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Abstract
The early detection of terrorist threat objects, such as guns and knives, through
improved metal detection, has the potential to reduce the number of attacks and
improve public safety and security. To achieve this, there is considerable poten-
tial to use the fields applied and measured by a metal detector to discriminate
between different shapes and different metals since, hidden within the field per-
turbation, is object characterization information. The magnetic polarizability
tensor (MPT) offers an economical characterization of metallic objects and its
spectral signature provides additional object characterization information. The
MPT spectral signature can be determined from measurements of the induced
voltage over a range of frequencies in a metal signature for a hidden object. With
classification in mind, it can also be computed in advance for different threat and
non-threat objects. In this article, we evaluate the performance of probabilistic
and non-probabilistic machine learning algorithms, trained using a dictionary
of computed MPT spectral signatures, to classify objects for metal detection. We
discuss the importance of using appropriate features and selecting an appro-
priate algorithm depending on the classification problem being solved, and we
present numerical results for a range of practically motivated metal detection
classification problems.
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1 INTRODUCTION

The purpose of this article is to compare the performance of probabilistic and non-probabilistic machine learning (ML)
algorithms, trained using object characterization information, to classify objects for metal detection. Key applications
include in the discrimination between threat and non-threat objects in security screening, whereby the early detec-
tion of knives and guns has the potential to reduce the number of attacks and improve safety and security. Further
applications include distinguishing between metallic clutter (e.g., ring-pulls, coins, shrapnel) and threat items for the
improved identification of hidden anti-personnel mines and unexploded ordinance (UXO) in areas of former conflict,
improving identification of metallic objects of significance in archaeological searches and treasure hunts, improving
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non-destructive testing as well as discriminating between real and fake coins in vending machines and automatic
checkouts.

This article builds on our earlier work1 and our recent MPT-Library open data set,2 where we have established
an extensive suite of simulated threat and non-threat object characterizations using their magnetic polarizability tensor
(MPT) spectral signatures. The complex symmetric MPT,

[𝛼B, 𝜔, 𝜎∗, 𝜇r] = ([𝛼B, 𝜔, 𝜎∗, 𝜇r])ijei ⊗ ej

= (̃[𝛼B, 𝜔, 𝜎∗, 𝜇r] + i[𝛼B, 𝜔, 𝜎∗, 𝜇r])ijei ⊗ ej, (1)

has been shown to offer an economical characterization of conducting permeable objects and explicit formulae for the
computation of its 6 independent complex coefficients,  [𝛼B, 𝜔, 𝜎∗, 𝜇r])ij, which are a function of the exciting angular
frequency, 𝜔, the object’s size, 𝛼, its shape, B, as well as its conductivity, 𝜎∗, and relative permeability, 𝜇r, have been
obtained.3-6 In the above, ̃[𝛼B, 𝜔, 𝜎∗, 𝜇r] and [𝛼B, 𝜔, 𝜎∗, 𝜇r] denote the MPT’s real imaginary parts, i ∶=

√
−1 and ei is

the ith orthonormal unit coordinate vector. The MPT spectral signature refers to the fact that the MPT is captured as a
function of frequency, which has been shown to provide important additional object characterization information.7 Our
suite of object characterizations has been obtained using our MPT-Calculator software,8 which employs a reduced
order model based on proper orthogonal decomposition (POD) for efficient calculations and an a posteriori error estimate
to certify its predictions with respect to full order model solutions provided by the open source finite element library
NGSolve.9-12 Our computational MPT spectral signature simulations are in excellent agreement with measured MPT
spectral signatures13,14 and, thus, they provide realistic object characterizations.

Measured MPT spectral signatures have previously been used in conjunction with a k nearest neighbors (KNN) classi-
fication algorithm15 and other ML approaches.16 In addition, existing examples of practical MPT classification of objects
include in airport security screening,15,17 waste sorting,18 and anti-personal landmine detection.19 In such situations,
induced voltages are measured over a range of frequencies by a metal detector from which the MPT spectral signature of
the hidden object is obtained and then a classifier applied.20-22 However, dictionaries of measured MPT coefficients con-
tain unavoidable errors if the object is placed in a non-uniform background field that varies significantly over the object
as well as other errors and noise associated with capacitive coupling with other low-conducting objects or soil in the back-
ground. There will also be other general noise (e.g., from amplifiers, parasitic voltages and filtering).23 This means the
accuracy of the measured MPT coefficients is about 1–5 %,15,23,24 depending on the application. Furthermore, obtaining
a large dictionary is time-consuming and there may be practical challenges in acquiring a sufficiently large selection of
objects.

Simulated MPT spectral signatures and a simple dictionary classifier were employed for homogenous25 and
inhomogeneous6 objects, respectively, but the full potential of using a dictionary of simulated MPT spectral signatures
and ML classifiers has yet to be investigated. Dictionaries of simulated MPT spectral signatures allow noise at an appro-
priate level to the desired application to be added and the richness of the dataset allows them to be applied to a large range
of different metal detectors operating at different frequencies. Furthermore, our MPT-Library can be further extended
to characterize other objects of different sizes and with different conductivities using simple scaling results at negligible
computational cost,26 which make it ideal for creating (very) large datasets needed for training ML classifiers that would
be impractical with measured MPT spectral signatures.

In this work, we present the first systematic review of the performance of a wide range of probabilistic and
non-probabilistic ML classifiers for discriminating between different classes of metallic objects using a dictionary of
simulated MPT spectral signatures. The practical classification problems we consider are relevant for discriminating
between threat and non-threat objects in security screening and discriminating between real and fake coins in vending
machines and automatic checkouts. However, our article is not only of interest to metal detection experts, but is also of
educational value to engineers interested in learning about ML classification algorithms. In particular, the classification
problem we present is of a medium size, which cannot be trivially solved by hand, is different to well-known image clas-
sification problems, and, therefore, presents an interesting test case for investigating the performance of different ML
algorithms.

The novelties of our article are as follows: We present a novel approach to training ML classifiers using our simulated
MPT-Library enhanced by simple scaling results to create large dictionaries of objects. We choose tensor invariants of
MPT spectral signatures as novel object features and explain the benefits of our approach over eigenvalues of MPT used
in all previous ML classifiers for this problem. We include a novel well-reasoned approach for justifying the performance
of different ML classifiers for practical classification problems using uncertainty quantification, statistical analysis, and



2078 WILSON et al.

ML metrics. Furthermore, we explore the ability of our classification approaches to classify unseen threat objects and also
discuss the limitations of our current approach.

The presentation of the material proceeds as follows: In Section 2, we briefly review the use of invariants of MPT spec-
tral signatures as ML features and describe the creation of our dictionary for training ML algorithms. Then, in Section 3,
we review a range of probabilistic and non-probabilistic classifiers that will be considered in this work and describe a
simple approach for investigating uncertainty. Section 4 discusses a range of ML metrics for assessing the performance
of classifiers. This is followed in Section 5 by the application of the classifiers to a series of practically motivated classi-
fication problems, where each dataset is analyzed and the suitability of ML classifiers investigated and their subsequent
performance critically analyzed. We finish with some concluding remarks.

2 MPT SPECTRAL SIGNATURE INVARIANTS FOR OBJECT
CLASSIFICATION

Bishop27 describes the process of classification as taking an input vector x and assigning it to one of K discrete classes
Ck, k = 1,… ,K. For example, in security screening, the simplest form of classification with K = 2 involves only the
classes threat object (C1) and non-threat object (C2), and one with a higher level of fidelity might include the classes of
metallic objects such as key (C1), coin (C2), gun (C3), knife (C4),… where the class numbers are assigned as desired. He
recommends that it is convenient to use a 1-of-K coding system in which the entries in a vector t ∈ RK take the form

ti ∶=

{
1 if i = k,
0 otherwise,

if the correct class is Ck. Requiring that we always have
∑K

k=1tk = 1, then this approach has the advantage that tk can be
interpreted as the probability that the correct class is Ck.

In Reference 1, we have considered different choices for the F features in the input vector x ∈ RF , which are asso-
ciated with either the eigenvalues, principal invariants or deviatoric invariants of ̃[𝛼B, 𝜔, 𝜎∗, 𝜇r] and [𝛼B, 𝜔, 𝜎∗, 𝜇r],
respectively, evaluated at different frequencies 𝜔 = 𝜔m, m = 1,… ,M. In this article, we restrict our focus to the situation
where

xi =

{
Ij(̃[𝛼B, 𝜔m, 𝜎∗, 𝜇r]), i = j + (m − 1)M,

Ij([𝛼B, 𝜔m, 𝜎∗, 𝜇r]), i = j + (m + 2)M,
(2)

with j = 1, 2, 3, m = 1,… ,M. For exact arithmetic, and a rank 2 tensor ,

I1() ∶= tr() = 𝜆1() + 𝜆2() + 𝜆3(), (3a)

I2() ∶= 1
2
(
tr()2 − tr(2)

)
= 𝜆1()𝜆2() + 𝜆1()𝜆3() + 𝜆2()𝜆3(), (3b)

I3() ∶= det() = 𝜆1()𝜆2()𝜆3(), (3c)

are the principal invariants. In the above, tr(⋅) denotes the trace, det(⋅) the determinate and we assume the entries of 
are arranged as a symmetric 3 × 3 matrix, which we also call . We define x in this way for the following reasons:

1. Using features that are invariant to object rotation is important as both a hidden object’s shape and its orientation are
unknown. Using either eigenvalues 𝜆i(̃), 𝜆i(), i = 1, 2, 3 or the principal tensor invariants overcomes this issue as
both are invariant to an object’s unknown orientation and, hence, simplifies the classification problem.

2. Invariants overcome the ordering issue that is associated with assigning the eigenvalues as the invariants are
independent of how the eigenvalues are assigned.

3. The invariants can be computed as either products or sums of the entries of  without first calculating 𝜆i(). Hence,
they are smooth functions of the tensor coefficients. Rather than a sub-determinant method, an alternative approach
for finding I3 follows by first converting  to (upper) triangular form and the determinant follows by the product of
its diagonal entries. However, while the eigenvalues of a triangular matrix are its diagonal entries, the eigenvalues
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of  are not preserved when it is converted and further computation is needed. There are many iterative compu-
tational alternatives for finding 𝜆i() (see, e.g., Reference 28), which are preferred to directly finding the roots of
det( − 𝜆I) = 0, especially for large matrices. Although, even a simple low-cost approach for directly determining the
eigenvalues of a symmetric 3 × 3 matrix still requires determining an inverse cosine of a non-linear function of the
matrix’s trace and determinant29 and, hence, involves non-smooth operations. Thus, the finding 𝜆i() may result in a
loss of accuracy in practical numerics compared to using the simple sums or products to find Ii().

4. The (probabilistic) ML classification algorithms we will consider are better at capturing an underlying relationship
between features and the likelihood of class that is smooth, albeit, with noisy data. The processes involved in finding
eigenvalues may lead to a greater entanglement between class and features that a classifier might need to unravel
compared to using invariants.

