
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation 
may be published without proper acknowledgement. For any other use, or to 

quote extensively from the work, permission must be obtained from the 
copyright holder/s. 

 



 

 

 
 

 

Novel stem cell and PHBHHx 

approaches to tendon repair 

 

William Richard Webb 

School of Postgraduate Medicine 

Institute for Science and Technology in Medicine 

Keele University 

 

Thesis Submitted to Keele University for the degree of  

Doctor of Philosophy 

July 2014 

 

 

 

 

 



 

 
 

 

SUBMISSION OF THESIS FOR A RESEARCH DEGREE 
 

Part I. DECLARATION by the candidate for a research degree. To be bound in the thesis 
Degree for which thesis being submitted Doctor of Philosophy 

Title of thesis Novel stem cell and PHBHHx approaches to tendon repair 

This thesis contains confidential information and is subject to the protocol set down for the 

submission and examination of such a thesis. 

NO  

Date of submission 02-06-2014  Original registration date 11-01-2010 

(Date of submission must comply with Regulation 2D) 

Name of candidate Mr William Richard Webb  

Research Institute ISTM  Name of Lead Supervisor Dr Nicholas R Forsyth  

I certify that: 

(a) The thesis being submitted for examination is my own account of my own research 
(b) My research has been conducted ethically. Where relevant a letter from the approving 

body confirming that ethical approval has been given has been bound in the thesis as an 
Annex 

(c) The data and results presented are the genuine data and results actually obtained by 
me during the conduct of the research 

(d) Where I have drawn on the work, ideas and results of others this has been 
appropriately acknowledged in the thesis 

(e) Where any collaboration has taken place with one or more other researchers, I have 
included within an ‘Acknowledgments’ section in the thesis a clear statement of their 
contributions, in line with the relevant statement in the Code of Practice (see Note 
overleaf). 

(f) The greater portion of the work described in the thesis has been undertaken 
subsequent to my registration for the higher degree for which I am submitting for 
examination 

(g) Where part of the work described in the thesis has previously been incorporated in 
another thesis submitted by me for a higher degree (if any), this has been identified and 
acknowledged in the thesis 

(h) The thesis submitted is within the required word limit as specified in the Regulations 

Total words in submitted thesis (including text and footnotes, but excluding references and 

appendices) 53,014 words. 

 

Signature of candidate …………………………………  Date 23-06-2014 

 



                           Declaration Part 1. To be bound in the thesis 
 

iii 
 

Note 

Extract from Code of Practice: If the research degree is set within a broader programme of work 
involving a group of investigators – particularly if this programme of work predates the candidate’s 
registration – the candidate should provide an explicit statement (in an ‘Acknowledgments’ section) 
of the respective roles of the candidate and these other individuals in relevant aspects of the work 
reported in the thesis. For example, it should make clear, where relevant, the candidate’s role in 
designing the study, developing data collection instruments, collecting primary data, analysing such 
data, and formulating conclusions from the analysis. Others involved in these aspects of the 
research should be named, and their contributions relative to that of the candidate should be 
specified (this does not apply to the ordinary supervision, only if the supervisor or supervisory team 
has had greater than usual involvement). 



W. R .Webb PhD Thesis Abstract and Contents 

 
 

Abstract 

Tendon injuries continue to be a financial burden on the health care system of many 

western countries, whilst also remaining common and a significant challenge within the 

orthopaedic discipline with no consensus of opinion on the best therapeutic regime to be 

employed. 

Many polymers have been investigated for use in tendon repair. A range of polymers 

have shown good integration with limited immune response. However, to date no 

implant has been capable of delivering the physical properties observed in native 

undamaged tendon. Many of the polymers implanted have resulted in re-rupture or 

reduced mechanical function. Therefore, improvements are required in the choice of 

polymer and mechanical properties of the polymer are required. One means of achieving 

such improvements is to utilise co-polymers such as PHBHHx, which have shown 

favourable elastic properties when the ratio of HHx to PHB has been increased. 

Therefore, a PHBHHx polymer based scaffold was investigated as a potential scaffold for 

tendon repair. Whilst, also investigating the potential of FGF-4, FGF-6 and FGF-8 to 

differentiate both human embryonic and mesenchymal stem cells towards a tenocyte-like 

lineage. Finally, an investigation into whether a controlled production of PHBHHx based 

nanoparticles could produce different nanoparticles sizes that can be predicted and result 

in differing release profiles. This may allow for the synthesis of size controlled 

nanoparticles capable of delivering differing drug concentrations and sustained release 

properties. 
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Results have shown that PHBHHx in conjunction with collagen and tenocytes can be used 

as a scaffold material for the treatment of damaged tendon tissue in vivo. The implanted 

scaffold was capable of returning function and did not elucidate an immune response 

when in situ. 

In Vitro studies demonstrated that the combination of FGF-4, 6 & 8 supplementation of 

differentiation media containing Vitamin C, as being capable of maintaining tendon 

specific genes TNMD and THBS-4 in both embryonic stem cells and mesenchymal stem 

cell when cultured at 2% O2. 

Design of experiment methodology studies have shown that we can accurately predict 

PHBHHx nanoparticle size ranging from 95 – 200nm in size. This function will enable 

accurate size production of nanoparticles for a controlled and sustained release of growth 

factors for tendon regeneration. 

In conclusion, the combination of studies have shown the effectiveness of PHBHHx as 

both a tendon scaffold and potential use in nanoparticle delivery for drug and growth 

factors, such as FGF-4, FGF-6 and FGF-8 which are potentially capable of cellular priming 

of stem cells to differentiate towards a tenocyte “like” lineage. The findings of these 

studies provide a pathway for future innovations in regenerative medicine and wider 

scientific community. 
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1.1 Introduction 

Tissue engineering is an emerging interdisciplinary field that utilises the areas of material 

sciences, stem cell biology and clinical sciences to deliver a fresh approach to the 

development of therapies and treatments to patients. To date, tissue engineering has 

produced fresh approaches to orthopaedics in the development of articular cartilage 

implant [1] and in general medicine with the recent highly publicised development of the 

synthetic larynx implantation [2]. 

The musculoskeletal system consists of three major components: skeletal tissue, which 

provides structural support and defines the mechanical units; muscular tissue, which 

generates force; tendon and ligament, which transmit force generated during muscle 

contraction of the skeleton and contribute to joint stability [3]. Therefore, tendon and 

ligament play a significant role in the modulation of force transmission between bone-

bone, bone and skeletal muscle and consequently protect muscle fibres from contraction 

or high strain induced injuries [3-6]. Tendon injury is a financial burden on the health care 

system of many western countries, with in excess of 4.83 incidents per 100,000 hand 

tendon injuries, 12 incidents per 100,000 Achilles tendon injuries and 3.73 per 100,000 

rota cuff tendon injuries per year [7]. Tendon injuries remain common and a significant 

challenge within the orthopaedic discipline with no consensus of opinion on the best 

therapeutic regime to be employed. 

One of the major problems with surgical tendon repair is the incidence of re-injury and 

possibility of complete tendon rupture leading to further incapacitation which negatively 

impacts on both healthcare economics (in the cost of treatment) and patient economics 

(in relation to loss of income). Failure rates for tendon repair range from 2-13% (4-13% 
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due to suture overloading, 2-4% for Achilles tendon re-rupture, 4.3% percutaneous repair 

and non-surgical bracing 12.2%) [7]. 

Due to the failure rates new strategies have been developed for tendon repair, the three 

most promising approaches include: 

1) Biopolymer based scaffold repair 

2) Stem cell based therapy 

3) Stem cell/biopolymer therapy 

To date many polymers have been investigated as a possible scaffold for tendon repair 

with varying degrees of success. However, the translation of the animal, studies have yet 

to be explored within the human subject. The use of stem cell based therapies remains 

under researched in the area of tendon repair. One possible approach that could lead to a 

more positive outcome could be the combination therapy. The combination of both stem 

cell and biopolymer-based approaches utilising a polymer based nanoparticle delivery 

method for growth factors to induce stem cell differentiation towards a tenocyte lineage. 

The utilisation of such an approach would:- 

1. Enable the body to be utilised as a bioreactor 

2. Localised growth factor induced differentiation 

3. Force transmission to the implant via the body to induce mechanotransduction 

and subsequent differentiation. 

  



W. R. Webb PhD Thesis Chapter 1 

4 
 

1.2 Embryonic Development 

During early embryonic development the precise mechanisms of embryonic polarisation 

and spatial patterning have yet to be understood. Embryonic polarisation is the initiator 

of the primary plan for the formation of the body axis. The symmetry of the embryo is 

established after oogenesis. Mammalian development has been best observed within the 

mouse. The mouse oocyte has no clear polarity with no specific molecules responsible for 

lineage specification yet identified [8]. Most embryos develop with bilateral symmetry 

and become polarized along anterior-posterior, dorsal-ventral and left-right axes [9]. One 

of the major milestones in embryonic development is the initiation and generation of the 

asymmetrical architecture which underpins the orientation and polarity of the three-axes, 

Rostral (Head) – caudal (Tail), Dorso (Back) – Ventral (Front), and Left – Right (Figure 1.1), 

which will become the basic body plan along which embryonic development will follow 

[9].  

One, well documented feature of mammalian development is the maintenance of a 

population of pluripotent stem cells which will give rise to the mature organism [10]. The 

inner cell mass (ICM) is made up of 10 – 20 cells, which appear to be developmentally 

identical, which is located at one end of the 3.5 days post coitum (d.p.c) blastocyst [10]. 

Mammalian development requires the regulated proliferation of these cells and 

allocation of descendants to specific cell lineages post differentiation [11-13]. 

At d.p.c 4.0 the ICM cells that line blastocoelic cavity start to differentiate and become 

extraembryonic primitive endoderm. The cells that remain within the ICM retain 

pluripotency and this is now referred to as the “epiblast” which is surrounded by 

extraembryonic endoderm and trophectoderm, it is at this point the embryo implants 



W. R. Webb PhD Thesis Chapter 1 

5 
 

into the uterine wall [10]. After implantation into the uterine wall the pluripotent cells 

begin to rapidly proliferate and primitive endoderm cells migrate along the pluripotent 

cell surface and differentiate into one of two cell types (visceral endoderm and parietal 

endoderm), the mechanism and control of this migration/differentiation has yet to be 

elucidated [10]. 

 

Figure 0.1 Orientation and Polarity of the three axises. 

The Red arrow indicates the Rostral – Caudal axis, the green arrow indicates Dorso – Ventral axis and blue 

arrow indicates the Left – Right axis [10]. 

 Limb Development 1.2.1

The primitive endoderm cells that remain in contact with the pluripotent cells then 

differentiate into visceral endoderm (possibly by means of juxtacrine or cell-cell signalling 

in conjunction with yet to be identified growth hormones and growth factors, while the 

primitive endoderm cells that migrate onto the blastocoelic surface of the trophectoderm 

now differentiate into parietal endoderm [10]. The formation of the primitive endoderm 

provides the substrate for gastrulation and initiates at 6.5 d.p.c. and it is this process that 

transforms the pluripotent monolayer into a multi-layered embryo consisting of the 3 
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primary germ layers namely the mesoderm, ectoderm and endoderm from which all the 

tissues required for adult life give rise [10]. 

Research conducted using Quail-chick chimeras has shown that tendon and cartilage cells 

differentiate from the same mesodermic compartment and this is distinct from the area 

that gives rise to muscle cells [14]. Axial tendon, develop from the sclerotomal 

compartment form along the axis of the body.  The limb-tendon(s) develop from the 

lateral plate and the limb and axial muscles originate from the dermomyotomes [14]. 

Although, these have different origins, tendon and muscle development/morphogenesis 

happens with close spatial and temporal association [14]. 

Ros et al. established that tenocyte differentiation starts at Embryonic day (E) 7 in Quail-

chick chimeras, this was observed by the increase in deposition of ECM [15]. The increase 

in synthesis of ECM leads to the formation of early collagen fibrils and the overall 

architecture of the tendon is apparent by E14 [14]. At E17 proliferation of tendon cells 

appears to have stopped, however there is an increase in the rate of synthesis of collagen 

and associated matrix glycoproteins (as E17 is just prior to birth), this results in an 

increase in length and diameter of the collagen fibrils which results in the provision of the 

required mechanical properties of mature tendon [14]. 

However, Quail-chick based research studies are still unable to address major questions 

such as; 1) Is tendon development initiated by growth factors such as FGF-8?, 2) Micro-

movement induced mechanical stimuli?, 3) A combination of growth factor/micro 

mechano-stimuli?, or 4) Is there a transitional relationship between growth factor 

induced differentiation, which then leads to mechano-stimuli driven differentiation? 
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 Limb Abnormalities 1.2.2

Polydactyly is the most frequent congenital hand malformation observed in humans and 

has a prevalence of 5-19 in 10,000 live births [16, 17]. Research conducted by Bouldin et 

al, which employed the use of Dorking’s chickens suggests the ectopic post-axial digit is 

due to the deregulated-expression of FGF’s in the AER, especially anterior expression of 

FGF-4 within the AER [18].  

However, deregulated- FGF expression is not limited to polydactyly. Bose et al proposed 

that changes in FGF expression by the AER has a role to play in syndactyly and that limb 

patterning is independent to each limb [19] (Figure 1.2).  

 

Figure 0.2 Independent Limb Development 

The above image depicts independent limb development. Each limb develops independently in relation 

to proximo-distal patterning, with each limb bud developing its own polarity axises. The red arrows 

indicates the rostral- caudal axises, the light blue arrows indicate the dorsal-ventral axises and the blue 

arrows indicate the left-right axises. 

Yu et al showed a vital role of FGF-4, FGF-8 and FGF-10 in limb formation. The lack of FGF-

4, FGF-8 and FGF-10 resulted in agenesis (absence of limb formation) in mouse models. 
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This further highlighted the importance of the development and maintenance of AER-FGF 

signalling during limb formation [20]. The research found that FGF-4 and FGF-8 are 

required for normal limb bud development and complete inactivation of FGF-4 and FGF-8 

resulted in SOX-9 expressing cells not being able to commit to osteochondral progenitors 

and failure to form any chondrogenic primordial [20]. Owing to distal mesenchymal 

defects, the AER or AER functions are not maintained at later stages and distal 

mesenchymal proliferation is inevitably reduced, which further reduces limb bud size 

[20].  

By understanding the signals and the sequence of signals involved in the patterning and 

developmental process of limbs the use of stem cells as a therapeutical regime for limb 

injuries and disease can become more realistic and a possible future option. Embryonic 

development holds many a key to the patterning of limbs and subsequent development 

of specific components of the musculo-skeletal system. 
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 Tendon Development 1.2.3

The molecular signalling and subsequent control of tendon synthesis has yet to be 

completely elucidated. Cell signal, cellular positioning and/or cellular polarity may play a 

role in the initial development of tendon with a transition from signal induced tendon 

development towards micro-movement maintenance of tendon development. To date, 

very little documentation in respect of the control and maintenance of tendon formation 

is available. Due to the close proximity of tendon to bone and muscle it is likely that the 

signalling patterns involved in bone and muscle formation may play a role in tendon 

formation. However, the role of collagen synthesis, secretion and subsequent extra 

cellular matrix formation plays a major role in tendon formation. The formation of the 

extra cellular matrix which contains collagen is vital in the provision of the mechanical 

properties observed in tendon [21]. Tendon development has been shown as early as 

E14.5 in the murine model and between days 6-9 in the chick embryo [22]. At this point 

the extra cellular matrix becomes populated with narrow-diameter collagen fibrils [22]. 

The majority of early embryonic tendon formation studies have been performed using 

chicks and between the days 6-9 in embryonic tendon, the tendon mass is mainly made 

up from cells and very little extra cellular matrix (ECM) [15]. Early tendon formation is as a 

result of the tendon fibroblast synthesising and secreting ECM [23]. 

The majority of early tendon research has been conducted using animal models. However 

research conducted by Shaw et al.[24] described early foetal human samples ranging 

from 51 days old through to 138 days old [24].  

However, pre 45 days gestation there is little documentation of Achilles tendon 

initiation/differentiation and early formation. During foetal development (45-57mm) the 
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Achilles tendon is highly cellular with little sign of fibril genesis [24]. The Achilles tendon is 

indirectly attached to the cartilaginous anlagen of the calcaneus by a thick perichondrium 

[24]. It was also noted that the fat cells that are present in both the Kager’s triangle and 

the plantar fascia had yet to develop and were only visible post 110mm (98 -100 days 

gestation). The formation of the fat pad within the Kager’s triangle conveys a mechanical 

advantage in that the fat pad increases the lever arm of the tendon which leads to 

mechano stimuli of the developing tendon [24]. 

More recently the role of mechanical stimuli during embryonic Achilles tendon 

development is gaining attention. A delicate and essential relationship between 

development progression and mechanical stimuli is gaining favour. Research conducted 

by Vogel and Koob [25] and Gao et al. [26] showed mechanical loading induced 

metaplasia of tendon fibroblasts into fibrocartilage cells. The importance of mechanical 

loading was then further highlighted by Thomopoulos et al. [27] who showed that 

paralysis of the supraspinatus muscle in a murine model resulted in delayed development 

of the Achilles tendon and enthesis fibrocartilage. The relationship between tendon 

development and adjacent musculosketal components which transfer mechanical forces 

to the tendon were highlighted in 1949 by Wood Jones [28] and more recently by 

Benjamin et al. [29]. 

The development of a fully functional tendon structure requires not only chemical cues 

but also mechano-stimulation. However, to date the relationship between chemical cues 

and mechano-stimulation has yet to be elucidated in embryonic human development. 
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1.3 Tendon Structure 

Healthy tendons are bright white in colour with a fibroblastic appearance. Tendons 

demonstrate a marked variation in form; they can be rounded chords, strap-like bands, or 

flattened ribbons. Within the extracellular matrix of the tendon, tenocytes and tenoblasts 

constitute 90% - 95% of the cellular element of the tendon [6]. The remaining 5% - 10% of 

the cellular element of tendons consists of chondrocytes at the region of bone 

attachment/insertion sites, synovial and vascular cells, including capillary endothelial cells 

and smooth muscle of the arterioles [6]. Tenoblasts are immature tendon cells, and are 

spindled-shaped with numerous cytoplasmic organelles, which reflect their high 

metabolic activity [6, 30]. Tenoblasts have a spindle morphology with an ovoid nucleus 

and size ranges from 20-70µm in length and 8-20 µm in width [31]. They contain large 

numbers of organelles like Golgi bodies, endoplasmic reticulum (ER) and also contain 

myosin and actin filaments [31]. As the tenoblast matures, they become elongated and 

transform into tenocytes. Tenocytes have a lower nucleus/cytoplasmic ratio than 

tenoblasts[5]. They are thin and long with reduced metabolism [5].  

Tenocytes are metabolically adaptive and can generate energy via the aerobic Krebs 

cycle, anaerobic glycolysis, and the pentose phosphate shunt [32, 33]. As, tenocytes age 

the metabolic pathway choice shifts from an aerobic to an anaerobic preference [32, 33]. 

The oxygen consumption of tendons is approximately 7.5 times lower than that of 

skeletal muscle [33]. This lower metabolic rate and well-developed anaerobic energy 

generation capacity are essential to carry loads and maintain tension for long periods. 

This reduces the risk of ischemia and subsequent necrosis. However, the lower metabolic 

rate results in increase in time required for healing after injury [33]. 
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Another factor resulting in the metabolic shift from aerobic to anaerobic energy 

generation by the tenocytes is how tendon is supplied by nutrients, namely the perfusion 

of tendon. Mayer et al [34] , Ahmed et al. [35] and Theobald et al [36] who collectively 

demonstrated that the majority of tendon perfusion was delivered by vessels contained 

within the anterior paratenon, derived from the posterior tibial artery in rabbits. The 

consensus opinion is that the human tendon is primarily perfused by the paratenon which 

decreases with age especially the mid-tendon region [36].  

The tendon is composed of a collagen-tenocyte network and extracellular matrix, which 

contains proteoglycans, glycosaminoglycan, glycoproteins and other small molecules [5]. 

Adhesive glycoproteins such as fibronectin, tenomodulin and thrombospondin, 

participate in the repair and regeneration process in tendon [32, 37, 38]. The dry mass of 

human tendon is approximately 30% of the total tendon mass, with water accounting for 

the remaining 70%. Collagen type I is predominant (65% - 80%) but collagen Types III, IV, 

V and VI and proteoglycans, glycosaminoglycan, glycoproteins and other small molecules 

make up the remainder of tendon extracellular matrix (ECM) [31]. 

The collagen found within tendon is arranged in levels of increasing hierarchical 

complexity. This begins with tropocollagen, which is a triple-helix polypeptide chain, 

which unites into fibrils (primary bundles); fascicles (secondary bundles); tertiary bundles; 

and the tendon itself (Figure 1.3). The soluble tropocollagen molecules secreted by the 

tenoblast cross-link to create insoluble collagen molecules, which aggregate to form 

collagen fibrils. The collagen fibre is the smallest tendon unit that can be tested 

mechanically. Although collagen fibres are mainly orientated longitudinally, fibres also 

run transversely and horizontally, forming spirals and plaits [33]. 
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Figure 0.3 Normal Structure of Tendon  

Tendon tissue has a multi-unit structure composed essentially of the fibril-forming type I collagen 

molecules, which are organised into individual sub-fascicles and fascicles separated by the ECM of the 

epitenon. Groups of fascicles form the body of the functional tendon, within which is a rich, vascularised 

and innervated ECM that is synthesized and maintained by the tendon fibroblasts, which typically align 

longitudinally in rows along the collagen fibres. Numerical diameter values taken from Richardson et al 

2007 [39]. 

The other structural zones of the tendon are the epitenon and the endotenon which all 

contribute to the unique tendon properties. The epitenon, a fine, loose connective-tissue 

sheath containing vascular, lymphatic and nerve supply to the tendon, covers the whole 

tendon and extends deep within it between the tertiary bundles as the endotenon. The 

endotenon is a thin reticular network of connective tissue investing each tendon fibre 

[37]. The epitenon is surrounded by paratenon, a loose areolar connective tissue 

consisting of collagen fibrils Type I and Type III, some elastic fibrils and an inner lining of 

synovial cells [38]. Synovial tendon sheaths are found in areas subjected to increased 

mechanical stress, such as tendons of the hand and feet, where efficient lubrication is 
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required. Synovial sheaths consist of an outer fibrotic sheath and an inner synovial 

sheath, which consists of thin visceral and parietal sheets [3, 40, 41]. The inner synovial 

sheath invests the tendon body and functions as an ultra-filtration membrane to produce 

synovial fluid [42]. The fibrous sheath forms condensations, the pulleys, which function as 

fulcrums to aid the tendon function[43]. 

Tendons are linked to both bone and muscle through osteotendinous and myotendinous 

junctions, respectively. The osteotendinous junction is composed of four zones: a dense 

tendon zone, fibrocartilage, mineralised fibrocartilage, and bone [42]. The specialised 

structure of the osteotendinous junction prevents collagen or fibril bending, fraying, 

shearing and failure [43]. At the myotendinous junctions, tendinous collagen fibrils are 

inserted into deep recesses formed by myocyte processes, allowing the tension 

generated by intracellular contractile proteins of muscle fibres to be transmitted to the 

collagen fibrils [38]. This complex architecture reduces the tensile stress exerted on the 

tendon during muscle contraction and the complex interactions and arrangement of the 

collagen molecules and proteoglycans that convey the mechanical properties such as 

Young’s modulus to tendon tissue [38, 43]. The fine structure and interactions between 

collagen-cellular and proteoglycan components of the tissue structure are what give 

tendon its unique mechanical properties such as Young’s modulus However, the 

myotendinous junctions still remain the weakest point of the muscle-tendon unit and 

point of increased injury susceptibility.  

 Biochemical Components of Tendon Extra Cellular Matrix 1.3.1

The complex arrangements and interactions of the collagen fibres, elastin fibrils and 

proteoglycans deliver the unique mechanical properties of tendon [44]. Tendons are 
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composed of approximately 55 – 70% water of which a substantial part can be attributed 

to the association with the proteoglycans (PG) [45]. The most abundant collagen present 

in tendon is collagen I, and is organised into a helical arrangement along the largest axis 

of the tendon [46-49]. The micro structure of tendon is based around the helical structure 

of type 1 collagen with a typical helical protein of 270nm in length which is undergoes 

extracellular assembly resulting in a larger supra molecule of around 300nm diameter, 

which can eventually result in a helical collagen structure of up to several centimetres in 

length (Figure 1.2) [50]. Between 60 – 85% of the ECM component of tendons being made 

up of collagen [51]. This can then be further broken down to the exact types of collagen 

such as: ~60% Collagen type I [51], Collagen type II [52, 53],0 – 10% collagen III [54], ~2% 

Collagen type IV [55, 56], collagen type V and VI [45, 57-60], up to 1% Proteoglycans [61], 

~ 2% elastin [62] and up to 1%  cartilage oligomeric matrix protein (COMP) [63, 64].  

 Tenomodulin 1.3.1.1

The tenomodulin gene is located on the X-chromosome loci q21.33-q23. Tenomodulin is 

highly expressed in ligaments, tendon and eyes and some expression was also seen in 

liver, thymus, lungs, cartilage [65]. In tenomodulin deficient mice it was apparent that 

tenomodulin is involved in accelerating division of tenocytes and increasing the number 

of cells but that it did not affect synthesis of collagen type I and formation of blood 

vessels. It was also observed that in tenomodulin deficient mice the tendon’s surface was 

rough as compared to smooth in case of normal mice. Tenomodulin also affects the 

collagen VI network by causing changes in its epitopes [66]. During tenocyte culture when 

scleraxis was expressed expression of the tenomodulin also increased [67]. This shows 

that tenomodulin expression depends on expression of scleraxis [68] 
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 Tenascin –C 1.3.1.2

The tenascin-C gene can be found on chromosome 9q33.1. Tenascin C is expressed in the 

blastema, differentiated primordial and proximal tendons [69]. Tenascin-C has been used 

to mark primordial tendons. However, as it is also expressed in cartilage and nerves (glial) 

Tenascin-C cannot be used as a single tendon specific genetic marker[70]. 

 Thrombospondin-4 1.3.1.3

The thrombospondins are a family of extracellular proteins that bind calcium and 

modulate cellular phenotype during tissue genesis and remodelling [71]. All of the 

thrombospondin proteins have been reported to bind not only calcium, but also heparin 

[71]. The thrombospondin-4 (THBS-4) gene loci is 5q.13 [71] and the subsequent 

pentamer protein product has been shown to also bind to fibrinogen, fibronectin, laminin 

and type V collagen [68]. However, the exact function of THBS-4 has yet to be discovered 

[68]. Research conducted by Baumeister et al has shown THBS-4 to be present in tendon 

mesenchyme. Both TNMD and THBS-4 have been detected in tendon tissue. A recent 

study by Jelinsky et al [68] has shown THBS-4 in conjunction with TNMD to be very 

specific to tendon tissue. 

 Collagen 1A2 1.3.1.4

The collagen 1A2 gene can be found on Chromosome 7 loci q22.1. The COL1A2 gene 

provides instructions for making part of a large molecule called type I collagen. Collagens 

are a family of proteins that strengthen and support many tissues in the body, including 

cartilage, bone, tendon, skin, and the white part of the eye (the sclera). Type I collagen is 

the most abundant form of collagen in the human body [72]. 
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The COL1A2 gene produces a component of type I collagen called the pro-α2 (I) chain. 

Collagens begin as procollagen molecules, which must be processed by the enzymes 

outside the cell to remove extra protein segments from their ends (procollagen 

peptidase) and collagen cross-linking (lysyl oxidase). Each rope-like procollagen molecule 

is made up of three chains: two pro-α1(I) chains, which are produced from the COL1A1 

gene, and one pro-α2(I) chain, which is produced from the COL1A2 gene [72]. After 

procollagens are processed, the resulting mature collagen molecules arrange themselves 

into long, thin fibrils. Individual collagen molecules are cross-linked to one another within 

these fibrils. The formation of cross-links results in very strong type I collagen fibrils, 

which are found in the spaces around cells. 

 Collagen 3A1 1.3.1.5

The collagen 3A1 gene can be found on Chromosome 2 loci q31. Type III collagen is found 

in tissues such as the skin, lungs, intestinal walls, and the walls of blood vessels [73]. The 

COL3A1 gene produces the components of type III collagen, called pro-alpha1 (III) chains. 

Three copies of this chain combine to make a molecule of type III pro-collagen. These 

triple-stranded, rope-like procollagen molecules are then processed by the enzymes 

outside (procollagen peptidase) the cell to remove extra protein segments from their 

ends. Once these molecules are processed, the collagen molecules arrange themselves 

into long, thin fibrils. Within these fibrils, the individual collagen molecules are cross-

linked to one another by the enzyme lysyl oxidase. These cross-links result in the 

formation of very strong mature type III collagen fibrils, which are found in the spaces 

around cells [73]. 
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 Decorin 1.3.1.6

Decorin (DCN) is a proteoglycan gene which can be found on chromosome 12 loci q21.33 

and decorin belongs to the small leucine-rich proteoglycan family with an average size 

between 90 – 140 kDa [74]. Decorin consists of a protein core which contains leucine 

repeats and a glycosaminoglycan chain which may contain either chondroitin sulphate or 

dermatan sulphate [75]. Decorin has a structure similar to biglycan and can be either 

cellular or pericellular [74]. Decorin plays two major roles in tendon tissue: 1) matrix 

organisation and 2) fastening adjoining collagen fibrils together and the possible 

mechanical coupling of fibrils [76, 77]. Furthermore, decorin has also been shown to 

regulate the assembly of collagen fibrils and is a major contributor to the biomechanical 

properties of developing tendon [78].  

 Fibromodulin 1.3.1.7

The gene coding for the fibromodulin protein is FMOD and has the gene loci of 1q32. 

Fibromodulin is a member of the small interstitial proteoglycan family and has a 

molecular weight of 67 – 110 kDa [79]. Lack of fibromodulin in developing tendon has 

been shown to result in alterations in collagen fibrils resulting in joint instability and 

abnormal gait [80]. Further investigation using double knockout mouse models have 

shown thinner collagen fibrils resulting in abnormal fibres in tendon [81]. Also an 

increased deposition of lumican was observed in the fibromodulin knockout mouse model 

leading to subtle changes in collagen architecture and mechanical properties in the 

collagen matrix which would account for the observations in gait change made by Ameye 

et al. [80, 81]. 
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 Scleraxis 1.3.1.8

The Scleraxis gene (SCX) can be found on chromosome 8q24.3 and codes for a 60-100 

amino acid protein which functions as a DNA-binding protein/transcription factor. SCX has 

been shown to be expressed from early stages of tendon development in limb bud 

tendon progenitors and in the syndetome somatic compartment that contains tendon 

progenitor cells during mouse embryogenesis [69]. Its expression in the buds of the limb 

was observed in four different phases. In the first phase (stage 21) both ventral and dorsal 

parts of limb showed scleraxis expression, in the second phase (25-27) the scleraxis 

expression was highly complex, in the third phase (28) formation of fibres occurred 

followed by their elongation and in the fourth phase (31) all the tendons of the limb were 

expressing scleraxis. It was also found that in order to maintain the expression of the 

scleraxis in the tendons, presence of FGF-4 was essential [70]. It was observed that in 

absence of (Fibroblast Growth Factor) FGF-4, tenascin and scleraxis expression was 

decreased in the limb of chick but on application of FGF-4 both these transcription factors 

showed an increment in their expression in the normal limbs and limbs of the chick that 

did not contain muscles [82]. Along with FGF4, FGF8 was also involved in increasing the 

expression of scleraxis but only at the last phase of development of the tendon. These 

factors (FGF-4 and 8) were released by the myogenic cells [4]. The expression of this 

protein can be stopped by BMPs but at the same time noggin can antagonize this effect 

[83]. It was also found that more collagen was produced by the activation of a promoter 

(COL1α1) due to attachment of SCX/E47 to the E box of the TSE2 so for the activation of 

COL1α1, TSE1 and 2 are essential. In fibroblast of the tendons, NFATc and SCX induce 

activation of the COL1α1 [84]. In mouse that were lacking this protein, the organization of 

the cells and matrix showed distorted geometry [85]  
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1.4 Mechanical Properties of Tendon 

Tendons are designed for the transmission of forces with minimal deformation and 

energy loss [86]. The two primary features of tendon are stress-relaxation (decreased 

stress over time with constant deformation) and creep (increased length over time with a 

constant load). These two properties give rise to load-deformation relationship of tendon 

that is dependent on the activities prior to assessment [86]. 

 Young’s Modulus of Tendon 1.4.1

The primary role of tendon is the transmission of force from the muscle to the bone to 

enable joint movement [87, 88]. Unlike bone, tendon does not behave as a rigid body but 

instead exhibits viscoelastic behaviour [87, 88]. The most vital characteristic of tendon is 

observed in its Young’s modulus when compared to other skeletal tissues. Young’s 

modulus describes the elastic properties of a solid undergoing compression or tension in 

only one direction, and can be summarised as the normal stress divided by the linear 

strain (Figure 1.4). The mechanical properties of tendon depend largely on its location 

within the body. A typical small adult human tendon (from the forearm) has a Young’s 

modulus of 1-2 GPa, an ultimate stress of around 100 MPa and an ultimate strain of 4-

10% [89]. Similarly, the estimated Young’s modulus for adult Achilles tendon has been 

reported to be 2 GPa , an ultimate stress of 80 MPa and an ultimate strain of 3.6-8.8% 

[90] and conversely for the human patella tendon an estimated Young’s modulus of 1.5-

1.7 GPa, an ultimate stress of 34-43MPa and an ultimate strain of 5.3-5.8% dependant on 

age [91] 
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Figure 0.4 Graph to Illustrate the Young’s Modulus for Tendon 

The load-deformation curve of tendon has four distinct features in relation to the anatomic 

microstructure. The initial “toe” region corresponds to the arrangement of the fibres with the direction of 

stress. The linear region of the curve is as a result of the helical structure. The end linear region is where 

unpredictable failure begins, leading to eventual rupture and the recoil of tendon at the ruptured end 

[92]. 

1.5 Tendon Injury 

As previously mentioned tendon injuries place a strain on the health care of many 

countries. Tendon injuries can be acute or chronic: the aetiology of tendon injuries can be 

classified as intrinsic or extrinsic factors. The intrinsic factors include: any anatomical 

predisposition, inability of the body’s biomechanics to absorb forces. Extrinsic factors can 

include environmental factors and poor training techniques [30, 93]. 

Chronic tendon disorders have a high level interaction between intrinsic and extrinsic 

factors [30]. The main pathological stimulus for tendon degeneration has been shown to 

be excessive loading during high level physical training [30] . The formation of micro-

trauma within the tendon structure over time and repeat excessive loading eventually 
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results in increased non-uniform stress and an increase in frictional forces resulting in 

partial or complete tendon rupture requiring medical intervention [30]. 

1.6 Tendon Healing 

The major studies into tendon healing have predominantly been performed on animal 

models. Therefore, the relevance to the healing of tendinopathic human tendon still 

remains unclear [30]. Tendon healing has been classified into two modes namely intrinsic 

and extrinsic healing [94]. Intrinsic healing includes the migration and proliferation of cells 

from both the endotenon and epitenon to the injury site. The migrated cells lay-down and 

establish an extracellular matrix and an internalised neo-vasculature. Extrinsic t healing 

consists of the migration and infiltration of cells from the tendon periphery and external 

tissue source [94] . Once the cells have invaded the injury site they further initiate and 

promote repair and regeneration[94]. 

The combination of extrinsic and intrinsic tendon healing has been described as a three-

phase process with each process having overlaps: - 

 First Phase: (inflammatory phase) erythrocytes and inflammatory cells 

(neutrophils) infiltrate the site of injury. During the first 24 hours necrotic tissue is 

phagocytosed by macrophage and monocyte cells. Around the site of injury 

vasoactive chemicals such as nitric oxide and chemotactic factors such as 

cytokines are released and result in an increase in vascular permeability, 

angiogenesis initiation and an increase in tenocyte proliferation and migration of 

tenocytes to the wound where type III collagen synthesis starts. 

 Second Phase: (Proliferative Phase) 2-4 days post injury the proliferative phase 

commences where synthesis of Collagen 3 is at highest and will last up to 2-3 

weeks. Also, the concentration of water and glycosaminoglycans are elevated 

during this time. 
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 Third Phase: (Remodelling Phase) Approximately 6 weeks post injury remodelling 

commences. A decrease in cell numbers and reduced collagen and 

glycosaminoglycan synthesis. The remodelling phase can be sub-divided into two 

stages of consolidation and maturation stage. The consolidation stage starts 

approximately 6 weeks post injury and can last up to 10 weeks in this time the 

repair tissue shifts from cellular to fibrous. Also tenocyte metabolism remains 

elevated and the alignment of collagen fibres and tenocytes occurs also a shift to 

type I collagen synthesis occurs. After 10 weeks, the maturation phase occurs, 

where there is a shift from fibrous tissue to scar-like tendon, which can take up to 

1 year. 

Further to the cellular response in both intrinsic and extrinsic healing the application of 

exercise in the form of physiotherapy has been shown to improve tendon repair in 

numerous biomechanical studies [95]. The regime of exercise requires strict monitoring 

and will differ between patients [95]. Immobilised tendons have been shown to have a 

higher risk of adhesion formation [95]. Forces such as friction have been calculated for 

tendon and can be used to calculate the amount of force required (such as tension) to 

induce tendon gliding and can be applied to healing tendon as to prevent complications 

such as adhesion formation [95]. 

 Current Treatments for Tendon Repair 1.6.1

Two major approaches are followed for the treatment of tendon injuries; conservative 

and surgical. However, both of these treatments regimes do not return tendon integrity 

or function to levels prior to injury [96].  

With the conservative route, relief from pain is achieved by rest, analgesia, anti-

inflammatory medication and physiotherapy (Table 1.1 that gives explanations for various 

conservative treatment regime/methods).  
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Treatment Putative Target or Mode of Action 

Rest or modification of activity Removal of precipitating factors and prevention of re-injury 

Orthotics (e.g. Heal inserts) As above 

Cryotherapy (e.g. Ice pack or baths) Reduction of acute inflammation and decrease in cell metabolism 

Heat Treatment Stimulation of cell activity and a localised increase in blood flow 

Physiotherapy (including massage and 
controlled motion) 

As above 

Electrical stimulation 
Reduction of pain perception, stimulation of blood flow and 

increase in cellular activity 

Laser treatment (pulsed or continued) 
Possible analgesic effects and unspecified (unknown) effects on cell 

activity 

Pulsed electromagnetic fields As above 

Ultrasound (0.75 - 3.0MHz, pulsed or 
continued) 

Thermal effects on tissue, stimulation of cell activity and increased 
blood flow 

Extracorporea; shock-wave therapy 
As above, with possible stimulatory effects on neovascularisation 

and inhibition of nociception 

NSAIDs 
Reduction of inflammation through inhibition of prostaglandin 

synthesis 
Corticosteroid injection 

(peritendinous) 
Reduction of inflammation  and other unknown effects (generally 

inhibitory to protein synthesis) 

Low-Dose Heparin Effects on tendon blood flow, possibly results in improved healing 

Actovegin (deproteinised extract of 
calf's blood) 

Unknown (suggested to promote glucose uptake and other effects 
on tendon cell metabolism that promotes repair and resolution) 

Glycoaminoglycan polysulphate 
Inhibition of inflammation, possibly also acting to inhibit 

metalloproteinase enzyme activity 

Eccentric exercise therapy 
Thought to promote restoration of normal tissue structure, possibly 

through an effect on cell activity and matrix remodelling 

Sclerosant injection (ultrasound - 
guided) 

Blocks tendon blood flow(targets neovascularisation and associated 
nerve in-growth) 

Platelet-rich plasma injection 
Contains growth factors (e.g. Transforming growth factor -β and 

platelet-derived growth factor that promote matrix synthesis and 
tissue repair 

Table 0.1 Conservative methods for treating tendinopathy  

Conservative treatment regime and putative target or mode of action for tendon injuries. Table 

replicated and adapted from Riley (2008) [37]. 

The conservative treatment of tendon injuries still requires a long period of time. This is 

due to the poor vasculisation and subsequent low rate of metabolism of the tendon cells, 

which results in a reduced healing capacity of tendon tissue [97].  
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To enhance the healing of the tendon, mechanical conditioning can be delivered by 

mechanical stimulus which is in turn converted into biochemical signalling via a process 

known as mechanotransduction [98]. Tendons can alter their composition and structure 

to adapt to load (mechanical) changes by up-regulating expression of those genes that 

code for growth factors which promote healing, such as platelet-derived growth factor 

(PDGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor 

(bFGF/FGF-2) and transforming growth factor beta (TGF-β) [92].  

Other than the conservative route for tendon injuries the use of surgery is applied. The 

open technique may utilise suture or grafts [99]. If the injury is large, then grafts are 

utilised, but they have some drawbacks such as implants do not have a long practical life 

in situ. Also, poor biocompatibility which leads to an immune response which may lead to 

further or re-injury [100]. Allograft and autologous grafts may be used but both have 

some drawbacks such as the danger of immune rejection (allograft) due to immunological 

reactions [101], which may cause problems during remodelling [101, 102]. Further 

complications due to immune responses may occur. Such as adhesions that limit joint 

flexion, fibrosis and paucity of tendon differentiation signals during remodelling [103, 

104]. Also, the lack of adequate donors limits the use of allografts. The use of autografts is 

restricted by surgical induced morbidity of the donor site [98]. The damage induced at the 

point at of harvest may cause further tendonitis and pain, leading to long time periods of 

rehabilitation [105]. However, since the development of cell culture and bio-scaffolds, the 

use of autograft can be re-evaluated when using scaffold along with autologous cell 

harvest and expansion techniques. Rather than harvesting whole tissue for implantation 
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the harvest of cells to be expanded or differentiated and then re-implanted as part of a 

scaffold that can induce cellular attachment. 

 Synthetic Tendon Implants 1.6.2

A more recent strategy which employs a synthetic scaffold to bridge the tendon defect, 

have been employed by many research group. This strategy which uses scaffold only and 

has utilised materials such as: nylon, carbon fibres and dacron for tendon injuries repair, 

but the success is very much limited, with high rates of failure [96]. Therefore, another 

strategy is highly desired to provide a functional alternative. More recently, research has 

been focused on the use of synthetic and biological scaffolds that are capable of 

withstanding the physical properties endured by tendon. Once the physical requirements 

of the scaffold have been addressed the incorporation of a cellular component to the 

scaffold. The addition of a cellular component that can be incorporated to the scaffold 

and either induce cellular regeneration or actually become “new” tendon is highly 

desired. Cells such as tenocytes or mesenchymal stem cells could be introduced with the 

scaffold and mechanically stimulated. Mechanical stimulation has been shown to enhance 

development of matrix, improve structural properties and drive the differentiation 

process. Another component could be added to the tendon scaffold such as a growth 

factor delivery system which could further enhance differentiation and ultimately scaffold 

integration. However, to date such a scaffold system does not exist and limited success in 

tenocytes-scaffold fusion to the proposed scaffold [106].  

Synthetic Scaffolds require specific properties as they are exposed to various mechanical 

and biological factors after their implantation into the patient’s body. These properties 

should include as a prerequisite: 
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 Immunologically inert 

 The ability to withstand the mechanical properties endured by native tissue 

 Biodegradable or bioresorbable 

Ideally the synthetic scaffold should be metabolised by enzymes that are “natural” to the 

metabolic pathways of the specific tissue at point of implantation within the body. 

Furthermore, the rate of formation of new tissue and scaffold degradation should show 

an inverse relationship (as the tissue formation increases the mass of implant decreases 

until the new tissue completely replaces the implant/scaffold). 

 Acellular tendon implants 1.6.3

Acellular tissue grafts have been used in the repair of neglected tendon ruptures [107, 

108], graftjacket® being used in both the augmentation of mid-substance peroneal 

tendon defects [109] and the repair of lacerated anterior tibial tendon [110]. Graftjacket® 

has been shown to reduce pain and has also been shown to be tolerated well by 

recipients with the implant showing integration to the recipient tissue after 20 -30 

months [110]. Barber et al. showed graftjacket® to have favourable mechanical properties 

when implanted to augment rotator cuff repair [111, 112]. However, when repairing 

Achilles tendon defects the graftjacket® had an ultimate load failure of 50% of native 

tendon and a 33% stiffness when compared to native tendon [111, 112]. Due to the 

failure rates in mechanical properties the requirement for a tissue engineered approach 

especially for Achilles tendon is highly desired and may include the use of synthetic 

polymers. 
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 Synthetic Polymers Currently Being Researched as Tendon 1.6.4

Implants 

Many polymers have been investigated for their potential use in tendon repair. Examples 

of such polymers are shown below in Table 1.2.  

Polymer Repair Type Outcome Reference 

Polyglycolic Acid (PGA) Canine Rotator cuff Slight improvement in 

mechanical properties 

compared to the control 

group. 

Derwin et al.[113] 

Polylactic Acid (PLA) Rabbit Rotator cuff Fibroblast alignment and 

tissue pattering in 

compared to control. 

Yokoya et al.[114] 

Poly (lactic-co-glycolic) 

Acid (PLGA) 

Rabbit Achilles Tendon Cellular infiltration and 

polymer integration at 

point of attachment. 

Ouyang et al.[115] 

Table 0.2 Polymers implanted in a tendon repair model. 

Previous studies using implants to repair tendon injuries have employed polymers such as 

polyglycolic acid (PGA) and polylactic acid (PLA) [113]. Varying degrees of success have 

emerged ranging from histological indications of fibroblast alignment and patterning in 

PLA models when compared to the PLA control and slight improvement in mechanical 

properties of the repaired tendon in Japanese white rabbits with the PGA scaffold [114]. 

However, to date there are no commercially available polymer based scaffold available 

for the treatment of tendon injury. PLGA implanted to repair a tendon defect in the rabbit 

model showed cellular infiltration and integration at the point of attachment [115]. 

Although the implants researched have shown tissue integration, cellular alignment and 
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minimal immune response and improved mechanical function compared to control 

groups. PLA, PLGA and PGA implants have failed to return the mechanical properties 

observed in native tendon. 

One promising polymer group that has a potential use in tendon repair is the 

polyhydroxyalkanoates (PHAs). PHAs are a group of natural polyesters that can be 

biologically synthesised by a wide range of micro-organisms [116]. PHAs are synthesised 

via biosynthesis pathway (Figure 1.5) and form granules within the cytoplasm, Therefore, 

the PHA serves as an energy store much like lipids/glycogen in mammalian cells. PHAs can 

contribute up to 80% (w/w) of the cell dry weight matter of cell or even more. Due to the 

high percentage w/w ratio up scaling of the production of the PHAs is being highly 

researched. Large-scale production of PHA is based upon the industrial fermentation 

employed by pharmaceutical industry in the production of antibiotics in the early 1920s 

[117]  
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Figure 0.5 Metabolic pathway involved in the synthesis and breakdown of PHB in Eutropha  

When carbon source is plenty and the organism is stressed the PHB metabolic pathway for Europha is 

activated and Acetyl-CoA is channelled to towards P(3HB) synthesis which in turn is channelled towards 

D(-)-3-hydroxybutyrate [118]. 

Depending on the nutrient stress placed on to the organism can results in different PHA 

molecules being synthesised (Figure 1.6). This can allow manipulation of the growth 

environment to produce a range of polymers. 

 

 



W. R. Webb PhD Thesis Chapter 1 

31 
 

 

Figure 0.6 Structure of polyhydroxylalkanoates  

Basic carbon backbone structure of PHBHHx, with R indicating the position of the functional group with 

the polyhydroxyalkanoate polymer. The blending of a polyhydroxyalkanoate can be achieved by varying 

the functional group. The percentage ratio of different functional groups can convey different mechanical 

properties [118]. 

 Poly -3- hydroxybutyrate-co-3-hydroxyhexanoate 1.6.5

Polyhydroxybutyrate (PHB) was the first Polyhydroxyalkanoate (PHA) to be discovered 

and is the most extensively studied [118]. Poly-3-hydroxybutyrate-co-3-

hydroxyhexanoate (PHBHHx) is a co-polymer, which consists of 3-hydroxybutyrate and 3-

hydroxyhexanoate [119]. Both polymers are members of the PHA family and are 

produced by microorganisms when stressed due to unbalanced growth conditions with 

the presence of excess carbon source and are stored within the cytoplasm of the 

organism as insoluble inclusions [119, 120].  

PHBHHx has also been made in to fibres (Figure 1.7) and electro-spun microfibers making 

this material very pliable and adaptable for control of degradation rates dependant on 

surface area/volume ratio and molecular weight [119]. Furthermore, improvements in 



W. R. Webb PhD Thesis Chapter 1 

32 
 

some of the physical properties of the PHBHHx polymer have been achieved by adjusting 

the ratio of HB to HHx. The adjustments in the ratio of HB to HHx results in an alteration 

in both Young’s modulus and strength of the PHBHHx polymer, allowing the polymer to 

be used in a possible array of applications [119]. 

Recent research into the biocompatibility of PHBHHx and its blends, have been evaluated 

in-vitro by the use of murine fibroblast cell line L929. Results from this study showed PHB 

and PLA films to have poor biocompatibility ,whilst PHB - PHBHHx and PHBHHx showed a 

vast improvement in biocompatibility and the level of improvement was dependant on 

the amount of PHBHHx present in the blend [119].  

 

Figure 0.7 Scanning electron micrograph of PHBHHx fibres 

A) PHBHHx weave of 3 strands of 217um in width and B) Shows a single strand of PHBHHx used in A, C & 

D) show cross-section samples of PHBHHx porous filmsAll images were taken at the Department of 

Microscopy using Scanning Electron Microscopy, Tsinghua University, China. 

Also, by mixing blends alterations in young’s modulus and strength have been reported 

[119]. Therefore, PHBHHx is a good choice for investigation into its potential use as a 

biodegradable implant in the treatment and repair of tendon using cell based therapies 

and developmental biology. 
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1.7 Vitamin C 

Vitamin C (ascorbic acid) has been shown to be vital in many biological processes. Early 

research into collagen synthesis has shown Vitamin C to be vital in the synthesis of 

healthy collagen [121, 122]. Research performed by Elster showed that collagen did not 

require ascorbic acid [123]. Whereas, Robertson and Schwatrz showed that precollagen 

increased when guinea pigs were nutritionally supplemented with ascorbic acid in a 

wound healing model [121].  

