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Measurement of GMPT Coefficients for
Improved Object Characterisation in Metal

Detection
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Abstract— Magnetic polarizability tensors
(MPTs) have become popular for char-
acterising conducting permeable objects
and assisting with the identification of
hidden objects in metal detection for
applications in security screening, hu-
manitarian demining and scrap sorting.
A rigorous mathematical justification of
the complex symmetric rank 2 MPT ob-
ject characterisation has been established
based on the leading order term in an
asymptotic expansion of the perturbed
field for small objects. However, the ac-
curacy of an MPT object characterisation
is limited by the tensor’s small number
of independent coefficients. By consider-
ing higher order terms in the asymptotic
expansion, generalised magnetic polarizabilty tensors (GMPTs) have been introduced and the purpose of this work
is to show that GMPT coefficients can, for the first time, be measured in practice. GMPTs offer the possibility to
better discriminate between objects and, hence, the potential for better classification and identification, overcoming the
limitations of a rank 2 MPT object characterisation. In a metal detector, the low-frequency background fields generated
by a set of coils is almost always non-uniform and using GMPTs allow us to make a virtue of this. In this work we
include both measurements and simulations to demonstrate the advantages that using GMPTs offer over using an MPT
characterisation alone.

Index Terms— Electromagnetic Induction Spectroscopy, Magnetic Polarizability Tensor, Metal Detection, Metal Classifica-
tion

I. INTRODUCTION

Magnetic polarizability tensors (MPTs) have become pop-
ular for characterising conducting permeable objects and
assisting with the identification of hidden objects in metal
detection for applications in security screening, humanitarian
demining and scrap sorting e.g. [1], [2], [9]–[11], [19]–[21],
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[23], [30]–[32], [35]. A rigorous mathematical theory has been
established for the complex symmetric rank 2 MPT charac-
terisation of a small highly conducting permeable isolated
object in a non-conducting background. It has been shown
that the MPT forms the object description in the leading order
term of an asymptotic expansion of the perturbed magnetic
field pHα ´ H0qpxq as the object size α Ñ 0 [4], [12].
The expansion holds at positions x away from the object.
Furthermore, for objects with rotational and reflectional sym-
metries, it has been established that the number of independent
complex coefficients in the MPT can be much smaller than
6 [12]. The leading order term in the asymptotic expansion of
pHα´H0qpxq as αÑ 0 and an MPT object characterisation
has been generalised for multiple and inhomogeneous objects
in [16]. Considerable benefits have been seen to be offered
by exploiting the spectral behaviour of the MPT coefficients,
known as its spectral signature, which provides much richer
information than the MPT at a single frequency. This has been
understood theoretically [15], efficient algorithms have been
developed to compute the MPT spectral signature [33] and
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these have been applied to compute libraries of MPT spec-
tral signature object characterisations [17]. Machine learning
approaches for object classification based on measured and
simulated libraries of MPT spectral signatures have also been
developed in [19], [20] and [34], respectively.

A complete asymptotic expansion of the perturbed magnetic
field pHα´H0qpxq as αÑ 0 has been derived in [14], which
generalises the earlier results in [4], [12]. In this expansion,
new object characterisations called generalised magnetic po-
larizabilty tensors (GMPTs) have been introduced, building on
the MPT object characterisation in the leading order term. The
purpose of this work is to show that GMPT coefficients can
be measured in practice for the first time. GMPTs offer sig-
nificant advantages over small object characterisations using
the leading order rank 2 MPT descriptions currently used in
metal detection. Specifically:

1) Offering the possibility to better discriminate between
objects and, hence, offer the potential for better classifi-
cation and identification, overcoming the limitations of
characterising objects using just 6 complex coefficients
in a rank 2 MPT description (a simple example of which
is to tell which way a cone is pointing).

2) In a metal detector, the low-frequency background fields
H0 generated by a set of coils is almost always non-
uniform and using GMPTs allow us to make a virtue of
this overcoming the assumption that H0 is uniform over
the object in a rank 2 description (hence also achieving
better 1.).

GMPTs are more complicated than the generalised polariz-
ability tensors (GPT) derived by Ammari and Kang [6] for
characterising low conducting inclusions in a scalar electrical
impedance tomography (EIT) problem. They have interesting
mathematical properties, which we plan to catalogue in a
forthcoming work.

The novelties of this work can be summarised as follows:
We show, for the first time, that GMPT coefficients and their
spectral signature can be obtained in practice from measure-
ments of pHα´H0qpxq for a multiple coil arrangement using
a novel object manipulation device. The resulting measured
GMPT spectral signatures we obtain are in good agreement
with the simulated GMPT spectral signatures that we calculate
from numerical simulations using finite elements. We illustrate
that including the GMPT object characterisation information
is important to accurately predict pHα ´H0qpxq whenever
the background field is non-uniform.

The work is organised as follows: We begin with some
notation in Section II. Next, in Section III, we review the
complete asymptotic expansion of pHα ´H0qpxq as αÑ 0
and restrict consideration to terms associated with rank 2
MPT and rank 3 GMPT object characterisations. Then, in
Section IV, we apply the asymptotic expansion to a mathe-
matical model of the physical multiple coil arrangement that
will be used to generate H0 and to measure pHα ´H0qpxq
in the form of a transimpedance measurement. In Section V,
we describe how the transimpedance measurements can be
used to determine the MPT and GMPT coefficients by rotating
the object in a uniform and then non-uniform H0 using an
object manipulation device and, in Section VI, we explain how

the MPT and GMPT coefficients and their spectral signatures
can be predicted numerically. Section VII presents a series
of results that compare our measurements and simulations,
which demonstrate that GMPT coefficients and their spectral
signature can be obtained in practice and that they have an
important role to play in predicting pHα ´H0qpxq if H0 is
non-uniform. We finish, in Section VIII with some concluding
remarks.

II. NOTATION

We denote by ek the unit basis vector associated with the
kth coordinate direction in a standard orthonormal coordinate
system x “ px1, x2, x3q and, hence, the kth component of
a vector field v is given by ek ¨ v “ pvqk “ vk. We will
often use Einstein index summation notation so that a vector
can be described as v “ vkek and a rank 2 tensor using a
calligraphic font as M “ Mkjek b ej where summation is
implied over the repeated indices in each case. We will use
a Gothic font for higher order tensors so that a rank 3 can
be described as D “ Dijkei b ej b ek. The imaginary unit
is defined as i :“

?
´1 and we will also use the notation

}u}L2pθq :“
´

ş2π

0
|upθq|2dθ

¯1{2

to denote the L2 norm of u
over the angles 0 ď θ ď 2π.

