
 

Dubreuil et al. (2015), 
[UK] 

PS matched, 
incident user 
cohort study 

PS conditional on BMI; age; 
sex; hypertension; 
cardiovascular disease; 
diabetes; Charlson 
comorbidity index; statins; 
fibrates; ACE inhibitors; ARBs; 
β blockers; calcium channel 
blockers; aspirin; NSAIDS; 
loop diuretics; 
hydrochlorothiazide; 
losartan; insulin; SU level; 
cholesterol; albumin; GFR; 
no. of primary care visits 

EHR review from THIN  Mean 2.9 years 9,590 
 

Time to all-cause mortality 

Emmerson et al. 
(1987), [Australia]  

Cross-sectional 
study 
 

N/A Recruited from a 
hospital. Data 
collected via clinical 
assessment 

N/A 66 Plasma oxypurinol 

Fessel (1979), [USA] Cohort study N/A Medical record review 
from clinics and 
hospitals 

Mean 127 ± 68 months 168 Stone formation 
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Graham et al. (2013), 
[Australia] 

Cohort study N/A Recruited from 
hospital and 
rheumatology clinics. 
Data collected via 
clinical assessment 

Not stated 46 SU level 

Halpern et al. (2009), 
[USA] 

Cohort study N/A EHR review of an 
administrative claims 
database 

1 year 3,070 Gout flare 

Hatoum et al. (2014), 
[USA] 

Cohort study N/A EHR review of the 
General Electric 
Electronic Medical 
Record database 

6 and 24 months 7,324 – 
10,871 

SU level <6mg/dL (<360μmol/L) 

Hutton et al. (2009), 
[New Zealand] 

Case-control 
study 

Age; sex; ethnicity 
 

Medical record review 
from a hospital 

5 years 67 - 96 Two or more unplanned hospital 
admissions for gout management 

Kim et al. (2013b), 
[USA] 

Cohort study N/A EHR review of the 
Innovus InVision Data 
Mart database 
 

Range 30 days to 3 
years. Allopurinol 
cohort, mean follow 
up 0.5 years. 
Febuxostat cohort, 
mean follow up 0.4 
years. 
Colchicine cohort, 
mean follow up 0.2 
years. 

35,577 Frequency of gout flares 
 

Kok et al. (2014), 
[Taiwan] 

Matched cohort 
study 

Age; sex; index date; 
diabetes; hypertension; 
hyperlipidaemia; atrial 
fibrillation                        
 
 

EHR review of the 
Taiwan National 
Health Insurance 
Research Database 

Maximum 10-year 
follow-up. 
Allopurinol cohort, 
median (IQR) 5.25 
years (2.81, 7.69).                                             
Non-allopurinol 
cohort, median (IQR) 
5.04 years (2.55, 7.53)   

2,483 – 4,966 Cardiovascular outcome requiring 
hospitalisation; coronary heart 
disease; cerebrovascular disease 
(stroke); hypertensive heart 
disease; heart failure; other 
cardiovascular disorders 
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Lim et al. (2012), 
[Singapore] 

Cohort study N/A Recruited from a 
hospital rheumatology 
clinic. Data collected 
via clinical assessment 

Median (range): 39.8 
weeks (3.9, 96.6) 

126 
 

Time to reach SU level <360μmol/L; 
attained SU level <360μmol/L 

Mak et al. (2009), 
[Singapore] 

Cohort study N/A Recruited from a 
hospital. Data 
collected via clinical 
assessment and 
medical record review 

15 months 100 Frequency of gout flares 

Marchini et al. (2013), 
[USA] 

Cross-sectional 
study 

N/A Medical record review 
from a hospital 

N/A 278 Stone composition (mixed vs. pure) 
Percentage composition of CaOMH, 
CaODH, CaPh, uric acid, struvite, 
cystine. Number of pure stones 
composed of uric acid, CaOMH, 
CaPh, cystine.                 

Meek et al. (2014), 
[Netherlands] 

Cohort study N/A Medical record review 
of the Arthritis Centre 
Twente CardioVascular 
Disease database, GP 
questionnaires, and 
the Dutch national 
death registry 

Median (IQR) 36 
months (30, 41)         

172 Cardiovascular event or death 

Neogi et al. (2014), 
[USA] 

Case-crossover 
study 

Within patient matching of 
hazard and control periods 

Recruited from 
community 
advertisement. Data 
collected via online 
self-report 
questionnaires and 
medical record review 

1 year 724 Gout flare 

Pandya et al. (2011), 
[USA] 

Cohort study N/A EHR review of a 
medical claims 
database 

At least one year 
follow-up.                  
Mean (SD) 32 months 
(17.1) 

1,768 SU level <6mg/dL 
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Perez-Ruiz et al. 
(1998), [Spain] 

Cohort study N/A Recruited from a 
hospital rheumatology 
clinic. Data collected 
via clinical assessment 

Mean 12.5 months 86 SU level; percentage reduction of 
SU level; clearance of creatinine; 
clearance of urate; urinary 
excretion of urate; SU level 
>6mg/dL 

Perez-Ruiz et al. 
(2002), [Spain] 

Cohort study N/A Recruited from a 
hospital gout clinic. 
Data collected via 
clinical assessment 

Not stated 49 SU level; diameter of target tophus; 
time until tophi resolution; velocity 
of tophi reduction 
 

Perez-Ruiz et al. 
(2010), [Spain] 

Cohort study N/A Recruited from a 
hospital. Data 
collected via clinical 
assessment 

At least 12 months 546 Urinary volume; SU level; urinary 
pH; urinary uric acid level; 
undissociated urinary uric acid level; 
24-hr urine uric acid level; 24-hr 
urine dissociated uric acid level; 
clearance of creatinine; clearance of 
uric acid 

Roddy et al. (2007b), 
[UK] 

Cross-sectional 
study 

N/A Patients recruited 
from primary care 
practices. Data 
collected via self-
report questionnaire 
and clinical 
assessment 

N/A 145 SU level; SU level >360μmol/L; gout 
flare in preceding year 

Rothenbacher et al. 
(2011), [UK] 

Cohort study N/A EHR review from THIN Mean (range) 3.8 years 
(30 days, 8 years) 

23,857 
 

Time to first gout flare; frequency of 
gout flares 

Stamp et al. (2000), 
[New Zealand] 

Cross-sectional 
study 

N/A Medical record review 
from a hospital 
rheumatology clinic 

N/A 31 Plasma oxypurinol 

Stamp et al. (2011a), 
[New Zealand] 

Cohort study N/A Recruited from a 
medical centre. Data 
collected via clinical 
assessment 

12 months 45 Plasma oxypurinol concentration 
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Stamp et al. (2011b), 
[New Zealand] 

Cohort study N/A Recruited from a 
hospital rheumatology 
clinic. Data collected 
via clinical assessment 

12 months 35 Percentage reduction in SU level; SU 
level; SU level <360μmol/L 

Stamp et al. (2012), 
[New Zealand] 

Case-control 
study 

Age; sex; diuretics; renal 
function 

EHR review of local 
databases, physician 
recall, Centre for 
adverse Reactions 
Monitoring 

Median (Range) 30 
days (1, 1,080) 

211 Allopurinol hypersensitivity 
syndrome; SU level 
 
 

Stamp et al. (2013), 
[New Zealand] 

Cross-sectional 
study 

N/A Patients recruited 
from the general 
population. Data 
collected via 
questionnaires, GP 
records, and clinical 
assessment 

N/A 57 SU level 

Thanassoulis et al. 
(2010), [Canada] 

Nested case 
control cohort 
study 

Calendar day of admission to 
cohort 

EHR review of the 
Quebec universal 
health insurance 
program 

Median (range) 2.1 
years (30 days to 7 
years) 

7,684 Heart failure re-admission or all-
cause mortality                            

Vazquez-Mellado et al. 
(2001), [Mexico] 

Cohort study N/A Medical record review 
from a hospital 
rheumatology clinic. 

Not stated 120 Adverse event including rash, 
allopurinol hypersensitivity 
syndrome, fixed pigmented drug 
eruption, leucocytoclastic vasculitis; 
SU level 

Zhang et al. (2012), 
[Australia] 

Case-crossover 
study 

Within person matching of 
hazard and control periods 

Recruited from 
community 
advertisement. Data 
collected via online 
self-report 
questionnaires and 
medical record review 

1 year 633 Gout flare 

ACE: Angiotensin-converting enzyme; CaOMH: Calcium oxalate monohydrate; CaODH: Calcium oxalate dihydrate; CaPh: Calcium phosphate; EHR: Electronic health record; GFR: glomerular 

filtration rate; IQR: Interquartile range; MSK: Musculoskeletal; NSAIDS: Non-steroidal anti-inflammatory drugs; PS: Propensity score; SD: Standard deviation; SU: Serum urate; THIN: The Health 

Improvement Network; USA: United States of America   
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Table C2: Summary of how allopurinol use was defined 

Article 
Treatment comparison group 
vs. allopurinol group 

Was dosage of allopurinol 
taken into account 

How was dosage taken into 
account 

Was duration of 
allopurinol taken into 
account 

How was duration taken 
into account 

Alvarez-Nemegyei et al. 
(2005) 

N/A Yes <300 vs. >300mg/day No N/A 

Azevedo et al. (2014) Benzbromarone vs. allopurinol No N/A No N/A 

Cheyoe et al. (2012) Colchicine vs. allopurinol & 
colchicine 

No N/A No N/A 

Choe et al. (2010) Non-allopurinol vs. allopurinol No N/A No N/A 

Crittenden et al. (2012) Non-allopurinol vs. allopurinol No N/A No N/A 

Dalbeth et al. (2006) Non-allopurinol vs. allopurinol Yes Non-allopurinol use vs. lower 
than recommended dose vs. 
recommended dose vs. higher 
than recommended dose 

No N/A 

Dalbeth et al. (2012) Non-allopurinol or probenecid 
vs. allopurinol 

Yes Mean 235 vs. 194mg/day No N/A 

Dalbeth et al. (2013) Non-allopurinol use vs. 
allopurinol use 

Yes Mean 215 vs. 213mg/day No N/A 

Dubreuil et al. (2015) Non-allopurinol use vs. 
allopurinol use 

No N/A Yes Sensitivity analyses 
truncating follow-up at 1, 2 
and 3 years to address 
treatment discontinuation 

Emmerson et al. (1987) N/A Yes 100 vs. 200 vs. 300 vs. 
400mg/day 

No N/A 

Fessel (1979) Probenecid vs. allopurinol No N/A No N/A 

Graham et al. (2013) N/A Yes Adjusted for dose that ranged 
from 50mg to 600mg/day 

No N/A 

Halpern et al. (2009) Non-allopurinol vs. allopurinol No N/A No N/A 

Hatoum et al. (2014) Febuxostat vs. allopurinol No N/A No N/A 

Hutton et al. (2009) Non-allopurinol vs. allopurinol Yes Distribution of allopurinol 
dose between cases and 
controls 

No N/A 
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Kim et al. (2013b) Colchicine vs. allopurinol No No Yes Analysis stratified by no. of 
days taking allopurinol 
(<30, 31-90, 91-120 days)  

Kok et al. (2014) Non-allopurinol vs. allopurinol 
Uricosurics vs. allopurinol 

Yes <100 vs 100 vs. 200 vs. 
≥300mg/day 

No N/A 

Lim et al. (2012) N/A Yes Adjusted for incremental dose 
increase (per 50mg); 
compared distribution of 
doses between those attaining 
and not attaining target SU 
level 

No N/A 

Mak et al. (2009) N/A No N/A Yes Adjusted for duration of 
allopurinol 

Marchini et al. (2013) Non-allopurinol vs. allopurinol No N/A No N/A 

Meek et al. (2014) Non-allopurinol vs. allopurinol No N/A No N/A 

Neogi et al. (2014) Non-allopurinol vs. allopurinol No N/A No N/A 

Pandya et al. (2011) N/A Yes Adjusted for average dose of 
last allopurinol prescription, 
incremental increases of 
50mg/day 

No N/A 

Perez-Ruiz et al. (1998) Benzbromarone vs. allopurinol Yes Analysis stratified by 300mg 
users and 300mg and 450mg 
users 

No N/A 

Perez-Ruiz et al. (2002) Benzbromarone vs. allopurinol No N/A No N/A 

Perez-Ruiz et al. (2010) Benzbromarone vs. allopurinol No N/A No N/A 

Roddy et al. (2007b) Non-allopurinol vs. allopurinol Yes 100 vs. 200 vs. 300 vs. 
>300mg/day 

No N/A 

Rothenbacher et al. (2011) Non-allopurinol vs. allopurinol No N/A No N/A 

Stamp et al. (2000) N/A Yes Recommended dose vs. lower 
than recommended dose vs.  
higher than recommended 
dose 

No N/A 
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Stamp et al. (2011a) N/A Yes Adjusted for dose of 
incremental increase of 
100mg/day 

No N/A 

Stamp et al. (2011b) Furosemide vs. allopurinol Yes Incremental increase of 
50mg/day from recommended 
dose 

No N/A 

Stamp et al. (2012) N/A Yes Mean 183.5 vs. 112.2mg/day; 
Starting dose higher than 
recommended vs. same or 
lower dose than 
recommended based on 
creatinine clearance or 
estimated GFR 

No N/A 

Stamp et al. (2013) Non-allopurinol vs. allopurinol No N/A No N/A 

Thanassoulis et al. (2010) Non-allopurinol vs. allopurinol Yes Adjusted for non-allopurinol 
vs. ≤100 vs. >100mg/day 

Yes Adjusted for non-
allopurinol vs. ≤30 days vs. 
>30 days 

Vazquez-Mellado et al. 
(2001) 

N/A Yes Recommended dose vs. higher 
than recommended dose 

No N/A 

Zhang et al. (2012) Non-allopurinol vs. allopurinol No N/A No N/A 
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Table C3: Summary of how confounding was controlled for 

Article Unadjusted or adjusted 
analysis 

List of covariates Statistical methods Statistical limitations related to 
confounding 

Alvarez-Nemegyei et al. 
(2005) 

Unadjusted N/A Chi square test with yates 
correction 

None stated 

Azevedo et al. (2014) Unadjusted N/A T-test No randomisation; confounding 
by indication; follow-up was not 
blind 

Cheyoe et al. (2012) Adjusted BMI; hypertension; diabetes; dyslipidaemia; 
diuretics; SU level 

Logistic regression Unmeasured covariates 

Choe et al. (2010) Adjusted Stage of renal function; age; HDL-
cholesterol; SU level; benzbromarone; 
erythrocyte sediment reaction; C-reactive 
protein 

Linear regression None stated 

Crittenden et al. (2012) Unadjusted N/A Chi-square test Confounding by indication 

Dalbeth et al. (2006) Unadjusted N/A Chi-square test; T-test Patient compliance to 
allopurinol 

Dalbeth et al. (2012) Unadjusted & adjusted Sex; ethnicity; confidence to keep SU under 
control 

Chi-square test; T-test; 
logistic regression  

Confounding by indication 

Dalbeth et al. (2013) Unadjusted N/A Chi-square test; T-test None stated 

Dubreuil et al. (2015) Adjusted BMI; age; sex; hypertension; cardiovascular 
disease; diabetes; Charlson comorbidity 
index; statins; fibrates; ACE inhibitors; 
ARBs; β blockers; calcium channel blockers; 
aspirin; NSAIDS; loop diuretics; 
hydrochlorothiazide; losartan; insulin; SU 
level; cholesterol; albumin; GFR; no. of 
primary care visits 

Cox regression Residual or unknown 
confounding 

Emmerson et al. (1987) Unadjusted N/A Linear regression None stated 

Fessel (1979) Unadjusted N/A Chi-square test; T-test None stated 

Graham et al. (2013) Adjusted Creatinine clearance; SU level Linear regression None stated 
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Halpern et al. (2009) Adjusted SU level; age; sex; no. of gout related office 
visits; disorders of lipid metabolism; non-
traumatic joint disorders; hypertension; 
diseases of the heart; diseases of the 
urinary system; diabetes without 
complications               

Logistic regression Missing data 

Hatoum et al. (2014) Adjusted SU level; age; sex; Charlson comorbidity 
index; ethnicity; year of gout diagnosis; 
tophi diagnosis; SU level 

Logistic regression Missing data; compliance with 
treatment and dose adjustment 

Hutton et al. (2009) Unadjusted N/A Odds ratio calculated from 
the Mantel Haenszel 
method; Wilcoxon 
independent groups test 

Adherence to allopurinol 
 

Kim et al. (2013b) Adjusted Age; sex; comorbidity score; hypertension; 
chronic kidney disease; renal stones; heart 
failure; cardiovascular disease; diabetes; 
hyperlipidaemia; stroke; obesity; COPD; 
diuretics; β blockers; ACE inhibitors; ARBs; 
NSAIDS; coxibs; opioids; oral steroids; 
intravenous steroids; intra-articular 
steroids; no. of prescription drugs; no. of 
hospitalisations; no. of ER visits; no. office 
visits; no. of PCP visits; no. of rheumatology 
visits   

Poisson regression Confounding by indication; 
missing data 

Kok et al. (2014) Adjusted Chronic kidney disease, uremia, gastric 
ulcer 

Cox regression Unmeasured covariates; 
Compliance and adherence to 
treatment 

Lim et al. (2012) Unadjusted N/A Cox regression; Mann-
Whitney U test 

No randomization; time 
dependency of the number of 
allopurinol titrations; duration 
of colchicine prophylaxis 
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Mak et al. (2009) Adjusted Age; sex; ethnicity; duration of gout (years); 
serum creatinine level; SU level; ischaemic 
heart disease; LDL cholesterol; HDL 
cholesterol; triglyceride; creatinine 
clearance; statin use         

Linear regression Unmeasured confounding 

Marchini et al. (2013) Unadjusted N/A T-test; Chi-square test; 
Fisher’s test 

None stated 

Meek et al. (2014) Unadjusted N/A Chi-square test Unmeasured confounding 

Neogi et al. (2014) Adjusted Purine intake, diuretics, colchicine, NSAIDS, 
no. of alcohol servings 

Conditional logistic 
regression 

Residual confounding 

Pandya et al. (2011) Adjusted Age; sex; stage of chronic kidney disease; 
specialty of prescribing physician 

Logistic regression None stated 

Perez-Ruiz et al. (1998) Unadjusted N/A T-test; Chi-square test None stated 

Perez-Ruiz et al. (2002) Unadjusted N/A T-test None stated 

Perez-Ruiz et al. (2010) Unadjusted N/A T-test None stated 

Roddy et al. (2007b) Unadjusted N/A T-test; Chi-square test; 
ANOVA 

None stated 

Rothenbacher et al. (2011) Adjusted & unadjusted Sex; age; no. of GP visits; smoking status; 
alcohol consumption; BMI; ischaemic heart 
disease; hypertension; hyperlipidaemia; 
diabetes; renal failure               

Cox regression; likelihood 
ratio test 

Unmeasured covariates 

Stamp et al. (2000) Unadjusted N/A Fisher's exact test Compliance with allopurinol; 
unmeasured covariates 

Stamp et al. (2011a) Unadjusted N/A Mixed-effect linear model None stated 

Stamp et al. (2011b) Unadjusted N/A T-test, chi-square test None stated 

Stamp et al. (2012) Unadjusted and adjusted Ethnicity; presence of tophi                        
 

ANOVA; conditional logistic 
regression 

Unmeasured covariates 

Stamp et al. (2013) Unadjusted N/A T-test None stated 
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Thanassoulis et al. (2010) Adjusted Age; sex; Deyo modified Charlson 
comorbidity score; hypertension; 
myocardial infarction; renal failure; cardiac 
procedures; ACE inhibitors; β blockers; 
antiplatelet agents; anticoagulants; 
aldosterone antagonists; diuretics; NSAIDS; 
corticosteroids 

Conditional logistic 
regression 

Unmeasured covariates; 
confounding by indication; 
compliance 

Vazquez-Mellado et al. 
(2001) 

Unadjusted N/A Chi-square test or Fisher's 
exact test; T-test 

None stated 

Zhang et al. (2012) Adjusted Purine intake; alcohol use; diuretics; 
colchicine; NSAIDS; cherry intake 

Conditional logistic 
regression 

Unmeasured covariates 

ANOVA: Analysis of variance; ARB: Angiotensin II receptor blockers; BMI: Body mass index; ER: Emergency room; HDL: High density lipoproteins; LDL: Low density lipoproteins; PCP: 

Primary care provider; SU: Serum urate 
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............................. 

............................. 