As an example, Figure 1 shows a comparison of the principal tensor invariants for a selection of 4 different metallic
watch styles computed by the MPT-Calculator software. These calculations were performed in a similar manner to
those for other geometries in Reference 1. The object dimensions are in mm so 𝛼 = 0.001 m and the results shown are for
the case where the material is gold, so that 𝜎∗ = 4.25 × 107 S/m and 𝜇r = 1 (MPT-Library also includes MPT spectral
signatures for watches made of platinum and silver). An unstructured mesh of tetrahedra is used to discretize each object
and the truncated unbounded region which surrounds it, resulting in meshes ranging from 14,935 to 175,217 elements. In
each case, the truncated boundary for the non-dimensional transmission problem is [−1000, 1000]3. Order p = 4 elements
were applied on the meshes and snapshot solutions obtained at 13 logarithmically spaced frequencies over the range
1 ≤ 𝜔 ≤ 1 × 1010 rad/s. The MPT spectral signature for each object was produced using the projected proper orthogonal
decomposition (known as PODP) method26 using a relative singular value truncation of 10−4. Also shown is a vertical line,
which indicates the value of𝜔 that the eddy current model assumption is likely to become inaccurate for this geometry.1,30

Finally, we include a grey window corresponding to the frequency range 5.02 × 104 ≤ 𝜔 ≤ 8.67 × 104 rad/s, where mea-
surements taken by a commercial walk through metal detector,15 and the greater range 7.53 × 102 ≤ 𝜔 ≤ 5.99 × 105 rad/s,
where measurements are taken using recent MPT measurement system,13 the latter being able to capture more informa-
tion from the signature. These spectral signatures will form part of the dictionary for object classification, which will be
discussed later in Section 5.2.

2.1 Construction of the dictionary

Each class Ck may be comprised of G(k) geometries and, in addition, we consider V (k) variations in object size and object
materials so that each class is comprised of P(k) different samples. In total, over all the classes, we have P =

∑K
k=1P(k)

samples.
Given the information 𝛼, B, 𝜎∗, 𝜇r the MPT spectral signature described by ̃[𝛼B, 𝜔, 𝜎∗, 𝜇r] and [𝛼B, 𝜔, 𝜎∗, 𝜇r] can

be obtained, as described above, and then the invariants follow from (2). We can repeat this process for each of the
geometries B(gk), gk = 1,… ,G(k) that makes up the class. To take account of the V (k) different object sizes and materials,
we draw physically motivated samples 𝛼 ∼ N(m𝛼, s𝛼) and 𝜎∗ ∼ N(m𝜎∗ , s𝜎∗ ), where N(m, s) denotes a normal distribution
with mean m and standard deviation s. While it would be possible to also obtain the MPT spectral signature using the
MPT-Calculator software for each sample, instead, we reduce the computational cost of obtaining these spectral sig-
natures by using the simple scaling results we have derived in Lemmas 2 and 3 of Reference 26. Given an MPT spectral
signature of an object for a given 𝛼, B, 𝜇r, and 𝜎∗, these results predict the MPT spectral signature of another object with
the same B and 𝜇r, but different 𝜎∗ and 𝛼, at negligible computational cost. The results hold for objects with homoge-
neous materials and there are no restrictions on 𝜔 (up to the limit of the eddy current model), but assume that a broader
band MPT spectral signature is available for the original object compared to the gray windows highlighted in Figure 1.
The invariants then again follow from (3). Finally, by setting the class labels, the pairs (xp ∈ RF , tp ∈ RK), p = 1,… ,P(k)*

for all the samples that make up the class Ck are obtained. Repeating this process for each of the classes gives rise to the
general dictionary

D = ((x1, t1), (x2, t2),… , (xP, tP)), (4)

or, alternatively,

D = (D(1),D(2),… ,D(K)), (5)
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(A)

(C) (D)

(E) (F)

(B)

F I G U R E 1 Set of watches: Comparison of tensor invariants. (A) I1(̃), (B) I1(), (C) I2(̃), (D) I2(), (E) I3(̃), and (F) I3()

where

D(k) = ((x1, t1), (x2, t2),… , (xP(k) , tP(k) )), (6)

is the dictionary associated with class Ck and consists of P(k) observations.
In practice, we split the dictionary stated in (4) as D = (D(train),D(test)) where D(train) is the training and D(test) is the

testing dataset, respectively. The purpose of this splitting is to enable the classifier to be trained on given data D(train) and
then tested on previously unseen data D(test). Although there is no optimal choice for the ratio of training to testing, we
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(A) (B)

F I G U R E 2 Set of British coins: 1 p coin 𝛼B, 𝛼 = 0.001 m, 𝜇r = 1, and 𝜎∗ = 4.03 × 107 S/m showing the spectral signatures for noiseless
and realizations of noise with SNRs of 40, 20, and 10 dB. (A) I1(̃[𝛼B, 𝜔, 𝜎∗, 𝜇r]) and (B) I1([𝛼B, 𝜔, 𝜎∗, 𝜇r])

will employ a ratio of 3:1 throughout, which is commonly used in ML classification and is in the range of 3:1 to 4:1 that
Kuhn and Johnson31(p71) suggest.

2.2 Noise

When MPT spectral signatures for hidden objects are measured by a metal detector they will contain un-avoidable
errors, as pointed out in Reference 26. For example, if an object is placed in a non-uniform background magnetic
field that varies significantly over the object there is a modeling error since the background field in the rank 2 MPT
model assumes the field over the object is uniform. There are other errors and noise associated with capacitive cou-
pling with other low-conducting objects or soil, if the object is buried, as well as other generals noise (e.g., from
amplifiers, parasitic voltages, and filtering).23 The accuracy of the signature can be improved by repeating the mea-
surements and applying averaging filters, at the cost of spending more time to take the measurements. However,
in a practical setting, there is trade-off to be made in terms of improving the accuracy against the measurement
time and, consequently, the accuracy of the measured MPT coefficients is about 1–5 %,15,23,24 depending on the
application.

The MPT spectral signature coefficients we will use have been produced numerically using our MPT-Calculator
software tool.1,26 This means that the MPT coefficients are obtained with higher accuracy than can currently be achieved
from practical measurements, since the spectral signature is accurately computed for a large frequency range (up to the
limit of the eddy current model) rather than noisy measurements being taken at a small number of discrete frequencies.
The advantage of this is it allows a much larger library of objects and variations of materials to be considered, which is all
highly desirable for achieving greater fidelity and accuracy when training an ML classifier. But, for practical classification,
noise appropriate to the system must be added.

After filtering and averaging, the noise remaining in an MPT spectral signature measured by a metal detector can be
well approximated by Gaussian additive noise, with a level dependent on the factors identified above. Hence, in this work,
we add noise to our simulated MPT spectral signatures in the following way: We specify a signal noise ratio (SNR) in deci-
bels and use this to determine the amount of noise to add to each of the complex tensor coefficients ([𝛼B(p), 𝜔, 𝜎∗, 𝜇r])ij as
a function of frequency for each object 𝛼B(p) in the dictionary. Considering each of the i, jth MPT coefficients individually,
we introduce

v ∶= ([𝛼B(p), 𝜔m, 𝜎∗, 𝜇r])ij,
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and calculate a noise-power measure as

Noise = vv
10SNR∕10 .

The noisy coefficients are then specified as

([𝛼B(p), 𝜔m, 𝜎∗, 𝜇r])ij + eij, where eij =
√

noise
2

(u + iv),

with u, v ∼ N(0, 1). The above process is repeated for the 6 independent coefficients of the complex symmetric MPT and
for each frequency in the spectral signature. SNR values of 40, 20, and 10 dB lead to values of | eij

ij
| = 0.01, 0.10, and 0.32

on average, which is equivalent to 1 %, 10 %, and 32 % noise, respectively. One realization of the effect of the added noise
on I1(̃) and I1() for a British one penny coin can be seen in Figure 2. Further details about the MPT spectral signature of
British coins are provided in Section 5.1.1. Note that our model for noise results in a noise power measure that varies over
the MPT spectral signature according to vv. If the physical system behaves differently, this can be taken in to account by
applying an appropriate model for the noise at this stage. Once the noisy  at each 𝜔m are found, the principal invariants
of the real and imaginary parts of  at each 𝜔m easily follow. Hence, an entry (x, t) ∈ D is replaced with (xnoise, t). By
repeating this for all objects leads to the updated dictionary D.

3 CLASSIFICATION

In this section, we provide a quick hands-on review of ML classification. Readers who are familiar with this subject should
skip this section as this material can be found in the references we cite below.

3.1 Probabilistic versus non-probabilistic classification

Applied to classification problems, Bayes’ theorem can be expressed in the form27

p(Ck|x) = p(x|Ck)p(Ck)
p(x)

, k = 1,… ,K, (7)

which relates the posterior probability density function p(Ck|x) to the likelihood probability density function p(x|Ck) and
the prior probability density function p(Ck) where, for classification,

p(x) =
K∑

n=1
p(x|Cn)p(Cn),

is easily explicitly obtained as the normalizing constant.
In the inference stage of probabilistic classification, one seeks to design a classifier 𝛾k(x) that provides a probabilistic

output, which approximates p(Ck|x). On the other hand, non-probabilistic classifiers either predict a class Ck with cer-
tainty or, more commonly, have a statistical interpretation that provides a frequentist approximation p(Ck|x) ≈ 𝛾k(x) to
p(Ck|x). One measure of accuracy of classification is the mean squared error (MSE)

MSE(𝛾k) = Ex[𝛾k(x) − p(Ck|x)]2, (8)

where Ex is the expectation with respect to p(x).32(p309) If desired, this can be summed over the classes k = 1,… ,K or
considered for each class. Other metrics are considered in Section 4.

Given approximations p(Ck|x) ≈ 𝛾k(x) for classes Ck, k = 1,… ,K, the class decision is typically achieved using the
maximum a posteriori (MAP) estimate arg maxk∈K(p(Ck|x)) ≈ arg maxk∈K(𝛾k(x)), that is, the MAP estimate corresponds
to the class Cn with n such that

n = arg max
k∈K

(𝛾k(x)). (9)
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However, the MAP may have drawbacks if their are several similar probabilities and/or if the data is noisy. Hence,
understanding the uncertainty in the approximations of p(Ck|x) are also important. We consider this in Section 3.5.

3.2 Bias and variance

The classifiers we will consider are based on ML algorithms. For an ML method Γ, which takes D = D(train) as the input
and returns a learned classifier 𝛾k, k = 1,… ,K, Manning et al.32(pp309–312]) define the Learning-error(Γ) = ED[MSE(ΓD)]
as a measure of accuracy of the classifier, which is to be minimized, and they show that it can be expressed as

Learning-error(Γ) ∶= Ex[bias(Γ, x) + variance(Γ, x)],
bias(Γ, x) ∶= [p(Ck|x) − EDΓD(x)]2,

variance(Γ, x) ∶= ED[ΓD(x) − EDΓD(x)]2,

where ΓD(x) implies that the ML method is applied to data set D and outputs approximations p(Ck|x) ≈ 𝛾k(x) to p(Ck|x),
k = 1,… ,K, for data x.