III. COMPLETE ASYMPTOTIC EXPANSION

In [14] Ledger and Lionheart proved the result stated in The-
orem 3.1 below, for describing the magnetic field perturbation
pHα´H0qpxq at a position x due to the presence of a highly
conducting object Bα with conductivity σ˚ and permeability
µ˚ in a non-conducting background with conductivity σ “ 0
and the permeability of free space µ0. The result is applicable
away from the object when the eddy current approximation
of Maxwell’s equations applies [3], which means the excited
angular frequency ω “ 2πf (with f measured in Hz) of the
background field H0 is low and σ˚ is high. Additionally,
the topology of the object Bα and its size α limits the
applicability of the eddy current model, with the eddy current
model breaking down for a hoarse shoe shaped conductor at
lower frequencies compared to a solid object of the same
size due to capacitive coupling effects [26]. The description
Bα :“ αB ` z means that the object can be described by
a non-dimensional object B placed at the origin, scaled by a
size parameter α and translated by z.

Theorem 3.1: The magnetic field perturbation in the pres-
ence of a small conducting object Bα “ αB` z for the eddy
current model when ν :“ ωσ˚µ0α

2 is order one and x is away
from the location z of the inclusion is completely described
by the asymptotic formula

pHα ´H0qpxqi “
M´1
ÿ

m“0

M´1´m
ÿ

p“0

pD2`m
x Gpx, zqqri,Kpm`1qs

MKpm`1qJpp`1qpD
p
zpH0pzqqqJpp`1q`

pRpxqqi, (1)
Jpp` 1q :“rj, Jppqs “ rj, j1, j2, ¨ ¨ ¨ , jps,

Kpm` 1q :“rk,Kpmqs “ rk, k1, k2, ¨ ¨ ¨ , kms,
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with |Rpxq| ď Cα3`M }H0}WM`1,8pBαq, Gpx, zq :“
1{p4π|x´ z|q. In the above, Jppq and Kpmq are p– and m–
tuples of integers, respectively, with each index taking values
1, 2, 3, and Einstein index summation is implied over Kpm`1q
and Jpp` 1q. Also

pD2`m
x Gpx, zqqri,Kpm`1qs “

˜

m
ź

`“1

Bxk`

¸

pBxkpBxipGpx, zqqqq,

pDp
zpH0pzqqqJpp`1q “

˜

p
ź

`“1

Bzj`

¸

pH0pzq ¨ ejq,

and the coefficients of a rank 2` p`m generalised magnetic
polarizability tensor (GMPT) are defined by

MKpm`1qJpp`1q :“´ CKpm`1qJpp`1q `NKpm`1qJpp`1q,
(2)

where

CKpm`1qJpp`1q :“ ´
iνα3`m`pp´1qm

2pm` 1q!p!pp` 2q
ek¨

ż

B

ξ ˆ
`

pΠpξqqKpmqpθJpp`1q ` pΠpξqqJppqej ˆ ξq
˘

dξ,

(3a)

NKpm`1qJpp`1q :“

ˆ

1´
µ0

µ˚

˙

α3`m`pp´1qm

p!m!
ek¨

ż

B

pΠpξqqKpmq

ˆ

1

p` 2
∇ξ ˆ θJpp`1q ` pΠpξqqJppqej

˙

dξ.

(3b)

In the above, θJpp`1q satisfy the transmission problem

∇ξ ˆ µ
´1
˚ ∇ξ ˆ θJpp`1q ´ iωσ˚α

2θJpp`1q

´iωσ˚α
2pΠpξqqJppqej ˆ ξ “0 in B , (4a)

∇ξ ¨ θJpp`1q “0 in R3zB (4b)

∇ξ ˆ µ
´1
0 ∇ξ ˆ θJpp`1q “0 in R3zB , (4c)
rnˆ θJpp`1qsΓ “0 on Γ :“ BB, (4d)

rnˆ µ´1∇ξ ˆ θJpp`1qsΓ “

´pp` 2qrµ´1sΓpnˆ ejpΠpξqqJppqq on Γ, (4e)
ż

Γ

n ¨ θJpp`1qdξ “0, (4f)

θJpp`1q “Op|ξ|
´1q

as |ξ| Ñ 8 , (4g)

pΠpξqqJppq :“
p
ź

`“1

ξj` “ ξj1ξj2 ¨ ¨ ¨ ξjp and in the case Jppq “

H then pΠpξqqJppq “ 1.
Note that, compared to [14], we have chosen to simplify

the notation so that qC is now written as C and |

|M as M.
Furthermore, in this work, we will restrict consideration to
objects with µ˚ “ µ0 so that NKpm`1qJpp`1q “ 0 and
consider the case of M “ 2. This means the asymptotic
expansion we will consider includes the terms

pHα ´H0qpxqi “pD
2
xGpx, zqqikMkjpH0pzqqqj

`
1

8
pD3

xGpx, zqqikk1Dkk1jpH0pzqqj

´
1

6
pD2

xGpx, zqqikDkjj1pDzpH0pzqqqjj1

` pRpxqqi, (5)

with |Rpxq| ď Cα5}H0}W 3,8pBαq describing the behaviour
of the residual. In the above, the coefficients Mkj ”Mkj are
associated with a complex symmetric rank 2 MPT character-
isation M “Mkjek b ej , which follows since Mkj reduces
to the rank 2 MPT coefficients Mkj previously considered
in [12], [13], [15], [16] where it has been shown that Mkj “

Mjk. The coefficients Dkk1j and Dkjj1 are associated with
scaled rank 3 GMPT characterisations

D “ Dkk1jekbek1 bej , D “ Dkjj1ekbej bej1 , (6)

where

DKpm`1qJpp`1q :“ p´1qm2pm` 1q!p!pp` 2qCKpm`1qJpp`1q.
(7)

Furthermore, for µ˚ “ µ0, the GMPT has the following
symmetry

DKpm`1qJpp`1q “ DJpp`1qKpm`1q, (8)

which does not follow from reciprocity and is somewhat
involved to prove. The proof will form part of a forthcoming
work on the mathematical properties of GMPTs.

The coefficients Mkj are independent of the choice of
origin for ξ [4], [5], [16] and, hence, the MPT object charac-
terisation is independent of the object’s position. However, in
common with GPTs for the EIT problem [6], the coefficients
Dkk1j of the scaled rank 3 GMPT depend on the choice of
origin for ξ. For this work, we choose the origin to be the
object’s centroid (centre of mass assuming uniform density).