IMPORTANT 

If you have any queries, please contact ISAC Secretariat: ISAC@cprd.com 

 

1. Study Title: Modelling effectiveness of treatment in gout using primary care databases 

2. Principal Investigator (full name, job title, organisation & e-mail address for correspondence regarding this protocol) 

Trishna Rathod; Research assistant in biostatistics & PhD student; Research Institute for Primary Care & Health Sciences, Keele University; 
t.rathod@keele.ac.uk  

3. Affiliation (full address) 
Research Institute for Primary Care & Health Sciences 

Keele University 
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ST5 5BG 

4. Protocol’s Author (if different from the principal investigator) 
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5. List of all investigators/collaborators (please list the names, affiliations and e-mail addresses* of all collaborators, other than the principal 
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8. Data source  (please tick one box below)      

 
Sponsor has on-line access   Purchase of ad hoc dataset   
Commissioned study    

Other      (please specify)        

9. Has this protocol been peer reviewed by another Committee? 

 
Yes*    No   

 
* Please state in your protocol the name of the reviewing Committee(s) and provide an outline of the review process and outcome.  
The protocol has been reviewed internally by the Keele CPRD Steering Group. 

10. Type of Study (please tick all the relevant boxes which apply) 
 

Adverse Drug Reaction/Drug Safety  Drug Use   Disease Epidemiology  
Drug Effectiveness   Pharmacoeconomic          Other    

11. This study is intended for: 
 

Publication in peer reviewed journals   Presentation at scientific conference   
Presentation at company/institutional meetings  Other PhD   

12. Does this protocol also seek access to data held under the CPRD Data Linkage Scheme? 
 

Yes    No   

13. If you are seeking access to data held under the CPRD Data Linkage Scheme*, please select the source(s) of linked data being requested. 
 

 Hospital Episode Statistics                Cancer Registry Data**               
 MINAP                                              ONS Mortality Data    

 Index of Multiple Deprivation/ Townsend Score  
 Mother Baby Link                  Other: (please specify)        

 
* As part of the ISAC review of linkages, the protocol may be shared - in confidence - with a representative of the requested linked data set(s) and 
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14. If you are seeking access to data held under the CPRD Data Linkage Scheme, have you already discussed your request with a member of the 
Research team?  

 
Yes    No*   

 
*Please contact the CPRD Research Team on +44 (20) 3080 6383 or email kc@cprd.com to discuss your requirements before submitting your 
application. 
 
Please list below the name of the person/s at the CPRD with whom you have discussed your request: Kendall Chidwick (15th April 2014) 

15. If you are seeking access to data held under the CPRD Data Linkage Scheme, please provide the following information: 
 
The number of linked datasets requested: 3 

 
A synopsis of the purpose(s) for which the linkages are required:  

 
Deprivation is a risk factor for increased consultation, morbidity and all-cause mortality which would have an impact on resource allocation to general 
practices. In England, gout prevalence increases with worsening occupational socio-economic status and gout is associated with inadequate income. The 

long term effects of allopurinol vs. alternative treatments are unknown and any difference arising between treatment groups could potentially partly be 
explained by deprivation.  

 
Gout has a strong association with the metabolic syndrome in particular hypertension, hyperlipidaemia, insulin resistance and obesity. This increases the 

risk of diabetes, vascular events and renal diseases which may result in hospitalization. Admissions to hospital would indicate whether gout patients using 
allopurinol are hospitalised more often than those on alternative treatments. Integrated hospital episode statistics data is requested only.  
 

Knowing the exact cause of death would identify gout patients whose cause of death is gout comorbidity related and may estimate all-cause mortality or 
cause-specific mortality.  

 
Is linkage to a local dataset with <1 million patients being requested?  
 

Yes*  No  
 
* If yes, please provide further details: 
16. If you have requested linked data sets, please indicate whether the Principal Investigator or any of the collaborators listed in response to question 5 

above, have access to any of the linked datasets in a patient identifiable form, or associated with a patient index.  
 

Yes*    No   

 
* If yes, please provide further details: 

17. Does this protocol involve requesting any additional information from GPs?  
 

Yes*   No   
 
 * Please indicate what will be required:  
Completion of questionnaires by the GP    Yes      No   

Provision of anonymised records (e.g.  hospital discharge summaries)  Yes      No   

Other (please describe)       
 Any questionnaire for completion by GPs or other health care professional must be approved by ISAC before circulation for completion.   

18. Does this protocol describe a purely observational study using CPRD data (this may include the review of anonymised free text)? 
 

Yes*   No**   
 * Yes: If you will be using data obtained from the CPRD Group, this study does not require separate ethics approval from an NHS Research Ethics 
Committee. 
** No: You may need to seek separate ethics approval from an NHS Research Ethics Committee for this study. The ISAC will provide advice on whether 
this may be needed. 

19. Does this study involve linking to patient identifiable data from other sources? 
 

Yes    No   
 

20. Does this study require contact with patients in order for them to complete a questionnaire? 
 

Yes    No   

N.B. Any questionnaire for completion by patients must be approved by ISAC before circulation for completion.   
21. Does this study require contact with patients in order to collect a sample? 

 
Yes*   No   

* Please state what will be collected         

22. Experience/expertise available  

Please complete the following questions to indicate the experience/expertise available within the team of researchers actively involved in the proposed 
research, including analysis of data and interpretation of results 

 Previous GPRD/CPRD Studies  Publications using GPRD/CPRD data 
 

None      
1-3       
> 3       

          Yes                              No 
Is statistical expertise available within the research team?       

                           If yes, please outline level of experience         
TR is a research assistant in biostatistics and holds an MSc in statistics; MB is a lecturer in statistics and holds a PhD in statistics; KJ is a reader in 

biostatistics and holds a PhD in statistics. 
Is experience of handling large data sets (>1 million records)  
available within the research team?           

                           If yes, please outline level of experience    
KJ and MB have previously worked with large GPRD datasets and in addition have used local general practice database (CiPCA).  
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Is UK primary care experience available within the research team?       

                           If yes, please outline level of experience   
CM is a practising GP and Professor of General Practice Research.  

23.  References relating to your study 
Please list up to 3 references (most relevant) relating to your proposed study. 

1. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide 

population study. Ann Rheum Dis 2014 
2. Wei L, Mackenzie IS, Chen Y,Struthers AD, MacDonald TM. Impact of allopurinol use on urate concentration and cardiovascular outcome. Br J 

Clin Pharmacol 2011; 71(4):600-607 
3. Roddy E, Zhang W, Doherty M. Concordance of the management of chronic gout in a primary-care population with the EULAR gout 

recommendations. Ann Rheum Dis 2007; 66:1311-1315 

 

PROTOCOL CONTENT CHECKLIST 
 

In order to help ensure that protocols submitted for review contain adequate information for protocol evaluation, ISAC have produced instructions 
on the content of protocols for research using CPRD data. These instructions are available on the CPRD website (www.cprd.com/ISAC). All protocols 

using CPRD data which are submitted for review by ISAC must contain information on the areas detailed in the instructions.  IF you do not feel that 
a specific area required by ISAC is relevant for your protocol, you will need to justify this decision to ISAC. 

 
Applicants must complete the checklist below to confirm that the protocol being submitted includes all the areas required by ISAC, or to provide 
justification where a required area is not considered to be relevant for a specific protocol.  Protocols will not be circulated to ISAC for review until 

the checklist has been completed by the applicant.  
 

Please note, your protocol will be returned to you if you do not complete this checklist, or if you answer ‘no’ and fail to include 
justification for the omission of any required area. 
 

 Included in 
protocol? 

 

Required area Yes No If no, reason for omission 

Lay Summary (max.200 
words) 

        

Background         

Objective, specific aims 
and rationale 

        

Study Type 
Descriptive 
Hypothesis Generating 
Hypothesis Testing 

 
 

 
 

  
 

 
 

This will be a hypothesis testing study with the null hypothesis that there is no different in 
outcomes between gout patients prescribed and not prescribed allopurinol. However, the 

study also includes a strong element of methodological research to answer the clinical 
objectives. 

Study Design         

Sample size/power 
calculation  
(Please provide justification 
of  
sample size in the protocol) 

        

Study population  
(including estimate of 
expected number of  
relevant patients in the 
CPRD)  

 

 

 

 

 

      

Selection of comparison 
group(s) or controls 

        

Exposures, outcomes and 
covariates 
Exposures are clearly 
described  
Outcomes are clearly 
described 

 
 
 

 
 
 

      
      

Use of linked data  
(if applicable) 

        

Data/ Statistical Analysis 
Plan 
There is plan for 
addressing confounding  
There is a plan for 
addressing missing data 

 

 
 

 

 
 

      

      

Patient/ user group 
involvement † 

  No PPI was needed in the planning and interpretation of the results for this PhD as it will be 
mostly based on methodological research. 

Limitations of the study 
design, data sources  
and analytic methods 

        

Plans for disseminating and 
communicating study 
results 

        

 

† It is expected that many studies will benefit from the involvement of patient or user groups in their planning and refinement, 
and/or in the interpretation of the results and plans for further work. This is particularly, but not exclusively true of studies with 
interests in the impact on quality of life.   Please indicate whether or not you intend to engage patients in any of the ways 
mentioned above. 
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http://ard.bmj.com/search?author1=Weiya+Zhang&sortspec=date&submit=Submit
http://ard.bmj.com/search?author1=Michael+Doherty&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed/?term=Struthers%20AD%5Bauth%5D
http://www.cprd.com/ISAC
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Voluntary registration of ISAC approved studies:  

Epidemiological studies are increasingly being included in registries of research around the world, including those primarily set up for clinical trials. 
To increase awareness amongst researchers of ongoing research, ISAC encourages voluntary registration of epidemiological research conducted 
using MHRA databases. This will not replace information on ISAC approved protocols that may be published in its summary minutes or annual 
report. It is for the applicant to determine the most appropriate registry for their study. Please inform the ISAC secretariat that you have 
registered a protocol and provide the location. 

 

Protocol 

Lay Summary (Max 200 words) 

Gout is the most prevalent inflammatory arthropathy and is largely managed in primary care in the UK. The principal risk factor for gout development 
is elevated serum uric acid levels. Long term treatment of gout involves using urate-lowering therapies such as allopurinol, however there is lack of 
high quality evidence on its effectiveness. We aim to use routinely collected data to examine long term effects of allopurinol on different outcomes, 

including uric acid levels. However using such data to determine treatment effect is problematic as there may be differences between treatment 
groups, e.g. certain treatments may be preferred for older patients. The treatment effect may then be due to differences between treatment groups, 

inducing confounding and bias study conclusions. Propensity score (PS) is a statistical approach that we will use to address this. The propensity 
(likelihood) of each patient to receive allopurinol given their measured characteristics is determined, so that the distribution of characteristics for 
patients with similar PS should be the same, enabling valid comparison of treatments. Optimal specification and subsequent adjustment for PS play 

a key role and we aim to explore these aspects of PS approach, and address the potential impact on our findings of patient characteristics not 
measured in CPRD. 

Background 

Gout is the most prevalent inflammatory arthropathy, affecting approximately 2.5% of adults in the UK in 2012; this prevalence increases to over 

14% among men aged over 75 years1. Most gout patients are treated within the primary care setting, with an average general practice having 40 
patients consulting for gout each year2. The principal risk factor for gout development is increased uric acid levels and the definitive long-term 

treatment of gout involves using urate-lowering therapies such as allopurinol. However, only a third of gout sufferers are prescribed allopurinol 
whilst others may be prescribed NSAIDS, analgesics or colchicine. A fifth of allopurinol users fail to lower their uric acid level below the recommended 
target of 360μmol/L3. 

Allopurinol was developed for the treatment of gout over 50 years ago however, only recently have studies investigating its effect been undertaken. 
Most of these have been of experimental nature, with allopurinol used as the comparator in three randomized controlled trials (RCTs) of newer 
urate-lowering drugs such as febuxostat4-6. However these trials were limited to 52 weeks follow-up and employed strict inclusion and exclusion 

criteria which may limit their generalizability to the majority of patients with gout. Therefore an extensive observational study is needed to investigate 
the effect of allopurinol use (Vs. non-allopurinol use), over a longer period of time on range of outcomes. However, in studies drawing on 

observational data a major impediment to valid assessment of treatment effect is the lack of randomization that is inherent in RCTs. This may often 
result in significant differences between treatment groups, with respect to both measured and unmeasured covariates, thus inducing possible 
confounding which may impact on inferences and conclusions. For instance RCTs using allopurinol as the comparator group excluded gout patients 

with poor renal function4-6 in whom gout treatment can be most challenging. A traditional statistical procedure employed to take account of measured 
covariates is multivariable regression. However the issue of covariate imbalance between treatment groups remains. Propensity score methodology, 

formalized by Rosenbaum and Rubin in 19837, is a possible alternative because it enables balance on measured covariates between those receiving 
and nor receiving allopurinol to be achieved thus removing some of the bias inherent in treatment allocation. The process involves collapsing 
information on observed covariates into a single value (the propensity score) which reflects the likelihood of a patient receiving allopurinol given 

these covariates. Once propensity scores have been adjusted for in the analysis of treatment effect, we can then be confident that any differences 
in outcome can be attributed to treatment, at least as far as accountability of observed covariates used in construction of propensity scores is 

concerned. Propensity score methodology has already been applied in studying effect of allopurinol. For example one study found that allopurinol 
users have a slightly reduced risk of mortality compared to non-allopurinol users8 whilst in another study allopurinol users were found to have an 

increased risk of severe cutaneous adverse reactions9. Wei et al10 reported that there was no increased risk in cardiovascular events for allopurinol 
users compared with non-users of urate lowering therapy and that high dose allopurinol users had a significantly lower risk of cardiovascular events 
and mortality than those on a lower dose. However the drawbacks of majority of such studies utilizing propensity score methodology has been the 

restriction to older age groups, consideration of only a few outcomes, not making allowances for recurrence of non-fatal outcomes such as gout 
attacks, renal and cardiovascular disease, assumption of time independence (i.e. they do not change) of certain covariates, and assumption of time 

independence of allopurinol use. For example a patient may be prescribed allopurinol for a couple of months then stop taking the medication until 
a couple of years later and so on. Furthermore, routinely collected observational data typically records only a limited set of covariates, and it is 
possible that some important covariates will remain unmeasured such as family history of gout, purine rich diet, and poor adherence to treatment. 

Propensity score analysis does not balance for such covariates and hence there is a possibility that some bias from lack of randomization will remain. 
This will introduce heterogeneity among patients, ultimately resulting in underestimation of data dispersion and over-optimistic results. Common 

practice is to ignore such heterogeneity. 

This project aims to approach estimation of allopurinol effect in a comprehensive and thorough manner. From a clinical aspect this will be achieved 
by considering a wide range of relevant outcomes among gout patients, relaxing exclusion criteria, specifically in terms of age and possible presence 

of comorbid conditions such as renal disease, and stratifying analyses on severity of gout. From a statistical aspect, allowance will be made for time-
dependent use of allopurinol, time dependence of covariates and recurrence of outcome events, thus giving rise to repeated measures data structure 
within which both propensity scores and subsequently treatment effect will be estimated. Furthermore, robustness of allopurinol effect estimates to 

omission of important covariates will be tested. True propensity score is unknown and we will consider making allowance for such uncertainty by 
modelling propensity score as a latent variable within Bayesian set-up11. 

Objectives, Specific Aims, and Rationale 

The main research objective is to investigate the long term effectiveness of allopurinol among a group of gout patients aged 18 and over.  

To address this, two specific clinical aims are: 

6) Examine effect of allopurinol (Vs. not taking allopurinol) on a range of outcomes: uric acid levels; repeat consultations for gout; hospital 

admissions; NSAID, analgesic and colchicine usage; allopurinol related side effects of hypersensitivity syndrome, rash, liver function, 
bone marrow suppression; gout comorbidities (vascular and renal diseases); joint replacement; mortality. 

7) Repeat objective 1 stratified on baseline levels of uric acid (</> 480 μmol/L)4 and on relevant comorbidities (renal and vascular disease) 

to assess whether effect of allopurinol varies by severity of gout or comorbidity. 

Pertaining to statistical methodology, the three specific aims which will be addressed within 1) and 2) above are: 
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8) On estimation and adjustment for propensity scores: Investigate effect of including different sets of patient characteristics (covariates) 
in propensity score estimation on treatment effect estimate using three different adjustment approaches (stratification, matching, and 
weighting). We will consider inclusion of covariates related to treatment alone, those related to outcome alone, those related to both 

and inclusion of all available information. Extensions will be made to repeated measures setup.  

9) In order to address the impact of unobserved covariates, sensitivity of parameter estimates obtained in 1) to omission of covariates 
(with varying degree of strength of association with outcome and/or treatment) from the propensity score estimation stage will be 

examined.  

10) Investigate modelling propensity score as a latent variable within a Bayesian model, thereby accounting for some of the uncertainty 
inherent in construction of propensity scores.  

Study Type 

This will be a hypothesis testing study with the null hypothesis that there is no different in outcomes between gout patients prescribed and not 

prescribed allopurinol. However, the study also includes a strong element of methodological research to answer the clinical objectives. 

Study design 

This will be a prospective cohort study. The exposure of interest is allopurinol use vs. non usage of allopurinol in those who consulted for gout 
between 1997 and 2002 (see below).   

Study population 

The study sample will consist of all patients aged 18 years and over who had an initial consultation (or Read code) for gout between 1997 and 

2002. The list of Read codes used to identify gout consultations is in appendix 1.  Gout patients will need to have been registered at their practice 
for at least two years prior to their initial gout consultation. 

Patients under the age of 18 years or who have taken any urate lowering drugs (allopurinol, sulfinpyrazone, probenecid and benzbromarone) 

during the two years prior to the initial gout consultation between 1997 and 2002 will be excluded from the analysis. Patients who are prescribed 
other urate lowering drugs (febuxostat, sulfinpyrazone, probenecid and benzbromarone) prior to first prescription of allopurinol will be excluded 

from analysis. Patients prescribed allopurinol who are subsequently prescribed other urate lowering drugs, their follow up will be censored at date 
of prescription of other urate lowering drugs 

Exposures, Outcomes, and Covariates 

Exposure:  

- Prescriptions for allopurinol, including dosage, measured from baseline till end of study or death. 

Patients with an initial consultation for gout between 1997 and 2002 will be identified and will be classified by exposure of allopurinol use 

(allopurinol vs. non-allopurinol). However prescription for allopurinol does not coincide with the initial consultation for gout as it is often prescribed 
a few years later. Defining the follow-up period from the date of the initial consultation for gout would be inappropriate as patients’ exposure 

status would be determined during follow-up. During this time lag between gout consultation and allopurinol prescription, outcomes of interest 
may have occurred thus introducing bias, therefore a landmark method will be used. 

In the landmark method, a fixed time-point (landmark date) would be selected to define the start of the follow-up period after the initial 
consultation for gout. Up to the landmark date, patients would be classified as either allopurinol or non-allopurinol users. Patients would be 

excluded from the sample if they have the outcome of interest prior to the landmark date. Three landmark time-points are selected at one, two 
and three years. 

Primary outcome 

- Occurrence of and time to uric acid levels <360 μmol/L (from blood tests). All records of uric acid level measurements from baseline 

till end of study/death will be needed. 

Secondary outcomes (All records of these outcomes from baseline till end of study/death will be needed) 

- Occurrence of and time to (and between) repeat gout consultations (appendix 1). 
- Gout and non-gout related hospital admissions and related time to event. 

- Occurrence of and time to use of NSAIDs, analgesics and colchicine usage and allopurinol related side effects of hypersensitivity 
syndrome, rash, liver function, bone marrow suppression. 

- Occurrence of and time to vascular and renal diseases, and joint replacement (appendix 1). 
- Occurrence of and time to death and cause of death. 

Covariates (measured from baseline till death or end of study) 

Socio-demographic and lifestyle 

- Gender 

- Year of birth 
- Date and cause of death  
- General practice 

- Index of multiple deprivation  
- Alcohol consumption 

- Smoking status 

General health  

- Body Mass Index 

Comorbidity 

- Depression 
- Anxiety  
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- Hypertension  
- Hyperlipidaemia 
- Diabetes mellitus 

- Osteoarthritis 
- Diuretic use 

- Vascular disease 
- Renal disease 

Covariates will be collected 2 years before gout consultation and 10 years after or until death or no longer contribute to CPRD. Possible time 

dependent nature of allopurinol use will be explored. In analysis of outcomes where their recurrence is not of interest or not possible (for example 
joint replacement), covariate information after the date of such an event will be ignored.  

Sample size/power calculation 

Restriction is made to population of patients registered at general practices that have consented to HES, deprivation and ONS mortality linkage. It 
is assumed that the total CPRD annual registered population is 5.5 million patients and that approximately 50% of practices contributing to CPRD 

have consented to linkage. This yields relevant annual population of approximately 2.75 million.  It is estimated that 70,000 of these will have 
gout, based on the latest figure for prevalence of gout as 2.5%.  

A feasibility count was performed using CPRD. Between 1997 and 2002, 33,538 individuals aged 18 years and over had a Read code for gout and 

were registered with their practice for at least two years prior. The table below shows the proportion of patients who were prescribed allopurinol 
up to each landmark date. 

Landmark date Number (%) prescribed allopurinol 

1 year 10,266 (30.61) 

2 years 11,648 (34.74) 

3 years 12,671 (37.78) 

 

Adequate power is required to yield reasonable estimates of treatment effect of allopurinol across a wide range of outcomes. 

