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What is new?

Key findings

¢ We introduce four concepts underlying rating certainty in calibration of prognostic models in the body of
evidence of model validation studies. The first concept focuses on determining the overall inference for
which we are rating our certainty (satisfactory vs unsatisfactory model performance). The latter three
focus on the application of the GRADE framework to the pooled observed to expected (O:E) risk ratio as
the most commonly reported measure of overall calibration in validation studies of prognostic models.
The pooled O:E ratio of interest might be that for the whole population, or for particular risk groups or

covariate values.
What this adds to what is known?

e The four concepts introduced in this paper provide the necessary steps for applying GRADE to

calibration of prediction models (as assessed with the pooled O:E ratio).

What is the implication and what should change?

e When evaluating calibration of prediction models, the extent of inconsistency in the O:E ratio across
studies should first inform the overall inference on model performance (satisfactory vs unsatisfactory),

and then inform our certainty in the body of evidence.

e O:E ratio provides a suboptimal assessment of calibration, as the O:E ratio may miss important

miscalibration, and the pooled O:E may miss important inconsistency of the contributory studies.

e Future validation studies would more effectively report calibration curves, and efficient methods to pool

calibration curves are needed.

e Comprehensive GRADE guidance for rating certainty in prognostic models beyond statistical measures of

predictive performance and including issues of clinical utility remains under development.
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Abstract

Prognostic models combine several prognostic factors to provide an estimate of the likelihood (or risk) of
future events in individual patients, conditional on their prognostic factor values. A fundamental part of
evaluating prognostic models is undertaking studies to determine whether their predictive performance, such as
calibration and discrimination, is reproduced across settings. Systematic reviews and meta-analyses of studies
evaluating prognostic models’ performance are a necessary step for selection of models for clinical practice and
for testing the underlying assumption that their use will improve outcomes, including patient’s reassurance and
optimal future planning. In this paper, we highlight key concepts in evaluating the certainty of evidence

regarding the calibration of prognostic models.

Four concepts are key to evaluating the certainty of evidence on prognostic models’ performance regarding
calibration. The first concept is that the inference regarding calibration may take one of two forms: deciding
whether one is rating certainty that a model’s performance is satisfactory or, instead, unsatisfactory, in either
case defining the threshold for satisfactory (or unsatisfactory) model performance. Second, inconsistency is the
critical GRADE domain to deciding whether we are rating certainty in the model performance being satisfactory
or unsatisfactory. Third, depending on whether one is rating certainty in satisfactory or unsatisfactory
performance, different patterns of inconsistency of results across studies will inform ratings of certainty of
evidence. Fourth, exploring the distribution of point estimates of observed to expected ratio across individual

studies, and its determinants, will bear on the need for and direction of future research.
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Introduction

This GRADE concept paper presents insights developed by the GRADE prognosis project group in working
toward GRADE guidance for rating the certainty in prognostic models. Those already familiar with both concepts
of discrimination and calibration in prognostic models, and previous GRADE guidance for interventions and
prognosis, may wish to bypass the initial sections of the paper and move immediately to The Target of Certainty

Rating of Calibration in Systematic Reviews of Prognostic Models.

Prognostic models and their performance

To help clinicians estimate probability of future health outcomes in their patients, prognostic models
simultaneously combine information from multiple prognostic factors (e.g. in a multivariable regression model
or a machine learning approach)”. Such models estimate an individual’s risk of a particular outcome occurring in
the future (by a particular time-point), and so have the potential to inform clinical decision-making and patient
counselling. Clinicians considering use of prognostic models typically rely on external validation studies that test
the performance of a model in patients who were not included in the sample on which that model was initially
developed®’. Statistical measures of predictive performance reported in such studies provide a guide for models’

potential usefulness in clinical practice.

While some measures are useful in certain situations®* measures of discrimination and calibration are always
important in evaluating the performance of a predictive model. Discrimination provides a measure of how well a
model can differentiate (discriminate) between high and low risk patients’, typically relying on quantitative
measures that include the c-statistic or area under the receiver operating characteristics curve (AUC),” which for
binary outcomes are equivalent. Calibration measures how well a model’s predicted estimates of risk
correspond to absolute risks observed in validation datasets, ideally examined across the whole spectrum of

predicted risks across individuals’.