Using M alone to characterise objects has limitations since,
at most, an object is characterised by 6 complex coefficients
as a function of ω. However, for objects with rotational and/or
reflectional symmetries the number of independent coefficients
is much fewer and this makes it difficult to discriminate
between objects in object classification and to determine which
way an object (such as a cone) is pointing. By additionally
using D provides up to an additional 11 complex coefficients
as a function of ω, which can aid with discriminating between
objects when undertaking classification. Although, for objects
with mirror and/or reflectional symmetries, the number of
independent coefficients of D also reduces. In the following
we explain how the MPT and GMPT coefficients can be
measured and simulated in practice.

IV. MATHEMATICAL MODEL OF THE COIL ARRANGEMENT

The induced voltage in a coil C with a single clockwise
winding, for an object positioned at z, can be expressed as

V ind “

ż

C

pEα ´E0qpxq ¨ τdx

“

ż

S

∇ˆ pEα ´E0qpxq ¨ ndx

“iωµ0

ż

S

pHα ´H0qpxq ¨ ndx, (9)

where C “ BS, τ is the unit tangent to C and n is the
unit normal to S. Upon substitution of (1), the evaluation
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of V ind reduces to performing integrals of components of
pD2`m

x Gpx, zqq with respect to x over the surface S.
The particular coil configuration considered is shown in

Fig. 1 and consists of 8 receive (Rx) coils and 9 transmit (Tx)
coils coaxially arranged in a vertical stack so that n “ e3 in
(9). Coils Rx1-Rx4 are wound in a clockwise orientation while
coils Rx5-Rx9 are wound in an anticlockwise orientation.
Defining

wpnq “

"

1 n “ 1, . . . , 4
´1 n “ 5, . . . , 8

, (10)

then the induced voltage is given by the sum

V ind “ iωµ0

8
ÿ

n“1

wpnqNRxpnq

LRxpnq

ż

SRxpnq

pHα ´H0qpxq ¨ e3dx,

(11)

where SRxpnq, NRxpnq and LRxpnq are the enclosed surface,
number of turns and length of the nth Rx coil, respectively.
The background field H0 at the position z that is created by
the Tx coils can be expressed as the sum

H0pzq “H
Tx
0 pzq

“

9
ÿ

n“1

HcoilpNTxpnq, ITxpnq, LTxpnq, RTxpnq,

z1e1 ` z2e2 ` pz3 ´ LTxpnq{2´ pTxpnqqe3q, (12)

where NTxpnq, ITxpnq, RTx, LTx are the number of turns, cur-
rent flowing, radius and length of the nth Tx coil, respectively
and pTxpnq describes the vertical position (base) of the nth Tx
coil. In addition, if z ‖ e3, we have the well known form

HcoilpN, I, L,R, zq

“
NI

2L

¨

˝

L
2R ´

z3
R

b

1`
`

L
2R ´

z3
R

˘2
`

L
2R `

z3
R

b

1`
`

L
2R `

z3
R

˘2

˛

‚e3,

for the background field on axis resulting from a solenoid. Off-
axis, the representation of Hcoil is also known analytically [7].
For the coil arrangement considered, the details are provided in
Table I so that the overall height of the arrangement is 500mm.
The non-uniformity of the background field HTx

0 exterior to
the coil array is illustrated in the finite element simulation
shown in Fig. 2 paq, which is in close agreement with the
analytical model, as Fig. 2 pbq shows.

Furthermore, introducing

pHRx
0 pzqqk :“

8
ÿ

n“1

wpnqNRxpnq

LRxpnq

ż

Spnq

D2
xGpx, zq3kdx,

(13)
for the background field that would be produced by the Rx
coils if excited by a unit current source at position z then it
is easy to show that

pDzpH
Rx
0 qpzqqkk1

:“
8
ÿ

n“1

wpnqNRxpnq

LRxpnq

ż

Spnq

pDzpD
2
xGpx, zqqq3kk1dx

“ ´

8
ÿ

n“1

wpnqNRxpnq

LRxpnq

ż

Spnq

pD3
xGpx, zqq3kk1dx. (14)

paq

pbq

Fig. 1: Configuration of the multiple transmit and receive coil
arrangement showing paq turns in each coil and pbq the actual
coil array.

By substituting (5) into (11), replacing H0pzq by the expres-
sion given in (12) and using (13) and (14), it can be shown
that V ind takes the simple form

V ind “V ind
2 pMq ` V ind

3 pDq ` V ind
r , (15)

where V ind
2 pMq denotes the rank 2 contribution, V ind

3 pDq
denotes the rank 3 contribution and Vr ď Cα5}H0}W 3,8pBαq

denotes the residual, which, as we will see, will be small
for the problems we will consider. Explicitly, for the case
considered in this work,

V ind
2 pMq :“iωµ0pH

Rx
0 pzqqiMijpH

Tx
0 pzqqj (16a)

V ind
3 pDq :“iωµ0

`

´pDzpH
Rx
0 pzqqqkk1Mkk1jpH

Tx
0 pzqqj

`pHRx
0 pzqqkMkjj1pDzpH

Tx
0 pzqqqjj1

˘

“iωµ0

ˆ

´
1

8
pDzpH

Rx
0 pzqqqkk1Dkk1jpH

Tx
0 pzqqj

´
1

6
pHRx

0 pzqqkDkjj1pDzpH
Tx
0 pzqqqjj1

˙

“´ iωµ0Dkk1j

ˆ

1

8
pDzpH

Rx
0 pzqqqkk1pH

Tx
0 pzqqj

`
1

6
pHRx

0 pzqqjpDzpH
Tx
0 pzqqqkk1

˙

, (16b)
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NRxpnq 27 18 18 49 49 18 18 27
LRxpnq (mm) 10 4 4 22 22 4 4 10
pRxpnq (mm) 234 155 61 14 -36 -65 -159 -244
RRxpnq (mm) 220 220 220 220 220 220 220 220

ITxpnqNTxpnq (A) 3.67 1 1.67 1.67 1.67 1.67 1.67 1 3.67
LTxpnq (mm) 23.1 6.3 10.5 10.5 10.5 10.5 10.5 6.3 23.1
pTxpnq (mm) 226.9 172.6 119.1 57.25 -5.25 -67.75 -129.6 -178.9 -250
RTxpnq ( mm) 240 240 240 240 240 240 240 240 240

TABLE I: Parameters describing the multiple coil arrangement

paq

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

z
3
 [m]

22

22.5

23

23.5

24

24.5

25

25.5

26

|H
0
| 
[A

/m
] 

Exact |H
0
|

FEM |H
0
|

pbq

Fig. 2: Illustration of the background field showing paq the
simulated field lines of BTx

0 “ µ0H
Tx
0 around the coil array

using a finite element model and pbq |HTx
0 pzq| evaluated for

positions z along the axis of the coil array where z ‖ e3

comparing (12) with a finite element model of the coil array

where µ˚ “ µ0 has been assumed and the symmetry condition
(8) has been used in the latter result.

