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Abstract

Currently the Spitzer Space Telescope is the most reliable telescope for conducting

secondary eclipse observations of exoplanets. The depth and the time of mid-eclipse

are two important parameters that come from a secondary eclipse analysis. The eclipse

depth gives information on the temperature of the atmosphere, and can provide ev-

idence for the presence of molecules in the atmosphere of the planet. If multiple

wavelengths have secondary eclipse depths measured then it is possible to constrain

the spectral energy distribution (SED) of the atmosphere given some assumptions on,

for example, the metallicity of the planet’s atmosphere. The time of mid-eclipse gives

e cos(ω) which, with an analysis including transit, radial velocity and secondary eclipse

data, can strongly constrain the eccentricity of the planet’s orbit. To fully understand

the conclusions drawn from these two parameters realistic error bars must be quoted

on the measurement of these parameters. It is generally understood that error bars

that come from MCMC analyses of secondary eclipse observations are underestimated

because the correlated noise in the data is not accounted for in the analysis. The goal of

this thesis was to find a method to improve the estimates of the uncertainties on these

two parameters as derived from Spitzer secondary eclipse lightcurves at 3.6µm and

4.5µm. This work was conducted through the generation and fitting of semi-synthetic

Spitzer secondary eclipse light curves. I estimate the amount the uncertainties on these

parameters need to be inflated by and show how my results compare with other similar

work in the field. I show that the amount of inflation does affect the conclusions drawn

when fitting these data with model atmospheres. This could also mean that for systems

where complex chemistry is invoked to explain the observed data, simpler model can

now fit the data due to the increase in the error bars. I also find that when multiple

realisations of the same, simulated, secondary eclipse lightcurve are fit with the stan-

dard MCMC code, the amplitude and time of mid-eclipse can be recovered and found

to be more than 3σ away from the true value of the injected signal. This can mean

that, because usually only 1 lightcurve is obtained per observation of the secondary
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eclipse, some detections of eccentricity and molecules may not be real detections but

simply a result of noise in the data.
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1 Introduction

Prior to the discovery of an exoplanet orbiting a Sun-like star (Mayor & Queloz 1995),

it was assumed that planetary systems would look like our own Solar System with small

rocky bodies close to their parent star and bigger gas giants further away. However,

the planet that was discovered, 51 Peg b, is a Jupiter analogue that orbits its host

star in 4 days. These analogues are now known as hot Jupiters. This discovery was

surprising because in the simple theory of planet formation (core accretion) there is

not enough solid material in these regions to form hot Jupiters insitu.

Currently, more that 1500 exoplanets have been detected1. With advances in

technology we are able now to start characterising hot Jupiters by analysing their at-

mospheres. There are two main methods that are used to analyse the atmospheres of

hot Jupiters, transmission spectroscopy and secondary eclipse photometry. Transmis-

sion spectroscopy requires observations of the transit at multiple wavelengths, looking

for radius variations in the measured transit depth. These are indicative of strati-

fication of exoplanet atmospheres because different gases exist at different altitudes

in the atmosphere. Secondary eclipse photometry uses observations of the secondary

eclipse at multiple wavelengths to look for changes in the eclipse depth which would be

indicative of extra absorption or emission from opacity sources in the planet’s atmo-

sphere. These secondary eclipse observations produce a low resolution, hemispherically

averaged spectral energy distribution (SED) of the day-side of the planet.

Given the quality of current data we are on the cusp of being able to detect

Earth analogues. Missions such as the Kepler Space Telescope (Borucki et al. 2010)

and CoRoT (Rouan et al. 1998; Moutou et al. 2014) have found several candidates but

they are very hard to follow up because the stars are very faint. However, before we can

begin to understand these small, potentially habitable worlds we first need to be able

to understand the giant planets that can be followed up. Studying the atmospheres

of hot Jupiters can provide some very interesting information, such as constraints on

1http://exoplanet.eu
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the chemical compositions of their atmospheres. The Spitzer Space Telescope has

been the main source to-date of secondary eclipse observations. These observations

are conducted in the infrared because it is closer to the peak of the planet’s emission

(∼ 1µm). The chemical composition and thermal structure of the atmosphere dictates

the emergent spectrum. Different opacity sources exist at different regions (depths) of

the atmosphere. As I will show later in this chapter by using the remaining wavelengths

available on Spitzer it is possible to probe different regions of the atmosphere.

Spitzer was not designed to conduct these (single star) observations. It was de-

signed to take images of large regions of the sky. As such the detectors have large pixels

and suffer from intra-pixel sensitivity variations (IPSVs). This means that different

regions of the same pixel will have a different sensitivity to the light that is incident

upon the pixel. This would not be an issue if the PSF of the star were to remain at

the same position on the detector throughout the observation. However, there is a

battery heater that is turned off and on every half an hour that induces movement

in the instruments which then produces a small (but non-negligible) shift in PSF po-

sition. This results in the variations in flux measured and these can be significantly

larger than the signal of the secondary eclipse. One method often used to account for

IPSVs is to model them as a polynomial function of the x and y coordinates of the

star on the detector. The best fitting parameters for both the IPSV model and the

eclipse shape are found simultaneously using a Markov Chain Monte Carlo (MCMC)

algorithm. One of the main issues is that the MCMC code assumes that the lightcurve

is made up of independent points with Gaussian errors (i.e., white noise). This is not

the case in reality. There are many sources of correlated noise in the data which can

induce systematic errors in the data, such as stellar noise. The goal of this thesis is to

find a simple method of inflating the error bars on the depth of the secondary eclipse

and time of mid-eclipse such that they account for the correlated noise present in the

data. The reason I have chosen to use these two parameters is that the depth of the

secondary eclipse provides information on the chemical composition of the atmosphere

and also its thermal structure. The time of mid-eclipse constrains e cosω, where e is the

eccentricity of the planets orbit and ω is the argument of periastron. With constraints
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on both e cosω and e sinω, which comes from the radial velocity observations of the

star, it is possible to constrain the eccentricity of the system. The chemical composi-

tion of the atmosphere gives information about the gas in the protoplanetary disc from

which the atmosphere was accreted. This may be able to help understand where in the

disc these hot Jupiters formed, which is currently an active area of research (Dawson,

Murray-Clay & Johnson 2015).

The structure of this thesis is as follows. Chapters 1 and 2 give an overview of

the field of exoplanets, the methods used to find them and analyse their atmospheres.

Chapter 3 presents a state-of-the-art analysis of Spitzer data covering the secondary

eclipse of a WASP-26b. The results of this work were published in MNRAS (Mahtani

et al. 2013). In Chapter 4 I present my reanalysis of the WASP-12b thermal phase

curves. In chapter 5 I present work where I used part of the HAT-P-2b phase curve

(Lewis et al. 2013) to conduct signal injection of secondary eclipses to estimate of the

instrumental noise of the IRAC detectors. Chapter 6 presents an analysis of Spitzer

photometry covering the secondary eclipse of WASP-35b, including error estimates of

the parameters derived using the techniques developed in Chapter 5. Chapter 7 gives

my conclusion and future work prospects.

1.1 Planet formation

The core accretion theory of planet formation predicts that Jupiter analogues are

formed from 10 Earth-mass cores which then accrete gas from the protoplanetary disc

(Helled et al. 2013). However, the inner regions of young star systems, where hot

Jupiters are found, are very hot and as such only dust grains that have high melting

points (heavy elements such as iron) will be in solid form (Finkbeiner 2014). Using the

Sun as an example, only 1.4% of the solar composition (by mass) is made up of metals

(Asplund et al. 2009) and, for example, of this only 0.14% is in the form of iron2. The

2http://csep10.phys.utk.edu/astr162/lect/sun/composition.html
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planets in our Solar system formed from the same material so only a small fraction of

material is in the form of solids very close to the star. Combining the masses of the

inner planets in the solar system, there is only about 2M⊕ of material (Carroll & Ostlie

1996). These two reasons show that there is not enough mass in solid form to form the

minimum core mass for gas accretion. Another argument against in situ formation of

hot Jupiters is that the gas is going to be very hot in these regions around the host

star. Assuming the following;

1. A 10 Earth-mass core is placed at 0.04 AU (the distance of WASP-26b from

its host star, Mahtani et al. 2013),

2. The 10 Earth-mass core has a similar density to the Earth (5514 kgm−3) and

hence a radius of 13, 723.76 km,

3. The typical temperature for a hot Jupiter atmosphere is ∼ 1500 K,

4. The most abundant element in hot Jupiter atmospheres is hydrogen so, for this

order-of-magnitude calculation, we assume that the atmosphere is composed

purely from molecular hydrogen

Thermal escape of the gas molecules will occur if the escape velocity of the core is less

than 10 times the root-mean-square (RMS) velocity of the gas molecules. The escape

velocity of the core is given by
√

2GM/R where G is the gravitational constant, M is

the mass of the core, and R is the radius of the core. The RMS velocity of the gas is

given by
√

3kT/m where k is Boltzmann constant and T is the temperature of the gas

and m is the molecular mass of the gas. Using the assumptions and equations above

the RMS velocity of the gas is ∼ 4.3 km s1 and the escape velocity of the core is ∼ 24.1

km s1, hence the escape velocity of the core is less than 10 times the RMS of the gas.

So if a large rocky core were to be placed very close to its host star, the gas molecules

would be too hot to be accreted on to the planetesimal.

Planetary migration has been proposed as a mechanism to explain why hot

Jupiters exist. This theory predicts that these planets form at distances where there is
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enough rocky material (Finkbeiner 2014) and volatiles such as water, carbon dioxide

and ammonia in solid form which coagulate to form the cores of these giant planets3.

At these distances from the host star the gas is not as hot as in the inner regions so

the solid cores are able to accrete gas from their surroundings. Planets are thought

to migrate inward due to interactions with the disc. Observations show that there is

a build up of hot Jupiters in 3-5 day orbits (Baruteau et al. 2014). The mechanism

that stops planets migrating further in and being devoured by their host star is still

an open question in the field.

1.2 Methods for Finding Planets

1.2.1 Radial Velocities

There are several methods that are currently being used in planet hunting projects.

The method that is finding the most planets is the radial velocity (RV) method. For

simplicity consider a single planet system. In this two body scenario, both the planet

and the star orbit their common centre of mass (barycentre). As the star orbits the

barycentre, it moves both away and toward the observer. This oscillatory motion of

the star along the observer’s line of sight, causes the light to be red and blue shifted.

By taking multiple spectra of the star, this motion can be detected from the oscillation

of the stellar spectral lines about their rest frame position. This is a measure of how

fast the star is moving towards and away from the observer (its RV). Figure 1.1 is an

example of a RV curve that is generated with these observations.

3The distance from a star where a volatile condenses is known as the snow line
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Figure 1.1: RV curve of WASP-26 (Smalley et al. 2010). The points with error bars are
the measured radial velocities with their standard errors. The solid black line shows
the best fitting model to the data. In the analysis it was assumed that the planet was
on a circular orbit. The dotted line is the barycentre velocity.

With the RV data and Kepler’s third law we are able to derive equation 1.1,

which gives the minimum mass of the planet.

MP sin i =
K?M?P

√
1− e2

2πa
(1.1)

K? is the semi-amplitude of the radial velocity of the star, M? is the mass of the star,

P is the period and a and e are the semi-major axis and eccentricity, respectively, of

the planet’s orbit. The sin i term on the left hand side of equation 1.1 is due to the

unknown inclination of the planet’s orbit. Finding exoplanets with this method is most

sensitive to massive planets orbiting very close to their host stars (i.e., hot Jupiters)

because these planets induce the biggest RV shifts in their host stars. Most hot Jupiters

are observed to have orbits with 3-4 day periods. The shorter a planet’s period, the

closer to its host star the planet orbits. For comparison, Mercury’s orbital period is
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88 days, semi-major axis of ∼ 0.4AU and a typical hot Jupiter has an orbital period

of ∼ 3 days and semi-major axis of ∼ 0.01 AU. To achieve the precision and accu-

racy in the RV measurements needed to detect extrasolar planets requires specialised

instrumentation, e.g., echelle spectrographs that are very stable and that can achieve

very high resolution. For example WASP-26b induces a maximum radial velocity shift

of only 0.1355 ± 0.0035 kms−1 on its host star. The shift of the spectral line on the

detector is incredibly small (e.g., for WASP-26b the shift of the Hydrogen α line is

1/10 of a pixel 4) and so to be able to detect such a small shift high resolution data

is required. The first way to obtain precision is to simultaneously observe a calibra-

tion source, where the spectral line positions are known very accurately, during each

exposure. This is the method used by the CORALIE and ELODIE spectrographs.

It is possible to push the technology one step further and to make the spectrograph

extremely stable by putting inside a vacuum container which can significantly reduce

spurious wavelength shifts due to variations in temperature or atmospheric pressure.

Due to the magnitude of the signal being so small the signal needs to be averaged over

many spectral lines, so the star needs to have many well defined spectral lines in the

wavelength range at which it is being observed. This problem is further complicated

when considering massive stars (spectral type earlier than F6V). These stars have tem-

peratures hotter than about 6500K and are more massive than about 1.4 M�. Many of

the metals in the atmospheres of these stars are highly ionised. This means that they

have very few well defined spectral lines (in the optical region of the electromagnetic

spectrum). They do, however, have lines in the UV region of the electromagnetic spec-

trum. The atmosphere is almost opaque to this radiation so in practice it is hard (but

not impossible) to do UV radial velocity searches of early type stars. Not only that,

they usually rotate very fast, ≥ 20kms−1 (Gray 2005). This causes the lines that are

observable to be rotationally broadened. This broadening of the spectral lines increases

the uncertainty in their measured position and hence on the measured radial velocity

of the star.

4The HARPS north pixel size is 15µm http://www.tng.iac.es/instruments/harps/
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If we are looking for life as we know it, we need to find an Earth-like world. This

is no easy task. Looking at this from a RV perspective, the RV induced in a solar mass

star by an Earth mass planet at 1AU is about 9cms−1 (Seager & Dotson 2010). With

the best instrumentation currently available, e.g., High Accuracy Radial velocity Planet

Searcher (HARPS-North), the precision that is achievable is about 0.3ms−1 (Cosentino

et al. 2012). However, the most important source of noise that needs to be considered

here is the star itself. Convective cells are constantly appearing and disappearing on

the surface of stars like the sun. This can induce signals on the order of a few cm

s−1 (Cegla 2013). The major issue is that this does not average out over the whole

disc of the star. This can hinder the search for Earth-like worlds by either masking

their signals under the noise or mimic their signal. Dumusque et al. (2011) suggested

that the following method can help to beat down the noise in the data in order to get

better precision on the measurements of the RVs. In the months that the target is

observable, data over 10 consecutive nights must be taken. Every night at least 3, 10

minute exposures separated by 2 hours are required. However, Cegla (2013) explained

that this leaves residual signal of the granulation signature in the data. Hence, it may

not be possible to reach precision required to find an Earth analogue around a solar-like

star using this method. This result, however, is a step in the right direction, because

to reach the precision required to find Earth like planets we need to fully understand

the effects of the host star.

If there are multiple planets in the system then the RV curve will be much more

complicated. Figure 1.2 shows the RV curve of HD10180 (Lovis et al. 2011). It was

found that the best fit to the data is a 7 planet system.
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Figure 1.2: RV curve of the HD 10180 system (Lovis et al. 2011). This system contains
7 planets. The red points with error bars are the data that were acquired and the black
line is the best fitting model. The lower panel shows the residuals.

Another case is that the planet(s) may be on an eccentric orbit. The RV curve

for an eccentric planet is be more saw-tooth shaped than sinusoidal. The reason for

this is that the planet’s orbital speed is not constant. When the planet is closest to its

host star (periastron) it moves quickly and induces a large radial velocity in the star.

The opposite is the case when the planet is further away from the star (apastron). An

example of a planet on an eccentric orbit is HD156279b, which has an eccentricity of

0.708± 0.018 (Dı́az et al. 2012). The RV curve for this planet is shown in Figure 1.3.
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Figure 1.3: RV curve of HD 156279 which hosts an eccentric exoplanet (Dı́az et al.
2012). The open white circles are the data and the black line is the best fitting model
with e = 0.708± 0.018.

1.2.1.1 Rossiter McLaughlin Effect

The angle between the rotation axis of the star and the normal to the orbital plane of

the planet is known as the spin-orbit angle, or the obliquity. In the model of planet

formation (core accretion) planets form from the disc of dust and gas orbiting the

young star. From this theory it is expected that the spin-orbit angle is very close to

zero. If the planet transits it is possible to measure the sky project spin-orbit angle by

observing the Rossiter-McLaughlin effect (Rossiter 1924; McLaughlin 1924; Anderson

et al. 2011a; Kaib, Raymond & Duncan 2011; Albrecht et al. 2011). The star itself is

rotating on its axis. This means that the light from one side of the stellar disc is red

shifted and light from the other side is blue shifted. A schematic of this is shown in

Figure 1.4.
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Figure 1.4: Schematic showing the Doppler shift in the star light caused by the stellar
rotation. This figure has been adapted from figure 1 of Subaru Telescope Press Release
(2011).

During transit the planet will block different amounts of this red/blue shifted

light. Observing the transit spectroscopically allows us to see this as an anomaly in

the RV curve. By measuring this anomaly it is possible to determine the sky-projected

spin-orbit angle. For simplicity assume the inclination of the system is 90◦ and that

the planet orbits the star in a prograde manner. Between ingress and mid transit the

planet will block a portion of the blue shifted light of the star. So there will be an

excess of red shifted light. This means the RV anomaly measured will be positive. At

mid transit the planet is blocking equal amounts of red shifted and blue shifted light

so there is no RV anomaly measured. From mid transit to egress the planet blocks

some of the red shifted component of the light, so there is an excess of blue shifted

light. This means the RV anomaly is negative. It is also possible to understand if

the planet is in a prograde or retrograde orbit. If the planet is in a prograde orbit

then the positive RV anomaly will precede the negative RV anomaly. If the planet is

in a retrograde orbit then the opposite occurs. Figure 1.5 shows the RV anomaly for

WASP-22b as measured by Anderson et al. (2011a).
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Figure 1.5: RV curve of WASP-22 (Anderson et al. 2011a). This shows that WASP-22b
is in a prograde orbit (the positive RV anomaly precedes the negative RV anomaly).
The shape and amplitude of the anomaly imply that the sky-projected spin-orbit angle
is 22± 16◦.

Depending on the sky-projected spin-orbit angle of the system, the amplitude of

positive and negative RV anomaly detected will change. Equal amounts of RV anomaly

means the sky-projected spin-orbit angle is approximately 0 or 180 degrees. Figure 1.6

shows how the RV anomaly changes depending on the sky-projected spin-orbit angle.
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Figure 1.6: Examples of the different forms of the RM effect that can be observed
(Gaudi & Winn 2007). b in the diagram is the impact parameter and λ is the sky-
projected spin-orbit angle.

In total 82 planets have had their R-M effect observed and measured (South-

worth 2011a). There are some that have very high sky-projected spin-orbit angles,

and some even in retrograde orbits around their stars (e.g. WASP-17b Anderson et al.

2010). The cause of this is not well understood but there are several theories that

have been proposed. These include gravitational instabilities caused by other planets

in the system (planet-planet scattering) or by companion stars to the host stars (Kozai

Mechanism, Kozai 1962; Rasio & Ford 1996.)

1.2.1.2 Radial Velocity Surveys

The two best-studied transiting extrasolar planets are HD 209458b and HD 189733b.

Both of these planets were discovered using radial velocity surveys. HD 209458b was

discovered by the Keck Doppler survey (Henry et al. 2000). HD 189733b was dis-



14

covered by the ELODIE metallicity-biased search for transiting Hot Jupiters (Bouchy

et al. 2005). These two planets were subsequently found to transit, which has enabled

extensive follow up observations to investigate their atmospheres. Radial velocity sur-

veys are very successful at finding planets because even if a planet does not transit the

radial velocity induced in the star may still be detectable. From these observations the

minimum mass of the secondary is derived which is fundamental, as will be seen in the

next section, to understanding the kind of planet being observed. Recent surveys such

as HARPS in the Northern (Cosentino et al. 2012) and Southern Hemispheres (Mayor

et al. 2003) have improved the precision of radial velocity measurements for bright

solar-type stars to values as low as 0.3ms−1 (Cosentino et al. 2012). This incredible

precision is allowing very low mass planets to be found. Also, follow up observa-

tions of very small planets to measure their masses have been conducted using these

two spectrographs. For example, Kepler-78b was found to have a radius of 1.16R⊕

(Sanchis-Ojeda et al. 2013). Using HARPS-N, Pepe et al. (2013) found the mass of the

planet to be 1.86M⊕. This leads to the conclusion that the planet may have an iron

and rock composition due to its mean density being measured as 5.57g/cm−3. This is

very similar to the mean density of the Earth (5.514g/cm−3)5.

1.2.2 Transits

If the plane of the planet’s orbit lies along the observer’s line of sight it may be possible

to observe the planet passing in front of the disc of its host star. The concept is

theoretically simple but detecting this event can be difficult in practice. For example,

the dip in brightness from a Sun-like star caused by a Jupiter analogue is approximately

1%. Figure 1.7 is an example of a transit light curve.

5http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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Figure 1.7: Light curve of Kepler-17 ,which hosts a 2.45MJupiter mass planet in a 1.49
day orbit (Désert et al. 2011). The black points are the data and the red line is the
model fit to the data. The bottom panel shows the residuals from the model fit. It can
be seen that there is a clear trend in the residuals due to the planet occulting a spot
on the photosphere of the host star.

The geometric probability of a planet transiting its host star is given by R?/a,

where R? is the radius of the star and a is the semi-major axis of the planet’s orbit.

This shows that the further out a planet is, the lower the probability of a transit being

observable. If, for simplicity, we assume that limb-darkening is negligible, then depth

of the eclipse (∆F ) relative to the out-of-transit flux (F ) is the ratio of the areas, i.e.,

∆F

F
=

(
RP

R?

)2

, (1.2)

where R? is the radius of the star and RP is the radius of the planet. By analysing

transit and radial velocity data in conjunction with some understanding of the mass-
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radius relation for stars, it is possible to derive the mass and radius of the planet.

1.2.2.1 Transit Surveys

To estimate (very roughly) how many stars one needs to observe to find a transiting

hot Jupiter, let us begin with the following assumptions:

• Let us look only at solar radius (6.955× 108m) stars.

• A priori the distribution of the inclinations is unknown so assume that the

inclination of planets relative to our line-of-sight is randomly distributed.

• Hot Jupiters have similar semi-major axis as 51 Peg b, approximately 0.052au

(Mayor & Queloz 1995; Marcy et al. 1997).

• 1 in 100 stars has a hot Jupiter (Wang et al. 2015).

With these assumptions, the probability that a hot Jupiter with a similar orbit to 51

Peg b transits its host star is 0.09%. The size of the sample required to find one hot

Jupiter is ∼ 11000 stars. This is a very simplistic view but it does illustrate the point

that to find just a handful of hot Jupiters a large sample size is required. For this

reason transit searches are normally conducted as large scale surveys. Most ground

based planet hunting surveys do not target particular stellar spectral types, in general

because by observing all visible stars (magnitude limited by the telescope) it increases

the potential planet detections. Also, to be sure that the transit signal is not noise,

three transits need to be observed. There are many systems that can cause a signal

that can mimic a planetary transit e.g. eclipsing binary systems. So these surveys

need to have a long baseline of observations to confirm the candidate systems they

find and rule out astrophysical mimics. There are advantages to targeting particular

stellar types though. For example, the MEarth project (Charbonneau et al. 2009; Berta

et al. 2012), is a project looking at 2000 M-dwarfs for planets, specifically Earth-sized

planets. When Earth-like planets transit Sun-like stars the lightcurve transit depth is
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very small. For an M-dwarf the relative size of the planet to the star is larger and

hence the lightcurve transit depth will be larger. This survey has only found one

planet, GJ1214b (Charbonneau et al. 2009) but recent work has shown that ∼ 50%

of M-dwarfs have an Earth-sized planet in the region where liquid water could exist

on the planet’s surface (Habitable zone). Surveys also allow for the study of the stars

themselves. To fully understand the planets we need to understand the stars which

they orbit. Observing the star over a long period of time can help in understanding

factors, such as granulation, that can cause systematic effects in observations of transit

light curves.