Bias measures the difference between the true p(Ck|x) and the prediction ΓD(x) averaged over the training sets.32(p311)

Bias is large if the classifier is consistently wrong, which may stem from erroneous assumptions. A small bias may indicate
several things and not just that the classifier is consistently correct, for further details, see Reference 32. Related to high
bias is underfitting, which refers to a classifier that is unable to capture the relationship between the input and output
variables correctly and produces large errors on both the training and testing data sets.

Variance is the variation of the prediction of learned classifiers and is the average difference between ΓD(x) and its
average EDΓD(x).32(p311) Variance is large if different training sets give rise to different classifiers and is small if the choice
of training set has only a small influence on the classification decisions, for further details, see Reference 32. Related to
high variance is overfitting, which is the opposite of underfitting, and refers to a classifier that has too much complexity
and also learns from the noise resulting in high errors on the test data.

The ideal classifier would be a classifier having low bias and low variance, however, the two are inextricably linked and
there is therefore a trade off between two.27,32 While the performance of classifiers is very application dependent, linear
classifiers tend to have a high bias and low variance and non-linear classifiers tend to have a low bias and high variance.32

The ML methods Γ that we will consider are commonly found in established ML libraries such as scikit-learn,
which is the implementation that we will use. The finer details of the different methods can be found in References 27,
33, and 34, among many others, although we give a brief summary of the methodologies for those less familiar with the
approaches and to set notation. We start with non-probabilistic methods and then proceed to probabilistic classifiers.

3.3 Non-probabilistic classifiers

3.3.1 Decision trees

Tree based algorithms can simply be interpreted as making a series of (binary) decisions that ultimately lead to the
prediction of a class. For F = 2, this results in the partition of the feature space into a series of K rectangular regions
corresponding to the different classes. To establish the regions, and, hence the classes, a tree is constructed where, at
each node, a binary decisions about a component of x, and the process is terminated with a decision at the leaf-node
(for example, if x1 ≤ t1 and x2 ≤ t2 then the class is C1, whereas if x1 ≤ t1 and x2 > t2 the class is C2, etc.). In order to
grow a tree, a greedy algorithm is applied to decide how to split the variables, the split points and the topology of the
tree.33(p308) Growing a tree that is too large may overfit the data, while a small tree may not capture the structure. To
overcome this, a larger than needed tree is usually grown and is then pruned. To understand how this works, consider
a tree, then by applying the rules of the tree, a subset of the training data for its m node is obtained. It then follows
that p̂mk is the proportion of this data that has class Ck and the associated class is determined as k(m) = arg maxk p̂mk.
The pruning is then achieved by applying a cost-complexity optimization based on the node impurity measures
misclassification error, Gini index, or cross-entropy, which can each be written in terms of [(non-linear) functions and/or
sums of] p̂mk. For further details, see Reference 27 (p666) and Reference 33 (p309). Decision trees are often used as a base
classifier for more advanced ensemble methods such as gradient boost and random forests discussed below.
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3.3.2 Random forests

The random forests classifier is an example of what is known as “a bootstrap aggregating (bagging) algorithm”
that attempts to reduce the variance of the typically high-variance low-bias decision tree algorithm.33(p587) As Hastie
et al.33(p587) continue to describe, the idea behind bagging is to average many noisy, but unbiased models to reduce their
variance. Trees are notoriously noisy, and hence benefit from averaging. Since each tree generated by bagging is identically
distributed then expectation of an average of such trees is the same as the expectation of any of them. This means that bias
unchanged, but random forests offer the hope of improvement by variance reduction. For details of their implementation,
we refer to Reference 33 (Chap15).

3.3.3 Support vector machine

A support vector machine (SVM) classifier generalizes simple linear classifiers (e.g., Fisher’s linear discriminant analysis)
by producing non-linear, rather than linear, classification boundaries. These are obtained by constructing a linear bound-
ary in a transformed version of the feature space, which becomes nonlinear in the feature space.27(p325),33(Chap12),35 So,
after making a transformation 𝝍(x) ∶ RF → RF̃ with F̃ ≥ F being possibly infinite dimensional,† the goal of the classifier
is to learn how to determine w and w0 in

G(x) = wT𝝍(x) + w0, (10)

with ||w|| = 1 such that it predicts C1(say) if G(x) < 0 and C2 if G(x) > 0. For the separable case, the idea behind SVM is to
find the hyperplane that creates the biggest margin, defined by 2M, between the training data describing the two classes.
Given N training points (x1, y1), (x2, y2),… , (xN , yN) with yi ∈ {−1, 1} indicating the class label, then this problem can be
framed as the optimization problem

max
w,w0,||w||=1

M,

subject to yi(wT𝝍(xi) + w0) ≥ M, i = 1,… ,N, (11)

which can also be rephrased as a convex optimization problem (quadratic criterion and linear constraints). In the
non-separable case, slack variables s1,… , sN are introduced to deal with points that lie on the wrong side of the margin
and the linear constraint is replaced by yi(wT𝝍(xi) + w0) ≥ M(1 − si). For further details, and its computational imple-
mentation using Lagrange multipliers, see Reference 33 (p420). This practical implementation involves the introduction
of symmetric positive definite or symmetric positive semi-definite kernel functions k(x, x′) = 𝝍(x′)T𝝍(x),33(p424) which
avoids the introduction of𝝍(x) itself, but imposes limitations on their choice in order that optimization problem remains
convex. Typically kernel types include polynomial, Gaussian, and radial basis function kernels, however, we limit our
investigation to the latter in this article.

To apply SVM to multi-class problems, the problem is reduced into a series of binary classification problems. This
is done by employing either an ovo (one vs. one) or an ovr (one vs. rest) strategy, we have chosen the former, where an
SVM is trained for each possible binary classification. This leads to K(K−1)

2
models being trained, for example in a 3-class

problem (K = 3) we would train a classifier to separate the pairs (C1,C2), (C1,C3), and (C2,C3), we then create a voting
scheme based on these classifiers.

3.4 Probabilistic classification

We will consider problems with K > 2 and, in this case, it is beneficial for the practical probabilistic classifiers we describe
below to write (7) in the form of the softmax function (also known as the normalized exponential)

p(Ck|x) = 𝜎(x) ∶=
exp ak∑K

k=1 exp ak
, (12)

where ak = ln(p(x|Ck)p(Ck)).
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If p(x|Ck) has a simple Gaussian form, the evaluation of p(Ck|x) for given x becomes explicit. However, in many
practical cases, p(x|Ck) will have a complicated form and this will dictate the use of classifier 𝛾k(x) that approximates
p(Ck|x) instead. Nonetheless, all probabilistic classifiers benefits from establishing (approximations of) the likelihood of
each of the classes Ck, k = 1,… ,K rather than just a single output.

We explore some alternative ML methods Γ, which provide probabilistic classifiers, below.

3.4.1 Logistic regression

In the case that p(x|Ck) has a simple Gaussian form, a suitable linear classifier is logistic regression.27(Chap4) This is based
on the following assumptions

1. The likelihood probability distribution is Gaussian:

p(x|Ck) =
1

(2𝜋)F∕2|𝚺|1∕2 exp
(
−1

2
(x − mk)T𝚺−1(x − mk)

)
,

where mk is the mean of all xi, (xi, ti) ∈ D(k), that are associated with class Ck and 𝚺 is a covariance matrix.
2. The covariance matrix 𝚺 is common to all the classes.

In this case, the evaluation of p(Ck|x) is explicit with ak in (12) replaced with the rescaled ãk for K > 227

ãk = w̃T
k x + w̃k0,

where

w̃k = 𝚺−1mk,

w̃k0 = −1
2

mk𝚺−1mk + ln p(Ck).

In the generative approach, the learning involves first computing mk and 𝚺 directly from the training data D(train), while
in the discriminative approach, the (K − 1)(F + 1) coefficients of w̃k and wk0 compared to the KF + F2∕2 coefficients
needed otherwise are found by numerical optimization from D(train). When applied to other data sets, this results in an
approximation p(Ck|x) ≈ 𝛾k(x) to p(Ck|x). Note, that only w̃k and w̃k0 for k = 1,… ,K − 1 need to be determined since we
know

∑K
k=1p(Ck|x) = 1, which allows the approximation p(CK|x) ≈ 𝛾K(x) to be found from 𝛾k(x), k = 1,… ,K − 1.

3.4.2 Multi-layer perceptron

If p(x|Ck) does not have a simple form, and p(Ck|x) is not explicit, then the multi-layer perceptron (MLP) neural network
can be applied in an attempt to approximate p(Ck|x).27(Chap5) For example, for a K > 2 class problem using 3 layers (with 1
input, 1 hidden, and 1 output) and J internal variables (neurons) in the hidden layer, the approximation to p(Ck|x) takes
the form

p(Ck|x) ≈ 𝛾k(x,w) = 𝜎

( J∑
j=1

w(2)
kj 𝜎

( F∑
i=1

w(1)
ji (x)i + w(1)

j0

)
+ w(2)

k0

)
, (13)

where w(1)
ji , w(2)

kj are the J(F + 1 + K) + K coefficients of w to be found from network training and 𝜎(⋅) is the softmax
activation function defined in (12). In our case, the input layer comprises of the features x ∈ RF and output layer are the
approximate posterior probabilities 𝛾k(x,w), k = 1… ,K. If the number of internal variables in each hidden layer is fixed
at J, and there are L hidden layers, then the total number of parameters, w(1)

ji , w(2)
ji , …, which describe the network, that

need to be found are J2(L − 1) + J(F + L + K) + K. Given N training points (x1, t1), (x2, t2),… , (xN , tN), and following a
maximum likelihood27(p232) approach, the parameters are found by optimizing a logloss error function evaluated over the
training data set
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E(w) = −
N∑

n=1

K∑
k=1

(tn)k ln 𝛾k(xn,w), (14)

or, alternatively, they can be found by a Bayesian approach.27(p277)

As remarked by Richard and Lippmann,36 MLP can provide good estimates of p(Ck|x) if sufficient training data are
available, if the network is complex enough and if the classes are sampled with the correct a priori class probabilities in the
training data. Nonetheless, designing appropriate networks, with the correct number of hidden layers and neurons, can
be challenging. Furthermore, a complex network with a large number of neurons can require a large amount of training
data to avoid overfitting.

3.4.3 Gradient boost

Gradient boost is an example of what is known as a “boosting algorithm.”37,38 Boosting attempts to build a stronger
classifier by combining the results of weaker base classifiers through a weighted majority vote33(Chap10) and, in the case of
gradient boost, this is achieved through optimization using steepest descent. As described by Friedman,37 gradient boost
can be applied to approximating p(Ck|x) in probabilistic classification. By again considering (14), with 𝛾k(xn,w) replaced
by (12) with x = xn, and choosing the parameters w = w(x) as (w(x))k = wk(x) = ak(x), then the kth component of the
negative gradient of the loss function is

rk = −𝜕E(w)
𝜕wk

=
N∑

n=1
(tn)k − 𝛾k(xn,w).