We observe that V ind
3 pDq provides a natural extension

of the familiar V ind
2 pMq term for a rank 3 GMPT object

characterisation. For an object placed on axis and in the

centre of the coil arrangement, HTx
0 pzq is near uniform and

the contribution V ind
2 dominates, while V ind

3 is negligible.
However, for an object placed outside of the coil arrangement
HTx

0 pzq is non-uniform and }DzpH
Tx
0 pzqq} can become large.

Indeed, if HTx
0 pzq is strongly non-uniform, V ind

3 pDq becomes
increasingly important and can dominate over V ind

2 pMq.
If an object B is rotated by an angle θ about a coordinate

axis, its transformation can be described by B1 “ RpθqpBq
where Rpθq is an orthogonal rotation matrix. Accordingly, the
coefficients of M and D transform as

M1
ij “pRqippRqjqMpq, (17a)

D1ijk “pRqippRqjqpRqkrDpqr. (17b)

Then, by replacing Mij by M1
ij and Dkk1j by D1kk1j in (16),

we obtain V ind
2 pM, θq and V ind

3 pD, θq for the rank 2 and rank 3
contributions to V indpθq as a function of object rotation angle.

Throughout, we will normalise the presented results of V ind

by ωi and we will refer to RepV ind{pωiqq as the reactive
and ImpV ind{pωiqq as the resistive components of the tran-
simpedance, respectively.

V. MEASUREMENT OF TENSOR COEFFICIENTS

The procedure for measuring the coefficients of M and D
for a given object αB breaks down in to first determining
those of M and then those of D for each excitation frequency
of interest. We describe each of these steps separately in the
following.

A. Measuring the coefficients of the rank 2 MPT
If the object’s position z is chosen to be along the axis of

the coil array, such that z ‖ e3, and if z3 is chosen within the
volume of the coil array, away from its ends, HTx

0 pzq is near
uniform. For the coil array described in Table I, this occurs
when ´0.155m ď z3 ď 0.155m, as shown in Fig. 2 pbq.
Hence, for objects placed in such locations, V ind

3 does not
contribute to V ind and the measurements V ind,measpθq can be
used to determine Mij . Noting that V ind

2 pM, θq is linear in
the coefficients of M, and that these are independent of the
object’s position, we can determine Mij as the solution to the
least squares problem

min
Mij

|gpθn,Mq|
2
“ min

Mij

Nθ
ÿ

n“1

ˇ

ˇV ind,measpθnq ´ V
ind
2 pM, θnq

ˇ

ˇ

2
,

where Nθ is the total number of angles θn considered. This
process is repeated for each excitation frequency of interest
leading to the object’s measured MPT spectral signature
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Consideration must be given to the number of angles as well as
to the number of rotation axes considered [13], [25] to ensure
that all the independent coefficients of M are properly found.

In practice, the above process is achieved by placing the
objects at the aforementioned location and by performing
rotations using the bespoke target orientation manipulator
shown in Fig. 3. Using this apparatus, objects are rotated
about different coordinate axes with a fixed degree increment.
For each orientation, a frequency sweep between fmin and
fmax is performed and V ind for each frequency recorded. The
control of system electronics and the data acquisition during
the experiments is done automatically.

Fig. 3: Target orientation manipulator capable of rotating
objects around one axis.

B. Measuring the coefficients of D

Once the coefficients of M are found, we can then deter-
mine the coefficients of D by placing the object at a position
z where the background field HTx

0 pzq is non-uniform. This is
achieved by placing the object on the axis of the coil array with
z3 ą 0.155m, performing rotations about different coordinate
axes and solving the least squares problem

min
Dkk1j

Nθ
ÿ

n“1

|hpθn,M,Dq|
2

“ min
Dkk1j

Nθ
ÿ

n“1

ˇ

ˇV ind,measpθnq ´ V
ind
2 pM, θnq ´ V

ind
3 pD, θnq

ˇ

ˇ

2
,

(18)

for Dkk1j for each frequency of interest leading to the object’s
measured GMPT spectral signature. Note that V ind

3 pD, θnq
is linear in the unknown Dkk1j and that V ind

2 pM, θnq can
be evaluated since the coefficients of M have been found
previously and the object position z has been chosen. As in
Section V-A, important consideration must be given to Nθ and
the choice of θn [13].

Given that the object is positioned manually, its position
z is only known approximately. If we know that the object
is placed on the e3 axis, an improved estimate of its vertical

elevation z3 can be found by solving the minimisation problem

min
z3

Nθ
ÿ

n“1

ˇ

ˇV ind,measpθnq ´ V
ind
2 pM, θn, z3q

ˇ

ˇ

2
, (19)

for the global minimum z3, where we have emphasised that
V ind

2 also depends on z3. Once this improved estimate is found,
it can be used in (18) to aid with determining Dkk1j .

In practice, the above process is achieved by placing objects
in the non-uniform part of the field by using the mechanical
arrangement in Fig. 4. The same approach of incrementing
the rotation by fixed angle increment and sweeping through
the frequencies fmin and fmax, as described in Section V-A, is
performed. However, the apparatus shown in this figure allows
the object to be placed in different positions in both vertical
and horizontal direction for each experiment. In particular,
the apparatus allows the vertical position of an object to be
adjusted in 10 mm steps using the slots on the arrangement.
The object’s horizontal position can be also adjusted in 10 mm
steps on both the x1 and x2 axes by placing the arrangement
into pre-marked positions on the lid of the coil arrangement

VI. PREDICTING THE TENSOR COEFFICIENTS USING
NUMERICAL SIMULATIONS

The numerical prediction of the coefficients of M and D
for a chosen object αB follows a similar procedure to that
described previously for the computation of the coefficients
of the rank 2 MPT [12], [13]. This involves approximating
the solution θJpp`1q to the transmission problem (4) by
constructing weak discrete finite element approximations using
an Hpcurlq conforming discretisation, which is appropriate
for this problem, where the both mesh spacing h and element
order q 1 can be refined in order to improve the accuracy of
the numerical solution. The Coulomb gauge ∇ ¨ θJpp`1q “ 0
has been circumvented by numerical regularisation [18]. We
use the NGSolve finite element library [27]–[29] for the
numerical computations presented in this work.

Following the computation of θJpp`1q for frequencies of
interest between fmin and fmax, the coefficients of M and D
are obtained by a simple post-processing involving integrals
over B using (3) leading to the object’s simulated MPT and
GMPT spectral signatures. We remark that this computation
could be accelerated by using a proper orthogonal decompo-
sition (POD) based reduced order model in a similar manner
to [33].