1.2.2.2 WASP, Kepler and CoRoT

The Wide Angle Search for Planets (SuperWASP, Pollacco et al. 2006), is a project to

find bright transiting planets. It uses two instruments, SuperWASP-North on the island

of La Palma in Spain and WASP-South in Sutherland, South Africa. The instruments

use an array of eight, 200mm Canon lenses each attached to a CCD camera with a

limiting magnitude of V ∼ 12.5 (Pollacco et al. 2006). Over each observing season,

the cameras image the night sky, excluding the galactic plane due to overcrowding

and not above 80◦, looking for the signature dips caused by transiting planets. After

follow-up spectroscopic and photometric observations of possible candidates to rule out

these mimics, WASP is, by number of planets found, the most successful ground based

transiting exoplanet survey. Spectroscopic follow-up observations are used to rule out

the possibility that the unseen companion is another star and photometric observations

taken with CCDs with higher spatial resolution are used to make sure the signal is not

from a blended eclipsing binary. Currently 105 planets have been published6 which

is almost twice the number of the next-most successful survey, HATnet (Bakos et al.

2002). The WASP archive contains 2000 nights of data for over 30 million stars (Micela

et al. 2014). Characterisation is one of the forefront areas of research for transiting

6http://www.astro.keele.ac.uk/jkt/tepcat/html-tepnumber.html
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exoplanets, and the hot Jupiters that WASP has found orbit bright stars which has

enabled follow up observation to probe their atmospheres to be conducted.

The dip caused by the transit of the Earth is;

(
R⊕
R�

)2

=

(
6.37× 106

6.96× 108

)2

= 84ppm

From the ground precision at the level of 1000ppm is the norm for telescopes between

1-4m (Jenkins 2002). Recently defocused photometry (Southworth et al. 2009c) has

been used to gain very high precision when observing the transits of hot Jupiters, e.g.,

Tregloan-Reed & Southworth 2013, were able to obtain a precision of ∼ 200ppm per

data point with an observational cadence of ∼ 150 seconds, for the transit of WASP-50.

The duration of the transit is another factor that needs to be accounted for because to

get the most reliable depth one must observe the full duration of the transit, including

pre-ingress and post-egress data. The transit duration is given by equation 1.3 (Seager

& Mallén-Ornelas 2003)7, where P is the period of the planet, R? and RP are the radii

of the star and planet and a is the semi-major axis of the planet’s orbit.

Tdur =
P

π
sin−1

(
(R? +RP )2

a

)
(1.3)

Using equation 1.3 the transit duration for the Earth is about 13 hours. This is too long

to be observed in one night, so multiple transit would need to be observed to detect

an Earth-like planet and a long baseline of observation would be required to do these

observations. These observations are possible with the Kepler space telescope. Kepler

is a mission designed to be capable of finding transiting of Earth-like planets (Koch

et al. 2010). In contrast to WASP, Kepler is staring at one particular region of the sky

looking for transit signals. The field of view of the telescope is 12 degrees in diameter.

One of the primary goals for Kepler is to estimate how many Earth-like planets exist

7This is assuming the impact parameter of the star is 0, i.e., the planet crosses the equator of the
star
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in the habitable zone around Sun-like stars. It is possible, in principle, to detect Earth

analogues with Kepler because it has the capability of reaching the 20ppm precision

level for a timescale of 6.5 hours when observing a G2 star (Batalha et al. 2011). This

only accounts for white noise and so the true value is larger depending on the star and

the systematic errors present in an individual data set. Combining Kepler photometry

with ground spectroscopy Batalha et al. (2011) were able to detect the transit of Kepler

10b. This was Kepler’s first rocky planet and has a transit depth of 152± 4 ppm with

a period of 0.83days. In the first 6 quarters of Kepler data, when analysed by Batalha

et al. (2013), there were 202 planet candidates in the range RP < 1.25R⊕ (which are

classified Earth sized) and 422 in the range 1.25R⊕ ≤ RP < 2R⊕ (which are classified as

Super-Earth-sized). However, the stars in the field of view of the telescope are not very

bright. Figure 1.8 (private communication: J. Southworth) compares the brightness

of the planet host stars in the Kepler and SuperWASP sample. Figure 1.8 shows that

most of the planet host stars are 13 ≤ V ≤ 16 for the Kepler sample. This faintness

means these targets are very hard to follow up from the ground.
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Figure 1.8: Comparison between the V-band magnitude of the planet host stars for
the WASP and Kepler samples.

Kepler was able to detect transits of planets in multi-planet systems because it

constantly observed the one patch of sky for nearly 4 years. By taking data from the

NASA exoplanet archive8 I generated Figure 1.9.

8http://exoplanetarchive.ipac.caltech.edu/



21

Sheet1

Page 1

# Wed Oct 22 01:55:09 2014

# temperature

min 3068

max 6620

n 897

# CONSTRAINT:  ) Planet radius

min 0.303

# max 13.49

n 897

#

699 Kepler-42 3 3068 174 0 0 0.78 0.22 -0.22 0

700 Kepler-42 3 3068 174 0 0 0.73 0.2 -0.2 0

701 Kepler-42 3 3068 174 0 0 0.57 0.18 -0.18 0

1197 Kepler-249 3 3568 150 0 0 1.09 0.05 -0.05 0

1198 Kepler-249 3 3568 150 0 0 1.51 0.09 -0.09 0

1199 Kepler-249 3 3568 150 0 0 1.57 0.14 -0.14 0

1493 Kepler-369 2 3591 100 0 0 1.13 0.06 -0.06 0

1494 Kepler-369 2 3591 100 0 0 1.41 0.06 -0.06 0

1138 Kepler-225 2 3682 150 0 0 1.2 0.07 -0.07 0

1139 Kepler-225 2 3682 150 0 0 1.84 0.1 -0.1 0

1165 Kepler-236 2 3750 150 0 0 1.57 0.12 -0.12 0

1166 Kepler-236 2 3750 150 0 0 2 0.17 -0.17 0

1153 Kepler-231 2 3767 150 0 0 1.73 0.12 -0.12 0

1154 Kepler-231 2 3767 150 0 0 1.93 0.19 -0.19 0

1037 Kepler-186 5 3788 54 0 0 1.07 0.12 -0.12 0

1038 Kepler-186 5 3788 54 0 0 1.25 0.14 -0.14 0

1039 Kepler-186 5 3788 54 0 0 1.4 0.16 -0.16 0

1040 Kepler-186 5 3788 54 0 0 1.27 0.15 -0.14 0

1041 Kepler-186 5 3788 54 0 0 1.11 0.14 -0.13 0

677 Kepler-32 5 3793 80 0 0 2.2 0.2 -0.2 0

678 Kepler-32 5 3793 80 0 0 2 0.2 -0.2 0

679 Kepler-32 5 3793 80 0 0 2.7 0.1 -0.1 0

680 Kepler-32 5 3793 80 0 0 1.5 0.1 -0.1 0

681 Kepler-32 5 3793 80 0 0 0.81 0.05 -0.05 0

1393 Kepler-327 3 3799 100 0 0 1.11 0.05 -0.05 0

1394 Kepler-327 3 3799 100 0 0 1.03 0.05 -0.05 0

1395 Kepler-327 3 3799 100 0 0 1.73 0.1 -0.1 0

895 Kepler-125 2 3810 150 0 0 2.37 0.1 -0.1 0

# This file was produced by the NASA Exoplanet Archive  http://exoplanetarchive.ipac.caltech.edu

# CONSTRAINT:  where (pl_hostname like '%kepler%'

# CONSTRAINT:  and pl_pnum > 1

# CONSTRAINT:  and st_teff > 0

# CONSTRAINT:  and pl_rade > 0

# CONSTRAINT:  order by st_teff asc

# COLUMN pl_hostname:    (not found)

# COLUMN pl_pnum:        Number of Planets in System

# COLUMN st_teff:        Effective Temperature [K]

# COLUMN st_tefferr:     Effective Temperature Unc. [K]

# COLUMN st_tefflim:     Effective Temperature Limit Flag

# COLUMN st_teffblend:   Effective Temperature Blend Flag

# COLUMN pl_rade:        Planet Radius [Earth radii]

# COLUMN pl_radeerr1:    Planet Radius Upper Unc. [Earth radii]

# COLUMN pl_radeerr2:    Planet Radius Lower Unc. [Earth radii]

# COLUMN pl_radelim:     Planet Radius Limit Flag

rowid pl_hostname pl_pnum st_teff st_tefferr st_tefflim st_teffblend pl_rade pl_radeerr1 pl_radeerr2 pl_radelim
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Figure 1.9: (top) Number of planets in multiple systems relative to the effective tem-
perature of the host star. (bottom) Number of planets in multiple systems relative to
the radius of the planet.

Figure 1.9 shows the number of planets found in multiple systems by Kepler

relative to the stellar effective temperature and the distribution of the planet radii. It

can be seen that most of the multi-planet systems that Kepler has found are around

stars similar to the Sun (Teff ≈ 5800 K) and the majority of them have a radius of

1 − 4R⊕. The bottom panel in Figure 1.9 shows the lack of Jupiter sized planets

(∼ 11.3R⊕) in these multi planet systems. The reason for this is still an ongoing area

of research, but the drop off to larger planets is real for the close in orbits that Kepler

is sensitive to based the 3.5 years worth of data. The reason for this is that big planets

close to their host stars are relatively easy to find, so if they were there they should

have been detected by Kepler. For big planets in large orbits the geometric probability



22

of a transit is very small. Given the short baseline of observations from Kepler the

chances of detecting a planet on and Jupiter like orbit, for example, (12 years) is very

small.

In multiple planet systems gravitational interactions between the planets can

cause variations in the predicted transit times of the transiting planets in the system.

Measuring the transit timing variations (TTVs) very precisely can be used to confirm

the presence of non-transiting planets in the system and place constraints on their

masses (Ford et al. 2011; Nesvorný et al. 2012; Steffen et al. 2012b; Ford et al. 2012b;

Fabrycky et al. 2012; Steffen et al. 2012a; Ford et al. 2012a; Ming et al. 2013; Mazeh

et al. 2013; Steffen et al. 2013). Kepler-19b (Ballard et al. 2011) is an example of

a planet experiencing TTVs with amplitude of ∼ 5 minutes. Most hot Jupiters are

found in single planet systems (Szabó et al. 2013) and so we would not expect them

to show TTVs. However it has been reported that some hot Jupiters do experience

TTVs (Ford et al. 2012b). Work conducted by Szabó et al. (2013) showed that some

of these TTVs are spurious and have been caused by systematics or induced by stellar

rotation/activity. They found three possible candidates which could possibly be due

to real TTVs. One of the most exciting possibilities is that these could be induced by

moons orbiting the planet (Szabó et al. 2013).

From the transit light curve R∗/a is directly determined, from RV data the ec-

centricity, e, of the planet’s orbit can be determined, and with these two parameters

and Kepler’s third law the stellar density can be estimated (Maxted, Serenelli & South-

worth 2015). With a relationship for the mass and radius of the star as a function of the

stellar density, effective temperature and stellar metallicity, the stellar mass and radius

can be estimated (Enoch et al. 2010). With an estimate of stellar mass and radius

the planetary mass and radius can be estimated. Kepler’s photometric precision also

allows for the study of the planet host stars through asteroseismology. This technique

observes the flux variations of the host star caused by oscillations of the star. Observing

these oscillations allows the stellar radius to be determined to ∼ 3% (Handler 2013).

Hence, the planet radius can be calculated to the same level of precision. This is very

important because the dominant source of uncertainty on the planet radius is the stel-
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lar radius. Also, even if two planets have very similar masses small differences in their

radii can mean they may be very different. Plotting a mass vs radius diagram of some

planets along with bulk composition models, Figure 1.10 (Zeng & Sasselov 2013), shows

that for a given planetary mass, different planetary bulk compositions give different

radii. With an accurate radius measurement this degeneracy can be broken.

Figure 1.10: Plot from Zeng & Sasselov (2013) showing that planets of the same mass
but different composition have different radii. The different coloured lines are for
different bulk planet composition.
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In the summer of 2013, Kepler’s last reaction wheel failed. Without at least 3

reaction wheels the spacecraft is not able to track the stars in its field to the accuracy

required to look for transits of Earth like exoplanets. However, there is a wealth of data

in the archives which will reveal many more exciting systems. Science observations will

still be conducted with Kepler in the K2 mission (Howell et al. 2014). Even though

the precision that will be achieved will not be as good as the original Kepler mission,

it will still be possible to get down to the 80ppm level over 6 hours for a V = 12 star.

The mission will observe 8 fields over the ecliptic. This mission will help to build up

more statistics of exoplanets in our Galaxy especially of super-Earths about which very

little is known.

The Convection, Rotation and planetary Transits (CoRoT) mission, is looking

at two regions in the sky which are 2.8◦ × 2.8◦9. Similar to Kepler, CoRoT is looking

for Earth-like planets and looking at the oscillations caused by sound waves in the star

(asteroseismology). CoRoT also found the very first rocky exoplanet CoRoT-7b (Leger

et al. 2009).

These surveys are just a few of many (HAT, TrES, etc.) that have uncovered fun-

damental properties of planets in the universe. The exquisite data quality possible due

to Kepler being in space (Earth-trailing heliocentric orbit), has lead to the discoveries

of Earth-sized (Sanchis-Ojeda et al. 2013) and even sub-Earth-sized planets (Barclay

et al. 2013). Follow-up of bright transiting exoplanets, such as those discovered by the

WASP project, has allowed the detailed study of hot Jupiters thorough observations of

their atmospheres. These planets form in the protoplanetary disc surrounding newly

formed stars. Understanding the chemical composition of hot Jupiter atmospheres can,

for example, tell us about where in the protoplanetary disc they formed. Understand-

ing formation location in the disc could help in understanding the migration process

that has moved them to their current location. The Kepler mission has built up the

statistics about the other classes of planets in the universe, such as super-Earths which

do not exist in the solar system. It has also shown that multiple planet systems are

9http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31706
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very common in the universe. The Kepler mission has also been able to characterise

the planet host stars though asteroseismology which is a powerful technique used to

determine to very high precision the stellar parameters. This is vital in determining

fundamental planet parameters such as mass and radius. For stars with solar-like os-

cillations it is possible to get the stellar mass and radius to a precision of 3%. This

synergy between space and ground based telescopes is set to continue into the coming

decades with Next Generation Transit Survey (NGTS, Wheatley et al. 2013) which will

find many ice-giant analogues and the James Webb space telescope (JWST, Gardner

et al. 2006) which will be able to characterise some of the already found planets and

the ones that are just waiting to be discovered.

1.2.2.3 Transit Mimics

One of the major issues that arises in ground based transit surveys is astrophysical

mimics of exoplanets. Blended eclipsing binary systems are systems where a close by

star and eclipsing binary system are along on the same line-of-sight. This was the case

for WASP-9, a planet that was announced by the WASP project that was subsequently

found to be a hierarchical triple system (Priv. Com. Andrew Collier Cameron).

Most ground based transit surveys have very large plate scales (the number of

arc seconds covered by each pixel). For example, the WASP instruments have a plate

scale of 13.7′′/pixel (Pollacco et al. 2006). This leads to more than one star being

observed in some pixels, particularly when observing regions of high stellar density,

e.g., near the galactic plane. In this case transits that occur in a background eclipsing

binary system can be diluted (made shallower) by a foreground star. This can mimic

an exoplanet transit. Follow-up observations can determine if an exoplanet candidate

is in fact a blended eclipsing binary system. This is usually done with a telescope

which has a CCD camera with a finer plate scale. An example of a telescope used to

conduct these observation is the TRAnsiting Planets and Planetesimals Small Telescope

(TRAPPIST), which has a plate scale of 0.6′′ (Jehin et al. 2011). With this very fine

pixel scale, if the host star has any companion, foreground or background stars that
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were not resolved in the initial photometry, they may be seen with this telescope.

Photometry is then conducted on the star(s) in the region of the potential host to

determine which host a planet (if any) or if there was a diluted eclipsing binary. This

would be the case if the separation between the host and companion(s) is too small

to be resolved by the initial observations. This method can also be used to determine

if a transit candidate is real or noise. Spectroscopic follow up observations can also

be conducted to look for blended stars. These observations look for multiple lines in

the spectra of the target, which would be indicative of companion or non-associated

foreground/background stars.

An eclipsing binary system where only the limbs of both stars transit each other

is known as a grazing eclipsing binary system. This produces very shallow eclipses

which can mimic exoplanet transits. There will, however, be two transits per obit. If

this is the case and if the two stars are of different spectral types (i.e., one cooler than

the other), then the transits will be of different depths. This is the tell-tale sign of a

grazing eclipsing binary. However, if the two stars are of similar spectral types then

the transits will be the same depths. To determine if this is the case for a possible

exoplanet system, follow up spectroscopy will show two sets of spectral lines moving

in opposite directions, which is indicative of this scenario.

If a binary system contains one solar like star and white dwarf, it can mimic

a transiting exoplanet. It is possible to discern this scenario though follow up spec-

troscopy, again, because the white dwarf (∼ 0.5 M�) will induce a large radial velocity

shift in the host star. Although the frequency of this kind of system is low, it will be

important for large surveys looking for Earth-like planets.

1.2.3 Gravitational Microlensing

General relativity describes how masses warp the fabric of space-time and how light

can be bent around objects due to this warping of space-time. Imagine that along the

line of sight one is observing there are two galaxies, one in the background further

away than a foreground galaxy and that they are aligned exactly. General relativity
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predicts that the light from the background galaxy (which is occulted) is bent around

the foreground galaxy due to its warping of space-time. The light of the background

galaxy is seen as ring around the foreground galaxy and is known as an Einstein ring.

Figure 1.11: An example of a near perfect Einstein ring. In this scenario the back-
ground source is distant galaxy and the foreground source is a luminous red galaxy
(http://apod.nasa.gov/apod/ap111221.html).

This is known as gravitational lensing (Figure 1.11). In the context of exoplanets

both objects are stars and the (unseen) foreground star moves in front of a background

star for a period of time. If the foreground star does not host a planet a single bright-

ening (across all wavelengths) of the background star would be observed. If now the

foreground star does host a planet, then a double brightening of the background star

is observed. The first is caused by the passing foreground star and the second (smaller

brightening) caused by the planet. This is called gravitational microlensing, Figure

1.12 (Queloz 2006) shows a schematic of this event and Figure 1.13 (Bennett et al.

2008) shows a real microlensing event.
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Figure 1.12: Schematic of a gravitational microlensing event where the foreground star
hosts a planet.

Figure 1.13: Detection of an exoplanet via the gravitational microlensing method. The
Planet is MOA-2007-BLG-192Lb. The different coloured points are those obtained by
different observations (Bennett et al. 2008). The smaller peak is that due to the passing
star’s planet and the second is due to the passing star itself.
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The major problem with this method is that (unless there is a parallax detected)

the data only allows the instantaneous distance of the planet from the star to be derived.

It is important to note that this is not the semi-major axis. Another intrinsic problem

with this method is that the observation is a one off, i.e., it cannot be repeated. The

positive aspect to this method is that it does give statistics on the cold planets. These

are hard to find via the transit method because the baseline required to confirm the

planet is too long because they are in far out orbits (0.5-10AU Skowron et al. 2014).

Also the probability of a transit occurring (R?/a) is very small for planets that orbit

far from their stars. These are also hard to find via the radial velocity method because

the radial velocity induced in the star by the planet is very small.

1.2.4 Direct Imaging

When the (flat) wavefronts from a star pass through the Earth’s atmosphere they be-

come distorted due to the turbulence. This distortion blurs the point spread function

(PSF) of the star and hence the measured full width at half maximum of the PSF

would be greater than in the diffraction limit. This makes it impossible to detect faint

companions to stars without some form of correction for the atmospheric distortion

(seeing). The problem is particularly acute for planets because they are so faint com-

pared to their host star. For example, Jupiter is of order a billionth the brightness

of the Sun (Haswell 2010). A technique that has been developed to account for this

distortion is adaptive optics. By projecting a laser into the atmosphere, the sodium

atoms are excited and fluoresce. This mimics the light of a star passing through the

Earth’s atmosphere. The telescope then observes this and the adaptive optics measures

the wavefronts of the laser. A segmented mirror deforms to the opposite shape of the

distorted wavefronts which produces a corrected wavefront and hence a cleaner image.

This combined with using a coronagraph can be used to image planets. A coronagraph

covers up the majority of the star so that the telescope’s detectors are not blinded by

the light from the star. Currently this method is sensitive to young planets far from

their star. The typical distance at which planets can be detected is 1
10
′′ (Guyon et al.
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2014). It has been seen from work by (Marois et al. 2008) that planets with a contrast

ratio of 10−5 (12 mags) relative to their host star are detectable. Giant planets will be

very hot immediately after they form but will cool very quickly (Figure 1.14, Brandt

et al. 2014). The temperature of the planet at a given age and its cooling rate is de-

pendent on the mass of the planet (Baraffe et al. 2003). The heat is generated through

the conversion of gravitational potential energy caused by the accretion of gas from the

protoplanetary disk. Coronagraphs have also been used to image planets from space.

An example of a planet seen using a space based telescope is Fomalhaut b. Figure

1.15 (Kalas et al. 2008) shows the direct detection of Fomalhaut b through the use of

a coronagraph. Two images were taken of the system in 2004 and 2006, during which

time the planet is seen to move (bottom right hand box).
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Figure 1.14: The change in luminosity and temperature of planets (solid lines) and
brown dwarfs (dashed lines) of given masses with time (in years) (Baraffe et al. 2003).
The red dashed line shows the 1300K limit where the model used to determine these
cooling rates is valid for extrasolar giant planets. Usually a model that includes dust
is generally used for planets with higher temperatures than this limit, however, it has
been shown that the dusty model is negligibly different to the model plotted here
and hence it is valid to use the non-dusty model shown here for exoplanets that have
temperature greater than 1300K (Chabrier et al. 2000)

.
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Figure 1.15: Image of the debris disk around Fomalhaut b taken using a coronagraph
on the Hubble Space Telescope (Kalas et al. 2008). The box in the bottom right hand
corner shows the movement of the planet from images taken in 2004 and 2006. This
shows how a coronagraph can be used to find exoplanets.

Instruments that have a coronagraph that can be used simultaneously with a

spectrograph will be able to do direct spectroscopy of these exoplanets. In conjunction

with adaptive optics this will give very high quality spectra of their atmospheres. With

real spectra over the 1− 10µm range much better fits to model SEDs will be possible

(as there will be fewer free degrees of freedom).

Current instruments that are in operation looking for planets using direct imaging

are the Gemini Planet Imager (GPI) (Graham et al. 2007; Macintosh et al. 2006)

and Spectro-Polarmetric High-contrast Exoplanet REsearch (SPHERE) (Beuzit et al.

2008). GPI will use adaptive optics to correct for the distortion of star light caused by

the Earth’s atmosphere enabling it to produce high-resolution images of planets in orbit

around nearby stars. GPI is sensitive to planets more massive than 6 Jupiter masses

orbiting 10 or more AU away from their host star at an age of less than 2Gyr (Graham

et al. 2007). It is during this time that the planets are bright because they are still hot

from formation. GPI is also equipped with an integral field unit, which allows spectra

to be taken of objects it is observing and hence it is able to get spectra of exoplanet
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atmospheres. An example of a system that has the atmospheres planets analysed using

this method is HR 8799 (Ingraham et al. 2014). SPHERE will be used to detect both

reflected and thermal radiation of planets orbiting their host stars between 1 and 100

AU (Beuzit et al. 2008). The reflected light can be detected because when star light is

reflected off a planets atmosphere it is polarised and the light detected directly from

the star is not. The thermal radiation will be detected through IR photometry. Using

both these techniques allows both young planets (bright in the IR) and older, cooler

planets (visible in polarised light) to be detected.

EPICS: The Exoplanet Imaging Camera and Spectrograph for the European

Extremely Large Telescope (E-ELT) will be able to image hot young giant planets and

possibly smaller terrestrial worlds in the habitable zone. It will have sensitivity to

planets > a few AU from their host star (Kasper et al. 2010). Currently atmospheres

of exoplanets can only be studied through transmission spectroscopy and secondary

eclipse photometry (see later sections), EPICS will be able to do direct spectroscopy

of these bodies which will lead to unprecedented characterisation of their atmospheres.

It may even be possible to look for biosignatures in the atmospheres of the terrestrial

bodies it could image.

1.3 Bulk densities

Combining RV and transit observations of hot Jupiters allows the system to be charac-

terised in detail. From the transit light curve the parameters that are directly derivable

are the transit depth (∆F ), the time in transit (Tin trans) (from second to third contact),

the transit duration (from first to fourth contact) (TT ) and, if two or more transits are

observed, the orbital period (P ) (Seager & Mallén-Ornelas 2003). Combining these pa-

rameters with Kepler’s third law it is possible to derive the planet to star radius ratio

(Rp

R∗
), the impact parameter (b), the scaled semi-major axis ( a

R∗
) and the stellar density

(ρ∗). Due to the stellar density being directly derivable the mass-radius relation I use

in my analysis is that of Enoch et al. (2010). This method uses the stellar effective
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temperature, metallically (derivable from stellar spectral analysis) and density to de-

rive the mass and radius of the star using equations 1.4 and 1.5 (X = log(Teff)− 4.1)

from Enoch et al. (2010). The calibration works well for M∗ ≥ 0.8 M� but for lower

mass stars there are discrepancies between the predicted and observed stellar radii.

