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Abstract

The degradation of roads is an expensive problem: in the UK alone, £27 billion was

spent on road repairs between 2013 and 2019. One potential cost-saver is the early,

non-destructive detection of faults. There are many available techniques, each with

its own benefits and drawbacks. This paper builds upon the successful processing

of Magnetic Flux Leakage (MFL) data by Echo State Networks (ESNs) for damage

diagnostics, by augmenting ESNs with the depth of concrete cover as part of

a data fusion approach. This fusion-based ESN outperformed a number of non-

fusion ESN comparators and a previously used analytical technique. Additionally,

the fusion ESN had an optimal threshold value whose standard deviation was three

times smaller than that of the nearest alternative technique, potentially prompting a

move towards automated defect detection in ‘real-world’ applications.
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List of Abbreviations

ANN Artificial Neural Network

AT Analytical Technique

AUC Area Under Curve

CI Computational Intelligence

ESN Echo State Network

ESNDS Depth Specific ESN

ESNGD General Depth ESN

EMAD Electromagnetic Anomaly Detector

MFL Magnetic Flux Leakage

NDT Non-Destructive Testing

ROC Receiver Operator Characteristic

RNN Recurrent Neural Network

RM Remanent Magnetism

Introduction

The degradation of transport infrastructure is an international problem. For example, in
2013, a UK HM Treasury policy paper stated that £10 billion would need to be spent
on repairs to roads by 2021? . In the most recent statistics released by the Department
for Transport, the actual figure for England alone up to 2019 was £26,651,000,000? .
Deteriorating infrastructure in the United States is expected to cost the US economy an
average of 400,000 jobs per year up until 2040? .

The detection of steel reinforcing bar (rebar) defects is a particular area of difficulty.
For example, the major concrete repair project which began in 2017 on the UK’s
busy M5 motorway saw significant delays due to an underestimation of the extent of
the damage to the rebar: 6,000 repairs were required, 4,500 more than the original
estimate? . Vanniamparambil et al. noted that many different modalities of sensor are
available for the assessment of the various aspects of structural integrity, but there is
no single monitoring technique that can provide a comprehensive picture of the state of
a structure? . Instead, they concluded that a data fusion approach should be developed
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in order to better detect deterioration signs, locate weak regions and assess damage
severity.

Based on past success in detecting rebar defects with the artificial intelligence of
Echo State Networks (ESNs), this paper proposes an approach to detecting defects
that uses ESNs to fuse heterogeneous data obtained by the Electromagnetic Anomaly
Detector (EMAD) technique, which is a form of Magnetic Flux Leakage (MFL),
and data regarding the depth of concrete cover. This is the first time that these two
modalities have been combined, and has been able to improve the detection of defects.

The EMAD technique is a Non-Destructive Testing (NDT) approach that uses
Remanent Magnetism (RM) and MFL in order to detect breaks in rebars. The idea
of using RM in this context was first proposed by Scheel and Hillemeier in 1997? .
The EMAD technique, meanwhile, has been developed at Keele University over
a number of years, and details of the method were first published in 2006? . It
has since been the subject of further publications, which have seen the application
of Computational Intelligence (CI) approaches to the automated analysis of data
captured by the technique, most recently in 2018? . The EMAD technique has been
applied commercially in order to assess structures such as bridges, car parks and dual
carriageways, with data processed by using an Analytical Technique (AT) (introduced
fully in the Analytical Technique section). This requires a skilled engineer to set a
threshold on an arbitrary scale, based on their insight and judgement. This, in turn,
requires time, and so an automated ESN data fusion approach was conceived in order
to capture some of this expertise and move towards greater automation. The Magnetic

Flux Leakage section describes briefly the theory behind the EMAD technique and how
it is applied practically.

Statement of Problem

An example of some EMAD data, featuring two defects at known locations, can be
seen in Figure ??. The two defects can be recognised by the characteristic shape of the
plot-lines, as the recorded Z component rises to reach a peak at the centre of the defect,
while the recorded X component exhibits a slope with a negative gradient at this point.