Due to changes in case-mix, differences in outcome rates, and heterogeneity in prognostic factor effects, the
performance of a model may vary on one or both of discrimination and calibration from one external validation
study to another®. Systematic reviews and meta-analyses of model performance from these validation studies
can summarize the best available evidence and help clinicians to draw conclusions regarding the model’s
predictive performance and thus its potential clinical use’. The focus of this paper is rating the certainty in model
calibration, while discrimination is not discussed here. Therefore, in the next section we provide a brief review

of most common approaches to measure calibration.
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Measures of model calibration

A number of different approaches for assessing the calibration of prognostic models exist. Van Calster et al.
provide an in-depth review of these approaches and propose a hierarchy of analytic methods for assessing
calibration: calibration at large, weak (use of intercept and calibration slope), moderate (use of calibration

curve), and strong (plotting calibration in patients with similar patterns of covariates)®.

As noted by these authors, the strong approach to assessing calibration often requires an extremely large
sample size (potentially even millions of patients). Therefore, primary validation studies seldom report on strong
calibration. The best case scenario, however, is validation studies that provide calibration curves (usually
corresponding to a particular time-point) with the observed event risk on the y-axis, and the model’s predicted
risk on the x-axis® (moderate calibration)®. Ideally, investigators present a continuous calibration curve, for
example using a non-parametric smoother. However, often they will offer categories of patients (e.g. groups
defined by tenths of predicted risk). Visual inspection of the calibration curve or plots can address agreement
between predicted risk and observed risk. A calibration curve that depicts a straight line (‘calibration slope’ of 1)
at a 45-degree angle, with a y-intercept of 0 suggests a perfectly calibrated model. Calibration curves may
depict models that are well-calibrated through particular risk levels (e.g. low or high) but not others® °.

Compared to other measures of calibration, curves are most informative on the degree and patterns of

miscalibration. They provide information on performance of model for a wide spectrum of patient risks. For

example, calibration curves allow one to discover whether a model significantly under or overestimates risk in

low and high-risk individuals.

Lower in the hierarchy of calibration measures is when — instead of a curve — researchers assume a calibration
model with a linear relationship®. The linear relationship provides an estimate of the intercept and calibration
slope. The calibration of the model is assessed with the intercept when the slope is forced to be 1. Most
models, however, will show some deviation from perfect calibration, and often also from linearity, so that
calibration may be optimal, acceptable or unacceptable for different levels of observed risk® ®. Therefore,

reliance on the intercept may mask miscalibration.

Further down in the hierarchy, the observed to expected ratio (O:E) statistic’ provides another common
measure of calibration (calibration at large)’, where O:E = 1 suggests that estimated risk is in agreement with

observed risk (i.e., good calibration), O:E > 1 suggests underestimation, and O:E <1.0 suggests overestimation of
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risk. Authors of primary studies often report one O:E measure for the entire cohort, which we designate as an

overall calibration ratio (averaged across all risk categories within the cohort).

An apparently satisfactory overall calibration ratio may exist despite serious miscalibration. For example, if
the model underestimates the risk in half of the patients and overestimates it in the other half, the overall
calibration ratio might suggest perfect calibration. To avoid falling in this trap, rather than an average
calibration ratio, authors should separately report inferences regarding calibration for different risk categories
(e.g., lower or higher risk patients) or for other meaningful subgroup of patients based on characteristics not

included in the model (for example, ethnicity, or age beyond that of the derivation cohort).

A similar issue can arise at the study level in meta-analyses of O:E ratio. For example, if half of the studies in
one meta-analysis report an O:E <1.0 and the other half >1.0, the pooled average calibration ratio may be 1.0,
suggesting perfect overall calibration for the entire body of evidence®, everi though there is much heterogeneity
across studies. This can happen both for pooled average calibration ratios, and for pooled O:E ratios for specific

risk strata or relevant subgroups.

Despite its analytical limitations in comparison to the calibration plot, the O:E ratio is more frequently
available, and can be effectively pooled’ ®, which remains a problem for calibration plots and calibration curves.
Also, the O:E ratios of the individual studies included in a systematic review can be displayed (and inspected) on
a forest plot. Considering that there is yet no established methods to pool calibration plots, and that most
systematic reviews in the field reports O:E ratios, the remainder of our discussion will focus on the use of the
O:E ratio as a measure of calibration to be evaluated by the GRADE approach. The O:E ratio of interest might be

that for the whole population combined, or in particular risk groups or covariate patterns.