The requirement for ascorbic acid for collagen synthesis is vital in connective tissue 

development as ascorbic acid is required for enzyme activity in the synthesis of both 

hydroxyproline and hydroxylysine [124, 125]. The major function of hydroxyproline is to 

serve as a molecular stabiliser in that hydroxyproline stabilises the collagen triple helix 

and the absence of this molecule leads to unstable collagen [125]. Hydroxylysine is 

required for not only the intercellular crosslinking of collagen but also the glycosylation of 

collagen which is thought to be important in the crosslinking of collagen and further 

adding to the mechanical properties of collagen [125]. 

The major modulation of collagen synthesis is achieved by ascorbic acid through its 

effects on prolyl hydroxylation via prolyl hydroxylase (Figure 1.8) [125]. Murad et al also 

noted and increase in lysyl hydroxylase activity when human fibroblast cells were 

supplemented with ascorbate [125]. Lysyl hydroxylase is vital in the cross link formation 

of collagen and ascorbic acid has been shown to increase intracellular hydroxylation and 

inhibit extracellular oxidation of collagen residues [126]. Furthermore, Murad et al 

postulated that due to collagen levels continuing to rise even after optimum levels of 

ascorbate had been achieved that the influence of ascorbate on collagen synthesis could 
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not be only attributed to hydroxylation. However, ascorbic acid is a key component for 

collagen synthesis [125] 

 

Figure 0.8 Effects of Vitamin C on the biosynthesis of collagen flowchart. 

Biosynthetic pathway for collagen indicating the point of cofactor interaction by Vitamin C adapted from 

Sharma et al [124]. 
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1.8 Oxygen Tension 

The most critical component for aerobic cell survival is the presence of oxygen [127]. A 

reduction in oxygen availability can lead to not only loss of cellular functionality, but also 

cell death [127]. 21% Oxygen culture environment is widely considered to be the 

normoxic condition, however, physiological normoxia is actually within the range of 2% -

9% for the majority of cell types within the adult mammalian system [128].Due to the 

requirement of oxygen over the course of animal evolution, both special and sensitive 

mechanisms have developed to minimise the possible disastrous effects of low oxygen, 

such as transcriptional profile alteration [129]. 

The importance of oxygen gradients within the stem cell niche can be traced to early 

research conducted on endometrial and trophoblastic tissues in early pregnancy [130]. 

Prior to the formation of a circulatory system, the delivery of oxygen to the developing 

embryo is subject to the limitations of diffusion, with the estimated diffusion distance for 

oxygen being 150μm [131, 132]. Therefore, early mammalian development actually 

occurs in a relatively low oxygen environment.  

Hypoxic culture environments have been shown to maintain the undifferentiated state of 

stem cells such as hematopoietic stem cells [133], mesenchymal stem cells [134], neural 

stem cells [135] and human embryonic stem cells [136]. Furthermore, hypoxic conditions 

have also been shown to influence quiescence, proliferation, differentiation leading to 

cell fate commitment [127]. Stem cells are primarily defined by their ability to self-renew 

and maintain a production of mature cells, which has been found to reside predominantly 

within a hypoxic niche [137, 138]. 
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The hypoxia inducible factor (HIF) group of gene products play a major role in the 

maintenance of stem cell potency [129]. Currently, there are six known HIF genes which 

code for six transcription factors (Table 1.3). 

Recent observations in the hypoxic cultivation of hMSCs not only prevents their 

differentiation, but also increases their proliferation potential [139]. Further research by 

Grayson et al (2007) showed that cultivation in hypoxic conditions leads to an increase in 

the expression levels of the HIF-2α protein and the Oct4 protein which is associated with 

not only undifferentiated phenotype but also the self-renewal of stem cells [140]. 

Member Protein Gene 

HIF-1α Hypoxia-inducible factor 1, alpha subunit HIF1A 

HIF-1β Aryl hydrocarbon receptor nuclear translocator ARNT 

HIF-2α Endothelial PAS domain protein 1 EPAS1 

HIF-2β Aryl hydrocarbon receptor nuclear translocator 2 ARNT2 

HIF-3α Hypoxia-inducible factor 3, alpha subunit HIF3A 

HIF-3β Aryl hydrocarbon receptor nuclear translocator 3 ARNT3 

Table 0.3 Members of the HIF transcription factors and genes. 

HIF are sub divided into 3 groups of 2 members namely α and β. The table above shows the HIF member 

and associated protein along with gene name [129]. 

An array of studies have been undertaken to investigate the effects of low oxygen 

environments on ESCs which employed the use of ESCs derived from many species (e.g. 

human, and ovine), where an increase in the inner cell mass size has been observed in 

ovine research [141]. Low oxygen tension has also shown an enhancement in hESC clonal 

recovery and a reduction in chromosomal abnormalities [142]. HIF-2α has also been 

shown to be up-regulated in hESC which results in the suppression of p53 and ultimately 
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enhances the stemness and regenerative potential when cultured under hypoxic 

conditions [143]. 

Therefore, the differentiation of both mesenchymal and embryonic stem cells towards a 

tenocyte lineage should be investigated at both 21% and 2% oxygen environments due to 

the effects of HIF proteins on differentiation. 

1.9 Stem Cell Therapy 

Since the discovery and subsequent isolation for embryonic stem cells, which Nobel Prize 

was awarded to Sir Martin Edwards, Mario R. Capeechi and Oliver Smithies. Stem cells 

and their potential application have held hope for those afflicted with incurable and 

degenerative disease. To date, the treatments and/or therapies that employ embryonic 

stem cells that have been translated from the laboratory to the clinical application have 

been very few. 

Stem cells were first studied by Becker et al. in 1963 with the injection of bone marrow 

cells into irradiated mice and subsequent nodule development in the spleens of the mice 

in proportion to the number of bone marrow cells injected. From this research, they 

concluded that each nodule arose from a single marrow cell. Subsequently, they 

determined that these cells were capable of infinite self-renewal, a central characteristic 

of stem cells [144]. Thus, stem cells by definition have two essential properties, i.e. the 

capacity of self-renewal, giving rise to more stem cells, and the capacity to differentiate 

into different cell lineages under appropriate conditions. Broadly speaking, there are two 

main types of stem cells, embryonic and non-embryonic. Embryonic stem cells (ESCs) are 

pluripotent and, accordingly, they can differentiate into all three embryonic germ layers 

[145]. Non-embryonic stem cells (non-ESCs) derived from marrow, fat or cord-blood are 
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multipotent; their potential to differentiate into different cell types seems to be more 

limited [146]. 

 Human Embryonic Stem cells 1.9.1

Alexis Carrel was a Nobel laureate and an innovative surgeon, his experiments with the 

transplantation and repair of body organs led to advances in the field of surgery and 

tissue culture. In January 1912, he placed part of a chicken’s embryo heart in a culture 

containing fresh nutrient medium. He found that every 48hrs the tissue doubled in size. 

This continued for 34 years, outliving Carrel himself. Even though these cells were unlikely 

to be embryonic stem cells but more likely related to chord-derived or foetal cells, this 

experiment showed the future potential of embryonic/foetal cells and tissue culture [147, 

148]. 

Murine Embryonic Stem (ES) cells were first described in 1981 [145, 149]. The 

development of ES cells evolved from the work on murine teratocarcinomas, which are 

tumours that arise in the gonads and consist of an array of somatic tissue arranged in a 

disorganised fashion [150]. In 1995 primate ES cells were derived from rhesus monkey 

pre-implantation blastocysts and later from the marmoset [151, 152]. It was not until 

1998 when expanding the previous primate studies that Thompson and co-workers 

derived human ES cells from surplus blastocysts donated by couples undergoing fertility 

treatment and it was at this point at which embryonic stem cell research evolved [150, 

153]. 

Many of the advances in stem cell science are based on developmental studies of mouse 

embryogenesis. The first stage of life, the fertilized egg, has the potential to generate an 

entire organism. This capacity is defined as totipotency and is retained by the early 
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progeny of the zygote up to the eight-cell morula. Subsequently, cell differentiation 

results in the formation of a blastocyst composed of the outer trophoblast cells and 

undifferentiated inner cells, commonly referred to as the inner cell mass (ICM) (Figure 1.9 

differential pathway from zygote to blastocyst).  

 

Figure 0.9 Post fertilisation blastocyst development prior to embryonic stem cell extraction. 

The fertilised egg from 2 cells to 4 to 8 cells to become the early morula. When the morula reaches 16 to 

32 cells there are distinctive inner and outer cells, as the morula continues to develop a distinct late 

cavitation. The morula can be observed until the early blastocyst has developed. The early balstocycst 

continues to develop through to the late blastocyst were the PE-Primitive endoderm and  EPI-Pluripotent 

epiblast are found [150]. 

Cells of the ICM are no longer totipotent but do retain the ability to develop into all cell 

three germ layers and subsequently the specific tissue types (Figure 1.10). The cells within 

the blastocyst then become the one of three germ layers (Ectoderm, Endoderm and 

Mesoderm) that will eventually give rise to all the cellular components and tissue of a 

fully developed foetus. 
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Figure 0.10 ESC differential potential of embryonic stem cells 

The early zygote develops into the blastocyst from which all three germ layers will arise and eventually 

develop in to a fully developed foetus [150]. 

 Human Mesenchymal Stem Cells 1.9.2

The concept of mesenchymal stem cells (MSCs) is a term first coined by Arnold Caplain 

(1991) and can be traced to experiments demonstrating that the transplantation of bone 

marrow (BM) to heterotrophic anatomical sites resulted in de novo generation of ectopic 

bone and marrow [154]. Further examples of such studies date back to the 19th century 

by Goujon, and also the work of Tavassoli and Crosby (1968), which clearly established 

proof of an inherent osteogenic potential associated with BM. The Tavassoli and Crosby 

experiments were conducted with entire fragments of bone-free BM, the precise identity 

of any cell functioning as a progenitor of differentiated bone cells and therefore of non-

haemopoietic, mesenchymal cells could not be delineated. 

It was not until a series of seminal studies conducted by Friedenstein and co-workers in 

the 1960s and 1970s, who demonstrated that the osteogenic potential, as revealed by 
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heterotrophic transplantation of BM cells, was associated with a minor subpopulation of 

BM cells [154, 155]. These cells were distinguishable from the majority of haemopoietic 

cells by their rapid adherence to tissue culture vessels and also by the fibroblastic-like 

morphology of their progeny in culture, which indicated their origin from the stromal 

compartment of BM [155]. Further work by Friedenstein and co-workers provided a 

second major breakthrough by showing that seeding of BM cells suspensions at clonal 

density resulted in the establishment of discrete colonies initiated by single cells (known 

as the colony-forming unit fibroblastic, CFU-Fs) [155]. In vivo transplantation led to the 

recognition that multiple skeletal tissues (bone, cartilage, adipose tissue, and fibrous 

tissue) could be experimentally generated, in vivo, by the progeny of a single BM stromal 

cell [155]. Friedenstein and Owen called this cell an “Osteogenic stem cell”, and later in 

1988 called the cell a “Stromal stem cell”. The implications of these discoveries were 

initially only appreciated by experimental haematologists, only later was the relevance to 

tissue biology and disease appreciated.  

In 1978 Schofield conceptualised the “Stem cell niche hypothesis” with the notion that 

haemopoietic stem cells (HSCs) are regulated by their physical association with discrete 

cellular microenvironment within the BM. This hypothesis was substantiated by further 

experimental observations by Dexter et al., 1977; Allen, 1978; Dexter and Testa, 1976 

[155]. 

The pioneering works by Tevassoli,  Friedenstein, and Owen revealed that a second type 

of stem cell could be present in the BM and, specifically, in the haematopoiesis-

supporting stroma [155]. The concept of non-haemopoietic stem cells in BM did not 

resonate worldwide until the additional work of Pitttenger in 1999. Combined with the 
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timing of the isolation of ES cells, the term mesenchymal stem cells (MSCs) gained wide 

popularity and in the minds of many, MSCs became one kind of postnatal human stem 

cell with a differential properties broader than originally envisioned and possibly as broad 

as ES cells (Figures 1.11). 

 

Figure 0.11 Mesenchymal stem cell differentiation potential  

Differentiation properties and cell lineage arising from MSCs which include: bone, cartilage, muscle, 

stromal, tendon/ligament, fat and dermal tissues [155-157].  

Currently BM derived MSCs are being used in an array of research topics in tissue 

engineering including tendon repair [156], tendon and ligament engineering [157], 

myocyte generation [158] and neuronal differentiation [159] to mention a few. 
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  Tendon Progenitor Cells 1.9.3

Present in the extracellular matrix of the tendons are tendon stem progenitor cells (TSPC) 

[160]. Comparison of TSPC with cells of the human bone marrow demonstrated that the 

TSPC showed increased expression of tenomodulin, scleraxis and collagen type I, which 

are all markers of tendon cells in comparison to bone marrow cells and type II collagen 

(expressed in case of cartilage and bone) was not expressed by either of these cells. The 

extracellular matrix was responsible for regulating the renewal and differentiation 

capacity of TSPC and it was subsequently found that fibromodulin (Fmod) and biglycan 

(Bgn) was present in the matrix and were highly expressed in TSPC and were responsible 

for converting TSPC into tendon tissue [160]. These findings have been supported by the 

fact that when these two proteins were not expressed in the matrix or when their 

expression was inhibited then bone tissue was formed. This evidence highlighted that the 

two proteins were playing a very important role in the extracellular matrix (Niche) by 

regulating the signalling pathway of the BMP in order to give rise to tendons by 

differentiating TSPC and this conversion of TSPC into tendons often got disturbed in the 

absence of Bgn and Fmod, leading to the disruption of collagen fibre organisation which 

lead to big gaps in the tendon followed by an increment in the collagen type II and 

aggrecan (marker for chondrocyte) and a marked decrease in the expression of collagen 

(Type I) and scleraxis, ultimately leading to formation of bones [160]. However, the key 

limitation to the use of TSPC is that tendon contains a reduced number of cells than other 

tissue meaning a vastly lower number of TSPC within the tendon. Also the process of 

harvesting the cells would induce further trauma to the tendon [160]. 
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1.10 Growth Factor Induced Tendon Regeneration 

Growth factors can engage in autocrine, juxtacrine, paracrine and endocrine stimulation. 

If the receptor resides on the same cell where the ligand is expressed, the resulting 

cellular stimulation is autocrine; when the growth factor diffuses from cell to 

neighbouring cells in the same organ/tissue, stimulation is paracrine, and juxtacrine 

stimulation is a mode of signalling reserved for those membrane-anchored growth 

factors, which interact with receptors located on the neighbouring cells. When a factor is 

transported through the bloodstream from the place of synthesis to other tissues 

equipped with a receptor that can recognise the factor, stimulation is endocrine, as in the 

case of hormones such as insulin and human growth hormone (hGH) [161] 

Recently many papers have been published in regards the use of growth factor induced 

tendon regeneration. An array of growth factors and combination of growth factor 

cocktails have been investigated and include members of the Transforming growth factor 

super family (TGF), Platelet derived growth factor (PDGF), Bone morphogenic proteins 

(BMP) and vascular endothelial growth factor (VEGF) with varying degrees of success 

(Table 1.4). 
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Growth Factor 
Type of treatment 

and species 
Results and References 

bFGF 

 

ACL in Canine [162] 

MCL in Rabbit [163] 

PT in Rat [164] 

Flexor tendon in 

Canine[165] 

Enhanced tendon healing was observed in 

ACL canine[162] . Early formation of tissue 

repair was observed in MCL in rabbits 

[163]. Increased expression of Collagen 3 in 

PT repair in the rat model [164]. No 

improvement was observed in flexor 

tendon canine model with increased scar 

tissue formation was observed [165]. 

GDF-5 

Flexor tendon in Rabbit All repairs failed. Increased early maximum 

load observed in GDF-5 treated samples 

compared to control [166] . 

GDF-6 
Achilles tendon in Rat Increase in tendon strength compared to 

control [167]. 

IGF-1 
Achilles tendon in Rat Reduction in immune response resulting in 

increased rate of repair [168]. 

PDGF-ββ Achilles tendon in Rat Increased healing observed [169]. 

SDF-1 Achilles tendon in Rats 
Larger collagen fibrils compared to control 

and physiological structures [170]. 

TGF-β1 ACL in Rabbits 

Rapid and continuous proliferation of 

fibroblasts with elevated collagen 1 and 3 

[171]. 

TGF-β2 MCL in Rabbit 
Elevated Collagen 1 expression with rapid 

proliferation [172]. 

Table 0.4 Growth Factors used in Tendon Repair  

The Above table shows growth factors investigated in tendon repair table is adapted from Lui et al [173]. 
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 Transforming Growth Factor-β 1.10.1.1

The transforming growth factor β (TGF-β) superfamily consists of over 30 members and 

many subgroups such as Bone Morphogenic Proteins (BMPs), Growth and Differentiation 

factors (GDFs), Activins and Nodals, all of which have a major function is the development 

of the foetus [174, 175]. The TGF-β superfamily and the downstream pathway 

components are a well conserved in vertebrates [174]. The TGF-β superfamily have been 

shown to have an array of diverse cellular responses which include: growth, adhesion, 

migration, apoptosis and differentiation [174]. 

The sub-group of proteins within the TGF-β superfamily, BMPs have been shown to be 

highly involved in bone and skeletal tissue development. BMP-4 has been shown to be 

involved in the regulation of bone formation [175], whilst BMP-12 has been shown to be 

involved in tendon generation [176]. 

 Bone Morphogenic Proteins 1.10.1.2

Bone morphogenic proteins (BMPs) are a sub group of the TGF-β growth factors with 20% 

– 30% amino acid homology to other members of the TGF-β superfamily [177]. BMPs are 

considered to be pleiotropic, affecting many different tissues in subtly different ways 

[177]. BMPs have also been shown to play a role in tissue healing and embryonic 

development [178]. Currently over 30 BMPs have been identified with some also falling 

under the growth and differentiation factors group (GDF7 also being known as BMP-12). 

Recently, BMP-12 has been researched as having a role to play in tendon differentiation 

by means of gene transfection [176, 179, 180]. Also, BMP-13 has also been implicated in 

tenogenic differentiation [181]. However, tenogenic differentiation is not limited to just 
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BMP-12 and 13, as both BMP-2 and BMP-7 have also been shown to have a role in tendon 

repair [182]. 

To date the use of gene transfection has been employed to induce increased repair of 

damaged tissue and the differentiation of mesenchymal stem cells towards a tendon-like 

tissue [176, 180]. A study by Fu et al showed that BMP-12 was expressed in healthy 

human patellar tendons and located in clusters of tenoblasts in active remodelling sites 

and also perivascular mesenchymal cells [183]. However, expression of BMP-12 was not 

apparent in tenocytes found sitting on intact collagen [183]. This research showed that 

BMP-12 does actively play a role in certain physiological processes in healthy adult 

tendon and may be related to tissue regeneration due to the up-regulation of matrix 

proteins such as procollagen I and II [183]. The data obtained from the study by Fu et al 

lead to the hypothesis that BMP-12 is involved in the remodelling of tendon tissue that 

has micro-injuries induced by normal activities due to hyper-cellular areas correlating to 

increased BMP-12 expression. Further findings included the culture of human tendon 

fibroblasts in the presence of rhBMP-12 showed a marked increase in procollagen types I 

and III [183].  

 Fibroblast Growth Factor 1.10.1.3

Fibroblastic growth factor-4 (HST-1, FGF-4) was originally identified as fibroblastic-specific 

growth factors [184]. Fibroblastic growth factors (FGFs) are a large family of signalling 

polypeptide growth factors that are evolutionary conserved between species. Currently, 

there have been 23 members identified within this large family within vertebrates, with a 

molecular mass ranging from 17 – 34kDa, with a 13 – 71% conservation of amino acid 

identity [185, 186]. 
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From the 22 genes responsible for the coding of the FGF proteins, the function of FGF-16 

still remains unknown [185, 187]. Several of the FGF genes have been shown to be 

located in clusters, FGF-3, FGF-4 and FGF-19 being a good example of such clustering 

which can be found on chromosome 11q13 and these individual genes have been shown 

to be separated by as little as 10 – 40kb [185]. The apparent clustering of FGF genes and 

the work undertaken by Kelley et al. 1992 which showed that a transcriptionally active 

portion of FGF-7 could be amplified to 16 copies which were dispersed throughout the 

human genome along with sequence conservation, could be due to chromosomal 

duplication and truncation during evolution [185, 187, 188]. 

Fibroblast growth factor -4 (FGF-4) was originally identified by Sakamoto et al., 1986 and 

Deili-Bovi et al., 1987 as HST-1 gene from human stomach cancer and Kaposi’s sarcoma 

by a NIH3T3 transforming assay. The deduced amino acid sequence for FGF-4 has been 

shown to have 43%, 38% and 40% homologous sequences to fibroblastic growth factor -2 

(FGF-2), fibroblastic growth factor -1 (FGF-1) and fibroblastic growth factor -3 (FGF-3), 

respectively [186]. The gene loci for FGF-4, was located on chromosome 11q13 along with 

FGF-3 and FGF-19 as a clustered region of FGFs [189-191]. After protein synthesis FGF-4 is 

cleaved and glycosylated to produce a mature protein of 176 amino acids, which excludes 

the cleaved 30 amino acids of the signal peptide [192, 193]. 

Delli-Bovi et al. 1988 investigated the effects of inhibition of glycosylation and impaired 

secretion of FGF-4; it was also found that the stability of FGF-4 was increased by the 

presence of heparin in the culture media. It was also found that FGF-4 in the un-

glycosylated form was cleaved into two NH2-terminally truncated peptides, which were 

13 and 15 kDa [194]. These two peptides were investigated and found to be more active 
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than the wild-type protein and also showed increased affinity for heparin-binding [195, 

196]. Kosaka et al. 2009 proposed, “That these two proteins could represent a novel 

mechanism for regulation of FGF-4 mediated biological activity”. FGF-4 is expressed in 

pre-implantation murine blastocysts and is also present in the inner cell mass (ICM) [197, 

198]. 

The FGF-6 gene is located on chromosome 12p13.32 and encodes for 18.7kDa protein, 

which consists of 206 amino acids and has been shown to bind to the FGFR-1c, 2c and 

4.The FGF-6 gene was first cloned by low stringency hybridization to an FGF-4 probe in 

1989 by Marcias and co-workers [199]. De Lapeyriere et al. reported in 1990 that FGF-6 

transcripts were present in adult muscles and during embryogenesis. Further 

investigations into the action of FGF-6 by Zhao & Hoffman (2004) in regards embryonic 

myogenesis revealed FGF-6 was the likely ligand for FGFR-4 and positional cues that 

dictate the cell determination, proliferation and differentiation into adult muscle[200]. 

Furthermore, antagonists of Wnt signalling, sFRP1, SFRP2 and sFRP4 (secreted frizzled-

related proteins) were significantly up-regulated, which suggested active inhibition of not 

only the Wnt pathway (Wnt1, 3a, 7a and 11), but also shh (sonic hedgehog) pathway and 

BMP pathway were not induced in muscle regeneration [200]. Recently, in-situ 

hybridization studies conducted by Amand et al. had shown FGF-6 expression to be 

restricted to developing skeletal muscle [201, 202]. Studies conducted using the murine 

model has shown FGF-6 presence at E9.5 and to be exclusively present in the myotomal 

compartment of the somite [201, 202]. Due to the interaction between muscle and 

tendon is the transmission of forces between muscle and bone it is also feasible that FGF-
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6 could play an integral role in the development of tendon and muscular-tendon 

junctions. 

The FGF-8 gene is located on chromosome 10q25-q26 and encodes for 22.4 kDa protein 

consisting of 193 amino acids. Early investigation into the role of FGF-8 in limb 

development was conducted by Moon and Capecchi in 2000 where they undertook 

experimental work to assess the role of FGF-8 during mouse limb development [203]. As 

with FGF-4 and FGF-6 the AER provided the signals to maintain mesenchymal cells in the 

proliferative state in the PZ during limb development.  

The research showed that exogenous FGF-8 was capable of inducing ectopic limb 

development and also used to replace the AER to support continued limb development. 

The limb patterning along the anterior/posterior axis was also shown to require 

interactions between the zone of polarising activity (ZPA) and the AER, where Shh (sonic 

hedgehog protein) was the proposed mediator of polarisation [203]. Moon & Capecchi 

went further in the research to say BMP-2 may be responsible for FGF levels in the AER 

rather than Shh due to asymmetrical expression of downstream genes such as Hoxd 

genes and BMP-2 [203]. Further research conducted by Park et al. showed that FGF-8 as 

with other FGF family members has a role to play in not only limb development but also 

organogenesis in this case the heart [204]. This would indicate the combined effect of 

cellular positioning due to polarisation (local polarisation) and FGF signalling may be the 

key in development specification. Meaning cell positioning is the primary determining 

factor in the fate of tissue to develop when FGF signalling initiates and maintains 

proliferation and differentiation. 
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Reciprocal interaction between muscle and tendon has been reported in numerous 

studies, which is vital for their respective tissue development [14, 205-208]. 

Experimentally generated muscle-less limb models in both the chick and mouse models 

have shown initial tendon development to be independent from muscle. However, 

continued tendon development requires the presence of muscle. This requirement was 

shown by the failure of tendon segregation and differentiation in the absence of muscle 

[82, 205, 209].  

 Bone Morphogenic Protein Receptor 1.10.1.4

The BMP12/13 molecule binds first to a type II receptor. The receptor-ligand complex 

then combines with a type I receptor, forming an oligomeric signalling receptor complex. 

Both the type I and type II receptors have cytoplasmic serine/threonine kinase domains. 

With TGF-β (which BMPs are a member) signalling is transmitted via SMADs, which are a 

family of signal transducers and transcriptional activators [161]. TGF-β receptor activation 

is a good example of the mutual dependency of dimerization and trans-phosphorylation. 

Type I receptors have a highly conserved, 30 amino acid long region which precedes the 

kinase domain. This region is the GS (glycine-serine) domain because it contains the 

protein sequence GSGS. On interaction with the liganded type II receptor, the GSGS 

sequence in receptor I is trans-phosphorylated by the type II receptor. Phosphorylation of 

ser165 in the GSGS sequence is crucial and determines the intensity of signalling [161]. 
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Figure 0.12 BMP-BMPR signal cascade  

BMP binds to either BMPR I or BMPR II dependant on ligand specificity. Both BMPR I and II result in the 

phosphorylation of SMAD-1, 5 and 8 combinations which bind with SMAD-4. Post binding with SMAD 4 

the newly formed SMAD complex translocates to within the nucleus and activating co-factors that result 

in target gene transcription. Activation of both BMPRs can also result in activation of Ras and MAP3K7IP3 

and result in further signal transduction with results still to be elucidated [178, 181].  
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 Fibroblast Growth Factor Receptors 1.10.1.5

All FGFs have been shown to contain an internal core with 28 highly conserved amino 

acids and 6 invariant amino acid residues [187]. Plotnikov et al [210], where ten of these 

conserved amino acids are responsible for the interaction between FGF and its receptor 

(FGFR). Structural studies by Zhu et al. [211] and Eriksson et al. [212] both showed that 

FGF1 and FGF2 contained 12 anti-parallel β strands which were located in the highly 

conserved protein core region. Faham et al [213] went on to show that FGF1 and FGF2 

both have a β trefoil structure, which has the presence of 4-stranded β sheets, which 

were arranged in a triangular array. Furthermore, the 2 β strands (strands β10 and β11) 

were shown to contain several amino acid residues that formed the primary FGF2 

heparin-binding site [210-213]. 

The four known Fibroblast growth factor receptors (FGFR) FGFR1 through FGFR4 sharing 

between 55% and 72% homology at the protein level [214, 215] and are a vital 

component of signalling cascades, which have been shown to control embryonic pattern 

formation in animals [216]. The general structure of the FGFR family are characterised by 

a modular structure with seven domains [214]:- 

 N – terminal signal sequence 

 The presence of usually 3 extracellular Ig-like loops (Ig I to Ig III) 

 An acidic domain IgI and IgII 

 Single transmembrane domain 

 Split tyrosine kinase domain 

During FGF and heparin sulphate proteoglycan binding it has been shown that of the 3 Ig-

like loops, only the juxtamembrane IgII and IgIII domains are required. Olsen et al. 2003 
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[217] showed the IgI domain is neither essential for FGF binding or receptor activation, 

but does exert a modulatory, auto-inhibitory function by the folding back to IgII and IgIII 

[217-219]. 

The FGF receptors show a high level of conservation in homology between each receptor 

type (Table 1.5) [220]. Although there are many types of FGFs and they convey a diverse 

range of effects on target cells, this is achieved by the high level of variance in the 

receptor[220]. This level of diversity is best demonstrated with FGF-7, which has a 

mitogenic effect on keratinocytes, however, this effect is not observed with fibroblast or 

endothelial cell lines [221]. This observation in regards FGF-7 implies that different cell 

lines will react differently to the same FGF signal and this reaction is dependent upon the 

cellular expression of receptor and which variant of the receptor the cell expresses [220]. 
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Name Synonym(s) Receptors Reference 

FGF-1 Acidic FGF, aFGF FGFR-1, IIIb & IIIc; FGFR-2, IIIb 

& IIIc; FGFR-3, IIIb & IIIc; FGFR-

4 

Ornitz et al [222] 

 

FGF-2 Basic FGF, bFGF FGFR-1, IIIb & IIIc; FGFR-2, IIIc; 

FGFR-3, IIIc, FGFR-4 

Ornitz et al [222] 

FGF-3 Int-2 FGFR-1. IIIb; FGFR-2, IIIb Ornitz et al [222] 

FGF-4 kFGF, Kaposi FGF, 

hst-1 

FGFR-1, IIIc; FGFR-2, IIIc; FGFR-

3, IIIc; FGFR-4 

Ornitz et al [222] 

FGF-5  FGFR-1, IIIc; FGFR-2, IIIc Ornitz et al [222] 

FGF-6 hst-2 FGFR-1, IIc; FGFR-2, IIIc, FGFR-4 Ornitz et al [222] 

FGF-7 KGF FGFR-2, IIIb Ornitz et al [222] 

FGF-8 AIGF FGFR-1, FGFR-2, IIIc, FGFR-3, 

IIIc, FGFR-4 

Ornitz et al [222] ,Koga et al 

[223] 

FGF-9 GAF FGFR-2, IIIc; FGFR-3, IIIb & IIIc, 

FGFR-4 

Ornitz et al [222] 

FGF-10 KGF-10 FGFR-1, IIIb; FGFR-2, IIIb Ornitz et al [222], Miralles et al. 

[224] 

FGFs 11 – 14 FGFs UNKNOWN Ornitz et al [222] 

FGF-15  UNKNOWN Ornitz et al [222] 

FGFs 16 – 19  FGF-17; FGFR-1, IIIc; FGFR-2, 

IIIc 

Ornitz et al [222], Xu et al.[225] 

FGF-20 XFGF-20 UNKNOWN Ornitz et al [222] 

Table 0.5 FGF groups and Associated Receptors  

The above table was adapted and reproduced from Powers et al [220] and shows each FGF molecule and 

its associated receptors [222-225]. 
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There are possible mechanisms of expression of different forms of FGFR: 

1. FGFR gene splice variants 

2. Expression of different FGFR genes. 

With the employment of splice variants it becomes possible for the same FGFR gene to 

encode for a variety of different receptor protein isoforms [220] and this kind of diversity 

is due to the structure of the respective FGFR genes [220]. Genetic analysis of the FGFR-1, 

FGFR-2 and FGFR-3 genes has shown a remarkably high level of conservation in the 

arrangement of the intro/exon boundaries [185, 220, 222, 226]. 

 Heparin and FGF 1.10.2

Heparin and HS are heterogeneously linear sulphated polymers consisting of repeating 

sub-units of the disaccharide hexuronic acid and D-glucosamine [227]. Heparin sulphate 

(HS) can be found in the interstitial spaces within the extracellular matrix of most tissues 

and on the surface membrane of most cells  

A large volume of evidence implies that the FGF pathways are required for vertebrate and 

invertebrate development [228-230]. Interactions between FGF and heparin have been 

shown to stabilise both FGF1 and FGF2 to terminal denaturing and protects FGF2 from 

proteolysis [187, 231]. The affinity of FGFs for Heparin sulphate (HS) proteoglycans 

severely limits their diffusion and release into interstitial spaces; therefore FGFs function 

in a paracrine fashion when bound to heparin [232-234]. 

The binding of FGFs to heparin or heparin sulphate results in the formations or 

stabilisation of dimers and higher order oligomers along the proteoglycan chain [221, 231, 
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235]. It has also been shown that FGFs can form “Trans” dimers with a heparin molecule 

bound between two FGF molecules [236]. The concept of heparin/HS-FGF dimer being an 

essential component/step in the transduction of FGF/FGFR signalling complex still 

remains controversial [237]. Although, it is well established that heparin is essential for 

high affinity binding of FGF to FGFR when cells are unable to synthesis cell-surface HS, 

cells pre-treated with heparin degrading enzymes or cells exposed to sulphation inhibiting 

agents [238, 239]. Also studies by Szebenyi et al (1999) [240] and Ornitz (2000) [187] 

showed that heparin/HS complex increased not only FGF/FGFR affinity but also the half-

life (T½) of the FGF-FGFR complex. 

 FGF-FGFR Signal Transduction 1.10.3

FGF binding to the cell surface induces the dimerisation of the FGFR, this then results in 

the activation of tyrosine kinase and the auto phosphorylation of the cytoplasmic domain 

of the cognate receptor [241]. The phosphorylated tyrosine’s are subsequently 

recognised by the SH2 domain, which contains signal transducers such as 

phosphotyrosine phosphatase (SHP-2) which is vital in the downstream activation of 

target proteins [242]. With FGF-2 signal transduction SHP-2 has been shown to associate 

with FRS2 were the SH2 domain in the N-terminal has been shown to be important for 

Ras signalling pathway [243]. Rho GTPase is a member of the Ras super family and plays 

an opposite role to general Ras proteins and may be involved in JNK/SAPK pathway [243]. 

Rasp21 is an important intermediate in the FGF-2 induced activation of the Ras/MAPK 

signalling pathway [243]. Grb2 has been shown to activate Rasp21 which can activate 

MAPK via the activation of MAPKKK which then activates the level of transcription factor 

Elk-1 [244-250]. Phospholipase C-gamma (PLC-γ) is phosphorylated by FGFR-1 at position 
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Y766. Tyrosine phosphorylation of PLC-γ results in activation and subsequent hydrolysis of 

phosphatidylinositol 4, 5 bisphosphate to inositol 1, 4, 5 triphosphate and diacylglycerol. 

The generation of two inositol 1, 4, 5 triphosphate, leads to the release of Ca2+ from 

intracellular stores, whereas diacylglycerl accumulation leads to activation of member of 

the protein kinase C family [251, 252]. 
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Figure 0.13 FGF-FGFR signalling Cascade 

Post FGF-FGFR binding results in an array of signal transduction pathways which can result in transcription factor activation which in turn can result in mitogenic 

responses via ERK1/2 activation, FGF inhibition (negative feedback) via ERK1/2 activation, stress response via JNK and p38 activation, anti-apoptosis response via Akt 

activation, cytoskeleton reorganisation and proliferation via phospho kinase C (PKC) activation [241-243, 251-253]. 
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1.11 Drug Delivery Systems 

The use of drug delivery systems as a means of delivering a controlled and sustained 

release of drugs or growth factors has received much attention in recent years [254]. 

However, tailoring the size and properties of the particle to deliver the growth factor to 

the desired cell/tissue type has yet to be fully documented. To date the majority of 

research groups focus upon the encapsulation efficiency of a desired drug/growth factor 

or hormone without fully exploring the full spectrum of nanoparticle production variables 

that can control the nanoparticle properties such as size and possibly polydispersity index 

and charge? 

Many polymers have been investigated and are currently being employed for their 

potential use as a vehicle to deliver drug or growth factors such as lysosomes, synthetic 

polymers (Table 1.6) and natural polymers (Table 1.7) [255-258].  However, the control of 

nanoparticle size as a key factor in drug/growth factor delivery has yet to be investigated. 
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Synthetic Polymer Main Application Reference 

Poly (glycolic acid); Poly (Lactic acid)  
and their copolymers 

Used in Sutures, drug delivery 
systems and tissue engineering. Co-
polymerized to regulate degradation 

rate 

Mooney et al. [259] 

Polyhydroxybutyrate Biodegradable, used as a matrix for 
drugs. 

Holland et al. [260] 

Poly (carpolactone) and copolymers Delivery system, Cell 
microencapsulation 

Lee et al. [261] 

Poly (alkylene succinate) Properties that can be tuned by 
chemical modification, 

copolymerization and blending 

Bikiaris et al. [262] 

Polyanhydrides Biodegradable, used in tissue 
engineering for the release of 

bioactive molecules 

Gunatillake & Ahikari [263] 

Polyacrylonitrile Dialysis Membranes Stoilova et al. [264] 
Polyamides Used for sutures and hemofiltration 

membranes. Inhibitors of DNA 
transcription 

 

Poly (ortho esters) Surface-eroding polymers. 
Applications in sustained drug 

delivery, ophthalmology. 

Kellomaki et al.[265] 

Polyphosphazenes Can be tailored with versatile side-
chain functionality. Applications in 

drug delivery 

Peach et al. [266] 

Table 0.6 Synthetic polymers and application in drug delivery systems  

The table above shows the synthetic polymers used for drug delivery along with their main application 

and references [259-266]. 

Natural Polymer Main Application References 
Collagen Sutures, Drug release Friess [267] 
Gelatin Used in the preparation of gels 

and in drug release 
DiTizio et al. [268] 

Albumin Drug stabilizer and drug release Elzoghby et al.[269]  
Carboxymethylcellulose Drug release, dialysis membranes. Barbucci et al. [270] 

Starch Drug delivery Tuovinen et al. [271] 
Agarose Used in clinical analysis and as a 

matrix 
Wang & Wu [272] 

Alginate Used in the release of bioactive 
molecules 

Tonnesen & Karlsen [273] 

Heparin and glycosaminoglycan  Used in ionotropic gelation and in 
capsules preparation 

Liu et al. [274] 

Dextran and derivatives Used in drug delivery Miyazaki et al. [275] 
Chitosan and derivatives Used in film preparation and 

applied in drug delivery 
Prabaharan & Mano [276] 

Table 0.7 Natural Polymers and application in drug delivery systems  

The table above shows the natural polymers used for drug delivery along with their main application and 

references [267-276]. 
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 Polymer Drug delivery systems 1.11.1

Polymer (Polymeric) based drug delivery systems are a versatile class of materials and 

have the potential to have a vast effect on pharmacological based therapies. Over recent 

years the two major classes of polymers namely synthetic and natural have been both 

investigated and utilised as carriers for controlling drug release [258]. Originally the 

polymer based drug delivery system (DDS) was based on non-degradable polymer matrix. 

However, the major disadvantage of such a system was that the release kinetics were 

uncontrollable and dependant on the diffusive properties (behaviour) of the loaded drug 

through the polymer matrix [258]. As the design of DDS developed combinations of 

natural and synthetic biodegradable polymers allowed for the controlled release of 

encapsulated agents. Therefore, allowing for the possibility to address the targeting of 

the active agent to the target site (cell/tissue) [258]. 

The primary concern for DDS is the choice of polymer to be employed in the controlled 

release delivery system, as controlled release depends on the physical, chemical and 

biological properties of polymer and the DDS constituents (active agent and 

encapsulation agent) [277]. The most recent generation of DDS are currently under 

investigation. These systems are designed using multi-component materials which are 

specifically engineered to avoid biological barriers and stimulate cellular responses such 

as direct cell proliferation and differentiation [278] 

Controlled drug delivery devices can be classified based on the nature of the carriers and 

can be divided into two major categories: diffusion controlled release systems and 

degradable delivery systems. With diffusion controlled release systems, the active agent 

is released from an aqueous solution and is inhibited by the insoluble polymer matrix. The 
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active agent is released either by passing through pores or between polymer chains and it 

is these processes that controls the release rate of the active agent [258, 277, 278]. 

Diffusion controlled systems are divided into two types: reservoir (membrane systems) 

and matrix systems (Figure 1.14) [258, 277, 278]. 

 

Figure 0.14 (A) Schematic of reservoir drug delivery system and (B) matrix based drug delivery 

system. 

In membrane DDS, the drug is contained in a core, which is surrounded by a polymer membrane, and it is 

released by diffusion through this rate-controlling membrane. Reservoir DDS have a coating that controls 

the release rate [258].  

 A reservoir based DDS is generally cylindrical, disk-like or spherical in shape and 

constitutes an agent core in either liquid or powdered form and is contained 

within a polymeric film. The polymeric layer which is non-biodegradable 

represents the only barrier through which the agent slowly diffuses. The diffusion 

rate of the agent is dependent upon the properties of both the agent and the 

polymer. The reservoir can be either microporous or macroporous polymer film. 

The composition of which changes from one component to a mixture of polymers, 

or a heterogeneous matrix in which hydrophilic polymer particles are dispersed in 

a hydrophobic polymer matrix [279]. 
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 With matrix based diffusion control systems, the agent is uniformly distributed 

throughout the polymer matrix and is subsequently released from the matrix at a 

uniform rate as the agent particles disassociate from the polymer network. The 

agent can be physically embedded into the polymer at large enough 

concentrations as to create interconnecting pores throughout the matrix which 

allow for the agent to slowly diffuse out of. The use of such systems allows for 

hydrophobic and/or viscous hydrophilic polymers to incorporate solid agent 

dispersal. The release rate is based on the diffusion of the agent molecule to the 

device surface where they are delivered. This process takes place as long as the 

higher concentration of the agent in the system core affords a constant flow of 

agent molecules through the matrix. With this dissolution-diffusion process, the 

interface between agent reservoir and the release moiety progressively contracts 

and moves towards the core of the device [280]. 

 

Figure 0.15 Schematic Drug Release Profile for Nanosphere and Nanocapsules 

The nanocapsule has an initial burst release followed by continuous release, whilst the nanosphere has a 

reduced burst release followed by prolonged increased release. 
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In degradable DDS the agent molecules are initially dispersed in the polymer and are 

released as the polymer undergoes eroding or degradation. Similar to the reservoir 

system, the degradable reservoir system has an agent-loaded core which is surrounded 

(encapsulated) by a polymer coating which undergoes erosion or degradation. These 

systems combine the advantages of the long-term constant rate of agent release with 

bio-erodabilty or biodegradability. With a surface-degrading polymer, degradation is 

confined to the outer surface of the device. With a bulk-degrading polymer, degradation 

occurs homogeneously throughout the material. With most polymers hydrolysis is a 

major factor and therefore water intrusion into the device is of significant importance for 

the study if degradation kinetics as well as agent release kinetics [281]. 

 Polymeric Nanoparticles 1.11.2

Polymeric nanoparticles (NPs) have drawn much attention within the pharmaceutical field 

as a potential delivery method for pharmaceutical agents. NPs have been defined as solid, 

colloidal particles within a size range of 10 – 1000nm with a capability to carry an agent to 

the target site or to release an agent in a controlled manner [282]. The original particulate 

DDS was primarily based on liposomes and polymer-drug conjugates. Liposomes were 

originally discovered in the 1960’s and can be defined as a spherical vesicle with a lipid 

bilayer membrane structure, which can encapsulate both hydrophobic and hydrophilic 

agents [283]. Polymer-drug conjugates have been extensively investigated after first 

appeared in the 1970’s where the drug or bioactive agent is covalently linked to the 

macromolecular backbone [284]. Today, both liposomes and polymer-drug conjugates 

provide the foundation for the field of advanced drug delivery systems based on 

nanotechnologies. However, these systems have many disadvantages and are 
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characterised accordingly, such as poor encapsulation efficiency and bioavailability of the 

agents, difficulty in targeting a desired target site and relatively high production costs. 

Polymeric NPs offer the capability to achieve controlled release of bioactive agents, 

improvements in the stability of the active agents (the polymeric shell acts as a protective 

shield against factors such as pH, enzymes and light) and their relatively small size can 

allow for the manufacture of a size of NP that may provide a higher cellular uptake than 

other particulate systems. Another advantage of NP as active agent carriers can include 

higher encapsulation efficiency, lower polymer content when compared to other DDS and 

the possibility of utilising polymers with a greater degree of biocompatibility and 

biodegradability [285]. NPs can be classified as nanocapsules and nanospheres. Polymeric 

nanospheres may be defined as a matrix based particle with the entire mass is solid and 

molecules may be adsorbed at the sphere surface or encapsulated within the particulate. 

Polymeric nanocapsules are a vesicular system, which may act as a reservoir, in which the 

entrapped agent are confined to a cavity made from a liquid core (which can be oil or 

water) surrounded by a polymer shell [286]. 

The design of polymeric NPs depends on the therapeutic application, target site (organs, 

tissues, cellular or subcellular organelles) and the route of administration. Although 

injection (subcutaneous or intravenous) is the most common route of administration, 

these nanocarriers can be also delivered through dermal and oral routes to name a few 

[287]. For every administration route of drug delivery that the use of a NP delivery vehicle 

is to be utilised many physical barriers need to be breached. The NPs have to be able to 

deliver beyond the biological barriers, such as skin, mucus, blood, extracellular matrix and 

cellular or subcellular barriers. With respect to these factors, the correct selection of the 
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polymer can affect the NPs intracellular fate, safety, biocompatibility, release kinetics and 

the capability to overcome biological barriers [288]. Biocompatibility and biodegradability 

of NPs are essential concerns for the safety of the patients and should be vigorously 

tested both in vivo and in vitro.  

The use of biodegradable polymers would avoid the concerns in relation to physiological 

excretion or mechanical removal of the delivery device after agent depletion. The 

application of biodegradable matrix (Figure 1.16) could provide a further mechanism for 

release rate control, by combining typical diffusive mechanisms with tuneable polymer 

degradation [289]. 

Nanocapsule

Entrapped agents Surface adsorbed agent

Nanosphere

Entrapped agents Surface adsorbed agent  

Figure 0.16 Structure of Nanocapsule and Nanosphere. 

Shows nanocapsule with the matrix found between the polymer shell and core. The nanosphere with the 

matrix as a component of the core [290]. 

The most commonly used biodegradable polymers being utilised for NP production are 

poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly (ε-caprolactone) (PCL) and the co-
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polymer poly (lactic-co-glycolic acid) (PLGA) of PLA and PGA. Along with the natural 

hydrophilic polymers, such as chitosan, sodium alginate and gelatin have also been 

utilised to produce drug loaded NPs. However, the aliphatic polyesters based on lactic 

and glycolic acids are the most widely employed polymers and have been approved for 

use in humans by the FDA [291]. Furthermore, lactide/glycolide polymer chains are 

cleaved by hydrolysis to form natural metabolites (lactic and glycolic acids), which are 

metabolised, utilised and subsequently eliminated from the body via the Krebs cycle 

[292]. 

 Nanoparticle Preparation Techniques 1.11.3

The properties of NPs have to be optimised according to the particular application. In 

order to achieve this, the properties of interest, the method of preparation play a key 

role. Therefore, it is highly advantageous to have several preparation techniques to 

obtain the NPs with the desired properties. There are several methods for NP production 

which are outlined briefly below:- 

 Emulsion solvent: is the most employed method of NP production. The 

preparation utilised in this method follows the general protocol of dissolving the 

polymer in a water immiscible, volatile organic solvent which is then emulsified 

with an aqueous phase to stabilise the system. The organic solvent is then 

evaporated which induces the formation of polymer particles from the organic 

phase droplets [282, 286, 288]. 

 Salting out: this is an emulsion based approach, with the advantage that this 

method avoids surfactants and chlorinated solvents. Briefly, a saturated salt 

solution containing a stabilising agent such as polivinilalcool (PVA) is added under 
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stirring to an acetone to diffuse into the external aqueous solution of the polymer. 

An organic/water (o/w) emulsion forms as the salt prevents the water and 

acetone mixing. Sufficient water is then added to allow the acetone to diffuse into 

the external aqueous phase and induce nanoparticle formation [282, 286, 288]. 

 Dialysis: The dialysis method is a simple and effective preparation method for 

small and narrow size distributed NPs. In this method, the polymer is dissolved in 

an organic solvent and placed within a dialysis tube with a specific molecular 

weight cut-off. Dialysis is performed against a non-solvent miscible with the 

former miscible solvent. The displacement of the solvent inside the membrane is 

followed by the progressive aggregation of polymer due to the decrease in 

solubility which leads to formation of homogenous suspension of NPs. The solvent 

used in such a preparation of the solvent solution has a direct effect on the 

morphology and particle size of the NPs [282, 286, 288]. 

Therefore, the choice of NP production method is highly dependent upon the agent being 

encapsulated and the chemical properties such as solubility of the agent to be 

encapsulated. By employing a design of experiment approach to nanoparticle production 

the variables of the procedure can be identified to control nanoparticle size and 

subsequently the concentration of drug delivered. 

1.12 Design of Experiment 

Design of experiments (DOE) utilises applied statistics which are capable of dealing with 

conducting, planning, along with the analysis and interpretation of controlled tests. The 

primary purpose is to evaluate the factors that control the value of a parameter or group 

of parameters. 



W. R. Webb PhD Thesis Chapter 1 

70 
 

A well-executed DOE can reveal a high volume of data in regards an effect on a response 

variable due to one or multiple factors, along with their subsequent interactions. Many 

experiments currently employ the holding of one factor constant whilst varying levels of 

another factor, basically a one-factor-at-a-time (OFAT). However, this process is 

inefficient and more costly (in regards time), when compared to changing factor levels 

simultaneously [293]. 

By utilising a DOE can reveal: 

 Key factors in a process 

 Optimum settings (Full factorial 23) 

 Key and main interactions within a process 
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1.13 Thesis Aims 

The three primary aims of this thesis are: 

1. To investigate whether PHBHHx can be used as a scaffold in tendon repair 

(Undertaken at Tsinghua University, Beijing, China). 