There are a few possible confounding signals that are inherent in using MFL to detect
defects, evidence of which can also be seen in Figure ??. The most prominent example
of this is the ‘end effect’, where a large magnetic pole is created at the ends of the rebar
scan lines, more so at one end than the other. Here, this can be seen from 3.5 m onwards.
End effects are usually much larger than defect signals, but the two can still be easily
confused. Also, in the case of some rebar meshes, a small amount of flux leakage is
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Figure 1. A typical set of EMAD data, with the Z axis data shown beneath the X axis data.
The characteristic signatures of the two defects present in this particular dataset are
highlighted.

observed at points where the longitudinal and transverse rebars cross over, leading to a
‘ripple’ effect. This effect can be seen in the range 0 - 2.5 m. Since corrosion in rebar is
usually local - typically, there may be a few centimetres of corrosion and a much longer
section of clean steel? - one of the key challenges with any defect detection technique
is the accurate and precise location of such potential defects.

The AT that has previously been used for processing EMAD data in commercial
surveys could produce similar outputs for both a minor magnetic anomaly scanned
at a close distance, and a major defect recorded from further away. In a ‘real-world’
scenario, this could lead to significant defects being ignored, or repairs taking place
to address only minor anomalies. A more effective data processing approach should
be able to identify defects clearly and unambiguously, preferably without the need for
further interpretation by experts in order to set appropriate output threshold values.

Based on the previous success enjoyed by ESNs in comparison to the AT when
presented with EMAD data obtained from a constant cover depth? , a data fusion
approach that utilises both cover depth and the unique properties of ESNs is presented
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in this paper. The effectiveness of this data fusion approach, in terms of both defect
detection and ‘real-world’ applicability, is demonstrated by comparing the data fusion
ESN to a number of non-fusion alternative ESN architectures and the AT. The novel
contribution of this paper is the application of an ESN-based data fusion approach
that combines MFL data with cover depth data. While the fusion of heterogeneous
data for defect detection in rebar has seen an increase in interest in recent years (see,
for example,? ? ? ), the automated fusion of MFL and cover depth data has not been
attempted prior to the current work.

There are two key requirements for a data fusion approach to be successful in this
context:

1. Competitive performance across the range of cover depths, such that there is a
reasonable expectation that a fusion-based approach will be at least as accurate at
detecting defects as the non-fusion approaches across the different cover depths.

2. There should be as little variation in the optimal threshold as possible, so as
to reduce the need for expert interpretation of the data and allow for faster
interventions.

Point two is possibly less intuitive, but just as significant as point one. In the datasets
presented in this paper, the full ground truth defect locations are known, making the
task of determining the optimal threshold for the output of each technique relatively
straightforward. In a ‘real-world’ setting, the ground truth is unlikely to be known, and
so expert analysis of the raw data is usually required to help set this threshold. This
usually involves a recommendation to break out the concrete to inspect the rebar at two
or more locations in order to calibrate the threshold. If the optimal threshold value is
very consistent across all possible cover depths, then that would make the setting of the
threshold much easier and, hence, render the technique more readily applicable in the
‘real-world’. In short, high accuracy at the optimal threshold is much less valuable if it
is difficult to find that optimal threshold without ground truth data.

Contribution of Paper

Since the AT currently used to analyse EMAD data on site requires intervention by a
trained engineer to set the threshold for defect detection, one of the aims of using CI
is to automate that process. However, the use of ESNs, or any other form of Artificial
Neural Network (ANN), leads to an automated optimum range for the threshold after
training, rather than a single value. This leads to considerable arbitrariness in the setting
of the threshold for the network to be used in the field if that range is too large. Use
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of EMAD data alone does, indeed, leave the optimum threshold range not closely
defined. In this work, a fusion-based ESN architecture was applied to the detection
of rebar defects using a combination of EMAD and cover depth data. In doing so, it
both outperformed a number of non-fusion ESN comparators and a previously used
analytical technique in the detection of defects per se, all of which used EMAD data
alone. Moreover, it was also found that the fusion ESN had an optimal threshold value
whose standard deviation was three times smaller than that of the nearest alternative
technique, implying a large advantage over other techniques in terms of real-world
applicability. This is the first time that cover depth data has been automatically fused
with any kind of MFL data in this context, while it is also the first time that ESNs have
been used for data fusion in NDT.