VII. RESULTS

We will focus on the situation where αB is chosen to
be slightly truncated copper, brass and stainless steel cones,
in turn. Cones have been chosen, since, while they have a
rotational and mirror symmetries, they still have non-zero
rank 3 GMPT coefficients and can be used to illustrate
the improvements offered over using MPTs alone for object
characterisation. The sizes of each of the truncated cones are
identical and have the dimensions of bottom radius 7.5mm,

1We use q rather than the usual p to denote the element order avoid
confusion with tensor indices
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Fig. 4: Target orientation manipulator capable of rotating
objects around one axis at different vertical and horizontal
positions.

top radius 0.5mm and a height of 15mm, hence we set α “
0.001m and B to be the non-dimensional truncated cone with
bottom radius 7.5, top radius 0.5 and height 15. The materials
of the cones are provided in Table II. While approximate
measurements of the conductivity of the cones specimens have
been made using a 4 terminal resistivity measurement, the
reference values are still believed to be more accurate than
these and, hence, have been employed in the simulations.

We have chosen the cone’s canonical orientation such that
the vertex of the cone is aligned with the e3 direction and
the base of the cone lies in the px1, x2q plane. This means
that the cone has a rotational symmetry about the x3 axis and
has reflectional symmetries about the x1 and x2 axes. Using
this information, we deduce that the 2 non-zero independent
coefficients of the complex symmetric M are M11 “ M22

and M33 [12]. In similar way, we deduce that the 4 non-
zero independent coefficients of D are D223 “ D113, D232 “

D131, D322 “ D311 and D333. By further noting the symmetry

property (8), we find that this reduces to just 2 non-zero
independent coefficients D223 “ D113 “ D322 “ D311 and
D333.

Given the reduced number of independent coefficients of
M and D for our chosen cones, placing the object on the
x3 axis and performing rotations about either the x1, or,
equivalently the x2, axis are sufficient to determine the 2 non-
zero independent coefficients of each of these tensors.

A. Copper cone

By following the procedure described in Section V-A, we
position the copper cone at z “ p0, 0, 0.15qm so that it lies in
a uniform HTx

0 pzq and measure V ind,measpθq as we rotate the
cone by an angle θ about the x1 axis. We choose this position
as the psuedo field generated by the receive coils (if they were
used as transmit coils) is most uniform at z “ p0, 0, 0.15qm
and z “ p0, 0,´0.15qm. While midpoint of the transmit coil
is at z “ p0, 0, 0qm, the receive coils do not have sensitivity at
this location, and we choose z “ p0, 0, 0.15qm as this easier to
access than z “ p0, 0,´0.15qm. For further details, see Figure
6 in [25]. We set Nθ “ 72 and choose θn “ n∆θ “ 2nπ{Nθ
radians so that measurements are made at 5 degree increments.
We use this measurement to determine M11 “ M22 and
M33 for 28 frequencies between 119.25Hz and 95 400 Hz
leading to the object’s measured MPT spectral signature. Then,
following the measurement of the coefficients of M, we
follow the procedure in Section V-B and move the cone to
z “ p0, 0, 0.343qm where HTx

0 pzq is non-uniform. Again
we measure V ind,measpθq as we rotate the cone by an angle
θ about the x1 axis. We make Nθ “ 72 measurements and
follow the procedure described in Section V-B to determine
D223 “ D113 “ D322 “ D311 and D333 for the same 28
frequencies between fmin “ 119.25Hz and fmax “ 95 400 Hz
leading to the object’s GMPT spectral signature.

To obtain the object’s MPT and GMPT spectral signatures
numerically, we follow the procedure in Section VI and
generate a mesh of 98 419 unstructured tetrahedra to discretise
the cone object B and fill the space to a truncated boundary
in the form of the box r´1000, 1000s3. By performing p-
refinement, we find that order q “ 3 elements lead to
convergence of the tensor coefficients M11 “ M22, M33,
D223 “ D113 “ D322 “ D311 and D333 for frequencies
between fmin “ 119.25Hz and fmax “ 95 400 Hz.

In Fig. 5, we show a comparison of the computed and
measured MPT and GMPT spectral signatures where excellent
agreement is observed for the computed and measured MPT
spectral signatures and good agreement is observed for the
computed and measured GMPT spectral signatures. The closer
agreement between the spectral signatures for the simulations
and measured MPT M, compared to the GMPT D is to be
expected given that the coefficients of M are two orders of
magnitude larger than those of D, which makes them easier
to measure. The maximum difference between the measured
and simulated M coefficients over the frequencies of interest
is around 0.8%, which can largely be attributed to noise and
measurement errors in the system with any discretisation errors
being much smaller. While the shape of the GMPT spectral
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Material µ˚ Reference σ˚(S/m) Measured σ˚(S/m) Simulations σ˚(S/m)
Copper µ0 5.95ˆ 107 [22] 7.63ˆ 107 5.95ˆ 107

Brass µ0 1.44ˆ 107 [24] 1.38ˆ 107 1.44ˆ 107

Stainless steel µ0 1.45ˆ 106 [8] 1.36ˆ 106 1.45ˆ 106

TABLE II: Material properties for the copper, brass and stainless steel cones.

signatures is well captured by the measurements, the accuracy
of the smaller, and harder to measure, D coefficients over
the frequencies of interest is lower, with differences ranging
from 1% to 25% for D333. We explain the reasons for the
larger differences in Section VII-D. One noticeable difference
between the simulations and measurements is the frequency
at which the curves for RepD322q “ RepD311q and ImpD333q

cross. Even from the limited range of frequencies considered,
we can see that both the real parts of the coefficients of
M and D illustrate a sigmoid behaviour with logω while
the imaginary parts of the coefficients of M and D have
single local maxima/minima with logω, which is reminiscent
of the spectral behaviour of the MPT that has already been
understood theoretically [15].

To illustrate the importance of including both the V ind
2 pMq

and V ind
3 pDq to predict V ind when the object is located

outside of the coil arrangement, we compare, in Fig. 6, the
measured transimpedance V ind,measpθq with V ind

2 pM, θq and
V ind

2 pM, θq`V ind
3 pD, θq, each as a function of rotation angle θ

about the x1 axis, for different frequencies of excitation for an
object at the position z “ p0, 0, 0.343qm using the simulated
MPT and GMPT spectral signatures. In each case, we see the
superior performance of V ind

2 pM, θq ` V ind
3 pD, θq to predict

V ind,measpθq compared to using V ind
2 pM, θq alone for an object

at this position, for all frequencies considered.
Next, we compare the performance of using the simu-

lated and measured MPT and GMPT coefficients to predict
V indpθq at different frequencies for a cone located at z “
p0, 0, 0.343qm. To do this, we compare, in Fig. 7, the reactive
and resistive parts of the following residuals V ind, measpθq ´
V ind

2 pM, θq, V ind, measpθq´V ind
2 pMmeas, θq, V ind

3 pDmeas, θq and
V ind

3 pD, θq, where M and D indicate the simulated MPT
and GMPT tensors and Mmeas and Dmeas the corresponding
measured tensors. We observe good agreement between the
different residuals indicating that using either both the simu-
lated MPT and GMPT coefficients or both the measured MPT
and GMPT coefficients provide a good prediction of V indpθq
at this location.