2. To Investigate the potential of FGF-4, FGF-6 and FGF-8 and subsequent 

combinations are capable of initiating human stem cell differentiation towards a 

tenocyte lineage (Undertaken at Keele University, U.K.) 

3. Investigate the controlled manufacture of PHBHHx nanoparticles and whether 

controlled manufacture results in control of nanoparticles properties utilising a 

DOE (Undertaken at West China School of Pharmacy, Sichuan University, Chengdu, 

China & Keele University, U.K.).  

The three primary aims of this thesis are to bring together three topic areas of Scaffold 

design for use in tendon repair, growth factor induced differentiation of both hESC’s and 

hMSC’s and finally the controlled production of PHBHHx nanoparticles for use in the 

delivery of growth factors at a range of concentrations The findings of the topic areas may 

lead to a self-contained implant that will comprise of three major components: a cellular 

component (stem cells) with the capability of differentiating towards a tenocyte cell 

lineage, polymer scaffold to provide structural support and integrity for tissue 

replacement/cellular delivery and a nanoparticle growth factor delivery vehicle capable of 

delivering a growth factor cocktail capable of inducing stem cell differentiation. 
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2.1 Introduction 

This Chapter is an expansion on the publication in Biomaterials Webb et al. 2013 [294] 

Tendon injury is an increasing problem in medicine, with over 300,000 tendon procedures 

performed annually in the United States alone [295]. Tendon is characterised by poor 

repair following injury or disease, is relatively acellular and has poor blood supply [6]. 

Treatment can involve many different types of surgical intervention, such as xenograft or 

allograft to treat large tendon defects, however potential problems with this method 

(such as foreign body reaction) can occur [296]. A lack of adequate strategies for tendon 

repair has led to the development of engineered replacement tendon tissue for use in 

surgical implantation[297]. Tissue engineering could be used to develop a regenerative 

medicine solution to tendon tissue repair [156]. 

A range of different materials have been investigated as possible scaffolds for tendon 

tissue engineering. These include natural materials such as collagen [298] and silks [299] 

or manufactured materials such as polymers [300]. One current approach is to blend 

natural and manufactured materials to form a hybrid design which would encourage 

cellular in-growth and provide mechanical support during the remodelling stage of 

tendon recovery [3]. 

An appropriate tendon tissue engineered scaffold would mimic the structure and 

mechanical properties of the natural tissue. The mechanical properties of tendon depend 

largely on its location within the body and can vary. For instance a typical small adult 

human tendon (from the forearm) has a Young’s modulus of 1-2 GPa, an ultimate stress 

of around 100 MPa and an ultimate strain of 4-10% [89] whereas the human patella 

tendon an estimated Young’s modulus of 1.5-1.7 GPa, an ultimate stress of 34-43 MPa 

and an ultimate strain of 5.3-5.8% ,the estimated Young’s modulus for adult Achilles 
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tendon is 2 GPa with an ultimate stress of 80 MPa and an ultimate strain of 3.6-8.8% 

[90],[91]. The tendon extracellular matrix is composed mainly of collagen type I arranged 

in hierarchical levels of increasing complexity, beginning with the triple-helix polypeptide 

tropocollagen which forms primary bundles (fibrils); secondary bundles (fascicles); 

tertiary bundles; and the complete tendon itself, which is surrounded by several layers of 

loose connective tissue sheaths [3, 30, 92, 301-303]. This complexity presents substantial 

difficulties to the generation of artificially produced structures which mimic tendon 

anatomical structure. 

Polyhydroxyalkanoates (PHA) are a family of biopolymers consisting of polyesters of many 

different hydroxycarboxylic acid molecules produced by microorganisms as energy and 

carbon storages in response to unbalanced culture conditions [304]. PHBHHx is the 

designation of molecules consisting of random copolymers of 3-hydroxybutyrate and 3-

hydroxyhexanoate [305] and is one of the few PHA molecules that can currently be 

produced on a sufficiently large scale for use in both scientific research and medical 

device construction [306]. PHBHHx has substantial potential as a material for tissue 

engineering owing to its adaptable mechanical properties, biodegradability and apparent 

compatibility with many different mesenchyme derived cell types [307-311].  

Previous studies using implants to repair tendon injuries have employed polymers such as 

polyglycolic acid (PGA) and polylactic acid (PLA) [113]. Varying degrees of success have 

emerged ranging from histological indications of fibroblast alignment and patterning in 

PLA models when compared to the PLA control and slight improvement in mechanical 

properties of the repaired tendon in Japanese white rabbits with the PGA scaffold [114]. 
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However, to date there are no commercially available polymer based scaffold available 

for the treatment of tendon injury. 

The aim of this study was to explore the use of PHBHHx, PHBHHx-collagen and PHBHHx-

collagen-tenocyte hybrid scaffolds for the in vivo treatment of damaged tendon. Here we 

have demonstrated that the use of PHBHHX and collagen/tenocyte combinations resulted 

in the absence of any adverse immunological response, return of load bearing and 

function (as evaluated through the Achilles Functional Index (AFI)), and cell alignment 

within the scaffold along with scaffold degradation without compromising functionality. 
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2.2 Materials and Methods 

 Animals 2.2.1

20 male Sprague-Dawley (SD) rats weighing between 180-200g were obtained from the 

Centre for Biomedical analysis, Tsinghua University, Beijing, China. Animals were treated 

kept in authorised, licensed facilities and under local ethical and handling guidelines 

throughout the experiment. 

 PHBHHx Fibre Construct 2.2.2

PHBHHx fibres were prepared by melt-spinning using a laboratory-size extruder (Ruojiang 

Chemical Fibre Machinery Co. Ltd., Beijing, China) with a single nozzle with an inner 

diameter of 300 µm. Briefly, PHBHHx powder (87.9% HB, 12.1%HHx) was melted, 

extruded, isothermally crystallized, drawn and annealed under tension (Chinese patent 

application No. 200810052461).  

 Porous Tube fabrication 2.2.3

PHBHHx tubes were prepared by dissolving 10% w/v PHBHHx powder (87.9% HB, 12.1% 

HHx) in 20 mL chloroform (Beijing Chemical Works, 20100303). Following polymer 

dissolution, 0.04 g NaCl crystals (<100 µm diameter) were suspended in the solution and 

homogenised by shaking/stirring. To fabricate the tube, a 2.5 mm diameter stainless steel 

mandrel was dipped into the homogenised solution, then removed and the solvent 

evaporated in a flow hood for 2 minutes. This process was repeated 5 times after which 

the mandrel was placed vertically and left for a further 20 minutes to allow the solvent to 

fully evaporate and the polymer to become rigid. The polymer tube formed around the 

steel was then removed by hand. The tube was then immersed in deionised H2O 

overnight to dissolve the NaCl crystals present in the structure prior to use. 
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 Collagen Gel 2.2.4

Briefly, collagen gels were formed by first neutralising type I rat tail collagen (Sigma 

Aldrich, C3867-1VL) with 1 M NaOH, and combining 9 parts collagen solution with 1 part 

10x DMEM to produce a final collagen concentration of 3mg/mL with the samples placed 

in an ice bath until required [312, 313].  

 Scanning Electron Micrograph Analysis of PHBHHx Fibres 2.2.5

Scanning electron microscopy was undertaken at the School of Medicine, Tsinghua 

University, China. Using a range of magnification (x200 – x2000), Samples were pre-

coated with gold particles in a vacuum unit for 10 minutes prior to visualisation. 

 Mechanical Testing 2.2.6

Maximum force testing was undertaken at the School of Chemical Engineering, Tsinghua 

University, China. Prior to testing the MTS tension/compression tester was calibrated by 

staff at Tsinghua University as per manufactures guidelines using 20kip and 50 kip load 

cells. Post calibration, Samples were placed onto a MTS tension/compression load cell 

tester (MTS, Canada) (Figure 2.1A) and elongated at a rate of 10mm per second until 

failure, were the maximum load is recorded under dry conditions, using factory fitted 

sample clamps (Figure 2.1B).  
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Figure 0.1 MTS Tension Compression load cell tester (NTS, Canada) 

A) shows MTS compression load unit, B) Factory fitted sample clamps. 

 Rat Tendon Harvest 2.2.7

Fresh rat tendon was harvested from 8 weeks old, adult Sprague-Dawley (SD). The rat was 

sacrificed and the Achilles tendons harvested 24hrs prior to mechanical testing and stored 

at 4oC in DMEM supplemented with 10% FBS, 5% NEAA, 5% L-Glutamine and 5% 

streptomycin/penicillin (Lonza) to prevent infection that could affect the outcome of 

mechanical testing. 

 Rat Tenocyte isolation 2.2.7.1

Fresh rat tendon was harvested from 8 week old, adult Sprague-Dawley (SD) which were 

sacrificed in accordance with University policy (Tsinghua University, Sichuan University 

and Keele University). The rat Achilles tendons were then surgically removed from both 

hind legs. The tendons were then placed in a universal bijou bottle containing a solution 
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of PBS supplemented with 1000 IU/ml penicillin, 1000μg/ml streptomycin and 

transported to the laboratory. The tendon was then removed from the transport solution 

in a Biological Safety Cabinet and placed into a sterile petri dish were the tendon was 

then subsequently dissected into smaller sections and minced using a scalpel. The petri 

dishes containing the tendon samples were then placed into an incubator for one hour, 

allowing the tendon samples to loosely adhere to the petri dish surface. DMEM media 

supplemented with 1% L-glutamine, 1% NEAA, 10% FBS was then carefully added drop 

wise to the petri dish until the tendon samples were immersed. After, approximately five 

days, cells were observed to migrate out of the tendon onto the surface of the petri dish.  

The cells in the petri dish were then removed by trypsinisation (1% trypsin/PBS solution) 

for five minutes, pelleted by centrifugation (three minutes, 200g), then re-seeded into 

two T-25 tissue culture flasks. One flask was then cultured at 2% O2 and one flask in 21% 

O2 (Keele University). All flasks were cultured at 21% O2 at Tsinghua and Sichuan 

Universities. 

 Rat Tenocyte Expansion 2.2.7.2

Rat tenocytes (rt-tenocytes) were cultured in T-75 culture flasks in Dulbecco’s Modified 

Eagle’s Medium High glucose (Invitrogen) supplemented with 10% foetal bovine serum 

(FBS), 1% Non-essential amino acids (NEAA) (Gibco), 1% L-glutamine (10mM) (Gibco) until 

confluent. When confluent the cells were passaged with a brief PBS wash before adding 3 

ml of 1% Trypsin/PBS solution and standing until detached. The cell suspension was then 

pipetted into a centrifuge tube, centrifuged (200g, 2 minutes), media aspirated and cell 

pellet re-suspended and distributed across 5 x T-75 flasks and cultured until 80% - 90% 

confluent.  
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 Rat Tenocyte Cryo preservation 2.2.7.3

After isolation of rt-tenocytes a substantial number rt-tenocytes cultured at 21% O2 at 

passage 1 were cryopreserved for future use. Confluent T-75 flasks of rt-tenocytes were 

harvested by aspirating the culture media from the T-75 and washing twice with 10ml 

PBS. Once the PBS was aspirated from the T-75, 3ml of 1% trypsin/PBS solution was 

added to disassociate the cells from the culture plastic. Once the cells had disassociated 

from the T-75 flask, 3ml of rt-tenocytes culture media (differentiation media) was added 

to the trypsin-cell suspension to quench the effects of trypsin. The media-cell-trypsin 

suspension was then placed into a 15ml centrifuge tube and centrifuged for 3 minutes at 

200g. After 3 minutes had elapsed the media- trypsin solution was aspirated from the 

centrifuge tube to leave a cell pellet. The cell pellet was then re-suspended in 1ml of 90% 

FBS and 10% DMSO at room temperature. The DMSO-FBS-cell suspension was then 

placed into a 1.5ml cryovial and placed in a ‘Mr Frosty’ (C1562 Sigma Aldrich, UK) and 

placed into a  -80oC freezer for 24hrs.. After 24hrs had elapsed the cryovial was then 

transferred into liquid nitrogen.  

 Surgical Implantation of PHBHHx Tendon Scaffold 2.2.8

15 male Sprague-Dawley (SD) rats 180-200 g were obtained from the Centre for 

Biomedical Analysis, Tsinghua University, China. Animals were returned to the centre post 

operation and held there for the duration of the experiment. The animals were sacrificed 

at 40 days post operation, with the Achilles tendons from both hind legs being removed 

for analysis. This study was conducted following the guidelines and requirements of the 

local ethical committee at Tsinghua University, Beijing, China and in collaboration with 

Peking Number 1 Hospital, Beijing, China. 
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Surgical procedures were carried out by experienced (consultant) orthopaedic surgeons 

at the Surgical Training Centre, Peking University Hospital Number 1, Beijing, China. 

Animals were anesthetised using 50 mg/Kg sodium pentobarbital. Once anesthetised, a 

lateral incision was made parallel to the Achilles tendon on the distal side of the right hind 

leg (Fig. 2.5B) and the tendon exposed (Fig. 2.5C). In the control group, a 5 mm section 

was removed from the centre of the tendon (Fig. 2.5D), then the incision closed using 3 

cross stitches using dissolvable sutures (Fig. 2.5I). Experimental groups had a 5 mm 

section removed from the tendon, which was then bridged using the scaffold. This was 

done by first knotting together the 3 fibres and passing each individually through one end 

of the damaged tendon (Fig. 2.5E). The tube was then passed along the open end of the 

fibres, and manoeuvred into position (Fig. 2.5F). The remaining open ends of fibre were 

then passed through the other damaged end of tendon, and the ends bought together to 

leave a 5 mm gap between the tendon ends. The fibres were then knotted together as 

previously, fixing the scaffold in place and the leg at the correct anatomical position (Fig. 

2.5G). In one experimental group, collagen gel was injected into the scaffold after it had 

been fixed in place using a syringe (Fig. 2.5H). The surgery was again then closed using 3 

cross stitches using dissolvable sutures. Animals were separated until all had recovered 

from anaesthesia, and then divided according to experimental group.  
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Figure 0.2 Implant Schematic  

A) shows the anastomosis where normal silk sutures were used to join the osteo-tendon and muscular 

tendon ends to repair the induced defect in the control group. B) Shows the components of the PHBHHx 

scaffold (PHBHHx fibres, PHBHHx porous tube, collagen gel with/without cells. C) shows how the PHBHHX 

scaffold was used to bridge the 3mm induced defect and the PHBHHx fibres replacing sutures to anchor 

the implant to both the muscular tendon and osteo tendon ends. 
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Figure 0.3 Implantation Procedure for Rat Tendon Repair  
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 Immune Response Analysis using C-Reactive Protein 2.2.9

Immune response was monitored by measuring C-Reactive Protein (CRP) levels in the rat 

serum from day 0 – day 40. Blood was taken from the tail vein of rats on days -2, 2, 5, 10, 

20 and 40. Day 0 blood samples were not possible due to blood loss during surgery. Once 

collected samples were centrifuged at 1500 rpm for 15 minutes and the serum (clear 

liquid level at the top) collected and stored at -80oC. CRP was measured using a Rabbit 

anti Rat CRP ELISA kit (BD Bioscience, 557825) according to the manufacture's protocol 

and read using a Molecular Devices' VersaMax' Micro plate Reader.  

 Achilles Functional Index 2.2.10

Achilles tendon functional recovery was quantitatively assessed using a modification of 

Murrell’s AFI method [314], similar to Kurtz et al [168]. A walkway approximately 80 cm 

long by 20 cm wide was lined with white paper (Figure 2.4A). A rat’s hind paws were then 

coated with water based ink and the rat placed at the start and allowed to proceed down 

the walkway. Footprints were scanned and print length, print width (distance from first to 

fifth toe) and intermediate toe width (distance from second to fourth toe) measured 

using Image J [315] analysis software. The AFI was then determined using Murrell’s 

formula:  AFI = 74(PLF) + 161(TSF) + 48(ITF) -[314] where PLF (print length factor), TSF (toe 

spread factor) and ITF (intermediate toe factor) represent the difference between the 

experimental and contralateral print measurements. Prints were obtained pre-operatively 

at day -2 and for post-operative days 2, 5, 10, 20 and 40 for n=3 rats from each 

experimental group (Figure 2.4B). 
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Figure 0.4 AFI Setup 

A) Paw pad print required for AFI calculations and Walk Way for acquiring paw pad print, B) Complete 

experimental Paw pad print during experimental time course excluding day 0. 

 Explanted Scaffold Mechanical Testing 2.2.11

Stretch to break testing was carried out on 3 separate extracted scaffolds from each 

experimental group after 40 days. Non-operated tendons were used as control. Following 

removal, tendons and scaffolds were loaded into the servo controlled system universal 

testing machine (AI-7000S, GOTECH, Taiwan) where tendon ends were secured by 

clamps, and stretched at a rate of 10 mm/min until complete failure was observed. 

 Gel Permeation Chromatography 2.2.12

PHBHHx scaffolds were separated from remaining hind leg tissue by suspending the 

tissue/tube explant in 3 ml of Trypsin/EDTA (0.01g/l, 0.004g/l) (Lonza (02-007E)) for 24 

hrs. After 24hrs the separated tube was washed twice using PBS (Lonza (17-516F)) and 

allowed to air dry at room temperature. Once dry the PHBHHx tube was dissolved in 

chromatography grade Chloroform (J.T. Baker, USA) at a ratio of 20% w/v PHBHHx 

chloroform solution and filtered using 0.22µm organic solution filters (Membrana, 

Germany) prior to GPC injection. 
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Molecular weights were studied using GPC (RID-10A, Shimadzu, Japan). Measurements 

were performed at 40oC using a GPC-804C column (Shimadz, Japan) where all samples 

were referenced against 10% w/v chloroform solutions of high molecular weight 

polystyrene standard (Mw 300,000 Da and 150,000 Da) (Fluka, Sigma-Aldrich, Germany) 

and low molecular weight polystyrene standard (Mw 50000 Da, 30000 Da, 9000 Da and 

4000 Da) (Shimadzu, Japan). 

 Haematoxylin and Eosin 2.2.13

Structural analysis of two samples from each group was performed using Haematoxylin 

and Eosin (H & E) (Gene Research Lab. Co. PS003) according to standard procedures. Prior 

to staining the sample was first fixed using 70% methanol for 24 hrs, then embedded in 

paraffin wax before sectioning into 8 µm sections and placing onto a glass slide. Sections 

from the injury site and healthy areas of tendon were analysed. Images were taken using 

a Nikon Eclipse 90i 
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 Experimental Plan 2.2.14

Design PHBHHx Synthetic Tendon

Designs Taken Forward to Implantation

C-Reactive Protein Testing

Achilles Functional Index 
Testing

Histological 
Examination of 

Explants

Test Mechanical Properties against Native Tendon

Does the Implant Match Native Tendon

Yes No

PHBHHx OnlyControl PHBHHx + 
Collagen

PHBHHx + 
Collagen + 
Tenocytes

Continuous 
Testing

Post 40 Day 
Testing

Mechanical Properties 
Examination of 

Explants

Molecular Weight 
Examination of 

Explants
 

Figure 0.5 Experimental Plan 

Experimental work plan showing scaffold selection and continuous monitoring of implant performance 

and immunological response. Post re-sectioning of scaffold for histological, mechanical and molecular 

weight analysis post re-sectioning. 
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2.3 Results 

 Scaffold Design 2.3.1

PHBHHx Scaffold components were characterised utilising SEM and mechanical force 

testing. The individual PHBHHx components namely: PHBHHx fibre and PHBHHx tubes 

were tested individually and in combination along with the addition of collagen to the 

scaffold core. 

 SEM PHBHHx Fibre Examination 2.3.1.1

SEM analysis of the PHBHHx tubes and fibres was undertaken to measure the tube pore 

size and diameter of the fibres. From the SEM images and measurements taken average 

pore size and fibre width were calculated to be: 175.4µm ± 2.4 µm for fibre diameter 

(Figure 2.6) and 46.01 µm ± 19.21 µm for pore size (Figure 2.7). 

 

Figure 0.6 Scanning Electron Micrographs (SEM) of the PHBHHx Fibres. 

A) Shows PHBHHx fibre prior to measurement, B & C) Show PHBHHx fibre measurements. 

 



W. R. Webb PhD Thesis Chapter 2 

89 
 

 

Figure 0.7 Scanning Electron Micrographs (SEM) of Porous PHBHHx Tubes. 

A) PHBHHx tube section prior to measurement (sample 1), B) PHBHHx tube section prior to measurement 

(sample 2) and C) PHBHHx tube section prior to measurement (sample 3). 

 Mechanical Force Testing 2.3.1.2

After SEM analysis comparisons between native tendon and complete scaffold constructs 

and scaffold components was undertaken utilising MTS tension/compression load cell 

tester (MTS, Canada) and elongated at a rate of 10mm per second until failure 

Rat Achilles tendon has an average breaking load of 17.35 ± 1.76 N (Figure. 2.8). A porous 

PHBHHX scaffold with varying number of fibres was evaluated to determine which had an 

approximate mechanical performance to natural tendon (Figure. 2.8). From this it was 

apparent that: 3 fibres running through the centre of a PHBHHx porous tube had 

comparable breaking loads with (23.46 ± 4.81 N) and without a collagen core (26.70 ± 

1.05 N), were both were significantly stronger than the native rat tendon (p<0.006), 

whilst both the single fibre and tube were significantly weaker than native tendon 

(p<0.004) (Figure 2.8). The 3 fibre construct without a porous tube had a comparable, 

though weaker value when compared to rat Achilles tendon (13.53 ± 5.37), and displayed 

wide standard deviations. This design was therefore ruled out for implantation due to the 

unacceptable degree of variation. From the data described above the scaffold featuring 3 
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fibres, a porous PHBHHx tube and 3 fibres in a collagen lumen design was applied in the 

Achilles tendon wound model described in Section 2.2.8.  

 

Figure 0.8 Mechanical Testing of Scaffold Designs 

Native rat tendon was measured and used as a minimal properties required for scaffold implantation. 

Scaffold components: PHBHHx tube, Single Fibre, 3 x fibres, 3 x fibres and tube and hybrid scaffold (3x 

fibres, tube and collagen core) were compared to the native tendon. 

From the data obtained in mechanical testing of the scaffold designs and the constituent 

parts, the hybrid scaffold was selected for implantation. 20 SD rats were subdivided into 4 

experimental groups. These groups were: Control (induced tendon defect with no repair), 

Group SO (Scaffold Only), Group Hybrid Scaffold (Scaffold with collagen core) and the 

final Group Hybrid scaffold containing Collagen core and the addition of rat tenocytes. 

Prior to implantation all 20 rats were treated as a single group so a baseline for C-reactive 

protein and Achilles Functional Index were obtained for comparison of data collected post 

implantation.   
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 Immunological Response 2.3.2

Prior to implantation the 20 rats were treated as one group. 300μl of blood was taken 

from each rat for base line CRP values. Post implantation each experimental group 

contained five animals (n=5). At time points 2, 5, 10, 20 and 40 days post implantation 

300μl of blood was taken from each rat in all experimental groups for CRP comparison 

prior to implantation. We were then able to monitor immune response to the implanted 

PHBHHx scaffold and also possible infection during implantation. 

The immune response was quantified by measuring C-reactive protein (CRP) 

concentration in blood serum. Samples were taken at time-points pre and post-surgery. 

Prior to surgery all rats were considered as one group (n=20) where an initial CRP 

concentration at day -2 of 1251.48 ± 31.42 µg/L (Figure. 2.9) was noted. Surgery was 

performed on day 0 and blood samples were not taken to minimize discomfort. CRP had 

increased significantly in all groups at day +2 after surgery, ranging in level from the 

scaffold only group (1502.25 ± 45.46 µg/L), the tenocyte-PHBHHx-collagen group 

(1437.38 ± 44.11 µg/L) to the control group (1357.58 ± 82.91 µg/L) (p<0.02). CRP levels 

were significantly elevated in all groups in comparison to Day -2 (p<0.04). By day +5, CRP 

levels ranged from 1244.39 ± 136.09 µg/L (PHBHHx-Collagen), 1160 ± 57.00 µg/L 

(PHBHHx), 1132.58 ± 23.21 µg/L (Control) to the tenocyte-PHBHHx-collagen group 

(985.46 ± 20.75 µg/L (p<0.05 vs. day-2; p<0.0007 vs. all other groups). All groups 

displayed reduced CRP levels at day +5 in comparison to Day +2 with a significantly lower 

value for CRP being observed in the PHBHHx only group (p<0.03) and in the tenocyte-

PHBHHx-collagen group (p<4.05E-08) when compared to pre-surgery CRP levels. CRP 

levels continued to fall further at day +10 where all groups had lower concentrations than 
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pre-implantation values. The tenocyte-PHBHHx-collagen only group recorded the lowest 

level at 960.89 ± 20.07 µg/L and all groups were lower than pre-implantation CRP levels 

(p<0.02) and post implantation day +2 (p<0.04). CRP levels in the control group stabilised 

at Day+10 levels while CRP levels for all other groups continued to decrease. CRP levels 

stabilised from Day+20 onwards through to Day +40 when final analysis was performed. 

All CRP levels for all groups remained significantly below the pre-implant values and post 

implantation levels (Day -2) (p<0.05). 

 

Figure 0.9 Immune Response to Implanted Scaffold. 

CRP base values were obtained prior to implantation (n=20). Post implantation, all experimental groups 

were sampled (n=5) and measured at time points 2, 5, 10, 20 and 40, and then compared to previous time 

points and day. 

 Restoration of Function  2.3.3

Prior to implantation Achilles functional index scores were calculated for the healthy 

animals prior to implantation. Further analysis was taken at 0, 2, 5, 10, 20 and 40 days 
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post implantation and compared against the pre-implantation values which were used as 

baseline scores. 

 Achilles Functional Index 2.3.3.1

Initial AFI scores were taken 2 days prior to surgery (-24.83 ± 1.29) (Figure 2.10). At day +2 

all groups displayed a dramatic decrease in AFI (Control -86.32 ± 14.05), PHBHHx only (-

95.36 ± 9.56), PHBHHx-collagen (-84.21 ± 12.50) and tenocyte-PHBHHx-collagen (-103.31 

± 12.04) where all groups had a significantly lower AFI when compared do day -2 (p<0.05). 

All groups showed a continuous improvement from day +5 to day + 10 excepting the 

PHBHHx-collagen group at day +5  (-84.90 ± 14.90). The greatest improvement was noted 

in the PHBHHx-collagen group at day +10 (-47.42 ± 33.68), and the tenocyte-PHBHHx-

collagen group (-49.44 ± 13.81). The least improved group at day +10 was the scaffold 

only group (-67.25 ± 11.03) (with all groups having a significantly lower AFI when 

compared to day -2, p<0.04). By day +20 the tenocyte-PHBHHx-collagen group had 

improved over the pre implantation AFI score (-18.95 ± 17.00). By day +40 the tenocyte-

PHBHHx-collagen group had improved further (-5.16 ± 6.95) followed by the scaffold only 

group (-14.79 ± 3.97), PHBHHx-collagen group (-15.22 ± 5.12) and finally by the control 

group (-19.67 ± 23.12). 
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Figure 0.10 AFI Data Against Time 

AFI analysis was undertaken on pre implantation rats to produce a baseline for comparison. All implant 

groups were then compared to the control group, with all implant groups showing a return of function to 

pre-implantation values by day 40 (* p<0.05). 

 Molecular Properties of Explanted Scaffolds 2.3.4

Prior to implantation the molecular properties of the scaffolds were analysed using GPC. 

This data formed the baseline for comparison. After 40 days post implantation each 

implant group had the scaffold removed for GPC analysis and the molecular properties 

were compared to the original scaffold properties prior to implantation. 

Pre-implant tubes had a molecular weight (Mw) of 224,742 ± 23,975 Da (Figure 2.12), 

Mean chain length (Mn) of 399,732 ± 73,540 Da (Figure 2.13) and Polydispersity Index 

(Mw/Mn) of 0.58 ± 0.042 (Figure 2.14). After 40 days all groups displayed reduced Mw 

and slightly elevated Mn; tenocyte-PHBHHx-collagen (212,381 ± 10,515 Da and 412,412 ± 

19,433 Da, respectively), scaffold only (212,623 ± 11,879 Da and 416,436 ± 46,612 Da, 
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respectively), and PHBHHx-collagen (222,204 ± 16,415 Da and 442,200 ± 22,054 Da, 

respectively). However, PDI was reduced after 40 days in scaffold only group (0.51 ± 

0.043) and significantly reduced in the PHBHHx-collagen (0.50 ± 0.012), and tenocyte-

PHBHHx-collagen group (0.52 ± 0.021) in comparison to non-implanted scaffold (p<0.03)  

 

Figure 0.11 Re-sectioned Scaffold Degradation Measurement of Molecular Weight. 

Molecular weight analysis was performed on pre and re-sectioned implants and showed no significant 

decrease in values obtained when compared to the pre-implantation values. 
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Figure 0.12 Re-sectioned Scaffold Degradation Measurement of Mean Chain Length Molecular 

Weight (Mn) 

Mean Chain analysis was performed on pre and re-sectioned implants and showed no significant 

decrease in values obtained when compared to the pre-implantation values. 

 

Figure 0.13 Re-sectioned Scaffold Degradation Measurement of PDI 

PDI analysis was performed on pre and re-sectioned implants and showed significant decrease in values 

for re-sectioned hybrid scaffold and explanted hybrid scaffold that contained tenocytes when compared 

to the pre-implantation values (*p<0.05). 
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 Re-sectioned Mechanical Properties of implanted scaffolds 2.3.5

Mechanical testing, namely stretch to break (force to break) and elastic modulus 

determination was performed after the implant removal on day 40 (Figure 2.14 and 

Figure 2.15). Pre-implanted scaffold had a maximum force of 9.4 ± 2.2N and elastic 

modulus of 24.3 ± 13.2 MPa. All explanted scaffolds had a reduction in both maximum 

force and elastic modulus (PHBHHx only: 7.5 ± 1.1N and 18.7 ± 2.7 MPa, PHBHHx and 

Collagen: 5.6 ± 2.4N and 14.0 ± 6.0 MPa, and tenocyte-PHBHHx-collagen: 4.8 ± 0.1N and 

12.1 ± 0.2MPa). All groups had a significantly lower force to break (PHBHHx only, p<0.05; 

PHBHHx and collagen, p<0.05; and tenocyte-PHBHHx-collagen, p<0.003) with no observed 

difference in elastic modulus.  

 

Figure 0.14 Re-sectioned Scaffold Mechanical Testing 

Comparison of ultimate tensile strength (N) of pre implantation scaffold and re-sectioned scaffolds 

removed after 40 days implantation (*p<0.05). 
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Figure 0.15 Re-sectioned Scaffold Young’s Modulus. 

Comparison of elastic modulus (MPa) of pre implantation scaffold and re-sectioned scaffolds removed 

after 40 days implantation. 

 Histological Analysis 2.3.6

One re-sectioned scaffold was taken from each experimental group for histological 

analysis. Each section underwent paraffin wax imbedding and sectioned to a thickness of 

10μm. Post sectioning each sample was stained using Haematoxylin and Eosin staining 

protocol as outlined in Section 2.2.13 and imaged for analysis. 

 Haematoxylin and Eosin Staining 2.3.6.1

Microscopic evaluation of the damaged tendon sites with Haematoxylin and Eosin 

demonstrated evidence of cellular infiltration and partial structure regeneration to 

varying degrees dependent upon the scaffold implanted. Cellular migration into the 

defect site was apparent throughout where increased migration was observed where a 

PHBHHx-collagen only implant had been introduced to the wound site when compared to 
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either healthy tendon (Figure. 2.16) or a wound site with PHBHHx scaffold only (Figure. 

2.16). A characteristic of tendon tissue is the crimp pattern which is presented by the 

elongated sinusoidal wave like patterning of the nuclei and cytoplasm of the cells as 

apparent in the undamaged tendon sample .The emergence of the wave-like patterning 

was observed in both the PHBHHx-collagen and tenocyte-PHBHHx-collagen implants, 

however a greater structural organisation was observed in the tenocyte-PHBHHx-collagen 

implants. The tenocyte-PHBHHx-collagen implant displayed increased cellular alignment 

along the force-bearing axis; this feature was also observed in all other implants with less 

organisation along the fibre axis (Figure. 2.16). Cells formed a consistent wave pattern 

when in contact/close proximity to the fibre or tube component of the implant. This 

demonstrates that tendon-like tissue was being created around the implant, rather than 

just overlaying fibrous tissue. This was less evident in the scaffold only group (Figure 

2.16), indicating that tendon regeneration was more efficient in the tenocyte-PHBHHx-

collagen and PHBHHx-collagen implant groups. The implant was not discernible in the 

scaffold only group, providing further evidence of weaker interaction, leading to slight 

detachment from the tissue resulting in reduced integration This finding shows the use of 

collagen within the implant construct plays a vital role not only for remodelling of the 

implant but also integration  
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Figure 0.16 Histological Staining of Explanted Scaffold (H&E staining) 

Shows microscopic images of Control (healthy rat tendon), PHBHHx Scaffold only group (S), PHBHHx Scaffold and Collagen (SC) and PHBHHx Scaffold, Collagen and rat 

tenocytes (SCT) using 10x and 20x magnifications. Red arrows indicate PHBHHx fibres, Orange arrows indicate cellular alignment (error bars=500μm) 



 

 
 

2.4 Discussion 

The aim of this investigation was to identify a PHBHHx scaffold design that could be used 

to facilitate repair of damaged tendon tissue while not initiating an immune response or 

prolonging inflammation. A composite scaffold was developed which featured a PHBHHx 

tube, a collagen core, and PHBHHx fibres which would facilitate cellular migration and 

tissue remodelling, while at the same time allowing for limited restoration of movement. 

The design was mechanically similar to the rat Achilles tendon and to other commercially 

available human tendon repair materials [117, 297]. Furthermore, this study has shown 

that PHBHHx scaffold encourages cellular infiltration, proliferation and cellular 

alignment/organisation along the force barring fibre without initiating a prolonged 

immune response. 

C-reactive protein (CRP) is a well conserved member of the pentraxin family of proteins 

and is secreted by the liver in response to an array of inflammatory cytokines [316, 317]. 

CRP binds to damaged tissue and increases rapidly in response to trauma, infection and 

inflammation and also decreases rapidly with the resolution of the condition [318-320]. 

CRP also has the ability to activate the complement pathway and has been shown to bind 

to the Fc receptors used by IgG (FcγRI and FcγRII) [317, 319-321]. CRP-Fc receptor binding 

leads to a pro-inflammatory response similar to that observed with IgG complexes[321]. 

Not only does CRP activation precede IgG antibodies by approximately one week, CRP has 

also been shown to play a crucial role in the activation of the adaptive immune response 

early in the inflammatory and infectious process [318]. CRP has been used to measure an 

array of immune responses such as inflammation in implanted biomaterials in animals 

and both total knee replacement and hip replacements in humans [322]. This study 
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employed multiple time point analysis which included pre and post implantation levels of 

serum C-reactive protein (CRP) in response to the 40 day exposure of PHBHHx implanted 

scaffold in the rat model. CRP level grossly elevated on Day +2 which agrees with previous 

studies [323] However, by day +5 CRP levels had rapidly decreased to below pre-

implantation levels in all experimental groups and continued to remain below pre-

implantation levels in all experimental groups throughout the remainder of the study, 

which agrees with previous studies in both rodents and humans [324]. The decrease in 

CRP to below pre-implantation levels indicates that no long term 

immunological/inflammatory reaction was occurring due to the presence of the 

implanted PHBHHx scaffold and its components; improving on similar conclusions made 

by previous studies [325]. This study has also shown for the first time prolonged exposure 

to PHBHHx or PHBHHx breakdown products does not prolong an 

immunological/inflammatory response in the rat model when monitored using CRP.  

AFI testing showed a continued improvement for all groups over the 40 day investigation, 

with complete return of function being as early as day +20 in the tenocyte-PHBHHx-

collagen group which was a full 20 days prior to the PHBHHx only and PHBHHx-collagen 

group, with the control group remaining below pre-surgical implantation levels. These 

results show the implanted scaffolds are capable of withstanding the forces which are 

exposed to native tendon and the implantation of a scaffold returns function to the limb 

faster than the absence of an implant which agrees with previous studies [314]. 

Mechanical testing of tube samples recovered from the rats at day +40, found that all 

group had a reduced mechanical load capability of the scaffold tubes when compared to 

pre-implanted scaffold tube, suggesting that the fibre component of the scaffold was the 
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major contributor to the delivery of the mechanical properties displayed in the AFI. 

Histological examination showed cellular infiltration into the PHBHHx lumen, which would 

show PHBHHx provides favourable conditions for cellular migration and proliferation 

which adds to the findings in previous studies [307-311]. Cellular infiltration into the 

scaffold was observed in both the PHBHHx only and Collagen-PHBHHx scaffold designs 

with sinusoidal cellular alignment which is a key marker in the histological analysis of 

tendon tissue, signifying the presence of crimp angles between collagen fibrils [33, 43]. 

However, the collagen-PHBHHx scaffold showed a denser cellular presence with limited 

sinusoidal morphology along the surface of the PHBHHx fibre, this would imply a more 

favourable environment for cells is produced when a collagen lumen is present within the 

scaffold design [114, 300, 312]. The tenocyte-PHBHHx-collagen scaffold cells appeared to 

be more elongated and sinusoidal in morphology, when compared to the other implanted 

scaffold designs, as with the PHBHHx only and collagen-PHBHHx scaffold designs, when 

cells were in direct contact with the scaffold, especially the fibre component this feature 

was more apparent and the sinusoidal-elongated morphology could possibly indicating 

that force transmission resulting in mechanotransduction from the fibre to the cells 

promoted tendon cell proliferation and alignment [90, 301, 312]. However, the cellular 

density observed in the tenocyte-PHBHHx-collagen group was less apparent than that of 

the PHBHHx only and collagen-PHBHHx containing scaffold which would imply the 

addition of tenocytes cells had proliferated and become organised earlier, resulting in 

decrease in time required for functionality to return to the tendon and would account for 

the results in AFI measurements. Earlier studies have highlighted the addition of collagen 

within the scaffold design can aid integration within the implanted tissue. This further 

highlights the importance of collagen not only in the tissue integration and remodelling of 
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tendon but in a means of delivering cells to a point of repair and further adds to previous 

studies suggesting collagen is a beneficial inclusion in tendon graft material [114, 300, 

326].  

GPC analysis of explanted tube component of the scaffold showed an increase in number 

average chain length (Mn) and lower molecular weight (Mw). These findings suggest that 

the shorter chain length and low molecular weight component of the scaffold (namely the 

hydroxybutyrate) component may be being metabolised/broken down, which would 

account for the decrease in overall molecular weight which agrees with an earlier 

PHBHHx study [310]. The increase in Mn indicates that the polymer has a greater ratio of 

longer chain lengths than shorter chain lengths, which would correspond with the shorter 

chain length component of the polymer being metabolised/broken down. This is further 

evident in the changes of polymer dispersity index (PDI) (calculated by Mw/Mn) which is 

attributed to the dissolution of degraded polymer chain from the polymer bulks [327].The 

scaffold only group which lacked the presence of collagen, showed the greatest decrease 

in the Mw, we hypothesis the collagen component does in-fact delay the breakdown of 

the polymer [328]. The tenocyte-PHBHHx-collagen implant (212,381 Da ± 10,515 Da, after 

40 days) already contained a cellular component and therefore the requirement for 

cellular infiltration is removed and cells were able to actively proliferate, remodel the 

collagen component and breakdown the polymer at an earlier stage with similar values to 

that of the PHBHHx only (212,623 Da ± 23,975 Da after 40 days) than the PHBHHx-

collagen scaffold lacking the cellular component. Furthermore, the decrease in molecular 

weight would convey mechanical changes in the scaffold observed in explant mechanical 

testing of the scaffolds tube component, such as ultimate tensile strength and Young’s 

modulus [327].  
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When considered together, these results suggest that this scaffold is biocompatible; 

inferring ability to perform its desired function without eliciting any undesirable local or 

systemic effects whilst facilitating a regenerative cellular response capable of contributing 

mechanical properties of the scaffold [329]. 

2.5 Conclusion 

This study has demonstrated for the first time that PHBHHx in conjunction with collagen 

and tenocytes can be used as a scaffold material for the treatment of damaged tendon 

tissue in vivo, and with no prolonged immunological/inflammatory response in the rat 

model. It has also shown that cells not only migrate into, but implanted tenocytes 

proliferate within the PHBHHx scaffold in vivo and are capable of remodelling damaged 

tissue, with a tenocyte-PHBHHx-collagen scaffold aiding regeneration and the recently 

generated tissue being able to contribute to mechanical properties of the implant 40 days 

post implantation. 
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3.1 Introduction 

Tendon injury due to ageing tendon and over use continues to be a burden on western 

health care. The current shortage in donor tissue and inadequate synthetic implants 

provides a niche for the development of a tissue engineered approach for the treatment 

of damaged tendons. 

Tendon injuries and the subsequent repair continues to be an under researched topic 

area. Currently, the treatment options employed are limited to two major options, 

namely: conservative approach and surgical approach. Both methodologies have 

produced limited degrees of success with no consensus on which approach produces the 

best outcome for the patient. 

Surgical repair is restricted to the size of injury with the use of xenobiotic implants also 

producing limited success. Autologous implants are limited by the induced morbidity at 

the donor site. The use of allograft is also limited to donor availability and also the age of 

the donor material. Therefore, an alternative approach to the treatment of tendon 

ruptures is highly desirable. In the previous chapter we have identified a PHBHHx based 

scaffold which is capable of restoring function of an induced tendon injury in the rat 

model. This chapter aims to identify a unique combination of growth factors capable of 

inducing and maintaining stem cell differentiation towards a tenocyte lineage. 

A stem cell based approach to the treatment of tendon ruptures may provide a unique 

treatment opportunity. This can be patient specific by the utilisation of the patients’ 

mesenchymal stem cells or a broader “off-the-shelf” approach which may utilise 

embryonic stem cells 
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Growth factors have been shown to be powerful mediators and initiators of tissue 

formation [174].The utilisation of embryogenesis as a means of mapping tendon 

development has been limited to species such as rats, murine and chicks [197, 198, 201, 

202]. 

However, observations of such developmental pathways may not be conserved to human 

development [330]. One possible example is in tendon development in humans. To date 

there is very little evidence to the tendon transcription factor scleraxis activity in growth 

factor initiated human tendon development. However, there is evidence indicating 

scleraxis activity post mechanical stimulation [331]. 

This chapter will focus on the possibility of: FGF-4, FGF-6, FGF-8 and there combinations 

as being candidates for initiating stem cell differentiation towards a tenocyte-like cell 

lineage. Also, this chapter will build upon previous studies within the group in regards the 

potential of the combination of BMP-12 and BMP-13 as initiators of hESC differentiation 

towards a tenocyte-like cell lineage  
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3.2 Materials and Methods 
The primary cells used in the experiments are described below (Table 3.1). 

Cell Lines Description Origin Age Sex 

MEFs Mouse Embryonic 
fibroblasts isolated 
from 12.5-13.5 days 
gravid uteri of Black 

CB1 hybrid mice 

Keele University 
Small Animal 

Facility 

11 – 14 day 
old pups 

M/F 

SHEF-1 Human Embryonic 
Stem cell line 

Sheffield 
University, UK; 

used under license 
from the UK Stem 

Cell Bank 

n/a Male 

hMSC Human 
mesenchymal stem 
cells isolated from 

bone marrow 
aspirates 

Human bone 
marrow aspirates 
from Lonza, USA 

32 Year old M 

rtTenocytes Rat tenocytes 
isolated from 8 week 
old Sprague-Dawley 

rats 

Keele University 
Small Animal 

Facility 

8 weeks Old M/F 

rtTenocytes(TU) Rat tenocytes 
isolated from 8 week 
old Sprague-Dawley 

rats 

Tsinghua University 
Small Animal 

Facility 

8 Weeks Old M/F 

rtTenocytes(SU) Rat tenocytes 
isolated from 8 week 
old Sprague-Dawley 

rats 

Sichuan University 
Small Animal 

Facility 

8 Weeks Old M/F 

rtMSC(SU) Rat mesenchymal 
stem cells isolated 
from bone marrow 

aspirates 

Sichuan University 
Small Animal 

Facility 

8 Weeks Old M/F 

Table 0.1 Cell lines
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The following materials were used in cell culture unless otherwise stated (Table 3.2) 

Material Details 

DMEM Dulbeccos Modified Eagles media (4.5g/L glucose) (12-604F, Lonza, UK) 
FBS Foetal Bovine Serum (12-501F, Lonza, UK) 

bFGF basic Fibroblast Growth Factor (FGF-2) (100-18B, Peprotech, UK) 
BMP-12 Bone Morphogenic Protein -12 (recombinant mouse GDF-7,CF, R5240 

A572, R &D Systems, UK) 
BMP-13 Bone Morphogenic Protein-13/CDMP-2 (120-04, Peprotech, UK) 

FGF-4 Fibroblast Growth Factor -4 (100-31, Peprotech, UK) 
Dorsomorphin 6-(4-(2-Piperidin-1-ylethoxy)phenyl]-3-pyridin-4-ylpyrazolo[1,5-

a)pyrimidine (P5499-5mg, Sigma-Aldrich, UK) 
FGF-6 Fibroblast Growth Factor -6 (100-30, Peprotech, UK) 
FGF-8 Fibroblast Growth Factor -8 (100-25, Peprotech, UK) 
NEAA Non-Essential Amino Acids (13-114E, Lonza, UK) 
L-Glut L-Glutamine (17-605E, Lonza, UK) 
PSA Penicillin, Streptomycin and AmphotericinB (15240112, Invitrogen, UK) 

Typsin Trypsin/EDTA Solution (CC-5012, Lonza, UK) 
KO DMEM Knockout DMEM (03382, Gbico, UK) 
Matrigel™  354277, SLS, UK 

Fibronectin F0895, Sigma Aldrich, UK 
SR Serum Replacement (10828-028, Gibco, UK) 

DMSO Dimethyl Sulphoxide (R00550, Invitrogen,UK) 
PBS Phosphate Buffered Saline (17-516F, Lonza, UK) 
BME β-Mercaptoethanol (31350010, GIBCO, UK) 
ASC L-Ascorbic Acid (A4403-100MG, Sigma-Ardich, UK) 
T-25 Corning 25cm2 tissue culture flask 430639 (43021, SLS, UK) 
T-75 Corning 75cm2 tissue culture flask 4306 (354639, SLS, UK) 

6 well plates Costar 3516 (SLS, UK) 
96 well Plates Costar 96 (SLS, UK) 

Centrifuge tube 15ml SLS8002 (SLS, UK) 
Centrifuge tube 50ml SLS8110 (SLS, UK) 

IMS Industrial Methylated Spirit (64-17-5, Genta Medical, UK) 
PFA Paraformaldehyde (P6418, Sigma-Aldrich, UK) 
BSC Biological Safety Cabinet Class II (W05318, Envair, UK) 

Table 0.2 General cell Culture Consumables 
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 Mouse Embryonic Fibroblast 3.2.1

 Mouse Embryonic Fibroblast Harvest 3.2.1.1

Mouse embryonic fibroblasts were harvested from 12.5 – 13.5 days pregnant black CB1 

hybrid mice. The hybrid mice were sacrificed and the embryos were harvested and eight 

to ten embryos collected from each pair of uteri. Post collection the Viscera and head 

were identified and removed from the embryos using aseptic techniques by Keele 

University animal house staff. The resulting embryos were then placed in PBS containing 

1% PSA and transferred to ISTM facilities at the Guy Hilton Research Centre. 

Once at the Guy Hilton research centre, the embryos were then washed three times in 1% 

PSA containing PBS to remove remaining fragments of the viscera and blood clots. 

Embryo fibroblasts were then isolated from the embryos by placing 5 embryos into a 7ml 

Bijou bottle containing 5ml of trypsin/EDTA. 

Trypsinised embryos were then vortexed twice at 5 minute intervals during the 

incubation process. Post incubation, cell supernatants were collected and re-suspended in 

10ml of DMEM supplemented with 10% FBS, 1% L-Glutamine, 1% NEAA and 1% PSA in 

15ml centrifuge tubes. The cell suspensions were then centrifuged at 200g for 3 minutes. 

The supernatants were discarded and the cell pellets re-suspended in 10ml of DMEM 

media mentioned above. 2 ml of MEFs cell suspension was then seeded into T75 culture 

flasks in 18 ml of media and incubated at 37oC in the presence of 5% CO2 and 95% air in a 

humidified cell culture incubator. 24 hours later the media was replaced with antibiotic-

free complete culture media, with media changes twice weekly until the MEFs became 

confluent. 
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 Mouse Embryonic Fibroblast Cryopreservation 3.2.1.2

After isolation from the mouse embryo and post expansion, MEF at passage 1 were 

cryopreserved for future use. Confluent T-75 flasks of MEF were harvested by aspirating 

the culture media from the T-75 and washing twice with 10ml PBS. Once the PBS was 

aspirated from the T-75, 3ml of 1% trypsin/PBS solution was added to disassociate the 

cells from the culture plastic. Once the cells had disassociated from the T-75 flask, 3ml of 

MEFs culture media was added to the trypsin-cell suspension to quench the effects of 

trypsin. The media-cell-trypsin suspension was then placed into a 15ml centrifuge tube 

and centrifuged for 3 minutes at 200g. After 3 minutes had elapsed the media- trypsin 

solution was aspirated from the centrifuge tube to leave a cell pellet. The cell pellet was 

then re-suspended in 1ml of 90% FBS and 10% DMSO at room temperature. The DMSO-

FBS-cell suspension was then placed into a 1.5ml cryovial and placed in a ‘Mr Frosty’ 

(C1562 Sigma Aldrich, UK) and placed into a -80oC freezer for 24hrs.. After 24hrs had 

elapsed the cryovial was then transferred into liquid nitrogen.  

