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A B S T R A C T

To reduce global greenhouse gas emissions, the world must find intelligent solutions to maximise the utilisation
of carbon-free renewable energy sources. In this paper, multi-agent reinforcement learning is used to control
a microgrid in a mixed cooperative and competitive setting. The agents observe fluctuating energy demand,
dynamic wholesale energy prices, and intermittent renewable energy sources to control a hybrid energy storage
system to maximise the utilisation of the renewables to reduce the energy costs of the grid. In addition, an
aggregator agent trades with external microgrids competing against one another and the aggregator to reduce
their own energy bills. For this, the algorithm deep deterministic policy gradients (DDPG) and multi-agent
DDPG (MADDPG) are used to compare the use of a single global controller versus multiple distributed agents,
along with the single and multi-agent variants of distributional DDPG (D3PG) and twin delayed DDPG (TD3).
The research found it is significantly more profitable for the primary microgrid to sell energy on its own terms
rather than selling back to the utility grid, and is also beneficial for the external microgrids as they also reduce
their own energy bills. The methods that produced the greatest profits were the multi-agent approaches where
each agent has its own reward function based on the principle of marginal contribution from game theory.
The multi-agent approaches were better able to evaluate their performance controlling individual components
of the environment which allowed them to develop their own unique policies for the different types of energy
storage system.
1. Introduction

The energy sector is responsible for the overwhelming majority
of global greenhouse gas emissions [1]. As the world looks to be-
come more sustainable, a key component of reducing emissions is by
moving away from traditional energy generation by increasing the
penetration of renewable energy sources (RES) [2]. Although solar
photovoltaic (PV) and onshore wind turbines (WT) can be amongst
the most cost effective ways of providing energy [3] with the price
of both decreasing greatly over the past decades [4], the intermittent
and unpredictable nature of RES remains a significant barrier when
compared to unsustainable but reliable coal and natural gas power.

Smart energy networks look at tackling this by more intelligently
managing the supply and demand of energy. For example, energy
storage systems (ESS) may be used to store energy generated from RES
when there is a surplus of generation so that it may be used later at peak
times. This gives the grid additional stability and security in systems
with a large amount of RES [5]. A hybrid energy storage system (HESS)
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could also be used in which multiple ESSs are present in the same grid.
This can be done to complement the characteristics of the different
types, such as pairing a supercapacitor (SC) for short-term storage with
a lithium-ion battery (LIB) or fuel cell for longer-term storage [6].

Although this is difficult to achieve at utility grid scales, it can be
implemented more easily at smaller scales. Microgrids are local clusters
of loads and distributed generation which can either be connected to
the main utility grid or act independently as an island. The microgrid
may want to use its ESSs for a number of reasons, including RES
integration or energy arbitrage, to reduce its dependency on the utility
grid [7]. Therefore, a control method is required to be able to learn
behaviours for each type of ESS in a complex grid, as well as taking
into account fluctuating RES generation and volatile dynamic energy
prices.

For this control system, we propose reinforcement learning (RL), a
branch of machine learning in which an agent learns to interact with its
environment to find an optimal control policy [8]. The agent iteratively
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Nomenclature

Abbreviations

ANN artificial neural network
DDPG deep deterministic policy gradients
DQN deep Q-networks
ESS energy storage system
HESS hybrid ESS
LIB lithium-ion battery
MAS multi-agent system
MGA microgrid aggregator
PV photovoltaic
RES renewable energy source
RL reinforcement learning
SC supercapacitor
TD3 twin delayed DDPG
VRB vanadium redox battery
WT wind turbine
xMG external microgrid

Environment Parameter Symbols

𝑥 ESS power
X power from demand or generation
𝑐 ESS charge
C ESS capacity
P energy price
𝜂 efficiency

Reinforcement Learning Symbols

𝑠 state
𝑎 action
𝑟 reward
𝛾 discount factor
𝑄(𝑠, 𝑎) critic action-value estimate
𝜇(𝑠) actor policy action
𝜃 critic network weights
𝜙 actor network weights

chooses an action based on its observations of the environment to
receive a reward, with the goal to maximise its total future reward.
In addition, artificial neural networks (ANN) can be used to combine
RL with deep learning for solutions to more complex problems. Model-
free RL algorithms are incredibly versatile and easy to implement as
they can be used in situations where there is little information or
data available on the environment, as the agent learns from its own
experiences through trial-and-error.

In this energy network context, the problem can also be considered
as a multi-agent system (MAS) in which multiple intelligent decision-
making agents must cooperate, coordinate, and negotiate with each
other to achieve their individual goals [9]. In theory, RL should be
a suitable learning mechanism for these agents as it too is used for
sequential decision making. However, there are a number of funda-
mental challenges when implementing RL for a MAS such as a non-
stationary environment, communication between agents, and assigning
appropriate rewards for agent learning [10].

Therefore, there is a dilemma if a microgrid energy system should be
managed by a single global controller or by multiple distributed agents
in a MAS. In this paper, this problem is investigated using two case
studies: the first controlling the HESS to maximise the utilisation of
RES under dynamic pricing to reduce the grid’s energy bill, and the
2

second building on the first using an aggregator trading with other
neighbouring microgrids looking to reduce their own bills.

1.1. Related literature

There is extensive research into the use of RL for ESS control to max-
imise RES [11], and research into the field has increased substantially
over the last decade [12]. Kuznetsova et al. [13] were the first authors
to use RL to control an ESS in the presence of RES, using a battery
to maximise the utilisation of WT generation. However, the algorithm
used is considered outdated by current standards of deep RL approaches
which were developed several years after.

There is also work on the use of RL for HESS, but it is generally
less explored and typically uses a single control agent to manage the
multiple ESSs. Francois-Lavet et al. [14] used deep RL to control both
a LIB and a hydrogen fuel cell to maximise RES utilisation in a solar
microgrid. Qiu et al. [15] used RL to control both a lead–acid and
vanadium redox battery (VRB) to reduce grid power losses, again in
a solar microgrid. However, as both of these papers only consider two
different ESSs, the scalability of these approaches when used in larger
microgrids with more ESSs or other types of agents is unclear. Zhang
et al. [16] used a more advanced deep RL algorithm for the control of a
microgrid completed with a HESS and both PV and WT generation. The
authors test a variety of different single-agent approaches for control
of the entire grid, but also suggest exploring the use of a MAS as a
potential future research avenue.

There are alternative model-based methods for ESS control. Prodan
et al. [17] compared the use of a model predictive controller to the
research of Kuznetsova et al. [13] and note better performance but
requires significantly more computation. Li et al. [18] use distributed
coordinated power control for voltage and frequency control using a
battery, SC, and fuel cell in a combined AC/DC microgrid. However,
these methods rely on having a complete model available of the envi-
ronment and their performance is only as accurate as the model itself.
In contrast, a RL algorithm could be trained on a digital model but
would continue to learn and improve when applied to and evaluated
on a real system.

Multi-agent RL has also been used for HESS and larger micro-
grids that would be difficult to control using a single agent. Foruzan
et al. [19] uses RL to control multiple agents in a microgrid including
an ESS, RES, a generator, and self-interested customers each with their
own reward function. However, the algorithm used is fairly basic and
restricts control to a discrete state and action space. Kofinas et al. [20]
used the same algorithm but adapted with fuzzy logic to adapt the
method for continuous state and action spaces in a MAS. However,
more advanced methods have been developed since that can achieve
this without the fuzzy logic. Mbuwir et al. [21] uses multi-agent deep
RL to control a battery and heat pump, but the microgrid is much
smaller with fewer agents than the two aforementioned works and is
restricted to a discrete action space. Wang et al. [22] uses another
multi-agent deep RL algorithm for the routing and scheduling of mo-
bile ESSs, such as electric vehicles, in a microgrid with both PV and
distribute diesel generates to reduce load shedding cost.