This is an ongoing area of research but is thought to be connected with the magnetic

fields of these stars.

logM∗ = a1 + a2X + a3X
2 + a4logρ∗ + a5logρ2

∗ + a6logρ3
∗ + a7[Fe/H] (1.4)

logR∗ = b1 + b2X + b3logρ∗ + b4[Fe/H] (1.5)
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Mass, ai Radius, bi
const 0.458± 0.017 0.150± 0.002
X 1.430± 0.019 0.434± 0.005
X2 0.329± 0.128 -
log ρ −0.042± 0.021 −0.381± 0.002
log ρ2 0.067± 0.019 -
log ρ3 0.010± 0.004 -
[Fe/H] 0.044± 0.019 0.012± 0.004

Table 1.1: Coefficients for Mass and Radius fits.

The radial velocity data give the minimum mass of the planet Mp sin i and from

the impact parameter the inclination is derivable so it is possible to derive M∗, R∗,Mp

and Rp. This allows the derivation of the bulk density of the planet. However as was

seen from figure 1.10 planets of the same mass/radius can correspond to different bulk

compositions so the bulk density is used more as a guideline and major conclusions

should not be drawn from this quantity alone.
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1.4 Inflated Radii and Eccentricity

There are many planets whose radii are larger than expected (Figure 1.16), for exam-

ple WASP-17b, which has a mass and radius of 0.486 MJ and 1.991 RJ, respectively

(Anderson et al. 2011b).
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R
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Figure 1.16: Mass-Radius plot showing the Hot Jupiters that require some source of
energy to increase their radii. Those planets which lie above the lines require this
energy source. The difference between the lines is that one assumes the planet has
no core, the dashed line, and the other assumes a 40 Earth mass core, the solid line
(Batygin & Stevenson 2010). The red circles are those planets which are investigated
by Batygin & Stevenson (2010).

After their formation, gas giants are expected to be very hot (∼ 2000K, see Figure

1.14). As they age they are expected to cool and contract. This means there must be

some source of energy that is resisting the contraction for those planets whose radii

are found to be larger than expected, or that re-inflates/re-heats the planet after it

has cooled. Fortney, Marley & Barnes (2007), presented an investigation where they

determine the expected radius of a planet based on the composition of the planet (gas

giant, rocky planet, water world or iron planet). Their models for gas giants are based
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on the standard cooling theory of irradiated gas giants (Fortney & Hubbard 2003;

Fortney 2004). From the models of Fortney, Marley & Barnes (2007), WASP-17b is

expected to have a radius of 1.3RJ , however Anderson et al. (2011b) find the radius to

be 1.991 ± 0.081RJ. One explanation that has been proposed for this is that of tidal

heating (Bodenheimer, Laughlin & Lin 2003; Jackson, Greenberg & Barnes 2008a,b;

Ibgui & Burrows 2009). This theory says that if a planet is on an eccentric orbit then

it will experience a difference in the magnitude of the gravitational pull of its star at

different points in its orbit. This causes the interior of the planet to heat up, which act

against the contraction. However, standard theories of hot Jupiter exoplanets predict

that these planets should be in circular orbits, because if they were to form in eccentric

orbits then, due to the proximity of their stars, the time in which their orbits would be

circularised (circularisation time scale) is smaller than the predicted age of the systems

(Haswell 2010, Smith et al. 2011).

If a planet is in a circular orbit then (if it is a transiting planet) the secondary

eclipse should be observed half a phase after transit. If it is in an eccentric orbit then

the secondary eclipse will occur either later or earlier than expected. By measuring this

timing offset we are able to constrain the eccentricity of the planet. The eccentricity

is constrained to (Charbonneau et al. 2005; Machalek et al. 2008),

e cos(ω) =
π∆t

2P
(1.6)

where ω is the argument of pericentre (the angle from the ascending node of the planets

orbit to the point of closest approach, Figure 1.17), ∆t is the difference in time between

predicted secondary eclipse time (circular orbit) and the observed secondary eclipse

time, P is the period of the planet. For this to be the cause of inflated radii of giant

planets there must be something keeping them on eccentric orbits, e.g., a third body

in the system. However, the majority of the giant planets that are being found seem to

have circular orbits. Figure 1.1810 shows the distribution of eccentricities of the known

10Data from http://exoplanets.org/plots
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transiting exoplanets with periods less than 4 days11.

Figure 1.17: Schematic showing the argument of pericentre and inclination of the
planets orbit.

11For clarity I have excluded the Kepler systems as the majority of them are in circular orbits and
hence it is not possible to see clearly the eccentric systems on this plot
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Figure 1.18: Eccentricity distribution for transiting planets (excluding Kepler systems)
for planets with period less than 4 days.

Another theory that has been suggested is Ohmic dissipation (Batygin & Steven-

son 2010). The irradiation of the planet’s atmosphere by the star will induce winds

in the atmosphere. If the atmosphere is hot enough then some alkali metals will be

partially ionised. The interaction between the ions and the magnetic field of the planet

will induce a current into the planet, this current will pump energy into the interior

of the planet which will heat up the interior and resist the contraction. Batygin &

Stevenson (2010) tested their models on three planets that are found to have inflated

radii, HD189733b, HD209458b and Tres-4b. They find that their model can reproduce



40

the anomalous radii for HD189733b, HD209458b but not for Tres-4b. This is a very

new theory and requires further study.

1.5 Atmospheres of Exoplanets: Planet Character-

isation

1.5.1 Transmission Spectroscopy

Transmission spectroscopy is a method of looking at the atmospheres of hot Jupiters as

they transit their host stars. It involves taking the spectrum of the system before/after

and during transit. The out-of-transit spectrum is that of the host star, with a negli-

gible amount of light from the planet. During transit, the light from the star passes

through a portion of the atmosphere of the planet. Some of this light is absorbed by

gases/hazes in the atmosphere of the planet and re-emitted away from the line of sight.

This process superimposes the spectrum of the planetary atmosphere on top of that

of the star. By removing the out-of-transit spectrum from the in-transit spectrum,

the spectrum of the planet’s atmosphere can be extracted. A low-resolution version of

the planet’s atmospheric transmission spectrum can be obtained using photometry by

observing the transit at multiple wavelengths and looking for a change in the transit

depth. This corresponds to a change in the ratio of the radii of planet and star. The

change in the transit depth is due to gases at different heights of the planetary atmo-

sphere absorbing the light from the star. Madhusudhan et al. (2014) use HD189733 as

an example and given the following assumptions

• TP = 1100K,

• g = 2140 cm s−1 (acceleration due to gravity),

• H2 dominated atmosphere,

• a haze in the atmosphere at 10 scale heights,
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the change in the transit depth relative to the transit depth when the haze layer is not

probed is calculated using equation 1.7 (assuming hydrostatic equilibrium).

δdepth '
(
Rp + 10H

R∗

)
−
(
Rp

R∗

)
, H =

kT

µg
(1.7)

In Equation 1.7 H is the scale height of the planet’s atmosphere, k is Boltzmann’s

constant, µ is the mean molecular weight of the atmosphere and g is the acceleration

due to gravity. Using Equation 1.7 and the assumptions above, the transit depth would

increase by 0.1% compared to 2.5% which is the transit depth when the haze is not

probed (Madhusudhan et al. 2014). Transmission spectroscopy for exoplanets was first

conducted by Charbonneau et al. (2002). Figure 1.19 shows the transmission spectrum

of HD 209458 that was presented by Sing et al. (2008). The Y-axis shows the change

in absorption, which corresponds to a change in radius. This shows how small the

detected signal is, and hence the difficulty of the technique.
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Figure 1.19: Atmospheric transmission spectrum of HD209458 obtained with the STIS
instrument on HST (Sing et al. 2008). The Y-axis shows the percentage change in
radius relative to the radius measured at 5000Å ( to which the spectrum is normalised).
The thin red line shows the binned (16 pixels) low resolution spectrum, the grey line
represents the binned (18 pixels) medium resolution spectrum. The three features
that are found by the investigators are, the Rayleigh scattering shortward 4000Å, the
sodium feature shortward of 6000Å and the TiO and VO feature at 6200Å.

1.5.2 Secondary eclipse photometry

In a similar way to observing the dip cause by a transiting planet, there should be a

dip in the light caused by the day-side of the planet being occulted by the host star.

By observing the secondary eclipse in multiple wavelengths, the emission spectrum of

the day side of the planet can be built up (Charbonneau et al. 2005; Deming et al.
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2005; Spiegel, Silverio & Burrows 2009; O’Donovan et al. 2010; Todorov et al. 2012;

Mahtani et al. 2013). In 2003 NASA launched the Spitzer Space Telescope. It objective

was to observe those places in the universe which were hidden from us in optical light

(by dust) by observing them in the infrared. Initially there were four channels on the

Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8, 8.0µm (channels 1, 2, 3, 4)12, and three

channels on the Multi-band Imaging Photometer (MIPS) at 24, 70 and 160µm13. This

telescope was not built to observe planets, but then Charbonneau et al. (2005) used

Spitzer and (for the very first time) detected the secondary eclipse of an exoplanet. As

with transits, during this event there is a loss of light, but instead of a loss of light from

the star it is a loss of light from the planet. Figure 1.20 is an example of a secondary

eclipse light curve, observed in the four IRAC channels on Spitzer.

12http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
13http://irsa.ipac.caltech.edu/data/SPITZER/docs/mips/mipsinstrumenthandbook
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Figure 1.20: An example of the occultation of WASP-18b observed in the four IRAC
channels on Spitzer (Nymeyer et al. 2011).

The depth of the secondary eclipse gives the ratio of the day-side flux of the planet

to the flux of the star at the wavelength the observation was conducted (Equation 1.8).
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In Equation 1.8 Fday is the flux from the day side of the planet, F? is the flux from the

star,
Fday

F?
is the measured eclipse depth, Ag is the geometric albedo, RP and R? are the

radii of the planet and the star respectively, a is the semi-major axis of the planet’s

orbit, Bλ(Tday) and Bλ(Tbright) are Planck blackbody functions of the planet and star

respectively and Tday and T? are the brightness temperatures of the dayside of the

planet’s atmosphere and the star. The whole of the first term on the right hand side of

Equation 1.8 is the contribution to the secondary eclipse flux loss from reflected star

light off the planet. Cowan, Agol & Charbonneau (2007) and Cowan & Agol (2011)

have shown that this term is negligible because the albedos of hot Jupiter exoplanets

in the infrared are very low, which means that the amount of light that is reflected

by the planet is very small. The second term on the right hand side of equation 1.8

is the contribution to secondary eclipse flux loss from the thermal emission from the

planet. Hot Jupiters have atmospheric temperatures of 1000-3000K, which means that

(using Wien’s law) they have their peak emission at a few microns. The spectral energy

distribution of stars like the Sun peak at about 0.5µm. Observing secondary eclipses

near the peak of the planet’s emission will mean the planet will have a favourable

contrast ratio to the star. The typical eclipse depth for a hot Jupiter is about 0.01%

(Mahtani et al. 2013). Even though Spitzer was not designed to reach this level of

accuracy, and despite the fact that it suffers from the IPSVs it is still possible to detect

this signal. From the eclipse depth, the temperature of layer of the atmosphere probed

can be estimated.

To be able to fully understand these atmospheres more than just Spitzer obser-

vations are required. From the ground there are a few infrared windows available that

allow secondary eclipses to be observed. These are at 0.9097µm (z band) 1.25µm (J

band), 1.65µm (H band) and 2.2µm (K band). Many secondary eclipses have been

observed at these wavelengths (Föhring et al. 2013; Chen et al. 2014a,b; Zhou et al.

2014) and it has been shown that with the addition of some of these data it is possible

to break degeneracies in atmospheric models and hence distinguish between different

atmospheric models. For example, in my analysis of WASP-26b, Mahtani et al. (2013),

it was possible to see that additional data at J, H and K bands from the ground could
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help to determine if the atmosphere of WASP-26b hosted a thermal inversion. How-

ever, seeing, thermal emission of the Earth’s atmosphere and temperature variations

in the surroundings of the telescope mean the precision of measured brightness of the

system and hence the eclipse depth will have very large error bars. Hence, the data

may not help to break the degeneracies between the models. Instrumental systematic

errors can also propagate into the data. Defocusing the telescope spreads out the PSF

of the target over many pixels which can reduce pixel sensitivity variations and by

using differential photometry sky variations can be reduced. These help but do not

alleviate some of the problems but even though the precision is low having some data

can still provide a constraint as to which models do not fit the data.

Combining all these data give us the possibility of placing constraints on the

chemical composition which in at least one case has allowed the possible detection of

a super-solar, C/O ratio14 (Madhusudhan et al. 2011). A C/O ratio that is less than

0.8 leads to a silicate dominated interior and greater than this value leads to a carbon

dominated interior. If this is really the case it would mean that the planet, WASP-12b

which they find to have a C/O> 1 has a carbon dominated interior rather than an

Earth-like silicate dominated. This conclusion was reached because the atmosphere

was found to be two orders of magnitude over abundant in CH4 and depleted by

the same amount in H2O compared to a solar composition model. This was a very

interesting finding because it shows there may be chemical diversity in the composition

of exoplanets and also shows why restricting models to solar chemistry may (although

a priori not a bad constraint) mean that some atmospheric data cannot be fitted.

1.5.2.1 Modelling exoplanet atmospheres

Much of this subsection is based on the explanations of Madhusudhan et al. (2014). The

current state of the field is such that there are two main approaches to the modelling of

exoplanet atmospheres. The first approach has been used by Fortney et al. (2006) and

14The solar C/O ratio is 0.54
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Burrows et al. (2007) and is based on equilibrium constraints. These models begin with

the planetary radius, incident stellar radiation at the top of the planet’s atmosphere

and some abundance for the chemical composition for the planetary atmosphere, e.g.,

solar composition, and then generate (using stellar models) the stellar spectrum that

impacts the top of the planetary atmosphere (Madhusudhan et al. 2014). Further to

these the following assumptions are used:

• Radiative-convective equilibrium: The resulting temperature-pressure (T-P)

profile of the planet’s atmosphere will be consistent with the incident stellar

irradiation.

• Chemical equilibrium: This allows the abundances of opacity sources to be

calculated.

• hydrostatic equilibrium: This gives the pressure as a function of radius.

The parameter space of T-P profiles can be explored starting with an initial profile.

This process results in a T-P profile and the transmission/emission spectrum for the

planet’s atmosphere. The transmission/emission spectrum is then fitted to the relevant

data. This process is repeated until a good fit to the data is found. The goodness of

fit statistic that is used for this is usually χ2.

This, however, is not a good method to be used when modelling hot Jupiters be-

cause they experience significant non-equilibrium effects, such as strong recirculation of

incident stellar radiation though zonal jets and wind which means that radiative equi-

librium does not hold (Madhusudhan et al. 2014). This leads to the second approach

developed by Madhusudhan & Seager (2009) and Madhusudhan (2012) in which para-

metric models are used to determine the thermal structure and spectra of exoplanets,

under the same assumptions but without radiative-convective and chemical equilib-

rium. Instead these models use 10 free parameters to model the T-P profile and the

abundances of water, carbon monoxide, methane and carbon dioxide. The parameter

space is then explored using a Markov Chain Monte Carlo techniques (see chapter 2)
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and the best fitting parameters are found. The atmospheric models that are produced

are then fit to the transmission/emission spectrum data.

There are, of course, caveats to this method of atmospheric analysis. The main

one being that the models have more degrees of freedom than data points (typically

10 free parameters, Madhusudhan et al. 2014). Typical exoplanet emission spectra

(e.g. Mahtani et al. 2013) have only two warm Spitzer points (at 3.6 and 4.5µm) to fit

these models. It is possible to improve the result by observing the secondary eclipse at

more wavelengths even just once. Initially it was possible to get data at 0.9097µm (z

band) 1.25µm (J band), 1.65µm(H band) and 2.2µm (K band), Wide Field Camera 3

spectra from Hubble (0.38-0.78µm) and 4 Spitzer IRAC points (3.6, 4.5, 5.8 and 8µm)

but now the 5.8 and 8µm are no longer available on Spitzer because those channels

required cryogenic cooling which has now been exhausted. Each extra data point

(even with large error bars) will give some constraint to the model. Ideally multiple

measurements at each possible wavelengths are required because this will allow spurious

measurements to be removed and hence not affect the results. Also the results of these

parametric models must be checked to ensure that the pressure-temperature profile

and the chemical abundances are consistent with each other.

1.5.2.2 Thermal Inversions

Figure 1.21 shows two types of Temperature-Pressure profiles that are used in exoplanet

atmosphere analysis. The blue line is a non-thermally inverted atmosphere, where the

temperature in the deep interior is constant and hot. In the mid atmosphere there

is a temperature gradient caused by the atmosphere radiating away the heat from its

interior. The upper most atmosphere the temperature is isothermal. In contrast, if the

atmosphere has an opacity source (of unknown composition) in the mid atmosphere

(∼ 1 bar) and this source is very efficient at absorbing incident optical and UV radiation

then this increases the temperature of that region of the atmosphere and produces

a thermal inversion (or stratosphere). This is illustrated as the red line in Figure

1.21. A very interesting finding of the newer secondary eclipses observations for the
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understanding of exoplanet atmospheres is that hot Jupiters can be classified into those

with and without thermal inversions (Fortney et al. 2008; Spiegel, Silverio & Burrows

2009; O’Donovan et al. 2010; Madhusudhan & Seager 2010; Todorov et al. 2012).
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Figure 1.21: This graph illustrated a thermal inversion. The red line (thermally in-
verted atmosphere) shows that as pressure drops (increasing altitude) the temperature
initially stays constant and then decreases (as expected). Then the temperature begins
to increase with decreasing pressure (increasing altitude). The blue line shows the ex-
pected constant-decrease trend expected with no temperature inversion (Madhusudhan
& Seager 2010).

Two possible mechanisms have been proposed to explain whether or not the

formation of a thermal inversion will occur. The first uses the magnetic activity of

the star as an explanation. The Sun is seen to have a magnetic activity cycle of 11

years. Over this period of time there is a variation in the number of sunspots and

other indicators of magnetic activity such as X-ray and radio emission. Of particular

relevance to planetary atmospheres is the increase in ultraviolet radiation when the sun

is active. A proxy that was used to measure the magnetic activity was the excess in
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emission of the Ca II H and K lines from the star. The excess comes from radiation that

is emitted from the chromosphere of the star. This was measured by Wilson (1978), in

which they measured the amount of excess emission in a 1Å region centred on the Ca

II H and K lines. It was seen, over time-scales of the order decades, that some stars

emission at these wavelengths varied. These cycles were thought to be analogous to the

solar cycle. Those which did not vary were used as standard stars. It became apparent

that not all the flux that was being measured originated in the chromosphere. Some

leakage of light from the photospheric emission was being detected. So the standard

stars were used to measure the photospheric emission and for stars of similar spectral

type this photospheric Ca II H and K flux was removed only leaving the chromospheric

emission. More work was conducted over the coming years (Noyes et al. 1984; Noyes,

Weiss & Vaughan 1984; Baliunas et al. 1995) (for a full review see Hall 2008), during

which time much was learned, including a possible relation between the activity cycles

and the rotation periods of the stars. In particular Middelkoop (1982); Noyes et al.

(1984); Hartmann et al. (1984), showed that the previous way of measuring the activity

of the star, SHK
15, needed to be colour corrected. Noyes et al. (1984) describe this

correction and called the colour corrected value log(R′HK), where the ′ shows that

the photospheric correction has been accounted for. More recent work has begun to

investigate a possible relation between how chromospherically active a star is (proxy for

stellar activity) and thermal inversions in the atmospheres of hot Jupiters (Knutson,

Howard & Isaacson 2010). In this paper, Knutson, Howard & Isaacson (2010) present

the graph in Figure 1.23, which is an empirical relation between stellar activity and

thermal inversions. The Y-axis is the measure of chromospheric activity. The X-axis is

the difference between, the measured slope between the 3.6µm and 4.5µm eclipse depth

points, and the slope measured between these two point from the best fitting blackbody.

The blue stars are those stars whose planets are shown not to have thermal inversions

and the red circles are those planets that are shown to harbour thermal inversions.

15which was a ratio of the measured emission of the Ca II H and K to the flux in 2, 1Å regions
either side of the Ca II H and K
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The grey square at the top is CoRoT-2b whose spectrum does not fit either of these

two classifications. The 4.5µm eclipse depth probes a higher region in the atmosphere

than the 3.6µm eclipse depth and so if the brightness temperature of the 4.5µm eclipse

depth is higher than that of the 3.6µm then the planet may host a thermal inversion.

This is because water and carbon monoxide are opacity sources at 4.5µm and not at

3.6µm (Knutson, Howard & Isaacson 2010). For the planets with thermal inversions

the radiation absorbed by these opacity sources causes them to go from absorption to

emission. The explanation that is put forward for the divide in Figure 1.23 is that the

more active host stars (blue stars in figure 1.23) emit significant UV/X-Ray flux which

photodissociates the gas causing the thermal inversion to be present in planets around

inactive stars (Knutson, Howard & Isaacson 2010).
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Figure 1.22: The empirical relation between stellar activity and thermal inversions
(Knutson, Howard & Isaacson 2010). The blue stars are those planets which do not
host thermal inversion and the red circles are those planets which do host thermal
inversions.
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A second explanation was presented by Fortney et al. (2008) where they suggest

that the thermal inversion is dependent on the incident stellar flux, those with (pM

class) and without (pL class) thermal inversions. The pM class planets are close enough

to their host stars (∼ 0.04− 0.05 AU assuming a solar chemical composition) to have

TiO/VO in a gaseous phase in the region of the atmosphere where it can absorb incident

stellar radiation. This heats up the gas causing that region of the atmosphere to have

a positive temperature gradient with decreasing pressure. Modelling these planets

showed that they will have large day-night temperature differences and no shift in the

hotspot away from the sub stellar point. The opposite is true for the pL class planets.

This has been shown to work for HD209458 and (Knutson et al. 2008) and HD189733

(Fortney & Marley 2007).

Figure 1.23: Relationship between the presence of a thermal inversion and the inci-
dent stellar irradiation from the host star. The left graph shows this as a function of
planetary mass and the right graph shows this as a function of planetary gravity



54

The Earth’s atmosphere hosts a temperature inversion (the stratosphere) due

to the ozone in the upper atmosphere (O3) (Chamberlain 1978). It has been found

that there is a temperature inversion on Jupiter (the closest analogue we have in our

solar system to these giant planets we are investigating) that is formed by methane

(CH4; Madhusudhan & Seager 2010). However, it is not possible for methane to be

the cause of the temperature inversion in hot Jupiters because it would be quickly

photodisassociated by the high incident UV flux that these planets receive from their

host stars. Substantial work has been conducted on the thermal inversions in hot

Jupiters (Hubeny, Burrows & Sudarsky 2003; Burrows et al. 2007; Fortney et al. 2008;

Spiegel, Silverio & Burrows 2009; Zahnle et al. 2009; Sing & Lopez-Morales 2009;

Todorov et al. 2012; O’Donovan et al. 2010; Machalek et al. 2008, 2009; Madhusudhan

& Seager 2010). One of the possibilities is that the cause of the observed thermal

inversions could be titanium oxide (TiO) and vanadium oxide (VO)(Hubeny, Burrows

& Sudarsky 2003; Burrows et al. 2007; Fortney et al. 2008). This possibility was

investigated by Spiegel, Silverio & Burrows (2009) and several conclusions were drawn.

Firstly, (assuming a solar composition in the atmosphere) the abundance of vanadium

oxide is not high enough for the formation of a thermal inversion. Next, given the

molecular weight of the two compounds, the heavier a compound is the more likely it

is to settle further down (lower altitudes/higher pressures) in the atmospheres of hot

Jupiters. This is called gravitational settling. Due to this phenomenon, for TiO/VO

to exist in the upper atmosphere of hot Jupiters such that they can absorb incoming

radiation there must be mixing on a large scale (macroscopic mixing). This is normally

parametrised by the eddy diffusion coefficient (Kzz). It was found that the value of

this quantity needed to be large, but not unphysical. It should be noted that the

eddy diffusion coefficient is a quantity that is added to the model to try and produce

observed thermal inversions. Its implications should therefore be treated cautiously.