Structure of Paper

This paper is structured as follows. The data gathering and data processing
methodologies are reported in Material and Methods. Here, the data fusion approach is
described, followed by an explanation of the AT and two non-fusion ESN comparators.
This is followed by Results and Discussion, where the experimental outcomes are
discussed, while concluding remarks are offered in Conclusions.

Material and methods

Magnetic Flux Leakage

This subsection briefly discusses the procedure for performing a survey using the
EMAD technique. A more detailed account of the physical and mathematical principles
behind MFL can be found in Sawade and Krause? .

At the beginning of any EMAD scan, the rebars are magnetised by passing an
electromagnet along their length. In accordance with the principles of RM, the rebars
then remain in a magnetised state. A typical scan using the EMAD technique will not
be of one single bar, but several bars arranged in a mesh. In this case, each bar in
the mesh must be magnetised. After magnetisation has been completed, the EMAD
probe is then scanned along the surface of the concrete to detect defects. The probe
contains a triaxial magnetic sensor which measures the three Cartesian components of
the magnetic flux, X, Y and Z. The probe is passed over each rebar and records data
every 4.71 mm. The Z axis readings for the flux give the magnitude of the component
of the flux leakage in the direction of the scan and the X axis readings provide the
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component normal to the concrete surface. Although the Y axis data are recorded, they
are rarely used in practice.

Echo State Networks

ESNs are a form of Recurrent Neural Network (RNN) introduced in the early 2000s
and were designed to be able to process time-series data. Furthermore, they are efficient
to train and have been successfully applied in similar case studies in the past (see, for
example,? and? ). They were developed with an engineering perspective in mind, and
have proved to be more effective than traditional ANN methods at predicting complex
time-series data, while also having a much shorter training time? . For example, ESNs
have been shown to provide good performance and significantly superior training
times in comparison to state-of-the-art long short-term memory networks (LSTMs)? ? ,
temporal expression tree classifiers and genetic programming ensembles? . One of
the most useful aspects of ESNs is their ability to recall past inputs through the
presence of a short term memory, which can be influenced by a careful tuning of
the network parameters? . These ESN architecture features make them a particularly
good fit for the kind of heterogeneous data fusion required here. In recent times,
ESNs have been used for a wide range of applications, such as traffic management? ,
soil temperature modelling? , power grid voltage insulator damage classification? ,
waterflood performance prediction? and wind speed forecasting? .

The general ESN architecture has three principal features. The first of these is
an input layer of neurons which, via a fully connected weight matrix, projects into
the second feature, a typically much larger, high dimensional ‘kernel’ of sparsely
interconnected reservoir neurons. Each of the reservoir neurons is in turn fully
connected to a layer of output neurons. A schematic diagram of this architecture can
be seen in Figure ??.

Since their inception in 2001, ESNs have become popular due to their modelling
capacity, modelling accuracy, biologically plausible recurrence, extensibility and
ability to overcome the vanishing gradient problems traditionally associated with
gradient descent RNN training procedures? . This is achieved by keeping most of
the weighted connections between neurons unchanged during training, in contrast to
other leading ANN approaches (including deep learning Long Short Term Memory
networks), which require all of these connections to be trained. For ESNs, only the
weighted connections between the reservoir neurons and the output neurons are trained;
all other weighted connections are randomly generated at network initialisation and
left unchanged throughout. Ridge regression? has been found to be a good approach
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Figure 2. A typical ESN topology. Only the weights between the reservoir neurons and the
output units are trained.

to training the weighted connections between the reservoir and output neurons? ? ? .
In this work, ESNs were implemented using the Reservoir Computing Toolbox for
MATLAB? .

The carefully controlled degree of recurrence in the reservoir gives ESNs a key
characteristic: the echo state property? . This is simply defined as the state of the ESN,
S, at any time, t, depending not only on the input at t, but also on the input at all
previous time steps. The state of the network at t is governed by an echo function, E,
which maps the history of the vector of network inputs, u, to the current network state,
as shown in Equation ??? ? :

S(t) = E(...,u(t− 1),u(t)) (1)

Rather than having a fixed memory length, the sparsity of the reservoir allows for
a more flexible short-term memory. Although ESN reservoir neurons were initially
simple additive units with sigmoid activation functions, most ESN reservoirs now use
leaky integrator neurons, first proposed by Jaeger in 2007? . The activation of a leaky
integrator neuron in an ESN reservoir is given by Equation ??? :

x(t) = f((1− δ)x(t− 1) + δ(Wres
inpu(t) + Wres

resx(t− 1))) (2)

In Equation ??, f is the activation function (typically tanh) Wres
inp is the input layer to

reservoir weight matrix, x(t) is the vector of the activations of the reservoir neurons at
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t, Wres
res is the reservoir weight matrix (drawn randomly from a Z distribution) and δ is

the leak rate, which determines the extent to which ESN reservoir neurons’ activations
decrease over a period of time..