There are a number of papers in the past couple of years which use
MADDPG papers for RES integration. Li et al. [23] use MADDPG to
control RES generation power for frequency control in an integrated
energy system, considering both PV and WT generation. However, these
papers tackle different problems so do not consider dynamic pricing
schemes. Xu et al. [24] use MADDPG for peer-to-peer energy trading
between microgrids while Li et al. [25] use the algorithm for grid edge
control of ESSs across different households. These papers consider a
deterministic time-of-use dynamic pricing scheme that only incentives
customers to use energy away from peak periods. Therefore, it does
not consider more volatile and unpredictable wholesale energy prices
which the agents must learn to traverse. All four papers also only

consider either a cooperative setting with agents working together, or
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a competitive setting where selfish agents are competing against one
another. MADDPG provides the flexibility to consider a mixed scenario
in a MAS.

To the best of our knowledge, there is no literature on the use
of multi-agent RL for ESS control considering RES integration un-
der a wholesale energy price market. Likewise, there is no literature
considering an environment in a mixed cooperative and competitive
setting.

1.2. Contributions

The contributions of this paper are as follows:

• Presents a novel use case of MADDPG in a mixed cooperative
and competitive MAS microgrid scenario for both RES integration
and energy arbitrage. The centralised learning and decentralised
execution of the method allows each agent is able to evaluate
their policy by observing the actions of all other agents without
having to share parameters or critic networks. This is ideal for the
HESS working cooperatively as well as for self-interested agents
looking to do the same for external microgrids.

• Considers both energy arbitrage and RES integration in a single
problem within the MAS. An asymmetric wholesale energy mar-
ket real-time pricing scheme means that the agents must respond
to both the fluctuating prices and RES output to optimally reduce
the microgrid’s energy bills.

• Evaluates the use of a single-agent global controller versus mul-
tiple distributed agents for the control of different components
of the microgrid. The individual reward function that each agent
receives from the individual critic networks under MADDPG uses
the concept of marginal contribution to better assess how the
agents’ actions impacted the joint goal of reducing energy costs.
This also allows each agent in the HESS to develop their own
unique policy to best suit that ESS type.

1.3. Structure

The rest of this paper is organised into the microgrid environment
description in Section 2, the background into RL and the specific
algorithms in Section 3, outline of the two case studies in Section 4,
results and discussion in Section 5, with final conclusions made in
Section 6.

2. Microgrid description

Microgrids are localised energy networks with their own demand
and RES that are able to trade energy with the main utility grid
or operate as an independent island [26]. This section will describe
the primary microgrid used in the future case studies and how it is
modelled as a Markov decision process (MDP) for RL. The first case
will look solely at using the HESS to maximise the utilisation of the
RES to reduce the primary microgrid’s energy bills, and the second will
consider using an aggregator to sell energy to neighbouring external
microgrids (xMG) competing against each other to reduce their own
individual energy bills.

2.1. Energy network description

The primary microgrid is fitted with a HESS as well as both PV and
WT generation. It is connected to the main utility grid that sets dynamic
energy prices from which the microgrid can import energy from, or sell
back to at a fixed feed-in tariff. AC and DC power lines are present
connected via inverters, as well as transformers between the primary
microgrid and both the utility grid and WT. In addition, the primary
microgrid is also connected to five xMGs via another transformer, with
those xMGs are connected themselves to the main utility grid but not
the wholesale energy market. The basic schematic of the environment
is shown in Fig. 1.
3

2.1.1. ESS
The primary microgrid consists of a HESS with three different types

of ESS: a LIB, a VRB, and a SC which are suited for mid-term, long-
term, and short-term energy storage respectively. All three have the
same maximum capacity and maximum power, shown in Fig. 1, and
can transfer energy between each other without the need to go through
an inverter. Some general observations of each are:

• LIB is cheapest per capacity with a low self-discharge and a good
round-trip efficiency but has the fewest total lifecycles making it
ideal for medium-term storage.

• VRB has a negligible self-discharge but a poor round-trip ef-
ficiency making it suited for storing energy over much longer
periods of time.

• SC has a much largest number lifecycles making it by far the
cheapest to operate, but a poor self-discharge makes it only ideal
for dealing with fluctuations over the course of a single day.

The control policy that the agent must learn should optimally
manage the contrasting characteristics of the ESS types to maximise
each of their strengths and mitigate against their respective flaws.

2.1.2. Demand and renewable energy sources
The demand data collected at Keele University Campus ranges from

00:00 January 1st 2014 up to and including 23:00 December 31st
2017. The raw data is separated into different residential, industrial,
and commercial sites as well as readings for key individual buildings.
The demand used for this simulation is from the three main incomer
substations into the campus with the half-hourly readings summed to
match the frequency of the hourly weather data.

This microgrid considers both PV and WT generation with the
output simulated using weather data collected at the Keele University
weather station, and therefore at the same site as the demand data and
over the same period of time.

The grid components are also connected using inverters between
Ac and DC lines, as well as transformers to step-up or step-down
voltages. Transformers connect the primary microgrid to the utility
grid, the WT, and external microgrids (xMG) in the second case study.
Inverters connect the main AC line of the microgrid to the HESS and
PV generation which all use DC. All loads are AC.

2.1.3. Wholesale energy pricing
The microgrid is connected to the main utility grid, but can also pur-

chase energy from a wholesale energy market under a dynamic pricing
scheme. Here, the microgrid can purchase using real-time pricing set
by the market operator, but can only sell back to the utility grid at a
constant feed-in tariff.

By reacting to the uneven dynamic pricing scheme with higher
buying prices than selling prices, learning to both buy energy when
the wholesale price is low as well as maximising the utilisation of the
RES will be key to the agents’ performance. Therefore, rewarding the
agents based on their energy savings encourages both effective energy
arbitrage and RES integration.

2.1.4. External microgrid trading
In a second case study, the microgrid aggregator (MGA) agent sells

energy to five smaller xMGs. The MGA decides the amount of energy
to sell at the next hour to the xMGs which then enter a bidding phase
to compete for the energy.

The xMGs bid for a quantity of energy at a price they are willing to
pay. The MGA then sells the energy to whichever xMGs bid the highest
until there is none left to sell. The MGA can also set a reserve price
which must be met to sell the energy, otherwise it is sent back to the
utility grid.
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Fig. 1. Basic schematic of the microgrid.
2.2. Control methodology

Model predictive control had historically been the most widely used
method for a control system, and is very popular within the energy
industry [11]. Model-based methods such as this will often achieve
great results if an accurate model and data are provided, but the results
are only as accurate as the model itself and the data needed to create
a model is not necessarily always available. In contrast, RL is a rapidly
expanding research area and most methods are model-free so do not
require a model of the environment, or any information about the
environment at all, so are much more flexible in nature. Therefore, this
paper focuses on the use of RL.

A fundamental challenge for this specific scenario is sample effi-
ciency as there is only one set of data so the agents will only receive
one pass through the environment. Therefore, RL algorithms known for
their sample efficiency are required to achieve superior energy savings.

3. Reinforcement learning methodology

This section will explore the theory behind RL and introduce the
specific algorithms used in the case studies later in the paper.

3.1. Fundamentals

Each time-step 𝑡 in RL, the agent observes the current state of the
environment 𝑠𝑡 and selects an action 𝑎𝑡 from an action-space following
a learnt policy. The agent then receives a reward 𝑟𝑡 from a reward
function and transitions to a new state 𝑠𝑡+1 with the goal of the agent
being to learn a policy that maximises its total discounted future
reward.