Finally, there could exist a region where the temperature decreases to such a point

that these compounds are able to condense out (cold traps). If this were to occur it

would mean that the compounds would rain out. Hence it would not be possible to

have sufficient quantities of these compounds in the atmosphere to cause a thermal
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inversion. To understand where the cold traps exist, the temperature-pressure profile

is compared to the condensation curve of the compound in question (figure 1.24). From

this, the regions in the atmosphere where a particular compound will be gaseous and

where it will condense out can be seen.
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Figure 1.24: Condensation curves for two different abundances of TiO for two different
temperature profiles of HD209458. The blue lines are the condensation curve for TiO.
The light blue sections of the temperature pressure profiles (i.e. to the left of the
condensation curves) are where the temperature is such that TiO condenses out, the
purple sections are where the temperature is sufficient for TiO to be in the gaseous
phase(Spiegel, Silverio & Burrows 2009).

Another suggestion for the cause of the thermal inversion is sulphur compounds

as described by Zahnle et al. (2009). Zahnle et al. (2009) created a model, which was

based on the early Earth (Archean period), which was then modified to try and describe

the atmospheres of hot Jupiters in the temperature range 1200 ≤ T ≤ 2000 K. They

find that HS and H2S can produce thermal inversions in Hot Jupiter atmospheres in

this temperature range. This can occur because these two substances efficiently absorb
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UV radiation from the host star. It is also suggested that it could be possible to detect

the presence of these and other sulphur compounds through radius differences when

comparing the transit depths in the UV and optical.

1.5.2.3 Thermal Phase Variations

Due to their proximity to their host stars, hot Jupiters are thought to be tidally

locked. This means they have permanent day and night sides. As the planet goes

from transit to secondary eclipse, more of the day side is visible to the observer. From

secondary eclipse to transit less of the light from the day side is visible to the observer.

The functional form of this effect can be approximated using a sine curve. This is

known as the thermal phase effect. Thermal phase variations have been observed for

several exoplanets (e.g. Cowan et al. 2012; Knutson et al. 2012; Lewis et al. 2013;

Quintana et al. 2013; Maxted et al. 2013) and have amplitude of order 1000ppm (e.g.

Maxted et al. 2013). Observing thermal phase curves of exoplanets is a good method

of probing the day-night side temperature differences and hence heat redistribution

efficiencies of the planets. There are two extremes of redistribution, full redistribution

and no redistribution. If there is no redistribution from the day-side to the night

side then the day side will be permanently hot and the night side permanently cold.

Studies have shown that the temperatures of the dayside of hot Jupiters can typically

be between 1000 and 3000K. This temperature difference will be seen in the light curve

as a sinusoidal variation in light from the system. The amplitude of this variation

cannot be greater than the occultation depth. If there is full redistribution from the

day side to the night side then the temperature difference will be small. This means

there will be very little/no thermal phase variation observable. If a planet is on an

eccentric orbit, it will only be in synchronous rotation in the region of periapsis. From

these data it is possible to investigate winds on exoplanets by looking for a shift in the

hotpot (substellar point). This shift from phase of 0.5 will be seen as an offset in the

phase of maximum light from the system. An example is HAT-P-2b (Lewis et al. 2013).

In this scenario the thermal phase variations are probing the heating and cooling rates
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of the planet’s atmosphere. This is very useful because it gives information about the

radiative and advective timescales. Another interesting scenario is for the very large

giant planets that may be undergoing distortion due to the planet filling its Roche

lobe. An example of this class of planet is WASP-12b (Cowan et al. 2012). These

planets, as well as showing the thermal phase variations, are also predicted to show

ellipsoidal variations due to this distortion. This phenomenon was originally seen in

binary systems. As material fills the Roche-lobe, the object becomes tear-drop shaped.

This distortion (if the planet is on an edge-on circular orbit as we observe it) means

that there will be an excess in light from the system at phases of 0.25 and 0.75 (half way

between transit and secondary eclipse). However, the level of this effect is very small,

(10−4 for WASP-12b for example, Cowan et al. 2012). To detect this level of variation

one must fully understand the systematic trends that are present in the data. This is

one of the motivations for this work. If it is possible to probe exoplanet atmospheres

at this level of detail, a greater understanding of their dynamics and evolution will be

gained.
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2 Statistical Methods and
The Spitzer Space Telescope

2.1 Introduction

The ultimate goal of exoplanet light curve analysis, which is the focus of the work

presented in this thesis, is to understand the properties of the planets and their atmo-

spheres. To do this we try to fit theoretical models to the data by determining the

values of the parameters that best fit the data. This chapter outlines the statistical

methods that are used in this thesis. The second half of this chapter deals with the

Spitzer Infrared Space Telescope used to gather most of the data that is presented

herein. I will also discuss the (significant) instrumental noise that is seen in Spitzer

data of exoplanets. It is this instrumental noise that limits how accurately the pa-

rameters can be estimated. Some of these systematics are of known origin and can be

compensated for and then removed from the data. Others are of unknown origin and

will be the focus of the later chapters. Much of this section is based on notes from the

The Imperial Centre for Inference and Cosmology (ICIC) Workshop on data analysis

written by Alan Heavens, Andrew Jaffe, Daniel Mortlock and Roberto Trotta1, and

Ford (2005).

2.2 Bayesian Statistics and

Markov Chain Monte Carlo

The statistical framework that has been adopted by the exoplanet community is that

of Bayesian statistics. If one has some lightcurve data, d=[di], which are taken at some

part of an exoplanet’s orbit and a model, M that describes the lightcurve, which has

parameters x=[xi], Bayes’ theorem states (Bayes & Price 1763),

1http://astro.ic.ac.uk/content/icic-data-analysis-workshop
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P(x | d) =
P(d | x)P(x)∫∞

−∞ P(d | x)P(x)dx
(2.1)

where P (x | d) is called the posterior distribution, P (d | x) is the likelihood, P (x)

is the prior and
∫∞
−∞ P (d | x)P(x)dx is the evidence. The prior allows one to put a

constraint on the parameters based on any previous work or analysis. For example,

with my analysis of WASP-26 (Mahtani et al. 2013), from work done by Smalley et al.

(2010), I was able to use their values of the temperature and metallicity of the host

star as a prior in the analysis as well as using the transit lightcurves of their analysis

for orbital parameter constraints. In the software that I use for my analysis the prior is

constructed in the following way, a Gaussian distribution is created with mean as the

value of the parameter and standard deviation the error on the value from which trial

values for the parameters are chosen. This allows the software to be more targeted

in its exploration of the parameter space and hence converges faster. Another way to

construct a prior is to give all possible values equal probability within certain limits.

This is called a uniform prior. The denominator of Equation 2.1 is just a normalising

constant in this work so can be ignored because one is integrating over all possible

values of each parameter. However, this value is very important for model comparison.

What is required is to explore the parameter space for each of the parameters. However

for exoplanet lightcurve models there may be a large number of parameters. This would

be computationally inefficient to do using methods such as grid based methods which

evaluates the model at each point of the grid for each parameter. What is required is to

maximise the likelihood function and to find the confidence interval on the parameters.

To measure the goodness of fit of the model to the data we can use the χ2 statistic

which is defined as (Wall & Jenkins 2003),

χ2 =
k∑
i=1

(Oi − Ei)2

σ2
i

(2.2)

where Oi is the value of the ith data point, Ei is the predicted value of the ith data

point from the model, σi is the standard error on the ith data point and k is the number

of data points. The lower the value of χ2 the better fit to the data. A good fit to the
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data is one whose χ2 is approximately the same as the number of degrees of freedom

(Ndf), which is k−Npar, where Npar is the number of free parameters. For this reason,

one may find it easier to find a good fit to the data by looking at reduced χ2 which is
χ2

Ndf
. From this, a good fit to the data is a reduced χ2 of about 1. If reduced χ2 is less

than 1 then the model being used is overcomplicated and one is over-fitting the data

(or the error bars are over estimated).

Using the above theory it is possible to explore the parameter space for a given

model using a procedure called Markov Chain Monte Carlo (MCMC). The Markov

Chain is a series of N values, where the ith value only depends on the (i− 1)th value. If

the error bars on the data collected are (close to) Gaussian and the prior has a uniform

distribution then the following relation holds (equation 9 from Ford 2005),

P(x | d) = P(d | x)P(x) ∼ exp

(
−χ2(x)

2

)
. (2.3)

With this and a set of values of xi the posterior probability distribution can now be

calculated. The algorithm that will be used herein to generate the set of values of xi

will be the Metropolis-Hastings algorithm. One of the main issues with the Metropolis-

Hastings algorithm is how to jump from one set of xi values to the next i.e. what is the

probability of the new set of parameters given the old set of parameters, P (xnew | xold).

This can be split into a product of 2 functions (equation 10 of Ford 2005),

P (xnew | xold) = q(xnew | xold)α(xnew | xold) (2.4)

q(xnew | xold) is known as the candidate transition probability function and α(xnew |
xold) is the acceptance probability. The candidate transition probability function is

the probability of randomly choosing xnew given that the current point of the chain is

xold. q is chosen to be a Gaussian with mean 0 and standard deviation 1. At each step

the old parameter value is use to calculate the the trial parameter using:

Xi = X(i−1) + σX ∗ q ∗ f

where σx is the standard deviation of the parameter from the chain so far and f is the
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step size controller. The value of f is adjusted every 100 steps so that the acceptance

rate is close to the optimal value of 0.25 (Tegmark et al. 2004). The value of 0.25 is

such that the parameter space is explored thoroughly and the region around the best

fitting value is explored such that any structure is mapped. In practice this acceptance

rate is usually lower due to correlations between parameters.

The acceptance probability α(xnew | xold) is the probability of accepting the new

point given the probability of the current point. α(xnew | xold) is calculated in the

following way (equation 11 of Ford 2005),

α(xnew | xold) = min

exp
(
−χ2(xnew)

2

)
exp

(
−χ2(xold)

2

) × q(xold | xnew)

q(xnew | xold)
, 1

 (2.5)

The issue that comes with inaccurate choices of q is that the MCMC will take a

large number of iterations to converge. In an ideal world we would choose q to be the

probability of the the new x value given the data (P(x,d)). However, this defeats the

point of the MCMC as this is the distribution that is being evaluated. In practice, the

q is chosen to be a Gaussian distribution with mean of xold. This choice of q simplifies

the calculation of α to (equation 13 of Ford 2005),

α(xnew | xold) = min

exp
(
−χ2(xnew)

2

)
exp

(
−χ2(xold)

2

) , 1
 = min

[
exp

(
χ2(xold)− χ2(xnew)

2

)
, 1

]
(2.6)

With the above in mind, the Metropolis-Hastings algorithm is as follows,

1. Choose the initial values of the parameters.

2. Choose new parameter values using a candidate transition probability function.

3. Calculate the acceptance probability function given by equation 2.6.

4. Choose a random number, between 0 and 1, from a uniform distribution.
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5. If the random number is greater than the acceptance probability then the

new value is not accepted. If the random number is less than the acceptance

probability then the new point is accepted.

6. If the new set of parameters chosen give a better (lower) χ2 then these are

accepted.

7. If the new set of parameters are not accepted then the old set are used as the

new step i.e. xi = xi−1.

8. Repeat until number of desired iterations complete.

2.2.1 MCMC Discussion

MCMC can be used to find the minimum χ2, i.e. finding the parameters of the model

that best fit the data using the M-H algorithm. There are other algorithms that can be

used to conduct this minimisation, for example the Levenberg-Marquardt algorithm,

but these are prone to only finding local minima, although this not necessarily the

most efficient way to find the best solution. The Metropolis-Hastings algorithm has

the ability to escape local minima as it is possible to accept some points which have

worse fits to the data and to give a very thorough exploration of the parameter space.

Another advantage is that MCMC works much better than other methods for models

that have large numbers of parameters, like those needed to fit models of exoplanet

lights curves (Ford 2005). It is also possible to find correlations between parameters

easily by plotting the chain iterations of two parameters against each other. If there is

no correlation then a plot scaled to the standard-deviations of the two parameters will

look like a circular cloud of points. If, however, there is a linear correlation between

parameters then the cloud of points will be a tilted ellipse. If this were the case then

one could still use the L-M algorithm. However, if one had more severe correlations

like those in Triaud et al. (2010) (Figure 2.1) then a more advanced algorithm, such as

M-H is required. This example of severe correlation is that of the rotational velocity
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WASP-2b WASP-4b

WASP-5b WASP-15b

WASP-18bWASP-17b

Figure 2.1: Another example of severe correlations that can result from fitting exoplanet
data. This result comes from Triaud et al. (2010) and shows the correlation of the
rotational velocity of the host star and the spin orbit angle of WASP-4.

(V sin(i)) of the host star with the angle between the normal to the orbit and the

rotational axis of the star (spin-orbit angle, β).

There are however disadvantages of MCMC, the main one of which is the large

number of iterations required to explore the parameter space. This only makes MCMC

suitable for problems where the evaluation of a single model takes little time. If one

requires a 3σ limit on certain parameters (for example eccentricity), to have enough

points in the wings of the posterior distribution may take longer than is computationally

efficient. However, with a good amount of prior information and good algorithm it is

possible to calculate these values. For example, in my analysis of WASP-26b, I was able

to calculate a 3σ limit on eccentricity with the MCMC method and the M-H algorithm

(Mahtani et al. 2013).

When one has run an MCMC analysis, the results are not a single number, they

are distributions. In a Bayesian framework, there is no formal definition for how to
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choose the best fit parameters. By judicious choices of model parameters one can

have nearly Gaussian posteriors. Then the method of parameter estimation used most

commonly in the exoplanet field is to take the median value of the distribution as the

parameter values and to then choose the error bar to be the region of the distribution

that encompasses 68.3% of the probability distribution. This corresponds 1σ in classical

statistics.

Another issue that arises with MCMC is model selection because the evidence

integral may take a long time depending on the model. The way that this is overcome

is through the use of the Bayesian Information Criterion (BIC, equation 2.7) (Schwarz

1978),

BIC = χ2 +Npar ln(N) (2.7)

where χ2 is the goodness of fit for the best fit model parameters, Npar is the number of

free parameters in the model and N is the number of data points that are being fitted.

By running the same MCMC with different models this heuristic can be used to find

the best model to use by looking for the lowest BIC value. In reality though, there will

come a point where the difference between BIC values is negligible. At this point one

would choose the model prior to where the change in BIC is less than Npar ln(N) as the

model to use. However, a word of caution, one must always check that the variation in

parameters between models is not large i.e. less than ∼ 1σ. If this not the case then

it may not be possible to identify the most likely model on purely statistical grounds.

2.3 The Spitzer Space Telescope

2.3.1 Design and IRAC Instrument

The Spitzer Space Telescope was launched 25 August 2005. The spacecraft, which

operates in the infrared, is in a Earth trailing, solar orbit primarily so that the telescope

is moving away from the Earth. This allows the solar panels to be permanently pointed
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at the Sun, which means the body of the telescope is always facing away from the Sun,

avoiding any unwanted infrared radiation to be incident on the telescope (Werner et al.

2004).

Figure 2.2 shows the cross section of the telescope. The Infrared Array Camera

(IRAC) (Fazio et al. 2004), is an imaging instrument which had four channels, 3.6µm,

4.5µm, 5.8µm and 8µm. The 5.8µm and 8µm channels, which required cryogenic

cooling, were operational for the first part of the mission. However, the liquid helium

which was used as coolant has now run out. The only remaining working channels

on the detector are the 3.6µm and 4.5µm. The field of view of these detectors is

5.2′ × 5.2′, and the detectors are of size 256 × 256 pixels. The 3.6µm and 4.5µm are

Indium-Antimony (InSb) detectors and the 5.8µm and 8µm are Silicon-Arsenic (SiSb)

detectors. At 5.8µm and 8µm Spitzer data exhibits ramps at the beginning of the data

sets. The 5.8µm ramp is normally delt with by simply removing the first 30 minutes

of data and the 8µm ramp is accounted for by a polynomial time function (Anderson

et al. 2011b). This has been attributed to charge traps in the detectors (Agol et al.

2010).

2.3.2 Systematics of the IRAC detectors at 3.6µm and 4.5µm

The IRAC detectors suffer from intrapixel sensitivity variations (IPSVs, Charbonneau

et al. 2008; Knutson et al. 2008). This means that different parts of the same pixel can

be more or less sensitive than others. This results in the same amount of flux incident

on a pixel being measured differently by different parts of the pixel. This would not

be an issue if the PSF was stable on the detector. However, there is a battery heater

which is periodically turned off and on, which causes periodic fluctuations in the count

rate from the star. Initially this was done about every 60 minutes but in 2010 (Memo

2010) the heater cycling was halved so the period of the flux variations is now about 38

minutes. The frequency of the battery heater was doubled so that the amplitude of the

variations it caused were halved. The PSF movement within the pixel is ∼ 0.05− 0.1

pixels in both the x and y directions which results in periodic flux variations of about



66

Figure 2.2: A cross section of the Spitzer Space Telescope (Werner et al. 2004)

1% (Cowan et al. 2012). For longer observations (such as thermal phase curves) there

is also a long term trend, which is most severe in the y direction. This is typically

∼ 0.5 pixels on the time scale of ∼ 24 hours (Cowan et al. 2012). Figure 2.3 (Mahtani

et al. 2013) shows an example of a secondary eclipse observed using Spitzer IRAC at

3.6µm and 4.5µm. The saw-tooth shaped trend clearly seen in the 3.6µm data and to

a lesser extent in the 4.5µm data is the IPSVs. The final column is the lightcurve with

these trends removed. The secondary eclipse can be clearly seen in both channels.

2.3.3 Accounting for Spitzer Systematics

2.3.3.1 Polynomial Fitting

It is possible to explain the saw-tooth pattern of the raw light curve as the motion

of the PSF on the detectors. This means that we can model the change in flux as a
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Figure 2.3: Raw and detrended secondary eclipse lightcurve of WASP-26b reported by
Mahtani et al. (2013). The lower red points are the 3.6µm data and the upper green
points are the 4.5µm data. The blue and red lines are the fit to the trends in the data.
(Left): The raw light curves with the trend functions. (Middle) Binned light curves
with trend models. (Right) The binned light curve with trend function removed and
best fitting eclipse models (solid lines). The secondary eclipse can clearly be seen in
both channels.



68

polynomial in the position on the detector. It is sometimes necessary to also include

a linear function of time in the correction to the apparent flux, e.g., to account for

intrinsic variations in the brightness of the host star. The general functional form is

shown in equation 2.8.

∆f = a0 + ax∆x+ ay∆y + axy∆x∆y + axx∆x
2

+ayy∆y
2 + at∆t,

(2.8)

where ∆f = f − f̂ is the stellar flux relative to its weighted mean, ∆x = x − x̂

and ∆y = y − ŷ are the coordinates of the point spread function of the target centre

relative to their weighted means, ∆t is the time since the beginning of the observation

and a0, ax, ay, axx, ayy and at are coefficients which are free parameters in the MCMC

analysis. There are many methods of position measurement of the PSF that can be

used. Normally the difference between these methods is very minor, however, there

are certain cases where some methods break down. An example of this is when the

PSF comes close to or crosses over a pixel boundary. This dependence on method was

understood as part of the analysis of Mahtani et al. (2013) where we attempted to use

both radial and polynomial decorrelation.

2.3.3.2 BiLinearly Interpolated Subpixel Sensitivity (BLISS) Mapping

Another method that has been used to remove the IPSVs in Spitzer data at 3.6µm and

4.5µm is BiLinearly Interpolated Subpixel Sensitivity (BLISS) Mapping (Stevenson

et al. 2012). This method uses the residuals from the out-of-eclipse portion of the light

curve to determine the sensitivity of the detector. Using bilinear splines to interpolate

between the sampled regions on the detector, a map of the sensitivity of the detector

can be built up by laying down a grid of knots and interpolating the sensitivity relative

to the 4 nearest knots. The reason this is such a fast computation within an MCMC

is that the interpolation weights can be computed prior to the MCMC. This map can

be used in conjunction with a model for the measured flux to remove the IPSVs in

the data. It is very important to bin the data such that the small fluctuations in
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sensitivity (that are hard to pick up with polynomials) are detectable, for example the

possible small scale corrugation seen by Ballard et al. (2010) who found sinusoidal like

variations in sensitivity with a period of 0.05 pixels. However, this has not been seen

for any other data set so the result should be treated with caution. However, the bin

size must also large enough to sample the pixel space sufficiently. A disadvantage of

this method is that one is self-calibrating the data so it is imperative to carefully check

the results to make sure there are no correlations between the output results and the

input model.

2.4 Wavelets

Fitting data that contains noise (i.e. real observations) can be computationally inten-

sive if time-correlated noise is present in the data. A method that has been developed

by Carter & Winn (2009) fits data and noise simultaneously with wavelet basis func-

tions. These functions are very similar to the sine and cosine basis functions in Fourier

analysis that are defined in frequency space but wavelets are defined in time space. The

main motivation for using the wavelets is that it (nearly) diagonalises the covariance

matrix. This matrix is used to calculate goodness of fit of a model to the data. However

in general this matrix is non-diagonal, and the goodness of fit calculation involves an

inversion of this matrix which is computationally intensive. If this is a diagonal matrix,

or nearly so, the inversion that is required is not computationally intensive and fast

compared to a non-diagonal covariance matrix. One of the major assumptions of this

is that the noise has a power spectral density (PSD) given by

PSD =
A

fγ

where A is a constant, f is the frequency, and γ is an integer. As long as this holds,

a constraint is imposed on the noise such that the model can distinguish signal and

noise. This is a very fast method of analysis, [O(N)], and has been shown by Carter

& Winn (2009) to give more accurate results and realistic uncertainties for synthetic
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transit lightcurve parameters in the case of γ = 1. In this work I use this method to

determine if the secondary eclipse parameters’ error bars are more conservative.

A wavelet approach can be thought of a two step process, first one starts with a

set of basis functions that are obtained through translations and dilations of a so called

father wavelet. Second, a set of nested detail functions that come from translations

and dilations of a so called mother wavelet. This means that one starts with a floor

resolution the signal and each successive higher resolution, the translation or dilation

of the mother wavelet, contains all the information of the previous resolution and some

extra detail. One of the important products of an analysis using a wavelet basis is that

it diagonalises the covariance matrix and the value of these diagonal elements give an

estimate of the red noise that is present in the data set.
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3 Warm Spitzer Occultation Photometry
of WASP-26b at 3.6µm and 4.5µm

3.1 Introduction

The first detections of thermal emission from exoplanets were reported by Deming et al.

(2005) and Charbonneau et al. (2005). The teams observed the secondary eclipses of

HD209458 and TrES-1 using the Spitzer Space Telescope. Secondary eclipses of about

30 other exoplanets have now been observed (e.g. Machalek et al. 2008; Anderson et al.

2011b; Todorov et al. 2012; Burrows 2014). Through the photometry of this event,

observed using Spitzer and ground based telescopes, the spectral energy distribution

(SED) of the irradiated hemisphere (day-side) of the planet can be built up. From

the SED one can investigate the atmospheric properties of the day side of the planet.

Secondary eclipse observations made with Spitzer have shown that some of these exo-

planets have thermal inversions (Fortney et al. 2008; Knutson et al. 2009; Madhusudhan

& Seager 2010). Thermal inversions are thought to form when gases exist in the upper

atmosphere of these exoplanets that are efficient absorbers of optical and ultraviolet

light (Fortney et al. 2008). This absorption of radiation causes the temperature of

this region of the atmosphere to increase. Gases that have been hypothesised to cause

thermal inversions to form are titanium oxide and vanadium oxide (Spiegel, Silverio &

Burrows 2009) or sulphur compounds (Zahnle et al. 2009).

WASP-26b, discovered by Smalley et al. (2010) with SuperWASP (Pollacco et al.

2006), is a 1 Jupiter mass (1MJup) planet in a 2.8 day orbit around a G0 type star.

WASP-26 also has a common proper motion companion 15” away (Smalley et al. 2010).

Anderson et al. (2011a) conducted an investigation to measure the Rossiter-McLaughlin

(R-M) effect to determine the sky-projected spin-orbit angle of the system. However,

the noise in the data combined with the weak predicted signal (15 m s−1) meant it was

not possible to detect the R-M signal. Albrecht et al. (2012) constrained the spin-orbit

angle of the system to λ = −34+36
−26

◦. In this chapter I present new warm Spitzer
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and ground based photometry of WASP-26. This work was presented in Mahtani

et al. (2013), with section 3.3.1 mainly written by J. Southworth, section 3.4.1 mainly

written by D. R. Anderson and J. Harrington and section 3.5.2 was mainly written by

N. Madhusudhan .

3.2 Observations

I present Spitzer (Werner et al. 2004) InfraRed Array Camera (IRAC ) (Fazio et al.