In all, four separate techniques were used:

• Fusion ESN An ESN that combined X and Z component data from the EMAD
with cover depth information and a bias input unit.

• ESNGD An ESN that used the X and Z component data from the EMAD and a
bias input unit. This was subject to the same training regime as the Fusion ESN
but without any cover depth information available.

• ESNDS Seven different ESNs trained to use the X and Z component data at
specific cover depths, i.e. ESN42.5 trained to detect defects for cover depths of
42.5 mm, ESN289 trained to detect defects for cover depths of 289 mm etc.

• The AT A procedural algorithm that has been developed to exploit the
characteristic defect signatures in the X and Z axis data from the EMAD and
which has seen commercial use alongside expert interpretation.

These are detailed more fully in the Data Processing section.

Data Gathering

To test the ability of ESNs to fuse EMAD and cover depth data, datasets were obtained
in which systematic changes to the cover depth were made. At this point, it is worth re-
emphasising one of the key considerations in this study: any real-world survey would
require a counter-plot threshold to be applied to a data processing model output before
a usable contour plot could be produced. In this academic study where ground-truth
data is available, we can determine each technique’s optimal threshold based on the
proportion of known defects detected on each thresholded contour plot. However, any
technique which requires fewer candidate thresholds to be used while delivering state
of the art accuracy could reasonably be considered superior, or at least ”more useful”,
in day to day usage.

Data fusion testing mesh A steel reinforcing mesh was set up for the purpose of
obtaining datasets that could be used for data fusion. Seven different concrete cover
depths were simulated by using a stack of plastic grids to increase the elevation of the
EMAD above the mesh during seven different scans. The covers depths ranged from
42 mm to 289 mm, the limit at which the EMAD probe can detect anomalies. The
experimental set-up of this mesh, with a cover depth of 289 mm for just one portion of
the mesh, can be seen in Figure ??. The grids were moved across the mesh to access
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different sections in turn. Figure ?? shows a scan being performed at a cover depth of
251 mm. A schematic view of the mesh’s layout, along with the ground truth location
of six manually inserted breaks, is given in Figure ??..

Figure 3. The data fusion testing mesh in-situ, with a simulated cover depth of 289 mm set
up.

Figure 4. An EMAD scan being carried out with a simulated cover depth of 251 mm.

Seven different cover depths were simulated by using plastic grids to increase the
elevation of the EMAD above the mesh during seven different scans. The cover depths
ranged from 40 mm to 280 mm, the limit at which the EMAD probe can detect
anomalies.
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Figure 5. The layout of the data fusion testing mesh. Lines represent rebar, while
diamonds represent ground truth defect locations.

Recording MFL data The first part of the data gathering process was to magnetise
the mesh. This was done by passing the energiser over each longitudinal rebar in the
mesh at a cover depth of 42.5 mm in the direction indicated in Figure ??. The rebars
were each magnetised in turn from right to left, such that the rebar located at 1.755 m
in Figure ?? was the first to be energised and the rebar located at 0 m the last. After
magnetisation of the whole mesh, each line was then scanned by the EMAD at seven
different cover depths: 42.5 ± 0.5 mm, 85.0 ± 0.5 mm, 124 ± 0.5 mm, 165 ± 0.5 mm,
205 ± 0.5 mm, 251 ± 0.5 mm and 289 ± 0.5 mm. Each scan was performed twice -
once each by two different EMAD probes - so as to create two separate datasets. All of
the data were normalised between +1 and -1 before being presented to the ESN variants
considered here. The end result was two EMAD datasets, with 70 scan lines in each.
These are henceforth referred to as datasets C1 and C2.