Starting with an initial guess a[0]
k (x) = 0, k = 1,… ,K, then, for a given x, an iterative procedure is used to improve the

estimate p(Ck|x) ≈ 𝛾k(x,w[m]) of p(Ck|x) at iteration m. In this procedure, K decision trees are trained at each iteration
to predict rk, k = 1,… ,K, and the leaf nodes of the tree are then used to update a[m]

k (x) until a convergence criteria is
reached. For details of the practical implementation, see Reference 37.

3.5 Understanding uncertainty in classification

For the majority of the classifiers we will consider, an ML algorithm ΓD trained on dictionary D produces a classifier
ΓD(x) = 𝛾k(x), which approximates p(Ck|x) and provides an indication of the likelihood of the class Ck being correct. We
then base the decision as to the correct class based on the MAP estimate. When this process is repeated for different pairs
(xi, ti) ∈ T = D(test), 𝛾k(xi) may be different for each xi. It is useful to explore how sensitive 𝛾k(xi) is to changes in xi when
it is evaluated for different (xi, ti) ∈ T𝓁 = D(test,(𝓁)) associated with the test data for one class C𝓁 . To do this, we consider
confidence intervals for the average ET𝓁

𝛾k(x).
A first approach might be to use the sample mean and sample variance

𝛾k = 1
P(test,(𝓁))

P(test,(𝓁))∑
i=1

𝛾k(xi) and Sk =

√∑P(test,(𝓁))

i=1 (𝛾k(xi) − 𝛾k)2

P(test,(𝓁)) ,

to construct an interval in the form

𝛾k − CV Sk√
P(test,(𝓁))

≤ ET𝓁
𝛾k(x) ≤ 𝛾k + CV Sk√

P(test,(𝓁))
. (15)

In the above, CV is a critical value based on a t-test and the confidence level chosen. However, in practice, if 𝛾k → 0.5 as
the sample size P(test,(𝓁)) → ∞ and, we have small confidence bounds, we might wrongly conclude that 𝛾k(x) = 0.5 with a
high degree of confidence. Instead, this may also indicate that half the observations are predicting 𝛾k(xi) ≈ 0 and the half
are predicting 𝛾k(xi) ≈ 1, which has the same sample mean. This can occur, since at most Sk = 0.5, and, for large P(test,(𝓁)),
we find the confidence bounds produced by (15) are narrow due to division by this quality in computation of the bounds.
Hence, 𝛾k and (15) do not give any insight into the variation within the different observations 𝛾k(xi).
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Instead, ordering 𝛾k(xi) as

O(Ck) = (𝛾kx1), 𝛾k(x2),… , 𝛾k(xP(test,(𝓁)) )), such that 𝛾k(xi) ≤ 𝛾k(xi+1), (16)

we define the yth-percentile

𝛾k,y = (O(Ck)) y
100

P(test,(𝓁)) , (17)

and use interpolation between neighboring values if y
100

is not an integer. We then consider the median value of 𝛾k(x),
given by 𝛾k,50, as the average and use the percentiles corresponding to Q1 ≡ 𝛾k,25, Q3 ≡ 𝛾k,75 and 𝛾k,5, 𝛾k,95 to understand
uncertainty in the predictions.

4 EVALUATING THE PERFORMANCE OF CLASSIFIERS

We describe metrics for assessing performance are applicable to both probabilistic and non-probabilistic classifiers given
D(train) and D(test) data sets.

4.1 Metrics

4.1.1 Confusion matrices, precision, sensitivity, and specificity

We begin by recalling the definitions of true positive, false positive, true negative, and false negative for a given class Ck
(see, e.g., Reference 39).

• True positive (TP), the case where the classifier predicts x belongs to Ck and is correct in its prediction.
• False positive (FP) (type 1 error), the case where the classifier predicts x belongs to Ck and is incorrect in its prediction.
• True negative (TN), the case where the classifier predicts x does not belong to Ck and is correct in its prediction.
• False negative (FN) (type 2 error), the case where the classifier predicts x does not belong to Ck and is incorrect in its

prediction.

Following the training of a classifier, its performance can be evaluated on the test data set D(test). Applying the classifier
to each sample (xn, tn) ∈ D(test,(i)), where the true class label is Ci, the number of predictions of each class Cj, j = 1,… ,K
can be counted and the result recorded in the (C)ijth element of a confusion matrix C ∈ RK×K . Repeating this process for
i = 1,… ,K leads to the complete matrix.‡ The 4 cases (TP, FP, TN, FN) for each class Ck can be defined in terms of (C)ij
as34,39

TP(Ck) ∶= (C)kk, FN(Ck) ∶=
K∑
j=1
j≠k

(C)kj,

FP(Ck) ∶=
K∑

i=1
i≠k

(C)ik, TN(Ck) ∶=
K∑

i=1
i≠k

K∑
j=1
j≠k

(C)ij,

and the precision, sensitivity, and specificity for each of the classes Ck using39

Precision(Ck) ∶=
TP(Ck)

TP(Ck) + FP(Ck)
= TP(Ck)

#predicted positives for Ck
,

Sensitivity(Ck) ∶=
TP(Ck)

TP(Ck) + FN(Ck)
= TP(Ck)

#actual positives for Ck
,

Specificity(Ck) ∶=
TN(Ck)

TN(Ck) + FP(Ck)
= TN(Ck)

#predicted negatives for Ck
.
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The precision and sensitivity (also known as the true positive rate or recall) are measures of the proportion of positives
that are correctly identified and specificity (also called the true negative rate) measures the proportion of negatives that
are correctly identified.

The entries in confusion matrices are often presented as frequentist probabilities (i.e., (C)ij is normalized by∑K
p=1

∑K
q=1(C)pq), which, as the sample size P(k) becomes large, provides an approximation to p(Cj|x) with (x, t) ∈ D(test,(i)).

We will also present confusion matrices in this way.

4.1.2 𝜅 score

Possible choices for a metric, which provides an overall score of the performance of the classifier, include accuracy, the F1
score and Cohen’s 𝜅 score.39-43 Variants of the commonly used F1 score include the macro-averaged F1 score (or macro F1
score), the weighted-average F1 score (or weighted F1 score), and the micro-averaged F1 score (micro F1 score). However,
the F1 score can sometimes lead to an incorrect comparison of classifiers.40,44 As Powers44 notes, the macro F1 score is
not normalized, which is overcome by the weighed F1 score and the F1 score is not symmetric with respect to positive
and negative cases. Some of these drawbacks are taken in to account by using the micro F1 score, however, the 𝜅 score
also takes into account chance agreement.41,42 This is useful when comparing problems with both, differing numbers of
instances per class and differing numbers of classes as it takes the chance a naive classifier has into account. For these
reasons, we will use the 𝜅 score defined as

𝜅 ∶=
Accuracy − Random accuracy

1 − Random accuracy
, (18)

for comparing classifiers where

Accuracy ∶=
∑K

k=1TP(Ck)∑K
k=1TP(Ck) + FN(Ck)

,

Random accuracy ∶=
K∑

k=1

(TP(Ck) + FN(Ck)) ⋅ (TP(Ck) + FP(Ck))
(TP(Ck) + FP(Ck) + TN(Ck) + FN(Ck))2 .

4.2 Validation methods

Evaluating the performance of different classifiers can be considerably enhanced by employing cross validation.31 This is
particularly important if D(test) is small and, otherwise, may lead to inaccurate predictions of a classifier’s performance.
We have chosen to employ the Monte Carlo cross validation (MCCV) technique (also known as “leave group out cross
validation”).31(p71) This involves performing 𝓁 iterations where, for each iteration, the dataset D is split into training and
testing D = (D(test),D(train)) with D(train) and D(test) being drawn differently from D each time, irrespective of the splittings
in previous iterations. Other variants of cross validation include k-fold cross validation, repeated k-fold cross validation
and bootstrapping, for further details, see Kuhn and Johnson.31 Kuhn and Johnson explain that no resampling method
is uniformly better than another and that the differences between the different methodologies is small for larger samples
sizes, which further motivates that actually performing cross validation is more important than the method chosen for
doing so.

5 RESULTS

5.1 Classification of British coins

5.1.1 Construction of the coin dictionary

To create the coin dictionary, we follow the approach described in Section 2.1. We choose the kth class Ck, k = 1,… ,K = 8,
to correspond to the kth British coin denomination one penny (1 p), two pence (2 p), five pence (5 p), ten pence (10 p),
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(A) (B)

F I G U R E 3 Set of British coins: 1 p coin (class C1) for P(k) = P∕K = 2000, with 𝛼 ∼ N(0.001, 8.4 × 10−6) m and
𝜎∗ ∼ N(4.03 × 107, 9.52 × 105) S/m showing the histograms for the distribution of the spectral signatures (A) I1(̃[𝛼B(1), 𝜔, 𝜎∗, 𝜇r])
and (B) I1([𝛼B(1), 𝜔, 𝜎∗, 𝜇r])

twenty pence (20 p), fifty pence (50 p), one pound (£ 1), two pounds (£ 2), respectively, in order of increasing value. The
coins have different geometries, and, in some cases different materials,1 although, within each class, we restrict ourselves
to a single geometry G(k) = 1 and consider a fixed P(k) = P∕K number of samples for each class so that P(k) = V (k) in
this case. We use P(k) = 2000 for coin classification unless otherwise stated. The shape B(k) of the kth coin class is as
described in the specification of Table 1 in Reference 1 and in our MPT-Library2 we have previously obtained the MPT
spectral signatures for each coin geometry. From these, we choose the signatures evaluated at M equally spaced 𝜔m such
that 5.02 × 104 ≤ 𝜔m ≤ 8.67 × 104 rad/s, although we have also considered the larger frequency range of 7.53 × 102 ≤

𝜔m ≤ 5.99 × 105 rad/s, which leads to very comparable results45 to those presented here. To account for the fact that
the measured MPT coefficients will be noisy, we illustrate in Figure 2 realizations of noise being added to the spectral
signatures of I1(̃) and I1() for the 1 p coin. The curves in this figure correspond to the cases of no noise and noise with
SNR values of 40, 20, and 10 dB.

The V (k) variations account for the fact that within each class there can be:

1. Variation in the object size 𝛼, such that the volume in the different observations of coins of a certain denomination
can change. While it is expected that a coins size may be fairly uniform when they leave the mint, they are likely to
become increasingly bashed and dented once they enter circulation, hence their object size may change over time.
Hence we choose the object size to be ±2.52 % of the coins specification. We set m𝛼 = 0.001 m for each coin and set
s𝛼 = 0.001(1.0252 − 1)∕3 = 8.4 × 10−6 m, that is, to be 1∕3 the difference of the upper limit and the respective mean.