The first primary outcome is uric acid level <360 μmol/L. Based on a single small recent study3, 77% of those on allopurinol are expected to reach 
this threshold as opposed to 25% of those not taking allopurinol. Secondary outcomes of recurrent gout attacks and allopurinol hypersensitivity 

syndrome have been evaluated. A nationwide population based study found 22% of newly diagnosed gout patients prescribed with allopurinol had 
a recurrent gout attack within a year compared to 14% of non-allopurinol users12. The proportion of hypersensitivity syndrome cases amongst 

allopurinol users is known to be 0.4%13 compared to 0% amongst non-allopurinol users. 

Using a significance level of 0.01, the power to detect a difference in proportion in each outcome outlined above between allopurinol and non-
allopurinol users is almost 1. 

Use of linked data 

Deprivation is a risk factor for increased consultation, morbidity and all-cause mortality which would have an impact on resource allocation to 

general practices. In England, gout prevalence increases with worsening occupational socio-economic status and gout is associated with 
inadequate income. The long term effects of allopurinol vs. alternative treatments are unknown and any difference arising between treatment 
groups could potentially partly be explained by deprivation.  

Gout has a strong association with the metabolic syndrome in particular hypertension, hyperlipidaemia, insulin resistance and obesity. This 

increases the risk of diabetes, vascular events and renal diseases which may result in hospitalization. Admissions to hospital would indicate 
whether gout patients using allopurinol are hospitalised more often than those on alternative treatments. 

Knowing the exact cause of death would identify gout patients whose cause of death is gout comorbidity related. 

Data /Statistical Analysis 

It is aimed that the project starts with the most basic models aimed at estimating effect of allopurinol on various outcomes. Extensions will then be 
made to more complex analysis in terms of accounting for data structure and type and using propensity score methodology to account for 
confounding due to observed covariates. Comparisons of the estimated effects of allopurinol will be made between models. Specific phases of model 

development, starting with the simplest model are: 

Phase 1 (Descriptive statistics) 

The baseline characteristics and demographics of allopurinol and non-allopurinol users will be described using proportions and means. The 
association between allopurinol use and outcomes will be described as incidence rates and relative risks. 

Phase 2 (Allopurinol at baseline, unadjusted effect) 

(a) All outcomes will initially be considered as single binary occurrences. Cox regression model will be used to estimate association 

between allopurinol at baseline and time to first occurrence of a particular event of interest. Proportionality of hazards assumption will be 
appropriately tested throughout and adjustments to the Cox model made or alternative non-PH models used. Right censoring will be taken into 

account, defined as the end of study or death (where death is not outcome of interest) and the censoring mechanism will be assumed non-
informative. Time will be treated as a continuous variable. 

(b) Extend (a) to recurrent times to event analyses. We will use Andersen-Gill model, an extension of Cox model, and Cox model with 

shared frailty component (an unobserved patient specific component aimed at accounting for correlation of times to a particular event within a 
patient) to analyse effect of allopurinol at baseline on recurrent times to event of interest. This will not be applicable to all outcomes. Note that 
considerations of other models will be made in case of violation of assumptions of these models. 

Phase 3 (Allopurinol at baseline, multivariable and propensity score adjustment) 

(c) Multivariable adjustment. Extend (a)-(b) by including observed covariates measured at baseline (i.e. closest to the time point leading up to 
prescription of allopurinol) directly in the model of allopurinol effect on time to event of interest. This is the most common way of adjusting treatment 
effects and the results will be compared to those obtained following propensity score adjustment. 
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(d) Propensity scores. Estimate probability to use allopurinol (i.e. propensity score) at baseline via logistic regression. Different choices of 
covariates at baseline to be included in this process will be investigated (baseline for allopurinol and covariates as defined above): 

(i) all observed covariates 

(ii) all observed covariates related to allopurinol use only 

(iii) all observed covariates related to outcome of interest only 

(iv) all observed covariates related to both allopurinol use and outcome of interest 

Subsequently three methods of incorporating propensity scores in analyses (a)-(b): will be used during estimation of effect of allopurinol on time to 

event of interest  

- Stratification (patients will be ranked according to their propensity score and then split into strata (i.e. probability of using allopurinol based on 
quintiles of the propensity score). Within each stratum the effect of allopurinol will be calculated and then pooled across strata to get an overall 

allopurinol effect. 

- Matching (Matched pairs between allopurinol and non-allopurinol users who share similar (definition of “similar” dependent on matching algorithm) 
propensity score will be created. Allopurinol effect can then be estimated by directly comparing the outcomes between allopurinol users and non-

users. There are different algorithms to form a matched sample, most popular are greedy, optimal, nearest neighbour and caliper matching 
algorithms. 

- Inverse probability weighting (allopurinol effect e weighted by using the inverse of the propensity score. This approach ensures the distribution of 
covariates will be independent of allopurinol use). 

Phase 4 (Bayesian modelling) 

e) By considering allopurinol use at baseline and a single event occurrence, a fully Bayesian model for the joint distribution of data and parameters 
will be developed, treating propensity score as a latent variable. Then the treatment effect marginal posterior distribution will incorporate uncertainty 
in propensity scores as it integrates over the latent variable 11. A comparison will then be made between the Bayesian credible intervals for treatment 

effect and the intervals obtained using the standard propensity score approaches. In construction of the Bayesian model, we will initially consider 
non-informative priors only, followed by prior information based on expert opinion and existing research.   

Phase 5 (Incorporating allopurinol use over time (i.e. all periods of allopurinol prescription and non-prescription), multivariable 
and propensity score adjustment) 

f) Use of allopurinol may change on multiple occasions over time. Allopurinol use/non-use for each patient will therefore be defined for the entire 
study duration. Based on the number of allopurinol tablets and the frequency the patient needs to take them for, an estimate of how long the 

patient was taking allopurinol will be derived. Care will be taken to account for covariates appropriately by taking the covariate measurement closest 
in time prior to each occurrence of allopurinol prescription. For periods of non-use of allopurinol the midpoint in time will be taken for covariate 
measures. Timings of repeated events, in relation to allopurinol use, will be taken into account in the model of effect of allopurinol. 

g) Propensity score adjustment. Analysis f) above will be repeated, but using time-varying propensity scores, rather than time-varying covariate 
adjustment. Essentially two approaches will be considered to estimate such propensity scores, firstly they could be estimated at each time point 
when a treatment is received and secondly using a random effects model.   

Phase 6 (estimating effect of omitting important unobserved covariates) 

h) In all analyses pertaining to propensity score methodology above, the covariate found to be most influential (i.e. in terms of being strongly 
related to treatment and outcome, or to outcome alone) will be omitted from the propensity score estimation stage and resulting allopurinol effects 
compared to findings using a more correct specification of propensity score.  

Phase 7 (subgroup analyses) 

Stratification of all analyses above will be made on baseline uric acid levels </> 480 μmol/L and on relevant comorbidities (renal and vascular 

disease) to assess whether effect of allopurinol varies by severity of gout or comorbidity. 

Other considerations: 

Missing data 

During a consultation, all the patient’s symptoms and GP’s diagnoses may not be recorded therefore it will be assumed that all problems considered 

by the GP to be of importance at the time will be recorded and those things not recorded were not of importance. Hence, if a symptom or diagnosis 
is not recorded, this will not be considered ‘missing’ data. Missing information on patient socio-demographic, lifestyle and general health 
characteristics will be treated as true missing and will initially be ignored. Subsequently, we will consider multiple imputation, taking into account 

the repeated measures structure of the data where appropriate.   

Data will be managed and analysed in in Stata v13, R (v3.0.2+) and SAS.   

It has been noted to preserve confidentiality at the reporting stage and that cells with less than <5 events will not be reported. 

Patient or user group involvement 

It was not envisaged PPI is required to aid development of this protocol.   

Limitations of the study design, data sources, and analytic methods 

There is possibility patients may be misclassified as having gout however, a recent systematic review had validated 183 different diagnoses and 

had shown the median 89% of cases were confirmed using additional internal or external information14. With regards to gout, a study had taken a 
small subsample and had shown patients with a Read code for gout, a high urate level and prescribed anti-gout medication were all confirmed as 
having gout whereas those with a read code for gout and prescribed anti-gout medication 86% were confirmed as having gout15. We can be 90% 

sure patients consulting for gout would indeed have gout. 
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Observational studies evaluating the effectiveness of drug effects will be biased due to residual confounding. The methodology outlined in this 
study attempts to minimise residual confounding. Firstly propensity score analysis will minimise the effect of confounding by indication. Although 
residual confounding may persist due to unmeasured covariates, the Bayesian methodology described will model the propensity scores as a latent 

variable taking into account the uncertainty in the estimation of propensity scores.  

Plans for disseminating and communicating study results, including the presence or absence of any restrictions on the extent 
and timing of publication 

The CPRD data will be used for a PhD. Results will be written into a thesis and findings will be presented at internal and external meetings and 

published in peer-reviewed journals. In reporting the results of this study, the STROBE guidelines on the reporting of observational studies will be 
followed.  

 

Appendix 1 

List of Read codes of consultation for gout 

Read Code Read Term 

C34 Gout 

N023 Gouty arthritis 

EGTON 227 Gout NOS 

OX2740G Gout Acute /ox 

1443 H/O: gout 

EMISR4QG01 Gouty tophi + Gout NOS 

2D52 O/E - auricle of ear – tophi 

669 Gout monitoring 

 

List of read codes of joint replacement 

The appropriate Read codes for joint replacement will be identified from the Read code chapter 7. An example read code list has been provided as 
follows:  

• hip replacement: 7K2..  

• knee replacement: 7K3.. 

• humerus/shoulder replacement: 7K4..  
• other joint replacement: 7K6.. 

• elbow replacement: 7K7.. 

• ankle replacement: 7K8.. 

List of read codes of renal disease 

Read 

Code 

Read Term Read 

Code 

Read Term 

K032600 Berger's IgA or IgG nephropathy K07..00 Renal sclerosis unspecified 

K0A0500 Acute neph syn, diffuse mesangiocapillary 
glomerulonephritis 

K00..00 Acute glomerulonephritis 

K03y.00 Other nephritis and nephrosis unspecified K08y500 Acute interstitial nephritis 

K0A0200 Acute nephritic syn, diffuse membranous 
glomerulonephritis 

SP01500 Mechanical complication of dialysis catheter 

1Z12.00 Chronic kidney disease stage 3 K0A4200 Isolatd proteinur/specfd morphlgcl les df membrn 
glomneph 

K02..00 Chronic glomerulonephritis K016.00 Nephrotic syndrome, diffuse membranous 
glomerulonephritis 

K032.00 Membranoproliferative nephritis unspecified K0A0300 Acut neph syn, diffuse mesangial prolifrative 
glomnephritis 

K132.00 Acquired cyst of kidney B91z111 Renal neoplasm of uncertain behaviour 

K040.00 Acute renal tubular necrosis K0A0600 Acute nephritic syndrome, dense deposit disease 

K0C1.00 Nephropathy induced by other drugs meds and biologl 
substncs 

K019.00 Nephrotic syn,diffuse mesangiocapillary 
glomerulonephritis 

K017.00 Nephrotic syn difus mesangial prolifertiv 
glomerulonephritis 

C341z00 Gouty nephropathy NOS 

G22..11 Nephrosclerosis G22z.11 Renal hypertension 

C104.11 Diabetic nephropathy K01x300 Nephrotic syndrome in polyarteritis nodosa 

7L1B100 Removal of ambulatory peritoneal dialysis catheter K072.00 Glomerulosclerosis 

K0A2300 Recur+persist haemuria df mesangial prolif 
glomerulnephritis 

K0A4500 Isoltd prteinur+specfd morph les df mesangiocap 
glomnephr 

K0z..00 Nephritis, nephrosis and nephrotic syndrome NOS K08z.00 Impaired renal function disorder NOS 

K013.11 Lipoid nephrosis PD3D.00 Enlarged kidney 

K030.00 Proliferative nephritis unspecified D310100 Henoch-Schonlein nephritis 

K032300 Anaphylactoid glomerulonephritis K0D..00 End-stage renal disease 

K043.00 Acute drug-induced renal failure K03X.00 Unsp nephrit synd, diff mesang prolif glomerulonephritis 

K02y200 Chronic focal glomerulonephritis K0A3700 Chronic nephritic syn diffuse crescentic 
glomerulonephritis 

K05..00 Chronic renal failure K0A..00 Glomerular disease 
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K05..11 Chronic uraemia K0A3100 Chronic nephritic syndrm focal+segmental glomerular 
lesions 

K0A4300 Isoltd prteinur/spcfd morph lesn df mesngl prolf 
glomneph 

K0A2800 IgA nephropathy 

K00y300 Acute diffuse nephritis K0A2200 Recur+persist haematuria difus membranous 
glomerulonephritis 

K08yz11 Renal acidaemia C109C00 Non-insulin dependent diabetes mellitus with 
nephropathy 

TB11.00 Kidney dialysis with complication, without blame K03..12 Nephropathy, unspecified 

K0A0400 Ac neph syn difus endocaplry prolifrative 
glomerulonephritis 

K032y00 Nephritis unsp+OS membranoprolif glomerulonephritis 
lesion 

K01x400 Nephrotic syndrome in systemic lupus erythematosus C109C11 Type II diabetes mellitus with nephropathy 

7L1A500 Continuous ambulatory peritoneal dialysis K03W.00 Unsp nephrit synd, diff endocap prolif glomerulonephritis 

C10ED00 Type 1 diabetes mellitus with nephropathy K00..11 Acute nephritis 

K032y13 Mesangioproliferative glomerulonephritis NEC K041.00 Acute renal cortical necrosis 

K0A0700 Acute nephrotic syndrm diffuse crescentic 
glomerulonephritis 

K0A2700 Recur+persist haematuria difus crescentic 
glomerulonephritis 

9Ot3.00 Chronic kidney disease monitoring verbal invite K034.00 Renal cortical necrosis unspecified 

K0A1200 Rapid progres neph syn diffuse membranous 

glomerulonephritis 

K0C4.00 Toxic nephropathy, not elsewhere classified 

SP08300 Kidney transplant failure and rejection K0C2.00 Nephropathy induced by unspec drug medicament or 

biol subs 

K032y11 Hypocomplementaemic persistent glomerulonephritis 

NEC 

K022.00 Chronic membranoproliferative glomerulonephritis 

C10FC00 Type 2 diabetes mellitus with nephropathy 7L1A400 Automated peritoneal dialysis 

C354711 Renal calcinosis K04..00 Acute renal failure 

4519 Deteriorating renal function K060.00 Renal impairment 

9Ot4.00 Chronic kidney disease monitoring telephone invite S760111 Renal haematoma without mention of open wound into 

cavity 

K08..00 Impaired renal function disorder K138z11 Renal infarction 

A786.00 Haemorrhagic nephrosonephritis C108D11 Type I diabetes mellitus with nephropathy 

K01A.00 Nephrotic syndrome, dense deposit disease 9Ot1.00 Chronic kidney disease monitoring second letter 

K00y100 Acute exudative nephritis C341.00 Gouty nephropathy 

K060.11 Impaired renal function K03yz00 Other nephritis and nephrosis NOS 

K00yz00 Other acute glomerulonephritis NOS K071.00 Renal fibrosis 

C373600 Nephropathic amyloidosis K0A0100 Acute nephritic syndrome, focal+segmental glomerular 
lesions 

K050.00 End stage renal failure TB00111 Renal transplant with complication, without blame 

K023.00 Chronic rapidly progressive glomerulonephritis K042.00 Acute renal medullary necrosis 

K090.00 Unilateral small kidney SP15400 Renal failure as a complication of care 

K0C0.00 Analgesic nephropathy 7L1B000 Insertion of ambulatory peritoneal dialysis catheter 

7L1A.11 Dialysis for renal failure K01x100 Nephrotic syndrome in diabetes mellitus 

7B00z00 Transplantation of kidney NOS K020.00 Chronic proliferative glomerulonephritis 

K021.00 Chronic membranous glomerulonephritis 9Ot0.00 Chronic kidney disease monitoring first letter 

K0A3500 Chronic neph syn difus mesangiocapillary 
glomerulonephritis 

K014.00 Nephrotic syndrome, minor glomerular abnormality 

K138.11 Renal vascular disorders K0A3.00 Chronic nephritic syndrome 

K0A1300 Rpd prog neph syn df mesangial prolifratv 

glomerulonephritis 

K0A1700 Rapid progres nephritic syn df crescentic 

glomerulonephritis 

66i..00 Chronic kidney disease monitoring 7L1A100 Peritoneal dialysis 

1Z13.00 Chronic kidney disease stage 4 K08y000 Hypokalaemic nephropathy 

K0A3300 Chron neph syn difus mesangial prolifrtiv 
glomerulonephritis 

TB11.11 Renal dialysis with complication, without blame 

1Z11.00 Chronic kidney disease stage 2 K00y000 Acute glomerulonephritis in diseases EC 

9Ot..00 Chronic kidney disease monitoring administration 1Z10.00 Chronic kidney disease stage 1 

K032z00 Nephritis unsp+membranoprolif glomerulonephritis 
lesion NOS 

K0A0.00 Acute nephritic syndrome 

K02z.00 Chronic glomerulonephritis NOS K01x200 Nephrotic syndrome in malaria 

K01x411 Lupus nephritis K032y14 Mesangiocapillary glomerulonephritis NEC 

K01x000 Nephrotic syndrome in amyloidosis K138.00 Vascular disorders of kidney 

K03V.00 Unspecified nephritic syndrome, dense deposit disease K07z.00 Renal sclerosis NOS 

K02y300 Chronic diffuse glomerulonephritis K01B.00 Nephrotic syndrome, diffuse crescentic 

glomerulonephritis 

K04y.00 Other acute renal failure K011.00 Nephrotic syndrome with membranous 

glomerulonephritis 
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K02y000 Chronic glomerulonephritis + diseases EC K00y200 Acute focal nephritis 

K0...00 Nephritis, nephrosis and nephrotic syndrome K0A1600 Rapid progressive nephritic syndrome, dense deposit 

disease 

7L1A600 Peritoneal dialysis NEC 7L1A000 Renal dialysis 

K0A0000 Acute nephritic syndrome, minor glomerular abnormality 7B00100 Transplantation of kidney from live donor 

K070.00 Atrophy of kidney K001.00 Acute nephritis with lesions of necrotising glomerulitis 

K0y..00 Other specified nephritis, nephrosis or nephrotic 

syndrome 

K03y000 Other nephritis and nephrosis in diseases EC 

K0A1100 Rapid progres nephritic syn focal+segmental glomerulr 

lesion 

K015.00 Nephrotic syndrome, focal and segmental glomerular 

lesions 

K0A1.00 Rapidly progressive nephritic syndrome   

K02..12 Nephropathy - chronic 7L1C000 Insertion of temporary peritoneal dialysis catheter 

K03U.00 Unspecif nephr synd, diff concentric glomerulonephritis K01..00 Nephrotic syndrome 

7B00200 Transplantation of kidney from cadaver K018.00 Nephrotic syn,difus endocapilary proliftv 
glomerulonephritis 

K081.00 Nephrogenic diabetes insipidus K08y400 Renal tubular acidosis 

K13yz11 Salt-losing nephritis K000.00 Acute proliferative glomerulonephritis 

K032y15 Mixed membranous and proliferative glomerulonephritis 

NEC 

K010.00 Nephrotic syndrome with proliferative glomerulonephritis 

K00z.00 Acute glomerulonephritis NOS K0A3600 Chronic nephritic syndrome, dense deposit disease 

K03y200 Other interstitial nephritis K03..11 Nephritis and nephropathy unspecified 

K06..00 Renal failure unspecified K031.00 Membranous nephritis unspecified 

K013.12 Steroid sensitive nephrotic syndrome K03T.00 Tubulo-interstit nephritis, not specif as acute or chron 

TB00100 Kidney transplant with complication, without blame K02..11 Nephritis - chronic 

7L1A200 Haemodialysis NEC K01y.00 Nephrotic syndrome with other pathological kidney 

lesions 

1Z1..00 Chronic renal impairment K033.00 Rapidly progressive nephritis unspecified 

K13z000 Non-functioning kidney SP15411 Kidney failure as a complication of care 

K03z.00 Unspecified glomerulonephritis NOS C108D00 Insulin dependent diabetes mellitus with nephropathy 

1Z14.00 Chronic kidney disease stage 5 C354700 Nephrocalcinosis 

K02y.00 Other chronic glomerulonephritis K0A2500 Recur+persist hmuria df mesangiocapilary 

glomerulonephritis 

K01z.00 Nephrotic syndrome NOS K0A3000 Chronic nephritic syndrome, minor glomerular 

abnormality 

K013.00 Nephrotic syndrome with minimal change 

glomerulonephritis 

K04z.00 Acute renal failure NOS 

G222.00 Hypertensive renal disease with renal failure PDz0.00 Unspecified anomaly of kidney 

9Ot2.00 Chronic kidney disease monitoring third letter K032000 Focal membranoproliferative glomerulonephritis 

7B00.00 Transplantation of kidney K0A7.00 Glom disordr in blood diseas+disordr invlvg imun 
mechansm 

K0A3200 Chron nephritic syndrom difuse membranous 
glomerulonephritis 

K012.00 Nephrotic syndrome+membranoproliferative 
glomerulonephritis 

K02yz00 Other chronic glomerulonephritis NOS K00y.00 Other acute glomerulonephritis 

K035.00 Renal medullary necrosis unspecified K138z00 Renal vascular disorders NOS 

 

List of read codes for vascular disease 

Cardiovascular, cerebrovascular and peripheral vascular Read codes will be identified.  