Although these datasets reflected the same physical reality, they were separately
obtained by different EMAD probes and, therefore, varied slightly depending on each
device’s noise characteristics and calibration. However, in order to fully develop and
assess the generalisation capabilities of the data processing techniques employed, a
further dataset obtained from an entirely different rebar mesh, C3, was also used in
training. This mesh was encased in concrete and the ground truth condition was known.
The mesh then underwent multiple cycles of magnetisation in different directions,
before then being magnetised in the same direction as the data fusion testing mesh
and surveyed to produce a fourth dataset, C4, which was used for testing.
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Recording Concrete Cover Recording the concrete cover presented a challenge, since
the maximum cover depth that can be recorded by commercially available covermeters
is just 200 mm, 80 mm short of the EMAD’s maximum scanning depth. While this
would be less of an issue in the ‘real-world’, where the concrete cover should be well
within the range of the covermeter, it meant that commercially available covermeters
were not appropriate for the systematic experimental work that was intended here, since
it is important for the ESN to be able to model the full range of signals that could be
obtained by the EMAD probe. Consequently, the cover depth was entered into the data
file as a third parameter which, in this case, was simply recorded for each point in the
scan as the height to which the probe had been raised above the mesh.

In order to reflect further the margin of error seen in data obtained by a covermeter,
Gaussian white noise equivalent to variation in the range ± 2 mm, was added to the
data.

Summary of datasets In summary, the four datasets used in this study were as
follows:

• C1 - data taken from an EMAD device with varying cover depth, used for
training.

• C2 - data taken from a different EMAD device with varying cover depth, used
for testing.

• C3 - data taken from a different, noisier mesh, used for training the Fusion ESN
and ESNGD.

• C4 - data taken from the noisier mesh after a series of different energisation
cycles, used for testing.

Data Processing

A data fusion methodology was formulated and applied to the recorded EMAD
and cover depth data. Since each data point in each dataset was registered with a
corresponding cover depth, ESNs can simply accept the cover depth as an additional
input. In addition, some alternative ESN approaches were designed for comparison
with this data fusion approach. These were ESNGD (‘General Depth’), which was
trained on data obtained from all cover depths, and ESNDS (‘Depth Specific’), a
collection of ESNs that were trained to work on data obtained at specific cover depths.
The details of these are recorded below.

Fusion Approach The data fusion approach that was used here was a relatively simple
one. An ESN was created with three inputs: X axis component of the magnetic flux, Z
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axis component of the magnetic flux and cover depth. This ESN had one output unit,
which was trained to give a value of -1 when no defect was present and +1 when a
defect was present. An additional ‘bias’ input unit was also used, since it was found
that repeatedly feeding the network with an input of +1 improved performance. There
is some precedent for this in the literature, with Jaeger suggesting that such ‘bias’ input
units improve training effectiveness when the mean value of the desired output is not
zero, by increasing the variability of individual neurons’ dynamics? ? .

Datasets C1 and C3 were used for training, which was performed using ridge
regression, and then C2 and C4 were used as unseen testing datasets. This meant that
the ESN was trained on data from seven different cover depths, including lines both
with and without defects.

Before the performance of the data fusion ESN approach could be measured, the
best performing ESN configuration had to be found. The parameters that were varied,
the range over which they were varied and the optimal values that were found can be
seen in Table ??.

Parameter Range varied over Optimal value
Spectral Radius 0 - 2 0.1

Input Scaling 0 - 2 1.25
Leak Rate 0 - 1 0.1

Adaptation Epochs 0 - 10 9
Reservoir Size 1 - 500 82

Reservoir Connectivity
Factor

0.1 - 1 0.45

Activation Function

Tanh, Lorentzian,
Triangular Basis

Function, Radial Basis
Function, Fermi

Tanh

Table 1. The optimal values of the ESN parameters for the data fusion approach, along
with the range that these parameters were varied over.

Once the best performing ESN configuration had been found, 500 ESNs were trained
and their average performance on the testing dataset recorded. This was done in order
to account for the fact that an ESN’s weights are randomly generated at initialisation.
Different approaches to analysing the data were then used for comparison with this
data fusion technique, and these are detailed in the subsections below.

Analytical Technique In past commercial use, EMAD data were processed using a
combination of expert interpretation and a procedural algorithm, referred to here as
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the AT. This AT has been described previously? , and so a lengthy explanation is not
required here. A summary of the AT is given by Equation ??.