 Mouse Embryonic Fibroblast Expansion 3.2.1.3

Mouse embryonic fibroblast cells (MEF) were cultured in T-75 culture flasks in MEF media 

(DMEM, 10% FBS, 1% NEAA and 1% L-glutamine) with a media change twice weekly until 

confluent.  Once confluent MEFs were washed twice with PBS, the PBS aspirated from the 

T-75 and 3ml of 1% trypsin/PBS solution was added to disassociate the cells from the 

culture plastic. Once the cells had disassociated from the T-75 flask, 3ml of MEFs culture 

media was added to the trypsin-cell suspension to quench the effects of trypsin. The 

media-cell-trypsin suspension was then placed into a 15ml centrifuge tube and 

centrifuged for 3 minutes at 200g. After 3 minutes had elapsed the media-cell-trypsin was 
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aspirated from the centrifuge tube to leave a cell pellet. The cell pellet was then re-

suspended in 5ml of MEFs media and 1ml of the cell suspension was added to five, T-75 

with a further 14ml of MEF media added. MEFS were then cultured with a twice weekly 

media change until 50 -60 % confluent. 

 Mouse Embryonic Fibroblast Preparation of Conditioning 3.2.1.4

Media for use with Embryonic Stem Cells 

Once the MEFs reached 50-60% confluent the T-75 flasks were washed twice with PBS 

and media changed to Conditioning Media (KO-DMEM, 20% SR, 1% NEAA, 1% L-Glut, 

4ng/ml bFGF (1µl per ml) and 910 l BME for 24hrs. After 24hrs media was removed and 

4ng/ml FGF-2 was added prior to filtration using Millipore ExpressTM Plus 0.22 m vacuum 

filter. The filtered media (CM+) is then ready for use for the culture of hESC. 

 Human Embryonic Stem Cell Culture 3.2.2

 Matrigel Coating of T-25 Culture Flasks 3.2.2.1

Culture surfaces of T-25 tissue culture flasks were coated with 1:100 diluted ice cold KO-

DMEM. Coating was undertaken by adding 4ml matrigel/KO-DMEM solution to each T25 

flask (160μl/cm2) and incubated at room temperature for 2 hours. Before use, matrigel 

containing flasks were incubated at 370C for 30 minutes in the incubator, after incubation 

the matrigel media was discarded and hESC culture media was added. Prepared matrigel 

coated culture flasks were stored at 40C for later use. 

 Human Embryonic Stem Cell Expansion 3.2.2.2

SHEF-1 embryonic stem cells were then cultured on matrigel-coated T-25 culture flasks in 

conditioned media (CM+) changed every 24hrs. Once confluent the media was aspirated 
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from the T-25 and subsequently washed with PBS. After washing 1% Trypsin/PBS solution 

was added to induce cell detachment. Once the cells had detached the trypsin was 

quenched with 1ml of CM+ media. The cell suspension was then pipetted into a 

centrifuge tube, centrifuged (200g, 2 minutes), media aspirated and cell pellet re-

suspended in 1ml CM+ and 500ul pipetted into 2 x T-25 flasks. 

 Human Embryonic Stem Cell Cryopreservation 3.2.2.3

80-90% confluent T-25 flasks of hESC were harvested by aspirating the culture media 

from the T-25 and washing twice with 3ml PBS. Once the PBS was aspirated from the T-

25, 1ml of 1% trypsin/PBS solution was added to disassociate the cells from the culture 

plastic. Once the cells had disassociated from the T-25 flask, 1ml of CM+ culture media 

was added to the trypsin-cell suspension to quench the effects of trypsin. The media-cell-

trypsin suspension was then placed into a 15ml centrifuge tube and centrifuged for 3 

minutes at 200g. After 3 minutes had elapsed, the media –trypsin solution was aspirated 

from the centrifuge tube to leave a cell pellet. The cell pellet was then re-suspended in 

1ml of 90% SR and 10% DMSO at room temperature. The DMSO-SR-cell suspension was 

then placed into a 1.5ml cryovial and placed in a ‘Mr Frosty’ (C1562 Sigma Aldrich, UK) 

and placed into a -80oC freezer for 24hrs. After 24hrs had elapsed the cryovial was then 

transferred into liquid nitrogen.  

 hESC BMP- Driven in vitro Differentiation 3.2.3

Sub-confluent (80-90%) T-25 of hESC were trypsinised, centrifuged (200g, 3 minutes), re-

suspended and distributed evenly across matrigel-coated 6-well plates and 2 ml of CM+ 

media added to each well. The following day the CM+ media was aspirated from each of 

the six wells and differentiation media (DMEM, 10% FBS, 1% NEAA and 1% L-Glut) 
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supplemented with 10ng/ml BMP-12, 10ng/ml BMP-13 and 10mM ASC. Media was 

replenished twice weekly and RNA lysates collected or cells fixed for 

immunocytochemistry or histology at multiple time points (Days 0, 1, 5, 10, 20 and 40). 

 hESC FGF-Driven in vitro Differentiation 3.2.4

Sub-confluent (80-90%) T-25 of hESC were trypsinised, centrifuged (200g, 3 minutes), re-

suspended and distributed evenly across matrigel-coated 6-well plates and 2ml of CM+ 

was added. The following day the CM+ was aspirated from the wells and differentiation 

media (DMEM, 10% FBS, 1% NEAA and 1% L-Glut) supplemented with either FGF4 +/- 

10mM Ascorbic acid, FGF6 +/- 10mM ASC, or FGF8 +/- 10mM Ascorbic acid. Growth 

factors were supplemented to final concentrations of 0, 20, and 50ng/ml. Media was 

replaced with fresh twice weekly and RNA lysates collected or cells fixed for 

immunocytochemistry or histology at multiple time points (Days 0, 1, 5, 10, 20 and 40). 

 Human Mesenchymal Stem Cells 3.2.5

 Fibronectin Coating of Tissue Culture Flasks 3.2.5.1

10ml of 10ng/ml fibronectin/PBS solution was added to each T-75 tissue culture flask and 

incubated at room temperature for 2 hours. Prior to use the fibronectin solution was 

aspirated from the T-75 tissue culture flasks.  

 Human Mesenchymal Stem Cell Isolation 3.2.5.2

hMSCs were isolated and expanded from human bone marrow aspirates (BMA) using the 

plastic adherent technique following the previously published protocols [332, 333]. The 

whole bone marrow was seeded at a density of 1 x 105 mononuclear cells/cm2 on 

fibronectin coated T-75 flasks in 20ml of DMEM supplemented with 10% FBS, 1% NEAA, 



W. R. Webb PhD Thesis Chapter 3 

117 
 

1% L-glut and 1% PSA. The whole bone marrow containing non-adherent (mononuclear 

cells) and adherent (MSC) were maintained in a continuous co-culture for three weeks in 

a humidified incubator at 37oC in the presence of either 2% O2 or 21% O2. After seven 

days of culture 50% of the DMEM supplemented with 10% FBS, 1% NEAA, 1% L-glut and 

1% PSA was aspirated from the T-75 flask and replenished with DMEM supplemented 

with 5% FBS, 1% NEAA, 1% L-glut and 1% PSA media (10ml). After 14 days, a complete 

media change was undertaken, the 20ml of media was aspirated and the T-75 tissue 

culture flask was rinsed once with PBS and 20ml of fresh DMEM media supplemented 

with 5% FBS, 1% NEAA, 1% L-glut and 1% PSA was added to the T-75 tissue culture flask. 

After, three weeks the adherent hMSC populations were either cryopreserved. 

 Human Mesenchymal Stem Cell Expansion 3.2.5.3

hMSC were cultured in T-75 culture flasks in hMSC media (DMEM, 5% FBS, 1% NEAA and 

1% L-glutamine) with a media change twice weekly until confluent.  Once confluent hMSC 

were washed twice with PBS, the PBS aspirated from the T-75 and 3ml of 1% trypsin/PBS 

solution was added to disassociate the cells from the culture plastic. Once the cells had 

disassociated from the T-75 flask, 3ml of hMSC culture media was added to the trypsin-

cell suspension to quench the effects of trypsin. The media-cell-trypsin suspension was 

then placed into a 15ml centrifuge tube and centrifuged for 3 minutes at 200g. After 3 

minutes had elapsed the media-cell-trypsin was aspirated from the centrifuge tube to 

leave a cell pellet. The cell pellet was then re-suspended in 2ml of hMSC media and 1ml of 

the cell suspension was added to two, T-75 with a further 14ml of hMSC media added. 

hMSC were then cultured with a twice weekly media change until confluent. 
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 Human Mesenchymal Stem Cell Cryopreservation 3.2.5.4

After isolation from the Bone marrow aspirate a substantial number of hMSC cultured at 

2% and 21% O2 at passage 1 were cryopreserved for future use. Confluent T-75 flasks of 

hMSCs were harvested by aspirating the culture media from the T-75 and washing twice 

with 10ml PBS. Once the PBS was aspirated from the T-75, 3ml of 1% trypsin/PBS solution 

was added to disassociate the cells from the culture plastic. Once the cells had 

disassociated from the T-75 flask, 3ml of hMSC culture media was added to the trypsin-

cell suspension to quench the effects of trypsin. The media-cell-trypsin suspension was 

then placed into a 15ml centrifuge tube and centrifuged for 3 minutes at 200g. After 3 

minutes had elapsed the media- trypsin solution was aspirated from the centrifuge tube 

to leave a cell pellet. The cell pellet was then re-suspended in 1ml of 90% FBS and 10% 

DMSO at room temperature. The DMSO-FBS-cell suspension was then placed into a 1.5ml 

cryovial and placed in a ‘Mr Frosty’ (C1562 Sigma Aldrich, UK) and placed into a  -80oC 

freezer for 24hrs.. After 24hrs had elapsed the cryovial was then transferred into liquid 

nitrogen.  

 hMSC FGF-Driven in vitro Differentiation 3.2.6

Sub-confluent (80-90%) T-75s of hMSC were trypsinised, centrifuged (200g, 3 minutes), 

re-suspended and distributed evenly across Fibronectin-coated 6-well plates and 2ml of 

hMSC media was added. The following day the hMSC was aspirated from the wells and 

differentiation media (DMEM, 10% FBS, 1% NEAA and 1% L-Glut) supplemented with 

either FGF4 +/- 10mM ASC, FGF6 +/- 10mM Ascorbic acid, or FGF8 +/- 10mM ASC. Growth 

factors were supplemented to final concentrations of 0, 20, and 50ng/ml. Media was 
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replaced with fresh twice weekly and RNA lysates collected or cells fixed for 

immunocytochemistry or histology at multiple time points (Days 0, 1, 5, 10, 20 and 40). 

 Dorsomorphin Supplementation Optimisation 3.2.7

Dorsomorphin was reconstituted to a concentration of 10mM using 1.25ml DMSO. 750ul 

of stock solution was added to 15ml of differentiation) to produce a secondary stock 

solution of 500ug/ml. Subsequent serial dilutions were undertaken to produce 

experimental concentrations of 500 μM/ml, 200 μM/ul, 100 μM/ml, 10 μM/ml and 1 

μM/ml.  hESC (hMSC in the absence of Matrigel™)  were seeded at a density of 3x105 cells 

per well and cultured on matrigel™ coated 6 well plate. hESC (hMSC in the absence of 

Matrigel™) C were cultured for 7 days with a media change being undertaken after 3 

days. On day 7 the wells were fixed using 95% methanol (Sigma) and Giemsa’s staining 

was undertaken to evaluate cell survival. 

 hESC Growth Factor Inhibition by Dorsomorphin 3.2.7.1

hESC were seeded at a density of 3x105 cells per well and cultured on matrigel™ coated 6 

well plate. hESC were cultured for 40 days with differentiation media (10% FBS, 1% L-

glutamine, 1% NEAAand 10mM ASC) which was supplemented with 10ng/ml BMP-

12/BMP-13 and 1µM Dorsomorphin or 50ng/ml of FGF-4 and 1µM Dorsomorphin, 

50ng/mL of the combination of FGF-4 & FGF-8 and 1µM Dorsomorphin or FGF-4, FGF-6 & 

FGF-8 and 1µM Dorsomorphin) and cultured at 2% O2 environment. Cell lysates were 

collected at time points: Day 0, Day 2, Day 5, Day 10, Day 20 and Day 40 along with cells 

being fixed at the same time points for immunocytochemistry. 
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 hMSC Growth Factor Inhibition by Dorsomorphin 3.2.7.2

hMSC were seeded at a density of 6 x 105 cells per well and cultured on fibronectin 

coated 6 well plate. hMSC were cultured for 40 days with differentiation media (10% FBS, 

1% L-glutamine, 1% NEAA and 10mM ASC) which was supplemented with 50ng/mL of the 

combination of FGF-4 & FGF-8 and 1µM Dorsomorphin or FGF-4, FGF-6 & FGF-8 and 1µM 

Dorsomorphin and cultured at 2% O2 environment. Cell lysates were collected at time 

points: Day 0, Day 2, Day 5, Day 10, Day 20 and Day 40 along with cells being fixed at the 

same time points for immunocytochemistry. 

 Rat Tenocyte Harvest and Culture 3.2.8

Please refer to previous sections 2.2.7.1 – 2.2.7.3 
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3.3 Ribonucleic Acid Extraction and Processing 

Listed below are the materials used for RNA extraction: 

Reagent/Kit Supplier 

QIA Shredder 79654, Qiagen, UK 

RNesay minikit 74104, Qiagen, UK 

Superscript III one-step hi-fi RTPCR 12574030, Invitrogen, UK 

RNAse ZAP R2020-250ml, Sigma Aldrich, UK 

β-mercaptoethanol 3150010, Invitrogen, UK 

Ethidium Bromide Solution E1510-10ML, Sigma Aldrich, UK 

Agarose (High resolution electrophoresis 

quality) molecular biology grade 

A4718, Sigma Aldrich, UK 

Directload Wide Range DNA marker D7058, Sigma Aldrich, UK 

Gel loading Solution G2526-5ml, Sigma Aldrich, UK 

50x TAE B9-0030, Geneflow, UK 

Table 0.3 Molecular Biology Reagents 
 

 Cell Lysis and RNA Extraction 3.3.1

RNA lysates were obtained by aspiration of media from the 6 wells followed by a PBS 

wash, followed by the addition 700μl of lysis buffer (contained in the RNEasy kit) to the 

well and samples scraped using a well scraper to encourage detachment of the cells from 

the well. The lysis buffer-cell suspension was then transferred in to a QIAshredder spin 

column, which was placed into a collection tube. The column/ collection tube was then 

centrifuged for 2 minutes at 16000g. After 2 minutes the shredder column was removed 

and the collection tube capped and stored at -80oC until RNA extraction could be 

undertaken. 
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RNA was extracted using the RNeasy kit (Qiagen). Samples were retrieved from the -80oC 

and thawed at room temperature. Once thawed, 350μl of 70% ethanol (EtOH) was added 

to the eppendorff containing the lysed sample and mixed well by pipetting. The sample 

was then decanted into a spin column which sits on a 2ml collection tube. The collection 

tube/column was then centrifuged at 9000g for 15 seconds and the flow-through was 

discarded. 700μl of buffer RW1 (supplied as part of the Qiagen RNeasy Kit) was placed 

into the RNeasy spin mini column; this was then centrifuged for 15 seconds at 9000g and 

the flow-through was discarded. 500μl of RPE buffer was then added (supplied as part of 

the Qiagen RNeasy Kit) to the RNeasy spin column and centrifuged for 15 seconds at 

9000g discarding the flow-through and repeated. The spin column was then placed into a 

new collection tube and centrifuged at 9000g for 2 minutes to remove excess EtOH. The 

RNeasy mini spin column was then placed into a new 1.5ml collection tube and 15μl of 

RNase-free water added and left to stand for 3 minutes prior to being centrifuged on full 

power for 1 minute at 9000g. The flow through was then pipetted directly back onto the 

RNeasy mini column and allowed to stand for a further 3 minutes and then centrifuged at 

full power for 1 minute at 9000g. The RNeasy mini spin column was then discarded and 

the flow through retained for quantification and subsequent gene expression analysis. 

Samples were frozen at -80oC until analysis could be undertaken. 

 Quantitative Analysis of RNA Extraction 3.3.2

After RNA extraction quantitative analysis of the RNA sample was performed using 

Nanodrop (ND-200) spectrophotometer to enable correct RNA sample concentration for 

RT-PCR (30ng/µl).Briefly 1μl of RNA sample was loaded onto the pedestal analysis stand 

and read using the RNA quantification tool as part of the ND-2000 software. RNA 
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concentration (ng/ml), 260/280 260/230 measurements were recorded. Pre and post 

sample analysis the Nanodrop pedestal was cleaned before each sample run (all samples 

were kept on ice whilst RNA quantitative analysis was performed). 

The following calculation was applied to each reading to calculate the dilution of RNA 

samples to the 30ng/µl required for RT-PCR. 

The following calculation was applied to each reading to calculate the dilution of RNA 

samples to the 5ng/µl required for RT-PCR (Figure 3.1). 

 

 

 

Figure 0.1 RNA Dilution Calculation 

 Reverse Transcription Polymerase Chain Reaction 3.3.3

The PCR reaction solution: were set up as below: 

Chemical 
Sample Mix Blank Mix 

Volume Volume 

Reaction Mix 6.75μl 6.75 μl 

RNA free H2O 2.5 μl 2.5 μl 

Forward Primer 1 μl 1 μl 

Reverse Primer 1 μl 1 μl 

Enzyme 0.25 μl 0.25 μl 

Sample 1 μl 0 μl 

RNA free H2O 0 μl 1 μl 

Table 0.4 PCR Reaction Mix Volumes 
 

1. Desired RNA = (sample reading)/5 = X 

2. Dilution = 1*y + (1*y)*X) 

Where y= volume of RNA 
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 Primer Sequences Design 3.3.4

The primers for this thesis were designed using human gene sequences from NCBI Map 

Viewer or Ensemble Genome Browser and Primer 3. Designed primers were evaluated in 

NCBI Primer-BLAST to check binding specificity. Customised primer sets were purchased 

from Invitrogen, UK. Primers are show below (Table 3.5). RT-PCR was performed with a 

one-step protocol. 

 

Table 0.5 Table of Primers sequences, annealing temperatures and amplicon size 
 

 

 

 

 

 

Gene Primer (5' - 3') Annealing Temp (oC) Amplicon Size (bp)

F GCAATTTGCCAAGCTCCTGAAGCAG

R CATAGCCTGGGGTACCAAAATGGGG

F GGTGGCAGAAAAACAACTGGC

R TGCAGGACTGCAGAGATTC

F GCAGCTCCCATTTCATCAGC

R CAGGATGGTCTTGAAGTCTG

F GACTTTGTTGCTGCTTGC

R CAAGTCCAACTCCTTTTCC

F AAGGACACAGAGGCTTCG

R CTGGTTGACCATCAATGC

F GCACTGATGAAACATTGG

R ATCCAATACATGGTCAGG

F CCCCAGGTCTTTGACCTTCTCCC

R ACCTTCCCATCGTTCTTCAGGT

F AAGAGCATTCCTGTCAGC

R CAGTTTGCCGGTAAGAGG

F CTGCTTGCACAAGTTTCC

R TTCCAACTTCACCAAAGG

F GCCACGGCTGCTTCCAGC

R AGGGTGTAACGCAACTAAGTC

TERT (hTERT) 53 343

ACTB (β-actin) 55 504

TENC (Tenascin C) 50 217

DCN (Decorin) 48 372

TNMD 

(Tenomodulin)
47 274

THBS-4 

(Thrombospondin-4)
59 245

COL1A2(Collagen 1) 50 242

COL3A1 (Collagen 3) 51 210

POU5F1 (Oct-4) 55 536

NANOG (Nanog) 55 300
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 Thermocycler Set Up 3.3.5

The gene amplification were run on the DNA Engine thermal cycler (PTE-200) the table 

below shows the cycle temperature, time and number of cycles used in the amplification 

of the specific genes shown in Table 3.6. 

Table 0.6 PCR Thermal Cycler gene amplification Reagent Set up 

The PCR reaction tubes are set up using 1µl of sample to be amplified along with 11.5µl of 

the reaction mix (including enzyme, gene specific primers and reaction mix). The reaction 

tubes are then capped and placed in the thermal cycler for the PCR reaction to be 

initiated. 

Once the PCR reaction is complete the reaction tubes are removed from the thermal 

cycler and 2µl of gel loading solution using a fresh pipette tip for each of the samples. 

Sub Cycle Temperature Time Number of Cycles 

cDNA Synthesis and 50
o
C 30 mins 1 

pre-denaturing 94
o
C 2 mins 1 

Denaturing 94
o
C 15 secs 

40 Cycles Anneal Gene Specific * 30 secs 

Extend 68
o
C 30 secs 

Extend 68
o
C 5 mins 1 

* Gene specific temperature for annealing  
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 Agarose Gel 3.3.6

The agarose gel was prepared 1 hour prior to the electrophoresis run by adding 2g 

agarose (electrophoresis quality) to 1 x TAE (20ml 50xTAE buffer is added to 980ml of 

dH2O to get a working concentration of 1 x TAE buffer. This was heated using a laboratory 

microwave set to full power until the agarose was fully dissolved and the solution was 

completely clear. Once the agarose was dissolved 5μl of Ethidium bromide solution  was 

added, and the solution poured into the gel mould and allowed to set with a gel comb in 

place for 45mins to allow the gel to set. 

 Electrophoresis 3.3.7

The gel was removed from the mould and placed in the electrophoresis tank containing 

excess 1 x TAE buffer ensuring the buffer completely covers the gel to a depth of around 

5mm. The comb was removed from the gel and the wide range ladder loaded into the 

first well and samples are loaded in all other wells allowing for a blank and second wide 

range ladder to be placed in the final 2 wells. Samples and blanks were loaded at a 

volume of 6μl per well with fresh pipette tips for each sample and blank. The wide range 

ladders were loaded at a volume of 5μl. The electrophoresis tank was then connected to 

the Biorad Powerpac 300 (92Volts/400mAMPS/37W) and allowed to run for 45 minutes. 

 Gel Imaging 3.3.8

After the allotted 45 minutes for electrophoresis the power pack was switched off and 

the gel removed from the tank. Gels were imaged on the Syngene Gel UV illuminator and 

focused using Genimage™ software. Once the gel was focused the image was printed and 

saved.   
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3.4 Immunocytochemistry 

 hMSC (BMA-12) Characterisation 3.4.1

hMSC (P-1) were seeded at a density of 5 x 104 cells to each well of a 24 well plate and 

cultured until 80-90% confluent prior to immunophenotyping. Once 80-90% confluency 

was achieved each well was fixed with 4% PFA for 5 minutes. After 30 mins had elapsed 

the PFA was aspirated from each well and each well was subsequently washed twice with 

2mL of PBS before adding 0.5% Triton-X 100 for 5 mins to induce membrane permeability. 

After 5 mins had elapsed the 0.5% Triton X 100 was aspirated from the wells and the 

wells washed twice with PBS. After which, 3% BSA and allowed to stand for 1 hour at 

room temperature to block non-specific antibody binding. After 1 hour had elapsed each 

well was washed twice with PBS and cells were characterised using human MSC 

characterisation kit which contained anti-human mouse anti-CD-44, anti-CD90, anti-

CD146, anti-CD14 and anti-STRO-1 primary antibodies at 1:500 dilutions (Cat. No. SCR067, 

Millipore). Cells were then incubated at 4oC overnight. Secondary antibodies used were 

anti-mouse IgG-NL557 for anti-human mouse anti-CD-44, anti-CD90, anti-CD146 and anti-

CD14, with anti-mouse IgM-NL493 for STRO-1(both sets of secondary antibodies dilutions 

of 1:200. DAPI was used at a dilution of 1:500 as a nuclear stain. Once staining was 

complete the samples were immediately imaged using a fluorescent microscope (Nikon 

Eclipse Ti-ST, Japan). 
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 hESC (SHEF-1) Characterisation 3.4.2

SHEF-1 (hESC (P-37)) were seeded at a density of 2.5 x 104 cells to each well of a 48 well 

plate and cultured to 80-90% confluency prior to immunophenotyping. Once 70-80% 

confluency was achieved each well was fixed with 4% PFA for 5 minutes. After 30 mins 

had elapsed the PFA was aspirated from each well and each well was subsequently 

washed twice with 2mL of PBS (Lonza, Belgium) before adding 0.5% Triton-X 100 for 5 

mins to induce membrane permeability. After 5 mins had elapsed the 0.5% Triton X 100 

was aspirated from the wells and the wells washed twice with PBS. After which, 3% BSA 

and allowed to stand for 1 hour at room temperature to block non-specific antibody 

binding. After 1 hour had elapsed each well was washed twice with PBS and cells were 

characterised using “human embryonic stem cell marker antibody panel” kit which 

contained anti-human mouse anti-alkaline phosphatase (ALP), goat anti-OCT-4, goat anti-

Nanog, mouse anti-SSEA-1 and mouse anti-SSEA-4 primary antibodies at 1μg/100μL 

concentration (each well was covered with 150μL) (Cat. No. SC008, R&D systems). Cells 

were then incubated at 4oC overnight. Secondary antibodies used were anti-goat IgG-

NL493 (1:200, Northern Lights, R & D Systems) for OCT-4 and Nanog. TRITC-conjugated 

anti mouse IgG (1:200, ab6787, Abcam) was used for ALP and SSEA-4. DAPI was used at a 

dilution of 1:500 as a nuclear stain. Once staining was complete the samples were 

immediately imaged using a fluorescent microscope (Nikon Eclipse Ti-ST, Japan). 
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 Tenomodulin Staining 3.4.3

PBS was aspirated and the wells were washed twice using fresh PBS (Lonza). After 

washing, 1ml of 0.5% triton X 100 (Sigma) was added to each well for 5 minutes to 

permeate the cell membrane. After the 5 minutes had elapsed, the triton X 100 was 

aspirated and the wells washed twice with PBS. Once washed, the PBS was aspirated and 

each well was covered with 500µl of 3% Albumin (A8806, Sigma Aldrich, UK)/PBS solution 

for 1 hour at room temperature then washed twice with PBS. After washing, 500µl of 

Primary tenomodulin antibody (SC98875, Santa Cruz Biotechnologies, Germany, 1:500 

dilution in PBS) was added to each well and left overnight at 4oC. The next day the 

primary antibody was aspirated off and each well washed twice with PBS (and the 

secondary (detection) antibody was added (SC2090 Santa Cruz Biotechnologies, Germany, 

1:500 dilution in PBS) and left for 1 hour at room temperature. After 1 hour had elapsed, 

the secondary antibody was aspirated off and each well washed twice with PBS (Lonza) 

and 500ul of 4’, 6-diamidoino-2-phenylindole (DAPI) (D9542 Sigma Aldrich, UK) (1:500 

dilution.) and left for 5 minutes room temperature. After 5 minutes had elapsed the DAPI 

solution was aspirated and then each well was washed twice with PBS and imaged 

immediately on the Nikon Eclipse T1 microscope. 
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3.5 Histological Staining 

 Giemsa’s Staining 3.5.1

Cells were fixed using 95% EtOH and then washed twice with PBS. After wash 750µl of 

Giemsa’s stain was placed into each well and placed for 2 hours on a motorised rocker. 

After 2 hours had elapsed the Giemsa’s stain was aspirated off and each well was washed 

with PBS until clear. The 6 well plates where then allowed to dry overnight before 

imaging. 

 Alcian Blue Staining 3.5.2

PBS was aspirated from the wells and then 50µl of Alcian Blue stain (A3157-10G, Sigma 

Aldrich, UK) was placed into each well and kept at room temperature for 24hrs on an 

R100 Rotateck shaker (Luckham) to maximise stain uptake. 

After 24hrs had elapsed the Alcian Blue stain was aspirated off each well and each well 

washed with 150µl of sterile double filtered H2O until excess Alcian Blue stain was 

removed (if required, a third wash with sterile double filtered H2O was performed). Once 

all the excess Alcian Blue stain was removed the plates were left for 24hrs to dry before 

imaging and image analysis was performed using Image J. 

 Masson’s Trichrome Staining 3.5.3

PBS was aspirated from the wells and then 50µl of Bouins Solution (Sigma Aldrich HT15-

1KT) to completely cover the cells at the case of the wells and placed on the R100 

Rotateck shaker (Luckham) for 24hrs to maximise stain uptake. 

After 24hrs had elapsed the Bouins solution was aspirated from all the wells and each 

well was washed with 150µl of double filtered H2O (multiple washes if required) as to 
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remove the residual Bouins solution. The wells were then counterstained with 50µl 

Haematoxylin (Sigma HT15-1KT). After 5mins had elapsed the Haematoxylin was 

aspirated from the wells which were then washed with 150µl of double filtered H2O 

(multiple washes if required) to remove excess residual red colour. The wells were then 

stained with 50µl of Biebrich Scarlet-Acid Fuschin solution (Sigma Aldrich HT15-1KT) and 

allowed to stand at room temperature for 5 mins. 

After 5 mins had elapsed the Biebrich Scarlet-Acid Fuschin solution was aspirated from 

the wells and the wells washed with 150µl of double filtered H2O (multiple washes if 

required). The wells were then stained with 50µl of Phosphotugstic/Phosphomolybdic 

Acid solution (Sigma HT15-1KT freshly constituted by adding 25% (v/v) Phosphotungstic 

Acid, 25% (v/v) Phosphomolybdic Acid and 50% (v/v) dH2O) and allowed to stand for 5 

mins. After 5 mins had elapsed the Phosphotugstic/Phosphomolybdic Acid solution was 

aspirated from the wells and 50µl of Aniline Blue Solution (Sigma HT15-1KT) was added to 

cover the base of the wells and allowed to stand at room temperature for 5 mins. 

After a further 5 mins had elapsed the Aniline Blue solution was aspirated from the wells 

and 50µl of 1% Acetic Acid (8.8ml of 1M Acetic (Ethanoic) Acid was added to 41.2ml of 

dH2O) and allowed to stand for 2 minutes. After an additional 2 mins had elapsed the 1% 

Acetic acid was aspirated from the wells and the wells were washed with 150µl double 

filtered H2O. The H2O was then aspirated for the wells and the 96 well-plate was allowed 

to stand and dry for 24hrs, prior to imaging. 

 Image Analysis 3.5.4

After air drying (24 hrs) the individual wells were imaged using X4 magnification on a 

Nikon Eclipse TD100 inverted microscope. Once the cells/colony had been located an 
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image was taken using a Canon EOS400D digital camera and saved as a TIF file, this 

process was repeated for all wells stained with Alcian Blue and Masson’s Trichrome. 

 Image J Software Set-up 3.5.5

Image J software was obtained as a free download and for Alcian Blue analysis the 

following settings were used to extract colour analysis which were part of the analysis 

pack. 

COLOUR SETTING 

Red 0.6371708 
Green 07683354 
Blue 0.06061394 

Table 0.7 Colour Settings for Alcian Blue Data Analysis 

To Undertake Alcian blue analysis we open the image J software package and choose the 

image to be analysed (Figure 3.2A). Once the image opens, we then choose Plugin, 

analyse and then Alcian blue (Figure .2B). From the choices made 4 small windows will 

open we close the windows named “Colour 3” and “Colour 2” (Figure 3.2C). We then 

choose the window “Colour 1” and select measure which will produce a table window 

containing the data (Figure 3.2D). This data is then transferred to Excel for future analysis. 

this process is utilised for all Alcian Blue Images. 



W. R. Webb PhD Thesis Chapter 3 

133 
 

 

Figure 0.2 Image J Alcian Blue Analysis set up 

For Masson’s Trichrome Analysis the following Macro was used: 

To Undertake Masson’s Trichrome analysis we open the image J software package and 

choose the image to be analysed (Figure 3.3A). Once the image opens (Figure .3.3), we 

then choose measure which will produce a table window containing the data (Figure 

3.3C). This data is then transferred to Excel for future analysis. This process is utilised for 

all Masson’s Trichrome Images. 
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Figure 0.3 Image J Masson’s Trichrome Set up 

 Statistical Testing 3.5.6

The significance of difference between groups (n=3 per group) was determined by one-

way ANOVA two factor two tailed comparison analysis. A p value less than 0.05 was 

considered to indicate statistical significant. Data are presented as mean ± standard 

deviation (SD). All statistical analysis was performed using Minitab® 16 (Minitab Inc., 

Pennsylvania, USA).  
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 Experimental Plan 3.5.7

Cultured 
for 20 days 

with FGF 
without 

Vitamin C

Cultured 
for 20 days 

with FGF 
with 

Vitamin C

Tenomodulin Negative = END

Cultured 
for 20 days 

with FGF 
without 

Vitamin C

2% Cultured hESC/hMSC 21% Cultured hESC/hMSC

Cultured 
for 20 days 

with FGF 
with 

Vitamin C

RT PCR for Tenomodulin

Tenomodulin Positive

Tenomodulin 
Immunocytochemistry

Alcian Blue 
Histology

Masson’s Trichrome 
Histology

Further RT-PCR for 
Tendon marker

Dorsomorphin Inhibition of FGF/Vitamin C 
Cell Culture

 

Figure 0.4 FGF driven human MSC and hESC differentiation experimental plan 

Flow chart of work plan showing initial screening for TNMD gene expression. After identification of 

TNMD gene expression, Dorsomorphin inhibition of BMP signalling and full tendon gene expression for 

growth factor supplementation of differentiation media along with TNMD immunocytochemistry and 

histological analysis.  
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3.6 Results 

 hESC Characterisation 3.6.1

Prior to experimental set up we sought to confirm the expression of pluripotent markers 

for human embryonic stem cells (SHEF-1) utilising immunocytochemistry previously 

described in Section 3.4. This was undertaken by expanding a 2 x T-25 and seeding the 

confluent T-25 to a 6 well plate. The remaining T-25 was then utilised for RNA extraction 

using the Qiagen RNEasy kit previously described in Section 3.3. 

 hESC Phenotyping  3.6.1.1

hESC cell line SHEF-1 was utilised for this experimental chapter and cultured in a feeder-

free, culture condition using MEFs-CM media following the protocol described in the 

Section- 3.2.2. SHEF-1 cells grew in a steady manner and did not show any apparent sign 

of senescence.  

Immunocytochemistry (Figure 3.5) SHEF-1 cells were highly positive for alkaline 

phosphatase (ALP) and stage-specific embryonic antigen-4 (SSEA-4) markers [336]. 

Supplementary to the immunocytochemistry, RT PCR analysis showed SHEF-1 cells 

displayed high levels of hTERT gene expression as detected by RT-PCR (Figure 3.6) 

(Section- 3.3), a common criterion for hESC (Thomson et al., 1998). Cells were also 

positive for pluripotent nuclear markers Octamer-binding protein-4 (Oct-4) and Nanog 

again detected by RT-PCR (Figure 3.6). 
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Figure 0.5 Immunocytochemistry Profiling of Human Embryonic Stem cells (SHEF-1) 

Pluripotent characterisation for embryonic stem cell markers produced positive for NANOG, Alkaline 

Phosphatase (ALP), OCT-4 and Stage specific embryonic antigen-4 (SSEA-4) protein markers for SHEF-1 

cells, during cell expansion. 

 

Figure 0.6 RT-PCR Pluripotent gene expression of SHEF-1.  

RT-PCR was undertaken during expansion (passage 32) and on seeding (passage 35) the hESCs on the day 

prior to the addition of FGF supplemented media. 
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 hESC Tenomodulin Expression After FGF Driven 3.6.2

Differentiation 

After identifying the SHEF-1 (hESCs) expressed pluripotent markers the next phase of the 

investigation was to investigate the effects of FGF-4, FGF-6 and FGF-8 supplementation of 

differentiation media (DMEM supplemented with 10% FBS, 1% L-GLUT and 1% NEAA) in 

the presence and absence of Vitamin C (10μM) at two different oxygen environments (2% 

and 21%). SHEF-1 cells were seeded as shown in Section 3.2.4.  

This phase of the investigation utilised the time points 0, 2, 5, 10 and 20 days for RT-PCR 

to detect the presence of Tenomodulin (a known tendon marker). 

Preliminary RT-PCR showed. FGF-4 & 8 when cultured in the presence of Vitamin C and 

cultured at 2% O2 was capable of maintaining TNMD expression through to day 20 (Figure 

3.7). However, the expression post day 10, did appear to reduce. FGF-4, 6 & 8 when 

cultured at 2% O2 and supplemented with Vitamin C were capable of sustaining TNMD 

gene expression in hESCs (Figure 3.7) with no apparent reduction in expression. 

Conversely, FGF-4, FGF-6, FGF-8 FGF-4 & 6, FGF-4 & 8 and FGF-4, 6 & 8 when cultured for 

20 days at 21% O2 were incapable of sustaining TNMD gene expression in hESC when 

cultured in the presence or absence of Vitamin C (Figure 3.8). 
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Figure 0.7 Tenomodulin expression of FGF driven differentiation of hESC (SHEF-1) cultured at 2% 

O2 supplemented with or without Vitamin C 

RT-PCR analysis for Tenomodulin (TNMD) showed that combinations of FGF-4 & 8 and the combination of 

FGF-4, 6 & 8 induced and maintained the expression of TNMD for 20 days when supplemented with 

Vitamin C at 10µM per mL. FGF supplemented media which was not supplemented with Vitamin C was 

unable to initiate and subsequently maintain the expression of TNMD. 

 

Figure 0.8 Tenomodulin expression of FGF driven differentiation of hESC (SHEF-1) cultured at 21% 
O2 supplemented with or without Vitamin C 
FGF supplemented media with/without Vitamin C was unable to initiate transcription of TNMD when 

hESC’s are cultured at 21% O2. 
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Having now identified the FGF growth factor combination capable of initiating and 

maintaining TNMD expression the next phase was to be initiated. The next investigation 

was to identify the concentration of Dorsomorphin that allowed cell survival. Then 

supplement the FGF/Vitamin C differentiation media with Dorsomorphin. 

 Dorsomorphin Concentration Optimisation 3.6.3

Shef-1 cells were seeded to a 6 well plate as shown in Section 3.2.7 and cultured using 

CM+ (Conditioned embryonic stem cell media) supplemented with a range of 

Dorsomorphin concentrations (ranging from 1μM to 500μM) and cultured at 2% O2 for 5 

days and media change every 24 hours. 

After 5 days had elapsed cells were fixed and stained with Giemsa’s stain for analysis 

(Section 3.5.1) 

The concentration to be used for investigation of Dorsomorphin inhibition of SHEF-1 FGF 

driven differentiation was 1μM per ml (Figure 3.9). The concentration of 1μM per ml as 

this concentration impaired cellular proliferation whilst all higher concentrations were 

shown to have a toxic effect. 
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Figure 0.9 SHEF 1 cultured in Dorsomorphin supplemented media at a range of concentrations. 

Shows a range of concentrations of Dorsomorphin with concentrations in excess of 1μm having a high 

level of cellular toxicity.  

 FGF driven differentiation of hESC cultured with Vitamin C and 3.6.4

Dorsomorphin at 2% O2 

hESC when cultured at 2% O2 in differentiation media containing FGF-4 & 8 and Vitamin C 

showed a continued expression of both TNMD, THBS-4 genes and COL1A2 genes. COL3A1 

expression was present at Day 0, 2 and weakly present at Day 5, by day 10 expression had 

returned to pre-day 5 levels and COL1A2 was expressed through to day 40. TENC was 

expressed from day 10 through to day 40. DCN gene expression was only detected at day 

40 (Figure 3.10). 

Conversely, the addition of Dorsomorphin to the culture media inhibited the gene 

transcription of THBS-4 and DCN. Furthermore, TENC and TNMD were not detected post 

day 20. Conversely, both COL1A2 and COL3A1 were detected throughout the 

investigation (Figure 3.10). 
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Figure 0.10 Tendon gene expression for hESC FGF-4 & 8 driven differentiation when supplemented 

with Dorsomorphin at 2% O2 

Tendon gene expression panel for FGF-4 & 8 supplemented differentiation media with Vitamin with and 

without Dorsomorphin cultured at 2% O2. 

hESC when cultured at 2% O2 and supplemented differentiation media containing FGF-4, 

6 & 8 and Vitamin C showed continued gene expression of TNMD, THBS-4, TENC, COL1A2, 

COL3A1 with DCN being detected from day 2 through to day 40 (Figure 3.11). 

Conversely, the addition of Dorsomorphin to the culture media inhibited the gene 

transcription of DCN. However, TNMD, THBS-4, TENC, COL1A2, COL3A1 were detected up 

to day 40, with TNMD being less expressed. 
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Figure 0.11 Tendon gene expression for hESC FGF-4, 6 & 8 driven differentiation when 

supplemented with Dorsomorphin at 2% O2 

Tendon gene expression panel for FGF-4, 6 & 8 supplemented differentiation media with Vitamin with 

and without Dorsomorphin cultured at 2% O2. 

hESC cultured in the presence of BMP-12 & 13 and differentiation media further 

supplemented with Vitamin C showed TNMD, TENC expression for the duration of the 

investigation (Figure 4.9). However, THBS-4 was detected until day 2 although the signal 

was weak. COL1A2 was detected throughout the 40 day investigation again this was a 

weak signal. COL3A1 was detected from day 5 through to day 40 with increasing levels 

with DCN only being detected on day 10 and day 20 (Figure 3.12). 

Conversely, the addition of Dorsomorphin to the differentiation media containing BMP-12 

& 13 and Vitamin C inhibited the gene transcription of TNMD and COL3A1. Furthermore, 

THBS-4 and COLA2 were detected up until day 20 and TENC until Day 10, whilst DCN was 

only detected on day 2 and day 5 (Figure 3.12). 
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Figure 0.12 Tendon gene expression for BMP-12 & 13 driven differentiation when supplemented 

with Dorsomorphin at 2% O2 

Tendon gene expression panel for BMP12 & 13 supplemented differentiation media with Vitamin with 

and without Dorsomorphin cultured at 2% O2. 

Having now established the gene expression for both Dorsomorphin supplemented 

growth factor differentiation media. We then used immunocytochemistry to identify the 

expression of TNMD protein this phase of the investigation utilised TNMD 

Immunocytochemistry.  
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  Immunocytochemistry  3.6.5

Immunocytochemistry was undertaken to detect the presence of tenomodulin protein 

expression after growth factor driven differentiation of hESC. Also, to evaluate the effect 

of further supplementation of differentiation media with Dorsomorphin and its 

subsequent affect upon TNMD expression. 

Prior to undertaking the immunocytochemistry staining for TNMD we looked at utilising 

rat tenocytes as a positive control.  

 Tenomodulin Antibody Staining of Rat Tenocytes 3.6.5.1

Rat tenocytes (rt-tenocytes) were harvested and expanded following the protocol shown 

in Section 3.4.3. After expansion the rt-tenocytes were seeded into a six well plate and 

subsequently immunocytochemistry stained for tenomodulin utilising the protocol in 

Section 3.4.3. 

The immunofluorescence showed positive expression for TNMD (confirming the cells 

were tenocytes), with a DAPI (blue) nuclear stain (Figure 3.13). The Cells appeared to 

show the presence of synapse-like morphology and fibroblast like appearance. 

 

Figure 0.13 Tenomodulin positive stained rat tenocyte 

Rat Tenocytes at passage 1 showing positive TNMD (green) and DAPI nuclear staining (Blue). 
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 Tenomodulin Staining of FGF Driven Differentiation of hESCs. 3.6.5.2

FGF driven differentiation of hESC cells were cultured for 40 days in FGF or BMP (n=3), 

Vitamin C supplemented differentiation media (Section 3.2.3 & 3.2.4) in the presence and 

absence of Dorsomorphin. Cells were fixed for staining (Section 3.4.3) at time-points 0, 2, 

5, 10, 20 and 40 days exposure to the respective media. 

hESCs supplemented with the combination of FGF-4 & 6 with Vitamin C showed the 

presence of TNMD stain which was localised to the nucleus which indicates a presence of 

TNMD throughout the investigation (Figure 4.11). However, there appeared to be little to 

no TNMD staining on the cellular membrane and the cells lacked the fibroblast like 

morphology observed in the rat tenocytes and appeared more cobble stone “like” (Figure 

3.14)  

hESCs supplemented with the combination of FGF-4 & 8 with Vitamin C and 

Dorsomorphin appeared to have reduced TNMD signalling (Figure 3.15) compared to the 

absence of Dorsomorphin (Figure 3.14). The addition of Dorsomorphin appeared to 

inhibit morphological change towards a fibroblast like appearance which the cells 

appearing to remain “embryonic-like”. 
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Figure 0.14 hESC FGF-4 & 8 with Vitamin C cultured at 2% O2 

TNMD (green) staining with DAPI (blue) nuclear stain of hESC cultured in differentiation media supplemented with FGF-4 & 8 with Vitamin C over 40 days (Time points 

0, 2, 5, 10, 20 and 40 days). 
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Figure 0.15 hESC FGF-4 & 8 with Vitamin C cultured at 2% O2 supplemented with Dorsomorphin 

TNMD (green) staining with DAPI (blue) nuclear stain of hESC cultured in differentiation media supplemented with FGF-4 & 8 with Vitamin C and Dorsomorphin over 40 

days (Time points 0, 2, 5, 10, 20 and 40 days). 
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hESCs supplemented with the combination of FGF-4, 6 & 8 with Vitamin C showed TNMD 

staining within the cytoplasm of the cells (Figure 3.16). However, the cells lacked the 

fibroblast-like morphology observed in rat tenocytes (Figure 3.13). As the investigation 

progressed in time the TNMD staining appeared as back ground staining which may 

indicate the TNMD protein being expressed within the cellular matrix, but lacking the 

morphological appearance of tenocytes and more spherical (cobble stone like). 

hESCs supplemented with the combination of FGF-4, 6 & 8 with Vitamin C and 

Dorsomorphin showed reduced TNMD staining within the cytoplasm of the cells (Figure 

3.17) when compared to the absence of Dorsomorphin (Figure 3.16). The addition of 

Dorsomorphin appeared to inhibit morphological change towards a fibroblast like 

appearance which the cells appearing to remain “embryonic-like”. 
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Figure 0.16 hESC supplemented with FGF-4, 6 & 8, Vitamin C and cultured at 2% O2 

TNMD (green) staining with DAPI (blue) nuclear stain of hESC cultured in differentiation media supplemented with FGF-4, 6 & 8 with Vitamin C and Dorsomorphin over 

40 days (Time points 0, 2, 5, 10, 20 and 40 days).  
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Figure 0.17 hESC Supplemented with FGF-4, 6 & 8, Vitamin C and Dorsomorphin Cultured at 2% O2 

TNMD (green) staining with DAPI (blue) nuclear stain of hESC cultured in differentiation media supplemented with FGF-4, 6 & 8 with Vitamin C and Dorsomorphin over 

40 days (Time points 0, 2, 5, 10, 20 and 40 days). 
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hESCs supplemented with the combination of BMP-12 & 13 with Vitamin C showed TNMD 

staining within the cytoplasm of the cells at day 5 (Figure 3.18). The BMP differentiated 

cells appeared to be fibroblast-like morphology similar to that observed in rat tenocytes 

(Figure 3.13) with distinct synapsing with other cells. Prior to day 5 and between the time 

points 10 -20 the cells appeared to lack TNMD staining. 

hESCs supplemented with the combination of BMP-12 & 13 with Vitamin C and 

Dorsomorphin showed no positive TNMD staining over the 40 day investigation (Figure 

3.19). This indicates that Dorsomorphin inhibited the effects of BMP12 & 13 observed in 

Figure 3.18.  
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Figure 0.18 hESC Supplemented with BMP-12 & 13 and Vitamin C and cultured at 2% O2 

TNMD (green) staining with DAPI (blue) nuclear stain of hESC cultured in differentiation media supplemented with BMP-12 & 13 with Vitamin C and Dorsomorphin over 

40 days (Time points 0, 2, 5, 10, 20 and 40 days). 
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Figure 0.19 hESC BMP-12 & 13 cultured at 2% O2 and Supplemented with Dorsomorphin 

TNMD (green) staining with DAPI (blue) nuclear stain of hESC cultured in differentiation media supplemented with BMP-12 & 13 with Vitamin C and Dorsomorphin over 

40 days (Time points 0, 2, 5, 10, 20 and 40 days). 
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 Histological Analysis 3.6.6

Histological staining of growth factor (and Vitamin C supplemented differentiation media) 

driven differentiation of hESC towards a tenocyte lineage was undertaken in parallel to 

immunocytochemistry and rt-PCR. Growth factor driven differentiation of hESC was 

undertaken utilising the procedure shown in Section 3.2.3– 3.2.6. 

Glycosaminoglycans were stained utilising Alcian Blue stain procedure shown in Section 

3.5.2 and analysed utilising Image J analysis shown in Section 3.5.4– 3.5.5. 

Collagen was stained using Masson’s Trichrome staining procedure shown in Section 3.5.3 

and image J analysis was undertaken utilising the procedure outlined in Section 3.5.4– 

3.5.5. 

A selection of growth factor driven hESC stained with Masson’s Trichrome is shown in 

Figure 3.20. Each time point had a n=3 and each well imaged 3 times to produce the data 

shown in Table 3.8. 

From the Data shown in Table 3.8 comparisons were made between growth factor in the 

absence of Dorsomorphin and the presence of Dorsomorphin in the differentiation 

media. 



W. R. Webb PhD Thesis Chapter 3 

155 
 

 Masson’s Trichrome Staining 3.6.6.1

 

Figure 0.20 Masson’s Trichrome staining for each group of Shef-1 over 40 Days. 