RL algorithms can be categorised as value function methods, policy
gradient methods, or actor–critic methods. Value function methods
evaluate performance by assigning value to each state by estimating
the state-value 𝑉 (𝑠) or state–action pair by estimating the action-value
4

𝑄(𝑠, 𝑎). Policy gradient methods instead directly parameterise the policy
using an ANN without necessarily estimating a value function. The
parameters 𝜃 are adjusted to maximise an objective 𝐽 (𝜃) by follow-
ing the gradient of the policy ∇𝜃𝐽 (𝜃). Actor–critic methods will both
learn a value function and parameterise the policy, combining both
approaches.

3.2. Algorithms

The algorithms used in this paper are Deep Deterministic Policy Gra-
dient (DDPG) and two more advanced variants of DDPG, benchmarked
against a popular value function method.

3.2.1. Deep Deterministic Policy Gradient (DDPG)
DDPG [27] is an actor–critic method based on the principles of Q-

learning [28] in which an actor network 𝜇𝜙(𝑠) with network weights 𝜙
selects the actions the agent takes while a critic network 𝑄𝜃(𝑠, 𝑎) with
weights 𝜃 evaluates agent performance.

Action selection is performed by passing the current state through
the actor network. As the policy is deterministic, the agent explores by
adding a noise process 𝑤 to the actor output:

𝑎𝑡 = 𝜇𝜙(𝑠𝑡) +𝑤 (1)

This noise 𝑤 is typically either Gaussian for uncorrelated noise or
the Ornstein–Uhlenbeck process for correlated noise. An alternative
method is to instead use adaptive parameter space noise which can be
tuned during training [29]. NoisyNet layers [30] have been used with
Deep Q-Networks (DQN) [31] to introduce noise to the value function
estimation which the agent can learn to increase or decrease as it visits
those states. The same approach is used in this work, and the noise
process for the action selection has been removed.

Once the environment has executed the action, the agent stores
the transition tuple ⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑑𝑡⟩ in an experience replay buffer
memory, which can then be sampled later during training. This makes
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Fig. 2. Learning at each step when provided with a batch of transitions ⟨𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⟩. The red arrows show the process for training the critic network and the blue arrows for
training the actor network.
the algorithm an off-policy method as the agent is trained from samples
collected using a different policy to the current learnt one. The use of a
replay buffer allows DDPG to be more sample efficient than on-policy
RL algorithms such as A3C [32] and PPO [33]. This is particularly
useful for this environment as the agents only perform one sweep of
the 4 years of data as one episode, so the ability to learn by sampling
previous transitions from limited data is crucial.

Target actor 𝜇̂𝜙̂ and target critic 𝑄̂𝜃̂ networks are also used to
stabilise learning, with weights that are fixed during training and then
updated at the end of each step. This is so that the agent is not cal-
culating the target value using the same network that is being trained,
which is done to avoid oscillations or divergence in the policy [31].

The critic and target critic networks evaluate performance by ob-
serving both the state and the corresponding action. Following the
principles of temporal difference learning [8], target values 𝑦 are
estimated from the target critic estimations of the sampled batch of
tuples:

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄̂𝜃̂

(

𝑠𝑖+1, 𝜇̂𝜙̂(𝑠𝑖+1)
)

(2)

The critic network is updated through gradient descent using the
mean-squared error between 𝑦 and the predicted value from the critic
network:

𝑖(𝜃) = E
[

(𝑦𝑖 −𝑄𝜃(𝑠𝑖, 𝑎𝑖))2
]

(3)

The actor network is then updated through gradient ascent using
the deterministic policy gradient [34]:

∇𝜙𝐽𝑖(𝜙) = E
[

∇𝑎𝑄𝜃(𝑠𝑖, 𝑎)|𝑎=𝜇(𝑠)∇𝜙𝜇𝜙(𝑠𝑖)
]

(4)

At the end of each step, soft target updates are performed for the
target actor and critic using a smoothing parameter 𝜏:

𝜃̂ ← 𝜏𝜃 + (1 − 𝜏)𝜃̂

𝜙̂ ← 𝜏𝜙 + (1 − 𝜏)𝜙̂
(5)

The pseudocode of DDPG can be found in Algorithm 1. The learn-
ing process during training between the different ANNs for DDPG is
visualised as a flowchart in Fig. 2(a).

3.2.2. Distributional DDPG (D3PG)
An issue with using the expectation value for 𝑄(𝑠, 𝑎) is that it

can over-generalise in environments with a non-deterministic reward
function [35]. D3PG [36] removes the expectation step in the Bellman
equation and instead estimates the value distribution 𝑍(𝑠, 𝑎):

𝑍(𝑠𝑡, 𝑎𝑡)
𝐷
= (𝑠𝑡, 𝑎𝑡) + 𝛾𝑍(𝑠𝑡+1, 𝑎𝑡+1) (6)

A number of atoms are assigned to each action for 𝑁actions ×𝑁atoms
output neurons with the probability distribution of the return 𝑑(𝑠, 𝑎)
calculated using a softmax applied separately across the atoms for each
5

action. The algorithm C51 [35], the distributional variant of DQN, uses
Algorithm 1 Deep Deterministic Policy Gradient
1: Initialise critic 𝑄𝜃(𝑠, 𝑎) and actor 𝜇𝜙(𝑠) arbitrarily
2: Initialise target critic 𝑄̂𝜃̂(𝑠, 𝑎), setting 𝜃̂ ← 𝜃
3: Initialise target actor 𝜇̂𝜙̂(𝑠), setting 𝜙̂ ← 𝜙
4: Initialise replay memory
5: for 𝑡 = 0, 𝑇 do
6: Observe state 𝑠𝑡
7: Choose action 𝑎𝑡 = 𝜇𝜙(𝑠𝑡)
8: Execute 𝑎𝑡, observe reward 𝑟𝑡 and next state 𝑠𝑡+1
9: Store transition ⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1⟩ in memory

10: Sample minibatch ⟨𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1⟩ from memory
11: Calculate target 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄̂𝜃̂(𝑠𝑖+1, 𝜇̂𝜙̂(𝑠𝑖+1))
12: Critic loss 𝑖(𝜃) = E

[

(𝑦𝑖 −𝑄𝜃(𝑠𝑖, 𝑎𝑖))2
]

13: Perform gradient descent on 𝜃 using (𝜃)
14: Actor loss ∇𝜙𝐽 (𝜙) = E

[

∇𝑎𝑄𝜃(𝑠, 𝑎)|𝑎=𝜇(𝑠)∇𝜙𝜇𝜙(𝑠)
]

15: Perform gradient ascent on 𝜙 using ∇𝜙𝐽 (𝜙)
16: Update critic weights 𝜃̂ ← 𝜏𝜃 + (1 − 𝜏)𝜃̂
17: Update actor weights 𝜙̂ ← 𝜏𝜙 + (1 − 𝜏)𝜙̂
18: end for

51 atoms across each action. The probability mass on each atom is
equal to:

𝑑𝑖(𝑠, 𝑎) =
exp(𝜃𝑖(𝑠, 𝑎))

∑

𝑗 exp(𝜃𝑗 (𝑠, 𝑎))
(7)

Each of these probability masses can then be projected onto a
support 𝑧 with a value equally spaced between a minimum return 𝑣min
and a maximum return 𝑣max:

𝑧𝑖 = 𝑣min + (𝑖 − 1)
𝑣max − 𝑣min
𝑁atoms − 1

(8)

The sum of these probability masses on each support is equal to
𝑄(𝑠, 𝑎). The target used for training is the projected target distribution
calculated using the categorical algorithm [35]:

(𝛷̂ 𝑍𝜃̂(𝑠, 𝑎))𝑖 =
𝑁atoms
∑

𝑗=0

[

1 −
|[̂ 𝑧𝑗 ]

𝑣max
𝑣min − 𝑧𝑖|
𝛥𝑧

]1

0

𝑑𝑗 (𝑠𝑖+1, 𝑎∗) (9)

where 𝛷 is the projection of the distribution onto 𝑧 and  is the
distributional Bellman operator. As this generates a discrete probability
distribution, the Kullback–Leibler divergence between the predicted
value and the projected target is used for the loss function:

𝑖(𝜃) = 𝐷KL

(

𝛷̂ 𝑍𝜃̂(𝑠𝑖, 𝑎𝑖) ∥ 𝑍𝜃(𝑠𝑖, 𝑎𝑖)
)

(10)

3.2.3. Twin Delayed DDPG (TD3)
A common issue with using functional approximators in RL is they

have a tendency to overestimate value estimates which can lead to
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suboptimal policies as agents tend to select the actions that they have
already assumed are more valuable [37]. Double DQN [38] looked
to solve this by removing the maximisation step in the DQN target
calculation and selecting the next state’s best action using the evalu-
ation network, but this does not work for actor–critic methods such as
DDPG as the action selection and value function estimates are separate.
Instead, Double Q-Learning [39] uses two value function estimates
so that the next best action and target estimate is performed using
different value estimates.

TD3 [40] aims to solve the overestimation problem for DDPG by
using a similar approach with a second critic and target critic pair. The
target value 𝑦𝑖 is then calculated using the minimum estimated of the
two critic target networks:

𝑦𝑖 = 𝑟𝑖 + 𝛾 min
𝑖=1,2

𝑄̂𝜃̂𝑖
(𝑠𝑖+1, 𝜇̂𝜙̂(𝑠𝑖+1)) (11)

That shared target value 𝑦 is then used for the loss function of both
critic networks:

𝑖(𝜃1) = E
[

(𝑦𝑖 −𝑄𝜃1 (𝑠𝑖, 𝑎𝑖))
2
]

𝑖(𝜃2) = E
[

(𝑦𝑖 −𝑄𝜃2 (𝑠𝑖, 𝑎𝑖))
2
] (12)

In contrast to DDPG where both the actor and critic are updated
every step, the actor and target networks are updated at a lower
frequency to the critic to minimise the error in the policy update.
The actor update uses the deterministic policy gradient of only one of
critics:

∇𝜙𝐽𝑖(𝜙) = E
[

∇𝑎𝑄𝜃1 (𝑠𝑖, 𝑎)|𝑎=𝜇(𝑠)∇𝜙𝜇𝜙(𝑠𝑖)
]

(13)

The learning process of TD3 is visualised as a flowchart in Fig. 2(b).

3.3. Multi-Agent DDPG (MADDPG)

In theory, using a single-agent RL for a MAS is possible as the state
observations, actions, and reward function can all remain the same.
However, there are a number of fundamental challenges that appear
when applying standard single-agent RL algorithms in a MAS.

The main problem is that the environment appears non-stationary
from the perspective of a single agent as the behaviours of other agents
will change during training [41]. This means that an agent may observe
exactly the same state as before and perform exactly the same action
but receive a completely different reward based on the actions of other
agents, which can make learning incredibly difficult. For example,
agents in a competitive setting may over-fit their policy based on the
behaviours of other agents, whereas agents in a collaborative setting
may suffer from credit assignment problems from a shared reward
function.

MADDPG [42] looks to solve this by using the principle of cen-
tralised learning with decentralised execution. Each agent selects its
own action based on its own observations during the execution phase,
but the architecture of the DDPG critic allows each agent to evaluate
performance by observing the actions taken by all other agents, thus
solving the problem where agents may perceive the environment as
non-stationary.

As each of the agents possesses its own critic network, they can
evaluate their own performance using their own reward function. This
means that MADDPG can be used in competitive, collaborative, and
mixed settings while remaining fundamentally very similar to DDPG
itself.

MADDPG has the benefit of other multi-agent RL algorithms in that
it uses a critic network for each agent, rather than having a shared
critic as in QMIX [43] or COMA [44] which are only suited for a
cooperative MAS. MADDPG allows each agent to learn its own reward
function so is much better suited for competitive or mixed cooperative
6

and cooperative environments. w
3.4. Environment formulation

For RL to operate the microgrid environment, the control process
must be generalised to a state-space , action-space , reward function
, and a state transition function. The rest of this section will explain
the states, actions, and rewards for the case studies.

3.4.1. States
The state observations 𝑠𝑡 are the values the agents see when select-

ng actions. The ESS agents observe the charge of all of the ESSs, the
rid demand, wholesale energy price, WT and PV generation, as well
s the current hour in the day and the week. The agents also receive
redicted values of the next step for demand ẊD

𝑡+1, market price Ṗgrid
𝑡+1 ,

nd PV ẊPV
𝑡+1, and WT ẊWT

𝑡+1 from ANNs using regression with weather
ata, as in previous work [45]. In the second case study, the MGA
gent receives the same observations as the ESS agents but also includes
bservations of the MGA sell volume and reserve price for that step:
ESS
𝑡 = [𝑐LIB

𝑡 , 𝑐SC
𝑡 , 𝑐VRB

𝑡 ,Pgrid
𝑡 , Ṗgrid

𝑡+1 ,P
MGA
𝑡 ,XMGA

𝑡 ,

XD
𝑡 , Ẋ

D
𝑡+1,X

PV
𝑡 , ẊPV

𝑡+1,X
WT
𝑡 , ẊWT

𝑡+1 ,H
day
𝑡 ,Hweek

𝑡 ]
(14)

In contrast, the xMG agents only receive the demand for that specific
MG, the MGA sell volume and reserve price, as well as the same hour
nformation as before:
xMG
𝑡 = [PMGA

𝑡 ,XMGA
𝑡 ,XxMG,D

𝑡 ,Hday
𝑡 ,Hweek

𝑡 ] (15)

This means that aspects of the underlying state of the environment
re hidden from different agents, in the interests of privacy and compe-
ition. All observation values are also scaled between 0 and 1 for stable
gent training.

.4.2. Actions
The actions of the agents control the environment at each step.

DPG and its variants output an action 𝑎 value between −1 and 1, and
hen that value is used to control the environment.

The ESS agents control how much that ESS charges or discharges. If
sing a single-agent approach, one agent will output three actions (or
ive including the MGA) to charge all three ESSs, whereas each agent
ill be in control of one ESS in a multi-agent approach:

ESS
𝑡 = XESS

max
[

𝑎ESS
𝑡

]1
−1 (16)

The MGA agent selects two actions. The first selects the primary
icrogrid’s selling volume at the next step, between 0 and a maximum

olume XMGA
max :

MGA
𝑡+1 = 0.5XMGA

max

[

𝑎MGA,X
𝑡

]1

−1
+ 0.5XMGA

max (17)

The second decides the reserve price of the energy sold, between
min = £16∕MWh and Pmax = £144∕MWh:

MGA
𝑡+1 = 0.5

(

Pmax − Pmin
)

[

𝑎MGA,P
𝑡

]1

−1

+ 0.5
(

Pmax + Pmin
)

(18)

The xMGs also select two actions. The first is the bid volume,
etween 0 and a maximum volume XxMG

max :

xMG
𝑡 = 0.5XxMG

max

[

𝑎xMG,X
𝑡

]1

−1
+ 0.5XxMG

max (19)

The second is the bid price, also between Pmin and Pmax:

xMG
𝑡 = 0.5

(

Pmax − Pmin
)

[

𝑎xMG,P
𝑡

]1

−1

+ 0.5(Pmax + Pmin)
(20)

In the second case study, the MGA decides the sell volume of energy
nd the reserve price for the xMG at the next step. These values are then
bserved by all agents at the next step. In this case, the global controller

ill output five actions instead of three, whereas the individual MGA
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agent will operate as its own entity outputting two actions in the multi-
agent setting. Each xMG agents decide two actions: the buying volume
of energy and the bid price of the current step.