O′ =
|P ×G(z0 × dx

dd )|
Ō

(3)

For any given data point, the value of the Z component data, z0, is multiplied by the
magnitude of the slope in the X component data at that point, dx

dd , where the second d in
the denominator denotes the distance along the scan. A Gaussian smoothing function,
G is then applied to this. The smoothed function is multiplied by the peak-to-peak
amplitude between the nearest peak and trough that the data point sits between. Finally,
the output is divided by the mean output for the entire length of the scan, Ō, which acts
as a scaling factor.

Since it is the usual technique for processing EMAD data, the AT was applied to
C2 and C4. If the data fusion approach could not outperform the AT, then it would not
have shown any improvement over this existing method.

Depth-Specific ESN (ESNDS) One alternative approach to the problem of different
cover is to have a suite of pre-trained ESNs, each of which has been specially trained to
process data recorded at a specific cover depth. In the ‘real-world’, cover measurements
could be taken and then the most appropriate ESN selected for the recorded cover
depth, bearing in mind that in practice cover can vary considerably across a large area
of mesh.

In order to explore this potential scenario, seven separate ESN architectures were
trained, one for each different level of simulated cover. As before, 500 ESNs of each
configuration were trained and their average testing performance measured. Although
there was a relative paucity of training data for these ESNs, the fact that these
depth specific ESNs would only ever be exposed to data recorded at one cover depth
compensates for this. Each ESN had two input units (X axis and Z axis components),
and a single output unit, which was trained using ridge regression to give values of -1
for no defect and +1 for a defect. The addition of a bias input unit, as used in the fusion
ESN and ESNGD, did not yield improved performance during training, and so was not
included in the final model. Dataset C2 was used as an unseen testing dataset, while
the ESN trained on data obtained at a cover depth of 42.5 mm was also tested on C4,
where the cover depth was approximately 41 mm.

The best performing ESN parameters that were determined for each ESNDS are
given in Table ??. The lack of a consistent pattern of changes in each parameter reflects
one of the potential problems with this type of approach. Having access to such a small
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Param-
eter

ESN42.5 ESN85.0 ESN124 ESN165 ESN205 ESN251 ESN289

Spec-
tral

Radius
0.3 0.9 0.8 0.5 0.9 0.9 0.5

Input
Scal-
ing

1.9 0.9 0.7 0.7 0.4 0.4 0.1

Leak
Rate

0.9 0.6 1.0 0.2 0.2 0.3 0.1

Adap-
tation

Epochs
0 0 5 6 4 10 0

Reser-
voir
Size

300 300 90 120 140 340 20

Reser-
voir

Con-
nectiv-

ity
Factor

0.2 0.2 0.4 0.6 0.3 0.5 0.99

Activa-
tion

Func-
tion

Radial
Basis

Radial
Basis

Radial
Basis

Radial
Basis

Radial
Basis

Radial
Basis

Lorentz

Table 2. The optimal parameters for each different implementation of ESNDS . The range
varied over for each parameter is the same as in Table ??

amount of training data, which is an inevitable consequence of using data obtained
only at specific depths, could expose the depth-specific ESNs to overtraining and poor
generalisation.

General Depth ESN (ESNGD) A further alternate approach to the problem of
different cover depths that does not involve the fusion of data is to train a single ESN
on EMAD data from all cover depths, without providing any information about the
cover depth itself. This ‘general depth’ approach led to ESNGD, which was trained on
the entirety of C1. Since it was exposed to defect signals recorded at a range of cover
depths, it was expected to be able to detect the presence of defects at any depth. Again,
the ESNGD networks were trained on dataset C1 and C3 with an output unit that would
give a value of +1 for a defect and -1 for no defect. The network had three input units,
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Parameter Range varied over Optimal value
Spectral Radius 0 - 2 0.1

Input Scaling 0 - 2 1.3
Leak Rate 0 - 1 0.1

Adaptation Epochs 0 - 10 0
Reservoir Size 1 - 500 70

Reservoir Connectivity
Factor

0.1 - 1 0.6

Activation Function

Tanh, Lorentzian,
Triangular Basis

Function, Radial Basis
Function, Fermi

Tanh

Table 3. The optimal parameters found for ESNGD

one each for the X and Z components and one which supplied a constant bias value of
‘+1’. 500 ESNs were trained using this topology and then presented with C2 and C4 as
unseen testing datasets. The overall average performance of these 500 ESNs was then
used for comparison with the other techniques.