2004) channel 1 (3.6µm) and channel 2 (4.5µm) secondary eclipse (occultation) data

taken on 2010 August 3 and 2010 September 7-8, respectively (PI: J H, Program ID

60003). The Spitzer data were acquired in full array mode (256 × 256 pixels). Also

presented are new full transit data taken in the g, r and i bands (taken simultaneously)

using the 2.2-m telescope at the Calar Alto Astronomical Observatory with the Bonn

University Simultaneous CAmera (BUSCA) on 2010 August 20. BUSCA is a 4 channel

CCD photometer with 4096 × 4096 pixels per CCD with a plate scale of 0.17 arc

seconds per pixel. The BUSCA transit data were obtained using defocused photometry

(Southworth et al. 2009c, 2012) and BUSCA was used with a 256 × 1400 pixel window

and 2×2 binning to reduce the read out time. Table 3.1 is a summary of the data that

I have used in this analysis.
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3.3 Data Reduction

3.3.1 Transit Data Reduction

Jeremy Tregloan-Reed and John Southworth used the IDL implementation of DAOPHOT

(Stetson 1987) to perform synthetic aperture photometry on the BUSCA images, as

in Southworth et al. (2009c). In all three bands one comparison star was used with a

target aperture radius of 24 pixels, a sky annulus of inner radius 70 pixels and an outer

radius 100 pixels. The wings of the PSF of the companion star do contaminate the

target aperture but the contribution to the observed flux is negligible. Iterative outlier

removal was used on the image values in the sky annulus to remove the effect of the

light from the wings of the companion’s PSF in the sky annulus. The light curves are

shown in Figure 3.1.
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Figure 3.1: BUSCA and FTS data with best fitting models (from the top to bottom),
g band data, r band data, i band data and the FTS (z filter) data.
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3.3.2 Spitzer Data Reduction

I reduced the IRAC data with the Image Reduction and Analysis Facility (IRAF)1

using the same method as Anderson et al. (2011b), described briefly here. Conversion

from MJy/sr to electrons was done using equation (3.1), where the gain, exposure time

and flux conversion factor were taken from the image headers.

Factor =
Gain× Exposure Time

Flux Conversion Factor
(3.1)

Aperture photometry was then conducted using the PHOT procedure in IRAF,

using 21 aperture radii in the range 1.5-6 pixels and with a sky annulus of inner radius

8 pixels and outer radius 16 pixels. It was found that the stellar companion to WASP-

26 and a bad column in channel 2 data were both inside the sky annulus. However,

an iterative 3-sigma clipping was conducted which excludes those pixels. The error

on the photometry was calculated from the photon statistics and the read out noise

of the IRAC detectors. The readout noise values were taken from the IDL program

SNIRAC warm.pro,2 the values for channel 1 and 2 are 9.87 and 9.4 electrons, respec-

tively. The position of the target was measured by fitting a 1-dimensional Gaussian to

the marginal distributions of flux on x and y image axes. For each data set the times

of mid-exposure were converted to BJDTDB (Eastman, Siverd & Gaudi 2010) and for

the occultation data the light travel time across the system (∼40s) was accounted for.

The light travel time across the system was calculated using the semi-major axis from

the output of our initial Markov Chain Monte Carlo (see below for details of this run)

and this time was subtracted from all the Spitzer times.

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.

2ssc.spitzer.caltech.edu/warmmission/propkit/som/snirac−warm.pro
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3.4 Analysis

3.4.1 Markov Chain Monte Carlo

The parameter space was explored using a Markov chain Monte Carlo (MCMC) algo-

rithm (Collier Cameron et al. 2007; Pollacco et al. 2008; Enoch et al. 2010). The input

parameters for the star that were used in the MCMC analysis are Teff = 5950±100 and

[Fe/H] =−0.02±0.09 (Anderson et al. 2011a) which are derived from spectral analysis.

Stellar density is directly derived from the transit light curve (Seager & Mallén-Ornelas

2003). The radial velocity constrains the e sinω and the timing of the secondary eclipse

constrains e cosω. These two parameters are used as proposal parameters to constrain

the eccentricity of the planet’s orbit. The latest values of Teff and [Fe/H] (which are

controlled by Gaussian priors) are input into the empirical mass calibration of Enoch

et al. (2010) to obtain an estimate of the stellar mass and radius, M? and R?. These

are then used to calculate the planet’s mass and radius. At each step in the MCMC

procedure, each proposal parameter is perturbed from its previous value by a small,

random amount. From the proposal parameters (Table 3.3), model light and RV curves

are generated and χ2 is calculated from their comparison with the data. A step is ac-

cepted if χ2 (the merit function) is lower than for the previous step, and a step with

higher χ2 is accepted with probability exp(−∆χ2). In this way, the parameter space

around the optimum solution is thoroughly explored. The value and uncertainty for

each parameter are taken as the median and central 68.3 per cent confidence interval

of the parameter’s marginalised posterior probability distribution, respectively (Ford

2006). The median closely approximates the χ2 minimum for symmetric posteriors

such as these, and is more robust to noise in the case of flat minima. Table 3.3 shows

the proposal parameters of the MCMC. I conducted an initial run which included all

the transit photometry, including WASP photometry, to get an estimate of the epoch

of mid-transit. This value along with its uncertainty were used as a Bayesian prior

in subsequent MCMC runs which used all the photometry, including Spitzer, but ex-

cluding the WASP photometry (to reduce computing time). The transit model used
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in the analysis was the small planet approximation of Mandel & Agol (2002) with 4-

parameter limb darkening coefficients taken from Claret (2004). The limb darkening

coefficients were determined using an initial interpolation in log g? and [Fe/H] with an

interpolation in Teff at each MCMC step. The limb darkening parameters used for

the best-fit lightcurves are given in Table 3.4. The secondary eclipses were analysed

by approximating the planet as a uniform disc. The projected spin-orbit angle was

fixed to the value λ = 0 in the fit since the HARPS data covering the transit are

negligibly affected by the R-M effect. The fit to the optical lightcurves (Figure 3.1)

shows that there is some correlated noise present in the g and i band lightcurves. The

small additional uncertainty due to this noise has been accounted for in the quoted

parameter standard errors rather than trying to find an arbitrary model that would

improve the fit. This was done by inflating (multiplying by a factor) the error bars on

the photometric data points in the MCMC code such that the reduced χ2 fit to the

data was 1. For the transit data inflation was conducted pre and post burn-in and only

post burn-in for the secondary eclipse. For the transit data if the pre-burn-in inflation

is adequate then the post-burn-in inflation should be very close to 1. The factors of

inflation are shown in Table 3.2.

Observation Inflation factor pre-burn-in Inflation factor post-burn-in
Pan-STARRS z band 1.099 1.035

IRAC 3.6µm - 1.006
IRAC 4.5µm - 1.044

BUSCA g 4.622 0.905
BUSCA r 5.587 1.024
BUSCA i 5.283 0.950

Table 3.2: Summary of data used in this analysis.

The only correlations in the proposal parameters were those between transit

depth, width and impact parameter often seen in ground based lightcurves (Figure 3.2).
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These correlations are caused by the blurring of the second and third contact points

due to limb darkening in the optical lightcurves. These correlations do not affect our

secondary eclipse depth measurements as can be seen from the bottom two plots in

Figure 3.2. Chain convergence was checked for both by visual inspection and using

the Gelman-Rubin (G-R) statistic (Gelman et al. 2003; Ford 2006). This was done by

first splitting the posterior distributions of the proposal parameters from our 200,000

iteration MCMC into 5 subsets, each containing 40,000 values. Then the G-R script

from Eastman, Gaudi & Agol (2013) was used to calculate the G-R statistic for each

proposal parameter posterior distribution. It was found that the G-R test showed the

chains had converged as all the values of the G-R statistic were less than 1.01.

Figure 3.2: Correlation plots for selected proposal parameters from our MCMC anal-
ysis. For clarity I have only plotted a random 2% of the chain values. (SE depths are
the secondary eclipse depths)
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Tc Time of mid transit
P Period of planet
∆F Depth of transit
T14 Transit duration
b Impact parameter
K1 Stellar radial reflex velocity
Teff Effective temperature of the star
[Fe
H

] Metallicity of the star√
e cosω√
e sinω e=eccentricity, ω = argument of periastron

∆F3.6 Depth of secondary eclipse at 3.6µm
∆F4.5 Depth of secondary eclipse at 4.5µm

Table 3.3: Proposal parameters of the model used in our MCMC analysis

Light Curve a1 a2 a3 a4

FTS 0.655 −0.352 0.645 −0.329
BUSCA (g band) 0.433 0.208 0.496 −0.300
BUSCA (r band) 0.555 0.028 0.445 −0.278
BUSCA (i band) 0.641 −0.267 0.640 −0.338

Table 3.4: Limb darkening coefficients

3.4.2 Trend Functions and Aperture size

Figure 3.3a shows an example of the 3.6µm light curve produced by the photometry

in IRAF. There is a steep increase in the measured flux during the first part of the

observation. This occurs because the telescope has slewed from its old position to its

new position and is adjusting to a new equilibrium. I exclude the data that precedes

HJD=2455447.37, to remove the major part of the initial ramp. No ramp was seen in

the channel 2 data so this clipping was not conducted. It can be seen that there is a clear

periodic trend in the data. This is due to the variation in the position of the target on
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the detector caused by flexure of the instrument as an electric heater is turned off and

on3. The IRAC detectors are known to exhibit inhomogeneous intrapixel sensitivity

(e.g. Knutson et al. 2008), which means that individual pixels have inhomogeneous

sensitivity gradient. This along with the PSF movement results in the measured flux

varying depending on the position of the PSF on the detector. Also, when small

apertures are used pixelation occurs due to the under-sampling of the PSF of the target

(Anderson et al. 2011b). These systematics are accounted for in the trend functions as

described in chapter 2.3.3.1. Figure 3.3b shows an example of the 4.5µm data which

is less affected by these systematics even though (as it can be seen from Figure 3.4)

the radial motion of the PSF is greater at 4.5µm than at 3.6µm. The explanation for

this is still unknown.

(a) (b)

Figure 3.3: (a) The raw light curve of the 3.6µm Spitzer data extracted using and
aperture of 2.4 pixels. (b) The raw light curve of the 4.5µm Spitzer data extracted
using an aperture of 2.4 pixels

For each set of trial lightcurve model parameters the residuals from the model

are calculated and then the coefficients of the detrending model are calculated using

3ssc.spitzer.caltech.edu/warmmission/news/21oct2010memo.pdf



81

0.00 0.05 0.10 0.15 0.20 0.25
Time from start of observation

-0.2
-0.1

0.0

0.1

0.2

0.3

x-
x c

 (3
.6

 µ
m

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time from start of observation

-0.2
-0.1

0.0

0.1

0.2

0.3

x-
x c

 (4
.5

 µ
m

)

0.00 0.05 0.10 0.15 0.20 0.25
Time from start of observation

-0.4

-0.2

0.0

0.2

0.4

y-
y c

 (3
.6

 µ
m

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time from start of observation

-0.4

-0.2

0.0

0.2

0.4

y-
y c

 (4
.5

 µ
m

)

0.00 0.05 0.10 0.15 0.20 0.25
Time from start of observation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

r-r
c (

3.
6 
µ

m
)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time from start of observation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

r-r
c (

4.
5 
µ

m
)

Figure 3.4: The top, middle and bottom plots of the each column show the distance
of the PSF from the nearest pixel centre in x, y and radially in each of the measured
wavelengths respectively.

singular value decomposition applied to the entire data set. Initially, a linear-in-time

and quadratic-in-space trend function was used on all 21 apertures to fit the secondary

eclipse data. The RMS of the residuals was used to determine the optimal aperture size.

Once this was determined, combinations of no, linear and quadratic trend functions

in time and space were used on the best aperture to determine the best fitting trend

function.

Initially this decorrelation was conducted using the positions measured by the

1-dimensional Gaussian fit to the target. The pixel sensitivity functions for IRAC vary

strongly as a function of the radial position of the PSF from the centre of the pixel
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(Deming et al. 2011), therefore, I also attempted to remove the trends in the data by

decorrelating against the radial position (radial distance from the centre of the nearest

pixel) instead of the x and y positions independently. The general trend function for

the radial decorrelation is,

∆f = b0 + b1r + b2r
2 + bt∆t, (3.2)

where b0, b1, b2, bt are free parameters in the MCMC analysis and r is the radial distance

from the centre of the nearest pixel centre. A third method that was attempted was

to use target positions in the trend functions measured by fitting a two dimensional

circular Gaussian of fixed full width half maximum (1.39 pixels in channel 1 and 1.41

pixels in channel 2) to a small region of the images containing the target.

To determine which trend function gave better results the Bayesian Information

Criterion (BIC) was used (Schwarz 1978),

BIC = χ2 + k ln(n) (3.3)

where k is the number of free parameters and n is the number of data points. This

method of determining how complicated a model to use only accepts a higher order

trend function if the fit improves χ2 by ln(n) or better for each additional free param-

eter.4

Using the RMS of the residuals it was found that the best aperture to use was

2.4 pixels in both channels. It was also found that the RMS of the residuals to the

channel 1 data were marginally lower when using the 2D circular Gaussian method

to measure the PSF compared to the 1D Gaussian position measurements (0.002995

compared to 0.003054). The channel 2 data gave consistent RMS no matter the position

measurement used. The system parameters were consistent no matter which position

measurement system were used. The results shown in Figure 3.5 and Table 3.5 are

those using the 2D circular Gaussian method, extracted from the 2.4 pixel aperture

and trend functions as described below. It was found that the radial decorrelation gave

4This is assuming a large number of data points and that the errors are part of a normal distribution
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Figure 3.5: (Left): The raw light curves with the trend functions, the upper points
are the channel 2 data and the lower points are the channel 1 data, the solid lines are
the trend functions for each data set. (Middle) Binned light curves with trend models.
(Right) The binned light curve with trend function removed and best fitting eclipse
models (solid lines). The secondary eclipse can clearly be seen in both channels.

a worse fit to our data compared to that of x and y decorrelation (χ2 worse by ∼ 3000

at 3.6µm and ∼ 400 at 4.5µm).

Using equation (3.3) it was found that the quadratic-in-space with no time trend

function gave the best fit to the data in channel 1 and that the linear-in-space with no

time trend function gave the best fit to the data in channel 2. It was found that the

addition of the quadratic term for the spatial decorrelation improved our BIC by ∼ 200

in channel 1. The improvement in BIC for the channel 2 data was less than ∼ 10 for

more complicated models than linear-in-space with no time trend. I also attempted

detrending the data based only on the out-of-eclipse points. This was attempted to

see if this affected the measured eclipse depths. It was found that the eclipse depths

were consistent with the previous decorrelation. This shows that the eclipse is a real

feature in the data and not just an artefact created by the removal of the IPSVs.
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Table 3.5: System parameters from our MCMC analysis

Parameter Symbol (unit) Value
Orbital period P (d) 2.756611 ±0.000008
Epoch of mid-transit (BJD, TDB) Tc 2455424.10899 ±0.00012
Transit duration (first to fourth contact) T14 (d) 0.097 ±0.002
Duration of transit ingress ≈ duration of transit egress T12 ≈ T34 (d) 0.024 ±0.002
Planet-to-star area ratio ∆F = R2

P/R2
∗ 0.0103 ±0.0003

Impact parameter b 0.82 ±0.02
Orbital inclination i (◦) 82.9 ±0.4
Semi-amplitude of the stellar reflex velocity K1 (km s−1) 0.138±0.002
Centre-of-mass velocity γ (km s−1) 8.4593 ±0.0001
Argument of periastron ω (◦) −90+200

−20

e cosω −0.0004 ±0.0007
e sinω −0.0011 +0.0023

−0.0110

Orbital eccentricity e 0.00283 +0.00965
−0.00221

Phase of mid-occultation φmid−occultation 0.4998 ±0.0005
Occultation duration T58 (d) 0.097 ±0.002
Duration of occultation ingress ≈ T56 ≈ T78 (d) 0.024±0.002
duration of occultation egress
Star mass M∗ (M�) 1.10±0.03
Star radius R∗ (R�) 1.29±0.05
Star surface gravity log g∗ (cgs) 4.26 ±0.03
Star density ρ∗ (ρ�) 0.52±0.06
Star effective temperature Teff (K) 6000±100
Star metallicity [Fe/H] −0.02±0.09
Planet mass MP (MJup) 1.03±0.02
Planet radius RP (RJup) 1.27 ±0.07
Planet surface gravity log gP (cgs) 3.16 ±0.04
Planet density ρP (ρJ) 0.50 ±0.08
Semi-major axis a (AU) 0.0398 ±0.0003
Occultation depth at 3.6µm ∆F3.6 0.00126± 0.00013
Occultation depth at 4.5µm ∆F4.5 0.00149± 0.00016
Planet equilibrium temperature (full redistribution)∗ TP,A=0,f=1 (K) 1623 ±43
Planet equilibrium temperature (day-side redistribution)∗ TP,A=0,f=2 (K) 1930± 51
Planet equilibrium temperature (instant reradiation)∗ TP,A=0,f= 8

3
(K) 2074± 55

∗ where A is the albedo, f=1 is defined as full redistribution,
f=2 is day-side redistribution,
and f=8

3
is instant reradiation as in Smith et al. (2011)
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3.5 Results and Discussion

3.5.1 Eclipse Depths and Brightness Temperatures

I find that the eclipse depths at 3.6µm and 4.5µm relative to an out-of-eclipse value

of 1 are 0.00126 ± 0.00013 and 0.00149 ± 0.00016, respectively. These eclipse depths

correspond to brightness temperatures of 1825 ± 80K and 1725 ± 89K. To find these

blackbody temperatures the expected flux ratios were calculated using Planck func-

tions at different temperatures for the planet and synthetic spectra from stellar models

(Philip, Upgren & Janes 1991) for the star. These flux ratios were then integrated over

the Spitzer band passes to calculate the expected measured flux ratio. The tempera-

tures above correspond to the best fitting Planck function temperature to the individual

eclipse depths. The errors were calculated using a simple Monte Carlo method.

The brightness temperatures suggest that, on average, the emission at mid-

infrared wavelengths from the irradiated hemisphere of WASP-26b is consistent with

the spectrum of an isothermal atmosphere, with the possibility of a weak thermal

inversion within the uncertainties on the brightness temperatures. The brightness

temperatures lie somewhere between the full and dayside-redistribution equilibrium

temperatures as shown in Table 3.5 so the amplitude of the thermal phase curve of the

planet will be non-zero. Full orbit observations of the system at the same wavelengths

as these observations can be used to test this prediction.

3.5.2 Atmospheric Analysis

Nikku Madhusudhan compared my measurements of the eclipse depths of WASP-26b

to hot Jupiter atmospheric models which use the spectral retrieval technique of Mad-

husudhan & Seager (2009); Madhusudhan & Seager (2010). The model computes

line-by-line radiative transfer in a plane-parallel atmosphere in local thermodynamic

equilibrium, and assumes hydrostatic equilibrium and global energy balance. The

input parameters of the model are the temperature-pressure- (T-P) profile of the at-
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mosphere and the chemical composition, i.e. the sources of molecular line opacity. The

model atmosphere includes the major sources of opacity expected in hot, hydrogen-

dominated atmospheres, namely, molecular absorption due to H2O, CO, CH4, and

CO2, and continuum opacity due to H2-H2 collision-induced absorption (CIA). The

molecular line-lists used are discussed in Madhusudhan & Seager (2009) and Smith

et al. (2012). Given a photometric or spectral dataset of thermal emission from the

planet, the space of atmospheric chemical composition and temperature structure was

explored to determine the regions in model space that explain, or are excluded by, the

data (e.g. Madhusudhan et al. 2011). In the present case the number of available data

points (N = 2) are far below the number of model parameters (N = 10), implying that

a unique model fit to the data is not feasible. Consequently, the chemical composition

of the models was nominally fixed to that obtained with solar elemental abundances in

thermochemical equilibrium (e.g. Burrows & Sharp 1999; Madhusudhan 2012). For a

given thermal profile the model then explored the space of thermal profiles, with and

without thermal inversions, that might explain the data.

Figure 3.6 shows the 3.6µm and 4.5µm data along with model spectra of atmo-

spheres with and without a thermal inversion, and a blackbody model. All three models

shown allow for very efficient day-night redistribution. It can be seen that both the

planet-star flux ratios can be explained by a planetary blackbody at around 1750 K.

Consequently, the data are consistent with an isothermal atmosphere. However, an

isothermal temperature profile may be unphysical in radiatively efficient atmospheres

at low optical depth (e.g. Hansen 2008). A temperature profile with a non-zero thermal

gradient, with or without a thermal inversion, may be more plausible. As shown in

Fig. 3.6, the two data points are fit almost equally well by models with and without a

thermal inversion, as shown by the red and green models, respectively. Further occul-

tation depths measured at different wavelengths are required to break the degeneracies

between the models and to determine the true nature of the atmosphere. It can be

seen in Fig. 3.6 that there are some differences between the models with and with-

out a thermal inversion at 1.25µm (J band), 1.65µm (H band) and 2.2µm (K band).

These wavelengths are accessible from the ground, so with measurements of the sec-
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ondary eclipse depth at these wavelengths it may be possible to break the degeneracies

between these models. Hubble Space Telescope WFC3 observations covering the wave-

length range 1−1.7µm can also be used to detect spectral features due to water either

in emission or absorption, and so distinguish between models with and without a ther-

mal inversion (Madhusudhan 2012; Swain et al. 2013). It should be emphasised here

that only presented here are two possible models that represent the average properties

of the irradiated hemisphere of WASP-26b. With additional data other parameters of

the models such as composition can be explored.

3.5.3 Activity-Inversion Relation

Knutson, Howard & Isaacson (2010) (hereafter K10) presented results which suggest

that planets without thermal inversions orbit active stars, and those with inversions

orbit inactive stars. This may be due to photodissociation of the opacity source in the

upper atmosphere of the planet by the UV flux from the active stars (K10). However,

the time between a measurement of the activity of a star being measured and eclipse

being observed can be on the timescale of months/years. It is known that solar-like

stars have activity cycles on time scales of approximately 10 years. I used the Duncan

et al. (1991) catalogue of SHK activity measurements taken at the Mount Wilson

Observatory to examine to what extent the activity of a star changes on short time

scales (order of months) and long time scales (order of years). The aim was to determine

if the variability in activity of the stars in the K10 sample was such that, in the time

between the occultation observation and the measurement of logR′HK , the activity

of the star can change enough to affect the interpretation of this activity-inversion

relation. Recently Montalto et al. (2012) showed that the activity of WASP-3 changed

from logR′HK = −4.95 (less active) to logR′HK = −4.8 (more active) between 2007 and

2010. It has been shown by Menou & Rauscher (2009) that the time scale for models of

hot Jupiter atmospheres to go from their initial conditions to a statistical steady state

was ∼ 20 days. This suggests the time scale of hot Jupiter atmosphere variability is

much shorter than the time scale of stellar activity variability. More detailed modelling
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Figure 3.6: Spectral energy distribution of WASP-26b relative to that of its host star.
The blue circles with error bars are our best-fitting occultation depths. The green line
is a model-atmosphere spectrum, based on a model which assumes solar abundances in
thermochemical equilibrium and lacks a temperature inversion, and the dark red line is
a model with a temperature inversion. The band-integrated model fluxes are indicated
with circles of the corresponding colours. The dashed black line shows a planetary
black body model with a temperature of 1750K. Inset: temperature-pressure profiles
for our models.

and additional observations are required to better understand whether variations in the

UV irradiation can produce observable changes in the eclipse depths for planets near

the boundary between atmospheres with and without strong thermal inversions.
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I converted the SHK measurements in Duncan et al. (1991) to logR′HK using

the method described by Noyes et al. (1984). A look-up table based on logR′HK and

B–V colour for the stars in the Duncan et al. (1991) catalogue was then constructed.

Using this table, the within-season variation of logR′HK of the stars was used as a

measure of the short term variability in logR′HK and the season-to-season variation in

logR′HK as a measure of the long term variation in logR′HK . This look up table was

then used to estimate the variation in logR′HK for the stars of K10 based on their B−V

colour. It was found that the short term variability was always ≤ 0.02 dex and the

long term variability was between 0.02 and 0.06 dex. This suggests that the variation

in logR′HK is not large enough on either short nor long term time scales to change the

interpretation of K10. However, this may blur the boundary between the two classes of

planets. The error bar shown in Figure 3.7 is the typical change in activity, assuming

the spectra are measured over several nights. It is possible for stars to vary by much

more than this amount over their rotation period (e.g. Dumusque et al. 2012). This

short time scale variation will move the star on the diagram but this may not reflect

changes in UV irradiation. The value of logR′HK = −4.98 for WASP-26 used in this

analysis is taken from Anderson et al. (2011a).