For DDPG, the primary algorithm used in this paper, the actions are
selected using an actor network for each agent which observes only
the relevant state observations for that particular agent. However, the
agents’ performance is evaluated using a critic network for each agent
which receives those same observations as well as the actions taken by
all agents.

3.4.3. Rewards
The aim of the agents is to reduce the energy costs of their respective

microgrid. For the primary microgrid, this is done by calculating the
energy imported to or exported from the grid. First, the net demand of
the DC line Xdc is considered:

dc
𝑡 = 𝑥LIB

𝑡 𝜂LIB
RTE + 𝑥VRB

𝑡 𝜂VRB
RTE + 𝑥SC

𝑡 𝜂SC
RTE − XPV

𝑡 (21)

This is then used to calculate the amount of energy imported from
or exported to the utility grid:

Xin
𝑡 = (XD

𝑡 + Xdc
𝑡 𝜂inv

[1,2,5]MW − XWT
𝑡 𝜂tra

2MW)𝜂tra
2MW (22)

The reward for the cost of the energy the primary microgrid has
bought or sold to the utility grid can then be calculated:

𝑅in
𝑡 = −Xin

𝑡 Pgrid
𝑡 (23)

The ESS agents are punished to promote positive behaviour, such as
by including the ESS operation cost 𝑅CPC calculated earlier in Eq. (29).
The agent is punished again if the action selected would make the
theoretical ESS charge 𝑐̇ after the action is executed exceed the capacity
boundaries of the ESS:

𝑅cap
𝑡 =

⎧

⎪

⎨

⎪

⎩

Pmax(𝑐̇𝑡)2∕Xmax 𝑐̇𝑡 < 0
0 0 ≤ 𝑐̇𝑡 ≤ Cmax

Pmax(𝑐̇𝑡 − Cmax)2∕Xmax 𝑐̇𝑡 > Cmax

(24)

The agents are also punished based on the amount of energy lost
each step through self-discharge:

𝑅SDC
𝑡 = Pmax

(

𝑐𝑡
Cmax

)

𝜂SDC (25)

Including the ESS operation cost 𝑅CPC from Eq. (29) and the reward
for the MGA bidding 𝑅MGA from Algorithm 2, the sum of the reward
terms 𝑅sum is calculated as:

𝑅sum = 𝑅in + 𝑅MGA − 𝑅CPC − 𝑅SDC − 𝑅cap − 𝑅base (26)

This value is then multiplied by 0.01 and the total number of agents
𝑁agents so that the reward the agent receives typically remains between
−1 and 1, or at least at that magnitude, to improve the stability of agent
learning. Therefore, the reward 𝑟𝑡 an agent receives at each step is equal
to:

𝑟𝑡 = 0.01𝑁agents𝑅
sum (27)

Using the raw energy cost as the reward will punish the agent when
the demand is high and reward the agent when RES generation is
high, neither of which the agent has any control over. Therefore, a
baseline 𝑅base is used to normalise the reward for effective learning.
The single-agent algorithms have control over the whole environment
so are rewarded on the primary microgrid’s energy savings with a 𝑅base

of if all of the ESS and MGA had remained idle by recalculating what
the reward would be if 𝑥LIB, 𝑥LIB, 𝑥LIB, and XMGA were all 0.

However, the multi-agent methods can be more flexible with reward
function design. For example, each agent could be rewarded on the
entire primary microgrid’s savings as this is the common goal the agents
are working towards but this could lead to credit assignment problems
as the agents will need to assess how much of the shared reward they
contributed to. Alternatively, they could be rewarded based on their
7

Z

own individual savings, but that then ignores the policies of the other
ESSs and may lead to a lower global reward.

Therefore, both approaches can be combined by rewarding the
agent on the grid’s savings but by using a baseline of if that one indi-
vidual agent had remained idle, rather than if all of them together were
idle. This follows the principle of marginal contribution in cooperative
game theory where agents are rewarded based on their contribution to
the global goal [46].

4. Case studies

In the first case study, only the ESS agents are used and their actions
control how much each ESS charges or discharges by. In the second, the
MGA agent determines the selling volume and reserve price for the next
step which all agents observe before the xMG agents place their bids
for the amount and price.

4.1. Environment parameters

This section will cover the technical characteristics and dynamics of
the RL environment.

4.1.1. ESS properties
The parameters used for the modelling of each ESS type are given in

Table 1 with their maximum capacity Cmax, maximum power Xmax, self-
discharge efficiency (SDC) per hour 𝜂SDC, round-trip efficiency (RTE)
𝜂RTE, capacity cost per kWh, number of lifecycles, and capacity cost
per cycle PCPC.

The charge of each ESS is bound between 0 and their maximum
capacity Cmax = 2MWh, with the power 𝑥𝑡 the ESS can charge or
discharge each step bound between 0 and their maximum power Xmax =
1 MW. The charge of each ESS 𝑐𝑡 each step is calculated by:

𝑐𝑡 = 𝑥𝑡
√

𝜂RTE + 𝑐𝑡−1𝜂SDC (28)

The operation CPC of each ESS is also considered so that the agents
ptimally use the different types. This is calculated using their capacity,
apacity cost, and number of lifecycles which is then used as a function
n the reward 𝑅CPC:

CPC
𝑡 = 0.5PCPC

(

𝑐𝑡 − 𝑐𝑡−1
Cmax

)2
(29)

A cycle is considered as the battery charging from empty to full and
then discharging until empty, or vice versa. Therefore, PCPC is halved
as each step is only considered as a half cycle because the ESS cannot
both charge and discharge in the same step.

4.1.2. RES output
The output for the RES generation is modelled using weather data

collected at the Keele University weather station. The PV output XPV is
calculated using hourly solar radiation data and scaled to model a solar
farm with a maximum capacity of 5MW, while the WT output XWT is
calculated using wind power curve modelling using wind speed data,
with wind speed 𝑣:

XWT =

⎧

⎪

⎨

⎪

⎩

0 𝑣 < 𝑣ci or 𝑣 > 𝑣co
1
2𝜌𝜋𝑟

2𝑐𝑝𝑣3 𝑣ci ⩽ 𝑣 < 𝑣𝑟
XWT

rated 𝑣𝑟 ⩽ 𝑣 ⩽ 𝑣co

(30)

The values used are 𝑣𝑐𝑖 = 3 ms−1, 𝑣𝑟 = 12 ms−1, and 𝑣𝑐𝑜 = 25 ms−1
re the cut-in, rated, and cut-out wind speeds respectively which are
omparable to a 1MW-rated turbine with a blade radius of 𝑟 = 30 m
nd a power coefficient 𝑐𝑝 = 0.4 [47]. This microgrid considers two of
hese turbines for a combined maximum wind capacity of 2 MW. The
ame power curve approach is used by both Kuznetsova et al. [13] and
hang et al. [16] for their RES output.
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Table 1
ESS Properties.
ESS Capacity Cmax Power Xmax 𝜂SDC 𝜂RTE Capacity Cost Lifecycles PCPC

LIB 2MWh 1MW 99.99% 95% £100/kWh 5k £40
VRB 2MWh 1MW 100% 80% £200/kWh 10k £40
SC 2MWh 1MW 99% 95% £300/kWh 100k £6
Fig. 3. Inverter and transformer efficiency profiles.