The optimal parameters that were found for ESNGD after a grid search are given in
Table ??.

Performance Measures

All of the data processing approaches were trained using datasets C1 and C3, and tested
using datasets C2 and C4. Since this is a two-class (‘defect’ and ‘no defect’) problem,
performance was assessed using a Receiver Operator Characteristic (ROC) curve.

The area covered underneath this curve, referred to as the Area Under Curve (AUC),
is equivalent to the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance? . In machine learning,
the AUC has been found to be a better tool for the analysis of two-class classifier
performance than a simple calculation of classifier accuracy? ? and has previously been
used for assessing performance in NDT? . In the ‘real-world’, the processed EMAD
data are normally presented on a thresholded contour plot, so an evaluation method
that considers performance at different thresholds is particularly useful. The average
AUC for the ESN approaches was, therefore, compared to the AUC for the AT on both
of the unseen test datasets.

One practical consideration for the use of any technique in the ‘real-world’ is the
consistency of the optimal threshold, which can be found by determining the point
on the ROC curve that had the smallest Euclidean distance to the point that would
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represent perfect classification. When the ground truth is known, as in this case, finding
the threshold that produces the clearest contour plots is trivial. However, the ground
truth is not usually known, meaning that expert analysis is often required to select
the best threshold. If the calculated threshold is consistent across different datasets,
then expert analysis is not as important. For each technique, the optimal threshold was
calculated and recorded at each different cover depth. A smaller standard deviation of
the optimal threshold at each different cover depth would indicate smaller variation in
optimal threshold values at different cover depths, and would suggest that the technique
would rely less on costly and time-consuming expert interpretation.

Results and Discussion

Results

Table ?? shows the results at each different cover depth. The standard deviation
for the average optimal thresholds at each depth, meanwhile, is given in Table ??.
Figure ?? shows ROC curves at each cover depth for examples of each of the data
processing approaches. For each approach, the exact classifier depicted was the one
whose performance was closest to the overall average performance.

Discussion

It can be seen in Table ?? that the Fusion ESN provided competitive performance at
all of the different cover depths with the exclusion of 289 mm, where the signals were
so obscure that all of the techniques struggled to produce a usable output. Indeed, the
Fusion ESN was the best performing architecture for depths of 85.0 mm, 124 mm, 165
mm and C4. However, the main advantage of using a fusion ESN and, hence, providing
the additional context of cover depth, is best seen in Table ??.

In Table ??, it can be seen that the optimal threshold’s standard deviation for the
Fusion ESN is three times smaller than the same measure for ESNGD and over thirty
times smaller than for the AT that has previously been applied commercially. A smaller
standard deviation indicates that only very small variation in threshold is required to
produce an accurate plot of the data from a survey. Indeed, the variation is so small
that, regardless of the cover depth, the optimal threshold can almost be left at a constant
value, reducing the opportunity for human error.

It is, therefore, possible to envisage how the fusion ESN could be applied in a ‘real-
world’ survey. After the initial survey, the average cover depth could be reported to an
on-site engineer, who could then select a threshold based on Table ??, but variations
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Cover Depth Classifier AUC Optimal Threshold

42.5 mm

AT 0.9882 0.6396
ESN42.5 0.9976 (0.0008) -0.1241 (0.0729)
ESNGD 0.9984 (0.0002) -0.4126 (0.0356)

Fusion ESN 0.9922 (0.0050) -0.5932 (0.0493)

85.0 mm

AT 0.9742 0.9372
ESN85.0 0.9943 (0.0054) -0.1203 (0.1547)
ESNGD 0.9902 (0.0022) -0.5942 (0.0187)

Fusion ESN 0.9963 (0.0031) -0.5466 (0.0339)

124 mm

AT 0.9128 1.4279
ESN124 0.9726 (0.0156) -0.2268 (0.0904)
ESNGD 0.9742 (0.0026) -0.6766 (0.0126)

Fusion ESN 0.9857 (0.0023) -0.5724 (0.0034)