I compiled updated values of Rp/R? and the secondary eclipse depths for the stars

in the K10 sample. Figure 5 of K10 was then replotted, this is shown in Figure 3.7. I

include on this plot WASP-26b. As can be seen from Figure 3.7, it seems to lie very

close to the boundary between the two classes. Using the convention as in Anderson

et al. (2013) the abscissa value for WASP-26b is ζ = −0.020±−0.023%µm−1, where ζ is

the gradient of the measurements at 3.6µm and 4.5µm, i.e. ∆F3.6−∆F4.5/(−0.9µm),

minus the gradient of the blackbody that is the best–fit to the two measurements. The

theory behind this is that at 4.5µm there are opacity sources that are not present

at 3.6µm (CO and H2O) (Madhusudhan & Seager 2010). The 4.5µm data probes a

higher region of the atmosphere compared to the 3.6µm data. This suggest that if the

brightness temperature at 4.5µm is greater than that at 3.6µm then there is likely to

be a thermal inversion in the atmosphere.
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Figure 3.7: Activity-inversion plot for the stars in Knutson, Howard & Isaacson (2010).
Points on the left of the dotted line (triangles) are non-inverted planets around active
stars and those on the right of the dotted line (squares) are inverted planets around
inactive stars. The point on the left hand side of the plot shows the typical change
in logR′HK (season-to-season), assuming measurements over several nights. The blue
circle is WASP-26. The stars are listed in table 3.6.
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3.5.4 Eccentricity

In section 1.4 I discussed the reasons that eccentricity of hot Jupiter exoplanets needs

to measured. Briefly, secondary eclipse measurements make it possible to constrain

the eccentricity of the orbit from timing of the secondary eclipse relative to transit. I

find that the eccentricity of the orbit is small (e = 0.0028+0.0097
−0.0022), which is consistent

with a circular orbit at the 1σ level. I find a 3σ upper limit on the eccentricity of the

planet’s orbit of 0.0399 which is similar to Anderson et al. (2011a) 3σ upper limit of

0.048. The fact that there is negligible eccentricity implies that there is no significant

heating of the planet caused by tidal dissipation.

3.6 Conclusion

In this chapter I present new warm Spitzer photometry of WASP-26 at 3.6µm and

4.5µm along with new transit photometry taken in the g,r and i bands. I report the

first detection of the occultation of WASP-26b with eclipse depths at 3.6µm and 4.5µm

of 0.00126±0.00013 and 0.00149±0.00016 respectively which correspond to brightness

temperatures of 1825±80K and 1725±89K. My analysis shows that the atmosphere of

WASP-26b is consistent with an isothermal atmosphere with the possibility of a weak

thermal inversion (within the uncertainties on the brightness temperatures). If the

K10 activity-inversion relation holds for WASP-26b, then it would be expected to host

a thermal inversion. More secondary eclipse data at different wavelengths, particularly

near-IR secondary eclipse depths near the peak of the planet’s SED, will be able to

better constrain the true nature of the atmosphere of WASP-26b.
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4 Reanalysis of WASP-12: Full Orbit
Lightcurves at 3.6µm and 4.5µm

4.1 Introduction

Section 1.5.2.3 discusses the information that can be gained from thermal phase curves

of exoplanets. The systematic noise in Spitzer data is currently the limiting factor in

getting the most information out of the data. It is possible to account for some of these

systematics, e.g., IPSVs. However, there is systematic noise in IRAC photometry on

timescales of hours-days at the 0.01% level that has not been well characterised (Maxted

et al. 2013). Different groups analyse Spitzer data in very similar ways. The subtle

difference between analysis methods is the way the IPSVs are accounted for. The goal

of this analysis is to determine if different analysis methods can give consistent results.

If they cannot, then comparing conclusions from independent analyses is not feasible.

The method that will be used to conduct this analysis is to re-analyse the WASP-12b

full orbit light curves at 3.6µm and 4.5µm. The reduction will be conducted using the

method of Maxted et al. (2013) (as applied to WASP-18b) and the results compared

to that of the analysis of Cowan et al. (2012).

Cowan et al. (2012) presented full orbit light curves of WASP-12b, a highly

inflated hot Jupiter, at 3.6µm and 4.5µm. The planet is thought to be undergoing

Roche-Lobe overflow (Li et al. 2010). If this is occurring then the shape of the planet

will be more tear-drop shaped rather than spherical. This deformation of the planet is

predicted to be visible in the phase curve of the planet as an extra sinusoidal variation

in the light curve which would have a period of half the orbital period. This is known

as ellipsoidal variation and the semi-amplitude of this effect is predicted to be 2×10−4.

Cowan et al. (2012) found that there was no detectable ellipsoidal variation at 3.6µm

however the 4.5µm data showed ellipsoidal variations that were six times greater than

predicted for the planet. This provided another aim for the investigation, to determine

if the detected ellipsoidal variation at 4.5µm was indeed real or is caused by uncorrected
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systematic noise in the data.

Table 4.1: Basic Parameters of the WASP-12 system. The Spitzer wavelength de-
pendent data is taken from Cowan et al. (2012) with the equilibrium temperatures
taken from Cowan & Agol (2011) and the other parameters taken from Chan et al.
(2012). There are two measurements of the transit depth (one at each wavelength).
The reason that these measurements differ is because they probe different regions of
the atmosphere and this may be evidence of stratification of the atmosphere.

Parameter (unit) Value
(Rp/R?)

2 3.6µm 0.0123± 0.0003
(Rp/R?)

2 4.5µm 0.0111± 0.0003
Fp/F? 3.6µm 0.0038± 0.0004
Fp/F? 4.5µm 0.0039± 0.0003
(Rp/R?)

2 0.1119± 0.0020
Teff (K) 6300± 150
M? (M�) 1.36± 0.14
R? (R�) 1.595± 0.071
Mp (MJupiter) 1.403± 0.099
Rp (RJupiter) 1.732± 0.092
a/R? 3.105± 0.082
Tp substellar point (K) 3555± 132
Tp no-albedo, no-recirculation (K) 3213± 119
Tp no-albedo, full-recirculation (K) 2514± 92

4.2 Linear least squares fitting of the WASP-12

data set

4.2.1 Observations

The 3.6µm (channel 1) and 4.5µm (channel 2) Spitzer IRAC (Fazio et al. 2004) data

used in this analysis are those described by Cowan et al. (2012). The observations
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were conducted 2010 November 17-18 and 2010 December 11-12 for channel 1 and

2, respectively. The data were acquired in sub-array mode (32 × 32 pixels) with an

exposure time of 2 seconds (effective exposure time of 1.92 seconds). The images

are taken in blocks of 64 which are known as data cubes. The data in each channel

spans one full orbit of WASP-12b (from just prior secondary eclipse to just after the

following secondary eclipse). However, the 3.6µm data ends shortly before the egress

of the second occultation.

4.2.2 Data Reduction

To reduce the data I used the same method as Maxted et al. (2013), which I de-

scribe briefly here. First the Basic Calibrated Data (BCD) were converted from

MJy/Steradian to mJy. This conversion was conducted using the pixel size at the

centre of the subarray. These values were taken from the image headers. The values

were 1.225× 1.236 arcseconds2 for channel 1, 1.205× 1.228 arcseconds2 for channel 2.

To calculate the noise in each pixel, Poisson counting statistics in conjunction with the

gain and readout noise for the individual channels was used.

The data is delivered in data cubes. Each data cube contains 64 images. To

calculate the mid exposure time for each image, first the header keyword BMJD OBS

was used to assign a Barycentric UTC Modified Julian date (BMJD) to the start of the

exposure for the first image in each of the data cubes and then the time taken to acquire

all 64 images is calculated using the header keywords AINTBEG and ATIMEEND.

Then a BMJD is assigned to each of the images in the data cube assuming that the

images were uniformly spaced in time.

To remove outliers I carried out inspection on the images and found one bad

pixel in each channel. These were excluded from the analysis. I also found from this

inspection that a faint stellar source was observed to the north east of the target. I

excluded these pixels from the analysis using a 3×4 pixel mask. A time series for each

pixel in each data cube was then used to identify discrepant values. The reason for this

is to exclude outliers that may affect the photometry. From this, pixels that deviate
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by greater than 6σ are excluded.

To estimate the sky background all the pixels in each image are used except those

within 10 pixels of the target position to prevent the wings of the PSF of the target

biasing the result. A 4σ mean clipping is conducted to exclude outliers. A histogram

of pixel values is then constructed and fit with a Gaussian to give an estimate of the

standard deviation of the sky background (σBG). Approximately 700 points were used

to estimate the sky background.

Three methods of stellar centroiding were used in the analysis of these data, two

of which were the cntrd and gcntrd from the daophot package (Stetson 1987).

The third, gauss2d, first creates a 7 × 7 sub-image which is centred on the nominal

stellar position. Then a least squares fit of a bivariate Gaussian fit is conducted. It

was found that the mean full width at half maximum (FWHM) in x and y for channels

1 and 2 were x = 1.27, y = 1.15 pixels and x = 1.06, y = 1.25 pixels. From this and

for consistency the FWHM was fixed in both axes of the bivariate Gaussian in both

channels to FWHM=1.25. Aperture photometry was then conducted using the IDL

Astronomy Users library1 implementation of the daophot aper procedure (Stetson

1987). 13 uniformly spaced aperture sizes from 1.5 to 4.5 pixels were used for this

procedure.

4.2.3 Polynomial Detrending

The standard method to account for the IPSVs models the change in flux as a function

of polynomials of the position of the PSF. These polynomials are normally linear or

quadratic in both x and y. In this analysis the amplitude of the thermal phase variation

and the offset of the hot spot from phase of 0.5 are the parameters that are of interest.

For this reason the transit and eclipses are not included in the fit. Also the shape of

the transits and eclipses is not a linear function of the parameters of the system so

cannot be included in this linear least squares fit. The baseline of the observations and

1http://idlastro.gsfc.nasa.gov/
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the period of the phase variation are comparable, hence, any correlations between the

model of the IPSVs and the lightcurve must be understood so that they do not bias

the conclusions.

The model that will be used in this analysis is given by equation 4.1.

mi = c0,0 +
∑Ncos

j=1 aj cos(jφi) +
∑Nsin

k=1 bk sin(kφi)

+
∑Nx

ι=1 cι,0pι(x
′
i) +

∑Ny

κ=1 c0,κpκ(y
′
i)

+
∑Nxy

λ=1

∑Nxy

µ=1 cλ,µpλ(x
′
i)pµ(y′i),

(4.1)

where mi is the magnitude of WASP-12 at time ti; φi = 2π(ti − T0)/P is the orbital

phase relative to the time of mid-transit, T0; pn is a Legendre polynomial of order n;

x′i = (xi− x̄)/(xmax−xmin) and similarly for y′i (xmin is the minimum value of xi, etc.).

The reason that Legendre polynomials are used rather than standard polynomials

is because they are orthogonal between -1 and 1 hence, any correlations that occur

between the model parameters will be significantly less than they would be if standard

polynomials were used. The ephemeris of Cowan et al. (2012) is used throughout unless

otherwise stated, where the authors only fit the data that is within 0.15 days of the

transit, T0 = BMJD 54508.4767 for the time of mid-transit and P = 1.0914210 days

for the orbital period.

The regions of the detector where the star is situated out-of-transit/eclipse are

used to decorrelate the whole data set. It is therefore very important to see if the

decorrelation that is being conducted on the data in-transit/eclipse is being interpolated

or extrapolated. If the IPSV correction is being interpolated then the decorrelation is

reliable, assuming that in the region that is not mapped by the decorrelation there is

no sudden violent changes in sensitivity. If extrapolation is being conducted then the

results need to be treated with caution because the true sensitivity of the unmapped

region is unknown. For the channel 1 data, for the decorrelation in x I found that the

transit data is being interpolated, the first secondary eclipse is decorrelated using out-

of-transit/eclipse data that samples the detector region but not very densely, and the

second occultation is mostly in a mapped region of the detector but some extrapolation

is also conducted. It is widely seen that the greatest effect of the IPSVs in Spitzer data
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is due to the motion of the PSF in the y direction on the detector. I found that in the

y direction the transit and first secondary eclipse are in a mapped region of parameter

space but about ∼ 16% of the second occultation data is being extrapolated. This

means that the region of the detector where these data lie are not mapped by the out-

of-transit/eclipse data. To see what effect this had on the data I created a subset of the

data in eclipse (excluding the ingress and egress of the eclipse), by selecting a region that

is within 0.04 phase units2 of 0.5 phase and measured the mean and standard deviation

of the brightness of the system at these times. The mean brightness of the system for

the first and second occultation are −3.1085±0.0070 mags and −3.1074±0.0067 mags.

These values are consistent so even though some extrapolation is conducted to remove

the IPSVs it has not has a major impact on the results.

For the channel 2 data the decorrelation in x, the transit and first occultation,

the majority of the points are in regions of the detector which are mapped by the

out-of-transit/eclipse data. There are some data of the second occultation which are

in under sampled regions of the detector, but interpolation is conducted here because

these regions lie between sampled areas. For the decorrelation in y the majority of the

points in-transit/eclipse occupy regions of the detector that are sampled by the out-

of-transit/eclipse data. However, some of the second occultation that are in a region

on the detector that the out-of-transit/eclipse data under-samples. An example of a

graph used to conduct this visual inspection is shown in Figure 4.1.

2the full width of the transit/eclipse is 0.06 phase units
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Figure 4.1: Example of a graph used to conduct this visual inspection, in this case it
shows the value of the detrend against the y position . The blue points are the out-
of-transit/eclipse data that is used for the decorrelation, the red points are the data
in transit, the green points are the data from the first occultation and the grey points
are those from the second occultation

4.2.4 Results and Discussion

I determined the optimal aperture to use by sorting all decorrelations by the RMS of

the residuals and selecting the aperture with the lowest RMS. It was found that for

channel 1 the best aperture to use was 2.0 pixels and for channel 2, 2.25 pixels. These

were chosen because these extraction apertures gave the lowest RMS, 0.00668 for chan-

nel 1 and 0.00859 for channel 2. These values are comparable with the values of Cowan
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et al. (2012). Then the Bayesian information criterion (BIC, equation 2.7) was used

to find the smallest number of free parameters needed to fit the data without fitting

the noise. This is done in equation 2.7 by penalising (increasing) χ2. A more com-

plicated detrending model (i.e one with higher order polynomials and hence more free

parameters) is selected only if it decreases the χ2 by ≥ Npar loge(N) (Schwarz 1978). It

was found that the optimum number of free parameters were (Ncos, Nsin, Nx, Ny, Nxy) =

(1, 2, 4, 8, 4) and (Ncos, Nsin, Nx, Ny, Nxy) = (2, 2, 4, 8, 4) for channel 1 and 2 respectively.

These results are seen in figure 4.2.
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Figure 4.2: The flux of WASP-12 measured in IRAC channel 1 (left panel) and
channel 2 (right panel) in an aperture of radii 2 and 2.25 pixels, respectively. Af-
ter correction for intrapixel sensitivity variations (IPSVs) for the parameter sets
(Ncos, Nsin, Nx, Ny, Nxy) = (1, 2, 4, 8, 4) with positions measured using gcntrd method
and (Ncos, Nsin, Nx, Ny, Nxy) = (2, 2, 4, 8, 4) with positions measured with the gauss2d
method. Data are plotted averaged in 200 s bins for clarity and the best-fit sinusoidal
model is also shown. The mean value in secondary eclipse is indicated with a dotted
line. Note that data in eclipse (small points) are not included in the fit. The IPSVs
model is shown as a function of time in the middle panels and as a function of position
as a grey-scale plot in the lower panels. The grey-scale is linear between ±3.1 per cent
for channel 1 and 0.2 per cent for channel 2 with positive values being white.
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There are several features of both lightcurves that stand out in figure 4.2. In

channel 1, the first feature that is apparent is the slope in the first secondary eclipse.

The second feature is that the transit occurs after the minimum in the phase variation

and also the transit is asymmetric (the ingress is lower than the egress). The third

feature in the channel 1 light curve is that there is a slope in the transit as there is

with the first secondary eclipse.

In channel 2 the first feature that is very obvious is the double maxima near

quadrature. This feature could be the reason that Cowan et al. (2012) find a very large

ellipsoidal variation at this wavelength. The second feature is the large gradient in

flux from the flux maximum pre-transit to the ingress of transit. The accompanying

feature that makes this even more interesting is that the gradient from the second

maximum to the second eclipse is significantly smaller. A similar feature was seen by

Swain et al. (2013), however, the authors thought of it as just a systematic error in

the data and fitted it out. If it is a real feature, i.e., not instrumental systematic in

nature, it may be astrophysical because two different telescopes observe, from different

locations, a similar phenomenon at very different wavelengths. Another unusual feature

of the data is the slight decrease in flux post egress of the first secondary eclipse. This

could have astrophysical interpretations, e.g., a stream of material flowing from the

planet to the host star if the planet is truly undergoing mass loss, but could also be

noise/instrumental systematics.

The question that needs to be answered here is, are these features we see in the

lightcurves real phenomena of the system or a result of systematic instrument errors?

The first way to look at these is to ask if they are repeated in the data set. In channel 1

the slope in the first secondary eclipse is not repeated in the second occultation, however

this could be because the data set ends prior to egress. There is only one transit in the

data set it is not possible to test if the slope in the transit, the offset of the transit from

the minimum in the phase variation, and the asymmetry of the transit are repeatable.

In channel 2, the maximum is repeated on both sides of the orbit but the system needs

to be re-observed to see if this feature is repeatable. It is not possible to determine if

the dip in flux post egress of the first secondary eclipse is repeatable because there are
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not enough data points post egress of the second occultation. A similar issue is the

case to determine repeatability of the slopes into transit and secondary eclipse.

Another way to look at this is to see if the level at which these effects have been

seen in other data sets. The level at which these effects occur is 0.01%. This is the level

of unknown systematics that were seen in the WASP-18 lightcurve of Maxted et al.

(2013).

A third way is to see how the model parameters vary with aperture. An advantage

of the analysis method presented here is that the full covariance matrix is calculated

so if there are any variations in the model parameters it is possible to determine if

these are caused by correlations in the model. Figure 4.3 shows the dependency of the

model parameters on aperture for the optimal decorrelation and figures 4.4, 4.5 show

the correlations of the model parameters in channel 1 and 2 respectively.
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Figure 4.3: The dependency of model parameters on aperture for the optimal decor-
relation for channel 1 (left) and channel 2 (right). The solid line in the upper panels
shows the semi-amplitude of the phase variation. The solid line in the lower panel is
the phase offset from phase 0.5 for time of maximum brightness for the thermal phase
effect.
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Figure 4.4: Correlations of model parameters for channel 1. The cross terms have been
excluded from the plot as they have negligible correlation to the model parameters.



106

Figure 4.5: Correlations of model parameters for channel 2. The cross terms have been
excluded from the plot as they have negligible correlation to the model parameters.
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It can be clearly seen from Figure 4.3 that there are some trends in the model

parameters. The cause of these are believed to be due to the strong correlations with

the model parameters with the higher order y detrending polynomials (Figures 4.4,

4.5).
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Figure 4.6: The flux of WASP-12 measured in IRAC channel 1 (left panel) and
channel 2 (right panel) in an aperture of radii 2.5 and 2.75 pixels, respectively,
after correction for intrapixel sensitivity variations (IPSVs) for the parameter sets
(Ncos, Nsin, Nx, Ny, Nxy) = (1, 2, 4, 8, 4) with positions measured using gcntrd method
and (Ncos, Nsin, Nx, Ny, Nxy) = (2, 2, 4, 8, 4) with positions measured with the gauss2d
method. Data are plotted averaged in 200 s bins for clarity and the best-fit sinusoidal
model is also shown. The mean value in secondary eclipse is indicated with a dotted
line. Note that data in eclipse (small points) are not included in the fit. The IPSVs
model is shown as a function of time in the middle panels and as a function of position
as a grey-scale plot in the lower panels. The grey-scale is linear between ±3.0 per cent
for channel 1 and 0.4 per cent for channel 2 with positive values being white.
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Figure 4.6 shows the lightcurve for slightly larger apertures (2.5 and 2.75 pixels for

channel 1 and 2 respectively) but for the optimal decorrelation parameters. Although

visually the differences are very subtle the results that come from these apertures are

very different from the optimal apertures. The values of the parameters of interest

are shown in table 4.2. The reason I chose to use these larger apertures is because

they show clearly the large difference between the optimal aperture and non-optimal

aperture. The cause of this significant difference is the large correlations between the

model parameters and the higher order y Legendre polynomials coefficients.

Parameter 3.6µm 4.5µm
2 pixels 2.5 pixels 2.25 pixels 2.75 pixels

A[%] 0.144± 0.014 0.098± 0.018 0.247± 0.014 0.27± 0.01
φmax (◦) −25± 23 8± 18 59± 56 −74± 25

Table 4.2: Comparison of parameters for the optimal and non optimal apertures in
channel 1 and channel 2. The optimal aperture for channel 1 is 2 pixels and for channel
2 is 2.25 pixels. The large difference in the parameters is attributed to the strong
correlations with the model parameters and the higher order y Legendre polynomials
terms.

Even though there are subtle differences between figures 4.2 and 4.6 these make

a significant difference to the parameters of interest, in this case the phase offset of

maximum brightness and the amplitude of the phase variation. The reason for this is

that the light curve in the region of the secondary eclipse is very flat so small differences

in the model parameters can propagate through to large variations in the parameters of

interest. The amplitudes and phases given in Table 4.2 were calculated by evaluating

equation 4.1 over a regular grid of 65536 phase points from 0 to 1, and repeating the

calculation for 1000 sets of coefficients taken from the MCMC chain. The values and

errors in Table 4.2 are the means and standard deviations of the amplitudes and phase

of maximum light calculated from these 1000 trials.
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4.2.5 Comparison to Cowan et al. (2012)

Table 4.3 compares the results from this work and those of Cowan et al. (2012). These

results show that the result of Cowan et al. (2012) are not repeatable. This is because

there is not enough data to determine the source of the systematic errors present in

the data set. Multiple observations can be combined to determine the origins of these

systematic errors. If they are intrinsic to the system then they will repeat and be seen

in future observations and if they are noise then they will not repeat. Overall, the main

discrepancy between the two analyses is the uncertainties on the parameter values. My

conclusion from this work is that the results of Cowan et al. (2012) may be consistent

with the data, but, just that the uncertainties are underestimated. This means that

there are additional fits to those of Cowan et al. (2012)that are a good fit to the data.

Parameter 3.6µm 4.5µm
This work Cowan et al. (2012) This work Cowan et al. (2012)

A[%] 0.144± 0.014 0.19± 0.03 0.247± 0.014 0.20± 0.02
φmax (◦) −25± 23 −53± 7 59± 56 −74± 25

Table 4.3: Comparison of parameter of interest in this investigation to that of Cowan
et al. (2012). A is the amplitude of the phase variation expressed as a percentage and
φmax is the offset, in degrees, of the hotspot on the planet.

4.3 Conclusions

This analysis has shown that the method of Maxted et al. (2013) is a good method

because it, in an unbiased way, shows the features (noise or astrophysical in nature)

that are present in the data. The method uses a simple mathematical model and a

linear least squares fitting routine to fit the lightcurve. The advantages of this method

are that it is very fast, there is no imposed prior which could bias the interpretations

of the results and the full covariance matrix is calculated. The covariance matrix is

very useful as it shows any degeneracies in the model. We find that for this data set,
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we are unable to reproduce the results of Cowan et al. (2012) because there are some

severe correlations between the model parameters and the high order coefficients of

the Legendre polynomials used to model the IPSVs. The system is currently being

re-observed using the new “peak-up” mode. This mode will reacquire the target every

10 hours which will reduce the issue of the large y drift. These new observations will

also show if the features seen in these lightcurves are repeatable.
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5 Semi-Synthetic Secondary Eclipse
Lightcurves of WASP-35b

5.1 Introduction

As was seen in the previous chapter, the systematic errors (both of known and un-

known origin) in Spitzer data of hot Jupiters are the limiting factor in extracting the

most information out of the data. The goal of this chapter is to understand to what

extent observations of secondary eclipses are affected by the Spitzer systematic errors.