4.1.3. Transformer and inverter properties
The primary microgrid is a hybrid AC/DC network with inverters

between the two power lines and transformers to step-up and step-down
the voltage to the microgrid. The rated loads of each of the transformers
and inverters can be found in Fig. 1.

The HESS and PV generation are connected to 1MW, 2MW, and
5MW rated inverters as well as to each other. When energy is to pass
between the AC and DC lines, the grid will automatically use whichever
inverter or combination of inverters that would result in the lowest
power loss. Mbuwir et al. [21] used a similar efficiency profile for
inverters [48] for RL in a microgrid with solar energy.

The efficiency profiles modelled using a polynomial estimation,
shown in Fig. 3. The efficiency profiles are nonlinear and given as a
function of the load factor, which is given as the current load divided
by the rated load. Although the real efficiency of these devices at low
load factor would approach 0%, the minimum efficiency is capped at
10% to prevent divisions by 0 during environment calculations.

4.1.4. Wholesale energy market
The microgrid operates under a dynamic energy pricing scheme

where the prices Pgrid are set by a real-time energy trading market
covering the UK [49]. However, there is also a set maximum price
Pmax = £144/MWh as this is the average unit rate for electricity for
the UK [50] so will instead buy from the utility grid at that flat price
if the market price exceeds this.

However, this market is only for purchasing energy so the microgrid
can also sell energy back to the utility grid at a fixed feed-in tariff. The
feed-in tariff in the UK varies greatly based on the type of energy, the
size of the system, and the installation date [51]. Therefore, a fixed rate
of Pmin = £16/MWh is assumed for all energy sold back to the grid.
This is equal to the tariff for a WT system selling between 0.1 MW and
1.5 MW installed after 1st January 2019, and is also extremely similar
to the £15.9/MWh feed-in tariff of a 0.25 MW and 1 MW PV system
installed at the same time [52].

4.2. MGA properties

The MGA selects the total volume the grid will sell XMGA for the
xMGs to bid for. The MGA also selects a reserve price PMGA between
8

Pmin and Pmax which needs to be met in order to sell so that the MGA
has some control over the xMG market.

During the bidding phase of each step, the aggregator will sell as
much available energy as available to the highest xMG bidder up to
the volume it has requested, assuming the xMG bid price exceeds the
MGA reserve price. The MGA will then move to the next highest bidder
until all available energy for selling has gone, with any excess energy
put up for auction but not sold given back to the utility grid at Pmin.
This is written in pseudocode in Algorithm 2.

Algorithm 2 MGA and xMG Bidding Step

1: Input MGA selling volume XMGA

2: Input MGA reserve price PMGA

3: Input xMG bidding volumes
𝑥xMG =

[

𝑥xMG1, 𝑥xMG2, 𝑥xMG3, 𝑥xMG4, 𝑥xMG5]

4: Input xMG bidding prices
𝑝xMG =

[

𝑝xMG1, 𝑝xMG2, 𝑝xMG3, 𝑝xMG4, 𝑝xMG5]

5: Initialise reward 𝑅MGA = 0
6: while XMGA > 0 and 𝑥xMG

any > 0 do
7: Highest bidding xMG index 𝑖 = argmax 𝑝xMG

8: if 𝑝xMG
𝑖 > PMGA then

9: Available bid volume 𝑥bid = min[XMGA, 𝑥xMG
𝑖 ]

10: Update reward 𝑅MGA ← 𝑅MGA + 0.8𝑝xMG
𝑖 𝑥bid

11: Update selling volume XMGA ← XMGA − 𝑥bid

12: end if
13: Set 𝑥xMG

𝑖 ← 0
14: Set 𝑝xMG

𝑖 ← 0
15: end while
16: Sell remainder 𝑅MGA ← 𝑅MGA + PminXMGA

4.2.1. xMG properties
Each xMG must satisfy its own demand XxMG, D and can do so

by trading with the MGA or by importing from the utility grid. The
demand is one-twentieth of the scale of the primary microgrid’s demand
XxMG,D plus a small noise function:

XxMG, D
𝑡 =

[

0.05XD
𝑡 + (0, 0.01)

]0.25XD
𝑡

0.01XD
𝑡

(31)

The xMG bids for a volume of energy 𝑥xMG at a price 𝑝xMG between
Pmin and Pmax. Any demand that is not met by the volume it receives
from the MGA is made up by buying from the utility grid at Pmax. Any
energy bought over the xMG demand is given back to the utility grid
at Pmin.

4.3. Simulation setup

Each time-step in the environment represents one real-world hour
and each episode represents 168 h or one week. The entire simulation
takes place over 200 weeks for 33.6k total time-steps, significantly
fewer samples than used for typical RL agent training in the order
of millions of time-steps. Therefore, sample efficiency is key to agent
performance.

The agent begins learning after 500 steps to build up the replay
buffer and takes uniformly random actions until 1000 steps so that the
initial transitions are not biased by the randomly initialised weights of
the actor network. The agent then trains across all 200 weeks with the
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Fig. 4. Illustration of how each agent interacts with the environment in the xMG trading case study.
Table 2
DDPG agent hyperparameters.
Hyperparameter Value

Actor Learning Rate 5 × 10−4

Critic Learning Rate 1 × 10−3

Hidden Layer Dimensions 256
Hidden Layer Activation ReLu
Batch Size 64
Target Update 𝜏 0.005
Discount Factor 𝛾 0.99
D3PG Limits 𝑉min, 𝑉max −10, 10
TD3 Actor Delay Steps 2

first 100 used for hyperparameter testing and the second 100 weeks for
evaluation.

The hyperparameter testing was performed using a grid search of
values for the DDPG algorithm with. The parameters tested were the
actor and critic learning rates, the discount factor 𝛾, the hidden layer
dimensions, the learning sample batch size, and the target network
update 𝜏. During this testing, the grid savings are reset after 1000 steps
due to the random action selection and then the value that produced the
greatest savings after the 100 episodes is carried forward for the grid
search of the next hyperparameter. The final values used for evaluation
shown in Table 2 with those parameter values used across all DDPG
variants.

For the evaluation phase, the agent is trained across all 200 episodes
with the savings reset after the first 100. The TensorFlow and NumPy
random seeds are kept constant across all simulations for fairness and
repeatability, so every agent takes the same random actions in the first
1000 steps.

Forecasted values are predicted using regression ANNs for the de-
mand, price, and RES generation. In previous work [45], this was
found to significantly boost agent performance in a similar environment
performing energy arbitrage. These forecasts are then provided to the
agents as state observations.

At each time step, the environment and forecast ANNs provide the
agents with observations, and then they all select an action at the same
time. The environment executes all actions at once, then providing
the agents with their rewards and transitioning to the next state. The
control process at each step is found in Fig. 4.

4.4. Benchmarks

Three benchmarks are used for evaluation in the HESS case study:
two alternative multi-agent RL algorithms and a model-based approach.
9

Deterministic optimisation methods such as linear programming cannot
be used in this environment as the energy price is dependant on
whether the agent is buying or selling, as well as the demand and RES.
This makes the problem nonlinear and there are no effective methods
of solving nonlinear programming problems [53].

No model-based benchmark methods are used for the xMG case
study due to the competition between the MGA and the xMG agents.
The two alternative multi-agent RL algorithms also can only use dis-
crete action-spaces which give the continuous control of DDPG a
tremendous advantage in this particular bidding setting. Therefore, the
DDPG algorithms will be benchmarked against each other in the second
case study.