2. Variation in the object conductivity/conductivities 𝜎∗(x) to account for variations in the manufacturing process, such
that the conductivity in the different observations of coins of a certain denomination can change. In most cases, the
coins are assumed to be homogeneous conductors, but for £ 1 and £ 2 coin denominations the objects are each an
annulus. As the coins dominant composition material is copper, using46,47 we find an upper limit for conductivity to be
±7.09 % of the coins specification. We set m𝜎∗ corresponding to the conductivities of each coin denomination, so for a
1 p coin, for example, m𝜎∗ = 4.307 × 107 S/m and set s𝜎∗ in a similar way to s𝛼 , so that s𝜎∗ = 4.307 × 107(1.0709 − 1)∕3 =
9.52 × 105 S/m.

3. Note that the object’s permeability will be fixed as 𝜇r = 1 as we assume all the coins considered are non-magnetic.1

Given that p
(
−3 ≤

𝛼−m𝛼

s𝛼
≤ 3

)
= 0.9974, we expect 99.74 % of the object sizes generated to fall within our prescribed

variation in object sizes due to being bashed and dented in circulation. Similarly, we expect 99.74 % of the 𝜎∗ values
generated to fall within our prescribed variation in 𝜎∗. Overall, this means that 0.9974 ⋅ 0.9974 = 0.9948 or 99.48 % of the
values generated are representative of genuine currency.
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(A)

(C) (D)

(B)

F I G U R E 4 Set of British coins: 1 p coin (class C1) for P(k) = P∕K = 2000, with 𝛼 ∼ N(0.001, 8.4 × 10−6) m and
𝜎∗ ∼ N(4.03 × 107, 9.52 × 105) S/m showing the histograms of (Z − mX )∕sX , presented in the form of probability densities, where X is
instances of the following (A) I1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]), (B) I1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]), (C) 𝜆1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]), and (D) 𝜆1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) at
distinct frequencies 𝜔m

The effect of these samples on the MPT spectral signature is illustrated in Figure 3 for the 1 p coin class (C1) and
noiseless data. We now explore this further: Given 𝛼 ∼ N(0.001, 8.4 × 10−6) m, 𝜎∗ ∼ N(4.03 × 107, 9.52 × 105) S/m, draw-
ing P(k) samples of 𝛼 and 𝜎∗ and applying the scaling results in Lemmas 2 and 3 of Reference 26, we obtain the histograms
of the random variables X = I1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) ∼ p(x1+(m−1)M|C1) and X = I1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) ∼ p(x1+(m+2)M|C1)
shown in Figure 3. Then, by taking cross sections at selected frequencies 𝜔m we obtain the histograms shown in
Figure 4, which are presented in the form of probability densities. The corresponding distributions obtained by sampling
X = 𝜆1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) and X = 𝜆1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) are also included in this figure. In each case, these distri-
butions have been normalized using the transformation Z = (X − mX )∕sX , where mX and sX indicates the mean and
standard deviation of X§ and a curve of best fit made through the histogram. As a comparison, the standard normal
distribution is included. Notice that the normalized sample distributions of X = I1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) for different 𝜔m
are identical, as are those for X = I1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) for different 𝜔m, and have a close fit to the standard normal
distribution. The conclusion is similar for the other invariants and other coins. This outcome can be explained by the
central limit theorem, which implies, given a large enough sample size, we expect the samples of I1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r])
and I1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) to follow a normal distribution even if the parent distribution is not normal.¶ The normal-
ized sample distributions of X = 𝜆1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) and X = 𝜆1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) also follow a normal distribution,
but the fit is not as good as for the invariants. The results are similar for other eigenvalues and other coins. For
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F I G U R E 5 Set of British coins: linear feature space splitting for the classes Ck, k = 1,… ,K, for a simplified case of F = 2 features based
on maxk 𝛾k(x) for logistic regression and P(k) = P∕K = 2000 for (A) noiseless and SNR of (B) 40 dB, (C) 20 dB, (D) 10 dB

our chosen 𝛼 ∼ N(0.001, 8.4 × 10−6) m, 𝜎∗ ∼ N(4.03 × 107, 9.52 × 105) S/m and smaller sample sizes, the distributions
of X = I1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]), X = I1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]), X = 𝜆1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]), and X = 𝜆1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r])
still approximately follow a normal distribution with the fit being superior for the invariants. By considering different
instances of noise, similar histograms to those shown in Figure 4 can be obtained and again similar conclusions about
the resulting distributions of the eigenvalues and invariants at each 𝜔m apply.

5.1.2 Classification results

For the coin classification problem, we restrict consideration to the logistic regression classifier and the default settings
of scikit-learn, as Figure 4 indicates that a normal distribution is a good approximation for the sample distributions
of Ii(̃[𝛼B(k), 𝜔m, 𝜎∗, 𝜇r]) and Ii([𝛼B(k), 𝜔m, 𝜎∗, 𝜇r]), i = 1, 2, 3, for a sufficiently large sample size. We have also observed
that the feature space can be separated linearly. To illustrate this, we begin by examining the simplest case of just F =
2 features, I1(̃[𝛼B(k), 𝜔1, 𝜎∗, 𝜇r]) and I1([𝛼B(k), 𝜔1, 𝜎∗, 𝜇r]), and M = 1 with 𝜔1 = 6.85 × 104 rad/s. Figure 5 shows the
class boundaries when the MAP estimate (9) is applied for different levels of noise, the crosses indicate the locations
of the means mk for each class obtained from D(train) and the circles indicate the samples from D(test) assuming a 3:1
training–testing D = (D(train),D(test)) splitting and MCCV with 𝓁 = 100 (as described in Section 4.2), which we employ
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(A) (B)

F I G U R E 6 Set of British coins: Overall performance of logistic regression classifier as a function of P(k) and different numbers of
frequencies M using the 𝜅 score (18) for a testing noise SNR = 10 dB, for (A) noiseless training data and (B) training data with SNR = 10 dB

throughout. From this figure, we observe the class boundaries change only slightly if noise with SNR of 40 dB is added
and, with greater noise, the changes to the boundaries are only moderate. It is also possible to see that the number of
misclassifications is very small for SNR = 40 and 20 dB and still modest for 10 dB, which has a 𝜅 = 0.66 score using (18).
Furthermore, and importantly, the locations of the means mk for each class do not change significantly for P(k) = P∕K =
2000 since using this large number of instance per class has the effect of largely averaging out the effects of noise and
the object variations that we previously illustrated in Figures 2 and 3. While this figure indicates that the samples form a
p(x|Ck) that is normally distributed, especially for noiseless and noisy data with SNR = 40 and 20 dB, which is consistent
with the assumptions of this classifier, described in Section 3.4.1, we observe that the assumption of a common covariance
matrix between the classes does not hold for coin data set. The variance between the features is anisotropic for each cluster,
as indicated by different sized and different orientated ellipses, which also becomes increasingly apparent for increased
noise levels. While logistic regression typically has a high-bias and low-variance, we expect its bias to be lower for this
problem than others given the above.

This behavior also carries over when we use F = 6M and greater M. In Figure 6, we illustrate the overall performance
of the classifier using the 𝜅 score (18) as a function of P(k) for test data with SNR= 10 dB noise and (A) for noiseless training
data and (B) noisy training data with SNR = 10 dB. The different curves correspond to M = 1, 2, 3, 5, 10, 20 frequencies.
The curve for M = 1 corresponds to the same frequency considered in Figure 5, but has F = 6 features instead of F = 2.
Increasing M also increases F and, for either noiseless or noisy training data, the classifier’s performance is improved for
fixed P(k) as more feature information is available in x ∈ RF for each (x, t) ∈ D(train) and, hence, it becomes easier for the
classifier to find relationship between the features and classes and, in the decision stage, partitioning according to (9)
becomes easier for larger F. On the other hand, increasing P(k), for a fixed M and noiseless training data, reduces the 𝜅

score and increases the variability as the classifier becomes increasingly overfitted to the training data and experiences
more misclassifications as P(k) is increased. For noisy training data, the classifier is exposed to more noisy data in D(train)

as P(k) is increased and, hence, its performance improves and its variability decreases. The relatively high accuracy of
logistic regression for the coin classification problem, even with an SNR of 10 dB, can in part be attributed to how well the
assumptions of logistic regression hold in practice for this problem and the normalization of the data that is performed
prior to training.

We consider further the relationship between noise level, number of frequencies and classifier performance in
Figure 7. This figure shows the noise level against M, with the contours indicating the resulting 𝜅 score for fixed
P(k). The concentric curves correspond to all the systems with a M and a noise level that achieve the same accu-
racy. As is to be expected, results for the classifier can be improved by increasing both M and SNR (or either). This
figure is of practical value as it allows practitioners to choose M, given an SNR, in order to achieve a desired level of
accuracy.
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F I G U R E 7 Set of British coins: Overall performance of logistic regression classifier for P(k) = 2000, comparing M and SNR using the 𝜅

score (18)

(A) 5p (B) 10p

F I G U R E 8 Set of British coins: Approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x), k = 1,… ,K, using the logistic
regression classifier for P(k) = 2000 where (A) (x, t) ∈ D(test,(3)) and (B) (x, t) ∈ D(test,(4))

Some illustrative approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x), k = 1,… ,K, that are obtained for
SNR = 10 dB are illustrated in Figure 8. For each (x, t) ∈ D(test), a potentially different distribution can be expected and,
in the cases shown, we have chosen (x, t) ∈ D(test,(3) and (x, t) ∈ D(test,(4)) so that correct classifications should be C3 (a
5 p coin) and C4 (a 10 p coin), respectively. Additionally, the bars we show are for the median value 𝛾k,50, obtained by
considering all the samples (x, t) ∈ D(test,(3)) and (x, t) ∈ D(test,(4)), respectively, and we also indicate the Q1, Q3 quartiles as
well as 𝛾k,5 and 𝛾k,95 percentiles, which have been obtained using (17). The cases shown correspond to the best and worst
cases among all D(test,(k)) for this level of noise. A common trait of logistic regression is that it gives a strong 𝛾k(x) for one
class and low values for the other classes and the results we obtain also exhibit this. Comparing 𝛾k(x), k = 1,… ,K, for
(x, t) ∈ D(test,(3) and (x, t) ∈ D(test,(4)), we find the most likely classes correspond to the 5 p and 10 p coins, respectively. For
the 5 p coin, the inter quartile and inter percentile ranges are small and so we have high confidence in this prediction
and a low variability. For the 10 p coin, they are larger indicating we have less confidence in the prediction and a higher
variability.
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(A) (B)

F I G U R E 9 Set of British coins: Confusion matrices for noise corresponding to SNR = 10 dB showing the effect of different numbers of
instance per class (A) P(k) = 50 and (B) P(k) = 2000

Next, we consider the frequentist approximations to p(Cj|x) for (x, t) ∈ D(test,(i)) presented in the form of a confusion
matrix with entries (C)ij, i, j = 1,… ,K, for the cases of SNR = 20 dB and SNR = 10 dB in Figure 9, using the approach
described in Section 4.1.1. We consider the case with SNR = 10 dB and compare the performance of the classifier using
P(k) = 50 and P(k) = 2000 instances per class. There are only a small number of misclassifications for the P(k) = 50 case
and these are further reduced by using P(k) = 2000.