More specifically the effect of these systematics on the measured time of mid-eclipse,

the eclipse depth and the effect on their uncertainties. It is very important to calculate

reliable uncertainties on these measurements, as underestimating the uncertainties will

overestimate the significance of the results and overestimating the uncertainties leads

to real features in the data being missed. Observing the secondary eclipse at different

wavelengths probes different regions of the atmosphere of the exoplanet. The eclipse

depth at a particular wavelength gives information about the temperature of the atmo-

sphere at the depth probed by that wavelength. The time of mid-eclipse constrains the

eccentricity of the planet and gives information of an offset from the substellar point

of the hotspot on the planet. Any systematic error in either of these parameters could

affect the interpretation of the derived quantities. I conduct my analysis by injecting

eclipses into real Spitzer data and using various methods to recover the eclipse depth

and the time of mid-eclipse. Ideally, a Spitzer observation of a non-planet hosting

star on the time-scale of a secondary eclipse observation would be required. However,

Spitzer exoplanet observations with another star in the same field as the target are

very rare. Initially, I was going to use the portions of data between the transit and

eclipse of the WASP-12b data set. However, there may be underlying signal, e.g., a

tidal stream of material being stripped from the planet which, in conjunction with the

systematic errors are causing the issues seen in the previous chapter. Instead, the full

orbit observations of HAT-P-2b (Lewis et al. 2013) at 3.6µm and 4.5µm were chosen.
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The analysis of Lewis et al. (2013) also contain partial orbit observations at 5.8µm

and 8µm, but I do not use these data in my analysis. The planet is on a very eccentric

orbit (e = 0.5) with a 5.6 day period. I injected an eclipse into the data between the

first secondary eclipse and the transit (∼ 50 hours). This portion of data should be

almost flat because the planet will contribute very little to the system flux during this

time. The results of this analysis will be used in the next chapter in which I present

the first analysis of the secondary eclipse of WASP-35b.

5.1.1 Noise

The simplest noise that is present in astrophysical data is white noise. It has some very

useful properties, firstly that the data points are independent i.e. they are uncorrelated.

Secondly the data are Gaussian distributed which means there are many well known

mathematical expressions that can be used to calculate the uncertainties on model

parameters. Thirdly, the RMS of the data is constant across a singe data set and

repeat data sets, this is a very useful property for exoplanet transits and secondary

eclipse because it means that we are able to use the out-of-transit data to look for

features in transit. If there is correlated noise, e.g., Pont, Zucker & Queloz (2006), it

may be such that the data points are correlated which means that it can be hard to

distinguish real signal from correlated noise in the data. If the data are not Gaussian

distributed then the relations for confidence intervals cannot be used. Finally if the

RMS is not constant through individual and repeat data sets then comparing signal

in-and-out of eclipse, for example, may not be justifiable.

5.2 Method

This analysis is being used as preliminary test of the signal injection method which is

to be used on the WASP-35 secondary eclipse data. First a prediction of the eclipse

depth of WASP-35b was required. The Transiting ExoPlanet CATalogue (TEPCAT)
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of Southworth (2011a) was used to find a similar planetary system to WASP-35, with

a measured eclipse depth using Spitzer. The system that was found to be most similar

is HD209458. The eclipse depth of HD209458 at 3.6µm and 4.5µm are shown in

Table 5.1 (Knutson et al. 2008).

Wavelength Eclipse Depth
3.6µm 0.00094± 0.00009
4.5µm 0.00213± 0.00015

Table 5.1: Eclipse depths of HD209458

The data in Table 5.1 was used together with the WASP-35 system parameters,

taken from Enoch et al. (2011), to simulate the eclipse of WASP-35 at both 3.6µm and

4.5µm using the equations of Mandel & Agol (2002) to calculate the loss of flux due

to the eclipse with zero limb darkening.

Two methods of recovery were used in this analysis, the standard polynomial

fitting as used in Mahtani et al. (2013) and the new implementation of wavelet fitting

as described in Chapter 2.4. It has been suggested that the wavelet fitting method gives

more reliable results in the case that the data contains 1
f

(red) noise (Carter & Winn

2009). The lightcurve model used in this analysis is that of Mandel & Agol (2002) with

zero limb darkening. The free system parameters are parametrised such that they only

range from 0 to 1 so that the values stay within a physical range (equations 5.1, 5.2,

5.3, 5.4).

pr? = 0.5 ln

(
r?

1− r?

)
, r? =

R?

a
(5.1)

pk = 0.5 ln

(
k

1− k

)
, k =

Rplanet

R?

(5.2)

pb = 0.5 ln
b

1− b
, b = impact parameter (5.3)

depth = fractional depth of eclipse (5.4)
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Initially a simplex algorithm (Press et al. 1992) is used to optimise these input

parameters with detrending done as a linear least squares fitting to residuals for each

trial set of parameters. These best fit parameters are used as the starting point for a

second simplex algorithm which conducts a simultaneous optimisation of the lightcurve

and detrending parameters. For the wavelet fitting, the residuals from the fit to the

lightcurve and detrending models are fit with wavelets to estimate the amount of red

(σr) and white (σw) noise present in the data. 10,000 lightcurve simulations were

conducted for each set of polynomial detrending parameters (Table 5.2).

Run Order of X Order of Y Order of Time
polynomial polynomial polynomial

1 1 1 0
2 1 1 1
3 1 1 2
4 1 2 0
5 1 2 1
6 1 2 2
7 2 1 0
8 2 1 1
9 2 1 2
10 2 2 0
11 2 2 1
12 2 2 2

Table 5.2: Order of polynomials used for decorrelation

For each simulated lightcurve the parameters that are calculated are :

1. The difference between the input depth and that found by both the polynomial

and wavelet fitting methods.

2. The difference between the input time-of-mid-eclipse and that found by both

polynomial and wavelet methods.
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3. The RMS of the residuals from both the polynomial and wavelet methods.

4. The amount of red (σr) and white (σw) noise (wavelet fitting only).

5. The BIC for each fit for both the polynomial and wavelet methods.

Each synthetic eclipse spans a similar length of time to a standard Spitzer secondary

eclipse observation (∼ 7 hours). The length of the HAT-P-2 data set that is used

for the injection is long enough (∼ 50 hours) such that many independent data sets

can be created. For each set of polynomial detrending parameters a distribution of

the calculated parameters listed above is produced. For each parameter I use the

mean and standard deviation for parameter and uncertainty estimation respectively.

Initially I used segments of binned data 2048 data points1, in length. This however

caused variable data set lengths in time due to empty bins. So instead I use 4096

data points and interpolated if any bins were empty. This provides uniform temporal

sampling, which is required for the application of wavelet fitting. Figure 5.1 shows an

example of a semi-synthetic light curve generated and the wavelet fit to the data.

1the wavelet fitting requires 2n data points, when n is an integer
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Figure 5.1: Example of a channel 1 semi-synthetic lightcurve produced and fit by this
method. The white points are the data and the blue line is the wavelet fit to the data.
The upper panel is the raw lightcurve and the lower panel is the detrended light curve.

The mid point of the eclipse in each semi-synthetic lightcurve is varied randomly

by 0.005 days around the mid point of the data train. 10 randomly selected semi-

synthetic lightcurves were then analysed with the MCMC (using the same algorithm

as described in chapter 3.4.1) and the results from this were compared to the poly-

nomial and wavelet fitting. For the polynomial fitting I used the polynomials shown

in Table 5.2 to account for the IPSVs and recover of the eclipse parameters using the

methods of Mandel & Agol (2002). Higher order polynomials have been used previ-

ously for longer base line observations, e.g., thermal phase curves, however for single

eclipse observations the highest order normally used is a quadratic. The reason for this

is that using a time trend can fit and remove some of the true eclipse signal
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To make sure that the parameters that these fitting methods produced were

accurate I tested their reliability by comparing the results from MCMC fit of the 10

synthetic lightcurves to that of the polynomial/wavelet fitting. I did this by taking

the difference between the polynomial/wavelet fit results and those of the MCMC.

The mean and the standard deviation of these difference for the depth and time of

mid-eclipse is shown in Table 5.3. It can be seen that the differences between the

polynomial/wavelets and MCMC results are consistent with zero for the channel 1

data but only the times of mid-eclipse for the channel 2 data are not consistent. The

slight discrepancy for the channel 2 depths are negligible relative to the error bar on

this parameter.

3.6µm 4.5µm
Depth (ppm) Tmid(s) Depth(ppm) Tmid(s)
Poly Wave Poly Wave Poly Wave Poly Wave

Mean -7.72 -6.58 -0.54 -31.83 -31.48 23.31 5.20 10.92
SD 18.52 20.15 16.28 32.07 12.05 13.85 16.57 19.91

Table 5.3: Comparison between the wavelet and polynomial fitting

5.3 Channel 1 results

Figure 5.2 shows the results of the channel 1 simulations. These results are showing

how well, given 10,000 realisations of the secondary eclipse lightcurve, the methods

used here recover the time-of-mid-eclipse and the depth of the eclipse. The first point

to make is that both the wavelet fits and the polynomial fits give consistent results for

the time-of-mid-eclipse and the depth. What this means is that nothing is gained from

using the more complicated wavelet fitting code. This is good because the polynomial

fitting method is the standard fitting method for removing the IPSVs in Spitzer data.

It is also very well tested and understood. Also the wavelet fitting method is more

difficult to code.



119

F
ig

u
re

5.
2:

T
h
e

m
ea

n
s

an
d

st
an

d
ar

d
d
ev

ia
ti

on
s

of
th

e
d
ep

th
,

ti
m

e
of

m
id

-e
cl

ip
se

,
R

M
S

an
d

th
e

B
IC

fo
r

th
e

in
it

ia
l

ch
an

n
el

1
re

su
lt

s.
T

h
e

d
ia

m
on

d
s

ar
e

th
e

p
ol

y
n
om

ia
l

fi
tt

in
g

re
su

lt
s

an
d

th
e

st
ar

s
ar

e
th

e
w

av
el

et
fi
tt

in
g

re
su

lt
s.

T
h
e

p
ol

y
n
om

ia
l

an
d

w
av

el
et

fi
ts

h
av

e
b

ee
n

off
se

t
b
y

0.
2

fo
r

cl
ar

it
y

on
ly

.
T

h
e

ru
n

n
u
m

b
er

s
co

rr
es

p
on

d
to

th
os

e
in

T
ab

le
5.

2.
T

h
e

so
li
d

b
la

ck
li
n
es

in
th

e
fi
rs

t
tw

o
p
lo

ts
ar

e
at

0
to

sh
ow

th
os

e
d
ec

or
re

la
ti

on
m

et
h
o
d
s

th
at

ar
e

b
ia

se
d
.



120

From the top panel of Figure 5.2 it can be seen that when a linear y and no time

or linear time decorrelation is used there is a (positive) bias in the recovered depths.

This means is that the code is finding the depth of the eclipse to be larger than it should

be. This is acceptable because the standard polynomial used for channel 1 occultation

observations is quadratic y and not linear y. This is because it almost always reduces

the BIC. This is also seen here in the fourth plot down in figure 5.2.

It may be possible, however, given the scatter (error bars) that one may find a

lower BIC value but have an eclipse depth that is 1 or more sigma away from its true

value. From the results of run 1 (linear x, linear y and no time trends) I selected the

points (for both the polynomials and wavelet methods) where the BIC was less than

(or equal to) the mean BIC and the difference in depth (from the input depth) was

greater than (or equal to) one standard deviation of the depth distribution. I found

that for the polynomial that this occurred 29% of the time. This is about right because

1σ incorporates 68.3% of the data, which means that 31.7% of the time the difference

in depth should be out by 1σ or more. This result shows that the 1σ confidence interval

for the depth is slightly overestimated but about correct. The same was done for the

wavelet fitting method and I found that 51% of the time one can have a lower BIC

(compared to the mean) but have a depth that is off by 1σ or more. This shows that the

one sigma confidence interval for the depth is significantly underestimated and further

evidence to suggest that wavelet fitting does not improve on polynomial decorrelation

when fitting channel 1 Spitzer data. It should be noted here that the BIC quoted

here for the wavelet fitting is more of a pseudo-BIC because wavelet fitting does not

give a χ2 but instead gives a log(likelihood) which is then converted to a pseudo-χ2 to

calculate the pseudo-BIC. This could be part of the reason that the wavelet BICs are

lower than the polynomial BICs for the linear y decorrelation but consistent with the

polynomials when a quadratic time trend is used. Also, the large amount of red noise

fit with the linear y decorrelation is due the real quadratic y trend being fit as red

noise. When a quadratic y trend is fit, it can be that the amount of red noise decreases

to what is most likely the true amount of red noise in the data.

It can also be seen from the top plot of figure 5.2 that fitting the data with linear
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y and quadratic time does remove the bias in the results but in doing so it does increase

the scatter (larger error bars). The reason for this is that the quadratic time trend

is trying to fit the quadratic y trend. The error bars are only slightly larger when

quadratic time trend is added over linear time trend when fitting with a quadratic y

trend as can be seen by comparing runs 5 and 6 ( also 11 and 12). So not only is

linear y a bad decorrelation choice but quadratic time in conjunction does not improve

results. Looking at the results which have quadratic y fitted (runs 4,5,6 and 10,11,12)

it can be seen that there is no bias in the eclipse depth. This is very reassuring because

the standard decorrelation for channel 1 Spitzer data uses quadratic y. Also, smaller

error bars on depth for these runs is further justification for quadratic y. Smaller error

bars means that the code more often gives results close to the true value of the eclipse

depth. For the time of mid-eclipse the runs that use quadratic y in the decorrelation

shows very little bias, and in fact all methods of decorrelation have very little bias but

those with linear y do have larger error bars (larger scatter). This is again further

justification for the use of the quadratic y term in the decorrelation.

The RMS is normally used to determine the optimal aperture; this is done by

fitting a fixed polynomial decorrelation to all apertures used for the photometry (con-

ducted in a similar manner to Mahtani et al. 2013, see chapter 3) and then choosing the

aperture with the lowest RMS. From the RMS plot it can be seen that very consistent

values are found for runs using quadratic y decorrelation. Hence the polynomial used

for this procedure should be a quadratic y. The x and time polynomial can be seen to

make no significant difference to the quality of the fits (i.e., the RMS) so if possible the

simplest decorrelation should be used. In the MCMC that my collaborators and I use,

the same x and y decorrelation must be used. The conclusion for this is that a good

decorrelation for this procedure is quadratic polynomials for the spacial component

and none or linear polynomials for the temporal component. This is the method I used

for my analysis of WASP-26b (Mahtani et al. 2013) (see chapter 3).
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5.4 Channel 2 results

Figure 5.3 shows the results of the channel 2 signal injection. The most important

result from this is that the depths and times of mid-eclipse are consistent regardless of

the polynomials used for the decorrelation. This is also seen from the fact that the BICs

for all polynomials used are all consistent. The consistency between the polynomial

and wavelet results indicate that there is no reason to use the more complicated wavelet

fitting on this channel 2 data. This is very good because the polynomial method is

better understood and easy to implement. It is interesting to note that the red noise

scatter (σr) is minimised when a quadratic y trend and some time trend are used for

the decorrelation. This suggests that there may be some quadratic trend in the data

and that this is being fit by the quadratic y trend. This requires further investigation

which is beyond the scope of this work. The conclusion that comes from this is that

even if a more complicated model (than is required) is used it will not affect the depth

and time of mid-eclipse. This is very important because from these two parameters

temperature, molecules in the atmosphere and eccentricity are concluded.
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5.5 MCMC comparison

10 synthetic lightcurves from each channel were then fit using the MCMC algorithm I

used in the analysis of WASP-26b (Mahtani et al. 2013), to see how well the MCMC

algorithm recovered the synthetic eclipses. I then compare the results from the MCMC

to that of the polynomial and wavelet fitting to see how the agreement between all

the results and also to see how well the MCMC algorithm recovers the true value

of the eclipse. Figure 5.4 compares the recovered parameters using all three of the

methods presented in this thesis. It can be seen that all the methods are consistent

with each other which adds credence to the result that the wavelet method is not useful

in this particular analysis. However, it can also be seen that several of the results are

significantly discrepant.
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Figure 5.4: Comparison of recovered parameters using polynomial, wavelets and
MCMC
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Figure 5.5: Last channel 1 simulated lightcurve. This shows that these lightcurves
look very similar to the real channel 1 lightcurve (e.g. Mahtani et al. 2013) and so it is
unlikely that the cause of the significant discrepancies seen in these results is down to
poor lightcurve simulation.

For example the tenth simulation of the channel 1 (Figure 5.5) data and the sixth

simulation for the channel 2 data show the depths are discrepant by ∼ 6σ.2 For the

times of mid-eclipse the fourth simulation is off by ∼ 3.5σ and the third simulation is

off by ∼ 6σ for channel 1 and 2 respectively. This is unexpected if the distribution

of the MCMC recovered parameters is Gaussian, the chances of getting a result that

is more than 3σ away from the mean (which in this case should be 0) is 0.27% which

means error bars are not estimated correctly.

Figure 5.6 compares the MCMC distributions of the parameters recovered from

the simulated lightcurves with the overall distributions of the parameters from the

polynomial method. The polynomial distribution (blue curves) are the true distribu-

tions of the recovered parameters given multiple realisations of the lightcurves, i.e.,

repeating the observation 10,000 times. The green curves are the MCMC distributions

2Here the sigma is the average error of the MCMC recovered parameter
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of the parameters and they are an estimate of the polynomial distribution (blue curves)

given only one realisation of the lightcurve. The red curves are Gaussian distributions

with the same standard deviation as the polynomials distribution and mean 0 for the

parameters. It can be seen that the polynomial distributions are non-Gaussian be-

cause there are significant differences between the blue curves and the red curves. The

MCMC distributions are not only biased but are also highly peaked with heavy tails.

The goal of this work is to find a method to inflate the error bars on individual sec-

ondary eclipse depths such that they are more reliable. The polynomial and MCMC

distributions are such that the shapes cannot be matched, however, the widths can be

matched. To do this, for both channels and both the depths and mid-eclipse times, I

measured the standard deviation of the polynomial distributions for each parameter

and the mean MCMC error bar of all 10 simulated lightcurves. For each parameter,

I added a value (in quadrature) to the mean error bar of the 10 simulated lightcurves

such that this was equal to the standard deviation of the polynomial distribution. The

values that needed to be added to the MCMC error bars are shown in Table 5.4.
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Figure 5.6: Comparison of the distributions of the two parameters of interest. The
MCMC distributions shown are for the depths are the tenth simulation of the channel
1 data and the sixth simulation for the channel 2 data (green lines). The decorrelation
polynomials that were used are quadratic-in-space, linear-in-time for channel 1 and
was linear-in-space, no-time . The polynomial distribution for these are shown in blue.
The red lines are a Gaussian distribution with the same standard deviation as the
polynomial distribution and mean 0.

Wavelength Eclipse error (PPM) Time of mid-eclipse error (s)
3.6µm 146 220
4.5µm 127 67

Table 5.4: The extra amount of error that was required to inflate the error bars on the
simulated WASP-35 lightcurves
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5.6 Conclusions

In this chapter I have presented a method of determining realistic error bars for two

parameters that come from secondary eclipse photometry, the depth of the eclipse and

the time of mid-eclipse. These are very important parameters to have reliable error bars

because they give the temperature of the atmosphere at the altitude probed, evidence

of molecules and constraints on the eccentricity of the planets orbit. To do this I

have simulated eclipses of WASP-35b using the phase curve of HAT-P-2b. However,

WASP-35 and HAT-P-2 have V-band magnitudes of 10.94 and 8.69, respectively. To

accurately simulate secondary eclipses of WASP-35b extra white noise needs to be

added to the HAT-P-2 data. In the next chapter I re-do this analysis adding in the

extra white noise to account for the difference in brightness of the two stars estimate

the extra error that needs to be added to the eclipse depths and times of mid-eclipse

for the real WASP-35b secondary eclipse data.
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6 Warm Spitzer Occultation Photometry
of WASP-35b at 3.6µm and 4.5µm

6.1 Introduction

In Chapter 3 I presented results from Spitzer Space Telescope observations of the sec-

ondary eclipse of WASP-26b (Mahtani et al. 2013). The method used to analyse these

data is the state of the art technique for the analysis of secondary eclipse observations

of hot Jupiters. Currently Spitzer is the most reliable telescope for conducting these

observations. The depth and the time of mid-eclipse are two important parameters

that come from a secondary eclipse analysis. The eclipse depth gives information on

the temperature of the atmosphere at the region of the atmosphere probed by the

wavelength at which the eclipse is observed, and can provide evidence for the presence

of molecules in the atmosphere of the planet. If multiple wavelengths have secondary

eclipse depths measured then it is be possible to constrain the spectral energy distribu-

tion (SED) of the atmosphere given some assumptions on, for example, the metallicity

of the planet’s atmosphere. The time of mid eclipse gives e cos(ω) which, with an anal-

ysis including transit, radial velocity and secondary eclipse data, can strongly constrain

the eccentricity of the planet’s orbit. These planets are expected to be on tidally locked,

circular orbits because of their proximity to their host star. So if a hot Jupiter is on

an eccentric orbit could be evidence of further dynamical evolution of the system. To

fully understand the conclusions drawn from these two parameters realistic error bars

must be quoted on the measurement of these parameters. It is generally understood

that error bars that come from MCMC analyses of secondary eclipse observations are

underestimated because the correlated noise in the data is not accounted for in the

analysis. In this chapter I use the method of signal injection I presented in Chapter 5

to determine realistic error bars on the depth and time of mid eclipse of the secondary

eclipse of WASP-35b. This is the first analysis of this data set and will be presented

in a paper following the submission of this thesis (Mahtani et al. in prep.).
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6.2 Observations

I present Spitzer (Werner et al. 2004) InfraRed Array Camera (IRAC ) (Fazio et al.

2004) channel 1 (3.6µm) and channel 2 (4.5µm) secondary eclipse (occultation) data

taken on 2011 April 14 and 2011 April 17, respectively (PI: J H, Program ID 60003).

The Spitzer data were acquired in full array mode (256 × 256) and I include in this

analysis all the data used in the discovery paper by Enoch et al. (2011). Table 6.1 is a

summary of the data that I have used in this analysis.

Instrument Date(s)

WASP-N (2 cams)
10/2008-01/2009 Lightcurve
10/2009-01/2010

WASP-S (1 cam) 10/2009-01/2010 Lightcurve
RISE (V+R) 30/11/2010 Transit Lightcurve
TRAPPIST (I+z) 23/12/2010 Transit Lightcurve
FTS (z) 01/01/2011 Transit Lightcurve
TRAPPIST (I+z) 11/01/2011 Transit Lightcurve
IRAC 3.6µm 14/04/2011 Secondary Eclipse Lightcurve
IRAC 4.5µm 17/04/2011 Secondary Eclipse Lightcurve
FIES 25/01/2010 and 26/01/2010 3 RV points
CORALIE 05/01/2010 and 6-14/02/2010 9 RV points

Table 6.1: Summary of data used in this analysis.

6.3 Spitzer Data Reduction

The data reduction was conducted using the Image Reduction and Analysis Facility

(IRAF)1 using the same method as Anderson et al. (2011b) and Mahtani et al. (2013),

which is described briefly below.

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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Conversion from MJy/sr to electrons was done using equation (6.1), where the

gain, exposure time and flux conversion factor were taken from the image headers.

Factor =
Gain× Exposure Time

Flux Conversion Factor
(6.1)

Aperture photometry was then conducted using the PHOT procedure in IRAF, using

21 aperture radii in the range 1.5-6 pixels and with a sky annulus of inner radius 12

pixels and outer radius 20 pixels. It was found that there were stellar like objects

and bad columns in some of the data. However, an iterative 3-sigma clipping was

conducted which excludes those pixels. The error on the photometry was calculated

from the photon statistics and the read out noise of the IRAC detectors. The readout

noise values were taken from the IDL program SNIRAC warm.pro,2 the values for

channel 1 and 2 are 16 and 10 electrons, respectively. The position of the target was

measured by fitting a 1-dimensional Gaussian to the marginal distributions of flux on

x and y image axes. For each data set the times of mid-exposure were converted to

BJDTDB (Eastman, Siverd & Gaudi 2010) and for the occultation data the light travel

time (LTT) across the system (43.05s) was accounted for by subtracting the LTT from

all of the Spitzer times.