Using GRADE to rate the certainty in model calibration

As with systematic reviews and meta-analyses of interventions, overall prognosis, prognostic factors, and
diagnostic test accuracy, there is a need for guidance on determining certainty in inferences regarding predictive

performance of prognostic models' ™.

Although GRADE provides guidance for assessing the certainty in
modelling the impact of interventions on health benefits and harms, and the economic efficiency of health
interventions™, specific guidance for prognostic models remains necessary. We offer this GRADE concept paper

to present insights conceived whilst developing guidance on appraising certainty of prognostic models.
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Assessing certainty in a model’s calibration creates unique challenges for the application of the GRADE
approach. In this paper, we review such challenges and propose unique adaptions to the GRADE approach
required for determining certainty in inferences regarding model calibration. We frame the discussion as four
concepts that are necessary for rating certainty in the calibration of prognostic model studies. The concepts
proposed in this paper are not necessary for rating model discrimination, and so discrimination is not discussed
here. Measures of clinical utility (e.g., net benefit) and direct measures of impact (e.g., from randomised trials)

are also beyond the scope of this paper.

Concept #1: The Target of Certainty Rating of Calibration in Systematic Reviews of Validation Studies of

Prognostic Models

The Target of Certainty Rating in Prognostic Models

In reviews of validation studies of prognostic models, one must first clarify the level of calibration one
considers satisfactory (for instance, one might consider an O:E ratio of 0.9 to 1.1 satisfactory - a standard that
we will use in our subsequent examples), and then rate one’s certainty in whether that standard has or has not
been met. In considering the O:E ratio, we consider model performance satisfactory when most validation
studies report a ratio falling in the selected range. Unsatisfactory model performance exists when most studies
report an O:E ratio much above or below the selected range. Important deviation from an O:E of 1 is context
specific, as it depends, amongst other things, on the event rate in the population. In deciding what level of
miscalibration is unsatisfactory, reviewers may wish to consider the implications of misclassification of risk. For
example, consider the decision regarding undergoing cardiac transplantation, where benefit is expected only in
patients with a mortality rate over the next year of more than 20%. Appreciable under- or overestimation in the

calibration curve around the 20% risk will results in crucial suboptimal decisions.

The pattern of model performance across validation studies will of course often show intermediate
performance between clearly satisfactory and clearly unsatisfactory. The occurrence of these intermediate

results undermine our certainty in the judgment of satisfactory or unsatisfactory model performance.

Limitations of the O:E Ratio
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In systematic reviews and meta-analyses of model calibration there exist two reasons that a single pooled O:E
ratio (average calibration) may represent a poor summary metric to assess model prognostic performance.
First, in a single validation study, an apparently satisfactory overall calibration ratio may exist despite serious
miscalibration. Second, a similar issue can arise at the study level in meta-analyses of O:E ratio. These issues are

discussed at length above under Measures of model calibration.

For instance, a systematic review and meta-analysis by Ebell et al. pooled O:E ratios calculated from each
primary study to report on the calibration of the CRB-65 score, a model for estimating mortality risk among
patients with community acquired pneumonia™. The authors observed a pooled estimate of 1.04 (95% Cl, 0.91 -
1.19) consistent with excellent overall calibration. Most studies, however, reported O:E ratios representing
considerable over- or underestimation of risk (figure 1A) — the apparently satisfactory pooled O:E ratio resulted

from the similar number of over and underestimates.

Given these limitations, one should view an individual study O:E ratio close to 1 as necessary but, because it
may represent overestimation in one risk group and underestimation in another, as insufficient for assessing
model performance. Fortunately, despite its limitations, viewing a forest plot of the O:E ratio in individual
studies, and their confidence intervals, can be extremely informative in evaluating the certainty of evidence
from a set of validation studies that have addressed a particular model. We will now illustrate how this is the

case.

Concept #2: The Role of Inconsistency of Results Across Studies in Deciding Whether to Rate Certainty in

Satisfactory or Unsatisfactory Model Performance

For interventions, overall prognosis and prognostic factors, and diagnosis, assessment of heterogeneity does
not bear on decisions regarding the target of inference, but rather on certainty in the inferences that emerge:
that is, inconsistency in results decreases confidence in inferences regarding intervention effects, prognostic
power, or diagnostic accuracy. In contrast, for prognostic models the GRADE inconsistency domain bears a role
in first determining the target of certainty assessments: the distribution of point estimates reported by
individual validation studies, beyond differences across studies that may be observed by chance alone, can
inform whether the model’s performance is satisfactory or unsatisfactory. Large inconsistency (Table 1, example
4), or consistent results with an O:E ratio far from 1 (Table 1, example 6), will dictate rating one’s certainty in an

unsatisfactory model (and establish high certainty); consistent results near 1 (Table 1, example 1) will dictate
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rating certainty in a satisfactory model (and will establish high certainty). Other results, as we will illustrate, will

undermine certainty in inferences regarding satisfactory or unsatisfactory model performance.