To confirm that V ind
2 pM, θq and V ind

3 pD, θq do provide
the dominant contributions to V ind,measpθq, and that other
higher order terms do not play a significant role, we express
V ind,measpθq in the form

V ind,measpθq “
K
ÿ

n“´K

cne
inθ,

and use a fast Fourier transform to determine the amplitudes
|cn|. Considering the products of rotation matrices in (17) that
describe how the coefficients of M and D transform under
object rotation and writing powers of cosine and sine functions
in terms of multiple angles, e.g. cos2 θ “ p1 ` cosp2θqq{2,

cos3 θ “ p3 cos θ ` cosp3θq{4 and cos4 θ “ p3 ` 4 cosp2θq `
cosp4θqq{8, we conclude that, if V ind,measpθq can be described
by a rank 2 tensor description, it will have cn being non-
zero for n “ 0,˘2 while, if it additionally contains terms
associated with a rank 3 description, then, cn for n “ ˘1,˘3
will also be non-zero. Furthermore, if V ind, measpθq additionally
contains terms associated with a rank 4 description, then, cn
for n “ ˘4 will also be non-zero (since in this case there
would be a product of 4 rotation matrices). In Fig. 8, we show
the results of applying this to the case of the cone located at
z “ p0, 0, 0.344qm and f “ 1 193 Hz and remark that the
results for other locations exterior to the coil array and other
frequencies are similar. We observe that V ind, measpθq has dom-
inant contributions associated with n “ 0,˘1,˘2,˘3, which
is consistent with a rank 3 tensor description being able to
fully describe its behaviour. Also shown is the corresponding
result for V ind

2 pM, θq ` V ind
3 pD, θq, which also has dominant

contributions associated with n “ 0,˘1,˘2,˘3, as expected.
To illustrate the importance of including both the V ind

2 pMq

and V ind
3 pDq to predict V ind at different object locations, we

compare, in Fig. 9, the measured transimpedance V ind,measpθq
with V ind

2 pM, θq and V ind
2 pM, θq`V ind

3 pD, θq, each as a func-
tion of rotation angle θ about the x1 axis, for different object
locations and a fixed frequency of f “ 3 816 Hz using the
simulated MPT and GMPT spectral signatures. As previously
observed for the fixed position of in z “ p0, 0, 0.343qm in
Fig. 6, we see that including the term V ind

3 pD, θq is important
to accurately predict V ind at different object locations. Note
the results presented in Fig. 9 use a larger angle increment of
∆θ “ 2π{24 radians, corresponding to 15 degrees, compared
to those presented in Fig. 6 in order to reduce the cost of the
measurements and, hence, the curves appear less smooth than
before, but the conclusion remains unchanged. In a similar
manner to Fig. 7, we show in Fig. 10 the corresponding
transimpedence residuals for different object locations where
we once again observe good agreement between the residual
predicted by the simulated and measured MPT and GMPT
coefficients.

Further to the results shown in Fig. 9 and 10, the accuracies
according to the error measures

ereactive
2 pMq “

}RepV ind,measpθq ´ V ind
2 pM, θqq}L2pθq

}RepV ind,measpθq}L2pθq
, (20a)

eresistive
2 pMq “

}ImpV ind,measpθq ´ V ind
2 pM, θqq}L2pθq

}ImpV ind,measpθq}L2pθq
, (20b)

ereactive
3 pM,Dq

“
}RepV ind,measpθq ´ V ind

2 pM, θq ´ V ind
3 pD, θqq}L2pθq

}RepV ind,measpθq}L2pθq
,

(20c)

eresistive
3 pM,Dq
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Fig. 5: Copper cone showing: spectral signature corresponding to paq computed coefficients of M and pbq measured coefficients
of M, pcq computed coefficients of D and pdq measured coefficients of D.

“
}ImpV ind,measpθq ´ V ind

2 pM, θq ´ V ind
3 pD, θqq}L2pθq

}ImpV ind,measpθq}L2pθq
,

(20d)

for a fixed frequency of f “ 3 816 Hz and the copper
cone at different positions according to the simulated and
measured coefficients of M and D are shown in Tables III
and IV, respectively. These indicate that the accuracy of the
transimpedance is improved from around 10% when only
the MPT is used to around 2% when either the simulated
or measured GMPTs are included for all object locations
considered. We have seen that D can be obtained from the
measurements V ind,measpθq if the object is placed in the non-
uniform field and including V ind

3 pDq is important whenever
H0 is non-uniform. Importantly, as remarked in Section III,
D provides additional complex coefficients as a function of
frequency in addition to those in M that can aid with object
discrimination when performing object classification. Next we
consider a brass and then a steel cone.

B. Brass cone
We repeat the procedures described in Section V-A to

measure M11 “ M22 and M33 at 28 frequencies between

fmin “ 119.25Hz and fmax “ 95 400 Hz leading to the brass
cone’s measured MPT spectral signature. Then, we repeat the
procedure in Section V-B to measure D223 “ D113 “ D322 “

D311 and D333 for the same 28 frequencies between fmin “

119.25Hz and fmax “ 95 400 Hz leading to the brass cone’s
measured GMPT spectral signature. To obtain the object’s
MPT and GMPT spectral signatures numerically, we follow
the procedure in Section VI and employ the same discretisation
used previously for the copper cone to simulate the coefficients
M11 “M22, M33, D223 “ D113 “ D322 “ D311 and D333

for frequencies between fmin “ 119.25Hz and fmax “ 95 400
Hz for the brass cone.