All groups showed Masson’s Trichrome staining. All time points (n=9) were analysed and data extracted from the images. From the data extracted each time point for 

each condition was compared and statistically tested and the data is shown in Table 3.8. 
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Time 
(Days) 

hESC 
Control –

d 

hESC 
Control 

+d 

hESC 
BMP-12 
&13 -d 

hESC 
BMP-12 
&13 +d 

hESC FGF-
4 & 8 -d 

hESC FGF-
4 & 8 +d 

hESC FGF-
4, 6 & 8 -

d 

hESC FGF-
4,6 & 8 

+d 

0 52.77 
±3.39 

52.63 
±3.22 

52.77 
±3.39 

52.57 
±3.66 

52.67 
±3.13 

52.57 
±3.66 

52.77 
±3.31 

52.57 
±3.66 

2 49.41 
±1.36 

49.85 
±1.26 

61.70 
±2.65 

53.41 
±1.42 

61.23 
±1.99 

52.79 
±1.49 

56.58 
±6.85 

54.59 
±2.22 

5 49.52 
±1.48 

50.60 
±2.22 

65.35 
±3.05 

53.96 
±2.53 

64.79 
±2.52 

52.97 
±1.62 

66.56 
±3.18 

64.55 
±5.23 

10 50.23 
±2.81 

49.24 
±1.19 

68.55 
±3.55 

54.29 
±2.93 

69.30 
±4.21 

53.50 
±4.21 

69.62 
±3.70 

68.72 
±5.44 

20 60.82 
±2.91 

49.86 
±2.28 

74.48 
±6.71 

54.29 
±2.38 

75.17 
±4.96 

54.24 
±2.44 

79.24 
±5.00 

73.54 
±6.56 

40 64.87 
±4.13 

49.62 
±1.16 

79.72 
±3.66 

57.86 
±3.06 

77.89 
±1.92 

56.75 
±1.87 

86.62 
±2.27 

74.98 
±6.22 

Table 0.8 Masson’s Trichrome data extraction from Image J for human Embryonic Stem cells 

The data shown is obtained from Image J and is a total colour extraction of images taken from growth 

factor driven differentiation. 

From the data shown in Table 3.8 the following observations were made: 

hESC cultured in control differentiation media (DMEM supplemented with: 10% FBS, 1% 

NEAA, 1% L-Glut) displayed a Masson’s Trichrome colour extraction value of 52.77±3.39 

on day 0, which decreased by day 2 (49.41±1.36). A slight increase in value was observed 

by day 5 (49.52±1.48), with further increases on day 10 (50.23±2.81), day 20 (60.82±2.91) 

and Day 40 (64.87±4.13).  

Conversely, hESC cultured in control differentiation media supplemented with 

Dorsomorphin had a Masson’s Trichrome colour extraction value of 52.63±3.22 on day 0, 

which decreased by day 2 (49.85±1.26). A slight increase in value was observed by day 5 

(50.60±2.22), with further decreased at day 10 (49.24±1.19), an increase on day 20 

(49.86±2.28) and a subsequent decrease on Day 40 (49.62±1.16).  

Statistical testing between Control differentiation media against control differentiation 

media plus Dorsomorphin showed significant difference between Control-d and Control 

+d day 20 (p<0.0001) and day 40 (p<0.0001) time points (Figure 3.21). 
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Figure 0.21 Masson’s Trichrome analysis of hESC supplemented with control differentiation media 

in the presence and absence of Dorsomorphin 

hESC cultured using differentiation media and differentiation media supplemented with Dorsomorphin 

over 40 days (*p<0.0001). 

Further, supplementation of differentiation media with BMP-12 & 13 produced a 

Masson’s Trichrome colour extraction value of 52.77±3.39 at day 0. Which increased 

continuously on: day 2 (61.70±2.65), day 5 (65.35±3.05), day 10 (68.55±3.55), day 20 

(74.48±6.71) and day 40 (79.72±3.66). 

Conversely, supplementation of differentiation media with BMP-12 & 13 and 

Dorsomorphin produced a Masson’s Trichrome colour extraction value of 52.57±3.66 at 

day 0. Which decreased on day 2 (53.41±1.42) and increase on day 5 (53.96±2.53).a 

further increase was observed on day 10 (54.29±2.93) and day 20 reporting similar values 

to day 10 (54.29±2.38) and day 40 showing a slight increase 57.86±3.06). 
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Further testing of BMP-12 & 13 –d and BMP-12 & 13 +d showed significant difference at 

day 2 (p<0.0005), day 5 (p<0.00001), day 10 (p<0.00001), day 20 (p<0.00001) and day 40 

(p<0.000001). FGF-4 & 8-d and FGF-4 & 8+d showed significant difference at day 2 

(p<0.0005), day 5 (p<0.00001), day 10 (p<0.0005), day 20 (p<0.00001) and day 40 

(p<0.00001). FGF-4, 6 & 8 –d and FGF-4, 6 & 8+d significant difference was observed at 

day 20 (p<0.05) and day 40 (p<0.001) (Figure 3.22) 

 

Figure 0.22 Masson’s Trichrome analysis of hESC supplemented with BMP-12 & 13 differentiation 

media in the presence and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 and 13 (Vitamin C) and 

differentiation media supplemented with BMP-12 and 13 (Vitamin C) and Dorsomorphin cultured for 40 

days (*p<0.0005, **p<0.00001 and +p<0.001). 

When hESC differentiation media was supplemented with FGF-4 & 8, an initial day 0 value 

for Masson’s Trichrome colour extraction of 52.67±3.13 was observed. By day 2 this value 

had increased to 61.23±1.99 with further increases observed on day 5 (64.79±2.52), day 

10 (69.30±4.21), day 20 (75.17±4.96) and day 40 (77.89±1.92). 
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Conversely, hESC differentiation media was supplemented with FGF-4 & 8 and 

Dorsomorphin, an initial day 0 value for Masson’s Trichrome colour extraction of 

52.57±3.66 was observed. By day 2 this value had increased to 52.49±1.49 with further 

increases observed on day 5 (52.97±1.62), day 10 (53.50±4.21), day 20 (54.24±2.44) and 

day 40 (56.75±1.87). 

On statistically testing hESC cultured in differentiation media supplemented with FGF-4 & 

8 and Vitamin C against hESC cultured in differentiation media supplemented with FGF-4 

& 8, Vitamin C and Dorsomorphin. Revealed a significant difference at all time points from 

Day 2 days through to 40 days where the absence of Dorsomorphin had significantly 

higher level of Masson’s Trichrome staining which implies increased collagen formation 

(Figure 3.23). 
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Figure 0.23 Masson’s Trichrome analysis of hESC supplemented with FGF-4 & 8 differentiation 

media in the presence and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with FGF-4 & 8 (Vitamin C) and differentiation 

media supplemented with FGF-4 & 8 (Vitamin C) and Dorsomorphin cultured for 40 days (*p<0.0005, 

**p<0.00001). 

hESC cultured in differentiation media supplemented with FGF-4, 6 & 8 had an initial day 

0 Masson’s Trichrome value of 52.77±3.31. Which increased further on: day 2 

(56.58±6.85), with further increases on Day 5 (66.56±3.18), day 10 (69.62±3.70), day 20 

(79.24±5.00) and day 40 (86.62±2.27) (Figure 4.21). 

Conversely, hESC cultured in differentiation media supplemented with FGF-4, 6 & 8 and 

Dorsomorphin had an initial day 0 Masson’s Trichrome value of 52.57±3.66. Which 

increased further on: day 2 (54.59±2.22), with further increases on Day 5 (64.55±5.23), 

day 10 (68.72±5.44), day 20 (73.54±6.56) and day 40 (74.98±6.22) (Figure 3.24). 
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On statistically testing hESC cultured in differentiation media supplemented with FGF-4, 6 

& 8 and Vitamin C against hESC cultured in differentiation media supplemented with FGF-

4, 6 & 8, Vitamin C and Dorsomorphin. Revealed a significant difference at time points 20 

days and 40 days where the absence of Dorsomorphin had significantly higher level of 

Masson’s Trichrome staining which implies a increased collagen formation (Figure 3.24). 

 

Figure 0.24 Masson’s Trichrome analysis of hESC supplemented with FGF-4, 6 & 8 differentiation 

media in the presence and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with FGF-4, 6 & 8 (Vitamin C) and differentiation 

media supplemented with FGF-4, 6 & 8 (Vitamin C) and Dorsomorphin cultured for 40 days (*p<0.005, 

**p<0.00005). 

Further statistical testing was undertaken by comparing BMP-12 & 13-d against both FGF-

4 & 8-d and FGF-4, 6 & 8-d, and also testing FGF-4 & 8-d against FGF-4, 6 & 8-d. On testing 

BMP-12 & 13 –d against FGF-4 & 8-d, no significant difference was observed. Conversely 

on testing BMP-12 & 13-d with FGF-4, 6 & 8-d significant difference was observed at day 
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40 (p<0.05). FGF-4 & 8-d testing against FGF-4, 6 & 8-d produced significant difference at 

Day 40 (p<0.05) (Figure 3.25). 

 

Figure 0.25 Masson’s Trichrome analysis of hESC supplemented with FGF-4, 6 & 8 and BMP12 & 13 

differentiation media in the and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 & 13 (Vitamin C) and 

differentiation media supplemented with FGF-4, 6 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 

Further statistical testing was undertaken by comparing BMP-12 & 13+d against both 

FGF-4 & 8+d and FGF-4, 6 & 8+d, and also testing FGF-4 & 8+d against FGF-4, 6 & 8+d. On 

testing BMP-12 & 13+d against FGF-4 & 8+d, no significant difference was observed. 

Conversely on testing BMP-12 & 13+d with FGF-4, 6 & 8+d significant difference was 

observed at: day 5 (p<0.005), day 10 (p<0.0005), day 20 (p<0.0005) and day 40 

(p<0.0005). FGF-4 & 8+d testing against FGF-4, 6 & 8+d produced significant difference on 

day 5 (p<0.005), day 10 (p<0.0005), day 20 (p<0.0005) and day 40 (p<0.0005) (Figure 

3.26).  
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Figure 0.26 Masson’s Trichrome analysis of hESC supplemented with FGF-4, 6 & and BMP12 & 13 

differentiation media in the and presence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 & 13 (Vitamin C) and 

Dorsomorphin differentiation media supplemented with FGF-4, 6 & 8 (Vitamin C) and Dorsomorphin 

cultured for 40 days (*p<0.005 and **p<0.0005). 

On statistically testing FGF-4 & 8 and FGF-4,6 & 8 in the absence of Dorsomorphin 

revealed Masson’s Trichrome stain to be higher at day 2 for FGF-4 & 8 (Figure 

4.24)(p<0.05). Conversely on day 40, FGF-4,6 & 8 in the absence of Dorsomorphin had a 

higher Masson’s Trichrome staining (p<0.05) (Figure 3.27). 
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Figure 0.27 Masson’s Trichrome analysis of hESC supplemented with FGF-4 & 8 and FGF-4,6 & 8 

differentiation media in the absence of Dorsomorphin. 

hESC cultured using differentiation media supplemented with FGF-4 & 8 (Vitamin C) and  differentiation 

media supplemented with FGF-4, 6 & 8 (Vitamin C) cultured for 40 days (*p<0.005). 

Further statistical analysis revealed that from Day 5 through to day 40 that a higher level 

of collagen staining was observed in FGF-4, 6 & 8 samples than in FGF-4 and 8 when both 

differentiation media contained Dorsomorphin (p<0.005 and p<0.0005) (Figure 3.28) 
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Figure 0.28 Masson’s Trichrome analysis of hESC supplemented with FGF-4 & 8 and FGF-4,6 & 8 

differentiation media in the presence of Dorsomorphin. 

hESC cultured using differentiation media supplemented with FGF-4 & 8 (Vitamin C and Dorsomorphin) 

and differentiation media supplemented with FGF-4, 6 & 8 (Vitamin C and Dorsomorphin) cultured for 40 

days (*p<0.005 and **p<0.0005). 
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 Alcian Blue Staining 3.6.6.2

 

Figure 0.29 Alcian Blue staining for each group of Shef-1 over 40 Days. 

All groups showed Alcian Blue staining. All time points (n=9) were analysed and data extracted from the images. From the data extracted each time point for each 

condition was compared and statistically tested and the data is shown in Table 3.9. 
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Time 
(Days) 

hESC 
Control -d 

hESC 
Control 

+d 

hESC 
BMP-

12&13 -d 

hESC 
BMP-

12&13 +d 

hESC FGF-
4 & 8 -d 

hESC FGF-
4 & 8 +d 

hESC FGF-
4,6 & 8 -d 

hESC FGF-
4,6 & 8 

+d 

0 39.94 
±0.63 

40.42 
±0.79 

41.70 
±1.20 

40.00 
±0.64 

39.67 
±0.75 

39.98 
±0.36 

39.98 
±0.63 

40.01 
±0.72 

2 43.41 
±0.36 

40.42 
±0.91 

47.45 
±1.28 

42.93 
±0.44 

46.32 
±0.43 

44.37 
±0.60 

47.13 
±0.72 

44.70 
±0.58 

5 44.56 
±0.48 

40.30 
±0.47 

50.53 
±0.67 

45.08 
±0.58 

47.89 
±0.50 

46.01 
±0.23 

48.77 
±1.04 

47.31 
±1.03 

10 45.90 
±0.32 

40.44 
±0.78 

52.01 
±0.37 

46.52 
±0.67 

49.40 
±0.76 

47.14 
±1.36 

51.27 
±0.64 

49.63 
±0.27 

20 47.02 
±0.53 

40.60 
±0.84 

52.97 
±0.27 

47.89 
±1.45 

50.36 
±0.50 

49.15 
±0.30 

54.59 
±0.69 

51.04 
±0.62 

40 48.48 
±1.13 

40.58 
±1.11 

56.36 
±2.04 

50.44 
±0.64 

52.48 
±0.72 

51.30 
±0.62 

58.79 
±1.78 

54.90 
±1.82 

Table 0.9 Alcian Blue data extraction from Image J for human Embryonic Stem cells (SHEF-1) 

The data shown is obtained from Image J and is Alcian blue colour extraction of images taken from 

growth factor driven differentiation. 

From the data shown in Table 3.9 the following observations were made: 

hESC cultured in differentiation media had an Alcian blue colour extraction value of 

39.94±0.63 on day 0, which decreased by day 2 (43.41±0.36). A slight increase in value 

was observed by day 5 (44.56±0.48), with further decreased at day 10 (45.90±0.32), an 

increase on day 20 (47.02±0.53) and a subsequent decrease on Day 40 (48.48±1.13) 

(Figure 3.30). 

hESC cultured in differentiation media supplemented with Dorsomorphin had a Alcian 

Blue colour extraction value of 40.42±0.79 on day 0, which decreased slightly by day 2 

(40.42±0.91). A slight in value was observed by day 5 (40.30±0.47), with an increase at 

day 10 (40.44±0.78), with continued increase on day 20 (40.60±0.84) and a subsequent 

decrease on Day 40 (40.58±1.11) (Figure 3.30 

Statistical testing between Control differentiation media against control differentiation 

media plus Dorsomorphin showed significant difference between Control-d and Control 
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+d: Day 2 (p<0.0001), day 5 (p<0.0001), day 5 (p<0.0001), day 20 (p<0.0005) and day 40 

(p<0.0005) time points (Figure 3.30). 

 

Figure 0.30 Alcian Blue analysis of hESC supplemented with control differentiation media in the 

presence and absence of Dorsomorphin 

hESC cultured using differentiation media and differentiation media supplemented with Dorsomorphin 

over 40 days (*p<0.0001 and **p<0.0005). 

Further supplementation of differentiation media with BMP-12 & 13 produced Alcian 

Blue colour extraction value of 41.70±1.20 at day 0. Which on day 2 had a value of 

(47.45±01.28) and on day 5 (50.53±0.67).a further increase was observed on day 10 

(52.01±0.37) and day 20 reporting a further increase (52.97±0.27) and day 40 showing a 

slight decrease (56.36±2.04). 

Further supplementation of differentiation media with BMP-12 & 13 and Dorsomorphin 

produced Alcian Blue colour extraction value of 40.00±0.64 at day 0. Which an increase 

on day 2 (42.93±0.44) and increase on day 5 (45.08±0.58).a further increase was observed 
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on day 10 (46.52±0.67) and day 20 increased values to day 10 (47.89±1.45) and day 40 

showing a slight increase 50.44±0.64). 

Further testing of BMP-12 & 13 –d and BMP-12 & 13 +d showed significant difference at 

day 2 (p<0.00001), day 5 (p<0.00001), day 10 (p<0.00001), day 20 (p<0.00005) and day 40 

(p<0.00005 

 

Figure 0.31 Alcian Blue analysis of hESC supplemented with control ifferentiation media 

Supplemented with BMP-12 & 13 in the presence and absence of Dorsomorphin. 

hESC cultured using differentiation media and differentiation media supplemented with BMP-12 & 13 

and Dorsomorphin over 40 days (*p<0.00001 and **p<0.00005). 

When hESC differentiation media was supplemented with FGF-4 & 8, an initial day 0 value 

for Alcian Blue colour extraction of 39.67±0.75 was observed. By day 2 this value had 

increased to 46.32±0.43 with further increases observed on day 5 (47.59±0.50), day 10 

(49.40±0.76), day 20 (50.36±0.50) and day 40 (52.48±0.72). 
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When hESC differentiation media was supplemented with FGF-4 & 8 and Dorsomorphin, 

an initial day 0, value for Alcian Blue colour extraction of 39.98±0.36 was observed. By 

day 2 this value had increased to 44.37±0.60 with further increases observed on day 5 

(46.01±0.23), day 10 (47.14±1.36), day 20 (49.15±0.30) and day 40 (51.30±0.62). 

On statistically testing FGF-4 & 8-d and FGF-4 & 8+d showed significant difference with a 

decrease in Alcian Blue staining in Dorsomorphin supplemented media at day 2 

(p<0.00005), day 5 (p<0.01), day 10 (p<0.00005), day 20 (p<0.00005) and day 40 

(p<0.005). 

 

Figure 0.32 Alcian Blue analysis of hESC supplemented with control differentiation media 

Supplemented with FGF-4 & 8 in the presence and absence of Dorsomorphin. 

hESC cultured using differentiation media and differentiation media supplemented with FGF-4 & 8 and 

Dorsomorphin over 40 days (*p<0.00005, **p<0.01 and ***p<0.05). 

 



W. R. Webb PhD Thesis Chapter 3 

171 
 

hESC cultured in differentiation media supplemented with FGF-4, 6 & 8 had an initial day 

0 Alcian Blue value of 39.98±0.63. Which increased further on: day 2 (47.13±0.72), with 

further increases on Day 5 (48.77±1.04), day 10 (51.27±0.64), day 20 (54.59±0.69) and 

day 40 (58.79±1.78). 

hESC cultured in differentiation media supplemented with FGF-4, 6 & 8 and 

Dorsomorphin had an initial day 0 Alcian Blue value of 40.01±0.72. Which increased 

further on: day 2 (44.70±0.58), with further increases on Day 5 (47.31±1.03), day 10 

(49.63±0.27), day 20 (51.04±0.62) and day 40 (54.90±61.82). 

On statistically testing FGF-4, 6 & 8 –d and FGF-4, 6 & 8+d significant difference with a 

decrease in Alcian Blue staining in Dorsomorphin supplemented media was observed at 

day 2 (p<0.0005), day 5 (p<0.01), day 10 (p<0.0005), day 20 (p<0.00001) and day 40 

(p<0.00005) 
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Figure 0.33 Alcian Blue analysis of hESC supplemented with control differentiation media 

Supplemented with FGF-4 & 8 in the presence and absence of Dorsomorphin. 

hESC cultured using differentiation media and differentiation media supplemented with FGF-4 & 8 and 

Dorsomorphin over 40 days (*p<0.01, **p<0.0005,***p<0.0001 & +p<0.0005). 

Further statistical testing was undertaken by comparing BMP-12 & 13-d against both FGF-

4 & 8-d (Figure 3.34) and FGF-4, 6 & 8-d (Figure 3.35), and also testing FGF-4 & 8-d against 

FGF-4, 6 & 8-d (Figure 3.36). On testing between groups produced significant difference 

(p<0.05) 
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Figure 0.34 Alcian Blue analysis of hESC supplemented with FGF-4& 8 and BMP12 & 13 

differentiation media in the and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 & 13 (Vitamin C) and 

differentiation media supplemented with FGF-4 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 

 

Figure 0.35 Alcian Blue analysis of hESC supplemented with FGF-4, 6 & 8 and BMP12 & 13 

differentiation media in the and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 & 13 (Vitamin C) and 

differentiation media supplemented with FGF-4, 6 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 
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Figure 0.36 Alcian Blue analysis of hESC supplemented with FGF-4 & 8 and FGF-4, 6 & 8 

differentiation media in the and absence of Dorsomorphin 

hESC cultured using differentiation media supplemented with FGF-4 & 8 (Vitamin C) and differentiation 

media supplemented with FGF-4, 6 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 

Further statistical testing was undertaken by comparing BMP-12 & 13+d against, both 

FGF-4 & 8+d (Figure 3.37) and FGF-4, 6 & 8+d (Figure 3.38), and also testing FGF-4 & 8+d 

against FGF-4, 6 & 8+d (Figure 3.39). On statistically testing BMP-12 & 13 –d against FGF-4 

& 8-d, significant difference was observed on Day 2 (p<0.0005), Day 5 (p<0.005), day 20 

(p<0.05) and day 40 (p<0.01). On testing BMP-12 & 13-d with FGF-4, 6 & 8-d significant 

difference was observed at day 2, Day 5, Day10, Day 20 and day 40 (p<0.001). FGF-4 & 8-d 

testing against FGF-4, 6 & 8-d produced significant difference on day 5, day 10, day 20 

and day 40 (p<0.05). 
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Figure 0.37 Alcian Blue analysis of hESC supplemented with BMP-12 & 13 and FGF-4 & 8 

differentiation media in the presence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 & 13 (Vitamin C) and 

differentiation media supplemented with FGF-4 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 

 

Figure 0.38 Alcian Blue analysis of hESC supplemented with BMP-12 & 13 and FGF-4, 6 & 8 

differentiation media in the presence of Dorsomorphin 

hESC cultured using differentiation media supplemented with BMP-12 & 13 (Vitamin C) and 

differentiation media supplemented with FGF-4, 6 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 
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Figure 0.39 Alcian Blue analysis of hESC supplemented with FGF-4 & 8 and FGF-4, 6 & 8 

differentiation media in the presence of Dorsomorphin 

hESC cultured using differentiation media supplemented with FGF-4 & 8 (Vitamin C) and differentiation 

media supplemented with FGF-4, 6 & 8 (Vitamin C) cultured for 40 days (*p<0.05). 

Statistical testing was undertaken by comparing growth factor supplemented groups 

against the control groups (Figure 3.40). Statistical difference was observed with all 

growth factor supplemented groups from day 2 (p<0.00005), day 5 (p<0.00005), day 10 

(p<0.00005), day 20 (p<0.00005) and day 40 (p<0.00005) with FGF-4, 6 & 8 combination 

having the greatest significant difference on day 40 (p<0.00001). 
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Figure 0.40 Alcian Blue colour extraction Comparison between all hESC cultured with growth 

factors and Vitamin C without Dorsomorphin 

Comparisons were made against the control group (*p<0.00005 & **p<0.00001). 

Statistical testing was undertaken by comparing growth factor supplemented groups 

against the control groups. Statistical difference was observed with all growth factor 

supplemented groups from day 2 (p<0.00005), day 5 (p<0.00005), day 10 (p<0.00005), 

day 20 (p<0.00005) and day 40 (p<0.00005), with FGF-4, 6 & 8 combination having the 

greatest significant difference on day 40 (p<0.00001). 
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Figure 0.41 Alcian Blue colour extraction Comparison between all hESC cultured with growth 

factors and Vitamin C with Dorsomorphin 

Comparisons were made against the control group (*p<0.00005 & **p<0.00001). 
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3.7 hMSC Characterisation 

 Immunocytochemistry Profiling of hMSC Markers (BMA-12) 3.7.1

hMSC were isolated from bone marrow aspirate following the previously described 

methodology [332, 333] (Section 3.2.5). Prior to experimentation, the phenotypic surface 

markers of hMSC were confirmed by immunocytochemistry (Section- 3.4.1). The hMSC 

surface markers were detected on passage-1 cells. Isolated hMSC were positive for 

surface antigens CD44, CD90, CD146, STRO-1 and negative for haematopoietic markers 

CD14 and CD19 (Figure 3.42). 

 

Figure 0.42 Immunophenotyping of hMSC 

hMSC showed positive expression of the surface antigens CD44, STRO-1, CD90 and CD146 and negative 

for the haemopoietic markers CD14 and CD19. DAPI was utilised as a nuclear counter stain. Scale bar 

100μm. 
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3.8 Tenomodulin Expression 

After identifying the BMA-12 (hMSCs) expressed hMSC markers the next phase of the 

investigation was to investigate the effects of FGF-4, FGF-6 and FGF-8 supplementation of 

differentiation media (DMEM supplemented with 10% FBS, 1% L-GLUT and 1% NEAA) in 

the presence and absence of Vitamin C (10μM) at two different oxygen environments (2% 

and 21%). SHEF-1 cells were seeded as shown in Section 3.2.6.  

This phase of the investigation utilised the time points 0, 2, 5, 10 and 20 days for RT-PCR 

to detect the presence of Tenomodulin (a known tendon marker). 

Preliminary hMSC RT-PCR showed. FGF-4 when cultured in the presence of Vitamin C and 

cultured at 2% O2 was capable of maintaining TNMD expression from day 2 to day 20 

(Figure 3.43). However, the expression post day 5, did appear to reduce. FGF-4, 6 & 8 

when cultured at 2% O2 and supplemented with Vitamin C were capable of sustaining 

TNMD gene expression in hMSCs (Figure 3.43) with no apparent reduction in expression. 

Conversely, FGF-4, FGF-6, FGF-8 FGF-4 & 6, FGF-4 & 8 and FGF-4, 6 & 8 when cultured for 

20 days at 21% O2 were incapable of sustaining TNMD gene expression in hESC when 

cultured in the presence or absence of Vitamin C (Figure 3.43 – Figure 3.44). 
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Figure 0.43 Tenomodulin expression of FGF driven differentiation of hMSC cultured at 2% O2 

supplemented with or without Vitamin C 

RT-PCR analysis for Tenomodulin (TNMD) showed that combinations of FGF-4 and the combination of 

FGF-4, 6 & 8 induced and maintained the expression of TNMD for 20 days when supplemented with 

Vitamin C at 10µM per mL. FGF supplemented media which was not supplemented with Vitamin C was 

unable to initiate and subsequently maintain the expression of TNMD. 

 

Figure 0.44 Tenomodulin expression of FGF driven differentiation of hMSC cultured at 21% O2 

supplemented with or without Vitamin C 

FGF supplemented media with/without Vitamin C was unable to initiate transcription of TNMD when 

hESC’s are cultured at 21% O2. 
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Having now identified the FGF growth factor combination capable of initiating and 

maintaining TNMD expression the next phase was to be initiated. The next investigation 

was to identify the concentration of Dorsomorphin that allowed cell survival. Then 

supplement the FGF/Vitamin C differentiation media with Dorsomorphin. 

 Dorsomorphin Optimisation 3.8.1.1

BMA-12 cells were seeded to a 6 well plate as shown in Section 3.2.7 and cultured using 

CM+ (Conditioned embryonic stem cell media) supplemented with a range of 

Dorsomorphin concentrations (ranging from 1μM to 500μM) and cultured at 2% O2 for 5 

days and media change every 24 hours. 

After 5 days had elapsed cells were fixed and stained with Giemsa’s stain for analysis 

(Section 3.5.1). 

The concentration to be used for investigation of Dorsomorphin inhibition of BMA-12 FGF 

driven differentiation was 1μM per ml (Figure 3.45). The concentration of 1μM per ml as 

this concentration impaired cellular proliferation whilst all higher concentrations were 

shown to have a toxic effect 
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Figure 0.45 hMSC cultured in Dorsomorphin supplemented media at a range of concentrations. 

Shows a range of concentrations of Dorsomorphin with concentrations in excess of 1um having a high 

level of cellular toxicity. Where a concentration of 1um showed reduced cellular proliferation, therefore, 

the concentration of 1uM was utilised in further investigations into the effects of FGF and BMP signal 

transduction using MSC human embryonic stem cells. 

 RT-PCR of Tendon markers for FGF driven differentiation of 3.8.1.2

hMSC cultured with Vitamin C and Dorsomorphin at 2% O2 

hMSC (BMA-12) cultured in differentiation media supplemented with: FGF-4 and Vitamin 

C showed the presence of: THBS-4, TENC, COL1A2, COL3A1 and DCN throughout the 40 

day investigation. Conversely, TNMD was detected up until day 20 and extremely weak 

detection at day 40. hMSC (BMA-12) cultured in differentiation media supplemented 

with: FGF-4, Vitamin C and Dorsomorphin showed the presence of: THBS-4, TENC, 

COL1A2, COL3A1 and DCN throughout the 40 day investigation. Conversely, TNMD was 

detected up until day 10, day 20 and 40 showed no transcription of TNMD (Figure 3.46). 
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Figure 0.46 Tendon gene expression for hMSC FGF-4 driven differentiation when supplemented 

with and without Dorsomorphin at 2% O2 

Tendon gene expression panel for FGF-4 supplemented differentiation media with Vitamin with and 

without Dorsomorphin cultured at 2% O2 

hMSC (BMA-12) cultured in differentiation media supplemented with: FGF-4, 6 & 8 and 

Vitamin C showed the presence of: THBS-4, TENC,TNMD, COL1A2 and COL3A1 throughout 

the 40 day investigation. DCN was expressed from day 2 through to day 40 (Figure 3.47). 

hMSC (BMA-12) cultured in differentiation media supplemented with: FGF-4, 6 & 8, 

Vitamin C  and Dorsomorphin showed the presence of: THBS-4, TENC,DCN, COL1A2 and 

COL3A1 throughout the 40 day investigation. TNMD was expressed from day 2 through to 

day 20, with day 10 and day 20 showing reduced expression and lack of expression on day 

40 (Figure 3.47).  
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Figure 0.47 Tendon gene expression for hMSC FGF-4, 6 & 8 driven differentiation when 

supplemented with and without Dorsomorphin at 2% O2 

Tendon gene expression panel for FGF-4, 6 & 8 supplemented differentiation media with Vitamin with 

and without Dorsomorphin cultured at 2% O2 

Having now established the gene expression for both Dorsomorphin supplemented 

growth factor differentiation media. We then used immunocytochemistry to identify the 

expression of TNMD protein this phase of the investigation utilised TNMD 

Immunocytochemistry. 

 Immunocytochemistry 3.8.2

Immunocytochemistry was undertaken to detect the presence of tenomodulin protein 

expression after growth factor driven differentiation of hMSC. Also, to evaluate the effect 

of further supplementation of differentiation media with Dorsomorphin and its 

subsequent affect upon TNMD expression. 

Prior to undertaking the immunocytochemistry staining for TNMD we looked at utilising 

rat tenocytes as a positive control. 
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 Tenomodulin staining of hMSC  3.8.2.1

FGF driven differentiation of hMSC cells were cultured for 40 days in FGF, Vitamin C 

supplemented differentiation media (Section 3.2.6) in the presence and absence of 

Dorsomorphin. Cells were fixed for staining (Section 3.4.3) at time-points 0, 2, 5, 10, 20 

and 40 days exposure to the respective media (n=3). 

hMSCs cultured in differentiation media in the absence of Dorsomorphin (Figure 3.48) 

and in the presence of Dorsomorphin (Figure 3.49) showed no apparent TNMD protein 

expression. 

hMSCs supplemented with the combination of FGF-4 with Vitamin C  and FGF-4, 6 & 8 and 

Vitamin C, showed the presence of TNMD stain which was shown to be cytoplasmic in  

presence of TNMD throughout the investigation (Figure 3.50 & Figure 3.51). FGF-4 and 

FGF-4, 6 & 8 further supplemented with Dorsomorphin and Vitamin C showed continued 

TNMD staining (Figure 3.52 & Figure 3.53) Furthermore, there appeared to be TNMD 

staining on the cellular membrane and the cells appeared to have fibroblast like 

morphology at day 20 which was similar to that observed in the rat tenocytes (Figure 

4.10).
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Figure 0.48 hMSC Cultured in differentiation media. 

hMSC (BMA-12) when cultured in differentiation media supplemented with Vitamin C lacked the presence of TNMD staining as observed in Figure 3.47. 
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Figure 0.49 MSC Cultured with differentiation media supplemented with Dorsomorphin 

hMSC (BMA-12) when cultured in differentiation media supplemented with Vitamin C and Dorsomorphin lacked the presence of TNMD staining as observed in Figure 

3.47. 
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Figure 0.50 hMSC FGF-4 with Vitamin C cultured at 2% O2 

hMSC (BMA-12) when cultured in differentiation media supplemented with FGF-4 and Vitamin C showed the presence of TNMD protein staining. 
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Figure 0.51 MSC FGF-4 with Vitamin C cultured at 2% O2 supplemented with Dorsomorphin. 

hMSC (BMA-12) when cultured in differentiation media supplemented with FGF-4, Vitamin C and Dorsomorphin showed the presence of TNMD protein staining. 
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Figure 0.52 hMSC FGF-4, 6 & 8 with Vitamin C cultured at 2% O2 

hMSC (BMA-12) when cultured in differentiation media supplemented with FGF-4, 6 & 8 and Vitamin C showed the presence of TNMD protein staining. 
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Figure 0.53 MSC FGF-4, 6 & 8 with Vitamin C cultured at 2% O2 and supplemented with Dorsomorphin. 

hMSC (BMA-12) when cultured in differentiation media supplemented with FGF-4, 6 & 8, Vitamin C and Dorsomorphin showed the presence of TNMD protein staining. 



W. R. Webb PhD Thesis Chapter 3 

193 
 

 Histological Analysis 3.8.3

Histological staining of growth factor (and Vitamin C supplemented differentiation media) 

driven differentiation of hMSC towards a tenocyte lineage was undertaken in parallel to 

immunocytochemistry and rt-PCR. Growth factor driven differentiation of hMSC was 

undertaken utilising the procedure shown in Section 3.5. 

Glycosaminoglycans were stained utilising Alcian Blue stain procedure shown in Section 

3.5.2 and analysed utilising Image J analysis shown in Section 3.5.4 – 3.5.6. 

Collagen was stained using Masson’s Trichrome staining procedure shown in Section 3.5.3 

and image J analysis was undertaken utilising the procedure outlined in Section 3.5.4 – 

3.5.6 

A selection of growth factor driven hESC stained with Masson’s Trichrome is shown in 

Figure 3.54. Each time point had a n=3 and each well imaged 3 times to produce the data 

shown in Table 3.10. 

From the Data shown in Table 3.10 comparisons were made between growth factor in the 

absence of Dorsomorphin and the presence of Dorsomorphin in the differentiation 

media.
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 Masson’s Trichrome 3.8.3.1

 

Figure 0.54 Masson’s Trichrome staining for each group of MSC over 40 Days. 

All groups showed Masson’s Trichrome staining. All time points (n=9) were analysed and data extracted from the images. From the data extracted each time point for 

each condition was compared and statistically tested and the data is shown in Table 3.10. 
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Time 
(Days) 

MSC  
Control -d 

MSC  
Control +d 

MSC  
FGF-4 –d 

MSC  
FGF-4 +d 

MSC FGF-4, 
 6 & 8 -d 

MSC FGF-4, 
6 & 8 +d 

0 56.82 
±1.86 

57.08 
±2.05 

56.82 
±1.96 

56.88 
±2.13 

56.13 
±1.78 

57.16 
±2.05 

2 59.44 
±1.53 

57.41 
±2.66 

59.40 
±2.89 

58.89 
±2.88 

58.51 
±2.64 

58.77 
±4.26 

5 59.47 
±3.15 

58.19 
±1.71 

60.17 
±4.80 

59.55 
±1.89 

60.03 
±3.93 

59.75 
±3.73 

10 59.87 
±4.86 

58.69 
±2.08 

60.25 
±1.14 

60.67 
±2.79 

61.11 
±2.38 

61.42 
±3.56 

20 61.59 
±2.77 

58.96 
±1.94 

61.05 
±1.67 

61.28 
±2.52 

62.97 
±3.14 

61.71 
±1.89 

40 61.78 
±4.00 

60.38 
±3.51 

62.77 
±3.14 

61.84 
±2.26 

65.25 
±3.21 

63.03 
±3.04 

Table 0.10 Masson’s Trichrome data extraction from Image J for human Mesenchymal Stem cells  

The data shown is obtained from Image J and is a total colour extraction of images taken from growth 

factor driven differentiation. 

From the data shown in table 3.10 the following observations were made: 

hMSCs cultured in the absence of Dorsomorphin in differentiation culture media had a 

colour extraction value for Masson’s Trichrome of 56.82 ± 1.86 at day 0 which increased 

to 61.78 ± 4.00 by day 40. Further supplementation of differentiation culture media with 

Dorsomorphin had an initial value of 57.08 ± 2.05 which increased to a value of 60.38 ± 

3.51 by day 40. Supplementation of differentiation media with FGF-4 had an initial value 

of 56.82 ± 1.96 at day 0, which increased to 62.77 ± 3.14. Further supplementation of 

FGF-4 differentiation media with Dorsomorphin had an initial value of 56.88 ± 2.13 which 

increased continuously over the investigation to a value of 61.84 ± 2.26 by da 40. 

Supplementation of differentiation media with FGF4, 6 & 8 had an initial day 0 value of 

56.13 ± 1.78 which produced the greatest increase over the 40 day investigation 

producing a value of 65.25 ± 3.21 at day 40. Further supplementation of FGF-4, 6 & 8 

differentiation media had an initial day 0 reading of 57.16 ± 2.05 which increased over the 

40 day investigation to a value of 63.03 ± 3.04. 
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Statistical analysis was undertaken between groups (Figure 3.55 and Figure 43.56) and 

individual groups against the controls with no significant difference being observed. 

 
Figure 0.55 Masson’s Trichrome growth factor driven differentiation of hMSC in the absence of 

Dorsomorphin. 

Masson’s Trichrome data extraction for all growth factor driven differentiation of hMSC with no 

significant difference observed. 
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Figure 0.56 Masson’s Trichrome growth factor driven differentiation of hMSC in the presence of 

Dorsomorphin. 

Masson’s Trichrome data extraction for all growth factor and Dorsomorphin driven differentiation of 

hMSC with no significant difference observed. 
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 Alcian Blue Analysis 3.8.3.2

 

Figure 0.57 Alcian Blue staining for each group of MSC over 40 Days. 

All groups showed Alcian Blue staining. All time points (n=9) were analysed and data extracted from the images. From the data extracted each time point for each 

condition was compared and statistically tested and the data is shown in Table 3.11. 
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Time 
(Days) 

MSC Control 
-d 

MSC Control 
+d 

MSC FGF-4 -
d 

MSC FGF-4 
+d 

MSC FGF-4, 
6 & 8 –d 

MSC FGF-4,6 
& 8 +d 

0 40.84 
±0.56 

41.12 
±0.22 

40.12 
±0.34 

41.10 
±0.38 

40.93 
±0.38 

40.74 
±0.28 

2 43.99 
±0.44 

42.30 
±0.37 

41.20 
±0.43 

42.11 
±0.31 

43.10 
±0.23 

41.11 
±0.13 

5 44.96 
±0.34 

44.18 
±0.39 

42.34 
±0.61 

43.33 
±0.42 

43.77 
±0.17 

41.43 
±0.07 

10 46.05 
±0.52 

45.23 
±0.22 

43.37 
±1.02 

44.35 
±0.26 

44.30 
±0.13 

43.67 
±0.06 

20 48.27 
±0.78 

45.59 
±0.08 

47.53 
±1.23 

44.87 
±0.29 

50.71 
±0.14 

49.80 
±0.69 

40 51.74 
±2.08 

45.82 
±0.10 

54.66 
±0.97 

50.49 
±1.44 

55.31 
±0.26 

50.89 
±0.61 

Table 0.11 Alcian Blue data extraction from Image J for human Mesenchymal Stem cells (hMSC) 

The data shown is obtained from Image J and is Alcian blue colour extraction of images taken from 

growth factor driven differentiation. 

From the data shown in table 3.11 the following observations were made: 

hMSC cultured in differentiation in the absence of Dorsomorphin (Control-d) media had a 

Alcian blue colour extraction value of 40.84±0.56 on day 0, which decreased by day 2 

(43.99±0.44). A slight increase in value was observed by day 5 (44.96±0.34), with further 

increase at day 10 (46.05±0.52), day 20 (48.27±0.78) and a subsequent decrease on Day 

40 (51.74±2.08).  

hMSC cultured in differentiation media supplemented with Dorsomorphin (Control +d) 

had a Alcian blue colour extraction value of 41.12±0.22 on day 0, which decreased by day 

2 (42.30±0.37). A slight increase in value was observed by day 5 (44.18±0.39), with further 

increase at day 10 (45.23±0.22), day 20 (45.59±0.08) and on Day 40 (45.82±0.10).  

Statistical testing between Control differentiation media against control differentiation 

media plus Dorsomorphin showed significant difference between Control-d and Control 

+d: Day 2 (p<0.0005), day 5 (p<0.005), day 5 (p<0.005), day 20 (p<0.005) and day 40 

(p<0.0005) time points. 
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Figure 0.58 Alcian Blue analysis of hMSC supplemented with control differentiation media in the 

presence and absence of Dorsomorphin 

hMSC cultured using differentiation media and differentiation media supplemented with Dorsomorphin 

over 40 days (*p<0.0001 ). 

When hMSC differentiation media was supplemented with FGF-4-d, an initial day 0 value 

for Alcian Blue colour extraction of 40.12±0.34 was observed. By day 2 this value had 

increased to 41.20±0.43 with further increases observed on day 5 (42.34±0.61), day 10 

(43.37±1.02), day 20 (47.53±1.23) and day 40 (54.66±0.97). 

When hMSC differentiation media was supplemented with FGF-4 and Dorsomorphin 

(FGF-4+d), an initial day 0 value for Alcian Blue colour extraction of 41.10±0.38 was 

observed. By day 2 this value had increased to 42.11±0.31 with further increases 

observed on day 5 (43.33±0.42), day 10 (44.35±0.26), day 20 (44.87±0.29) and day 40 

(50.49±1.44). 



W. R. Webb PhD Thesis Chapter 3 

201 
 

Further testing of FGF-4 –d and FGF-4 +d showed significant difference at day 2 

(p<0.0005), day 5 (p<0.05), day 10 (p<0.0005), day 20 (p<0.0005) and day 40 (p<0.0005) 

(Figure 3.59).  

 

Figure 0.59 Alcian Blue analysis of hMSC supplemented with FGF-4 and Control Differentiation 

media in the presence and absence of Dorsomorphin 

hMSC cultured using differentiation media with FGF-4 and differentiation media supplemented with FGF-

4 & Dorsomorphin over 40 days (*p<0.0005 and **p<0.05 ). 

hMSC cultured in differentiation media supplemented with FGF-4, 6 & 8-d had an initial 

day 0 Alcian Blue value of 40.93±0.38. Which increased further on: day 2 (43.10±0.23), 

with further increases on Day 5 (43.77±0.17), day 10 (44.30±0.13), day 20 (50.71±0.14) 

and day 40 (55.31±10.26). 

hMSC cultured in differentiation media supplemented with FGF-4, 6 & 8 and 

Dorsomorphin (FGF-4, 6 & 8+d) had an initial day 0 Alcian Blue value of 40.74±0.28. 
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Which increased further on: day 2 (41.11±0.13), with further increases on Day 5 

(41.43±0.07), day 10 (43.67±0.06), day 20 (49.80±0.69) and day 40 (50.89±0.61). 

FGF-4, 6 & 8-d and FGF-4, 6 & 8+d showed significant difference at day 2 (p<0.01), day 5 

(p<0.01), day 10 (p<0.01), day 20 (p<0.01) and day 40 (p<0.01). 

 

Figure 0.60 Alcian Blue analysis of hMSC supplemented with FGF-4, 6 & 8 and control 

differentiation media in the presence and absence of Dorsomorphin 

hMSC cultured using differentiation media and FGF-4,6 & 8 differentiation media supplemented with 

FGF-4, 6 & 8 and Dorsomorphin over 40 days (*p<0.001). 

Further statistical testing was undertaken comparing FGF-4-d against FGF-4, 6 & 8-d, 

significant difference was observed on day 2, day 5, day 10 and day 20 (p<0.05). On 

testing FGF-4+d against FGF-4, 6 & 8+d significant difference was observed on Day 2, day 

5, day 10 and day 20 (p<0.05) (Figure 3.61 and Figure 3.62). 
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Figure 0.61 Alcian Blue analysis of hMSC supplemented with FGF-4 differentiation media 

compared with FGF-4, 6 & 8 differentiation media in the absence of Dorsomorphin 

hMSC cultured using differentiation media and FGF-4 differentiation media against differentiation media 

supplemented with FGF-4, 6 & 8 over 40 days (*p<0.05). 
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Figure 0.62 Alcian Blue analysis of hMSC supplemented with FGF-4 and differentiation media 

compared with FGF-4, 6 & 8 differentiation media in the presence of Dorsomorphin 

hMSC cultured using differentiation media and FGF-4 differentiation media against differentiation media 

supplemented with FGF-4, 6 & 8  in the presence of Dorsomorphin over 40 days (*p<0.05). 

Statistical testing was undertaken by comparing growth factor supplemented groups 

against the control-d. When testing control-d against FGF-4-d statistical difference was 

observed on Day 2, day 5 and day 10 (p<0.0005) as the control group values were higher. 

By day 40 the FGF-4-d group value was significantly higher than the control group 

(p<0.005). On statistically testing the control group against FGF-4, 6 & 8-d the control 

group reported higher values with a significant difference being observed for day 2, day 5 

and day 10 (p<0.001). By day 20 and day 40 FGF-4, 6 & 8-d was reporting higher than 

control values which were significantly different (p<0.005) (Figure 3.63) 
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Figure 0.63 Alcian blue comparison of all groups supplemented in the absence of Dorsomorphin. 
 

Statistical testing was undertaken by comparing growth factor supplemented groups 

against the control groups. When testing control +d against FGF-4+d statistical difference 

was observed on Day 2, day 5 and day 10 and day 30 (p<0.0005) as the control group 

values were higher. By day 40 the FGF-4+d group value was significantly higher than the 

control group (p<0.0001). On statistically testing the control group against FGF-4, 6 & 8+d 

the control +d group reported higher values with a significant difference being observed 

for day 2, day 5 and day 10 (p<0.0005). By day 20 and day 40 FGF-4, 6 & 8-d was reporting 

higher than control values which were significantly different (p<0.0005) (Figure 3.64) 
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Figure 0.64 Alcian blue comparison of all groups supplemented in the absence of Dorsomorphin. 
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3.9 Discussion 

Tissue engineering and stem cell technologies aims to provide treatment regime for 

disease and damaged tissue were current therapeutical options are limited or 

inadequate. Tissue engineering specifically aims to deliver a regime whereby full function 

is restored to damaged and diseased tissue. The use of stem cells as a means to deliver a 

functional tendon is highly desired. This study investigated the use of a combination of 

growth factors, stem cells, Vitamin C along with normoxic and hypoxic cell culture to 

differentiate human embryonic stem cells and adult mesenchymal stem cells towards a 

tenocyte like cell lineage. This study employed the gene combination of TNMD and THBS-

4 expression as a marker of tendon differentiation first identified by Jelinsky et al [68]. 

Both hESC’s and hMSC’s were cultured supplemented with individual FGF’s and in the 

presence and absence of Vitamin C under both normoxic and hyperoxic conditions. RT-

PCR was undertaken on all samples over 20 days (time intervals 0, 2, 5, 10 and 20 Days). 

The results obtained showed FGF-4 and the combination of FGF-4, FGF-6 & FGF-8 were 

capable of maintaining TNMD expression in hMSC when cultured in the presence of 

Vitamin c under hypoxic conditions. The combinations of FGF-4 & FGF-8 and FGF-4, FGF-6 

& FGF-8 were both capable of maintaining TNMD expression over 20 days when cultured 

in the presence of Vitamin C under normoxic conditions. 

Vitamin C is well documented to play an active role in collagen synthesis [337] which is 

required or muscular skeletal tissue development and also more specifically tendon [338]. 

Previous unpublished studies conducted by our laboratory have highlighted the 

requirement for Vitamin C in tendon differentiation when using BMP-12 & 13. This study 

has shown that the supplementation of media with Vitamin C and the specific growth 
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factors of FGF-4 or FGF-4, 6 & 8 in mesenchymal stem cells, FGF-4 + 8 or FGF-4, 6 + 8 in 

embryonic stem cells can induce and maintain the expression of the tendon linked genes 

TNMD and THBS-4. The use of Vitamin C in this study agrees with previous studies using 

Vitamin C as a component of differentiation media which enhances differentiation 

towards cardiomyocytes [339], chondrogenic lineage [340] and osteogenic lineage [341]. 

On comparing 21% O2 and 2% O2 culture of both hESC and hMSC cells supplemented with 

growth factors and Vitamin C. 2% O2 showed continued expression of TNMD and THBS-4 

tendon markers when hESC and hMSC cells were cultured with the growth factor 

combination of FGF-4, FGF-6 and FGF-8 with Vitamin C. ESC cultured at 2% O2 with 

differentiation media supplemented with BMP-12, BMP-13 & Vitamin C (previous 

unpublished data) and FGF-4 + 8 and Vitamin C was also capable of maintaining TNMD 

and THBS-4 expression. Furthermore, FGF-4 and Vitamin C was capable of maintaining 

TNMD and THBS-4 gene expression with MSC cultured at 2% O2. Reduced oxygen levels 

have been previously been shown to play a role in differentiation control especially in 

embryogenesis. During embryogenesis with oxygen diffusion in the embryo is limited by 

size with the natural progression of tissue-genesis involves hypoxia. The cellular response 

to hypoxia involves HIF proteins. HIF proteins especially HIF-1 and HIF-2, which are 

activated during development and many genes involved in differentiation being effected 

by hypoxia such as; POU5F1 (HIF-2α) and NANOG (HIF-1α) [342, 343]. Recently studies 

have found evidence of classical hypoxia response pathways in tendon injury where rota 

cuff injuries express high levels of HIF-1α [344]. This study has shown oxygen level plays a 

critical role in the differentiation of both embryonic and mesenchymal stem cells towards 

a tenocyte-like cell lineage. HIF-1α has previously been shown to up regulate the 
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transcription of COL1A2 [345]. Furthermore, HIF-1α has also been shown to up regulate 

TENC in human small cell lung carcinoma [346]. This study has shown that hypoxic stem 

cell culture is vital for the differentiation of stem cells towards tenocyte lineage and the 

possible role of HIF proteins in differentiation of both embryonic and mesenchymal stem 

cells towards a tenocyte-like lineage. 