6.4 Analysis

6.4.1 Markov Chain Monte Carlo

The parameter space was explored using a Markov chain Monte Carlo (MCMC) algo-

rithm (Collier Cameron et al. 2007; Pollacco et al. 2008; Enoch et al. 2010) as discussed

in chapter 3.4.1. The input parameters for the star that were used in the MCMC anal-

ysis are Teff = 6050 ± 100 and [Fe/H] = −0.15 ± 0.09 (Enoch et al. 2011). Table 3.3

show the proposal parameters used in this MCMC analysis. The estimate of the epoch

2ssc.spitzer.caltech.edu/warmmission/propkit
/som/snirac−warm.pro
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of mid-transit was taken from the analysis of Enoch et al. (2011) so that the WASP

photometry could be excluded from analysis to reduce computational time. This value

along with its uncertainty were used as a Bayesian prior in all MCMC runs which used

all the follow up photometry, RV data and Spitzer photometry. The transit model

used in the analysis was the small planet approximation of Mandel & Agol (2002) with

4-parameter limb darkening coefficients taken from Claret (2004). The limb darkening

coefficients were determined using an initial interpolation in log g∗ and [Fe/H] and an

interpolation in Teff at each MCMC step. The limb darkening parameters used for the

best-fit lightcurves are given in Table 6.2. The secondary eclipse model approximated

the star and planet as two uniform discs of constant surface brightness. The projected

spin-orbit angle was fixed to the value λ = 0 in the fit.

Light Curve a1 a2 a3 a4

RISE 0.611 −0.135 0.591 −0.330
TRAPPIST 1 0.652 −0.346 0.636 −0.325
TRAPPIST 2 0.652 −0.346 0.636 −0.325
FTS 0.652 −0.346 0.636 −0.325

Table 6.2: Limb darkening coefficients

6.4.2 Trend Functions and Aperture size

Figure 6.1 shows an example of the 3.6µm (top) and 4.5µm (bottom) light curves

produced by the photometry in IRAF. As has been seen in other secondary eclipse

observations (e.g. Mahtani et al. 2013), the 3.6µm data has a ramp during the initial

stages of the observations. This occurs because the telescope has slewed from its old

position to its new position and is adjusting to a new equilibrium. To see the effect

of this portion of the data on the results, I clipped the first hour of both data sets. I

found that the system parameters were negligibly affected by the clipping of this data.

It can be seen that there is a periodic trend in the data. This is due to the variation
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in the position of the target on the detector caused by flexure of the instrument as

an electric heater is turned off and on.3 The IRAC detectors are known to exhibit

inhomogeneous intrapixel sensitivity (e.g. Knutson et al. 2008), which means there is

variable sensitivity across an individual pixel. This, along with the PSF movement,

results in the measured flux varying depending on the position of the PSF on the

detector. Also, when small apertures are used pixelation occurs due to the under-

sampling of the PSF of the target (Anderson et al. 2011b). These systematics will be

accounted for in the trend functions as described in chapter 2.3.3.1.

Figure 6.1: Examples of the 3.6µm (top) and 4.5µm (bottom) light curves produced
by the photometry in IRAF. The line at 1 hour shows the data that were clipped.

For each set of trial lightcurve model parameters the residuals from the model

3ssc.spitzer.caltech.edu/warmmission/news/21oct2010memo.pdf
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are calculated and then the coefficients of the detrending model are calculated using

singular value decomposition applied to the entire data set. Initially, a linear-in-time

and quadratic-in-space trend function was used on all 21 apertures to fit the secondary

eclipse data. The RMS of the residuals was used to determine the optimal aperture size.

Once this was determined, combinations of none, linear and quadratic trend functions

in time and space were used on the best aperture to determine the best fitting trend

function.

To determine which trend function gave better results the Bayesian Information

Criterion (BIC, equation 2.7) was used.

Using the RMS of the residuals it was found that the best aperture to use was 2.5

pixels in both channels. The system parameters are negligibly affected by the choice

of aperture radius around this value. It was found that the quadratic-in-space with

linear time trend function gave the best fit to the channel 1 data and that the linear-

in-space with no time trend function gave the best fit to the data to the channel 2

data. It was found that the addition of the quadratic term for the spatial decorrelation

and linear time improved our BIC by ∼ 110 in channel 1 over our base line model

of no-time and linear space. For channel 2 there was no improvement in the BIC for

models more complicate than no-time and linear space. Figure 6.2 shows the best raw

and detrended lightcurve as determined by this analysis and Table 6.3 shows the best

system parameters of this analysis.
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Figure 6.2: (Left): The raw light curves with the trend functions, the upper points
are the channel 2 data and the lower points are the channel 1 data, the solid lines are
the trend functions for each data set. (Middle) Binned light curves with trend models.
(Right) The binned light curve with trend function removed and best fitting eclipse
models (solid lines). The secondary eclipse can clearly be seen in both channels.
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Parameter (Unit) Value

P (d) 3.161529±0.000020

Tc (HJD) 2455547.28762±0.00010

T14 (d) 0.12743±0.00058

T12 = T34 (d) 0.01513±0.00056

∆F = R2
P/R2

∗ 0.01530±0.00016

b 0.284+0.047
−0.061

i (◦) 88.01+0.45
−0.37

K1 (km s−1) 0.0960±0.0071

γ (km s−1) 17.7181±0.0041

e cosω 0.00298+0.00088
−0.00085

e sinω 0.023+0.016
−0.018

e 0.023±0.016

ω (◦) 82.+3.
−23.

φmid−occultation 0.50190+0.00056
−0.00054

T58 (d) 0.1330+0.0040
−0.0042

T56 = T78 (d) 0.01589+0.00085
−0.00078

M∗ (M�) 1.071+0.022
−0.021

R∗ (R�) 1.105+0.028
−0.027

log g∗ (cgs) 4.381+0.018
−0.019

ρ∗ (ρ�) 0.793+0.054
−0.052

Teff (K) 5960+83
−82

[Fe/H] -0.150±0.090

MP (MJup) 0.726±0.055

RP (RJup) 1.330+0.039
−0.037

log gP (cgs) 2.972+0.037
−0.039

ρP (ρJ) 0.308+0.034
−0.031

a (AU) 0.04313±0.00029

TP,A=0 (K) 1455±28

Table 6.3: System parameters of the WASP-35 system

6.5 Results and Discussion

6.5.1 Error bar correction

WASP-35 and HAT-P-2 have V-band magnitudes of 10.94 and 8.69, respectively, so

to accurately simulate secondary eclipses of WASP-35b extra white noise needs to be



138

added to the HAT-P-2 data. I first calculated for each channel the amount of binning

of the HAT-P-2 data set that was required such that the simulated data had the same

cadence as the real WASP-35b lightcurves. The time sampling required for the HAT-

P-2 data was 6.86s so the sections of data selected from this sample were binned by

a factor of 17.4. Using the mean flux and mean error on from the photometry of

WASP-35 the HAT-P-2 (data after binning) I calculated the fractional uncertainty of

the flux (σf/f). The amount of extra white noise that needs to be added into the

HAT-P-2 data such that it has the same fractional uncertainty as the WASP-35 data

was 0.00254 and 0.003478 for channel 1 and 2 data respectively. The data train used

was 4096 data points because 2n, where n is an integer, data points were required for

wavelet fitting. I then injected eclipses with the same depth as WASP-35b into the

HAT-P-2 data and fit it using a polynomial and wavelet fitting method 10,000 times.

I found that the distributions of the polynomial and wavelet fits were consistent with

each other so no extra information is gained by using the more complicated wavelet

fitting. The distributions the depth and mid-eclipse times for the channel 1 data are

shown in Figures 6.3 and 6.4 and similar results were found for the channel 2 data. In

the following I only use the results from the polynomial fitting. Using the standard

deviation of the recovered eclipse depths and times of mid-eclipse I evaluate the amount

of systematic noise that needs to be added to the WASP-35 uncertainties such that

they have the same value as the standard deviation of the polynomial fits. Table 6.4

gives the amount of extra error that needs to be added in to the error bars on the two

parameters calculate using this method.
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Figure 6.3: The distributions of the secondary eclipse depths recovered using the poly-
nomial and wavelet fitting of the semi-synthetic secondary eclipse lightcurves of WASP-
35b with the extra white noise added into the HAT-P-2 data.
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Figure 6.4: The distributions of the secondary eclipse times of mid-eclipse recov-
ered using the polynomial and wavelet fitting of the semi-synthetic secondary eclipse
lightcurves of WASP-35b with the extra white noise added into the HAT-P-2 data.

Wavelength Eclipse error (PPM) Time of mid-eclipse error (s)
3.6µm 140 150
4.5µm 130 125

Table 6.4: The extra amount of error that was required to inflate the error bars on the
simulated WASP-35 lightcurves

6.5.2 Eclipse Depths and Brightness Temperatures

I find that the eclipse depths for WASP-35 at 3.6µm and 4.5µm relative to an out-of-

eclipse value of 1 that come directly out of the MCMC (i.e., no extra noise correction)

are 0.00141± 0.00011 and 0.00146± 0.00012, respectively. These eclipse depths corre-

spond to brightness temperatures of 1654±51K and 1461±50K. To find these blackbody
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temperatures the expected flux ratios were calculated using Planck functions at dif-

ferent temperatures for the planet and synthetic spectra from stellar models (Philip,

Upgren & Janes 1991) for the star. These flux ratios were then integrated over the

Spitzer band passes to calculate the expected measured flux ratio. The temperatures

above correspond to the best fitting Planck function temperature to the individual

eclipse depths. The errors were calculated using a simple Monte Carlo method. The

brightness temperatures suggest that, on average, the emission at mid-infrared wave-

lengths from the irradiated hemisphere of WASP-35b is consistent with the spectrum

of a non-thermally inverted atmosphere.

Figure 6.5 shows the activity-inversion as described in Knutson, Howard & Isaac-

son (2010) with the addition of the circle which is WASP-26 and the open triangles

is WASP-35b. WASP-35b had 2 spectra taken using the WHT with the ISIS spectro-

graph as part of an activity monitoring program of exoplanet host stars (Vilela and

Southworth in prep and see Mancini et al. 2014 for details on data reduction) on the

night of 2012/12/23, the two open triangles give an indication of the scatter in the

measured activity proxy over the course of one night. It is interesting to see that the

blackbody temperatures of the secondary eclipses of WASP-35 suggest that the atmo-

sphere is a not-thermally inverted. However, their positions on the plot suggest that

the atmosphere of WASP-35 should be thermally inverted, if the relation is real and

holds. Inflating the error bars on the eclipse depths by the values in Table 6.4 gives

180ppm for both channel 1 and 2, these now give blackbody temperatures of 1658±79

and 1461 ± 74 for channel 1 and 2 respectively . As expected the error bars on the

blackbody temperatures increase but they are still consistent with a non inverted at-

mosphere. These eclipse depths need to be fitted with atmospheric models as was done

for my WASP-26b analysis (Mahtani et al. 2013). This would give a better indication

of whether the atmosphere of WASP-35b is inverted.
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Figure 6.5: Activity-inversion plot for the stars in Knutson, Howard & Isaacson (2010).
Points on the left of the dotted line (triangles) are non-inverted planets around active
stars and those on the right of the dotted line (squares) are inverted planets around
inactive stars. The point on the left hand side of the plot shows the typical change in
logR′HK (season-to-season), assuming measurements over several nights. The circle is
WASP-26 and the open triangles are WASP-35b.

6.5.3 Eccentricity

The MCMC results give the time of mid-eclipse to be 0.50190+0.00056
−0.00054. This gives an

offset from a phase of 0.5 of 520 ± 150 seconds. This suggests a non-zero eccentricity

at the 3.5σ level. This result come from the simultaneous fit of both the channel 1

and channel 2 data so for the inflation of error bars I will use the conservative value of
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150 seconds. This gives a new error for the offset of 520 ± 212 seconds. This reduces

the significance of the eccentricity to 2.5σ. It has already been seen that the true

distributions of this parameter are non-Gaussian so to better test the significance I

looked at distributions from the simulated lightcurves. I calculated what proportion

of the 10000 simulated lightcurves (for both channel 1 and 2) for a circular orbit that

were fit by the polynomial methods have an absolute value of the offset of more than

520 seconds. My findings show that this only happens at most 3% of the time. If

this tentative detection of a non-circular orbit can be confirmed it may be relevant to

the formation history of this hot Jupiter and the effects of tidal heating on its current

structure, as discussed in section 1.4

6.6 Conclusion

In this chapter I present new warm Spitzer photometry of WASP-35b at 3.6µm and

4.5µm. I report the first detection of the occultation of WASP-35b with eclipse depths

(after error bar inflation for extra noise) at 3.6µm and 4.5µm of 0.00141 ± 0.00018

and 0.00146 ± 0.00018, respectively which correspond to brightness temperatures of

1654± 51K and 1461± 50K. My analysis suggests that the atmosphere of WASP-35b

is consistent, according to the brightness temperatures, with a non-thermally inverted

atmosphere. However, if the Knutson, Howard & Isaacson (2010) activity-inversion

relation holds for WASP-35b, then it would be expected to host a thermal inversion. A

full spectral retrieval is required to better constrain the true nature of the atmosphere

of WASP-35b and also to determine if any additional secondary eclipse data can give

any further constraint. I also find that the eccentricity of the planet’s orbit is non-zero.
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7 Discussion, Conclusions and Future Work

7.1 Hot Jupiter atmospheric variability

The work I have conducted during my Ph.D. has led me to thinking about orbit-to-

orbit-variability in the atmospheres of hot Jupiters. Just looking at the Earth, there is

significant variability in the cloud coverage. For an outside observer this would change

the observed emission spectrum. Moving to a more applicable analogy, Jupiter and

Saturn are seen to have large storms which can well up material from lower regions

of the atmosphere and hence change the emergent emission spectrum (Fletcher et al.

2011). To be able to detect variability we first need to be able to conduct reliable repeat

observations of secondary eclipses. Recent work by Wong et al. (2014) has shown that

their repeat observations of secondary eclipse depths at 4.5µm are precise better than

79ppm. However, Hansen, Schwartz & Cowan (2014) presented results that found that

repeat observations of secondary eclipses observed with Spitzer were discrepant by

500ppm or that the error bars are underestimated by a factor of 3. The eclipse depths

of the planets in the Hansen, Schwartz & Cowan (2014) sample, with their published

uncertainties, were fit with Planck functions at the central wavelength of the bandpass

they were observed. Using the BIC for each eclipse depth were calculated and these

results are shown in Figure 7.1.
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Figure 7.1: Comparing the BIC for the published eclipse depths and the published
uncertainties to perfect (χ2 = 0, dotted line) and good (χ2 = N , solid shaded regions)
fits to a blackbody (grey) and spectral retrieval (green) (Hansen, Schwartz & Cowan
2014).

The grey dotted line in Figure 7.1 shows the predicted BIC for a given number of

observations assuming a perfect fit to the data (i.e., χ2 = 0). The shaded grey region

is the 68.3% confidence interval of the χ2 distribution given a reduced χ2 of 1. In this

case the only parameter that is free is the temperature of the blackbody and hence

K = 1. For spectral retrieval the normal number of free parameters is 10, 6 for the T-P

profile and 4 for the molecular abundances. The same BIC calculations were conducted

for the spectral retrieval method and are plotted as the green dotted line (χ2 = 0) and

shaded green region(χ2 = 1). Points that lie above the green shaded region are better
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fit by the spectral retrieval method than blackbody fits. Points that lie between the

two shaded regions are better fit by the blackbody model. It can be seen that there

are 7 planets here that are better fit by spectral retrieval.

The same calculations were done but the uncertainties are inflated by adding in

the 500 PPM error (Figure 7.2) or multiplying the error bars by a factor of 3 (results

similar to Figure 7.2).
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Figure 7.2: Comparing the BIC for a black body fit to the published eclipse depths
with 500ppm added in quadrature to the published uncertainties to perfect (χ2 = 0,
dotted line) and good (χ2 = N , solid shaded regions) fits to a blackbody (grey) and
spectral retrieval (green) Hansen, Schwartz & Cowan (2014).

One will always get a better fit using a more complicated model because there are
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more free parameters. The BIC is used to determine if a more complicated model is

justifiable. Figures 7.2 shows that, apart from HD189733 b, all other planets with

secondary eclipse observations show no evidence that the extra free parameters in the

spectral retrieval model justify its use.

The results of Wong et al. (2014) show that secondary eclipse depths at 4.5µm in

the same observing set up as used in their work, are repeatable to very high accuracy.

This also means that if variability occurs it may be detectable. In this case the orbit-to-

orbit variability must be larger that 79ppm to be detectable. These results of Hansen,

Schwartz & Cowan (2014) could be due to the different observing modes of the data.

This is evidence for the need of a homogeneous analysis of secondary eclipse data and

needs to be conducted if we want to look for orbit-to-orbit variations in other Spitzer

secondary eclipse data.

Although no orbit-to-orbit variability was detected for the eclipse depths of XO-

3b (Wong et al. 2014) this does not mean that all hot Jupiters have non-variable

atmospheres. It should also be noted that the atmospheres of eccentric giant planets

such as XO-3b are dominated by diurnal forcing because of the variable stellar flux

impacting the atmosphere. For example, the incident stellar flux of XO-3b varies by a

factor of ∼ 3 between perigee and apogee. Although this could mean that this class

of hot Jupiters are more likely to show variability, the fact that this system does not

show that, should not discourage the same analysis for other systems.

A recent paper by Parmentier, Showman & Lian (2013) showed that orbit-to-

orbit variability could be due to variations in the high atmospheric absorber that causes

thermal inversions to form. It has been hypothesised (Hubeny, Burrows & Sudarsky

2003; Fortney et al. 2008) that the high atmospheric absorber could be TiO. However,

due to its high mean molecular weight it should gravitationally settle to high pressure

regions of the atmosphere, and hence having TiO at high altitudes is very difficult.

Another problem is that cold traps on the night-side of the planet would cause the TiO

to condense and rain out of the high altitude regions of the atmosphere (Parmentier,

Showman & Lian 2013). A mechanism that was thought to bring this heavy molecule

to low pressure regions of the atmosphere was convection. This had been parametrised
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by the KZZ parameter in atmospheric models. In Parmentier, Showman & Lian (2013)

models have shown that winds from the nightside to the dayside of the planet could

drive this material to the upper atmosphere such that it is able to form a thermal

inversion. They also predict that this should result in strong temporal and spatial

variability of this absorber. Their models show that for particles that are larger than

∼ 1µm the variability of this absorber could cause variability in the presence of a

thermal inversion on timescales of 10-100 Earth days. The presence of a thermal

inversion is currently deduced by observing the eclipse depths at 3.6µm and 4.5µm

using Spitzer. So repeat sets of these observations (where each pair of observations is

observed as close together as possible) could allow the detection of variable thermal

inversions in hot Jupiters. To determine what level of variability is detectable for a

particular system, one could use the signal injection method used here but to vary

the injected depths. With this information, one could use the slope measurement

techniques presented in Knutson, Howard & Isaacson 2010 to determine at what level

of variation, changes the interpretation of the atmosphere (with/without a thermal

inversion). If this variability is smaller than the uncertainty on the eclipse depth, the

analysis can be redone to determine at what level the variability needs to be such that

the switch from inverted to non-inverted (or vice versa) occurs for that system.

TiO is also important in the formation of silicate in the atmosphere of hot Jupiters

(Parmentier, Showman & Lian 2013). Silicates form clouds and hazes and so variations

in TiO could lead to variations cloud coverage on hot Jupiters. This could be seen as

variations in the albedo and hence reflected light component of secondary eclipses

which could be measured by the Kepler space telescope. So this work suggests that a

reanalysis of Kepler data of the most highly irradiated hot Jupiters could lead to the

detection of temporal variability in the atmospheres of hot Jupiters. Also, variations in

cloud coverage would also cause variations in the eclipse depths of hot Jupiters which

could be measured with Spitzer.

Wong et al. (2014) also analysed their global fit of all of their secondary eclipses

for deviations from a uniform disk model. It is generally assumed when analysing these

data that the measured light from the planet is uniform over the disc. However, during
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ingress/egress it can be imagined that the planet is being sliced from pole to pole by

the limb of the star. By analysing the residuals from a uniform disk model during this

time it may be possible to detect features in the atmosphere, for example an offset in

the hotspot from the sub-stellar point (e.g. Knutson et al. 2007). The results of this

analysis (shown in Figure 7.3) found that no deviation from a uniform disk were seen

above the noise level and the upper limit placed on this kind of variability is 500ppm.

Similar work has been conducted for HD189733b by Majeau, Agol & Cowan (2012)

and de Wit et al. (2012).
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Figure 7.3: Combined data of all 12 secondary eclipses from Wong et al. (2014) binned
on a time scale of 3 minutes. The uniform disk model is over plotted (solid line) on the
data (black points with error bars). The shaded regions denote the ingress and egress
of the lightcurve where the deviations from a uniform disk would be seen if they were
to be there and detectable.

7.2 Future work

I am interested in conducting further work to see if there is any detectable orbit-to-

orbit variability in the atmospheres of hot Jupiters. The way I propose to do this is to

first choose a well studied system (e.g., HD189733 or HD209458) and to re-reduce and

analyse all the Spitzer 3.6µm and 4.5µm data. The goal of redoing this analysis is to
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alleviate any differences in analysis methods that could lead to systematic errors. Then

I will take the mean eclipse depth of all the individual eclipse depth measurements at

each wavelength and inject that into a portion of a phase curve for that system. If

no phase curve is measured then I will look for a star of similar spectral type and

brightness that does have a phase curve measured and use that data for the signal

injection. Then I will inflate the error bars using the methods I presented in this thesis

and compare the eclipse depths. Any potential variability will be seen when plotting

these eclipse depths against time.

The variability that will be present will be a combination of both the host star

and the planet. Hence, there is ambiguity as what proportion of any variability seen

is stellar and planetary in nature. Stellar variability includes magnetic activity, gran-

ulation and pulsations. To asses these a constant monitoring program is needed. To

estimate the contribution of the magnetic activity of star to any variability detected,

I want to use the proxy log(R′HK). With long term observations of this proxy for

magnetic activity I would like to use the new Gaussian process methods (e.g. Gibson

et al. 2012) to fit these measurements. This will also allow one to predict the value of

log(R′HK) between the data points. Working along side stellar variability experts (e.g.,

Suzanne Aigrain who has a long term monitoring program of HD189733b) I would find

methods of using this data to determine the stellar magnetic activity contribution to

any variability detected. To determine the level of stellar variability (e.g., pulsations

and granulation) that contributes to any orbit-to-orbit variability in eclipse depths is

not an easy task. Asteroseismology will be needed to understand photometric variabil-

ity of stars. We have found many planets around Sun-like stars. However, solar-like

stars oscillate on time-scales of minutes to hours. However, the level of variability

is only a few ppm (Aerts, Christensen-Dalsgaard & Kurtz 2010). This level is only

achievable through space based missions. With the development of the next genera-

tion of telescopes (e.g., PLATO, TESS) this level may be achievable. This would mean

this systematic error could be removed from any potentially detectable variability in

eclipse depths so that only the variation of the planet is estimated.

To asses the possibility that variability could be caused by a nearby or companion
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star, high spatial resolution, adaptive optics images can be taken of the star at multiple

wavelengths. If no other stars are detected in these images it is possible to use the

limiting magnitude of the telescope and instrument used to determine an upper limit

to the amount of variability caused by any unseen close by stars.

A long term goal of this work is to build a catalogue of eclipse depths that have

all been analysed in a homogeneous manner. Eventually I want to develop the code

used in this work to allow this method to be used on any secondary eclipse data. This

will allow a homogeneous study of secondary eclipses at all wavelengths and allow for

a thorough catalogue to be established. A catalogue of eclipse depths will be of use

when optimum target selection is required for the next generation of telescopes.

7.3 Looking Forward: From Spitzer to JWST and

beyond

Currently atmospheric characterisation is only possible for the hot Jupiters and other

large planets that orbit bright stars. In the future, with missions such as The Next

Generation Transit Survey (NGTS), The James Webb Space Telescope (JWST), The

European Extremely Large Telescope (EELT) and Transiting Exoplanet Survey Satel-

lite (TESS) planets analogues to the Earth will be able to detect the signals of their

atmospheres. So accounting for the systematic errors in the data will be vital for

detecting these very small amplitude signals. In these data we will be looking for

the signatures that are indicative of life on another world. There are hundreds of

hot Jupiters that have been found by the SupeWASP survey, so these can be used to

develop and improve this method (through a homogeneous analysis) so that when po-

tentially life-bearing planets are found, this method will be fully developed and ready

to help look for these very faint signals in the data. This method of signal injection into

real data is a step that needs to be conducted during the commissioning of these next

generation of telescopes. This method will allow the most information to be gained

from the data.
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7.4 Conclusions

In this thesis I have investigated how to account for systematic errors that are present

in Spitzer secondary eclipse photometry of hot Jupiters. The next step is to take this

information and see how inflating the error bars on these data affects the conclusions

drawn from fitting atmospheric models to the data. It will also allow for further

investigations into orbit-to-orbit variability to be conducted. With the new generation

of telescopes that are being built, the field of exoplanet atmospheres is going to have

many dedicated instruments. It is thus a very exciting time to be working in this area.
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