In Fig. 11, we show a comparison of the computed and
measured MPT and GMPT spectral signatures for the brass
cone where excellent agreement is observed for the computed
and measured MPT spectral signatures and good agreement
is observed for the computed and measured GMPT spectral
signatures. Again note that the non-zero independent coeffi-
cients of D are 2 orders of magnitude smaller than those of
M and, hence, we should not expect them to be measured
as accurately as those of M, with the difference between
the measured and computed MPT and GMPTs being similar
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Fig. 6: Copper cone positioned in a non-uniform field at position z “ p0, 0, 0.343qm comparing the reactive and resistive
parts of V ind,measpθq, V ind

2 pM, θq and V ind
2 pM, θq ` V ind

3 pD, θq, each normalised by ωi, showing paq f=1 193 Hz Reactive, pbq
f=1 193 Hz Resistive, pcq f=3 816 Hz Reactive, pdq f=3 816 Hz Resistive, peq f=12 402 Hz Reactive and pfq f “ 12 402 Hz
Resistive.

to those for the copper cone. A similar noticeable difference
between the simulations and measurements to the copper cone
is the frequency at which the curves for RepD322q “ RepD311q

and ImpD311q cross. Also, in a similar manner to Fig. 5,

we observe that the coefficients of both the real parts of the
coefficients of M and D show a sigmoid behaviour with logω
while the coefficients of the imaginary parts of the coefficients
of M and D have single local maxima/minima with logω.
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Fig. 7: Copper cone positioned in a non-uniform field at position z “ p0, 0, 0.343qm comparing the reactive and resistive parts
of V ind, measpθq ´ V ind

2 pM, θq, V ind, measpθq ´ V ind
2 pMmeas, θq, V ind

3 pDmeas, θq and V ind
3 pD, θq, each normalised by ωi, showing

paq f=1 193 Hz Reactive, pbq f=1 193 Hz Resistive, pcq f=3 816 Hz Reactive, pdq f=3 816 Hz Resistive, peq f=12 402 Hz
Reactive and pfq f “ 12 402 Hz Resistive.

Comparable curves to those produced in Fig. 6-10 have also
been found for the brass cone and similar agreements can
be drawn for this object. Hence, we only provide the tabular
summaries in Tables V and VI, which illustrate comparable

accuracies for the simulated and measured coefficients of M
and D for the brass cone positioned at different locations
compared to those shown in Tables III and IV.
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z (m) ereactive
2 pMq eresistive

2 pMq ereactive
3 pM,Dq eresistive

3 pM,Dq
(0,0,0.343) 0.096309 0.097819 0.017664 0.021213
(0,0,0.365) 0.096627 0.103190 0.023734 0.026163
(0,0,0.382) 0.092338 0.090466 0.025041 0.021797

(0.02,0,0.343) 0.097654 0.101031 0.023663 0.022160
(0.04,0,0.343) 0.092492 0.098122 0.017634 0.016462

TABLE III: Copper cone positioned in a non-uniform field comparing the error measures defined in (20) for computed M and
D tensors, a fixed frequency of f “ 3 816 Hz and different object locations.

z ereactive
2 pMmeasq eresistive

2 pMmeasq ereactive
3 pMmeas,Dmeasq eresistive

3 pMmeas,Dmeasq

0,0,0.343) 0.097677 0.12152 0.017625 0.020402
(0,0,0.365) 0.097935 0.14225 0.018959 0.023640
(0,0,0.382) 0.093599 0.16891 0.020277 0.021123

(0.02,0,0.343) 0.098964 0.14300 0.023077 0.022878
(0.04,0,0.343) 0.093994 0.22635 0.018504 0.013540

TABLE IV: Copper cone positioned in a non-uniform field comparing the error measures defined in (20) for measured M and
D tensors, a fixed frequency of f “ 3 816 Hz and different object locations.

z ereactive
2 pMq eresistive

2 pMq ereactive
3 pM,Dq eresistive

3 pM,Dq
(0,0,0.343) 0.113650 0.104790 0.047887 0.023568
(0,0,0.361) 0.108850 0.102740 0.042399 0.026610
(0,0,0.381) 0.094877 0.090336 0.031265 0.023487

(0.02,0,0.341) 0.094400 0.101360 0.025379 0.019437
(0.04,0,0.336) 0.103850 0.102580 0.027634 0.020289

TABLE V: Brass cone positioned in a non-uniform field comparing the error measures defined in (20) for computed M and
D tensors, a fixed frequency of f “ 3 816 Hz and different object locations.

z ereactive
2 pMmeasq eresistive

2 pMmeasq ereactive
3 pMmeas,Dmeasq eresistive

3 pMmeas,Dmeasq

(0,0,0.343) 0.113610 0.117590 0.040301 0.021583
(0,0,0.361) 0.111670 0.120900 0.036134 0.024457
(0,0,0.381) 0.096422 0.120910 0.022136 0.016521

(0.02,0,0.341) 0.096394 0.113750 0.035334 0.020949
(0.04,0,0.336) 0.104000 0.115820 0.033121 0.023151

TABLE VI: Brass cone positioned in a non-uniform field comparing the error measures defined in (20) for measured M and
D tensors, a fixed frequency of f “ 3 816 Hz and different object locations.

C. Steel cone

We repeat the procedures described in Section V-A to
measure M11 “ M22 and M33 at 28 frequencies between
fmin “ 119.25Hz and fmax “ 95 400 Hz leading to the steel
cone’s measured MPT spectral signature. Then, we repeat
the procedure in Section V-B to measure D223 “ D113 “

D322 “ D311 and D333 for the same 28 frequencies between
fmin “ 119.25Hz and fmax “ 95 400 Hz leading to the
steel cone’s measured GMPT spectral signature. To obtain the
object’s MPT and GMPT spectral signatures numerically we
the employ the same discretisation as before and repeat the
process described for the copper and brass cones.

In Fig. 12 we show a comparison of the computed and
measured MPT and GMPT spectral signatures for the steel
cone where excellent agreement is observed for the computed
and measured MPT spectral signatures and good agreement is
observed for the computed and measured GMPT spectral sig-
natures Again note that the non-zero independent coefficients
of D are 2 orders of magnitude smaller than those of M and,
hence, we should not expect them to be measured as accurately
as those of M, in this case the minimum difference between
the measured and computed MPT coefficients is much less

than 1% and the minimum differences between measurement
and simulations for D333 is 5% while for D322 it is 9.7%.
In a similar manner to Fig. 5 and 11, we can see that the
coefficients of both the real parts of M and D illustrate a
sigmoid behaviour with logω while the coefficients of the
imaginary parts of M and D have single local maxima/minima
with logω.

In a similar manner to the brass cone, we only provide
the tabular summaries in Tables VII and VIII, which illustrate
comparable accuracies for the simulated and measured coeffi-
cients of M and D for the steel cone positioned at different
locations.