List of cardiovascular Read codes 

Read 

Code 

Read Term Read 

Code 

Read Term 

14A..00 H/O: cardiovascular disease 32B..00 ECG: Q wave 

14A..12 H/O: myocardial problem 32B2.00 ECG: Q wave abnormal 

14A4.00 H/O: myocardial infarct >60 44p2.00 Cardiac troponin positive 

14A5.00 H/O: angina pectoris 5543 Coronary arteriograph.abnormal 

14AH.00 H/O: Myocardial infarction in last year 662..00 Cardiac disease monitoring 

14AJ.00 H/O: Angina in last year 662K000 Angina control - good 

14AL.00 H/O: Treatment for ischaemic heart disease 662K100 Angina control - poor 

14AZ.00 H/O: CVS disease NOS 662K200 Angina control - improving 

14N6.00 H/O: cardiac surgery 662K300 Angina control - worsening 

182A.00 Chest pain on exertion 662N.00 CHD monitoring 
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3213100 Exercise ECG abnormal 66f..00 Cardiovascular disease monitoring 

3213111 Positive exercise ECG test 6A2..00 Coronary heart disease annual review 

322..00 ECG: myocardial ischaemia 6A4..00 Coronary heart disease review 

3222 ECG:shows myocardial ischaemia 790H300 Revascularisation of wall of heart 

322Z.00 ECG: myocardial ischaemia NOS 792..00 Coronary artery operations 

323..00 ECG: myocardial infarction 792..11 Coronary artery bypass graft operations 

3232 ECG: old myocardial infarction 7920 Saphenous vein graft replacement of coronary artery 

3233 ECG: antero-septal infarct. 7920.11 Saphenous vein graft bypass of coronary artery 

3234 ECG:posterior/inferior infarct 7920000 Saphenous vein graft replacement of one coronary 
artery 

3235 ECG: subendocardial infarct 7920100 Saphenous vein graft replacement of two coronary 
arteries 

3236 ECG: lateral infarction 7920200 Saphenous vein graft replacement of three coronary 
arteries 

323Z.00 ECG: myocardial infarct NOS 7920300 Saphenous vein graft replacement of four+ coronary 
arteries 

7920y00 Saphenous vein graft replacement of coronary artery OS 7926 Connection of other thoracic artery to coronary artery 

7920z00 Saphenous vein graft replacement coronary artery NOS 7926000 Double anastom thoracic arteries to coronary arteries 

NEC 

7921 Other autograft replacement of coronary artery 7926200 Single anastomosis of thoracic artery to coronary artery 

NEC 

7921.11 Other autograft bypass of coronary artery 7926300 Single implantation thoracic artery into coronary artery 

NEC 

7921000 Autograft replacement of one coronary artery NEC 7926z00 Connection of other thoracic artery to coronary artery 

NOS 

7921100 Autograft replacement of two coronary arteries NEC 7927 Other open operations on coronary artery 

7921200 Autograft replacement of three coronary arteries NEC 7927000 Repair of arteriovenous fistula of coronary artery 

7921300 Autograft replacement of four of more coronary arteries 

NEC 

7927100 Repair of aneurysm of coronary artery 

7921y00 Other autograft replacement of coronary artery OS 7927300 Transposition of coronary artery NEC 

7921z00 Other autograft replacement of coronary artery NOS 7927400 Exploration of coronary artery 

7922 Allograft replacement of coronary artery 7927500 Open angioplasty of coronary artery 

7922.11 Allograft bypass of coronary artery 7927y00 Other specified other open operation on coronary artery 

7922000 Allograft replacement of one coronary artery 7927z00 Other open operation on coronary artery NOS 

7922100 Allograft replacement of two coronary arteries 7928 Transluminal balloon angioplasty of coronary artery 

7922200 Allograft replacement of three coronary arteries 7928.11 Percutaneous balloon coronary angioplasty 

7922300 Allograft replacement of four or more coronary arteries 7928000 Percut transluminal balloon angioplasty one coronary 

artery 

7922y00 Other specified allograft replacement of coronary artery 7928100 Percut translum balloon angioplasty mult coronary 

arteries 

7922z00 Allograft replacement of coronary artery NOS 7928200 Percut translum balloon angioplasty bypass graft 
coronary a 

7923 Prosthetic replacement of coronary artery 7928300 Percut translum cutting balloon angioplasty coronary 
artery 

7923.11 Prosthetic bypass of coronary artery 7928y00 Transluminal balloon angioplasty of coronary artery OS 

7923000 Prosthetic replacement of one coronary artery 7928z00 Transluminal balloon angioplasty of coronary artery NOS 

7923100 Prosthetic replacement of two coronary arteries 7929 Other therapeutic transluminal operations on coronary 
artery 

7923200 Prosthetic replacement of three coronary arteries 7929000 Percutaneous transluminal laser coronary angioplasty 

7923300 Prosthetic replacement of four or more coronary arteries 7929100 Percut transluminal coronary thrombolysis with 

streptokinase 

7923z00 Prosthetic replacement of coronary artery NOS 7929111 Percut translum coronary thrombolytic therapy- 

streptokinase 

7924 Revision of bypass for coronary artery 7929200 Percut translum inject therap subst to coronary artery 

NEC 

7924000 Revision of bypass for one coronary artery 7929300 Rotary blade coronary angioplasty 

7924100 Revision of bypass for two coronary arteries 7929400 Insertion of coronary artery stent 

7924200 Revision of bypass for three coronary arteries 7929500 Insertion of drug-eluting coronary artery stent 

7924y00 Other specified revision of bypass for coronary artery 7929600 Percutaneous transluminal atherectomy of coronary 
artery 

7925 Connection of mammary artery to coronary artery 7929y00 Other therapeutic transluminal op on coronary artery OS 

7925.11 Creation of bypass from mammary artery to coronary 
artery 

7929z00 Other therapeutic transluminal op on coronary artery 
NOS 

7925000 Double anastomosis of mammary arteries to coronary 
arteries 

792A.00 Diagnostic transluminal operations on coronary artery 

7925011 LIMA sequential anastomosis 792A000 Percutaneous transluminal angioscopy 

7925012 RIMA sequential anastomosis 792A100 Intravascular ultrasound of coronary artery 
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7925100 Double implant of mammary arteries into coronary 
arteries 

792Ay00 Diagnostic transluminal operation on coronary artery OS 

7925300 Single anastomosis of mammary artery to coronary 
artery NEC 

792Az00 Diagnostic transluminal operation on coronary artery 
NOS 

7925311 LIMA single anastomosis 792B.00 Repair of coronary artery NEC 

7925312 RIMA single anastomosis 792B000 Endarterectomy of coronary artery NEC 

7925400 Single implantation of mammary artery into coronary 
artery 

792B100 Repair of rupture of coronary artery 

7925y00 Connection of mammary artery to coronary artery OS 792B200 Repair of arteriovenous malformation of coronary artery 

7925z00 Connection of mammary artery to coronary artery NOS 792By00 Other specified repair of coronary artery 

792Bz00 Repair of coronary artery NOS 9Ob5.00 Coronary heart disease monitoring 3rd letter 

792C.00 Other replacement of coronary artery 9Ob6.00 Coronary heart disease monitoring verbal invitation 

792C000 Replacement of coronary arteries using multiple 

methods 

G3...00 Ischaemic heart disease 

792Cy00 Other specified replacement of coronary artery G3...11 Arteriosclerotic heart disease 

792Cz00 Replacement of coronary artery NOS G3...12 Atherosclerotic heart disease 

792D.00 Other bypass of coronary artery G3...13 IHD - Ischaemic heart disease 

792Dy00 Other specified other bypass of coronary artery G30..00 Acute myocardial infarction 

792Dz00 Other bypass of coronary artery NOS G30..11 Attack - heart 

792y.00 Other specified operations on coronary artery G30..12 Coronary thrombosis 

792z.00 Coronary artery operations NOS G30..13 Cardiac rupture following myocardial infarction (MI) 

7932z00 Open operation on heart NOS G30..14 Heart attack 

7938000 Angiocardiography of both right and left sides of heart G30..15 MI - acute myocardial infarction 

7938100 Angiocardiography of right side of heart NEC G30..16 Thrombosis - coronary 

7938200 Angiocardiography of left side of heart NEC G30..17 Silent myocardial infarction 

7938300 Coronary arteriography using two catheters G300.00 Acute anterolateral infarction 

7938400 Coronary arteriography using single catheter G301.00 Other specified anterior myocardial infarction 

7938500 Coronary arteriography NEC G301000 Acute anteroapical infarction 

7938600 Coronary arteriography using three catheters G301100 Acute anteroseptal infarction 

7939.11 Cardiac catheterisation G301z00 Anterior myocardial infarction NOS 

7939000 Catheterisation of both right and left sides of heart NEC G302.00 Acute inferolateral infarction 

7939100 Catheterisation of right side of heart NEC G303.00 Acute inferoposterior infarction 

7939200 Catheterisation of left side of heart NEC G304.00 Posterior myocardial infarction NOS 

7939y00 Other specified catheterisation of heart G305.00 Lateral myocardial infarction NOS 

7939z00 Catheterisation of heart NOS G306.00 True posterior myocardial infarction 

793G.00 Perc translumin balloon angioplasty stenting coronary 
artery 

G307.00 Acute subendocardial infarction 

793G000 Perc translum ball angio insert 1-2 drug elut stents cor 
art 

G307000 Acute non-Q wave infarction 

793G100 Perc tran ball angio ins 3 or more drug elut stents cor 
art 

G307100 Acute non-ST segment elevation myocardial infarction 

793G200 Perc translum balloon angioplasty insert 1-2 stents cor 
art 

G308.00 Inferior myocardial infarction NOS 

793G300 Percutaneous cor balloon angiop 3 more stents cor art 
NEC 

G309.00 Acute Q-wave infarct 

793Gy00 OS perc translumina balloon angioplast stenting 
coronary art 

G30A.00 Mural thrombosis 

793Gz00 Perc translum balloon angioplasty stenting coronary art 
NOS 

G30B.00 Acute posterolateral myocardial infarction 

793K.00 Transluminal operations internal mammary artery side 
branch 

G30X.00 Acute transmural myocardial infarction of unspecif site 

793K000 Translum occlusion left internal mammary artery side 
branch 

G30X000 Acute ST segment elevation myocardial infarction 

88A8.00 Thrombolytic therapy G30y.00 Other acute myocardial infarction 

8B3k.00 Coronary heart disease medication review G30y000 Acute atrial infarction 

8B63.11 Aspirin prophylaxis - IHD G30y100 Acute papillary muscle infarction 

8H2V.00 Admit ischaemic heart disease emergency G30y200 Acute septal infarction 

9Ob..00 Coronary heart disease monitoring administration G30yz00 Other acute myocardial infarction NOS 

9Ob0.00 Attends coronary heart disease monitoring G30z.00 Acute myocardial infarction NOS 

9Ob2.00 Coronary heart disease monitoring default G31..00 Other acute and subacute ischaemic heart disease 

9Ob3.00 Coronary heart disease monitoring 1st letter G34yz00 Other specified chronic ischaemic heart disease NOS 

9Ob4.00 Coronary heart disease monitoring 2nd letter G34z.00 Other chronic ischaemic heart disease NOS 
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G310.00 Postmyocardial infarction syndrome G34z000 Asymptomatic coronary heart disease 

G310.11 Dressler's syndrome G35..00 Subsequent myocardial infarction 

G311.00 Preinfarction syndrome G350.00 Subsequent myocardial infarction of anterior wall 

G311.11 Crescendo angina G351.00 Subsequent myocardial infarction of inferior wall 

G311.13 Unstable angina G353.00 Subsequent myocardial infarction of other sites 

G311.14 Angina at rest G35X.00 Subsequent myocardial infarction of unspecified site 

G311100 Unstable angina G36..00 Certain current complication follow acute myocardial 

infarct 

G311200 Angina at rest G360.00 Haemopericardium/current comp folow acut myocard 

infarct 

G311300 Refractory angina G361.00 Atrial septal defect/curr comp folow acut myocardal 

infarct 

G311400 Worsening angina G362.00 Ventric septal defect/curr comp fol acut myocardal 

infarctn 

G311500 Acute coronary syndrome G363.00 Ruptur cardiac wall w'out haemopericard/cur comp fol 

ac MI 

G311z00 Preinfarction syndrome NOS G364.00 Ruptur chordae tendinae/curr comp fol acute myocard 

infarct 

G312.00 Coronary thrombosis not resulting in myocardial 

infarction 

G365.00 Rupture papillary muscle/curr comp fol acute myocard 

infarct 

G31y.00 Other acute and subacute ischaemic heart disease G366.00 Thrombosis atrium,auric append&vent/curr comp foll 

acute MI 

G31y000 Acute coronary insufficiency G37..00 Cardiac syndrome X 

G31y100 Microinfarction of heart G38..00 Postoperative myocardial infarction 

G31y200 Subendocardial ischaemia G380.00 Postoperative transmural myocardial infarction anterior 
wall 

G31y300 Transient myocardial ischaemia G381.00 Postoperative transmural myocardial infarction inferior 
wall 

G31yz00 Other acute and subacute ischaemic heart disease NOS G384.00 Postoperative subendocardial myocardial infarction 

G32..00 Old myocardial infarction G38z.00 Postoperative myocardial infarction, unspecified 

G32..11 Healed myocardial infarction G3y..00 Other specified ischaemic heart disease 

G32..12 Personal history of myocardial infarction G3z..00 Ischaemic heart disease NOS 

G33..00 Angina pectoris G5...00 Other forms of heart disease 

G330.00 Angina decubitus G5y..00 Other specified heart disease 

G330000 Nocturnal angina G5y1.00 Myocardial degeneration 

G330z00 Angina decubitus NOS G5y2.00 Cardiovascular arteriosclerosis unspecified 

G331.00 Prinzmetal's angina G5yy.00 Other ill-defined heart disease 

G331.11 Variant angina pectoris G5yyz00 Other ill-defined heart disease NOS 

G332.00 Coronary artery spasm G5yz.00 Other heart disease NOS 

G33z.00 Angina pectoris NOS G5z..00 Heart disease NOS 

G33z000 Status anginosus Gyu3.00 [X]Ischaemic heart diseases 

G33z100 Stenocardia Gyu3000 [X]Other forms of angina pectoris 

G33z200 Syncope anginosa Gyu3200 [X]Other forms of acute ischaemic heart disease 

G33z300 Angina on effort Gyu3300 [X]Other forms of chronic ischaemic heart disease 

G33z400 Ischaemic chest pain Gyu3400 [X]Acute transmural myocardial infarction of unspecif 
site 

G33z500 Post infarct angina Gyu3600 [X]Subsequent myocardial infarction of unspecified site 

G33z600 New onset angina ZV45800 [V]Presence of coronary angioplasty implant and graft 

G33z700 Stable angina ZV45K00 [V]Presence of coronary artery bypass graft 

G33zz00 Angina pectoris NOS ZV45K11 [V]Presence of coronary artery bypass graft - CABG 

G34..00 Other chronic ischaemic heart disease ZV45L00 [V]Status following coronary angioplasty NOS 

G340.00 Coronary atherosclerosis G340000 Single coronary vessel disease 

G340.11 Triple vessel disease of the heart G340100 Double coronary vessel disease 

G340.12 Coronary artery disease G342.00 Atherosclerotic cardiovascular disease 

G343.00 Ischaemic cardiomyopathy G34y000 Chronic coronary insufficiency 

G344.00 Silent myocardial ischaemia G34y100 Chronic myocardial ischaemia 

G34y.00 Other specified chronic ischaemic heart disease   

 

 

List of cerebrovascular Read codes 
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Read 
code 

Read term Read 
code 

Read term 

1477 H/O: cerebrovascular disease 7A20311 Carotid endarterectomy and patch 

14A7.00 H/O: CVA/stroke 7A20400 Endarterectomy of carotid artery NEC 

14A7.11 H/O: CVA 7A20700 Intracranial bypass from carotid artery NEC 

14A7.12 H/O: stroke 7A21200 Open embolectomy of carotid artery 

14AF.00 H/O sub-arachnoid haemorrhage 7A22300 Percutaneous transluminal insertion stent carotid artery 

14AK.00 H/O: Stroke in last year 7A24600 Open embolisation of cerebral artery 

5513 Carotid A angiogram abnormal 7A25100 Percutaneous transluminal embolisation of circle of Willis 

5C10.00 Carotid artery doppler abnormal 7A25600 Percutaneous transluminal insertion of stent cerebral 
artery 

662M.00 Stroke monitoring 8HBJ.00 Stroke / transient ischaemic attack referral 

662e.00 Stroke/CVA annual review 8HTQ.00 Referral to stroke clinic 

662o.00 Haemorrhagic stroke monitoring 9N0p.00 Seen in stroke clinic 

7A20.00 Reconstruction of carotid artery 9Om..00 Stroke/transient ischaemic attack monitoring 
administration 

7A20000 Replacement of carotid artery using graft 9Om0.00 Stroke/transient ischaemic attack monitoring first letter 

7A20100 Intracranial bypass to carotid artery 9Om1.00 Stroke/transient ischaemic attack monitoring second 

letter 

7A20300 Endarterectomy and patch repair of carotid artery 9Om2.00 Stroke/transient ischaemic attack monitoring third letter 

F11x200 Cerebral degeneration due to cerebrovascular disease 9Om3.00 Stroke/transient ischaemic attack monitoring verbal 
invitati 

G6...00 Cerebrovascular disease 9Om4.00 Stroke/transient ischaemic attack monitoring telephone 
invte 

G60..00 Subarachnoid haemorrhage G640000 Cerebral infarction due to thrombosis of cerebral arteries 

G600.00 Ruptured berry aneurysm G641.00 Cerebral embolism 

G601.00 Subarachnoid haemorrhage from carotid siphon and 

bifurcation 

G641.11 Cerebral embolus 

G602.00 Subarachnoid haemorrhage from middle cerebral artery G641000 Cerebral infarction due to embolism of cerebral arteries 

G603.00 Subarachnoid haemorrhage from anterior 
communicating artery 

G64z.00 Cerebral infarction NOS 

G604.00 Subarachnoid haemorrhage from posterior 
communicating artery 

G64z.11 Brainstem infarction NOS 

G605.00 Subarachnoid haemorrhage from basilar artery G64z.12 Cerebellar infarction 

G606.00 Subarachnoid haemorrhage from vertebral artery G64z000 Brainstem infarction 

G60X.00 Subarachnoid haemorrh from intracranial artery, 
unspecif 

G64z100 Wallenberg syndrome 

G60z.00 Subarachnoid haemorrhage NOS G64z111 Lateral medullary syndrome 

G61..00 Intracerebral haemorrhage G64z200 Left sided cerebral infarction 

G61..11 CVA - cerebrovascular accid due to intracerebral 
haemorrhage 

G64z300 Right sided cerebral infarction 

G61..12 Stroke due to intracerebral haemorrhage G64z400 Infarction of basal ganglia 

G610.00 Cortical haemorrhage G65..00 Transient cerebral ischaemia 

G611.00 Internal capsule haemorrhage G65..12 Transient ischaemic attack 

G612.00 Basal nucleus haemorrhage G65..13 Vertebro-basilar insufficiency 

G613.00 Cerebellar haemorrhage G650.00 Basilar artery syndrome 

G614.00 Pontine haemorrhage G650.11 Insufficiency - basilar artery 

G615.00 Bulbar haemorrhage G651.00 Vertebral artery syndrome 

G616.00 External capsule haemorrhage G651000 Vertebro-basilar artery syndrome 

G617.00 Intracerebral haemorrhage, intraventricular G652.00 Subclavian steal syndrome 

G618.00 Intracerebral haemorrhage, multiple localized G653.00 Carotid artery syndrome hemispheric 

G61X.00 Intracerebral haemorrhage in hemisphere, unspecified G654.00 Multiple and bilateral precerebral artery syndromes 

G61X000 Left sided intracerebral haemorrhage, unspecified G655.00 Transient global amnesia 

G61X100 Right sided intracerebral haemorrhage, unspecified G656.00 Vertebrobasilar insufficiency 

G61z.00 Intracerebral haemorrhage NOS G65y.00 Other transient cerebral ischaemia 

G62..00 Other and unspecified intracranial haemorrhage G65z.00 Transient cerebral ischaemia NOS 

G62z.00 Intracranial haemorrhage NOS G65z100 Intermittent cerebral ischaemia 

G63..00 Precerebral arterial occlusion G65zz00 Transient cerebral ischaemia NOS 

G63..11 Infarction - precerebral G66..00 Stroke and cerebrovascular accident unspecified 