The results of a previous unpublished study showed that BMP-12 & 13 could induce for 

hESCs in vitro tenogenic differentiation under normoxic conditions (2% O2). Distinct up-

regulation of tendon-linked genes (i.e. COL1A2, COL3A1, TENC, TNMD, THBS-4 and DCN) 

being observed in BMP-12 & 13 treated samples cultured under normoxic conditions (2% 

O2).  

Previous studies suggested that the transcriptional control of tendon-specific genes relied 

on BMP signalling pathway and Smad1, 5 & 8 activation [179, 183, 347-349]. As ligands, 

BMP-12 & 13 bind to Type II BMP serine/threonine kinase receptor followed by the 

activation of Type I receptor and subsequently activate the SMAD1, 5 & 8 which leads to 

tenocyte-like gene expression [350, 351]. This might be the explanation for the signal 

transduction pathway for the genes up-regulation observed in BMP-12 and 13 

supplemented differentiation media.  

FGF-4 has previously been shown to play an active and pivotal role in embryonic 

development. FGF-4 is expressed in pre-implantation murine blastocysts and is also 

present in the ICM [197, 198]. Previous studies focusing of the effect of FGF-4 on chick 

wing bud tendon development has shown overexpression FGF-4 was capable of up-

regulation of scleraxis a known tendon transcription factor. FGF-6 Studies conducted 

using the murine model has shown FGF-6 presence at E9.5 and to be exclusively present 
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in the myotomal compartment of the somite [201, 202]. FGF-6 has been shown to play a 

significant role in myogenesis employing knockdown murine model [201, 202]. Due to the 

highlighted importance of interactions between muscle and tendon during limb 

development FGF-6 was investigated as a possible signalling molecule in tendon 

development. Early investigation into the role of FGF-8 in limb development was 

conducted by Moon and Capecchi in 2000 were they undertook experimental work to 

assess the role of FGF-8 during mouse limb development [203]. Further, investigations 

utilising chick embryos highlighted the presence of FGF-8 transcripts in tendon of the 

developing limb in a chick [352]. Our findings agree in that both FGF-6 and FGF-8 are 

required for tenocyte differentiation, in that tendon is a constituent part of a limb. 

The individual FGF signal pathways are under researched along with FGF combinational 

studies in tendon differentiation. FGF’s are known to bind to one of the FGF receptors of 

which there are 4 (namely FGFR1-4) with subclass receptors. Post receptor ligation results 

in the activation of either PKC (Protein Kinase C) by means of activation of FGFR1/FGFR2 

signal cascade via FGF-4 ligation, ERK1/2 via activation of FGFR2 by FGF-4. JNK activation 

via FGFR1 by FGF-4 Ligation,FGFR2-FGF-4 ligation activation of p38 or Akt all of which can 

induce gene transcription by means of regulation of transcriptional promoters and 

enhancers [353]. However, the biochemical cues required for in vitro tenogenesis are 

poorly defined since the signalling pathways during the differentiation are complex and 

under-investigated. 

THBS-4 is an adhesive glycol protein that mediates cell-cell and cell-matrix interactions 

which has been identified that together with TNMD can be considered as tendon markers 

[68]. TNMD, as one of the type II transmembrane glycoproteins, was found to be 
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predominantly in dense connective tissue such as tendon and ligament [68], and thus was 

considered as a marker for tendon maturation when used in conjunction with COL1A2, 

COL3A1, TENC and DCN [354]. In our study, we observed distinct TNMD, THBS-4 

transcription over 2 days in the untreated SHEF-1 cells. This may due to the spontaneous 

differentiation progress of hESCs. Conversely, the SHEF-1 samples supplemented with 

BMP-12 & 13 or FGF-4 & 8 or FGF-4, 6 & 8 and hMSC supplemented with either: FGF-4 or 

FGF-4, 6 & 8, TNMD and THBS-4 transcription was observed to be transcribed throughout 

the 40-day differentiation. FGF-4 & 8 (hESC) and FGF-4 (hMSC) showed TNMD and THBS-4 

transcription up to day 20. Also, the clear synapsing of the cells observed at day 40 with 

the supplementation of BMP-12 & 13 with hESC indicated by the positive green TNMD 

staining which was not observed with FGF-4, 6 & 8 supplemented hESC or MSC although 

the expression of TNMD was observed. Taken together, these results suggested that 

BMP1-12 & 13 and FGF-4, 6 & 8 are capable of maintaining TNMD expression in hESC and 

FGF-4, 6 & 8 is also capable of maintaining expression of TNMD expression in hMSC. Both 

BMP-12 & 13 and FGF-4, 6 & 8 are capable of inducing tenocyte-like morphology when 

cultured at 2% O2, with FGF-4,6 & 8 is also capable of inducing a tenocyte-like gene 

expression in hMSC when cultured at 2% O2. 

This study agreed with previous studies as FGF-4 alone was capable to induce or maintain 

the tendon marker TNMD and THBS-4 up to 20 days in hMSC. This study showed FGF-6 

alone was incapable of inducing or maintain TNMD and THBS-4 expression in hESC and 

hMSC (post day 10). In this study FGF-8 alone was incapable of initiating and maintaining 

TNMD and THBS-4 expression past day 10 in hESC and was not detected in hMSC. FGF-4 

and FGF-6 have both been detected in AER and provide the signals to maintain 
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mesenchymal cells in the proliferative state in the PZ during limb development. As 

mentioned previously, FGF-4 has been shown to initiated scleraxis and FGF-6 having a 

role in myogenesis. However, the combination of FGF4 & FGF-6, were unable to maintain 

TNMD and THBS-4 expression past day 10 in hESC and again was not detectable in hMSC. 

On investigating the combination of FGF-4 and FGF-8, both THBS-4 and TNMD 

transcription was detected at day 40 in hESC supplemented media. 

The combination of FGF-4, 6 & 8 in this study provides the strongest expression of TNMD 

and THBS-4 in both hESC and hMSC over 40 day cultured at 2% O2. Understanding the 

close relationship between bone, cartilage, muscle and tendon development would 

underpin a stem cell based tissue engineered approach to tendon injuries. 

Further investigation employed the known SMAD inhibitor Dorsomorphin which was 

supplemented into growth factor supplemented media. FGF-4 & 8+d (hESC) and BMP-12 

& 13+d (hESC) showed inhibition of THBS-4 and therefore impaired tenogenesis. FGF-4+d 

(hMSC) showed inhibition of TNMD expression post 10 days. Conversely, FGF-4, 6 & 8 +d 

(hESC and hMSC) showed change to Tenogenic gene expression in that both TNMD and 

THBS-4 were both expressed. BMP signalling is known to utilise the SMAD signalling 

pathway and due to the inhibition of FGF-4 and FGF-4 + 8 by Dorsomorphin would infer 

that FGF-4 and FGF-4 +8 stimulate BMP production and subsequent signalling which 

would agree with previous studies linking FGF and BMP signalling and the requirement of 

both growth factors for cardiomyocyte differentiation [355, 356]. 

Histological comparisons made between growth factor supplementation and growth 

factor and Dorsomorphin supplementation of differentiation media highlighted subtle 

differences. hESC cultured in the presence of both BMP12 & 13 and Dorsomorphin 
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showed a distinct reduction in Collagen staining (Masson’s Trichrome) which highlights a 

inhibition of the SMAD signalling pathway results in a decrease in collagen synthesis. hESC 

cultured with BMP-12 & 13 and Dorsomorphin also a distinctive reduction in GAG staining 

(Alcian Blue) further highlighting that media supplemented with Dorsomorphin and 

inhibition of the SMAD signalling cascade also resulted in impaired GAG synthesis and 

secretion, which is confirmed by rt-PCR showing distinctive reduction in the gene 

transcripts for DCN, TENC, THBS-4, TNMD, COL3a1 and COL1a2. Similar down regulation 

was observed in the FGF-4 & 8 hESC cultured with the further supplementation of 

Dorsomorphin showed a distinct reduction in GAG staining and with THBS-4, DCN and 

TENC down regulation. Masson’s Trichrome staining for collagen also showed a distinctive 

reduction. However, both collagen 1a2 and Collagen 3a1 RNA were detected at all-time 

points using rt-pcr. hESC supplemented with both FGF-4, 6 & 8 and Dorsomorphin 

showed a distinct reduction at day 40 when compared with FGF-4, 6 & 8 only 

supplementation. Although, the alican blue measurements were reduced in the 

Dorsomorphin supplemented media from day 5 to day 40. Rt-pcr showed inhibition of the 

GAG decorin (DCN) with both THBS-4 and TNMD being detected throughout all time 

points. Masson’s Trichrome measurements showed a reduction in collagen staining at all 

time-points. However both COL1a2 and COL3a1 transcription were detected at all-time 

points. The effects of Dorsomorphin on BMP-12 & 13 supplementation agree with 

previous SMAD inhibition. However, the effects of Dorsomorphin on FGF induced hESC 

response indicates, the distinct possibility of FGF-BMP signalling cross talk. 

hMSC cultured with both FGF-4 or FGF-4, 6 & 8 and Dorsomorphin no significant 

difference in Masson’s Trichrome staining when compared to hMSC cultured with FGF-4 
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or FGF-4, 6 & 8 only. However, Alcian blue measurement revealed significant difference 

between FGF-4 and FGF-4 & Dorsomorphin and FGF-4, 6 & 8 and FGF-4, 6 & 8 with 

Dorsomorphin at day 40. Rt-PCR analysis showed Dorsomorphin to inhibit TNMD when 

supplemented into FGF-4 and FGF-4, 6 & 8 media at day 40. This further adds to the 

hypothesis that there is a distinct possibility of FGF-BMP cross talk. 

Morphological comparisons between FGF-4, 6 & 8 supplemented hESC and hMSC 

revealed the differentiated hESC cells to have a “cobble stone” like appearance. 

Conversely, the hMSC had a distinct fibroblastic morphology, similar to that of native 

tenocytes. The natural differentiation pathway for tenocytes would be embryonic stem 

cells to mesodermal to tenocyte stem cell to mature tenocyte. We hypothesis that the 

hESC have partially differentiated to a tenocyte derived “like” stem cell as the cobble 

stone like morphology [357] is not dissimilar to that observed in FGF-4, 6 and 8 

supplemented hESC differentiation. These distinct finding may be due to mesenchymal 

stem cells specialisation and differentiation having already occurred when compared to 

embryonic stem cells? 

This study has shown Vitamin C in conjunction with FGF-4, 6 & 8 cultured at 2% O2 was 

capable of inducing and maintaining tendon like gene markers such as tenomodulin 

(TNMD) and Thrombospondin-4 (THBS-4) over a 40 day culture period.  
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3.10 Conclusion 

In this study we have shown for the first time that FGF-4, 6 & 8 being capable of 

maintaining tendon specific genes TNMD and THBS-4 in both embryonic stem cells and 

mesenchymal stem cell when cultured at 2% O2. Furthermore, this study has for the first 

time shown FGF-4 as being capable of maintaining TNMD and THBS-4 gene expression in 

human mesenchymal stem cells and FGF 4 & 8 being capable of maintaining TNMD and 

THBS-4 gene expression in embryonic stem cell when cultured at 2% O2 for a limited time 

periods.



 

 
 

 

 

 

 

 

Chapter 4: PHBHHx Nanoparticle 

Production
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4.1 Introduction 

This study aims to control nanoparticle size to deliver a growth factor concentration 

previously identified in chapter 4. The multidisciplinary field of nanomedicine aims to 

produce materials in the nanometre range to restore or maintain tissues, deliver drugs 

and proteins as well as combination products for the purpose of improving human health. 

Nanotechnology has quickly evolved within medical engineering due to its ability to 

produce structures mimicking the dynamic biological micro environment, combining cells, 

scaffolds and drug releasing nanoparticles to efficiently produce functional tissue [358-

360] as well as effective destruction of diseased tissue [361-364] for medical applications.  

Nanoparticles have been shown to have an array of applications ranging from 

nanosensing, drug delivery, and gene transfection to growth factor delivery [365-370]. 

The ability to manipulate nanoparticle size to fit the needs of a desired application would 

provide increased utility to treat a range of diseases, including cardiovascular disease 

[371], osteoarthritis [372], diabetes [373], cancer [371, 374-377] and neurodegenerative 

disease [378] to mention but a few. Recently, nanoparticles have been shown to pass 

across the blood-brain barrier which is a major obstacle when delivering 

chemotherapeutical drugs for the treatment of nervous system tumours [379] as well as 

neurodegenerative diseases. For controlled drug release, linking nanoparticle size to a 

drug release rate would create a system whereby a specified drug release rate and 

duration could be achieved via a controlled manufacturing process. This would lead to 

improved treatment methods by removing drug metabolism and loss via administration 

route (i.e. the digestive tract) as the nanoparticle would serve to protect the 

encapsulated drug allowing for reduced drug loading. An immediate benefit of improved 

delivery would be in cost reduction of drug due to reduced concentration requirements 
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to meet efficacious dosage compared to oral administration. More importantly, limiting 

the administered dose would potentially reduce the risk of toxicity and non-specific side 

effects in the patient and could be combined with a targeted drug release systems [380-

384] for advanced drug delivery. 

The ability to control the size of nanoparticles during production would allow for the 

reliable and reproducible creation of smaller nanoparticles for applications such as 

nanoparticle-mediated gene transfection and direct low does growth factor delivery. This 

holds much promise in regenerative medicine as non-viral gene vectors present a 

significantly reduced safety hazard compared to viral based gene vectors [374]. The 

nanoparticle-mediated cellular response is critical for successful therapies with particles 

below 100nm actively mediating biological effects such as the binding and activation of 

membrane receptors and subsequent protein expression [385], a critical aspect within a 

variety of nanoparticle applications. The advantage of the use of smaller particles in 

clinical practise include easier intravenous injection, sterilisation by filtration [386, 387] 

and the avoidance of spleen filtration [388-390] which are critical for treating and 

managing the disease state. Isolating the key production variables affecting the size of 

nanoparticles would allow for more effective fabrication of smaller nanoparticles and 

promote efficient utilisation of their biological and practical benefits. 

Here, the controlled production of PHBHHx nanoparticles was investigated via the DOE 

method to determine the sensitivity of process variables and the repeatability of 

producing PHBHHx nanoparticles of a desired size. The DOE approach uses parallel 

multivariate designed experiments to investigate the action and interaction of variables in 

order to improve understanding, and therefore control of complex processes [391]. A key 

aspect of this is identifying controlled and uncontrolled variables, which affect the 



W. R. Webb PhD Thesis Chapter 4 

219 
 

response from the process, with preliminary studies aimed at highlighting which input 

variables affect the desired process output. Heperzine-A, Paclitaxel and ALB-PLC 

encapsulated nanoparticles showed conformity to this trend with high process 

repeatability. This study shows that controlled manufacture of PHBHHx nanoparticles via 

the solvent evaporation method is achievable and has been utilised to produce 

nanoparticles of below 100 nm. Demonstrating this level of controlled manufacture is 

essential for developing products in the tightly regulated medical industry where 

precision manufacture is essential for successful commercialisation and also increasing 

the control of desired drug delivery and drug concentration.  
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4.2 Materials and Methods 

 Nanoparticle Formulation 4.2.1

A range of PHBHHx w/v Chloroform solutions were prepared at a volume of 2mL (Organic 

Phase), 0.5% w/v of F68 (150mg)(Nanjing Well Chemical Co., Ltd. Nanjing, China) and 

0.5% w/v of Sodium deoxycholate (150mg) (Amresco, Solon, USA) were prepared in a 

volume of 28ml of 0.22µm filtered Water (Aqueous Phase). Once both the organic and 

aqueous phases were dissolved, the aqueous phase was filtered and added drop-wise to 

the organic phase. The aqueous/organic phase were then sonicated (Scientz JY92 – II) for 

various cycles whilst on ice (sonication cycle was 1 second sonication at a range of power 

settings and 1 second rest).The nanoparticle emulsion was then placed on a rotary 

evaporator(Buchi Rotavapor R-3) set at 30oC until all the organic phase was evaporated 

(emulsion becomes transparent). 

 Phospholipid Entrapment of Bovine Serum Albumin/FITC 4.2.2

Albumin 

Phospholipid, namely, soybean lecithin containing 70-97% phosphatidylcholine (PC), was 

purchased from Shanghai Tai-wei Pharmaceutical Co. Ltd. (Shanghai, China). Bovine 

serum albumin Fraction V was purchased from Xuzhou Wanbang Bio- Chemical Co. Ltd. 

(Jiangsu, China). Poloxamer188 (F68) was provided by Nanjing Well Chemical Co., Ltd. 

(Nanjing, China). Sodium deoxycholate (DOC-Na) was supplied by Amresco (Solon, USA). 

PHBHHx (MW 174,000) containing 14 mol% of R-3-hydroxyhexanoate (HHx) was kindly 

donated by Professor G. Chen (Tsinghua University, China). All other chemical reagents 

were of analytical grade or better. 
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 Preparation of PHBHHx Encapsulated Nanoparticles 4.2.3

PHBHHx nanoparticles were prepared with adjustments from a previous study [373] 0.5% 

(1mg) of ALB-PLC/FITC-Albumin or drug and 3% (7.5mg) PHBHHx w/v Chloroform solution 

were prepared at a volume of 2mL (Organic Phase), 0.5% w/v of F68 (150mg) (Nanjing 

Well Chemical Co., Ltd. Nanjing, China)  and 0.5% w/v of Sodium Deoxycholate (150mg) 

(Amresco, Solon, USA) were prepared at a volume of 28ml of 0.22µm filtered Water 

(Aqueous Phase). Once both the organic and aqueous phases were dissolved, the 

aqueous phase was filtered and added drop-wise to the organic phase. The 

aqueous/organic phase were then sonicated (Scientz JY92 – II) for various cycles whilst on 

ice (sonication cycle was 1 second sonication at a range of power settings and 1 second 

rest).The nanoparticle emulsion was then placed on a rotary evaporator(Buchi Rotavapor 

R-3) set at 30OC until all the organic phase was evaporated (emulsion becomes 

transparent). 

 Nanoparticle Characterization: Size, Zeta Potential and Poly-4.2.4

dispersity Index 

The mean particle size, size distribution and zeta potential of the resulting PHBHHX 

nanoparticles were characterized using dynamic light scattering (DLS) and electrophoretic 

light scattering (ELS) technology, respectively, with a Zetasizer Nano ZS90 instrument 

(Malvern Instruments Ltd., U.K.), using water as a dispersant at 25 C with each cycle of 

the measurement automatically determined by the instrument system. The particle size 

was displayed by intensity distribution, and the size distribution was evaluated by 

polydispersity index (PDI). 
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 Nanoparticle Stability Study 4.2.5

NP and ALB-PLC-NPs were produced as shown previously and zeta sized immediately 

(time point zero) further measurements were taken at time points 12hrs, 24hrs, 48hrs, 96 

hrs and 168 hrs from samples stored at 4 C and room temperature. 

 Multifactoral Experiment Design 4.2.6

Minitab® (16.2.2) was used to design and evaluate the multifactorial experiment and 

produce graphical outputs of the data. Three factors were assessed, namely, PHBHHx 

concentration, sonication power and number of sonication cycles at high and low 

conditions to bind the key experimental conditions (Table 4.1). This gave a total of eight 

experimental conditions (cube plot) with a centerpoint to complete the experimental 

design (Figure 4.1). An N=3 was taken for each run to account for variability in the 

measurement system and a total of three experimental runs were completed to account 

for batch-to-batch variability, an assessment of common-cause variation within the 

nanoparticle production process and an indication of the repeatability of the 

methodology. 
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Figure 0.1 Multifactoral Cube illustration of experimental design. 
 

Multifactorial 

Value 

PHBHHx Concentration 

(mg/ml) 

Sonication Power 

(W) 

Number of 

Sonication Cycles 

HIGH 2.000 500 40 

MIDDLE 1.125 300 25 

LOW 0.250 100 10 

Table 0.1 Multifactoral experimental parameters 
 

 Encapsulation Efficiency 4.2.7

Briefly, 5 ml of the drug/albumin NPs suspension was mixed with 5 ml NaOH (0.05M). The 

mixture was stirred for 24 h at room temperature so that the PHBHHx nanoparticles could 

be degraded by alkaline hydrolysis. The sample was then underwent centrifugation using 

(100,000 Da molecular weight cut off). The resultant flow-through sample was analysed 

by GCMS (Drug) or HPLC (Albumin) after a 1:20 dilution. As a result the total added 

amount of drug/albumin was obtained. Meanwhile, another 0.5 ml drug/albumin NPs 

suspension was taken, and mixed with 0.5 ml dH2O. The sample was also analysed by 
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GCMS after proper dilution. As such the amount of non-encapsulated drug/albumin was 

obtained. Therefore, the encapsulation efficiency could be calculated according to the 

following equation 

 

Equation 1 Encapsulation Efficiency Formulae 

Where Wt= Original concentration at start of encapsulation process, Wf= free drug or protein. 

 LC-MS/MS Detection of Paclitaxel and Haperzine A 4.2.7.1

The LC-MS/MS system consisted of an Agilent 1200 series RRLC, which includes an SL 

auto-sampler, degasser, SL binary pump and an Agilent triple-quadrupole MS (Agilent, 

USA). The system was controlled with B01.03 software for qualitative analysis and B01.04 

software for quantification. Separation was performed in a Diamonsil ODS column (50 × 

3.5 mm, 3.4 µm) with a corresponding guard column (ODS, 5 µm). The column was 

maintained at 30 °C and the injection volume was 1 µl.  The mass spectrometer was 

operated using an electrospray source configured to positive ion mode and the 

quantification analysis was performed using multiple reaction monitoring (MRM). (M+H) 

of each analyte was selected as the precursor ion. Instrumental parameters were as 

follow: gas temperature: 350oC; with a gas flow:  8 ml/min; nebulizer: 30 psi; capillary: 4 

000 v. 

Gas chromatography separation of Haperzine A was performed using a mobile phase 83% 

: 17% H2O and MeOH with 0.1% v/v Formic Acid with a flow rate of 0.4ml/min. Mass 

spectrometry detection using (M+H)+ m/z 243 - 226, Dwell: 300, fragmentor : 185, 

collision energy: 4, Polarity: positive. 
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Gas chromatography separation of Paclitaxel was performed using a mobile phase 30% : 

70% H2O and MeOH with 0.1% v/v Formic Acid with a flow rate of 0.4ml/min. Mass 

spectrometry detection using (276)+ m/z 876.3 – 308.1, Dwell: 550, Fragmentor : 185, 

collision energy: 28, Polarity: positive. 

 High Pressure liquid Chromatography detection of Bovine 4.2.7.2

Serum Albumin 

Bovine serum albumin fraction V was dissolved in sterile filtered dH2O to make a stock 

concentration of 1mg/ml. Serial dilutions of the stock solution was undertaken to produce 

a range of concentration  0.125mg/ml, 0.0625mg/ml, 0.03125mg/ml, 0.015625mg/ml, 

0.007825mg/ml, 0.0039025mg/ml and 0mg/ml for production of a standard curve. The 

samples were then analysed using two phase separation using: mobile phase (A) (double 

filtered water 99.9% with 0.1% TFA) and mobile phase (B) dH2O (double filtered 

acetonitrile 79.95%, 19.95% water and 0.1% TFA). A gradient analysis was set up starting 

with: 100:0 with a gradient increase to 0:100, over a 20 minute separation using Sepax 

Bio-C4 protein separation HPLC column. Protein analysis was undertaken using UV 

analysis at a wavelength of 215nm post separation. 

 Design of Experiments 4.2.8

Minitab® 16.2.2 was utilised to set-up a 2 level, 3 factor design of experiment (Full 

Factorial 23). Whereby, the upper, median and lower limits of each variable were entered 

and a randomised run output was created by Minitab®. All samples were then run 

according to the Minitab® output. Analysis of all factorial data was undertaken utilising 

the DOE commands in Minitab® 16.2.2 which produced Pareto and interaction plot 

graphical outputs. 
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Pareto charts and standardised plots demonstrate the magnitude and importance of an 

effect in relation to the individual and combinations of variables. The x-axis is dependent 

upon whether an error term is present. If no error term exists Minitab® uses Lenth’s 

pseudo-standard error which is based upon sparse effect (assumption that the variation 

in the smallest effect is because of random error, with α=0.05 is set as default). 

Interaction plots are a plot of the fitted means (post analysis) for each variable utilising 

the levels (high, low and median) for each mean and shows the interaction of the 

variables on the investigated factor. 
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 Experimental Plan 4.2.9

Stability Tesing

Verify Prediction of NP size

END

Identify Factors affecting nanoparticle size

PHBHHx Concentration Sonication Power Sonication Cycles

Multifactoral Experiment Design

Particle Size Particle Zeta Potential Particle Polydispersity Index

Are Results Reproducable

Yes No END

Repeat Multifactoral with encapsulated 
Drugs and Proteins

Particle Size Particle Zeta Potential Particle Polydispersity Index

STAGE 1

STAGE 2

Repeat Stage 2 with Different Users

 

Figure 0.2 Experimental Plan 
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4.3 Results 

 Multifactoral Design Blank Nanoparticles 4.3.1

Minitab® (16.2.2) was used to design and evaluate the DOE and produce graphical 

outputs of the data. Three key factors were assessed, namely, PHBHHX concentration, 

sonication power and number of sonication cycles at high and low conditions to enclose 

the experimental. 

This gave a total of eight experimental conditions (cube plot) with a centerpoint to 

complete the experimental design. An N=3 taken for each run to account for variability in 

the measurement system and a total of three experimental runs were completed to 

account for batch-to-batch variability, an assessment of common-cause variation within 

the nanoparticle production process and an indication of the repeatability of the 

methodology. 

From the data obtained from the cube plot shown in Figure 4.3 a range of nanoparticle 

properties are produced with a size range of 89.5nm – 229.3nm, PDI ranging from 0.1293 

– 0.1923 and a zeta potential ranging from -9.8mV - -13.7mV.  
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Figure 0.3 Cube plot of the multifactorial designed experiment showing the process variables 

Shows high/low values and the centre point for first run. A) Size, B) PDI and C) Zeta potential 

From the cube plot in Figure 4.4 nanoparticle properties with a size range of 89.4nm – 

234.05nm, PDI ranging from 0.127 – 0.202 and a zeta potential ranging from -10.3mV - -
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12.9mV. From both cube plots the major effectors of nanoparticle size can be identified 

by magnitude of effect. 

 

 

 

Figure 0.4 Cube plot of the multifactorial designed experiment showing the process variables 

Shows high/low values and the centre point for second run. A) Size, B) PDI and C) Zeta potential 
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From Figure 4.5 the magnitude of effect of each variable can be shown for each 

nanoparticle property. Sonication rate had the greatest effect on nanoparticle size (Figure 

4.5A), followed by PHBHHx concentration then sonication power. However all variables 

were shown to have an effect on nanoparticle size. The major effector of PDI (Figure 4.5B) 

was shown to be sonication rate followed by combination of PHBHHx concentration with 

sonication rate and finally sonication power with PHBHHx concentration and the 

combinations of PHBHHx and sonication power, sonication power and sonication rate & 

the combination of sonication power, PHBHHx concentration and sonication rate having 

no effect. Zeta potential (Figure 4.5C) showed all combinations and individual variables 

with the exception of the combination of sonication power and sonication rate having no 

magnitude effects. 
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Figure 0.5 Pareto chart of standardised effects for the size production of nanoparticles. 

Graph shows single and multi-variable effects with statistical significance shown at p=0.05 for first run. A) 

Size, B) PDI and C) Zeta potential 
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From Figure 4.6 the magnitude of effect of each variable can be shown for each 

nanoparticle property. Sonication rate had the greatest effect on nanoparticle size (Figure 

4.6A), followed by PHBHHx concentration then sonication power. However all variables 

were shown to have an effect on nanoparticle size. The major effector of PDI (Figure 4.6B) 

was shown to be sonication rate followed by combination of PHBHHx concentration with 

sonication rate and finally sonication power with PHBHHx concentration and the 

combinations of PHBHHx and sonication power, sonication power and sonication rate & 

the combination of sonication power, PHBHHx concentration and sonication rate having 

no effect. Zeta potential (Figure 4.6C) showed all combinations and individual variables 

with the exception of the combination of sonication power & sonication rate and the 

combination of PHBHHx concentration, sonication power and sonication rate having no 

magnitude effects. 
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Figure 0.6 Pareto chart of standardised effects for the size production of nanoparticles. 

Graph shows single and multi-variable effects with statistical significance shown at p=0.05 for Second 

run. A) Size, B) PDI and C) Zeta potential 
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The Standardised plots shown in Figure 4.7A-C, show the variable factors which are 

significant to the nanoparticle properties of Size (Figure 4.7A), PDI (Figure 4.7B) and Zeta 

Potential (Figure 4.7 C) for Run 1. 

 

 

 

Figure 0.7 Main effects plot showing the effect of the three variables from the first run. 

A) Size of nanoparticles during production, B) PDI of nanoparticles during production and C) Zeta 

Potential. 
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The Standardised plots shown in Figure 4.8A-C, show the variable factors which are 

significant to the nanoparticle properties of Size (Figure 4.8A), PDI (Figure 4.8B) and Zeta 

Potential (Figure 4.8C) for Run 2. 

 

 

 

Figure 0.8 Main effects plot showing the effect of the three variables from the second run. 

A) Size of nanoparticles during production, B) PDI of nanoparticles during production and C) Zeta 

Potential 
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The Interaction plots shown in Figure 4.9A-C, show the interaction of factors (the further 

the lines are from parallel the greater the interaction) to the nanoparticle properties of 

Size (Figure 4.9A), PDI (Figure 4.9B) and Zeta Potential (Figure 4.9C) for Run 1. 

 

 

 

Figure 0.9 Interaction plot showing the effect of the three variables from the first run. 

A) Size of nanoparticles during production and B) PDI of nanoparticles during production and C) Zeta 

Potential. 
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The Interaction plots shown in Figure 4.10A-C, show the interaction of factors (the further 

the lines are from parallel the greater the interaction) to the nanoparticle properties of 

Size (Figure 4.10A), PDI (Figure 4.10B) and Zeta Potential (Figure 4.10C) for Run 2 

 

 

 

Figure 0.10 Interaction plot showing the effect of the three variables from the second run. 

A) Size of nanoparticles during production and B) PDI of nanoparticles during production and C) Zeta 

Potential. 
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From the DOE investigation we deduced that by fixing concentration PHBHHx molecular 

weight and sonication power and introducing variations in sonication cycles we may be 

able to produce a prediction curve for the production of PHBHHx nanoparticles.  

 Production of a controlled Blank Nanoparticle Size by fixing 4.3.1.1

PHBHHx concentration and Power and varying the number of 

sonication cycles. 

From the preliminary data observed in the multifactorial design the inclusion of 3 extra 

sonication points were included in production of a standard curve to predict nanoparticle 

size namely 15, 25 and 35 sonication cycles. The PHBHHx concentration was fixed at 

0.25mg/ml and sonication power was fixed at either 100W or 500W (Table 4.2). 

Power 10 
Sonication 

Cycles 

15 
Sonication 

Cycles 

20 
Sonication 

Cycles 

25 
Sonication  

Cycles 

30 
Sonication  

Cycles 

35 
Sonication 

Cycles 

40 
Sonication  

Cycles 

 
100W 

204.32nm 
±  

3.74nm 

185.00nm 
± 

2.87nm 

167.65nm 
±  

4.50nm 

154.33nm  
± 

2.75nm 

140.07nm 
 ±  

1.85nm 

132.87nm 
± 

1.16nm 

122.43nm 
± 

2.79nm 
 

500W 
165.78nm 

 ±  
1.55nm 

134.80nm 
± 

4.56nm 

117.03nm 
±  

3.37nm 

107.07nm 
± 

0.69nm 

98.45nm 
 ± 

2.45nm 

94.88nm 
± 

0.67nm 

94.26nm  
± 

0.88nm 

Table 0.2 Nanoparticle prediction curve full data set 

From the data obtained in the addition of sonication points a standard curve graph for 

two power settings with fixed PHBHHx concentration was created (Figure 4.11). 
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Figure 0.11 Blank Nanoparticle prediction Standard Curve 

Blank nanoparticle size prediction curve at high and low sonication power and PHBHHX concentration of 

0.25 mg/mL. 100W: Sonication power of 100 W. 500W: Sonication power of 500 W. Graph shows mean 

values  1 standard deviation (N=6) over two batches of N=3. 100W R2= 0.99549, 500W R2= 0.99475. 

From the graph in Figure 4.11 an equation was extracted to predict nanoparticle size by 

fixing PHBHHx concentration, Sonication Power and using sonication cycles as a variable 

to produce a range of blank nanoparticles to test the logistic dose response curve Table 

4.4 and Equation 2). 

From the data in Table 4.3 and subsequent graph the following equations were created to 

predict nanoparticle size for sonication power of both 100W and 500w. 
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Equation 
Component 

100W 500W 

A1 (Initial Value)  241.622 197.357 
A2 (Final Value) 67.8974 87.0395 

x0 (centre) 25.4944 15.1511 
p (Curve constant) 1.54875 2.84045 

Table 0.3 Values to be attributed to the equation for nanoparticle prediction 
 

 

Where n=number of Sonication cycles. 

Equation 2 Logistic dose response curve 

 Investigating whether encapsulation of a drug/protein has an 4.3.1.2

effect on Nanoparticle size 

To validate the standard curve nanoparticles which encapsulated either paclitaxel (Table 

4.4  and Figure 4.12), Albumin (Table 4.5 and Figure 4.13) or Haperzine A (Table 4.6  and 

Figure 4.14) were produced using two power settings of 500W and 100W with fixed 

PHBHHx concentration of 0.25mg/ml and utilising sonication cycle settings of 10, 20, 30 

and 40. 

Power 10 
Sonication 

Cycles 

20 
Sonication 

Cycles 

30 
Sonication  

Cycles 

40 
Sonication  

Cycles 

 
100W 

199.0nm 
±  

1.65nm 

163.5nm 
±  

2.87nm 

139.8nm 
 ±  

4.24nm 

124.1nm 
± 

2.2nm 
 

500W 
161.7nm 

 ±  
1.85nm 

116.8nm 
±  

2.13nm 

99.5nm 
 ± 

1.93nm 

92.3nm 
± 

2.77nm 

Table 0.4 Paclitaxel Loaded nanoparticle Size validation 
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Figure 0.12 Paclitaxel loaded Nanoparticle validation Curve 

Size validation compared to original blank PHBHHX nanoparticle curve of Paclitaxel. 100W: Sonication 

power of 100 W. 500W: Sonication power of 500 W. Graph shows mean values  1 standard deviation 

(N=6) over two batches of N=3. 

Power 10 
Sonication 

Cycles 

20 
Sonication 

Cycles 

30 
Sonication  

Cycles 

40 
Sonication  

Cycles 

 
100W 

204.0nm 
±  

5.28nm 

164.0nm 
±  

4.25nm 

135.2nm 
 ±  

5.13nm 

116.4nm 
± 

2.69nm 
 

500W 
161.4nm 

 ±  
2.57nm 

115.6nm 
±  

5.33nm 

98.6nm 
 ± 

3.67nm 

93.4nm 
± 

5.97nm 

Table 0.5 Albumin-PLC Loaded nanoparticle Size validation 



W. R. Webb PhD Thesis Chapter 4 

243 
 

 

Figure 0.13 Albumin-PLC loaded Nanoparticle validation Curve 

Size validation compared to original blank PHBHHX nanoparticle curve of Albumin encapsulated 

nanoparticles. 100W: Sonication power of 100 W. 500W: Sonication power of 500 W. Graph shows mean 

values  1 standard deviation (N=6) over two batches of N=3. 

 

Power 10 
Sonication 

Cycles 

20 
Sonication 

Cycles 

30 
Sonication  

Cycles 

40 
Sonication  

Cycles 

 
100W 

210.1nm 
±  

1.65nm 

167.5nm 
±  

4.60nm 

145.5nm 
 ±  

2.01nm 

132.1nm 
± 

5.2nm 
 

500W 
165.2nm 

 ±  
7.08nm 

117.8nm 
±  

1.38nm 

98.2nm 
 ± 

0.63nm 

94.2nm 
± 

1.46nm 

Table 0.6 Haperzine A Loaded nanoparticle Size validation 
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Figure 0.14 Haperzine A loaded Nanoparticle validation Curve 

Size validation compared to original blank PHBHHX nanoparticle curve of HaperzineA encapsulated 

nanoparticles. 100W: Sonication power of 100 W. 500W: Sonication power of 500 W. Graph shows mean 

values  1 standard deviation (N=6) over two batches of N=3. 

From the data obtained in tables 4.4 – 4.6 a prediction error (nm) and percentage (%) can 

be calculated to establish the validity of the nanoparticle prediction curve. 
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Sonication 

Power (W) 

Curve 

Prediction 

(nm) 

Paclitaxel HaperzineA ALB-PLC-NP 

Prediction 

Error (nm) 

Prediction 

Error (%) 

Prediction 

Error (nm) 

Prediction 

Error (%) 

Prediction 

Error (nm) 

Prediction 

Error (%) 

100 

204.5 5.47 2.67 5.65 2.76 0.44 0.21 

167.7 4.26 2.54 0.26 0.15 3.69 2.20 

141.7 1.96 1.38 4.08 2.86 6.52 4.60 

124.2 0.07 0.06 7.88 6.35 7.75 6.24 

500 

165.7 3.98 2.40 0.48 0.29 4.28 2.58 

118.3 1.54 1.31 0.54 0.46 2.68 2.26 

99.8 0.30 0.30 1.65 1.66 1.21 1.21 

93.2 0.85 0.91 1.03 1.10 0.16 0.17 

Overall Average 

Prediction Error 
2.30 ± 2.02 1.45 ± 1.01 

2.70 ± 

2.84 

1.96 ± 

2.06 

3.34 ± 

2.78 

2.44 

± 2.10 

Table 0.7 Loaded Nanoparticle Size prediction Evaluation and Error. 

Following the evaluation of blank nanoparticles, the process was repeated with 

Heperzine-A, Paclitaxel and ALB-PL-NPs to see if the same rule applied to these complexes 

since then the size evaluation can be conducted using blank polymer only nanoparticles 

and the results extrapolated for drug encapsulated nanoparticles. From Figures 4.15 – 

4.17 it can be seen that these encapsulated drugs conformed to the same production size 

curve as the blank nanoparticles, meaning that the original curve can be used to select a 

desired nanoparticle size, for a specified application. 

The accuracy of this relationship has also been evaluated in Table 4.7, which shows that 

the maximum overall (mean) prediction error from blank to drug encapsulated 

nanoparticles as 3.34  2.78 nm which equates to 2.44  2.10 %, with a prediction error 

range of 0.07 – 7.88 nm or 0.06 – 6.35% for the three drugs. 
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 Encapsulation Efficiency 4.3.2
Encapsulation Efficiency was calculated using the following formulae: 

Drug Loaded NPs Size 
(nm) 

PDI Zeta Potential 
(mV) 

EE 
(%) 

Haperzine A (1:60) 95.2 ± 0.73 0.128 ± 
0.007 

-12.2 ± 0.35 49.98 ± 1.50 

Haperzine A (1:90) 94.2 ± 1.46 0.146 ± 
0.012 

-13.8 ± 1.85 48.81 ± 1.69 

Haperzine A (1:120) 93.3 ± 1.46 0.137 ± 
0.013 

-15.33 ± 1.10 63.50 ± 1.57 

Table 0.8 Haperzine-A loaded nanoparticles optimisation.  
Values are mean  s.d. (n=3). 

 

Drug Loaded NPs Size 
(nm) 

PDI Zeta Potential 
(mV) 

EE 
(%) 

Albumin (1:60) 93.4 ± 0.42 0.246± 
0.002 

-35.9 ± 2.4 59.11 ± 1.50 

Albumin (1:90) 95.5 ± 0.25 0.211 ± 
0.006 

-35.3 ± 0.9 76.63 ± 2.14 

Albumin (1:120) 94.2 ± 0.36 0.250 ± 
0.010 

-37.8 ± 1.7 66.89 ± 2.30 

Table 0.9 Albumin loaded nanoparticles optimisation.   

Values are mean  s.d. (n=3). 

The encapsulation efficiency of Heperzine-A (Table 4.8) was found to highest at a drug to 

polymer ratio of 1:120 with 63.50  1.57 % with lower entrapment of around 50% for 

ratios of 1:60 and 1:90. Transmission electron microscopy (Figure 4.15) showed that the 

Heperzine-A loaded nanoparticles were spherical in shape and that the size distribution of 

the nanoparticles was low.  
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Figure 0.15 Transmission Electron Microscopy (TEM) of PHBHHx nanoparticles 

A) Haperzine A loaded PHBHHx nanoparticles (low magnification), B) Haperzine A loaded PHBHHx 

nanoparticles (high magnification), C) Blank PHBHHx nanoparticles (low magnification) and D) Blank 

PHBHHx nanoparticles (high magnification). (A & B imaged at West China School of Pharmacy, C & D 

imaged at School of Medicine, Tsinghua University.) 

 Effects of controlled manufacture on drug release profiles 4.3.3

Having previously identified that Haperzine A showed a high encapsulation. The next step 

in the investigation was to evaluate the effects of DOE manufacture of drug containing 

nanoparticles. This investigation would produce a new batch of 4 haperzine A 

nanoparticles with varying PHBHHx concentrations and production settings (Table 4.10). 
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Sample PHBHHx 
Concentration 

(mg/ml) 

Sonication 
Power 

Sonication 
Cycles 

Haperzine A 
Concentration 

(mg/ml) 

1 0.25 500 25 0.000521 
2 0.25 100 20 0.000521 

3 2 500 35 0.004167 

4 2 100 15 0.004167 

Table 0.10 Haperzine A loaded nanoparticles for release profile production settings 

From the above experimental settings the following Haperzine A loaded nanoparticle 

profile were obtained and showed a decrease in encapsulation efficiency when PHBHHx 

concentration was increased (Table 4.11).  

Sample Size (nm) PDI 
Zeta Potential 

(mV) 

Prediction 
Curve 

Percentage 
Error (%) 

Encapsulation 
Efficiency (%) 

1 108.33±3.69 0.11±0.03 -17.83±1.39 0.95 60.93±4.85 
2 119.93±3.02 0.17±0.04 -21.18±3.08 0.3 75.54±4.5 
3 134.77±7.56 0.07±0.02 -23.37±1.14 1.4 22.81±5.44 
4 183.27±5.5 0.14±0.06 -32.10±2.38 1.05 21.39±7.27 

Table 0.11 Haperzine A nanoparticle properties and Encapsulation Efficiency. 

4.4 Multifactoral investigation into the effects of surfactant 

From the data obtained from the cube plot shown in Figure 4.16 range of nanoparticle 

properties are produced with a size range of 77.7nm – 102.8nm, PDI ranging from 0.092 – 

0.169 and a zeta potential ranging from -8.37mV - -33.95mV. 
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Figure 0.16 Cube plot of the multifactorial DOE for surfactant. 

A) Size, B) PDI and C) Zeta potential. 

Figure 4.17A and Figure 4.17B shows the magnitude effects of DO and F68. F68 has the 

greatest magnitude effect on nanoparticle size and PDI. Figure 4.17C shows DO having the 

greatest effect on zeta potential followed by F68 and the combination of F68 and DO. 
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Figure 0.17 Combined and individual effects of surfactants  

A) Size, B) PDI and C) Zeta Potential 

Figure 4.18A, B & C shows the variables that have a significant effect on nanoparticle 

properties. 
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Figure 0.18 Standardised Effects 

Shows Standardised effects on A) Size, B) PDI and C) Zeta potential 

The Interaction plots shown in Figure 4.19A-C, show the interaction of factors (the further 

the lines are from parallel the greater the interaction) to the nanoparticle properties of 

Size (Figure 4.19A), PDI (Figure 4.19B) and Zeta Potential (Figure 4.19C). 
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Figure 0.19 Interaction Plot for F68 and Deoxycholate  

Shows the interaction of the Surfactants on PDI, Zeta Potential and Size 

Figure 4.20 shows the 3D combinational effects of DO and F68 on nanoparticle size 

(Figure 4.20A), PDI (Figure 4.20B) and nanoparticle zeta potential (Figure 4.20C). 
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Figure 0.20 Surfactant Surface Plot  

showing interactions between surfactant concentration and nanoparticle properties. 

By fixing sonication power at 500w, sonication rate at 40 and PHBHHx concentration at 

025mg/ml and producing a further two factorial DOE for the surfactants we have 
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identified a further mechanism of decreasing nanoparticle size to 77.31 ± 0.35 nm and the 

possibility of control nanoparticle charge (Table 4.12). 

Sample Size (nm) PDI 
Zeta Potential 

(mV) 

0.25mg/ml + 7.5mg of F68 

and 7.5mg/ml DO 
77.31±0.35 0.123±0.010 -12.57±0.58 

0.5mg/ml + 5mg of F68 

and 5mg/ml DO 
85.61±0.63 0.125±0.005 -15.75±0.80 

0.25mg/ml + 7.5mg of F68 

and2.5 mg/ml DO 
95.68±0.60 0.092±0.022 -33.95±4.96 

0.75mg/ml + 7.5mg of F68 

and 7.5mg/ml DO 
96.40±0.73 0.169±0.017 -8.37±0.50 

0.75mg/ml + 7.5mg of F68 

and 2.5 mg/ml DO 
102.80±0.74 0.127±0.016 -15.03±3.29 

Table 0.12 Surfactant multifactorial results for Size, PDI and zeta potential 
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4.5 Nanoparticle Stability 

The blank nanoparticle stability study was conducted over 168 hours (7 days) to assess 

the change in size, PDI and zeta potential of the nanoparticles (Table 4.13 – Table 4.16 

and Figure 4.21A, B and C). The nanoparticle size was stable for the full 168 hours at both 

high and low sonication settings over the range of nanoparticle sizes. There was also no 

significant difference seen in the nanoparticle size stability when stored at room 

temperature compared to 4 C.  

 

The PDI of the blank nanoparticles showed a slight fluctuation over the 168 hour period, 

resulting in a slightly elevated after 168 hours (Figure 4.21B). The PDI recorded at the end 

of the 168 hour period was still below the 0.3 benchmark figure for in vivo drug delivery 

applications and there was no significant difference between the nanoparticles PDI after 

168 hours stored at room temperature compared to 4 C.  

The zeta potential of the blank nanoparticles remained stable over the 168 hour period 

albeit with minor fluctuations at the measurement intervals (Figure 4.21C). This 

considered, the zeta potential for the nanoparticles remained in the accepted range of -

10 to -40 mv for the duration of the study and there was no observed difference between 

those stored at 4 C and those stored at room temperature. 
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Sample number Sample description 

1 
0.25mg/ml refrigerated (4oC)100W 40 

cycles 

2 
0.25mg/ml room temperature 

(4oC)100W 40 cycles 

3 
0.25mg/ml refrigerated (4oC)500W 40 

cycles 

4 
0.25mg/ml room temperature 

(4oC)500W 40 cycles 

Table 0.13 Sample guide for stability study 

Sample 0 hrs 24 hrs 48 hrs 96 hrs 168 hrs 

1 189.2±1.1 186.9±5.0 184.0±6.4 181.1±4.2 178.2±1.0 

2 189.2±1.1 190.5±0.9 186.3±1.8 185.2±3.1 182.7±4.0 

3 97.6±1.0 94.6±0.8 95.3±1.9 96.4±1.4 98.7±2.4 

4 97.6±1.0 94.4±0.8 93.9±1.5 97.4±1.7 98.5±2.5 

Table 0.14 Stability Study Nanoparticle Size 

Shows size of nanoparticles size in nm over 168 hours 

Sample 0 hrs 24 hrs 48 hrs 96 hrs 168 hrs 

1 0.125±0.033 0.142±0.029 0.108±0.033 0.144±0.020 0.137±0.012 

2 0.125±0.033 0.139±0.035 0.170±0.021 0.170±0.017 0.154±0.007 

3 0.172±0.009 0.184±0.010 0.242±0.008 0.234±0.006 0.225±0.004 

4 0.172±0.009 0.174±0.024 0.183±0.012 0.207±0.007 0.208±0.026 

Table 0.15 Stability Study PDI 

Sample 0 hrs 24 hrs 48 hrs 96 hrs 168 hrs 

1 -13.5±0.2 -18.0±1.2 -18.6±0.7 -23.1±2.3 -37.6±0.9 

2 -13.5±0.2 -16.6±1.0 -15.8±1.5 -13.6±0.9 -24.5±1.6 

3 -26.3±6.3 -36.9±5.1 -37.5±3.8 -21.6±3.0 -34.3±6.2 

4 -26.3±6.3 -31.6±4.0 -36.4±2.1 -34.3±6.0 -37.0±2.1 

Table 0.16 Stability Study Zeta Potential 

Shows zeta potential over 168 hours values in mV 
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Figure 0.21 Nanoparticle Stability testing. 

A) Size stability study of blank PHBHHX nanoparticles at 0.25mg/mL. B) PDI stability study of blank 

PHBHHX nanoparticles at 0.25mg/mL. C) Zeta potential stability study of blank PHBHHX nanoparticles at 

0.25mg/mL. High/low sonication settings at room temperature (rt) and 4 C. Graph shows mean values  

1 standard deviation(N=3).  
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4.6 Discussion 

To our knowledge there are, no published protocol for controlling nanoparticle size. 

Controlled drug delivery, more so growth factor delivery over 40 days with an aim to 

deliver a precise dose being able to control nanoparticle size may well help to deliver a 

nanoparticle with such properties. To date there has been little focus on controlling 

nanoparticle properties such as size during the manufacturing process. Experimental 

design is a vital aspect of any research that is often overlooked but when well executed, 

has the potential to deliver high impact results with precise planning and reduced cost. A 

factorial experiment consists of two or more factors, taking into account the effect of 

each variable on the process as well as the interaction of multiple variables in order to 

optimise production. Within a manufacturing process such as nanoparticle production, 

the control of these variables is critical and the knowledge of how they interact as well as 

which variables have the largest effect on controlling the desired process output will lead 

to more tightly controlled production. This interaction of variables is often ignored but is 

critical for a full understanding of the process [392].  