To judge the extent of inconsistency, and thus whether to make the inference that model performance is
satisfactory or unsatisfactory, one may examine the overlap of studies’ point estimates and 95% Cl, and
statistical measures of heterogeneity. One may also assess inconsistency by generating 95% prediction interval
for the O:E ratios’. Instances in which the prediction intervals are narrow and point estimates are near 1.0
provide reassurance that the model performance is satisfactory. Similarly, one may use tau-squared (the
estimate of between-study variance) to directly inform presence of heterogeneity. In instance where tau-
squared is 0, the differences across studies may be due to chance alone. If, however, tau-squared is > 0, it may
be suggestive of heterogeneity. Statistical measures of heterogeneity shoulid be used in conjunction with visually

inspection of forest plots.

Figure 1A presents estimates of the O:E ratio from the available validation studies summarized in the Ebell
et.al. systematic review™. The forest plot demonstrates that the prognostic model substantially underestimates
risk in some validation studies and overestimates risk in others. Applying our approach beginning with deciding
whether one is rating certainty in a satisfactory or unsatisfactory model, this degree of heterogeneity leaves no
doubt that we are dealing with an unsatisfactory model, as when applied in some populations the model will
overestimate risk and in others underestimate and results will thus be untrustworthy. Please note that in
making this inference we trust that authors pursue efforts to explore the possible sources of the observed
heterogeneity — a requisite step in any optimal systematic review — failed. We will challenge this assumption

later on (Concept #4).

Table 1 provides six hypothetical examples that further illustrate our approach. In the first three examples,
the O:E ratio is sufficiently consistent with point estimates sufficiently near 1.0 that rating certainty in
satisfactory performance is preferable. In the latter three, that is not the case: in examples 4 and 5 the degree of
inconsistency in results is sufficient that one should rate certainty that the model performance in validation

studies has proved it unsatisfactory; in the 6, results are consistently far from an O:E ratio of 1.0.

Concept #3: The Role of Inconsistency of Results Across Studies in Judging our Certainty in the body of

evidence
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Once reviewers have considered heterogeneity in deciding whether to rate certainty in satisfactory (Table 1,
examples 1 to 3) or unsatisfactory (Table 1, examples 4 to 6) model performance, they will then reconsider
heterogeneity (along with risk of bias, precision, directness, and publication bias, to be discussed in future
GRADE guidance on evaluating certainty in a body of evidence on validation of prediction models) in deciding on

certainty of evidence following the standard GRADE approach.

Rating satisfactory performance of calibration. In the first example in Table 1 the studies are extremely
consistent (not serious inconsistency) and all have O:E values near 1.0, posing no challenge to the inference that
the model’s performance is satisfactory in terms of overall calibration. In the second example, heterogeneity is
sufficient to raise doubts regarding the inference of satisfactory performance; in our judgment, however,
whether or not to rate down is a close call. Some reviewers may rate down for serious inconsistency, whereas
others may not. In the third example, we are still rating our certainty in the model’s satisfactory performance,
but heterogeneity is sufficient to mandate rating down our overall certainty in the evidence for serious
inconsistency. These first three examples show that we don’t expect prognostic models to work well in all

validation settings. Rather the judgment is that miscalibration in a few settings is deemed acceptable.

Rating unsatisfactory performance of calibration. In the fourth example almost all estimates of the O:E ratio
are far from that corresponding to the initial model. The degree and nature of the inconsistency mandates rating
certainty that the calibration is unsatisfactory and, with respect to inconsistency, leaves no doubt about this
inference. This example highlights the key difference when one decides to rate certainty in the unsatisfactory
performance of the model. Here = in contrast to GRADE for questions of intervention, overall and prognostic
factors, and diagnostic test accuracy in which serious or very serious inconsistency always mandates rating down
one’s certainty — the large degree of inconsistency, if anything, bolsters certainty in the unsatisfactory

performance of the model.