G63..12 Stenosis of precerebral arteries G66..11 CVA unspecified 

G630.00 Basilar artery occlusion G66..12 Stroke unspecified 
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G631.00 Carotid artery occlusion G66..13 CVA - Cerebrovascular accident unspecified 

G631.11 Stenosis, carotid artery G660.00 Middle cerebral artery syndrome 

G631.12 Thrombosis, carotid artery G661.00 Anterior cerebral artery syndrome 

G632.00 Vertebral artery occlusion G662.00 Posterior cerebral artery syndrome 

G633.00 Multiple and bilateral precerebral arterial occlusion G663.00 Brain stem stroke syndrome 

G634.00 Carotid artery stenosis G664.00 Cerebellar stroke syndrome 

G63y.00 Other precerebral artery occlusion G665.00 Pure motor lacunar syndrome 

G63y000 Cerebral infarct due to thrombosis of precerebral arteries G666.00 Pure sensory lacunar syndrome 

G63y100 Cerebral infarction due to embolism of precerebral 
arteries 

G667.00 Left sided CVA 

G63z.00 Precerebral artery occlusion NOS G668.00 Right sided CVA 

G64..00 Cerebral arterial occlusion G67..00 Other cerebrovascular disease 

G64..11 CVA - cerebral artery occlusion G670.00 Cerebral atherosclerosis 

G64..12 Infarction - cerebral G670.11 Precerebral atherosclerosis 

G64..13 Stroke due to cerebral arterial occlusion G671.00 Generalised ischaemic cerebrovascular disease NOS 

G640.00 Cerebral thrombosis G671000 Acute cerebrovascular insufficiency NOS 

G673300 Vertebral artery dissection G671100 Chronic cerebral ischaemia 

G674.00 Cerebral arteritis G671z00 Generalised ischaemic cerebrovascular disease NOS 

G674000 Cerebral amyloid angiopathy G672.00 Hypertensive encephalopathy 

G676.00 Nonpyogenic venous sinus thrombosis G673.00 Cerebral aneurysm, nonruptured 

G676000 Cereb infarct due cerebral venous thrombosis, 

nonpyogenic 

G673000 Dissection of cerebral arteries, nonruptured 

G677.00 Occlusion/stenosis cerebral arts not result cerebral 

infarct 

G673100 Carotico-cavernous sinus fistula 

G677000 Occlusion and stenosis of middle cerebral artery G673200 Carotid artery dissection 

G677100 Occlusion and stenosis of anterior cerebral artery G70y000 Carotid artery atherosclerosis 

G677200 Occlusion and stenosis of posterior cerebral artery G70y011 Carotid artery disease 

G677300 Occlusion and stenosis of cerebellar arteries G72y000 Aneurysm of common carotid art 

G677400 Occlusion+stenosis of multiple and bilat cerebral arteries G72y100 Aneurysm of external carotid artery 

G679.00 Small vessel cerebrovascular disease G72y200 Aneurysm of internal carotid artery 

G67y.00 Other cerebrovascular disease OS G755000 Cranial arteritis 

G67z.00 Other cerebrovascular disease NOS Gyu6.00 [X]Cerebrovascular diseases 

G68..00 Late effects of cerebrovascular disease Gyu6300 [X]Cerebrl infarctn due/unspcf occlusn or sten/cerebrl 
artrs 

G680.00 Sequelae of subarachnoid haemorrhage Gyu6400 [X]Other cerebral infarction 

G681.00 Sequelae of intracerebral haemorrhage Gyu6500 [X]Occlusion and stenosis of other precerebral arteries 

G682.00 Sequelae of other nontraumatic intracranial 

haemorrhage 

Gyu6600 [X]Occlusion and stenosis of other cerebral arteries 

G683.00 Sequelae of cerebral infarction Gyu6A00 [X]Other cerebrovascular disorders in diseases CE 

G68W.00 Sequelae/other + unspecified cerebrovascular diseases Gyu6F00 [X]Intracerebral haemorrhage in hemisphere, 
unspecified 

G68X.00 Sequelae of stroke,not specfd as h'morrhage or 
infarction 

Gyu6G00 [X]Cereb infarct due unsp occlus/stenos precerebr 
arteries 

G6W..00 Cereb infarct due unsp occlus/stenos precerebr arteries ZLEP.00 Discharge from stroke serv 

G6X..00 Cerebrl infarctn due/unspcf occlusn or sten/cerebrl artrs ZV12511 [V]Personal history of stroke 

G6y..00 Other specified cerebrovascular disease ZV12512 [V]Personal history of cerebrovascular accident (CVA) 

G6z..00 Cerebrovascular disease NOS   

 

List of peripheral vascular Read codes 

Read 
code 

Read term Read 
code 

Read term 

662U.00 Peripheral vascular disease monitoring 7A41C00 Bypass leg artery by aorta/deep femoral art anastomosis 
NEC 

7A10300 Axillo-unifemoral PTFE bypass graft 7A41D00 Bypass iliac artery by iliac/iliac artery anastomosis NEC 

7A26A00 Endarterectomy and patch repair of vertebral artery 7A41F00 Ilio-femoral prosthetic cross over graft 

7A28000 Percutaneous transluminal angioplasty of subclavian 

artery 

7A41y00 Other specified other bypass of iliac artery 

7A28200 Percutaneous transluminal angioplasty of vertebral 

artery 

7A41z00 Other bypass of iliac artery NOS 

7A30500 Patch angioplasty of renal artery 7A42000 Endarterectomy and patch repair of iliac artery 



 
 

436 
 

7A32000 Percutaneous transluminal angioplasty of renal artery 7A42011 Endarterectomy and patch repair of common iliac artery 

7A32400 Percutan transluminal balloon angioplasty stenting renal 

art 

7A42012 Iliac endarterectomy and patch 

7A32500 Percutaneous transluminal insertion stent into renal 

artery 

7A42100 Endarterectomy of iliac artery NEC 

7A33100 Bypass of superior mesenteric artery NEC 7A42111 Endarterectomy of common iliac artery NEC 

7A35300 Percutaneous transluminal angioplasty suprarenal artery 
NEC 

7A44400 Percutaneous transluminal insertion of iliac artery stent 

7A41000 Emerg bypass iliac art by iliac/femoral art anastomosis 
NEC 

7A47.00 Other emergency bypass of femoral artery or popliteal 
artery 

7A41100 Bypass iliac artery by iliac/femoral artery anastomosis 
NEC 

7A47.11 Other emerg bypass femoral or popliteal art by 
anastomosis 

7A41200 Emerg bypass iliac artery by femoral/femoral art anast 

NEC 

7A47.12 Other emergency bypass of common femoral artery 

7A41211 Emergency femoro-femoral prosthetic cross over graft 7A47.13 Other emergency bypass of deep femoral artery 

7A41300 Bypass iliac artery by femoral/femoral art anastomosis 
NEC 

7A47.14 Other emergency bypass of popliteal artery 

7A41311 Femoro-femoral prosthetic cross over graft 7A47.15 Other emergency bypass of superficial femoral artery 

7A41400 Emerg bypass comm iliac art by aorta/com iliac art anast 

NEC 

7A47.16 Other emergency bypass of femoral artery 

7A41600 Emerg bypass leg artery by aorta/com fem art 

anastomosis NEC 

7A47000 Emerg bypass femoral art by fem/pop art anast c prosth 

NEC 

7A41900 Bypass common iliac artery by aorta/com iliac art anast 

NEC 

7A47100 Emerg bypass popliteal art by pop/pop art anast c 

prosth NEC 

7A41B00 Bypass leg artery by aorta/com femoral art anastomosis 

NEC 

7A47200 Emerg bypass femoral art by fem/pop a anast c vein 

graft NEC 

7A48C00 Bypass femoral artery by femoral/femoral art 

anastomosis NEC 

7A47300 Emerg bypass pop art by pop/pop art anast c vein graft 

NEC 

7A48D00 Bypass popliteal artery by pop/fem artery anastomosis 

NEC 

7A47400 Emerg bypass femoral art by fem/tib art anast c prosth 

NEC 

7A48E00 Femoro-femoral prosthetic cross over graft 7A47600 Emerg bypass femoral art by fem/tib a anast c vein graft 

NEC 

7A48y00 Other bypass of femoral artery or popliteal artery OS 7A47700 Emerg bypass pop art by pop/tib art anast c vein graft 

NEC 

7A48z00 Other bypass of femoral artery or popliteal artery NOS 7A47800 Emerg bypass femoral art by fem/peron art anast c 

prosth NEC 

7A49100 Endarterectomy and patch repair of popliteal artery 7A47B00 Emerg bypass pop art by pop/peron art anast c vein 

graft NEC 

7A49300 Endarterectomy of popliteal artery NEC 7A47C00 Emerg bypass femoral artery by fem/fem art 

anastomosis NEC 

7A49400 Profundoplasty femoral artery & patch repair deep fem 

artery 

7A47D00 Emerg bypass popliteal artery by pop/fem art 

anastomosis NEC 

7A49500 Profundoplasty and patch repair of popliteal artery 7A47y00 Other emergency bypass of femoral or popliteal artery 

OS 

7A49600 Profundoplasty of femoral artery NEC 7A47z00 Other emergency bypass of femoral or popliteal artery 

NOS 

7A49700 Profundoplasty of popliteal artery NEC 7A48.00 Other bypass of femoral artery or popliteal artery 

7A4B000 Percutaneous transluminal angioplasty of femoral artery 7A48.11 Other bypass of femoral or popliteal artery by 
anastomosis 

7A4B100 Percutaneous transluminal angioplasty of popliteal artery 7A48.12 Other bypass of common femoral artery 

7A4B900 Percutaneous transluminal insertion of stent femoral 
artery 

7A48.15 Other bypass of popliteal artery 

7A56600 Percutaneous transluminal placement peripheral stent 
artery 

7A48.16 Other bypass of superficial femoral artery 

9N4h.00 DNA - Did not attend peripheral vascular disease clinic 7A48000 Bypass femoral artery by fem/pop art anast c prosthesis 
NEC 

G701.00 Renal artery atherosclerosis 7A48100 Bypass popliteal artery by pop/pop a anast c prosthesis 
NEC 

G702.00 Extremity artery atheroma 7A48200 Bypass femoral artery by fem/pop art anast c vein graft 
NEC 

G702z00 Extremity artery atheroma NOS 7A48300 Bypass popliteal artery by pop/pop a anast c vein graft 
NEC 

G703.00 Acquired renal artery stenosis 7A48400 Bypass femoral artery by fem/tib art anast c prosthesis 
NEC 

G73..00 Other peripheral vascular disease 7A48600 Bypass femoral artery by fem/tib art anast c vein graft 
NEC 

G73..11 Peripheral ischaemic vascular disease 7A48700 Bypass popliteal artery by pop/tib a anast c vein graft 
NEC 

G73..12 Ischaemia of legs 7A48800 Bypass femoral artery by fem/peron a anast c prosthesis 
NEC 

G73..13 Peripheral ischaemia 7A48A00 Bypass femoral artery by fem/peron a anast c vein graft 
NEC 

G731000 Buerger's disease 7A48B00 Bypass popliteal art by pop/peron art anast c vein graft 
NEC 

G731100 Presenile gangrene G73yz00 Other specified peripheral vascular disease NOS 

G732.00 Peripheral gangrene G73z.00 Peripheral vascular disease NOS 

G732000 Gangrene of toe G73z000 Intermittent claudication 
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G732100 Gangrene of foot G73zz00 Peripheral vascular disease NOS 

G733.00 Ischaemic foot G763.00 Hyperplasia of renal artery 

G73y.00 Other specified peripheral vascular disease G768000 Fibromuscular hyperplasia of arteries NOS 

G73y000 Diabetic peripheral angiopathy G768100 Arterial fibromuscular dysplasia 

G73y100 Peripheral angiopathic disease EC NOS Gyu7400 [X]Other specified peripheral vascular diseases 

SP12.00 Peripheral vascular complications of care   

 

Glossary of Acronyms 

CONSORT    Consolidated Standards of Reporting Trials 

CPRD           Clinical Practice Research Datalink 

EQUATOR     Enhancing the Quality and Transparency of health research network 

GP               General Practitioner  

ISAC            Independent Scientific Advisory Committee for MHRA database research 

MREC           Multi-centre NHS Research Ethic Committee 

MHRA           Medicines and Healthcare products Regulatory Agency  

NHS             National Health Service 

NRR             National Research Register 

OXMIS          Oxford Medical Information Systems (codes) 

REC              NHS Research Ethics Committee 

STROBE        Strengthening the Reporting of Observational studies in Epidemiology 

UK               United Kingdom 

VRMM          Vigilance and Risk Management division of MHRA 
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 Cleaning of SU levels 

The UK frequently measures serum urate (SU) in μmol/L however, SU level was found to be 

recorded inconsistently with various other units of measurement used, for example mg/dL, 

which is commonly used in the US, and mmol/L which is used in mainland Europe. To convert 

measurements to μmol/L, measurements recorded as mg/dL was multiplied by 59.48; mmol/L 

measurements were divided by 1000; measurements per dL were multiplied by 10 to obtain 

L; international units were assumed to be mmol/L (Taylor, 2013).  

For each observed unit, the distribution of SU level was checked and then split into groups 

based on the gaps in the distribution; the gaps in the distribution indicate the incorrect units 

were recorded. For each group, if it was believed the wrong unit was recorded a more 

appropriate unit was allocated based on the SU distribution and if necessary, converted to 

µmol/L.  

Table E1 shows how measurements were standardised. For example, 2,107 measurements 

did not have units recorded; 2 measurements equalled 0.04 thus assumed the units were 

mmol/dL; 1,195 measurements ranged between 0.1 and 0.95 thus assumed units were 

mmol/L, and so on.  
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Table E1: Standardising SU level to µmol/L 

Unit of measurement recorded (in grey) 
Range of serum urate level 

Number of measurements 
Assumption of the unit of measurement and the action taken to convert to µmol/L 
Any other notes 

Unknown 2,107  

     0.04 2 Assume units were mmol/dL and multiplied by 10000. 

     0.1 – 0.95 1,195 Assume units were mmol/L and multiplied by 1000. 

     1.06 – 9.3 7 
Assume units were mg/dL and multiplied by 59.48. 
Two measurements were removed as the patient had a more plausible measurement on the same 
date. 

     41 – 56 5 Assume units were µmol/dL and multiplied by 10.  

     106 – 928 897 Assume units were µmol/L. 

     5141 1 Cannot assume what the unit was thus measurement was removed. 

IU/L (international units per litre) 3,962  

     0.04 – 0.05 3 Assume units were mmol/dL and multiple by 10000. 

     0.15 – 0.96 2,371 Assume units were mmol/L and multiplied by 1000. 

     3.9 – 11.4 20 
Assume units were mg/dL and multiplied by 59.48. 
One measurement was removed as there was a more plausible measurement 4 days later. 
One measurement was removed as there was a more plausible measurement one day earlier. 

     28 – 60 8 Assume units were µmol/dL and multiplied by 10. 

     107 – 946 1,560 Assume units were µmol/L. 

mg/L (milligrams per litre) 1  

     66.6 1 Assume units were mg/L and divide by 10 and multiplied by 59.48. 

mL/min (millilitre per minute) 2  

     36 – 49 2 Assume units were µmol/dL and multiplied by 10. 

mmol/d (millimole per day) 1   

     0.43 1 Assume units were mmol/L and multiplied by 1000 

mmol/L (millimole per litre) 13,851  

     0.08 1 Assume units were mmol/dL and multiplied by 10000. 

     0.1 – 0.97 13,473 Assume units were mmol/L and multiplied by 1000. 

     1.01 - 7.1 7 
Assume units were mg/dL and multiplied by 59.48. 
One measurement was removed as there was a more plausible measurement on the same date. 
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     43 – 53 2 Assume units were µmol/dL and multipled by 10. 

     153 – 774 368 Assume units were µmol/L. 

mol/L (mol per litre) 57  

     0.33 – 0.76 12 
Assume units were mmol/L and multiplied by 1000. 
One measurement was removed as it was entered twice on the same date. 

     206 – 627 45 Assume units were µmol/L. 

mosmol/L (osmoles per litre) 1  

     685 1 Assume units were µmol/L. 

nmol/L (nano moles per litre) 3  

     0.46 – 0.47 2 
Assume units were mmol/L and multiplied by 1000. 
One measurement was removed as it was entered twice on the same date. 

     369 1 Assume units were µmol/L. 

pmol (picomole) 1  

      358 1 Assume units were µmol/L. 

pmol/L (picomole per litre) 9  

     227 – 577 9 Assume units were µmol/L. 

U (unit) 1  

     639 1 Assume units were µmol/L. 

U/L (units per litre) 1  

365 1 Assume units were µmol/L. 

μg/L (microgram per litre) 1  

     1 1 Cannot assume what the unit was thus remove reading. 

μmol (micro mole) 20  

     168 -773 20 Assume units were µmol/L. 

μmol/L (micromole per litre) 15,890  

     0.19 – 0.78 202 Assume units were mmol/L and multiplied by 1000. 

     43 – 93 5 The reading 43 was assumed, be µmol/dL and then multiplied by 10. 
The readings 89, 93, 80, and 87 were assumed, be µmol/L. 

     102 – 995 15,680 Assume units were µmol/L. 

     1046 – 3070 3 One measurement should be 307.  
Otherwise assume units were µmol/L. 

μmol/min (micromole per minute) 2  
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     363 – 532 2 Assume units were µmol/L. 

microU/L (micro unit per litre) 19  

     275 – 592 19 Assume units were µmol/L. 

mmol (millimole) 8  

     0.37 – 0.5 6 Assume units were mmol/L and multiplied by 1000. 

     308 – 401 2 Assume units were µmol/L. 

mmol/mmol (micromole per micromole) 1  

     0.51 1 Assume units were mmol/L and multiplied by 1000. 

M 1  

     526 1 Assume units were µmol/L. 

SU: Serum urate 
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 Cleaning of allopurinol prescription data 

Table F1 and Table F2 describes the distribution of numeric daily dose and quantity of drugs before and after imputing missing data.  

Table F1: Distribution of numeric daily dose by quantity of drugs prior to imputing missing data 

 Numeric daily dose 

Quantity 0.5 1 1.5 2 2.5 3 4 5 6 Missing Total 

7 7 12,943 0 0 0 5 0 0 0 1,522 14,477 

14 79 180 0 1,246 0 0 0 0 0 1,128 2,633 

28 504 146,493 2 411 0 152 5 0 0 9,438 157,005 

30 3 6,854 2 10 0 2 0 0 0 231 7,102 

56 36 74,214 187 27,154 0 217 30 0 0 9,641 111,479 

60 0 8,316 25 1,486 0 5 0 0 0 562 10,394 

84 26 15,033 49 1,341 29 2,827 0 0 3 1,627 20,935 

90 0 779 0 45 0 53 9 0 0 77 963 

100 3 4,485 39 1,270 7 152 4 0 3 971 6,934 

112 0 518 6 12,671 0 84 312 0 0 2,201 15,792 

120 0 117 2 878 0 6 3 0 0 159 1,165 

140 0 2 0 4 0 0 0 5 0 2 13 

150 0 2 0 0 0 0 0 0 0 5 7 

168 0 237 2 1,252 2 495 4 0 25 290 2,307 

180 0 28 0 89 0 15 0 0 0 4 136 

Missing 12 1,760 30 759 6 88 85 0 1 507 3,248 

Total 670 271,961 344 48,616 44 4,101 452 5 32 28,365 354,590 
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Table F2: Distribution of numeric daily dose by quantity of drugs after imputing missing data 

 Numeric daily dose 

Quantity 0.5 1 1.5 2 2.5 3 4 5 6 Missing Total 

7 7 13,971 0 0 0 5 0 0 0 498 14,481 

14 80 196 0 2,379 0 0 0 0 0 1 2,656 

28 517 153,425 2 498 0 152 5 0 0 3,861 158,460 

30 3 7,046 2 12 0 2 0 0 0 101 7,166 

56 36 80,137 217 27,522 0 217 30 0 0 3,948 112,107 

60 0 8,862 25 1,505 0 5 0 0 0 73 10,470 

84 26 16,396 48 1,397 35 2,921 0 0 3 388 21,213 

90 0 859 0 46 0 53 9 0 0 2 969 

100 3 5,422 39 1,452 7 152 4 0 3 225 7,307 

112 0 532 6 14,401 0 84 397 0 0 536 15,956 

120 0 119 2 988 0 6 3 0 0 55 1,173 

140 0 2 0 6 0 0 0 5 0 0 13 

150 0 2 0 5 0 0 0 0 0 0 7 

168 0 238 2 1,483 2 495 4 0 26 116 2,368 

180 0 29 0 93 0 15 0 0 0 0 137 

Missing 0 0 0 0 0 0 0 0 0 107 107 

Total 672 287,235 343 51,789 44 4,107 452 5 33 9,911 354,590 
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 Cleaning of BMI measurements 

The process of removing implausible height, weight and body mass index (BMI) values was 

described below (Bhaskaran et al., 2013). 