5.2 Multi-class problem

5.2.1 Construction of the multi-class dictionary

To create the multi-class dictionary, we follow the approach described in Section 2.1 where, in the most general setting,
we choose the classes Ck, k = 1,… ,K, to correspond to the different threat and non-threat type objects listed in Table 1.
Unlike the coins, each class is comprised of objects of different geometries, as well as different sizes and materials, so that
G(k) ≠ 1 in general. However, when creating the classes, we have assembled geometries that have (physical) similarities.
For example, the coins class C1 includes the G(1) = 8 different denomination of British coins described in the previous
section. Furthermore, in Figures 10 and 11, we illustrate the surface finite element meshes corresponding to exemplar
threat and non-threat object geometries, respectively, within each of these different classes and Table 2 gives an overall
summary of the materials and object sizes. In the case of the coins, guns, keys, and knives, the simulated MPT spectral
signatures are those presented in Reference 1 and we provide the complete set of MPT spectral signatures for all objects
in our MPT-Library dataset.2 These simulated spectral signatures were generated in a similar way to those described
in Reference 1 and in Figure 12 we show an illustration of some the contours of Je

i = i𝜔𝜎∗𝜽i at 𝜔 = 1 × 104 rad/s that are
obtained as part of this process. In total, we have

∑K
k=1G(k) = 67 different distinct geometries and 158 including different

material variations. In Table 1, we give the relationship between P(k), V (k), and G(k) for each class Ck and choose V (k) so
that we have an approximately equal number of samples P(k) ≈ P∕K for each class of object. We employ P(k) = 5000 in
the following unless otherwise stated. While m𝜎∗ is object specific, we set m𝛼 = 0.001 m, to fix the object size, and choose
s𝛼 = 0.0084m𝛼 and s𝜎∗ = 0.024m𝜎∗ , to account for manufacturing imperfections. We consider a fixed number of M = 28
linearly spaced frequencies, such that 7.53 × 102 ≤ 𝜔m ≤ 5.99 × 105 rad/s, although we also give some comments about
the performance using 5.02 × 104 ≤ 𝜔m ≤ 8.67 × 104 rad/s. In a similar manner to the coin classification problem, noise
corresponding to SNR values of 40 and 20 dB is added. We do not consider an SNR of 10 dB as this represents a very high
level of 32 % noise, which, of course, performs worse than 20 dB noise. Using the information above, two different types
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F I G U R E 10 Set of multiple threat and non-threat objects: Sample illustrations of some of the different threat object geometries
considered (not to scale)

of dictionaries were formed. First, D15 for the complete set of K = 15 classes and, second, D8 comprising of K = 8 different
classes. The grouped classes for the D8 are described in Table 3.

For these dictionaries, we have G(k) ≠ 1 in the majority of cases. Considering 𝛼 ∼ N(m𝛼, s𝛼), 𝜎∗ ∼ N(m𝜎∗ , s𝜎∗ ),
and gk = 1,… ,G(k), the parent distributions of the variables X = Ii(̃[𝛼B(gk), 𝜔m, 𝜎∗, 𝜇r]) ∼ p(xi+(m−1)M|Ck) and X =
Ii([𝛼B(gk), 𝜔m, 𝜎∗, 𝜇r]) ∼ p(xi+(m−1)M|Ck) will be far from normal. For P(k) = 5000 samples and the class C1, comprised of
the G(1) = 8 different denominations of British coins, the probability density distributions are shown in Figure 13. Even
with a sample size of P(k) = 5000 the sample distributions are also far from normal and a very large sample is expected to
be needed in order for the central limit theorem to apply in this case.

In the following, we will start with classification using the dictionary D8 and then proceed to present results for D15.

5.2.2 Classification results using D8

From the observations in Figure 13, we do not expect logistic regression to perform well using the D8 dictionary and for it
to have a high bias. Instead, we will consider the full range of probabilistic and non-probabilistic classifiers described in
Sections 3.3 and 3.4 and retain logistic regression for comparison. An optimized set of hyper parameters for each classifier
were obtained as follows: A grid based search was performed to maximize the𝜅 score (18) for the relevant hyperparameters
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F I G U R E 11 Set of multiple threat and non-threat objects: Sample illustrations of some of the different non-threat object geometries
considered (not to scale)

for each classifier for the dictionary corresponding to P(k) = 5000 and SNR = 40 dB and these were then adopted for the
simulations presented in this section. To illustrate our hyperparameter grid-based optimization, we investigate the 𝜅 score
for different choices of L and J for MLP in Figure 14. For this result, we have assumed the same number of neurons
in each layer and used max_iter = 300 rather than max_iter = 200 to allow an increased number of iterations
to be performed to ensure convergence. From this figure, we observe there are a range of different L and J that lead to
a network with a similar level of accuracy. As remarked in Section 3.4.2, for the type of network we are considering,
the number of variables grows quadratically with J and linearly with L. Hence, from a computational cost perspective,
choosing a network with a small J and a large L is generally preferable to a network with a large J and a small L, if the
cost of computing each variable is assumed the same. For this reason, we adopt a network with L = 3 and J = 50 as MLP
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F I G U R E 12 Set of multiple threat and non-threat objects: Illustrative contours of Je
i = i𝜔𝜎∗𝜽i at 𝜔 = 1 × 104 rad/s for a sample of the

threat and non-threat objects

(A) (B)

F I G U R E 13 Set of multiple threat and non-threat objects: British coins (class C1) for P(k) = 5000, with 𝛼 ∼ N(0.001, 8.4 × 10−6) m and
𝜎∗ ∼ N(m𝜎∗

, 0.024m𝜎∗
) S/m, where m𝜎∗

is determined by the material B(k), showing the histograms of (Z − mX )∕sX , presented in the form of
probability densities, where X is instances of the following (A) I1(̃[𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) and (B) I1([𝛼B(1), 𝜔m, 𝜎∗, 𝜇r]) at distinct frequencies 𝜔m
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T A B L E 1 Set of multiple threat and non-threat objects: Full list of 15 threat and non-threat object classes detailing the number of
geometries in each class, G(k), the number of materials per geometry, the number of additional variations to account for geometrical and
material variations, and the total number in each class, P(k)

Class # Geometries (G(k)) # Materials per geometry # Additional variations (V (k)) Total (P(k))

Guns (C1) 1 1 V (1) V (1)

Hammers (C2) 2 3 V (2) 6V (2)

Knives (C3) 5 1 V (3) 5V (3)

Knuckle dusters (C4) 2 1 V (4) 2V (4)

Screw drivers (C5) 6 3 V (5) 18V (5)

Scissors (C6) 2 3 V (6) 6V (6)

Bracelets (C7) 4 3 V (7) 12V (7)

Belt buckles (C8) 3 4 V (8) 12V (8)

Coins (C9) 8 1 V (9) 8V (9)

Earrings (C10) 9 3 V (10) 18V (10)

Keys (C11) 4 1 V (11) 4V (11)

Pendents (C12) 7 3 V (12) 21V (12)

Rings (C13) 7 3 V (13) 21V (13)

Shoe shanks (C14) 3 1 V (14) 3V (14)

Watches (C15) 4 3 V (15) 12V (15)

F I G U R E 14 Set of multiple threat and non-threat objects: Overall performance of MLP for different uniform network architectures,
for P(k) = 5000 when K = 8 and SNR = 40 dB, showing 𝜅 score for different numbers of hidden layers L and numbers of neurons per layer J

architectures in this range result in high 𝜅 score, while minimizing computational cost. Also, if desired, J could be further
reduced without comprising accuracy.

For SVM, rather than the default ovr strategy, we employ decision_function_shape = ‘ovo’, this is due to
the performance of kernel based methods not scaling in proportion with the size of the training dataset. The grid-based
optimization led to a significant variation in performance for SVM, with the optimum values being a regularization
parameter C = 10e6 and a Kernel coefficient gamma = 1. For the random forest classifier, the grid based optimization
resulted in the choice ofmax_depth = 100 and n_estimators = 100. For gradient boost, the grid-based optimiza-
tion led to choice of n_estimators = 50 and max_depth = 2 and later, in the case of an unseen object, we show
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T A B L E 2 Set of multiple threat and non-threat objects: Full list of 15 threat and non-threat object classes detailing composition of
different materials and different object sizes in each class

Class min(𝝈∗) (S/m) max(𝝈∗) (S/m) min(𝝁r) max(𝝁r) min(𝜶3|B|) (m3) max(𝜶3|B|) (m3)

Guns (C1) 6.2 × 106 6.2 × 106 5 5 3.3 × 10−5 3.3 × 10−5

Hammers (C2) 1.3 × 106 1.6 × 106 1.02 5 4.3 × 10−5 2.0 × 10−4

Knives (C3) 1.5 × 105 5.8 × 107 1 5 3.3 × 10−6 6.5 × 10−5

Knuckle dusters (C4) 1.5 × 107 1.5 × 106 1 1 1.7 × 10−5 1.8 × 10−5

Screw drivers (C5) 1.3 × 106 1.6 × 106 1.02 5 1.1 × 10−6 3.4 × 10−6

Scissors (C6) 1.3 × 106 1.6 × 106 1.02 5 2.4 × 10−6 9.5 × 10−6

Bracelets (C7) 9.4 × 106 6.3 × 107 1 1 5.5 × 10−7 2.1 × 10−6

Belt buckles (C8) 5.6 × 105 1.5 × 107 1 5 1.5 × 10−5 2.1 × 10−5

Coins (C9) 2.9 × 106 4.0 × 107 1 1 4.3 × 10−7 1.9 × 10−6

Earrings (C10) 9.4 × 106 6.3 × 107 1 1 1.0 × 10−8 2.3 × 10−7

Keys (C11) 2 × 107 1.5 × 107 1 1 6.3 × 10−7 6.7 × 10−7

Pendents (C12) 9.4 × 106 6.3 × 107 1 1 8.0 × 10−8 1.6 × 10−6

Rings (C13) 9.4 × 106 6.3 × 107 1 1 7.0 × 10−8 9.2 × 10−7

Shoe shanks (C14) 6.2 × 106 6.2 × 106 5 5 8.9 × 10−7 1.4 × 10−6

Watches (C15) 9.4 × 106 6.3 × 107 1 1 4.7 × 10−6 3.3 × 10−5

(A) (B)

F I G U R E 15 Set of multiple threat and non-threat objects: Overall performance of different classifiers as a function of P(k) when K = 8
using the 𝜅 score (18) showing (A) SNR = 40 dB and (B) SNR = 20 dB

the effects of varying the number of trees within the ensemble and the maximum depth of each tree. Finally, for the deci-
sion tree classifier, the grid based optimization led to the choice max_depth = 100. Of course, our hyperparameter
choices for each classifier have been optimized for P(k) = 5000, SNR = 40 dB and this K = 8 class problem, for different
P(k) and SNR levels, as well as other classification problems, this choice may no longer be optimum. More sophisticated
alternatives to our simple grid-based optimization include using a Bayesian optimization,48 a hyperband optimization,49

or simulated annealing.50

In Figure 15, we show the overall performance of the classifiers with different levels of noise. We use the 𝜅 score to
assess the performance of the classification due to the variations within the classes. In each case, we observe that increas-
ing P(k) generally leads to an improved performance of the classification in all cases, since the classifier is exposed to
more noisy data in D(train)