In the fifth example, results are less clear. There are sufficient studies in which, using the original model, the
O:E ratio approximates 1.0, that our inference that the model is unsatisfactory becomes less secure. Due to this
serious inconsistency (though most results suggest an unsatisfactory model — point estimates of the O:E ratio far
from one - some point estimates are near the O:E value of 1.0), we rate down our certainty that the model’s
overall calibration is unsatisfactory. The actual results of the Ebell et. al. review in Figure 1A correspond most

closely to this hypothetical situation.
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Concept #4: The Distribution of the Point Estimates for O-E Ratios Bears on Implications for Further Research

In Attempting to explain the heterogeneity observed in the review by Ebell et al (Figure 1A), we conducted a
post hoc subgroup analysis (figure 2). We classified individual studies based on overall observed risk of mortality:
<5% (low observed risk), 5% to 10% (intermediate observed risk), and >10% (high observed risk). CRB-65
overestimated risk of mortality in studies with a low observed risk of mortality (O:E ratio, 0.54 [95% Cl, 0.36 —
0.71]), was much better calibrated in studies with intermediate observed risk of mortality (O:E ratio, 0.93 [95%
Cl, 0.75 — 1.11]), and underestimated risk in studies with high observed risk of mortality (O:E ratio, 1.45 [95% ClI,
1.34 - 1.55]).

Assuming that this subgroup analysis is credible (which remains to be established, given the post-hoc nature
of our analysis and the convenient selection of thresholds'®), and that clinicians could identify whether their
patients belong a low, medium or high-risk population (an even more guesticnable assumption), in contrast with

the interpretation of Figure 1A, these results would provide clear direction for future research.

In Figure 1A heterogeneity remains unexplained and results provide few if any clues to producing a more
satisfactory model. Here, future studies must start from first principles, seeking new predictors that may better

generalize across health care settings (in other words, back to the drawing board).

In Figure 1B, if one could identify that a patient comes from an intermediate risk group, one could apply the
initial model with at least moderate certainty (assuming no problems with risk of bias, indirectness, or
publication bias; problems with either inconsistency or precision do not appear severe). For low and high-risk
groups, the initial model is unsatisfactory. The consistency of under- and overestimates in the risk groups
suggests, however, that the predictors in the initial model may work well if recalibrated with a new appropriate
baseline risk®. One might therefore use data from one of the validation studies to recalibrate the model and the
others to validate the recalibrated model, anticipating satisfactory performance of the recalibrated model itself.
This example shows the potential application of credible subgroup analysis using characteristics that clinicians

can easily identify in their patients. One could apply the same logic to the hypothetical 6™ example in Table 1.

Concluding remarks
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Calibration is a crucial measure to evaluate for a prognostic modeli?. Currently, review author seldom conduct
such careful evaluations, instead reporting on calibration performance using a variety of unsatisfactory
approaches - or not at all'”®. Moreover, even review authors intent on producing optimal summaries may be
limited by suboptimal or variable reporting of calibration in primary studies. Indeed, our GRADE project group,
working on developing guidance for certainty ratings for prognostic models, has noted a paucity of systematic
reviews that can serve as exemplars for developing our guidance; inconsistent and limited reporting in those
that are available; the only recent development of a satisfactory risk of bias instrument for validation studies of

models' ?%; and limitations related to risk specific calibration highlighted in this article.

The project group recognizes that clinical utility is best examined using net benefit measures, and results from
impact studies®. However, the most common reported measure in primary studies hence systematic reviews
thereof is the O:E statistic for the entire validation study population and, sometimes, risk strata based on
predicted risks. Hence, in this paper we focused on adopting GRADE for certainty in calibration as assessed by
O:E. This relates to the very weakest level of calibration assessment, but is still important to assess overall
calibration to gain initial insight into the model’s potential usefulness in clinical practice and shared decision
making. ldeally more nuanced investigations would involve synthesis of calibration plots, and curves, but this

likely requires the use of individual participant data meta-analyses.

Methodological guidance by Debray et al. may help authors of systematic reviews improve data extraction
and reporting practices for calibration’; adherence to the TRIPOD statement will improve reporting of calibration
in primary studies”’. Pending improvements in both individual validation studies and reviews summarizing
these studies, and the consistent availability of impact studies, authors endeavoring to provide guidance
regarding certainty of evidence from prognostic models may consider implementing suggestions we have

provided in this paper.