Weight measurements below 20kg and height measurements below 121cm were removed as 

they were deemed implausible values. Bhaskaran et al. (2013) removed height measurements 

above 214 cm however this cut off was increased in this thesis to 219cm as one patient had a 

height of 218cm which was recorded multiple times thus appeared to be plausible. 

BMI was then calculated for patients who had height and weight recorded on the same day. 

If patients had different values of BMI on one day, it was checked if the BMI values were 

plausible by comparing it to previous recordings; if a decision could not be made on which 

BMI was plausible, a value was chosen at random.  

For the remaining weight measurements that had no height recorded on the same day, if 

weight was recorded multiple times on the same day, then it was checked if the weight 

measurements were plausible and if it could not be decided which measurement was the most 

plausible then one was picked at random. The process was repeated for the height 

measurements.  

BMI was then calculated using the most recent height record prior to recording of weight. For 

the remaining weight records, BMI was calculated using height that was recorded afterwards. 

Next, BMI that was automatically generated in Vision software was used.  

Finally, BMI under the value of 5 and above 200 was removed. 
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 Distribution of baseline covariates 

Table H1: Distribution of baseline covariates of eligible patients for each outcome analysis 

Baseline covariates Whole study 
sample* 

Target SU level Gout 
hospitalisation 

Joint 
replacement 

Number of patients 16,876 1,742 14,087 16,644 

Demographics     

Age (Mean (SD)) 18-101 62.1 (14.7) 59.4 (14.3) 63.6 (14.3) 61.9 (14.8) 
Sex: Female 3,881 (23) 361 (21) 3,475 (25) 3,796 (23) 
Deprivation (Mean (SD)) 9.1 (5.5) 9.0 (5.6) 9.3 (5.5) 9.1 (5.5) 

Comorbidities     

Anxiety 672 (4) 58 (3) 586 (4) 663 (4) 
Depression 842 (5) 84 (5) 749 (5) 826 (5) 
Cerebrovascular disease 407 (2) 40 (2) 1,936 (14) 2,136 (13) 
Coronary heart disease 2,167 (13) 236 (14) 369 (3) 399 (2) 
Diabetes  1,047 (6) 107 (6) 947 (7) 1,024 (6) 
Hyperlipidaemia 783 (5) 83 (5) 687 (5) 768 (5) 
Hypertension 3,137 (19) 371 (21) 2,758 (20) 3,064 (18) 
Osteoarthritis  1,106 (7) 129 (7) 1,011 (7) 1,011 (6) 
Peripheral vascular disease 257 (2) 22 (1) 240 (2) 252 (2) 
Renal disease 217 (1) 28 (1) 190 (1) 210 (1) 

Lifestyle factors     

Alcohol consumption     
   Ever drinker 9,488 (56) 1,048 (60) 7,993 (57) 9,343 (56) 
   Never drinker 856 (5) 61 (4) 777 (6) 841 (5) 
   Missing 6,532 (39) 633 (36) 5,317 (38) 6,460 (39) 
Body mass index     
   Normal weight 2,517 (15) 183 (11) 2,171 (15) 2,487 (15) 
   Overweight 4,933 (29) 535 (31) 4,185 (30) 4,861 (29) 
   Obese 3,219 (19) 416 (24) 2,744 (19) 3,160 (19) 
   Missing 6,207 (37) 608 (35) 4,987 (35) 6,136 (37) 
Smoking status     
   Ever smoker 6,436 (38) 773 (44) 5,532 (39) 6,349 (38) 
   Never smoker 4,847 (29) 423 (24) 4,038 (29) 4,767 (29) 
   Missing 5,593 (33) 546 (31) 4,517 (32) 5,528 (33) 
SU level     
   ≤360µmol/L 951 (6) N/A 814 (6) 937 (6) 
   >360µmol/L 6,062 (36) 497.6 (74.3)a 5,023 (36) 5,977 (36) 
   Missing 9,863 (58) 0 (0.00) 8,250 (59) 9,730 (58) 

Medication use     

Analgesics 5,578 (33) 603 (65) 5,017 (36) 5,402 (32) 
Colchicine 389 (2) 70 (4) 343 (2) 387 (2) 
Diuretics 6,142 (36) 638 (37) 5,479 (39) 5,998 (36) 
NSAIDS 8,024 (48) 1,078 (62) 6,824 (48) 7,843 (47) 

*The study sample was eligible for analysis of outcomes mortality and repeated gout consultations; aMean (SD) 
presented and ranged from 361 to 905; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard deviation; 
SU: Serum urate.  

  



 
 

446 
 

Baseline covariates Cerebrovascular 
disease 

Coronary heart 
disease 

Peripheral 
vascular disease 

Renal disease 

Number of patients 16,253 14,063 16,519 16,508 

Demographics     

Age (Mean (SD)) 61.6 (14.7) 60.5 (14.9) 61.9 (14.8) 61.9 (14.7) 
Sex: Female 3,687 (23) 3,137 (22) 3,784 (23) 3,752 (23) 
Deprivation (Mean (SD)) 9.1 (5.5) 9.0 (5.5) 9.1 (5.5) 9.1 (5.5) 

Comorbidities     

Anxiety 634 (4) 540 (4) 661 (4) 662 (4) 
Depression 788 (5) 678 (5) 823 (5) 825 (5) 
Cerebrovascular disease  271 (2) 2,064 (12) 2,064 (13) 
Coronary heart disease 2,015 (12)  385 (2) 396 (2) 
Diabetes  972 (6) 742 (5) 986 (6) 967 (6) 
Hyperlipidaemia 732 (5) 483 (3) 749 (5) 744 (5) 
Hypertension 2,939 (18) 2,281 (16) 3,039 (18) 3,027 (18) 
Osteoarthritis  1,057 (7) 867 (6) 1,059 (6) 1,068 (6) 
Peripheral vascular disease 231 (1) 160 (1)  233 (1) 
Renal disease 204 (1) 143 (1) 197 (1)  

Lifestyle factors     

Alcohol consumption     
   Ever drinker 9,140 (56) 7,662 (54) 9,278 (56) 9,284 (56) 
   Never drinker 813 (5) 642 (5) 828 (5) 829 (5) 
   Missing 6,300 (39) 5,759 (41) 6,413 (39) 6,395 (39) 
Body mass index     
   Normal weight 2,402 (15) 2,058 (15) 2,444 (15) 2,455 (15) 
   Overweight 4,751 (29) 3,928 (28) 4,813 (29) 4,825 (29) 
   Obese 3,113 (19) 2,541 (18) 3,169 (19) 3,129 (19) 
   Missing 5,987 (37) 5,536 (39) 6,093 (37) 6,099 (37) 
Smoking status     
   Ever smoker 6,170 (38) 5,079 (36) 6,219 (38) 6,281 (38) 
   Never smoker 4,669 (29) 4,029 (29) 4,786 (29) 4,729 (29) 
   Missing 5,414 (33) 4,955 (35) 5,514 (33) 5,498 (33) 
SU level     
   ≤360µmol/L 915 (6) 830 (6) 931 (6) 946 (6) 
   >360µmol/L 5,843 (36) 4,916 (35) 5,917 (36) 5,894 (36) 
   Missing 9,495 (58) 8,317 (59) 9,671 (59) 9,668 (59) 

Medication use     

Analgesics 5,259 (32) 4,260 (30) 5,366 (32) 5,371 (33) 
Colchicine 368 (2) 295 (2) 376 (2) 367 (2) 
Diuretics 5,725 (35) 4,382 (31) 5,938 (36) 5,855 (35) 
NSAIDS 7,749 (48) 6,661 (47) 7,840 (47) 7,854 (48) 

The whole study sample was eligible for analysis of outcomes mortality and repeated gout consultations; NSAIDS: 
Non-steroidal anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate. 
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 Distribution of baseline PS and imbalanced covariates within subclasses 

Figure I1: Mortality 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, BMI, and NSAIDS 
S2: Sex, deprivation, BMI, and NSAIDS 
S3: N/A 
S4: N/A 
S5: N/A 

Figure I2: Gout consultation 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, BMI, and SU level 
S2: Deprivation 
S3: N/A 
S4: N/A 
S5: N/A 
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Figure I3: Gout hospitalisation 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, BMI, and SU level 
S2: Sex, BMI, and NSAIDS 
S3: N/A 
S4: N/A 
S5: N/A 

Figure I4: Joint replacement 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, and SU level 
S2: Deprivation, and NSAIDS 
S3: N/A 
S4: N/A 
S5: N/A 
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Figure I5: Cerebrovascular disease 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, smoking status, and SU level 
S2: Deprivation, and NSAIDS 
S3: N/A 
S4: N/A 
S5: N/A 

 

Figure I6: Coronary heart disease 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, cerebrovascular disease, BMI, SU level, and colchicine  
S2: BMI, and NSAIDS 
S3: N/A 
S4: N/A 
S5: N/A 
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Figure I7: Peripheral vascular disease 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, BMI, and SU level 
S2: Sex, deprivation, and NSAIDS 
S3: N/A 
S4: N/A 
S5: N/A 

 

Figure I8: Renal disease 

 
Dotted lines indicate at which propensity scores subclasses (S) were created. 
Standardised mean difference >0.10 was observed in covariates;  
S1: Sex, alcohol consumption, BMI, SU level, and colchicine  
S2: Sex 
S3: SU level 
S4: N/A 
S5: N/A 
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 Assessment for proportional hazards 

Figure J1: Target serum urate level (unadjusted Cox model) 

 

Figure J2: Repeated gout consultations (unadjusted Cox model) 
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Figure J3: Renal disease (unadjusted Cox model) 

 

 

Figure J4: Mortality (PS subclass 1) 
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Figure J5: Gout consultations (PS subclasses 3-5) 
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 Distribution of covariates over time  

Table K1: Distribution of covariates in each year of follow-up 

Follow-up 
year 

Age 

(Mean (SD)) 
Sex: Female 

Deprivation 

(Mean (SD)) 
Anxiety Depression 

Cerebrovascular 
disease 

Coronary heart 
disease 

Diabetes 
Gout 

consultation 

0 (N=16,876) 62.1 (14.7) 3,881 (23) 9.1 (5.5) 672 (4) 842 (5) 407 (2) 2,167 (13) 1,047 (6) 0 (0) 

1 (N=15,873) 62.6 (14.5) 3,608 (23) 9.1 (5.5) 862 (5) 1,106 (7) 550 (3) 2,569 (16) 1,239 (8) 5,541 (35) 

2 (N=14,888) 63.2 (14.3) 3,314 (22) 9.1 (5.5) 1,005 (7) 1,259 (8) 622 (4) 2,805 (19) 1,369 (9) 2,571 (17) 

3 (N=14,033) 63.7 (14.1) 3,068 (22) 9.1 (5.5) 1,137 (8) 1,384 (10) 677 (5) 2,950 (21) 1,531 (11) 2,342 (17) 

4 (N=13,207) 64.2 (13.9) 2,837 (21) 9.0 (5.5) 1,216 (9) 1,473 (11) 730 (6) 3,025 (23) 1,659 (13) 2,159 (16) 

5 (N=12,391) 64.7 (13.7) 2,602 (21) 9.0 (5.5) 1,274 (10) 1,547 (12) 734 (6) 3,019 (24) 1,728 (14) 1,853 (15) 

6 (N=11,657) 65.3 (13.6) 2,404 (21) 9.0 (5.5) 1,303 (11) 1,598 (14) 744 (6) 3,003 (26) 1,788 (15) 1,688 (14) 

7 (N=10,777) 65.8 (13.4) 2,173 (20) 9.0 (5.5) 1,294 (12) 1,577 (15) 715 (7) 2,852 (26) 1,815 (17) 1,499 (14) 

8 (N=9,933) 66.3 (13.2) 1,965 (20) 8.9 (5.5) 1,281 (13) 1,578 (16) 692 (7) 2,720 (27) 1,849 (19) 1,307 (13) 

9 (N=9,128) 66.8 (13.0) 1,764 (19) 8.9 (5.5) 1,247 (14) 1,557 (17) 688 (8) 2,560 (28) 1,836 (20) 1,177 (13) 

10 (N=8,126) 67.3 (12.7) 1,521 (19) 8.9 (5.6) 1,177 (14) 1,462 (18) 645 (8) 2,316 (29) 1,743 (21) 960 (12) 

11 (N=6,918) 67.8 (12.4) 1,255 (18) 8.8 (5.6) 1,055 (15) 1,279 (18) 561 (8) 1,985 (29) 1,552 (22) 824 (12) 

12 (N=4,764) 68.0 (12.2) 812 (17) 9.0 (5.6) 767 (16) 889 (19) 386 (8) 1,412 (30) 1,116 (23) 550 (12) 

13 (N=3,159) 68.3 (11.9) 517 (16) 9.1 (5.6) 539 (17) 598 (19) 260 (8) 918 (29) 758 (24) 346 (11) 

14 (N=2,019) 68.9 (11.6) 302 (15) 9.1 (5.6) 342 (17) 405 (20) 179 (9) 591 (29) 489 (24) 218 (11) 

15 (N=1,107) 69.4 (11.5) 165 (15) 8.9 (5.6) 193 (17) 229 (21) 101 (9) 321 (29) 258 (23) 93 (8) 

16 (N=475) 69.8 (11.4) 66 (14) 9.0 (5.7) 96 (20) 105 (22) 38 (8) 135 (28) 117 (25) 42 (9) 
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      Alcohol consumption 

Follow-up 
year 

Hyperlipidaemia Hypertension Osteoarthritis 
Peripheral 
vascular 
disease 

Renal disease Ever-drinker Never drinker Missing 

0 (N=16,876) 783 (5) 3,137 (19) 1,106 (7) 257 (2) 217 (1) 9,488 (56) 856 (5) 6,532 (39) 

1 (N=15,873) 1,171 (7) 3,922 (25) 1,584 (10) 315 (2) 310 (2) 9,882 (62) 784 (5) 5,207 (33) 

2 (N=14,888) 1,493 (10) 4,420 (30) 1,876 (13) 348 (2) 359 (2) 9,959 (67) 728 (5) 4,201 (28) 

3 (N=14,033) 1,765 (13) 4,802 (34) 2,090 (15) 379 (3) 404 (3) 9,984 (71) 677 (5) 3,372 (24) 

4 (N=13,207) 2,020 (15) 5,077 (38) 2,253 (17) 377 (3) 550 (4) 9,892 (75) 608 (5) 2,707 (20) 

5 (N=12,391) 2,248 (18) 5,275 (43) 2,360 (19) 377 (3) 970 (8) 9,634 (78) 560 (5) 2,197 (18) 

6 (N=11,657) 2,403 (21) 5,372 (46) 2,459 (21) 390 (3) 1,334 (11) 9,347 (80) 506 (4) 1,804 (15) 

7 (N=10,777) 2,475 (23) 5,263 (49) 2,470 (23) 366 (3) 1,559 (14) 8,850 (82) 462 (4) 1,465 (14) 

8 (N=9,933) 2,528 (25) 5,107 (51) 2,417 (24) 364 (4) 1,756 (18) 8,329 (84) 409 (4) 1,195 (12) 

9 (N=9,128) 2,499 (27) 4,933 (54) 2,333 (26) 338 (4) 1,886 (21) 7,762 (85) 373 (4) 993 (11) 

10 (N=8,126) 2,364 (29) 4,561 (56) 2,180 (27) 319 (4) 1,858 (23) 7,027 (86) 319 (4) 780 (10) 

11 (N=6,918) 2,109 (30) 3,997 (58) 1,930 (28) 268 (4) 1,633 (24) 6,081 (88) 257 (4) 580 (8) 

12 (N=4,764) 1,507 (32) 2,813 (59) 1,373 (29) 170 (4) 1,130 (24) 4,258 (89) 180 (4) 326 (7) 

13 (N=3,159) 1,023 (32) 1,893 (60) 940 (30) 117 (4) 749 (24) 2,858 (90) 116 (4) 185 (6) 

14 (N=2,019) 662 (33) 1,227 (61) 629 (31) 72 (4) 480 (24) 1,847 (91) 72 (4) 100 (5) 

15 (N=1,107) 352 (32) 665 (60) 360 (33) 40 (4) 264 (24) 1,032 (93) 34 (3) 41 (4) 

16 (N=475) 150 (32) 285 (60) 163 (34) 16 (3) 122 (26) 449 (95) 14 (3) 12 (3) 
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 Body mass index Smoking status 

Follow-up 
years 

Normal weight Overweight Obese Missing Ever smoker Never smoker Missing 

0 (N=16,876) 2,517 (15) 4,933 (29) 3,219 (19) 6,207 (37) 6,436 (38) 4,847 (29) 5,593 (33) 

1 (N=15,873) 2,482 (16) 4,967 (31) 3,364 (21) 5,060 (32) 7,047 (44) 4,479 (28) 4,347 (27) 

2 (N=14,888) 2,427 (16) 4,914 (33) 3,416 (23) 4,131 (28) 7,424 (50) 4,236 (28) 3,228 (22) 

3 (N=14,033) 2,383 (17) 4,813 (34) 3,495 (25) 3,342 (24) 7,747 (55) 4,050 (29) 2,236 (16) 

4 (N=13,207) 2,290 (17) 4,670 (35) 3,541 (27) 2,706 (20) 7,894 (60) 3,766 (29) 1,547 (12) 

5 (N=12,391) 2,166 (17) 4,528 (37) 3,560 (29) 2,137 (17) 7,827 (63) 3,538 (29) 1,026 (8) 

6 (N=11,657) 2,089 (18) 4,338 (37) 3,565 (31) 1,665 (14) 7,667 (66) 3,371 (29) 619 (5) 

7 (N=10,777) 1,942 (18) 4,104 (38) 3,426 (32) 1,305 (12) 7,304 (68) 3,113 (29) 360 (3) 

8 (N=9,933) 1,797 (18) 3,818 (38) 3,291 (33) 1,027 (10) 6,851 (69) 2,856 (29) 226 (2) 

9 (N=9,128) 1,633 (18) 3,529 (39) 3,125 (34) 841 (9) 6,378 (70) 2,599 (28) 151 (2) 

10 (N=8,126) 1,478 (18) 3,130 (39) 2,874 (35) 644 (8) 5,719 (70) 2,313 (28) 94 (1) 

11 (N=6,918) 1,252 (18) 2,676 (39) 2,527 (37) 463 (7) 4,917 (71) 1,946 (28) 55 (1) 

12 (N=4,764) 891 (19) 1,858 (39) 1,751 (37) 264 (6) 3,425 (72) 1,310 (27) 29 (1) 

13 (N=3,159) 576 (18) 1,236 (39) 1,183 (37) 164 (5) 2,270 (72) 874 (28) 15 (0) 

14 (N=2,019) 375 (19) 795 (39) 764 (38) 85 (4) 1,461 (72) 550 (27) 8 (0) 

15 (N=1,107) 213 (19) 423 (38) 428 (39) 43 (4) 805 (73) 298 (27) 4 (0) 

16 (N=475) 91 (19) 179 (38) 192 (40) 13 (3) 350 (74) 124 (26) 1 (0) 
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 SU level     

Follow-up 
years (N) 

≤360μmol/L >360μmol/L Missing Analgesics Colchicine Diuretics NSAIDS 

0 (N=16,876) 951 (6) 6,062 (36) 9,863 (58) 5,578 (33) 3,881 (23) 6,142 (36) 8,024 (48) 

1 (N=15,873) 910 (6) 5,734 (36) 9,229 (58) 4,908 (31) 3,608 (23) 4,874 (31) 12,340 (78) 

2 (N=14,888) 879 (6) 5,372 (36) 8,637 (58) 4,207 (28) 3,314 (22) 4,286 (29) 6,178 (41) 

3 (N=14,033) 844 (6) 5,066 (36) 8,123 (58) 4,026 (29) 3,068 (22) 4,103 (29) 5,849 (42) 

4 (N=13,207) 808 (6) 4,786 (36) 7,613 (58) 3,931 (30) 2,837 (21) 3,897 (30) 5,471 (41) 

5 (N=12,391) 763 (6) 4,514 (36) 7,114 (57) 3,798 (31) 2,602 (21) 3,625 (29) 4,975 (40) 

6 (N=11,657) 710 (6) 4,250 (36) 6,697 (57) 3,684 (32) 2,404 (21) 3,387 (29) 4,557 (39) 

7 (N=10,777) 659 (6) 3,913 (36) 6,205 (58) 3,461 (32) 2,173 (20) 3,050 (28) 4,059 (38) 

8 (N=9,933) 605 (6) 3,577 (36) 5,751 (58) 3,252 (33) 1,965 (20) 2,757 (28) 3,544 (36) 

9 (N=9,128) 542 (6) 3,295 (36) 5,291 (58) 3,109 (34) 1,764 (19) 2,428 (27) 3,167 (35) 

10 (N=8,126) 484 (6) 2,885 (36) 4,757 (59) 2,729 (34) 1,521 (19) 2,098 (26) 2,710 (33) 