8 and its variability decreases. The figure shows that, in both noise cases, the best performing



2100 WILSON et al.

T A B L E 3 Set of multiple threat and non-threat objects: Amalgamated list of K = 8 threat
and non-threat object classes detailing their composition and total number in each class P(k)

Class Composition Total P(k)

Tools (C1) Hammers 6V (2) + 6V (6) + 18V (5)

Scissors

Screwdrivers

Weapons (C2) Guns V (1) + 2V (4) + 5V (3)

Knuckle dusters

Knives

Clothing (C3) Belt buckles 12V (8) + 3V (14)

Shoe shanks

Earrings (C4) Earrings 18V (10)

Pendants (C5) Pendants 21V (12)

Pocket items (C6) Coins 8V (9) + 4V (11)

Keys

Rings (C7) Rings 21V (13)

Wrist items (C8) Bracelets 21V (7) + 12V (15)

Watches

classifier is random forests, although, for large P(k), the performance of random forest, gradient boost, decision trees, and
SVM (particularly for SNR = 40 dB) are all very similar with 𝜅 ≈ 1 indicating a low bias and low variance. As random for-
est is a bagging algorithm and gradient boost is a boosting algorithm we expect them to perform well. However, the good
performance of decision trees is surprising. While the performance of SVM is good, it is less robust as (small) changes in
hyperparameters can have a significant affect on its performance. The second best probabilistic classifier is MLP, which
shows a significant benefit for large P(k). Comparing SNR = 40 dB and SNR = 20 dB, we see a slight reduction in accuracy
for a given P(k) using SNR= 20 dB, although, by increasing P(k), the effects of noise can be overcome. In particular, SVM suf-
fers noticeably more with SNR = 20 dB compared to random forest, gradient boost, and decision trees, but its performance
for large P(k) is still good and may be improved further by additional hyperparameter optimization. Also, although not
included, the corresponding results for 5.02 × 104 ≤ 𝜔m ≤ 8.67 × 104 rad/s using M = 20 are not as good as those for 7.53 ×
102 ≤ 𝜔m ≤ 5.99 × 105 rad/s using M = 28, with those shown offering at least a 5 % improvement for the best perform-
ing classifiers, small P(k) and SNR = 20 dB. Interestingly, logistic regression improves by 25 % when the larger frequency
range is used. We focus on the two best performing probabilistic classifiers, gradient boost and MLP, in the following.

The approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x), k = 1,… ,K, we obtain for gradient boost and
MLP are shown in Figure 16. We have chosen (x, t) ∈ D(test,(6))

8 so that the correct classification should be C6 (ie a pocket
item: a coin or a key). Additionally, the bars we show are for the median value 𝛾k,50 of 𝛾k(x), obtained by considering all
the samples (x, t) ∈ D(test,(6))

8 , and we also indicate the Q1, Q3 quartiles as well as 𝛾k,5 and 𝛾k,95, for different SNR, which
have been obtained using (17). The results for SNR = 40 dB strongly indicate that the most likely class is a pocket item
for both classifiers, since 𝛾6,50 ≈ 1. For the gradient boost classifier, the inter quartile and inter percentile ranges are small
and, so, we have high confidence in this prediction. However, we have less confidence in the corresponding prediction for
the MLP as both the inter quartile and inter percentile ranges are larger. For SNR = 20 dB, we see the median value 𝛾6,50
fall for both classifiers and we also have much greater uncertainty in the classification over the samples, as illustrated by
the larger inter percentile ranges for the different object classes. Comparing the two classifiers, we have less confidence
in the prediction with MLP than for gradient boost.

Next, we consider the frequentist approximations to p(Cj|x) for (x, t) ∈ D(test,(i)) presented in the form of a confusion
matrix with entries (C)ij, i, j = 1,… ,K, for the cases of SNR = 40 dB and SNR = 20 dB and the gradient boost and MLP
classifiers in Figure 17. As expected, for SNR = 20 dB, we see increased misclassification among the classes compared
to SNR = 40 dB with situation being worse for the MLP classifier compared to the gradient boost. Looking at the row
corresponding to the true label for the C6 (pocket items) class, for both SNR = 40 dB and SNR = 20 dB, we can see that
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(A) (B)

(C) (D)

F I G U R E 16 Set of multiple threat and non-threat objects: Approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x),
k = 1,… ,K, where (x, t) ∈ D(test,(2))

8 for P(k) = 5000 when K = 8 showing the classifiers (A) gradient boost SNR = 40 dB, (B) gradient boost
SNR = 20 dB, (C) MLP SNR = 40 dB, and (D) MLP SNR = 20 dB

the frequentist probability in column j are approximately similar to the median approximate posterior probability 𝛾j(x)
shown in Figure 16. Also, while the gradient boost exhibits near perfect classification for SNR = 40 dB (and SNR = 20 dB),
MLP does not perform as well, particularly among the earrings and pendents.

In Table 4, we show the precision, sensitivity, and specificity for each of the different object classes Ck, k = 1,… ,K, for
the case of SNR = 20 dB and the MLP classifier. In general, we see the proportion of negatives that are correctly identified
is very high (as indicated by the specificity) and is close to 1 in all cases, whereas the proportions of positives correctly
identified (indicated by the precision and sensitivity) varies among the different object classes, the best case being C2
(weapons) and worst case C5 (pendents). The corresponding results for gradient boost are all close to 1.

5.2.3 Classification results using D15

Figure 18 repeats the investigation shown in Figure 15 for D15, instead of D8, and, given the relationship between
the multi-class dictionaries, uses the same classifier hyperparameters. The trends described previously again apply,
except, with a further significant gain in the performance for all classifiers for the increased fidelity K = 15 class
problem compared to the previous K = 8 class problem. This is because each class, for K = 15, is comprised of objects
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(A) (B)

(C) (D)

F I G U R E 17 Set of multiple threat and non-threat objects: Comparison of confusion matrices for P(k) = 5000 when K = 8 showing the
classifiers (A) gradient boost SNR = 40 dB, (B) gradient boost SNR = 20 dB, (C) MLP SNR = 40 dB, and (D) MLP SNR = 20 dB

that have increased similarity between their volumes, shapes and materials, and, hence, their MPT spectral signa-
tures, compared to the K = 8 problem. This, in turn, reduces each classifier’s bias as it becomes easier to establish
the relationship between the features and class. Nonetheless, X = Ii(̃[𝛼B(gk), 𝜔m, 𝜎∗, 𝜇r]) ∼ p(xi+(m−1)M|Ck) and X =
Ii([𝛼B(gk), 𝜔m, 𝜎∗, 𝜇r]) ∼ p(xi+(m−1)M|Ck) are still far from normal and, so, logistic regression does not perform well. The
best performance being again given by random forests, gradient boost, decision trees and SVM (particularly for SNR
= 40 dB). We focus on the gradient boost and MLP, which are the best two performing probabilistic classifiers in the
following.

The approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x), k = 1,… ,K, we obtain for gradient boost and
MLP are shown in Figure 19. We have chosen (x, t) ∈ D(test,(9))

15 so that the correct classification should be C9. The bars are
for 𝛾k,50, obtained by considering all the samples (x, t) ∈ D(test,(9))

15 , and we also indicate the Q1, Q3 quartiles as well as 𝛾k,5
and 𝛾k,95, for different SNR, which have been obtained using (17). The results for SNR = 40 dB strongly indicate that the
most likely class is a pocket item for both classifiers, since 𝛾9,50 ≈ 1. For the gradient boost classifier, the inter quartile and
inter percentile ranges are very small and so we have very high confidence in this prediction; the MLP classifier has larger
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F I G U R E 18 Set of multiple threat and non-threat objects: Overall performance of different classifiers as a function of P(k) when K = 15
using the 𝜅 score (18) showing (A) SNR = 40 dB and (B) SNR = 20 dB

T A B L E 4 Set of multiple threat and non-threat objects: Precision, sensitivity, and specificity measures (to 2d.p.) for each of the classes
Ck when SNR = 20 dB and P(k) = 5000 for the MLP classifier

Ck Precision Sensitivity Specificity

Tools (C1) 0.97 0.98 1.00

Weapons (C2) 0.99 0.99 1.00

Clothing (C3) 0.98 0.98 1.00

Earrings (C4) 0.64 0.84 0.93

Pendants (C5) 0.60 0.34 0.97

Pocket items (C6) 0.75 0.73 0.96

Rings (C7) 0.70 0.82 0.95

Wrist items (C8) 0.90 0.87 0.99

ranges and less confidence. For SNR = 20 dB, we see 𝛾9,50 fall slightly for gradient boost and by a larger amount for MLP.
The gradient boost still shows a high degree of confidence in the prediction, but the MLP is more uncertain. Compared
to the results shown in Figure 16 for D8, the performance in Figure 19 for D15 is improved for MLP and remains excellent
for gradient boost (when considering the amalgamated pocket item class and the split coin and keys classes).

Next, we consider the frequentist approximations to p(Cj|x) for (x, t) ∈ D(test,(i)) presented in the form of a confusion
matrix with entries (C)ij, i, j = 1,… ,K, for the cases of SNR = 40 dB and SNR = 20 dB and the MLP classifier, in Figure 20.
We do not show the results for the gradient boost as it has a near perfect identity confusion matrix on this scale for these
noise levels. Compared to the corresponding results shown in Figure 17 for D8, the results for D15 show the ability of
the classifier to better discriminate between different objects. However, MLP still shows significant misclassifications for
pendents whereas gradient boost does not.

In Table 5, we show the precision, sensitivity, and specificity for each of the different object classes Ck, k = 1,… ,K, for
the case of SNR = 20 dB and the MLP classifier. In general, we see the proportion of negatives that are correctly identified
(as indicated by the specificity) is very high and is close to 1 in all cases. The proportions of positives correctly identified
(indicated by the precision and sensitivity) varies among the different object classes, but is generally much closer to 1
than shown in Table 4 for D8. The classes C1, C3, and C4 (guns, knives, and knuckle dusters in D(15)), which make up
the amalgamated weapons class C2 in D8, all perform very well, but the worst case still remains C12 (the pendents). The
corresponding results for precision, sensitivity, and specificity for the gradient boost classifier are all close to 1.
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(A) (B)

(C) (D)

F I G U R E 19 Set of multiple threat and non-threat objects: Approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x),
k = 1,… ,K, where (x, t) ∈ D(test,(9))

15 (Coins) for P(k) = 5000 when K = 15 showing (A) gradient boost SNR = 40 dB, (B) gradient boost SNR =
20 dB, (C) MLP SNR = 40 dB, and (D) MLP SNR = 20 dB

5.2.4 Classification of unseen objects using D8

When testing the performance of classifiers in the previous sections, the construction of the dictionary, described in
Section 5.2.1, means that D(train) and D(test) are both comprised of samples that have MPT spectral signatures associated
with objects that share the same geometry and have similar object sizes and material parameters. To illustrate the ability
of a classifier to recognize an unseen threat object, we construct D(train)

8 , as in Section 5.2.1, except, for one class Ck, where
we replace D(train,(k))

8 with data that is obtained from G(k) − 1 (instead of G(k)) geometries and V (k) samples. Also, we use
P(k) = 2000, instead of P(k) = 5000, due to the higher computational cost of the investigation presented in the following.
We proceed to test the classifier using a sample that is constructed only from V (k) samples of the unseen G(k)th geometry.