Lamprecht et al [393, 394] achieved variation in Poly (lactic-co-glycolic acid) (PLGA) and 

bovine serum albumin (BSA) nanoparticle size by altering production variables 

(homogenisation time, polymer concentration and surfactant concentration) using a ‘one 

factor at a time’ (OFAT) approach. The absence of consideration of the interaction of 

competing variables within their process resulted in the production of nanoparticles with 

a minimum size of 230 nm with no indication of repeatability. A separate study by 

Gutierro et al [395] also varied PLGA-BSA nanoparticle size by altering the production 

process and managed to reduce the nanoparticles from 1000 nm to 200 nm which led to 

a reduced immune response, also using an OFAT approach. Gryparis et al [396] employed 
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a pseudo-multivariate batch method to vary the size of PLGA nanoparticles and were able 

to create drug encapsulated nanoparticles with a minimum size of 150 nm and a PDI of 

close to 0.3, the accepted limit for clinical applications [397].  

Perhaps the most rigorous study to date on size control of nanoparticles employed a 5-

factor 3-level experimental design for the production of PLGA-BSA nanoparticles [398]. 

Detailed computer analysis of this factorial design revealed a theoretic minimum 

nanoparticle diameter for their double emulsion production method of 122.4 nm. As 

described previously, nanoparticles with a mean diameter of less than 100 nm would be 

highly desirable to mediate cellular response, for sterilisation via filtration, for use in gene 

transfection and to actively cross the blood-brain barrier and. By producing a nanoparticle 

size range of 90 – 205 nm, this study has demonstrated the advantage of using PHBHHx 

for nanoparticle production to fit a variety of applications. In this study, blank 

nanoparticles showed the same size trend as encapsulated nanoparticles meaning that 

various biocompatible polymers can be characterised by this method in the knowledge 

that the introduction of drugs/growth factors to the nanoparticles will not affect the 

production size.  

From the data in table 5.8 it is evident that the process described is highly repeatable and 

can accurately produce nanoparticles of a desired size. This is a critical component of any 

production system, since if a process is not reproducible or repeatable it cannot be used 

for reliable or commercial production. If batch to batch production is not considered 

within an experimental process, then common cause variability is not accounted for and 

the process cannot be reliably evaluated. A large number of experimental methods only 

account for inter-batch variability which is an assessment of the accuracy of the 

measurement system in use i.e. an N of three on one occasion, but gives no indication of 
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the repeatability of the experimental methodology. Bridging the gap between industry 

and research by implementing a DOE approach in research laboratories is an invaluable 

way to attract industry and produce high quality research. This is a highly critical 

consideration for the successful commercialisation of medical products which should be 

the aspiration of all research groups not only in the field of drug delivery and 

pharmaceutical research but also regenerative medicine.  

One consideration that must be noted in this process is the effect of sonication on the 

encapsulated protein or drug, since high sonication power may have a destructive effect 

on the encapsulated protein. Observations from the encapsulation of Albumin and 

HaperzineA showed a low entrapment efficiency which can be explained by the 

sonication power being high enough to destroy the drug. This has been highlighted due to 

the total drug concentration being calculated from the amount of drug input at the start 

of the process, taking into account the overall efficiency. In contrast, traditional 

encapsulation efficiency calculations use the total drug concentration after breakdown of 

the nanoparticles via sonication and therefore do not account for the destruction of drug 

due to sonication.  It can be noted from a previous study that a sonication power of 400 

W also had no apparent effect on the encapsulation of insulin [373], however repeat and 

high power sonication on the formed nanoparticle to release the entrapped drug or 

protein can cause destruction of the analyte of interest resulting in underestimated 

encapsulated drug dose, which may have a significant effect on the target whether it is 

cellular differentiation or diabetic control. At higher sonication power and duration, there 

was a tighter distribution of particle sizes and a reduction in PDI  compared to the lower 

settings which is consistent with previous studies [399]. This is due to the increased 

exposure to ultrasonic force, which acts to push the size distribution curve down towards 
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the lower size limit, reducing the overall range and creating a tighter size distribution. This 

is advantageous from a process perceptive since creating a tighter size distribution means 

that the process is inherently more reproducible when creating smaller nanoparticles.   

The nanoparticles in this study were assessed over seven days and showed no size 

deviation for this period as well as small and acceptable changes to PDI and zeta potential 

which is critical for the viability of the nanoparticles for clinical applications [287]. This 

was found to be the case for both 4 C and room temperature, showing the viability of this 

method in terms of stability. Clearly, storage will need to be considered in relation to the 

encapsulated drug as well, since most proteins will need to be stored at 4 C to retain 

their integrity.  

In this study we created nanoparticles as small as 90 nm with a PDI of well below 0.3, 

which is far smaller than the theoretical minimum of 122.4 nm using PLGA-BSA as 

described by Feczkó et al [398]. This shows that the use of PHBHHx as a drug 

encapsulating polymer has greater potential compared to PLGA, producing smaller 

nanoparticles as required for precise growth factor concentration delivery. 

The bio distribution of nanoparticles on entry into the circulatory system should be 

considered when embarking on the use of nanoparticles as a delivery vehicle for bioactive 

molecules. This study investigated the possibility of PHBHHx nanoparticles as a delivery 

vehicle for growth factors. The growth factors to be delivered were either a combination 

of BMP-12 & BMP-12 or FGF-4, FGF-6 and FGF-8. Growth factors are well documented to 

induce and enhance tumour growth. This study aimed to control the production of 

PHBHHx nanoparticles to produce a desired property namely “nanoparticle Size”, which 

will then be contained within a PHBHHx hybrid scaffold that would contain a collagen and 
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stem cell core. As with all implants there is always a risk of implant failure and thus a 

further risk of growth factor containing nanoparticles entering the circulatory system. 

This study showed PHBHHx nanoparticles accumulated in the liver, spleen and brain. Data 

from this study indicated a higher brain tissue uptake with particles smaller than 100nm. 

Conversely, the data also suggested that as nanoparticle size increased there was a 

greater uptake of nanoparticles into liver and spleen tissue which agrees with previous 

studies [400]. 

Combining this key attribute with the highly favourable biodegradability of PHBHHx and 

the potential for cost effective large scale production means that this system has 

remarkable and unique commercial potential as a drug delivery device and not only 

growth factor delivery to suit a multitude of applications within the field of nano-

medicine. 
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4.7 Conclusion 

It has been shown that the DOE approach can be employed to control the production of 

nanoparticles to fit a variety of applications within nano-medicine, whereby a size 

prediction curve can be produced for each polymer which can then be applied to any 

encapsulated drug to achieve a desired nanoparticle size. The knowledge gained from this 

preliminary optimisation is important to pave the way for more in depth analysis to 

obtain a full understanding of the process. This study highlights the most sensitive aspects 

of nanoparticle production via the solvent evaporation method, which can be used to 

reduce variability in the production process leading to increased precision within the 

manufacture of nanoparticles. Reliable production of drug encapsulated nanoparticles 

provides key evidence that PHBHHx can be used to investigate new applications in the 

field that require the production of nanoparticles less than 100 nm. Preliminary 

Investigation into the effect of different surfactant concentration during production using 

the solvent evaporation method highlighted the potentially lead to the creation of smaller 

nanoparticles and is a key area for further detailed investigation. This chapter has shown 

reasonable PHBHHX nanoparticle entrapment efficiency of the hydrophobic drug 

Heperzine-A and bovine serum albumin which can be combined with this controlled 

manufacture process for delivery of growth factors. Aligning research practices with those 

of current commercial research institutions has been highlighted as an invaluable way to 

attract commercial interest and to allow research to evolve alongside industry which is 

critical for the success of nano-medicine, controlled drug delivery and regenerative 

medicine in general.  
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Tendon injury is an increasing problem in medicine, with between 3 – 5 million tendon 

related injuries worldwide annually, with over 300,000 tendon procedures performed 

annually in the United States alone [156, 295]. Tendon is characterised by poor repair 

following injury or disease, is relatively acellular and has poor blood supply [6]. Treatment 

can involve many different types of surgical intervention, such as xenograft or allograft to 

treat large tendon defects, however potential problems with this method (such as foreign 

body reaction) can occur [296]. A lack of adequate strategies for tendon repair has led to 

the development of engineered replacement tendon tissue for use in surgical 

implantation [297]. Tissue engineering could be used to develop a regenerative medicine 

solution to tendon tissue repair [156]. 

The aim of this thesis was to investigate three possible components which may lead to 

the development of a tissue engineered tendon implant: 

1. PHBHHx tendon scaffold design (Chapter 2) 

2. Growth factor induced differentiation of human stem cells (Chapter 3) 

3. Controlled production of nanoparticles to predict the size of nanoparticles to be 

used in the delivery of growth factors (Chapter 4) 

The aim of this investigation (Chapter 2) was to identify a PHBHHx scaffold design that 

could be used to facilitate repair of damaged tendon tissue while not initiating an 

immune response or prolonging inflammation. A composite scaffold was developed which 

featured a PHBHHx tube, a collagen core, and PHBHHx fibres which would facilitate 

cellular migration and tissue remodelling, while at the same time allowing for limited 

restoration of movement. The design was mechanically similar to the rat Achilles tendon 
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and to other commercially available human tendon repair materials [117, 297]. 

Furthermore, this study has shown that PHBHHx scaffold encourages cellular infiltration 

and proliferation which agrees with previous studies [119, 312, 313, 329]. Furthermore, 

cellular alignment was observed along the force baring tube and fibre which agrees with 

earlier studies indicating cellular alignment with direction of force [401-403]. 

The ability of any implant to not elucidate an immune response is one of the key 

components of evaluation of a potential implant [404] .The CRP results from this study 

clearly indicate that the PHBHHx implant did not induce an immune response and in- fact 

the immune response 48hrs post-surgery in a natural response to the induced trauma 

caused by surgery with no subsequent increase in CRP. These findings add to the body of 

evidence indicating PHBHHx does not elucidate an immune response in vivo [318-320, 

323]. 

The ability of a biological implant/scaffold being able to perform as “normal tissue” is 

highly desired. In this study we utilised AFI testing to measure return of function. AFI 

testing showed a continued improvement for all groups over the 40 day investigation, 

with complete return of function being as early as day +20 in the tenocyte-PHBHHx-

collagen group which was a full 20 days prior to the PHBHHx only and PHBHHx-collagen 

group, with the control group remaining below pre-surgical implantation levels. These 

results show the implanted scaffolds are capable of withstanding the forces which are 

exposed to native tendon and the implantation of a scaffold returns function to the limb 

faster than the absence of an implant which agrees with previous studies [314]. 
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Cellular infiltration into the scaffold was observed in both the PHBHHx only and Collagen-

PHBHHx scaffold designs with sinusoidal cellular alignment which is a key marker in the 

histological analysis of tendon tissue, signifying the presence of crimp angles between 

collagen fibrils [33, 43]. The PHBHHx scaffold which contained tenocytes and collagen the 

cells appeared to be more elongated and sinusoidal in morphology, when compared to 

the other implanted scaffold designs, as with the PHBHHx only and collagen-PHBHHx 

scaffold designs, when cells were in direct contact with the scaffold, especially the fibre 

component this feature was more apparent and the sinusoidal-elongated morphology 

could possibly indicating that force transmission resulting in mechanotransduction from 

the fibre to the cells promoted tendon cell proliferation and alignment [90, 301, 312]. This 

further highlights the importance of collagen not only in the tissue integration and 

remodelling of tendon but in a means of delivering cells to a point of repair and further 

adds to previous studies suggesting collagen is a beneficial inclusion in tendon graft 

material [114, 300, 326]. 

However, careful consideration should be given to whether a PHBHHx scaffold can be 

constructed to deliver the properties that are observed within the human Achilles 

tendon. The adult Achilles tendon has ultimate force to break in excess of 435N 

[405]compared with a ultimate force to break in rat Achilles tendon of this study of 

17.35N.  

This study has potentially identified PHBHHx can be utilised as a tendon scaffold capable 

of delivering a cellular component to a tendon defect area which was capable of: 1) the 

return of function to the implant site, 2) did not elucidate an immune response and 3) 

provided favourable conditions for cellular proliferation and force transmission.  
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The next stage of this study (Chapter 3) was to identify whether FGF-4, FGF-6 and FGF-8 

singularly or as a combination could induce and maintain tendon specific gene expression 

in human derived stem cells. Therefore, this study employed the gene combination of 

TNMD and THBS-4 expression as a marker of tendon differentiation first identified by 

Jelinsky et al [68] 

This study has shown Vitamin C in conjunction with FGF-4, 6 & 8 cultured at 2% O2 was 

capable of inducing and maintaining tendon like gene markers: tenomodulin (TNMD), 

Tenascin C (TENC), Collagen 3A1 (COL3A1), Collagen 1A2 (COL1A2) and Thrombospondin-

4 (THBS-4) over a 40 day culture period in both human embryonic stem cells and human 

mesenchymal stem cells. However, the mechanisms by which FGF signalling induced and 

maintained tendon gene expression remain un-identified. FGF’s are well documented to 

bind in an order of hierarchy with many FGF’s competitively binding to the same 

receptors with FGF specificity to a given receptor dictating the order of binding to the 

FGFR [222, 406].FGF-4, FGF-6 and FGF-8 all bind to FGFR-1, FGFR-2 and FGFR-4. However, 

competitive affinity to a specific receptor by one of the FGF’s will then have a knock on 

effect on the affinity of the next FGF to its next favourable ligand and so on and so forth 

with the third FGF. Furthermore, the preferential FGFR binding will have a combined 

effect on which post receptor signal cascade is active.  

FGF’s have been previously been shown to preferentially bind to specific FGFR’s [222, 

406].The hierarchical order/relationship between FGF-4, FGF-6 and FGF-8 with their 

common receptors is currently poorly defined. The potential of preferential binding to 

induce a priority of specific FGF-FGFR interactions and subsequent hierarchical shift of 

preference of other FGF’s to bind with a receptor further down its hierarchical order may 
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well dictate the transcriptional outcomes observed in this investigation. Only in the 

presence of FGF-4, FGF-6 and FGF-8 in the differential media is a “true” tenocyte-like 

gene expression observed. Furthermore, the presence of tenocyte-like gene expression 

may only indicate cellular priming towards a tenocyte-lineage. 

The use of Dorsomorphin in this study as a SMAD inhibitor has highlighted the possibility 

of cross – talk between the FGF-FGFR signal transduction and possible up-regulation of 

BMP juxtacrine signalling. This study has highlighted the inclusion of Dorsomorphin to 

FGF supplemented media induced a decrease in both GAG and collagen synthesis in all 

FGF-4, FGF-4 & 8 and to a lesser extent FGF-4, 6 & 8 supplemented media. These findings 

agree with previous studies highlighting FGF-BMP signalling cross talk [407, 408]. 

Previous publications have indicated to the requirement of mechanical force in late 

tenocyte differentiation and maturation [409]. The Adjunct relationship of mechanical 

force, cellular positioning and growth factor stimulation remains poorly defined and is a 

specific area in tendon research that requires further investigation. 

Mechanical force has previously been shown to induce tenocyte proliferation with an 

increased detection of the transcription factor Scleraxis [331, 410]. SCX has previously 

been shown to directly regulate the transcription of Type I collagen (COL1a1) in the 

presence of TGF-β (Transforming Growth Factor –β) [411, 412], which encodes for the 

most abundant protein found in tendon tissue. SCX has been shown to be up-regulated in 

numerous animal models utilising either TGF-β in the equine model which utilised 

embryonic derived stem cells [354] or the combination of BMP-12 and BMP-13 in both 

the rat [181] and canine which utilised adipose derived mesenchymal stem cells [413] 

model for stem cell differentiation towards a tenocyte lineage. 
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SCX has shown limited detection in human samples with the majority of finding showing 

the presence of SCX post mechanical loading [331]. This Study did not focus on SCX, but 

did focus on the tendon makers TNMD and THBS-4 with future studies aimed and focused 

on elucidating the function of SCX in human stem cell differentiated tenocyte-like cells. 

Heparin sulphate has previously been shown to be vital in FGF-FGFR interaction [236]. 

The concept of heparin/HS-FGF dimer being an essential component/step in the 

transduction of FGF/FGFR signalling complex still remains controversial [237]. Although, it 

is well established that heparin is essential for high affinity binding of FGF to FGFR when 

cells are unable to synthesis cell-surface HS, cells pre-treated with heparin degrading 

enzymes or cells exposed to sulphation inhibiting agents [238, 239]. In this study heparin 

was not added as a component of the differentiation media, although heparin sulphate is 

present in Matrigel which is used to coat culture plastic prior to seeding with hESC’s. This 

study at disagrees with previous studies utilising heparin sulphate inclusion as part of the 

FGF-FGFR binding due to hMSC did not have matrigel coating of plastic prior to seeding 

and this may indicate that heparin sulphate supplementation is not required. Secondly, 

when both hESC and hMSC’s showed the gene expression of TENC and the tenascin C 

protein may have influenced FGF-FGFR high affinity binding as tenascin C has previously 

been shown to be capable of binding FGF and influencing binding affinity with the FGFR 

[414] and this could negate the absence of heparin sulphate.  

However, this study has shown in the absence of all three FGF’s tendon specific gene 

expression is not detected post 20 days. This highlights the requirement of the 

combination of FGF-4, FGF-6, FGF-8, Vitamin C and a 2% O2 environment. 
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After identifying a growth factor combination capable of inducing and maintaining tendon 

like gene markers the next logical step was to investigate the use of nanoparticle delivery 

of the identified growth factors. 

This thesis has also highlighted the importance of controlling the parameters (Chapter 4) 

within the manufacturing process of PHBHHx nanoparticles with an aim to produce a 

controlled range of nanoparticle sizes. The control of nanoparticle size and properties will 

aid in the design of nanoparticle capable of delivering a precise bioactive molecule 

concentration over a specific time-course.  

Research undertaken by Peng et al. [373] showed low molecular weight proteins namely 

insulin could be encapsulated and produce high encapsulation efficiency with a prolonged 

release pattern. However, this study along with numerous other studies focuses upon a 

single nanoparticle size [393-395].  

This thesis has shown that being able to control the key process variables: Polymer 

concentration, sonication power and sonication cycles. A range of PHBHHx nanoparticles 

size can be produced (94nm – 220nm) which is significantly smaller than the particles 

produced in previous studies of polymer drug encapsulation [393-395].  

Furthermore, this thesis has shown that altering the ratio of surfactants that a smaller 

nanoparticle can be produced (<75nm). The results observed in surfactant ratio alteration 

highlights the requirement for further multifactorial design of experiment to be 

undertaken utilising surfactant ratio as the fourth variable. The author of this thesis 

believes this undertaking will further aid in the delivery of precise nanoparticle based 

drug delivery. Also, the alteration of polymer concentration may well affect release 
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properties of the nanoparticle system in that the thickness of polymer coating acts as a 

release barrier. Understanding the release kinetics in both aqueous and hydrogel 

environments is another key area for investigation.  

Further concerns in reducing nanoparticle size are: 1) physical barriers of the nanoparticle 

construct in that the thicker the nanoparticle polymer shell the reduced permeability for 

drug/bioactive molecule release. This study did not investigate the effects of reducing 

polymer concentration on nanoparticle coating thickness. However, future studies should 

employ techniques such as Atomic Force Microscopy (AFM) to quantify the polymer layer 

thickness with an aim of relating this physical barrier to release profile. 2) As nanoparticle 

size decreases a higher percentage of bioactive agent will be found on the surface of the 

nanoparticle which may lead to a higher level of burst release [389]. 

This thesis has identified that PHBHHx scaffold that contains both a stem cell and 

nanoparticle growth factor release system is distinctively possible with further research 

being focused on release kinetics of the growth factors encapsulated within a polymer 

nanoparticle. The identification of the growth factors capable of differentiating human 

stem cells towards a tenocyte-like lineage has highlighted the potential for a stem cell 

based alternative to current surgical techniques employed in tendon repair. Also, the use 

of PHBHHx-hybrid scaffold indicates a potential polymer design to be utilised in tendon 

repair whilst also providing a vehicle by which both a stem cell and nanoparticle loaded 

growth factors component can be delivered to the defect site. 

Possibly the finding of most interest contained within the body of this thesis is the 

capability of controlling nanoparticle size and being able to predict the size of 

nanoparticle with a high level of accuracy. This opens the door of possibilities to the 
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application of polymer based nanoparticles in delivering not only growth factors but 

chemotherapeutical agents with a precise concentration to a desired target which may 

reduce systemic toxicity that is observed when administering these agents via traditional 

administration.



 

 
 

 

 

 

 

Chapter 6: Conclusion 
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This thesis has demonstrated that a PHBHHx based scaffold can be utilised to repair 

tendon defects in the rat model. Implanted hybrid PHBHHx scaffold were capable of 

withstanding the forces exposed to native tendon coupled with a return of function 

(observed in the Achilles functional index). The collagen-PHBHHx scaffold containing 

tenocytes showed an accelerated return of function when compared to all other 

experimental groups. The implanted scaffolds did not elucidate an immune response and 

also showed cellular alignment along the force barring fibres. The rat model also showed 

the PHBHHx hybrid scaffold underwent degradation of the polymer bulk which has no 

adverse effects on function or immune response. 

This thesis has demonstrated that the growth factor combination of FGF-4, FGF-6 and 

FGF-8 in combination with Vitamin C and cultured at 2% O2 as being capable of initiating 

cellular priming towards a tenocyte “like” differentiation with transcription of THBS-4 and 

TNMD being detected up to 40 days of culture. Furthermore, this thesis has indicated an 

element of cross-talk between FGF and BMP signalling cascades during tenogenesis. The 

cross-talk was identified by inhibition of the BMP induced SMAD signalling cascade. This 

was elucidated by the use of Dorsomorphin in FGF supplemented differentiation media, 

which resulted in a reduction in RNA expression for DCN and TNMD in both FGF-4 & 8 and 

FGF-4, 6 & 8 supplemented differentiation of human embryonic stem cells. Similar 

observations were made with FGF-4 and FGF-4, 6 & 8 supplemented differentiation of 

human mesenchymal stem cells in that TNMD transcription was not observed post 20 

days stimulation.  

The final chapter of this thesis has demonstrated that DOE approach can be employed to 

control the production of nanoparticles to fit a variety of applications within nano-
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medicine. Whereby, a size prediction curve can be produced for each polymer which can 

then be applied to any encapsulated drug to achieve a desired nanoparticle size. These 

findings allow for a greater control of nanoparticle size and drug delivery in that we can 

manipulate the manufacturing variables to produce a nanoparticle of differing size and 

drug release profiles. Therefore, allowing for greater control of delivery of drug/growth 

factor dose to site of interest. 

This thesis has utilised the combination of an in vivo investigations that PHBHHx can be 

utilised as a suitable implant material for the potential for the treatment of damaged 

tendon. Whilst utilising in vitro investigation to show the combination FGF-4, FGF-6 and 

FGF-8 in the presence of Vitamin C and cultured in 2% O2 as having a potential role in the 

cellular priming of human mesenchymal stem cells and human embryonic stem cells to 

differentiate into a tenocyte “like” lineage. 

The contents of this thesis, has also highlighted the importance of a controlled production 

of nanoparticles. By mapping the production variables and subsequent control of the 

variables this thesis has shown that a range of nanoparticles can be produced that have 

specific size and release profiles. The impact of such control mechanisms can lead to a 

nanoparticle based delivery system capable of delivering a precise drug/growth factor 

dose over a prolonged period of time.  
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The body of work of this thesis has shown that a PHBHHx scaffold was capable of 

withstanding the forces observed in native rat Achilles tendons, without initiating an 

immune response. Chapter 3 has shown that combination of FGF-4, FGF-6, FGF-8 and 

Vitamin C as being capable of initiating stem cell differentiation towards a tenocyte “like” 

lineage using both human embryonic and mesenchymal stem cells.  

The ability to deliver return of function along with the capability of cellular differentiation 

is a logical next step in that combining the scaffold with stem cells and a drug delivery 

vehicle capable of controlled and sustained release of growth factors. 

Therefore future investigations should employ: 

1. Bioreactor investigation of growth factor release kinetics 

2. Investigation of the role of HIF proteins in tenocyte differentiation 

3. Atomic force microscopy of Nanoparticle shell to relate to release kinetics. 

4. Investigation of FGF-4, FGF-6 and FGF-8 signalling cascade and combinational 

relationship. 

5. Addition of Heparin Sulphate to growth factor combination to evaluate 

amplification of FGF signalling. 

6. Design of NEW tendon bioreactor utilising hypoxic environments and the ramping 

of cyclic strain over time. 

7. Investigate the combinational effects of FGF’s and mechanical stimulation on stem 

cell differentiation towards a tenocyte lineage. 

 

 



 

 
 

 

 

 

 

 

References



W. R. Webb PhD Thesis References 

280 
 

[1] Kafienah W, Mistry S, Perry MJ, Politopoulou G, Hollander AP. Pharmacological regulation of 

adult stem cells: chondrogenesis can be induced using a synthetic inhibitor of the retinoic acid 

receptor. Int J Exp Pathol. 2007;88:A87-A. 

[2] Baiguera S, Gonfiotti A, Jaus M, Comin CE, Paglierani M, Del Gaudio C, et al. Development of 

bioengineered human larynx. Biomaterials. 2011;32:4433-42. 

[3] Kannus P. Structure of the tendon connective tissue. Scandinavian journal of medicine & 

science in sports. 2000;10:312-20. 

[4] Mendias CL, Bakhurin KI, Faulkner JA. Tendons of myostatin-deficient mice are small, brittle, 

and hypocellular. Proc Natl Acad Sci U S A. 2008;105:388-93. 

[5] Cheng VWT, Screen HRC. The micro-structural strain response of tendon. J Mater Sci. 

2007;42:8957-65. 

[6] Doral MN, Alam M, Bozkurt M, Turhan E, Atay OA, Donmez G, et al. Functional anatomy of the 

Achilles tendon. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 

2010;18:638-43. 

[7] Shearn JT, Kinneberg KR, Dyment NA, Galloway MT, Kenter K, Wylie C, et al. Tendon tissue 

engineering: progress, challenges, and translation to the clinic. Journal of musculoskeletal & 

neuronal interactions. 2011;11:163-73. 

[8] Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and molecular regulation of the mouse 

blastocyst. Developmental dynamics : an official publication of the American Association of 

Anatomists. 2006;235:2301-14. 

[9] Tam PP, Khoo PL, Wong N, Tsang TE, Behringer RR. Regionalization of cell fates and cell 

movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. 

Developmental biology. 2004;274:171-87. 

[10] Rodda SJ, Kavanagh SJ, Rathjen J, Rathjen PD. Embryonic stem cell differentiation and the 

analysis of mammalian development. The International journal of developmental biology. 

2002;46:449-58. 

[11] Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell. 

1999;96:195-209. 

[12] Beddington RS, Robertson EJ. Anterior patterning in mouse. Trends in genetics : TIG. 

1998;14:277-84. 

[13] Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic 

stem cells in the midgestation mouse embryo. Development. 1989;105:733-7. 



W. R. Webb PhD Thesis References 

281 
 

[14] Edom-Vovard F, Duprez D. Signals regulating tendon formation during chick embryonic 

development. Developmental dynamics : an official publication of the American Association of 

Anatomists. 2004;229:449-57. 

[15] Ros MA, Rivero FB, Hinchliffe JR, Hurle JM. Immunohistological and ultrastructural study of 

the developing tendons of the avian foot. Anatomy and embryology. 1995;192:483-96. 

[16] Heus HC, Hing A, van Baren MJ, Joosse M, Breedveld GJ, Wang JC, et al. A physical and 

transcriptional map of the preaxial polydactyly locus on chromosome 7q36. Genomics. 

1999;57:342-51. 

[17] Zguricas J, Heus H, Morales-Peralta E, Breedveld G, Kuyt B, Mumcu EF, et al. Clinical and 

genetic studies on 12 preaxial polydactyly families and refinement of the localisation of the gene 

responsible to a 1.9 cM region on chromosome 7q36. Journal of medical genetics. 1999;36:32-40. 

[18] Bouldin CM, Harfe BD. Aberrant FGF signaling, independent of ectopic hedgehog signaling, 

initiates preaxial polydactyly in Dorking chickens. Developmental biology. 2009;334:133-41. 

[19] Bose K, Nischt R, Page A, Bader BL, Paulsson M, Smyth N. Loss of nidogen-1 and -2 results in 

syndactyly and changes in limb development. The Journal of biological chemistry. 

2006;281:39620-9. 

[20] Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning 

along the limb bud proximodistal axis. Development. 2008;135:483-91. 

[21] Canty EG, Kadler KE. Collagen fibril biosynthesis in tendon: a review and recent insights. 

Comparative biochemistry and physiology Part A, Molecular & integrative physiology. 

2002;133:979-85. 

[22] Richardson SH, Starborg T, Lu Y, Humphries SM, Meadows RS, Kadler KE. Tendon 

development requires regulation of cell condensation and cell shape via cadherin-11-mediated 

cell-cell junctions. Mol Cell Biol. 2007;27:6218-28. 

[23] Birk DE, Trelstad RL. Extracellular compartments in tendon morphogenesis: collagen fibril, 

bundle, and macroaggregate formation. The Journal of cell biology. 1986;103:231-40. 

[24] Shaw HM, Vazquez OT, McGonagle D, Bydder G, Santer RM, Benjamin M. Development of the 

human Achilles tendon enthesis organ. Journal of anatomy. 2008;213:718-24. 

[25] Vogel KG, Koob TJ. Structural specialization in tendons under compression. International 

review of cytology. 1989;115:267-93. 

[26] Gao J, Messner K, Ralphs JR, Benjamin M. An immunohistochemical study of enthesis 

development in the medial collateral ligament of the rat knee joint. Anatomy and embryology. 

1996;194:399-406. 



W. R. Webb PhD Thesis References 

282 
 

[27] Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle 

loading delays maturation of the tendon enthesis during postnatal development. Journal of 

orthopaedic research : official publication of the Orthopaedic Research Society. 2007;25:1154-63. 

[28] Wood-Jones F. Structure and function as seen in the foot. 2nd ed. ed. London: Bailliere, 

tindall and Cox; 1949. 

[29] Benjamin M, Kaiser E, Milz S. Structure-function relationships in tendons: a review. Journal of 

anatomy. 2008;212:211-28. 

[30] Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. The Journal of 

bone and joint surgery American volume. 2005;87:187-202. 

[31] Fukuta S, Oyama M, Kavalkovich K, Fu FH, Niyibizi C. Identification of types II, IX and X 

collagens at the insertion site of the bovine Achilles tendon. Matrix Biol. 1998;17:65-73. 

[32] Ippolito E, Natali PG, Postacchini F, Accinni L, Demartino C. Morphological, Immunochemical, 

and Biochemical-Study of Rabbit Achilles-Tendon at Various Ages. J Bone Joint Surg Am. 

1980;62:583-98. 

[33] Maffulli N, Barrass V, Ewen SW. Light microscopic histology of achilles tendon ruptures. A 

comparison with unruptured tendons. The American journal of sports medicine. 2000;28:857-63. 

[34] Mayer L. The evolution of modern tendon surgery. Annals of the Royal College of Surgeons of 

England. 1952;11:69-86. 

[35] Ahmed IM, Lagopoulos M, McConnell P, Soames RW, Sefton GK. Blood supply of the Achilles 

tendon. J Orthop Res. 1998;16:591-6. 

[36] Theobald P, Benjamin M, Nokes L, Pugh N. Review of the vascularisation of the human 

Achilles tendon. Injury. 2005;36:1267-72. 

[37] Riley G. Tendinopathy - from basic science to treatment. Nat Clin Pract Rheum. 2008;4:82-9. 

[38] Kvist M, Jozsa L, Jarvinen M, Kvist H. Fine-Structural Alterations in Chronic Achilles 

Paratendonitis in Athletes. Pathol Res Pract. 1985;180:416-23. 

[39] Richardson LE, Dudhia J, Clegg PD, Smith R. Stem cells in veterinary medicine--attempts at 

regenerating equine tendon after injury. Trends in biotechnology. 2007;25:409-16. 

[40] Jozsa L, Kannus P, Balint JB, Reffy A. Three-dimensional ultrastructure of human tendons. 

Acta anatomica. 1991;142:306-12. 

[41] Jozsa L, Reffy A, Kannus P, Demel S, Elek E. Pathological alterations in human tendons. 

Archives of orthopaedic and trauma surgery. 1990;110:15-21. 

[42] Paavola M, Kannus P, Jarvinen TA, Khan K, Jozsa L, Jarvinen M. Achilles tendinopathy. The 

Journal of bone and joint surgery American volume. 2002;84-A:2062-76. 



W. R. Webb PhD Thesis References 

283 
 

[43] Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. Journal 

of anatomy. 1986;149:89-100. 

[44] Aparecida de Aro A, Vidal Bde C, Pimentel ER. Biochemical and anisotropical properties of 

tendons. Micron. 2012;43:205-14. 

[45] Jozsa L, Kannus P. Histopathological findings in spontaneous tendon ruptures. Scand J Med 

Sci Spor. 1997;7:113-8. 

[46] Vidal BD. Evaluation of the Carbohydrate Role in the Molecular Order of Collagen Bundles - 

Microphotometric Measurements of Textural Birefringence. Cell Mol Biol. 1986;32:527-35. 

[47] Liu SH, Yang RS, Alshaikh R, Lane JM. Collagen in Tendon, Ligament, and Bone Healing - a 

Current Review. Clin Orthop Relat R. 1995:265-78. 

[48] O'Brien M. Structure and metabolism of tendons. Scandinavian journal of medicine & science 

in sports. 1997;7:55-61. 

[49] Vidal BD. Image analysis of tendon helical superstructure using interference and polarized 

light microscopy. Micron. 2003;34:423-32. 

[50] Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. Biochem J. 

1996;316:1-11. 

[51] Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to 

mechanical loading. Physiological reviews. 2004;84:649-98. 

[52] Benjamin M, Tyers RNS, Ralphs JR. Age-Related-Changes in Tendon Fibrocartilage. J Anat. 

1991;179:127-36. 

[53] Rufai A, Benjamin M, Ralphs JR. Development and ageing of phenotypically distinct 

fibrocartilages associated with the rat Achilles tendon. Anatomy and embryology. 1992;186:611-

8. 

[54] Hanson AN, Bentley JP. Quantitation of type I to type III collagen ratios in small samples of 

human tendon, blood vessels, and atherosclerotic plaque. Analytical biochemistry. 1983;130:32-

40. 

[55] Ahtikoski AM, Koskinen SO, Virtanen P, Kovanen V, Risteli J, Takala TE. Synthesis and 

degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and 

lengthened positions. Acta physiologica Scandinavica. 2003;177:473-81. 

[56] Ahtikoski AM, Riso EM, Koskinen SO, Risteli J, Takala TE. Regulation of type IV collagen gene 

expression and degradation in fast and slow muscles during dexamethasone treatment and 

exercise. Pflugers Archiv : European journal of physiology. 2004;448:123-30. 

[57] Felisbino SL, Carvalho HF. Identification and distribution of type VI collagen in tendon 

fibrocartilages. Journal of submicroscopic cytology and pathology. 1999;31:187-95. 



W. R. Webb PhD Thesis References 

284 
 

[58] Carvalho HF, Felisbino SL, Keene DR, Vogel KG. Identification, content, and distribution of 

type VI collagen in bovine tendons. Cell and tissue research. 2006;325:315-24. 

[59] Milz S, Regner F, Putz R, Benjamin M. Expression of a wide range of extracellular matrix 

molecules in the tendon and trochlea of the human superior oblique muscle. Investigative 

ophthalmology & visual science. 2002;43:1330-4. 

[60] Tsuzaki M, Yamauchi M, Banes AJ. Tendon collagens: extracellular matrix composition in 

shear stress and tensile components of flexor tendons. Connective tissue research. 1993;29:141-

52. 

[61] Vogel KG, Heinegard D. Characterization of proteoglycans from adult bovine tendon. The 

Journal of biological chemistry. 1985;260:9298-306. 

[62] Eyre DR, Paz MA, Gallop PM. Cross-linking in collagen and elastin. Annual review of 

biochemistry. 1984;53:717-48. 

[63] Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in 

biology. Matrix biology : journal of the International Society for Matrix Biology. 1998;16:387-98. 

[64] Muller G, Michel A, Altenburg E. COMP (cartilage oligomeric matrix protein) is synthesized in 

ligament, tendon, meniscus, and articular cartilage. Connective tissue research. 1998;39:233-44. 

[65] Brandau O, Meindl A, Fassler R, Aszodi A. A novel gene, tendin, is strongly expressed in 

tendons and ligaments and shows high homology with chondromodulin-I. Developmental 

dynamics : an official publication of the American Association of Anatomists. 2001;221:72-80. 

[66] Docheva D, Hunziker EB, Fassler R, Brandau O. Tenomodulin is necessary for tenocyte 

proliferation and tendon maturation. Molecular and cellular biology. 2005;25:699-705. 

[67] Shukunami C, Takimoto A, Oro M, Hiraki Y. Scleraxis positively regulates the expression of 

tenomodulin, a differentiation marker of tenocytes. Developmental biology. 2006;298:234-47. 

[68] Jelinsky SA, Archambault J, Li L, Seeherman H. Tendon-selective genes identified from rat and 

human musculoskeletal tissues. Journal of orthopaedic research : official publication of the 

Orthopaedic Research Society. 2010;28:289-97. 

[69] Aslan H, Kimelman-Bleich N, Pelled G, Gazit D. Molecular targets for tendon neoformation. 

The Journal of clinical investigation. 2008;118:439-44. 

[70] Oldfield SF, Evans DJ. Tendon morphogenesis in the developing avian limb: plasticity of fetal 

tendon fibroblasts. Journal of anatomy. 2003;202:153-64. 

[71] Newton G, Weremowicz S, Morton CC, Jenkins NA, Gilbert DJ, Copeland NG, et al. The 

thrombospondin-4 gene. Mammalian genome : official journal of the International Mammalian 

Genome Society. 1999;10:1010-6. 



W. R. Webb PhD Thesis References 

285 
 

[72] Chung KY, Agarwal A, Uitto J, Mauviel A. An AP-1 binding sequence is essential for regulation 

of the human alpha2(I) collagen (COL1A2) promoter activity by transforming growth factor-beta. 

The Journal of biological chemistry. 1996;271:3272-8. 

[73] von Pein F, Valkkila M, Schwarz R, Morcher M, Klima B, Grau A, et al. Analysis of the COL3A1 

gene in patients with spontaneous cervical artery dissections. J Neurol. 2002;249:862-6. 

[74] Velez-DelValle C, Marsch-Moreno M, Castro-Munozledo F, Kuri-Harcuch W. Decorin gene 

expression and its regulation in human keratinocytes. Biochemical and biophysical research 

communications. 2011;411:168-74. 

[75] Yan JY, Stringer SE, Hamilton A, Charlton-Menys V, Gotting C, Muller B, et al. Decorin GAG 

Synthesis and TGF-beta Signaling Mediate Ox-LDL-Induced Mineralization of Human Vascular 

Smooth Muscle Cells. Arterioscl Throm Vas. 2011;31:608-15. 

[76] Zhang GY, Robinson PS, Soslowsky LJ, Iozzo RV, Birk DE. Development of tendon structure and 

function in the decorin-deficient mouse: Relationship between decorin and biglycan expression. 

Faseb J. 2004;18:A788-A9. 

[77] Vesentini S, Redaelli A, Montevecchi FM. Estimation of the binding force of the collagen 

molecule-decorin core protein complex in collagen fibril. J Biomech. 2005;38:433-43. 

[78] Zhang GY, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET, et al. Decorin regulates 

assembly of collagen fibrils and acquisition of biomechanical properties during tendon 

development. J Cell Biochem. 2006;98:1436-49. 

[79] Roughley PJ, White RJ, CsSzabo G, Mort JS. Changes with age in the structure of fibromodulin 

in human articular cartilage. Osteoarthr Cartilage. 1996;4:153-61. 

[80] Ameye L, Aria D, Jepsen K, Oldberg A, Xu TS, Young MF. Abnormal collagen fibrils in tendons 

of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and 

osteoarthritis. Faseb J. 2002;16. 

[81] Svensson L, Aszodi A, Reinholt FP, Fassler R, Heinegard D, Oldberg A. Fibromodulin-null mice 

have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J 

Biol Chem. 1999;274:9636-47. 

[82] Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D. Fgf4 positively regulates 

scleraxis and tenascin expression in chick limb tendons. Developmental biology. 2002;247:351-66. 

[83] Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, et al. Analysis of the 

tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 

2001;128:3855-66. 



W. R. Webb PhD Thesis References 

286 
 

[84] Lejard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, et al. Scleraxis and 

NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. The 

Journal of biological chemistry. 2007;282:17665-75. 

[85] Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, et al. Regulation of 

tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-

anchoring tendons. Development. 2007;134:2697-708. 

[86] Kirkendall DT, Garrett WE. Function and biomechanics of tendons. Scandinavian journal of 

medicine & science in sports. 1997;7:62-6. 

[87] Maganaris CN, Narici MV, Reeves ND. In vivo human tendon mechanical properties: effect of 

resistance training in old age. Journal of musculoskeletal & neuronal interactions. 2004;4:204-8. 

[88] Maganaris CN, Narici MV, Almekinders LC, Maffulli N. Biomechanics and pathophysiology of 

overuse tendon injuries: ideas on insertional tendinopathy. Sports medicine. 2004;34:1005-17. 

[89] Arampatzis A, Karamanidis K, Morey-Klapsing G, De Monte G, Stafilidis S. Mechanical 

properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. 

Journal of biomechanics. 2007;40:1946-52. 

[90] Peltonen J, Cronin NJ, Avela J, Finni T. In vivo mechanical response of human Achilles tendon 

to a single bout of hopping exercise. The Journal of experimental biology. 2010;213:1259-65. 

[91] Couppe C, Suetta C, Kongsgaard M, Justesen L, Hvid LG, Aagaard P, et al. The effects of 

immobilization on the mechanical properties of the patellar tendon in younger and older men. 

Clinical biomechanics. 2012;27:949-54. 

[92] Wang JH. Mechanobiology of tendon. Journal of biomechanics. 2006;39:1563-82. 

[93] Hess GW. Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, 

and injury prevention. Foot & ankle specialist. 2010;3:29-32. 

[94] James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth 

factors, and evolving treatment options. The Journal of hand surgery. 2008;33:102-12. 

[95] Amadio P, An KN, Ejeskar A, Guimberteau JC, Harris S, Savage R, et al. IFSSH Flexor Tendon 

Committee report. J Hand Surg Br. 2005;30:100-16. 

[96] Pioletti D.P. SO, Zambelli P.Y. Tissue Engineering of Tendon. Encyclopedia of Biomaterials and 

Biomedical Engineering. 2004:1672 - 6. 

[97] Costa MT, Hungria Neto JS. Estudo comparativo dos métodos conservador e cirúrgico para 

tratamento das lesões agudas do tendão do calcâneo. Acta Ortopédica Brasileira. 2007;15:50-4. 

[98] Hampson K, Forsyth, N.R., El Haj, A., & Maffuli, N. Tendon tissue engineering. In N. 

Ashammakhi, R. Reis & F. CHiellini (Ed). Topics in tissue engineerinf Vol 4 (Chapter 3). 2008. 



W. R. Webb PhD Thesis References 

287 
 

[99] Miller D, Waterston S, Reaper J, Barrass V, Maffulli N. Conservative management, 

percutaneous or open repair of acute Achilles tendon rupture: a retrospective study. Scottish 

medical journal. 2005;50:160-5. 

[100] Mahoney JL, Farkas LG, Lindsay WK. Quality of tendon graft healing in silastic 

pseudosheaths: breaking-strength studies. Surgical forum. 1976;27:572-3. 

[101] Sabiston P, Frank C, Lam T, Shrive N. Allograft ligament transplantation. A morphological 

and biochemical evaluation of a medial collateral ligament complex in a rabbit model. The 

American journal of sports medicine. 1990;18:160-8. 

[102] Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human 

ligament grafts used in knee-ligament repairs and reconstructions. The Journal of bone and joint 

surgery American volume. 1984;66:344-52. 

[103] Hasslund S, Jacobson JA, Dadali T, Basile P, Ulrich-Vinther M, Soballe K, et al. Adhesions in a 

murine flexor tendon graft model: autograft versus allograft reconstruction. Journal of 

orthopaedic research : official publication of the Orthopaedic Research Society. 2008;26:824-33. 

[104] Basile P, Dadali T, Jacobson J, Hasslund S, Ulrich-Vinther M, Soballe K, et al. Freeze-dried 

tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Molecular therapy : the 

journal of the American Society of Gene Therapy. 2008;16:466-73. 

[105] Weitzel PP, Richmond JC, Altman GH, Calabro T, Kaplan DL. Future direction of the 

treatment of ACL ruptures. The Orthopedic clinics of North America. 2002;33:653-61. 

[106] Bagnaninchi PO, Yang Y, El Haj AJ, Maffulli N. Tissue engineering for tendon repair. British 

journal of sports medicine. 2007;41:e10; discussion e. 

[107] Lee SJ, Goldsmith S, Nicholas SJ, McHugh M, Kremenic I, Ben-Avi S. Optimizing Achilles 

tendon repair: effect of epitendinous suture augmentation on the strength of achilles tendon 

repairs. Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss 

Foot and Ankle Society. 2008;29:427-32. 

[108] Lee DK. Achilles tendon repair with acellular tissue graft augmentation in neglected 

ruptures. J Foot Ankle Surg. 2007;46:451-5. 

[109] Rapley JH, Crates J, Barber A. Mid-substance peroneal tendon defects augmented with an 

acellular dermal matrix allograft. Foot & ankle international / American Orthopaedic Foot and 

Ankle Society [and] Swiss Foot and Ankle Society. 2010;31:136-40. 

[110] DiDomenico LA, Blasko GA, Cane L, Cross DJ. Repair of lacerated anterior tibial tendon with 

acellular tissue graft augmentation. J Foot Ankle Surg. 2012;51:642-4. 

[111] Barber FA, Herbert MA, Coons DA. Tendon augmentation grafts: biomechanical failure loads 

and failure patterns. Arthroscopy. 2006;22:534-8. 



W. R. Webb PhD Thesis References 

288 
 

[112] Barber FA, McGarry JE, Herbert MA, Anderson RB. A biomechanical study of Achilles tendon 

repair augmentation using GraftJacket matrix. Foot & ankle international / American Orthopaedic 

Foot and Ankle Society [and] Swiss Foot and Ankle Society. 2008;29:329-33. 

[113] Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator Cuff Repair 

Augmentation in a Canine Model with Use of a Woven Poly-L-Lactide Device. J Bone Joint Surg 

Am. 2009;91A:1159-71. 

[114] Yokoya S, Mochizuki Y, Nagata Y, Deie M, Ochi M. Tendon-bone insertion repair and 

regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model. The American 

journal of sports medicine. 2008;36:1298-309. 

[115] Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH. Knitted poly-lactide-co-glycolide 

scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles 

tendon. Tissue engineering. 2003;9:431-9. 

[116] Williams SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the price 

performance issue: I. Tissue engineering. International journal of biological macromolecules. 

1999;25:111-21. 

[117] Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the 

efficacy of commercial products. Expert review of medical devices. 2009;6:61-73. 

[118] Khanna S, Srivastava AK. Recent advances in microbial polyhydroxyalkanoates. Process 

Biochemistry. 2005;40:607-19. 

[119] Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. 

Biomaterials. 2005;26:6565-78. 

[120] Potter M, Steinbuchel A. Poly(3-hydroxybutyrate) granule-associated proteins: impacts on 

poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules. 2005;6:552-60. 

[121] Van Robertson WB, Schwartz B. Ascorbic acid and the formation of collagen. The Journal of 

biological chemistry. 1953;201:689-96. 

[122] Robertson WV. The biochemical role of ascorbic acid in connective tissue. Annals of the New 

York Academy of Sciences. 1961;92:159-67. 

[123] Elster SK. Effect of ascorbic acid deficiency on collagen content of guinea pig tissues. The 

Journal of biological chemistry. 1950;186:105-12. 

[124] Sharma SR, Poddar, R., Sen, P., and Andrews J.T. Effect of Vitamin C on collagen biosynthesis 

and degree of birefringence in polarization sensitive optical coherence tomography (PS-OCT). 

African Journal of Biotechnology. 2008;7:2049-54. 

[125] Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR. Regulation of collagen 

synthesis by ascorbic acid. Proc Natl Acad Sci U S A. 1981;78:2879-82. 



W. R. Webb PhD Thesis References 

289 
 

[126] Kuroyanagi M, Shimamura E, Kim M, Arakawa N, Fujiwara Y, Otsuka M. Effects of L-ascorbic 

acid on lysyl oxidase in the formation of collagen cross-links. Bioscience, biotechnology, and 

biochemistry. 2002;66:2077-82. 

[127] Singh RP, Franke K, Wielockx B. Hypoxia-Mediated Regulation of Stem Cell Fate. High Alt 

Med Biol. 2012;13:162-8. 

[128] Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell 

function. Nat Rev Mol Cell Bio. 2008;9:285-96. 

[129] Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DAH, Bauer C, et al. HIF-1 is 

expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. 

Faseb J. 2001;15:2445-53. 

[130] Mitchell JA, Yochim JM. Intrauterine oxygen tension during the estrous cycle in the rat: its 

relation to uterine respiration and vascular activity. Endocrinology. 1968;83:701-5. 

[131] Folkman J, Hahnfeldt P, Hlatky L. Cancer: looking outside the genome. Nat Rev Mol Cell Biol. 

2000;1:76-9. 

[132] Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 

2004;4:891-9. 

[133] Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-

1 alpha Level Is Essential for Hematopoietic Stem Cells. Cell Stem Cell. 2010;7:391-402. 

[134] Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, et al. 

Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 

2010;466:829-U59. 

[135] Mazumdar J, O'Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, et al. O-2 regulates 

stem cells through Wnt/beta-catenin signalling. Nat Cell Biol. 2010;12:1007-13. 

[136] Forristal CE, Wright KL, Hanley NA, Oreffo ROC, Houghton FD. Hypoxia inducible factors 

regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced 

oxygen tensions. Reproduction. 2010;139:85-97. 