11 (N=6,918) 412 (6) 2,401 (35) 4,105 (59) 2,367 (34) 1,255 (18) 1,743 (25) 2,261 (33) 

12 (N=4,764) 252 (5) 1,469 (31) 3,043 (64) 1,641 (34) 812 (17) 1,161 (24) 1,540 (32) 

13 (N=3,159) 158 (5) 862 (27) 2,139 (68) 1,103 (35) 517 (16) 779 (25) 1,009 (32) 

14 (N=2,019) 87 (4) 497 (25) 1,435 (71) 692 (34) 302 (15) 484 (24) 630 (31) 

15 (N=1,107) 31 (3) 226 (20) 850 (77) 356 (32) 165 (15) 249 (22) 343 (31) 

16 (N=475) 10 (2) 87 (18) 378 (80) 151 (32) 66 (14) 98 (21) 136 (29) 

N (%) presented unless otherwise stated; NSAIDS: Non-steroidal anti-inflammatory drugs; SD: Standard deviation; SU: Serum urate 
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 Time-varying PS model specification and distribution 

Table L1: PS model specification for mortality analysis 

PS model specification 

Median PS (IQR) 
(Range) 

Number of intervals outside the region of common 
support 

No allopurinol Allopurinol 
No allopurinol 

N=109,684 
Allopurinol 
N=45,647 

Overall 
N=155,331 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, 
follow-up time 

0.003 (0.002, 0.06) 
(8*10-5, 0.99) 

0.93 (0.66, 0.99) 
(0.01, 0.99) 

76,177 (69%) 702 (2%) 76,879 (49%) 

2 

Main effects model 
+ FP1 terms for deprivation(0), cumulative allopurinol use(0.5)

, follow-
up time(3) 
+ linear term for age 

0.01 (0.01, 0.06) 
(3*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.01, 0.99) 

48,406 (44%) 1,132 (2%) 49,538 (32%) 

 
3 

Main effects model 
+ FP2 terms for age(3, 3), deprivation(-2, -1), cumulative allopurinol 
use(1, 2), follow-up time(3, 3) 

0.01 (0.004, 0.06) 
(2*10-4, 0.99) 

0.93 (0.70, 0.98) 
(0.01, 0.99) 

61,767 (56%) 6,797 (15%) 68,564 (44%) 

4 

Main effects model 
+ FP2 term for age(3, 3), deprivation(-2, -1) 
+ FP1 term for cumulative allopurinol use(0.5) 

+ linear terms for follow-up time 

0.01 (0.01, 0.06) 
(2*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.01, 0.99) 

28,739 (26%) 398 (1%) 29,137 (19%) 

5 

Main effects model 
+ FP2 term for age(3, 3), deprivation(-2, -1) 
+ FP1 term for cumulative allopurinol use(0.5) 

+ linear terms for follow-up time  
+ SU level*NSAIDS 

0.01 (0.01, 0.06) 
(2*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.01, 0.99) 

22,520 (21%) 395 (1%) 22,915 (15%) 

6 

Main effects model 
+ FP2 term for age(3, 3), deprivation(-2, -1) 
+ FP1 term for cumulative allopurinol use(0.5) 

+ linear terms for follow-up time  
+ SU level*NSAIDS 
+ SU level*hypertension 

0.01 (0.01, 0.06) 
(2*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.01, 0.99) 

16,696 (15%) 417 (1%) 17,113 (11%) 
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7 

Main effects model 
+ FP2 term for age(3, 3), deprivation(-2, -1) 
+ FP1 term for cumulative allopurinol use(0.5) 

+ linear terms for follow-up time  
+ SU level*NSAIDS 
+ SU level*hypertension 
+ diuretics*sex 

0.01 (0.01, 0.06) 
(1*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.004, 0.99) 

13,152 (12%) 457 (1%) 13,609 (9%) 

8 

Main effects model 
+ FP2 term for age(3, 3), deprivation(-2, -1) 
+ FP1 term for cumulative allopurinol use(0.5) 

+ linear terms for follow-up time  
+ SU level*NSAIDS 
+ SU level*hypertension 
+ diuretics*sex 
+ alcohol consumption*sex 

0.01 (0.01, 0.06) 
(2*10-4, 0.99) 

0.92 (0.68, 0.98) 
(0.003, 0.99) 

10,584 (10%) 683 (1%) 11,267 (7%) 

9 

Main effects model 
+ FP2 term for age(3, 3), deprivation(-2, -1) 
+ FP1 term for cumulative allopurinol use(0.5) 

+ linear terms for follow-up time  
+ SU level*NSAIDS 
+ SU level*hypertension 
+ diuretics*sex 
+ alcohol consumption*sex 
+ analgesic*sex 

0.01 (0.01, 0.06) 
(1*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.003, 0.99) 

10,217 (9%) 436 (1%) 10,653 (7%) 

Specification highlighted in green is the chosen PS model; Values in brackets indicate which fractional polynomial terms were used; FP1: Fractional polynomials of dimension 1; FP2: 
Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score; SU: Serum urate 
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Figure L1: Comparison of PS distribution for mortality analysis 
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Table L2: PS model specification for gout hospitalisation analysis 

PS model specification 
Median PS (IQR) 

(Range) 
Number of intervals outside the region of common 

support 

 
No allopurinol Allopurinol 

No allopurinol 
N=88,617 

Allopurinol 
N=33,451 

Overall 
N=122,068 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up 
time 

0.002 (0.001, 0.04) 
(9*10-5, 0.99) 

0.94 (0.67, 0.99) 
(0.01, 0.99) 

63,658 (72%) 2,026 (6%) 65,684 (54%) 

2 
Main effects model 
+ FP1 terms for age(3), deprivation(3), cumulative allopurinol use(0.5), 
follow-up time(0.5) 

0.01 (0.01, 0.05) 
(3*10-4, 0.99) 

0.92 (0.67, 0.98) 
(0.01, 0.99) 

26,608 (30%) 2,671 (8%) 29,279 (24%) 

 
3 

Main effects model 
+ FP2 terms for age(-2, 3), deprivation(3, 3), cumulative allopurinol use(-0.5, 0), 
follow-up time(3, 3) 

0.01 (0.01, 0.04) 
(3*10-4, 0.99) 

0.92 (0.71, 0.98) 
(0.01, 0.99) 

23,549 (27%) 3,301 (10%) 26,850 (22%) 

4 
Main effects model 
+ FP2 terms for age(-2, 3), deprivation (3, 3), cumulative allopurinol use(-0.5, 0) 

+ FP1 term for follow-up time(0.5) 

0.01 (0.01, 0.04) 
(20*10-4, 0.98) 

0.92 (0.69, 0.98) 
(0.003, 0.99) 

17,771 (20%) 5,304 (16%) 23,075 (19%) 

5 

Main effects model 
+ FP2 terms for age(-2, 3), deprivation (3, 3), cumulative allopurinol use(-0.5, 0) 

+ FP1 term for follow-up time(0.5) 
+ SU level*NSAIDS 

0.01 (0.01, 0.04) 
(2*10-4, 0.98) 

0.92 (0.69, 0.98) 
(0.003, 0.99) 

9,541 (11%) 5,203 (16%) 14,744 (12%) 

6 

Main effects model 
+ FP2 terms for age(-2, 3), deprivation(3, 3), cumulative allopurinol use(-0.5, 0) 

+ FP1 term for follow-up time(0.5) 
+ SU level*NSAIDS 
+ renal disease*gout consultation 

0.01 (0.01, 0.04) 
(20*10-4, 0.99) 

0.92 (0.69, 0.98) 
(0.003, 0.99) 

9,076 (10%) 2,875 (9%) 11,951 (10%) 

7 

Main effects model 
+ FP2 terms for age(-2, 3), deprivation(3, 3), cumulative allopurinol use(-0.5, 0) 

+ FP1 term for follow-up time(0.5) 
+ SU level*NSAIDS 
+ renal disease*gout consultation 
+ diuretics*sex 

0.01 (0.01, 0.04) 
(2*10-4, 0.99) 

0.92 (0.69, 0.98) 
(0.003, 0.99) 

7,048 (8%) 2,409 (7%) 9,457 (8%) 
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8 

Main effects model 
+ FP2 terms for age(-2, 3), deprivation(3, 3), cumulative allopurinol use(-

0.5, 0) 

+ FP1 term for follow-up time(0.5) 
+ SU level*NSAIDS 
+ renal disease*gout consultation 
+ diuretics*sex 
+ diuretics*hyperlipidaemia  

0.01 (0.01, 0.04) 
(2*10-4, 0.99) 

0.92 (0.69, 0.98) 
(0.002, 0.99) 

6,639 (7%) 2,002 (6%) 8,641 (7%) 

Specification highlighted in green is the chosen PS model; Values in brackets indicate which fractional polynomial terms were used; FP1: Fractional polynomials of dimension 1; FP2: 
Fractional polynomials of dimension 2; IQR: Interquartile range; Propensity score; SU: Serum urate 
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Figure L2: Comparison of PS distribution for gout hospitalisation analysis 
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Table L3: PS model specification for joint replacement analysis 

PS model specification 

Median PS (IQR) 
(Range) 

Number of intervals outside the region of common 
support 

No allopurinol Allopurinol 
No allopurinol 

N=104,827 
Allopurinol 
N=43054 

Overall 
N=147881 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-
up time 

0.003 (0.002, 0.05) 
(1*10-4, 0.99) 

0.93 (0.67, 0.99) 
(0.01, 0.99) 

72,043 (69%) 2,542 (6%) 74,585 (50%) 

2 
Main effects model 
+ FP1 terms for age(-2), deprivation(3), cumulative allopurinol use(0.5), 
follow-up time(-2) 

0.01 (0.01, 0.06) 
(7*10-4, 0.99) 

0.91 (0.69, 0.98) 
(0.01, 0.99) 

22,985 (22%) 954 (2%) 23,939 (16%) 

 
3 

Main effects model 
+ FP2 terms for age(2, 3), deprivation(-2, 3), cumulative allopurinol use(1, 2), 
follow-up time(1, 1) 

0.01 (0.004, 0.05) 
(3*10-4, 0.99) 

0.92 (0.70, 0.98) 
(0.01, 0.99) 

56,524 (54%) 4,812 (11%) 61,336 (41%) 

4 

Main effects model 
+ FP2 terms for age(2, 3) 

+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear term for deprivation 

0.01 (0.01, 0.06) 
(50*10-4, 0.99) 

0.91 (0.69, 0.98) 
(0.01, 0.99) 

21,510 (21%) 830 (2%) 22,340 (15%) 

5 

Main effects model 
+ FP2 terms for age(2, 3) 

+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear term for deprivation 
+ colchicine*coronary heart disease 

0.01 (0.01, 0.06) 
(5*10-4, 0.99) 

0.91 (0.69, 0.98) 
(0.01, 0.99) 

19,283 (18%) 851 (2%) 20,134 (14%) 

6 

Main effects model 
+ FP2 terms for age(2, 3) 

+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear term for deprivation 
+ colchicine*coronary heart disease 
+ body mass index*osteoarthritis  

0.01 (0.01, 0.06) 
(5*10-4, 0.99) 

0.91 (0.6, 0.98) 
(0.01, 0.99) 

17,177 (16%) 846 (2%) 18,023 (12%) 
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7 

Main effects model 
+ FP2 terms for age(2, 3) 

+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear term for deprivation 
+ colchicine*coronary heart disease 
+ body mass index*osteoarthritis  
+ alcohol consumption*gout consultation 

0.01 (0.007, 0.061) 
(5*10-4, 0.99) 

0.91 (0.69, 0.97) 
(0.005, 0.99) 

15,979 (15%) 771 (2%) 16,750 (11%) 

8 

Main effects model 
+ FP2 terms for age(2, 3) 

+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear term for deprivation 
+ colchicine*coronary heart disease 
+ body mass index*osteoarthritis  
+ alcohol consumption*gout consultation 
+ diuretic*analgesic 

0.01 (0.01, 0.06) 
(4*10-4, 0.99) 

0.91 (0.69, 0.98) 
(0.01, 0.99) 

14,548 (14%) 617 (1%) 15,165 (10%) 

Specification highlighted in green is the chosen PS model; Values in brackets indicate which fractional polynomial terms were used; FP1: Fractional polynomials of dimension 1; FP2: 
Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score 
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Figure L3: Comparison of PS distribution for joint replacement analysis 
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Table L4: PS model specification for cerebrovascular disease analysis 

PS model specification 

Median PS (IQR) 
(Range) 

Number of intervals outside the region of common support 

No allopurinol Allopurinol 
No allopurinol 

N=102,769 
Allopurinol 
N=42,339 

Overall 
N=145,108 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-
up time 

0.003 (0.002, 0.05) 
(1*10-5, 0.99) 

0.93 (0.66, 0.99) 
(0.01, 0.99) 

70,628 (69) 756 (2%) 71,384 (49%) 

2 
Main effects model 
+ FP1 terms for age(-1), deprivation(-1), cumulative allopurinol use(0), 
follow-up time(0) 

0.003 (0.002, 0.05) 
(8*10-5, 0.99) 

0.93 (0.66, 0.99) 
(0.01, 0.99) 

72,162 (70%) 6,364 (15%) 78,526 (54%) 

3 
Main effects model 
+ FP2 terms for age(2, 3), deprivation(-1, 3), cumulative allopurinol use(0, 3), 
follow-up time(-2, -2) 

0.003 (0.002, 0.05) 
(6*10-5, 0.99) 

0.93 (0.68, 0.99) 
(0.01, 0.99) 

72,073 (70%) 10,061 (24%) 82,134 (57%) 

4 

Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-
up time 
+ sex*follow-up time 

0.003 (0.002, 0.05) 
(9*10-5, 0.99) 

0.93 (0.65, 0.99) 
(0.01, 0.99) 

71,439 (70%) 739 (2%) 72,178 (50%) 

Specification highlighted in green is the chosen PS model; Values in brackets indicate which fractional polynomial terms were used; FP1: Fractional polynomials of dimension 1; FP2: 
Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score 

 

 

 

 

 

 

 

 

 

 



 
 

468 
 

Figure L4: PS distribution for cerebrovascular disease analysis 
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Table L5: PS model specification for coronary heart disease analysis 

PS model specification 

Median PS (IQR) 
(Range) 

Number of intervals outside the region of common support 

No allopurinol Allopurinol 
No allopurinol 

N=84,348 
Allopurinol 
N=32,308 

Overall 
N=116,656 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-
up time 

0.003 (0.002, 0.049) 
(8.00*10-5, 0.999) 

0.914 (0.638, 0.984) 
(0.010, 0.999) 

58,716 (67%) 364 (1%) 59,080 (51%) 

2 
Main effects model 
+ FP1 terms for age(-2), deprivation(-1), follow-up time(0.5) 
+ linear term cumulative allopurinol use 

0.003 (0.002, 0.049) 
(9.00*10-5, 0.999) 

0.914 (0.638, 0.984) 
(0.009, 0.999) 

58,611 (69%) 375 (1%) 58,986 (51%) 

3 
Main effects model 
+ FP2 terms for age(2, 2), deprivation(-2 -2), cumulative allopurinol use(0, 1), 
follow-up time(-2, -0.5) 

0.003 (0.002, 0.047) 
(9.00*10-5, 0.997) 

0.917 (0.647, 0.983) 
(0.010, 0.999) 

58,687 (70%) 2,194 (7%) 60,881 (52%) 

4 
Main effects model 
+ FP2 terms for age(2, 2), deprivation(-2, -2), follow-up time(-2, -0.5) 

+ linear term for cumulative allopurinol use 

0.003 (0.002, 0.05) 
(7*10-5, 0.99) 

0.92 (0.64, 0.98) 
(0.009, 0.99) 

58,257 (69%) 534 (2%) 58,791 (50%) 

5 

Main effects model 
+ FP2 terms for age(2, 2), deprivation(-2, -2), follow-up time(-2, -0.5) 

+ linear term for cumulative allopurinol use 
+ smoking status*diuretics 

0.003 (0.002, 0.05) 
(8*10-5, 0.99) 

0.92 (0.64, 0.98) 
(0.008, 0.99) 

57,508 (68%) 498 (2%) 58,006 (50%) 

Specification highlighted in green is the chosen propensity model; Values in brackets indicate which fractional polynomial terms were used; FP1: Fractional polynomials of dimension 1; 
FP2: Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score 
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Figure L5: Comparison of PS distribution for coronary heart disease analysis 
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Table L6: PS model specification for peripheral vascular disease analysis 

PS model specification 

Median PS (IQR) 
(Range) 

Number of intervals outside the region of common support 

No allopurinol Allopurinol 
No allopurinol 

N=106,173 
Allopurinol 
N=43,978 

Overall 
N=150,151 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-
up time 

 0.003 (0.002, 0.05) 
(9*10,5, 0.99)   

 0.93 (0.65, 0.99) 
(0.01, 0.99)    74,245 (70%)    1,079 (2%)    75,324 (50%)   

2 
Main effects model 
+ FP1 terms for age(-2), deprivation(0.5), cumulative allopurinol use(0.5), 
follow-up time(0) 

 0.02 (0.01, 0.07) 
(5*10,4, 0.99)   

 0.92 (0.66, 0.98) 
(0.01, 0.99)  2,616 (25%)    384 (1%)    27,100 (18%)   

3* 
Main effects model 
+ FP2 terms for age(1, 2), deprivation(0, 2), cumulative allopurinol use(-0.5, 

3), follow-up time(-0.5, 3) 
- - - - - 

4 

Main effects model 
+ FP2 terms for follow-up time(-0.5, 3) 

+ FP1 terms for age(-2), cumulative allopurinol use(0.5) 

+ linear terms for deprivation 

0.02 (0.01, 0.07) 
(5*10-4, 0.99) 

0.91 (0.66, 0.98) 
(0.01, 0.99) 

24,750 (23%) 569 (1%) 25,319 (17%) 

5 

Main effects model 
+ FP2 terms for follow-up time(-0.5, 3) 

+ FP1 terms for age(-2), cumulative allopurinol use(0.5) 

+ linear terms for deprivation 
+ smoking status*diuretics 

0.02 (0.01, 0.07) 
(6*10-4, 0.99) 

0.91 (0.67, 0.97) 
(0.01, 0.99) 

21,456 (20%) 371 (1%) 21,827 (15%) 

6 

Main effects model 
+ FP2 terms for follow-up time(-0.5, 3) 

+ FP1 terms for age(-2), cumulative allopurinol use(0.5) 

+ linear terms for deprivation 
+ smoking status*diuretics 
+ SU level*hypertension 

0.02 (0.01, 0.07) 
(5*10-4, 0.99) 

0.91 (0.66, 0.98) 
(0.01, 0.99) 

21,086 (20%) 342 (1%) 21,428 (14%) 

*Propensity score model did not converge; Specification highlighted in green is the chosen propensity model; Values in brackets indicate which fractional polynomial terms were used; FP1: 
Fractional polynomials of dimension 1; FP2: Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score; SU: Serum urate 
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Figure L6: Comparison of PS distribution for peripheral vascular disease analysis 
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Table L7: PS model specification for renal disease analysis 

PS model specification 

Median PS (IQR) 
(Range) 

Number of intervals outside the region of common support 

No allopurinol Allopurinol 
No allopurinol 

N=98,618 
Allopurinol 
N=37,370 

Overall 
N=135,988 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-
up time 

0.002 (0.001, 0.04) 
(9*10-5, 0.99) 

0.93 (0.66, 0.99) 
(0.01, 0.99) 

71,622 (73%) 1,871 (5%) 73,493 (54%) 

2 
Main effects model 
+ FP1 terms for age(0), deprivation(-1), cumulative allopurinol use(0.5), 
follow-up time(-2) 

0.01 (0.01, 0.05) 
(40*10-4, 0.99) 

0.91 (0.68, 0.97) 
(0.01, 0.99) 

22,481 (23%) 792 (2%) 23,273 (17%) 

3 
Main effects model 
+ FP2 terms for age(3, 3), deprivation(0.5, 2), cumulative allopurinol use(1, 

2), follow-up time(1, 1) 

0.01 (0.003, 0.04) 
(2*10-4, 0.99) 

0.92 (0.69, 0.98) 
(0.01, 0.99) 

53,895 (55%) 4,216 (11%) 58,111 (43%) 

4 
Main effects model 
+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear terms for age, deprivation 

0.01 (0.01, 0.05) 
(5*10-4, 0.99) 

0.91 (0.68, 0.97) 
(0.01, 0.99) 

25,972 (26%) 763 (2%) 26,735 (20%) 

5 

Main effects model 
+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear terms for age, deprivation 
+ SU level*colchicine 

0.01 (0.01, 0.05) 
(4*10-4, 0.99) 

0.91 (0.68, 0.97) 
(0.01, 0.99) 

21,211 (22%) 766 (2%) 21,977 (16%) 

6 

Main effects model 
+ FP1 terms for cumulative allopurinol use(0.5), follow-up time(-2) 

+ linear terms for age, deprivation 
+ SU level*colchicine 
+ SU level*body mass index 