Nevertheless, in undertaking this work, our group has developed insights that distinguish assessing certainty
in calibration assessment from validation studies of prognostic models from all previous GRADE guidance. These
insights will not only prove useful in the project group completing its work, but in informing subsequent
conceptual exploration of properties of prognostic models and inferences from evidence regarding their

usefulness.



Journal Pre-proof

Table 1 — Degree of Inconsistency and Impact on Inferences Regarding Model Performance as measured by

the O:E statistic in the entire population*

Possible
inferences on the . Inference on model Judgment about
. Forest plots of O:E Ratios . i
basis of degree performance inconsistency
of heterogeneity
——
o
—
'_' Bearing in. mind that
—t the O:E measure is Not Serious
1. Rating our - an insufficient
certainty in P measure on its own, We will not rate
satisfactory — we make the down for
— - .
model N inference that the inconsistency as the
performance: — model is well model consistently
High certainty 4 calibrated as all works across all
-1 studies agree that studies.
. — . .
P the O:E ratio is 1.0.
N
T T T
5 1 15 2
\ Not serious (some
may judge as serious)
—
—— e
5 Rati T Amongst all included In judging
. Ratin —t ; ;
- 8 I studies, most inconsistency, one
certainty in
tisf t\/ -1 suggest that the O:E may become more
satisfactor —_ :
del Y ratio is near 1.0. One concerned. At this
mode i
‘ ' can still make the point, some authors
erformance: — ;
If ble rati —_— inference that the Or reviewers may
ossible ratin o
. g — model is well conclude sufficient
w — -
. - 1 calibrated on heterogeneity in
inconsistency. i i
Y S average. average calibration
— for the patients
S _
studied to rate down
. . for inconsistency.
5 1 1.5
Some may not be
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concerned and will
not rate down.

3. Rating
certainty in
satisfactory

model
performance:
Certainty rated
down for
inconsistency

L

ATy u

o
-
—_
[&;

In half of the studies,
the reported O:E
ratio suggests that
the model is
performing
adequately. In the
other half; it is not
working well. One
may. still make the
inference that the
model is well
calibrated on
average.

Serious, but explore
in subgroup OR
sensitivity analysis. If
not explained: rate
down by one level

Due to the extensive
observed
heterogeneity, our
certainty in the
inference that the
model works is
decreased.

In some settings /
populations/
subgroups, the model
performance is
satisfactory but in
other it is not.

4. Rating
certainty in
unsatisfactory
model
performance:
High certainty

o

SEEal

In the following
example, there is
only one study with
an O:E ratio of 1.0. In
this instance, our
inference would be
that the model is
poorly calibrated in
the patients studied.

Not serious

This model is
consistently
miscalibrated (except
for in one study).
Therefore, we would
not rate down for
inconsistency.
However, one cannot
quantify the
magnitude of
miscalibration.
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5. Rating
certainty in
unsatisfactory
model
performance:
Rate down for
inconsistency.

LIJ

11y {“l

Some of the studies
are scattered around
an O:E ratio of
1.0.Enough studies
are far from an O:E
of 1.0, therefore we
make the inference
that the model is
poorly calibrated in
the patients studied.

Serious, but explore
in subgroup OR
sensitivity analysis. If
not explained: rate
down by one level

In this example,
although there were
enough studies away
from an O:E of 1.0 for

us to make the

inference that the
model is
miscalibrated, there
are also enough
studies close to an
O:Eof 1.0forusto
have doubt about our
inference. Therefore,
in this example, we
would rate down for
inconsistency.

In some settings/
population/
subgroups the model
performance is
satisfactory whereas
in others it is not.
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6. Rating
certainty in
unsatisfactory
model
performance:
High Certainty

We make the
inference that the
model is not well
calibrated as all
studies agree that
the O:E ratio is less
than 1.0.

Not Serious

We will not rate
down for
inconsistency as the
model consistently
works across all
studies.

* In examples 2 to 6 we assume that tau-squared > 0, and thus that chance cannot explain variability.
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Figure 1A - Meta-analysis of O:E ratios as reported by Ebell et al.
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Figure 2 - Subgroup analysis of O:E based on overall cohort risk
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Risk <5%: The observed risk of mortality in the overall cohorts was <5%; Risk 5 — 10%: The observed risk of
mortality in the overall cohorts was between 5 to 10%; Risk >10%: The observed risk of mortality in the overall
cohorts was >10%.
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