4.4.1. Multi-Agent Deep Q-Networks (MADQN)
DQN [31] uses an ANN to evaluate the action values of different

actions, similar to the critic network in DDPG. However, rather than
using an actor network for action selection, the agent will always the
select the most valuable action at each step unless told otherwise. This
makes DQN more robust than actor–critic methods such as DDPG as
the algorithms are less sensitive to hyperparameter tuning [8], but the
agent can only select from a discrete action-space. Also, as the action
selection and evaluation is performed using the same ANN, it is not as
easy to apply DQN effectively as DDPG in a MAS.

The approach used for the benchmarks was developed by Tampuu
et al. [54] in which each agent acts independently and learns its
own action-value estimate. Therefore, the agents effectively consider
all other agents as part of the environment. These agents receive the
same reward as the DDPG and MADDPG agents based on each agents
marginal contribution towards the shared objective of reducing the
energy bills.

Both MADQN and multi-agent Rainbow (MARainbow) will be used
as benchmarks. In previous work [45], Rainbow was found to be
able to use a larger discrete action-space than regular DQN for ESS
control where its greater learning properties and sample efficiency
outperformed the continuous control of DDPG. Therefore, each MADQN
agent selects from 5 actions whereas the MARainbow agents can select
from 9 where the actions range from maximum charge of the ESS to
maximum discharge.

4.4.2. Rule-based model (RBM)
The same rule-based approach was used as in previous work [55]

in which the agent will always look to maximise the utilisation of the
RES. This is standard practice for most ESSs looking to maximise RES,
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Fig. 5. Rewards and savings of Case Study 1.
Table 3
Results of Case Study 1, with the best result of each column highlighted.

Algorithm Case Study 1

Sav.(£1k) Adj.(£1k) vs DDPG ESS Loss

DDPG 42.92 34.39 – 19.87%
D3PG 48.78 40.78 18.58% 16.40%
TD3 46.69 39.93 16.11% 14.48%

MADDPG 59.58 53.24 54.81% 10.64%
MAD3PG 59.50 53.44 55.39% 10.18%
MATD3 56.19 50.06 45.57% 10.91%

MADQN 47.28 36.32 5.61% 23.18%
MARainbow 52.01 43.90 27.65% 15.59%
RBM 40.93 33.02 −3.98% 19.33

but ignores the dynamic energy prices of the wholesale market. The
ESSs charge when RES generation exceeds demand and discharge when
reversed. As the different ESSs are suited for different timescales of
energy storage, the model charges and discharges the SC first, followed
by the LIB, followed by the VRB.

5. Results and discussion

This section will present the results for the two case studies. Discus-
sions will focus on the performance of the agents as well as different
behaviours between algorithms, while assessing if the single-agent or
multi-agent approaches were better.

The performance of the algorithms is divided into the raw savings,
the savings adjusted for the cost of the ESS operation, percentage
difference against DDPG, and the percentage of savings lost from the
ESS. The second case study also considers the savings made directly
from the MGA.

5.1. Case study 1: HESS

This study analysed the use of RL and multi-agent RL for the control
of a HESS. The results for this case study can be found in Table 3, with
the smoothed episodic rewards in Fig. 5(a) and adjusted savings over
time plotted in Fig. 5(b). This case study showed that the agents are
able to make a significant energy cost savings over two years, even with
a low fixed selling tariff by maximising the value of the RES generated.

5.1.1. Algorithm performance
The multi-agent approaches using the improved game theory re-

ward performed overwhelmingly better than the single-agent con-
trollers and the multi-agent methods with shared rewards, with
MAD3PG performing 55.4% better than DDPG. Not only were the
10
Table 4
Adjusted savings of the different approaches.

Algorithm Case Study 1

SGC MAS-G MAS-MC

DDPG 34.39 40.32 53.24
D3PG 40.78 35.27 53.44
TD3 39.93 41.83 50.06

multi-agent methods able to use the different ESSs effectively for a
lower ESS loss, but were also able to make significantly higher savings
before ESS operating cost is considered too. The individual reward
functions allow the ESSs operating separately but collaboratively to be
much more efficient than having all of them controlled together by a
single controller.

However, the multi-agent approaches were only better by such an
extent when each agent used the marginal contribution reward. Table 4
shows the adjusted savings for the different algorithms in both the
single global controller (SGC) and MAS, including the results for if
the MAS agents received the same global reward as the SGC or the
individual MAS rewards using the marginal contribution baseline; MAS-
G and MAS-MC respectively. All algorithms perform better using the
MAS-MC but the effect from SGC to MAS-G is not nearly as consistent,
including a notable drop in performance for D3PG. This means the
benefit in using a MAS for this environment comes from being able
to utilise better reward function design, rather than simply from the
distributed control.

MADQN performs fairly well but is clearly limited by the small
discrete action-space. Despite this, this method shows the value of using
a multi-agent approach as it is still able to outperform DDPG and TD3
with the limitation. MARainbow performs better with the larger action-
space but still cannot reach the level of the multi-agent DDPG-based
methods as the reinforced inter-agent learning approach appears to be
inferior to centralised learning.

RBM performs well but is completely passive on a number of weeks
where RES never exceeds demand. This shows the RL agents are able
to more effectively utilise the RES, but can also able to respond to the
price signals by charging the ESS types when prices are lower in the
morning to use later when the prices rise.

5.1.2. Agent behaviour
Most of the agents generally behave in a similar way. The ESSs will

only really be used at times when there is a large amount of RES to
store with the agents learning that any PV generation at its peak around
noon is best to store so it can be used later when prices are higher.
There is also some charging at the start of the day when prices are
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Fig. 6. Microgrid control in Episode 180 using MAD3PG.
lower, but this is less significant. Due to the battery cycling costs, agents
very rarely charge or discharge at maximum power but instead look to
charge and discharge over longer periods of time.

Almost every agent uses the LIB the most as its well-rounded
properties make it ideal for storing over short, medium, and long-term.
The D3PG, MADDPG, MATD3, MADQN, and MARainbow agents then
use the SC the second most whereas for DDPG and TD3 it is the VRB.
A clear difference between the single controller versus multiple agent
methods is that the multi-agent algorithms showed a clear change in
the behaviour for the different ESS types, whereas it was much less
pronounced in the single agent algorithms.

There are a couple of cases of unique behaviour between algorithms
though. Most notably, the MAD3PG agent uses the SC the most aggres-
sively, followed by the LIB and then the VRB which is interesting as
its adjusted savings are the best of any other algorithm. The control
process of the MAD3PG agent for week 180 is shown in Fig. 6, selected
as the episode is towards the end of the simulation but has higher RES
generation than later episodes.

Other examples of notable behaviours include D3PG which would
look to store energy over greater lengths of time. However, as the
demand and price peak cycle with a peak in the evening every day,
it is more efficient to use as much stored energy as possible at the peak
11
price times and end the day with minimal charge. Another example is
the MATD3 VRB agent which stays almost completely idle all of the
time. The RBM behaves as it is instructed, but the resulting issue is
that it is completely inactive if RES does not exceed demand whereas
the other agents still learn to charge when there are low prices in the
morning regardless of RES.

The multi-agent algorithms performed better as the agents could
learn a policy for each type of ESS, rather than a single policy for
controlling every ESS. Generally, the single agent algorithms would
operate each ESS as if they had the same properties because it is more
difficult to differentiate the reward punishments for the multiple ESSs
when there is only a single reward function. Therefore, the multi-agent
approach should be considered superior as it allows the learning of
better individual policies for each ESS.