0.01 (0.01, 0.05) 
(3*10-4, 0.99) 

0.91 (0.68, 0.97) 
(0.01, 0.99) 

20,998 (21%) 730 (2%) 21,728 (16%) 

Specification highlighted in green is the chosen propensity model; Values in brackets indicate which fractional polynomial terms were used; FP1: Fractional polynomials of dimension 1; 
FP2: Fractional polynomials of dimension 2; IQR: Interquartile range; PS: Propensity score; SU: Serum urate 
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Figure L7: Comparison of PS distribution for renal disease analysis 
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 Varying number of time-varying PS subclasses 

Table M1: PS and outcome distribution, imbalanced covariates in mortality analysis 

PS range  

Deaths in no 
allopurinol 
intervals 

N (%) 

Deaths in 
allopurinol 
intervals 

N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: <0.001, 0.01   1029 (31) 0 (0) 
116,498 (75) 
16,123 (96) 

Balance achieved 
 2: 0.01, 0.04   1311 (39) 13 (1) 
 3: 0.04, 0.60   857 (26) 345 (21) 
 4: 0.60, 0.99 149 (4) 1272 (78) 

5 subclasses     

 1: <0.001, 0.01   812 (24) 0 (0) 

93,198 (60) 
14,542 (86) 

Balance achieved 
 2: 0.01, 0.02   870 (26) 0 (0) 
 3: 0.02, 0.14   1285 (38) 78 (5) 
 4: 0.14, 0.79   302 (9) 445 (27) 
 5: 0.79, 0.99  77 (2) 1107 (68) 

6 subclasses     

 1: <0.001, 0.01   682 (20) 0 (0) 

103,554 (67) 
15,703 (93) 

Balance achieved 

 2: 0.01, 0.01   670 (20) 0 (0) 
 3: 0.01, 0.04   988 (30) 13 (1) 
 4: 0.04, 0.28   716 (21) 116 (7) 
 5: 0.28, 0.89   246 (7) 503 (31) 
 6: 0.89, 0.99  44 (1) 998 (61) 

7 subclasses     

 1: <0.001, 0.01   571 (17) 0 (0) 

88,760 (57) 
13,634 (81) 

Cumulative 
allopurinol use 

 2: 0.01, 0.01   592 (18) 0 (0) 
 3: 0.01, 0.02   660 (20) 2 (0) 
 4: 0.02, 0.10   1075 (32) 49 (3) 
 5: 0.10, 0.43   231 (7) 136 (8) 
 6: 0.44, 0.93   193 (6) 577 (35) 
 7: 0.93, 1.00   24 (1) 866 (53) 

Propensity score subclassification was performed on 155,331 intervals from 16,876 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score  
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Table M2: PS and outcome distribution, imbalanced covariates in gout hospitalisation analysis 

PS range 

Hospitalisations 
in non-allopurinol 

intervals 
N (%) 

Hospitalisations 
in allopurinol 

intervals 
N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: <0.00, 0.01   194 (21) 0 (0) 
91,551 (75) 
13,480 (96) 

Balance achieved 
 2: 0.01, 0.02   308 (33) 2 (0) 
 3: 0.02, 0.52   343 (37) 145 (14) 
 4: 0.52, 0.99 78 (8) 902 (86) 

5 subclasses     

 1: <0.001, 0.01   143 (15) 0 (0) 

97,654 (80) 
13,587 (96) 

Balance achieved 
 2: 0.01, 0.01   231 (25) 1 (0) 
 3: 0.01, 0.09   341 (37) 42 (4) 
 4: 0.09, 0.75   169 (18) 237 (23) 
 5: 0.75, 0.99   39 (4) 769 (73) 

6 subclasses     

 1: <0.001, 0.01   121 (13) 0 (0) 

81,378 (67) 
13,259 (94) 

Balance achieved 

 2: 0.01, 0.01   178 (19) 0 (0) 
 3: 0.01, 0.02   203 (22) 2 (0) 
 4: 0.02, 0.20   262 (28) 72 (7) 
 5: 0.20, 0.86   141 (15) 305 (29) 
 6: 0.86, 0.99   18 (2) 670 (64) 

7 subclasses     

 1: <0.001, 0.01   96 (10) 0 (0) 

87,191 (71) 
13,411 (95) 

Cumulative 
allopurinol use 

 2: 0.01, 0.01   131 (14) 0 (0) 
 3: 0.01, 0.02   185 (20) 1 (0) 
 4: 0.02, 0.06   255 (28) 25 (2) 
 5: 0.06, 0.35   142 (15) 74 (7) 
 6: 0.35, 0.91   106 (11) 360 (34) 
 7: 0.91, 0.99 8 (1) 589 (56) 

Propensity score subclassification was performed on 122,068 intervals from 14,087 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score  
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Table M3: PS and outcome distribution, imbalanced covariates in joint replacement analysis 

PS range 

Joint replacement 
in non-allopurinol 

intervals 
N (%) 

Joint replacement 
in allopurinol 

Intervals 
N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: 0.001, 0.01   194 (28) 0 (0) 
110,910 (75) 
16,030 (96) 

Balance achieved 
 2: 0.01, 0.04   311 (45) 1 (0) 
 3: 0.04, 0.60   161 (23) 34 (11) 
 4: 0.60, 1.00   26 (4) 288 (89) 

5 subclasses     

 1: 0.001, 0.01   144 (21) 0 (0) 

88,728 (60) 
15,455 (93) 

Balance achieved 
 2: 0.01, 0.02   247 (36) 0 (0) 
 3: 0.02, 0.13   218 (32) 8 (2) 
 4: 0.13, 0.79   64 (9) 73 (23) 
 5: 0.80, 1.00   19 (3) 242 (75) 

6 subclasses     

 1: 0.001, 0.01   114 (16) 0 (0) 

98,587 (67) 
15,880 (95) 

Balance achieved 

 2: 0.01, 0.01   184 (27) 0 (0) 
 3: 0.01, 0.04   207 (30) 1 (0) 
 4: 0.04, 0.26   136 (20) 13 (4) 
 5: 0.26, 0.88   40 (6) 93 (29) 
 6: 0.88, 1.00   11 (2) 216 (67) 

7 subclasses     

 1: 0.001, 0.01   94 (14) 0 (0) 

84,503 (57) 
14,603 (88) 

Balance achieved 

 2: 0.01, 0.01   132 (19) 0 (0) 
 3: 0.01, 0.02   203 (29) 0 (0) 
 4: 0.02, 0.09   157 (23) 7 (2) 
 5: 0.09, 0.43   66 (10) 10 (3) 
 6: 0.43, 0.92   32 (5) 113 (35) 
 7: 0.92, 1.00   8 (1) 193 (60) 

Propensity score subclassification was performed on 147,881 intervals from 16,644 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score   
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Table M4: PS and outcome distribution, imbalanced covariates in cerebrovascular disease 
analysis 

PS range 

Cerebrovascular 
events in non-

allopurinol 
intervals 

N (%) 

Cerebrovascular 
events in 

allopurinol 
intervals 

N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: <0.001, 0.002   149 (13) 0 (0) 
108,831 (75) 
15,173 (93) 

Cumulative 
allopurinol use 

 2: 0.002, 0.02   820 (74) 0 (0) 
 3: 0.03, 0.60   118 (11) 67 (15) 
 4: 0.60, 0.99  27 (2) 371 (85) 

5 subclasses     

 1: <0.001, 0.002   104 (9) 0 (0) 

87,064 (60) 
13,259 (82) 

Balance achieved 
 2: 0.002, 0.004   333 (30) 0 (0) 
 3: 0.004, 0.14   594 (53) 8 (2) 
 4: 0.14, 0.79   69 (6) 103 (24) 
 5: 0.79, 0.99  14 (1) 327 (75) 

6 subclasses     

 1: <0.001, 0.002   90 (8) 0 (0) 

72,554 (50) 
7,565 (47) 

Balance achieved 

 2: 0.002, 0.003   199 (18) 0 (0) 
 3: 0.003, 0.02   680 (61) 0 (0) 
 4: 0.02, 0.30   82 (7) 27 (6) 
 5: 0.30, 0.89   54 (5) 149 (34) 
 6: 0.89, 1.00   9 (1) 262 (60) 

7 subclasses     

 1: <0.001, 0.002   81 (7) 0 (0) 

82,918 (57) 
12,341 (76) 

Balance achieved 

 2: 0.002, 0.003   127 (11) 0 (0) 
 3: 0.003, 0.005   321 (29) 0 (0) 
 4: 0.005, 0.10   482 (43) 4 (1) 
 5: 0.010, 0.46   63 (6) 42 (10) 
 6: 0.46, 0.94   36 (3) 157 (36) 
 7: 0.94, 1.00   4 (0) 235 (54) 

Propensity score subclassification was performed on 145,108 intervals from 16,253 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score   
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Table M5: PS and outcome distribution, imbalanced covariates in coronary heart disease 
analysis 

PS range 

Coronary heart 
events: 

Non-allopurinol 
intervals 

N (%) 

Coronary heart 
events:  

Allopurinol 
intervals 

N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: <0.001, 0.002   259 (12) 0 (0) 
58,328 (50) 
7,473 (53) 

Cumulative 
allopurinol use 

 2: 0.002, 0.01   1258 (60) 0 (0) 
 3: 0.01, 0.54   495 (24) 124 (14) 
 4: 0.54, 0.99 68 (3) 746 (86) 

5 subclasses     

 1: <0.001, 0.002   200 (10) 0 (0) 

69,993 (60) 
11,503 (82) 

Balance achieved 
 2: 0.002, 0.004   530 (25) 0 (0) 
 3: 0.004, 0.11   1168 (56) 12 (1) 
 4: 0.11, 0.74   143 (7) 186 (21) 
 5: 0.74, 0.99 39 (2) 672 (77) 

6 subclasses     

 1: <0.001, 0.002   169 (8) 0 (0) 

58,328 (50) 
7,473 (53) 

Balance achieved 

 2: 0.002, 0.003  283 (14) 0 (0) 
 3: 0.003, 0.01   1065 (51) 0 (0) 
 4: 0.01, 0.25   437 (21) 50 (6) 
 5: 0.25, 0.85   107 (5) 268 (31) 
 6: 0.85, 0.99 19 (1) 552 (63) 

7 subclasses     

 1: <0.001, 0.001   155 (7) 0 (0) 

66,660 (57) 
10,848 (77) 

Balance achieved 

 2: 0.001, 0.002   167 (8) 0 (0) 

 3: 0.002, 0.004   530 (25) 0 (0) 

 4: 0.004, 0.07   1023 (49) 4 (0) 

 5: 0.07, 0.40   115 (6) 78 (9) 

 6: 0.40, 0.91   81 (4) 348 (40) 

 7: 0.91, 0.99 9 (0) 440 (51) 

Propensity score subclassification was performed on 116,656 intervals from 14,063 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score 
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Table M6: PS and outcome distribution, imbalanced covariates in peripheral vascular disease 
analysis 

PS range 

Peripheral 
vascular events:  
non-allopurinol 

intervals 
N (%) 

Peripheral 
vascular events: 

Allopurinol 
Intervals 

N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: 0.001, 0.01   120 (28) 0 (0) 

112,613 (75) 
15,948 (97) 

Balance achieved 
 2: 0.01, 0.05   166 (38) 4 (2) 
 3: 0.05, 0.59   132 (31) 40 (20) 
 4: 0.59, 0.99  14 (3) 159 (78) 

5 subclasses     

 1: 0.001, 0.01   93 (22) 0 (0) 

120,120 (80) 
16,103 (97) 

Balance achieved 
 2: 0.01, 0.02   141 (33) 1 (0) 
 3: 0.02, 0.13   153 (35) 12 (6) 
 4: 0.13, 0.78   40 (9) 50 (25) 
 5: 0.78, 0.99 5 (1) 140 (69) 

6 subclasses     

 1: 0.001, 0.01   77 (18) 0 (0) 

100,100 (67) 
15,769 (95) 

Balance achieved 

 2: 0.007, 0.01   102 (24) 0 (0) 
 3: 0.01, 0.05   107 (25) 4 (2) 
 4: 0.05, 0.27   115 (27) 17 (8) 
 5: 0.27, 0.88   26 (6) 61 (30) 
 6: 0.88, 0.99 5 (1) 121 (60) 

7 subclasses     

 1: 0.001, 0.01   65 (15) 0 (0) 

107,250 (71) 
15,861 (96) 

Balance achieved 

 2: 0.01, 0.01   76 (18) 0 (0) 
 3: 0.01, 0.03   107 (25) 1 (0) 
 4: 0.03, 0.09   125 (29) 8 (4) 
 5: 0.09, 0.43   37 (9) 18 (9) 
 6: 0.43, 0.92   18 (4) 69 (34) 
 7: 0.92, 0.99 4 (1) 107 (53) 

Propensity score subclassification was performed on 150,151 intervals from 16,519 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score 
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Table M7: PS and outcome distribution, imbalanced covariates in renal disease analysis 

Propensity score 
range 

Renal disease 
events: non-
allopurinol 
intervals 

N (%) 

Renal disease 
events: 

allopurinol 
Intervals 

N (%) 

Number to be 
analysed in 

outcome analysis 
Intervals N (%) 
Patients N (%)a 

Imbalanced 
covariatesb 

4 subclasses     

 1: <0.001, 0.01   750 (30) 0 (0) 
101,991 (75) 
15,886 (96) 

Cumulative 
allopurinol use 

 2: 0.01, 0.03   1216 (48) 6 (0) 
 3: 0.03, 0.52   445 (18) 152 (11) 
 4: 0.52, 0.99 130 (5) 1226 (89) 

5 subclasses     

 1: <0.001, 0.01   561 (22) 0 (0) 

81,592 (60) 
15,565 (94) 

Balance achieved 
 2: 0.01, 0.01   1021 (40) 0 (0) 
 3: 0.01, 0.09   587 (23) 49 (4) 
 4: 0.09, 0.75   313 (12) 291 (21) 
 5: 0.75, 0.99 59 (2) 1044 (75) 

6 subclasses     

 1: <0.001, 0.01   454 (18) 0 (0) 

90,658 (67) 
15,762 (95) 

Balance achieved 

 2: 0.01, 0.01   712 (28) 0 (0) 
 3: 0.01, 0.03   800 (31) 6 (0) 
 4: 0.03, 0.21   311 (12) 88 (6) 
 5: 0.21, 0.85   227 (9) 345 (25) 
 6: 0.85, 0.99 37 (1) 945 (68) 

7 subclasses     

 1: <0.001, 0.01   378 (15) 0 (0) 

97,134 (71) 
15,821 (96) 

Balance achieved 

 2: 0.01, 0.01   537 (21) 0 (0) 
 3: 0.01, 0.02   814 (32) 2 (0) 
 4: 0.02, 0.06   371 (15) 27 (2) 
 5: 0.06, 0.36   263 (10) 88 (6) 
 6: 0.36, 0.90   158 (6) 416 (30) 
 7: 0.90, 0.99 20 (1) 851 (61) 

Propensity score subclassification was performed on 135,988 intervals from 16,508 patients; Results highlighted 
in green indicated the number of subclasses used for outcome analysis; aAt least one interval from the patient 
would be included in outcome analysis; bOverall SMD >0.10 and assessed in subclasses with outcome occurring 
in both no allopurinol and allopurinol intervals; PS: Propensity score 
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 PS model specification 

Table N1: Specification of the PS score model for each outcome analysis 

Outcome PS model specification 

Target SU level  

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time, SU 
level 

2 
Main effects model 
+ FP1 terms for age(-2), deprivation (3), cumulative allopurinol use(0.5), follow-up time(-2), 
SU level(-0.5) 

3 
Main effects model 
+ FP2 terms for age(-2, -2), deprivation (1, 2), cumulative allopurinol use(-0.5, 0.5), follow-up 
time(-2, 0.5), SU level(-2 -2) 

4 

Main effects model 
+ FP2 terms for age(-2, -2), cumulative allopurinol use(-0.5, 0.5) 

+ FP1 terms for deprivation (3), SU level(-0.5) 

+ linear terms for follow-up time 

Mortality  

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), deprivation (2), cumulative allopurinol use(0.5), follow-up time(-2) 

3 
Main effects model 
+ FP2 terms for age(3, 3), deprivation (2, 3), cumulative allopurinol use(-1, 0), follow-up 
time(-2, -2) 

4 
Main effects model 
+ FP2 terms for age(3, 3), deprivation (2, 3), cumulative allopurinol use(-1, 0) 

+ linear terms for follow-up time 

5 

Main effects model 
+ FP2 terms for age(3, 3), deprivation (2, 3), cumulative allopurinol use(-1, 0) 

+ linear terms for follow-up time 
+ interaction terms between SU level*hypertension 
+ interaction term diuretic use*follow-up time 
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Outcome PS model specification 

Gout 
hospitalisation 

 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), cumulative allopurinol use(-0.5), follow-up time(-1) 

+ linear terms for deprivation 

3 
Main effects model 
+ FP2 terms for age(-2, 2), deprivation (3, 3), cumulative allopurinol use(-1, -0.5), follow-up 
time(0.5, 3) 

4 

Main effects model 
+ FP2 terms for deprivation (3, 3) 
+ FP1 terms for age(3), follow-up time(-1) 

+ linear terms for cumulative allopurinol use 

Joint replacement  

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), cumulative allopurinol use(-0.5), follow-up time(-1) 

+ linear term for deprivation 

3 
Main effects model 
+ FP2 terms for age(-2, 3), deprivation (-0.5, 0), cumulative allopurinol use(-1, -0.5), follow-up 
time(0.5, 3) 

4 

Main effects model 
+ FP2 terms for deprivation (-0.5, 0) 

+ FP1 terms for follow-up time(-1) 

+ linear terms for age, cumulative allopurinol use 

5 

Main effects model 
+ FP2 terms for deprivation (-0.5, 0) 

+ FP1 terms for follow-up time(-1) 

+ linear terms for age, cumulative allopurinol use 
+ interaction term coronary heart disease*hypertension 
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Outcome PS model specification 

Cerebrovascular 
disease 

 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), cumulative allopurinol use(-0.5), follow-up time(-2) 

+ linear term for deprivation 

3 
Main effects model 
+ FP2 terms for age(-2, 3), deprivation (3, 3), cumulative allopurinol use(-1, -0.5), follow-up 
time(-1, 3) 

4 

Main effects model 
+ FP2 terms for deprivation ( 3, 3) 

+ FP1 terms for cumulative allopurinol use(-0.5), follow-up time(-2) 

+ linear terms for age 

5 

Main effects model 
+ FP2 terms for deprivation ( 3, 3) 

+ FP1 terms for cumulative allopurinol use(-0.5), follow-up time(-2) 

+ linear terms for age  
+ interaction term coronary heart disease*sex 

Coronary heart 
disease 

 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), deprivation (2), cumulative allopurinol use(-0.5), follow-up time(-1) 

3 
Main effects model 
+ FP2 terms for age(-2, 2), deprivation (0, 0), cumulative allopurinol use(-1, -0.5), follow-up 
time(-1, 3) 

4 
Main effects model 
+ FP2 terms for age(-2, 2), deprivation (0, 0), cumulative allopurinol use(-1, -0.5) 

+ FP1 terms for follow-up time(-1) 
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Outcome PS model specification 

Peripheral vascular 
disease 

 

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), cumulative allopurinol use(-0.5), follow-up time(-2) 

+ linear terms for deprivation 

3 
Main effects model 
+ FP2 terms for age(-2, 3), deprivation (3, 3), cumulative allopurinol use(-1, -0.5), follow-up 
time(-0.5, 3) 

4 

Main effects model 
+ FP2 terms for deprivation (3, 3) 

+ FP1 terms for follow-up time(-2) 

+ linear terms for age, cumulative allopurinol use 

5 

Main effects model 
+ FP2 terms for deprivation (3, 3) 

+ FP1 terms for follow-up time(-2) 

+ linear terms for age, cumulative allopurinol use 
+ interaction term SU level*cumulative allopurinol use 

Renal disease  

1 
Main effects model 
+ linear terms for age, deprivation, cumulative allopurinol use, follow-up time 

2 
Main effects model 
+ FP1 terms for age(3), deprivation (2), cumulative allopurinol use(-0.5), follow-up time(-2) 

3 
Main effects model 
+ FP2 terms for age(-2, 2), deprivation (0, 0.5), cumulative allopurinol use(-2, -0.5), follow-up 
time(0, 3) 

4 

Main effects model 
+ FP2 terms for deprivation (0, 0.5) 

+ FP1 terms for cumulative allopurinol use(-0.5), follow-up time(-2) 

+ linear terms for age 

5 

Main effects model 
+ FP2 terms for deprivation (0, 0.5) 

+ FP1 terms for cumulative allopurinol use(-0.5), follow-up time(-2) 

+ linear terms for age 
+ interaction term coronary heart disease*sex 
+ interaction term diabetes*sex 

Values in brackets indicate the fractional polynomials used; PS: Propensity score; SU: Serum urate 
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