D. Accuracy of MPT and GMPT measurements

The high level of accuracy in the measured MPT coefficients
has been achieved as the multi-coil arrangement was originally
designed and built to characterise objects by their rank 2
MPTs. The design, experimental repeatability and accuracy
of the system has been reported in [25]. In this work, we have
extended our original measurement system to allow, for the
first time, the measurement of the rank 3 GMPT coefficients
by placing the object in the non-uniform H0 field outside of
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z ereactive
2 pMq eresistive

2 pMq ereactive
3 pM,Dq eresistive

3 pM,Dq
(0,0,34.3) 0.096921 0.092994 0.024522 0.021665
(0,0,36.1) 0.095550 0.089722 0.030501 0.027052
(0,0,38.1) 0.099927 0.085682 0.052521 0.033339
(2,0,34.1) 0.103670 0.090383 0.056694 0.022046
(4,0,33.7) 0.097569 0.093506 0.024934 0.023298

TABLE VII: Steel cone positioned in a non-uniform field comparing the error measures defined in (20) for computed M and
D tensors, a fixed frequency of f “ 3 816 Hz and different object locations.

z ereactive
2 pMmeasq eresistive

2 pMmeasq ereactive
3 pMmeas,Dmeasq eresistive

3 pMmeas,Dmeasq

(0,0,34.3) 0.097585 0.100140 0.019174 0.031757
(0,0,36.1) 0.095101 0.102820 0.012218 0.029557
(0,0,38.1) 0.100400 0.100500 0.046089 0.032477
(2,0,34.1) 0.103190 0.096255 0.056485 0.030406
(4,0,33.7) 0.097142 0.097605 0.024977 0.022437

TABLE VIII: Steel cone positioned in a non-uniform field comparing the error measures defined in (20) for measured M and
D tensors, a fixed frequency of f “ 3 816 Hz and different object locations.
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Fig. 8: Copper cone positioned in a non-uniform field at
position z “ p0, 0, 34.3qcm showing the Fourier coefficients
in the expansion of the paq reactive and pbq resistive parts of
V ind,measpθq for the case of f “ 1 193 Hz.

the bore of the coil arrangement. There are several potential
sources of error in the GMPT measurements. Firstly, the

bore of the measurement apparatus is electrostatically shielded
to remove any capacitive coupling of a target object to the
coils. However, this is not the case when the target object
is placed outside of the bore where H0 is non-uniform.
This is further complicated when the object is rotated as the
capacitive coupling may be different for different orientations.
This results in experimental error that is observed in the
higher frequencies in the measured spectrum. Secondly, the
measurement system was designed to be sensitive across the
bore where H0 is uniform, which means high signal-to-noise
ratio (SNR) in this area. However, the SNR starts to get
smaller as the target object moves away from where H0pzq is
uniform. This means there may be errors in the experimental
results introduced by measurement noise. Thirdly, the appa-
ratus was built to ensure a precise position and orientation
manipulation, these manipulations will contain inaccuracies,
which result in differences in H0pzq as well as the rotational
configuration of the object compared to the analytical model.
Moreover, any small imperfections of the coils, which do
not affect rank 2 MPT characterisation results in the uniform
field, may become more apparent in measurements outside of
this region. Fourthly, a four-wire resistivity measurement was
used to characterise resistivity of the cones. However, these
may have small errors in the results meaning the materials
modelled may be slightly different in simulations. While these
sources of errors are not significant individually, the smaller
rank 3 GMPT coefficients and the cumulative sum of these
errors, leads to greater inaccuracies in their measurement when
compared to those of the MPT. To improve the accuracy of
GMPTs significantly would require the design of a new coil
arrangement that is optimised to produce non-uniform H0

fields, which can be predicted with a high level of accuracy,
and address the points raised above.

VIII. CONCLUSION

In this work we have explained the limitations of using
an MPT spectral signature alone to characterise objects since
the object is then characterised by just 6 complex coefficients
as a function of ω. For objects with rotational and/or re-
flectional symmetries the number of independent coefficients
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Fig. 9: Copper cone positioned in a non-uniform field comparing the reactive and resistive parts of V ind,measpθq, V ind
2 pM, θq

and V ind
2 pM, θq ` V ind

3 pD, θq, each normalised by ωi, for a fixed frequency of f “ 3 816 Hz showing paq z “ p0, 0, 0.365qm
Reactive, pbq z “ p0, 0, 0.365q m Resistive, pcq z “ p0.02, 0, 0.343q m Reactive, pdq z “ p0.02, 0, 0.343q m Resistive, peq
z “ p0.04, 0, 0.343q m Reactive and pfq z “ p0.04, 0, 0.343q m Resistive.

is much fewer and this makes it difficult to discriminate
between objects in object classification and to determine
which way an object is pointing. Using GMPTs provides
additional complex coefficients as a function of ω, which

can aid with discriminating between objects and, hence, they
have the potential to improve classification. We have shown,
for the first time, that GMPT coefficients and their spectral
signature can be obtained in practice from measurements
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Fig. 10: Copper cone positioned in a non-uniform field comparing the reactive and resistive parts of V ind,meas ´ V ind
2 pMq,

V ind,meas´V ind
2 pMmeasq, V ind

3 pDmeasq and V ind
3 pDq, each normalised by ωi, for a fixed frequency of f “ 3 816 Hz showing paq

z “ p0, 0, 0.365q m Reactive, pbq z “ p0, 0, 0.365q m Resistive, pcq z “ p0.02, 0, 0.343q m Reactive, pdq z “ p0.02, 0, 0.343q
m Resistive, peq z “ p0.04, 0, 0.343q m Reactive and pfq z “ p0.04, 0, 0.343q m Resistive.

of pHα ´ H0qpxq from a coil arrangement. The resulting
measured GMPT spectral signature we have obtained are in
good agreement with the simulated GMPT spectral signatures
we found from numerical simulations using finite elements,

while the larger measured MPTs that exhibit a very high level
of accuracy. We have illustrated that including the GMPT
object characterisation information is important to accurately
predict pHα´H0qpxq whenever the background field is non-
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Fig. 11: Brass cone showing: spectral signatures corresponding to paq computed coefficients of M and pbq measured coefficients
of M, pcq computed coefficients of D and pdq measured coefficients of D.

uniform for a sequence of copper, brass and steel cones placed
at different locations. Our future work includes designing and
building a new measurement system that can achieve greater
accuracy of GMPT coefficients.

In this work, we have limited consideration to objects with
µ˚ “ µ0 and to the cone geometry. For magnetic objects, N
can not be neglected and includes important characterisation
information. Furthermore, many practical objects have fewer
(or no) symmetries compared to the cone, which increases the
number of MPT and GMPT coefficients needed to characterise
the object. The effect of an object’s symmetry group on GMPT
coefficients will be the subject of a forthcoming work.
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currents model for the Maxwell equations. SIAM Journal on Applied
Mathematics, 60(5):1805–1823, 2000.

[4] H. Ammari, J. Chen, Z. Chen, J. Garnier, and D. Volkov. Target detection
and characterization from electromagnetic induction data. Journal de
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