[137] Eliasson P, Jonsson JI. The Hematopoietic Stem Cell Niche: Low in Oxygen but a Nice Place to 

be. J Cell Physiol. 2010;222:17-22. 

[138] Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in Stem Cell Biology: A Critical 

Component of the Stem Cell Niche. Cell Stem Cell. 2010;7:150-61. 

[139] Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, et al. Reduced 

oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and 

prolongs their lifespan. Aging Cell. 2007;6:745-57. 



W. R. Webb PhD Thesis References 

290 
 

[140] Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation 

of human mesenchymal stem cells. Biochemical and biophysical research communications. 

2007;358:948-53. 

[141] Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based 

engineering of mesenchymal tissues. Biotechnology Progress. 2009;25:32-42. 

[142] Forsyth NR, Musio A, Vezzoni P, Simpson A, Noble BS, McWhir J. Physiologic oxygen 

enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. 

Cloning and Stem Cells. 2006;8:16-23. 

[143] Das B, Bayat-Mokhtari R, Tsui M, Lotfi S, Tsuchida R, Felsher DW, et al. HIF-2α Suppresses 

p53 to Enhance the Stemness and Regenerative Potential of Human Embryonic Stem Cells. STEM 

CELLS. 2012;30:1685-95. 

[144] Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies 

derived from transplanted mouse marrow cells. Nature. 1963;197:452-4. 

[145] Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium 

conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634-8. 

[146] Liu T, D'Mello V, Deng L, Hu J, Ricardo M, Pan S, et al. A multiplexed proteomics approach to 

differentiate neurite outgrowth patterns. Journal of neuroscience methods. 2006;158:22-9. 

[147] Friel R, van der Sar S, Mee PJ. Embryonic stem cells: understanding their history, cell biology 

and signalling. Adv Drug Deliv Rev. 2005;57:1894-903. 

[148] Friel R, Fisher D, Hook L. Embryonic stem cell technology: applications and uses in functional 

genomic studies. Stem cell reviews. 2006;2:31-5. 

[149] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse 

embryos. Nature. 1981;292:154-6. 

[150] Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. Journal of cell science. 

2000;113 ( Pt 1):5-10. 

[151] Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, et al. Isolation of a 

primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995;92:7844-8. 

[152] Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines 

derived from common marmoset (Callithrix jacchus) blastocysts. Biology of reproduction. 

1996;55:254-9. 

[153] Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. 

Development. 2004;131:5515-25. 

[154] Friedenstein AJ, Latzinik NV, Gorskaya Yu F, Luria EA, Moskvina IL. Bone marrow stromal 

colony formation requires stimulation by haemopoietic cells. Bone and mineral. 1992;18:199-213. 



W. R. Webb PhD Thesis References 

291 
 

[155] Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and 

assays. Cell Stem Cell. 2008;2:313-9. 

[156] Bullough R, Finnigan T, Kay A, Maffulli N, Forsyth NR. Tendon repair through stem cell 

intervention: cellular and molecular approaches. Disability and rehabilitation. 2008;30:1746-51. 

[157] Hoffmann A, Gross G. Tendon and ligament engineering in the adult organism: 

mesenchymal stem cells and gene-therapeutic approaches. International orthopaedics. 

2007;31:791-7. 

[158] Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T, et al. Bone marrow Oct3/4+ 

cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circulation 

research. 2007;100:e1-11. 

[159] Montzka K, Lassonczyk N, Tschoke B, Neuss S, Fuhrmann T, Franzen R, et al. Neural 

differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading 

marker gene expression. BMC neuroscience. 2009;10:16. 

[160] Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of 

tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature 

medicine. 2007;13:1219-27. 

[161] Helmreich EJM. The biochemistry of cell signalling. Oxford: Oxford University Press; 2001. 

[162] Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on 

the healing of defects in the canine anterior cruciate ligament. Knee surgery, sports traumatology, 

arthroscopy : official journal of the ESSKA. 1997;5:189-94. 

[163] Fukui N, Katsuragawa Y, Sakai H, Oda H, Nakamura K. Effect of local application of basic 

fibroblast growth factor on ligament healing in rabbits. Revue du rhumatisme. 1998;65:406-14. 

[164] Chan BP, Fu S, Qin L, Lee K, Rolf CG, Chan K. Effects of basic fibroblast growth factor (bFGF) 

on early stages of tendon healing: a rat patellar tendon model. Acta orthopaedica Scandinavica. 

2000;71:513-8. 

[165] Thomopoulos S, Das R, Sakiyama-Elbert S, Silva MJ, Charlton N, Gelberman RH. bFGF and 

PDGF-BB for Tendon Repair: Controlled Release and Biologic Activity by Tendon Fibroblasts In 

Vitro. Annals of biomedical engineering. 2010;38:225-34. 

[166] Henn RF, 3rd, Kuo CE, Kessler MW, Razzano P, Grande DP, Wolfe SW. Augmentation of zone 

II flexor tendon repair using growth differentiation factor 5 in a rabbit model. The Journal of hand 

surgery. 2010;35:1825-32. 

[167] Forslund C, Aspenberg P. Tendon healing stimulated by injected CDMP-2. Medicine and 

science in sports and exercise. 2001;33:685-7. 



W. R. Webb PhD Thesis References 

292 
 

[168] Kurtz CA, Loebig TG, Anderson DD, DeMeo PJ, Campbell PG. Insulin-like growth factor I 

accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sport Med. 

1999;27:363-9. 

[169] Suwalski A, Dabboue H, Delalande A, Bensamoun SF, Canon F, Midoux P, et al. Accelerated 

Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials. 

2010;31:5237-45. 

[170] Shen W, Chen X, Chen J, Yin Z, Heng BC, Chen W, et al. The effect of incorporation of 

exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on 

tendon regeneration. Biomaterials. 2010;31:7239-49. 

[171] Wei XL, Lin L, Hou Y, Fu X, Zhang JY, Mao ZB, et al. Construction of recombinant adenovirus 

co-expression vector carrying the human transforming growth factor-beta1 and vascular 

endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts. Chinese 

medical journal. 2008;121:1426-32. 

[172] Spindler KP, Dawson JM, Stahlman GC, Davidson JM, Nanney LB. Collagen expression and 

biomechanical response to human recombinant transforming growth factor beta (rhTGF-beta2) in 

the healing rabbit MCL. Journal of orthopaedic research : official publication of the Orthopaedic 

Research Society. 2002;20:318-24. 

[173] Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should 

know before using tissue engineering techniques to repair injured tendons: a developmental 

biology perspective. Tissue engineering Part B, Reviews. 2011;17:165-76. 

[174] Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. 

Developmental cell. 2009;16:329-43. 

[175] Feng XH, Derynck R. Specificity and versatility in TGF-beta signaling through Smads. Annu 

Rev Cell Dev Bi. 2005;21:659-93. 

[176] Lou J, Tu Y, Burns M, Silva MJ, Manske P. BMP-12 gene transfer augmentation of lacerated 

tendon repair. Journal of orthopaedic research : official publication of the Orthopaedic Research 

Society. 2001;19:1199-202. 

[177] Williams LA, Bhargav D, Diwan AD. Unveiling the Bmp13 Enigma: Redundant Morphogen or 

Crucial Regulator? Int J Biol Sci. 2008;4:318-29. 

[178] Wu X, Shi W, Cao X. Multiplicity of BMP signaling in skeletal development. Annals of the 

New York Academy of Sciences. 2007;1116:29-49. 

[179] Wang QW, Chen ZL, Piao YR. Mesenchymal stem cells differentiate into tenocytes by bone 

morphogenetic protein (BMP) 12 gene transfer. Journal of bioscience and bioengineering. 

2005;100:418-22. 



W. R. Webb PhD Thesis References 

293 
 

[180] Lee JY, Zhou ZP, Taub PJ, Ramcharan M, Li YH, Akinbiyi T, et al. BMP-12 Treatment of Adult 

Mesenchymal Stem Cells In Vitro Augments Tendon-Like Tissue Formation and Defect Repair In 

Vivo. Plos One. 2011;6. 

[181] Berasi SP, Varadarajan U, Archambault J, Cain M, Souza TA, Abouzeid A, et al. Divergent 

activities of osteogenic BMP2, and tenogenic BMP12 and BMP13 independent of receptor binding 

affinities. Growth Factors. 2011;29:128-39. 

[182] Pauly S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, et al. BMP-2 and BMP-7 

affect human rotator cuff tendon cells in vitro. J Shoulder Elb Surg. 2012;21:464-73. 

[183] Fu SC, Wong YP, Chan BP, Pau HM, Cheuk YC, Lee KM, et al. The roles of bone 

morphogenetic protein (BMP) 12 in stimulating the proliferation and matrix production of human 

patellar tendon fibroblasts. Life Sci. 2003;72:2965-74. 

[184] Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, et al. Transforming gene 

from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci 

U S A. 1986;83:3997-4001. 

[185] Ornitz DM, Itoh N. Fibroblast growth factors. Genome biology. 2001;2:REVIEWS3005. 

[186] Kosaka N, Sakamoto H, Terada M, Ochiya T. Pleiotropic function of FGF-4: its role in 

development and stem cells. Developmental dynamics : an official publication of the American 

Association of Anatomists. 2009;238:265-76. 

[187] Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for 

development. BioEssays : news and reviews in molecular, cellular and developmental biology. 

2000;22:108-12. 

[188] Kelley MJ, Pech M, Seuanez HN, Rubin JS, Obrien SJ, Aaronson SA. Emergence of the 

Keratinocyte Growth-Factor Multigene Family during the Great Ape Radiation. P Natl Acad Sci 

USA. 1992;89:9287-91. 

[189] Wada N, Nohno T. Differential response of Shh expression between chick forelimb and 

hindlimb buds by FGF-4. Developmental dynamics : an official publication of the American 

Association of Anatomists. 2001;221:402-11. 

[190] Huebner K, Ferrari AC, Bovi PD, Croce CM, Basilico C. The Fgf-Related Oncogene, K-Fgf, 

Maps to Human-Chromosome Region 11q13, Possibly near Int-2. Oncogene Res. 1988;3:263-70. 

[191] Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. 

Developmental dynamics : an official publication of the American Association of Anatomists. 

2008;237:18-27. 



W. R. Webb PhD Thesis References 

294 
 

[192] Yoshida T, Miyagawa K, Odagiri H, Sakamoto H, Little PF, Terada M, et al. Genomic sequence 

of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the 

int-2-encoded protein. Proc Natl Acad Sci U S A. 1987;84:7305-9. 

[193] Taira M, Yoshida T, Miyagawa K, Sakamoto H, Terada M, Sugimura T. cDNA sequence of 

human transforming gene hst and identification of the coding sequence required for transforming 

activity. Proc Natl Acad Sci U S A. 1987;84:2980-4. 

[194] Delli Bovi P, Curatola AM, Kern FG, Greco A, Ittmann M, Basilico C. An oncogene isolated by 

transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. 

Cell. 1987;50:729-37. 

[195] Fuller-Pace F, Peters G, Dickson C. Cell transformation by kFGF requires secretion but not 

glycosylation. The Journal of cell biology. 1991;115:547-55. 

[196] Bellosta P, Talarico D, Rogers D, Basilico C. Cleavage of K-FGF produces a truncated molecule 

with increased biological activity and receptor binding affinity. The Journal of cell biology. 

1993;121:705-13. 

[197] Niswander L, Martin GR. Fgf-4 expression during gastrulation, myogenesis, limb and tooth 

development in the mouse. Development. 1992;114:755-68. 

[198] Rappolee DA, Basilico C, Patel Y, Werb Z. Expression and function of FGF-4 in peri-

implantation development in mouse embryos. Development. 1994;120:2259-69. 

[199] deLapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F, et al. Expression of the 

Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development. 

1993;118:601-11. 

[200] Zhao P, Hoffman EP. Embryonic myogenesis pathways in muscle regeneration. 

Developmental dynamics : an official publication of the American Association of Anatomists. 

2004;229:380-92. 

[201] Armand AS, Pariset C, Laziz I, Launay T, Fiore F, Della Gaspera B, et al. FGF6 regulates muscle 

differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. 

Journal of cellular physiology. 2005;204:297-308. 

[202] Armand AS, Laziz I, Chanoine C. FGF6 in myogenesis. Biochimica et biophysica acta. 

2006;1763:773-8. 

[203] Moon AM, Boulet AM, Capecchi MR. Normal limb development in conditional mutants of 

Fgf4. Development. 2000;127:989-96. 

[204] Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, et al. Required, tissue-specific roles for 

Fgf8 in outflow tract formation and remodeling. Development. 2006;133:2419-33. 



W. R. Webb PhD Thesis References 

295 
 

[205] Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development. 

1998;125:4019-32. 

[206] Eloy-Trinquet S, Wang H, Edom-Vovard F, Duprez D. Fgf signaling components are 

associated with muscles and tendons during limb development. Developmental dynamics : an 

official publication of the American Association of Anatomists. 2009;238:1195-206. 

[207] Subramanian A, Wayburn B, Bunch T, Volk T. Thrombospondin-mediated adhesion is 

essential for the formation of the myotendinous junction in Drosophila. Development. 

2007;134:1269-78. 

[208] Schnorrer F, Dickson BJ. Muscle building: mechanisms of myotube guidance and attachment 

site selection. Dev Cell. 2004;7:9-20. 

[209] Bonnin MA, Laclef C, Blaise R, Eloy-Trinquet S, Relaix F, Maire P, et al. Six1 is not involved in 

limb tendon development, but is expressed in limb connective tissue under Shh regulation. Mech 

Develop. 2005;122:573-85. 

[210] Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-

FGFR complexes reveal the determinants of ligand-receptor specificity. Cell. 2000;101:413-24. 

[211] Zhu X, Komiya H, Chirino A, Faham S, Fox GM, Arakawa T, et al. Three-dimensional 

structures of acidic and basic fibroblast growth factors. Science. 1991;251:90-3. 

[212] Eriksson AE, Cousens LS, Weaver LH, Matthews BW. Three-dimensional structure of human 

basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991;88:3441-5. 

[213] Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. Heparin structure and interactions 

with basic fibroblast growth factor. Science. 1996;271:1116-20. 

[214] Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor 

activation. Cytokine & growth factor reviews. 2005;16:107-37. 

[215] Huang P, Stern MJ. FGF signaling in flies and worms: more and more relevant to vertebrate 

biology. Cytokine & growth factor reviews. 2005;16:151-8. 

[216] Johnson DE, Williams LT. Structural and Functional Diversity in the Fgf Receptor Multigene 

Family. Adv Cancer Res. 1993;60:1-41. 

[217] Olsen SK, Garbi M, Zampieri N, Eliseenkova AV, Ornitz DM, Goldfarb M, et al. Fibroblast 

growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J 

Biol Chem. 2003;278:34226-36. 

[218] Olsen SK, Li JY, Bromleigh C, Eliseenkova AV, Ibrahimi OA, Lao Z, et al. Structural basis by 

which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes & 

development. 2006;20:185-98. 



W. R. Webb PhD Thesis References 

296 
 

[219] Rebscher N, Deichmann C, Sudhop S, Fritzenwanker JH, Green S, Hassel M. Conserved intron 

positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of 

domains to an already complex ancestral FGFR. Development genes and evolution. 2009;219:455-

68. 

[220] Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and 

signaling. Endocrine-related cancer. 2000;7:165-97. 

[221] Moy FJ, Safran M, Seddon AP, Kitchen D, Bohlen P, Aviezer D, et al. Properly oriented 

heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth 

factor. Biochemistry. 1997;36:4782-91. 

[222] Ornitz DM, Xu JS, Colvin JS, McEwen DG, MacArthur CA, Coulier F, et al. Receptor specificity 

of the fibroblast growth factor family. J Biol Chem. 1996;271:15292-7. 

[223] Koga M, Kasayama S, Matsumoto K, Sato B. Molecular mechanism of androgen-dependent 

growth in transformed cells. Pathway from basic science to clinical application. The Journal of 

steroid biochemistry and molecular biology. 1995;54:1-6. 

[224] Miralles F, Czernichow P, Ozaki K, Itoh N, Scharfmann R. Signaling through fibroblast growth 

factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad 

Sci U S A. 1999;96:6267-72. 

[225] Xu J, Lawshe A, MacArthur CA, Ornitz DM. Genomic structure, mapping, activity and 

expression of fibroblast growth factor 17. Mechanisms of development. 1999;83:165-78. 

[226] Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends in genetics : TIG. 

2004;20:563-9. 

[227] Casu B, Petitou M, Provasoli M, Sinay P. Conformational flexibility: a new concept for 

explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. 

Trends in biochemical sciences. 1988;13:221-5. 

[228] Wilkie AOM, Morrisskay GM, Jones EY, Heath JK. Functions of Fibroblast Growth-Factors and 

Their Receptors. Current Biology. 1995;5:500-7. 

[229] Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B, et al. Role of FGFs in skeletal muscle 

and limb development. Molecular reproduction and development. 1994;39:90-100; discussion -1. 

[230] Lucas JM, Bryans M, Lo K, Wilkie NM, Freshney M, Thornton D, et al. The FGF-4 promoter is 

required for transformation and is active in both embryonal and somatic cells. Oncology research. 

1994;6:139-49. 

[231] Herr AB, Ornitz DM, Sasisekharan R, Venkataraman G, Waksman G. Heparin-induced self-

association of fibroblast growth factor-2. Evidence for two oligomerization processes. The Journal 

of biological chemistry. 1997;272:16382-9. 



W. R. Webb PhD Thesis References 

297 
 

[232] Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on 

cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen 

activator production by bovine capillary endothelial cells. Journal of cellular physiology. 

1987;131:123-30. 

[233] Flaumenhaft R, Moscatelli D, Rifkin DB. Heparin and heparan sulfate increase the radius of 

diffusion and action of basic fibroblast growth factor. The Journal of cell biology. 1990;111:1651-

9. 

[234] Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 

1992;59:115-65. 

[235] Mach H, Volkin DB, Burke CJ, Middaugh CR, Linhardt RJ, Fromm JR, et al. Nature of the 

Interaction of Heparin with Acidic Fibroblast Growth-Factor. Biochemistry. 1993;32:5480-9. 

[236] DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, et al. Structure of a heparin-

linked biologically active dimer of fibroblast growth factor. Nature. 1998;393:812-7. 

[237] Waksman G, Herr AB. New insights into heparin-induced FGF oligomerization. Nature 

structural biology. 1998;5:527-30. 

[238] Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated 

fibroblast growth and myoblast differentiation. Science. 1991;252:1705-8. 

[239] Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are 

required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 

1991;64:841-8. 

[240] Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. 

International review of cytology. 1999;185:45-106. 

[241] Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. 

Frontiers in bioscience : a journal and virtual library. 1999;4:D165-77. 

[242] Vogel W, Ullrich A. Multiple in vivo phosphorylated tyrosine phosphatase SHP-2 engages 

binding to Grb2 via tyrosine 584. Cell Growth Differ. 1996;7:1589-97. 

[243] Fang J. Role of FGF-2/FGFR signaling pathway in cancer and its signification in breast cancer. 

Chinese Science Bulletin. 2003;48:1539. 

[244] Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK 

pathway. Science's STKE : signal transduction knowledge environment. 2004;2004:pe17. 

[245] Tsang M, Friesel R, Kudoh T, Dawid IB. Identification of Sef, a novel modulator of FGF 

signalling. Nature cell biology. 2002;4:165-9. 

[246] Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H. Fgf/MAPK signalling is a 

crucial positional cue in somite boundary formation. Development. 2001;128:4873-80. 



W. R. Webb PhD Thesis References 

298 
 

[247] Smith KM, Ohkubo Y, Maragnoli ME, Rasin MR, Schwartz ML, Sestan N, et al. Midline radial 

glia translocation and corpus callosum formation require FGF signaling. Nature neuroscience. 

2006;9:787-97. 

[248] Smith TG, Karlsson M, Lunn JS, Eblaghie MC, Keenan ID, Farrell ER, et al. Negative feedback 

predominates over cross-regulation to control ERK MAPK activity in response to FGF signalling in 

embryos. FEBS letters. 2006;580:4242-5. 

[249] Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A. FGF/MAPK/Ets signaling 

renders pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf 

transcription. Development. 2011;138:1421-32. 

[250] Furthauer M, Lin W, Ang SL, Thisse B, Thisse C. Sef is a feedback-induced antagonist of 

Ras/MAPK-mediated FGF signalling. Nature cell biology. 2002;4:170-4. 

[251] Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature. 1989;341:197-205. 

[252] Berridge MJ. Inositol Trisphosphate and Calcium Signaling. Nature. 1993;361:315-25. 

[253] Klint P, Kanda S, Kloog Y, Claesson-Welsh L. Contribution of Src and Ras pathways in FGF-2 

induced endothelial cell differentiation. Oncogene. 1999;18:3354-64. 

[254] Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry 

on biological systems. Annual review of biomedical engineering. 2012;14:1-16. 

[255] Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for 

biomedical and pharmaceutical applications. Nanomedicine. 2008;3:367-93. 

[256] Kim S, Kim JH, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery. 

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft 

fur Pharmazeutische Verfahrenstechnik eV. 2009;71:420-30. 

[257] Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB. Biodegradable synthetic polymers: 

Preparation, functionalization and biomedical application. Progress in Polymer Science. 

2012;37:237-80. 

[258] Hoffman AS. The origins and evolution of "controlled" drug delivery systems. Journal of 

controlled release : official journal of the Controlled Release Society. 2008;132:153-63. 

[259] Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, et al. Stabilized 

polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials. 1996;17:115-24. 

[260] Holland SJ, Jolly AM, Yasin M, Tighe BJ. Polymers for biodegradable medical devices. II. 

Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials. 

1987;8:289-95. 

[261] Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue 

engineering Part B, Reviews. 2008;14:61-86. 



W. R. Webb PhD Thesis References 

299 
 

[262] Bikiaris DN, Papageorgiou GZ, Papadimitriou SA, Karavas E, Avgoustakis K. Novel 

biodegradable polyester poly(propylene succinate): synthesis and application in the preparation 

of solid dispersions and nanoparticles of a water-soluble drug. AAPS PharmSciTech. 2009;10:138-

46. 

[263] Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. 

European cells & materials. 2003;5:1-16; discussion  

[264] Stoilova O, Manolova N, Gabrovska K, Marinov I, Godjevargova T, Mita DG, et al. 

Electrospun Polyacrylonitrile Nanofibrous Membranes Tailored for Acetylcholinesterase 

Immobilization. Journal of Bioactive and Compatible Polymers. 2010;25:40-57. 

[265] Kellomaki M, Heller J, Tormala P. Processing and properties of two different poly (ortho 

esters). Journal of materials science Materials in medicine. 2000;11:345-55. 

[266] Peach MS, James R, Toti US, Deng M, Morozowich NL, Allcock HR, et al. Polyphosphazene 

functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with 

human mesenchymal stem cells. Biomedical materials. 2012;7:045016. 

[267] Friess W. Collagen--biomaterial for drug delivery. European journal of pharmaceutics and 

biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik 

eV. 1998;45:113-36. 

[268] DiTizio V, Karlgard C, Lilge L, Khoury AE, Mittelman MW, DiCosmo F. Localized drug delivery 

using crosslinked gelatin gels containing liposomes: factors influencing liposome stability and drug 

release. Journal of biomedical materials research. 2000;51:96-106. 

[269] Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled 

release drug delivery systems. Journal of controlled release : official journal of the Controlled 

Release Society. 2012;157:168-82. 

[270] Barbucci R, Leone G, Vecchiullo A. Novel carboxymethylcellulose-based microporous 

hydrogels suitable for drug delivery. Journal of biomaterials science Polymer edition. 

2004;15:607-19. 

[271] Tuovinen L, Ruhanen E, Kinnarinen T, Ronkko S, Pelkonen J, Urtti A, et al. Starch acetate 

microparticles for drug delivery into retinal pigment epithelium-in vitro study. Journal of 

controlled release : official journal of the Controlled Release Society. 2004;98:407-13. 

[272] Wang N, Wu XS. Preparation and characterization of agarose hydrogel nanoparticles for 

protein and peptide drug delivery. Pharmaceutical development and technology. 1997;2:135-42. 

[273] Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug development and industrial 

pharmacy. 2002;28:621-30. 



W. R. Webb PhD Thesis References 

300 
 

[274] Liu LS, Ng CK, Thompson AY, Poser JW, Spiro RC. Hyaluronate-heparin conjugate gels for the 

delivery of basic fibroblast growth factor (FGF-2). Journal of biomedical materials research. 

2002;62:128-35. 

[275] Miyazaki Y, Yakou S, Nagai T, Takayama K. Release profiles of theophylline from 

microspheres consisting of dextran derivatives and cellulose acetate butyrate: effect of polyion 

complex formation. Drug development and industrial pharmacy. 2003;29:795-804. 

[276] Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug 

delivery. 2005;12:41-57. 

[277] Raffa V, Vittorio O, Riggio C, Cuschieri A. Progress in nanotechnology for healthcare. 

Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for 

Minimally Invasive Therapy. 2010;19:127-35. 

[278] Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M. Multi-stage delivery nano-particle 

systems for therapeutic applications. Biochimica et biophysica acta. 2011;1810:317-29. 

[279] Kost J, Langer R. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews. 

2012;64:327-41. 

[280] Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. Journal of 

controlled release : official journal of the Controlled Release Society. 2012;161:351-62. 

[281] Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and 

degradable polymeric delivery systems. Expert Opin Drug Del. 2010;7:429-44. 

[282] Letchford K, Burt H. A review of the formation and classification of amphiphilic block 

copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. 

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft 

fur Pharmazeutische Verfahrenstechnik eV. 2007;65:259-69. 

[283] Farokhzad OC. Nanotechnology for drug delivery: the perfect partnership. Expert Opin Drug 

Del. 2008;5:927-9. 

[284] Li C, Wallace S. Polymer-drug conjugates: Recent development in clinical oncology. 

Advanced Drug Delivery Reviews. 2008;60:886-98. 

[285] Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic 

applications. Nature reviews Drug discovery. 2010;9:615-27. 

[286] Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric 

nanoparticles. Pharmaceutical research. 2009;26:1025-58. 

[287] Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. 

Nanomedicine. 2011;6:815-35. 



W. R. Webb PhD Thesis References 

301 
 

[288] Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, 

diagnostics and imaging. Nanomedicine. 2012;8:147-66. 

[289] Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery 

applications. Chemical Society reviews. 2012;41:2545-61. 

[290] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery 

systems. Colloids and surfaces B, Biointerfaces. 2010;75:1-18. 

[291] Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug 

Delivery Carrier. Polymers-Basel. 2011;3:1377-97. 

[292] Rasiah IA. PN, Grage K., Palanisamy R., Jahns AC., Atwood JA. Biopolyester particles: 

preparation and applications. In: MC. F, editor. Encyclopedia of Industrial Biotechnology In: John 

Wiley & Sons, Inc.,; 2009. 

[293] Fisher RAS, Bennett JH, Fisher RASSmfrw, Fisher RASDoe, Fisher RASSm, scientific i. 

Statistical methods, inference and experimental design : a re-issue of Statistical methods for 

Research workers, The design of experiments, and Statistical methods and scientific inference. 

Oxford: Oxford University Press; 1990. 

[294] Webb WR, Dale TP, Lomas AJ, Zeng G, Wimpenny I, El Haj AJ, et al. The application of poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. 

Biomaterials. 2013;34:6683-94. 

[295] Pennisi E. Tending tender tendons. Science. 2002;295:1011. 

[296] Longo UG, Lamberti A, Maffulli N, Denaro V. Tendon augmentation grafts: a systematic 

review. British medical bulletin. 2010;94:165-88. 

[297] Longo UG, Lamberti A, Petrillo S, Maffulli N, Denaro V. Scaffolds in tendon tissue 

engineering. Stem cells international. 2012;2012:517165. 

[298] Feng Z, Tateishi Y, Nomura Y, Kitajima T, Nakamura T. Construction of fibroblast-collagen 

gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small 

tendon grafts. Journal of artificial organs : the official journal of the Japanese Society for Artificial 

Organs. 2006;9:220-5. 

[299] Fang Q, Chen DL, Yang ZM, Li M. In vitro and in vivo research on using Antheraea pernyi silk 

fibroin as tissue engineering tendon scaffolds. Mat Sci Eng C-Bio S. 2009;29:1527-34. 

[300] Chen GP, Sato T, Sakane M, Ohgushi H, Ushida T, Tanaka J, et al. Application of PLGA-

collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Mat 

Sci Eng C-Bio S. 2004;24:861-6. 



W. R. Webb PhD Thesis References 

302 
 

[301] Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, et al. From mechanical 

loading to collagen synthesis, structural changes and function in human tendon. Scandinavian 

journal of medicine & science in sports. 2009;19:500-10. 

[302] Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mechanisms 

of ageing and development. 1998;106:1-56. 

[303] Koob TJ. Biomimetic approaches to tendon repair. Comparative biochemistry and 

physiology Part A, Molecular & integrative physiology. 2002;133:1171-92. 

[304] Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. 

Chemical Society reviews. 2009;38:2434-46. 

[305] Qiu YZ, Han J, Guo JJ, Chen GQ. Production of poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and 

Pseudomonas putida. Biotechnology letters. 2005;27:1381-6. 

[306] Chen GQ, Zhang G, Park SJ, Lee SY. Industrial scale production of poly(3-hydroxybutyrate-co-

3-hydroxyhexanoate). Appl Microbiol Biotechnol. 2001;57:50-5. 

[307] Wang Y-W, Wu Q, Chen G-Q. Attachment, proliferation and differentiation of osteoblasts on 

random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials. 

2004;25:669-75. 

[308] Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW. PHB/PHBHHx scaffolds and human adipose-

derived stem cells for cartilage tissue engineering. Biomaterials. 2009;30:4401-6. 

[309] Ji Y, Li XT, Chen GQ. Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-

co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials. 2008;29:3807-14. 

[310] Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q. Evaluation of poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009;30:217-25. 

[311] Wang YW, Wu Q, Chen GQ. Reduced mouse fibroblast cell growth by increased 

hydrophilicity of microbial polyhydroxyalkanoates via hyaluronan coating. Biomaterials. 

2003;24:4621-9. 

[312] Lomas AJ, Chen GQ, El Haj AJ, Forsyth NR. Mechanostimulation of human mesenchymal 

stem cells in PHBHHx/collagen hybrid scaffolds for tendon tissue engineering applications. Journal 

of tissue engineering and regenerative medicine. 2012;6:46-. 

[313] Lomas AJ, Webb WR, Han J, Chen GQ, Sun X, Zhang Z, et al. Poly (3-hydroxybutyrate-co-3-

hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue 

engineering Part C, Methods. 2013. 

[314] Murrell GAC, Lilly EG, Davies H, Best TM, Goldner RD, Seaber AV. The Achilles Functional 

Index. J Orthop Res. 1992;10:398-404. 



W. R. Webb PhD Thesis References 

303 
 

[315] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. 

Nature methods. 2012;9:671-5. 

[316] Du Clos TW. Function of C-reactive protein. Annals of medicine. 2000;32:274-8. 

[317] Du Clos TW, Mold C, Bharadwaj D, Edberg JC, Kimberly RP, Stein MP. C-reactive protein 

binding to Fc gamma RIIa on human monocytes and neutrophils is allele-specific. Arthritis Rheum. 

1999;42:S274-S. 

[318] Berman S, Gewurz H, Mold C. Binding of C-Reactive Protein to Nucleated Cells Leads to 

Complement Activation without Cytolysis. Journal of immunology. 1986;136:1354-9. 

[319] Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive 

protein on leukocytes is Fc gamma receptor II. J Exp Med. 1999;190:585-90. 

[320] Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. C-reactive protein (CRP) binds to Fc 

gamma RIIa-transfected COS cells. Faseb J. 1999;13:A281-A. 

[321] Stein MP, Mold C, Bharadwaj D, Du Clos TW. C-reactive protein (CRP) binding to murine 

peritoneal cells requires Fc receptors (FcR). Faseb J. 1999;13:A281-A. 

[322] White J, Kelly M, Dunsmuir R. C-reactive protein level after total hip and total knee 

replacement. J Bone Joint Surg Br. 1998;80B:909-11. 

[323] Lobler M, Sass M, Kunze C, Schmitz KP, Hopt UT. Biomaterial implants induce the 

inflammation marker CRP at the site of implantation. Journal of biomedical materials research. 

2002;61:165-7. 

[324] Vrana NE, Dupret-Bories A, Bach C, Chaubaroux C, Coraux C, Vautier D, et al. Modification of 

macroporous titanium tracheal implants with biodegradable structures: Tracking in vivo 

integration for determination of optimal in situ epithelialization conditions. Biotechnol Bioeng. 

2012;109:2134-46. 

[325] Zhou J, Peng SW, Wang YY, Zheng SB, Wang Y, Chen GQ. The use of poly(3-hydroxybutyrate-

co-3-hydroxyhexanoate) scaffolds for tarsal repair in eyelid reconstruction in the rat. Biomaterials. 

2010;31:7512-8. 

[326] Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. Use of mesenchymal stem 

cells in a collagen matrix for Achilles tendon repair. J Orthop Res. 1998;16:406-13. 

[327] Miller-Chou BA, Koenig JL. A review of polymer dissolution. Progress in Polymer Science. 

2003;28:1223-70. 

[328] Cima LG, Ingber DE, Vacanti JP, Langer R. Hepatocyte Culture on Biodegradable Polymeric 

Substrates. Biotechnol Bioeng. 1991;38:145-58. 



W. R. Webb PhD Thesis References 

304 
 

[329] Qu XH, Wu Q, Zhang KY, Chen GQ. In vivo studies of poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials. 

2006;27:3540-8. 

[330] Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D, et al. Human-mouse 

differences in the embryonic expression patterns of developmental control genes and disease 

genes. Human molecular genetics. 2000;9:165-73. 

[331] Scott A, Danielson P, Abraham T, Fong G, Sampaio AV, Underhill TM. Mechanical force 

modulates scleraxis expression in bioartificial tendons. Journal of musculoskeletal & neuronal 

interactions. 2011;11:124-32. 

[332] D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult 

multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells 

with extensive expansion and differentiation potential. Journal of cell science. 2004;117:2971-81. 

[333] Wimpenny I, Hampson K, Yang Y, Ashammakhi N, Forsyth NR. One-step recovery of marrow 

stromal cells on nanofibers. Tissue engineering Part C, Methods. 2010;16:503-9. 

[334] Lennon DP, Caplan AI. Isolation of rat marrow-derived mesenchymal stem cells. 

Experimental hematology. 2006;34:1606-7. 

[335] Zhang L, Chan C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and 

separation of single-colony derived MSCs. Journal of visualized experiments : JoVE. 2010. 

[336] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. 

Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-7. 

[337] Peterkofsky B. Ascorbate requirement for hydroxylation and secretion of procollagen: 

relationship to inhibition of collagen synthesis in scurvy. The American journal of clinical nutrition. 

1991;54:1135S-40S. 

[338] Omeroglu S, Peker T, Turkozkan N, Omeroglu H. High-dose Vitamin C supplementation 

accelerates the Achilles tendon healing in healthy rats. Archives of orthopaedic and trauma 

surgery. 2009;129:281-6. 

[339] Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid 

enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 

2003;107:1912-6. 

[340] Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in 

vitro. Stem Cells. 2004;22:1152-67. 

[341] zur Nieden NI, Kempka G, Ahr HJ. In vitro differentiation of embryonic stem cells into 

mineralized osteoblasts. Differentiation; research in biological diversity. 2003;71:18-27. 



W. R. Webb PhD Thesis References 

305 
 

[342] Ramirez-Bergeron DL, Simon MC. Hypoxia-inducible factor and the development of stem 

cells of the cardiovascular system. Stem Cells. 2001;19:279-86. 

[343] Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, et al. HIF induces human 

embryonic stem cell markers in cancer cells. Cancer research. 2011;71:4640-52. 

[344] Liang M, Cornell HR, Zargar Baboldashti N, Thompson MS, Carr AJ, Hulley PA. Regulation of 

Hypoxia-Induced Cell Death in Human Tenocytes. Advances in Orthopedics. 2012;2012:12. 

[345] Distler JH, Jungel A, Pileckyte M, Zwerina J, Michel BA, Gay RE, et al. Hypoxia-induced 

increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis and 

rheumatism. 2007;56:4203-15. 

[346] Wan J, Chai H, Yu Z, Ge W, Kang N, Xia W, et al. HIF-1alpha effects on angiogenic potential in 

human small cell lung carcinoma. Journal of experimental & clinical cancer research : CR. 

2011;30:77. 

[347] Kjaer M, Langberg H, Bojsen-Moller J, Koskinen SO, Mackey A, Heinemeier K, et al. Novel 

methods for tendon investigations. Disability and rehabilitation. 2008;30:1514-22. 

[348] Wong YP, Fu SC, Cheuk YC, Lee KM, Wong MW, Chan KM. Bone morphogenetic protein 13 

stimulates cell proliferation and production of collagen in human patellar tendon fibroblasts. Acta 

orthopaedica. 2005;76:421-7. 

[349] Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, et al. Neotendon 

formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. 

The Journal of clinical investigation. 2006;116:940-52. 

[350] Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus 

through SMAD proteins. Nature. 1997;390:465-71. 

[351] Dijke Pt, Heldin C-H. Smad signal transduction : smads in proliferation, differentiation and 

disease. Dordrecht: Springer; 2006. 

[352] Edom-Vovard F, Bonnin M, Duprez D. Fgf8 transcripts are located in tendons during 

embryonic chick limb development. Mechanisms of development. 2001;108:203-6. 

[353] Lanner F, Rossant J. The role of FGF/Erk signaling in pluripotent cells. Development. 

2010;137:3351-60. 

[354] Barsby T, Guest D. Transforming Growth Factor Beta3 Promotes Tendon Differentiation of 

Equine Embryo-Derived Stem Cells. Tissue engineering Part A. 2013. 

[355] Barron M, Gao M, Lough J. Requirement for BMP and FGF signaling during cardiogenic 

induction in non-precardiac mesoderm is specific, transient, and cooperative. Developmental 

Dynamics. 2000;218:383-93. 



W. R. Webb PhD Thesis References 

306 
 

[356] Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X. Combined BMP-2 and FGF-4, but 

neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. 

Developmental biology. 1996;178:198-202. 

[357] Zhang J, Wang JH. Characterization of differential properties of rabbit tendon stem cells and 

tenocytes. BMC musculoskeletal disorders. 2010;11:10. 

[358] Goncalves NP, Oliveira H, Pego AP, Saraiva MJ. A novel nanoparticle delivery system for in 

vivo targeting of the sciatic nerve: impact on regeneration. Nanomedicine. 2012;7:1167-80. 

[359] Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target. 

2007;15:241-52. 

[360] Lim SM, Oh SH, Lee HH, Yuk SH, Im GI, Lee JH. Dual growth factor-releasing 

nanoparticle/hydrogel system for cartilage tissue engineering. J Mater Sci-Mater Med. 

2010;21:2593-600. 

[361] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle 

systems in cancer therapeutics. Advanced Drug Delivery Reviews. 2008;60:1615-26. 

[362] Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, et al. Tumor regression 

by targeted gene delivery to the neovasculature. Science. 2002;296:2404-7. 

[363] Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting 

and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 

2008;26:83-90. 

[364] Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N, Kiziltepe T, et al. Temporal targeting of 

tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436:568-72. 

[365] Pollheimer J, Haslinger P, Fock V, Prast J, Saleh L, Biadasiewicz K, et al. Endostatin 

suppresses IGF-II-mediated signaling and invasion of human extravillous trophoblasts. 

Endocrinology. 2011;152:4431-42. 

[366] De Luca G, Barakat M, Ortet P, Fochesato S, Jourlin-Castelli C, Ansaldi M, et al. The cyst-

dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for 

adaptation to a desert environment. PLoS One. 2011;6:e23784. 

[367] Clerici M, Cassinotti A, Onida F, Trabattoni D, Annaloro C, Della Volpe A, et al. 

Immunomodulatory effects of unselected haematopoietic stem cells autotransplantation in 

refractory Crohn's disease. Digestive and liver disease : official journal of the Italian Society of 

Gastroenterology and the Italian Association for the Study of the Liver. 2011;43:946-52. 

[368] Liberto MC, Lamberti AG, Marascio N, Matera G, Quirino A, Barreca GS, et al. Molecular 

identification of Bartonella quintana infection using species-specific real-time PCR targeting 

transcriptional regulatory protein (bqtR) gene. Molecular and cellular probes. 2011;25:238-42. 



W. R. Webb PhD Thesis References 

307 
 

[369] Focosi D, Boggi U. Pretransplant screening for donor-specific antibodies and graft loss. 

Transplantation. 2011;92:e15; author reply e-6. 

[370] Siau C, Tee A, Au V, Raghuram J, Oh HM, Fock KM, et al. Influenza A H1N1 (2009): clinical 

spectrum of disease among adult patients admitted to a regional hospital in Singapore. Singapore 

medical journal. 2011;52:475-80. 

[371] Peng SW, Guo XY, Shang GG, Li J, Xu XY, You ML, et al. An assessment of the risks of 

carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and 

telomerase activity. Biomaterials. 2011;32:2546-55. 

[372] Freymann DM, Nakamura Y, Focia PJ, Sakai R, Swanson GT. Structure of a tetrameric 

galectin from Cinachyrella sp. (ball sponge). Acta crystallographica Section D, Biological 

crystallography. 2012;68:1163-74. 

[373] Peng Q, Zhang ZR, Gong T, Chen GQ, Sun X. A rapid-acting, long-acting insulin formulation 

based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials. 2012;33:1583-8. 

[374] Lunghetti S, Palmerini E, Urselli R, Maffei S, Guarino E, Focardi M, et al. Effects of 

levosimendan without loading dose on systolic and diastolic function in patients with end-stage 

heart failure. Cardiology journal. 2011;18:532-7. 

[375] Kilicay E, Demirbilek M, Turk M, Guven E, Hazer B, Denkbas EB. Preparation and 

characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based 

nanoparticles for targeted cancer therapy. European journal of pharmaceutical sciences : official 

journal of the European Federation for Pharmaceutical Sciences. 2011;44:310-20. 

[376] Albini L, Cesana BM, Motta D, Foca E, Gotti D, Calabresi A, et al. A randomized, pilot trial to 

evaluate glomerular filtration rate by creatinine or cystatin C in naive HIV-infected patients after 

tenofovir/emtricitabine in combination with atazanavir/ritonavir or efavirenz. Journal of acquired 

immune deficiency syndromes. 2012;59:18-30. 

[377] Wu Y, Wang WW, Chen YT, Huang KH, Shuai XT, Chen QK, et al. The investigation of 

polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomed. 

2010;5:129-36. 

[378] Yang M, Zhu S, Chen Y, Chang Z, Chen G, Gong Y, et al. Studies on bone marrow stromal cells 

affinity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials. 2004;25:1365-73. 

[379] Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by 

nanoparticles. J Control Release. 2012;161:264-73. 

[380] Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles 

for sustained delivery of anticancer agents. Mol Pharm. 2005;2:194-205. 



W. R. Webb PhD Thesis References 

308 
 

[381] Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic 

nanoparticles for imaging, targeting, and drug delivery. Acs Nano. 2008;2:889-96. 

[382] Veiseh O, Gunn JW, Zhang MQ. Design and fabrication of magnetic nanoparticles for 

targeted drug delivery and imaging. Advanced Drug Delivery Reviews. 2010;62:284-304. 

[383] Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular 

delivery. Chemical Engineering Science. 2006;61:1027-40. 

[384] Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive 

smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomaterialia. 

2007;3:838-50. 

[385] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells 

and tissue. Advanced Drug Delivery Reviews. 2003;55:329-47. 

[386] Konan YN, Gurny R, Allemann E. Preparation and characterization of sterile and freeze-dried 

sub-200 nm nanoparticles. International journal of pharmaceutics. 2002;233:239-52. 

[387] Della Torre C, Zaja R, Loncar J, Smital T, Focardi S, Corsi I. Interaction of ABC transport 

proteins with toxic metals at the level of gene and transport activity in the PLHC-1 fish cell line. 

Chemico-biological interactions. 2012;198:9-17. 

[388] Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, et al. Magnetic Iron 

Oxide Nanoworms for Tumor Targeting and Imaging. Adv Mater. 2008;20:1630-5. 

[389] Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorganic & medicinal chemistry. 

2009;17:2950-62. 

[390] Focken T, Steinemann D, Skawran B, Hofmann W, Ahrens P, Arnold N, et al. Human BRCA1-

associated breast cancer: no increase in numerical chromosomal instability compared to sporadic 

tumors. Cytogenetic and genome research. 2011;135:84-92. 

[391] Montgomery DC. THE USE OF STATISTICAL PROCESS-CONTROL AND DESIGN OF 

EXPERIMENTS IN PRODUCT AND PROCESS IMPROVEMENT. IIE Trans. 1992;24:4-17. 

[392] Williams DJ, Thomas RJ, Hourd PC, Chandra A, Ratcliffe E, Liu Y, et al. Precision 

manufacturing for clinical-quality regenerative medicines. Philosophical transactions Series A, 

Mathematical, physical, and engineering sciences. 2012;370:3924-49. 

[393] Lamprecht A, Ubrich N, Perez MH, Lehr CM, Hoffman M, Maincent P. Biodegradable 

monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm. 

1999;184:97-105. 

[394] Lamprecht A, Ubrich N, Perez MH, Lehr CM, Hoffman M, Maincent P. Influences of process 

parameters on nanoparticle preparation performed by a double emulsion pressure 

homogenization technique. Int J Pharm. 2000;196:177-82. 



W. R. Webb PhD Thesis References 

309 
 

[395] Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune 

response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. 

Vaccine. 2002;21:67-77. 

[396] Gryparis EC, Mattheolabakis G, Bikiaris D, Avgoustakis K. Effect of conditions of preparation 

on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin. Drug Deliv. 

2007;14:371-80. 

[397] Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. 

Nanomedicine (Lond). 2011;6:815-35. 

[398] Feczko T, Toth J, Dosa G, Gyenis J. Influence of process conditions on the mean size of PLGA 

nanoparticles. Chem Eng Process. 2011;50:846-53. 

[399] Thummala AS, Leach JK, O'Rear EA. Factors affecting the particle size and in vitro release of 

bovine serum albumin from polyethylene glycol microparticles. Biomed Sci Instrum. 2003;39:318-

23. 

[400] Liao W-Y, Li H-J, Chang M-Y, Tang ACL, Hoffman AS, Hsieh PCH. Comprehensive 

characterizations of nanoparticle biodistribution following systemic injection in mice. Nanoscale. 

2013;5:11079-86. 

[401] Dartsch PC, Hammerle H. Orientation response of arterial smooth muscle cells to 

mechanical stimulation. European journal of cell biology. 1986;41:339-46. 

[402] Dartsch PC, Hammerle H, Betz E. Orientation of cultured arterial smooth muscle cells 

growing on cyclically stretched substrates. Acta anatomica. 1986;125:108-13. 

[403] Chen B, Kemkemer R, Deibler M, Spatz J, Gao H. Cyclic stretch induces cell reorientation on 

substrates by destabilizing catch bonds in focal adhesions. PLoS One. 2012;7:e48346. 

[404] Williams DF, Biological Engineering Society London., Institute of Physics (Great Britain). 

Materials and Testing Group., Hospital Physicists Association. Biocompatibility of implant 

materials. LondonTunbridge Wells: Sector ;Distributed by Pitman Medical; 1976. 

[405] Maquirriain J. Achilles tendon rupture: avoiding tendon lengthening during surgical repair 

and rehabilitation. The Yale journal of biology and medicine. 2011;84:289-300. 

[406] Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor 

specificity of the fibroblast growth factor family. The complete mammalian FGF family. The 

Journal of biological chemistry. 2006;281:15694-700. 

[407] Boswell BA, Overbeek PA, Musil LS. Essential role of BMPs in FGF-induced secondary lens 

fiber differentiation. Developmental biology. 2008;324:202-12. 



W. R. Webb PhD Thesis References 

310 
 

[408] Boswell BA, Lein PJ, Musil LS. Cross-talk between fibroblast growth factor and bone 

morphogenetic proteins regulates gap junction-mediated intercellular communication in lens 

cells. Molecular biology of the cell. 2008;19:2631-41. 

[409] Chen X, Yin Z, Chen J-l, Shen W-l, Liu H-h, Tang Q-m, et al. Force and scleraxis synergistically 

promote the commitment of human ES cells derived MSCs to tenocytes. Sci Rep. 2012;2. 

[410] Abraham T, Fong G, Scott A. Second harmonic generation analysis of early Achilles 

tendinosis in response to in vivo mechanical loading. BMC musculoskeletal disorders. 2011;12:26. 

[411] Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, Schweitzer R. Recruitment 

and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. 

Development. 2009;136:1351-61. 

[412] Pryce BA, Brent AE, Murchison ND, Tabin CJ, Schweitzer R. Generation of transgenic tendon 

reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Developmental 

dynamics : an official publication of the American Association of Anatomists. 2007;236:1677-82. 

[413] Shen H, Gelberman RH, Silva MJ, Sakiyama-Elbert SE, Thomopoulos S. BMP12 induces 

tenogenic differentiation of adipose-derived stromal cells. PLoS ONE. 2013;8:e77613. 

[414] De Laporte L, Rice JJ, Tortelli F, Hubbell JA. Tenascin C promiscuously binds growth factors 

via its fifth fibronectin type III-like domain. PLoS One. 2013;8:e62076. 

 



 

 

 

 

  

 

Appendix 



W. R. Webb PhD Thesis Appendicies 
 

 
 

Standard Curve for Methods 

CRP standard curve 

 

Standard Curve 1 CRP Elisa standard curve 
  



W. R. Webb PhD Thesis Appendicies 
 

 
 

Albumin HPLC standard curve 

 

Standard Curve 2 Albumin HPLC standard curve 
 

Haperzine A GCMS standard curve 

 

 

Standard Curve 3 Haperzine A standard curve 



W.R.Webb PhD Thesis Appendices 

 
 

Paclitaxel standard curve 

 

 

Standard Curve 4 Paclitaxel standard curve 


	etheses coversheet.pdf
	Webb PhD 2014.pdf