We focus on removing a geometry from the C2 class of weapons, which originally has G(2) = 8 geometries, and we vary
the unseen geometry to be one of the chef, cutlet, meat cleaver, Santoku, and Wusthof knives, shown in Figure 10, where
the naming convention from Section 6.4 of Reference 1 is adopted. We apply the gradient boost classifier to this problem,
as it was seen to perform best for both the K = 8 and K = 15 class problems. Previously, the optimized hyperparameters



WILSON et al. 2105

(A) (B)

F I G U R E 20 Set of multiple threat and non-threat objects: Comparison of confusion matrices for P(k) = 5000 when K = 15 showing (A)
MLP SNR = 40 dB and (B) MLP SNR = 20 dB

T A B L E 5 Set of multiple threat and non-threat objects: Precision, sensitivity, and specificity measures (to 2d.p.) for each of the classes
Ck when SNR = 20 dB and P(k) = P∕K = 5000 for the MLP classifier

Ck Precision Sensitivity Specificity

Guns (C1) 1.00 1.00 1.00

Hammers (C2) 1.00 1.00 1.00

Knives (C3) 1.00 1.00 1.00

Knuckle dusters (C4) 1.00 1.00 1.00

Screwdrivers (C5) 0.95 0.96 1.00

Scissors (C6) 1.00 1.00 1.00

Bracelets (C7) 0.83 0.85 0.99

Belt buckles (C8) 0.99 0.98 1.00

Coins (C9) 0.70 0.72 0.98

Earrings (C10) 0.75 0.75 0.98

Keys (C11) 0.90 0.95 0.99

Pendants (C12) 0.67 0.53 0.98

Rings (C13) 0.71 0.77 0.98

Shoe shanks (C14) 0.99 1.00 1.00

Watches (C15) 0.99 0.99 1.00

n_estimators = 50 and max_depth = 2 have been shown to lead to accurate results. However, this problem is
more challenging, as it involves attempting to classify data from the samples in (x, t) ∈ D(test,(2))

8 that are only constructed
from samples of the unseen G(2)th geometry, and, therefore, the previous hyperparameters are no longer optimal. This
is illustrated in Figure 21 for the case where SNR = 40 dB and, here, the average 𝜅 score obtained from considering the
situations when instances of the chef, cutlet, meat cleaver, Santoku, and Wusthof knife geometries as being unseen is
presented. This suggests the optimal performance will be for a very limited region where n_estimators ≈ 30 and
max_depth = 1 and, away from this, the performance of the classifier will be poor.
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F I G U R E 21 Set of multiple threat and non-threat objects: Overall performance of the gradient boost classifier for different values in
the hyperparameter space, for P(k) = 2000 when K = 8 and SNR = 40 dB, showing average 𝜅 score for different values of numbers of trees
(n_estimators) and tree depth (max_depth)

T A B L E 6 Set of multiple threat and non-threat objects: Comparison of volumes for different knife models

Knife Volume (m3)

Chef 1.46 × 10−5

Cutlet 3.28 × 10−6

Meat cleaver 6.50 × 10−5

Santoku 2.51 × 10−5

Wusthof 3.48 × 10−5

The poor performance of the gradient boost classifier for this problem for a large range of hyperparameters is due
to its inability to correctly classify the cutlet knife geometry, with the classifier instead predicting this as a tool rather
than a weapon in the majority of cases (indicating bias against this geometry) and, additionally, for other geometries,
the relatively high degree of uncertainty that is associated with 𝛾2(x) despite 𝛾2,50 being high (indicating a high variance).
This can further be explained by the comparison of the knife volumes using a fixed 𝛼 = 0.001 m shown in Table 6, where
it can be seen that the cutlet knife geometry has a volume that is an order of magnitude smaller than that of the knives.
The MPT spectral signature depends on the object’s volume as well as its materials and geometry and, as each cutlet knife
tends to be associated smaller volumes to those considered in D(train)

8 this has contributed to the classifier not being able
to recognize it.

The situation can be improved by increasing the standard deviations s𝛼 and s𝜎∗ , so that D(train,(2))
8 includes MPT spectral

signatures that are closer to that of the omitted G(2)th geometry. In Table 7, we consider three alternatives A, B, and
C to the previous control choice. Then, in Figure 22, we repeat the investigation shown in Figure 21 for cases A, B,
and C. In this figure, we observe that the classifier has less variability and performs increasingly well over a wide range
of hyperparameters, as s𝛼 and s𝜎∗ are increased. In the limiting case of C, the overall performance of the classifier is
uniform with 𝜅 = 0.75 over the complete space of hyperparameters considered. Furthermore, in Figure 23, we show, for
case C, approximations p(Ck|x) ≈ 𝛾k(x), to posterior probabilities p(Ck|x), k = 1,… ,K, obtained for the case where the
training samples are taken as (x, t) ∈ D(train,(2))

8 , with either the chef, cutlet, meat cleaver, Santoku or Wusthof geometry
being treated as unseen, in turn. These results were obtained with n_estimators = 50 and max_depth = 2 with
SNR = 40 dB. From this figure, we observe that 𝛾2,50 ≈ 1 for the unseen chef, meat cleaver, Santoku, or Wusthof knives
suggesting the most likely class is C2 (a weapon) with small interpercentile and interquartile ranges, which indicates
a high degree of certainty associated with the prediction and also a low variability. However, when the unseen object
is a cutlet knife, 𝛾1,50 ≈ 1 with small interpercentile and interquartile ranges, which indicates that the classifier is still
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(A) (B)

(C) (D)

F I G U R E 22 Set of multiple threat and non-threat objects: Overall performance of the gradient boost classifier for different values in
the hyperparameter space, for P(k) = 2000 with K = 8 and SNR = 40 dB, showing average 𝜅 score for different values n_estimators and
max_depth, for different scaling regimes (A) Control, (B) A, (C) B, and (D) C

consistently misclassifying this object as a tool, instead of a weapon, despite the classifier being trained over a wider range
of object sizes and conductivities. Hence, the classifier remains biased against this geometry. We conjecture this is due to
the significant difference in the shape of the MPT spectral signature for the cutlet knife geometry shown in Figure 33 of
Reference 1, compared to the other knives and gun geometry on which the classifier is trained.

6 CONCLUSION

This article has presented a novel approach to training ML classifiers using our simulated MPT-Library, which has been
enhanced by simple scaling results to create large dictionaries of object characterizations at a low computational cost.
We have employed tensor invariants of MPT spectral signatures as novel object features for training ML classifiers and
considered a range of both probabilistic and non-probabilistic classifiers. We have presented a well-reasoned approach
for justifying the performance of different ML classifiers for practical classifications problems using both uncertainty
quantification using statistical analysis and ML metrics. Furthermore, we have explored the ability of our classification
approaches to classify unseen threat objects.
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(A) (B)

(C) (D)

(E)

F I G U R E 23 Set of multiple threat and non-threat objects: Approximations p(Ck|x) ≈ 𝛾k(x) to posterior probabilities p(Ck|x),
k = 1,… ,K, using the gradient boost classifier for P(k) = 2000 when K = 8 and SNR = 40 dB showing the case when D(train) is constructed using
the scaling regime C and cases where D(test) is constructed of instances (A) chef, (B) cutlet, (C) meat cleaver, (D) Santoku, and (E) Wusthof
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T A B L E 7 Set of multiple threat and non-threat objects: List of the parameters for the sampling distributions considered

Scaling regime s𝜶 s𝝈∗
Control 0.0084m𝛼 0.0236333m𝜎∗

A 0.02m𝛼 0.05m𝜎∗

B 0.05m𝛼 0.1m𝜎∗

C 0.1m𝛼 0.2m𝜎∗

For the K = 8 class coin classification problem, we have found that the logistic regression classifier performs well
to discriminate between different denominations of British coins. Other classifiers could also be used, but would be
unnecessarily computationally intensive for this classification problem. Our choice of logistic regression was motived by
a statistical analysis of the dictionary for this problem, which showed it had the desired properties needed for this classi-
fier to perform well. We have seen significant benefits from increasing the number of frequencies considered in the MPT
spectral signature as well as increasing the size of the training data set, which all led to an improvement of the accuracy
of the classifier by reductions in its variability. A classifier of this type could help with the automated sorting of coins and
in fraud detection. It also has potential applications in coin counting. Our results are useful for coin designers as it could
help them to design new coins that have greater differences in their spectral signature to make them easier to classify.

For the multi-class problem, involving the discrimination between threat and non-threat objects, we have found
improvements in the accuracy of the classification by using MPT spectral signatures over a larger range of frequencies
compared to a narrow range, and, once again, also by increasing the size of the training data set. The hyperparamters for
each of the classifiers were optimized for our multi-class dictionaries leading to excellent performance by decision trees,
random forest, gradient boost and SVM (SNR = 40 dB) and good performance by SVM (SNR = 20 dB) and MLP classi-
fiers. The best performing probabilistic classifier for both the K = 8 and K = 15 class classification problems and both
SNR = 40 dB and SNR = 20 dB noise levels being the gradient boost algorithm. The gradient boost algorithm is also seen
to perform well on the classification of unseen objects, provided the training set contains sufficiently similar MPT spec-
tral signatures from other objects. This classifier could help in security screening applications such as transport hubs as
well as in parcels transportation.
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ENDNOTES
∗Note that the entries of tp are all 0 except for (tp)Ck

= 1 corresponding to the kth class.
†We will return their properties shortly.
‡Note that we follow the convention used by scikit-learn for C, other references use a different convention where the rows and columns
are swapped.

§The sample mean and sample standard deviation are used as an approximation to mX and sX , respectively.
¶Although we chose 𝛼 ∼ N(m𝛼, s𝛼) and 𝜎∗ ∼ N(m𝜎∗

, s𝜎∗ ) we should not expect the parent distributions p(x1+(m−1)M|C1) and p(x1+(m+2)M|C1),
for (̃[𝛼B, 𝜔, 𝜎∗, 𝜇r])ij or ([𝛼B, 𝜔, 𝜎∗, 𝜇r])ij, respectively, to be normally distributed, due to the powering operation involved in the scaling in
Lemma 3 of Reference 26, which, for large s𝛼 , can have significant effect. However, the invariant I1 only involves summation and will not
change the distribution further for independent variables. The invariants I2 and I3 do involve products and so are likely to further change the
parent distribution, but, compared to the root finding in eigenvalues, these are much smoother operations and so their effects are expected to
be smaller.
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