5.2. Case study 2: xMG trading

The results for this case study can be found in Table 5, with the
smoothed episodic rewards in Fig. 7(a) and adjusted savings over time
plotted in Fig. 7(b). When compared to the results of Case Study 1, the
tables shows very clearly that being able to sell energy on the grid’s
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Fig. 7. Rewards and savings of Case Study 2.
Fig. 8. Microgrid control in Episode 200 using MATD3.
own terms greatly increases savings over simply trying to improve its
utilisation. The multi-agent methods once again perform better than the
single controller, however the margin difference is significantly smaller.
An example control process across one week is shown in Fig. 8.
12
5.2.1. Algorithm performance
The single-agent methods have a lower adjusted energy cost savings

than the multi-agent methods, but interestingly D3PG and TD3 returned
a lower ESS loss percentage and a higher MGA profit than any of the
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Fig. 9. MGA and xMG trading in Episode 200 using MATD3.
Table 5
Results of Case Study 1, with the best result of each column highlighted.

Algorithm Case Study 2

Sav.(£1k) Adj.(£1k) vs DDPG ESS Loss MGA MGA%

DDPG 151.38 146.46 – 3.25% 129.17 88.19%
D3PG 158.35 156.75 7.03% 1.01% 154.39 98.49%
TD3 174.04 170.63 16.50% 1.96% 157.68 92.41%

MADDPG 170.36 164.86 12.56% 3.23% 124.72 75.65%
MAD3PG 187.01 180.17 23.02% 3.66% 135.84 75.40%
MATD3 190.54 186.00 27.00% 2.38% 144.68 77.78%

multi-agent methods. A key difference between the approaches is that
single global controllers try to exploit MGA trading significantly more
than the multi-agent approach. D3PG again shows unique behaviour in
that it almost entirely ignores the ESSs and instead makes 98.49% of
its savings through MGA trading, significantly higher than the 77.78%
of MATD3. Although interesting that D3PG and TD3 are able to make
so much money through trading, this could be a cause for concern as
the agents appear to have little interest in exploring how the HESS can
be used in conjunction with trading for even higher savings.
13
Table 6
Adjusted savings of the different approaches.

Algorithm Case Study 2

SGC MAS-G MAS-MC

DDPG 146.46 128.89 164.86
D3PG 156.75 154.56 180.17
TD3 170.63 182.21 186.00

This case study also shows the value of using the marginal contribu-
tion reward for the multi-agent methods, shown in Table 6. However,
MATD3 using the MAS-G reward is still able to perform remarkably
well with a noteworthy improvement over the single agent and only
slightly worse than with the MAS-MC reward.

In fact, MATD3 performed the best out of all algorithms with a
27.00% improvement over DDPG. Interestingly, TD3 also performed
very well relative to the other single agent methods and was also able
to outperform MADDPG. This suggests that the value overestimation
correction from TD3 is particularly useful in this case study. This is
likely because, even though the agents are aware that they will receive
a much higher reward through trading than through effective RES
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utilisation, the TD3 agents do not fixate entirely on trading and develop
a suboptimal policy where they but instead recognise that effectively
using the HESS to effectively utilise RES can enhance performance as
well.

5.2.2. Agent behaviour
For the ESSs, SC is used more aggressively for short-term storage,

LIB is used for medium-term storage, and the VRB has varied usage
between used not at all to usage at the same level as the LIB. In general
agents are less aggressive with RES utilisation as any excess RES can
be sold rather than just stored, but also the multi-agent methods are
more aggressive with the ESSs even when there is little RES generation.
Some single-agent methods appear to even completely neglect the ESS
operation for large parts of the simulation.

Initially, all agents take random actions for 1000 steps but begin
learning after 500. Afterwards, the first observable behaviour comes
from the xMGs which immediately learn that buying energy from the
MGA is cheaper than buying from the utility grid so attempt to buy
as much as possible. However, the MGA agent would learn one of two
early behaviours:

1. Sell as much as possible at the minimum reserve price, such as
MAD3PG and TD3. This leads to a high reward initially but the
xMGs quickly learn to exploit this and lower their bid prices until
the MGA ends up selling at lower than the wholesale price and
losing money.

2. Sell nothing at the maximum reserve price, such as DDPG and
MATD3. The MGA will eventually unlearn this behaviour, how-
ever the superior learning properties of TD3 over regular DDPG
are clear as the MATD3 agent unlearns this significantly quicker
than the DDPG and MADDPG agents.

After about 100 episodes, the agents reach an equilibrium and
ehave in a similar way but at slightly different levels of efficiency.
lthough the MGA could always sell an amount of energy that would
eet the demands of all of the xMGs together, it will instead typically

estrict the volume it sells to force the xMGs to compete with each
ther. An example of the trading is shown in Fig. 9.

As in the previous case study, the multi-agent approaches perform
etter than the single agent controllers. The separate reward functions
or the different ESSs allows for each to learn their own policy suited
o their characteristics while also allowing those agents to not become
ixated on the high MGA rewards that the single agents fell short to.

This case study exhibits the benefit of being able to sell energy on
he primary microgrid’s terms, rather than only selling back to the
tility grid. Trading is beneficial to all parties in that the primary
icrogrid is able to generate additional revenue, the xMGs are able

o reduce their own energy bills, and inturn minimises the load on the
tility grid.

.3. Improvements and further work

One improvement would be expanding the functionality of the
MGs. This would include having their own ESSs and RES but also
heir own aggregator agents that would be able to trade with the other
MGs. This would take away much of the MGA’s influence on the xMG
rading phase and could allow the xMGs to develop their own unique
ehaviours.

A flaw in the environment is that wholesale energy prices are used
rom a day-ahead market, rather than a real-time market. To be more
ealistic, the primary microgrid should decide the volume of energy
t wishes to import from the utility grid at least 24 h ahead. A more
ccurate feed-in tariff model based which varies based on the amount
nd type of energy sold could also be considered. However, the agents
lready learn to minimise the amount of energy sold back to the
tility grid so would likely have a negligible impact on results or their
14

ehaviour. E
Another improvement is forecasting further into the future for more
efficient long-term storage. In most cases across both case studies, the
agents tend to avoid using the VRB due to the poor cycling efficiency,
but it would be interesting to see if the agents would change this
behaviour if there were more forecasts provided so that the long-term
storage properties of the VRB could be exploited to more effect.

Further work could look into other methods of communication
for multi-agent RL. For example, differential inter-agent learning [56]
allows the principle of centralised learning to be applied to DQN and
Rainbow, rather than the current approach where the other agents are
treated as part of the environment. There could also be other types
of agents in the grid, such as a specific agent for purchasing energy
from a day-ahead market or an agent controlling a distributed generator
powered by diesel or biofuel.

6. Conclusion

In this paper, the use of multi-agent reinforcement learning was
presented for the control of a HESS in a microgrid to increase renewable
energy utilisation, reduce energy bills, and trade energy to xMGs.
Specifically, the principle of centralised learning and decentralised
execution with MADDPG is explored where agents can learn their own
policies but evaluate their performance by considering the policies of
every agent in the MAS, as well as more advanced variants of DDPG in
D3PG and TD3.

The research found that the multi-agent approaches where each
agent, with its their own reward function, controls an ESS performed
better than a single global agent controlling the entire network. The
separate reward functions for each component allowed the agents to
more effectively evaluate their individual contribution to the shared
goal, following the principle of marginal contribution from game the-
ory. It was also found that selling energy to xMGs through the ag-
gregator was significantly more profitable than simply maximising
RES utilisation or selling back to the utility grid at a fixed feed-in
tariff. Trading energy between the agents was beneficial to the primary
microgrid through increased revenue, allowed the xMGs to reduce their
own energy bills, and reduced the load on the main utility grid.
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