165 mm

AT 0.9034 2.1293
ESN165 0.9802 (0.0219) -0.3079 (0.0975)
ESNGD 0.9749 (0.0019) -0.6777 (0.0114)

Fusion ESN 0.9820 (0.0024) -0.5312 (0.0341)

205 mm

AT 0.8083 0.1240
ESN205 0.8851 (0.0326) -0.1832 (0.1002)
ESNGD 0.9216 (0.0059) -0.7152 (0.0090)

Fusion ESN 0.9127 (0.0149) -0.6233 (0.0479)

251 mm

AT 0.7335 0.0758
ESN251 0.9296 (0.0340) -0.2681 (0.0961)
ESNGD 0.8896 (0.0078) -0.7347 (0.0090)

Fusion ESN 0.8596 (0.0147) -0.5236 (0.0356)

289 mm

AT 0.7504 0.0876
ESN289 0.8597 (0.0519) -0.6625 (0.0635)
ESNGD 0.8531 (0.0126) -0.7241 (0.0104)

Fusion ESN 0.6912 (0.0204) -0.4832 (0.0441)

C4

AT 0.9578 4.3468
ESN42.5 0.8888 (0.0481) -0.1280 (0.1679)
ESNGD 0.9441 (0.0069) -0.3705 (0.0919)

Fusion ESN 0.9665 (0.0092) -0.5068 (0.0500)
Table 4. The average AUC and average optimal threshold for the AT, ESNDS , ESNGD and
the fusion ESN across each dataset. The standard deviation for the ESNs is given in
brackets.

around the average depth would then not significantly degrade the analysis. This does
not just mean that the fusion ESN can be applied in the ‘real-world’, but that it
holds a major advantage over the AT and takes an important step towards more fully
automating the analysis process.

In contrast, while the other ESN architectures offered good performance, obtaining
this good performance in practice would require an engineer to be able to determine
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Classifier Optimal Threshold’s Standard Deviation
AT 1.4568

ESNDS 0.1941
ESNGD 0.1426

Fusion ESN 0.0464
Table 5. The standard deviation of the average optimal thresholds for AT, ESNDS , ESNGD

and the fusion ESN at each different cover depth. A smaller standard deviation indicates a
more consistent threshold as cover depth changed.

the optimal threshold. This is much more difficult to perform in near real-time on site
when the ground truth is not known and may necessitate breaking out sections of rebar
in order to get a baseline to help calibrate the threshold. This would add both time
and expense to any survey, limiting applicability of the other techniques in ‘real-world’
settings and not guaranteeing that the optimal threshold will actually be found. By
simply incorporating cover depth information into a data fusion model, all of this can
be avoided.

The ‘real-world’ applicability of the Fusion ESN is also demonstrated through its
performance on dataset C4, which was much noisier than C2. This noisy data is
potentially more representative of ‘real-world’ surveys and shows that the Fusion ESN
is not just capable of working on ‘clean’ data. The ability of the fusion ESN to process
usefully this noisy data points to another ‘real-world’ benefit. If none of the techniques
were capable of processing the noisier data, then it is possible that the EMAD technique
would need to be modified to include additional expensive equipment to provide a
saturating field capable of suppressing all conflicting magnetic signals, which would
increase the cost of the technique in terms of both time and money.

Taken in combination, all of this suggests that the fusion ESN would be well suited
to processing EMAD and covermeter data in the ‘real-world’.

Conclusions

In summary, this paper presented a data fusion approach to the NDT of reinforced
concrete that significantly improved upon the AT that has been used hitherto.

The fusion ESN gave competitive AUC values when applied to datasets taken across
a range of cover depths. Additionally, the architecture would be a plausible option
for systematic application in ‘real-world’ surveys, showing the best performance on
noisy data and with the standard deviation of the optimal threshold across all of the
cover depths only 0.0464, compared to 0.1426 for the nearest alternative technique. In
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Figure 6. ROC curves for typical examples of each data processing approach at each
different cover depth. For each approach, the exact classifier depicted was the one whose
performance was closest to the overall average performance. In each of the plots, the False
Positive Rate is given on the x-axis and the True Positive Rate on the y-axis.

practice, this would make selection of the optimal threshold and, hence, obtaining the
most accurate results much easier in surveys where the ground truth is not known.
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